eTheses Repository

Non-covalent DNA-binding ruthenium anticancer drugs

Leczkowska, Anna (2011)
Ph.D. thesis, University of Birmingham.

Loading
Leczkowska11PhD.pdf
PDF (7Mb)

Restricted to Repository staff only until 01 January 2015.

Abstract

The research work described in this thesis concerns metal-based anticancer drugs with an emphasis on non-covalent DNA-binding supramolecular assemblies.

The project involves the preparation of a series of mono- and bi-metallic ruthenium complexes with a primary focus on fluorescent dinuclear triple-stranded helicates with different structural topographies. Emphasis is then directed towards an investigation of the DNA binding characteristics of these molecules and an evaluation of their anticancer properties in human cancer cell lines. Attention is brought to the significance that the cylinder-building moieties and their structural characteristics have to these features.

The studies also include an examination of the effects of chirality of the investigated supramolecular systems and the impact they have on molecular recognition. This is addressed via studies of the interaction of optical isomers of ruthenium triple-stranded helicates with DNA as a biomolecular target system and with Δ-TRISPHAT as a representative small chiral molecule.

Type of Work:Ph.D. thesis.
Supervisor(s):Hannon, Michael J.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemistry
Keywords:DNA, supramolecular, ruthenium, anticancer drug
Subjects:QD Chemistry
Institution:University of Birmingham
ID Code:1695
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page