A ROLE FOR ATP IN MODULATING VASOMOTION DURING HYPOXIA IN UMBILICAL CORD BLOOD VESSELS

By

WILSON KING LIM TO

A thesis presented to the University of Birmingham for the degree of

DOCTOR OF PHILOSOPHY

School of Clinical and Experimental Medicine
College of Medical and Dental Sciences
University of Birmingham

September 2011
Previous studies have associated intracellular calcium ([Ca\(^{2+}\)]\(_i\)) oscillations in vascular smooth muscle cells (SMC) with vasomotion in multiple species. In normal and pre-eclamptic pregnancies, there is strong evidence to suggest that the intrauterine environment is hypoxic. The aim of this study was to investigate whether ATP and [Ca\(^{2+}\)]\(_i\) oscillations play a role in modulating vasomotion during hypoxia in human umbilical blood vessels.

The results obtained from *in vitro* studies using firefly luciferase assay and quinacrine staining indicated that human umbilical artery and vein endothelial cell (HUAEC, HUVEC respectively) constitutively released ATP and, in HUVEC at least, the release was accentuated by hypoxia (7.6 mmHg O\(_2\), 30 min). This release is dependent on the PI\(_3\)K/ROCK pathway, and on normal vesicular transport. Further, application of ATP to human umbilical artery SMC induced dose-dependent [Ca\(^{2+}\)]\(_i\) oscillations, which is mediated by P2Y\(_4\) receptor. Moreover, *ex vivo* data from freshly isolated umbilical artery rings showed that acute hypoxia increased the frequency of vasomotion.

It is therefore proposed that the findings of the present study is important in the understanding of the behaviour of human umbilical vessels in normal pregnancy, but may also have implications in the pathophysiology of complicated pregnancy such as pre-eclampsia.
ACKNOWLEDGEMENTS

First and foremost I would like to thank Professor Janice Marshall for her expert guidance, patience and support particularly through the difficult period of this study and in preparation of this thesis. I would also like to thank Dr. Prem Kumar for his many helpful discussions and support, and Dr. Yuchun Gu for introducing me to the project. Thanks is also due to Mr. Phil Stone for his technical support with cell culture; Miss. Hannah Jeffery for help with flow-cytometry; Dr. Jane Steele and Miss Souad Messahel for consenting patients and collection of umbilical cords; Dr. Ann Marie Gonzalez and Miss Emma Westwood for help with confocal microscopy and immunohistochemistry; Dr. Stephen Young for loan of various pieces of equipments; Dr. David Hauton for technical support with cryostat; Dr. Stuart Egginton for help with microscopy; and Dr. Andy Coney for statistics- and I.T.- related discussions; my fellow PhD students Mr. Christopher Davies, Mr. Andy Holmes and Mr. William Rook for their help and encouragement. Finally, I would like to thank my good friend Dr. Klaus Hofmann and my partner Dr. Catherine Opie, for their unwavering support over the past few years.
PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS THESIS


Poster presentation at the University of Birmingham Cardiovascular and Respiratory Sciences Away Day, Harborne Golf Club, September 2010.

Poster presentation at the Themed Meeting of the Physiological Society: Cardiac and respiratory physiology, IET Birmingham, September 2010.

Poster presentation at the International Symposium of Advanced Research Progress in Reproductive Medicine, Changzhou, China, September 2009.
Poster presentation at Themed Meeting of the Physiological Society: Vascular and smooth muscle physiology, King’s College London, U.K., December 2008.

Poster presentation at the Focused Meeting of the Physiological Society: Ion channels and the microcirculation, Queen’s University Belfast, Northern Ireland, April 2007.
## TABLE OF CONTENTS

### CHAPTER 1  
GENERAL INTRODUCTION  
1.1 OVERVIEW  
1.2 HUMAN UMBILICAL CIRCULATION AND ITS FUNCTIONS  
  1.2.1 Need for a Circulatory System  
  1.2.2 Fetal Life Support System  
    1.2.2.1 Need for a Fetal Life Support System  
    1.2.2.2 Adaptations During Gestation  
    1.2.2.3 Uterus  
      1.2.2.3.1 Structure  
      1.2.2.3.2 Blood Supply  
    1.2.2.4 Placenta  
      1.2.2.4.1 The Origin, Development and Functions of the Placenta  
      1.2.2.4.2 The Hormonal Function of the Placenta  
      1.2.2.4.3 The Microstructure of the Material Exchange Barrier  
    1.2.2.5 Exchange at the Placenta  
    1.2.2.6 Oxidative Stress and Pregnancy  
    1.2.2.7 Umbilical Circulation  
1.3 REGULATION OF THE FETAL-PLACENTAL CIRCULATION  
  1.3.1 Endothelium-Derived Vasoactive Substances  
  1.3.2 Nitric Oxide  
    1.3.2.1 Diverse Importance of NO
1.3.2.2  NO Synthesis
1.3.2.3. Molecular Regulation of eNOS
   1.3.2.3.1. Ca$^{2+}$
   1.3.2.3.2. Phosphorylation
      1.3.2.3.4. Intracellular Translocation and Associated Proteins
1.3.2.4. Action of NO
1.3.2.5. Physiological Roles of NO in the Cardiovascular System
1.3.2.6. Hypoxia and NO
1.3.2.7. NO and Reactive Oxygen Species (ROS)
1.3.3. PROSTAGLANDINS
   1.3.3.1. Synthesis and Breakdown
   1.3.3.2. Physiological Role of Prostanoids
1.3.4. EDHF
   1.3.4.1. Candidates for EDHF
   1.3.4.2. Physiological Role of EDHF
1.3.5. ENDOTHELIN
   1.3.5.1. ET Structure
   1.3.5.2. ET Production
   1.3.5.3. ET Receptors and Downstream Regulation
   1.3.5.4. Physiological Roles of ET
1.3.6. PURINERGIC REGULATION
   1.3.6.1. Purinergic Substances are Vasoactive
   1.3.6.2. Purinergic Modulation of Vascular Tone
   1.3.6.3. ATP and the Endothelial Cells
1.3.6.4. ATP and Vascular Smooth Muscle Cells 47

1.4. ATP RELEASE 49

1.4.1. Sources of Vascular Extracellular ATP 49

1.4.2. Hypoxia-induced ATP release 50

1.4.3. Known ATP Release Pathways 51

1.4.3.1. ABC Transporters and VDAC 52

1.4.3.2. VRAC 54

1.4.3.3. Hemichannels and P2X7 Purinoceptor 55

1.4.4. Fate of Extracellular ATP 57

1.4.4.1. Ectonucleotidase (EN) 57

1.4.4.2. Regulation of EN 60

1.5. VASCULAR VASOMOTION 61

1.5.1. The Physiological Role of Vasomotion 61

1.5.2. Mechanisms Underlying Vasomotion 64

1.5.3. Vasomotion and Pre-eclampsia 65

1.6. GENERAL HYPOTHESIS 66

CHAPTER 2 GENERAL METHODS AND MATERIALS 70

2.1. CELL ISOLATION AND CULTURE 71

2.1.1. General Conditions 71

2.1.2. Cell culture apparatus and their preparation for cell attachment 72

2.1.3. Subcultivation 73

2.1.4. Human Umbilical Vein Endothelial Cells 74

2.1.5. Human Umbilical Artery Endothelial Cells 74
2.1.6. Human Umbilical Artery Smooth Muscle Cells 75
   2.1.6.1. Chronic Hypoxia Treatment 75

2.1.7. Validation of cell phenotype 76
   2.1.7.1. FACS 76

2.2. HYPOXIA-INDUCED ATP RELEASE 78
   2.2.1. Induction of Hypoxia 78
   2.2.2. ATP Measurement 80
      2.2.2.1. Principle 80
      2.2.2.2. Choice of assay 80
      2.2.2.3. Exposure to hypoxia 81
      2.2.2.4. ATP standards 82
   2.2.3. Viability study 83
   2.2.4. Visualisation of quinacrine-stained HUVEC 83

2.3. CALCIUM IMAGING 84
   2.3.1. Principle 84
   2.3.2. Fluorescence indicator loading protocols 86
   2.3.3. Cytosolic free calcium measurement 86

2.4. MYOGRAPHY 88
   2.4.1. Isolation and Validation of Human Umbilical Blood Vessels 88
   2.4.2. Calibration of Myography 89
   2.4.3. Data Acquisition 90
   2.4.4. Immunohistochemistry 92

2.5. STATISTICAL METHODS 94
CHAPTER 3  THE EFFECT OF ATP ON [CA2+]i IN HUMAN UMBILICAL
ARTERY SMOOTH MUSCLE CELLS

3.1.  INTRODUCTION 96

3.2.  METHODS 98

3.3.  RESULTS 102

3.4.  DISCUSSION 116

3.4.1.  [Ca2+]i oscillations at rest and the effect of exogenous ATP 116
3.4.2.  Ca2+ entry or Ca2+ release? 117
3.4.3.  P2 receptors responsible 118
3.4.4.  Maintenance of [Ca2+]i oscillations 119
3.4.5.  ROCC, SOCC and VOCC in HUASMC 120
3.4.6.  Effect of chronic hypoxia 122

CHAPTER 4  THE EFFECT OF HYPOXIA ON ATP RELEASE FROM HUAEC AND
HUVEC

4.1.  INTRODUCTION 125

4.2.  METHODS 127

4.3.  RESULTS 130

4.4.  DISCUSSION 144

4.4.1.  Constitutive and hypoxia-induced ATP release in EC 144
4.4.2.  Intracellular transduction pathways 147
4.4.3.  Is vesicular transport responsible? 148
CHAPTER 5 VISUALISATION OF ATP VESICLES IN HUVEC AND THE EFFECT OF HYPOXIA

5.1. INTRODUCTION

5.2. METHODS

5.3. RESULTS

5.4. DISCUSSION

5.4.1. Quinacrine staining of HUVEC
5.4.2. Effect of hypoxia
5.4.3. Effects of vesicular inhibitors
5.4.4. Formation of ATP vesicles in HUVEC

CHAPTER 6 THE EFFECT OF EXOGENOUS ATP AND HYPOXIA ON [Ca^{2+}]_i IN HUVEC

6.1. INTRODUCTION

6.2. METHODS

6.3. RESULTS

6.4. DISCUSSION

6.4.1. Effect of exogenous ATP
6.4.2. Origin of the Ca^{2+}
6.4.3. Role of intracellular Ca^{2+} stores and SOCC
6.4.4. The effect of hypoxia on [Ca^{2+}]_i
6.4.6. Functional role of hypoxia-induced ATP release from HUVEC
CHAPTER 7  VASOMOTION IN THE HUMAN UMBILICAL ARTERY AND THE EFFECT OF HYPOXIA 194

7.1. INTRODUCTION 195

7.2. METHODS 196

7.3. RESULTS 199

7.4. DISCUSSION 210

7.4.1. Characteristics of the vasomotion 210

7.4.2. Role of extracellular Ca$^{2+}$ 211

7.4.3. Role of ATP 213

7.4.4. Effect of hypoxia 215

CHAPTER 8  GENERAL DISCUSSION 217

8.1. GENERAL DISCUSSION 218

APPENDICES 228

Composition of EGM® Endothelial Cell Growth Medium (Lonza, Switzerland) 228

Composition of Endothelial Cell Growth Medium (for ATP-release experiments; Promocell, UK). 228

REFERENCES 230
INDEX TO FIGURES

Figure 1.1. Electron transmission electron micrograph of a chorionic villus 9
Figure 1.2. Diagrammatic representation of transition from histiotrophic to haemotrophic phase of fetal development 12
Figure 1.3. NO synthesis from L-arginine 19
Figure 1.4. Production of prostonoids from membrane phospholipids 28
Figure 1.5. The Endothelin pathway 35
Figure 1.6. ET control of vascular contractility 37
Figure 1.7. The structure of ABC transporter 53
Figure 1.8. Extracellular metabolism of nucleotides 58
Figure 1.9. Schematic hypothesis showing a modulation of vascular vasomotion in human umbilical vessels during pregnancy. 67
Figure 2.1. Continuous record of O₂% in incubator 79
Figure 2.2. Example of an ATP standard curve 82
Figure 3.3.1. [Ca²⁺]ᵢ oscillations induced in two HUASMC by micromolar concentrations of ATP. 105
Figure 3.3.2. The amplitude (above) and frequency (below) of [Ca²⁺]ᵢ oscillations induced by different concentrations of ATP. 106
Figure 3.3.3. Original recording of [Ca²⁺]ᵢ oscillations in HUASMC. 107
Figure 3.3.4. Original recording of [Ca²⁺]ᵢ in HUASMC showing the source of ATP 108
Figure 3.3.5. The effect of changing extracellular [Ca²⁺] on [Ca²⁺]ᵢ oscillation frequency 109
Figure 3.3.6. Original recording of $[\text{Ca}^{2+}]_i$ in HUASMC when challenged with α,β-methylene ATP or UTP.

Figure 3.3.7. Modulation of $[\text{Ca}^{2+}]_i$ oscillations

Figure 3.3.8. Modulation of $[\text{Ca}^2]_i$ oscillation

Figure 3.3.9. OAG stimulation of HUASMC and inhibition with 2-APB.

Figure 3.3.10. $[\text{Ca}^{2+}]_i$ elevation in HUASMC mediated by SOCC.

Figure 3.3.11. Comparison of effects on ATP-induced $[\text{Ca}^{2+}]_i$ oscillations in normoxic cells and in HUASMC cells made chronically hypoxic in 1% $\text{O}_2$ for 12 hr.

Figure 4.3.1. FACS analysis of CD31 stained cells isolated from the human umbilical vein.

Figure 4.3.2. FACS analysis of CD31 stained cells isolated from the human umbilical artery.

Figure 4.3.3. ATP release from HUVEC (above) and HUAEC (below) as determined by the luciferin-luciferance assay.

Figure 4.3.4. Effect of hypoxia on apical and basolateral release of ATP from HUVEC.

Figure 4.3.5. The role of PI3K and ROCK in hypoxia-induced release of ATP from the apical membrane of HUVEC.

Figure 4.3.6. The role of PI3K and ROCK in hypoxia-induced release of ATP from the basolateral membrane of HUVEC.

Figure 4.3.7. The effect of brefeldin A and monensin on constitutive and hypoxia-induced release of ATP from the apical membrane of HUVEC.
Figure 4.3.8. The effect of brefeldin A and monensin on constitutive and hypoxia-induced release of ATP from the basolateral membrane of HUVEC.

Figure 4.3.9. The effect of Ca\(^{2+}\) ionophore on apical and basolateral release of ATP from HUVEC.

Figure 4.3.10 The effect of NO on apical and basolateral release of ATP from HUVEC.

Figure 5.3.1. Confocal imaging of HUVEC monolayer dual-labelled with quinacrine and DAPI.

Figure 5.3.2. Representative fluorescent and bright field images of HUVEC incubated in quinacrine in normoxia or hypoxia.

Figure 5.3.3. Typical representation of fluorescent and bright field images of quinacrine-stained HUVEC after treatment with brefeldin A, monensin or vehicle.

Figure 6.3.1. Original recording showing effects of ATP on \([\text{Ca}^{2+}]_i\) in HUVEC.

Figure 6.3.2. Dose response relationship for ATP-induced \([\text{Ca}^{2+}]_i\) elevation in HUVEC expressed relative to response evoked by 100 µM ATP.

Figure 6.3.3. The effect of the non-specific P2 antagonist suramin on ATP-induced \([\text{Ca}^{2+}]_i\) elevation in HUVEC.

Figure 6.3.4. Original recording showing ATP-induced \([\text{Ca}^{2+}]_i\) elevation in HUVEC in the absence and presence of extracellular Ca\(^{2+}\).

Figure 6.3.5. The effect of membrane depolarisation with 60 mM K\(^+\) on baseline \([\text{Ca}^{2+}]_i\) in HUVEC and on ATP-induced \([\text{Ca}^{2+}]_i\) elevation.

Figure 6.3.6. Original recording of ATP-induced \([\text{Ca}^{2+}]_i\) elevation in HUVEC in the presence and absence of extracellular Ca\(^{2+}\).
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.7.</td>
<td>The effect of acute hypoxia on $[Ca^{2+}]_i$ in HUVEC.</td>
</tr>
<tr>
<td>6.3.8.</td>
<td>The effect of acute hypoxia on ATP-induced $[Ca^{2+}]_i$ elevation in HUVEC.</td>
</tr>
<tr>
<td>7.3.1.</td>
<td>Original recording of isometric force generated by human umbilical artery rings</td>
</tr>
<tr>
<td>7.3.2.</td>
<td>Original recording of isometric force generated by human umbilical artery rings</td>
</tr>
<tr>
<td>7.3.3.</td>
<td>Original recording of vasomotion in human umbilical artery ring in the presence and absence of extracellular $Ca^{2+}$.</td>
</tr>
<tr>
<td>7.3.4.</td>
<td>CD31 and DAPI co-staining of human umbilical artery rings.</td>
</tr>
<tr>
<td>7.3.5.</td>
<td>The role of purinoceptors in vasomotion of human umbilical artery.</td>
</tr>
<tr>
<td>7.3.6.</td>
<td>The role of IP3R, SOC and ROC channels in vasomotion of human umbilical artery.</td>
</tr>
<tr>
<td>7.3.7.</td>
<td>The role of adenosine in vasomotion of human umbilical artery.</td>
</tr>
<tr>
<td>7.3.8.</td>
<td>The effect of acute hypoxia on $[Ca^{2+}]_i$ in human umbilical artery.</td>
</tr>
<tr>
<td>7.3.9.</td>
<td>The effect of apyrase on vasomotion of human umbilical artery rings in normoxia and hypoxia.</td>
</tr>
<tr>
<td>8.1.</td>
<td>Schematic diagram of the major findings of the present thesis.</td>
</tr>
</tbody>
</table>
### ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-APB</td>
<td>2-aminoethoxydiphenyl borate</td>
</tr>
<tr>
<td>A23187</td>
<td>5-[(Methylamino)-2-[[2R,3R,6S,8S,9R,11R] -3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholin</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BK</td>
<td>Large conductance potassium</td>
</tr>
<tr>
<td>CCE</td>
<td>Capacitative calcium entry</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial cell</td>
</tr>
<tr>
<td>EET</td>
<td>Epoxyeicosatrienoic acid</td>
</tr>
<tr>
<td>EN</td>
<td>Ectonucleotidase</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EDCF</td>
<td>Endothelium-derived contracting factor</td>
</tr>
<tr>
<td>DERF</td>
<td>Endothelium-derived relaxing factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>ET</td>
<td>Endothelin</td>
</tr>
<tr>
<td>FACS</td>
<td>Flow-activated cell sorting</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HFPV</td>
<td>Hypoxic fetoplacental vasoconstriction</td>
</tr>
<tr>
<td>HPV</td>
<td>Hypoxic pulmonary vasoconstriction</td>
</tr>
<tr>
<td>Hr</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>I/R</td>
<td>Ischaemia-reperfusion</td>
</tr>
<tr>
<td>IKCa</td>
<td>Intermediate conductance Ca$^{2+}$-activated K$^+$ channels</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol trisphosphate</td>
</tr>
<tr>
<td>K_M</td>
<td>Michaelis-Menten constant</td>
</tr>
<tr>
<td>L-NMMA</td>
<td>$N^G$-monomethyl-L-arginine</td>
</tr>
<tr>
<td>La$^{3+}$</td>
<td>Lanthanum ion</td>
</tr>
<tr>
<td>LY294002</td>
<td>2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one</td>
</tr>
<tr>
<td>Min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>OAG</td>
<td>1-oleoyl-2-acetyl-sn-glycerol</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>Superoxide</td>
</tr>
<tr>
<td>ONOO$^-$</td>
<td>Peroxynitrite</td>
</tr>
<tr>
<td>PE</td>
<td>Pre-eclampsia</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol 3 kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td>PPADS</td>
<td>Pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid</td>
</tr>
<tr>
<td>PGI&lt;sub&gt;2&lt;/sub&gt;</td>
<td>Prostacyclin</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>ROCC</td>
<td>Receptor-operated calcium channels</td>
</tr>
<tr>
<td>S</td>
<td>Second(s)</td>
</tr>
<tr>
<td>SK&lt;sub&gt;Ca&lt;/sub&gt;</td>
<td>Small conductance Ca&lt;sup&gt;2+&lt;/sup&gt;-activated K&lt;sup&gt;+&lt;/sup&gt; channels</td>
</tr>
<tr>
<td>SMC</td>
<td>Smooth muscle cell</td>
</tr>
<tr>
<td>SNAP</td>
<td>S-Nitroso-N-acetyl-D,L-penicillamine</td>
</tr>
<tr>
<td>SOCC</td>
<td>Store-operated calcium channels</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SERCA</td>
<td>Sarcoplasmic reticulum Ca&lt;sup&gt;2+&lt;/sup&gt; ATPase</td>
</tr>
<tr>
<td>TG</td>
<td>Thapsigargin</td>
</tr>
<tr>
<td>TRP</td>
<td>Transient Receptor Potential</td>
</tr>
<tr>
<td>TXA&lt;sub&gt;2&lt;/sub&gt;</td>
<td>Thromboxane</td>
</tr>
<tr>
<td>U73122</td>
<td>1-[6-[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione</td>
</tr>
<tr>
<td>V.S.</td>
<td>Versus</td>
</tr>
<tr>
<td>VOCC</td>
<td>Voltage-operated Calcium channel</td>
</tr>
<tr>
<td>VSM</td>
<td>Vascular smooth muscle</td>
</tr>
<tr>
<td>Y27632</td>
<td>Trans-4-[(1R)-1-Aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION
1.1 OVERVIEW

An adequate O$_2$ and nutritional supply via the umbilical vasculature is important for the normal development and growth of the placenta and fetus. Indeed, reduced or impaired blood flow patterns in the umbilical cord blood vessels is found in many pathological conditions that are associated with a hypoxic intrauterine environment (Jouppila & Kirkinen, 1984; Gudmundsson & Marsal, 1988; Ferguson & Dodson, 2009). Vascular vasomotion is the Ca$^{2+}$-dependent rhythmic oscillation of vascular tone found in many blood vessels including the human umbilical blood vessels. It has been argued that vasomotion improves vascular conductance to a tissue in a manner that does not require an increased cardiac output, and can help to meet metabolic demands of and improve oxygenation to the tissue. It has also been argued that spontaneous vasomotion in the placenta and umbilical vessels is important in normal pregnancy, because it creates ischemia / reperfusion and helps to up-regulate antioxidant enzymes so protecting the fetus against oxidative stress (Hung & Burton, 2006; Jauniaux et al., 2006). Few studies have explored the linkage between vasomotion and intrauterine hypoxia, but evidence suggests that the pattern of vasomotion is altered in abnormal pregnancies that lead to miscarriages or pre-eclampsia (Rosen et al., 1990; Sweeney et al., 2008).

The extracellular nucleotide, ATP, has been implicated in intracellular Ca$^{2+}$ concentration ([Ca$^{2+}$]) oscillations that occur in vascular smooth muscle cells (VSM) and vasomotion in blood vessels (Mahoney et al., 1993). There is also evidence that ATP can act on endothelial cells (EC) to cause release of vasoactive substances (Olsson & Pearson, 1990). Further, there is evidence that hypoxia and other stimuli can induce ATP release from VSM and EC, which then acts in an autocrine or paracrine fashion on those cells and affects Ca$^{2+}$ signalling.
(Gerasimovskaya et al., 2002). It has already been shown that ATP can induce 
$[Ca^{2+}]_i$, oscillations in SMC (Bergner & Sanderson, 2002), which may drive vascular vasomotion. However, evidence that hypoxia can induce ATP release from VSM or EC of umbilical blood vessels is still lacking. It can be hypothesised that the Ca$^{2+}$ signals induced by ATP could subsequently mediate the production and release of important vasoactive substances such as nitric oxide (NO), prostacyclin (PGL$_2$), endothelium-derived hyperpolarising factors (ENHF) and endothelins (ET). Thus, purinergic signalling in umbilical blood vessels may well have important physiological consequences in the control of vascular tone and vasomotion.

The particular aims of the present study were therefore (1) to determine whether hypoxia can induce ATP release from human umbilical artery endothelial cells (HUAEC), and from human umbilical venous endothelial cells (HUVEC) in vitro; (2) to quantify the amount of ATP released; (3) to examine the effect of ATP stimulation on Ca$^{2+}$ signalling in umbilical EC and SMC and (4) to investigate the consequences of hypoxia and ATP stimulation on human umbilical blood vessels ex vivo.

In view of these aims, the discussion that follows covers aspects of the human umbilical circulation and its functions, the ability of the endothelium to synthesise and release vasoactive substances, the known vascular ATP-releasing pathways, cellular responses to ATP stimulation, and aspects of vascular vasomotion.
1.2 HUMAN UMBILICAL CIRCULATION AND ITS FUNCTIONS

1.2.1 Need for a Circulatory System

Single cells and simple organisms do not require a circulatory system. Their metabolic needs can be met by the simple process of diffusion and convection. Through evolution, as the structures of organisms increased in size and complexity with the oxygenation of the Earth’s atmosphere (Catling et al., 2005), there came a time when diffusion of O\textsubscript{2} was no longer sufficient to meet metabolic demands: nutrients cannot reach centrally-located cells and nor could waste products be eliminated. Hence, the metabolic demand of multicellular organisms was the limiting factor for an increase in organismal size and complexity. At some stage in evolution, further development of complexity and size was supported by development of circulatory physiology. Animals such as birds and mammals, at higher levels of the food chain, developed a sophisticated circulatory system for the effective distribution and elimination of nutrients and waste products respectively. This ensures centrally-located cells are within a distance of vascular capillaries that is sufficiently short from the source of nutrients for material exchange. Indeed, the exchange of gases is so important that a dual circulatory system was evolved: the blood returns from the body tissues to the heart, and then enters the pulmonary circulation for oxygenation before re-entering the heart for distribution around the systemic circulation. Thus, the pulmonary and systemic circulations are connected in series, and for every heart beat the full cardiac output is delivered to the respiratory exchange surfaces. Further, the evolutionary consequence of the heart as an active dual pump, is that the circulatory system provides a fast convection rate which maintains a steep concentration for the uptake of O\textsubscript{2} and excretion of CO\textsubscript{2} in the lungs, as well as for other non-volatile substances on other equilibration surfaces. At the cytosolic level, delivery of O\textsubscript{2} is driven by the concentration gradient generated by O\textsubscript{2} consumption in the mitochondria.
Multiple studies have attempted to measure the $P_{O_2}$ at different levels in the vasculature from the alveoli to the cytosol by $O_2$-sensitive microelectrodes and phosphorescence quenching methods, and these levels have recently been reviewed (Ward, 2008) and can be found in the Appendices section.

Thus, the primary function of the circulation system is to distribute molecules important for cellular survival, growth and repair. Secondary functions have evolved from the presence of the circulatory system and these include hormonal and neurotransmitter distribution; thermoconduction; and distribution of the effectors of the central and peripheral immune system.

1.2.2 Fetal Life Support System

1.2.2.1 Need for a Fetal Life Support System

In humans, embryonic and fetal development essentially recapitulates the evolution of the adult cardiovascular system: an effective circulatory system begins to develop as the fetus increases in size and complexity (Falkowski et al., 2005). The system that provides $O_2$ and nutritional support for the developing fetus comprises its own heart and vascular system and, importantly, the umbilical circulation which supplies blood to and from the placental and uterine circulations by the umbilical arteries and veins. Together with the uterine and umbilical circulations, the placenta makes up the fetal life support system (Schneider, 1991).

From conception through pregnancy, it is the uterine blood supply that is important first, and this is followed by the placenta and the umbilical cord as the fetus develops. The fetal
cardiovascular system develops concomitantly and becomes connected to the placental circulation at around eight weeks of gestation (Schoenwolf & Larsen, 2009).

1.2.2.2. Adaptations During Gestation

Not surprisingly, the maternal circulation as a whole shows many adaptive changes to the state of pregnancy, such as an increase in circulating blood volume, an increase in cardiac output (due to both increased stroke volume and heart rate), and a fall in peripheral vascular resistance. The details of these adaptations and their physiological basis are outside the remit of the present thesis and were reviewed elsewhere (Duvekot & Peeters, 1994).

1.2.2.3. Uterus

1.2.2.3.1. Structure

The uterus, which contains the placenta and the developing embryo or fetus during pregnancy, is normally a pear-shaped organ in the pelvic cavity, supported by multiple muscles and ligaments. The uterus serves as a site for the reception, retention and nutrition of the fertilised ovum. It comprises three main layers: the outer peritoneum, which lines most of the internal viscera in the human body, the muscular myometrium, which constitutes the bulk of the uterus and comprises involuntary muscle fibres and major branches of the blood vessels, lymphatic vessels and nerves, and finally the mucous membrane endometrium, which undergoes extensive changes through the menstrual cycle in response to the ovarian hormones (Verralls, 2004). During pregnancy, the implanting blastocyst induces the thickening of the endometrium, to become a nutrient-packed vascular tissue called the decidua. It is vital in meeting the nutritional need of the developing fetus during the first trimester before the onset of blood-facilitated maternal-fetal exchange (Burton et al., 2002).
1.2.3.2. Blood Supply

The main arterial supply of the uterus is the uterine artery, which is a branch of the internal iliac artery. The ovarian artery also supplies the fundus region of the uterus. The venous drainage largely follows the arteries. As mentioned above, multiple vascular adaptations occur during pregnancy. Indeed, the blood vessels supplying the uterus enlarge in parallel with the growing uterus and fetus. In particular, the uterine arteries become less tortuous and this change is accompanied by an increase in lumen size. The ovarian veins also become considerably larger and able to deal with the extra blood flow from the uterus (Moore & Dalley, 1999; Verralls, 2004). Importantly, during early placentation, spiral arteries in the maternal myometrium undergo extensive morphological changes, with the loss of SMC and elastic lamina from the vessel wall and thus significant dilation, forming a low resistance flaccid conduit of the uteroplacental circulation (Burton et al., 2009).

1.2.4. Placenta

1.2.4.1 The Origin, Development and Functions of the Placenta

The placenta is responsible for the transfer of the bulk of the substance between maternal and fetal circulations including oxygen (O₂), carbon dioxide (CO₂), water and all the nutrients required for the development and growth of the placenta itself and of the fetus. On one side of this exchange interface are the spiral arteries and endometrial veins of the maternal circulation, and on the other side are the fetal capillaries which ultimately pool to form the umbilical vessels which are connected to the fetal cardiovascular system (Schoenwolf & Larsen, 2009).
It is during the third week post-conception, that the first morphological signs of vasculogenesis that supports placental growth can be seen: precursor EC join together with either desmosomes or tight junctions and begin to form capillary tubes in the secondary chorionic villi of the trophoblast of the developing embryo. The processes of vasculogenesis and angiogenesis are tightly controlled and have been reviewed (Demir et al., 2007). These villi, which contain the fetal blood vessels, continue to invade deeper into the maternal endometrium and towards the end of the first trimester begin to rupture maternal blood vessels, starting from the central area of the placenta. The trophoblastic plugs progressively become dislodged. This results in the placental villi bathing in the maternal blood-filled intervillous space, which allows nutrients and O\textsubscript{2} to pass from the maternal blood across the layers of the villus wall into the fetal blood and waste products such as CO\textsubscript{2}, uric acid and bilirubin to pass from the fetal blood to the maternal blood. This transitional phase lasts approximately 2-3 weeks such that by the 14\textsuperscript{th} week of pregnancy, the placenta is fully formed and occupies about one-third of the uterine wall (Schoenwolf & Larsen, 2009).

1.2.2.4.2. The Hormonal Function of the Placenta

During the first trimester of pregnancy, human chorionic gonadotrophin (hCG) produced by the trophoblast of the blastocyst, stimulates secretion of oestrogen and progesterone from the corpus luteum of the ovaries, thereby maintaining the thick lining and blood supply of the endometrium in which the zygote develops. Towards the end of the first trimester, the corpus luteum degenerates into a corpus albicans. The syncytiotrophoblast in the placenta, which starts to produce oestrogen and progesterone in the 8\textsuperscript{th} week of pregnancy, then takes over the hormonal role of maintaining the pregnancy (Schoenwolf & Larsen, 2009).
1.2.2.4.3. The Microstructure of the Material Exchange Barrier

During gestation, the placental capillary network develops to yield a nutrient exchange system of a staggering 550 km in length and 15m² in surface area (Burton & Jauniaux, 1995). There is also a progressive thinning of the placental exchange barrier toward term which may help to increase the efficiency of transport of nutrients (Jones & Fox, 1991). The exchange barrier comprises the syncytiotrophoblast, which is a continuous syncytial epithelium covering the entire surface of the chorion, and the fetal endothelium (Fig 1.1): these two cell layers have to be crossed to effect maternal-fetal nutrient exchange in a mature placenta (Fuchs & Ellinger, 2004).

Figure 1.1. Electron transmission electron microphragh of a chorionic villus.

The ‘Placental Barrier’ consists of the maternal syncytiotrophoblast and the Fetal Endothelium. MB = Maternal Blood. FB = Fetal Blood. Adapted from (Fuchs & Ellinger, 2004)

Within this barrier, the most important anatomical barriers are considered to be the maternal blood-facing plasma membrane and the fetal endothelium-facing basal plasma membrane of
the syncytiotrophoblast (de Virgiliis et al., 1982). Placental transfer has been the subject of many reviews e.g. (Fuchs & Ellinger, 2004; Desforges & Sibley, 2009) and simplistically it can be divided into diffusion, which is dependent on the molecular radius of the diffusate, and specialist transcellular mechanisms.

1.2.2.5. Exchange at the Placenta

$O_2$ and $CO_2$ are lipophilic molecules and therefore, as in the adult mammalian alveolar endothelium, they can diffuse readily through the exchange surface of the syncytiotrophoblast plasma membrane in the placenta. Thus, the transfer of $O_2$ and $CO_2$ is flow-limited. There is a large placental surface area available for diffusion, and their net transfer is therefore dependent on maternal-fetal gaseous concentration difference, which is in turn dependent on the flow rates of the uterine and umbilical circulation (Desforges & Sibley, 2009). It is important to note that the solubility of $O_2$ is much lower than $CO_2$ and as a consequence of this, $O_2$ limitation is more likely to occur than $CO_2$ accumulation. It is not surprising then, that impeded blood flow in the umbilical cord is associated with a hypoxic intrauterine environment, which in turn is associated with the pathophysiology of many pathological conditions of pregnancy including intrauterine growth retardation (IUGR) and pre-eclampsia (PE) (Jouppila & Kirkinen, 1984; Gudmundsson & Marsal, 1988; Ferguson & Dodson, 2009).

Intuitively, it would be expected that an adequate $O_2$ supply to the placenta and fetus is essential for their normal development and growth. However, in many placental mammals including humans, the period of organogenesis, and therefore early pregnancy, is primarily supported by nutrient-rich secretions from the uterine glands of the female reproductive tract.
This is known as the histiotrophic phase of fetal development. It is followed by a period when exchange of blood-borne materials between the maternal and fetal circulation can occur, known as the haemotrophic phase (Burton et al., 2002).

Compared to other mammals, conceptus implantation occurs much earlier in humans. The prevailing dogma has been that the earlier implantation, as well as its complete embedment in the endometrium, enable the earlier onset of the haemotrophic exchange, which in turn supports higher development and confers an evolutionary advantage (Burton & Jauniaux, 2001). Therefore, in the past it was assumed that maternal-fetal circulation is established shortly post-conception, the implication being that it is normally continuous and not subjected to interruption during gestation (see e.g. (Larsen et al., 2001)).

However, in recent years it has become apparent that human pregnancy has a much longer histiotrophic developmental phase than previously thought, with two distinct corresponding periods with regards to O₂ tension within the intrauterine environment. Before the second trimester, there is only limited communication between the invading placental trophoblast and the maternal endometrium as explained above (Hustin & Schaaps, 1987) and the O₂ level in the early fetal-placental unit is low, with historical measurements from rodents and humans uterus reporting pO₂ averages of less than 20 mmHg (Yedwab et al., 1976; Ottosen et al., 2006). Evidence that in normal pregnancy, placental and fetal tissues have the capacity to tolerate such an extreme environment (reviewed by (Schneider, 2009)) indirectly support these measured levels of PO₂. The low O₂ environment may be beneficial to early placental development, as it promotes angiogenesis through transcriptional and post-transcriptional regulation of important growth factors (Charnock-Jones, 2002). The ability of the fetus to
tolerate a considerable level of hypoxia also allows the fetus to survive the inherently dangerous events surrounding natural birth (Mortola, 1999; Singer, 1999).

As described in Section 1.2.2.4.1, it is at the interphase between the first and second trimester when the aggregating cells that effectively plug the maternal spiral arteries loosen and the maternal-fetal circulation becomes established (Fig 1.2). As a consequence, the intrauterine O$_2$ level increases relatively rapidly (Rodesch et al., 1992), to about 55 mmHg at 16 weeks gestation, which enables conversion of uterine gland nutrient-dependence of placental and fetal development to haematrophic nutrition (Burton & Jaunaiux, 2001).

Figure 1.2. Diagrammatic representation of transition from histiotrophic to haemotrophic phase of fetal development.

Around the end of the first trimester, aggregates of invading trophoblast become unplugged from the tips of spiral arteries, resulting in onset of maternal blood flow (arrows) into the intervillous space. D, ducidua; M, myometrium. Taken from (Burton, 2009)
1.2.2.6. Oxidative Stress and Pregnancy

Overwhelming evidence suggest that in the placenta, the rate of reactive oxygen species (ROS) production is proportional to the prevailing $O_2$ tension (Burton, 2009). Therefore, it is not surprising evidence is accumulating that they may play an important role during the transitional period of establishing of the placental exchange surface structure and the provision of maternal blood and therefore $O_2$ to the placenta. This has recently been reviewed (Burton, 2009). If ROS generation exceeds the capacity of cellular antioxidant defences, then oxidative stress occurs. Indeed, there is substantial evidence of signs of oxidative stress, including increased xanthine oxidase, catalase and superoxide dismutase (SOD) activities, and heat shock proteins expression, in placental tissues specifically during the transitional period between the histiotrophic and haematrophic phases of normal fetal development (Watson et al., 1997; Watson et al., 1998; Jauniaux et al., 2000).

It has been argued that oxidative stress occurs, not simply because $PO_2$ rises during the transition phase, but also because perfusion of the placenta is intermittent in this phase due to as yet, incomplete invasion of the maternal endometrium during the transitional period of gestation. This could at least in part be due to spontaneous contraction (vasomotion) of intrauterine vessels such as the spiral arteries (Jauniaux et al., 2006). This is discussed further in Section 1.2.2.7 below. The resultant intermittent placental perfusion may therefore represent a repetitive ischaemia-reperfusion (I/R) insult. As I/R is a potent stimulus for ROS generation via activation of xanthine oxidase and increased electron leakage from the mitochondrial respiratory chain (Hung & Burton, 2006), it is argued that I/R is a physiological
phenomenon in normal pregnancy as it provides an important stimulus for the generation of antioxidant enzymes before the onset of full oxygenation (Jauniaux et al., 2006).

However, excessive oxidative stress or failure to appropriately match antioxidant defence mechanisms to the prevailing level of oxidative stress would be expected to lead to trophoblastic degeneration. As the syncytiotrophoblast is responsible for the synthesis and transport of the essential placental hormones (see Section 1.2.2.4.2 & 1.2.2.4.3), pregnancy failure would be expected to rapidly ensue. In fact, there is evidence that the ability of the placenta and fetus to adapt to and cope with oxidative stress is a determinant of the success or otherwise of pregnancy (Jauniaux et al., 2000; Hempstock et al., 2003). Further, if early trophoblastic invasion of the myometrium is defective, as is the case in PE, and therefore the conversion of spiral arteries is incomplete, the arteries retain SMC with their wall and hence vasoreactivity. The resultant pulsatile blood flow to the intervillous space can lead to low grade chronic I/R injury, and the resultant abnormality in oxidant-antioxidant balance is believed to play a significant role in the aetiology of PE (Hung & Burton, 2006).

1.2.2.7. Umbilical Circulation

The umbilical cord is the convoluted bound product of the connecting stalk and the vitelline, enclosed by the amniotic membrane and extends from the fetal side of the placenta to the umbilical area of the fetus (Schoenwolf & Larsen, 2009). The capillaries in the primitive chorionic villi form anastomoses and eventually converge to form the umbilical arteries and vein (Verralls, 2004). As discussed in Section 1.2.2.1, fetal development essentially recapitulates the evolution of the adult cardiovascular system. Thus, the umbilical circulation is a specialised set of vasculature, analogous to the adult pulmonary circulation; a normal
umbilical cord contains two umbilical arteries and one umbilical vein. The former carry CO₂ and other waste products towards the exchange surface in the placenta, and the latter conveys O₂ and other nutrients towards the fetus. Accordingly, the measured PO₂ in the umbilical vein is consistently higher than that of the umbilical artery: umbilical vein: 28-60 mmHg; umbilical artery: 11-38 mmHg (Rizzo et al., 1996; Lackman et al., 2001; Armstrong & Stenson, 2007; Kotaska et al., 2010).

Traditionally, the umbilical vessels were regarded as a passive connection between maternal and fetal circulation. They are now increasingly seen as important regulating components of placental material exchange; recent data show that they play a role in both normal and abnormal fetal growth (Ferrazzi et al., 2000; Di Naro et al., 2001; Todros et al., 2002). For example, absent end-diastolic flow in the umbilical arteries is associated with fetal hypoxia in severe cases of IUGR (Kingdom & Kaufmann, 1997). Blood pressure in the umbilical circulation is variable, and in vivo measurements in sheep umbilical vein and artery gave values in the region of 84-39 mmHg and 51-14 mmHg respectively (Barcroft & Barron, 1945).

Interestingly, it was found that freshly isolated human umbilical arteries and veins both exhibit rhythmic contractions and relaxations ex vivo in uncomplicated pregnancies (Garcia-Huidobro et al., 2007). As is discussed in Section 1.5.1 below, vasomotion is accompanied by fluctuations in vessel conductance and downstream O₂ tension. Therefore, it is possible that vasomotion in the umbilical vessels may play a role in the regulation of ROS and I/R-type injury in both normal and complicated pregnancies. Indeed, a recent study has shown that hypoxia induced vasodilatation in human umbilical vein in an endothelium-dependent manner (Mildenberger et al., 2003), strongly suggesting that the umbilical vessels are
sensitive to prevailing $PO_2$. However, the effects of hypoxia on vasomotion have not been studied (see Chapter 7). Given that vasomotion occurs in both umbilical artery and vein, it is a reasonable hypothesis that factors that influence the pattern of vasomotion in the umbilical blood vessels may have implications for the supply of $O_2$ and nutrients, as well as for the oxidative status of the placenta and the fetus.

1.3 REGULATION OF THE FETAL-PLACENTAL CIRCULATION

It is generally recognised that as the fetal-placental circulation has negligible or sparse innervation (Reilly & Russell, 1977; Fox & Khong, 1990), the control of its vascular tone is likely not to be under the influence of autonomic nervous system. Control by locally-released vasoactive substances is therefore of great importance in these blood vessels (Boura & Walters, 1991). The control mechanisms of the uterine and umbilical circulations are highly complex and mainly represent the interactive influences of substances derived from the endothelium. These have been reviewed in the past (Chaudhuri & Furuya, 1991; Poston et al., 1995). The discussion below describes the most important of these and, when appropriate, their relevance to the modulation of vascular tone in hypoxia.

1.3.1 Endothelium-Derived Vasoactive Substances

In 1980, Furchgott and Zawadzhi investigated the apparent anomaly that acetylcholine could not always elicit vasodilatation in vitro (Furchgott & Zawadzki, 1980). From these seminal experiments it was found that blood vessels isolated with an intact endothelium reliably demonstrated ACh-induced vasodilation, and that removal of endothelial cells (EC) by rubbing the intimal surface of the vessels abolished this response. Further, it was shown that ACh, acting on muscarinic receptors on EC, stimulated release of a substance(s) that caused
vasodilation of vascular smooth muscle. It was then that the importance of EC in vascular biology became apparent and the concept of the EC producing mediators that could influence vascular function was first illustrated. As a consequence, following numerous studies in the 80s, many more mediators of vascular tone were found to act in similar ways to ACh. They also confirmed that the endothelium serves important roles in vascular function in both health and disease. Indeed, it is now well recognised that the EC synthesises and releases a host of heterogeneous vasoactive substances which are important in cardiovascular homeostasis. The synthesis and release processes are controlled by sophisticated systemic and local, often both interactive and complex mechanisms. These are described below.

The vasoactive mediators can be broadly categorised into the *endothelium-derived relaxing factors* and *contracting factors* (EDRF and EDCF respectively). Some examples of the EDRFs are nitric oxide (NO), Prostacyclin (PGI$_2$), endothelium-derived hyperpolarizing factor (EDHF), while EDCFs include endothelin (ET), angiotensin, thrombin, superoxide anions (Feletou & Vanhoutte, 2009). The purines adenosine triphohphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and adenosine may function as EDRFs or EDCFs.

The actions of these factors involve a range of mechanisms via specific receptors and second messenger systems which eventually modulate the contractile status of SMC. Moreover, these endothelium-derived substances can act directly on EC themselves to produce further mediators in an autocrine, as well as directly on the VSM in a paracrine fashion. It is therefore important to realise that the distinction between the two groups of endothelium-derived factors is not unambiguous and an endogenously produced mediator can often have
different effects in different vascular beds. Complex patterns of interactions are at play and no one single mediator may be solely responsible for a given physiological process. The control mechanisms of the uterine and umbilical circulations reflect this highly complex interaction. In the section below, the important endothelium-derived vasoactive substances: NO, EDHF, ET, adenosine and the purine nucleotides are discussed in more detail and indications are given when possible of their known roles in the umbilical cord vessels during hypoxia.

1.3.2. Nitric Oxide

1.3.2.1. Diverse Importance of NO

NO is synthesised and released from a wide variety of cell types such as vascular endothelium, smooth muscles, leukocytes, platelets and neurones. Amongst other important roles such as regulation of the immune system (Bogdan, 2001), apoptosis (Kim et al., 1999), inflammation (Laroux et al., 2000), central nervous system signalling (Garthwaite & Boulton, 1995; Murphy, 2000), most notable is the involvement of NO in the regulation of systemic blood pressure and in local vascular control. This has been reviewed by (Arnal et al., 1999).

In the cardiovascular system, NO has been heavily implicated in inhibition of platelet aggregation, encouraging platelet disaggregation, and inhibition of platelet adhesion; it thereby helps to maintain an anti-atherogenic state of the endothelium under resting, non-pathological conditions (Schafer & Bauersachs, 2008). These beneficial effects are promoted because, in vivo, NO is constitutively released from vascular EC by shear stress generated by flow of blood (Rubanyi et al., 1986) In normal human physiology, shear flow ranges from 2-10 dyne/cm².
However, the continuous release of NO caused by shear-stress and by pulsatile stretching of the vascular wall is also of primary importance in producing tonic NO-induced vasodilatation (Fleming & Busse, 2003). This serves to promote local blood flow and maintain low peripheral vascular resistance. The exact details of this mechanotransduction mechanism is still unknown, but the four candidate for the putative mechanoreceptor(s) are integrin-matrix interactions, specialised membrane microdomains, ion channels, and G protein (Traub & Berk, 1998). Further details of the signalling pathway is considered in Section 1.3.2.3 below. In addition, numerous agonists, including ACh, bradykinin, serotonin, adenosine, ADP, ATP, histamine, thrombin, as well as physiological and pathophysiological stimuli such as hypoxia and increased shear stress, can increase NO synthesis and/or release (Sun & Reis, 1992; Xu et al., 1995; Arnal et al., 1999). In the systemic vascular tree, NO production is greatest in resistance vessels and it has been shown that it is involved in the modulation of regional blood flow distribution (Griffith et al., 1987). Indeed, relative to other EDRFs, NO plays a particularly important role in controlling peripheral vascular tone (Vallance et al., 1989). Thus, NO is an essential component of the regulation of blood flow in response to systematically induced changes in blood flow and tissue metabolic demands.

1.3.2.2 NO Synthesis

As indicated above, the release of NO from the endothelium and its effect on vascular tone was first experimentally demonstrated by Furchgott and Zawadzki in 1980. However, its identity as the gaseous molecule NO was not revealed until several years later (Ignarro et al., 1987); the journey of its discovery has often been reviewed (Furchgott & Vanhoutte, 1989; Moncada & Higgs, 1993). The biosynthesis pathway for NO is now well established.
Together with obligate co-substrates NAHPH and molecular oxygen (O₂), the amino acid substrate L-arginine is the natural substrate oxidised for NO synthesis in a reaction catalysed by NO synthase (NOS), and that produces NO and L-citrulline (Stuehr, 1999) (Fig 1.3).

Despite the fact that intracellular L-arginine concentration (~100µM to 2mM in freshly isolated EC) being much higher than the Michaelis-Menten constant (K_M) of isolated eNOS (~2µM), multiple studies have shown that NO-mediated biological effects are dependent on extracellular L-arginine concentration e.g. (Creager et al., 1992). This is referred to the ‘Arginine paradox’ and although several explanations have been proposed to explain this phenomenon, there is as yet no consensus.

Figure 1.3. NO synthesis from L-arginine.

The hydroxylation of L-arginine forms N-hydroxy-L-arginine as an intermediate, which in the second step is concerted to form L-citrulline and NO. Adapted from (Stuehr, 1999).

Three NOS isoforms have been described: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS. For NOS catalysis several redox-active cofactors are also required, including tetrahydrobiopterin (BH4), heme, (FMD) flavin mononucleotide and FAD (flavin adenone dinucleotide) (Fleming & Busse, 2003). The three isoforms of NOS are derived
from separate genes and are regulated by diverse signalling pathways (Griffith & Stuehr, 1995). The isoforms nNOS and eNOS are constitutively expressed in cells and are primarily regulated by Ca\(^{2+}\) influx and subsequent binding of Ca\(^{2+}\) with calmodulin (CaM) (Stuehr, 1999). By contrast, iNOS expression is induced by inflammatory cytokines (eg. IL1, IL2, TNF-, LPS). The resultant iNOS is fully active at normal [Ca\(^{2+}\)]\(_i\) levels and is therefore considered Ca\(^{2+}\)-independent (Stuehr, 1999).

1.3.2.3. Molecular Regulation of eNOS

Endothelial NO is synthesised by eNOS, which is characterised by a constitutive activity responsible for maintaining low peripheral vascular resistance (see above). It also has a restricted pattern of expression, which includes myocytes, bronchiolar epithelium, endothelium, platelets and the placenta (Vallance & Hingorani, 1999). The regulation of eNOS is complex, and involves a range of transcriptional and post-transcriptional mechanisms. The present thesis is primarily concerned with the effect of acute events such as hypoxia on vascular function, so only post-transcriptional mechanisms are discussed below.

1.3.2.3.1. Ca\(^{2+}\)

An increase in [Ca\(^{2+}\)], is generally a key event in the activation of eNOS, as it permits the binding of Ca\(^{2+}\)-CaM to eNOS, leading to the dissociation of the inhibitory eNOS-caveolin complex and to an activated CaM-eNOS complex that is capable of NO generation (Michel et al., 1997). Agonists (such as those mentioned above) can activate eNOS by increasing [Ca\(^{2+}\)].

However, eNOS production can also be activated without a sustained increase in [Ca\(^{2+}\)]. Indeed, it has been shown that shear stress-induced NO formation can be mediated by such a
pathway (Fleming et al., 1998). In this so called ‘Ca$^{2+}$-independent pathway’, shear stress increases eNOS activity via the activation of phosphatidylinositol 3 kinase (PI$_3$K) and the subsequent activation of serine kinase Akt and protein kinase A (PKA), which lead to the phosphorylation of eNOS (see below). Although this process is often referred to as a ‘Ca$^{2+}$-independent pathway’, a basal level of \([\text{Ca}^{2+}]_i\) is essential, as chelating of \([\text{Ca}^{2+}]_i\) abolished the shear stress-induced increase in eNOS activity (Fleming & Busse, 2003).

1.3.2.3.2. Phosphorylation

Phosphorylation is an important aspect of the regulation of eNOS activity. There are many putative phosphorylation sites on eNOS, but most is known about the functional consequences of phosphorylation of a serine residue of eNOS (human sequence Ser$^{1177}$) in the reductase domain and a threonine residue (human sequence Thr$^{495}$) within the CaM-binding domain (Fleming, 2010). In un-stimulated, cultured ECs, for example, Ser$^{1177}$ is normally not phosphorylated. As indicated in Section 1.3.2.3.1, fluid shear stress can quickly activate eNOS via the activation of PI$_3$K, Akt and PKA. On the other hand, Thr$^{495}$ is constitutively phosphorylated (by PKC), and phosphorylation at this site causes a decrease in enzyme activity (Michell et al., 2001). It has been suggested that this results from conformational changes within eNOS, which interferes with the binding of CaM to the CaM-binding domain. There are numerous sites on the eNOS enzyme that can be phosphorylated in response to a wide variety of humoral, mechanical and pharmacological stimuli, and the kinases and phosphatises involved in the activation of eNOS vary depending on the nature of the stimuli applied. These have been extensively reviewed by (Mount et al., 2007; Fleming, 2010).

1.3.2.3.4. Intracellular Translocation and Associated Proteins
The consequences of enzyme activation, or activation of the signal transduction pathway can be determined to a large extent by following the intracellular localisation of the signalling complex. Although evidence suggests that distinct intracellular pools of eNOS are present which respond preferentially to varying physiological and agonist stimulation, there is little consensus on these issues. The only common consent at present is that stimulation of ECs induces eNOS translocation between different cellular compartments, namely, the plasma membrane, the plasmalemmal caveolae, the Golgi apparatus, and possibly the nucleus (Fleming & Busse, 2003). Within these different compartments, eNOS are co-localised with a host of proteins, together forming what is known as the ‘eNOS signalling complex’. Association with calmodulin (CaM) and caveolin, in particular, has profound influence on the intracellular localisation and activity of eNOS (Fleming, 2010). Other eNOS-associated proteins include Hsp90, PECAM-1, Gab1, soluble guanylyl cyclase and hynamin. Concepts in relation to the regulation of eNOS activity by alterations in the localisation and association of protein mediators are constantly changing and are outside the remit of this project.

1.3.2.4. Action of NO

The non-polar NO diffuses freely across the cell membrane and acts on underlying VSM, activating its major receptor, soluble guanylate cyclase, which increases intracellular cyclic GMP concentration (Vallance & Hingorani, 1999). The increase in cGMP levels may reduce vascular tone by a number of mechanisms, including lowering $[Ca^{2+}]_i$. This is in turn achieved by a number of mechanisms. The understanding of these is ever-evolving, but they include inhibition of voltage-operated $Ca^{2+}$ channels (VGCC) and activation of large conductance potassium (BK) channels (Francis et al., 2010).
The cGMP can also reduce vascular tone via phosphorylation of heat shock protein 20 (Hsp20), which binds thin actin filaments and inhibits cross-bridge cycling (Rembold et al., 2000). Also, cGMP can activate cGMP-dependent kinase (PKG), so leading to phosphorylation of myosin light chain kinase (MLCK) and therefore to its inactivation (Nishikawa et al., 1984; Hathaway et al., 1985), thereby causing relaxation of vascular smooth muscle. Of the mechanisms by which NO induces VSM relaxation, it is likely that no single pathway acts exclusively or independently, although accumulating evidence suggests that the relative importance of the various pathways vary phenotypically and regionally. The cGMP-dependent cellular responses were reviewed in detail (Francis et al., 2010).

1.3.2.5. Physiological Roles of NO in the Cardiovascular System

The importance of NO in the physiological control of vascular function has been demonstrated by studies in which NO production was nullified: For example, specific inhibition of NO production by L-arginine analogues such as $N^G$-monomethyl-L-arginine (L-NMMA), or by genetic knock-out, showed a marked increase in central blood pressure in several species. These respective approaches have been recently reviewed (Moncada & Higgs, 2006; Tsutsui et al., 2009). NO can also reciprocally attenuate action of many vasoconstrictors including noradrenaline, angiotensin II, and vasopressin and can inhibit the production and action of the most potent endogenous vasoconstrictor, ET (Boulanger & Luscher, 1990; Kourembanas et al., 1993; Ahlborg & Lundberg, 1997). The interaction between NO and ET is discussed in Section 1.3.5.2. It has long been suggested that a healthy balance between the production of the various vasoactive substances is one of the bases on which the vascular system maintains homeostasis e.g.(Vanhoutte, 2000). Certainly, a decrease in NO production or bioavailability and endothelial dysfunction have been
implicated in the pathophysiology of many cardiovascular diseases, such as atherosclerosis, stroke, kidney disease, pulmonary hypertension, essential hypertension and preeclampsia (Bian et al., 2008).

Intuitively, it might be expected that NO would be of an even greater importance in the control of vascular tone in the umbilical circulation, since the umbilical arteries and veins have spare or no innervations (Reilly & Russell, 1977; Fox & Khong, 1990), and thus rely on regulation by autacoids (Boura & Walters, 1991). Certainly, HUVECs have been commonly used as EC model in a wide range of experimental assays, including the study of angiogenesis, inflammatory cellular communication, thrombosis and control of vascular tone. Moreover, isolated human umbilical cord vein endothelial cells (HUVEC) have a functional NO system (Tsukahara et al., 1993). Indeed, by using direct NO measurement with an amperometric NO-sensor, the authors showed that agonist-induced release of NO from HUVEC are sustained and displayed an oscillatory pattern (Tsukahara et al., 1993). Thus, NO may represent an important step in vasomotion of the human umbilical vessels in vivo. This possibility has so far not been addressed experimentally. Further, although the mechanisms that determine the regulation of the fetoplacental circulation, including the umbilical arteries and vein, have so far received relatively little attention, in a study of perfused intact human umbilical artery and vein, it was shown by using exogenous NO and PGI₂ that NO is a much more potent vasodilator than PGI₂ ex vivo (Chaudhuri et al., 1993). This suggests that NO may be more important than PGI₂ for maintenance of low vascular tone in fetoplacental vessels.

1.3.2.6. Hypoxia and NO
Interestingly, a reversible phenomenon similar to the vasoconstriction that occurs in the pulmonary circulation in response to hypoxia, hypoxic pulmonary vasoconstriction (HPV), occurs in the placenta: this is known as hypoxic fetoplacental vasoconstriction (HFPV). *In vitro* data showed that, in freshly isolated human placental cotyledon (the natural extension to the umbilical circulation), vascular resistance increased with hypoxia proportionally indicating vasoconstriction (Ramasubramanian *et al.*, 2006). Further, it was found that L-NAME (a L-arginine analogue that acts as a NO synthase inhibitor) was able to inhibit this vasoconstrictor response to hypoxia (Byrne *et al.*, 1997), suggesting that NO mediates HFPV. It has been hypothesised that HFPV is responsible for matching fetal to maternal blood flow within the placenta (Hampl & Jakoubek, 2009). This is supported by the finding that HFPV only occurs in small, but not large (>1mm), placental blood vessels (Hampl *et al.*, 2002), which suggests that, whilst embryologically the uteroplacental circulation as a whole is of the same origin, their mechanism of vascular control may well be region-specific.

Indeed, in a more recent study, it was shown that a over a range of physiologically relevant PO$_2$ (5-104 mmHg), hypoxia caused a graded *vasodilatation* in freshly isolated human umbilical vein (Mildenberger *et al.*, 2003). However, this was reversed to graded *vasoconstriction* by L-NAME or by removal of the endothelium.

Taken together, it would seem that in umbilical vein, a reduction in NO availability promotes HFPV, and that endothelial dysfunction leads to impairment of hypoxia-induced vasodilatation.

**1.3.2.7. NO and Reactive Oxygen Species (ROS)**
In EC, $\text{O}_2$ readily accepts unpaired electrons to produce superoxide ($\text{O}_2^-$), which is a main source of a range of deleterious free radicals and ROS. NO produced from eNOS or iNOS can deactivate free $\text{O}_2^-$ and hence exert protective actions. Indeed, ROS are the major determinants of NO breakdown (Kelm, 1999). The product of this reaction, peroxynitrite (ONOO-), is itself a further source of NO, but it also can become a toxic radical when its levels exceed endogenous antioxidant and scavenging capacity (Henderson, 2001).

In situations when there is an inadequate supply of the substrate L-arginine, or of the cofactor BH$_4$ (dietary), NO production by eNOS becomes uncoupled. In this state, electron flow through the enzyme dimer results in reduction of $\text{O}_2$ at the prosthetic heme site rather than normal formation of NO, generating a mixture of NO and $\text{O}_2^-$ (Stuehr et al., 2001). If the oxidative state of the cell is already increased, for example by increased NADPH oxidase expression or activity, this can itself prevent BH$_4$ from being regenerated, further exacerbating the level of oxidative stress (Griendling et al., 2000). This therefore implies a positive feedback of increasing oxidative stress, unless compensated by the upregulation of endogenous antioxidants such as superoxide dismutase (Henderson, 2001).

Thus, the production and bioavailability of NO in the placenta and fetus might be expected to be highly dependent on the prevalent oxidative status, and this in turn may be dependent on the pattern of vasomotion in the umbilical blood vessels (see Section 1.2.2.7). As discussed in Section 1.2.2.6, the balance between levels of oxidative stress and anti-oxidative defence mechanisms is an important determinant of the success or otherwise of pregnancy, and overwhelming evidence now demonstrate that ROS plays an important role in the pathophysiology of several pregnancy-related disorders (Steinert et al., 2009). In particular,
the potential role of ROS in leading to endothelial dysfunction in the aetiology of PE has received much research interest. It has been shown that shear-stress mediated vasodilator responses are blunted in the systemic circulation of women suffering from PE when compared to women in the control group. Some older studies concluded that the defect was mainly NO-dependent e.g. (Cockell & Poston, 1997).

1.3.3. PROSTAGLANDINS

1.3.3.1. Synthesis and Breakdown

Prostaglandins (PG) are products of arachidonic acid (AA), which is formed from action of phospholipases (PLC and PLA₂) on phospholipids of the cell plasma membrane (Fig 1.4). Cyclooxygenases (COX-1 and COX-2) act on AA to produce PG endoperoxides such as PGH₂, which, depending on the cell type, leads to further synthesis of PG subtypes (e.g. PGD₂, PGE₂ and PGF₂), prostacyclin (PGI₂), and thromboxane (TXA₂) via PGI₂ synthase and thromboxane synthase (Moncada & Vane, 1978). Of these, the effect of PGI₂ on vascular function has been most extensively studied. PGI₂ synthase acts on PGH₂ to produce PGI₂ and this is the most abundant form of PG synthesised in the endothelium (Valdes et al., 2009). VSM does not produce PGI₂ under normal conditions (MacIntyre et al., 1978).
PGI\textsubscript{2} is rapidly catabolised to a stable metabolite 6-keto-PGF\textsubscript{1\alpha} in blood: at 37ºC its half life is only 2-3 minutes. Unlike other prostanoids, it is not metabolised in the pulmonary circulation. This is an important difference from other vasodilatory PGs, such as PGE\textsubscript{1} and PGE\textsubscript{2}. In fact, PGI\textsubscript{2} is equipotent whether given intra-arterially or intravenously (Moncada & Vane, 1978).

1.3.3.2. **Physiological Role of Prostanoids**

PGI\textsubscript{2} is constitutively released from the endothelium and its effects are mediated by cell surface PGI\textsubscript{2} (IP) receptors and/or intracellular peroxisome proliferator-activated receptors (PPAR)\textsubscript{β} (Mitchell et al., 2008). PGI\textsubscript{2} is a potent vasodilator. In studies in whole animal and human, *in vivo* in single organs, and in isolated blood vessels, infusion of PGI\textsubscript{2} or AA (which produces mainly PGI\textsubscript{2} in isolated vascular tissue) caused a drop in blood pressure and vasodilatation, which was abolished by selective PGI\textsubscript{2} synthase inhibitors, such as 15-HPAA (Moncada & Vane, 1978). On the other hand, TXA\textsubscript{2} is a vasoconstrictor, and this contrast in their opposing actions on vascular tone may be important in maintaining cardiovascular
homeostasis. As discussed in the next section, this vascular control by prostanoids is also important in the uteroplacental unit during pregnancy (Valdes et al., 2009).

The PGI$_2$ system is widely expressed in the mammalian systems. In a study of normal human umbilical arteries in vitro it was found that the cyclooxygenase inhibitor, indomethacin, enhanced agonist-induced contractions to serotonin and bradykinin, whereas nitro-L-arginine, a selective inhibitor of endogenous NO biosynthesis, did not (Klockenbusch et al., 1992). This suggests that PGI$_2$ seemed to a more important EDRF than NO in regulating umbilical arteries. This contrasts to an extent with the findings of Chaudhuri et al (1993) which, as discussed Section 1.3.2.5, indicated that NO plays a larger role than PGI$_2$ in maintaining tonic dilatation in umbilical and placental circulation. However, it has been shown that the vascular effects of PGI$_2$ and NO are additive rather than synergistic (Mitchell et al., 2008).

During pregnancy, up-regulation of PGI$_2$ synthesis contributes to the maintenance of a low resistance placental circulation (Goodman et al., 1982). Indeed, pulsatile stress and constant shear stress caused PGI$_2$ release from HUVEC in vitro (Frangos et al., 1985). Indeed, hypoxia-induced dilatation in umbilical vein was sensitive to cyclogenase inhibition by indomethacine (Mildenberger et al., 2004b). In the human umbilical artery, hypoxia also caused significantly increased release of PGI$_2$ (Bjoro et al., 1987), which in turn caused a dose-dependent relaxation of isolated artery strips at concentrations less than $10^{-6}$ M (Pomerantz et al., 1978). This raises the possibility that tonic release of PGI$_2$ may contribute to a tonic vasodilatory influence on umbilical vessels in normal pregnancy, which is accentuated in hypoxia. Indeed, it was found that PGI$_2$ activity was significantly lower in umbilical and placental vessels in pre-eclamptic women than from women with
uncomplicated pregnancy (Remuzzi et al., 1980). Unfortunately, like so many of the experiments carried out in the active period of PGI₂ research in 70s and 80s, the experiments were carried out at in organ baths equilibrated with 95% O₂, which give a much higher PO₂ than the appropriate physiological level of PO₂ ~30 mmHg. Therefore, the results must be interpreted with a suitable degree of caution.

As indicated above, TXA₂ is the major vasodilator PG. Evidence is gathering which suggest that an imbalance in prostanoids control may contribute to PE and other pregnancy-related disorders. Multiple studies have consistently found that in PE, impaired PGI₂ production is associated with an increase in TXA₂ production in placental tissues e.g. (Walsh, 1985). Further, a raised TXA₂/PGI₂ ratio excreted in urine is associated with PE where uteroplacental perfusion is impaired (Mills et al., 1999), suggesting TXA₂ contributed to vasoconstriction, thus impairing O₂ delivery. More recently, by using trophoblasts isolated from normal and PE placentas, it was found that exposure to AA caused a much greater release of TX metabolites than 6-keto-PGF₁α in PE tissue, suggesting the increased TX production may play a role in increased placental contractility in PE (Zhao et al., 2008).

It has been suggested that this imbalance between PGI₂ and TXA₂ production was caused by oxidative stress, which, as discussed in Section 1.2.2.6, is a feature of normal pregnancies, but especially prominent in pregnancies complicated by PE (Walsh, 2004). Oxidative stress may cause this imbalance by the increased level of lipid peroxides, which stimulates COX activity but at the same time inhibits PGI₂ synthase, therefore increasing TXA₂ synthesis and inhibiting PGI₂ synthesis. Indeed, the TXA₂ / PGI₂ ratio, as well as lipid peroxides, are higher
in the placental exchange surface in PE pregnancies than in those of normal pregnancies (Valdes et al., 2009).

1.3.4. EDHF

1.3.4.1. Candidates for EDHF

In addition to NO and PGI$_2$, endothelial control of vascular tone also includes the production of another EDRF whose action involves the hyperpolarisation of the underlying VSM. Originally, this non-NO, non-PGI$_2$ mediated relaxation was thought to be due to an endothelium-derived hyperpolarising factor(s) that diffuses across the myo-endothelial space to activate K$^+$ channels (e.g. (Taylor et al., 1988; Chen & Suzuki, 1989)). When investigated in the presence of inhibitors of NO synthases and COXs, evidence has been obtained indicating that the putative EDRF may be K$^+$, an endogenous vasodilator typically released in hyperaemia in skeletal muscle and in active hyperaemia of the brain; or an epoxyeicosatrienoic acid (EET), which is a metabolite from the endothelial cytochrome P450 pathway generated from AA. These and other possibilities, such as EDHF being hydrogen peroxide (H$_2$O$_2$), are reviewed by (Feletou & Vanhoutte, 2006).

More recent evidence also indicates a role for gap junction coupling the electrical activity (hyperpolarisation) from EC to VSM. In this pathway, small and intermediate conductance Ca$^{2+}$-activated K$^+$ channels (SK$_{Ca}$, IK$_{Ca}$ respectively) are activated in the EC by a rise in [Ca$^{2+}$], so hyperpolarising these cells (Sankaranarayanan et al., 2009). This hyperpolarisation then spreads to the VSM via gap junctions. Thus, this pathway does not involve the release of a factor(s) from EC. The VSM hyperpolarisation leads to lowering of the open probability of voltage-operated Ca$^{2+}$ channels (VOCC), a reduction in the turnover rate of intracellular
phosphatidylinositides, or less VOCC activation of sarcoplasmic reticulum, thus decreasing [Ca\textsuperscript{2+}] in the VSM (Nelson et al., 1990; del Valle-Rodriguez et al., 2003). One study showed that in ACh-induced endothelium-dependent responses, the release of NO is mediated by the M2-subtype, whereas the release of EDHF is mediated by the M1-subtype (Komori & Vanhoutte, 1990).

Interestingly, “EDHF”-induced hyperpolarisation of EC in turn favours further Ca\textsuperscript{2+} entry into these cells by increasing the driving force for this ion via non-selective cation ion channels such as Transient Receptor Potential (TRP) ion channels (Busse et al., 1988). As discussed above, [Ca\textsuperscript{2+}] increase can activate eNOS. Therefore, the EDHF pathway also favours the agonist- and shear stress- evoked synthesis of NO (Sheng & Braun, 2007).

**1.3.4.2. Physiological Role of EDHF**

Apart from specialised vascular beds such as the coronary and renal circulation in which EDHF has been shown to play a major role even in the conduit arteries (Busse et al., 2002), EDHF apparently contributes more significantly to vasodilatation as the vessel size decreases, and its role in mediating vasodilatation is therefore most prominent in resistance vessels (Busse et al., 2002). Another evidence which indicates the apparent importance of EDHF, specifically gap junction, in endothelium-dependent vasodilatation in small, resistance vessels is an increasing number of myo-endothelial gap junctions as the vessel diameter becomes smaller (Sandow & Hill, 2000). In multiple, transgenic mice models, in which expression of a number of the K\textsuperscript{+} channels thought to be responsible for the EDHF response were individually or collectively abolished, an increase in arterial blood pressure and left ventricle hypertrophy were found (Feletou & Vanhoutte, 2009). These findings suggest the
fundamental roles these $K^+$ channels may play in the EDRF-mediated hyperpolarisation and consequent vascular response.

It is important to note that EDHF has not consistently been shown to mediate shear stress- or agonist- induced vasodilation, the fundamental mechanisms underlying the regulation of basal blood flow and distribution responses to local stimuli e.g. (Passauer et al., 2003). Rather, it is thought that the EDHF component of vasodilatation becomes especially important when the NO- and prostanoids- dependent mechanisms is depressed under pathological situations including atherosclerosis, hypercholesterolemia and ischemia (Hecker, 2000). Indeed, EDHF-mediated responses are clearly altered in various pathological conditions such as hypertension (Fujii et al., 1992; Mori et al., 2006), atherosclerosis (Urakami-Harasawa et al., 1997) and PE (Kenny et al., 2002). It has been shown that this is partly because EDHF is less sensitive to degradation by ROS generated by oxidative stress (Csanyi et al., 2006).

Evidence also suggests that in normal pregnancy EDHF function is up-regulated, and this up-regulation is impaired in PE-complicated pregnancy (Kenny et al., 2002). As there is evidence to suggest that EDHF may be $H_2O_2$ (Feletou & Vanhoutte, 2006), it is possible that the apparent lack of anti-oxidative mechanism in PE (e.g. catalase and SOD, see Section 1.2.2.6), which normally reduces superoxide ($O_2^-$) to $H_2O_2$, is responsible for this phenomenon.

1.3.5. ENDO THEL EIN
1.3.5.1. ET Structure
Endothelin (ET) is an endothelium-derived, 21-amino acid residues peptide, first purified and identified in 1988 (Yanagisawa et al., 1988). Shortly after its discovery, two other isoforms were found by screening for the gene coding for the peptide; due to the similarity of the peptide sequences, the isoforms were named ET-1, ET-2 and ET-3. They are endogenously and differentially expressed in various tissues (Rubanyi & Polokoff, 1994). All forms of the synthetically produced ETs produce vasoconstrictor and pressor responses (Inoue et al., 1989).

1.3.5.2. ET Production

ET is generated as the precursor preproendothelin, which is converted first to big endothelin by furin-like endopeptidase and then further cleaved by a family of ET-converting enzymes, into ET which can be released by the EC (Kedzierski & Yanagisawa, 2001) (Fig 1.5).

![Figure 1.5. The Endothelin pathway.](image)

Preproendothelin is converted first to big ET by furin-like endopeptidase and then cleaved by a family of ET-converting enzymes, into three physiologically active ETs. The two common mammalian ET receptors, ETA and/or ETB receptors, are linked to various G-proteins. Adapted from (Kedzierski & Yanagisawa, 2001).
ET-1 is released in a dual secretory pathway: on the one hand, it is continuously released under the constitutive pathway, which acts on underlying VSM to maintain basal vascular tone. On the other hand, under physiological or pathophysiological situations, ET-1 is also released from EC-specific storage granules the Weibel-Palade bodies (Russell et al., 1998). The functional consequences of the different release pathways are discussed below. ET-2 and ET-3 are also expressed in human tissues, with ET-3 displaying a preferential affinity for specific subtypes of ET receptors, but these ET isoforms are less well characterised (Davenport, 2002).

Much of the regulation of ET production occurs at pre-transcriptional level. In EC, ET-1 mRNA is initially upregulated, then down-regulated by shear stress and pulsatile stretching, whereas hypoxia upregulates ET-1 mRNA expression. On the other hand, NO and PGI\(_2\) decrease ET-1 mRNA level in EC. ET also acts on ET receptors (ET\(_B\); see below) on EC, which is linked to the production of NO (Fig 1.6). Conversely, exogenous NO or the liberation of NO within EC inhibits ET-converting enzyme and thereby dampens down ET production (Vanhoutte, 2000). Hence, a negative feedback mechanism is in place to keep the relative production of two major opposing endothelium-derived vasoactive substances in check, a balance that is normally skewed towards NO production. Interestingly, ET\(_A\), the ET-receptor that is mainly responsible for the vasoconstrictor effect of ET (see Section 1.3.5.4), expression is upregulated by NO in VSM. These complex interactions of local ET regulation are reviewed in (Kedzierski & Yanagisawa, 2001).
1.3.5.3. ET Receptors and Downstream Regulation

By cloning complementary DNA sequences, three receptor subtypes have been found: ET$_A$, ET$_B$ and ET$_C$ receptors (Arai et al., 1990; Sakurai et al., 1990), although to date no mammalian form of ET$_C$ receptor have been identified (Schneider et al., 2007). The receptors have differential regional expression and affinity for the three ET isoforms differs; thus the ET control system is complex. The ET receptor signal transduction mechanisms have been reviewed (Douglas & Ohlstein, 1997). Although the precise intracellular mechanism responsible for the action of ET is still under active investigation, it is commonly accepted that the two common mammalian subtypes of ET receptors activate phospholipase C via G-proteins, releasing IP$_3$ and thereby increasing [Ca]$^2+$ by both intra- and extracellular source mobilization. However, a study on transfected ovary cells shows that ET$_A$ and ET$_B$ differ with regards to their effect on cellular cAMP concentration: ET$_A$ receptor activation leads to cAMP accumulation, whereas ET$_B$ receptor activation leads to a decrease in cAMP levels.
(Aramori & Nakanishi, 1992). It is as yet unclear whether this is the case in vascular cells (Masaki, 2004), but as mentioned above, the phosphorylation status of MLCK in VSM is affected by cellular cAMP concentration. Therefore, the direction of cellular response elicited by ET receptor activation in a particular blood vessel may be determined by the ET receptors subtype present and the relative affinities of the ET isoform to each receptor (Kedzierski & Yanagisawa, 2001).

This situation is further complicated by the fact that activation of ET<sub>B</sub> receptor on EC stimulates the production of NO and prostaglandins (Kedzierski & Yanagisawa, 2001), which, as described above, have vasodilator effects on VSM. It is therefore not surprising that results from studies on the effect of ET receptor antagonists on the vasculature lack consistency. Indeed, the predominant influence of endogenous ET on vascular tone and basal blood pressure remains somewhat contentious.

1.3.5.4. Physiological Roles of ET

The ET system has a diverse expression pattern in mammals, in both vascular and nonvascular structures, including the brain, kidneys, lungs, heart and blood vessels. ET is the most ubiquitously expressed and potent constrictor of human vessels, and has an unusually long duration of action (Yanagisawa et al., 1988). It is well established that the physiological plasma concentration of ET is generally much lower than the pharmacological threshold (~1pM for ET-1; even lower for ET-2 and -3) (Battistini et al., 1993), suggesting that ETs function as local autocrine and paracrine mediators and not as regulatory hormones under normal conditions.
As indicated above, ET-1 is the principle isoform in the human cardiovascular system and 80% of the ET-1 released is from the basal side of EC (Howard et al., 1992; Wagner et al., 1992). When released, the ET-1 acts on ET<sub>A</sub> on vascular VSM, and on ET<sub>B</sub> found on both vascular VSM and EC. The vasoconstriction is mediated mainly through action on the VSM ET<sub>A</sub> receptor, but also via the VSM ET<sub>B</sub> receptor, whilst interaction with the endothelial ET<sub>B</sub> receptor induces the release of vasodilators (see Section 1.3.5.3; (Masaki, 2004)). The vascular action of ET is complex as it depends on the relative contribution from the ET receptor types present, which varies between different vascular beds. Basal release of ET may therefore contribute to the maintenance of normal vascular tone, without appearing in plasma, and under conditions that stimulate further release of ET, it could produce further vasoconstriction. Stimuli that increase release of ET include hypoxia and noradrenaline (Yanagisawa et al., 1988), suggesting that ET may modulate vascular tone under conditions in which there is hypoxia and / or vasoconstriction. The plasma ET level is also raised under pathological conditions such as pulmonary arterial hypertension, essential hypertension, chronic heart failure and subsequent to hemorrhage (Schneider et al., 2007).

Many studies on humans and laboratory mammals have shown that administration of an ET<sub>A</sub> antagonist or ET<sub>B</sub> antagonist, or a combination of these, caused a lowering of resting blood pressure, that was not due to other regulatory mechanisms such as the angiotensin and sympathetic systems (McMahon et al., 1991; Haynes & Webb, 1994; Veniant et al., 1994; Haynes et al., 1996; Wenzel et al., 1998). This implies a net vasoconstrictor effect of ET released from the basolateral surface of EC acting on VSM receptors. ET receptor antagonists have also been used clinically to treat patients with hypertension (Krum et al., 1998), in accord with the raised levels of ET in hypertension (see above). However, ET receptor
antagonists are now restricted mainly to the treatment of pulmonary arterial hypertension, as other traditional anti-hypertensive drugs are have lower toxicology profiles (especially in the liver) and are better tolerated.

As indicated above, vasodilator influences predominate in the umbilical circulation under normal circumstances. However, pregnancy-related diseases such as PE and IUGR are associated with decreased production of NO and PGI$_2$. Moreover, as discussed above, NO inhibits the production and action of ET. Therefore, not surprisingly these diseases are also associated with higher plasma level of vasoconstrictors such as ET-1 (Taylor et al., 1990; Ihara et al., 1991; Nisell et al., 1991). The data for the umbilical circulation is limited, but it has been shown that ET contracts both uterine and umbilical arteries via an action on ET receptor on VSM (Bodelsson et al., 1992; Stjernquist et al., 1995). As discussed in Section 1.3.2.6, human umbilical vein displays vasodilatation in response to hypoxia, which was reversed by the removal of endothelium i.e. vasoconstriction happens at low $PO_2$. Interestingly, in these endothelium-denuded vessel, blockade of ET$_B$ receptor, but not ET$_A$ receptor, restored hypoxia-induced vasodilatation (Mildenberger et al., 2003), suggesting a role of ET$_B$ receptor in mediating vasoconstriction in hypoxia. It is reasonable to hypothesise that these changes lead to elevated sensitivity to vasoconstrictor influences, to impaired blood flow in the umbilical circulation and may play a part in the aetiology of PE. However, as solid evidence is lacking, more studies are needed to improve our understanding of the role of ET in the umbilical circulation.
1.3.6. PURINERGIC REGULATION

1.3.6.1. Purinergic Substances are Vasoactive

For many years ATP was strictly regarded as an intracellular molecule, the existence of it in the extracellular space being accounted for purely by uncontrolled release from ageing and necrotic tissue. In 1972, Burnstock provided the first direct evidence that purines were released as a transmitter from nerve fibres under physiological conditions and caused smooth muscle contraction (Burnstock et al., 1972). For a review of the evidence at that time see (Burnstock, 1972). It is now well established that nucleotides and nucleosides are important extracellular signalling molecules in both neuronal and non-neuronal tissues (Ralevic & Burnstock, 1991, 1998).

Early data showed that ATP, ADP and AMP can all cause vasodilatation of dog femoral arteries, and that the responses to ATP and ADP were endothelium-dependent (De Mey & Vanhoutte, 1981). Since then, it has been shown that the endothelium-dependent dilatation to ATP and ADP is NO-dependent and that ATP can also cause the release of PGI$_2$ from endothelium (Olsson & Pearson, 1990). A recent study has shown that the nucleotides ATP, UTP and ADP can induce eNOS phosphorylation (da Silva et al., 2009). In addition, it has been shown that adenosine, which is formed as a breakdown product of the nucleotides, can cause NO release from EC, including those of umbilical vein origin (Li et al., 1995; Sobrevia et al., 1997; Ray & Marshall, 2006). Interestingly, both ATP and adenosine are implicated in the systemic vasodilator response to systemic and local hypoxia (Burnstock & Kennedy, 1986; Buck, 2004; Ellsworth, 2004; Adair, 2005; Ray & Marshall, 2006). Indeed, purinergic signalling is now a major widely accepted principle in a wide range of physiological conditions. The evolutionarily conserved actions of ATP and its metabolites as paracrine /
autocrine signalling molecules contribute to the regulation of basal level of activation for signal transduction pathways and mediate a range of responses including tissue blood flow (Corriden & Insel, 2010).

1.3.6.2. Purinergic Modulation of Vascular Tone

The detailed characterisation and downstream cellular signalling pathways of purinoceptor subtypes is discussed in later sections (1.3.6.3 & 1.3.6.4). Briefly, these consist of P2 receptors for ATP, ADP and UTP, and P1 receptors for adenosine. P2 receptors have been subdivided into P2X ligand-gated ion channel receptors and P2Y G-protein coupled receptor families. Presently the most convincing model of purinergic control of vascular tone is the one proposed in 1990 (Burnstock, 1990). This model argues that ATP modulates vascular tone via two different mechanisms. On the one hand, ATP is co-released with noradrenaline from sympathetic perivascular nerves and acts on P2X receptors located on vascular smooth muscle to cause vasoconstriction. On the other hand, ATP released from EC and red blood cells (RBC) can act on P2Y receptors located on EC to elicit release of NO and PGs, which subsequently cause dilatation of the underlying VSM. However, it should be noted that ATP-induced NO-independent vasodilatation has also been documented in human forearm (Rongen et al., 1994). It has been proposed that the endothelium-derived purinergic substances may be of greater significance in modulating response to local changes, while perivascular nerves may be concerned with integration of blood flow in the whole organism (Burnstock & Ralevic, 1994). In the umbilical circulation where there is little or no autonomic innervations, it is reasonable to propose that purinergic signalling may be of a greater importance than in systemic vascular beds.
Since the human umbilical cord is at most sparsely innervated, it is logical to postulate that the principle action of intraluminal ATP on umbilical vessel tone is dilator (via an action on EC P2Y receptors). However, in the umbilical vein EC, both receptor families are expressed (Wang et al., 2002). Moreover, the distinction between the expression of P2X and P2Y receptors on VSM and EC is not always mutually exclusive. In a recent mouse study (Yamamoto et al., 2006), it was shown that P2X4 receptor knockout in mouse led to an elevation of blood pressure, and it was shown that the shear stress-induced [Ca\(^{2+}\)]\(_i\) elevation in the endothelium of mesenteric arteries was largely due to P2X4 receptor. The influence of adenosine is also not straightforward. Adenosine is released from hypoxic tissues, and is generated by metabolism of extracellular ATP (Berne, 1963). It can cause vasodilation or vasoconstriction via P1 receptors on VSM, or it can cause vasodilatation via EC. The P1 receptors have also been divided into subtypes: A\(_1\), A\(_{2A}\), A\(_{2B}\) and A\(_3\), but there is significantly more evidence to support the role of A\(_1\) and A\(_{2A}\) in controlling vascular responses (Marshall, 2002; Tawfik et al., 2005). It is unclear exactly how either ATP or adenosine modulates the tone of umbilical arteries and veins. But clearly, the purinergic regulation of vascular tone is generally more complicated than is currently understood.

### 1.3.6.3. ATP and the Endothelial Cells

A brief description of the expression of P2X and P2Y receptors on human umbilical vein EC and their relevance in purinergic control of vascular tone has been given in Section 1.3.6.2. Pharmacological studies and molecular cloning have further subdivided these ligand-gated ion channel and G protein-coupled purinoceptors families into 7 and 8 subtypes, respectively. A detailed review of known distribution and roles of these receptor subtypes has been published (Burnstock, 2004). It would be inappropriate to discuss these multiple receptors in any detail.
here. What follows below is a discussion of findings that are relevant to the present thesis. It should be noted that one of the underlying problems in understanding the functional role of P2 receptors is that there are no selective receptor antagonists or agonists for the various receptor subtypes. As will be discussed in Chapter 3 Section 3.4.4 and Chapter 6 Section 6.4.1, the general purinergic receptor suramin, for example, has no effect on P2X4,6 or P2Y4 receptors, even at high concentration. Similarly, neither P2X4 or P2Y2,4 receptors are sensitive to pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), although it is generally used experimentally as a selective P2X receptor (Charlton et al., 1996; Burnstock, 2007). Further, purinergic receptors are susceptible to desensitisation on repeated agonist stimulation (Communi et al., 1996; Burnstock, 2007). Thus the selective P2X receptor agonist, αβ-methylene ATP, is in fact often used as an antagonist.

The purinergic control of physiological responses is mediated by the purinoceptors located on the cell surface. As indicated above, upon release from nearby cells, ATP can act directly on the purinoceptors on both EC and VSM and nucleotide stimulation of P2Y receptors on EC can produce PGI2 and NO, two potent vasodilators (Olsson & Pearson, 1990). Until relatively recently, the physiological function of P2X receptor subtypes in the control of vascular tone has received relatively little attention. It is important to note that multiple studies have shown that both purinoceptor families, not just P2Y receptors, and their respective members can be co-expressed in the same cell, and therefore presumably could mediate the effects of adenine nucleotides (Khakh & North, 2006). For example, P2X1, P2Y2 and P2Y6 receptors are expressed in human internal mammary artery VSM, while P2X4, P2Y11, P2Y1, P2Y2, P2Y4 and P2Y6 receptors are expressed in HUVEC (Kunapuli & Daniel, 1998; Wang et al., 2002).
P2X<sub>4</sub>, P2X<sub>5</sub>, and P2X<sub>7</sub>, as well as P2Y<sub>1</sub> and P2Y<sub>2</sub> receptors are expressed in bovine aortic EC and EC from other origins. (Pirotton <i>et al.</i>, 1996; Ramirez & Kunze, 2002).

The intracellular pathways of P2Y receptors have been reviewed (Boarder & Hourani, 1998; Kunapuli & Daniel, 1998). The P2Y<sub>1</sub> and P2Y<sub>2</sub> receptors are coupled to separate arms of the G-protein but both are linked to PLC. Upon receptor stimulation they cause an increase in cellular [IP<sub>3</sub>]. The subsequent IP<sub>3</sub>-induced increase in [Ca<sup>2+</sup>]<sub>i</sub> activates phospholipase A<sub>2</sub> (PLA2), which is responsible for liberating AA from the membrane phospholipids as the initial step in PGI<sub>2</sub> synthesis. An alternative [Ca<sup>2+</sup>]<sub>i</sub>-independent pathway involving phosphorylation of mitogen-activated protein kinase (MAPK) has also been shown (Patel <i>et al.</i>, 1996). The currently accepted view is that following activation of P2 receptors on EC, phosphorylation of MAPK activates PLA<sub>2</sub>, and that raised [Ca<sup>2+</sup>]<sub>i</sub> is required to translocate the activated enzyme (PLA<sub>2</sub>) to the membrane for access to its substrate (Boarder & Hourani, 1998). It has also been shown that both P2Y<sub>1</sub> and P2Y<sub>2</sub> receptors in bovine EC are coupled to the activation of eNOS, which, as for PGI<sub>2</sub> production, is protein kinase-dependent (Brown <i>et al.</i>, 1996). These findings have recently been confirmed in HUVEC (da Silva <i>et al.</i>, 2009).

Considering the P2X receptor subtypes, a recent study showed that antisense oligonucleotides targeted to the P2X<sub>4</sub> receptor abolished shear stress–induced Ca<sup>2+</sup> response in HUVEC (Yamamoto <i>et al.</i>, 2000b). Furthermore, the authors showed that expression of P2X<sub>4</sub> in a human embryonic cell line conferred the cells ability to sense shear stress (Yamamoto <i>et al.</i>, 2000a), indicating that shear stress-induced [Ca<sup>2+</sup>]<sub>i</sub> increase in human umbilical vein EC is mediated by P2X<sub>4</sub> receptors. Later, by using P2X<sub>4</sub> knockout mice, it was confirmed that P2X<sub>4</sub> receptor mediated vascular dilatation <i>in vivo</i> is NO-dependent (Yamamoto <i>et al.</i>, 2006).
Data from another group supported these findings by using real-time PCR and Western-blotting and showed that P2X4 is by far the most highly expressed purinoceptor in HUVEC (Wang et al., 2002).

This latter group and others also showed that P2Y\textsubscript{6} and P2Y\textsubscript{11} receptors, as well as P2Y\textsubscript{1} and P2Y\textsubscript{2}, are expressed in HUVEC and have quantified their expression (Wang et al., 2002). The finding that P2Y\textsubscript{11} was the most highly expressed purinoceptor is of special interest as the receptor had never before been described in the cardiovascular system. Because there are no specific agonists or antagonists available for the P2Y\textsubscript{11} receptor, its potential functional role cannot be demonstrated; it may account for some of the vascular effects previously ascribed to P2Y\textsubscript{1} and P2Y\textsubscript{2} receptors (Buvinic et al., 2006).

Further, as is discussed in Section 1.4.2, there are enzymes expressed on the surface of EC that catalyse the sequential breakdown of ATP into nucleotides and nucleosides, which in turn may activate their respective purinoceptors. Indeed, by using selective adenosine receptor agonists and antagonists, it was shown that adenosine challenge could induce eNOS activation through the activation of P1 (A\textsubscript{2}) receptors, which is mediated by increased L-arginine transport (Sobrevia et al., 1997). It may also act via P1 receptor-independent pathway to activate essential kinases in these ECs (da Silva et al., 2006). As a much higher level of adenosine is found in the umbilical vein and other placental tissues of PE-afflicted pregnancies compared to normal pregnancy, it has been hypothesised that increased adenosine concentration may account for the reduced perfusion in the feto-placental circulation exhibited in PE (Escudero & Sobrevia, 2008; von Versen-Hoynck et al., 2009). Indeed, exposure of villous explants to hypoxia (2% O\textsubscript{2}) increased the expression of A\textsubscript{2A} receptor by
50% (von Versen-Hoynck et al., 2009), strongly indicating an association between hypoxia, adenosine and PE. Further, human placental syncytiotrophoblast has specialised nucleoside transporters, responsible for the transport of adenosine across placenta and into EC (Britton et al., 1991; San Martin & Sobrevia, 2006). However, this is outside the remit of the present thesis and will not be discussed further.

1.3.6.4. ATP and Vascular Smooth Muscle Cells

Previous studies have identified the expression and sometimes the functional role of different purinoceptors on vascular smooth muscle and isolated SMC from different species, and have indicated the wide variation in vascular control by in different vessels and species (Boarder & Hourani, 1998).

In contrast to skeletal muscle, vascular smooth muscle (VSM) contraction is induced by interaction between \([\text{Ca}^{2+}]_i\) and calmodulin (CaM), although a rise in \([\text{Ca}^{2+}]_i\) is the principle trigger in both cases. The \(\text{Ca}^{2+}\)-calmodulin complex activates myosin light chain kinase (MLCK) which in turn phosphorylates the regulatory myosin light chain (MLC) located on each myosin head (Hathaway et al., 1991). Phosphorylation of MLC allows myosin to interact with actin, producing contraction. Relaxation occurs when myosin light chain phosphatase dephosphorylates the MLC. Thus, besides \([\text{Ca}^{2+}]_i\), the activity of MLCK is important in the modulation of VSM contraction. Intracellular cyclic AMP and cyclic GMP are also important in smooth muscle tone control. They activate cAMP-dependent kinase (PKA) and cGMP-dependent kinase (PKG), which phosphorylate MLCK, leading to its inactivation (Nishikawa et al., 1984; Hathaway et al., 1985). As a consequence, the affinity
of MLCK to CaM decreases, limiting the phosphorylation of MLC. This in turn stabilises the inactive form of myosin and therefore prevents contraction (Boron & Boulpaep, 2009).

In innervated vascular beds, vasoconstriction in response to ATP/ADP stimulation is mediated mainly by the P2X₁ receptor on VSM, activation of which causes the \([\text{Ca}^{2+}]_i\) elevation that is important for contraction (Burnstock, 2002). However, a detailed in situ hybridization and RT-PCR study of the expression of P2X receptor subtypes in the rat cardiovascular system also demonstrated the presence of the P2X₄ receptor in VSM (Nori et al., 1998). Its functional role is unclear as there are no selective P2X₄ agonists or antagonists. The P2X₄ receptor is also insensitive to the non-specific P2 receptor antagonists suramin, PPADS and Reactive blue 2, which are able to abolish ATP-induced responses (Evans & Kennedy, 1994; Burnstock, 2006).

Further, in a study of isolated, pressurised rat cerebral arterioles, it was found that ATP induced initial constriction, which was followed by secondary dilatation (Horiuchi et al., 2003). By applying specific P2Y antagonists extraluminally, it was found that these ATP-induced constrictor and dilator responses were mediated by P2Y₂ and P2Y₁ receptors, respectively. Interestingly, both of these receptor subtypes are expressed in the human umbilical cord artery and vein VSM, as well as EC (Buvinic et al., 2006). Moreover, the activation of these purinoceptors with their preferential agonists, 2-MeSADP and UTP respectively, was able to induce contraction in both isolated umbilical artery and vein, both with or without intact endothelium, indicating that P2Y₂ and P2Y₁ receptors that evoke contraction are present on
the VSM. Interestingly, it has been shown that hyperoxia-induced vasoconstriction of umbilical vein was abolished by functional adrenergic denervation of the vessel by pre-treatment in 6-OH-dopamine, and that the effect of 6-OH-dopamine was absent in endothelium-denuded vessels (Mildenberger et al., 2004a). As it is well known that ATP is often co-released with noradrenaline from nerve terminals (Burnstock, 1972), it raises the possibility that ATP released from EC may cause hyperoxia-induced vasoconstriction via its action on VSM.

1.4. ATP RELEASE

1.4.1. Sources of Vascular Extracellular ATP

Notwithstanding its release from perivascular nerves, the major source of ATP (and its metabolites) as a paracrine or autocrine vasoactive substance is EC, whose activation by stimuli such as agonists, shear stress and hypoxia causes ATP release (Pearson & Gordon, 1979; Bodin et al., 1991; Burnstock, 1999). It has been shown that cultured HUVEC consistently released ATP in response to a repeated shear stress challenge (Milner et al., 1990). The mechanisms responsible for ATP release from EC are considered below. Limited data also suggest that ATP may be released from guinea pig hearts in hypoxia (Hopwood et al., 1989), or from cultured VSM and ECs under certain agonist stimulation, such as thrombin and collagenase (Pearson & Gordon, 1979), and that release of ATP from cultured VSM may be constitutive (Prosdocimo et al., 2009). ATP can also be released from aggregating platelets (Ingerman et al., 1979; Beigi et al., 1999) and from erythrocytes during periods of hypoxia, when haemoglobin is deoxygenated as blood flows through metabolising tissues such as in skeletal muscle during exercise (Bergfeld & Forrester, 1992; Ellsworth, 2004).
Hence, purinergic signalling has the potential to contribute to the control of local vascular tone under physiological conditions as well as under pathological situations.

The concentration of extracellular ATP is difficult to determine, as it is rapidly broken down by ectonucleotidases (ENs) such as nucleoside triphosphate diphosphohydrolases, nucleotide pyrophosphatases, alkaline phosphatase and 5’-nucleotidase (Zimmermann, 2000). They are also considered in detail in the Section 1.4.4. As a result of the presence of these ENs, extracellular ATP has a short half-life and therefore, in line with the model proposed by (Burnstock & Ralevic, 1994), is likely to evoke immediate vascular responses to changes in local conditions, rather than mediating long-term events such as vasculogenesis and angiogenesis. However, in recent years, the status quo has been challenged by new evidence which suggests that extracellular ATP is highly implicated in processes such as angiogenesis and chronic inflammation (see Chapter 8).

1.4.2. Hypoxia-induced ATP release

It is well documented that ATP is released from endothelial cells by shear force (Milner et al., 1990; Bodin et al., 1991; Bodin & Burnstock, 1995). However, one of the key concepts in the hypothesis that underlies the present project is that a hypoxic intrauterine environment, often associated with pregnancy-related disorders such as IUGR and PE, may be able to elicit release of ATP in the umbilical vessels. It is proposed that this ATP can initiate vascular vasomotion, which may represent intermittent placental blood supply, thus affects the oxidative status of the fetus.
It has been indicated in Section 1.4.1 that erythrocytes are able to release ATP during periods of hypoxia in association with O\textsubscript{2} being offloaded from haemoglobin (Ellsworth, 2004). It is often hypothesised, or even assumed, that hypoxia is also able to induce ATP release from vascular ECs and VSM e.g.(Gerasimovskaya et al., 2002; da Silva et al., 2006). In fact, it is only recently that data suggesting that hypoxia \textit{per se} is able to induce ATP release from EC has emerged (Woodward et al., 2009). These data were obtained from an animal model (passaged EC from bovine pulmonary vasorum). Direct data from freshly isolated cells of human origin has not been reported. In this respect, the only data available to date is from a study performed on HUVEC (Bodin & Burnstock, 1995). These authors reported that hypoxia had a synergistic relationship with increased shear stress in stimulating ATP release from these cells, but this was only the case with freshly isolated HUVEC, not with HUVEC when it had been cultured. They reported that hypoxia (5 min) alone had no effect on the basal release of ATP from EC. However, it should be noted that solutions bubbled with a 95\% O\textsubscript{2} / 5\% CO\textsubscript{2} gas mixture and 95\% N\textsubscript{2} /5\% CO\textsubscript{2} gas mixture were considered to be ‘nomoxic’ and ‘hypoxic’ conditions, respectively. These data may be suggestive, but these levels of oxygenation are very different from those experienced by HUVEC \textit{in vivo} in the umbilical environment. A 95\% N\textsubscript{2} / 5\% CO\textsubscript{2} gas mixture was likely to have produced a PO\textsubscript{2} of >500 mmHg, whereas the normal level for the umbilical vein is ~44 mmHg (Armstrong & Stenson, 2007). On the other hand, it is not clear how low the PO\textsubscript{2} value achieved with the 95\% N\textsubscript{2} / 5\% CO\textsubscript{2} gas actually was, for no measurements were made and the PO\textsubscript{2} achieved would have depended on the extent to which the buffer was equilibrated with the gas mixture and open to room air.

1.4.3. Known ATP Release Pathways
As indicated above, in addition to its fundamentally important role in cellular energy storage and transfer, compelling evidence for the physiological release of ATP and its metabolites from cells in a large variety of tissues, organs and species has been documented. This has been reviewed (Burnstock & Knight, 2004). However, the mechanisms of release are poorly understood and there is still no consensus for the non-lytic mechanisms by which ATP is secreted in any particular cell type (Lazarowski et al., 2003). Because of the size and charge of the molecule, ATP cannot simply diffuse across the plasma membrane (Glynn, 1968; Dieterle et al., 1978). There is considerable evidence that the ATP release from nerve fibres is a vesicular exocytotic mechanism (e.g.(Bodin & Burnstock, 2001b)). For non-neuronal cells such as EC and SMC, vesicular exocytosis of ATP in response to shear stress has also been proposed (Bodin & Burnstock, 2001a). This vesicular-mediated ATP release pathway is discussed further in Chapter 4 Section 4.4.3 and Chapter 5 Sections 5.4.2 & 5.4.3. However, several other mechanisms have attracted a great deal of attention, such as ATP-binding cassette (ABC) transporters, ATP-permeable anion channels, volume-regulated anion channels (VRAC), and connexin or pannexin hemichannels. One of the subtypes of P2 receptors, the P2X7 purinoceptor, has also been implicated (Pellegatti et al., 2005). The description below provides the details of these better known pathways.

1.4.3.1. **ABC Transporters and VDAC**

ABC transporters have perhaps attracted the most attention amongst the various candidate mechanism and pathways for ATP release, most existing data for this having been derived from studies that have been performed on epithelial cells. The ABC transporters are members of a protein family that is widely expressed in all cells, including the plant and bacterial kingdom and their structures are high conserved (Dean & Allikmets, 1995). The basic
structure consists of two cytoplasmic ATP-binding sites and two hydrophobic domains, each made up of six putative transmembrane segments (Higgins, 1995) (see Fig 1.7). ABC transporters utilise the energy from the hydrolysis of ATP to facilitate movement of molecules, including ATP, across the plasma membrane (Higgins, 1995). The most common mammalian ABC transporters are the cystic fibrosis transmembrane conductance regulator (CFTR), the P glycoprotein and the sulfonylurea receptor (i.e. the ATP-sensitve $K^+$ channel); ATP transport across the plasma membrane has been documented for all of these proteins (Higgins, 1995).

![Figure 1.7. The structure of ABC transporter. Taken from (Bodin & Burnstock, 2001b)](image)

Although expression of ABC-transporters is documented at multiple locations and species, mostly in epithelial tissues and at the blood brain barrier (Schwiebert, 1999; Scherrmann, 2005), to date there is little evidence to support the notion that they mediate ATP transport in vascular EC and SMC (Schwiebert, 1999). HUVEC do express CFTR, but there is as yet no
evidence to indicate its role in the release of ATP (Tousson et al., 1998). Likewise, a number of studies on rabbit macula densa and mammary cell line showed that a voltage-dependent anion channel (VDAC) was ATP-conductive (Sabirov et al., 2001; Bell et al., 2003), and transgenic study on murine airway epithelial cells have suggested that the VDAC may be the splicing variant of the mitochondrial ATP porin VDAC-1 (Okada et al., 2004). However, there are presently no in vivo data available demonstrating that functional presence of VDAC in mediating trans-membrane ATP transport in vascular SMC or EC, or indeed in any cell type (De Pinto et al., 2010).

1.4.3.2 VRAC

Numerous studies have demonstrated that cell swelling (for example, induced by hypotonic stress) activates a robust ATP release in a range of cells including EC (Okada et al., 2001). Interestingly, cellular swelling could also activate VRAC (Strange et al., 1996). Indeed, this has prompted the hypothesis that VRAC are involved in ATP transport. The main evidence for this is a study on bovine aortic EC in which pharmacological inhibition of VRAC by glibenclamide, verapamil, tamoxifen, and fluoxetine also inhibited ATP release. By using the patch-clamp technique, the authors showed that the VRAC current is inhibited not only by ATP, but also other extracellular nucleotides UTP, GTP, CTP and ADP, in a permeating blocker model (Hisadome et al., 2002). Interestingly, the study also showed that inhibition of VRAC also inhibited the hypotonic stress-induced $[\text{Ca}^{2+}]$ oscillations in and NO production from the EC. Further, a related study on the same cell type showed that the hypotonic stress-induced ATP release, as well as actin reorganisation, is tyrosine kinase and Rho-kinase dependent, although the ATP and actin responses had no causal relationship (Koyama et al., 2001). More recently, it has been shown that this is also the case for HUVEC, with the
further information that tyrosine kinase activation is a subsequent event to Rho-kinase activation (Hirakawa et al., 2004). To date there is no direct evidence to show that VRAC can release ATP, and the precise role of VRAC in mediating ATP release from EC remains unclear.

1.4.3.3. **Hemichannels and P2X7 Purinoceptor**

The gap junction molecules, connexins, can form gap junctions between cells and it is well established that they are involved in intercellular communication, for example in Ca\(^{2+}\) wave propagation in epithelial cell, vascular EC and SMC (Sanderson et al., 1990; Domenighetti et al., 1998; Billaud et al., 2009). Accordingly, using a luminometric ATP detection assay, it has recently been shown that connexin mimetic peptides for connexin 43 inhibited constitutive release of ATP from an immortalised endothelial cell line HMEC-1 (Faigle et al., 2008). Importantly, connexin channels have also been implicated in vascular vasomotion in the cerebral blood vessels (Haddock et al., 2006). In this study, it was also shown with immunohistochemical techniques that the connexin protein expression was predominantly localised to the myoendothelial junctions, suggesting their importance in coupling ECs and VSM, an important feature of vasomotion. Indeed, connexin 43 is expressed in umbilical and chorionic vessels, and application of three structurally different inhibitors, Gap 27, 18α-glycyrrhetinic acid or octanol, inhibited vasomotion amplitude in these vessels (Garcia-Huidobro et al., 2007).

The other principle model for intercellular signal propagation is a pathway that involves cellular ATP release. This mechanism, which has been demonstrated in HUVEC and calf pulmonary artery EC, involves regulated ATP release which acts on purinoceptors on the
neighbouring cells, the activation of which leads to further ATP release from these cells (Bodin & Burnstock, 1996; Moerenhout et al., 2001). It has been shown in bovine corneal EC that this extracellular ATP-mediated method of intercellular communication can occur even when there is no direct physical cell to cell contact, for Ca^{2+} wave propagation occurred even across a cell-free zone (Gomes et al., 2005). Interestingly, increased expression of connexins has been shown to facilitate greater increase in ATP release following purinergic receptor activation by UTP. It has thus been speculated that the connexins may form a regulated exit pathway for ATP, and hence play a central role in propagation of Ca^{2+} waves (Cotrina et al., 1998). Indeed, for non-excitable cells such as human astrocytes, lung epithelial cells and HUVEC, data from real-time visualisation of cellular ATP release (using extracellular buffer with a mixture containing luciferase and its substrate luciferin) and expression system showed that regulated physiological ATP release is responsible for Ca^{2+} wave propagation, and that it was mediated by at least in part mediated connexins which form hemichannels in the plasma membrane (Arcuino et al., 2002; Stout et al., 2002).

This potential role of connexin in mediating ATP release in VSM, however, is still a subject of controversy. A number of research groups have found that, although connexin channels were implicated, in contrast to astrocytes or EC (Arcuino et al., 2002), ATP-hydrolysing enzymes (e.g. apyrase) or purinoceptor blockers (e.g. suramin) had no effect on the transmission of the Ca^{2+} wave in primary murine VSM or cultured human uterine SMC (Young et al., 2002; Hanner et al., 2008).

Very recently the family of pannexin channels has also entered the field of ATP release (Shestopalov & Panchin, 2008). Several properties of the channel, such as activation by
membrane depolarisation, mechanosensitivity and ATP-permeability (Locovei et al., 2006; Shestopalov & Panchin, 2008), suggest that it is a suitable candidate for an ATP-releasing channel. It was mentioned in Section 1.4.3 that the P2X\textsubscript{7} purinoceptor has been implicated in ATP release. This proposal was based on evidence that expression of P2X\textsubscript{7} receptor in a cell line conferred the cell the ability to release ATP in response to BzATP, a potent P2X\textsubscript{7} agonist (Pellegatti et al., 2005). However, there had been no molecular data to suggest that the receptor itself is pore-forming (Praetorius & Leipziger, 2009), although recent evidence suggests that pannexin channels may be the pore-forming component of P2X\textsubscript{7} purinoceptor (Shestopalov & Panchin, 2008). However, all the data on the properties of pannexin channels have been derived from expression systems, and presently there is no evidence to suggest their expression or function in vascular SMC or EC. Their potential role in mediating intercellular communication via ATP release in the vasculature \textit{in vivo} is therefore unclear.

1.4.4. Fate of Extracellular ATP

1.4.4.1. Ectonucleotidase (EN)

Intercellular signalling systems generally require mechanisms of signal inactivation such as receptor desensitisation and receptor down-regulation. In addition to these mechanisms, ATP released from vascular EC, SMC and blood cells is rapidly inactivated by hydrolysis (Pearson & Gordon, 1985). It was assumed that single enzymes are responsible for the hydrolysis of either ATP or ADP, or both (e.g. (Coade & Pearson, 1989)). However, following molecular cloning and functional characterisation of several families of ectoenzymes, it has now become clear that this is not the case. In fact, multiple enzyme families exists that catalyse the sequential reactions of ATP $\xrightarrow{}$ ADP $\xrightarrow{}$ AMP $\xrightarrow{}$ adenosine (see Fig 1.8). These enzymes
have differential but often overlapping substrate specificities and tissue distributions, thereby conferring broad functional diversity (Zimmermann, 2000).

The known ENs are divided to the following groups: (i) the E-NPP Family (Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase Family); (ii) the E-NTPDase Family (Ecto-Nucleoside Triphosphate Diphosphohydrolase Family); (iii) Ecto-5’-Nucleotidase; and (iv) Alkaline Phosphatases. Some of these ENs have distinct patterns of distribution in different cell types and are regulated during physiological and pathophysiological processes, probably in association with purine and pyrimidine signalling (Zimmermann, 2000). The dominant EN expressed by vascular EC is the E-NTPDase family, and also ecto-5’-Nucleotidase that completes the enzymatic reaction initiated by the E-NTPDases (see Fig 1.8) (Atkinson et al., 2006). The presence of purinergic control of vascular function suggests the important functional significance of the ENs. Thus, the biological effect of released ATP depends on the local activities of EN expressed on EC and SMC cell surface (Pearson et al., 1980; Gordon, 1986).
Extracellular nucleotide inter-converting activities such as nucleoside dkinases have also been described e.g. (Lazarowski *et al.*, 2000). Moreover, cleaved and soluble forms of EN exist and are referred to as exonucleotidases, but there is currently little experimental evidence suggesting their existence outside of the nervous system. In general, EN are membrane bound, with the catalytic site facing the extracellular medium. Hence, the combined actions of ENs regulate the concentrations of the individual extracellular and circulating vasoactive nucleotides and can also generate vasoactive adenosine (Pearson & Gordon, 1985; Robson *et al.*, 2001). Indeed, it was shown that in resting, non-secretory cells the concentration of extracellular ATP remains constant through time, but that it is actively re-circulated by the cells, which indicates that the resting level of extracellular nucleotides is the
result of constitutive nucleotide release balanced by the concerted activities of the ENs (Lazarowski et al., 2001).

The maximum catalytic activity of the individual ENs is adapted to the extracellular condition and requires the presence of divalent cations such as Ca$^{2+}$ or Mg$^{2+}$ and an alkaline pH. In most cases the $K_m$-values are in the lower micromolar range (Zimmermann, 2000). In addition to their catalytic activity, there are also reports of ENs functioning as cell adhesion molecules or as transmembrane receptors (Lennon et al., 1998).

1.4.4.2. Regulation of EN

By monitoring the metabolism of radioactive ATP, ADP and adenosine on the surface of HUVEC, it was shown that exposure to a combination of hypoxanthine and xanthine oxidase, which generates O$_2^-$ and H$_2$O$_2$, increased the half time of disappearance of these substrates significantly (Aalto & Raivio, 1993). Similarly, by expressing a recombinant human EN gene in a model cell line, it was found that hypoxanthine, xanthine oxidase as well as H$_2$O$_2$ were able to almost completely abolish the inhibitory effect of EN on exogenously applied ADP-induced platelet aggregation (Kaczmarek et al., 1996). Further, it was shown that oxidative stress in EC resulted in persistent immune-reactive, but functionally inactive E-NTPDase, and that recovery from the insult was possible only after new protein synthesis (Robson et al., 2001). Taken together, these independent studies demonstrated that exposure to ROS can potently impair the catabolism of extracellular ATP by EN.

As discussed above, impeded umbilical blood flow as well as excessive oxidative stress are often associated with complications of pregnancy including IUGR and PE (see Section
1.2.2.6). There is also some evidence, albeit limited, that acute hypoxia induces ATP release from at least some EC (Woodward et al., 2009). Thus, it might be expected that hypoxia would simply increase extracellular ATP concentration. However, paradoxically, several studies have shown that chronic hypoxia (3%; 2-4 weeks) or I/R injury increased the expression of EN in pulmonary EC and perfused heart, thereby indirectly lowering prevailing local levels of ATP (Section 1.6 Fig 1.9) (Gerasimovskaya et al., 2002; Van Linden & Eltzschig, 2007; Eltzschig et al., 2009). Further, it was shown that hypoxia (30mmHg; 18hr) was able to increase the expression as well as the activity of Ecto-5’-Nucleotidase in aortic EC, the other major family of EN expressed by EC, and thereby has the potential to increase adenosine production from ATP released from cell membrane (Ledoux et al., 2003). Thus, chronic hypoxia may lead to lower levels of ATP in umbilical vessels that might be expected from effects of acute hypoxia and may also lead to increased levels of adenosine.

1.5. VASCULAR VASOMOTION

Vascular vasomotion refers to spontaneous rhythmic oscillations of blood vessel tone or diameter in the range of 1-20 min⁻¹, that is independent of heart rate (Aalkaer & Nilsson, 2005). It has been reported in both in vivo and ex vivo experimental studies.

1.5.1. The Physiological Role of Vasomotion

The physiological consequence of vasomotion is not well understood. Several ideas have been put forward and have been reviewed recently (Nilsson & Aalkjaer, 2003). For example, it has been argued that vasomotion increases flow conductance without a need for a change in perfusion pressure (Meyer et al., 2002); and that the oscillations of oxygen tension which are caused by vasomotion provides better tissue oxygenation than that obtained with a steady O₂
delivery (Tsai & Intaglietta, 1993). In relation to this idea, Rucker et al (2000) used NADH fluorescence to study the metabolic status of several tissues adjacent to tissue in rat hind limb. They found that under critical perfusion conditions induced by stepwise reduction of blood flow to the whole hind limb by restriction of the femoral artery, vasomotion developed in the skeletal muscles and that this was able to confer beneficial effects on oxygenation of the adjacent tissues, including the periosteum, subcutis and skin (Rucker et al., 2000). Another group studied the effect of vasomotion in patients suffering from traumatic brain injury and suggested that vasomotion in the middle cerebral artery is a physiological phenomenon that compensates for variability in mean arterial pressure. Indeed, it was argued that the unaltered middle cerebral artery flow that occurred as a consequence of vasomotion was beneficial for maintaining brain tissue oxygenation (Turalska et al., 2008). At a microcirculatory level, it was proposed that chaotic pattern of vasomotion is essential in promoting oxygenation of surrounding tissue (Pradhan et al., 2007), although this was based on theoretical study and to date, data from physiological situation is scarce. The results of these studies are consistent with the generally accepted view that metabolic challenge e.g. low blood flow induces vasomotion. Indeed, many studies have shown that a reduction in blood flow or haematocrit potently increases the incidence, frequency and relative amplitude of vasomotion (Rucker et al., 2000; Lee et al., 2005). Hence, it can be argued that vasomotion is a response to, and may be, a protective mechanism against, tissue hypo-perfusion or hypoxia.

On the other hand, theoretical modelling on data from mesenteric arteries from Sprague-Dawley rats suggested that vascular resistance is higher when a vessel displays vasomotion than when it does not e.g. (Gratton et al., 1998). The calculation of vascular resistance of a vessel displaying vasomotion was based on a mean radius. It has since been pointed out that
time-dependent variability in vessel radius absolutely affects volume flux of the vessel, and if the effect of time-dependent change in radius was taken into consideration when modelling, then vasomotion would in fact increase conductance (decrease resistance) (Meyer et al., 2002).

Clearly, more experimental data is needed to test these theories more fully. Experimental data on the physiological role of vasomotion in the human umbilical circulation is scarce.

Notwithstanding, vasomotion does occur in both umbilical artery and vein, as well as in vessels of placenta. Indeed, in vitro measurements showing that the amplitude in the change in vascular wall tension of spontaneous vasomotion oscillation was ~11% of the maximum contractile tension, leading the authors to suggest that vasomotion is important in regulating blood flow, oxygen and nutrients to the fetus (Garcia-Huidobro et al., 2007). Moreover, in vivo, umbilical blood flow has been shown to remain constant (Jensen et al., 1999) or even increase from 436 to 491 ml/min during placental hypoxia, even though the mean arterial and venous pressure and vascular resistance did not significantly change (van Huisseling et al., 1991). In contrast, IUGR is associated with a fall in umbilical blood flow (Ferrazzi et al., 2000; Ferrazzi et al., 2002). This raises the possibility that vasomotion may provide a self protecting mechanisms in umbilical blood vessels, which can be evoked under hypoxia to improve blood flow for the maintenance of $O_2$ supply to the fetus. Further, as discussed in Section 1.2.2.7, vasomotion in the umbilical vessels may have an important role in mediating ROS status and I/R-type injury in normal and complicated pregnancies. Taken together, and taking into consideration the fact that intrauterine hypoxia is a key feature of normal and complicated pregnancies, it is reasonable to propose vasomotion in the feto-placental circulation may play a key role in both normal and abnormal placental and fetal development.
Elucidation of the mechanisms underlying the effect of hypoxia on vasomotion would facilitate our understanding of fetal blood supply and health.

1.5.2. Mechanisms Underlying Vasomotion

Although vasomotion has been widely observed in a variety of blood vessels e.g. coronary artery (Kawasaki et al., 1981; Kawasaki et al., 1985), radial artery (Stojnic et al., 2006), pial artery (Gokina et al., 1996), cerebral artery (Vinall & Simeone, 1987), pulmonary artery (Bonnet et al., 2001; Guibert et al., 2005) and umbilical artery and vein (Garcia-Huidobro et al., 2007), the mechanisms underlying vasomotion remain unclear. One of the reasons for this is probably that there are multiple mechanisms underlying vasomotion, which are difficult to address experimentally (Aalkaer & Nilsson, 2005). Nevertheless, $[\text{Ca}^{2+}]_i$ oscillations, have been observed in synchronisation with the rhythmic blood vessel contractions, in arterial SMC (Aalkaer & Nilsson, 2005), and aortic and corneal EC (Hisadome et al., 2002; Gomes et al., 2005), both in vitro and in whole blood vessels (Gustafsson, 1993; Aalkaer & Nilsson, 2005). The increase in $[\text{Ca}^{2+}]_i$ precedes each increase in wall tension and these $[\text{Ca}^{2+}]_i$ oscillations in SMC and are therefore considered to drive vasomotion (Aalkaer & Nilsson, 2005). In umbilical vein, equilibration in $\text{Ca}^{2+}$-free buffer for $>15$ min reduced basal tension and reduced amplitude of spontaneous vasomotion by 70%, whereas transient removal of external $\text{Ca}^{2+}$ had little effect. In contrast, increasing the $[\text{Ca}^{2+}]_i$ by blockade of sarcroplasmic ATPase increased the amplitude of the vasomotion and basal tension. The authors therefore suggested that vasomotion is critically dependent on intracellular $\text{Ca}^{2+}$ stores in VSM (Garcia-Huidobro et al., 2007). On the other hand, as discussed in Section 1.3.2.5 the release of NO from HUVEC has been shown to be oscillatory, which may represent another mechanism by which vasomotion occurs.
A number of oscillator models have been proposed to explain the phenomenon; including a sarcolemma oscillator, a membrane potential oscillator and a metabolic oscillator related to glycolysis (Peng et al., 2001; Aalkaer & Nilsson, 2005). Synchronization of the oscillation from cell to cell may involve changes in the cell membrane potential. In freshly excised umbilical artery and vein strips, it was reported that amplitude of vasomotion was three times greater in umbilical vein than artery, and that the vasomotion lasted for up to 8 hr (Garcia-Huidobro et al., 2007). Removal of endothelium from the umbilical vein reduced the vasomotion amplitude by ~50%, but frequency by only 10%. As discussed in Section 1.4.3.3, blockade of gap functions by Gap 27, 18α-glycyrrhetinic acid or octanol reduced the amplitude, but had no effect on frequency of the vasomotion. Interestingly, blockade of K_{ATP} channel in umbilical vein with glibenclamide caused a dose-dependent inhibition of vasomotion and basal tension, indicating an important role for K_{ATP} channel in vasomotion activity (Garcia-Huidobro et al., 2007).

1.5.3. Vasomotion and Pre-eclampsia

Given the apparent functional significance of vasomotion on tissue oxygenation and oxidative status, it is not surprising that it has been implicated in PE, where it is generally accepted that oxidative stressed is increased. As discussed in Section 1.3.2.3, \([Ca^{2+}]_i\) is important for the activation and release of NO from EC, which may represent a mechanism by which vasomotion is mediated. Consistent with this theme, it was shown that serum from PE pregnancy induced higher frequency \([Ca^{2+}]_i\) oscillations in HUVEC than that from normal pregnancy (Matsubara et al., 1998), suggesting that a factor(s) is present in the systemic circulation of women with PE, which could alter vascular reactivity. Indeed, it was reported
that vasomotion is exaggerated even in epigastric, omental and skeletal arterioles from women with PE or hypertensive rats (Ebeigbe & Ezimokhai, 1988; Boegehold, 1993).

Although impaired endothelial dependent relaxation is the hallmark of PE, there are relatively little studies on the feto-placental circulation. A more recent study in vessels from women with PE showed that changes to oscillation pattern in response to TXA$_2$ challenge differed between the feto-placental circulation and the systemic circulation: the chorionic arteries (from the feto-placental circulation) displayed reduced vasomotion amplitude, while myometrial arteries (from the systemic circulation) displayed increased vasomotion frequency (Sweeney et al., 2008). The evidence therefore suggests that placental vessels from women with PE displayed less vasomotion than those from normal pregnancies, whereas in systemic vessels of women with PE, a hyper-sensitivity is apparent. There is little consensus regarding the functional status of the feto-placental circulation in PE, but studies have shown that basal $[\text{Ca}^{2+}]_i$, $[\text{Ca}^{2+}]_o$ response and NO production to AA and histamine challenges were significantly altered in HUASMC from PE tissue when compared to control (Steinert et al., 2002; Steinert et al., 2003). Given that $[\text{Ca}^{2+}]_i$ in VSM is considered to drive vasomotion (Section 1.5.2), it is reasonable to suggest that the altered vasomotion amplitude or pattern may play a role in the pathophysiology of PE.

1.6. GENERAL HYPOTHESIS

In general, then, vasomotion is an intrinsic phenomenon that can occur in most blood vessels including the umbilical cord artery and vein under certain conditions which seem to include low flow and low PO$_2$. Although vasomotion has been proposed to be a protective
mechanism against tissue hypoxia, few studies have been carried out to investigate the effect of hypoxia upon vasomotion in umbilical cord.

As discussed above in *Section 1.4.2*, there has been some limited evidence to suggest that EC may release ATP in response to hypoxia. Moreover, extracellular ATP, as a regulatory metabolite, has been suggested to mediate \([\text{Ca}^{2+}]_i\) oscillations via activation of P2 receptors in multiple cell types including skeletal muscls, pulmonary VSM, lymphatics, chondrocytes and model cell lines (Mahoney *et al.*, 1992; Mahoney *et al.*, 1993; Wyskovsky, 1994; Gao *et al.*, 1999; Pauvert *et al.*, 2000; Visegrady *et al.*, 2001; Zhao & van Helden, 2002; Kono *et al.*, 2006). As discussed above, oscillations in \([\text{Ca}^{2+}]_i\) certainly seem to drive vascular vasomotion. The possibility that hypoxia can elicit ATP release from EC and VSM of human umbilical artery and/or vein and induce \([\text{Ca}^{2+}]_i\) oscillations and hence vasomotion in these vessels is therefore an attractive possibility for vascular control in the umbilical circulation in hypoxia (see Fig 1.9).

In *Section 1.2.2.6*, it was indicated that oxidative stress caused by intermittent perfusion of the placenta is implicated in normal and pathological human gestation, but the possibility was also raised that vasomotion of the umbilical vessels may affect the ROS status of the fetus and hence determine the success or otherwise of pregnancy. The ability of ATP to initiate \([\text{Ca}^{2+}]_i\) oscillations in umbilical SMC and drive vasomotion may therefore act as a mechanism that maintains adequate blood flow in the umbilical circulation, the functioning of which may be impaired in the uteroplacental circulation in PE (see in Fig 1.9).
Figure 1.9. Schematic hypothesis showing a modulation of vascular vasomotion in human umbilical vessels during pregnancy.

- Physiological levels of intrauterine hypoxia induces ATP release from vascular EC and/or SMC and induces \([\text{Ca}^{2+}]_i\) oscillations, which drive vasomotion.
- Physiological levels of ROS from intermittent placental perfusion inhibits EN, leading to accumulation of ATP and facilitating vasomotion.
- In chronic hypoxia, increased EN expression reduces extracellular [ATP] so abrogating vasomotion.
- Increased ROS caused by excessive I/R-type injury and ROS generation in PE may affect pattern of vasomotion in the uteroplacental circulation via unknown mechanisms.

Key: ROS = Reactive Oxygen Species; [ATP] = Extracellular ATP concentration. Black arrows indicates physiological phenomenon, whereas red arrows indicate potential deleterious consequences of chronic hypoxia or excessive I/R.

In Section 1.4.4.2, the evidence that ROS inhibit ENs and can thereby increase the prevailing level of ATP was discussed. Thus, the inhibitory effect of ROS on the activity level of EN may be a mechanism by which vasomotion is facilitated at times when hypoxia or I/R-type insult occurs (see ■ in Fig 1.9).
On the other hand, evidence of a paradoxical increase in EN expression with chronic hypoxia was discussed in Section 1.4.4.2. Therefore, it is reasonable to propose that this would lead to a decreased level of extracellular ATP, potentially impairing normal vasomotion function (in Fig 1.9). As abnormal intrauterine hypoxia is associated with PE (Soleymanlou et al., 2005), and vasomotion is attenuated in the uteroplacental circulation in PE (Sweeney et al., 2008), a lack of ATP may play a role in the impaired perfusion seen in PE. These mechanisms, if proved to be correct, would clearly be of important scientific and clinical interest with regards to our understanding of normal and pathological fetal development and growth.

Finally, although it is well established that incomplete conversion of spiral arteries in the placenta, as found in PE, leads to excessive I/R injury and ROS generation through retained vasoreactivity (see Section 1.2.2.6), it is not known how this leads to the clinical symptom of fetal hypo-perfusion. Given that vasomotion is believed to facilitate downstream tissue oxygenation, it is thus a reasonable hypothesis that hypoxia-induced ROS may affect the pattern of vasomotion in the umbilical vessels (in Fig 1.9).

Given the lack of experimental evidence of how vasomotion may play a role in the control of umbilical circulation in normoxia and in hypoxia, the aims of the present study were to examine umbilical artery and vein from normal pregnancy. It would focus on evidence that hypoxia releases ATP from EC and on evidence that it induces or modulates vasomotion in artery and vein, by acting on EC or SMC. Therefore, preparations of EC, arterial SMC and whole umbilical artery would be used.
CHAPTER 2

GENERAL METHODS AND MATERIALS
In this chapter, the general protocols of each technique are described. The protocols for each study performed in this project are described in the relevant Results Chapter. Experiments were performed on human umbilical arteries, and on VSM and EC cultured from these vessels and from human umbilical veins. These vessels were isolated from umbilical cords obtained from full term placentae from normal uncomplicated pregnancies, from either natural birth or elective Caesarean section. Full informed consents were obtained from the patients as per local ethic committee policy. Following delivery by vaginal or caesarean sections at the maternity unit of the Birmingham Women’s Hospital, the placentae were stored at 4°C until they were collected. They were transported to the laboratory in the Medical School at the University of Birmingham, 5 minutes away and were used on the same day as delivery.

2.1. CELL ISOLATION AND CULTURE

2.1.1 General Conditions

Cellular work was performed in the laboratory using the following protocols under sterile conditions provided by laminar flow hoods. For ATP release experiments (Chapter 4), cells were first grown to confluence in culture flasks before being transferred onto 24 well culture inserts or culture plates (BD Falcon). Antimicrobial additives in the culture medium were withdrawn 24 hr prior to these and quinacrine staining experiments (Chapter 5), as it is well known that they affect the behaviour of ion channels (Goldhill et al., 1996), which could potentially mediate ATP transport (see Chapter 1 Section 1.4.3). For Ca\textsuperscript{2+} imaging experiments (Chapter 3 & 6), freshly isolated cells were plated directly onto pre-prepared sterilized EPSE-coated ø13 mm glass coverslips, on which the changes in [Ca\textsuperscript{2+}] were examined. For quinacrine staining experiments, HUVECs were prepared in the same way but were used up to the 2\textsuperscript{nd} passage. All experiments were carried out when confluence was
reached. All cells were cultured in a conventional 37 °C humidified incubator of 5% CO₂ at atmospheric pressure unless otherwise indicated.

2.1.2. Cell culture apparatus and their preparation for cell attachment

In order to facilitate adhesion of cells to culture plates, different techniques were used to prepare the surfaces of the culture plates. This was particular important when the experimental protocol required the cells to be exposed to shear-stress or mechanical disruption. For the initial ATP release experiments (Chapter 4), cells were grown in 24-well culture plate (BD Falcon) which has been pre-coated with Type B gelatine (Sigma-Aldrich, U.K.). Each culture plate was coated with 100 µl of ready-made 2% gelatine solution for 10 min, the excess solution was aspirated and the culture plate was allowed to dry for 2 hr under sterile condition before introduction of culture medium and cells. For subsequent ATP release experiments that examined the degree of polarised released from apical and basolateral cellular membrane, cells were directly grown on untreated cell inserts (see section 2.2 for details).

For quinacrine staining and Ca²⁺ imaging experiments (Chapter 3, 5 & 6), cells were grown on ø13 mm glass coverslips (WPI, U.K.) of thickness #1.5 (0.16-0.19 mm). Prior to use, they were first coated with 3-aminopropyltriethoxysilane (APES; Sigma-Aldrich, U.K.). This involved the following steps: First, new coverslips were submerged in laboratory grade nitric acid in a glass bottle overnight. On the following day, they were rinsed gently with running tap water for 3 hr. Each individual coverslip was dried on tissue paper, which was then transferred to a plastic 50ml bottle (BD Falcon, U.K.). The coverslips were then submerged in laboratory grade acetone. The bottle containing the glass coverslips was manually inverted.
for approximately 30 s, after which the acetone was drained off. This step was repeated twice, to ensure all traces of oil and water were removed. A 4% APES solution was prepared in fresh acetone. The glass coverslips were submerged in the APES-acetone solution in the 50ml bottle, which was then manually inverted continuously for 30 s. This old APES-acetone solution was then drained off and replaced with fresh APES-acetone solution. The 50ml bottle containing the coverslips in APES-acetone solution was then left on an automatic rotator for 1 hour, after which it was left in the dark overnight. Next day, the coverslips were rinsed in acetone twice as per the protocol for the previous day. They were then rinsed once with distilled water, before being spread out individually to allow drying. They were finally autoclaved as per normal laboratory practice.

2.1.3. Subcultivation

Prior to detaching cells, culture medium was aspirated from the 25cm² culture flask, and cells were washed in room temperature (RT) 0.02% ethylenediaminetetraacetic acid solution (EDTA; Sigma-Aldrich, U.K.) to remove the Ca²⁺ in any residual culture medium. This was then aspirated and replaced by 2.5ml of a specially weak trypsin-EDTA solution (0.05% porcine trypsin; Sigma-Aldrich, U.K.) at RT. The cap of the culture flask was then replaced and cells were examined under a microscope. When the cells started to detach, the culture flask was tapped gently to loosen the cells. 2.5ml of RT trypsin inhibitor (from Glycine max; Sigma-Aldrich, U.K.) was then added to the culture flask and this was gently agitated. The content of the culture flask was next transferred to a 14ml test tube, in which the cells were spun down at 220 x g. The supernatant was discarded, a suitable amount of the corresponding culture medium was used to re-suspend the cells by gently pipetting up and down. Cells were
then placed in new receptacles (i.e. culture flask/insert/glass coverslip) containing the pre-warmed culture medium. These were then re-introduced into the incubator (37 °C, 5% CO₂).

### 2.1.4. Human Umbilical Vein Endothelial Cells

The primary endothelial cultures were isolated from the veins of human umbilical cords as described in (Cooke et al., 1993) with some modification. The veins of cords were cannulated with custom-made glass pipettes and washed thoroughly with sterile phosphate buffered saline (PBS), supplemented with 100 units/ml penicillin, 0.1 mg/ml streptomycin and 5.6 µg/ml amphotericin B in order to remove any blood clots. The vessel was then infused with 1 mg/ml (125 U/ml) of type I collagenase (Sigma-Aldrich, UK) in Ca²⁺- and Mg²⁺- free PBS, and incubated at 37°C for 15 min. Detached EC were removed from the cord with two separate boluses of PBS, washed, centrifuged at 1800 rpm and re-suspended in EGM® Endothelial Cell Growth Medium (for Ca²⁺ imagine experiments; Lonza, Switzerland) or Endothelial Cell Growth Medium (for ATP-release experiments; Promocell, UK), which were supplemented with penicillin, streptomycin and amphotericin B at the concentrations indicated above. The composition of the respective mediums can be found in the Appendices of the present thesis. Cells were seeded in the appropriate cell culture apparatus detailed in Section 2.1.2 with pre-warmed culture medium. Removal of residual blood cells was achieved by a complete change of medium after 2 hr of cell plating. Cells were fed every 2-3 days.

### 2.1.5. Human Umbilical Artery Endothelial Cells

HUAEC were isolated using a protocol similar to that for HUVEC. The vein of the human umbilical cords was first washed to aid cannulation of the artery. Next, one end of the artery
was carefully isolated by surgical dissection from the Wharton’s Jelly and the artery was cannulated with a 20G animal feeding needle. The artery was infused with type I collagenase, incubated and harvested as with HUVEC (see Section 2.1.4). Isolated EC were seeded in Endothelial Cell Growth Medium (Promocell, UK) and in cell culture apparatus as discussed in Section 2.1.2, and were cultured as for HUVEC (see above).

2.1.6. Human Umbilical Artery Smooth Muscle Cells

HUASMC were explanted from the arteries of umbilical cords as described by (Kocan et al., 1980). The arteries were excised from the human umbilical cord into segments of approximately 3 cm and then cut into 1 mm rings. 6–10 rings were put into plastic culture dishes with Smooth Muscle Cell Growth Medium (Promocell, UK) containing 100 units/ml penicillin, 0.1mg/ml streptomycin and 5.6µg/ml amphotericin B, 5.0% FBS, 0.5 ng/ml epidermal growth factor, 2.0 ng/ml basic fibroblast growth factor and 5.0 µg/ml human recombinant insulin. Rings remained undisturbed in culture for 3–5 weeks until substantial SMC migration onto culture plastic occurred. Confluent primary SMC were dispersed using trypsin/EDTA (2.5 mg/ml; 0.01%, respectively), washed and re-plated and allow to grow to confluence. 4 days before experiments, SMC were re-plated on sterilized ø13 mm glass coverslips on 24-well culture plates and starved in low serum DMEM (0.25% FCS; Sigma-Aldrich, U.K.) to recover the contractile phenotype (Rainger et al., 2001). SMC were isolated from two individual donors and used up to the fifth passage.

2.1.6.1. Chronic Hypoxia Treatment

After being starved for 2 days (see Section 2.1.6), HUASMC on coverslips were cultured in a 1% O₂ hypoxic incubator with 5% CO₂ at 37 °C for 72 hr before Ca²⁺ imaging experiments.
2.1.7. Validation of cell phenotype

The isolation of ECs from the human umbilical vein and artery using the methods described above is a well-documented protocol. Nevertheless, as the umbilical cord is also made of other cell types other than EC, namely SMC of the blood vessels, and also fibroblasts and SMC which are constituents of the Wharton Jelly (Takechi et al., 1993), validation of cell phenotype with immunohistochemistry was warranted. The fluorescence-activated cell sorting (FACS) technique was used.

2.1.7.1. FACS

FACS is a specialised form of flow cytometry, in which cells are sorted according to fluorescence characteristics of each cell. Specific light scattering was conferred to each cell by fluorescence-tagged antibodies which bind to the EC-specific cell surface protein CD31 (Baldwin et al., 1994).

HUVEC and HUAEC were isolated and cultured as described above. Cells were grown in 24-well plates and when confluent were washed with 0.02% EDTA solution (as described in Section 2.1.3). 200 µl of the 0.05% trypsin at RT was then added to each well and when the cells start to detach, typically after 1-2 min, 500 µl of pre-cooled (4°C) trypsin inhibitor was added to each well. The solution in each well was agitated by pipetting it several times and this helped to dislodge any cells that remained attached. The content of each well was transferred to pre-labelled sterilised polyurethane tubes. For each cell type, 4 separate tubes were prepared: CD31 staining, an isotype control, unstained, and a blank. These would contain cells with anti-CD31 antibodies, cells with a non-specific Ig-G immunoglobulin, cells
without antibodies, and without cells, respectively (see below). 2 ml of 4°C 2% bovine serum albumin (BSA; pre-made in PBS; Sigma-Aldrich, U.K.) was added to each of these tubes containing the detached cells. These were centrifuged at 4ºC 1500 rpm for 5 min.

Supernatant was aspirated after centrifugation and the cell pellet in each tube (except blank) was dislodged by carefully agitating the tubes and re-suspended in the following solutions: For the CD31 staining tube, 2 µl of a phycoerythrin (PE)-conjugated mouse monoclonal IgG1 anti-human CD31 antibodies diluted in 98 µl of the BSA solution (1:50 dilution from 25 µg/ml; R&D Systems, U.S.A.); For the isotype control tube, 2 µl of a PE-conjugated mouse monoclonal IgG1 non-specific antibodies diluted in 98 µl of the BSA solution (1:50 dilution; ImmunoTools, Germany); For the unstained tube, 100 µl of BSA; For the blank, 100 µl of BSA. These were then leaving on ice for 30 min to allow antibodies-antigen binding.

After the Incubation period, 3ml of the BSA solution was added into each tube and these were centrifuged at 4ºC 1500 rpm for 5 min. This was repeated again to remove excess, unbound antibodies. The cells are then fixed by adding 200 µl 2% formaldehyde solution (pre-made from 40% stock in PBS; Sigma-Aldrich, U.K.) into each tube, agitated, and these were left at RT for 20 min and then cooled to 4ºC.

The tubes containing the suspended cells were processed using a Dako CyAn™ FACS analyser according to granulation (side scatter) and volume (forward scatter). Flow cytometry data was analysed with FlowJo software (Tree Star, Inc).
2.2. HYPOXIA-INDUCED ATP RELEASE

Freshly isolated cells were first grown to confluence in 25cm² culture flasks (see above), before being transferred onto 24 well culture inserts (BD Falcon). The inserts had a membrane made of translucent PET (polyethylene terephthalate), with pore size of 0.4 µm and generally with pore density of (100 ± 10) x 10⁶ / cm². The volumes of culture medium used were 200 µl and 700 µl for inside and outside the inserts, respectively, in order to maintain a neutral hydrostatic pressure across the membrane. The difference in volume between the two compartments is important when comparing the concentration of ATP released from the apical and basolateral side of the cells (see Section 4.3.3). In viability studies which required direct visualisation of cells by phase contrast light microscopy, transparent inserts were used. These had a lower pore density of (2.0 ± 0.2) x 10⁶ / cm².

2.2.1. Induction of Hypoxia

Cell were plated at equal density between hypoxic and control cultures. Both cultures were grown to confluence in a 37 °C humidified incubator of 5% CO₂ and ATP release experiments were carried out typically 48 hr post seeding. The hypoxic and control cell cultures were always transported together in order to eliminate any potential unintended side-effects of changing temperature, pH, and mechanical disruption on ATP release. Immediately prior to exposure to 21% O₂ or hypoxia, the cells were carefully rinsed with normal Krebs’ solution.

For hypoxic treatment, cells on culture inserts or 24 well culture plates were placed in a humidified incubator containing 1% O₂, 5% CO₂, balanced with N₂ at 37 °C, whilst the control culture was put in a conventional 37 °C humidified incubator containing 5% CO₂.
The O\textsubscript{2}% present in the hypoxic incubator was constantly monitored by a sophisticated real-time O\textsubscript{2} sensor, with a 0.1% O\textsubscript{2} sensitively (New Brunswick Scientific). Introducing the culture plates to the incubator necessitated the introduction of atmospheric air into the incubator and O\textsubscript{2}% rose briefly (Fig 2.1). When the incubator was closed again it took approximately 10 min for the O\textsubscript{2} level to return to 1.0 % as detected by the O\textsubscript{2} sensor. The cells were incubated for 30 min from when the O\textsubscript{2} level in the incubator reached 1.0 ± 0.1%. After this both the hypoxic and control cultures were taken from the respective incubators and concentration of the ATP in the medium was measured.

Figure 2.1. Continuous record of O\textsubscript{2} % in incubator. Cells were introduced into incubator at 0 min. Arrow denotes beginning of the 30 min hypoxic period.
2.2.2. ATP Measurement

2.2.2.1. Principle

ATP released from HUVEC and HUAEC was measured by using a conventional luciferin-luciferase assay: CellTiter-Glo® Luminescent Cell Viability Assay (Promega, U.K.). The assay contains cell lysis buffer, enzyme inhibitors (ATPase inhibitors) and a stable form of firefly luciferase, and was originally designed for viability study, in which the lysis buffer lyses the cells, the released cellular content of ATP reacts with the luciferase to produce a luminescent signal which is recorded, whilst simultaneously the endogenous enzymes as well as ectonucleotidases released by cell lysis are inhibited. The primary principle of this assay is that the strength of the luminescent signal is linear to the ATP content, and hence to the number of cells. In the present study, the assay was adapted to measure the ATP released by cultured cells.

2.2.2.2. Choice of assay

This particular assay product was chosen because, according to the manufacturer, it utilises a stable form of luciferase, based on the gene of the firefly Photuris pennylvanica (LucPpe2), which is less sensitive to chemical environment such as pH and detergents than the historical firefly luciferase purified from Photinus pyralis (LucPpy). In addition, the luminescent signal of this thermostable luciferase has a half-life of more than 5 hr, which minimizes the deleterious effect of any time lag between collecting samples and analysis (such as RT equilibration). The protocol developed in this project required careful manipulation of pipette for aspiration of culture medium without disturbing the monolayer of cells, which was a time-consuming process. Therefore, although more sensitive ATP-luciferase assays are available on the market, the relative stability of the CellTiter-Glo® Assay was considered as a more
important feature as far as the present project is concerned. Further, it contains ATPase inhibitors, which minimises interference with the accurate measurement of ATP concentration in the medium.

2.2.2.3. Exposure to hypoxia

Immediately prior to introduction to hypoxia, the culture medium was removed from both compartments of the culture inserts or the culture plates, and the cells were rinsed briefly with PBS containing Ca\(^{2+}\) and Mg\(^{2+}\). This was then aspirated and replaced with fresh control culture medium or that containing the pharmacological agents. For culture inserts, 200 µl and 700 µl of growing medium were added to the inside and outside of the inserts respectively. For culture plates, 500µl of growing medium was added to each well. Triplicates of cells from at least three individual donors on culture inserts or plates were exposed to 30 min of 1% or 21% O\(_2\) as described above. Wells containing medium but without cells were used as controls for background luminescence.

After 30 min of exposure to 1 % O\(_2\) (~ 7.6 mmHg pO\(_2\)), 50 µl of medium from each compartment was collected for the luciferin-luciferance assay. For consistent results, the medium collected was equilibrated to room temperature (RT) for 30 minutes. It is because the rate of decay of the luminescent signal from the assay depends on the rate of the luciferase reaction, which in turn depends on environmental factors such as temperature. The medium collected from each well was then mixed with an equal volume of CellTiter-Glo® Reagent in separate wells of opaque-walled multiwell plates (Costar). These wells were selected because they have higher signal intensity and less cross talk between wells. The plates containing the medium/reagent mixture were incubated at RT for 10 min to stabilise the luminescent signal.
Luminescence was recorded using a luminometer (Perkin Elmer), with a measurement time of 1.0 s duration per sample.

2.2.2.4. ATP standards

In order to find out the actually concentration released by the cells, ATP disodium (Sigma-Aldrich, U.K.) was dissolved in UltraPure™ DNaseRNase-Free Distilled Water (Invitrogen, U.K.) to prepare 10.0 µM concentration stock solution, from which tenfold serial dilutions of ATP were made. Multiwell plates containing these concentrations of standard ATP solution were mixed with equal volume of CellTiter-Glo® Reagent. The plate was incubated at RT for 10 minutes to stabilize luminescent signal. Luminescence was recorded using the luminometer. A curve of Luminescence against ATP concentration was generated for each experiment (e.g. Fig 2.2), from which the concentration of ATP released from cells was calculated.

Figure 2.2. Example of an ATP standard curve on a logarithmic scale. This was repeated for each experiment.
2.2.3. Viability study

Lytic release ATP from dying cells may confound the results. Therefore, viability of cells was monitored with Trypan Blue (Sigma-Aldrich, U.K.), which could not penetrate the plasma membrane of intact cells. Following exposure to 21% O\textsubscript{2} or hypoxia, the medium in the cell culture was replaced with PBS containing 0.1% Trypan Blue. This was left for 10 min at RT before being replaced with normal PBS. The cells were then examined using a phase-contrast optical microscope, and the number of blue stained cells was counted. For positive control, cells were left to air dry for 10 min before being treated with Trypan Blue.

2.2.4. Visualisation of quinacrine-stained HUVEC

HUVECs are isolated and prepared on coverslips as described in Section 2.1.1, 2.1.2 & 2.1.4. Quinacrine is an acridine derivative and because of its high affinity to ATP, has been used experimentally as an indicator of intracellular ATP (see Chapter 5 Section 5.1 and 5.4.1 for further discussions regarding mechanisms and specificity). Quinacrine was prepared freshly on the day in Krebs-Ringer buffer of the following composition (mM): NaCl 125, KCl 5.0, CaCl\textsubscript{2} 2.0, KH\textsubscript{2}PO\textsubscript{4} 0.7, MgSO\textsubscript{4} 1.0, HEPES 25.0, and glucose 6.0. Cells were prepared for confocal microscopy by pre-incubation in 1.5 µM quinacrine for 60 min, and carefully rinsed twice before mounted on normal glass microscopy slides with VECTASHIELD® Mounting Medium with DAPI. These were examined with a confocal microscope (Zeiss LSM510). Digital reconstruction of spinning disk confocal z stacks was done by Zeiss ZEN software and data was analysed with Zeiss LSM Image Browser.

To examine the effect of hypoxia on staining, HUVEC were stained with quinacrine in either 21% O\textsubscript{2} or hypoxia (for protocol see Chapter 5 Section 5.2.2), mounted on microscope slides.
in mounting medium without DAPI and were immediately examined under an UV light microscope (Axioskop 2 plus, Zeiss), with excitation at 494 nm and emission captured at 518 nm, and images recorded by a AxioCam MRc camera (Zeiss) and stored on a PC. To examine the effect of vesicle trafficking inhibitors on quinacrine staining, HUVEC was incubated in brefeldin A (10 µM), monensin (100 µM), or vehicle (1:1000 DMSO) for 60 min before the medium was change to quinacrine for a further 5 min, all in a conventional culture chamber. 30 µM for 5 min was determined as the optimal quinacrine staining conditions as it provided the most even staining in HUVEC out of out of 1, 3, 10 and 30 µM with 5, 30 and 60 min combinations in preliminary experiments. The cells were carefully rinsed twice with Krebs’ before mounted as above. All direct comparisons of fluorescence intensity were made between images taken at identical exposure time and gain settings. These are indicated in each Figure.

2.3. CALCIUM IMAGING

2.3.1. Principle
Real time changes in \([Ca^{2+}]_i\) in HUASMC and HUVEC were measured using conventional UV fluorescence imaging technique. There are single- and double-wavelength fluorescence indicators available on the market, Calcium Green-1 AM and Fura-1 AM (both Invitrogen, UK). The former works on the principle that when bound to its parameter of interest, in this case \(Ca^{2+}\), it emits fluorescence at a given wavelength. The greatest concern for using a single-wavelength probe is that the level of fluorescence emission is dependent on the amount of the dye present, which in turn depends on variables such as the rate of uptake of the dye by the cells, and the rate of decline of the quantum yield of the probe, as the dye is repeatedly
exposed to UV light during the course of the experiment (a process called photo-bleaching). This could lead to difficulties in interpreting changes in measured fluorescence.

Fura-2 is a double-wavelength UV light-excitable indicator, first developed in the 1980s. It was developed from the Ca$^{2+}$ chelator BAPTA, which is essentially a double aromatic analogue of EGTA, with fluorophores incorporated into the molecule (Gryniewicz et al., 1985). In contrast to single-wavelength indicators, upon binding Ca$^{2+}$, it exhibits an absorption shift around the excitation spectrum of 360 nm, which is visible when being monitored at the emission wavelength of 510 nm (O'Connor & Silver, 2007).

Thus, the fluorescent intensity at excitation below 360 nm is positively correlated to free Ca$^{2+}$, whereas at excitation above 360 nm it is negatively correlated. The ratio of the emitted fluorescence are used to determine the [Ca$^{2+}$]$_i$. Hence, the fluorescence measurements made with dual-wavelength excitation probes is independent of the amount of dye present, yet correlated to [Ca$^{2+}$]$_i$. The use of a dual-excitation ratiometric indicator, as opposed to a single-wavelength excitation indicator, gives several additional advantages, in the form of normalisation of artefact from the recording environment such as uneven cell thickness, compartmentalisation and instrumentation noise.

Fura-2 is hydrophilic and is therefore membrane-impermeable. Negative charges on the molecule are masked by acetoxymethyl (AM) esters in order to make it lipophilic. In this form, the dye can passively diffuse across the cell membrane. When it is in the intracellular space, endogenous non-specific esterases cleaves off the hydrolysable AM ester, leaving the ionised form of the dye trapped inside the cell, ready to bind Ca$^{2+}$.
2.3.2. Fluorescence indicator loading protocols

\([\text{Ca}^{2+}]_i\) in HUASMC and HUVEC was measured using the non-ratiometric or radiometric dye, Calcium Green-1 AM or Fura-2 AM, respectively (both Invitrogen, UK). 50 µg of the dye was dissolved in 20 µl 20% pluronic acid (0.01 g in 50 µl DMSO) as the stock concentration making a final concentration of 12.5 µM. Before each experiment, the growing medium was removed and replaced by 200 µl Krebs solution containing the respective dye. The HUVEC, on sterilized EPSE-coated ø13 mm glass coverslips on 24-well culture plates, were left at room temperature in atmospheric air for 30 min before incubation in a 37 °C humidified incubator of 5% CO\(_2\) and balanced air for a further 30 minutes. HUASMC were incubated for 60 minutes without the room temperature incubation period. Immediately prior to placing the coverslips into the recording chamber, they were rinsed in normal Krebs solution to remove residue dye.

For HUASMC that has undergone chronic hypoxic treatment, Calcium green was loaded onto the cells in the hypoxic incubator for 60 min prior to experiments, which were carried out immediately after the cells were re-introduced to atmospheric air.

2.3.3. Cytosolic free calcium measurement

Cells on glass coverslip (see Section 2.1.1) were placed into a diamond-shape cuvette which enabled laminar flow. The cuvette chamber was sealed by a glass coverslip and was perfused with Krebs’ buffer maintained at 37 °C bubbled with either 95% air/5% CO\(_2\) (normoxia), or 95% N\(_2\)/5% CO\(_2\) (hypoxia). The perfusion was provided by a peristaltic pump (MINIPULS\textsuperscript{®} 3 by Gilson, Inc.) at a constant rate of 22.5 ml/min unless otherwise stated. The level of O\(_2\)
was measured by a polarographic mini clark style O\textsubscript{2} electrode (Diamond General Development Corp.; product no. 733) connected to a dissolved O\textsubscript{2} meter (VWR International; product no. ISO2-A) at the chamber outflow, and consistently measured between \(PO_2\) 7.6 – 9.9 mmHg in the hypoxic solution. The O\textsubscript{2} electrode was calibrated before each series of experiments by following the manufacturer’s instructions. Lead time was less than 10 s upon switching from normoxic to hypoxic solution. The cuvette containing the glass coverslip was placed in the stage of an Olympus IX71 inverted microscope. For HUASMC, fluorescence changes of Calcium Green-1 AM were measured with excitation at 488 nm and emission at 528 nm. For HUVEC, Fura-2 AM fluorescent dye was excited alternatively at 340 and 380 nm (\(F_{340}\), \(F_{380}\)) and emissions were captured at 510 nm (\(F_{510}\)) with a CCD camera (Hamamatsu Ltd). Images were collected at the resolution of 1344 x 1024 pixels every 3, 5 or 10 seconds, with 10 second intervals reserved for protocols exceeding 30 min to minimize the effect of photo bleaching. Background subtraction was used and the change in [Ca\textsuperscript{2+}\. were expressed either as: \(\Delta F/F\), where F was the fluorescence intensity when cells were at rest and \(\Delta F\) was the change in fluorescence during stimulation (HUASMC), or as \(F_{340}/F_{380}\) (HUVEC). Images were analysed offline using WASAB\textsuperscript{I} Imaging Software (Hamamatsu Photonics GmbH, Germany), when changes in [Ca\textsuperscript{2+}]\textsubscript{i} in single cells or groups of cell were delineated.

Modified Krebs’ solution for HUVEC [Ca\textsuperscript{2+}]\textsubscript{i} measurement contained (mM): NaCl 118, KH\textsubscript{2}PO\textsubscript{4} 1.2, KCl 4.7, CaCl\textsubscript{2} 1.8, MgSO\textsubscript{4} 0.8, D-glucose 5.5, NaHCO\textsubscript{3} 23.8. Ca\textsuperscript{2+}-free solution contained (mM): NaCl 118, KH\textsubscript{2}PO\textsubscript{4} 1.2, KCl 4.7, MgSO\textsubscript{4} 0.8, D-glucose 11.1, NaHCO\textsubscript{3} 23.8, EGTA 0.2. High K\textsuperscript{+} Krebs solution for HUVEC [Ca\textsuperscript{2+}]\textsubscript{i} measurement contained: NaCl 52.7, KH\textsubscript{2}PO\textsubscript{4} 1.2, KCl 70, CaCl\textsubscript{2} 1.8, MgSO\textsubscript{4} 0.8, D-glucose 11.1, NaHCO\textsubscript{3} 23.8. Earle’s balanced salt solution (EBSS) for HUASMC [Ca\textsuperscript{2+}]\textsubscript{i} measurement contained
(mM): NaCl 116.3, NaH₂PO₄ 1, KCl 5.3, MgCl₂ 1, CaCl₂ 1.8, NaHCO₃ 13.8, D-glucose 11.1. High K⁺ EBSS for HUASMC [Ca²⁺]ᵢ measurement contained (mM): NaCl 66.3, NaH₂PO₄ 1, KCl 45.3, MgCl₂ 1, CaCl₂ 1.8, NaHCO₃ 23.8, D-glucose 11.1. The pH of all solutions was adjusted to 7.3 with HCl (10 mM) and NaOH (3 mM).

2.4. MYOGRAPHY

Vascular vasomotion was measured using myography. The sections below describe the isolation and validation of human umbilical arteries, the equipment, data acquisition techniques, and calibration of both hard- and softwares.

2.4.1. Isolation and Validation of Human Umbilical Blood Vessels

Full term placentae from normal pregnancies delivered by vaginal or caesarean sections at the maternity unit of the Birmingham Women’s Hospital, located within 5 minute walk from the laboratory, were transported from the delivery suite to the laboratory within 2 hr of parturition. Upon arrival at the laboratory, segments of umbilical arteries derived from the cord segment closest to the fetus (usually within 10cm) were dissected in ice cold buffer, carefully avoiding endothelial and smooth muscle damage. 4 arterial rings of 1.0 – 1.5 mm in width were prepared microscopically from each umbilical artery. Each ring was mounted between supporting pins and isometric contractions from the circular layer of these vessels were recorded (see below).

Initially the traditional ‘blunt dissection’ technique was employed to isolate the umbilical arteries. However, it was found that vasomotion was not consistently present in the blood vessels isolated using this method (spontaneous vasomotion was present in only 26.0% of
vessels). After some eight weeks’ of trial and error, a new set of dissection method was developed, which involved the retention of more connective tissue, a change to new ice-cold buffer every 5 minutes during the isolation procedure. In addition, vessels were stretched to resting tension (see below) before the incubation period in the myograph chamber. Blood vessels isolated by using this protocol demonstrated a markedly higher rate of vasomotion (62.5%), which provided a more reliable model of studying the vascular phenomenon.

For the myograph experiments, the arterial rings were placed in Krebs-Ringer buffer of the following composition (mM): NaCl 118, KCl 5.4, CaCl₂ 2.5, KH₂PO₄ 1.2, MgSO₄ 0.8, NaHCO₃ 23.8, and glucose 11.1. High K⁺ Krebs-Ringer buffer contained (mM): NaCl 53.4, KCl 70, CaCl₂ 2.5, KH₂PO₄ 1.2, MgSO₄ 0.8, NaHCO₃ 23.8, and glucose 11.1. The buffers were maintained at 37 °C bubbled with a 95% O₂ / 5% CO₂ mixture, final pH 7.4.

2.4.2. Calibration of Myography

Before each series of myograph experiments the myograph system was fully calibrated as per manufacturer’s instructions with suitable adjustments for the use of supporting pins. The full calibration protocol is described here: The support mounting pins were moved apart in all the myograph chambers and the units were placed on the interface with the cables connected. The chambers were then filled with double distilled water. Next, the heating element of the myograph platform was turned on. This was important as temperature is one of the variables of the force transducer output. Typically, the system reached the target set temperature (37°C) after ~20 min.
Next, the calibration bridge, balance and weight were set up and pre-warmed on the myograph units. It was important that the calibration kit was pre-warmed together with the myograph unit to minimize temperature variation of the chambers, which would consequently affect the force transducer output. Once the system has been warmed up to the pre-set temperature (verified by a temperature probe placed in the chamber), the Calibration Program of the Myo-Interface was initiated.

In brief, the tip of the transducer arm on the balance was placed between the closest pin and the force transducer and the calibration bridge was moved carefully until the tip of the transducer arm was as close as possible to the pin but without touching it. It was imperative that the force transducer was not subjected to any force as this stage. A relative force of zero was then registered on the Myo-Interface Calibration Program. To generate the other point on the calibration curve, a 2.0 g weight was carefully placed on the pan of the calibration bridge to mimic the stretch created by a contraction of a mounted vessel ring preparation. When the relative force reading was stable, the force was again registered on the Myo-Interface Calibration Program. Force transducer 1 was now weight-calibrated to an output of 9.81 mN. The weight, balance and calibration bridge were then carefully removed from myograph unit 1. Force transducer 2, 3 and 4 were also calibrated using the same methods described above.

2.4.3. Data Acquisition

Force generated by the vessel rings were recorded by a myograph machine (Multi Myograph Model 610 M; Danish Myo AB). Mounting support pins instead of jaws were used because of the relative large luminal size (>500nm). Each vessel ring was mounted between the two supporting pins, one of which is riveted on the myograph unit; the other supporting pin was
connected directed to a force transducer. Therefore, any contraction response of the vessel rings could be accurately monitored and recorded. Extreme care was taken when mounting the vessel sections so as to minimise potential damage to both the luminal surface and the outer smooth muscle layer of the vessels. The mounting pins were adjusted as closely as possible to each other (without touching) so no force is exerted on the vessel.

In order to study the isometric response of the blood vessels, they were stretched to a normalised basal tone as determined by the DMT Normalization software, which calculates the internal diameter of the blood vessels when exposed to the *in vivo* blood pressure, which was set as 50 mmHg. In this normalization technique, the vessel rings were manually stretched stepwise using a myograph micrometer and the contractile force response was recorded. For every stretch the tension of the vessel increased sharply, was allowed to stabilise, before the vessel was again manually stretched. The force generated on the vessel rings were constantly monitored and recorded. The DMT Normalization software uses the micrometer reading and contractile force values for each stop in the recording to generate a tension vs. internal circumference curve, which was then used to determine the internal circumference. The vessel rings were stretched to their respective internal circumferences, and was generally approximately 10 mN. This was taken as the basal tension. The vessel rings were then left for 1 hr, with a change of buffer every 15 min, before the start of the experiments. Change of buffer was an automated process via a vacuum pump, and pharmacological agents were either dissolved in pre-warmed Krebs-Ringer buffer or introduced as concentrated stock solution directly into the chamber.
The superfusate was constantly bubbled with 21% O$_2$ / 5% CO$_2$ and balanced N$_2$. Hypoxia was simulated by bubbling the superfusate with 95% N$_2$ / 5% CO$_2$, with a gentle flow of argon above the recording chamber. PO$_2$ levels were recorded with a blood gas machine (IL1640; Instrumentation Laboratories, Warrington, UK), and were found to be 160 mmHg and 50 mmHg for normoxia and hypoxia, respectively.

At the beginning and end of each experiment the vessel rings were challenged with 70 mM KCl, to evoke a strong contraction of the circular smooth muscle layer. Data recorded from vessel rings that did not develop a KCl contracture of at least 10 mN were discarded. Recording from freshly isolated human umbilical cord artery were compared to other recorded vasomotion in the literature (Gokina et al., 1996; Peng et al., 2001; Garcia-Huidobro et al., 2007), to ensure that their properties were consistent with each other. In particular, frequency and amplitude of vasomotion were compared.

Data acquisition was carried out using a Powerlab. The LabChart software (ADInstruments) was used to record the data for post-experimental analysis on a Mac computer.

2.4.4. Immunohistochemistry

In order to assess the role of endothelium in vasomotion, half of the vessel from a number of donors were treated with gentle injection of air thorough the vessel lumen with a syringe connected to a cannula. After the myography experiments, the vessel rings were removed from the supporting pins. They were orientated on a cork disc in OCT gel (VWR International) and immersed in pre-chilled isopentane, as per normal specimen freezing
technique. They were then further cooled in liquid nitrogen, and subsequently stored in at -80ºC.

Before sectioning, the frozen sample on cork disc were warmed up to -24ºC in the cryostat compartment for 15 min. They were then sectioned at between 10-20 µm thickness (specified at respective figures). The sections were mounted on pre-labelled Polysine® slide (VWR International) and stored at -80ºC.

For immunohistochemistry, sections on slides were warmed up to RT for 30 min. A wax circle was drawn around each sample on the slides and left to dry for 15 min. They were then fixed in 4% formaldehyde (VWR International) made in PBS (Oxoid Ltd, UK). After 30s, they were rinsed twice in normal PBS for 3 min each. Excess fluid was removed from each slide using tissue and they were place in a humidified incubation chamber. The samples were covered with blocking solution (PBS with 0.05% Tween 20, 2% BSA and 15% normal goat serum, the former two from Sigma-Aldrich, U.K. and latter from Fitzgerald Industries International, U.S.A., respectively). After 20 min, the slides were drained of blocking solution, and were replaced by either 1:20 dilution PE-conjugated mouse monoclonal IgG1 anti-human CD31 antibodies, or 1:20 dilution PE-conjugated mouse monoclonal IgG1 non-specific antibodies as negative control (see section 2.7.1). The antibodies were prepared in PBS with Tween 20 (0.05%) and BSA (2%). The slides were incubated at 4ºC for 16 hr.

After 16 hr, the slides were warmed to RT for 30 min. The slides were washed in PBS 3 times, for 3 min each. The slides were drained of excess fluid, and mounted on normal glass microscopy slides with VECTASHIELD® Mounting Medium with DAPI. The slides were
examined under an inverted UV light microscope (Axioplan 2 imaging, Zeiss), with excitation at 488 nm and emission captured at 578 nm for PE; excitation at 358 emission captured at 461 nm for DAPI. Images were recorded by AxioCam HRc (Zeiss), and dual staining images were superimposed offline using Adobe® Photoshop. Importantly, when direct comparisons were made, photos were captured at identical exposure and gain settings. Preliminary experiments in the present study showed that only the anti-CD31, but not the non-specific IgG1 antibodies stained positive for the endothelium.

2.5. Statistical methods

For the present thesis, a number of different experimental approaches were used, including 
$[\text{Ca}^{2+}]_i$ imaging, luciferin-luciferase ATP release measurement, confocal and conventional microscope, immunohistochemistry and myograph. Some of these techniques were performed on multiple cell types, namely HUASMC, HUAEC and HUVEC. As a result, different statistical methods were chosen for the individual sets of experiments. The specifics of the protocols and respective statistical method of analysis are included in the end of the Methods section of each individual chapter.
CHAPTER 3

THE EFFECT OF ATP ON $[\text{Ca}^{2+}]_i$ IN HUMAN UMBILICAL ARTERY SMOOTH MUSCLE CELLS
3.1. INTRODUCTION

The need for a sophisticated fetal life support system, which includes the umbilical vessels, for a normal and healthy pregnancy was discussed in Chapter 1 Section 1.2.1. Vasomotion is the rhythmic contraction of blood vessels independent of heart rate. It is displayed by many vascular beds and importantly has recently been studied in vitro in human umbilical vessels (Garcia-Huidobro et al., 2007). The body of evidence seems to suggest that, under underperfused conditions, vascular vasomotion could result in an improvement of downstream blood flow and tissue oxygenation (see Chapter 1 Section 1.5.1).

Separately, it has long been hypothesised that hypoxia is able to induce ATP release from the endothelium (see Chapter 1 Section 1.4.2), but there has been no direct evidence to support this (see Chapter 4). Therefore, the experiments in this study were designed to investigate firstly whether primary SMC derived from the human umbilical artery (HUASMCs) display \([\text{Ca}^{2+}]_i\) oscillations, which have previously been observed in synchronisation with vasomotion and are believed to drive vasomotion (Aalkaer & Nilsson, 2005), and secondly whether exogenously applied ATP increases the frequency of these \([\text{Ca}^{2+}]_i\) oscillations, as they would be expected to increase the frequency of vascular vasomotion.

Having established that exogenous ATP could indeed induce \([\text{Ca}^{2+}]_i\) oscillations in HUASMC, experiments were carried out which were designed to establish the source of \(\text{Ca}^{2+}\) that underlies the \([\text{Ca}^{2+}]_i\) oscillations. Namely, the removal of extracellular \(\text{Ca}^{2+}\) together with the \(\text{Ca}^{2+}\) chelator EGTA, and the depletion of intracellular \(\text{Ca}^{2+}\) stores with the sarcoplasmic reticulum \(\text{Ca}^{2+}\) ATPase (SERCA) inhibitor thapsigargin (TG).
In Chapter 1 Section 1.3.6, it was discussed that P2 receptors are activated by extracellular ATP and are responsible for the vascular actions of ATP. However, the molecular identity of the ion channels or receptors subtypes which mediate the ATP-induced $[\text{Ca}^{2+}]_i$ oscillations in VSM remains unknown. In the present study, $\alpha,\beta$-methylene ATP was used as a specific agonist of P2X receptors (Kitajima et al., 1993; Zhao & van Helden, 2002), and UTP was used as a selective agonist of P2Y$_{2,4}$ receptors when it was found that P2X receptors could not explain the action of ATP (Charlton et al., 1996). They were used at concentrations previously shown to be effective at increasing $[\text{Ca}^{2+}]_i$ in other cell types (Kitajima et al., 1993; Charlton et al., 1996; Zhao & van Helden, 2002).

The potential role of P2 receptors in $[\text{Ca}^{2+}]_i$ oscillations and their mechanism of action was also tested using a pharmacological approach. P2Y receptor activation leads to the activation of phospholipase C (PLC), which generates inositol 1,4,5-trisphosphate (IP$_3$) and diacylglycerol (DAG) and leads to further $\text{Ca}^{2+}$ influx (Burnstock & Knight, 2004). The mechanism of this $\text{Ca}^{2+}$ influx is complex and is currently a subject of much attention. A number of mechanisms have been proposed. First, there are the store-operated $\text{Ca}^{2+}$ channels (SOCC), which include some of the subtypes of the transient receptor potential cation (TRPC) channels. These are activated by the emptying of intracellular $\text{Ca}^{2+}$ stores via IP$_3$R, which subsequently conduct $\text{Ca}^{2+}$ influx (capacitative $\text{Ca}^{2+}$ entry) (Parekh & Putney, 2005). Second, there are receptor-operated $\text{Ca}^{2+}$ channels (ROCC) which are activated by DAG (from GPCR and PLC activation) and include some other subtypes of TRPC channels (Birnbaumer, 2009). Third, the well-characterised voltage-gated calcium channels (VGCC) that are ubiquitous in excitable cells and forms the important link between membrane excitability and physical contractility; and finally Na$^+$.Ca$^{2+}$ exchanger when working in reverse mode. Experiments
were therefore carried out to explore the presence of these Ca\(^{2+}\) influx mechanisms in HUASMC.

As discussed in Chapter 1 Section 1.2.2.6, intrauterine hypoxia is a feature in both normal and complicated human pregnancy human. The evidence of evidence of paradoxical increase in EN expression with chronic hypoxia was also discussed in Section 1.4.4.2. Accordingly, in a set of experiments HUASMC were exposed to chronic hypoxia for 72 hr to simulate in-vitro hypoxia (see Section 2.1.6) and the [Ca\(^{2+}\)]\(_i\) response to ATP was recorded and compared to those without prior hypoxic treatment.

3.2. METHODS

All experiments in the studies described in the present chapter were carried out on cultured SMC isolated from human umbilical arteries as described in Chapter 2 Section 2.1.6. The details of the methodology were described in Chapter 2 Section 2.1.3, 2.1.6 and 2.3. The description below provides the details of the protocols. For clarification, HUASMC were loaded with Calcium Green-1 AM (Invitrogen, UK) for Ca\(^{2+}\)-imaging, the exact protocols of which could be found in Chapter 2 Section 2.3.2. The cells were isolated from two separate donors. The number of coverslips (N) and the number of cells (n) used in each protocol are indicated in the appropriate figure legends. All protocols began with a challenge with EBSS containing 45 mM K\(^+\) followed with a 10 min wash to validate that cells were viable.

Protocols

3.2.1. Group 1: [Ca\(^{2+}\)]\(_i\) oscillations at rest
HUASMC on glass coverslips were placed in the recording chamber and changes in [Ca\textsuperscript{2+}], under control condition were initiated recorded using fast-frame (200 ms intervals). To conserve storage space, images were subsequently recorded at 3s intervals. [Ca\textsuperscript{2+}]\textsubscript{i} changes in individual cells were monitored (see Chapter 2 Section 2.3.3). n > 200, N = 6.

3.2.2. Group 2: Effect of exogenous ATP

After 4 min of recording at basal condition, 10 \textendash 1000 µM ATP were added to the HUASMC at random with 10 min washout intervals. n > 200, N = 6.

3.2.3. Group 3: Source of Ca\textsuperscript{2+} and effect of changing extracellular [Ca\textsuperscript{2+}]

In order to test the hypothesis that extracellular Ca\textsuperscript{2+} is important for the initiation or maintenance of ATP-induced [Ca\textsuperscript{2+}]\textsubscript{i} oscillations, extracellular Ca\textsuperscript{2+} in the EBSS was replaced with the Ca\textsuperscript{2+} chelator EGTA (200 uM) for 2 min, after which the HUASMC were challenged with ATP, again in the absence of extracellular Ca\textsuperscript{2+} (with EGTA). n = 80, N = 3.

In other experiments in Ca\textsuperscript{2+}-free EBSS (with EGTA), in order to assess the role of intracellular Ca\textsuperscript{2+} in ATP-induced [Ca\textsuperscript{2+}]\textsubscript{i} oscillations, internal Ca\textsuperscript{2+} stores in the HUASMC were first depleted by applying TG (1 µM) in the presence of EGTA, then bath application of ATP with Ca\textsuperscript{2+} was added to the cells whilst the fluorescence was being recorded. n = 70, N = 3.

In a separate set of cells, the effect of varying the concentration of external [Ca\textsuperscript{2+}] on the frequency of [Ca\textsuperscript{2+}]\textsubscript{i} oscillations was assessed by changing the [Ca\textsuperscript{2+}] in the EBSS bathing the
HUASMC in the presence of ATP (100 µM). [Ca^{2+}] at various concentrations (0.9, 1.8 and 3.5 mM) with ATP were applied at random order, with 10 min wash intervals. n = 80, N = 3.

### 3.2.4. Group 4: Receptor identity

To identify the receptor responsible for mediating the ATP-induced [Ca^{2+}]_{i} oscillations in HUASMC, the [Ca^{2+}]_{i} response to the specific P2X receptors agonist α,β-methylene ATP (20 µM; n = 90, N = 2), or the selective P2Y_{2,4} receptors agonist UTP (10 µm; n = 60, N = 2), were tested as described for ATP in Group 2.

### 3.2.5 Group 5: Modulation of [Ca^{2+}]_{i} oscillations

In other experiments, [Ca^{2+}]_{i} oscillations were induced by ATP (100 µM) as in Group 2. Once induced, the general purinoceptors suramin (100 µM), the non-specific IP_{3}R and SOCC/ROCC inhibitor 2-Aminoethoxydiphenyl borate (2-APB; 50 µM), the specific PLC inhibitor U-73122 (5 µM), the VOCC inhibitor nifedipine (10 µM), or the combination of suramin, 2-APB and nifedipine, were added at random order. The cells were washed for 10 min before re-application of ATP to evoke new [Ca^{2+}]_{i} oscillations, on which a different inhibitor was tested. n > 100, N = 4.

### 3.2.6. Group 6: SOCC and ROCC

1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable analogue of DAG, is a known direct activator of ROCC (believed to be a number of the TRPC family; see Section 3.4.5). HUASMC was stimulated with 100 µM OAG, a concentration previously shown to activate a TRPC current using patch clamp technique (Chen et al., 2009), and the changes in [Ca^{2+}]_{i} was recorded.
In order to test the functional presence of SOCC in HUASMC, the intracellular Ca\(^{2+}\) stores of a separate set of cells were depleted by bathing the cells in 0 Ca\(^{2+}\) EGTA (200 µM) solution with TG (1 µM), as in Group 3. The 0 Ca\(^{2+}\) EGTA EBSS was subsequently replaced by normal Ca\(^{2+}\)-containing EBSS with TG. If SOCC are functionally active, the introduction of external Ca\(^{2+}\) should evoke a [Ca\(^{2+}\)_i] elevation. Further, a range of widely used inhibitors of SOCC were used to test if they were able to interfere with any [Ca\(^{2+}\)_i] elevation following store depletion. These were 2-APB, the lanthanide lanthanum (La\(^{3+}\)), and the combined SOCC / ROCC inhibitor SKF-96365 (Facemire & Arendshorst, 2005; Smani et al., 2008).

**3.2.7. Group 7: Chronic hypoxia**

After 2 days of starvation, HUASMC on sterilised ø13.0 mm glass cover slips on 24-well culture plates were placed in a humidified hypoxic chamber with 1% O\(_2\), 5% CO\(_2\), balanced N\(_2\) at 37 °C for 72 hr, before loaded with Calcium green for 60 min. [Ca\(^{2+}\)_i] in the cells were measured immediately after cells were re-introduced to atmospheric air. The details of the hypoxic chamber and dye loading protocol was described in the relevant sections of Chapter 2. The cells were tested as in Group 1 & 2.

**3.2.8. Analysis of results**

Post hoc analysis was carried out using OpenLab software. Individual cells or group of cells were outlined and analyzed as the region of interest (ROI) and expressed as n. The same experiments were repeated on different coverslips (N) over different isolation batches from different donors, which were indicated at each result figure. Data are presented as mean \(\pm\) S.E.M., and findings made under different conditions were compared using Student's
paired t-test, taking $P < 0.05$ as significant. Oscillation frequency of each ROI was calculated by dividing the number of recorded $[\text{Ca}^{2+}]_i$ spikes (using WASABI Imaging Software as detailed in Chapter 2 Section 2.3.3) by the duration of observation and expressed in Hz ($10^{-3}$).

3.3. RESULTS

3.3.1. Group 1

Only a small percentage of HUASMC displayed spontaneous $[\text{Ca}^{2+}]_i$ oscillations (about 1%). The amplitude of these spontaneous $[\text{Ca}^{2+}]_i$ elevations were small; less than 5% ∆F/F, and the frequency varied from 3 to $10 \times 10^{-3}$ Hz (data not shown).

3.3.2. Group 2

In the initial experiments of this type, ATP (10, 50, 100 & 200 µM) caused regular $[\text{Ca}^{2+}]_i$ oscillations in ~70% of HUASMC (Fig 3.3.1), no $[\text{Ca}^{2+}]_i$ oscillations was observed in the remaining 30% of cells. The amplitude and frequency of the $[\text{Ca}^{2+}]_i$ oscillations were dependent on the [ATP] applied (Fig 3.3.2); below 100 µM ATP, an increase in [ATP] enhanced both amplitude and frequency, whereas over 100 µM ATP, an increase in [ATP] decreased the amplitude and frequency. The $[\text{Ca}^{2+}]_i$ oscillations induced by 100 µM ATP were quenched by application of 1000 µM ATP (Fig 3.3.3).

3.3.3. Group 3

When HUASMC were bathed in 0 $\text{Ca}^{2+}$ with EGTA, a rapid increase in $[\text{Ca}^{2+}]_i$ was observed when ATP was applied (100 µM; Fig 3.3.4). The amplitude of this $[\text{Ca}^{2+}]_i$ elevation was comparable to that seen in the presence of extracellular $\text{Ca}^{2+}$, but this was not followed by $[\text{Ca}^{2+}]_i$ oscillations (Fig 3.3.4). After depletion of intracellular $\text{Ca}^{2+}$ stores with 1 µM TG and
EGTA in a separate set of cells, stimulation with 100 µM ATP in Ca\textsuperscript{2+}-containing bath solution induced [Ca\textsuperscript{2+}]\textsubscript{i} oscillations (Fig 3.3.4). In fact, in normal, Ca\textsuperscript{2+}-containing EBSS, the frequency of the [Ca\textsuperscript{2+}]\textsubscript{i} oscillations induced by 100 µM ATP showed a linear relationship with external [Ca\textsuperscript{2+}] (R\textsuperscript{2} = 0.9863; Fig 3.3.5).

### 3.3.4. Group 4

When HUASMC were exposed to the specific P2X receptor agonist α,β-methylene ATP (20 µM), a rapid transient [Ca\textsuperscript{2+}]\textsubscript{e} elevation was recorded, but not [Ca\textsuperscript{2+}]\textsubscript{i} oscillations (fig 3.3.6). In contrast, when the cells were exposed to the selective P2Y\textsubscript{2,4} receptors agonist UTP (10 µM), [Ca\textsuperscript{2+}]\textsubscript{i} oscillations similar to those induced by ATP were observed (fig 3.3.6).

### 3.3.5. Group 5

[Ca\textsuperscript{2+}]\textsubscript{i} oscillations were induced in HUASMC by ATP (100 µM). Once induced, suramin (100 µM) increased the oscillation frequency, whereas nifedipine (10 µM) decreased it (Fig 3.3.7). 2-APB (50 µM) and U-73122 (5 µM) did not affect the oscillations (Fig 3.3.7). However, a combination of suramin, 2-APB and nifedipine, almost completely inhibited the [Ca\textsuperscript{2+}]\textsubscript{i} oscillations, whilst this did not change basal [Ca\textsuperscript{2+}]\textsubscript{i} significantly (Fig 3.3.7). The averaged results are summarised in Fig 3.3.8.

### 3.3.6. Group 6

OAG (100 µM), the cell-permeable direct activator of ROC, caused a significant increase in [Ca\textsuperscript{2+}]\textsubscript{i}, and 2-APB (100 µM), the non-specific SOCC antagonist, inhibited 67 ± 13% of this OAG-induced [Ca\textsuperscript{2+}]\textsubscript{i} elevation (Fig 3.3.9).
In a separate set of cells, return of Ca$^{2+}$ to HUASMC that had intracellular Ca$^{2+}$ store depleted with O Ca$^{2+}$ EBSS and EGTA (200 µM) evoked a significant [Ca$^{2+}$]$_i$ elevation, which was amenable to inhibition by 2-APB, La$^{3+}$ and SKF-96365 to varying degrees (Fig 3.3.10).

3.3.7. Group 7

After incubation of HUASMC at 1% O$_2$ for 72 hr, approximately 1% of cells exhibited spontaneous [Ca$^{2+}$]$_i$ oscillations, a similar proportion to those recorded from control cells without hypoxic treatment. The frequency vs. concentration curve was apparently left shifted relative to that observed in normoxic cells (Fig 3.3.11). Thus, at 10 µM, ATP caused a greater [Ca$^{2+}$]$_i$ oscillation frequency in chronically hypoxic cells, whereas at concentrations > 100 µM, the oscillation frequency was lower in hypoxic cells than normoxic cells. With regards to amplitude of the ATP-induced [Ca$^{2+}$]$_i$ oscillations, those of the chronically hypoxic cells were greater at all ATP concentrations tested (Fig 3.3.11).
Figure 3.3.1. $[\text{Ca}^{2+}]_i$ oscillations induced in two HUASMC by micromolar concentrations of ATP.

Concentrations of ATP were applied in random with 10 minus wash intervals but are displayed in incremental order for ease of interpretation. At concentrations < 100 µM, ATP enhanced the amplitude and frequency of the $[\text{Ca}^{2+}]_i$ oscillations; > 100 µM, ATP decreased $[\text{Ca}^{2+}]_i$ oscillations amplitude and frequency.
Figure 3.3.2. The amplitude (above) and frequency (below) of \([\text{Ca}^{2+}]_i\) oscillations induced by different concentrations of ATP.

The amplitude and frequency of the of \([\text{Ca}^{2+}]_i\) oscillations were dependent on [ATP]. < 100 µM, ATP enhanced both amplitude and frequency; > 100 µM, ATP decreased the amplitude and frequency. Frequency-concentration data was fitted by Gaussian distribution. Maximum amplitude and frequency occurred at 100 µM ATP. Data ± S.E.M, n > 200, N = 6 (n=number of cells, N= number of coverslips tested).
Figure 3.3.3. Original recording of $[\text{Ca}^{2+}]_i$ oscillations in HUASMC.

100 µM ATP induced $[\text{Ca}^{2+}]_i$ oscillations in HUASMC, which was quenched by addition of 1mM ATP. Recording is representative of n = 80, N = 4 (n=number of cells, N=number of coverslips tested from 2 patches).
**Figure 3.3.4.** Original recording of [Ca$^{2+}$]$_i$ in HUASMC showing the source of ATP.

Upper: HUASMC depolarised by 45 mM KCl showed a strong [Ca$^{2+}$]$_i$ increase. After HUASMC were incubated in Ca$^{2+}$-free solution for 2 min, stimulation with ATP (100 µM) caused a significant [Ca$^{2+}$]$_i$ increase, which was not followed by [Ca$^{2+}$]$_i$ oscillations. This is representative of n = 80, N = 3 from two donors (n=number of cells, N= number of coverslips tested).

Lower: Upon intracellular Ca$^{2+}$ depletion with TG (1 µM) and EGTA, stimulation with ATP (100 µM) in the presence of Ca$^{2+}$ induced [Ca$^{2+}$]$_i$ oscillations in HUASMC. Recording is representative of n = 70, N = 3 from two donors (n=number of cells, N= number of coverslips tested).
Figure 3.3.5. The effect of changing extracellular \([\text{Ca}^{2+}]\) on \([\text{Ca}^{2+}]_i\), oscillation frequency

Upper: Original recording of \([\text{Ca}^{2+}]_i\) in HUASMC. The frequency of ATP-induced \([\text{Ca}^{2+}]_i\) oscillations varies with external \([\text{Ca}^{2+}]\). Bath solutions of different \([\text{Ca}^{2+}]\) were applied at random order with 10 min intervals but are shown incrementally for ease of interpretation.

Lower: Averaged \([\text{Ca}^{2+}]_i\), oscillation frequency ± S.E.M. in bath solution with various external \([\text{Ca}^{2+}]\). Line fitted with \(r^2 = 0.9863\). \([\text{Ca}^{2+}] = 0.9\) mM: \(n=120\), \(N=3\); \([\text{Ca}^{2+}] = 1.8\) mM: \(n=240\), \(N=6\); \([\text{Ca}^{2+}] = 3.6\) mM: \(n=140\), \(N=4\); \([\text{Ca}^{2+}] = 0\) mM: \(n=80\), \(N=3\); \(n=\) number of cells, \(N=\) number of coverslips tested, all from 2 donors.)
Upper: α,β-methylene ATP (20 µM) induced a transient \([Ca^{2+}]_i\) elevation in HUASMC, but not \([Ca^{2+}]_i\) oscillations. In contrast, ATP induced clear \([Ca^{2+}]_i\) oscillations in the same cell. Recording is representative of \(n = 90, N = 3\) from 2 donors (\(n=\)number of cells, \(N=\) number of coverslips tested).

Lower: UTP (10 µM) induced \([Ca^{2+}]_i\) oscillations similar to that induced by ATP (100 µM). Recording is representative of \(n = 60, N = 2\) from 2 donors (\(n=\)number of cells, \(N=\) number of coverslips tested).
Fig 3.3.7. Modulation of [Ca$^{2+}$] oscillations.

Original recording of ATP-induced [Ca$^{2+}$] oscillations in HUASMC when challenged with suramin (100 µM; upper left), 2-APB (50 µM; upper right), U-73122 (5 µM; middle left), nifedipine (10 µM; middle right), and the combination of suramin, 2-APB and nifedipine (bottom left). Recordings are representative of all cells that displayed [Ca$^{2+}$] oscillations upon ATP (100 µM) challenge.
Fig 3.3.8. Modulation of $[\text{Ca}^{2+}]_i$ oscillations.

The effects of suramin, 2-APB, U-73122, nifedipine, or the combination of suramin, 2-APB and nifedipine on frequency ± S.E.M. of $[\text{Ca}^{2+}]_i$ oscillations shown in columns. The frequency of $[\text{Ca}^{2+}]_i$ oscillations induced by ATP (100 µM) is designated as control. Suramin increased the frequency whilst nifedipine decreased it. 2-APB and U-73122 had no effect. A combination of suramin, 2-APB and nifedipine almost completely inhibited the oscillations. *$P < 0.05$, $n > 100$ for each antagonist tested, $N = 4$ from 2 donors ($n=$number of cells, $N=$ number of coverslips tested).
Figure 3.3.9. OAG stimulation of HUASMC and inhibition with 2-APB.

Upper: Depolarisation induced by 45 mM KCL evoked a strong \([\text{Ca}^{2+}]_i\) elevation in HUASMC. In the same cells, OAG (100 µM) caused a significant increase in \([\text{Ca}^{2+}]_i\), which could be inhibited by 2-APB (100 µM).

Lower: Results from upper shown in column ± S.E.M. Results were normalised to 
\([\text{Ca}^{2+}]_i\) response to OAG. *\(P < 0.05\), \(n = 100\), \(N = 4\) from 2 donors (n=number of cells, N= number of coverslips tested).
Figure 3.3.10. ([Ca\(^{2+}\)]\(_i\)) elevation in HUASMC mediated by SOCC.

Upper: When external Ca\(^{2+}\) was re-introduced, a clear SOCC-mediated Ca\(^{2+}\) entry followed the emptying of internal Ca\(^{2+}\) stores in 0 Ca\(^{2+}\) EGTA bath with TG (1 µM).

Lower: Results from upper shown in columns ± S.E.M. Results were normalised to control [Ca\(^{2+}\)]\(_i\) entry. SKF-96365 and 2-APB caused 78 ± 11% and 73 ± 12% inhibition, respectively, and La\(^{3+}\) almost completely blocked all Ca\(^{2+}\) entry. *P < 0.05; SKF96365: n = 80, N = 2; 2-APB: n = 60, N = 2; La\(^{3+}\): n = 60, N = 2 (n=number of cells, N= number of coverslips tested from 2 patches).
Figure 3.3.11. Comparison of effects on ATP-induced $[\text{Ca}^{2+}]_i$, oscillations in normoxic cells and in HUASMC cells made chronically hypoxic in 1% $\text{O}_2$ for 12 hr.

(i) The $[\text{Ca}^{2+}]_i$ oscillations frequency vs. [ATP] curve. (■): The $[\text{Ca}^{2+}]_i$ oscillation frequency and [ATP] relationship is biphasic. (▲): Effect of chronic hypoxia on frequency of ATP-induced $[\text{Ca}^{2+}]_i$ oscillations. The $[\text{Ca}^{2+}]_i$ oscillations induced by ATP in cells treated with 72h of 1% $\text{O}_2$ were enhanced at concentrations < 100 µM, but they were reduced at concentrations > 100 µM. The $[\text{Ca}^{2+}]_i$ oscillations frequency vs. [ATP] curve effectively left shifted (n=80, N=3 from 2 donors, ± = S.E.M; n=number of cells, N= number of coverslips tested, *=P<0.05 in post-hoc Student’s t-test).

(ii) The $[\text{Ca}^{2+}]_i$ oscillations amplitude vs. [ATP] curve. Compared to normoxic cells (■), chronic hypoxia treatment caused an elevated $[\text{Ca}^{2+}]_i$ oscillations amplitude (▲) at all concentrations tested (n=80, N=3 from 2 donors, ± = S.E.M; (n=number of cells, N= number of coverslips tested, *=P<0.05 in post-hoc Student’s t-test).
3.4. DISCUSSION

The experiments described in this Chapter showed that HUASMC respond to exogenous ATP stimulation with $[Ca^{2+}]_i$ oscillations, the frequency and amplitude of which were dependent on the concentration of ATP applied. The oscillations were insensitive to inhibition by suramin, 2-APB, U73122 or nifedipine when applied separately. However, a combination of suramin, 2-APB and nifedipine abolished the oscillations. Application of $\alpha,\beta$-methylene ATP to HUASMC resulted in only a short-lasting increase in $[Ca^{2+}]_i$, whereas UTP induced $[Ca^{2+}]_i$ oscillations similar to that evoked by ATP. Application of the ROCC activator OAG, or emptying of intracellular $Ca^{2+}$ stores resulted in an increase in $[Ca^{2+}]_i$, which was sensitive to inhibition by the SOCC inhibitors 2-APB, La$^{3+}$ and SKF96365. Further, chronic hypoxia altered the oscillation frequency and enhanced the $[Ca^{2+}]_i$ oscillations.

3.4.1. $[Ca^{2+}]_i$ oscillations at rest and the effect of exogenous ATP

Under basal conditions, only 1% of HUASMC showed $[Ca^{2+}]_i$ oscillations. However, in accord with the working hypothesis, exogenous ATP at concentration of 10 – 200 µM induced $[Ca^{2+}]_i$ oscillations in 70% of cells. Somewhat surprisingly, the relationship between ATP concentration and $[Ca^{2+}]_i$ oscillation amplitude and frequency in HUAVM was biphasic (Fig 3.3.2). At 10 to 100 µM, ATP enhanced the amplitude and frequency, whereas > 100 µM, ATP decreased both $[Ca^{2+}]_i$ oscillation frequency and amplitude. This biphasic relationship was not due to desensitization of the purinoceptors and therefore an artefact of the protocol, because different ATP concentrations were applied to any given batch of HUASMC in random order. However, $[Ca^{2+}]_i$ oscillations induced by low, µM ATP were quenched by application of ATP at > 1mM, which suggests that the receptors are prone to desensitisation and consistent with the idea that the initiation or continuation of $[Ca^{2+}]_i$
oscillations was by P2 receptors, for high concentration of ATP would be expected to saturate and desensitise these receptors (Khiroug et al., 1997).

3.4.2. Ca²⁺ entry or Ca²⁺ release?

It was clear that when extracellular Ca²⁺ was replaced with the Ca²⁺ chelator EGTA from the EBSS bathing the HUASMC, ATP caused a single transient elevation in [Ca²⁺]ᵢ, but not [Ca²⁺]ᵢ oscillations (Fig 3.3.4). This suggests that Ca²⁺ influx is important for the initiation or maintenance of [Ca²⁺]ᵢ oscillations. However, when extracellular Ca²⁺ and ATP were present, a linear relationship between the frequency of [Ca²⁺]ᵢ oscillations and external Ca²⁺ concentration was observed (Fig 3.3.5). This is consistent with previous studies in some cell types, but not others e.g. (Shuttleworth & Thompson, 1996). There are two schools of thought that try to explain this phenomenon. On the one hand, it has been argued that since external Ca²⁺ concentration only affected the frequency but not the amplitude of the oscillations, the individual Ca²⁺ spikes represented release from internal store, and that the rate of external Ca²⁺ entry affects the rate of replenishment of these stores (Kawanishi et al., 1989; Berridge, 1993). On the other hand, it has been argued that the capacitative entry pathway only plays a limited role in submaximal, physiological responses, and that the rate of Ca²⁺ entry determines the probability of the low level of IP₃ causing repetitive Ca²⁺ release from internal stores (Shuttleworth & Thompson, 1996). In fact, in the present study, after intracellular Ca²⁺ stores were depleted by inhibiting SERCA with TG (1 µM) in the presence of EGTA, application of ATP (100 µM) in Ca²⁺-containing EBSS caused [Ca²⁺]ᵢ oscillations in HUASMC (Fig 3.3.4. Upper). This finding therefore suggests that the latter IP₃ receptor instability model for the generation of [Ca²⁺]ᵢ oscillations does not hold as the underlying mechanism for ATP-induced [Ca²⁺]ᵢ oscillations in HUASMC.
The general debate regarding the mechanisms underlying \([\text{Ca}^{2+}]_i\), oscillations is further complicated by the fact that even within one cell type, the effect of \(\text{Ca}^{2+}\) entry on the frequency of \([\text{Ca}^{2+}]_i\) oscillations varies with the agonist (Yule et al., 1991). However, more recently a theoretical model has emerged, which can explain these and other conflicting experimental data. It is suggested that it is the total amount of \(\text{Ca}^{2+}\) in the cell, called \(\text{Ca}^{2+}\) load, which is largely determined by membrane transport, that influences whether the cell is in an oscillatory state or not (Sneyd et al., 2004). A cell can fire a \(\text{Ca}^{2+}\) spike only if its \(\text{Ca}^{2+}\) load is above threshold. In this model, \(\text{Ca}^{2+}\) is lost at the peak of each oscillation (the high \([\text{Ca}^{2+}]_i\) concentration is removed by the plasma \(\text{Ca}^{2+}\)-ATPase pump), and an increase in \(\text{Ca}^{2+}\) influx achieved by increasing extracellular \([\text{Ca}^{2+}]_i\) will increase oscillation frequency because it decreases the rate at which the \(\text{Ca}^{2+}\) lost during each spike is regained, or increases the rate at which the \(\text{Ca}^{2+}\) lost during each spike is regained. This is an especially strong model because, not only is it compatible with the other older models of \([\text{Ca}^{2+}]_i\) oscillations, but its functioning does not depend on the exact details of the pumps and release processes found in various cell types. The data presented in the present Chapter seem to be consistent with this model. Lack of \(\text{Ca}^{2+}\) influx prohibited the oscillations induced by ATP (Fig 3.3.4. Upper); oscillations are not possible because the \(\text{Ca}^{2+}\) load is below the threshold. Re-introduction of external \(\text{Ca}^{2+}\) caused \([\text{Ca}^{2+}]_i\) oscillations (Fig 3.3.4. Lower); increased \(\text{Ca}^{2+}\) influx drives the \(\text{Ca}^{2+}\) load over the threshold and a spike occurs. This cycle repeats and results in \([\text{Ca}^{2+}]_i\) oscillations.

### 3.4.3. P2 receptors responsible

As there are no selective antagonists of different subtypes of P2 receptors, an attempt was made to identify the receptor stimulated by ATP in HUASMC by comparing responses to
agonists known to activate particular receptor subtypes. When the cells were bathed in α,β-methylene ATP, a specific agonist of P2X receptors, a transient elevation in $[\text{Ca}^{2+}]_i$ was recorded, but no oscillations. In contrast, UTP, the specific P2Y$_{2,4}$ agonist, induced $[\text{Ca}^{2+}]_i$ oscillations similar to that evoked by ATP. These data suggest that the ligand-gated P2X channels play no role or a very limited role in ATP-induced $[\text{Ca}^{2+}]_i$ oscillations in HUASMC. Rather, it seems that the GPCR P2Y receptor, specifically, the P2Y$_2$ and P2Y$_4$ receptor subtypes, are likely to be the major mediator. As discussed in Chapter 1 Section 1.3.6.4, the study by Buvinic et al identified the mRNA coding for P2Y$_2$ in the umbilical artery, and for P2Y$_4$ in the chorionic and cotyledon vessels (Buvinic et al., 2006). The potential presence of the mRNA coding for P2Y$_4$ in the umbilical circulation has not been explored, but it is commonly expressed in epithelial and placental tissue e.g. (Valdecantos et al., 2003; da Silva et al., 2006). Thus, to-date there is no direct evidence that HUASMC express P2Y$_4$.

Nevertheless, on the basis of the present findings it seems reasonable to propose that activation of P2Y$_{2/4}$ and subsequent release of Ca$^{2+}$ from the ER store is important for ATP-induced $[\text{Ca}^{2+}]_i$ oscillations in HUASMC, although external Ca$^{2+}$ seems to be essential for maintaining the $[\text{Ca}^{2+}]_i$ oscillations (Fig 3.3.4).

### 3.4.4. Maintenance of $[\text{Ca}^{2+}]_i$ oscillations

Once ATP-induced $[\text{Ca}^{2+}]_i$ oscillations was established in HUASMC, separate inhibition of the P2X, P2Y and SOCC/ROCC by suramin (100 µM), 2-APB or the PLC inhibitor U-73122 did not inhibit the oscillations; in fact suramin increased the oscillations. This could be explained by the fact that suramin may inhibit ENs (Hourani & Chown, 1989), thereby increasing extracellular [ATP]. Further, when used alone, the VOCC inhibitor nifedipine (10
µM) reduced the frequency of the oscillations, but had no effect on the amplitude. However, the combination of suramin, 2-APB and nifedipine completely abolished ATP-induced [Ca^{2+}]_i oscillations. This inhibition of [Ca^{2+}]_i oscillations is unlikely to be due to a change in cell viability, as basal [Ca^{2+}]_i during incubation with the antagonists remained similar to that at rest. Taken together, the data suggest that a combination of Ca^{2+} influx mechanisms is needed to sustain the Ca^{2+} load that is required to maintain the oscillations induced in HUASMC by activation of P2Y_{2,4} receptors. This is in agreement with the experimental data and theoretical model for [Ca^{2+}]_i oscillations discussed in some detail above (Sneyd et al., 2004).

It should be noted that the inability of suramin to prevent [Ca^{2+}]_i oscillations provides further evidence for the receptor subtype responsible for oscillation initiations. Although suramin is a widely used broad-spectrum P2 antagonist, it has no effect on P2Y_4 receptor even at high concentration (Charlton et al., 1996; Wildman et al., 2003). Thus, the fact that UTP, the specific P2Y_{2,4} agonist, was able to induce [Ca^{2+}]_i oscillations, and that suramin was unable to prevent the ATP-induce oscillations, is consistent with P2Y_4 receptors being functionally expressed in HUASMC and responsible for the initiation of ATP-induced [Ca^{2+}]_i oscillations.

3.4.5. ROCC, SOCC and VOCC in HUASMC

P2Y receptor activation leads to liberation of second messengers IP_3 and DAG, which can then cause further Ca^{2+} influx via SOCC and ROCC pathways (see Section 3.1). Application of the synthetic DAG analogue OAG bypasses the effect of IP_3 and Ca^{2+} store depletion, thereby led to direct activation of ROCC. Previous studies have shown that these may be TRPC_{3,6,7} (Birnbaumer, 2009). In the present study, since OAG induced a [Ca^{2+}]_i elevation
that was sensitive to the general SOCC/ROCC antagonist 2-APB, this suggests that ROCC are functionally expressed in HUASMC.

After depletion of internal Ca\textsuperscript{2+} store in HUASMC with EGTA and the SERCA inhibitor TG, re-introduction of Ca\textsuperscript{2+} into the bath caused a clear [Ca\textsuperscript{2+}]\textsubscript{i} elevation. This is unequivocal evidence that SOCC is functionally active in HUASMC. Further, as this capacitative Ca\textsuperscript{2+} entry was sensitive to inhibition by two SOCC antagonists, SKF-96365 and La\textsuperscript{3+}, this is further evidence that SOCC is present in HUASMC. Previous studies suggest that these may be TRPC\textsubscript{1,4,5} and this has been reviewed (Parekh & Putney, 2005).

A further complication is that these ROCC and SOCC are not Ca\textsuperscript{2+}-selective, and in fact behave as non-selective cation channels (Birnbaumer, 2009). Therefore, upon their activation by the GPCR-Gq-PLC\textbeta{} signalling pathway, they lead to membrane depolarisation. In the present study, depolarisation of the membrane by 45 mM KCl caused increases in [Ca\textsuperscript{2+}]	extsubscript{i}, presumably mediated by VOCC. Membrane depolarisation and entry of Na\textsuperscript{+} may also activate the reverse form of Na\textsuperscript{+}/Ca\textsuperscript{2+} exchanger, causing further Ca\textsuperscript{2+} entry (Lee \textit{et al.}, 2001). Therefore, it seems VOCC and/or Na\textsuperscript{+}/Ca\textsuperscript{2+} exchanger are functionally active in HUASMC.

Thus, the findings of this chapter showed that exogenous ATP induced [Ca\textsuperscript{2+}]	extsubscript{i} oscillations in HUASMC, the frequency and amplitude of which were dependent on the concentration of the ATP applied. The [Ca\textsuperscript{2+}]	extsubscript{i} oscillations were dependent on the activation of a P2Y receptor, most probably the P2Y\textsubscript{4} subtype, but Ca\textsuperscript{2+} entry was also important in maintaining the oscillations. It was shown that SOCC, ROCC and VGCC and/or Na\textsuperscript{2+}/Ca\textsuperscript{2+} exchanger were
functionally active in HUASMC, and the combination of these Ca\(^{2+}\) entry mechanisms were needed to sustain the Ca\(^{2+}\) load needed for ATP-induced [Ca\(^{2+}\)]_i oscillations.

3.4.6. Effect of chronic hypoxia

It was discussed in some detail in Chapter 1 Section 1.2.2.6. that a hypoxic intrauterine environment is a common feature in both normal pregnancies, and that hypoxia is accentuated in PE (Soleymanlou et al., 2005). In the studies described in the present chapter, it was shown that chronic hypoxia (1% O\(_2\) for 72 hr) induced a change in the HUASMC response to ATP: [Ca\(^{2+}\)]_i oscillations induced by ATP in cells treated with chronic hypoxia were enhanced at concentrations < 100 µM, but they were reduced at concentrations > 100 µM, resulting in a left shift in the [Ca\(^{2+}\)]_i oscillations frequency vs. [ATP] curve (Fig 3.3.11). This contradicts the hypothesis set out in Chapter 1 Section 1.6, that chronic hypoxia increases the expression of ENs, thus lowering the concentration of ATP in the extracellular space, and thereby leading to impaired vasomotion function. In fact, the results from the present study suggest that ion channel expression or activity may be modulated by hypoxia and lead to increased Ca\(^{2+}\) activity in response to low concentration of ATP, which drives vasomotion at higher frequency. The mechanism underlying this is unclear and requires investigation in future studies.

As discussed in the General Introduction Chapter, the umbilical artery is an important component of the fetal life support system and abnormalities in its functioning are strongly associated with fetal pathologies (Morris et al., 2011). Evidence in the literature (see Chapter 1 section 1.4.2), and that presented in Chapter 4, suggest that hypoxia can accentuate ATP
release from various vascular cells, notably HUVEC. If the same were also true for HUAEC, then ATP released by acute hypoxia may be able to induce [Ca$^{2+}$], oscillations as described in this Chapter, and thus drive vasomotion. Chronic hypoxia may then enhance the effect of ATP that is released by acute hypoxia or other stimuli, on [Ca$^{2+}$], oscillations and thereby vasomotion. Thus, the findings of this Chapter are consistent with the hypothesis that hypoxia, a common feature in normal and complicated pregnancies, is able to release ATP to modulate the oscillation pattern of the umbilical artery, so play a role in the control of blood flow between the fetus and mother. Whether or not hypoxia can release ATP from HUAEC and HUVEC was explored in Chapter 4 & 5.
CHAPTER 4

THE EFFECT OF HYPOXIA ON ATP RELEASE FROM HUAEC AND HUVEC
4.1. INTRODUCTION

As discussed in Chapter 1 (section 1.4.1), the endothelium is an important source of extracellular ATP. It has been shown both in vivo and in vitro that a variety of stimuli can induce release of ATP from the endothelium, including osmotic, shear, mechanical, oxidative, ischemic and pH challenges. It has previously been shown that both ATP and adenosine signalling are involved in hypoxia-mediated vasodilatation (see section 1.3.6.1). However, the direct effect of hypoxia on the release of ATP from ECs is largely unknown.

In this respect, the only direct evidence to date originate from Gerasimovskaya’s group in Colorado whose primary interest was in the angiogenic effect of extracellular ATP on the highly specialist vessels of calf pulmonary artery vasa vasorum. They recently reported that hypoxia was able to induce ATP release from the EC of these vessels via a vesicular mechanism (Woodward et al., 2009). EC derived from the human umbilical vessels, especially HUVEC, are much more commonly used as an EC model in scientific studies. It was also discussed in Chapter 1 that intrauterine hypoxia is a feature in both normal and complicated pregnancies. Hence, given the effect of extracellular ATP on vascular tone shown in Chapter 3, the effect of hypoxia on ATP release from HUVEC and HUAEC is of clear relevance to the physiological control of vascular tone in general, as well as to the processes of normal pregnancy and complicated pregnancies such as pre-eclampsia and IUGR. Accordingly, the experiments in the present chapter were designed to address the hypothesis that hypoxia can induce ATP release from both HUAEC and HUVEC.

To this end, preliminary experiments were carried out to assess whether hypoxia (30 min 1% O₂) affected ATP release from both HUVEC and HUAEC. When it had been established that
hypoxia was able to cause ATP release, this process was examined in HUVEC and HUAEC that were grown on a high-density pore membrane in order for the release from apical and basolateral membranes to be differentiated. This is an important extension to the study of Woodward et al (2009), as apically and basolaterally released ATP have the potential to act on different cell types and receptors and consequently different effects (see Section 1.3.6.3 and 1.3.6.4). The other important difference is that only cells in the first passage was used in the present study, as preliminary experiments, as well as previous studies, suggested that with sub-culturing cells lose their sensitivity to natural external stimuli (Bodin & Burnstock, 1995). The roles of PI3K, Rho-associated protein kinase and vesicular transport were tested due to their known sensitivity to $PO_2$ and the evidence that they are implicated in ATP release from vaso vasorum EC in (Woodward et al., 2009). In addition, the role of $[Ca^{2+}]_i$ was also explored, as it is the principle temporal trigger for regulated exocytosis (Barclay et al., 2005).

It was discussed in Section 1.3.6.1 that adenosine is able to induce NO release from EC, including that of the umbilical origin. More recent evidence suggested that NO released from EC by shear stress or agonists can cause release of adenosine from EC, by competing with $O_2$ for their binding site on cytochrome oxidase: release of adenosine by this mechanism is accentuated in hypoxia, forming a positive feedback loop (Edmunds et al., 2003). The question therefore arises as to whether it is adenosine that is released as such, or whether it is in fact ATP that is released which is then metabolised to adenosine by ENs. Therefore, an NO donor was used in the present study to test whether NO per se is able to induce ATP release from HUVEC.
4.2. METHODS

EC from the human umbilical vein and artery were isolated as described in Chapter 2 Section 2.1.4 and 2.1.5 respectively for each cell type. The details of the methodology used in the present Chapter are described in Chapter 2 section 2.1.7 & 2.2.

PROTOCOLS

4.2.1. Group 1 & 2: CD31 staining in HUAEC and HUVEC

To validate cell phenotype, four 24 wells confluent cells were stained for the EC-specific surface protein CD31 and analysis by FACS as described in Chapter 2 Section 2.1.7.1. Isotype and negative control were also performed as described on cells isolated from the same donor. Cells were selected according to granulation (side scatter) and volume (forward scatter), which were then analysed for PE-tagged CD31 staining.

4.2.2. Group 3: Effect of hypoxia on ATP release from HUVEC and HUAEC

In these preliminary experiments, primary HUVECs and HUAECs were isolated from 3 separate donors and mixed. These were grown on 24 well culture plates as described in Chapter 2 Section 2.1.2 until confluent. The culture medium was replaced with fresh ones immediately before the experiment. In order to test the hypothesis that hypoxia could increase ATP release from EC, 6 wells were placed in a humidified incubator containing 1% O₂, 5% CO₂, balanced with N₂ at 37 °C, while another 6 wells of control culture was put in a conventional 37 °C humidified incubator containing 5% CO₂. The cells were incubated for 30 min from the time at which the O₂ level in the hypoxic incubator reached 1.0 ± 0.1%, which took typically 10 min (see Chapter 2 Section 2.2.1). In order to assess background luminescence resulting from ATP in the culture medium, 2 wells without cells but with
medium were added to each of the hypoxic and normoxic group. After the incubation period, 50 µl of medium from each well was withdrawn by careful aspiration without disrupting the cell monolayer. This was immediately mixed with the CellTiter-Glo® luciferin-luciferance assay and the level of luminescence from each sample was measured using a luminometer (see Chapter 2 Section 2.2.2.3). The concentration of ATP was determined by calibrating the level of luminescence to those of a serial dilution of stock ATP freshly made on the day of experiment (see Chapter 2 Section 2.2.2.4).

To assess changes in viability, the remainder of the medium was replaced by 0.1% trypan blue in PBS for 10 min. As a positive control, medium was taken out from one of the wells from each group and left to air dry for 10 min before introducing the trypan blue solution (see Chapter 2 Section 2.2.3). The trypan blue solution was replaced with normal PBS before the cells were examined under a phase contrast light microscope and the number of stained cells was counted. This procedure was performed at the end of each of the protocols described below.

4.2.3. Group 4: Effect of hypoxia on ATP release from HUVEC on inserts

HUVEC were isolated from three different donors and prepared on culture inserts as described in Chapter 2 Section 2.2. In contrast to group 3, cells from individual donors remained separate (see Section 4.2.7 for statistical methods). The protocol for exposing the cells to hypoxia and measurement of ATP concentrations were same as Group 3. For a viability study, cells were grown on two transparent inserts in both normoxic and hypoxic groups, at the same density as those for ATP measurement (see Chapter 2 Section 2.2). The release experiments were carried out typically 48 hr post seeding, as it has been shown that a
significant trans-endothelial resistance was achieved in HUVEC grown in a similar configuration to the present study by measuring with a Voltmeter (Schwiebert et al., 2002).

4.2.4. Group 5: Effect of PI3K and ROCK inhibition on HUVEC

The protocol is essentially the same as Group 4, except that the number of individual donors was increased to 6. HUVEC was pre-incubated for 60 min in medium with LY294002 (20 µM), Y27632 (10 µM), at concentrations shown to be highly specific PI3K and ROCK inhibitors (Vlahos et al., 1994; Ishizaki et al., 2000), or vehicle, and exposed to 21% O2 or hypoxia. ATP measurements were taken as above. LY297002 and Y27632 were purchased from Tocris Bioscience, U.K. They were dissolved in DMSO (Sigma-Aldrich, U.K.) or distilled water, respectively, as 1000x stock in 50 µl aliquots and stored at -20°C. The chemicals were thawed immediately prior to use.

4.2.5. Group 6: Effect of vesicular transport inhibition on HUVEC

The effect of the vesicular transport inhibitors brefeldin A (20 µM) and monensin (10 µM) on constitutive and hypoxia-induced ATP release from HUVEC was test as in Group 5. These agents were both purchased from Enzo Life Sciences, U.K., dissolved in DMSO as 1000x (brefeldin A) or 10000x (monensin) stock solution in 50 µl aliquots and stored at -20°C. They were thawed immediately prior to use. The concentrations at which agents were used have been shown to inhibit vesicular transport processes in multiple cell types (see Section 4.4.3).

4.2.6. Group 7: Effect of Ca2+ ionophore and NO donor on HUVEC

The effect on the Ca2+ ionophore A23187 (10 µM) and NO donor S-Nitroso-N-acetylpenicillamin (SNAP; 100 µM) on ATP release from HUVEC was tested as in Group 4.
A23187 was purchased from Tocris Bioscience, U.K. and SNAP from Sigma-Aldrich, U.K. A23187 was dissolved in DMSO as stock solution as in Group 5 & 6, whereas SNAP was freshly prepared in DMSO (1:1000) on the day of experiments. They were used at concentrations previously shown to be effective in in vitro experiments (see section 4.4.3).

4.2.7. Statistical analysis

In initial experiments (Group 3), cells from 3 different donors (N) were mixed and each coverslip was designated 1 n. In all subsequent experiments cells isolated from each donor remained separate and results from each insert was therefore considered as n=1. Data was presented as means ± S.E.M., and comparisons were made using Student's unpaired t-test, taking $P < 0.05$ as significant. When cells were incubated in different pharmacological agents and their vehicle, repeated measures ANOVA analysis was carried out and when this indicated significance, post hoc Fisher PLSD tests were used to measure the degree of significance. The methods used are clearly stated in each Figure legend.

4.3. RESULTS

4.3.1. Group 1 & 2

HUVECs were selected according to similar granulation (side scatter) and volume (forward scatter), which were analysed for PE-tagged CD31 staining. FACS analysis showed that there was only one population of cells in each samples of cells (Fig 4.3.1 upper left and right). When cells were analysed for PE-tagged CD31, isotype control showed a limited level of fluorescence, whereas cells in the CD31 group showed a significant level of fluorescence (Fig 4.3.1 lower left). The results obtained from HUAECs were very similar to those just
described for HUVECs and again indicate only a single population of cells is present in the sample which is CD31 positive (Fig 4.3.2).

4.3.2. Group 3

In 21% O$_2$, HUVEC released ATP into medium at concentrations that were greater than that recorded in medium with no cells; this release was accentuated by exposure to 1% O$_2$ (Fig 4.3.3.). HUAEC showed a similar release of ATP in 21% O$_2$, and in $\frac{4}{6}$ wells there was an increase in ATP release in hypoxia, but this did not reach statistical significance (Fig 4.3.3). Visualisation of cells after trypan blue staining revealed no staining in either HUVEC or HUAEC, confirming that all cells were viable. However, for the HUAEC there were often large areas of the culture plates which were devoid of cells in both normoxic and hypoxic groups, suggesting that some cells were lost during the washing process: the area that was covered with cells varied between wells.

All of the cells in both the positive control groups of HUVEC and HUAEC, which were air dried were stained blue, indicating, as expected, that they were not viable.

Also, at the end of each of the protocols described below, trypan blue staining revealed that all cells were viable.

4.3.3. Group 4

In 21% O$_2$, HUVEC released ATP from both apical and basolateral membrane (Fig 4.3.4; $0.46 \pm 0.08$ and $0.05 \pm 0.001$ nM, respectively). Consistent with results from Group 3, the release was accentuated by hypoxia in both cases ($3.04 \pm 0.91$ and $0.11 \pm 0.01$ nM,
respectively). In 21% O₂, apical release was apparently about 10 times larger than basolateral release. In hypoxia, apical release was about 30 times larger than basolateral release. However, when the difference in the total volume of medium present in the apical and basolateral compartments is taken into consideration (200 vs. 700 µl), the real ratio difference for apical:basolateral release is about 3 times and 10 times in 21% O₂ and hypoxia, respectively (i.e., one can effectively multiply all the basolateral concentrations by 3.5 in Fig 4.3.4, 4.3.6, 4.3.8, 4.3.9 & 4.3.10 to get an impression of the relative release from the two sides).

4.3.4. Group 5
Consistent with the results from Group 3 & 4, un-stimulated HUVEC showed constitutively release of ATP from both apical and basolateral membrane (17.9 ± 5.08 and 0.129 ± 0.01 nM, respectively), that was accentuated by hypoxia (26.0 ± 6.13 and 0.170 ± 0.03 nM, respectively). When HUVEC were pre-incubated with the PI₃K inhibitor LY294002 (20µM; 60 min), or the ROCK inhibitor Y27632 (10µM; 60 min), the hypoxia-induced ATP release from apical and basolateral membrane was attenuated (Fig 4.3.5; 4.3.6, respectively; apical: to 17.1 ± 7.84 nM and 18.1 ± 6.19 nM, respectively; basolateral: to 0.12 ± 0.02 nM and 0.13 ± 0.02 nM, respectively), but neither antagonist affected constitutive release. Further, vehicle (DMSO; 1:1000 dilution) did not affect either the constitutive or hypoxia-induced ATP release (data not shown).

4.3.5. Group 6
As in the groups described above, un-stimulated HUVEC showed a constitutive release of ATP from both apical and basolateral membrane (Fig 4.3.7 & 4.3.8: 3.97 ± 0.90 and 0.16 ±
0.02 nM, respectively), and this release was accentuated by hypoxia (to 11.0 ± 2.94 nM and 0.23 ± 0.03 nM, respectively). When HUVEC were pre-incubated with the vesicular transport inhibitors brefeldin A (20µM; 60 min) or monensin (10µM; 60 min), the hypoxia-induced ATP release was attenuated from both apical and basolateral membrane (Fig 4.3.7 & 4.3.8; apical: to 6.83 ± 2.18 nM and 7.57 ± 1.94 nM, respectively; basolateral: to 0.14 ± 0.01 nM and 0.15 ± 0.01 nM, respectively), but neither affected the constitutive release (Fig 4.3.7 & 4.3.8).

4.3.6. Group 7

Un-stimulated HUVEC showed constitutive release of ATP from both apical and basolateral membrane (2.62 ± 0.38 and 0.22 ± 0.01 nM, respectively) and this release was accentuated by the Ca²⁺ ionophore A23187 (10 µM; Fig 4.3.9; to 61.7 ± 10.3 and 0.26 ± 0.01 nM, respectively), whereas the vehicle (DMSO) had no effect (2.68 ± 0.67 and 0.21 ± 0.01 nM, respectively). As the concentration of ATP released under normoxic conditions from the apical and basolateral membranes in this group was consistent with that measured in Group 4 – 6 above (see Fig. 4.3.4, 4.3.5, 4.3.6, 4.3.7 & 4.3.8), it appears that A23187 caused much greater release of ATP from the apical membrane than from the basolateral membrane and much greater release than was evoked from the apical membrane by hypoxia.

The NO donor SNAP (100 µM) had no effect on either apical or basolateral release of ATP in HUVEC (Fig 4.3.10; 2.52 ± 0.57 and 0.22 ± 0.001 nM, respectively).
Figure 4.3.1. FACS analysis of CD31 stained cells isolated from the human umbilical vein.

Cells were sorted according to granulation property and volume by FACS. Cells from the CD31 group (upper left) and isotype group (upper right) both showed only one population of cells. Analysis of level of PE fluorescence showed a limited level of fluorescence in the isotype group (lower left; red), whereas the CD31 group displayed a significant level of fluorescence (lower left; black).
Figure 4.3.2. FACS analysis of CD31 stained cells isolated from the human umbilical artery.

Cells were sorted according to granulation property and volume by FACS. Cells from the CD31 group (upper left) and isotype group (upper right) both showed only one population of cells. Analysis of level of PE fluorescence showed a limited level of fluorescence in the isotype group (lower left; red), whereas the CD31 group displayed a significant level of fluorescence (lower left; black).
Figure 4.3.3. ATP release from HUVEC (above) and HUAEC (below) as determined by the luciferin-luciferance assay.

In normoxia (21% O₂, 5% CO₂, 37°C; solid bars), HUVEC showed greater released of ATP than culture medium alone (open bars). This release was accentuated by hypoxia (1% O₂; solid bars). By contrast HUAEC showed a release of ATP in normoxia but this was not accentuated in hypoxia. By contrast HUAEC showed a release of ATP in normoxia but this was not accentuated in hypoxia. Statistical difference in Student t-test: *P < 0.05 for HUVEC and p = 0.17 for HUAEC. ++ : cell vs medium P < 0.01. ± = S.E.M. n=6, N=3 for each cell types (n=number of wells, N=number of donors).
Figure 4.3.4. Effect of hypoxia on apical and basolateral release of ATP from HUVEC.

In normoxia (21% O₂, 5% CO₂ 37°C), HUVEC released ATP from both apical (upper) and basolateral (lower) membrane. Release was accentuated by 30 min hypoxia (1% O₂, 5% CO₂ 37°C). *P < 0.05, ***P < 0.01, ± = S.E.M., n=9, N=3 (n=number of inserts, N=number of donors). NB: different scales used for apical and basolateral release (see text).
Figure 4.3.5. The role of PI_3K and ROCK in hypoxia-induced release of ATP from the apical membrane of HUVEC.

Upper: In each panel, dotted lines join data points measured in cells from individual donors, and solid line joins the average data for all 6 donors.

Lower: Columns show ATP release ± S.E.M relative to that measured in normoxic conditions taken as 100%. ATP release in normoxia was accentuated by 30 min hypoxia (1% O_2, 5% CO_2, 37°C) but normoxic release was unaffected by LY294002 (20µM) or Y27632 (10µM). In contrast, hypoxia-induced ATP release was attenuated by LY294002 and by Y27632. *P < 0.05, *** < 0.01, n=18, N=6 (n=number of inserts, N=number of donors). Repeated measures ANOVA with post hoc Fisher PLSD.
Figure 4.3.6. The role of PI$_3$K and ROCK in hypoxia-induced release of ATP from the basolateral membrane of HUVEC.

Upper: In each panel, dotted lines join data points measured in cells from individual donors, and solid line joins the average data for all 6 donors.

Lower: Columns show ATP release ± S.E.M relative to that measured in normoxic conditions taken as 100%. ATP release in normoxia was accentuated by 30 min hypoxia (1% O$_2$, 5% CO$_2$, 37°C) but normoxic release was unaffected by LY294002 (20µM) or Y27632 (10µM). In contrast, hypoxia-induced ATP release was attenuated by LY294002 and by Y27632. *$P < 0.05$, ***$ < 0.01$, n=18, N=6 (n=number of inserts, N=number of donors). Repeated measures ANOVA with post hoc Fisher PLSD.
Figure 4.3.7. The effect of brefeldin A and monensin on constitutive and hypoxia-induced release of ATP from the apical membrane of HUVEC.

Upper: In each panel, dotted lines join data points measured in cells from individual donors, and solid line joins the average data for all 6 donors.

Lower: Columns show ATP release ± S.E.M relative to that measured in normoxic conditions taken as 100%. ATP release in normoxia was accentuated by 30 min hypoxia (1% O₂, 5% CO₂, 37°C) but normoxic release was unaffected by brefeldin A (20µM) or monensin (10µM). In contrast, hypoxia-induced ATP release was attenuated by LY294002 and by Y27632. *P < 0.05, *** < 0.01, n=18, N=6 (n=number of inserts, N=number of donors). Repeated measures ANOVA with post hoc Fisher PLSD.
Figure 4.3.8. The effect of brefeldin A and monensin on constitutive and hypoxia-induced release of ATP from the basolateral membrane of HUVEC.

Upper: In each panel, dotted lines join data points measured in cells from individual donors, and solid line joins the average data for all 6 donors.

Lower: Columns show ATP release ± S.E.M relative to that measured in normoxic conditions taken as 100%. ATP release in normoxia was accentuated by 30 min hypoxia (1% O₂, 5% CO₂, 37°C) but normoxic release was unaffected by brefeldin A (20µM) or monensin (10µM). In contrast, hypoxia-induced ATP release was attenuated by LY294002 and by Y27632. *P < 0.05, *** < 0.01, n=18, N=6 (n=number of inserts, N=number of donors). Repeated measures ANOVA with post hoc Fisher PLSD.
Un-stimulated HUVEC released ATP from both apical (upper) and basolateral (lower) membrane (control). The release was accentuated by A23187 (10 µM). The constitutive release of ATP are at concentrations consistent to those of the other groups, so it appears that A23187 affected the release from the apical membrane in particular. *** $P < 0.01$, ± = S.E.M., n=9, N=3 (n=number of inserts, N=number of donors).
Figure 4.3.10. The effect of NO on apical and basolateral release of ATP from HUVEC.

Un-stimulated HUVEC released ATP from both apical (upper) and basolateral (lower) membrane. SNAP (100 µM), the potent NO donor, had no effect on the release. For apical $P = 0.87$ and for basolateral $P = 0.62$, ± S.E.M., n=9, N=3 (n=number of inserts, N=number of donors).
4.4. DISCUSSION

The EC contribute to regulation of vascular tone via the release of vasoactive substances such as NO, PG, EDHF and ATP. It is well established that EC release ATP under basal conditions, and this release is accentuated by increasing the shear stress to which the EC are exposed (Milner et al., 1990; Bodin et al., 1991). Further, it was shown that shear stress-induced ATP release was potentiated by acute hypoxia (Bodin & Burnstock, 1995), although, as explained in Chapter 1 Section 1.4.2, in that study the gas mixtures used as normoxic and hypoxic conditions were 95% O₂ / 5% CO₂ and 95% N₂ / 5% CO₂ respectively. No measurements of PO₂ were made in that study, but it is likely that these conditions actually represented hyperoxia vs. hypoxia. More recently, using more physiological PO₂ values (equilibration with 21% vs. 1% O₂), it was reported that hypoxia per se could increase release of ATP from EC derived from the highly specialised vessels of calf pulmonary artery vasorum (Woodward et al., 2009). In the present study, equilibration with these same levels of O₂ (see Fig 2.1 in Chapter 2) were used to test the hypothesis that hypoxia per se can induce the release of ATP from freshly isolated EC from human umbilical vessels, which are commonly used as models for EC.

4.4.1. Constitutive and hypoxia-induced ATP release in EC

In preliminary experiments where cells were grown in 24 well plates, it was shown that both un-stimulated HUVEC and HUAEC constitutively released ATP. It was noted that 30 min hypoxia at 1% O₂ accentuated this release in HUVEC, but in HUAEC any additional release did not reach statistical significance. The elevated levels of ATP measured in the hypoxia-treated HUVEC and HUAEC must have come from a regulated release source rather than from lysed cells, as the viability test with trypan blue revealed no staining. On the other hand,
all of the cells in the positive control group were strongly stained, indicating that trypan blue is a valid method of assessing cell viability.

Concerning the lack of a statistically significant effect of hypoxia on HUAEC, the trypan blue staining also revealed that there were regions of coverslip where HUAEC were absent, whereas this was not the case for HUVEC. This suggests that HUAEC did not tolerate the washing steps in the protocol, and that some of the cells became detached prior to the experiment protocol. Clearly, it is likely that their detachment and the fact that the number of cells in the normoxic and the hypoxic well was variable would have introduced variability into both sets of data. Therefore, without a suitable matrix on which HUAEC can firmly adhere, it is not possible to accurately evaluate ATP release from HUAEC or to compare directly with the release from HUVEC. If a suitable matrix could be found, it seems likely that it would be possible to demonstrate that hypoxia also induces ATP release from HUAEC.

In the main experiments of the present study, experiments were performed to differentiate the apical and basal release from EC by culturing them on inserts with an ultra-high pore density (100 ± 10 x 10⁶ / cm²). It was found that in 21% O₂, HUVEC released ATP from both apical and basolateral membrane. Further, when the difference in the culture medium volume between the apical and basolateral compartments is taken into consideration (see Chapter 2 Section 2.2), the apical membrane released approximately three times as much ATP as the basolateral membrane (see Fig 4.3.4). This polarity of ATP release is consistent with previous experiment of a similar design, which when measuring apical and basolateral constitutive ATP release from EC derived from blood vessels from a number of vascular beds, found that the majority of ATP was released from the apical membrane of cells (Schwiebert et
al., 2002). In the present study, it was shown that ATP release from both apical and basolateral membrane was accentuated by hypoxia. Taken together, these data demonstrate that hypoxia per se releases ATP from HUVEC, i.e. in the absence of shear stress. This is a novel finding for HUVEC and is in addition to the synergistic effect of hypoxia on shear stress-induced release of ATP in HUVEC (Bodin & Burnstock, 1995). The present finding is in agreement with results of Woodward et al (2009) on EC of calf pulmonary artery vaso vasorum. However, instead of using freshly isolated cells, they used passaged cells (no. 2 – 7) and they did not differentiate release from apical and basolateral membrane. Thus, the present study has provided the first evidence that hypoxia per se causes greater proportional increase in release of ATP from apical then basolateral surface of HUVEC (i.e. 79% vs. 21% increase, respectively; see Fig. 4.3.5 & 4.3.6).

Depending on the methodology and gestational age at the point of sampling, PO₂ values in the human umbilical vein in normal pregnancies range from 22 - 60 mmHg (Rizzo et al., 1996; Lackman et al., 2001; Armstrong & Stenson, 2007). However, in confirmed cases of IUGR and PE, where the intrauterine space is under-perfused, PO₂ values in the human umbilical vein are typically significantly lower, in the range of 5-16 mmHg (Nicolaides et al., 1986; Rizzo et al., 1996; Matsuo et al., 2009). As indicated above, the O₂ levels used in the present study were 21% and 1% O₂ for normoxia and hypoxia, respectively, which equates to PO₂ valves of ~160 and 7.6 mmHg respectively. Although the PO₂ value for normoxia seems much higher than that found physiologically, it should be noted that the O₂ content in normal umbilical cord blood would be much high than in the medium used in the present study due to the presence of haemoglobin in the RBC in the fetal blood. On the other hand, according to the oxygen dissociation curve, fetal haemoglobin carries very little O₂ at very low PO₂ levels.
Therefore, it is reasonable to argue that the change from normoxia to the hypoxic level used in this present study (1%; 7.6 mmHg) does give an indication of the O\textsubscript{2} levels that the HUVEC might be exposed to in instances where intrauterine perfusion is compromised. Therefore, it can also be argued that the present study gives an indication that additional ATP would be released from the apical and basolateral surfaces of HUVEC, but particularly from the former, when umbilical vein PO\textsubscript{2} levels are compromised by IUGR or PE.

As discussed in the *Chapter 1*, the vasoactive substances released from endothelium can act in an autocrine way (on EC) and / or in a paracrine way (on SMC). Thus, the present results are also consistent with the idea that in hypoxia, ATP released from the apical surface of EC may act as an autocrine signal, activating P2Y receptors and EC and release potent vasodilators such as PGI\textsubscript{2}, NO and EDHF (Chen & Suzuki, 1990; Olsson & Pearson, 1990), whereas ATP released from the basolateral surfaces may act as an autocrine as well as an paracrine signal, activating P2X and P2Y on SMC (see *Chapter 3 Section 3.4.3*). In addition, there is the possibility that hypoxia-induced ATP released into the lumen of the vessel can interact with circulating cells and platelets. The potential implication of this is discussed in *Chapter 8*.

### 4.4.2. Intracellular transduction pathways

Considering the present new finding that hypoxia releases ATP from HUVEC, several questions arise: what is the O\textsubscript{2} sensor and what are the intracellular signal transduction pathways between O\textsubscript{2} sensing and ATP release.

A number of important cellular functions, notably growth and survival, cytoskeleton remodelling and intracellular organelles trafficking depend on phosphoinositide 3-kinases
(PI3K) together with their downstream effectors protein kinase C (PKC) and Rho-associated protein kinase (ROCK) (De Camilli et al., 1996; Katso et al., 2001; Koyasu, 2003). In the present study, either the PI3K inhibitor or ROCK inhibitor, LY294002 and Y27632 respectively, attenuated the hypoxia-induced ATP release from HUVEC, but had no effect on constitutive release in 21% O2. Previous studies have provided strong evidence that PI3K is activated by shear stress in EC e.g. (Dimmeler et al., 1999). However, a static model was used in the present study. Thus, given that neither antagonist significantly affected constitutive release of ATP in 21% O2, it can be deduced that hypoxia per se is able to mediate ATP release via the activation of the PI3K pathway, and that constitutive release is dependent on a different mechanism. This is consistent with recent evidence from studies in rat liver epithelium and calf pulmonary aorta vaso vasorum EC which suggested that hypoxia may be able to activate PI3K and subsequently mediate ATP release via PKC and ROCK (Woodward et al., 2009; Feranchak et al., 2010). Thus, it seems that the mechanisms underlying the hypoxic release of ATP are similar across different tissue cells in different species.

4.4.3. Is vesicular transport responsible?

PI3K, PKC and ROCK are associated with trafficking of intracellular organelles (Slomiany et al., 1998; Kaibuchi et al., 1999; Zhao et al., 2007), and it was shown that intracellular transport vehicles contributed to ATP release from oocytes and osteoblasts (Maroto & Hamill, 2001; Orriss et al., 2009). Thus, experiments were performed in the present study to test the hypothesis that the hypoxia-induced ATP release from HUVEC was mediated by vesicular transport. Brefeldin A and monensin are two commonly used inhibitors which prevent vesicular transport by targeting different stages of the intracellular vesicle trafficking process.
The former inhibits transport from the endoplasmic reticulum (ER) to the Golgi apparatus (Lippincott-Schwartz et al., 1989), whereas the latter is a monovalent ion-selective ionophore that is able to disrupt the H\(^+\) gradient of intracellular organelles such as Golgi apparatus, lysosomes and secretory vesicles (Mollenhauer et al., 1990). Here, it was shown that both brefeldin A and monensin were able to functionally inhibit hypoxia-induced ATP release from HUVEC, providing strong evidence that this ATP release from HUVEC is mediated by regulated exocytosis. Again, these data are consistent with the findings on EC derived from calf pulmonary artery vaso vasorum (Woodward et al., 2009), and suggest that vesicular transport may mediate hypoxia-induced release of ATP by EC across different vascular beds in different species.

The NO donor SNAP did not affect ATP released from either apical or basolateral surfaces in HUVEC. As hypoxia-induced adenosine release from EC is NO-dependent (see Section 4.1), this data suggest that the release mechanism of ATP release from EC is distinct from that of adenosine. Further, as it was shown that NO inhibited ATP release from RBC (Ellsworth et al., 2009), this data also suggests that the mechanisms underlying release of ATP from EC is distinct from that of RBC.

It is generally accepted that Ca\(^{2+}\)-dependent, regulated exocytosis is responsible for the release of ATP and other transmitters from neuronal and secretory cells (Barclay et al., 2005). However, in the last few years, evidence is accumulating which suggests that this may also be the case in non-excitable cells such as epithelial cells, fibroblasts and EC when they are stimulated with cell swelling, agonists or mechanically challenged (Boudreault & Grygorczyk, 2004; Praetorius & Leipziger, 2009), although these mechanisms are currently
far from well-understood. In the present study, when $[\text{Ca}^{2+}]_i$ in HUVEC was raised by using the $\text{Ca}^{2+}$ ionophore A23187, this alone caused a substantial release of ATP from the apical and basolateral surfaces, but particularly from the apical surface. A previous study showed that addition of ionomycin, another $\text{Ca}^{2+}$ ionophore, caused a sustained release of ATP from HUVEC but did not differentiate apical and basolateral release (Schwiebert et al., 2002).

The amount of ATP released by A23187 from the basolateral surface was in similar proportion to that of hypoxia-induced ATP release (20-50% greater than constitutive release), whereas that released from the apical surface was much greater (~600% vs. 200-300% greater than constitutive release). Assuming that the hypoxia-induced ATP release was indeed mediated by vesicular processes, this result suggests that there is a bigger pool of ATP-rich vesicles close to the apical membrane than to the basolateral membrane. A further deduction can be made from this data. Given that ATP can act on purinergic receptors on EC to increase $[\text{Ca}^{2+}]_i$ (see Chapter 1 Section 1.3.6.3), hypoxia-induced ATP release from HUVEC may cause further ATP release. The phenomenon of ATP-induced ATP released from HUVEC has previously been shown by adding exogenous ATP to cultured cells and measuring ATP present in the extracellular space for up to 20 min (Bodin & Burnstock, 1996). The present findings raise the possibility that $[\text{Ca}^{2+}]_i$ elevation plays a role in this phenomenon. The question also arises as to whether hypoxia-induced ATP release is mediated by a rise in $[\text{Ca}^{2+}]_i$. These issues are addressed in Chapter 6.

In summary, by using the luciferin-luciferance assay, it was demonstrated that HUVEC constitutively release ATP from both apical and basolateral membrane, and this release was accentuated in hypoxia via a PI_{3K} / ROCK dependent pathway. Further, the present results
suggest that the hypoxia-induced component of the ATP release is mediated via regulated exocytosis. In the studies described in the next chapter, the location and behaviour of the putative ATP vesicles in HUVEC were investigated using a combination of quinacrine staining and fluorescence microscopy.
CHAPTER 5

VISUALISATION OF ATP VESICLES IN HUVEC AND THE EFFECT OF HYPOXIA
5.1. INTRODUCTION
In Chapter 4, functional data obtained by using the luciferin-luciferance assay demonstrated that HUVEC constitutively released ATP from both the apical and basolateral membrane, and this release was accentuated in hypoxia via a PI3K / ROCK dependent pathway. Further, the hypoxia-induced component of ATP release was shown to be inhibited by antagonists that are known to inhibit the process of intracellular vesicle trafficking.

If the ATP release is indeed mediated via regulated exocytosis, one would expect vesicles containing ATP to be present in HUVEC. Further, given the fact that release of ATP from the apical membrane was consistently higher than that from the basolateral membrane (see Chapter 4 Section 4.3.4), one would expect the morphology of the cells to reflect the physiology i.e. that the putative ATP vesicles would be concentrated in regions close to the apical membrane.

In order to address these questions in the present study, HUVECs were stained using the fluorescent dye quinacrine, an acridine derivative. Quinacrine has a high affinity to ATP, produces a concentration-dependent fluorescence, and has been used to label intracellular ATP in a number of cell types, including HUVEC (Mitchell et al., 1998; Bodin & Burnstock, 2001a; Sorensen & Novak, 2001; Pangrsic et al., 2007). Confocal and conventional fluorescent microscopy were used to access the behaviour of the ATP vesicles of HUVEC in 21% O₂, after exposure to hypoxia, and after treatment with antagonists that interfere with intracellular vesicle trafficking processes.
5.2. METHODS

The details of the methodology used in the studies described in this chapter are described in *Chapter 2 Section 2.1, 2.2.1 & 2.2.4*.

PROTOCOLS

5.2.1. Group 1: Confocal imaging

Primary HUVECs from 2 donors were isolated from human umbilical vein, subcultured and grown on EPSE-coated ø13 mm glass cover slips as described in section *Chapter 2 Section 2.1.1, 2.1.2 & 2.1.3*. Confluent HUVEC monolayers were incubated in quinacrine (1.5 µM) for 60 min, rinsed in Krebs-Ringer buffer, then mounted in VECTASHIELD® mounting medium with DAPI (Vector Laboratories ltd, U.K.) and examined with confocal microscopy (see *Chapter 2 Section 2.2.4*).

5.2.2. Group 2: Fluorescent imaging and the effect of hypoxia

HUVECs isolated from the two separate donors were cultured separately. To examine the effect of hypoxia on quinacrine fluorescence, cells from each donor were divided into two groups: a normoxic and a hypoxic group. Cells in both groups were then incubated in 0.5 µM quinacrine (Sigma-Aldrich, U.K.; freshly made in Krebs-Ringer buffer) for 60 min at 37 ºC in either 5% CO₂ / 95% air (normoxia), or 1% O₂ / 5% CO₂ / 94% N₂ (hypoxia; in hypoxic chamber described in *Chapter 2 Section 2.2.1*). On leaving the respective incubators, the cells were rinsed twice in Krebs’ and mounted on microscope slides in mounting medium without DAPI. The cells were immediately examined with FITC-fluorescent microscopy (within 5 min; see *Chapter 2 Section 2.2.4* for details of the methodology). Cells were compared to those from the same donor and passage.
5.2.3. **Group 3: Fluorescent imaging and the effect of vesicular inhibitors**

HUVECs were isolated and cultured as in *Group 2*. In order to examine the effect of the vesicle trafficking inhibitors, cells were first incubated in brefeldin A (10 µM), monensin (100 µM), or vehicle (1:1000 DMSO) for 60 min in 21% O₂, before incubation with quinacrine (30 µM) for 5 min together with the same inhibitors. Brefeldin A and monensin were made up from frozen stock solutions as in *Chapter 4 Section 4.2.5*. They were then carefully rinsed and mounted as in *Group 2*. As for *Group 2*, cells were compared to those from the same donor and passage. This combination of quinacrine concentration and incubation time was determined by preliminary experiments using 1, 3, 10 and 30 µM with 5, 30 and 60 min combinations (see *Chapter 2 section 2.2.4*).

5.2.4. **Analysis of results**

Comparison of intensity of fluorescence were made between cells from the same donor and of the same passage. Direct comparisons of fluorescence intensity in *Group 2 & 3* were made with identical power of magnification, exposure and gain settings (indicated at each Figure).

5.3. **RESULTS**

5.3.1. **Group 1**

Confocal imaging study revealed that cellular ATP stores labelled with quinacrine were not uniform. Rather, they assume a punctate pattern (Fig 5.3.1). Moreover, the clusters of ATP fluorescence were mainly concentrated in the para-nuclear space; not all cells contained ATP fluorescence. Each locus of fluorescence measured 0.5-1.4 µm in diameter. The monolayers of HUVEC were approximately 4.0 µm in thickness. Images captured at 1.0 µm intervals in
the z plane showed no obvious differential apical and basolateral distribution of ATP fluorescence (Fig 5.3.1).

5.3.2. Group 2
In HUVEC incubated in 21% O₂, fluorescent imaging of the monolayer by conventional microscopy showed similar punctate distribution to that of the confocal imaging study (Fig 5.3.2 A). When the HUVEC monolayers were visualised with the additional aid of phase contrast bright-field light, it was apparent that the fluorescence loci were concentrated in the para-nuclei space away from the cell borders (Fig 5.3.2 A & B right). Real-time observation of the monolayers showed that the loci of fluorescence were not stable. Rather, there was an occasional non-recurring transient increase in fluorescence intensity at particular locus followed by rapid disappearance (data not shown).

When HUVEC was incubated in hypoxia (1% O₂, 60 min), the fluorescence intensity was markedly attenuated (Fig 5.3.2 B).

5.3.3. Group 3
HUVEC incubated with quinacrine in vehicle for the antagonists (1:1000 DMSO) showed typical punctate fluorescence staining, similar to that of Group 2 (Fig 5.3.3A). Brefeldin A, which inhibits vesicular trafficking, caused an increase in the areas of fluorescence within the cells (10 μM for 60 min; Fig 5.3.3B). In contrast, monensin, another agent that inhibits vesicular trafficking, decreased the intracellular levels of quinacrine fluorescence (100 μM for 60 min; Fig 5.3.3C).
Figure 5.3.1. Confocal imaging of HUVEC monolayer dual-labelled with quinacrine and DAPI.

a-f are z stack images of HUVEC, at 1.0 µm interval. The nuclei appear blue and the ATP vesicles appear green. The ATP vesicles were found mainly in the cytoplasm, in the para-nuclei space, but not in the nuclei (white arrows). HUVEC are only ~4.0 µm in thickness and it was not apparent whether the ATP vesicles were distributed more apically or basolaterally. Under these staining conditions, not all cells appear to contain ATP vesicles. Images are representative of 4 coverslips tested from 2 donors.
Figure 5.3.2. Representative fluorescent and bright field images of HUVEC incubated in quinacrine in 21% or 1% O₂.

A: In 21% O₂, HUVEC showed strong punctate staining in the cytoplasm. When visualised together with bright field illumination, it can be seen that the fluorescent staining are mainly in the para-nuclei space, and are not present in all HUVEC. B: Hypoxia (1% O₂; 60 min) caused a pronounced attenuation of the fluorescent intensity. n = 3, N=2 for both 21% and 1 % O₂ (n=number of coverslips, N=number of donors).
Figure 5.3.3. Typical representation of fluorescent and bright field images of quinacrine-stained HUVEC after treatment with brefeldin A, monensin or vehicle.

A: In control, HUVEC showed strong punctate staining in the cytoplasm. B: Brefeldin A (10 µM) increased the areas of fluorescence within the cell, away from the cell membrane (cf A). C: Monensin (100 µM), by contrast, decreased the intracellular levels of quinacrine fluorescence (cf A). n = 3, N=2 for each conditions tested (n=number of coverslips, N=number of donors).
5.4. DISCUSSION

5.4.1. Quinacrine staining of HUVEC

As discussed in Chapter 1 Section 1.4.3, a number of mechanisms for the release of ATP have been proposed. In the studies described in Chapter 4, results obtained using luciferin-luciferase assay for ATP and pharmacological agents suggested that hypoxia-induced ATP release from HUVEC is mediated by vesicular pathways. In the present study, staining of HUVEC with the fluorescent dye quinacrine revealed a punctate granular pattern, that is reminiscent of ATP localisation within intracellular secretory vesicles. Further, real-time observation of quinacrine-stained HUVEC in 21% O$_2$ revealed that the vesicles were not in a steady state, but sometimes displayed a non-recurring transient increase in fluorescence intensity followed by rapid disappearance. This point-source burst release is consistent with fusion of ATP-containing vesicles with the plasma membrane and exocytotic release of quinacrine/ATP into the extracellular space, similar to that described by others in liver epithelium and astrocytes (Bowser & Khakh, 2007; Feranchak et al., 2010). This spontaneous release may contribute to the constitutive ATP release by HUVEC in normoxia discussed in Chapter 4.

Interestingly, in a previous study it was reported that point-source burst pattern of ATP release from HUVEC was associated with propodium uptake (Arcuino et al., 2002). The authors associated this with an increase in membrane permeability, and on this basis they speculated that the ATP release was conducted through ATP-permeable channels, possibly a form of connexin hemichannel.
Quinacrine is an acridine derivative that has long been used as an experimental tool for localisation of intracellular ATP owing to its property of high affinity to ATP as well as its ability to produce fluorescence that is dependent on the concentration of ATP (see Section 5.1). The specificity of this technique has never been established, and it is possible that, being a weak base, it accumulates in intracellular acidic stores, and hence acts as an acidic store marker. However, parallel staining with established acidic store markers, acridine orange and LysoTracker Red, revealed only partial overlapping staining pattern with quinacrine staining (Sorensen & Novak, 2001), indicating a degree of preferential binding of quinacrine for ATP. Further, the observations made with confocal microscopy in the present Chapter revealed that the fluorescence loci in HUVEC were between 0.5-1.4 µm in diameter, which is consistent with intracellular vesicles. Recently, a novel technique of monitoring intracellular level has been developed by utilising genetically-encoded fluorescence resonance energy transfer (FRET), which, when coupled with intracellular compartment signals, was shown to be capable of indicating ATP concentrations in different subcellular compartments (nucleus and mitochondria) in an immortalised cell line (Imamura et al., 2009). Potentially, the identification of ATP-rich vesicles in HUVEC could be further investigated by adapting this technique to target Golgi-associated vesicles.

5.4.2. Effect of hypoxia

In the present study, it was shown that hypoxia markedly reduced the level of fluorescence of the quinacrine-stained loci, suggesting ATP was released from these putative vesicles in response to hypoxia. It is possible that hypoxia could affect the binding of quinacrine to ATP in vesicles. As this has to-date never been reported in the literature, it seems an unlikely possibility. This data is consistent with previous report in HUVEC, which showed that the
fluorescence of these loci decreased following a shear stress challenge (Bodin & Burnstock, 2001a). Together with the data of Chapter 4, these findings are fully consistent with the view that hypoxia per se i.e. in the absence of shear stress, releases ATP from HUVEC via a regulated exocytotic mechanism. Interestingly, the results of the studies described in the present Chapter are very similar to that shown obtained in rat osteoblasts (Orriss et al., 2009), and suggest that at least some ATP release mechanisms are universal between different tissues across different species.

5.4.3. Effects of vesicular inhibitors

Intracellular trafficking involves multiple complex processes that mediate multi-directional movement of molecules between the ER, Golgi apparatus, secretory vesicles and lysosomes. As discussed in Chapter 4, brefeldin A interrupts the transport between ER and Golgi apparatus. In the present study, it was shown that incubation of HUVEC in brefeldin A together with quinacrine increased the number of fluorescence loci when compared to incubation with quinacrine alone. It is well documented that brefeldin A interrupts the vesicular pathway by inducing retrograde transport from the trans Golgi network towards the ER which often results in an accumulation of itinerant molecules (Klausner et al., 1992; Rosa et al., 1992; Vetterlein et al., 2003). The present finding therefore suggests that the anterograde transport of ATP was interrupted by brefeldin A and resulted in an accumulation of intracellular ATP, presumably in the cis Golgi network and ER. This is in contrast to a previous study on liver epithelial cells, in which exposure to brefeldin A reduced hypotonic-induced ATP release, but it decreased the number of quinacrine-stained vesicles under basal conditions (Feranchak et al., 2010). The reason for this apparent discrepancy is not absolutely clear. However, it should be noted that the liver epithelial cells were incubated in brefeldin A
for as long as 4-6 hr, as compared with 30 min for HUVEC in the present study. Thus, it would not be surprising if the accumulation of ATP in ER and Golgi apparatus was disrupted to a larger extent in liver epithelium. Alternatively, it could be that there are differences in intracellular trafficking processes between different tissue of different species, or between primary cultures and immortalised cell lines.

On the other hand, it was shown in the present study that monensin, another widely used investigative tool for studying intracellular trafficking pathways, reduced the quinacrine-stained vesicles in HUVEC under basal conditions, as it did in liver epithelial cells (Feranchak et al., 2010). As discussed in Chapter 4, monensin is a monovalent ion-selective ionophore whose primarily action is facilitation of $\text{Na}^+$/H$^+$ transport, thus collapsing the membrane potential difference generated in the trans Gogi network and secretory vesicles (Mollenhauer et al., 1990).

Therefore, taken together the findings discussed above are consistent with the conclusion that ATP vesicles are present in HUVEC under basal condition. In future studies, it would be important to take further steps to establish that hypoxia-induced release of quinacrine-stained ATP is mediated from vesicles by monitoring ATP release with time.

### 5.4.4. Formation of ATP vesicles in HUVEC

The presence of ATP vesicles has been described in a number of cell types and tissues including chromaffin, acinar, epithelial, endothelial cells and astrocytes (Sorensen & Novak, 2001; Arcuino et al., 2002; Bowser & Khakh, 2007; Sawada et al., 2008; Feranchak et al., 2010). The precise mechanism of formation of ATP vesicles is far from understood.
Essentially there are two recognised processes for vesicular formation in cells. Several studies, including the present one, which utilised the intracellular transport inhibitor brefeldin A have found that it inhibited ATP release (Abdipranoto et al., 2003; Woodward et al., 2009; Feranchak et al., 2010). This suggests that ATP vesicles originate from a Golgi – ER – vesicle source.

However, it is also widely accepted that ATP vesicles are formed just like synaptic vesicles in specialised secretory cells (Pangrsic et al., 2007). It is believed that H⁺ accumulates in synaptic vesicles via vesicular ATPase (V-ATPase), the resultant electrochemical gradient then provides energy to drive a recently identified H⁺/ATP exchanger SLC17A9, thus forming ATP-rich vesicles (Sawada et al., 2008). Accordingly, it is possible that both mechanisms are functionally active in HUVEC. Therefore, it would be very important in future studies to perform experiments on HUVEC which involve observation of changes in ATP vesicles after incubation in bafilomycin, the general inhibitor of V-ATPase (Hanada et al., 1990), or silencing of SLC17A9 by small interference RNA. Indeed, strong evidence indicates that multiple mechanisms simultaneously orchestrate the release of ATP in other cell types such as astrocytes and lymphocytes (Stout et al., 2002; Coco et al., 2003; Tokunaga et al., 2010). To complicate matters even further, astrocytes incubated in FM dye showed that agonists and ischemia (KCN)-induced release of ATP was from a lysosomal source, which was distinct from the secretory vesicles (Zhang et al., 2007). It will be important to determine whether these different populations of organelles are recruited in HUVEC under different conditions.

In summary, by using quinacrine staining, it was shown here that ATP vesicles are present in HUVEC in 21% O₂. Interference of the intracellular trafficking pathway with brefeldin A and
monensin affected the staining in different but explainable ways. Further, hypoxia caused a pronounced attenuation of the number of these punctuate fluorescent vesicles. These findings add another dimension of evidence in support of the findings in Chapter 4, that HUVEC release ATP in hypoxia via a vesicular pathway. The consequences of the action of ATP on the HUASMC were considered in Chapter 3. In the next Chapter, the effects of ATP on HUVEC are presented.
CHAPTER 6

THE EFFECT OF EXOGENOUS ATP AND HYPOXIA ON [Ca^{2+}]_{i} IN HUVEC
6.1. INTRODUCTION

The endothelium lines the blood vessels, arguably the ideal location for sensing the metabolic signal generated from surrounding organs. It is well documented that shear stress produces an endothelium-dependent vasodilatation via the release of PGI$_2$, EDHF, but also by release of NO via the action of purines (see Chapter 1 section 1.3.3.2, 1.3.4.2 & 1.3.6.3). The direct effect of hypoxia on endothelium, however, is far from well understood. The studies described in Chapters 4 & 5 indicated that HUVEC and HUAEC constitutively release ATP in 21% O$_2$, and importantly, the release from HUVEC at least, was accentuated in hypoxia. The resultant ATP may act on SMC (Chapter 3), or it may act on the ECs themselves to activate purinoceptors and release a range of endothelium-derived vasoactive substances, NO, PGs, EDHF and ET, which were discussed in some detail in Chapter 1 section 1.3. It is apparent that intracellular Ca$^{2+}$ plays at least some role in the action of such substances, as well as in the mechanism that releases ATP. Indeed, as shown in Chapter 4 section 4.3.5, elevating [Ca$^{2+}$]$_i$ in HUVEC with ionophore caused ATP release, presumably at least in part through release of ATP-containing vesicles. Therefore, in the studies described in the present chapter, the effects of hypoxia, as well as those of exogenous ATP on [Ca$^{2+}$]$_i$, HUVEC were explored.

6.2. METHODS

The details of the methodology used to prepare the HUVEC are described in Chapter 2 section 2.3. For clarification, HUVEC were loaded with Fura-2 AM (Invitrogen, UK) for Ca$^{2+}$-imaging, the exact protocols of which could be found in Chapter 2 Section 2.3.2.
PROTOCOLS

6.2.1. Group 1: Exogenous ATP

Umbilical cords from 6 individual donors were divided into 2 sets, and freshly isolated HUVEC within each set (3 separate donors) were mixed and plated on APSE-coated glass coverslips as described in Chapter 2 Section 2.1.1. Fura-2 AM was loaded by incubating the cells in 200 µl of 12.5 µM of the dye for 30 min at RT and then incubated in a 37 °C humidified incubator of 5% CO₂ and balanced air for a further 30 min. They were then rinsed in normal Krebs’ before mounted in an air-tight cuvette as described in Chapter 2 Section 2.3.3. This loading procedure was performed for all of the following protocols. To test if shear stress in the present system affected \([\text{Ca}^{2+}]_i\) in HUVEC in the present set up, cells was first exposed to static, then laminar flow, by controlling the peristaltic pump. ATP (10 µM; Sigma-Aldrich, UK; dissolved in normal Krebs’ on the day of experiment) was applied to the HUVEC monolayer for a period of 4 min before being washed off. For the purpose of standardisation, ATP applications in all of the protocols described below are of 4 min in duration unless otherwise specified.

Next, in order to avoid desensitisation of the purinoceptors in subsequent experiments, it was necessary to establish the length of wash period between consecutive ATP challenged. To this end, an increasing length of wash period was used, starting with 2 min then increasing at 2 min increments, until two identical \([\text{Ca}^{2+}]_i\) responses were produced by repeated challenge with ATP (10 µM). The same procedure was done for ATP at 100 µM.

An ATP:\([\text{Ca}^{2+}]_i\) dose-response curve was generated by comparing the maximum \([\text{Ca}^{2+}]_i\) response of concentrations of ATP to that produced by 100 µM ATP. The ATP
concentrations used were 1, 10, 100, 300 and 1000 µM. Because of the length of the wash period (12 min), only one concentration other than 100 µM was used in each experiment. e.g. 1 and 100 µM, 10 and 100 µM etc. To eliminate time-dependent effects, the test concentration and 100 µM ATP were applied in random order.

6.2.2. Group 2: General P2 antagonist

HUVEC was isolated from 6 umbilical cords in the same configuration as in Group 1, with a mixture of cells from 3 separate donors constituting each of the 2 sets of coverslips, and loaded with Fura-2 AM. To test whether the [Ca$^{2+}$]$_i$ response of HUVEC was mediated by ATP, cells were either challenged with ATP alone (10 µM; as in Group 2), or pre-incubated with the non-specific P2 receptor antagonist suramin (100 µM) for 2 min before challenged with exogenous ATP (10 µM). Both with and without suramin, ATP stimuli were tested on cells from the same coverslip. In order to eliminate time-dependent factors, the order of with or without suramin conditions was randomised. Suramin at 100 µM has been previous shown to inhibit ATP-induced Ca$^{2+}$ response in mesenteric arteries (Lagaud et al., 1996).

6.2.3. Group 3: Role of extracellular Ca$^{2+}$

[Ca$^{2+}$]$_i$ in non-excitable cells such as EC respond to agonist stimulation via mobilisation from intracellular store and Ca$^{2+}$ influx via ion channels. The experiments described here and in Group 4 were designed to differentiate these pathways.

2 sets of HUVECs were prepared from 6 different donors as in Group 1. For one set of cells, they were first exposed to Krebs’ without Ca$^{2+}$ and containing the Ca$^{2+}$ chelator EGTA (100 µM) for 2 min, before being challenged with ATP (10 µM). The Ca$^{2+}$-free solution was then
replaced by normal Krebs’ (with 1.25 mM Ca\(^{2+}\)) for a wash period, before the cells were again challenged with the same concentration of ATP. The same was repeated on the second sets of cells. With and without extracellular Ca\(^{2+}\) conditions was randomised in order to eliminate time-dependent factors.

The same protocol was repeated, with modified Krebs’ containing 60 mM K\(^{+}\) instead of Ca\(^{2+}\)-free solution, on HUVEC isolated from 6 different donors. The electrical potential inherent across any cellular membrane confers a driving force for cations, such as Ca\(^{2+}\), to enter the cell through ion channels, such as P2X receptors (North, 2002). It was expected that the resting membrane potential of the HUVEC was therefore increased by raising the extracellular [K\(^{+}\)].

6.2.4. Group 4: Role of intracellular Ca\(^{2+}\) stores and store-operated Ca\(^{2+}\) channels (SOCC)

Evidence from Group 3, specifically that return of Ca\(^{2+}\) to the extracellular milieu following activation of store release with ATP challenge caused a small increase in [Ca\(^{2+}\)]\(_{i}\), suggested that SOCC may be present in HUEVC (see Fig 6.3.4). These experiments were designed to further examine this. HUVECs were prepared as in previous groups, and were challenged with ATP (10 µM) as control. Intracellular Ca\(^{2+}\) stores are normally maintained by the constitutive activity of the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) (Mountian et al., 1999). In these experiments, the intracellular stores were emptied by exposure to Ca\(^{2+}\)-free solution with EGTA, as in Group 3, together with the potent SERCA inhibitor thapsigargin (TG; 1 µM). The cells were then again challenged with ATP (10 µM). After a
wash period, the cells were re-exposed to normal Krebs’ containing Ca\(^{2+}\). TG at 1 µM together with Ca\(^{2+}\)-free solution and EGTA was previously shown to completely empty intracellular Ca\(^{2+}\) stores in EC (Aley et al., 2005).

6.2.5. Group 5: Hypoxia

HUVECs from 6 different donors were prepared as in Group 1. As in previous groups, during the experiments cell were constantly perfused with normal Krebs’ that was bubbled with 95% air/5% CO\(_2\) (see Chapter 2 Section 2.3.3). Krebs’ was then switched to one bubbled with 95% N\(_2\)/5% CO\(_2\) (which real time PO\(_2\) recording showed to be 7.6 – 9.9 mmHg ; see Chapter 2 Section 2.3.3). After 4 min, the perfusion solution was changed back to 21% O\(_2\). The cells were washed for 2 min before another hypoxic challenge.

6.2.6. Group 6: ATP in the presence of Hypoxia

HUVECs from 3 different donors were prepared as in Group 1. In order to investigate the combined effect of acute hypoxia and agonist on [Ca\(^{2+}\)], cells were exposed to ATP (10 µM; 4 min), dissolved in either normal Krebs’ (21% O\(_2\), as in Group 1), or bubbled with 95% air/5% CO\(_2\) (hypoxia, as in Group 5; see Chapter 2 Section 2.3.3). Similar to previous groups, time-dependent effect was accounted for by randomising the normoxic and hypoxic ATP challenges.

6.2.7. Analysis of results

Post hoc analysis was carried out using Wassabi software. Individual cells or group of cells were outlined and analyzed as the region of interest and expressed as 1 n. The same experiments were repeated on different coverslips (N) over different isolation batches from
different donors, which were indicated at each result figure. A mixture of 3 different donors was used on each coverslips. Data was presented as mean ± S.E.M., and findings made under different conditions were compared using Student's paired t-test, taking $P < 0.05$ as significant. In Group 5, where responses of HUVEC from different cells were compared, unpaired t-test was used.

6.3. RESULTS

6.3.1. Group 1

A change from static to active perfusion (22.5ml/s) did not affect $[\text{Ca}^{2+}]_i$ in the system used in the present study (data not shown).

ATP (10 µM) consistently induced a rapid increase in $[\text{Ca}^{2+}]_i$ in HUVEC, which was followed by a sustained phase, before returning to basal level upon a wash (e.g. Fig 6.3.1 & 6.3.7 Lower). The time intervals that allowed HUVEC to show two identical $[\text{Ca}^{2+}]_i$ responses was found to be 8 and 10 min for 10 µM and 100 µM, respectively (data not shown). The ATP-induced $[\text{Ca}^{2+}]_i$ elevation in HUVEC was concentration-dependent, as shown by the $[\text{ATP}]:[\text{Ca}^{2+}]_i$ dose-response curve (Fig 6.3.2). The $\text{EC}_{50}$ was approximately 10 µM as derived from the dose-response curve, and the saturation concentration was at 300 µM.

6.3.2. Group 2

When the non-specific P2 receptor antagonist suramin was co-applied with ATP (10 µM), the $[\text{Ca}^{2+}]_i$ response was always slower in initiation than control (Fig 6.3.3). On average $57.8 \pm 5.8\%$ of the maximum $[\text{Ca}^{2+}]_i$ elevation was inhibited (fig 6.3.3).
6.3.3. Group 3

In the absence of extracellular Ca\(^{2+}\) and with Ca\(^{2+}\) chelator EGTA (100 µM), ATP (10 µM) induced a rapid \([\text{Ca}^{2+}]_i\) increase in HUVEC. The dynamics of the Ca\(^{2+}\) increase was initially similar to that seen in the presence of extracellular Ca\(^{2+}\), but lacked the sustained phase (Fig 6.3.4). Re-introduction of Ca\(^{2+}\) to the perfusate consistently triggered an influx of Ca\(^{2+}\) and the response to ATP then comprised the rapid and sustained rise in \([\text{Ca}^{2+}]_i\) (Fig 6.3.4).

Incubation of HUVEC in 60 mM K\(^{+}\) did not affect the baseline \([\text{Ca}^{2+}]_i\) in HUVEC. However, co-application with ATP (10 µM) caused a brief increase in \([\text{Ca}^{2+}]_i\), which was much smaller in magnitude than that evoked by ATP in normal Krebs’ (Fig 6.3.5).

6.3.4. Group 4

When intracellular Ca\(^{2+}\) stores of HUVEC was depleted by the SERCA inhibitor TG (1 µM) in Ca\(^{2+}\)-free Krebs’ with Ca\(^{2+}\) chelator EGTA (100 µM), stimulation with ATP (10 µM) produced a very small \([\text{Ca}^{2+}]_i\) elevation in 3 out of 6 coverslips (Fig 6.3.6). In the remainder of coverslips, ATP stimulation had no effect on \([\text{Ca}^{2+}]_i\) (data not shown). Upon re-introduction of extracellular Ca\(^{2+}\), HUVEC consistently showed a very strong increase in \([\text{Ca}^{2+}]_i\) in all populations (Fig 6.3.6).

6.3.5. Group 5

In 21% O\(_2\), \([\text{Ca}^{2+}]_i\) in HUVEC was constant. Exposure to hypoxia (1% O\(_2\)) caused a small but significant increase in \([\text{Ca}^{2+}]_i\) in HUVEC, that was reversible upon return to 21% O\(_2\) and repeatable within the same cells (Fig 6.3.7). The hypoxia-induced \([\text{Ca}^{2+}]_i\) elevation was compared to that evoked by ATP (10 µM; from Group 1; Fig 6.3.1).
6.3.6. Group 6

Consistent with results in all previous groups, stimulation with ATP (10 µM) caused a reversible $[\text{Ca}^{2+}]_i$ elevation in HUVEC, which had both initial and sustained phases. In contrast, when the cells were exposed hypoxia, the ATP-evoked $[\text{Ca}^{2+}]_i$ elevation was consistently attenuated (Fig 6.3.8).
Figure 6.3.1. Original recording showing effects of ATP on $[Ca^{2+}]_i$ in HUVEC.

HUVEC showed a characteristic rapid increase in $[Ca^{2+}]_i$ followed with a sustained phase when stimulated with ATP (10 µM). Recording is representative of n > 120, N=6 from 6 different donors.
Figure 6.3.2. Dose response relationship for ATP-induced [Ca\textsuperscript{2+}]\textsubscript{i} elevation in HUVEC expressed relative to response evoked by 100 µM ATP in logarithmic scale.

ATP-induced [Ca\textsuperscript{2+}]\textsubscript{i} elevation in HUVEC was dose dependent. The higher the ATP concentration, the bigger the [Ca\textsuperscript{2+}]\textsubscript{i} increase, up to 300 µM. ATP concentration is shown in log scale. Responses were shown relative to 100 µM challenge. For each data point N=6 from 6 different donors, ± = S.E.M (N=number of coverslips).
Fig 6.3.3. The effect of the non-specific P2 antagonist suramin on ATP-induced $[\text{Ca}^{2+}]_i$ elevation in HUVEC.

Upper: Original recording of $[\text{Ca}^{2+}]_i$ in HUVEC in the presence or absence of suramin. In the presence of suramin (100 $\mu$M), ATP (10 $\mu$M) stimulation of HUVEC induced a $[\text{Ca}^{2+}]_i$ elevation. When compared to control, the maximum $[\text{Ca}^{2+}]_i$ achieved is lower, and the $[\text{Ca}^{2+}]_i$ elevation showed a much slower rate of increase.

Lower: The results shown in histogram format. ***$P < 0.01$. $\pm$ S.E.M. n>220, N=11 from 6 different donors (n=number of cells, N=number of coverslips).
Figure 6.3.4. Original recording showing ATP-induced \([\text{Ca}^{2+}]_i\) elevation in HUVEC in the absence and presence of extracellular \(\text{Ca}^{2+}\).

In the absence of extracellular \(\text{Ca}^{2+}\), the dynamics of ATP-induced \([\text{Ca}^{2+}]_i\) elevation is initially similar to control, but lacked the sustained phase. At the end of the black bar, \(\text{Ca}^{2+}\) (1.25mM) was re-introduced. Recording is representative of \(n>120\), \(N=6\) from 3 different donors and from all coverslips tested (\(n=\)number of cells, \(N=\)number of coverslips).
Figure 6.3.5. The effect of membrane depolarisation with 60 mM K\(^+\) on baseline [Ca\(^{2+}\)]\(_i\) in HUVEC and on ATP-induced [Ca\(^{2+}\)]\(_i\) elevation.

Upper: Original trace of [Ca\(^{2+}\)]\(_i\) in HUVEC when challenged with K\(^+\) (60 mM). K\(^+\) alone had no effect on [Ca\(^{2+}\)]\(_i\). When HUVEC was stimulated with ATP (10 µM) in the presence of K\(^+\), the resultant increase in [Ca\(^{2+}\)]\(_i\) was much smaller than control.

Lower: The results shown in histogram format. *P < 0.05. ± = S.E.M. n>60, N=3 from 3 different donors (n=number of cells, N=number of coverslips).
Figure 6.3.6. Original recording of ATP-induced $[\text{Ca}^{2+}]_i$ elevation in HUVEC in the presence and absence of extracellular $\text{Ca}^{2+}$.

In the absence of extracellular $\text{Ca}^{2+}$ and after intracellular $\text{Ca}^{2+}$ stores were emptied by TG (1 µM), ATP stimulation cause a very small $[\text{Ca}^{2+}]_i$ elevation when compared to control. Upon re-introduction of extracellular $\text{Ca}^{2+}$, HUVEC showed a significant increase in $[\text{Ca}^{2+}]_i$. Recording is representative of half of the coverslips tested. $n>60$, $N=3$ from 3 different donors ($n=$number of cells, $N=$number of coverslips).
Figure 6.3.7. The effect of acute hypoxia on \([\text{Ca}^{2+}]\), in HUVEC.

Upper: Original recording showing effect of acute hypoxia on \([\text{Ca}^{2+}]\), in HUVEC. Bars indicate periods of exposure to hypoxia (1%). The \([\text{Ca}^{2+}]\) response evoked by hypoxia was consistently reversible and repeatable.

Lower: Columns showing the \(\text{Ca}^{2+}\) response to hypoxia ± S.E.M when compared to that evoked by ATP (10 µM; from Group 6). For response to hypoxia: \(n > 100\), \(N=5\) from 6 different donors (\(n=\)number of cells, \(N=\)number of coverslips). For response to ATP: see Group 6. ***\(P < 0.001\) by Student’s unpaired t-test.
Figure 6.3.8. The effect of acute hypoxia on ATP-induced $[Ca^{2+}]_e$ elevation in HUVEC.

Upper: Original recording showing the effect of acute hypoxia on $[Ca^{2+}]_e$ in HUVEC. Bars indicate application of ATP (10 µM) in normoxic or hypoxic Krebs'.

Lower: Columns showing the $Ca^{2+}$ response to ATP (10 µM) in normoxic or hypoxic Krebs' ± S.E.M. $n > 120$, $N=6$ from 3 different donors ($n=$number of cells, $N=$number of coverslips). ***$P < 0.01$. 


6.4. DISCUSSION

The studies described in this chapter demonstrated that exogenous ATP induced \([\text{Ca}^{2+}]_i\) elevation in freshly isolated HUVEC. The \([\text{Ca}^{2+}]_i\) response was reversible and repeatable in the same cell, and was partially sensitive to the non-specific P2 antagonist suramin. ATP stimulation of HUVEC in \(\text{Ca}^{2+}\)-free Krebs’ (with \(\text{Ca}^{2+}\) chelator EGTA) or in 60 mM \(\text{K}^+\), which themselves did not affect \([\text{Ca}^{2+}]_i\), caused a \([\text{Ca}^{2+}]_i\) elevation that was similar to that of control, but lacked the sustained phase. Re-exposure of HUVEC to extracellular \(\text{Ca}^{2+}\) after depletion of intracellular stores with TG caused a significant \([\text{Ca}^{2+}]_i\) elevation. It was also found that acute hypoxia \textit{per se} caused a \([\text{Ca}^{2+}]_i\) elevation, which was small when compared to that evoked by ATP (at EC\(_{50}\) concentration). Interestingly, hypoxia attenuated the \([\text{Ca}^{2+}]_i\) response to ATP.

6.4.1. Effect of exogenous ATP

As discussed in Chapter 1, the endothelium, which lines the interior surface of blood vessels, responds to physiological stimuli and releases a whole host of important vasoactive substances. In view of the findings described in Chapter 4, namely that HUVEC constitutively release ATP, which was amenable to accentuation by hypoxia, and of the apparent importance of \([\text{Ca}^{2+}]_i\) in mediating synthesis and release of vasoactive substances such as NO (see \textit{Chapter 1 section 1.3.2.3}), it was essential to explore the effect of ATP stimulation on HUVEC, which is not well understood.

Consistent with studies of many other cell types, HUVEC responded to exposure to extracellular ATP with an initial rapid increase in \([\text{Ca}^{2+}]_i\), followed by a sustained phase. The \(\text{Ca}^{2+}\) increase was at least partly due to P2 receptor activation, as it was sensitive to inhibition
by the non-selective P2 receptor antagonist suramin. Interestingly, suramin (100 µM), which inhibits most P2 receptors with an IC$_{50}$ in the lower µM range (Ralevic & Burnstock, 1998), was able to inhibit only little over 50% of the [Ca$_{\text{2+}}$]$_j$ response to ATP. This is perhaps not surprising, as in addition to P2Y receptors, P2X$_4$ and P2X$_6$ receptors are expressed in HUVEC (Glass et al., 2002; Wang et al., 2002). These receptors are at best only weakly sensitive to suramin at the concentration used in the present study (Buell et al., 1996; Ralevic & Burnstock, 1998). Indeed, HUVEC treated with antisense oligonucleotides against P2X$_4$ receptors showed significantly attenuated [Ca$_{\text{2+}}$]$_j$ response to ATP stimulation (Yamamoto et al., 2000b). Thus, the findings discussed so far are consistent with ATP acting on HUVEC via several different receptors including P2X$_{4/6}$ as well as P2Y receptors.

It is well documented that ATP acts on HUVEC to increase [Ca$_{\text{2+}}$]$_j$, for example to activate or permit eNOS phosphorylation (da Silva et al., 2009), or to induce PGI$_2$ release. This may play a role in the hypoxia-induced vasodilatation in human umbilical vein and that has been shown to be mainly dependent on the presence of the endothelium (Mildenberger et al., 2003; Mildenberger et al., 2004b). However, the mechanism by which this happens in HUVEC is unclear. This is because the characterisation of P2 receptors has been hampered to a large extent by the lack of selective antagonists (see Chapter 1 Section 1.3.6.3). What is known, however, from experiments on several cell types is that the increase in [Ca$_{\text{2+}}$]$_j$ resulting from ATP stimulation is mediated either by the ionotropic P2X receptors (Ca$_{\text{2+}}$ entry), or the metabotropic P2Y receptors (Ca$_{\text{2+}}$ release from intracellular stores; see Chapter 1 Section 1.3.6.3 for details).
6.4.2. Origin of the Ca\(^{2+}\)

When HUVEC was stimulated with ATP in the absence of extracellular Ca\(^{2+}\) (together with the Ca\(^{2+}\) chelator EGTA), the [Ca\(^{2+}\)]\(_i\) response displayed an initial spike which rapidly returned to basal level, despite the continued presence of ATP. This is consistent with a previous study in HUVEC, and suggests that the [Ca\(^{2+}\)]\(_i\) response is at least partly mediated by P2Y receptors (Kaczmarek et al., 2005), for which the initial phase of the [Ca\(^{2+}\)]\(_i\) response is dependent on Ca\(^{2+}\) release from intracellular store (see Aley et al. 2005 and below). On the other hand, it can be surmised that the sustained phase of the ATP response is dependent on an extracellular source of Ca\(^{2+}\).

When the resting membrane potential was raised by incubating the HUVEC in 60 mM K\(^+\), the [Ca\(^{2+}\)]\(_i\) was not affected, suggesting that VOCCs are not present in HUVEC, which is consistent with the notion that EC is a non-excitable cell type and the fact that it has to-date, never been consistently reported in the literature (Nilius & Droogmans, 2001). But, when ATP was co-applied with 60 mM K\(^+\) on these cells, the [Ca\(^{2+}\)]\(_i\) response was much less pronounced than when ATP was applied alone, confirming that Ca\(^{2+}\) entry is also important in the [Ca\(^{2+}\)]\(_i\) response to ATP stimulation. This is also consistent with and supports the findings discussed above that a substantial ATP-induced Ca\(^{2+}\) response remained intact despite the presence of suramin. Taken together, the data suggest that during ATP-induced Ca\(^{2+}\) elevation, Ca\(^{2+}\) release from intracellular stores is responsible for the initial phase presumably mediated by P2Y receptors, and that this is followed by a period in which Ca\(^{2+}\) entry, presumably via P2X\(_{4/6}\) channels (see above), is functionally important. Although both P2X and P2Y receptors have been separately reported in HUVEC (Yamamoto et al., 2000b; Tanaka et al., 2004), this is the first time that their functional presence are demonstrated in the
same cell. It should be noted that Ca$^{2+}$-induced Ca$^{2+}$ release via ryanodine receptor (RyR) on the ER has been previously shown in bovine arterial EC (Mozhayeva & Mozhayeva, 1996), so it is possible that it may also play a role in HUVEC. This hypothesis is beyond the scope of the present study and was not tested.

6.4.3. Role of intracellular Ca$^{2+}$ stores and SOCC

To further investigate the origin of the non-entry source of Ca$^{2+}$, intracellular Ca$^{2+}$ stores were emptied by incubating the HUVEC with the SERCA inhibitor TG in the absence of Ca$^{2+}$. ATP challenge (at 10 µM) following this revealed that an extremely small proportion of the ATP-induced [Ca$^{2+}$]$_i$ response remained intact in 50% of the coverslips tested. This is slightly different from the finding of a previous study (Kaczmarek et al., 2005), that the same conditions completely obliterated the ATP-induced [Ca$^{2+}$]$_i$ response in HUVEC. Several factors could have contributed to this difference. For example, the Kaczmarek et al. 2005 study used 100 µM ATP as the standard ATP concentration, which could mean that some of the P2 receptors were desensitised at this high ATP concentration. Further, unlike the present study, Kaczmarek et al. (2005) used HEPES-containing buffer and room temperature obtain the [Ca$^{2+}$]$_i$ recordings.

In nearly all cell types, depletion of ER Ca$^{2+}$ stores using TG activates store-operated Ca$^{2+}$ entry (Putney, 1986). Interestingly, in the present study, when extracellular Ca$^{2+}$ was reintroduced to the medium, there was a significant reversible increase in [Ca$^{2+}$]$_i$, consistent with the functional presence of SOCC in HUVEC. This capacitative Ca$^{2+}$ entry (CCE) on Ca$^{2+}$ addition was also observed when the stores were initially depleted by application of ATP (10 μM; Fig 6.3.4). Consistent with the present findings, in saphenous vein EC, Ca$^{2+}$ store
Depletion by ATP or hypoxia (in the absence of extracellular Ca\(^{2+}\)) activated a SOCC current (Aley et al., 2005). Thus, it seems that SOCC are present more generally in EC and may play a role in ATP (or hypoxia)-induced \([\text{Ca}^{2+}]_i\) response. CCE is well documented, and has been shown to occur via the members of the transient receptor potential canonical (TRPC) family (Abdullaev et al., 2008). Interestingly, it was recently shown that oxidative stress, induced by artificial ROS generation, was able to profoundly inhibit CCE in calf pulmonary EC (Florea & Blatter, 2008). The significance of this is discussed below in Section 6.4.5. In the next Chapter, studies are described in which the potential role of TRPC channels in regulating vascular vasomotion was explored in intact umbilical arteries.

### 6.4.4. The effect of hypoxia on \([\text{Ca}^{2+}]_i\)

It is now commonly accepted that ATP and its breakdown products ADP, AMP and adenosine play an important role in vascular control, and this is termed purinergic signalling (Chapter 1 Section 1.3.6). Given its physical location in the vascular system, and the findings described in Chapter 3, 4 & 5, it is an important finding that acute hypoxia per se caused a small but significant increase in \([\text{Ca}^{2+}]_i\) in HUVEC in the present study. This observation is in similar to that of a previous study, in that a comparable level of hypoxia induced an acute \([\text{Ca}^{2+}]_i\) elevation in EC isolated from human saphenous vein (Aley et al., 2005). In that study, it was demonstrated that the hypoxia-induced \([\text{Ca}^{2+}]_i\) elevation was due to ROS production from the mitochondria and that \([\text{Ca}^{2+}]_i\) was released from a RyR-gated intracellular source. Indeed, multiple studies have reported that hypoxia causes an increase in mitochondrial ROS production (Chandel & Schumacker, 2000). However, as indicated above, all of their experiments were carried out in the absence of extracellular Ca\(^{2+}\), which is different from the present study. No comparable studies to the present study on HUVEC have been done in the
past, but other authors, while studying Ca\(^{2+}\) signalling in HUVEC in the context of anoxia and associated pathology, have reported that [Ca\(^{2+}\)]\(_i\) increased substantially after exposure to up to 2 hr of anoxia (Arnould et al., 1992; Aono et al., 2000; Berna et al., 2001; Peers et al., 2006).

Taking the findings described in Chapter 4 into consideration, it would seem likely that in addition to the effects of hypoxia per se on [Ca\(^{2+}\)]\(_i\), hypoxia may have caused a release of ATP from the HUVEC, which then acted in an autocrine manner and increased the [Ca\(^{2+}\)]\(_i\) by activating P2 receptors on the cell surface. Importantly, any shear stress in the present study did not affect [Ca\(^{2+}\)]\(_i\) in HUVEC in 21% O\(_2\), further suggesting it was hypoxia per se that caused the increase in [Ca\(^{2+}\)]\(_i\), rather than any mechanical stress. In future studies it will be important to investigate whether the effects of hypoxia on Ca\(^{2+}\) handling in HUVEC has the same characteristics as that evoked by ATP i.e. partly dependent on Ca\(^{2+}\) influx and partly on release from intracellular stores as discussed above.

### 6.4.5. The effect of hypoxia on ATP-induced [Ca\(^{2+}\)]\(_i\) elevation

Clearly, if the model proposed above is correct, it is surprising that acute hypoxia consistently attenuated the [Ca\(^{2+}\)]\(_i\) response to ATP stimulation in the present study. In EC isolated from human saphenous vein, it was found that, in the absence of extracellular Ca\(^{2+}\) at least, when ATP was applied during hypoxia, this accentuated the [Ca\(^{2+}\)]\(_i\) response to ATP (Aley et al., 2005). Because inhibition of NADPH oxidase (a source of ROS in EC) accentuated the Ca\(^{2+}\) response to ATP stimulation (in the absence of extracellular Ca\(^{2+}\)), the authors proposed that the facilitatory effect of hypoxia on the ATP-induced Ca\(^{2+}\) response asserted because the decrease in O\(_2\) level caused a substrate-dependent decrease in oxidase-derived ROS, which normally tonically inhibits IP\(_3\)-dependent Ca\(^{2+}\) release that is activated by ATP (Aley et al., 2005). On the other hand, Aley et al (2005) found that the increase in [Ca\(^{2+}\)]\(_i\) induced by
hypoxia (in the absence of extracellular Ca\textsuperscript{2+}) was inhibited by agents that interfere with mitochondrial generation of ROS or by ryanodine. They therefore proposed that hypoxia increases [Ca\textsuperscript{2+}], by generating ROS from mitochondria which stimulates RyR on Ca\textsuperscript{2+} stores (also see Section 6.4.4). Thus, if the mechanisms underlying hypoxia and ATP-mediated Ca\textsuperscript{2+} signalling are consistent between the two types of EC, it can be deduced that in the presence of extracellular Ca\textsuperscript{2+} if hypoxia increased Ca\textsuperscript{2+} release from intracellular stores (via the mechanisms suggested by Aley et al 2005), it must have also inhibited Ca\textsuperscript{2+} entry (and presumably Ca\textsuperscript{2+}-induced Ca\textsuperscript{2+} release) in HUVEC, thus conferring an overall inhibitory effect of hypoxia on ATP-induced Ca\textsuperscript{2+} response as found in the present study. This suggestion is consistent with the observation that Ca\textsuperscript{2+} entry plays a major role in the Ca\textsuperscript{2+} response to ATP in HUVEC (see Fig 6.3.4). In fact, oxidative stress, induced by the ROS generator tert-butyl-hydroperoxide, was found to profoundly inhibit agonist (bradykinin or ATP) -induced CCE in calf aortic and pulmonary EC (Elliott & Doan, 1993; Florea & Blatter, 2008). Thus, the ROS released from the mitochondria in the presence of hypoxia (Chandel & Schumacker, 2000; Aley et al., 2005) may not only stimulate RyR but also inhibits ATP-evoked Ca\textsuperscript{2+} entry through P2 receptors (see above).

In other words, the effect of ATP released in hypoxia (Chapter 4) or of exogenous ATP in hypoxia (the present Chapter) on HUVEC may depend on the balance between the effect of a decrease in NADPH oxidase ROS generation by hypoxia to increase Ca\textsuperscript{2+} release via IP\textsubscript{3}R, the effect of increased mitochondrial ROS generation by hypoxia to increase Ca\textsuperscript{2+} release via RyR, and the ability of mitochondrial of ROS to inhibit CCE subsequent to P2 receptor activation. The balance could depend on the level of hypoxia and/or concentration of ATP available to act on P2 receptors. Importantly, the present study demonstrated the effect of
hypoxia on ATP-induced $[\text{Ca}^{2+}]_i$, response in HUVEC under physiological conditions i.e. when $\text{Ca}^{2+}$ is present in the extracellular medium.

### 6.4.6. Functional role of hypoxia-induced ATP release from HUVEC

The EC$_{50}$ of the dose-response curve for ATP vs. $[\text{Ca}^{2+}]_i$ in the present study was approximately 10 µM ATP, which is almost an order of magnitude higher than the concentration measured from the apical side of HUVEC in Chapter 4. However, as ATP released from the membrane of the EC is rapidly hydrolysed by EN and therefore has a short half-life (see Chapter 1 section 1.4.4), the actual concentration at the local level close to the receptors could well have reached 10 µM. Further, as discussed in Chapter 1 section 1.4.1, other cell types in the vascular environment, most notably RBC, also release significant amount of ATP in response to a fall in $\text{PO}_2$ (Ellsworth, 2004), suggesting that in the condition of hypoxia, EC may well be exposed to much higher concentration of ATP than measured in Chapter 4. On the other hand, it is possible that this dose-response curve gives an ‘exaggerated’ impression of the response induced by ATP in HUVEC under hypoxic situations because, as argued above, hypoxia has an overall inhibitory effect on the $[\text{Ca}^{2+}]_i$ increase induced by submaximal concentrations of ATP. Nevertheless, the present findings are fully consistent with the hypothesis that ATP released from the endothelium by hypoxia may act on EC in an autocrine manner, to induce a $[\text{Ca}^{2+}]_i$ elevation and cause subsequent release of vasoactive substances from EC.

Interestingly, in a previous study incubation of HUVEC with a cocktail designed to eliminate ATP, ADP, AMP and adenosine (a mixture of hexokinase, apyrase and adenosine deaminase), lowered the basal $[\text{Ca}^{2+}]_i$, and this was reversible after a wash (Schwiebert et al., 2002). This
suggested that constitutive release of ATP from the endothelium serves to maintain the basal 
\([\text{Ca}^{2+}]_i\) level in the EC themselves. In light of the results of Chapter 4 and of the present 
study, it is suggested that in hypoxia, more ATP is released which serves to raises the \([\text{Ca}^{2+}]_i\) 
of the EC, and presumably in turn to mediate Ca\(^{2+}\)-dependent production and release of 
vasoactive substances such as NO, PG, EDHF and ATP. It is possible that this forms part of a 
positive feedback mechanism, as an increase in \([\text{Ca}^{2+}]_i\) in EC itself causes significant ATP 
release (see Chapter 4 Section 4.3.6). As umbilical blood flow is usually constant despite 
changes in the prevailing \(\text{PO}_2\) (Jensen et al., 1999), this mechanism may play an important 
role in maintaining adequate fetal perfusion during intrauterine hypoxia. In future studies it 
would be important to monitor release of the vasodilator (e.g. NO and PGI\(_2\)) induced by ATP 
under normoxic and hypoxic conditions that compare to \(\text{PO}_2\) values present in the umbilical 
vein \textit{in situ}.

In summary, it was shown that ATP induced a \([\text{Ca}^{2+}]_i\) elevation in HUVEC. The \text{Ca}^{2+} 
response was initially dependent on release from intracellular stores, via P2Y receptors while 
\text{Ca}^{2+} entry, possibly via P2X\(_{4/6}\), was responsible for the sustained phase. Store depletion by 
either ATP, or TG, activated CCE. On its own, hypoxia induced a \([\text{Ca}^{2+}]_i\) increase in HUVEC, 
which was much smaller than that induced by ATP (10 µM). Moreover, hypoxia had an 
inhibitory effect on the ATP-induced \text{Ca}^{2+} response. It is proposed that this was likely due to 
inhibition of CCE by ROS generated in mitochondria.
CHAPTER 7

VASOMOTION IN THE HUMAN UMBILICAL ARTERY AND THE EFFECT OF HYPOXIA
7.1. INTRODUCTION

In the studies described in Chapter 4 & 5, it was shown that HUVEC and HUAEC released ATP constitutively, and that in HUVEC at least ATP release was accentuated by hypoxia. On the other hand, it was shown in studies described in Chapter 3 that exogenous ATP induced $[\text{Ca}^{2+}]_i$ oscillations in HUASMC which, as described in Chapter 1 Section 1.5.2, are believed to drive vasomotion. Thus, the experiments in the present chapter were designed to test the hypothesis in preparations of whole umbilical artery rings that ATP released from endothelium acts in an autocrine manner, via the release of vasoactive substances from EC, or in a paracrine manner to activate purinoceptors on underlying SMC to cause vasomotion. As indicated in Chapter 3 & 6, extracellular Ca$^{2+}$, purinoceptors and SOCC/ROCC are all implicated in $[\text{Ca}^{2+}]_i$ oscillations in HUASMC, and in the Ca$^{2+}$ response to ATP stimulation in HUVEC. Thus, the potential role of these in umbilical artery vasomotion was also explored. As discussed in Chapter 1 Section 1.4.4.1, ATP in the extracellular space is readily broken down by EN to ADP, AMP, adenosine and inorganic phosphate. Hence, experiments were also designed to explore the potential role of these purines in the arterial vasomotion.

It is generally accepted that the rhythmic contractions and relaxations of arterial vessels result in enhanced O$_2$ delivery to surrounding tissues. The fact that the number of incidence, frequency and relative amplitude of vasomotion was increased following a reduction in blood flow or haematocrit (Rucker et al., 2000; Lee et al., 2005) led to the present hypothesis that during hypoxia, more ATP is released from EC or other source, which in turn causes, or changes the property of background, vasomotion (Chapter 1 Section 1.6). This was tested in the studies described below. Clearly, the endothelium plays a central role in this hypothesis. Therefore, some of the experiments described below involved attempts to denude the
umbilical artery rings. The umbilical artery is part of a specialised circulation which does not show endothelium-dependent relaxation in response to acetylcholine (Lovren & Triggle, 2000). Hence, an immunohistochemistry approach was taken to assess the physical integrity of the blood vessel.

7.2. METHODS

The details of the methodology of dissection, normalisation and calibration are described in Chapter 2 section 2.4.

PROTOCOLS

7.2.1. Group 1: Development of an experimental model for vasomotion

A total of 42 umbilical arteries were isolated from 42 individual donors using the dissection methods developed in this study (see Chapter 2 Section 2.4.1). 4 vessel rings were dissected from each vessel, mounted on supporting pins, and normalised to resting tension (see Chapter 2 Section 2.4.3). After an hour of equilibrations, they were challenged with modified Krebs-Ringer buffer with 70mM K⁺. Changes in isometric tension were recorded for offline analysis.

In 17 vessel rings that did not display spontaneous vasomotion after an hour of incubation, they were challenged with ATP (0.01, 0.03, 0.1, 0.3, 1, 3, 10 mM; 10 min), each challenge separated with a 20 min wash interval.

7.2.2. Group 2: Role of extracellular Ca²⁺

Human umbilical artery rings were prepared as in Group 1. In order to access the role of extracellular Ca²⁺ in vasomotion, extracellular Ca²⁺ in the Krebs-Ringer buffer was replaced
with the Ca\textsuperscript{2+} chelator EGTA (200 µM) when vasomotion was established. After 20 min, buffer was change to normal Krebs-Ringer (with Ca\textsuperscript{2+}). This was tested on 4 arterial rings from 2 separate donors.

7.2.3. Group 3: Role of endothelium

In order to assess the role of the endothelium in vasomotion, the endothelium was removed from half of the vessel from each donor by gentle injection of air thorough the vessel lumen with a syringe connected to a cannula, before mounting on supporting pins (see Chapter 2 Section 2.4.3). It has previously been shown by immunohistochemiscal technique that this process was successful in denuding umbilical arteries (Bodelsson & Stjernquist, 1994). After the myograph experiments, vessel rings from both intact and denuded groups (2 each) from 3 separate donors were frozen and stained for the endothelium-specific marker CD31 (see Chapter 2 section 2.4.4).

7.2.4. Group 4: Role of purinoceptors

Human umbilical artery rings were prepared as in Group 1. To test if vasomotion was mediated by purinoceptors, the non-specific P2 receptor antagonist suramin (100 µM) was applied to vessel rings displaying vasomotion. After 15 mins, the incubating buffer was changed to normal Krebs-Ringer. 100 uM suramin has been shown to inhibit ATP-induced contraction in rat mesenteric arteries. It was tested on 7 vessel rings isolated from 2 separate donors.
7.2.5. Group 5: Role of IP$_3$R and SOC / ROC channels

Human umbilical artery rings were prepared as in Group 1. In order to test for a role for IP$_3$R and SOC / ROC channels in vasomotion, the non-specific inhibitor 2-APB (100 µM), was used as in Group 4, in the same manner as suramin (see above). IP$_3$R and SOCC / ROCC have been previously shown to be sensitive to inhibition by 100 µM or lower concentrations of 2-APB (Bootman et al., 2002; Facemire & Arendshorst, 2005).

7.2.6. Group 6: Role of adenosine

Human umbilical artery rings were prepared as in Group 1. In order to test whether adenosine, a downstream product of ATP breakdown, plays a role in vasomotion, the P1 receptor antagonist 8-SPT was used as in Group 4, in the same manner as suramin (see above). 100 µM 8-SPT has been shown to completely reverse the effect of adenosine in an organ bath situation not dissimilar to that used in the present study (Ziganshin et al., 2009). 8-SPT was purchased from Sigma-Aldrich, U.K. and was made up as 1000x frozen stock solution in DMSO before dilution to the working concentration on the day of experiments.

7.2.7. Group 7: Effect of hypoxia

Human umbilical artery rings were prepared as in Group 1. In order to explore the effect of hypoxia on vasomotion, once vasomotion was established, the superfusate was bubbled with 95% N$_2$ / 5% CO$_2$, with a gentle flow of argon above the recording chamber (see Chapter 2 Section 2.4.3). After 15 min, the air was to bubble the superfusate was returned to normal 21% O$_2$ / 5% CO$_2$ with balances N$_2$. This was tested on 6 vessel rings from 2 separate donors.
7.2.8. Group 8: Effect of apyrase

Human umbilical artery rings were prepared as in Group 1. In order to test the hypothesis that ATP or ADP is responsible for vasomotion, apyrase (2 U/ml; 30 min) was applied to vessel rings that were displaying vasomotion. This concentration of apyrase was shown to inhibit ATP-induced Ca\(^{2+}\) response in HUVEC (Nejime et al., 2008). After 30 min, the vessel rings were exposed to hypoxia (50 mmHg; 15 min) as in Group 7, in the presence of apyrase. The frequency and amplitude of vasomotion during the three periods: \(PO_2\) 160mmHg, apyrase, and hypoxia in the presence of apyrase, were monitored and recorded. The apyrase used was purchase from Aigma-Aldrich, U.K. and has a mixture of high and low ATPase/ADPase ratio. It was dissolved in normal Krebs-Ringer buffer on the day of experiment as described in Chapter 2 Section 2.4.3.

7.3. RESULTS

7.3.1. Group 1

Spontaneous contractions and relaxations were found in 62.5% of the arterial rings (Fig 7.3.1). The frequency and amplitude of the rhythmic contractions and relaxations varied between different rings, averaging 1.32 ± 0.10 min\(^{-1}\) and 2.74 ± 0.55 mN respectively. The duration also differed, with some lasting over 12 hr if left uninterrupted (data not shown).

In vessel rings that did not display spontaneous contractions and relaxations, stimulation of exogenous ATP (0.01, 0.03, 0.1, 0.3, 1, 3, 10 mM; 10 min) all caused a short-lasting contraction but not vasomotion (e.g. Fig 7.3.2 for 10 µM; not all data shown).

7.3.2. Group 2
When extracellular Ca\(^{2+}\) was replaced with Ca\(^{2+}\) chelator EGTA (200 µM), vasomotion was inhibited, and the basal tension decreased. After 20 min, when normal Krebs-Ringer buffer (with Ca\(^{2+}\)) was re-introduced to the vessel rings, vasomotion re-appeared (Fig 7.3.3).

7.3.3. Group 3
In the vessel rings that have not been denuded, the luminal surface showed positive staining for CD31 (Fig 7.3.4 Upper). Further, in the vessel rings that have undergone the denuding process, the luminal space still showed positive staining for CD31 (Fig 7.3.4 Lower).

7.3.4. Group 4
In human umbilical artery rings that displayed vasomotion, addition of suramin (100 µM; 15 min) did not change either the frequency or amplitude of established vasomotion in human umbilical artery rings (Fig 7.3.5).

7.3.5. Group 5
In human umbilical artery rings that displayed vasomotion, addition of 2-APB (100 µM; 10 min) did not change either the frequency or amplitude of established vasomotion in human umbilical artery rings (Fig 7.3.6).

7.3.6. Group 6
In human umbilical artery rings that displayed vasomotion, addition of 8-SPT (100 µM; 20 min) did not change either the frequency or amplitude of established vasomotion in human umbilical artery rings (Fig 7.3.7).
7.3.7. **Group 7**

In human umbilical artery rings that displayed vasomotion, hypoxia (50 mmHg; 15 min) caused an immediate increase in the frequency but decrease in amplitude in vasomotion of human umbilical artery rings, and the effect was reversible upon returning to $PO_2$ 160mmHg (Fig 7.3.8). Further, it is an increased in tough tension of the oscillation which resulted in decreased amplitude. The effect was consistent in all vessel rings tested (Fig 7.3.8 Lower).

7.3.8. **Group 8**

In human umbilical artery rings that displayed vasomotion, incubation with apyrase (2 U/ml; 30min) did not affect the frequency or amplitude of the vasomotion (Fig 7.3.9). After 30 min, the vessel wings were exposed to hypoxia (50 mmHg; 15min), which increased the frequency and decreased the amplitude of the vasomotion (Fig 7.3.9), as in the absence of apyrase (see *Group 7*).
Figure 7.3.1. Original recording of isometric force generated by human umbilical artery rings.

Spontaneous rhythmic contractions and relaxations were found in 62.5% of arterial rings.

Figure 7.3.2. Original recording of isometric force generated by human umbilical artery rings.

ATP (10 µM) caused a transient contraction in umbilical artery rings that did not generate vasomotion. This is representative of 9 vessel rings from 3 different donors.
Replacement of extracellular Ca\(^{2+}\) with Ca\(^{2+}\) chelator EGTA (200 µM; 20 min) inhibited vasomotion. It also lowered basal tension of the arterial rings. Vasomotion and basal tension was recoverable following replacement of Ca\(^{2+}\) into the incubating buffer. This is representative of 4 recordings from 2 individual donors.
Fig 7.3.4. CD31 and DAPI co-staining of human umbilical artery rings.

Upper: Example of a 12 µm thick section of an umbilical artery ring which has not been denuded. The luminal surface was stained positive for CD31.
Lower: Example of a 12 µm thick section of an umbilical artery ring from a vessel that has undergone the denuding process. The luminal surface still showed positive staining for CD31.
Both images were taken at 252ms (CD31) and 53 ms (DAPI) at 100X magnification, and are typical of sections of their respective groups. CD31 staining appears red and DAPI staining appears blue.
Figure 7.3.5. The role of purinoceptors in vasomotion of human umbilical artery.

Histograms showing frequency and amplitude of vasomotion in the presence and absence of suramin (100 µM; 15 min). Suramin had no effect on either frequency or amplitude of vasomotion. $P = 0.45$ (frequency) and 0.95 (amplitude). ± = S.E.M. n=7 from 2 different donors (n=number of arterial rings).
Figure 7.3.6. The role of IP3R, SOC and ROC channels in vasomotion of human umbilical artery.

Histograms showing frequency and amplitude of vasomotion in the presence and absence of 2-APB (100 µM; 10 min). 2-APB had no effect on either frequency or amplitude of vasomotion. $P = 0.08$ (frequency) and 0.84 (amplitude). $\pm$ = S.E.M. $n=7$ from 2 different donors ($n$=number of arterial rings).
Figure 7.3.7. The role of adenosine in vasomotion of human umbilical artery.

Histograms showing frequency and amplitude of vasomotion in the presence and absence of 8-SPT (100 µM; 20 min). 8-SPT had no effect on either frequency or amplitude of vasomotion. $P = 0.23$ (frequency) and 1.00 (amplitude). ± = S.E.M. $n=7$ from 2 different donors ($n$=number of arterial rings).
Figure 7.3.8. The effect of acute hypoxia on [Ca$^{2+}$]$_i$ in human umbilical artery.

Upper: Original recording showing effect of acute hypoxia on vasomotion in a vessel ring. Bar indicates period of hypoxia (PO$_2$ 50mmHg). As can be seen the response evoked by hypoxia reversed quickly and was repeatable.

Lower: Columns showing the frequency and amplitude of vasomotion ± S.E.M in PO$_2$ 160mmHg and hypoxia. Hypoxia consistently increased the frequency but decreased the amplitude of vasomotion. n=6 from 2 separate donors (n=number of arterial rings). ***P < 0.01.
Figure 7.3.9. The effect of apyrase on vasomotion of human umbilical artery rings in normoxia and hypoxia.

Bar indicates the frequency and amplitude ± S.E.M of vasomotion in normoxia, apyrase (2 U/ml), and hypoxia in the presence of apyrase (50 mmHg; 2 U/ml). Vasomotion was not affected by incubation of the vessel rings in apyrase (2 U/ml; 30 min). After the pre-incubation and in the presence of apyrase (2 U/ml; 30 min), hypoxia increased the frequency and decreased the amplitude of vasomotion. n = 6 from 2 different donors (n=number of arterial rings). ***P < 0.05.
7.4. DISCUSSION

The studies described in the present chapter demonstrated that spontaneous vasomotion occurred in a majority of freshly isolated human umbilical arterial rings. The vasomotion was insensitive to separate blockade by the non-specific P2 antagonist suramin, the general IP$_3$R and SOCC/ROCC inhibitor 2-APB, or the adenosine antagonist 8-SPT. In contrast, replacement of extracellular Ca$^{2+}$ with Ca$^{2+}$ chelator EGTA abolished vasomotion. Exogenous ATP induced contraction but not vasomotion in vessel rings that did not display spontaneous vasomotion. Furthermore, acute hypoxia ($P_O_2$ 50 mmHg) increased the frequency but lowered the amplitude of vasomotion. Pre-incubation of the isolated umbilical artery rings in apyrase, which hydrolyses extracellular ATP to downstream nucleotides and inorganic phosphate, did not affect vasomotion *per se* or the effect of hypoxia.

7.4.1. Characteristics of the vasomotion

Using the isolation technique developed in the present study (see Chapter 2 Section 2.4.1), 62.5% of the arterial rings developed spontaneous rhythmic contractions and relaxations. According to the definition of Nilsson et al (2003), these variations in vascular tone can be considered as vasomotion, as they clearly fulfilled two important criteria: that they were neither a consequence of heartbeat or respiration, nor a result of neuronal input. Further, the fact that the frequency and amplitude of the rhythmic contractions and relaxations are consistent to those previously reported (Garcia-Huidobro *et al* 2006, but also see Chapter 1 Section 1.5.2), and that the oscillations persisted for $>12$ hr if uninterrupted, strongly suggests that they were what is generally referred to as physiological vasomotion. Importantly, the frequencies of the vasomotion in the human umbilical arterial rings and that of ATP-induced [Ca$^{2+}$]$_i$ oscillations in HUASMC (Chapter 3 Section 3.3.1) were broadly similar ($\sim$0.01Hz),
which supports findings from previous studies which also demonstrated synchronicity between vasomotion and $[Ca^{2+}]_i$ oscillations when these were simultaneously recorded (Aalkaer & Nilsson, 2005).

In a previous study on vasomotion in umbilical and placental vessels, it was found that removal of the endothelium cause a modest reduction in the amplitude (umbilical vein) or frequency (chorionic vein); the effect on the umbilical artery vasomotion was not tested (Garcia-Huidobro et al., 2007). In the present study, an attempt was made to test the role of the endothelium in the umbilical artery, but the endothelium remained intact in the present study despite the denuding procedure of injecting air. It is difficult to understand why this procedure failed for it was previously shown to succeed in removing the endothelium in previous studies in human umbilical artery rings (Bodelsson & Stjernquist, 1994). It would be important to properly test the role of endothelium in future studies on umbilical artery.

7.4.2. Role of extracellular $Ca^{2+}$

As discussed in Chapter 1 Section 1.5.2, the mechanisms underlying vasomotion are currently poorly understood. In the present study, it was found that replacement of extracellular $Ca^{2+}$ with the $Ca^{2+}$ chelator EGTA inhibited vasomotion in human umbilical arterial rings. This is consistent with the paradigm that $[Ca^{2+}]_i$ plays a significant role in the contractions and relaxations, as $[Ca^{2+}]_i$ oscillations are reported to be in temporal synchronisation with the variation in vessel tone in a number of blood vessels (Aalkaer & Nilsson, 2005). If this is indeed the case, then the theoretical model proposed by Sneyd et al (see Chapter 3 Section 3.4) would suggest that the $Ca^{2+}$ entry into the HUASMC as discussed in Chapter 3 is essential in mediating the vasomotion observed in the arteries of the present study.
In the studies described in the present chapter, it was found that neither the non-specific P2 receptor antagonist suramin, nor the IP$_3$R and SOC/ROC channel inhibitor 2-APB, nor the adenosine antagonist 8-SPT affected vasomotion once it was established. Considering the findings in Chapter 4 which showed that HUAECs constitutively release ATP from both their apical and basolateral surfaces, and that exogenous ATP induced concentration-dependent $[\text{Ca}^{2+}]_i$ oscillations in HUASMC (Chapter 3), it was logical to hypothesise that ATP, once released, may act directly on the underlying SMC, or indirectly through the action of endothelial active substances (see Chapter 1 Section 1.3.6.3 & 1.3.6.4). Taken at face value, the findings presented here suggest that this may not be the case in human umbilical arteries. Notwithstanding, three important facts should be noted.

First, the antagonists of ATPs mechanism of action were applied in the Krebs’ incubating the arterial rings which were mounted on supporting pins. As a significant amount of connective tissue was deliberately retained on the external surface of the arterial ring preparation in order to facilitate vasomotion (see Chapter 2 Section 2.4.1), it may be that the various antagonists used in the present study did not reach the VSM effectively from the abluminal surface and did not reach myo-endothelial border; they may even have been confined to the apical surface of EC. Notably, we cannot be sure that the antagonists penetrated through the endothelial basolateral surface and internal layer to reach the VSM of the media from the adluminal surface. If this is the case then the present results would suggest that the autocrine actions of ATP released from the apical membrane of HUAEC was not important in vasomotion. However, they do not eliminate the possibility that ATP released from the basolateral surface of the EC was acting in a paracrine manner on underlying HUASMC to facilitate vasomotion.
Second, it should be noted that the antagonists were applied when vasomotion was already established. It was reported in Chapter 3 that ATP (100 µM) induced \([\text{Ca}^{2+}]_i\) oscillations in HUASMC, and these could not be inhibited by separate application of suramin, 2-APB or the VOCC inhibitor nifedipine, but were inhibited by a combination of these antagonists. Therefore, the findings described here, that separate inhibition of the individual \(\text{Ca}^{2+}\) entry pathways did not inhibit established vasomotion, do not preclude the possibility that a combination of these antagonists may have inhibited vasomotion as was the case in \([\text{Ca}^{2+}]_i\) oscillations in HUASMC (Chapter 3 Section 3.3.4). Nor do they preclude the possibility that these pathways were important in the generation of vasomotion. In future studies, co-application of a combination of the inhibitors of these pathways during vasomotion would be warranted, although the access problem discussed above may still be an issue.

Third, as discussed in Chapter 3 Section 3.4.3 & Chapter 6 Section 6.4.1, not all P2 receptors are sensitive to inhibition by suramin. Indeed, the findings in Chapter 3 strongly suggested that ATP-induced \([\text{Ca}^{2+}]_i\) oscillations in HUASMC were mediated by P2Y\(_4\) receptors, which are insensitive to suramin even at high concentration (Charlton et al., 1996; Wildman et al., 2003). Thus, when a P2Y\(_4\) receptor antagonist becomes available, its effect on vasomotion in human umbilical artery rings should be tested.

7.4.3. Role of ATP

In the present study, exogenous application of ATP to quiescent umbilical arterial rings caused contraction, and contrary to the hypothesis set out in Chapter 1, did not evoke vasomotion. As indicated above, one of the more obvious limitations of the preparation is
that the site of action of any drugs is not clear. It is not clear whether ATP produced this effect by acting on abluminal receptors on VSM, and/or apical receptors on EC and/or whether it reached adluminal surface of VSM. Whichever combination is the case, this does not reflect the in vivo situation where ATP might be released from EC or RBCs. It would have been helpful if it had been possible to perform the same experiment with prior removal of the endothelium, to isolate the site of action of ATP to SMC alone. Certainly, a role for ATP in vasomotion in human umbilical artery cannot be excluded on the basis of the present results: ATP receptors that are important in generating vasomotion could be on the surface of VSM that faces basolateral membrane of the endothelium and these may not have been reached by exogenous ATP. Clearly, experiments on the umbilical artery to investigate the potential role of ATP should be done with and without the endothelium, and with and without inhibitors of the transporter uptake mechanisms for ATP and other purines and of ENs, for the endothelium can act as a metabolic barrier for the diffusion of ATP to VSM.

It is interesting to note that incubation with apyrase, which hydrolyses extracellular ATP and ADP into their downstream nucleotides and inorganic phosphate, also did not affect vasomotion in umbilical artery rings. As apyrase was dissolved in the Krebs’ bathing the arterial rings, this might suggest that constitutive release of ATP from the apical surface of EC is not important in the maintenance of vasomotion. However, as discussed above for the other antagonists applied to the vessel preparation, it is not clear whether apyrase crossed the endothelial barrier or the surrounding supporting tissue to the underlying SMC. Therefore, the lack of effect of apyrase does not exclude the possibility that ATP released from the basolateral surface of EC acted on the underlying SMC to affect vasomotion.
7.4.4. Effect of hypoxia

A novel finding of the present study is that when umbilical arterial rings that were displaying vasomotion were exposed to acute hypoxia (a change of 150 to 50 mmHg $PO_2$), the pattern of the vasomotion immediately altered such that background tone was increase and vasomotion was changed to one with significantly higher frequency and lower amplitude. This is in direct contrast to a comparable study on umbilical vein, where separate recordings in 20% or 95% O$_2$ perfused solution did not affect vasomotion (Garcia-Huidobro et al., 2007). According to the findings presented in the present thesis, it can be proposed that hypoxia caused contraction and increased the frequency of vasomotion by elevating the concentration of ATP present in the myo-endothelial junction, by increasing ATP release from EC, such that ATP acted on P2X and P2Y$_4$ receptors on VSM to increase the frequency of $[Ca^{2+}]_i$ oscillations in HUASMC as discussed in Chapter 3. The fact that these higher frequency oscillations in vasomotion were superimposed on tonic contraction (Fig 7.3.8) is more difficult to explain, but which could also be an consequence of increased $[Ca^{2+}]_i$ due to P2 receptor activation.

As discussed in Chapter 1 Section 1.5.1, the physiological consequences of vasomotion are poorly understood, but it is now generally accepted that it increases tissue oxygenation of surrounding tissue and organs. This view is largely based on mathematical modelling of capillary beds, whereas the umbilical artery, which conducts deoxygenated blood from the fetus to the placenta, is clearly a conduit vessel. Nevertheless, studies in sheep umbilical artery indicated that a significant proportion of arteriovenous pressure gradient (30 ± 6%) occurred across the umbilical arteries (Adamson et al., 1992). This suggests that, in contrast to other systemic arterial vessels, and in line with the current view that the umbilical circulation represents a unique and separate vascular system, the umbilical arteries do provide
significant vascular resistance. Hence, changes in its contractility induced by hypoxia may well have considerable impact on the delivery of fetal blood to placenta for oxygenation and therefore oxidative status of the fetus.

Pre-incubation of umbilical artery rings in apyrase did not alter vasomotion in $PO_2$ 160mmHg or the effect of hypoxia on vasomotion. This might be surprising, if the effect of hypoxia were mediated by ATP. However, as argued above, the apyrase may not have reached the myo-endothelial junction area to act on additional ATP released from the basolateral surface of the EC towards VSM. Further, it is possible that once vasomotion is induced, it relies on a self-perpetuating mechanism which does not require the continual presence of ATP in the extracellular space.

In order to further our understanding of the mechanisms underlying vasomotion in human umbilical artery, a number of improvements to the technique used in the present study seems paramount. Since it was not possible to identify the site of action of any of the pharmacological agents on the arterial ring preparation used in the present study, it is essential to develop a reliable technique for removing the endothelium. For the same reason, it would be sensible to repeat some of the experiments in a pressurised myography system, where the application of pharmacological agents can be directed specifically to the intra- or extraluminal surfaces of the arterial rings. Further, an underlying assumption for the studies described in the present chapter is that $[Ca^{2+}]_i$ oscillations in HUASMC drive vasomotion. This could be examined more closely by simultaneously measuring vascular tension and $Ca^{2+}$ signalling, as has been done in several vascular beds such as rat mesenteric artery (Jensen et al., 1993).
CHAPTER 8

GENERAL DISCUSSION
8.1. GENERAL DISCUSSION

In the present thesis, data obtained by using a number of techniques and cell types have been included. The findings have been discussed in the individual chapters. The aim of the present chapter is to integrate these concepts (Fig 8.1).

It is well recognised that intermittent perfusion of the placenta, which involves changes in O$_2$ delivery, around the end of the first trimester produces I/R-type injury, and that ROS and intrauterine hypoxia are features of all normal pregnancies. Further evidence suggests that it is the balance between the anti-oxidant mechanisms and ROS levels that determine the success or failure of pregnancies. In PE, conversion of spiral arteries is incomplete, which leads to their retained exaggerated contractility. Consequently, the variability of P$_O_2$ at the placental exchange surface is increased, leading to excessive ROS. It is proposed that this contributes to the fetal and maternal symptoms of PE.

Clearly, the umbilical vessels are part of the uteroplacental circulation. The role of vasomotion, and the effect of hypoxia on vasomotion on these vessels has received relatively little attention. A main hypothesis of this study was that in hypoxia, ATP would be released from EC of the umbilical artery and vein, and act on the underlying VSM to induce or modulate vasomotion, thus affecting the blood flow and O$_2$ delivery to and from the fetus and the placenta. A second hypothesis was that ATP may act on EC to modulate release of endothelial-derived vasoactive substances.

The ATP release experiments of Chapter 4 clearly showed that constitutive release of ATP occurred in 21% O$_2$, and the release was greater from the apical than the basolateral surface of HUAEC and HUVEC (Fig 8.1). Further, in HUVEC at least, the release recorded was
accentuated in hypoxia, and this was similarly polarised (Fig 8.1). It was apparent that this may also be the case in HUAEC, but technical difficulties with adhesion of HUAEC to the culture inserts meant that the difference in ATP release from in 21% O2 and hypoxia did not reach statistical significance. Previous studies in the context of hypotonic stress have similarly demonstrated that a number of EC, including HUVEC and HUAEC, constitutively release ATP, and the release was accentuated by hypotonic challenge (Schwiebert et al., 2002). They too, showed that release of ATP is predominantly from the apical membrane, but also from the basolateral membrane. Interestingly, blockade of PI3K was able to inhibit hypoxia-induced release of ATP in the present study as it did whether it was shear stress-, hypotonic-, or hypoxic-induced, as in the present study. However, it seems that the downstream pathway involved are different; shear stress: Akt/PKB; hypotonic: MAPK/ERK1/2; hypoxia: Rho/ROCK [Chapter 4 and (Li et al., 2005; Nandigama et al., 2006; Woodward et al., 2009)]. This suggests that PI3K may be a common pathway which is involved in ECs detecting changes in their external milieu. Indeed, as discussed in Chapter 1, it was shown that shear stress-induced release of ATP from HUVEC was accentuated by hypoxia (Bodin & Burnstock, 1995).

Evidence was later provided by using brefeldin A and monensin which showed that shear stress-induced release of ATP from HUVEC is mediated by vesicles (Bodin & Burnstock, 2001a). The mechanisms mediating cellular ATP release in response to hypoxia was not investigated, but recently in calf vaso vasorum EC, it was reported that ATP release was vesicular on the basis that antagonists that targeted vesicular transport reduced hypoxia-induced release of ATP (Woodward et al., 2009). The present study showed that this is also the case for HUVEC, but importantly, in addition to quantifying ATP release with luciferase
(Chapter 4), the present study provided direct evidence by using quinacrine, which has a high affinity to ATP, and showed that ATP are contained in vesicles in HUVEC, and that ATP is released from the vesicles in hypoxia (Chapter 5; Fig 8.1). Furthermore, by artificially elevating \([\text{Ca}^{2+}]\) in HUVEC, which is the principle trigger of vesicular release in neurones and secretory cells, it was shown that ATP release from both apical and basolateral membrane of HUVEC was significantly accentuated (Chapter 4; Fig 8.1). The lack of effect of NO donor on release of ATP showed that the mechanisms underlying adenosine and ATP release are different, and that NO generation by HUVEC in response to ATP does not feedback to generate more ATP release. These data provided vital new evidence to support a role of vesicular release in ATP from EC in hypoxia, which has obvious physiological consequences, which were discussed in Chapter 1 Section 1.3.6.
Figure 8.1. Schematic diagram of the major findings of the present thesis.
The findings described in Chapter 3 showed that extracellular ATP caused $[\text{Ca}^{2+}]_i$ oscillations in HUASMC where the frequency and amplitude were dose-dependent. By using UTP and suramin, evidence was presented which showed that P2Y$_4$ receptors are especially important in initiating the $[\text{Ca}^{2+}]_i$ oscillations, but that multiple Ca$^{2+}$ entry pathways participate in maintaining the Ca$^{2+}$ load necessary for oscillations (Fig 8.1). Such $[\text{Ca}^{2+}]_i$ oscillations are considered to drive vasomotion (see Chapter 1 Section 1.5.2).

Indeed, freshly isolated umbilical arteries also displayed spontaneous vasomotion (Chapter 7), and the frequency of these was in accordance with the frequency of the $[\text{Ca}^{2+}]_i$ oscillations in HUASMC, especially between 10-50uM [ATP] range (cf Fig 3.3.2 & 7.3.8), consistent with the idea that ATP released from HUAEC might be responsible for initiating vasomotion in the umbilical artery rings. Vasomotion in the umbilical artery rings was similarly dependent on extracellular Ca$^{2+}$, and attempts were made in experiments of Chapter 4 to link ATP with generation or maintenance of vasomotion in umbilical artery. Separate antagonism of P2, SOCC / ROCC or P1 receptors did not affect vasomotion, although a combination of these was not tested (the combination considerably inhibited ATP-induced $[\text{Ca}^{2+}]_i$ oscillations in HUASMC). Moreover, incubation of the blood vessel in apyrase, which was intended to metabolise endogenous ATP and ADP, or 8-SPT, a P1 (adenosine) receptor antagonist, did not affect vasomotion. However, in the myograph experiments apyrase or 8-SPT was applied into the Krebs’ incubating intact vessel rings. Therefore, it is possible that the antagonists did not have adequate access to ATP released at active site, such as the myo-endothelial junction, which it is important for vasomotion.
Attempts were also made to remove the endothelium as a source of ATP by bubbling of air into the lumen of the vessels. However, this did not denude the endothelium, even though this technique has previously been shown successful (Bodelsson & Stjernquist, 1994). Hence, in order to properly investigate the role of EC, the expected source of ATP, in vasomotion, chemical removal of the endothelium, such as by saponin, would be a crucial experiment (Graser et al., 1988).

Interestingly, however, hypoxia did increase the frequency of the vasomotion, whilst decreasing the amplitude (Chapter 7). It is possible that hypoxia released larger quantities of ATP basolaterally from HUAEC, which acted in a paracrine manner on HUASMC and increased the Ca\textsuperscript{2+} load in these cells, leading to the effect on vasomotion.

Results from Chapter 6 showed that, in 21% O\textsubscript{2}, exogenous ATP increased [Ca\textsuperscript{2+}]\text{\textsubscript{i}} in HUVEC. The initial increase was likely due to activation of P2Y receptors, while the sustained phase was due to P2X\textsubscript{4/6} receptors (Fig 8.1). In addition, it was shown that SOCC/ROCC are functionally active, and contributed to the ATP-evoked [Ca\textsuperscript{2+}]\text{\textsubscript{i}} increase in HUVEC. Hypoxia \textit{per se} induced a small [Ca\textsuperscript{2+}]\text{\textsubscript{i}} elevation, and taking the results of Chapter 4 in consideration, it seems likely that the Ca\textsuperscript{2+} response was at least in part due to release of ATP from the apical membrane in response to hypoxia, which acted in an autocrine way on P2 receptors on HUVEC (Fig 8.1). Further, since increasing the Ca\textsuperscript{2+} in HUVEC by the ionophore A23187 also induced ATP release (presumably via vesicular release; see Chapter 6), it is proposed that hypoxia-induced ATP release can lead to further release of ATP, forming a positive feedback loop (Fig 8.1). The finding that the combination of ATP with hypoxia led to a smaller increase in [Ca\textsuperscript{2+}]\text{\textsubscript{i}} than ATP in 21% O\textsubscript{2} is not inconsistent with that suggestion. It simply
suggests that \textit{in vivo} there is a balance between all the effects acting on HUVEC simultaneously.

As discussed, mitochondrial ROS production is known to be increased in hypoxia, and it was shown in calf pulmonary EC that ROS inhibited CCE entry (Chandel & Schumacker, 2000; Florea & Blatter, 2008). Since CCE and extracellular \( \text{Ca}^{2+} \) are clearly important in ATP-induced \( \text{Ca}^{2+} \) elevation in HUVEC (Chapter 4 Section 6.4.2 & 6.4.3), it is reasonable to suggest that ROS-induced inhibition of CCE in HUVEC might have led to the depressed \( \text{Ca}^{2+} \) response to ATP reported in the present thesis. The data presented in the present these therefore provides an important indication of how HUVEC may respond to ATP stimulation \textit{in vivo}, when it is likely to be hypoxia, and where the [\( \text{Ca}^{2+} \)]\text{\textsubscript{i}} level would be important in activating release of endothelium-derived vasoactive substances such as NO and PGI\(_2\). In future studies, it would be important to test if antioxidants were able to influence the effect of hypoxia on ATP-induced \( \text{Ca}^{2+} \) response in HUVEC.

As ATP release from HUVEC is dependent on [\( \text{Ca}^{2+} \)]\text{\textsubscript{i}} (see Chapter 4 Section 4.4.3), it is possible that ROS generated in hypoxia impairs or blunts hypoxia-induced ATP release from EC. Interestingly, it was reported that the [\( \text{Ca}^{2+} \)]\text{\textsubscript{i}} response to histamine was attenuated in HUVEC from PE pregnancies compared to normal pregnancies (Steinert \textit{et al.}, 2002). However, it was shown that it is the plateau phase of the induced response that was absent in PE-cells. As the plateau phase of agonist-induced [\( \text{Ca}^{2+} \)]\text{\textsubscript{i}} response is sustained by \( \text{Ca}^{2+} \) entry (see Chapter 4 Fig 6.3.4), and that ROS is elevated in PE due to excessive I/R-type injury (Hung & Burton, 2006), it may be that impaired CCE by ROS may play an even greater role in impairing \( \text{Ca}^{2+} \) response to agonists in EC in PE. This is in accordance with the general
hypothesis set out in *Chapter 1 Section 1.6* (in Chapter 1 Fig 1.9), and suggests that excessive I/R-type injury in PE may lead to decreased ATP release from EC, leading to attenuated or absent vasomotion in the utero-placental circulation. This may provide an explanation for the aetiology of PE.

In the present study, the [ATP] released measured from HUVEC and HUAEC were in the lower nM range at the end of 30 min period of exposure to hypoxia (PO$_2$ 7.6 mmHg). On the other hand, the EC$_{50}$ for evoking [Ca$^{2+}$]$_i$ elevation in HUVEC was in the region of 10 µM. This apparent discrepancy can perhaps be reconciled by the fact that, as discussed in *Chapter 1 Section 1.4.4*, nucleotides in the extracellular space are rapidly hydrolysed by ENs. A list of measured extracellular [ATP] in many different studies was composed by (Lazarowski et al., 2003), and indicated that [ATP] measured by off line techniques, such as the firefly luciferase or HPLC, are broadly similar, and concentrations measured in the present study are consistent with these and other measurements. The major disadvantage of the off-line measurement techniques is that they do not provide any information on the time course of release. More recently, new attempts have been made to quantify [ATP] at the cell surface by genetically modifying the luciferase gene to anchor it to the plasma membrane. Expression of this gene in the model cell line HEK, or ACN neuroblastoma cells, revealed that they released ATP at concentrations of 100-200 µM upon stimulation. Thus, it is likely that estimates made in the present study were underestimated. It may also be noted, as discussed in *Chapter 4 Section 1.4.1*, in vivo and *in vitro* experiments have shown that erythrocytes also releases significant concentration of ATP in hypoxia, at least in the region of 10$^{-6}$ M (Jagger et al., 2001; Ellsworth, 2004). Thus, taken together, there is strong evidence to suggest that during
hypoxia, HUVEC and indeed HUAEC may well be exposed to the concentrations of ATP tested in Chapter 6.

It was hypothesised in Chapter 1 Section 1.6.1 that chronic hypoxia in PE may lead to reduced vasomotion due to increased expression of ENs. In accordance with this, HUASMC were incubated in 1% O_2 for 72 hr. In these cells it was found that the frequency of ATP-induced [Ca^{2+}]_i oscillations was increased at concentrations <100 µM ATP, whereas at concentration > 100 µM ATP, their frequency was reduced (Chapter 3). As discussed earlier, it is not clear exactly what the physiological extracellular [ATP] is under different conditions, but high micromolar concentrations of ATP can be expected to be present at surface of cells in acute hypoxia. It is clear that the role of ENs need to be investigated. Whether the effect of chronic hypoxia on the frequency of ATP-induced [Ca^{2+}]_i oscillations described in Chapter 3 plays a part in the depressed vasomotion in the utero-placental circulation in PE required is a fertile ground for future investigation. In particular, it would be important to investigate the effect of chronic hypoxia on Ca^{2+} signalling in venous SMC.

In summary, in the present study, it was shown that exogenous ATP induced [Ca^{2+}]_i oscillations in HUASMC, the frequency of which is dependent on the [ATP] applied. It is likely that P2Y_4 is responsible for the initiation of the [Ca^{2+}]_i oscillations, and multiple Ca^{2+} signalling pathways, including SOCC, ROCC, VGCC and/or Na^+/Ca^{2+} exchanger, contributed to maintaining the Ca^{2+} load necessary for the continuation of the oscillations. Vasomotion of a similar frequency was found in freshly isolated human umbilical artery rings, the frequency of which was increased in hypoxia. In vitro data showed that HUVEC and HUAEC constitutively released ATP from both their apical and basolateral surfaces, and hypoxia
accentuated the release, at least in HUVEC, but this was also likely the case in HUAEC. Furthermore, the hypoxia-induced ATP release was mediated by a PI3K/Rho/ROCK/vesicular pathway. These results were supported by positive quinacrine staining of ATP vesicles, where hypoxia decreased the staining fluorescence, and antagonists that modulate the vesicular pathway altered the staining pattern in a predictable manner. Finally, it was found that hypoxia and exogenous ATP induced $[\text{Ca}^{2+}]_i$ elevation in HUVEC itself, the latter via P2X$_{4/6}$ activation. It was also found that the ATP-induced $\text{Ca}^{2+}$ response of HUVEC was attenuated in hypoxia, providing novel information on the $[\text{Ca}^{2+}]_i$ response of EC to hypoxia, and ATP, \textit{in vivo}. These novel findings are summarised in Fig 8.1.
APPENDICES

Measured $PO_2$ levels in the vasculature from the airways to the cytosol. Adopted from a recent review article (Ward, 2008).

Composition of EGM® Endothelial Cell Growth Medium (Lonza, Switzerland)

- 10 ng/ml human recombinant epidermal growth factor
- 1.0 mg/ml hydrocortisone
- 3 mg/ml bovine brain extract
- 2% fetal bovine serum
- 0.3mM L-Arginine

Composition of Endothelial Cell Growth Medium (for ATP-release experiments; Promocell, UK).

- 0.1 ng/ml human recombinant epidermal growth factor
- 1.0 µg/ml Hydrocortisone
- 0.4% endothelial cell growth supplement
- 1.0 ng/ml human recombinant basic fibroblast growth factor
- 90 µg/ml heparin
- 2% fetal calf serum
- 0.3mM L-Arginine
REFERENCES


forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulphaphenazole. Clin Sci 105, 513-518.


