eTheses Repository

Nanoparticles in aqueous environments: a physicochemical and ecotoxicological study of cerium dioxide

Cole, Paula Ann (2011)
Ph.D. thesis, University of Birmingham.

Loading
PDF (5Mb)

Abstract

The unique properties which make cerium dioxide (ceria) nanoparticles (NPs) so useful in e.g. catalytic applications, pose a real risk to environmental systems and species alike. Increasing our knowledge of ceria NP characteristics in a range of aquatic systems was a contributing theme of this thesis. Nano-ceria particle sizes (dH) were found to significantly change due to adjustments in media composition. The addition of Suwannee River fulvic acid to an aquatic media decreased dH up to 88%, significantly increased the negative charge measured from zeta potential (ζ) and increased Ce dissolution by 2%. The presence of test biota significantly increased dH up to 80%, further increased the ζ negative charge and increased Ce dissolution up to 63%, predicted as being due to the
presence of exudates. Nanotoxicological investigations using P. subcapitata showed a convincing size-dependent toxicity to well-defined synthesized nanoceria particles. EC50 values of 5 nm to 35 nm ceria particles (0.013 mgL to
0.8 mgL respectively) showed between 600 and 10 fold increases in toxic response compared to commercial nano-ceria particles (EC50 8 mgL). EC50 of 5 nm and 35 nm ceria particles showed significant metabolic differences compared to controls indicating a cellular response of P. subcapitata as a function of nano-ceria size and dose. Although metabolomic extraction methods are sensitive to cell density and temperature changes, metabolomic analysis has huge potential in future environmental nanoecotoxicological applications using P. subcapitata. It was evident from this study that further work is still required to help develop methods of NP characterisations under environmental conditions with a necessity for a future NP modelling protocol.

Type of Work:Ph.D. thesis.
Supervisor(s):Lead, Jamie R.
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:School of Geography, Earth and Environmental Sciences
Subjects:GE Environmental Sciences
Q Science (General)
Institution:University of Birmingham
ID Code:2888
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page