eTheses Repository

Stoner criteria in transition metal oxides and heavy fermions

Brammall, M.I. (2011)
Ph.D. thesis, University of Birmingham.

Loading
PDF (3163Kb)

Abstract

This thesis is an examination of the uses of mean-field theory in problems of the theory of strongly-correlated electronic systems, particularly to the problem of orbital ordering in transition metal oxides. We will apply mean-field theory to various models for orbital ordering of transition metal oxides, and also show that mean-field theory is not as bad an approximation as it might initially seem. We are also interested modelling superconductivity in heavy fermion systems. We conclude from our modelling on transition metal oxides that the mean-field theory we use based on the Stoner criterion will not be adequate to model such complicated phenomena. We propose an alternate mean-field theory based on non-linear fermionic transformations which we introduce. We suggest further improvements in the form of a non-orthogonal transformation, which we also introduce. As a diversion, we model frustrated antiferromagnetism on a pyrochlore lattice. The particular material is Gd\(_2\)Ti\(_2\)O\(_7\). We show that there are many effects in competition with each other. We conclude with a proposed magnetic structure which appears to be a better fit to experimental data than previous suggestions.

Type of Work:Ph.D. thesis.
Supervisor(s):Long, Martin
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Physics and Astronomy
Subjects:QC Physics
Institution:University of Birmingham
ID Code:1648
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page