eTheses Repository

Tribology of ball-and-socket total disc arthroplasty

Moghadas Mobarakeh, Parshia (2012)
Ph.D. thesis, University of Birmingham.

PDF (4Mb)


Total disc arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of TDAs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces of such designs can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of change in design factors, such as dimensions and material combinations, on friction and wear of ball-and-socket TDAs. Friction tests were carried out on generic models with ball radii 10, 12, 14 and 16 mm. Three material combinations were investigated; metal-on-metal, metal-on-polymer and for the first time polymer-on-metal. Wear tests were performed on metal-on-polymer Charité® TDAs and generic metal-on-metal models to compare the wear rate under the same conditions. Friction test results showed that polymer-on-metal TDAs create less friction than metal-on-polymer and metal-on-metal TDAs. Wear test results showed that under the same conditions, metal-on-metal TDAs create 23 times less wear debris than metal-on-polymer. The results were in agreement with studies on total hip arthroplasty (THA). The results of this work suggest possible alternatives for future TDA designs.

Type of Work:Ph.D. thesis.
Supervisor(s):Hukins, David W. L. and Shepherd, Duncan E. T.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Mechanical Engineering
Subjects:RD Surgery
TN Mining engineering. Metallurgy
TP Chemical technology
TS Manufactures
Institution:University of Birmingham
ID Code:3436
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page