eTheses Repository

In situ synchrotron x-ray characterisation and modelling of pitting corrosion of stainless steel

Ghahari, Seyed Majid (2012)
Ph.D. thesis, University of Birmingham.

Click on the icons below to preview their contents ...
Archive (ZIP) (28Mb)Accepted Version


Pit propagation in stainless steels under electrochemical control was investigated using in situ synchrotron X-ray microtomography, which was used to confirm that the lacy covers commonly found for pits in stainless steels grow through perforation of the metal surface by upward growth of rapidly dissolving lobes from the main pit. In situ synchrotron X-ray radiography has been used to observe the evolution of 2D pits growing at the edge of stainless steel foils under electrochemical control in chloride solutions. Pit growth shape, kinetics and stability under current and potential control at various bulk chloride concentrations have been studied. It was found that the pit depth tends to grow under diffusion control, whereas lateral development is influenced by solution conductivity. The impact of the perforated cover on the pit growth and stability was examined and its formation was found to be similar to the observations from 3D by X-ray microtomography. A method for extracting the key dissolution kinetic parameters from radiographs has been developed. The local anodic current density along the boundary of a pit was directly measured from the rate of advance of the pit into the metal. Then the local metal ion concentration and potential drop inside the pit cavity was back-calculated using transport equations and the requirement to maintain charge neutrality, establishing the relationship between local current density, interfacial potential and metal ion concentration in the solution. The predictive model for pit propagation in stainless steel developed by Laycock and co-workers was examined, its sensitivity to key growth parameters was evaluated, and a modified version of the model was developed based on the kinetic parameters extracted from the radiographic measurements.

Type of Work:Ph.D. thesis.
Supervisor(s):Davenport, Alison and Rayment, Trevor
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Metallurgy and Materials
Subjects:T Technology (General)
TN Mining engineering. Metallurgy
TP Chemical technology
TS Manufactures
Institution:University of Birmingham
ID Code:3269
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page