eTheses Repository

A study of jets at the STAR experiment at the relativistic heavy ion collider via two-particle correlations

Gaillard, Léon (2008)
Ph.D. thesis, University of Birmingham.

PDF (9Mb)


Jets have been studied in high energy heavy ion collisions by measuring the angular correlation between particles at high transverse momentum. Differences in the yield and shape of the angular correlations as a function of system size give information on the medium produced in the collision. Such modifications can be used to infer the presence of a Quark-Gluon Plasma phase, wherein parton degrees of freedom are manifest over nuclear rather than nucleonic scales. In the present work, two-particle correlations were studied in \(d+Au\) and \(Au+Au\) collisions at \(\sqrt{s_{NN}}\) = 200 GeV measured by the STAR experiment at RHIC. The technique was extended to include pseudo-rapidity, permitting jets to be characterised in two-dimensions, and enabling the jet shape to be studied in greater detail. Corrections were developed for the incomplete detector acceptance and finite two-track resolution. Both unidentified and identified particle correlations were studied, using charged tracks and neutral strange particles \(\Lambda , \overline{\Lambda}\) , and \(K^0_{Short}\) reconstructed from their characteristic \(V\)0 decay topology. The focus of the analysis was the correlation peak centred at zero azimuthal separation, which is significantly enhanced in central \(Au+Au\) collisions compared to lighter systems. The modified peak was found to comprise a jet-like peak broadened in the pseudo-rapidity direction, sitting atop a long range pseudo-rapidity correlation. The former is suggestive of jet modification by the medium, and the latter may indicate a medium response to jets. Correlations with identified particles indicated the modified same side peak may in part be formed from particles originating from the underlying event.

Type of Work:Ph.D. thesis.
Supervisor(s):Jones, Peter Graham
School/Faculty:Schools (1998 to 2008) > School of Physics & Astronomy
Keywords:Relativistic heavy ion collisions, two-particle, correlations, quark gluon plasma, RHIC, STAR, Jet suppression, Jet attenuation, strangeness, event mixing, merging,
Subjects:QC Physics
Institution:University of Birmingham
Library Catalogue:Check for printed version of this thesis
ID Code:136
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page