eTheses Repository

Engine performance and particulate matter speciation for compression ignition engines powered by a range of fossil and biofuels

Rounce, Paul Lindsey (2011)
Ph.D. thesis, University of Birmingham.

Loading
PDF (5Mb)

Abstract

Fuels: Non-renewable fossil fuels are the largest man-made contributor to global warming. Biofuel market share will increase, promoted by renewability, inherent lower net CO\(_2\) emissions, and legislation. The environmental and human health impact of diesel exhaust emission particulate matter (PM) is a major concern. Fossil diesel PM aftertreatment systems exist. Near future fuel PM research and the evaluation of current aftertreatment technology, highlight a route for future development. Using a holistic approach this body of work studies the interdependence between the fuel, the CI engine and associated aftertreatment system. The overall objective of this thesis is the evaluation of current diesel aftertreatment using renewable near future fuels. Diesel blends with 1st and 2nd generation biodiesel fuels are viable. Carefully selected blends like B20G10 can make all round regulated emission improvements. Green additive dimethyl carbonate (DMC) enhances diesel combustion by oxygenation. Regulated emissions of THC, CO (>30% reduced) and PM (50% reduced) for 2% DMC in diesel. 1st generation biodiesel (RME) is widely available. Combustion produces significantly less solid PM than diesel (<50%) and slightly more liquid PM. RME produces less particulate at nearly all particle sizes, but more of the small nano sized liquid SOF. The potentially negative health effect of nano-sized SOF material raises questions. There is a case for more research into the health effects of nano-sized SOF material. Oxygenated fuel combustion PM contains more voids (facilitates DPF oxidation), plus unregulated carcinogenic compounds are reduced. ii Aftertreatment: The efficiency of the oxidation catalyst for the near future fuels was comparable to diesel and PM matter at all particulate sizes is reduced for all near future fuels tested. Aftertreatment total PM filtration levels are >90% by mass >98% by number, for all fuels. For synthetically produced 2nd generation gas to liquid (GTL) fuels there are potentially DPF regeneration implications. Current aftertreatment solutions are as effective for bio alternatives as they are for fossil diesel. Biodiesels, green additives and aftertreatment are effective clean emissions improvements, until the promise of true zero emission vehicles is realised.

Type of Work:Ph.D. thesis.
Supervisor(s):Tsolakis, Athanasios and York, Andy
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Engineering
Subjects:GE Environmental Sciences
GF Human ecology. Anthropogeography
QH301 Biology
TD Environmental technology. Sanitary engineering
TP Chemical technology
Institution:University of Birmingham
ID Code:2812
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page