eTheses Repository

Modelling of physical and chemical processes in the small intestine

Tharakan, Ajay (2009)
Eng.D. thesis, University of Birmingham.

Loading
PDF (5Mb)

Abstract

Chemical and physical processing in the small intestine is an important step for food digestion and absorption. Having reviewed the literature, a relevant model has been developed which enabled investigation into the fluid flow, mixing mechanisms and delivery of nutrients to the wall of the model small intestine. Designing, developing and using the Small Intestinal Model (SIM), a physical model of a section of the small intestine, mimicking the physiological contractions, allowed mass transfer to be measured using different process conditions and ingredients. Experiments were carried out using the SIM to study mass transfer, starch digestion and flow visualisation. While simulating the small intestinal flow profile, experiments have shown that the functional ingredient guar gum reduces the mass transfer coefficient of the model nutrient riboflavin. This together with computational modelling suggests an explanation for the observed functionality of guar gum to reduce the peak increase in blood glucose levels after ingestion of test meals. Industrial implications are to give a scientific and engineered design methodology for novel food formulations by understanding the food product behaviour in the SIM. Optimisation of formulation candidates going to the human trial stage and improvement of speed to market of new product introductions is intended.

Type of Work:Eng.D. thesis.
Supervisor(s):Fryer, P. J.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Department of Chemical Engineering
Subjects:TP Chemical technology
Institution:University of Birmingham
ID Code:330
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page