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ABSTRACT 

Pancreatic cancer is a common cause of cancer death and is difficult to diagnose and treat. A 

prognostic index is a tool that can be used in clinical practice to predict survival. Thirty six 

prognostic factor studies were identified but the size and statistical methods were inappropriate. 

Valid statistical analyses are essential to make best use of data and optimise clinical application.  

Continuous variables are often simplified incorrectly by i) assuming linear relationships between 

predictors and log-hazard or ii) using dichotomisation. Non-linearity is addressed for the first time 

in this disease site using restricted cubic spline and fractional polynomial functions, ideal for 

smooth curved relationships. Multivariable models containing non-linear transformations gave a 

substantially better fit. Important effects of some covariates were unrecognised under simplistic 

assumptions. The fitted functions generated by the two methods were similar. A direct comparison 

of these strategies was based on a novel approach assessing the difference in the AIC values by 

calculating a sampling distribution in multiple bootstrap resamples. Model validation is also 

addressed for the first time in this disease and suggested minimal over-fitting with reproducible 

prognostic information when fitted to external data. 

This thesis provides the first validated prognostic tool in advanced pancreatic cancer developed 

using appropriate statistical methodology. Four risk-sets identified by the model could help 

clinicians target treatments to patients more appropriately and have an impact on future trial 

design and analysis. 

 



 

ACKNOWLEDGEMENTS 

I am grateful to Cancer Research UK (CRUK) for their support for this research project under a 

Population and Behavioural Sciences project grant (reference: C19491/A6150, Lead investigator: 

D.D. Stocken). I am indebted to my supervisors Professor Nick Freemantle and Professor Philip 

Johnson and my mentor Professor Cindy Billingham, University of Birmingham, for their wisdom 

and belief on a daily basis.  I am grateful for the support of staff at the CRUK Clinical Trials Unit, 

University of Birmingham, where I am proud to work and especially the encouragement from the 

Biostatistics Team. 

I am grateful to Professor Bass Hassan and Professor Doug Altman, University of Oxford, who 

initiated the project and negotiated with British Biotech in providing individual patient data. The 

clinical input of Bass and Philip has been crucial to the understanding and clinical applicability of 

the statistical models. I am grateful to the Liverpool Cancer Trials Unit for providing the GEMCAP 

individual patient data, specifically Professor John Neoptolemos, University of Liverpool, Professor 

David Cunningham, Royal Marsden Hospital, London, and Dr Ian Chau, Guys Hospital, London. I 

am grateful to Mr Ben Bridgewater, South Manchester University Hospital, for providing individual 

patient data from the cardiac surgical databases of QuORU and NWQIP. I am grateful all patients 

who took part in these trials. 

Finally, this thesis would not have been undertaken or completed without the encouragement of 

my family and close friends, who have supported me both emotionally and practically over the 

duration. This thesis is dedicated to my parents, who have always encouraged me to pursue my 

qualifications (but I think, Dad, it stops here …. maybe!), and my children, who have kept tabs on 

my progress chapter by chapter. Together with my friends, they have all kept me sane throughout! 

Thank you all! 



 

LIST OF CONTENTS 

RESPONSIBILITIES 1 

CHAPTER 1: AIMS AND OBJECTIVES 2 

CHAPTER 2: CANCER OF THE PANCREAS 4 

2.1. Introduction 4 

2.2. The Pancreas 4 

2.3. Cancer of the Pancreas 6 

2.4. Risk Factors 9 

2.5. Surgical Treatment 10 

2.6. Chemotherapy and Radiotherapy Treatments 11 

2.7. Example Dataset in Advanced Pancreatic Cancer 13 

2.8. Conclusion 16 

CHAPTER 3: SURVIVAL AND HAZARD FUNCTIONS 17 

3.1. Introduction 17 

3.2. Survivor and Hazard Functions 19 

3.3. Estimation of the Survivor Function 20 

3.4. Comparison of Survivor Functions 22 

3.5. Estimation of the Survivor Function in Advanced Pancreatic Cancer 23 

3.6. Estimation of the Hazard Function 24 

3.7. The Hazard Ratio 24 

3.8. Estimation of the Hazard Function in Advanced Pancreatic Cancer 25 

3.9. Conclusion 27 

CHAPTER 4: PROGNOSTIC INDICES 29 

4.1. Introduction 29 

4.2. Statistical Development of a Prognostic Index 33 

4.3. The Nonparametric Bootstrap 34 

4.4. Missing Data and Imputation 35 

4.5. Summary of Adopted Modelling Strategy 37 

4.6. Reported Prognostic Factors in Pancreatic Cancer 39 

4.7. Clinical Trial Design 46 

4.8. Conclusions 47 

CHAPTER 5: STATISTICAL METHODS FOR PROGNOSTIC MODELLING 49 



 

5.1. Introduction 49 

5.2. Cox Proportional Hazards Regression 50 

5.3. Comparing Alternative Models 53 

5.4. Format of Variables 56 

5.5. Model Performance 58 

5.6. Statistical Development of a Prognostic Model in Advanced Pancreatic Cancer 59 

5.7. Assumption of Proportional Hazards 61 

5.8. Cox Proportional Hazards Regression Models 63 

5.9. Conclusions 66 

CHAPTER 6: FRACTIONAL POLYNOMIAL FUNCTIONS 68 

6.1. Introduction 68 

6.2. Fractional Polynomial Functions 69 

6.3. Modelling with Fractional Polynomials in Advanced Pancreatic Cancer 71 

6.4. Model Performance 78 

6.5. Centre Effect 83 

6.6. Conclusions 84 

CHAPTER 7: COMPARISON OF NON-LINEAR FUNCTIONS 86 

7.1. Introduction 86 

7.2. Restricted Cubic Spline Functions 87 

7.3. Univariate Comparison of Functions in Advanced Pancreatic Cancer 89 

7.4. Multivariable Comparison of Functions in Advanced Pancreatic Cancer 93 

7.5. Bootstrap Validation Comparing Non-Linear Functions 95 

7.6. Conclusions 97 

CHAPTER 8: CARDIAC SURGERY EXAMPLE 98 

8.1. Introduction 98 

8.2. Univariate Comparison of Non-Linear Functions 99 

8.3. Multivariable Comparison of Non-Linear Functions 104 

8.4. Bootstrap Validation Comparing Non-Linear Functions 107 

8.5. Conclusions 111 

CHAPTER 9: EXTERNAL VALIDATION 113 

9.1. Introduction 113 

9.2. External Validation Dataset in Advanced Pancreatic Cancer 114 

9.3. Model Fit and Discrimination 118 

9.4. Updating the Prognostic Model 123 

9.5. Model Performance 127 



 

9.6. Defining the Prognostic Index 129 

9.7. Additional Information Collected In the Validation Dataset 131 

9.8. Treatment Effects across Prognostic Subgroups 133 

9.9. Conclusions 137 

CHAPTER 10: DISCUSSION AND RECOMMENDATIONS 138 

10.1. Summary 138 

10.2. Clinical Relevance of Research 138 

10.3. Methodology and Findings 141 

10.4. Derived Prognostic Model 147 

10.5. Validated Prognostic Index 148 

10.6. Generalisability 148 

10.7. Application in Cardiac Surgery 149 

10.8. Recommendations 152 

10.9. Further Research 153 

10.10. Final Conclusions 154 

APPENDIX 155 

REFERENCES 161 

 



 

LIST OF FIGURES 

Figure 2.1: Location of the Pancreas 5 

Figure 2.3: One- and five- year Relative Survival by Age and Sex, Patients Diagnosed with 

Pancreatic Cancer, England, 1998 to 2001, followed to the end of 2003 9 

Figure 3.1: Censored Survival Data 18 

Figure 3.2: Survival Function by Trial 23 

Figure 3.3: Monthly Hazard Rates by Trial 26 

Figure 3.4: Log Cumulative Hazard Plot by Trial 27 

Figure 5.1: Log Cumulative Hazard Plot by Treatment Group 62 

Figure 6.1: Estimated Functional Form for LDH IU/L 75 

Figure 6.2a: Estimated Functional Form for CA19-9 KU/l 76 

Figure 6.2b: Estimated Functional Form for CA19-9 KU/l 76 

Figure 6.3: Deviance Residual Plot 78 

Figure 6.4: Survival by Prognostic Group 80 

Figure 7.1a: Estimated Functional Form for CA19-9 KU/l: Restricted Cubic Spline 

Transformation 92 

Figure 7.1b: Estimated Functional Form for CA19-9 KU/l: Fractional Polynomial Transformation

 92 

Figure 8.1a: Estimated Functional Form for BMI: Restricted Cubic Spline Transformation 102 

Figure 8.1b: Estimated Functional Form for BMI: Fractional Polynomial Transformation 102 

Figure 8.2a: Estimated Functional Form for Carstairs Score: Restricted Cubic Spline 103 

Figure 8.2b: Estimated Functional Form for Carstairs Score: Fractional Polynomial 103 

Figure 9.1: Survival by Dataset 118 

Figure 9.2: Survival by Prognostic Group 122 

Figure 9.3: Estimated Functional Form for Alkaline Phosphatase IU/L 126 

Figure 9.4: Estimated Functional Form for CA19-9 KU/l 126 

Figure 9.5: Deviance Residual Plot 127 

Figure 9.6: Survival by Prognostic Group 129 

Figure 9.7: Survival by Performance Status 132 

Figure 9.8: Treatment Effect within Prognostic Subgroups 134 

Figure 9.9a: STEPP plot of Hazard Ratio of Treatment Effect for increasing CA19-9 to 10,000 

KU/l 135 

Figure 9.9b: STEPP plot of Hazard Ratio of Treatment Effect for increasing CA19-9 to 1,000 

KU/l 135 

Figure 9.10: STEPP plot of Hazard Ratio of Treatment Effect for increasing Albumin g/L 136 

Figure 9.11: STEPP plot of Hazard Ratio of Treatment Effect for increasing Alkaline 

Phosphatase IU/L 136 



 

LIST OF TABLES 

Table 2.1: Pancreatic Cancer Statistics – Key Facts 8 

Table 2.2: Patient Characteristics by Trial 15 

Table 4.1: Purpose of Prognostic Factor Studies 30 

Table 4.2: Characteristics of a Confirmatory Prognostic Factor Study 31 

Table 4.3: Summary of Modelling Strategy 38 

Table 4.4: Prognostic Factors for Pancreatic Cancer 40 

Table 4.5a: Published Prognostic Factor Studies 41 

Table 4.5b: Published Prognostic Factor Studies 42 

Table 4.6: Summary of Reported Prognostic Indices 45 

Table 5.1: Strategy for Model Selection 55 

Table 5.2: Possible Classification Variables for Tumour Stage 56 

Table 5.3: Univariate Log-Rank Analyses 60 

Table 5.4: Dichotomising Continuous Variables 64 

Table 5.5: Assumption of Linearity of Continuous Variables 65 

Table 6.1: Univariate AIC statistics 72 

Table 6.2: Model based on Fractional Polynomial Transformations 74 

Table 6.3: Supportive Analysis of Imputed Dataset 82 

Table 7.1: Univariate AIC statistics 90 

Table 7.2: Cox Proportional Hazards Regression Models 94 

Table 7.3: Bootstrap Comparison of AIC based on 1000 Resamples 97 

Table 8.1: Univariate AIC Statistics 100 

Table 8.2: Cox Proportional Hazards Regression Models 105 

Table 8.3: Bootstrap Analyses of final models based on 1000 Resamples 108 

Table 8.4: Univariate Bootstrap Resampling with Varied Size Resamples 110 

Table 9.1: Common Variables across Datasets 117 

Table 9.2: Updated Prognostic Model 125 

Table 9.3: Prognostic Index 130 

Table 9.4: Survival Estimates and Estimated Risk of Death for Prognostic Groups 130 

Table 10.1: Survival Estimates and Estimated Risk of Death for Prognostic Groups 148 

 

 



 

1 

 

RESPONSIBILITIES 

All chapters in this thesis were written by DD Stocken and reviewed by N Freemantle, PJ Johnson 

and LJ Billingham. DD Stocken, AB Hassan, DG Altman, PJ Johnson, N Freemantle, LJ 

Billingham contributed to the initial research concept, presented in a successful Cancer Research 

UK Population and Behavioural Sciences grant application (reference: C19491/A6150).  

Chapters 1-6 contributed to a clinical paper (Stocken et al., 2008) and two poster presentations 

(Pancreatic Society of Great Britain and Ireland annual meeting 2005, National Cancer Research 

Institute annual meeting 2007), authors DD Stocken, AB Hassan, DG Altman, LJ Billingham, SR 

Bramhall, PJ Johnson and N Freemantle with the following responsibilities: AB Hassan and DG 

Altman had the initial concept for the research project and approached British Biotech for the 

individual patient data used in the model development phase; DD Stocken was responsible for 

undertaking all the analysis and preparing the paper; N Freemantle was statistical supervisor for 

the paper, DG Altman and LJ Billingham were statistical advisors for the paper; AB Hassan, PJ 

Johnson and SR Bramhall were responsible for clinical interpretation of the statistical analyses. All 

authors contributed and approved the final version of the paper. 

Chapters 5-8 contributed to a statistical paper (submitted), an oral presentation (International 

Society for Clinical Biostatisticians annual meeting 2010) and a poster presentation (International 

Society for Clinical Biostatisticians annual meeting 2009), authors DD Stocken, LJ Billingham, PJ 

Johnson, AB Hassan, B Bridgewater, N Freemantle with the following responsibilities: DD Stocken 

was responsible for undertaking all the analysis and preparing the paper; N Freemantle was 

statistical supervisor for the paper; LJ Billingham was statistical advisor; PJ Johnson, AB Hassan 

and B Bridgewater were responsible for clinical interpretation of the statistical analyses. All 

authors contributed and approved the final version of the paper. 



CHAPTER 1: AIMS AND OBJECTIVES 

2 

 

CHAPTER 1: AIMS AND OBJECTIVES 

 

The overall aim of this research was to identify groups of patients with advanced pancreatic 

cancer with differing prognoses and to define the factors, at the time of diagnosis, which may 

predict the group to which a patient best belongs. In this way, treatments could then be targeted at 

specific groups who have the ability to cope with and possibly benefit from further toxic 

treatments. There is currently no prognostic tool in routine clinical use for prediction of survival 

from advanced pancreatic cancer. Such a tool would help clinicians identify subgroups of patients 

and help in their decision making regarding appropriate treatment strategies. Historically, 

randomised controlled trials have stratified patients at randomisation by disease stage but 

generally patients are not clinically separated into prognostic groups for consideration of treatment 

except surgically. 

 

Pancreatic cancer has an aggressive biological phenotype that appears to be largely resistant to 

therapy. As the effect of treatment is often minimal, large numbers of patients are needed to 

provide robust statistical evidence but sample sizes in pancreatic cancer trials tend to be small so 

a significant problem is how to compare treatments across trials due to case mix. Statistical 

models ideally need validating on external data to ensure portability to new datasets. 

 

This research investigates potential prognostic factors for survival in patients with advanced 

pancreatic cancer through the construction and validation of statistical models evaluating clinical, 

histological and laboratory factors whilst investigating the underlying assumptions, 

appropriateness and suitability of such models. Based on methodologically strong statistical 

modelling, an attempt to identify and classify patients into defined clinical prognostic subgroups of 
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differing risk was carried out to i) predict disease outcome ii) identify possible factors for 

stratification of patients in future prospective randomised trials and iii) improve the targeting of 

therapeutic modalities. Recommendations for the design and analysis of future randomised 

controlled trials have been made, specifically identification of possible important stratification 

factors and the appropriateness of different statistical modelling approaches including dealing with 

different data types. At the time of the conception of this research project in 2003, the National 

Institute for Clinical Excellence recommended gathering further evidence for the role of 

gemcitabine as a potential new therapy in pancreatic cancer patients (NICE, 2010). As such, it 

was timely that significant effort be placed on the design of future studies, including the 

stratification of patients prior to allocation of treatments based on identification of specific risk-sets. 

 

Prognostic modelling is based on multivariable analysis of time to event data and as such it is 

important to describe the statistical methods used to analyse time to event data as well as 

presenting clinical results. This thesis is organised into 10 chapters: Chapter 2 presents the 

clinical setting and background to pancreatic cancer, Chapter 3 introduces the standard statistical 

methods for analysis of time to event data, Chapters 4 and 5 provide an introduction to prognostic 

indices (Chapter 4) and the statistical methods for prognostic modelling (Chapter 5), Chapters 6 

and 7 discuss the underlying assumption of linearity between a predictor and outcome (Chapter 6) 

and presents a comparison of methods for dealing with non-linear relationships (Chapter 7), 

Chapter 8 presents further investigation of these methods in a much larger dataset of cardiac 

surgery patients, Chapter 9 provides an external validation of identified prognostic factors in 

pancreatic cancer and finally  Chapter 10 concludes with discussion, recommendations and 

direction of further research. 
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CHAPTER 2: CANCER OF THE PANCREAS 

 

 SUMMARY 

 The role of the pancreas is to make enzymes necessary to digest food and to produce 

insulin to enable the body to use glucose 

 Pancreatic cancer is the eighth most common cause of cancer death in the world, and 

fifth in the western world with poor long-term survival 

 Surgical resection is the only „curative‟ treatment performed in approximately 10%-15% 

patients 

 For the majority of patients with un-resectable tumours, standard treatment is the 

administration of gemcitabine chemotherapy 

 The aim of this research is to identify prognostic factors and prognostic subgroups of 

patients with advanced pancreatic cancer for appropriate targeting of therapies 

 Identification of important prognostic factors is desirable to enable accurate stratification 

of patients in randomised controlled trials 

 

2.1. Introduction 

The aim of this chapter is to provide a background to pancreatic cancer including world-wide 

incidence, survival and treatment. Known risk factors and treatments for pancreatic cancer are 

summarised and the example dataset is introduced. 

 

2.2. The Pancreas 

The pancreas is a solid gland which is 20 to 25cm in length, 4 to 6cm in width and 3 to 4cm in 

depth (Figure 2.1, provided by JP Neoptolemos). It is divided into 5 parts: the head, uncinate 

process, neck, body and tail and is attached in the back of the abdominal cavity behind the 

stomach. 
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Figure 2.1: Location of the Pancreas 

 

 

The pancreas has two roles: i) to make enzymes necessary to digest food (carbohydrates, 

proteins and fats) in the intestines and ii) to produce insulin to enable the body to use glucose. 

Digestive enzymes and insulin are made by different parts of the pancreas. There are more than 

30 enzymes produced by groups of glands in the pancreas each responsible for breaking down 

different food types. The main enzymes are amylase (carbohydrate digestion), trypsin (digesting 

proteins) and lipase (digesting fat). Enzymes are collected in the main pancreatic duct and 

released into the duodenum where they are activated by duodenal juice. The pancreatic duct and 

the bile duct join together so pancreatic juice and bile can be emptied together since pancreatic 

enzymes and bile acid are both needed for fat digestion. Bile acid is produced by the liver and 

stored by the gall bladder and disperses fat before pancreatic enzymes break it down. If a 

pancreatic tumour blocks the main bile duct then bile acid is not released into duodenum but 

dispersed into blood system and out of the body through kidneys, which results in the eyes and 
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skin turning yellow due to a build up of bilirubin, known as obstructive jaundice. Tumours which 

block the pancreatic duct lead to poor digestion and weight loss. Insulin is a hormone to control 

the level of sugar in the blood by allowing glucose to pass into the body‟s cells. Glucose is 

required by all of the body‟s cells as a source of energy. Without insulin, glucose does not pass 

into the cells but remains in the blood causing diabetes mellitus. Insulin is made in cells mainly in 

the tail of the pancreas. Enzyme and insulin production are made by distinct populations of 

pancreatic cells.  

 

2.3. Cancer of the Pancreas 

Pancreatic cancer is one of the less common cancers ranking thirteenth in incidence worldwide, 

eleventh most common cancer in the UK (Cancer Research UK, 2010) with peak incidence being 

in the 65-75 age group (Parkin et al., 2005). Pancreatic cancer accounted for 232,306 cases and 

227,023 deaths in 2002 worldwide (Figure 2.2 (Parkin et al., 2005), adapted). In the UK there 

were 7,660 new cases in 2006 and 7,727 deaths in 2007 (Table 2.1 (Cancer Research UK, 2010), 

adapted). As such, pancreatic cancer is the eighth most common cause of cancer death in the 

world and fifth in the western world (Jemal et al., 2003;Parkin et al., 2005). Generally pancreatic 

cancer presents in older patients, only about 10% of patients present aged less than 50 years.  
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Figure 2.2: Worldwide Incidence and Mortality by Sex and Site, 2002 
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Table 2.1: Pancreatic Cancer Statistics – Key Facts 

Pancreatic Cancer UK Males Females Persons 

Number of new cases (UK 2006) 3731 3929 7660 

Rate per 100,000 population* 10.3 8.1 9.1 

Number of deaths (UK 2007) 3742 3985 7727 

Rate per 100,000 population* 10.0 7.9 8.9 

One-year survival rate (patients 

diagnosed 1998 to 2001, England) 

13% 13% NA 

Five-year survival rate (patients 

diagnosed 1998 to 2001, England) 

3% 2% NA 

* age-standardised to the European population; NA=not available 

 

Approximately 80% of patients present with a tumour located in the head of the pancreas. The 

most common type is the ductal adenocarcinoma arising from small ducts of the pancreas and 

accounting for 90% of all pancreatic cancers. The prognosis of pancreatic cancer patients is 

primarily based on resectability of a solitary tumour. Patients undergoing „curative resection‟ of a 

single primary tumour are associated with improved survival but curative resection is only possible 

in approximately 10 to 15% of patients (Alexakis et al., 2004;Sener et al., 1999). Significant 

improvements in surgical outcome have been obtained with increasing specialisation (Birkmeyer 

et al., 1999;Neoptolemos et al., 1997). Most failures following surgery are due to local recurrence 

or liver metastases which occur within one or two years. In over 85% of patients, pancreatic 

cancer is diagnosed at a stage of disease too advanced for curative surgery when the disease is 

largely resistant to conventional cancer treatments (chemotherapy, radiotherapy). 

 

Long-term survival remains poor with the reported overall 5-year survival rates of 0.4% to 4% 

(Bramhall et al., 1995;Carr et al., 1999;Jemal et al., 2003) and 5 to 25% for patients undergoing 

resection  (Beger, 1995;Bramhall et al., 1995;Carr et al., 1999;Neoptolemos et al., 2004;Stocken 
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et al., 2005;Yeo, 1998) with higher rates achieved in patients receiving treatment at specialised 

centres (Gordon et al., 1995;Sosa et al., 1998). For patients diagnosed in England and Wales, 

approximately 13% of patients survive longer than 12 months from diagnosis and only 2 to 3% 

survive longer than five years (Figure 2.3 (Cancer Research UK, 2010), adapted). Further benefits 

in survival are anticipated by identifying risk groups by which to target treatments. 

 

Figure 2.3: One- and five- year Relative Survival by Age and Sex, Patients Diagnosed with 

Pancreatic Cancer, England, 1998 to 2001, followed to the end of 2003 

 

 

 

2.4. Risk Factors 

Tobacco smoking is the single most defined risk factor and is said to account for up to one third of 

pancreatic cancers: smokers having double the risk compared to non-smokers (Doll et al., 

1994;Lin et al., 2002;Silverman et al., 1994) based on a dose-response relationship. Two benign 
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diseases: pancreatitis and diabetes, are associated with increased risk of pancreatic cancer. 

Patients with hereditary pancreatitis have a cumulative risk of pancreatic cancer at age 70 of 40% 

increasing to 75% with paternal inheritance (Howes et al., 2004;Lowenfels et al., 1997). Gene 

mutations have been identified which now allows screening of these families. Onset of type II 

diabetes has been associated with onset of pancreatic cancer and is present in over 50% of 

pancreatic cancer patients, the majority being diagnosed within two years (Everhart and Wright, 

1995;Huxley et al., 2005). The risk of developing pancreatic cancer in patients having diabetes for 

less than five years was doubled (odds ratio=2.1, CI=1.9 to 2.3) (Huxley et al., 2005). 

 

2.5. Surgical Treatment 

Surgical resection of a solitary tumour is the only „curative‟ treatment which can improve the 

outlook for patients (Wagner et al., 2004) but only 10% to 15% patients are eligible for the 

procedure due to advanced disease. The first successful resection was performed by German 

surgeon Kausch in 1909 as a two-stage operation. In 1942 Whipple perfected the procedure into a 

one-stage resection, similar to the operation performed today. The Kausch-Whipple resection is 

associated with post-operative weight loss. The modified pylorus-preserving Whipple resection 

preserves the stomach, pylorus and part of the duodenum and although less radical, is not 

associated with decreased survival (Bassi et al., 2005). Removal of a pancreatic cancer by 

resection is a major procedure with low surgical mortality, 2% if performed by experienced 

surgeon (Cameron et al., 1993) but with a high complication rate of 40% (Bassi et al., 2005).  

 

When resection is not possible, palliative surgery (biliary bypass) may relieve biliary or duodenal 

obstruction which can cause jaundice and pain. Older patients who may not be suitable, may have 

their jaundice relieved by inserting a tube (stent) through the tumour. If surgery is not performed 
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then symptoms of jaundice, pain, weight loss, pancreatic insufficiency, fatigue and depression 

need to be palliated medically. 

 

2.6. Chemotherapy and Radiotherapy Treatments 

Only two chemotherapy single agents have produced reproducible survival benefit: 5-fluouroracil 

(5-FU) and gemcitabine. These single agents have also been studied in combination with other 

drugs, notably folinic acid (FA) with 5-FU and platin based agents with gemcitabine. For those 

patients who undergo resection of their tumour, standard treatment in the UK is administration of 

adjuvant (postoperative) 5FU/FA chemotherapy, following the first large (n=289) randomised 

controlled trial (ESPAC-1) investigating the roles of both chemotherapy and radiotherapy 

treatments (Neoptolemos et al., 2004;Neoptolemos et al., 2001a;Stocken et al., 2005). Final 

analysis of the ESPAC-1 trial reported a 29% decreased risk of death with chemotherapy (hazard 

ratio=0.71, 95%CI: 0.55 to 0.92) (Neoptolemos et al., 2004), a benefit confirmed in a subsequent 

meta-analysis (hazard ratio=0.75, 95%CI: 0.64 to 0.90) (Stocken et al., 2005) and in analysis of 

composite data with the continuation ESPAC-3 trial (hazard ratio=0.70, 95%CI: 0.55 to 0.80) 

(Neoptolemos et al., 2009b). For the majority of patients with un-resectable tumours, standard 

treatment in the UK is the administration of gemcitabine (NICE, 2010), following a randomised 

controlled trial comparing gemcitabine and 5-FU (Burris et al., 1997). Clinical benefit response (a 

composite of measurements of pain, performance status and weight) was used as the primary 

measure of efficacy and the trial concluded gemcitabine to be more effective in alleviating disease 

related symptoms in a total of 126 patients.  

 

Recently two large, international, phase III trials compared gemcitabine (the standard treatment 

from the advanced setting) as an experimental treatment in the adjuvant setting; one compared 
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with a control arm (Oettle et al., 2007) and one compared against the standard 5FU/FA treatment 

(Neoptolemos et al., 2009a). A significant benefit for adjuvant chemotherapy compared with 

control was seen in 368 patients based on disease free survival (DFS) (Oettle et al., 2007). 

Median DFS for adjuvant gemcitabine was 13.4 (95%CI: 11.4 to 15.3) months compared with a 

median DFS of 6.9 (95%CI: 6.1 to 7.8) months for control, affirming the need for a trial comparing 

5FU/FA and gemcitabine. ESPAC-3 concluded that there was no significant survival difference 

between adjuvant gemcitabine and adjuvant 5FU/FA in 1088 patients (hazard ratio=0.94, 95%CI: 

0.81 to 1.08) but that the toxicity profile was more favourable for gemcitabine (Neoptolemos et al., 

2009a). This highlights how evidence for treatment in the advanced setting can pave the way for 

treatment to be investigated in the adjuvant setting and thus the need for all evidence to be robust 

and trustworthy. Similarly, a recent, large, Cancer Research UK trial (GEMCAP) including a meta-

analysis comparing standard gemcitabine treatment in the advanced setting with combination 

gemcitabine and capecitabine treatment has concluded an advantage for the combination 

treatment (meta-analysis hazard ratio=0.86, 95%CI: 0.75 to 0.98) (Cunningham et al., 2009) 

paving the way for the ongoing Cancer Research UK adjuvant trial (ESPAC-4) comparing the 

gemcitabine and capecitabine combination against gemcitabine alone.  

 

Use of adjuvant radiotherapy is not universal due to results of the first large (n=289) randomised 

controlled trial (ESPAC-1) showing a 28% increased risk of death in patients receiving adjuvant 

chemo-radiotherapy (hazard ratio=1.28, 95%CI: 0.99 to 1.66) (Neoptolemos et al., 2004). Initially 

defined in a ground-breaking study, the north American gastrointestinal study group (GITSG) 

reported a survival benefit for adjuvant chemo -radiotherapy in a study of 43 patients where 

median survival was 20 months in patients receiving chemo-radiotherapy compared with 11 

months without (Kalser and Ellenberg, 1985), hazard ratio not presented but estimated as 0.54 
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(95%CI: 0.27 to 1.05) (Stocken et al., 2005). Though the trial has been criticised for being small 

and with uncertainty surrounding the estimated treatment effect (wide confidence interval 

surrounding the estimated hazard ratio), it was regarded as sufficient evidence for the American 

National Cancer Institute (NCI) to recommend surgery plus chemo-radiotherapy as standard 

treatment in the United States. However the study required confirmation before being adopted as 

standard of care in Europe but the first large (n=289) randomised controlled trial has since shown 

no survival benefit for chemo-radiotherapy (Neoptolemos et al., 2004;Neoptolemos et al., 2001a). 

 

Neoadjuvant treatment is treatment given prior to any planned surgery to improve resectability of 

the primary tumour and minimising any remaining residual disease. Neoadjuvant treatment could 

be chemotherapy, radiotherapy or a combination but to date early phase studies (Palmer et al., 

2007) have not led to any large phase III trial. 

 

2.7. Example Dataset in Advanced Pancreatic Cancer 

This thesis is predominantly based on analysis of data from patients with advanced pancreatic 

cancer. Initially, statistical modelling was carried out on a dataset collated by British Biotech 

combining data from two international studies (Bramhall et al., 2002;Bramhall et al., 2001). 

External validation was carried out using an external dataset from the Cancer Research UK 

GEMCAP trial (Cunningham et al., 2009). However, during the research, an additional dataset of 

cardiac surgery patients became available (Pagano et al., 2009) and due to suitability further 

methodologically driven analyses were able to be carried out on these data. The initial dataset 

from 653 advanced pancreatic cancer patients collated by British Biotech is described below. 
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Two international phase III randomised controlled trials (BB128 (Bramhall et al., 2001) and BB193 

(Bramhall et al., 2002)) randomised 414 and 239 patients with advanced pancreatic cancer 

respectively: BB128 randomised patients between marimistat and gemcitabine; BB193 

randomised patients between marimistat with gemcitabine and gemcitabine alone. The studies 

had similar eligibility criteria: histologically or cytologically unresectable pancreatic cancer, within 8 

weeks of diagnosis or disease recurrence and Karnofsky performance status (KPS) of >50% 

(BB128) or >60% (BB193). Previous therapy for metastatic or locally advanced disease was an 

exclusion criteria. The primary outcome measure in both studies was survival time calculated from 

the date of randomisation to date of death from any cause. Randomisation was stratified by 

cancer stage (stage I/II, III or IV), KPS (50 to 70%, 80 to 100%), sex and study centre. On average 

patients in the two trials were randomised 20 and 15 days after diagnosis and started treatment 

the day following randomisation. The average age of patients was 63 years (range 29 to 89), 368 

(56%) were male, 439 (68%) had cancer stage IV disease, 436 (67%) presenting with metastases 

and 251 (39%) had lymph node involvement (Table 2.2). No significant survival benefit for 

marimastat over gemcitabine was seen in the BB128 trial (p=0.19) (Bramhall et al., 2001). 

Similarly no significant survival benefit was seen for combination gemcitabine and marimistat over 

gemcitabine alone in the BB193 trial (p=0.95) (Bramhall et al., 2002). 
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Table 2.2: Patient Characteristics by Trial 

Variable BB128 
N=414 (63%) 

BB193 
N=239 (37%) 

TOTAL 
N=653 (100%) 

DEMOGRAPHICS 

* Age at entry 
(years) 

    Median 
Range 

63 
29 to 89 

62 
32 to 85 

63 
29 to 89 

Ethnic race White 
Black 

Oriental 
Other 

Missing 

364 (88%) 
27 (6%) 
7 (2%) 

15 (4%) 
1 

226 (95%) 
8 (3%) 

0 
5 (2%) 

0 

590 (90%) 
35 (6%) 
7 (1%) 

20 (3%) 
1 

Sex Male 
Female 

228 (55%) 
186 (45%) 

140 (59%) 
99 (41%) 

368 (56%) 
285 (44%) 

Treatment Gemcitabine 
Marimistat 

103 (25%) 
311 (75%) 

119 (50%) 
120 (50%) 

222 (34%) 
431 (66%) 

TUMOUR INFORMATION 

Cancer stage I 
II 

III 
IV 

Missing 

19 (4%) 
45 (11%) 
76 (19%) 

268 (66%) 
6 

13 (5%) 
27 (11%) 
28 (12%) 

171 (72%) 
0 

32 (5%) 
72 (11%) 

104 (16%) 
439 (68%) 

6 

Distant 
Metastases 

M0 
M1 

Missing 

129 (31%) 
265 (64%) 

20 (5%) 

65 (27%) 
171 (72%) 

3 (1%) 

194 (30%) 
436 (67%) 

23 (3%) 

Regional lymph 
nodes 

N0 
N1 

Missing 

153 (37%) 
164 (40%) 
97 (23%) 

90 (38%) 
87 (36%) 
62 (26%) 

243 (37%) 
251 (39%) 
159 (24%) 

Primary tumour T 
stage 

T0 
T1 
T2 
T3 
T4 

Missing 

5 (1%) 
114 (30%) 
90 (24%) 

167 (44%) 
6 (1%) 

32 

3 (1.5%) 
44 (20%) 
54 (25%) 

113 (53%) 
1 (0.5%) 

24 

8 (1.5%) 
158 (26%) 
144 (24%) 
280 (47%) 
7 (1.5%) 

56 

SERUM CHEMISTRY and HAEMATOLOGY 

Laboratory Variables 
* AST (SGOT) IU/L 

* TOTAL BILIRUBIN mol/L 
* ALK PHOSPHATASE IU/L 

* ALBUMIN g/L 
* LDH IU/L 

* BUN mmol/L 
* CA19/9 KU/l 

* HAEMOGLOBIN g/dL 
* WBC 109/L 

Median (Range), Missing 
24 (6 to 365), 17 

13.7 (3.4 to 277.0), 16 
136 (36 to 1660), 16 

38 (22 to 47), 17 
163 (77 to 1074), 21 
9.2 (2.9 to 34.3), 17 

686 (5 to 1,000,000), 17 
12.5 (5.5 to 16.1), 28 
7.6 (2.3 to 31.6), 28 

Median (Range), Missing 
26 (9 to 538), 12 

13.7 (3.0 to 135.1), 8 
157 (35 to 2064), 8 

38 (24 to 47), 8 
169 (29 to 1495), 11 
9.3 (4.3 to 27.9), 16 

800 (8 to 1,000,000), 30 
12.4 (8.3 to 19.1), 13 
8.3 (2.4 to 23.7), 13 

Median (Range), Missing 
25 (6 to 538), 29 

13.7 (3.0 to 277.0), 24 
140 (35 to 2064), 24 

38 (22 to 47), 25 
164 (29 to 1495), 32 
9.3 (2.9 to 34.3), 33 

710 (5 to 1,000,000), 47 
12.4 (5.5 to 19.1), 41 
7.9 (2.3 to 31.6), 41 

OUTCOME 

Event indicator Alive 
Dead 

22 (5%) 
392 (95%) 

19 (8%) 
220 (92%) 

41 (6%) 
612 (94%) 

* Follow-up of 
alive (months) 

Median 
Range 

20.1 
0.9 to 24.6 

19.4 
1.9 to 23.3 

20.7 
0.9 to 24.6 

* = continuous measurements 
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2.8. Conclusion 

The British Biotech dataset provides a representative dataset of patients with advanced pancreatic 

cancer. The dataset combined two randomised controlled trials both based on similar eligibility 

criteria and both showing no differences in survival of the experimental treatment group. The 

dataset contains eighteen baseline clinical, histological, biochemical and demographic variables 

(including trial and treatment variables) considered appropriate for analysis, eight of which are 

categorical variables and 10 which are continuous measurements. It is a robust dataset containing 

a high event rate and long follow-up of alive patients. Appropriate statistical methods for the 

analysis of this kind of time to event data are described in the next chapter. 

 



CHAPTER 3: SURVIVAL AND HAZARD FUNCTIONS 

17 

 

CHAPTER 3: SURVIVAL AND HAZARD FUNCTIONS 

 

 SUMMARY 

 Time to event data differs from continuous data due to censoring 

 Statistical analyses should utilise methods which account for censored data 

 Survival data can be summarised through estimates of the survivor function and the 

hazard function estimated from observed data 

 Kaplan-Meier estimates of survival account for death times and censored survival times 

and can be compared using the log-rank non-parametric test 

 The hazard ratio is the ratio of hazard rates and is used as a summary of the risk in one 

group of patients compared to another  

 Many survival analysis methods assume the hazard ratio is constant over time 

(proportional hazards) 

 

3.1. Introduction 

The aim of this chapter is to introduce the basic statistical methods used to analyse time to event 

(or survival) data. Typically patients are entered into a study over a period of time and followed 

post-treatment for assessment of the endpoint of interest, such as death, disease progression and 

so on. Time to event is usually defined as the time from entry into the study to time of the endpoint 

of interest. Not all patients in the study will experience the endpoint of interest and it is impractical 

and unethical to delay analysis until all patients have experienced this endpoint. Some patients 

may not have experienced the event since they i) have become „lost to follow-up‟ in the study 

through withdrawing from the study, ii) are deemed to be „cured‟ or iii) are entered later in 

recruitment phase with shorter but unbiased follow-up. Patients who are lost to follow-up or who 

do not experience the event of interest are (right) censored in the analysis and are treated 

differently than just patients with missing data. Censored patients are known to have „survived‟ 
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event-free for a certain length of time but the time of their event is unknown and is beyond the 

date they were last seen event free, known as the censor date (Figure 3.1 (Machin et al., 2006), 

adapted): 

 

Figure 3.1: Censored Survival Data 

 

 

 

 

 

 

 

 

 

Characteristically time to event data differs from continuous data due to this censoring. Censored 

survival times hold information about a patient‟s survival time up to the date of censor and should 

not be ignored just because the patient has not experienced the event of interest. Statistical 

analysis should utilise methods which account for censored data to avoid losing this important 

information and this makes analysis of time to event data more complex. Most methods assume 

the reason for censoring is non-informative, which assumes that censoring is not associated with 

outcome, else informative censoring is said to have occurred and standard statistical methods are 

invalidated. In this research, the reason for censoring is assumed to be non-informative. Of the 

653 patients randomised, 41 patients (6%) were alive with median follow-up 20.7 months (Table 

2.2). Minimum follow-up was 0.9 months and as such all patients had some follow-up (ranging to a 
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maximum of 24.6 months). Some drop-out in clinical trials is expected. A minimal number of 

advanced pancreatic cancer patients (5 patients(<1%)) were censored before 12-months of 

follow-up, a clinically relevant and reported time-point in advanced pancreatic cancer. Reasons for 

drop-out of the censored patients were not available. However, it is likely that drop-out is related to 

the fact that these are poorly patients, receiving toxic chemotherapy treatment with average age 

63 years, but not related to death and as such does not invalidate the assumption of non-

informative censoring. 

 

3.2. Survivor and Hazard Functions 

The distribution of survival data is generally described by two functions: the survivor function and 

the hazard function (Collett, 1994). The survivor function S(t) is the probability that a patient 

survives from the time or origin (entry to trial) to sometime beyond time t : 
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where T is a random variable associated with survival time with a probability density function f(t) 

and associated cumulative distribution function F(t), defined as the probability that survival time is 

less than some value t . 

The hazard function h(t) is approximately the probability of death between time t and t+δt , 

conditional on having survived up to time t : 
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where the probability that random variable T lies between time t and t+δt is conditional on T being 

>t.  h(t) then represents the instantaneous rate of death . 
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The survivor, hazard and probability density functions can be estimated from each other and as 

such the hazard function can be presented as a as a conditional failure rate and as a function of 

survival: 
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where H(t) is the cumulative hazard  




t

u

duuhtH
0

)()(  

and )(log)( tStH   

Survival data can be summarised through estimates of the survivor function and the hazard 

function and can be estimated from observed data using non-parametric methods if the form of f(t) 

is not specified, or else parametrically.  

 

3.3. Estimation of the Survivor Function  

The overall probability of survival to time t  (Machin et al., 2006) is: 

S(t) = p1 x p2 x p3 x … x pt  

where p1 is the probability of surviving at least to time 1, p2 is the conditional probability of 

surviving time 2 having survived time 1 and so on where time could be in days, months, years 

depending on the disease in question. For any time t: 

pt =  [number of patients followed for at least (t-1) and who survive time t] 
  [number of patients alive at the end of time (t-1)] 

Deaths occur at distinct times t1 < t2 < t3…tn where tn is the maximum death time observed. It then 

follows: 

pt =  (nt-dt)  or  pt = 1 - dt 
 nt nt 
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where nt denotes the number of patients alive at the start and at risk of death during short interval 

(t, t+1), dt denotes the number of deaths during the interval hence the number of patients surviving 

being nt-dt. As such the value of S(t) only changes when dt ≠ 0 so: 
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S(1), S(2), …., S(t) are known as the Kaplan-Meier estimates of survival, also known as the 

product-limit estimates (Kaplan and Meier, 1958). As shown, the Kaplan-Meier estimate of survival 

accounts not only for death times but also censored survival times utilising all information. A useful 

summary of survival data is a plot of the estimates of survival S(t) against t from which the median 

(where S(t)=0.5) and other percentiles of the distribution of survival times can be estimated. 

Survival curves are plotted as step functions since estimates of survival are assumed constant 

between death times. The number of patients remaining at risk should be indicated on the plot to 

provide information regarding the reliability of the survival estimates over time which are 

influenced by large proportions of censored patients. Confidence intervals for the survivor function 

may provide an indication of reliability of the survival estimates but are not a very efficient way of 

assessing the data being estimated at fixed time points. 95% confidence intervals can be 

calculated assuming a Normal distribution as S(t) + 1.96*se[S(t)]. The standard error (se) of the 

survivor function can be calculated using different methods (Collett, 1994;Machin et al., 2006). 

The LIFETEST procedure in  (SAS Institute Inc., 1999) calculates Kaplan-Meier estimates of 

survival with standard errors calculated using Greenwood's formula (Kalbfleisch and Prentice, 

1980) producing summary statistics and plots of survival estimates. 
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3.4. Comparison of Survivor Functions 

A test statistic measures the extent to which observed data depart from a null hypothesis, usually 

of no difference, across groups. The probability of obtaining data as extreme, or more extreme, 

when the null hypothesis is true provides the strength of evidence known as the p-value. A large 

p-value indicates it is likely to obtain the observed data if the null hypothesis, of no difference 

between groups, was true. A smaller p-value indicates increasing evidence against the null 

hypothesis to a point where the null hypothesis could be rejected. Although the p-value provides a 

measure of evidence to reject the null hypothesis, often the important information in prognostic 

factor studies is the estimation of prognostic ability of covariates including the actual direction of 

the estimated effect which can obtained from descriptive statistics (e.g. median survival estimates) 

and associated confidence intervals. 

 

The log-rank non-parametric test (also called the Mantel-Cox test) is the most widely used test to 

quantify the extent of any difference between groups of survival data containing censored 

observations. The advantage of this test is that it compares survival estimates across the duration 

of the curve not at a single particular time point, which can be misleading and inefficient. The log-

rank test statistic (Collett, 1994) is based on comparing expected number of deaths under the null 

hypothesis of no difference between groups with the observed number of deaths at each of the 

successive distinct death times t1 < t2 < t3…tn and is calculated as: 
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where g is the number of groups being compared. The log-rank test statistic is compared against 

percentage points of a chi-square distribution with g-1 degrees of freedom and determined to be 

significantly different or not at a particular significance (error) level, usually 5%. Other alternative 
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versions of the log-rank test are available when the number of events is small or the assumption 

of proportional hazards is violated (Machin et al., 2006). 

 

3.5. Estimation of the Survivor Function in Advanced Pancreatic Cancer 

A total of 653 patients with advanced pancreatic cancer were randomised. The majority of patients 

(612, 94%) had died by the time of analysis with a median follow-up time of 21 months for the 41 

patients still alive. The median survival estimate for the overall group was 4.7 months (95%CI: 4.2 

to 5.1) with 12-month survival estimate of 17.4% (95%CI: 14.5% to 20.3%). Median survival 

estimates were 4.2 (95%CI: 3.6 to 4.8) and 5.4 (95%CI: 4.8 to 6.0) for BB128 and BB193 

respectively with corresponding 17.0% (95%CI: 13.4% to 20.6%)and 17.9% (95%CI: 13.0% to 

22.8%)12-month survival estimates. Survival estimates did not differ significantly at the 5% level 

across the two trials (2
LR=2.28, p=0.13, Figure 3.2):  

 

Figure 3.2: Survival Function by Trial 
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3.6. Estimation of the Hazard Function  

The risk of death at a particular time point t, or hazard rate h(t), can be estimated within specific 

small time intervals and is the risk of death within the interval given that a patient has survived to 

the start of that interval. It is estimated as a ratio of the number of deaths divided by the number at 

risk of death within the interval based on individual patient follow-up. There are various methods 

but the Kaplan-Meier method again defines time intervals based on actual death times at distinct 

times t1 < t2 < t3…tn where tn is the maximum death time observed. The Kaplan-Meier estimate of 

the hazard function (Collett, 1994) at time t is: 
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where dj is the number of deaths in the interval tj < t < tj+1, nj is the number of patients at risk at 

time tj and j is the width of the interval tj  < t  < tj+1  assuming the hazard function is constant 

between successive death times as with the Kaplan-Meier estimate of the survivor function. 

 

3.7. The Hazard Ratio 

At any time t the hazard ratio for two groups of patients is the ratio of the hazard rates at that time. 

The overall hazard rate over the whole follow-up period for a specific group of patients can be 

calculated using the observed and expected values calculated using the log-rank method. The 

hazard ratio (HR) is simply a ratio of the two hazard rates estimated as: 

BB

AA

EO

EO
HR   

where OA and OB are the observed numbers of deaths in groups A and B respectively and EA and 

EB are the expected numbers of deaths in groups A and B calculated using the log-rank method. A 

hazard ratio = 1 indicates equal hazard rates in the two groups. A hazard ratio < 1 indicates the 
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hazard of death is less for a patient in group A relative to a patient in group B. For the situation 

where there are only two groups, the log-rank test is testing the null hypothesis that the hazard 

ratio = 1.  95% confidence intervals for the hazard ratio cannot be calculated assuming a Normal 

distribution since possible values of the HR range from 0 to .  Log HR is approximately normally 

distributed which enables a 95% confidence interval to be based on: log HR + 1.96*se[log HR]. 

The standard error (se) of log HR can be calculated using: 











BA EE
HRse

11
][log  

A confidence interval spanning unity would indicate a non-significant or borderline significant 

difference in hazard rates between the two groups. As with the log-rank test, other alternative 

versions of the hazard ratio and confidence intervals are available when the number of events is 

small (Machin et al., 2006).  

 

Many survival analysis methods are based on the assumption of proportional hazards, that the 

hazard ratio is constant over time. The validity of this can be examined using a log cumulative 

hazard plot: a plot of log(-log[S(t)]) vs. log t where S(t) is the Kaplan-Meier estimate of the survivor 

function. With proportional hazards the curves for the groups should be approximately parallel. 

The PHREG procedure in SAS (SAS Institute Inc., 1999) calculates hazard ratios with 95% 

confidence intervals. The LIFETEST procedure in SAS plots log cumulative hazard curves. 

 

3.8. Estimation of the Hazard Function in Advanced Pancreatic Cancer 

Hazard rates were estimated for one-monthly time intervals to 18 months from trial entry and 

appeared similar for both trials and reasonably constant over time (Figure 3.3): 
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Figure 3.3: Monthly Hazard Rates by Trial 

 

 

 

 

 

 

 

 

 

 

 

The hazard ratio (HR) of the relative risk of death across the two studies was estimated HR=0.88 

for BB193 compared to BB128, indicating an overall 12% reduction in the risk of death in the 239 

patients in the BB193 trial compared to the 414 patients in the BB128 trial. The 95% confidence 

interval was (95%CI: 0.75 to 1.04) indicating that 95% of calculated intervals will contain the true 

HR, estimated in this sample to lie somewhere between a 25% reduction and a 4% increase in the 

risk of death for BB193 patients compared to BB128 patients. The confidence interval provides a 

range of values for the true HR estimated from the available data but with increasing uncertainty 

at the limits of the interval. The fact that the confidence interval spans unity also confirms the lack 

of any statistically significant difference between the two trials as previously reported by the log-

rank test statistic. 
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The assumption of proportional hazards was investigated using a log cumulative hazard plot and 

showed curves for the two trials to be approximately parallel (Figure 3.4): 

 

Figure 3.4: Log Cumulative Hazard Plot by Trial 

 

 

3.9. Conclusion 

Prognostic modelling, described in Chapter 4, is based on multivariable analysis of time to event 

data, described in Chapter 5, so it is important to describe the basic statistical methods used to 

analyse time to event data which are more complex due to censored data. The Kaplan-Meier 

estimates of survival for this dataset (12-month survival rate estimated as 17%) are similar to 

those reported in Chapter 1 (12-month survival rate for England and Wales reported as 13%). 

Alive patients have been followed for almost two years and the 2-year survival estimate (not 

plotted) is estimated as 3.6% (5-year rates reported as 0.4 to 4%, Chapter 1). As such, this 
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dataset provides data from a representative sample of patients with advanced pancreatic cancer, 

based on estimated survival distributions. The survival distributions do not appear to be 

significantly different across the two trials. The hazard ratio does not indicate a significantly 

different hazard rate for either trial. The hazard function appears constant over time and similar 

across the two trials. As such, there does not appear to be any significant factor why the trial data 

from the two studies may not be merged for investigating potential prognostic factors. Statistical 

methods should always account for the fact that patients come from two trials and also that 

patients have been randomised to different treatment groups, even if these effects appear non-

significant. The assumption of proportional hazards does not appear to be violated. Methods for 

assessing the prognostic ability of variables and developing prognostic indices are described in 

the next chapter. The statistical methods for identifying prognostic factors in the multivariable 

setting are described in Chapter 5. 
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CHAPTER 4: PROGNOSTIC INDICES 

 

 SUMMARY 

 Prognostic factor studies are intended to help clinicians in their decision making 

 A prognostic index is a clinical tool to predict the survival of patients after diagnosis 

 Evidence is also relevant for the appropriate design and analysis of cancer research 

 36 studies reported 34 possible prognostic factors for advanced pancreatic cancer, the 

majority questionable in terms of sample size and statistical methods  

 Published studies are often contradictory and as such few prognostic markers are in use 

 Prognostic studies should adopt a multivariable approach 

 Model validation is important to assess the extent of over-fitting and thus external validity 

and where possible should be conducted using an independent dataset 

 As such, model validation can be seen as a continuing process with the availability of new 

data 

 Internal model validation methods (the non-parametric bootstrap) allow assessment of the 

validity and stability of selected prognostic factors in the absence of independent data 

 Complete case analysis can result in biased or imprecise regression coefficients if 

missing data are not missing at random  

 Analysis of a complete dataset based on multiple imputation could be informative 

 

4.1. Introduction 

The aim of this chapter is to discuss the important methodological issues surrounding 

identification of prognostic factors and the development of a prognostic index including model 

validation techniques and dealing with missing data.  

 

The goal of prognosis is to predict the future. A prognostic index is a tool used by clinicians to 

predict the survival of patients after diagnosis. Prognosis may change over time but in terms of 

patient management is frozen at a specific time (often time of diagnosis) to enable treatment plans 
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to be put in place. Prognosis may be modified by therapy and assessment of possible prognostic 

factors is often the first step in determining a patient treatment plan. Comprehensive prognosis 

(Gospodarowicz et al., 2001) reflects the expected outcome of all potential competing risks not 

just those associated with the illness in question. Medical decision making is carried out on a daily 

basis based on comprehensive prognosis which is most relevant to the individual patient. 

Prognostic factor studies are intended to help clinicians in their decision making. Evidence of 

prognostic factors is also relevant for the appropriate design and analysis of evaluative research. 

Identification of important prognostic factors can contribute to the eligibility criteria and 

stratification of patients to ensure balance of these important factors across each treatment group 

in randomised controlled trials. The more the variability in outcome due to prognostic factors can 

be minimised, the more confident research can be of the true efficacy of a treatment. Similarly 

determination of prognostic factors can identify which subgroups of patients could be explored for 

their response to specific treatments and highlight poorer prognostic groups suitable for more 

experimental or palliative treatments. The purpose of prognostic factor studies was summarised in 

an evaluation of prognostic factors in breast cancer (Altman, 2001;Altman and Lyman, 1998) and 

include (Table 4.1): 

 

Table 4.1: Purpose of Prognostic Factor Studies 

 To guide clinical decision making, including treatment selection and patient counselling 

 To improve understanding of the disease process 

 To improve the design and analysis of clinical trials (for example, risk stratification) 

 To assist in comparing outcome between treatment groups in non-randomised studies 

allowing adjustment for case mix 

 To define risk groups based on prognosis 

 To predict disease outcome more accurately or parsimoniously 
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Prognostic factor studies tend to fall into two categories: exploratory or confirmatory 

(Gospodarowicz et al., 2001). Most are exploratory studies, usually with no pre-specified 

hypotheses involving multiple data-driven analyses of multiple factors, endpoints and subgroups, 

but reporting only those which show statistical significance. Poorly designed studies often yield the 

most dramatic but probably incorrect and misleading results yet may achieve a wide audience in 

inadvertently published in reputable journals. As such these exploratory studies tend to have 

misleading conclusions and are often inconsistent and contradictory, limiting their potential 

application and as a consequence few prognostic markers are in use. Confirmatory studies, to the 

contrary, are prospective studies with pre-defined hypotheses, endpoints and subgroups resulting 

in limited analyses. At least one confirmatory study should be carried out before a new prognostic 

factor or prognostic index is considered for use in clinical practice. Important characteristics of a 

confirmatory prognostic factor study (Simon and Altman, 1994) include (Table 4.2): 

 

Table 4.2: Characteristics of a Confirmatory Prognostic Factor Study 

 Treatment should be standardised or randomised and accounted for in the analysis 

 Hypotheses should be stated in advance, including specification of prognostic factors, 

coding of prognostic factors, endpoints and subsets of patients and treatments 

 Sample size and number of events should be sufficiently large that statistically reliable 

results are obtained. There should be at least 10 events per prognostic factor examined 

per subset analysed 

 Analyses should assess whether new factors add predictiveness after adjustment for or 

within subsets determined by known standard prognostic factors 

 Consideration should be given to the number of analyses conducted 

 Cut-off values for prognostic factors should be pre-specified or preferably avoided 

 

Both the American Joint Cancer Committee (AJCC) and International Union Against Cancer 

(UICC) encourage only statistically significant and independent prognostic factors be considered 
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for use in clinical practice based on multivariable analyses of large prospective datasets with 

sufficient evidence to detect small but clinically relevant differences in outcome. However, both 

acknowledge few studies exist resulting in their alternative approach grouping tumour, host and 

environment related factors (Section 4.6, Table 4.4). Sample size calculations for prognostic factor 

studies are not straightforward and often not carried out since the data are often retrospective or 

derived for another primary purpose, such as a clinical trial. Data from randomised controlled trials 

can be used to study prognosis but if the treatment under investigation is effective then a 

„treatment‟ variable should be included as a separate factor in the multivariable model (Machin et 

al., 2006;Moons et al., 2009;Simon and Altman, 1994). There are no straightforward methods for 

estimating sample size for multivariable prognostic studies. Power formulae in survival analysis 

are based on the relatively simple case of the comparison of randomised treatment groups using 

hypothesis testing. In prognostic studies it is an accurate estimate of the size of the effect of a set 

of covariates that is important. Possible prognostic covariates may be correlated with treatment so 

existing power formulae are not valid (Schmoor et al., 2000). Prognostic factors often display a 

larger effect than treatment effects suggesting prognostic factor studies could be smaller than 

randomised controlled trials. However adjustment for correlation again increases the sample size 

and a variance inflation factor has been developed for the situation of one correlated factor 

(Schmoor et al., 2000). In survival studies it is the number of events rather than the sample size 

that is important. The number of regression coefficients being estimated should be less than the 

number of events. Ideally, studies require at least several hundred outcome events (Moons et al., 

2009). As a guide, for each potential prognostic variable under consideration there should be at 

least 10 events to obtain reasonably stable estimates for each regression coefficient (Peduzzi et 

al., 1995). In the advanced pancreatic cancer dataset there are 612 events which should be 
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adequate for stable estimation of the prognostic ability of the eighteen possible independent 

factors under investigation. 

 

A pathway to obtaining high quality evidence regarding prognostic ability of a factor (Riley et al., 

2009) and guidelines for reporting tumour marker prognostic studies (McShane et al., 2005) were 

published in an attempt to encourage large, protocol-driven prospective studies with transparent 

and complete reporting. Thus enabling sensible judgement of the usefulness of the reported data 

and explaining why so few clinically useful markers emerge from hundreds of tumour marker 

reports in oncology. Poor study design and analysis and inadequate reporting of studies were 

identified as major barriers. 

 

4.2. Statistical Development of a Prognostic Index 

In oncology, baseline data collected from identified studies at the time of randomisation into a 

randomised controlled trial may be utilised to develop a prognostic model for survival. Clinicians 

implicitly use multiple factors to estimate an individual patient‟s prognosis. As such, prognostic 

studies should adopt a multivariable approach to the design and analysis (Moons et al., 2009). 

Multivariable regression methods are used for the simultaneous and flexible assessment of 

multiple baseline factors. Although individual variables may appear to be statistically significant 

prognostic factors, two or more factors may be aliased with one another and as such explain 

similar variability in the data. Multivariable regression methods aim to select those which appear to 

influence directly the outcome of interest and discard those which do not, over and above those 

already selected as important in the regression model. Multivariable regression methods can also 

take account and allow inclusion of already recognised prognostic factors. 
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Prognostic indices are derived from the final predicted regression model yielding a prognostic 

score for each patient. Prognostic scores can be grouped to form risk groups derived from the 

prognostic index based on cut-points of the index and survival curves can be calculated for each 

of these risk groups. Survival curves for these predicted risk groups could be biased (overfitting) 

since the same data are used for selecting the prognostic model as for estimating the effect of the 

model. Overfitting can occur in the development of prognostic models including large numbers of 

covariates when some of the structure of the data has been fitted to random noise in the data and 

is a measure of poor external validity. One method to assess of the extent of overfitting and 

achieve valid accurate estimates of prognostic value is to validate the model on an independent 

external set of data. However this is often not a possibility or may be inefficient if preserving an 

independent set requires withholding data from the model building process thus compromising 

estimation of the statistical functions. An alternative method is internal model validation based on 

statistical re-sampling techniques. 

 

4.3. The Nonparametric Bootstrap 

In the absence of an external dataset, internal model validation methods based on statistical re-

sampling simulation techniques allow assessment of the accuracy of statistical estimates and of 

the stability of a set of selected prognostic factors. The nonparametric bootstrap (Efron and 

Tibshirani, 1993) is a way of using the available data to simulate new datasets had the study been 

repeated multiple times with a different sample of patients. The new simulated datasets are the 

bootstrap samples created by sampling one patient at a time with replacement from the original 

dataset up to the same size of the original set of data. Using random selection with replacement 

means that an individual patient from the original data set can be included repeatedly within a 

bootstrap sample while others may not be included at all, called bootstrap replication. This 
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process is repeated usually until a maximum number (often 200) of simulated bootstrap samples 

have been created. Since the bootstrap samples are derived from the original data, the amount of 

variability in a particular parameter estimate across all bootstrap samples should then provide an 

unbiased estimate of the stability of that estimate from the analysis of original data. Bootstrapping 

can also be used to assess the stability of a selected set of variables (Altman and Anderson, 

1989).  

 

A bootstrap depends on the original sample of data being representative. If the sample is not 

representative, conclusions will be inappropriate hence it is important that a sample is a good 

representation of the population of patients under study. Bootstrap validation methods should be 

seen as a complimentary tool, not a replacement for external validation methods. Internal 

validation methods are used to assess overfitting when modelling the advanced pancreatic cancer 

data. An external validation set was expected to become available during the project and as such 

it was anticipated that the final model could also undergo external validation. As such, data-

splitting the original dataset was avoided thus maximising the available data to detect significant 

prognostic factors, using internal validation methods until the independent, external dataset 

became available.  

 

4.4. Missing Data and Imputation 

Incomplete prognostic data is common (Burton and Altman, 2004) but problematic. Statistical 

analytical methods, including maximum likelihood estimation, generally exclude patients with 

missing prognostic data. Analyses performed on a complete case basis with a subsequent 

reduction in available data for analysis, can impede construction of reliable models and can result 

in biased or under- or overestimation of regression coefficients and overestimation of variance if 



CHAPTER 4: PROGNOSTIC INDICES 

36 

 

missing data are not missing at random (MAR) affecting prognostic ability of the covariates 

(Burton and Altman, 2004). Missing completely at random (MCAR) data are data missing for 

reasons unrelated to outcome. Missing at random data are data missing for reasons related to 

other explanatory data but not outcome. Most statistical methods for dealing with missing data 

assume data are missing at random. Guidelines for reporting prognostic studies with missing 

covariate data (Burton and Altman, 2004) are based on assessment of the i) quantification of 

completeness of covariate data, ii) approaches for handling missing covariate data, 

recommending multiple imputation and iii) exploration of missing data, providing any known 

reasons.  Methods for handling missing data include multiple imputation methods.  

 

Imputing missing values and exploratory analysis of a complete imputed dataset could be 

informative compared with excluding subjects with incomplete data (Harrell, 2001) but 

computation needs to account for the imputation. Multiple imputation methods (Rubin, 

1987;Schafer, 1997) are based on random selection from the conditional distribution of the 

variable in question in light of other variables. Imputation is repeated m times where m>3 to 

account for variability related to the imputed values. Each m repeated imputation results in a 

complete dataset analysed using standard methods. Parameter estimates are averaged over the 

multiple imputations and variability across imputed datasets is a component when deriving 

estimates of the variance, thus including an estimate of uncertainty derived from the observed 

missingness and providing better estimates than a single imputation. Multiple imputation is viewed 

as the principal analysis by some (Harrell, 2001). 

 

In the advanced pancreatic cancer dataset, the majority of variables had <5% missing values 

(Table 2.2) and reasons for missing data were not available. Tumour stage, CA19-9 and WBC 
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were missing in less than 10% of patients. The missing biochemical data is likely to be linked to 

„centre‟. Missing tumour stage is directly related to cancer stage (99% complete data) and again is 

likely to be linked to „centre‟. Lymph node status was missing for 24% of patients. In this sample of 

metastatic pancreatic cancer patients, missing lymph node status is likely to represent a group of 

patients where status was not deemed applicable to assess and hence was considered in the 

analysis as classification variable using „negative‟ as a reference level and including „missing‟ as a 

classification level. As such, the assumption of MAR does not appear to be violated. Principal 

analysis was based on complete cases (85% with complete data on the factors of interest) but 

multiple imputation was explored to provide valid, inferential alternative results.  

 

4.5. Summary of Adopted Modelling Strategy 

A proposed strategy (Harrell et al., 1996) for maximising model accuracy and avoiding poorly fitted 

and over-fitted regression models in the development of multivariable prognostic models is 

summarised in Table 4.3.  

 

The strategy is adapted for the analysis of the advanced pancreatic cancer dataset. Specifically, 

data on 653 patients, a large dataset in this disease, were collected at the time of randomisation 

and quality assured by British Biotech to minimise data errors and missing data. It is a clinically 

reduced dataset, reduced to those variables which are clinically meaningful and available within 

an NHS outpatient clinic. The data are robust for statistical modelling with a 94% event (death) 

rate and an average follow-up of alive patients of almost two years. Patients with limited response 

data (lost to follow-up) are retained in the analysis but censored out at the date last seen alive. 
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Table 4.3: Summary of Modelling Strategy 

1. Assemble accurate data and as large a sample as possible with sufficient follow-up to 

capture events 

2. Formulate focused clinical hypotheses, expected relationships and possible interactions 

3. Discard observations with missing response data if missing at random 

4. Assess missing covariate data, exclude if small % patients otherwise impute missing data 

5. Data reduction techniques if number of covariates is large compared with outcome data 

6. Use entire sample in model development 

7. Check linearity assumption and make possible transformations 

8. Check additivity assumptions and investigate pre-specified clinically motivated plausable 

interaction terms 

9. Check for overly influential observations, may indicate over fitting, a need for rescaling or 

truncating highly skewed variables or highlight data errors 

10. Check distributional assumptions (stratification or time-dependent covariates if 

proportional hazards assumption is violated, distributional assumption of parametric 

models) 

11. Do limited backwards step-down variable selection – possible loss of information through 

stepwise techniques as do not address over fitting 

12. This is the „final‟ model 

13. Validate model for calibration and discrimination ability, preferably using bootstrapping. 

Steps 7 to 11 repeated approximately for each bootstrap sample. 

14. If using stepwise selection present a summary table of variability of important factors over 

bootstrap samples 

15. Estimate likely shrinkage of predictions from model, consider shrinking predictions 

accordingly. 

 

 

Multiple imputation was considered and presented as a supportive analysis to a complete case 

analysis, since the proportion of missing data is small. The assumption of „linearity‟ refers to the 

functional form of the relationship between each continuous covariate and log-hazard, which is 

assumed to be linear. This assumption is discussed further in Chapter 5 and was investigated for 

each of the ten continuous variables in the advanced pancreatic cancer dataset comparing and 

presenting different methods of transformation, including dichotomisation. This research was 

focused on the main effects of eighteen possible prognostic factors investigating appropriate 
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transformations for the correct modelling of these main effects. As such, interactions of identified 

main effects especially where main effects are more complex non-linear transformations, is part of 

planned further research. Approximately four times as many patients are required for sufficient 

evidence to detect interaction terms (Schmoor et al., 2000) and it is debatable if 612 events would 

be enough evidence. The proportional hazards assumption was investigated in Chapter 3 and was 

not considered to be substantially violated after accounting for unavoidable early deaths. Variable 

selection methods are discussed in Chapter 5, backward elimination being the adopted method for 

the analysis in the advanced pancreatic cancer dataset. Internal validation methods were used to 

avoid data-splitting the main dataset, maximising available data to detect significant prognostic 

factors until the independent, external dataset became available.  

 

4.6. Reported Prognostic Factors in Pancreatic Cancer 

Generally, ductal adenocarcinomas are separated from other pancreatic tumours, such as peri-

ampullary tumours, which have better prognoses. Prognosis for tumours of the head of pancreas 

has been favoured compared with tumours of the body or tail which are generally diagnosed at a 

later stage of disease due to lack of symptoms. A review by the International Union Against 

Cancer (UICC) (Roder and Ott, 2001) reported prognostic factors for pancreatic cancer as 

„essential‟, „additional‟, „new and promising‟ (Table 4.4). Essential prognostic factors are 

predominantly tumour related, TNM stage being the most important staging system based on size 

and location of the primary tumour: T1/T2 tumours are limited to the pancreas, T3 tumours invade 

local tissue (duodenum, bile duct, peripancreatic tissue) and T4 invade adjacent organs (stomach, 

spleen, colon, adjacent large vessels) (Roder and Ott, 2001). 
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Table 4.4: Prognostic Factors for Pancreatic Cancer 

Prognostic Factors Tumor Related Host Related Environment Related 

    
Essential TNM classification 

Lymph-node metastases 
Infiltration of peripancreatic 

tissue and organs 
Lymphatic vessel invasion 
Tumor size 
Curative resection (R0) 

 Possibility of resection 
High volume centers 

    
Additional Disseminated tumor cells in the 

bone marrow 
Disseminated tumor cells in the 

peritoneal cavity 

Performance 
status 

Adjuvant therapy 

    
New and promising DNA content 

Genetic instability 
Tumor suppressor genes p53, 

p16, DPC4, Bcl-2 
Protooncogenes: Ki-67 
Oncogenes 
K-ras 
Growth factors 
VEGF 
EGF/EGFR 
TGF-beta 
FDG-PET 

 Neoadjuvant concepts 
Antiangiogenesis 
Cytokine-secreting pancreatic 

adeno-carcinoma vaccine 

 

 

 

In resectable patients the most important prognostic factor may be involvement of the resection 

margins (Neoptolemos et al., 2001b). The first large randomised controlled trial (ESPAC-1) also 

reported grade of disease, lymph node status and tumour size as prognostic factors for survival 

following surgery (Neoptolemos et al., 2004).  

 

Due to the short survival of patients with advanced pancreatic cancer, it is possible there could be 

limited prognostic factors. A search of the WSci, EmBase and Ovid publication databases 

conducted in 2004 (Stocken et al., 2008) identified 36 published prognostic factor studies 
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(excluding posters and presentations) reporting a total of 34 possible prognostic factors for 

advanced pancreatic cancer patients (Table 4.5), grouped as surgical, clinical, laboratory or 

demographic: 

 

Table 4.5a: Published Prognostic Factor Studies 

Type (number) of 
studies 

Number of 
patients per 
study 

Prognostic Factors reported 
(frequency of reporting) 

Univariate (U) / 
Multivariable 
(MV) analysis 

      
Randomised 
Controlled Trial  
(n=4) 

207 to 322 Surgical: 
 

Clinical: 
 

Laboratory: 

Metastases 
Tumour location 
Performance status 
Treatment 
Alkaline phosphatase  

(3) 
(1) 
(3) 
(1) 
(1) 
 

4 MV 

      
Consecutive 
Series >500 
patients  
(n=3) 

782 to 2380 Surgical: 
 
 

Clinical: 
 
 
 
 
 

Laboratory: 
Demographic: 

Metastases 
Stage of disease 
Operation 
Performance status 
Diabetes 
Pain 
Appetite/weight 
Jaundice 
Treatment 
Albumin 
Age 
Specialist centre 

(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
 

2 MV 
1 U 
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Table 4.5b: Published Prognostic Factor Studies 

Type (number) of 
studies 

Number of 
patients per 
study 

Prognostic Factors reported 
(frequency of reporting) 

Univariate (U) / 
Multivariable 
(MV) analysis 
 

      
Consecutive 
Series 100 to 500 
patients  
(n=14) 

102 to 450 Surgical: 
 
 
 
 
 
 
 

Clinical: 
 
 
 
 
 

Laboratory: 
 
 
 
 
 
 
 

Demographic: 

Metastases 
Stage of disease 
Tumour location 
Operation 
Tumour size 
Duodenal invasion 
Peri dissemination 
Ascites 
Performance status 
Diabetes 
Pain  
Appetite/weight 
Symptom onset 
Treatment 
CA242 
CA19-9 
Leukocytes 
Gamma GT 
Albumin 
LDH 
CRP 
Iron 
Age 

(4) 
(2) 
(1) 
(2) 
(1) 
(1) 
(1) 
(1) 
(2) 
(1) 
(1) 
(3) 
(1) 
(2) 
(2) 
(2) 
(1) 
(1) 
(1) 
(1) 
(3) 
(1) 
(1) 
 

13 MV 
1 U 

      
Consecutive 
Series 
<100 patients  
(n=15) 

28 to 95 Surgical: 
 
 
 
 
 
 

Clinical: 
 
 
 

Laboratory: 
 
 
 

Metastases 
Stage of disease 
Grade of disease 
Nodal status 
Operation 
Tumour size 
Fibrosis 
Performance status 
Inflammation 
Appetite/weight 
Treatment 
CA19-9 
VEGF 
CEA 
Phase angle BIA 
SCA 

(1) 
(1) 
(1) 
(1) 
(1) 
(2) 
(1) 
(4) 
(1) 
(1) 
(1) 
(7) 
(1) 
(1) 
(1) 
(1) 

8 MV 
7 U 
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The majority of these studies were questionable in terms of sample size and statistical methods, 

most based on small retrospective studies sometimes with inadequate analyses leaving the 

significance of specific prognostic factors unclear. Some variables are related (e.g. small tumours 

are more likely to be lymph node negative) hence the need to assess the importance of each 

factor in light of all other variables using multivariable statistical analysis. Thirty-two studies 

(Bachmann et al., 2003;Cubiella et al., 1999;Engelken et al., 2003;Falconer et al., 1995;Friedman 

and Vandeneeden, 1993;Fujino et al., 2003;Halm et al., 2000;Ikeda et al., 2001;Ishii et al., 

1996;Karayiannakis et al., 2003;Kuhlmann et al., 2004;Lundin et al., 1995;Micke et al., 2003;Ni et 

al., 2005;Ohigashi et al., 2003;Paillaud et al., 2003;Ridwelski et al., 2001;Rothenberg et al., 

1996;Saad et al., 2002;Shibamoto et al., 1996;Stemmler et al., 2003;Storniolo et al., 1999;Talar-

Wojnarowska et al., 2003;Tas et al., 2001;Terwee et al., 2000;Trigui et al., 2000;Tsuruta et al., 

2001;Ueno et al., 2000;Watanabe et al., 2004;Yasue et al., 1994;Ziske et al., 2003;Gupta et al., 

2004)  were based on consecutive series of patients, often retrospective, often single-centre, of 

which 15 studies were based on fewer than 100 patients (Halm et al., 2000;Ikeda et al., 2001;Ishii 

et al., 1996;Karayiannakis et al., 2003;Micke et al., 2003;Ohigashi et al., 2003;Paillaud et al., 

2003;Rothenberg et al., 1996;Saad et al., 2002;Stemmler et al., 2003;Talar-Wojnarowska et al., 

2003;Tsuruta et al., 2001;Yasue et al., 1994;Ziske et al., 2003;Gupta et al., 2004). One study was 

a summary of five observational studies with varied inclusion criteria, inconsistent results and no 

prospective verification (Terwee et al., 2000). The largest series (2380 patients) identified factors 

based on univariate analyses and data containing a large proportion (57%) of censored patients 

(Storniolo et al., 1999). Four studies (Berlin et al., 2002;Ducreux et al., 2002;Johnson et al., 

2001;Maisey et al., 2002) were randomised controlled trials and reported five prognostic factors 

based on multivariable analyses: metastases, tumour site, performance status, alkaline 

phosphatase and treatment. 
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Six of the papers reported in the literature review (Table 4.6) claimed to have developed a 

prognostic index suitable for use in clinical practice when making therapeutic decisions and 

suitable for use when designing and analysing future clinical trials. The largest (Terwee et al., 

2000) was a study pooling 1020 patients with unresectable pancreatic cancer from five studies. 

The strength of the study is the large sample size but the authors admit there were 

inconsistencies in the results in the individual studies included with varied survival figures 

unexplained by the prognostic variables. These differences could be due to the exclusion of 

important risk factors since the study was limited to only three prognostic factors available across 

all five studies. Three of the remaining studies were retrospective and five were based 

consecutive series of patients, the largest including a total of 166 patients, the smallest including 

only 55 patients (47 deaths). None of these reported indices has been adopted into clinical 

practice in the UK and as such, there is currently no prognostic tool in routine use for prediction of 

survival in advanced pancreatic cancer by which clinicians could identify subgroups of patients 

who may or may not benefit from further treatment. 
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Table 4.6: Summary of Reported Prognostic Indices 

Study  Single/ 
Multicentre  

Patients 
(Deaths) 

Variables 
(Continuous)  

Analysis of Continuous 
Covariates 

Prognostic Factors 
Identified 

Validated Comments 

1  

(Terwee et 
al., 2000) 

Pooling of 5 
Multicentre 
studies 

1020 (?) 3 (1) for 5 studies 

6 (1 ) for 4 studies 

Non-linearity investigated Age 

Sex 

Metastases 

No Prospective 

Limited factors  

Included study and treatment 

2  

(Trigui et al., 
2000) 

25 centres 166 (?) 17 (5) Dichotomised Pain 

Ascites 

Weight loss 

Metastases 

No Prospective 

Excluded centre and Treatment 

3 

(Cubiella et 
al., 1999) 

Single 134 (134) 34 (18) Dichotomised at median Performance status 

Metastases 

No Retrospective 

Excluded treatment 

4 

(Ueno et al., 
2000) 

Single 103 (95) 20 (10) Dichotomised  CRP 

Performance status 

CA19-9 

No Retrospective 

Excluded treatment 

5  

(Ishii et al., 
1996) 

Single 65 (?) ? (?) Dichotomised  Performance status 

CEA 

Metastases 

No Retrospective 

Excluded treatment 

6  

(Ikeda et al., 
2001) 

Single 55 (47) 19 (8) Dichotomised  Performance status 

Lymph node swelling 

CA19-9 

No Prospective 

Excluded treatment 
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4.7. Clinical Trial Design 

The usual endpoint for efficacy of cancer treatments is all cause mortality and comparison of 

overall survival is often the primary outcome measure in randomised controlled trials in cancer. 

Other endpoints include progression free survival (time to progression or death whichever is first, 

also known as disease free survival), objective response rates, toxicity of experimental treatments 

and patient self-reported quality of life. Symptom assessment from the patient perspective (health 

related quality of life) is increasingly important in clinical trials where small survival differences in 

treatments are expected (Carter et al., 2009) and indeed clinical benefit response (a composite of 

measurements of pain, performance status and weight) was used as the primary measure of 

treatment efficacy in the licensing trial of gemcitabine in the advanced disease setting (Burris et 

al., 1997). 

 

To compare survival rates adequately across treatment groups and provide sufficient evidence of 

a survival difference requires large studies. Randomised controlled trials in pancreatic cancer 

usually require larger number of patients to enable detection of small expected treatment 

differences and as such may require multi-centre/ country participation. Random allocation of 

patients to treatment groups should be used to minimise selection bias and ensure patient and 

tumour characteristics are adequately balanced across the different treatment arms. Identification 

of important prognostic factors is desirable to enable accurate stratification of patients at the time 

of randomisation. Stratification factors are factors which are known to have a significant effect on 

outcome and as such should be balanced equally across treatment groups. Stratification factors 

used in pancreatic clinical trials in the adjuvant setting often include surgical centre and resection 

margin status (R0 patients are those with negative resection margins at surgery who have a better 

prognosis than patients with residual tumour left at surgery (R1) (Butturini et al., 
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2008;Neoptolemos et al., 2001b)). Stratification factors used in pancreatic clinical trials in the 

advanced disease setting include oncology centre, stage of disease (locally advanced patients are 

those with no distant metastases who have a better prognosis than patients with metastases) and 

performance status (patients with performance status 0 or 1 have better performance status 

associated with better prognosis than patients with performance status 2) (Cunningham et al., 

2009). 

 

4.8. Conclusions 

In summary, the advanced pancreatic cancer dataset contains 653 patients with 612 deaths and 

should enable stable estimation of the prognostic ability of the eighteen identified possible 

prognostic factors. Six previously reported prognostic indices included one large study of 1020 

patients but with only three common variables to investigate. The remaining five studies were 

based on <166 patients, four were single centre studies, three were retrospective. None of the six 

studies included any validation. A total of 36 prognostic factor studies were identified reporting a 

total of 34 prognostic factors and of these 11 were available for analysis in the advanced 

pancreatic cancer dataset. Of the 23 factors not collected, 15 had only been reported once. The 

most frequently occurring factors, not available in the advanced pancreatic dataset were 

performance status (reported in 10 studies) and appetite/ weight loss (reported in 5 studies). The 

functional form of the relationship between each continuous covariate and log-hazard was usually 

not investigated, usually being dichotomised. Non-linearity is addressed for the first time in this 

disease site and was investigated for each of the ten continuous variables in the advanced 

pancreatic cancer dataset. Model validation is addressed for the first time in this disease site; 

internal validation was carried out to assess the degree of overfitting, external validation was 

carried out based on an independent, external dataset. Multiple imputation methods were used as 
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a supportive analysis to the principal complete case analysis, to assess the impact of missing data 

which again had not been addressed previously in the literature. 
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 CHAPTER 5: STATISTICAL METHODS FOR PROGNOSTIC MODELLING 

 

 SUMMARY 

 A multivariable approach to analysis allows investigation of the relationship between 

survival and one or more possible factors 

 Non-parametric methods model the hazard function with no distributional assumptions 

 Akaike‟s Information Criteria is valid for comparing non-nested as well as nested models 

 Multivariable regression modelling can be used with categorical and continuous variables 

 Dichotomisation of continuous data is common but is inefficient and unnecessary 

 Continuous variables are often simplified by assuming a linear relationship between 

predictor and log-hazard which may not be appropriate 

 Assessment of model performance and validity is an integral aspect of model 

development 

 

5.1. Introduction 

The aim of this chapter is to describe the statistical methods for assessing treatment effects and 

identification of prognostic factors in the multivariable setting including constructing prognostic 

indices. Kaplan Meier and log-rank methods can be used in the analysis of a single possible 

prognostic factor but in reality many underlying factors may have an impact on length of survival 

and all factors need to be investigated and accounted for in the analysis. A multivariable modelling 

approach to the analysis of survival data allows investigation of the relationship between survival 

and one or more possible factors. A variety of statistical methods are available for multivariable 

modelling of survival data but generally most clinical studies, including randomised cancer clinical 

trials, use the proportional hazards regression model (Cox, 1972) to investigate possible 

prognostic factors and treatment effects. Cox proportional hazards regression and methods for 

assessing the underlying assumptions are discussed, specifically the assumption of proportional 
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hazards. The underlying linearity assumption for continuous covariates is introduced and 

discussed. Issues surrounding variable selection, comparison of different regression models and 

issues relating to missing covariate data are discussed. 

 

5.2. Cox Proportional Hazards Regression 

In parametric models there is some underlying assumption about the distribution of the hazard 

rate. For example, in a Weibull regression model the baseline hazard function is non-constant but 

rather increases or decreases monotonically over time, although does not change direction: 

1

0 )(  tth  

where  is a scale parameter and  is a shape parameter, both >0, denoted W(, ). Weibull is 

often used when the survival distribution is assumed to be positively skewed i.e. with a heavy left 

tail, early events. Indeed when =1 then the hazard function is constant  and conforms back to 

the exponential distribution. Estimates of log  (intercept) and  (slope) can be taken from a log 

cumulative hazard plot where non-parallel lines indicate different shape parameter  across 

groups indicating non-proportionality. In pancreatic cancer clinical trials, especially those in the 

adjuvant setting where all patients undergo „curative‟ resection, patients may be more at risk of 

death post-surgery with diminishing risk as time increases. In this case the hazard rate may be 

dependent on follow-up time. The purpose of statistical modelling is to relate non-constant 

hazards to influential covariates. In contrast to the parametric models, non-parametric methods 

model the hazard function with no distributional assumption for survival times. Since parameters 

are estimated for each of the potential covariates, the Cox proportional hazards regression is 

described as a semi-parametric approach. 
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Cox proportional hazards regression models the hazard function directly and aims to detect the 

extent to which potential factors affect the form of the hazard function. The only assumption is that 

the hazards across groups are proportional to one another and thus the ratio of hazard functions 

does not vary with time. For two treatment groups the proportional hazards model (Collett, 1994) 

is: 

hA(t) = hB(t)  

where hA(t) and hB(t) are the hazards of death at time t for treatments A and B respectively and  

is a constant value of the ratio of the hazards (the hazard ratio) where  = hB(t) / hA(t).  An 

alternative more general expression is: 

)()( 0 theth iX

i


      

where hi(t) is the hazard function for the ith of n patients, h0(t) is the baseline hazard function 

where all covariate values Xi equal zero and eX =  (the hazard ratio) and can be rewritten as: 
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where j=1 to p explanatory variables Xi and j are regression coefficients for expressing the 

relationship between the hazard of death and each covariate Xj. Then log  (the log hazard ratio) 

= X. For a vector of explanatory variables X the hazard ratio is interpreted as the hazard at time t 

for a patient relative to the hazard for a patient with all variable values of zero. The general 

proportional hazards model is then: 
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and can be rewritten as an additive model on the log-hazard scale: 
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where 1X1i + 2X2i + ….. + pXpi =i  is known as the linear predictor of the model, also known as 

risk score or prognostic index. The proportional hazards model can also be regarded as the linear 

model for the logarithm of the hazard ratio. 

 

Inferences about the effects of the explanatory variables Xi on the log hazard ratio (estimating p 

coefficients) in the proportional hazards model can be made without making any assumptions 

regarding the form of the baseline hazard function h0(t) although estimates of the pcoefficients 

can be used to estimate h0(t) if needed. The unknown estimates of the p coefficients are 

computed using maximum likelihood estimation. The likelihood of the data is the joint probability of 

the observed data as a function of observed survival times and unknown  parameters. The 

estimates of  are values which are most likely given the observed data or maximum likelihood 

estimates which are values which maximise the likelihood function. For computation purposes, it is 

simpler to maximise the logarithm of the likelihood function using an iterative procedure such as 

the Newton-Raphson with Breslow‟s approximation for multiple tied events at a specific time. 

Computation of the standard errors for each  estimate (se[]) enable a 95% confidence interval 

confidence interval for  to also be estimated based on:  + 1.96*se[]. Since the distribution of 

the logarithm of the hazard ratio is more closely approximated with the normal distribution and  

log  = X  then a 95% confidence interval confidence interval for the true hazard ratio   can 

calculated by exponentiating the confidence interval calculated for 

 

If the confidence interval for does not include zero then this provides evidence that the value of 

 is non-zero. The null hypothesis, that p=0 in the presence of other terms in the model, can be 

tested using the Wald test which compares /se() against percentage points of a chi-square 
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distribution at a particular significance (error) level, often 5%. Generally individual estimates of p 

in are not completely independent of one another so testing separate hypotheses about  

parameters may not be interpretable. Alternative methods for comparing Cox proportional hazards 

models are based on the log-likelihood ratio statistic. 

 

5.3. Comparing Alternative Models  

How well a model fits to a specific set of survival data can be calculated using a statistic known as 

-2logL (-2*log-likelihood) which is a summary measure of the agreement between the model and 

the data. Since –2logL is dependent upon the number of observations in the data then its value is 

dataset specific and is increased with increased observations. As such it cannot be used to 

compare models across different datasets. Comparison of -2logL can be used to compare two 

nested proportional hazards models developed on the same set of data however formal testing is 

inadvisable since -2logL does not have a chi-squared distribution (Collett, 1994). Since only 

nested models should be compared using -2logL, Akaike‟s Information Criteria (AIC) (Akaike, 

1974) is valid for comparing non-nested as well as nested models by penalising the log-likelihood 

for model complexity by adding at least twice the number of parameters estimated: 

AIC=-2logL + k  

where  is a predetermined constant between 2 and 6 (determined according to  chosen 

significance level where q=2 or 3 approximates a 5% significance level) and k is the number of 

unknown  parameters in the model. Choosing a model based on the AIC is a successful strategy 

producing simplified models (Ambler et al., 2002).  

 

Smaller values of the AIC indicate a better model but it is unclear whether AIC statistics from non-

nested models can be compared with hypothesis testing. Akaike suggested (Akaike, 1974) that in 
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some circumstances testing could be used: “When there are different families approximating the 

true likelihood equally well the situation will at least locally be approximated by the different 

parameterizations of one and the same family. For these cases the significance of the difference 

of AIC‟s between two models will be evaluated by comparing it with the variability of a chi-square 

variable with the degree of freedom equal to the difference of the k‟s of the two models”. Using a 

fixed level of significance for the comparison of AIC is not appropriate i) in nested models with 

different k as it does not account for increased variability of estimates due to increased number of 

parameters and ii) in non-nested models with the same k. The AIC can be seen as a method of 

ranking models, where the model with the smallest AIC is ranked „best‟, the next smallest being 

„next best‟ and so on. In this way, a „best‟ model is declared but which may be more complex than 

and not as parsimonious as the „next best‟ model but with almost identical AIC statistics. 

Hypothesis tests are based on specific distributional assumptions. A way to avoid making 

distributional assumptions is to calculate AIC statistics and the difference in AIC‟s between the 

different models in multiple bootstrap resamples of the data. This provides a distribution for the 

differences in AIC between different models which requires no distributional assumptions and 

which can then be summarised appropriately. 

 

There are different variable selection techniques based on forward selection, backward elimination 

and stepwise selection procedures: forward selection begins with a null model and includes 

significant variables one at a time into the model, backward elimination begins with a full model of 

covariates and excludes non-significant variables one at a time, stepwise selection is based on 

forward or backwards selection but also considers all other variables for exclusion/ inclusion at 

each step, although previously deleted variables are normally permitted to re-enter the model only 

once. These procedures are often automated in statistical software packages but should be used 
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with caution since they may provide results which are dependent upon the selection technique 

used and may not account for any known hierarchy in the data. The „full‟ model including all 

variables can be difficult to interpret with large numbers of variables if many are not important. 

Forward and backward elimination selection methods are advantageous in selecting only 

variables with greater influence with high probability and eliminating variables with little influence 

resulting in a more general and useful model not substantially inferior to the „full‟ model (Sauerbrei 

et al., 2007). Selection procedures can be unstable in small datasets but instability can be 

addressed in an analysis of models from bootstrap replication as an internal validation in the 

absence of independent data for external validation. A recommended selection strategy is 

summarised (Table 5.1, (Collett, 1994),adapted): 

 

Table 5.1: Strategy for Model Selection 

1. Fit models that contain each variable one at a time. Compare with the null model to 

determine which variables on their own significantly reduce the value of -2logL. 

2. Important variables from Step 1 are fitted together. Variables which do not significantly 

increase -2logL when omitted are discarded. Once a variable has been dropped, the 

effect of omitting each of the remaining variables in turn should be examined 

3. Variables which were not important on their own are added one at a time and any that 

significantly reduce -2logL are retained in the model. 

4. A final check is made to ensure that no term in the model can be omitted without 

significantly increasing -2logL and that no term not included significantly reduces -2logL 

 

Forced inclusion refers to the inclusion of factors that were deemed important at the study design 

stage „forcing‟ into each model to account for the structure of the data forced through the study 

design. Possible candidate factors to consider would include stratification factors at randomisation 

including centre effect and in the case of prognostic modelling accounting for the underlying 

structure according the randomisation of treatment groups. It is recommended (Machin et al., 
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2006;Moons et al., 2009;Simon and Altman, 1994) that for randomly allocated treatments, 

treatment group should be forced into the model and the corresponding hazard ratio reported 

even if it turns out to be a non-significant variable, and equally so for variables used in any 

stratified randomisation procedure. Stratification factors at randomisation in the advanced 

pancreatic dataset were trial, cancer stage, and sex. 

 

5.4. Format of Variables 

Variables for consideration of inclusion in a multivariable model may be a mix of categorical 

(including binary) and continuous data. A strength of multivariable regression modelling is that it 

can be used with both categorical and continuous variables. It has been shown that the hazard 

ratio  = hB(t) / hA(t) for the binary case of two treatment groups and that  log  = X. For 

categorical variables with greater than two groups, individual categories are grouped into pairs as 

in the binary case known as dummy, indicator or „classification‟ variables. In the advanced 

pancreas data set, tumour stage is coded as either 0, 1, 2, 3, 4 for each patient. Providing there 

are sufficient observations in each individual category then classification variables could be 

created as (Table 5.2): 

 

Table 5.2: Possible Classification Variables for Tumour Stage 

 Class T1 Class T2 Class T3 Class T4 

Tumour stage 0 0 0 0 0 

Tumour stage 1 1 0 0 0 

Tumour stage 2 0 1 0 0 

Tumour stage 3 0 0 1 0 

Tumour stage 4 0 0 0 1 
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In this way, each classification variable reduces to a binary covariate and is modelled as 

previously described ensuring all the classification variables created from one specific categorical 

variable are included in the model simultaneously. Each categorical variable with k categories will 

have k-1 classification variables with estimation of k-1 corresponding parameter estimates.  

 

Continuous covariates are often categorised (frequently dichotomised) for clinical ease of 

interpretation. However this implies a step in hazard of exp() at a cut point which is may not be 

realistic, more likely is a smooth change in hazard. Dichotomisation of continuous data is common 

practice but is problematic and unnecessary. Since the variability in outcome within groups is 

ignored by categorisation then the variability between groups may be significantly underestimated 

since patients close to the cut point are analysed as being very different rather than being very 

similar, resulting in a serious reduction of statistical power to detect relationships between 

predictors and outcome, residual confounding and serious bias (Altman and Royston, 

2006;Royston et al., 2006a). The risk of bias occurs when the choice of cut point is data driven 

based on investigating multiple cut points but reporting only that which is most significant. The use 

of different cut points across multiple studies also hinders direct comparisons. Continuous 

variables are often simplified by assuming a linear relationship between predictor and log-hazard 

i.e. the log risk increases or decreases linearly as the value of the factor increases, which also 

may not be appropriate. Indeed the effects of important prognostic factors may go unrecognised 

due to these simplistic assumptions made in statistical modelling (Stocken et al., 2008). It is more 

preferable to retain the continuous nature of the variable whilst allowing some form of non-linearity 

accomplished by the application of a transformation to the independent variable (Box and Tidwell, 

1962). Misspecification of the functional form may lead to inappropriate conclusions but has not 

been previously investigated in pancreatic cancer studies. 
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The PHREG (experimental version TPHREG in SAS v9.1 now combined into PHREG in SAS 

v9.2) procedures in SAS (SAS Institute Inc., 1999) carry out Cox proportional hazards regression 

creating k-1 classification variables for categorical covariates with associated type-3 2 test based 

on k-1 degrees of freedom and also creating additional levels of a classification variables to 

account for missing data, if required. 

 

5.5. Model Performance 

After a model has been fitted to a set of observations, adequacy of that model can be investigated 

using residuals. Residuals are useful as they are calculated for each individual patient in the 

dataset and can be plotted to study for apparent patterns indicating lack of fit. Deviance residuals 

are residuals which should be symmetrically distributed about zero and as such can help identify 

outlying patients. An alternative approach is using Martingale residuals which can help assess 

functional form. Deviance residuals are Martingale residuals transformed to be more symmetric 

and can be output from the PHREG procedure in SAS (SAS Institute Inc., 1999) using the 

RESDEV statement. Prognostic risk groups can be derived from the individual patient prognostic 

scores and the survival distributions described for each of these risk groups. Internal model 

validation investigating the stability and external validity of a set of selected prognostic factors can 

be carried out by estimating the extent of model optimism (overfitting) in a model using statistical 

re-sampling simulation techniques. This can be carried out using the „validate‟ statement in the 

Design Library of the programming language R (The R Foundation for Statistical Computing, 

2008).  
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5.6. Statistical Development of a Prognostic Model in Advanced Pancreatic 

Cancer 

A strategy based on avoiding over-fitted regression models in the development (Harrell 1996, 

Collett) and reporting (McShane 2005) of multivariable prognostic models was followed. The first 

stage of data reduction in the advanced pancreatic cancer dataset was considering only factors 

that were clinically relevant and available within an NHS out-patient clinic. Eighteen baseline 

clinical, histological, biochemical and demographic variables (including trial and randomised 

treatment group) were considered appropriate for analysis as possible prognostic factors of 

survival (Table 2.2). The majority of variables had <5% missing values. Tumour stage, CA19-9 

and WBC were missing in less than 10% of patients and lymph node status was missing for 24% 

of patients. Metastases or lymph node status were considered in the analysis as classification 

variables using „negative‟ as a reference level. Tumour stage and cancer stage were considered 

as binary variables based on clinical confirmation and small numbers of patients within categories. 

Both variables were also investigated retaining the original ordered categories but this did not alter 

the results. The principal analysis was based on complete cases where patients had complete 

data on all of the prognostic factors of interest. Multiple imputation is considered in the following 

chapter following development of the final prognostic model. 

 

Initial analysis was based on standard methodology comparing Kaplan-Meier survival estimates 

using the log-rank test and estimating univariate hazard ratios for levels of each factor (Table 5.3, 

(Stocken et al., 2008), adapted):  
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Table 5.3: Univariate Log-Rank Analyses 

 Patient Death 12-
month 

Survival 

Median 
Survival 
(95% CI) 

2
LR, p 

2
W, p) 

HR (95% CI) 

Overall Survival 653 612 17% 4.7 (4.2 to 5.1) - - 

Trial                      BB128 
BB193 

414 
239 

392 
220 

17% 
18% 

4.2 (3.6 to 4.8) 
5.4 (4.8 to 6.0) 

2.28, p=0.13 1.0 
0.88 (0.75 to 1.04) 

DEMOGRAPHICS 

Age group        <=63 yrs 
>63 

343 
310 

320 
292 

21% 
13% 

5.1 (4.3 to 5.8) 
4.3 (3.5 to 4.9) 

4.42, p=0.036 
(7.55, p=0.006) 

1.0 
1.18 (1.01 to 1.39) 

Ethnic group         White 
Other 

590 
62 

554 
57 

18% 
12% 

4.6 (4.1 to 5.1) 
5.2 (3.5 to 6.0) 

0.20, p=0.65 1.0 
1.06 (0.80 to 1.41) 

Sex                      Female 
Male 

285 
368 

267 
345 

18% 
17% 

4.9 (4.2 to 5.8) 
4.5 (3.9 to 5.1) 

0.73, p=0.39 1.0 
1.07 (0.91 to 1.26) 

Treatment    Gemcitbine 
                   Marimistat 

222 
431 

204 
408 

18% 
17% 

5.5 (4.7 to 5.9) 
4.2 (3.5 to 4.9) 

2.79, p=0.095 1.0 
1.15 (0.98 to 1.36) 

TUMOUR INFORMATION  

Cancer             Early(I/II) 
Stage             Late (III/IV) 

104 
543 

92 
514 

26% 
16% 

6.8 (5.7 to 8.2) 
4.1 (3.5 to 4.7) 

14.72, p<0.001 1.0 
1.53 (1.26 to 1.86) 

Metastases                M0 
M1 

Missing 

194 
436 
23 

176 
414 
22 

30% 
12% 
17% 

6.8 (5.9 to 8.4) 
3.5 (3.2 to 4.0) 
5.5 (4.9 to 7.5) 

35.47, p<0.001 1.0 
1.69 (1.43 to 1.99) 
1.35 (0.88 to 2.09) 

Lymph nodes             N0 
N1 

Missing 

243 
251 
159 

226 
240 
146 

20% 
18% 
11% 

5.5 (4.8 to 6.0) 
4.5 (3.5 to 5.4) 
3.8 (3.2 to 4.9) 

6.73, p=0.035 1.0 
1.19 (1.00 to 1.43) 
1.29 (1.04 to 1.59) 

Tumour        Early(0/1/2) 
Stage               Late (3/4) 

Missing 

310 
287 
56 

291 
268 
53 

16% 
18% 
18% 

4.3 (3.7 to 4.9) 
4.9 (4.2 to 5.8) 
5.8 (3.5 to 7.9) 

1.63, p=0.44 1.0 
0.91 (0.77 to 1.08) 
0.87 (0.66 to 1.16) 

SERUM CHEMISTRY and HAEMATOLOGY 

AST              Normal 
Abnormal 

538 
86 

499 
84 

19% 
12% 

5.1 (4.6 to 5.7) 
2.8 (2.2 to 3.9) 

14.17, p<0.001 
(5.99, p=0.014) 

1.0 
1.55 (1.18 to 2.04) 

BILIRUBIN   Normal 
Abnormal 

464 
165 

429 
159 

20% 
11% 

5.1 (4.7 to 5.7) 
3.8 (3.3 to 4.4) 

9.32, p=0.002 
(6.27, p=0.012) 

1.0 
1.32 (1.09 to 1.61) 

ALK PHOS  Normal 
Abnormal 

442 
187 

411 
177 

20% 
13% 

5.5 (5.0 to 6.1) 
3.1 (2.6 to 3.5) 

20.20, p<0.001 
(56.05, p<0.001) 

1.0 
1.49 (1.23 to 1.81) 

ALBUMIN     Normal 
Abnormal 

583 
45 

544 
43 

19% 
7% 

5.1 (4.6 to 5.6) 
1.5 (1.0 to 2.7) 

31.37, p<0.001 
(74.34, p<0.001) 

1.0 
2.36 (1.49 to 3.72) 

LDH              Normal 
Abnormal 

543 
78 

505 
75 

20% 
5% 

5.2 (4.8 to 5.8) 
2.1 (1.5 to 2.8) 

37.05, p<0.001 
(36.16, p<0.001) 

1.0 
2.08 (1.50 to 2.88) 

BUN             Normal 
Abnormal 

407 
213 

382 
199 

20% 
13% 

5.1 (4.3 to 5.7) 
4.4 (3.5 to 5.1) 

3.43, p=0.064 
(5.28, p=0.022) 

1.0 
1.17 (0.98 to 1.40) 

CA19/9         Normal 
Abnormal 

98 
508 

86 
481 

28% 
16% 

6.3 (4.8 to 8.0) 
4.6 (4.0 to 5.1) 

7.74, p=0.005 
(4.84, p=0.028) 

1.0 
1.38 (1.12 to 1.70) 

Hb                Normal 
Abnormal 

79 
533 

77 
495 

8% 
20% 

3.7 (3.3 to 5.1) 
4.9 (4.4 to 5.6) 

6.88, p=0.009 
(10.64, p=0.001) 

1.0 
0.73 (0.55 to 0.95) 

WBC            Normal 
Abnormal 

483 
129 

446 
126 

21% 
8% 

5.5 (4.9 to 5.9) 
2.9 (2.4 to 4.0) 

34.36, p<0.001 
(46.52, p<0.001) 

1.0 
1.78 (1.40 to 2.26) 

LR=Log-Rank Statistic, W=Wald Chi-square Statistic under „linear‟ assumption, HR=Hazard Ratio for 

categories 



CHAPTER 5: STATISTICAL METHODS FOR PROGNOSTIC MODELLING 

61 

 

Ten of the eighteen possible prognostic factors were collected as continuous measurements. 

Continuous data were initially investigated based on i) a step functional relationship with outcome 

using dichotomised covariates (normal/ abnormal based on central laboratory reference ranges) 

or ii) under the assumption of linearity with log-hazard. Step-functional relationships are affected 

by the cut-point used which can be pre-defined or data-driven. In these trial data, cut-points were 

pre-defined as normal/ abnormal (according to central laboratory reference ranges) as used in 

clinical practice, grouping abnormally low and abnormally high measurements together. 

 

Log-rank analyses indicated that potentially important factors were age, cancer stage (I/II vs. 

III/IV), metastases and laboratory measures AST, alkaline phosphatase, albumin, LDH, WBC, 

bilirubin, CA19-9 and haemoglobin. BUN and nodal status held borderline statistical significance 

at the 5% level. Trial, treatment (gemcitabine vs. marimistat), race (white vs. not-white), sex and 

tumour stage (T0,1,2 vs. T3,4) did not appear to be significantly related to survival.  

 

5.7. Assumption of Proportional Hazards 

For valid interpretation of the regression coefficients from a Cox proportional hazards model, the 

assumption of proportional hazards must hold. The proportional hazards assumption was 

investigated for each covariate using log cumulative hazard plot (Collett, 1994) which should give 

approximately parallel lines when proportional hazards are observed. The log cumulative hazard 

plot by trial (Figure 3.4) showed curves for the two trials to be approximately parallel. The same 

can be seen in the log cumulative hazard plot by treatment group (Figure 5.1): 
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Figure 5.1: Log Cumulative Hazard Plot by Treatment Group 

 

 

 

The shape of the log cumulative hazard curves are subject to greater measurement error in the 

early stages of follow-up and as such justifies the use of an appropriate test, rather than reviewing 

and interpreting plots. An appropriate test of proportionality is the inclusion and assessment of a 

time dependent covariate which is a method used to capture non-proportionality should it exist. A 

time dependent covariate is a variable X whose values change over time t. Since the values of X 

depend on t then the relative hazard with the baseline hazard is also dependent on time and the 

model no longer has proportional hazards. When proportional hazards are observed, the influence 

of a time dependent covariate X (X=factor*(ln(survival)-ln(mean survival))) should be minimal and 

non-significant in the proportional hazards model. The mean observed time in the 556 advanced 

pancreatic cancer patients with used in the complete case analysis was 6.8 months. Time 
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dependent covariates were calculated for factors of trial and treatment and were non-significant 

(p=0.24 and p=0.08 respectively). 

 

5.8. Cox Proportional Hazards Regression Models 

The hazard of death was assessed in the multivariable setting using Cox proportional hazards 

regression modelling based on the strategy presented in Table 5.1 (Collett, 1994). Variable 

reduction was based on a manual backward elimination method using a nominal significance level 

of 0.05 for elimination and including trial, sex, cancer stage (stratification factors at randomisation) 

and randomised treatment as „forced‟ variables in each model. A final check was made to ensure 

that no term in the model could be omitted and that none of the omitted terms could be included 

without significantly affecting the model. All variables omitted from the model based on backward 

elimination were considered and re-instated if they significantly improved the model. Continuous 

variables were investigated based on i) dichotomisation („categorical‟ model) or ii) under the 

assumption of linearity („linear‟ model) in this initial look at the data. 
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The final „categorical‟ model (Table 5.4, (Stocken et al., 2008), adapted) was based on 556 

patients (520 deaths) with complete data on the prognostic factors of interest and identified six 

highly significant prognostic factors: LDH, albumin, metastases, WBC, CA19-9 and bilirubin: 

 

Table 5.4: Dichotomising Continuous Variables 

FINAL ‘CATEGORICAL’ MODEL (n=556 patients, 520 deaths) 

AIC=5583.2 Variable 2 p-value HR (95% CI) 

Stratification factors TRIAL 7.0 0.008 0.77 (0.64 to 0.94) 

 *CANCER STAGE 0.9 0.36 1.16 (0.85 to 1.58) 

 SEX 1.8 0.18 0.89 (0.74 to 1.06) 

 TRT 3.4 0.065 1.19 (0.99 to 1.44) 

Independent factors ALBUMIN g/L 24.2 <0.001 2.30 (1.65 to 3.21) 

 LDH IU/L 25.1 <0.001 2.05 (1.55 to 2.72) 

 WBC 109/L 10.3 0.001 1.44 (1.15 to 1.79) 

 +METS 11.9 <0.001 1.54 (1.21 to 1.97) 

 BILIRUBIN mol/L 8.4 0.004 1.34 (1.10 to 1.64) 

 CA199 KU/l 9.4 0.002 1.48 (1.15 to 1.89) 

HR=hazard ratio 

* Stage (I/II vs. III/IV) 

+ Metastases (negative vs. positive): missing data included in analysis as a separate 
„classification‟ variable using lower level as the reference level 
 

 



CHAPTER 5: STATISTICAL METHODS FOR PROGNOSTIC MODELLING 

65 

 

The final „linear‟ model, assuming a linear relationship between independent predictors and log-

hazard (Table 5.5, (Stocken et al., 2008), adapted) was based on 556 patients (520 deaths) with 

complete data on the prognostic factors of interest and identified five highly significant prognostic 

factors: albumin, alkaline phosphatase, LDH, WBC and metastases:  

 

Table 5.5: Assumption of Linearity of Continuous Variables 

(shaded areas highlight factors identified in the „Categorical‟ model) 

FINAL ‘LINEAR’ MODEL (n=556 patients, 520 deaths) 

AIC=5557.1 Variable 2 p-value HR (95% CI)^ 

Stratification factors TRIAL 8.1 0.005 0.76 (0.63 to 0.92) 

 *CANCER STAGE 0.008 0.93 1.01 (0.74 to 1.38) 

 SEX 3.8 0.051 0.84 (0.70 to 1.00) 

 TRT 3.2 0.073 1.19 (0.98 to 1.44) 

Independent factors ALBUMIN g/L 41.0 <0.001  0.72 (0.65 to 0.79) 

 LDH IU/L 13.3 <0.001  1.12 (1.05 to 1.19) 

 WBC 109/L 11.7 <0.001  1.24 (1.10 to 1.41) 

 +METS 10.5 0.001 1.50 (1.17 to 1.92) 

 ALKPHOS IU/L 21.1 <0.001  1.13 (1.07 to 1.19) 

HR=hazard ratio 

* Stage (I/II vs. III/IV) 

+ Metastases (negative vs. positive): missing data included in analysis as a separate 
„classification‟ variable using lower level as the reference level 

^ HR based on 5 unit increase in albumin g/L, WBC 109/L and 100 unit increase in LDH IU/L, 
alkaline phosphatase IU/L 
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Models were adjusted by stratification factors at randomisation (trial, sex, cancer stage) and 

randomised treatment group. „Metastases‟ was selected as a significant independent covariate in 

both the final „categorical‟ and „linear‟ models. The inclusion of „metastases‟ reduces the 

significant effect of „cancer stage‟ seen at univariate analysis (Table 5.3) since these two variables 

are highly correlated explaining similar variability in the data.  

 

The final selected „linear‟ model (Table 5.5) has a substantially lower AIC of 5557.1 compared with 

the final selected „categorical‟ model (Table 5.4) with an AIC of 5583.2.  As such, the „linear‟ 

model has a better fit even with one less prognostic factor based on five significant prognostic 

factors compared to six selected in the „categorical‟ model. Both models considered albumin, 

LDH, metastases and WBC to be highly significant (p<0.001) independent prognostic factors. The 

„linear‟ model considered alkaline phosphatase to also be important (p<0.001) but not in the 

categorical model, which considered CA19-9 (p=0.002) and bilirubin (p=0.004) to be important. 

 

5.9. Conclusions 

A multivariable approach, based on Cox proportional hazards modelling using backward 

elimination variable selection, was used to investigate multiple possible prognostic factors. These 

methods have the ability to include categorical (binary and classification variables) and continuous 

covariates. In previous published analyses of advanced pancreatic cancer data, continuous 

variables are usually dichotomised (categorised as normal/ abnormal based on central laboratory 

reference ranges) creating a step functional relationship with outcome. Continuous variables in the 

advanced pancreatic cancer dataset were dichotomised but since dichotomisation is unnecessary, 

they were also investigated under the assumption of linearity (a linear relationship with log-

hazard). The strength of evidence for factors selected as prognostic differs between the two 
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„categorical and „linear‟ models due to the underlying assumptions made regarding functional 

form. The final selected „linear‟ model had a substantially lower AIC and hence was a better fit to 

the data. However, the underlying assumption of linearity may not be correct but has not been 

investigated previously in advanced pancreatic cancer. The relationships of continuous variables 

and outcome should be investigated further since alternative formats may be more appropriate 

and thus efficient. Non-linearity can be addressed through transformation of the variable in 

question. One transformation method based on fractional polynomial transformations has been 

used to address non-linearity in other cancer datasets, such as breast and renal, but not in 

pancreas. Chapter 6 investigates non-linearity of the continuous variables in the advanced 

pancreatic cancer dataset and investigates the applicability of non-linear fractional polynomial 

transformations. Addressing any non-linearity should lead to more accurate and efficient 

prognostic models which can then be internally validated, model performance assessed and the  

impact of missing data investigated further.  
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CHAPTER 6: FRACTIONAL POLYNOMIAL FUNCTIONS 

 

 SUMMARY 

 Correct modelling of non-linearity can be critical to estimation of prognostic factors 

 Fractional polynomial regression models are particularly suitable for modelling smooth 

curved relationships between response and predictor  

 Second-degree fractional polynomial functions (FP2) have a maximum of one turning 

point and degrees >2 are rarely required 

 Fractional polynomial transformations can be implemented using SAS macros 

 Model performance for a model based on fractional polynomials is confirmed 

 

6.1. Introduction 

The proportional hazards model assumes a linear relationship between independent covariates 

and log-hazard. The linearity assumption implies that each unit increase in variable X results in 

the same increase in risk of event (e.g. death) but the risk may increase to a certain limit then 

plateau or even decrease hence violating the assumption of linearity. A more appropriate analysis 

should retain the continuous nature of the variable allowing for some form of non-linear 

relationship with the response variable. Polynomials have been used to correct for non-linearity 

but low order polynomials are often too limited and high order polynomials often do not fit well at 

extreme data points. It is important to account for non-linearity especially in the prognostic factor 

setting since it has been shown (Royston et al., 2006a) that a treatment effect can be 

underestimated unless a strongly prognostic non-linear covariate was modelled correctly using a 

suitable non-linear function, showing that correct modelling of non-linearity can be critical. 

Generally inclusion of an important mis-modelled non-linear covariate may cause unimportant 

variables correlated with it to enter the model spuriously (Royston and Sauerbrei, 2008). Also, 

important mis-modelled non-linear covariates may be excluded unless non-linearity is taken into 
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account (Stocken et al., 2008). Transformations such as log X, √X or 1/X have been used in an 

attempt to improve model fit. If log X is defined as X0 then these transformations can be seen to 

be different power functions Xp for different values of p. 

 

6.2. Fractional Polynomial Functions 

Fractional polynomial regression models provide a flexible parametric method for modelling 

curved relationships using few parameters and are particularly suitable for modelling smooth 

curved relationships between response and predictor (Royston and Altman, 1997). They were 

developed since smoothing splines were computationally intensive, do not provide predictive 

equations and do not extrapolate well (Royston and Altman, 1994). Fractional polynomials can be 

seen as an extension of Box and Tidwells‟ procedure for applying transformations in the ordinary 

least squares regression setting (Box and Tidwell, 1962). Fractional polynomials are an extended 

family of curves defining functions of the form 0+1Xp where p is taken from the set {-2, -1, -0.5, 

0, 0.5, 1, 2, 3} with non-integer and negative power terms as well a positive integer powers used 

in conventional polynomials, producing fractional polynomial models of degree 1 (FP1) with an 

additive predictor which is linear. A natural extension to the FP1 model is the FPm function where 

m is an integer >1 and are generalisations of quadratic functions. First-degree fractional 

polynomials (FP1) are simple transformations providing monotonic curves encompassing 

conventional polynomials defined as: 

φ*
1(X;p) = 0+1Xp =0+ φ1(X;p) 

Second-degree fractional polynomial functions (FP2) have a maximum of one turning point. The 

definition of an FPm function with power terms p=(p1, p2) is: 

φ*
2(X;p) = 0 + 1Xp1 + 2Xp2  =0  + Xp  = 0 + φ2(X;p) 
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With the set of p powers taken as {-2, -1, -0.5, 0, 0.5, 1, 2, 3} provides eight FP1 transformations, 

28 FP2 transformations with distinct powers (p1≠p2) and eight FP2 transformations with equal 

powers (p1=p2). The general definition of an FPm function is: 


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where X is a single covariate, m is a positive integer representing the degree of the fractional 

polynomial, pj is a vector of powers, j is a vector of coefficients and: 

if pj  pj-1 

if pj = pj-1  (Box-Tidwell transformation for repeated powers) 

where the expression Hj(X) can be substituted for jXji in the proportional hazards model 

(Equation 1, Chapter 5). The best powers p  are those associated with the highest likelihood, 

hence lowest deviance (-2log-likelihood), chosen from the small preselected set p=[-max(3,m), 

…., -2, -1, -0.5, 0, 0.5 , 1, 2, .., max(3,m)] where 0 represents the natural logarithmic 

transformation loge(X) and 1 represents no transformation (linear assumption). In health sciences, 

m<2 provide enough flexibility and m>2 are rarely required and are associated with increased 

instability (Royston and Altman, 1994;Royston and Sauerbrei, 2008). Degree m is selected on a 

priori grounds or increasing m until no further significant improvement in fit is achieved. Models 

are fitted using maximum likelihood with the „best‟ power vector being that with significantly lowest 

deviance (-2log-likelihood). The advantages of the fractional polynomial method are that 

implementation is simple and practical and that the resulting transformation may hold outside of 

the range of the observed data. There is a certain amount of inflexibility for manual model building 

in the multivariable setting, there are constraints in fitting a full model since variables may not be 

selected in the automated process. 
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Fractional polynomial transformations are implemented in SAS (SAS Institute Inc., 1999) using the 

%MFP8 macro (Meier-Hirmer et al., 2003) for each continuous covariate, based on a closed test 

function selection procedure (Ambler and Royston, 2001) to maintain approximately the type 1 

error rate. At the initial cycle all variables are sorted based on p-values of the full linear model. 

The best fitting fractional polynomial function is determined for the first covariate based on a 

difference in -2log-likelihood with one degree of freedom for each fractional polynomial term plus 

one for each power term. The functional form is retained and the process repeated for each 

covariate. Covariates with a larger p-value than the set alpha are excluded in this cycle but 

reinvestigated in the following cycle. The next cycle investigates each covariate in turn based on 

an initial functional format retained from the previous cycle. The macro terminates when the 

functional form does not change (convergence) based on differences in the -2log-likelihood, 

usually within 5 cycles. 

 

6.3. Modelling with Fractional Polynomials in Advanced Pancreatic Cancer 

The „best‟ functional form of each continuous covariate was assessed in the univariate setting 

based on comparison of the AIC. Smaller values of the AIC indicate a better model but the „best‟ 

model may be based on a complex transformation with almost identical AIC statistic to a less 

complex transformation. As such, the AIC had to be substantially lower to permit a complex 

transformation compared to a simple transformation. Substantial was indicated as a reduction in 

AIC of 4, based on an arbitrary decision rule taken from similar values as the chi-square 

distribution with 1 degree of freedom. If a simple log transformation reduced the AIC compared to 

the untransformed variable, then more complex fractional polynomial transformations were 

investigated. The use of log function as a screening tool for more complex functions may risk 

missing functions with a turning point but is a simple, appropriate, unbiased modelling strategy 
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adopted throughout. Second degree fractional polynomial transformations were investigated with 

a set of predefined powers {-2, -1, -0.5, 0, 0.5, 1, 2, 3} using a 5% level of significance. Each 

continuous covariate was then included in the multivariable analysis under either a linear, log or 

non-linear univariate fractional polynomial transformation. 

 

Univariate analysis of the 10 continuous variables identified that non-linear transformations were 

appropriate for three variables in their relationship with survival: bilirubin mol/L and LDH IU/L 

both as log transformations and CA19-9 KU/l as a second degree fractional polynomial 

transformation [CA19-90.5 + (CA19-90.5 x log(CA19-9))]. The seven remaining continuous 

covariates were analysed assuming a linear relationship with log-hazard (Table 6.1): 

 

Table 6.1: Univariate AIC statistics  

(shaded is selected transformation)  

Variable Linear Log FP 

Age 6870.4 6870.8 Na 

Albumin 6488.4 6493.7 Na 

AlkPhos 6526.0 6532.4 Na 

AST 6499.1 6498.5 Na 

Bilirubin 6563.4 6555.6 6554.5 

BUN 6462.9 6465.8 Na 

CA19-9 6288.6 6233.6 6223.8 

Haemoglobin 6347.0 6347.8 Na 

LDH 6441.5 6425.4 6425.4 

WBC 6318.5 6322.0 Na 

FP=Fractional Polynomial, na=not applicable since log transformation not substantial 
improvement over linear assumption 
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As before, all variables were considered in the multivariable setting in their most appropriate 

functional form using Cox proportional hazards regression based on a backward elimination 

selection method using a 5% significance level for exclusion of variables and including trial, sex, 

cancer stage (stratification factors at randomisation) and randomised treatment as „forced‟ 

variables in each model. A final check was made to ensure that no term in the model could be 

omitted and that none of the omitted terms could be included without significantly affecting the 

model. All variables omitted from the model based on backward elimination were considered and 

re-instated if they significantly improved the model. The final model based on transformed 

covariates („FP‟ model) was based on 556 patients (520 deaths) with complete data on the 

prognostic factors of interest and identified seven prognostic factors. Five factors were highly 

significant with p<0.001: albumin, CA19-9, WBC, alkaline phosphatase and LDH with AST and 

BUN being more borderline in the model (p=0.022 and 0.027) (Table 6.2): 
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Table 6.2: Model based on Fractional Polynomial Transformations 

(shaded highlight factors identified by both „categorical‟ and „linear‟ models) 

FINAL ‘FP’ MODEL (n=556 patients, 520 deaths) 

AIC=5510.7 Variable 2+ p-value HR (95% CI)^ 

Stratification factors TRIAL 14.5 <0.001 0.69 (0.57 to 0.83) 

 *CANCER STAGE 1.8 0.18 1.19 (0.92 to 1.53) 

 SEX 3.1 0.079 0.85 (0.71 to 1.02) 

 TRT 3.0 0.082 1.19 (0.98 to 1.43) 

Independent factors      Linear ALBUMIN g/L 42.3 <0.001  0.71 (0.64 to 0.79) 

1st degree FP Log(LDH)IU/L 14.5 <0.001 1.76 (1.31 to 2.34) 

Linear WBC 109/L 11.1 <0.001  1.25 (1.10 to 1.42) 

Linear ALKPHOS IU/L 14.2 <0.001  1.13 (1.06 to 1.20) 

Linear AST IU/L 5.3 0.022  0.91 (0.84 to 0.99) 

Linear BUN mmol/L 4.9 0.027  1.15 (1.02 to 1.30) 

2nd degree FP CA1990.5 KU/l 51.5 <0.001 NA 

2nd degree FP CA1990.5 KU/l x 

log(CA199)KU/l 

  NA 

HR=hazard ratio, FP= Fractional Polynomial, NA=not appropriate 

* Stage (I/II vs. III/IV), + Type-3 Wald 2 test 

^ HR based on 5 unit increase in albumin g/L, WBC 109/L, BUN mmol/L; 25 unit increase in AST 
IU/L and 100 unit increase in alkaline phosphatase IU/L 

 
 

Non-linear transformations were selected for LDH IU/L (log) and CA19-9 KU/l (second degree 

fractional polynomial).  
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The estimated function for LDH is shown graphically in Figure 6.1. The log function for LDH 

estimates increasing risk for increasing values of LDH: 

 

Figure 6.1: Estimated Functional Form for LDH IU/L  

(dots indicate actual data values) 

 

 

The estimated log hazard ratio function for CA19-9 is shown graphically in Figure 6.2. The second 

degree fractional polynomial function for CA19-9 estimates increasing risk up to an approximate 

CA19-9 value of 14,000 KU/l and then decreases with increasing CA19-9: 

 



CHAPTER 6:  FRACTIONAL POLYNOMIAL FUNCTIONS 

76 

 

Figure 6.2a: Estimated Functional Form for CA19-9 KU/l 

(dots indicate actual data values) 

 
 

Figure 6.2b: Estimated Functional Form for CA19-9 KU/l 

(dots indicate actual data values <100,000 KU/l) 
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Three final models have been presented under three differing assumptions for dealing with 

modelling continuous covariates: dichotomisation („categorical‟ model, Table 5.4), assumption of 

linearity („linear‟ model, Table 5.5) and non-linear fractional polynomial transformation („FP‟ model, 

Table 6.2). The „FP‟ model has the lowest AIC of 5510.7, substantially lower compared with an 

AIC of 5583.2 for the „categorical‟ model and an AIC of 5557.1 for the „linear‟ model. The „FP‟ 

model selected seven important independent prognostic factors over and above the „forced‟ 

variables, the „categorical‟ model selected six and the „linear‟ model selected five.  

 

All three models considered albumin, LDH and WBC to be highly significant (p<0.001) 

independent prognostic factors. The strength of evidence as indicated by the Wald 2 statistic was 

similar for albumin in the „linear‟ and „FP‟ models but was underestimated by half in the 

„categorical‟ model. The Wald 2 statistic was similar for LDH in the „linear‟ and „FP‟ models but 

was overestimated by double in the „categorical‟ model. The strength of evidence was similar for 

WBC in all three models.  

 

The parameter estimate and overall significance of metastases were reduced in the „FP‟ model 

when continuous covariates were included in a more appropriate format. No non-linear 

transformation was required or applied to alkaline phosphatase IU/L which is why it was only 

selected as a highly significant and influential prognostic factor in both the „linear‟ and „FP‟ models. 

CA19-9 KU/l was also a highly significant and influential prognostic factor in both the „categorical‟ 

and „transformed‟ models. This variation is largely explained by the significant non-linear relation 

of CA19-9 to survival (Figure 6.2) and why it was considered important, albeit with massively 

reduced Wald 2 evidence, when dichotomised but not when assumed as linear. When 

considered as a transformed second degree fractional polynomial it‟s significance is much greater. 
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Bilirubin mol/L was only selected as a highly significant factor in the „categorical‟ model but was 

not included in either the „linear‟ or „transformed‟ models. AST IU/L and BUN mmol/L were only 

selected as borderline prognostic variables in the „transformed‟ model when other factors had 

been modelled appropriately. 

 

6.4. Model Performance 

The AIC statistic was smallest for the „FP‟ model (Table 6.2) and was substantially lower than 

either the „categorical‟ or „linear‟ models indicating a substantially better fit to the data. Deviance 

residuals for the „FP‟ model were plotted against the linear predictor and were randomly scattered 

and centred symmetrically around a residual value of zero ranging between -3.80 and 3.34 which 

suggests the data have not been mis-modelled (Figure 6.3): 

 

Figure 6.3: Deviance Residual Plot 
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At least four risk groups of patients with advanced pancreatic cancer are expected (personal 

communication Professor Bass Hassan, 2004): i) very ill patients with survival <2 months not 

usually ideal candidates for therapy due to rapid disease progression or late presentation of large 

bulk disease; ii) fit patients with loco regional disease, low bulk metastatic disease and a median 

life expectancy of approximately 9 months; iii) and iv) two groups of patients with „intermediate‟ 

prognosis between the two other clinical extremes, maybe patients with better prognosis but 

delayed clinical management. As such, patients were split into four equal sized groups based on 

quartiles of the distribution of linear predictor scores from the „FP‟ model. Linear predictor scores  

(LP) were calculated as: 

LP =i = 1X1i + 2X2i + ….. + pXpi  

LP = 0.37711*TRIAL + 0.17286*STAGEGP - 0.16115*SEX + 0.16934*TRTGP - 0.06802*ALB(g/L) + 

0.02383*CA199FP1(KU/l) - 0.00173*CA199FP2(KU/l) + 0.04409*WBC(109/L) + 

0.00119*ALKPHOS(IU/L) + 0.56220*LOGLDH(IU/L) - 0.00367*AST(IU/L) + 0.02772*BUN(mmol/L) 

with the following code: TRIAL (1=BB128, 2=BB193), STAGEGP (1=I/II, 2=III/IV), SEX (1=MALE, 

2=FEMALE), TRTGP (0=GEM, 1=GEMPLUS). Quartiles of the linear predictor scores (0.654140, 

1.036423, 1.596797) created the four groups. Kaplan-Meier survival estimates (Figure 6.4) show 

four distinct prognostic groups with descending median survival estimates of 8.5 (95%CI: 7.4 to 

10.1), 7.0 (95%CI: 5.8 to 8.4), 4.2 (95%CI: 3.5 to 5.0) and 2.0 (95%CI: 1.6 to 2.4) months and 

descending 12-month survival estimates of 30.5% (95%CI: 22.8% to 38.2%), 27.6% (95%CI: 

20.1% to 35.1%), 12.5% (95%CI: 6.9% to 18.1%) and 4.3% (95%CI: 0.9% to 7.7%): 

 



CHAPTER 6:  FRACTIONAL POLYNOMIAL FUNCTIONS 

80 

 

Figure 6.4: Survival by Prognostic Group 

 

 

The hazard ratios for groups 2, 3 and 4 using prognostic group 1 as the baseline were: 

1.26 (95%CI: 0.98 to 1.61), 2.02 (95%CI: 1.58 to 2.60) and 4.57 (95%CI: 3.55 to 5.90) 

respectively demonstrating distinct risk with almost non-overlapping confidence intervals of 

increasing risk of death. 

 

A bootstrap re-sampling assessment of the extent of model optimism (over-fitting) in the final „FP‟ 

model was carried out based on 200 bootstrap re-samples using the „validate‟ statement in the 

Design Library of the programming language R (The R Foundation for Statistical Computing, 

2008). Bootstrap samples are created by sampling one patient at a time with replacement from the 

original dataset up to the same size of the original set of data, repeated until 200 simulated 

bootstrap samples have been created. Bootstrap samples provide an unbiased estimate of the 
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stability of the estimates from the analysis of original data. Somers Dxy rank correlation is the 

measure of association between predicted log hazard and observed survival time on which extent 

of optimism is assessed (Harrell, 2001). The apparent index Dxy is calculated as -0.3989 but a 

better estimate of how well the model will discriminate prognoses in the future is the index 

corrected Dxy calculated as -0.3787. The estimate of model optimism is -0.0203 and as such is 

small (less than 5%).  

 

The majority of variables had <5% missing values (Table 2.2). Tumour stage, CA19-9 and WBC 

were missing in less than 10% of patients and lymph node status was missing for 24% of patients. 

Metastases or lymph node status were considered in the analysis as classification variables using 

„negative‟ as a reference level and including „missing‟ as a classification level. Principal analysis 

was based on complete cases. Supportive analysis used multiple imputation to investigate the 

possible influence of variables with larger amounts of missing data and provided valid inferential 

alternative results. The MI procedure in SAS (SAS Institute Inc., 1999) was used to carry out 

multiple imputation based on five imputations using a Markov Chain Monte Carlo (MCMC) method 

(Schafer, 1997) that assumes multivariate normality to impute missing values. Each of the five 

complete data sets were analyzed using PHREG procedure in SAS (SAS Institute Inc., 1999) then 

the MIANALYZE procedure was used to generate valid statistical inferences about these 

parameters by combining results. Multiple imputation was a supportive analysis which allowed all 

653 patients to be included in the modelling process (Table 6.3): 
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Table 6.3: Supportive Analysis of Imputed Dataset 

(shaded highlight factors identified in all models) 

FULL ‘FP’ MODEL BASED ON IMPUTED DATA (n=653 patients, 612 deaths) 

 Variable t p-value 

Stratification factors TRIAL -4.1 <0.001 

 *CANCER STAGE -1.8 0.073 

 SEX -2.1 0.037 

 TRT 2.1 0.033 

Independent factors      Linear ALBUMIN g/L -5.2 <0.001 

1st degree FP Log(LDH)IU/L 3.0 0.004 

Linear WBC 109/L 3.9 <0.001 

Linear ALKPHOS IU/L 3.5 <0.001 

Linear AST IU/L -2.5 0.014 

Linear BUN mmol/L 2.1 0.034 

2nd degree FP CA1990.5 KU/l 6.1 <0.001 

2nd degree FP CA1990.5 KU/l x log(CA199)KU/l -5.6  

Binary METASTASES 3.2 0.001 

Binary RACE -0.4 0.72 

Binary *T STAGE 0.1 0.89 

Binary NODES 2.7 0.016 

Linear AGE 1.4 0.15 

Linear HAEMOGLOBIN g/dL -0.6 0.54 

1st degree FP Log(BILIRUBIN) mol/L 1.8 0.067 

HR=hazard ratio, FP= Fractional Polynomial 

* Stage (I/II vs. III/IV) 
 

 

The „full‟ model including all covariates and all 653 patients (612 deaths) confirmed all the 

variables included in the „FP‟ model but with increased significance for metastases (p=0.001) and 

the inclusion of nodal status (p=0.016) which had been excluded from all models prior to 
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imputation, suggesting a strong link to other variables already in the model requiring further 

investigation. 

 

6.5. Centre Effect 

A grouped frailty model (Therneau and Grambsch, 2000) is the term used to describe a survival 

model which incorporates a random effect (RE) element into hazard function to account for 

heterogeneity between patients. A random effect is a continuous variable that describes excess 

risk (frailty) for specific groups of patients. Those patients who are most „frail‟ are expected to 

have shorter survival time. Known and expected frailties are associated with hospital and surgeon. 

The aim of a frailty model is to account for any „centre effect‟ whilst adjusting for other prognostic 

factors. An important assumption is that frailty is independent of any censoring. The advanced 

pancreas clinical trials both stratified the randomisation procedure by centre and as such it seems 

sensible to investigate this further during the analysis. The frailty model is based on the 

proportional hazards model: 

)()( 0 theth ii ZX

i

 
  

where X and  correspond to the fixed effects in the model (covariates such as age and sex), ω is 

a vector containing the unknown random effects (frailties)  and  Z is an indicator of the „group‟ of 

dependent patients.  

 

Frailty models are not easy to implement in SAS Version 9.1 (SAS Institute Inc., 1999) for the Cox 

proportional hazards model (although may be easier in the updated SAS v9.2) and as such data 

were exported into the programming language R (The R Foundation for Statistical Computing, 

2008) where an approximate grouped frailty term is easier to include using a „frailty()‟ statement in 

the „Survival‟ Library based on a gamma distribution for the random effects. The frequent 
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assumption that frailty follows a gamma distribution is derived from the fact that the distribution for 

the frailty term must be positive since the hazard function cannot be negative. 

 

The advanced pancreas dataset included patients from 60 randomising hospitals. A random effect 

associated with centre was non-significant (Wald 2=2.66, p=0.103) when forced into the existing 

fractional polynomial model. 

 

6.6. Conclusions 

The analysis of continuous variables in the advanced pancreatic cancer dataset has shown that 

non-linear transformations were appropriate for some covariates, but had not been previously 

investigated in this disease setting. The analysis including transformed variables resulted in a 

model which was a substantially better fit and included significant prognostic factors which were 

excluded in models under the assumptions of either step-functional (excluded  alkaline 

phosphatase) or linear (excluded CA19-9) relationships. Through addressing the mis-modelling 

and non-linearity of continuous covariates, a more accurate prognostic model has been 

developed, displaying minimal overfitting. The model has the ability to be developed into a 

validated prognostic index based on robust statistical methodology, not previously presented in 

this disease site. Four distinct prognostic risk groups were identified based on information 

available in a routine NHS out-patient clinic. The transformation method used in the development 

of this model was based on fractional polynomial transformations but alternative transformation 

methods could also be used. Chapter 7 investigates an alternative more traditional method based 

on restricted cubic spline transformations and directly compares both transformation methods for 

the analysis of non-linear continuous variables in the advanced pancreatic cancer dataset. 

Chapter 8 continues the comparison of methods in an alternative disease with alternative survival 
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distribution based on a large dataset in cardiac surgery patients. Since an external dataset was 

anticipated, external validation of the prognostic model in advanced pancreatic cancer was 

possible and is the focus of Chapter 9.
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CHAPTER 7: COMPARISON OF NON-LINEAR FUNCTIONS 

 

 SUMMARY 

 Fractional polynomials is one approach for analysing non-linear covariates, an alternative 

is the restricted cubic spline approach 

 Restricted cubic splines are linear in estimated coefficients and restricted to be linear in 

the tails therefore allowing use of standard methods of inference 

 Restricted cubic spline transformations can be implemented using SAS macros 

 A bootstrap validation compares the model fit of the two polynomial based approaches 

 

7.1. Introduction 

The use of fractional polynomials is one of various approaches for analysing independent 

continuous covariates which do not comply with the assumption of linearity. An alternative and 

more conventional method is the restricted cubic spline approach which also utilises the full 

information when handling continuous variables with the aim of identifying important non-linear 

continuous prognostic factors. 

 

There is a certain amount of inflexibility for manual model building in the multivariable setting 

using the fractional polynomial macros and there are constraints in fitting a full model since 

continuous variables may not be selected in the automated process. As such, comparison with the 

more conventional restricted cubic spline method was considered. An advantage of the restricted 

cubic spline method is that no particular functional form needs to be specified. A drawback is the 

arbitrary choice of the number and position of knots of the cubic spline function which must be 

pre-specified but in most instances are not known. Extrapolation beyond the outer knots has also 

been found to be spurious (Harrell, 2001). The difference between two spline based procedures 
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and the fractional polynomial methods was investigated in longitudinal cohort studies in lung 

cancer (Govindarajulu et al., 2007). The area under three curves were compared (two spline 

based, one fractional polynomial) and concluded that the two spline based curves were more 

similar than either was to the fractional polynomial curve and that fractional polynomials were 

more global in nature in contrast to a more local fit of splines.  

 

In this chapter these two polynomial based strategies are compared directly for determining the 

functional form of the non-linear relationship between a continuous prognostic covariate and 

survival. A bootstrap validation was carried out which directly compared the models based on the 

difference in AIC statistics for the two polynomial based approaches within each bootstrap 

resample. 

 

7.2. Restricted Cubic Spline Functions 

The name „spline‟ came from a draftman‟s spline which is a flexible strip used to draw curves. 

Spline functions in statistics (Stone and Koo, 1985) are piecewise polynomials that are used for 

fitting curved relationships, that is polynomials connected across intervals of X and constrained to 

join at the interval endpoints or „knots‟. The simplest spline function is the linear spline function, 

that is the functions within each interval are linear and joined at the knot positions. The expression 

for a spline function S(X) of variable X (Harrell, 2001;Durrleman and Simon, 1989) is given as: 

n
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and can be substituted for jXji in the proportional hazards model (Equation 1, Chapter 5) where n 

is the degree of the spline function, k is the number of knots, t is the position of the knots 

(t1<t2<…<tk) or more practically: 
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S(X)=0 + 1X + 2(X-a) + 3(X-b) + 4(X-c) + ... 

where a, b and c are the position of the knots. As such, a spline function of variable X in a 

multivariable model will introduce k+n new variables and regression coefficients determined to 

optimise fit usually based on the log-likelihood function. The spline is not constrained to be 

continuous or „smooth‟ at the knots and as such does not fit highly curved functions well (Harrell, 

2001). Cubic polynomials have the ability to fit sharp curves and can be constrained to be smooth 

at knot positions a, b and c: 

S(X)=0 + 1X + 2X2 + 3X3 + 4(X-a)3 + 5(X-b)3 + 6(X-c)3 + ... 

requiring estimation of k+3 parameter estimates for each of k knots. Cubic splines have been 

found to behave poorly in the tails, before the first and after the last knot position (Stone and Koo, 

1985).  Restricted cubic splines are designed to control this unsatisfactory behaviour in the tails. 

Restricted cubic splines are linear in estimated coefficients and restricted to be linear in the tails 

therefore allowing use of standard methods of inference and computation requiring estimation of 

k-1 regression coefficients for each of k knots t1, ..., tk: 

S(X)=0 + 1X1 + 2X2 + 3X3 + ... + k-1Xk-1 

where: X1=X  

and for j=1, ..., k-2:  Xj+1 = (X-tj)3 – (X-tk-1)3(tk-tj) / (tk-tk-1) + (X-tk)3(tk-1-tj) / (tk-tk-1) 

The advantages of the restricted cubic spline method are that no particular functional form needs 

to be specified and the method produces smooth curves. Although the basis for restricted cubic 

splines allows for extrapolation beyond the outer knots, when these occur in the tails of the data, it 

has been found to be spurious (Harrell, 2001). A drawback is the arbitrary choice of the number 

and position of knots of the cubic spline function which must be pre-specified and that each k-1 

spline component spends an additional degree of freedom. Model fit has been shown to depend 

more on the number of knots rather than location (Stone, 1986) and 3 to 5 knots will usually 
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suffice (Durrleman and Simon, 1989;Heinzl et al., 1996;Hess, 1994) set at fixed percentiles of the 

observed data distribution to guard against influence of outliers on knot placement (Durrleman and 

Simon, 1989).  

 

Restricted cubic spline transformations were implemented using the %RCSPLINE macro (Harrell, 

1991) in SAS (SAS Institute Inc., 1999) to compute the k-1 components of the cubic spline 

function restricted to be linear before the first and after the last knots for each continuous 

covariate. Models with 3, 4 and 5 knots were compared based on knot positions identified by the 

SAS %DASPLINE macro (Harrell, 1991). The %RCSPLINE macro generates formulas to create 

classification variables that allow fitting of splines constrained to be linear in the tails and to be 

fitted in multivariable models. Knot positions identified by %DASPLINE are based on quanitiles 

according to the number of knots specified but forced to be real data points: 

    Knots       Quantiles 

        3       .05     .5      .95 

        4       .05     .35     .65     .95 

        5       .05     .275    .5      .725    .95 

        6       .05     .23     .41     .59     .77     .95 

        7       .025    .18333  .34166  .5      .65833  .81666  .975 

 

 

7.3. Univariate Comparison of Functions in Advanced Pancreatic Cancer 

Principal analyses of the advanced pancreatic cancer dataset was based on the assessment of 

the functional form of each continuous covariate in the univariate setting selecting a „best‟ fitting 

fractional polynomial and also a „best‟ fitting restricted cubic spline (with varying number and 

position of knots) based on comparison of AIC. Smaller values of the AIC indicate a better model 

but the „best‟ model may be based on a complex transformation with almost identical AIC statistic 
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to a less complex transformation. As such, the AIC had to be substantially lower to permit a 

complex transformation compared to a simple transformation. Substantial was indicated as a 

reduction in AIC of 4, based on an arbitrary decision rule taken from similar values as the chi-

square distribution with 1 degree of freedom. As before, the strategy was that if a simple log 

transformation reduced the AIC compared to the untransformed variable, then more complex non-

linear transformations were investigated further using restricted cubic splines (based on 3, 4 and 5 

knot models) and second degree fractional polynomials.   

 

Univariate analysis (Stocken et al., 2008) of the ten continuous variables identified that non-linear 

transformations were appropriate for three variables in their relationship with survival: bilirubin, 

LDH and CA19-9 (Table 7.1): 

 

Table 7.1: Univariate AIC statistics  

(shaded is selected transformation with lowest AIC) 

Variable Linear Log RCS-3 RCS-4 RCS-5 FP 

Age 6870.4 6870.8 na na na na 

Albumin 6488.4 6493.7 na na na na 

AlkPhos 6526.0 6532.4 na na na na 

AST 6499.1 6498.5 na na na na 

Bilirubin 6563.4 6555.6 6556.0 6557.9 6559.0 6554.5 

BUN 6462.9 6465.8 na na na na 

CA19-9 6288.6 6233.6 6235.8 * * 6223.8 

Haemoglobin 6347.0 6347.8 na na na na 

LDH 6441.5 6425.4 6430.1 6429.4 6431.1 6425.4 

WBC 6318.5 6322.0 na na na na 

RCS-k=Restricted Cubic Spline with k knots, FP=Fractional Polynomial 

na=not applicable since log transformation not substantial improvement over linear assumption 

* contains spline variables that are not included in the model, df=0 hence use 3-knot RCS 
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Restricted cubic spline transformations for bilirubin mol/L, LDH IU/L and CA19-9 KU/l were 

investigated based on 3, 4 and 5 knot models. For bilirubin and LDH, the AIC was not reduced by 

any spline polynomial and was not substantially reduced by the more complex fractional 

polynomial function (bilirubin^-0.5 and log(LDH) respectively) transformation compared to a simple 

log transformation. For CA19-9, the 5 knot restricted cubic spline transformation appeared to be 

better fit compared to the simple log transformation and better than the 3 or 4 knot spline models. 

However models with >3 knots introduced spline covariates that were not included in the model 

with degrees of freedom equal to 0 and as such the 3 knot model was used with knot positions at 

CA19-9 KU/l values of 10, 710 and 70,000. An alternative approach could be based on rescaling 

or truncating. The second degree fractional polynomial transformation identified for CA19-9 KU/l 

was [CA199^(0.5) + (CA199^(0.5)*log(CA199))] and had substantially reduced AIC compared to 

the log or spline transformations (Table 7.1).  The seven remaining continuous covariates were 

analysed assuming a linear relationship with log-hazard. 

 

The estimated risk over increasing values of CA19-9 KU/l was plotted for each transformation 

method to enable graphical comparison of the estimated functional format (Figure 7.1). The plots 

of the estimated functional form appear similar for CA19-9 but with a steeper elevated increasing 

hazard in lower values of CA19-9 less than 30,000 KU/l using the fractional polynomial function. 

The linear predictor was scaled so the log(HR) was zero at the midpoint of each continuous 

covariate to enable plots on the same axes, altering the fractional polynomial plot from that in 

Chapter 6 (Figure 6.2). 
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Figure 7.1a: Estimated Functional Form for CA19-9 KU/l: Restricted Cubic Spline Transformation 

(dots indicate actual data values) 

 

Figure 7.1b: Estimated Functional Form for CA19-9 KU/l: Fractional Polynomial Transformation 

(dots indicate actual data values) 
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7.4. Multivariable Comparison of Functions in Advanced Pancreatic Cancer 

Each continuous covariate was included in the multivariable analysis under either a linear, log or 

non-linear univariate transformation based on the „best‟ fitting restricted cubic spline identified and 

the „best‟ fitting fractional polynomial identified. As before, all variables were then considered in 

the multivariable setting using Cox proportional hazards regression based on a backward 

elimination selection method using a 5% significance level for exclusion of variables and including 

trial, sex, cancer stage (stratification factors at randomisation) and randomised treatment as 

„forced‟ variables in each model. A final check was made to ensure that no term in the model 

could be omitted and that none of the omitted terms could be included without significantly 

affecting the model. All variables omitted from the model based on backward elimination were 

considered and re-instated if they significantly improved the model. Two final Cox proportional 

hazards regression models (Table 7.2) were developed based on i) restricted cubic spline and ii) 

fractional polynomial transformations, which could be directly compared based on AIC statistics: 
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Table 7.2: Cox Proportional Hazards Regression Models (n=556, deaths=520), shaded highlight factors identified by both models 

Restricted Cubic Spline Transformations 
AIC=5526.2 Transformation 

(knot position) 
log HR () se() 2

W p-value HR (95% CI)^ 

Stratification factor TRIAL -0.35 0.099 12.7 <0.001 0.70 (0.58 to 0.85) 
Stratification factor * STAGE 0.21 0.13 2.6 0.11 1.23 (0.96 to 1.59) 
Stratification factor SEX -0.19 0.090 4.2 0.040 0.83 (0.70 to 0.99) 
Stratification factor TRT 0.18 0.098 3.5 0.063 1.20 (0.99 to 1.45) 

Continuous factor Linear ALB g/L -0.070 0.010 45.4 <0.001  0.70 (0.64 to 0.78) 
Continuous factor RCS3 # CA199 (10,710,70000)KU/l 0.000047 0.000007 43.3 <0.001 NA 

 CA1991 KU/l -0.0016 0.00025   NA 
Continuous factor Linear WBC 109/L 0.045 0.013 12.2 <0.001  1.26 (1.11 to 1.43) 
Continuous factor Linear ALKPHOS IU/L 0.00090 0.00028 10.5 0.0012  1.10 (1.04 to 1.16) 

Continuous factor Log Log(LDH)IU/L 0.39 0.14 8.4 0.0039 1.48 (1.14 to 1.93) 

Fractional Polynomial Transformations 
AIC=5510.7 Transformation log HR () se() 2

W p-value HR (95% CI)^ 

Stratification factor TRIAL -0.38 0.099 14.5 <0.001 0.69 (0.57 to 0.83) 
Stratification factor * STAGE 0.17 0.13 1.8 0.18 1.19 (0.92 to 1.53) 
Stratification factor SEX -0.16 0.092 3.1 0.079 0.85 (0.71 to 1.02) 
Stratification factor TRT 0.17 0.097 3.0 0.082 1.19 (0.98 to 1.43) 

Continuous factor Linear ALB g/L -0.068 0.010 42.3 <0.001  0.71 (0.64 to 0.79) 
Continuous factor FP2 # CA199^(0.5)KU/l 0.024 0.0040 51.5 <0.001 NA 

 CA199^(0.5)*log(CA199)KU/l -0.0017 0.00031   NA 
Continuous factor Linear WBC 109/L 0.044 0.013 11.1 <0.001  1.25 (1.10 to 1.42) 
Continuous factor Linear ALKPHOS IU/L 0.0011 0.00032 14.2 <0.001  1.13 (1.06 to1.20) 

Continuous factor FP1 Log(LDH)IU/L 0.56 0.15 14.5 <0.001 1.76 (1.31 to 2.34) 
Continuous factor Linear AST IU/L -0.0037 0.0016 5.3 0.022  0.91 (0.84 to 0.99) 
Continuous factor Linear BUN mmol/L 0.028 0.013 4.9 0.027  1.15 (1.02 to 1.30) 

HR=Hazard Ratio, RCS3=3 knot Restricted Cubic Spline, FP1/2=1st or 2nd degree Fractional Polynomial, NA=not appropriate 

* Stage (I/II vs. III/IV); # CA199: RCS knots positioned at (10, 710, 70000), Type III Wald 2 test presented with 2 degrees of freedom 
^ HR based on 5 unit increase in albumin g/L, WBC 109/L, BUN mmol/L; 25 unit increase in AST IU/L and 100 unit increase in alkaline phosphatase IU/L 
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The sign of each corresponding variable in the models were identical and the significance of each 

variable similar except for LDH which was reduced in the restricted cubic spline model. Parameter 

estimates only differed substantially for the two transformed variables CA199 and LDH. The AIC 

was smallest for the model under the fractional polynomial transformation (5510.7 compared with 

5526.2). However the fractional polynomial model selected an additional two variables with 

borderline significance: AST (p=0.022) and BUN (p=0.027). The comparable AIC of the restricted 

cubic spline model including AST (p=0.050) and BUN (p=0.067) was 5522.7 showing the 

fractional polynomial model to remain a better fit to the data by a reduction of 12.0.  

 

7.5. Bootstrap Validation Comparing Non-Linear Functions 

Internal validation, to directly compare the fit of the restricted cubic spline and fractional 

polynomial strategies, was carried out by calculating the sampling distribution of the difference in 

the AIC statistics between the models in multiple bootstrap resamples of the data using an in-

house developed SAS program (Appendix) based on nonparametric bootstrap analyses (Efron 

and Tibshirani, 1993). The bootstrap analysis fitted the final models, one based on the restricted 

cubic spline transformations and one based on the fractional polynomial transformations, to a 

series of 1000 bootstrapped resamples taken from and with the same size as the original data. 

Smaller values of the AIC indicate a better model but it is unclear whether AIC statistics from non-

nested models will approximate the chi-square distribution for hypothesis testing. Using a fixed 

level of significance for the comparison of AIC is not appropriate in non-nested models with the 

same parameters. The difference in AIC statistics for the different models in multiple bootstrap 

resamples provides a distribution which can then be summarised appropriately with bootstrap 

percentile confidence intervals derived from the bootstrap distribution of the difference between 

the restricted cubic spline and fractional polynomial models.  
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The %BOOT macro (Sarle, 2000) in SAS (SAS Institute Inc., 1999) is very computationally 

intensive carrying out non-parametric bootstrap analyses for simple random samples to produce 

inferences such as approximate standard errors, bias-corrected estimates and confidence 

intervals without knowing the type of distribution from which a sample has been taken assuming a 

normal sampling distribution. The %BOOT macro was used to calculate 1000 resamples of the 

original dataset using identical univariate transformations, if any, as in the original dataset. 

 

Modelling was carried out in 1000 bootstrap resamples forcing in trial, stage, sex, trt and CA19-9 

components (restricted cubic spline or fractional polynomial) and  considering all other variables 

for inclusion (including the borderline variables of AST and BUN) based on backward elimination 

variable selection method. Two models were created within each bootstrap sample, one based on 

restricted cubic spline transformations and one based on fractional polynomial transformations. 

The AIC for each model was output from the screen to a temporary SAS dataset and the 

difference (AIC[RCS]-AIC[FP]) between them calculated, a positive difference indicating a better 

fit by the fractional polynomial transformation model. This was repeated in each 1000 bootstrap 

resamples and the mean difference calculated with 95% confidence interval (Table 7.3). The AIC 

statistics had to be output from the screen rather than delivered to an output dataset within the 

modelling process, as the two AIC values differed. This was reported to SAS who replied “you 

have an excellent point” and confirmed they would investigate further and recommended 

outputting the AIC from screen using an „ods output‟ statement instead.  

 



CHAPTER 7: COMPARISON OF NON-LINEAR FUNCTIONS 

97 

 

Table 7.3: Bootstrap Comparison of AIC based on 1000 Resamples 

 Bootstrap Mean AIC Bootstrap Percentile 
95% CI 

Restricted Cubic Spline 5498.1 5441.7 to 5667.1 

Fractional Polynomial 5487.1 5419.9 to 5648.5 

Difference (RCS-FP) 11.0 9.0 to 31.4 

 

The bootstrap mean AIC (Table 7.3) was smallest for the model containing fractional polynomial 

transformations and on average was a better fit than the model based on restricted cubic spline 

transformations by a bootstrap mean reduction of 11.0 (bootstrap percentile 95% CI: 9.0 to 31.4). 

 

7.6. Conclusions 

Fractional polynomial and restricted cubic spline functions are both polynomial functions 

particularly suitable for modelling smooth curved relationships between response and a predictor 

and both are easily implementable in SAS. Both models containing non-linear transformations in 

the advanced pancreatic cancer dataset gave a substantially better fit compared to the models 

which dichotomised or assumed linearity of continuous covariates. The fitted functions generated 

by restricted cubic splines and fractional polynomials were similar but the model AIC and 

bootstrap mean difference in AIC was smallest for the fractional polynomial model. The methods 

were generally different in the extremities, in the left-hand tails for CA19-9 (values less than 

30,000 KU/l), where there is often a paucity of data. Due to the availability of an extremely large 

dataset in a different disease site, the reproducibility of these results could be investigated in data 

with an alternative event rate and survival distribution to investigate the stability of the 

conclusions. Analyses of data from 42802 cardiac surgery patients are reported in Chapter 8. 
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CHAPTER 8: CARDIAC SURGERY EXAMPLE 

 

 SUMMARY 

 Prospective data were collected on 44902 patients undergoing cardiac surgery 

 5563 (12.4%) patients had died and median follow-up was 5.2 years 

 Further analyses possible due to the size of dataset with alternative event rate and 

survival distribution 

 Aim to investigate reproducibility of results seen when comparing non-linear methods in 

advanced pancreatic cancer dataset 

 In addition, a univariate unadjusted fractional polynomial transformation was recalculated 

within each of 200 bootstrap resamples and compared directly against a 5-knot restricted 

cubic spline 

 The influence of the size of the bootstrap samples was investigated 

 

8.1. Introduction 

Cardiovascular disease is the most common cause of premature death in the Western world and 

is closely related to socio-economic deprivation. Cardiac surgery includes a number of operations 

known to carry significant prognostic benefit. Prospective data were collected on 44902 patients 

undergoing cardiac surgery, followed for an median of 5.2 years, to assess whether social 

deprivation based on post-codes using the Carstairs score influences survival following surgery 

(Pagano et al., 2009). The event rate (5563 (12.4%) patients had died) and survival distribution 

(approximate 90% survival at 5-years) in this disease site is very different to advanced pancreatic 

cancer. 

 

The aim of the analysis was to investigate the reproducibility of the results and conclusions drawn 

from the comparison of non-linear methods in the advanced pancreatic cancer dataset, where the 
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fractional polynomial transformation gave a better fit compared to the restricted cubic spline 

transformation. Analysis was carried out based on 42802 patients (5486 deaths) with complete 

data on the prognostic factors of interest. Seven baseline clinical and demographic variables were 

considered potential prognostic factors of survival (randomising centre, smoking status, diabetes, 

surgical procedure, body mass index (BMI), Carstairs score (CS) and EuroScore (ES)), three 

collected as continuous measurements (BMI, CS and ES). Due to the extreme size of this cardiac 

surgery dataset, further comparison of the two polynomial based strategies was able to be carried 

out. Principal analysis investigated each continuous covariate in turn but allowing the univariate 

fractional polynomial transformation to be recalculated within each of 200 bootstrap resamples 

taken from the original dataset and compared against a 5-knot restricted cubic spline. Supportive 

analysis investigated the influence of sample size by decreasing the bootstrap resample sizes 

compared to the size of the original dataset. 

 

8.2. Univariate Comparison of Non-Linear Functions 

Analyses were based on an identical strategy adopted in the analysis of the advanced pancreatic 

cancer dataset. Principal analysis was based on the assessment of the functional form of each 

continuous covariate in the univariate setting selecting a „best‟ fitting fractional polynomial and 

also a „best‟ fitting restricted cubic spline (with varying number and position of knots) based on 

comparison of AIC. Smaller values of the AIC indicate a better model but the „best‟ model may be 

based on a complex transformation with almost identical AIC statistic to a less complex 

transformation. As such, the AIC had to be substantially lower to permit a complex transformation 

compared to a simple transformation. Substantial was indicated as a reduction in AIC of 4, based 

on an arbitrary decision rule taken from similar values as the chi-square distribution with 1 degree 

of freedom. As before, the strategy was that if a simple log transformation reduced the AIC 
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compared to the untransformed variable, then more complex non-linear transformations were 

investigated further using restricted cubic splines (based on 3, 4 and 5 knot models) and second 

degree fractional polynomials. 

 

Univariate analysis of the three continuous variables (BMI, CS and ES) identified that non-linear 

transformations were appropriate in their relationship with survival (Table 8.1). However, there is a 

historically accepted transformation for EuroScore which was analysed throughout under a log 

transformation. Restricted cubic spline transformations for BMI and CS were investigated based 

on 3, 4 and 5 knot models. 

 

Table 8.1: Univariate AIC Statistics  

(shaded is selected transformation) 

Variable Linear Log RCS-3 RCS-4 RCS-5 FP 

BMI 112643.0 112598.8 112497.3 112495.8 112497.8 112514.7 

Carstairs score 114547.7 114538.6 114533.9 114533.1 114535.0 114532.9 

*Euroscore 111920.9 111769.8 111720.7 111722.6 111723.7 111712.6 

RCS-k=Restricted Cubic Spline with k knots, FP=Fractional Polynomial 

* historical transformation is log 
 

 

AIC was not substantially reduced by restricted cubic spline transformations based on more than 3 

knots. Knot positions were set at BMI values of 20.999, 27.110 and 35.339 and at CS of -3.507, -

0.539 and 5.658. Second degree fractional polynomial transformations were identified for BMI as 

[BMI^0.5 + (BMI^0.5*log(BMI))] and CS as [(CS+5.2) + ((CS+5.2)^2)].  The fractional polynomial 

transformation had similar AIC to the restricted cubic spline for CS and was worse for BMI. 
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The estimated risk over increasing values of each continuous covariate were plotted for each 

transformation method to enable graphical comparison of the estimated functional format. The 

linear predictor was scaled so the log(HR) was zero at the midpoint of each continuous covariate 

to enable plots on the same axes. The plots of the estimated functional forms appear similar for 

BMI (Figure 8.1) with smoother transformation for peak values between 25 to 45 with fractional 

polynomial but with higher estimated risk in the tail for scores greater than 50 compared with the 

restricted cubic spline function, which was a substantially better fit at univariate analysis: 
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Figure 8.1a: Estimated Functional Form for BMI: Restricted Cubic Spline Transformation  

(dots indicate actual data values) 

 

 

Figure 8.1b: Estimated Functional Form for BMI: Fractional Polynomial Transformation  

(dots indicate actual data values) 
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Similarly, for Carstairs score, the plots of the estimated functional forms (Figure 8.2) appear 

similar but with lower estimated risk in the tail for scores greater than 10 compared with the 

restricted cubic spline function, both having a similar fit to the data at univariate analysis: 

 

Figure 8.2a: Estimated Functional Form for Carstairs Score: Restricted Cubic Spline  

(dots indicate actual data values) 

 

Figure 8.2b: Estimated Functional Form for Carstairs Score: Fractional Polynomial  

(dots indicate actual data values) 
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The methods are generally different in the extremities where there is often a paucity of data. In 

this example the difference between transformations occurred in the right hand tails for outlying 

BMI and Carstairs scores (greater than 50 and10 respectively). 

 

8.3. Multivariable Comparison of Non-Linear Functions 

As in the advanced pancreatic cancer dataset, all variables were then considered in the 

multivariable setting using Cox proportional hazards regression based on a backward elimination 

selection method using a 5% significance level for exclusion of variables and including centre 

(stratification factor at randomisation) as a „forced‟ variable in each model. A final check was made 

to ensure that no term in the model could be omitted and that none of the omitted terms could be 

included without significantly affecting the model. All variables omitted from the model based on 

backward elimination were considered and re-instated if they significantly improved the model. 

Two final Cox proportional hazards regression models (Table 8.2) were developed based on i) 

restricted cubic spline and ii) fractional polynomial transformations, which could be directly 

compared based on AIC statistics: 
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Table 8.2: Cox Proportional Hazards Regression Models (n=42802, deaths=5486) 

a) 

Restricted Cubic Spline Transformations 
AIC=109223.4 Transformation 

(knot positions) 
log HR () se() 2

W p-value HR (95% CI) 

Stratification factor * CENTRE-1 
CENTRE-2 
CENTRE-3 
CENTRE-4 
CENTRE-5 

0 
-0.65 
0.20 
0.17 
0.23 

- 
0.047 
0.044 
0.044 
0.051 

527.4 <0.001 1.0 
0.52 (0.48 to 0.57) 
1.22 (1.12 to 1.33) 
1.19 (1.09 to 1.30) 
1.26 (1.14 to 1.39) 

Continuous factor  ^ log(ES) 1.25 0.029 1804.5 <0.001 3.49 (3.29 to 3.70) 

Continuous factor  RCS3 # BMI (21.0, 27.1, 35.3) 
BMI1 

-0.064 
0.069 

0.0066 
0.0088 

97.1 <0.001 NA 
NA 

Categorical factor ! SMOKING-0 
SMOKING-1 
SMOKING-2 

SMOKING-NK 

0 
0.22 
0.25 
0.83 

- 
0.034 
0.042 
0.45 

58.0 <0.001 1.0 
1.25 (1.17 to 1.34) 
1.28 (1.18 to 1.39) 
2.31 (0.96 to 5.56) 

Categorical factor DIABETES 0.26 0.036 53.2 <0.001 1.30 (1.21 to 1.39) 

Categorical factor $ CABG ONLY 
CABG+OTHER 
CABG+VALVE 

CABG+VALVE+OTHER 
OTHER 

VALVE ONLY 
VALVE+OTHER 

0 
-0.02 
0.23 
0.22 

0.014 
-0.038 
-0.027 

- 
0.095 
0.041 
0.16 

0.095 
0.039 
0.12 

43.8 <0.001 1.0 
0.98 (0.82 to 1.19) 
1.26 (1.17 to 1.37) 
1.25 (0.91 to 1.72) 
1.01 (0.84 to 1.22) 
0.96 (0.89 to 1.04) 
0.97 (0.77 to 1.23) 

Continuous factor  RCS3 # CS  (-3.5, -0.5, 5.7) 
CS1 

0.047 
-0.056 

0.014 
0.023 

16.7 <0.001 NA 
NA 

Continued... 
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b) 

Fractional Polynomial Transformations 
AIC=109223.2 Transformation log HR () se() 2

W p-value HR (95% CI) 

Stratification factor * CENTRE-1 
CENTRE-2 
CENTRE-3 
CENTRE-4 
CENTRE-5 

0 
-0.65 
0.19 
0.17 
0.23 

- 
0.047 
0.044 
0.044 
0.050 

528.6 <0.001 1.0 
0.52 (0.48 to 0.57) 
1.22 (1.12 to 1.32) 
1.19 (1.09 to 1.30) 
1.26 (1.14 to 1.39) 

Continuous factor  ^ log(ES) 1.25 0.029 1806.4 <0.001 3.49 (3.29 to 3.70) 

Continuous factor  FP2 # BMI^0.5 
BMI^0.5*log(BMI) 

-8.31 
1.53 

1.078 
0.20 

100.0 <0.001 NA 
NA 

Categorical factor ! SMOKING-0 
SMOKING-1 
SMOKING-2 

SMOKING-NK 

0 
0.22 
0.25 
0.84 

- 
0.034 
0.042 
0.45 

56.9 <0.001 1.0 
1.25 (1.17 to 1.33) 
1.28 (1.18 to 1.39) 
2.32 (0.96 to 5.60) 

Categorical factor DIABETES 0.26 0.036 54.5 <0.001 1.30 (1.21 to 1.39) 

Categorical factor $ CABG ONLY 
CABG+OTHER 
CABG+VALVE 

CABG+VALVE+OTHER 
OTHER 

VALVE ONLY 
VALVE+OTHER 

0 
-0.18 
0.23 
0.22 

-0.017 
-0.038 
-0.024 

- 
0.095 
0.041 
0.16 

0.095 
0.038 
0.12 

44.1 <0.001 1.0 
0.98 (0.82 to 1.18) 
1.26 (1.17 to 1.37) 
1.25 (0.91 to 1.72) 
1.02 (0.84 to 1.23) 
0.96 (0.89 to 1.04) 
0.98 (0.77 to 1.24) 

Continuous factor  FP2 # CS+5.2 
(CS+5.2)^2 

0.062 
-0.0034 

0.017 
0.0012 

19.3 <0.001 NA 
NA 

HR=Hazard Ratio, RCS3=3 knot Restricted Cubic Spline, FP2=2nd degree Fractional Polynomial; NA=not appropriate; ^ Euroscore based on historical transformation 

* Centre: „classification‟ variable using „Centre-1‟ as the reference level, Type III test presented with 4 degrees of freedom 

! Smoking status: missing data included in analysis as a separate „classification‟ variable using „Non-smoker as the reference level, Type III Wald 2 test presented with 3 degrees of freedom 

$ Cardiac procedures: „classification‟ variable using „CABG Only‟ as the reference level, Type III Wald 2 test presented with 6 degrees of freedom;  

# Type III Wald 2 test presented with 2 degrees of freedom
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The models were identical in the variables selected as significantly prognostic. All variables were 

selected as highly significant in both models. The sign of each corresponding variable in the 

models were identical and the significance of each variable similar. Parameter estimates only 

differed significantly for the two transformed variables, BMI and CS. The AIC were almost identical 

for each model. 

 

8.4. Bootstrap Validation Comparing Non-Linear Functions 

Internal validation, to directly compare the fit of the restricted cubic spline and fractional 

polynomial strategies, was carried out by calculating the sampling distribution of the difference in 

the AIC statistics between the models in multiple bootstrap resamples. This was programmed in 

SAS (appendix) based on nonparametric bootstrap analyses, using an identical strategy as in the 

analysis of the advanced pancreatic cancer dataset. The bootstrap analysis fitted the final models, 

one based on the restricted cubic spline transformations and one based on the fractional 

polynomial transformations, to a series of 1000 bootstrapped resamples taken from and with the 

same size as the original data. Smaller values of the AIC indicate a better model but it is unclear 

whether AIC statistics from non-nested models will approximate the chi-square distribution. The 

difference in AIC statistics for the different models in multiple bootstrap resamples provides a 

distribution which can then be summarised appropriately with bootstrap percentile confidence 

intervals derived from the bootstrap distribution of the difference between the restricted cubic 

spline and fractional polynomial models. 

 

The %BOOT macro was used to calculate 1000 resamples of the original dataset using identical 

univariate transformations, if any, as in the original dataset. Modelling was carried out in 1000 

bootstrap resamples forcing in centre, BMI and CS components (restricted cubic spline or 
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fractional polynomial) and considering all other variables for inclusion based on a backward 

elimination variable selection method. Two models were created within each bootstrap resample, 

one based on restricted cubic spline transformations and one based on fractional polynomial 

transformations. Again, the AIC for each model was output from the screen to a temporary SAS 

dataset (rather than delivered to an output dataset due to different AIC values being output) and 

the difference (AIC[RCS]-AIC[FP]) between them calculated, a positive difference indicating a 

better fit by the fractional polynomial transformation model. This was repeated in each 1000 

bootstrap resamples and the mean difference calculated with 95% confidence interval (Table 8.3): 

 

Table 8.3: Bootstrap Analyses of final models based on 1000 Resamples 

 Bootstrap Mean AIC Bootstrap Percentile 
95% CI 

Restricted Cubic Spline 109273.2 106443.5 to 111903.8 

Fractional Polynomial 109273.1 106443.2 to 111903.6 

Difference (RCS-FP) 0.12 -8.7 to 9.2 

 

 

The bootstrap mean AIC (Table 8.3) were almost identical across the two models with a bootstrap 

mean reduction of 0.12 with the fractional polynomial transformation (bootstrap percentile 95% CI: 

-8.7 to 9.2) compared to the restricted cubic spline. 

 

The extreme sample size enabled further nonparametric bootstrap analyses to be carried out 

which enabled the univariate fractional polynomial transformation for each continuous covariate to 

be recalculated within each of 200 bootstrap resamples taken from the original dataset and 

comparing against a 5-knot restricted cubic spline. The %RCSPLINE and %MFP8 macros had to 

be adapted to enable them to run within the %BOOT macro in SAS. The macros automatically 
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delete temporary SAS datasets but had to be adapted to retain the temporary datasets to enable 

output of the -2log-likelihood from each model in each bootstrap resample. The %MFP8 macro 

calculates the -2log-likehood for each model from which the AIC can be calculated if the number 

of parameters in each model are known. The number of parameters for each continuous covariate 

can be output using the FFORM variable created by the %MFP8 macro. However, this is not 

updated by the number of other variables selected in a multivariable model. The full models could 

not be compared since the %MFP8 does not allow non-significant continuous covariates to be 

forced into the model. As such, an unadjusted univariate fractional polynomial transformation was 

calculated for each continuous covariate in each bootstrap resample and compared against a 5-

knot restricted cubic spline transformation. The -2log-likelihood was output from the screen to a 

temporary SAS dataset (rather than delivered to an output dataset due to different AIC values 

being output), the AIC was then calculated for each model and the difference (AIC[RCS]-AIC[FP]) 

between them calculated, a positive difference indicating a better fit by the fractional polynomial 

transformation model. This was repeated in each 1000 bootstrap resamples and the mean 

difference calculated together with the range of differences seen (Table 8.4). The %MFP8 macro 

is an automated procedure which provides a fractional polynomial transformation for variables 

only if they have a significant independent effect. As such, the „best‟ fitting fractional polynomial 

transformation may exclude the variable of interest and as such the proportion of samples where 

the variable of interest is excluded was also calculated. Also, the influence of the size of the 

bootstrap resamples was investigated by decreasing the bootstrap resample sizes from the size of 

the original dataset to 20000, 10000, 5000 and 1000 observations. 
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Table 8.4: Univariate Bootstrap Resampling with Varied Size Resamples 

200 Bootstrap Resamples comparing 5-knot RCS^ and FP functions 

Variable Bootstrap size Bootstrap Mean Difference in AIC * 

(Minimum to maximum) 

% excluded  

(FP only) # 

BMI 42802 -16.32 (-45.09 to 10.09) 0% 

 20 000 -5.44 (-24.14 to 11.83) 0% 

 10 000 -1.12 (-18.78 to 16.05) 0% 

 5000 0.32 (-16.64 to 16.19) 0% 

 1000 0.89 (-16.64 to 10.53) 46% 

CS 42802 -0.42 (-11.36 to 7.92) 0% 

 20 000 -0.01 (-12.52 to 7.96) 5% 

 10 000 0.31 (-8.60 to 7.01) 45% 

 5000 1.63 (-10.91 to 8.68) 72% 

 1000 3.80 (-7.73 to 12.20) 95% 

BMI=body mass index, CS=Carstairs score 

RCS=restricted cubic spline, FP=fractional polynomial 

^ 5 fixed knot positions based on original full data set 

* Difference based on AIC[RCS]-AIC[FP] within each bootstrap sample 

# automated FP macro excludes non-significant variables 
 

 

The univariate bootstrap mean AIC was lower for BMI with the restricted cubic spline function with 

a bootstrap mean reduction of -16.32 (the bootstrap mean difference ranging: -45.09 to 10.09), 

based on a sample size of 42802 as in the original dataset and as in Table 8.1. Similarly, the 

bootstrap mean AIC were almost identical for CS across the two functions (bootstrap mean 

reduction of 0.42, bootstrap mean difference ranging: -11.3 to 7.92), based on a sample size of 

42802 as in the original dataset and as seen in Table 8.1. 
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When investigating BMI in bootstrap resamples of reduced sizes, the size of the bootstrap mean 

difference seen in the full dataset was reduced in line with a reduction in samples size. In the 

smallest resample size of 1000, BMI was excluded in 46% of 200 fractional polynomial models yet 

still gave similar bootstrap mean AIC to the restricted cubic spline. BMI was not excluded in any of 

the fractional polynomial models when using a bootstrap resample size of 5000 or more. When 

investigating CS in bootstrap resamples of reduced sizes, the bootstrap mean difference was 

similar in sample sizes of 10,000 observations and above. With decreasing sample sizes of less 

than 10,000 observations, the bootstrap mean difference increases, being largest in the smallest 

resample size of 1000. CS was excluded from 95% of the models when using the smallest sample 

size of 1000 but was progressively selected being excluded in 72% of models of size 5000, 45% 

of models of size 10,000 and 5% of models of size 20,000. 

 

8.5. Conclusions 

The aim of the analysis was to investigate the reproducibility of the results and conclusions drawn 

from the comparison of non-linear methods in the advanced pancreatic cancer dataset, where the 

fractional polynomial transformation gave a better fit compared to the restricted cubic spline 

transformation. The main advantage of the cardiac surgery dataset is its extreme size, analysis 

being based on 42,802 patients. The cardiac surgery data has an alternative event and survival 

rate.  Direct comparison of the non-linear methods was based on the same model building 

strategy employed when investigating the advanced pancreas dataset. The results presented for 

the cardiac surgery dataset differ slightly from the published paper (Pagano 2009) where the 

analysis plan was based on a frailty model adjusting by other trial factors such as surgeon and 

using a default 5-knot spline for all continuous data other than EuroScore. In the analysis 

presented here, BMI and Carstairs score were transformed using 3-knot restricted cubic splines 
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and second degree fractional polynomial transformations. The fitted functions generated by 

splines and fractional polynomials were similar resulting in comparable models. The AIC were 

almost identical when comparing the final multivariable models. Similarly, there was almost no 

difference in the bootstrap mean difference when comparing AIC based on 1000 bootstrap 

resamples. Larger differences were seen between the two methods when resample sizes were 

reduced due to the reduction in available data to detect small effects and also to detect non-

linearity. When reducing the resample size of the bootstrap resample, consistency in the 

conclusions made from analysis of the full dataset were not seen until a resample size of 20,000 

for both BMI and Carstairs score, based on both the observed bootstrap mean difference and the 

inclusion/ exclusion of covariates by the fractional polynomial function. In analysis of the Carstairs 

score, the bootstrap mean difference in AIC is small despite a high proportion of exclusions by the 

fractional polynomial function showing this automated method to provide a simpler model with 

similar model fit. In summary, the fitted functions generated by splines and fractional polynomials 

were similar resulting in comparable models. The fractional polynomial transformation is derived 

through a fully automated procedure whereas separate procedures need to be carried out to 

determine the knots required  for the „best‟ fitting restricted cubic spline transformation. The 

fractional polynomial method is selected as the transformation of preference due to i) the simplicity 

of the fractional polynomial procedure, ii) the comparability of the results seen in the cardiac 

surgery dataset and iii) the better fit of the fractional polynomial model in the advanced pancreatic 

surgery dataset. External validation of a derived prognostic model is required to determine if is 

transportable and will accurately predict outcome in new patients. The focus of Chapter 9 is to 

externally validate the prognostic model, based on the fractional polynomial non-linear 

transformation method, derived for patients with advanced pancreatic cancer. 
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CHAPTER 9: EXTERNAL VALIDATION 

 

 SUMMARY 

 Internal validation methods are valuable in the absence of an external dataset  

 External validation is the most stringent validation process in a new group of patients 

 The prognostic model is fitted to an external dataset to assess predictive value 

 The prognostic model can be updated in light of new external data using an identical 

modelling strategy as that used in the development of the original model 

 Model performance of the updated model should be assessed 

 A prognostic index can be derived from the updated prognostic model  

 A statistically validated prognostic index for advanced pancreatic cancer was derived 

 Treatment effects within identified prognostic factors can be investigated 

 

9.1. Introduction 

There are two main validation methods, internal and external validation. Internal validation 

methods, described and presented earlier (Chapter 4), are very valuable methods in the absence 

of an external dataset but are of less value than validation on a completely independent dataset. 

An external dataset in advanced pancreatic cancer was expected to become available during the 

project and as such it was anticipated that the final derived prognostic model could undergo 

external validation. As such, data-splitting the original dataset was avoided thus maximising the 

available data in order to detect significant prognostic factors and using internal validation 

methods until the independent, external dataset became available.  

 

External validation is the most stringent validation process and assessment of accuracy of a 

prognostic model (Harrell, 2001) based on evaluating the model in a new group of patients, 

despite being subject to differences in geographical location of patients and calendar differences. 
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It provides an important opportunity to review, strengthen and update a prognostic model with new 

data (Royston and Sauerbrei, 2004). The primary role of model validation is to ascertain if a 

derived prognostic model has external validity, that is that the model may be transportable and will 

accurately predict outcome in other patients not used in the model building process, and thus by 

inference in future patients. There are three major causes of failure of a model to validate: i) 

overfitting/ model optimism, ii) changes in the measurement of variables and iii) major changes in 

the inclusion criteria of patients (Harrell, 2001). 

 

The aim of this chapter is to describe and present an external validation of the prognostic model 

derived in advanced pancreatic cancer. A validated prognostic index of clinical and laboratory 

criteria in advanced pancreatic cancer will enable stratification of patients into risk-sets to enable 

different treatment approaches to be targeted to different subgroups of patients. Routine 

availability and use of a validated prognostic index could ensure patients receive the most 

appropriate and targeted treatment modalities.  

 

9.2. External Validation Dataset in Advanced Pancreatic Cancer 

An improved, statistically validated prognostic index for advanced pancreatic cancer was 

calculated based on independent, external data from 533 patients recruited in a prospective 

randomised controlled trial in advanced pancreatic cancer (Cunningham et al., 2009). The trial 

was designed to determine if there was any survival advantage in patients receiving gemcitabine 

in combination with capecitabine compared to current standard treatment of gemcitabine alone. 

The primary outcome measure was overall survival. Combination treatment was associated with a 

non-significant improvement in survival (Hazard Ratio=0.86; 95% confidence interval: 0.72 to 

1.02; p=0.08) compared to gemcitabine alone, consistent across prognostic subgroups of cancer 



CHAPTER 9: EXTERNAL VALIDATION 

115 

 

stage and performance status (stratification factors at randomisation). The trial showed nominally 

significantly improved objective response rates (19.1% vs. 12.4%; p=0.034) and progression free 

survival (Hazard Ratio=0.78; 95% confidence interval: 0.66 to 0.93; p=0.004) in favour of 

combination treatment (pre-specified secondary outcome measures).  

 

In an external validation, datasets should be investigated (Machin et al., 2006) for differences in 

terms of: 

1. Patient eligibility and disease characteristics  

2. Differences in data items and measurements including endpoints and follow-up 

3. Possible bias through missing data 

4. Size of treatment effects and timing of treatment from diagnosis. 

Both the development and validation datasets had similar patient eligibility criteria: histologically or 

cytologically unresectable pancreatic cancer, within 8 weeks of diagnosis or disease recurrence 

and adequate performance status. Previous therapy for metastatic or locally advanced disease 

was an exclusion criteria. Randomisation of patients in the validation dataset was stratified by 

cancer stage (locally advanced (stage III/IVA) or metastatic (stage IVB)) and performance status 

(0,1 vs. 2). The primary outcome measure in all trials was survival time calculated from the date of 

randomisation to date of death from any cause. 

 

Sample size of the validation set should provide sufficient evidence to detect prognostic factors of 

specific magnitude. The number of observed events for validation of a model (Ovalidation) with k 

regression coefficients has been suggested as: 10 x kvalidation < Ovalidation < 20 x kvalidation (Machin et 

al., 2006). A total of 529 patients in the validation dataset had died and as such indicates sufficient 
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evidence to investigate the 12 regression coefficients identified in the developed prognostic model 

(Table 6.2). 

 

A total of 1186 patients were available for analysis across the two datasets  (Table 9.1). Factors 

were generally balanced across the two datasets with the average age being 62 years (range 26 

to 89), 681 (57%) male, 799 (67%) presenting with metastases and 450 (38%) with known lymph 

node involvement. All patients in the validation dataset had cancer stage III or IV compared to 

84% in the development dataset. Similarly 67% of patients in the validation dataset had tumour 

stage III or IV compared with 44% in the development dataset. Five common biochemical 

variables were collected across both studies: bilirubin, alkaline phosphatase, albumin, LDH and 

CA19-9. 

 

Overall, the majority of patients (1141, 96%) had died by the time of analysis with a median follow-

up time of 19.9 months (Range: 0.9 to 44.0) for the 45 patients still alive. The median survival 

estimate for the group is 5.6 months (95%CI: 5.3 to 5.9) with 12-month survival estimate of 20.0% 

(95%CI: 17.7% to 22.3%). 
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Table 9.1: Common Variables across Datasets 

Variable Development 
N=653 (55%) 

Validation  
N=533 (45%) 

TOTAL  
N=1186 (100%) 

DEMOGRAPHICS 

* Age at 
entry (yrs) 

    Median 
Range 

63 
29 to 89 

62 
26 to 83 

62 
26 to 89 

Ethnic race White 
Other 

Missing 

590 (90%) 
62 (10%) 

1 

510 (97%) 
17 (3%) 

6 

1100 (93%) 
79 (7%) 

7 

Sex Male 
Female 

368 (56%) 
285 (44%) 

313 (59%) 
220 (41%) 

681 (57%) 
505 (43%) 

Treatment Gem alone 
Gem+ 

222 (34%) 
431 (66%) 

266 (50%) 
267 (50%) 

488 (41%) 
698 (59%) 

TUMOUR INFORMATION 

Cancer stage I 
II 

III 
IV 

Missing 

32 (5%) 
72 (11%) 

104 (16%) 
439 (68%) 

6 

0 
0 

156 (29%) 
377 (71%) 

0 

32 (3%) 
72 (6%) 

260 (22%) 
816 (69%) 

6 

Distant 
Metastases 

M0 
M1 

Missing 

194 (30%) 
436 (67%) 

23 (3%) 

155 (29%) 
363 (68%) 

15 (3%) 

349 (30%) 
799 (67%) 

38 (3%) 

Regional 
lymph nodes 

N0 
N1 

Missing 

243 (37%) 
251 (39%) 
159 (24%) 

167 (31%) 
199 (38%) 
167 (31%) 

410 (35%) 
450 (38%) 
326 (27%) 

Primary 
tumour T 
stage 

T0 
T1 
T2 
T3 
T4 

Missing 

8 (1%) 
158 (24%) 
144 (22%) 
280 (43%) 

7 (1%) 
56 (9%) 

0 
13 (2%) 

71 (14%) 
91 (17%) 

266 (50%) 
93 (17%) 

8 (1%) 
170 (14%) 
215 (18%) 
371 (31%) 
273 (23%) 
149 (13%) 

SERUM CHEMISTRY and HAEMATOLOGY 

Laboratory Variables 
* AST (SGOT) IU/L 

* BILIRUBIN mol/L 
* ALK PHOSPHATASE IU/L 

* ALBUMIN g/L 
* LDH IU/L 

* BUN mmol/L 
* CA19-9 KU/l 

* HAEMOGLOBIN g/dL 
* WBC 109/L 

Median (Range), Missing 
25 (6 to 538), 29 

13.7 (3 to 277), 24 
140 (35 to 2064), 24 

38 (22 to 47), 25 
164 (29 to 1495), 32 
9.3 (2.9 to 34.3), 33 

710 (5 to 1,000,000), 47 
12.4 (5.5 to 19.1), 41 
7.9 (2.3 to 31.6), 41 

Median (Range), Missing 
NA 

11 (2 to 35), 3 
173 (39 to 2188), 4 

38 (18 to 52), 3 
331 (21 to 1616), 66 

NA 
820.5 (0.6 to 14,000,000), 15 

NA 
NA 

Median (Range), Missing 
- 

12 (2 to 277), 27 
153 (35 to 2188), 28 

38 (18 to 52), 28 
211 (21 to 1616), 98 

- 
745.9 (0.6 to 14,000,000), 62 

- 
- 

OUTCOME 

Event 
indicator 

Alive 
Dead 

41 (6%) 
612 (94%) 

4 (1%) 
529 (99%) 

45 (4%) 
1141 (96%) 

* Follow-up 
alive (mo) 

Median 
Range 

20.7 
0.9 to 24.6 

30.2 
8.6 to 44.0 

19.9 
0.9 to 44.0 

NA=not available, * = continuous measurements 
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Median survival was estimated as 4.7 months (95%CI: 4.2 to 5.1) with 12-month survival estimate 

of 17.4% (95%CI: 14.5% to 20.3%) in the development dataset compared with a median survival 

of 6.8 months (95%CI: 6.1 to 7.4) and 12-month survival estimate of 23.2% (95%CI: 19.6% to 

26.8%) in the validation dataset (Figure 9.1): 

 

Figure 9.1: Survival by Dataset 

 

BB=British Biotech Development dataset; GC=GEMCAP Validation dataset 

 

9.3. Model Fit and Discrimination 

The fit of the developed prognostic model (Table 6.2), is investigated by forcing the regression 

coefficients from the derived prognostic model onto the validation dataset and assessing its 

predictive value by comparison of predicted and observed survival estimates and residuals. 
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Prognostic separation is the term used to explain statistical discrimination between prognostic 

scores when categorising patients into different prognostic risk-sets. Discrimination between 

subgroups of patients is based on the comparison of predicted and observed survival. Predicted 

prognostic information can be quantified in the original dataset used for model building using 

Predicted Separation (PSEP) methods (Altman and Royston, 2000) and it‟s equivalent calculated 

in the validation dataset termed Observed Separation (OSEP). PSEP is an index of separation of 

predicted prognostic information defined as:  

PSEP = pworst – pbest   

where pworst = predicted probability of dying for a patient in the group with the worst prognosis and 

pbest =  predicted probability of dying for a patient in the group with the best prognosis. Close 

agreement of PSEP and OSEP values would indicate usefulness of the prognostic model. The 

PSEP method has been shown to have some drawbacks as a validation tool (Royston and 

Sauerbrei, 2004;Royston et al., 2004) namely that the separation of a model may be quantified by 

the amount of variability in the linear predictor scores. An improved measure related to PSEP, is 

the D statistic which was suggested as an alternative measure of the discrimination and 

prognostic ability of a survival model. The generality of a prognostic model across k datasets can 

be evaluated by internal-external cross-validation on D by omitting each study in turn, estimating 

model parameters using remaining studies and evaluating D in the omitted study. This procedure 

has limited use when k=2 and as such discrimination of the prognostic model in advanced 

pancreas cancer is based on the PSEP method. 

 

The proportional hazards written on the log-hazard scale is: 
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Linear predictor scores (LP) from the derived prognostic model (Table 6.2), including fractional 

polynomial transformations for non-linear covariates, were calculated as: 

LP=i = 1X1i + 2X2i + ….. + pXpi  

LP = -0.37711*TRIAL + 0.17286*STAGEGP - 0.16115*SEX + 0.16934*TRTGP + 

0.02383*CA199FP1(KU/l) - 0.00173*CA199FP2(KU/l) - 0.06802*ALB(g/L) - 0.00367*AST(IU/L) + 

0.00119*ALKPHOS(IU/L) + 0.02772*BUN(mmol/L) + 0.04409*WBC(109/L) + 0.56220*LOGLDH(IU/L) 

with the following code: TRIAL (1=BB128, 2=BB193), STAGEGP (1=I/II, 2=III/IV), SEX (1=MALE, 

2=FEMALE), TRTGP (0=GEM, 1=GEMPLUS). 

 

One of the three major causes of failure of a model to validate was „changes in the measurement 

of variables‟. The validation dataset did not include measurements for WBC, AST and BUN. Also 

the validation dataset is not influenced by the TRIAL variable. One option is to remove these 

variables from the derived prognostic model and re-estimate the regression coefficients for the 

remaining variables, available across both datasets. However, it is preferable to keep the 

regression coefficients adjusted by all known factors as estimated in the original prognostic model 

but remove the factors which are not available in the validation dataset. This is equivalent to 

assuming that omitted variables take the value zero which will directly affect the linear predictor 

score but will not bias groupings into risk sets which is based on available and validated factors. In 

this way the size of the effect of each identified prognostic factor as estimated in the original 

prognostic model is validated directly for variables available across both datasets.  

 

As such, individual scores were calculated for patients in the validation dataset according to linear 

predictor above but removing terms for WBC, AST, BUN and TRIAL:  
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LP = 0.17286*STAGEGP - 0.16115*SEX + 0.16934*TRTGP + 0.02383*CA199FP1(KU/l) - 

0.00173*CA199FP2(KU/l) - 0.06802*ALB(g/L) + 0.00119*ALKPHOS(IU/L) + 0.56220*LOGLDH(IU/L) 

with the following code: STAGEGP (1=I/II, 2=III/IV), SEX (1=MALE, 2=FEMALE), TRTGP 

(0=GEM, 1=GEMPLUS).  

 

Model fit was assessed comparing differences in the direction of the parameter estimates and 

comparing observed and predicted survival estimates using PSEP and OSEP statistics. Patients 

were split into four groups based on the quartiles of the distribution of linear predictor scores used 

in the original model development (0.654140, 1.036423, 1.596797). A total of 455 of the 533 

patients had complete data for the identified factors. Only 17 patients were allocated to prognostic 

group 1, 67 patients to group 2, 157 patients to group 3 and the remaining 214 patients to 

prognostic group 4. Kaplan-Meier survival estimates (Figure 9.2) show the four prognostic groups 

with descending median survival estimates of 12.0 (95%CI: 9.0 to 17.2), 8.8 (95%CI: 7.5 to 10.9), 

8.9 (95%CI: 7.1 to 10.3) and 4.4 (95%CI: 3.9 to 5.7) months and descending 12-month survival 

estimates of 47.1% (95%CI: 23.4% to 70.8%), 32.8% (95%CI: 21.5% to 44.1%), 31.0% (95%CI: 

23.7% to 38.3%) and 15.4% (95%CI: 10.6% to 20.2%): 
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Figure 9.2: Survival by Prognostic Group 

 

The plot indicates some similarity in prognostic groups 2 and 3 from 9-months survival and 

beyond. Prognostic groups 2 and 3 have a similar survival distribution to prognostic group 1 in the 

development dataset (median survival estimate 8.5 (95%CI: 7.4 to 10.1) months, 12-month 

survival estimate 30.5% (95%CI: 22.8% to 38.2%)) re-iterating the better survival seen in patients 

in the validation dataset. The hazard ratios for groups 2, 3 and 4 using prognostic group 1 as the 

baseline were: 1.09 (95%CI: 0.64 to 1.86), 1.23 (95%CI: 0.75 to 2.04) and 2.07 (95%CI: 1.26 to 

3.39) respectively. 

 

PSEP was calculated in the development dataset based on 12-month survival rates of the four 

prognostic groups (Figure 6.4) as pbest = 1-0.305=0.695, pworst = 1-0.043=0.957 and thus PSEP = 

0.262. OSEP was calculated in the validation dataset based on 12-month survival rates of the four 

prognostic groups (Figure 9.2) as pbest = 1-0.471=0.529, pworst = 1-0.154=0.846 and thus OSEP = 
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0.317. The observed separation is increased by an absolute difference of 5.5% and this is typical 

of some extent of overfitting in the original analysis. Since PSEP and OSEP were similar then the 

conclusion is that the prognostic information appears reproducible. 

 

9.4. Updating the Prognostic Model 

Once the prognostic model has been evaluated on an independent dataset, it may be updated in 

light of the new dataset. Updating the prognostic model was carried out by pooling the data from 

both datasets. Since some prognostic factors have already been identified from the original 

dataset then it is does not seem sensible to re-start the model building process, rather fit these 

identified factors to the pooled date to re-estimate the regression coefficients (Machin et al., 

2006). To account for any significant survival differences between the datasets and treatment, 

then additional terms for DATASET and TREATMENT were included to obtain adjusted estimates 

of the regression coefficients. Final models were developed and compared based on 1036 

patients (993 deaths) with complete data on the prognostic factors of interest. The same modelling 

strategy used to develop the original prognostic model was used based on common variables 

across the two datasets (Table 9.1). 

 

Univariate analysis of the six continuous variables identified that non-linear transformations were 

appropriate for three variables in their relationship with survival based on comparison of AIC: 

bilirubin mol and alkaline phosphatase IU/L both as log transformations and CA19-9 KU/l as a 

second degree fractional polynomial transformation [CA19-9 -0.5 + log(CA19-9)], updated from that 

in the original prognostic model. The three remaining continuous covariates were analysed 

assuming a linear relationship with log-hazard. Cancer stage was included in the development 

dataset as a binary variable coded on a clinical basis as „I/II‟ vs. „III/IV‟. In the validation dataset 



CHAPTER 9: EXTERNAL VALIDATION 

124 

 

only stage III and IV patients were recruited and it did not seem sensible to combine these. 

Investigation of the AIC of models containing only cancer stage showed a better model with 

reduced AIC when using four individual levels of stage (AIC2levels=13948.2, AIC4levels=13910.1). As 

such, cancer stage was considered as an ordered categorical variable with four levels and 

incorporated into the multivariable model using classification variables. 

 

As in the development of the original prognostic model, multivariable modelling was carried out 

using Cox proportional hazards regression modelling with variable reduction based on a manual 

backward elimination method using a nominal significance level of =0.05. Primarily models 

included prognostic variables already identified and common to both datasets (Cancer Stage, Sex, 

CA19-9, Albumin, Alkaline Phosphatase, LDH) using updated functional formats as specified. 

Validation group and treatment were also included in each model. Six additional variables 

common across both datasets were considered using classification variables for tumour stage, 

metastases and nodes (missing included as a classification level in both metastases and nodes). 

The updated multivariable model containing prognostic factors identified previously, but with 

updated regression coefficients: 
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Table 9.2: Updated Prognostic Model 

 Variable log HR () se() 2
W

# p-value HR (95% CI)^ 

Stratification factor DATASET -0.49 0.078 39.8 <0.001 0.61 (0.53 to 0.71) 

Stratification factor TRT 0.054 0.066 0.67 0.41 1.06 (0.93 to 1.20) 

Classification variable * STAGE-2 

STAGE-3 

STAGE-4 

-0.34 

-0.077 

0.23 

0.24 

0.22 

0.21 

25.8 <0.001 0.71 (0.44 to 1.15) 

0.93 (0.61 to 1.41) 

1.26 (0.84 to 1.88) 

Binary variable SEX -0.16 0.065 6.2 0.013 0.85 (0.75 to 0.97) 

Continuous factor Linear ALB g/L -0.058 0.0072 66.6 <0.001  0.75 (0.70 to 0.80) 

Continuous factor FP2 # CA199^(-0.5)KU/l 0.77 0.37 48.0 <0.001 NA 

 log(CA199)KU/l 0.11 0.018   NA 

Continuous factor FP1 Log(ALKPHOS)IU/L 0.16 0.049 10.7 0.0010 1.17 (1.07 to 1.29) 

Continuous factor Linear LDH IU/L 0.00040 0.00021 3.8 0.053  1.04 (1.00 to 1.09) 

HR=Hazard Ratio, FP1/2=1st or 2nd degree Fractional Polynomial, NA=not appropriate 

* Stage: four level classification variable using level I as the reference level 

# Type III Wald 2 test 

^ HR based on 5 unit increase in albumin g/L and 100 unit increase in LDH IU/L 

 
 

 

The updated prognostic model, considering all common variables across the pooled datasets, 

selected identical factors as in the original model, except for those factors not collected in the 

validation dataset. No other variables common to both datasets were selected as additional 

prognostic variables. Differences between the two models included the format of the variables 

specifically; stage of disease which was expanded from a binary to a four-level ordinal variable, 

alkaline phosphatase IU/L modelled under a log transformation (Figure 9.3) as opposed to being 

linear previously, CA19-9 KU/l modelled with an alternative fractional polynomial transformation 

(Figure 9.4) and LDH IU/L modelled under the assumption of linearity, dropping the log 

transformation imposed previously: 
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Figure 9.3: Estimated Functional Form for Alkaline Phosphatase IU/L 

(dots indicate actual values) 

 

 

Figure 9.4: Estimated Functional Form for CA19-9 KU/l 

(dots indicate actual values) 
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This updated model provides updated estimates of the regression coefficients of identified factors 

re-estimated in the pooled data and adjusted by dataset and treatment. Parameter estimates for 

those variables under an alternative format differed. Those variables not reformatted (SEX, 

TREATMENT, ALBUMIN) showed similar parameter estimates with smaller standard errors, as 

expected due to the increased number of events, although interpretation of the TREATMENT 

variable should be avoided due to varying treatments across the datasets and trials, its main 

purpose being to adjust other parameter estimates. 

 

9.5. Model Performance 

Deviance residuals for this updated model were plotted against the linear predictor and were 

randomly scattered and centred symmetrically around a residual value of zero ranging between -

4.28 and 3.32 which suggests the data have not been mis-modelled (Figure 9.5): 

 

Figure 9.5: Deviance Residual Plot 
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As previously, patients were split into four equal sized groups based on quartiles of the distribution 

of linear predictor scores from the updated prognostic model. Linear predictor scores (LP) were 

calculated as: 

LP = -0.49006*DATASET + 0.05398*TRTGP - 0.33869*STAGE2 - 0.07656*STAGE3 + 

0.22828*STAGE4 - 0.16126*SEX + 0.76745*CA199FP1(KU/l) + 0.10686*CA199FP2(KU/l) - 

0.05836*ALB(g/L) + 0.15941*LOGALKPHOS(IU/L) + 0.0004020*LDH(IU/L) 

substituting 1 for the classification variable for  STAGE component as appropriate, else 0, and 

using the following code: DATASET (1=BB, 2=GC), TRTGP (0=GEM, 1=GEM+), SEX (1=MALE, 

2=FEMALE).  

 

Quartiles of the linear predictor scores were (-1.68213386, -1.32708021, -0.93425151) which 

created the four groups. Kaplan-Meier survival estimates (Figure 9.6) show four distinct prognostic 

groups with updated, descending median survival estimates, with non-overlapping confidence 

internals, of 9.7 (95%CI: 8.8 to 10.9), 7.2 (95%CI: 6.1 to 8.2), 5.1 (95%CI: 4.2 to 5.9) and 2.4 

(95%CI: 2.1 to 2.8) months and updated, descending 12-month survival estimates of 36.7% 

(95%CI: 30.8% to 42.6%), 28.0% (95%CI: 22.5% to 33.4%), 16.3% (95%CI: 11.8% to 20.8%)and 

3.9% (95%CI: 1.5% to 6.3%): 
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Figure 9.6: Survival by Prognostic Group 

 

The updated hazard ratios for groups 2, 3 and 4 using prognostic group 1 as the baseline 

were: 1.26 (95%CI: 1.06 to 1.51), 1.79 (95%CI: 1.50 to 2.14) and 4.39 (95%CI: 3.65 to 

5.27) respectively showing non-overlapping and tighter intervals in this updated model.  

 

9.6. Defining the Prognostic Index 

Since a prognostic index is to be used on future patients when treatment option remains to be 

decided and could be different to that in the model, then the DATASET and TREATMENT terms 

were removed from the updated prognostic model. This is equivalent to assuming that omitted 

variables take the value zero which will directly affect the linear predictor score but will not bias 

groupings into risk sets which is based on available and validated factors. Regression coefficients 

for remaining covariates were retained providing a new and updated prognostic index (PI) for use 

in prospective patients based on only those patient characteristics known at the time of diagnosis 

(Table 9.3): 
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Table 9.3: Prognostic Index 

 

PI = -0.33869*STAGE2 - 0.07656*STAGE3 + 0.22828*STAGE4 - 0.16126*SEX +    

0.76745*CA199FP1(KU/l) + 0.10686*CA199FP2(KU/l) - 0.05836*ALB(g/L) + 

0.15941*LOGALKPHOS(IU/L) + 0.0004020*LDH(IU/L) 

 

 

substituting 1 for the classification variable for  STAGE component as appropriate, else 0, and 

using the following code: SEX (1=MALE, 2=FEMALE)  

and classifying patients into prognostic risk sets with the associated estimates of survival and 

hazard ratios (Table 9.4): 

 

Table 9.4: Survival Estimates and Estimated Risk of Death for Prognostic Groups 

Risk Score Prognostic 

Group 

Estimate of 

Median Survival  

(95% CI) 

Estimate of 12-month 

Survival  (95% CI) 

HR (95% CI) 

Score < -0.995 1 9.5 (8.2 to 10.4) 36.0% (30.1% to 41.9%) 1.00 

-0.995 < Score < -0.661 2 7.1 (6.3 to 8.0) 26.4% (21.0% to 31.8%) 1.36 (1.13 to 1.62) 

-0.661 < Score < -0.293 3 4.9 (4.1 to 5.8) 16.3% (11.8% to 20.8%) 1.81 (1.51 to 2.17) 

Score > -0.293 4 2.7 (2.4 to 3.3) 6.2% (3.3% to 9.1%) 3.29 (2.74 to 3.95) 

 

 

Two of the three major causes of failure of a model to validate (Harrell, 2001) have been 

addressed whilst deriving this prognostic index: i) the estimate of overfitting in model development 

was minimal (<1%) with minimal prognostic separation (5.5%) when validated and ii) the validation 

dataset was based on a similar patient population with similar inclusion criteria. The third cause of 
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failure was due to changes in the measurement of variables since the validation dataset did not 

record data for three variables (WBC, AST and BUN) selected for inclusion in the original model 

(Table 6.2). WBC was considered highly significant in the original model whereas the influence of 

AST and BUN were more borderline. These variables will require further evaluation of their 

prognostic importance. In response to the suggested post-validation queries (Altman and Royston, 

2000):  

1. Are the same variables still important? Yes, but 3 were not evaluable at validation. 

2. Is the functional form of the prognostic model correct? Yes, similar but updated. 

3. Are the estimated regression coefficients compatible? Yes, where formats remain.  

4. How well does the model fit the new data? Minimal overfitting identified. 

5. Is the ordering of the prognostic groups preserved? Yes, and more distinct. 

6. Are the event rates between the prognostic groups significantly different? No. 

 

The updated, validated prognostic index in advanced pancreatic cancer is based on clinically 

relevant information routinely available at the time of diagnosis: cancer stage, sex, albumin, CA19-

9, alkaline phosphatase and LDH. The index identified four distinct and clinically relevant risk-

groups of patients which will enable routine stratification of patients and allow appropriate 

treatments to be targeted to groups of patients. It is intended that this prognostic calculator will be 

available to clinicians through the world wide web, attached to pancreas cancer specific web-sites.  

 

9.7. Additional Information Collected In the Validation Dataset 

The validation dataset trial collected additional factors to development dataset (diabetes, 

pancreatitis, tumour grade and site, ALT and creatinine), the most important being performance 

status. WHO performance status has been shown elsewhere to be an important prognostic factor 
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(Chapter 4). It was selected as a stratification factor at randomisation and was identified as a 

potentially important prognostic factor based on univariate analysis (Figure 9.7): 

 

Figure 9.7: Survival by Performance Status 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional exploratory analysis of the validation dataset was carried out independent of the 

development dataset but based on an identical modelling strategy. A Cox proportional hazards 

regression model was developed using 388 patients (384 deaths) with complete data on the 

clinical factors of interest and included stage of disease (p=0.0035) and performance status 

(p<0.001), stratification factors at randomisation, as well as randomised treatment group. The 

model identified five additional prognostic factors: albumin, CA19-9, size of primary tumour (all 

p<0.001), alkaline phosphatase (p=0.014) and LDH (p=0.034). Non-linear transformations were 
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appropriate for albumin g/L, CA19-9 KU/l, size of primary tumour and alkaline phosphatase IU/L 

indicating strong non-linear effects on log-hazard. A model including all 533 patients (529 deaths) 

based on multiple imputation methods to control for missing covariate data, selected grade of 

disease as an additional prognostic variable (p=0.034) which had been excluded from all models 

prior to imputation suggesting a link to other variables. A Cox model, excluding consideration of 

LDH and size of primary tumour due to missing data associated with these variables based on an 

498 patients (494 deaths), included presence of a stent (p=0.0086) again suggesting a link to 

other variables, notably size of primary tumour. Clinical guidance has indicated concern over the 

accuracy of the measurement of the primary tumour size in patients with advanced disease with 

possibly multiple metastases, as such the clinical significance of size of primary tumour is limited. 

Clinical guidance has also highlighted presence of a stent to be directly related to other laboratory 

data, specifically bilirubin, alkaline phosphatase and AST for measuring jaundice in patients.  

 

As such, the independent prognostic influence of primary tumour size and presence of a stent do 

not require further investigation. However, the independent prognostic influence of performance 

status and grade of disease and the relationships of these with other prognostic variables should 

be explored in further studies, highlighting the importance of collecting this data in future to allow 

the prognostic index to be updated with new relevant information when it becomes available. 

 

9.8. Treatment Effects across Prognostic Subgroups 

Interpretation of the treatment variable in the updated prognostic model was avoided due to the 

varying treatments across the datasets, its main purpose being to adjust other parameter 

estimates. Treatment effect across prognostic groups were investigated graphically, without 

significance testing, in the validation dataset using Forest plots (Early Breast Cancer Trialists' 
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Collaborative Group., 1990) to assess consistency of the hazard ratio of the treatment effect 

across categorical prognostic covariates. The treatment effect was consistent across prognostic 

subgroups of cancer stage and performance status (stratification factors at randomisation) 

(Cunningham et al., 2009) (Figure 9.8, adapted): 

 

Figure 9.8: Treatment Effect within Prognostic Subgroups 

 

 

 

 

 

 

 

 

 

 

 

 

Subpopulation treatment effect pattern plots (STEPP) (Bonetti and Gelber, 2000) were used to 

assess graphically treatment-covariate interactions across identified continuous prognostic 

covariates. Plots were based on creating approximately 20 subgroups of 50 consecutive patients 

with increasing values of CA19-9 KU/l, with 30 overlapping patients between subgroups. The 

hazard ratio of the treatment effect was scattered around the value of one (no difference in 

treatments) with no apparent trends for increasing values of CA19-9 KU/l (Figure 9.9), albumin g/L 

Events/Patients GEMCAP events Hazard Ratio & CI Reduction
GEMCAP GEM (O-E) Var. GEMCAP:GEM (% & SD)

     Loc Adv 79/80 73/76
( 98.8% ) ( 96.1% )

-3.8 36.3  10%  sd 16

     Met 187/187 190/190
(100.0% ) (100.0% )

-17.8 91.3  18%  sd 10

   = 0.2; p=.65  Interaction between 2 groups 2

1

     PS0 65/66 55/56
( 98.5% ) ( 98.2% )

-2.7 28.9   9%  sd 18

     PS1 149/149 159/161
(100.0% ) ( 98.8% )

-13.5 75.3  16%  sd 11

     PS2 52/52 49/49
(100.0% ) (100.0% )

-3.1 24.1  12%  sd 19

   = 0.2; p=.92Heterogeneity between 3 groups 2

2

     Unstratified 266/267 263/266
( 99.6% ) ( 98.9% )

-19.9 129.3 14.3% sd  8.2

(2p=.08)
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(Figure 9.10), and alkaline phosphatase IU/L (Figure 9.11) and with confidence intervals spanning 

unity: 

Figure 9.9a: STEPP plot of Hazard Ratio of Treatment Effect for increasing CA19-9 to 10,000 KU/l 

 

Figure 9.9b: STEPP plot of Hazard Ratio of Treatment Effect for increasing CA19-9 to 1,000 KU/l 
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Figure 9.10: STEPP plot of Hazard Ratio of Treatment Effect for increasing Albumin g/L 

 

Figure 9.11: STEPP plot of Hazard Ratio of Treatment Effect for increasing Alkaline Phosphatase IU/L 
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9.9. Conclusions 

None of the previously published prognostic factors studies in advanced pancreatic cancer had 

been validated. The prognostic model developed in Chapter 6 has now been internally and 

externally validated. External validation is the most stringent form of validation and allows a 

prognostic model to be reviewed and updated with new data. The model was externally validated 

using new data from 455 advanced pancreatic cancer patients. Prognostic separation techniques 

showed the prognostic information in the original prognostic model to be reproducible in new 

patients. The advantage of external validation is that the prognostic model can be updated based 

on the new data. An updated model revealed that no other variables common in both datasets 

were selected for inclusion in the model. The functional format and regression coefficients were 

updated based on the pooled data producing more accurate estimates. Four distinct clinically 

relevant prognostic risk groups were identified with updated, non-overlapping and tighter 

confidence intervals for the survival and hazard ratio estimates. A validated prognostic index was 

derived from the updated prognostic model based on only clinically relevant information routinely 

available at the time of diagnosis. This prognostic index is the first to be based on robust and 

appropriate statistical methodology and is the first to have been statistically validated. The 

validation process has also identified possible prognostic factors which require further 

investigation and validation and as such should are recommended as required data collection in 

future studies. 
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CHAPTER 10: DISCUSSION AND RECOMMENDATIONS 

 

10.1. Summary 

This thesis provides the first definitive, validated, prognostic tool developed using a large 

international representative sample of patients with advanced ductal adenocarcinoma of the 

pancreas based on appropriate and robust statistical methodology and intended to be accessible 

to clinicians through convenient media, including the world-wide-web. This research has enabled 

recommendations for the design and analysis of future randomised controlled trials, specifically 

identification of possible important stratification factors and the appropriateness of different 

statistical modelling approaches including dealing with different data types. Cancer Research UK 

supported the development of this prognostic tool through a Population and Behavioural Sciences 

project grant (reference: C19491/A6150, Lead investigator: DD Stocken).  

 

10.2. Clinical Relevance of Research 

The clinical focus of this research is pancreatic cancer which is an important disease to research 

as it is a common cause of cancer death and is difficult to diagnose and treat. Prognosis is 

important to help clinicians in their decision making when identifying patients who may be suitable 

for further treatment and are also relevant for the appropriate design and analysis of future clinical 

trials. 

 

Pancreatic cancer is the eighth most common cause of cancer death in the world and fifth in the 

western world (Jemal et al., 2003;Parkin et al., 2005). It is particularly difficult to treat because of 

its remote location, late presentation and resistance to conventional chemotherapy. Prognosis is 

primarily based on resectability with improved survival for the 10 to 15% of patients suitable for 
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„curative resection‟. As such, long-term survival remains poor with a reported 5-year survival of 

<5% (Bramhall et al., 1995;Carr et al., 1999;Jemal et al., 2003) increasing to 25% in resected 

patients (Bramhall et al., 1995;Carr et al., 1999;Neoptolemos et al., 2009b;Stocken et al., 

2005;Yeo, 1998). Survival benefits are anticipated by identifying risk groups of patients in whom 

treatment strategies can be targeted. The overall aim of this research was to identify the factors at 

the time of diagnosis which predict the risk group to which a patient best belongs, based on robust 

and appropriate analyses.  There is currently no prognostic tool in routine use for prediction of 

survival from advanced pancreatic cancer. Such a tool would help clinicians identify subgroups of 

patients and help in their decision making regarding appropriate treatment strategies. 

 

Randomised controlled trials researching treatments for pancreatic cancer have been limited by 

the aggressive nature of this disease with it‟s resistance to therapy and it‟s associated short 

survival. To provide sufficient evidence to confirm a small expected survival advantage with 

treatment requires large studies with random allocation of patients to treatment groups to minimise 

bias. Sample sizes in pancreas cancer trials have tended to be small and as such raises the 

problem of comparing across studies due to differences in the samples of patients. Generally 

patients are not clinically separated into prognostic groups for consideration of treatment except 

surgically (Wagner et al., 2004). Cancer Research UK funded the first large (n=289 patients) 

randomised controlled trial of adjuvant treatment in patients undergoing curative resection 

(Neoptolemos et al., 2004). This trial had a direct impact on patient care changing the standard of 

care from surgery alone to surgery plus chemotherapy and has led the way for further follow-on 

adjuvant studies (Neoptolemos et al., 2009a). Gemcitabine became the standard of care for 

patients with non-resectable (advanced) disease based on a smaller study (n=126 patients) using 

clinical benefit response (a composite measure of pain, performance status and weight) as the 
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primary outcome (Burris et al., 1997) but with the recommendation (NICE, 2010) to gather further 

evidence for the role of gemcitabine. A recently reported large Cancer Research UK randomised 

controlled trial (n=533 patients) in the advanced disease setting concluded a benefit for 

combination gemcitabine plus capecitabine compared against gemcitabine alone (Cunningham et 

al., 2009). Historically, randomised controlled trials have stratified by country and resection margin 

status (adjuvant trials) and centre, stage of disease and performance status (advanced trials). 

Identification of important prognostic factors will not only enable identification of risk groups for the 

appropriate targeting of treatments, but also enable accurate stratification of patients into future 

clinical trials.  

 

A review of prognostic factors conducted in 2004 (Stocken et al., 2008) identified 36 prognostic 

factor studies reporting a total of 34 possible prognostic factors for advanced pancreatic cancer 

patients including demographic, clinical (including performance status, weight loss, treatment), 

surgical (including palliative procedures, site and stage of disease) and laboratory (including 

CA19-9, LDH, alkaline phosphatase and albumin). The majority of studies were questionable in 

terms of sample size and statistical methods and investigated different possible factors in differing 

formats across studies. Six previously reported prognostic indices included one large study of 

1020 patients but with only three common variables to investigate. The remaining five studies 

were based on <166 patients, four were single centre studies, three were retrospective, all 

excluded consideration of centre effect and treatment effect and dichotomised continuous 

covariates when constructing the prognostic index. Statistical models derived on independent 

datasets ideally need validating on external data to ensure external validity and generalisability 

across new datasets. None of the six studies included any validation. There is currently no 

statistically robust, validated prognostic tool in routine clinical use which could help clinicians 
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predict survival and target treatments to advanced pancreatic cancer patients more appropriately 

and have an impact on future trial design and analysis. 

 

10.3. Methodology and Findings 

This research was based on robust data from three large, phase III randomised controlled trials 

representative of patients with advanced pancreatic cancer with a high event rate (96%), long 

follow-up (average 20 months) and an overall one-year survival rate of 17% (Bramhall et al., 

2002;Bramhall et al., 2001;Cunningham et al., 2009) similar to the 13% one-year survival rate 

reported for England and Wales (Cancer Research UK, 2010). Two datasets were combined for 

model building (n=653) and one was used as an external validation dataset (n=533). The high 

number of events enabled stable estimation of the prognostic ability of eighteen possible clinical, 

histological, biochemical and demographic prognostic factors. 

 

Valid statistical analyses are essential to make best use of data and optimise clinical application. 

Cox proportional hazards regression model (Cox, 1972) investigates the relationship between 

survival and one or more possible factors detecting the extent to which potential factors affect the 

hazard function. A multivariable approach, based on Cox proportional hazards modelling using 

backward elimination variable selection, was used to investigate multiple possible prognostic 

factors with the ability to include categorical and continuous covariates. Continuous variables are 

often simplified by assuming a linear relationship between predictor and log-hazard i.e. the log risk 

increases or decreases linearly as the value of the factor increases, which may not be appropriate 

and could be misleading. Dichotomisation of continuous data is common but problematic. Since 

the variability in outcome within groups is ignored by categorisation then the variability between 

groups may be significantly underestimated as patients close to the cut point are analysed as 
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being very different rather than being very similar, resulting in a serious reduction of statistical 

power to detect relationships between predictors and outcome, residual confounding and serious 

bias (Altman and Royston, 2006;Royston et al., 2006a). It is important to account for non-linear 

relationships with outcome in the prognostic factor setting since it has been shown that a 

treatment effect can be underestimated unless a strongly prognostic non-linear covariate was 

modelled correctly using a suitable non-linear function (Royston et al., 2006a). The functional 

forms of the relationships between continuous covariates and log-hazard were not reported in 

previous studies in advanced pancreas cancer and were usually dichotomised.  Non-linear 

relationships were addressed for the first time in this disease site and were investigated for each 

of the ten continuous variables in the advanced pancreatic cancer dataset used for model 

building. 

 

Fractional polynomial (Royston and Altman, 1994) and restricted cubic spline (Stone and Koo, 

1985) functions are both polynomial functions particularly suitable for modelling smooth curved 

relationships between response and a predictor. Fractional polynomial functions are an extended 

family of curves defining functions with non-integer and negative power terms, first-degree 

transformations providing monotonic curves and second-degree transformations having a 

maximum of one turning point. Restricted cubic spline functions are piecewise polynomial 

functions constrained to join and be smooth at the endpoints of each interval (knot position) and 

restricted to be linear in the tails (before first and after last knots). Both restricted cubic splines and 

fractional polynomial transformations for non-linear continuous covariates are easy to implement 

within standard generalised modelling methods providing the number of knots in restricted cubic 

splines is small, else parameter estimation must be penalised to stabilise functions. There are 

convenient fractional polynomial (Meier-Hirmer et al., 2003) and restricted cubic spline macros 
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(Harrell, 1991) available in SAS (SAS Institute Inc., 1999) and R (The R Foundation for Statistical 

Computing, 2008). Regression using fractional polynomials have shown that important additional 

prognostic information could be extracted where less sophisticated approaches miss (Sauerbrei et 

al., 1999;Royston et al., 2006b). Spline functions with multiple knot positions in smaller samples 

using many degrees of freedom can generate uninterpretable „wiggles‟ and instability and can 

become interpretable (Sauerbrei et al., 2007). One study comparing fractional polynomial and 4-

knot restricted cubic spline models (Hollander and Schumacher, 2006) concluded that the 

fractional polynomial was the preferred approach in achieving a simple model and secondly, if a 

variable was linear in its relationship with log-hazard, the fractional polynomial method identified 

as linear more often. The fractional polynomial macro has the advantage that it can 

simultaneously select appropriate transformations within the multivariable model building process. 

No spline-based procedure for simultaneously selecting variables and functional forms has found 

wide acceptance (Sauerbrei et al., 2007). Fractional polynomials also have the added potential 

ability to be able to extrapolate beyond the limits of the data and the ability to fit functions with 

longitudinal and time dependent non-linear covariates (Lambert et al., 2005;Lehr and Schemper, 

2007) unlike spline transformations.  

 

The analysis of continuous variables in the advanced pancreatic cancer dataset has shown that 

non-linear transformations were appropriate for some covariates. Models containing non-linear 

transformations in the advanced pancreatic cancer dataset gave a substantially better fit 

compared to the models which dichotomised or assumed linearity of continuous covariates and 

included significant prognostic factors which were excluded in models under the assumptions of 

either step-functional (excluded alkaline phosphatase IU/L) or linear (excluded CA19-9 KU/l) 

relationships. The fractional polynomial and restricted cubic spline models confirmed previously 



CHAPTER 10: DISCUSSION AND RECOMMENDATIONS 

144 

 

reported prognostic factors: albumin, CA19-9, alkaline phosphatase and LDH. Both models also 

identified WBC as a prognostic factor which had not been previously reported at that time, but has 

been reported subsequently (Siddiqui et al., 2007). The fractional polynomial model also identified 

two additional possible prognostic factors with borderline significance, not previously reported: 

AST and BUN but these were not selected as prognostic in the restricted cubic spline model, 

requiring confirmation in further studies.  Most importantly, the effect of CA19-9 was not apparent 

in the model under the log-linear assumption, the effect of alkaline phosphatase was not apparent 

in the model which dichotomised variables indicating how the significant effect of these variables 

may go unrecognised due to simplistic assumptions made in statistical modelling.  

 

The fitted functions generated by splines and fractional polynomials were similar, resulting in 

comparable models but the AIC was smallest for the fractional polynomial model indicating a 

better fit to the data. Different models are directly compared using Akaike‟s Information Criteria 

(Akaike, 1974). Smaller values of the AIC indicate a better model but it is unclear whether AIC 

statistics from non-nested models will approximate the chi-square distribution. The AIC can be 

seen as a method of ranking models and as such the method forces a „best‟ model which may be 

more complex and not as parsimonious as the „next best‟ model but with almost identical AIC 

statistics. To avoid this, comparison of the restricted cubic spline and fractional polynomial 

strategies was carried out by calculating the sampling distribution of the difference in the AIC 

statistics between the models in multiple bootstrap resamples of the data. This was executed 

using an in-house developed SAS program. The distribution could then be summarised 

appropriately avoiding the need for distributional assumptions. The AIC statistics had to be output 

from the screen rather than the preferred option of delivering to an output dataset, as 

recommended by SAS (SAS Institute Inc., 1999), after reporting that the AIC values delivered to 
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screen and the output dataset differed, interestingly. The bootstrap mean AIC was smallest for the 

model containing fractional polynomial transformations and on average was a better fit than the 

model based on restricted cubic spline transformations by a bootstrap mean reduction of 11.0 

(bootstrap percentile 95% CI: 9.0 to 31.4) in 1000 bootstrap resamples. The methods were 

generally different in the extremities where there is often a paucity of data and it could be argued 

that the restriction imposed in the tails in restricted cubic splines leads to greater stability. One 

possible solution could be to use the mid 90% of the range of „noisy‟ continuous data with outlying 

extremes.  

 

None of the six reported prognostic indices investigated centre effect. A grouped frailty model is a 

survival model which incorporates a random effect (RE) element into hazard function to account 

for heterogeneity between patients. An investigation of any centre effect within in this dataset 

using frailty modelling revealed no evidence of systematic differences in outcome across centres 

possibly due to the overall poor prognosis of patients with this disease and absence of effective 

treatments. Multiple imputation methods (Rubin, 1987) were used as a supportive analysis to the 

principal complete case analysis, to assess the impact of missing data which was minimal in the 

advanced pancreatic cancer dataset but again had not been addressed previously in the literature. 

 

Model validation was addressed for the first time in this disease site and is the assessment of the 

accuracy of statistical estimates and of the stability of a set of prognostic factors. Internal 

validation was carried out to assess the degree of model optimism (over-fitting) which is a 

measure of poor external validity leading to inflated estimates of model fit and is a potentially 

important source of bias in prognostic models. Internal validation methods based on statistical 

resampling simulation techniques (Efron and Tibshirani, 1993) suggested minimal optimism and 
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since the degree of overfitting estimated for the model is minimal, rescaling the model estimates 

appears neither helpful nor necessary. External validation is the most stringent form of validation 

and allows a prognostic model to be reviewed and updated with new data. The regression 

coefficients from the derived prognostic model were fitted to external data from 455 advanced 

pancreatic cancer patients and the predictive value of the model assessed by comparison of 

predicted and observed survival estimates. Prognostic separation techniques (Altman and 

Royston, 2000) showed the prognostic information in the original prognostic model to be 

reproducible in new patients. The advantage of external validation is that the prognostic model 

can be updated based on the new data. An updated model revealed no other variables common in 

both datasets, were selected for inclusion in the model. The functional format and regression 

coefficients were updated based on the pooled data producing more accurate estimates. Four 

distinct clinically relevant prognostic risk groups were identified with non-overlapping and tighter 

confidence intervals for the survival and hazard ratio estimates. This is the first prognostic model 

developed in advanced pancreatic cancer to have undergone both internal and external validation. 

 

Prognostic indices are derived from the validated regression model and prognostic scores 

grouped to form risk sets. A statistically validated prognostic index was derived from the updated 

prognostic model based on only clinically relevant information routinely available at the time of 

diagnosis. Four distinct clinically relevant risk-sets of patients were identified which could help 

clinicians to target treatments to prognostic groups of patients more appropriately. This prognostic 

index is the first to be based on robust and appropriate statistical methodology and is the first to 

have been statistically validated. The prognostic index should have the ability to aid decision 

making by identifying patients with better prognosis, possibly for inclusion in clinical trials of more 

toxic therapies, or identifying those with worse prognosis, possibly more suitable for more 
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palliative treatments off-study, especially since a greater number of palliative and toxic 

combinations of treatments are becoming available and being trialled in this disease. The 

validation process has also identified possible prognostic factors which require further 

investigation and validation and as such should are recommended as required data collection in 

future studies. It is intended that a prognostic calculator of the final validated index will be 

available through a pancreatic/ trials unit specific web-pages, based on an access front end for 

ease of use, being directly available to the clinical community and with the ability to be updated 

with future data from randomised controlled trials. 

 

10.4. Derived Prognostic Model 

Linear Predictor = -0.37711*TRIAL + 0.17286*STAGEGP - 0.16115*SEX + 0.16934*TRTGP + 

0.02383*CA199FP1(KU/l) - 0.00173*CA199FP2(KU/l) - 0.06802*ALB(g/L) - 0.00367*AST(IU/L) + 

0.00119*ALKPHOS(IU/L) + 0.02772*BUN(mmol/L) + 0.04409*WBC(109/L) + 0.56220*LOGLDH(IU/L) 

substituting the following code: TRIAL (1=BB128, 2=BB193), STAGEGP (1=I/II, 2=III/IV), SEX 

(1=MALE, 2=FEMALE), TRTGP (0=GEM, 1=GEMPLUS). 
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10.5. Validated Prognostic Index 

Prognostic Index = -0.33869*STAGE2 - 0.07656*STAGE3 + 0.22828*STAGE4 - 0.16126*SEX +    

0.76745*CA199FP1(KU/l) + 0.10686*CA199FP2(KU/l) - 0.05836*ALB(g/L) + 

0.15941*LOGALKPHOS(IU/L) + 0.0004020*LDH(IU/L) 

 

substituting 1 for the classification variable for  STAGE component as appropriate, else 0, and 

using the following code: SEX (1=MALE, 2=FEMALE) and classifying patients into prognostic risk 

sets with the associated estimates of survival and hazard ratios (Table 10.1): 

 

Table 10.1: Survival Estimates and Estimated Risk of Death for Prognostic Groups 

Risk Score Prognostic 

Group 

Estimate of 

Median Survival  

(95% CI) 

Estimate of 12-month 

Survival  (95% CI) 

HR (95% CI) 

Score < -0.995 1 9.5 (8.2 to 10.4) 36.0% (30.1% to 41.9%) 1.00 

-0.995 < Score < -0.661 2 7.1 (6.3 to 8.0) 26.4% (21.0% to 31.8%) 1.36 (1.13 to 1.62) 

-0.661 < Score < -0.293 3 4.9 (4.1 to 5.8) 16.3% (11.8% to 20.8%) 1.81 (1.51 to 2.17) 

Score > -0.293 4 2.7 (2.4 to 3.3) 6.2% (3.3% to 9.1%) 3.29 (2.74 to 3.95) 

 

 

10.6. Generalisability 

It may be argued that prognostic models derived using randomised controlled trial data are 

restricted to the patient population governed by the strict eligibility criteria of the trial and as such 

may lack generalisability (Moons et al., 2009). Within pancreatic cancer trials, the eligibility criteria 

are usually mindful of the need to recruit on a national or international basis and are generally not 

overly restrictive. However, all patients do have to be fit enough to undergo any of the trial 

treatments and this does introduce the possibility of there being an additional worse prognostic 
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group of patients that are too ill to undergo any further treatment, hence excluded from clinical 

trials and not available for inclusion in the prognostic modelling. Data from randomised controlled 

trials are usually the largest datasets available in this disease and as such provide the most 

available evidence by which to investigate potentials prognostic factors. 

 

Since trials of pancreatic cancer are being conducted by academia and pharmaceutical 

companies on an international level then it would seem sensible to derive a common outcomes 

dataset for this disease to ensure all trials subscribe to collection of a minimally important dataset 

with specific agreed outcome measurements. This could be addressed through the MRC Hubs for 

Trials Methodology Research (http://www.mrc.ac.uk/Newspublications/News/MRC005063) which 

are already investigating this in different disease sites and will ensure that potentially important 

information is routinely collected across all research projects undertaken within specific disease 

areas. 

 

10.7. Application in Cardiac Surgery 

The aim of the analysis was to investigate the reproducibility of the results and conclusions drawn 

from the comparison of non-linear methods in the advanced pancreatic cancer dataset, where the 

fractional polynomial transformation gave a better fit compared to the restricted cubic spline 

transformation. Data from 42802 patients with cardiovascular disease (Pagano et al., 2009) were 

analysed as an additional example to investigate the stability of the conclusions in an alternative 

dataset with alternative event rate and survival distribution. Non-linear transformations were 

identified for all three continuous factors: historical log transformation for EuroScore and either 3 

knot restricted cubic spline or second degree fractional polynomial transformations for both BMI 

and Carstiars Score.  

http://www.mrc.ac.uk/Newspublications/News/MRC005063
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The fractional polynomial and restricted cubic spline models were similar in that they selected 

identical variables for inclusion with high significance, similar magnitude and almost identical AIC 

values. Comparison of the restricted cubic spline and fractional polynomial strategies was carried 

out by calculating the sampling distribution of the difference in the AIC statistics between the 

models in multiple bootstrap resamples of the data. This was executed using an in-house 

developed SAS program. The distribution could then be summarised appropriately avoiding the 

need for distributional assumptions. The bootstrap mean AIC were also similar across the 

fractional polynomial and restricted cubic spline models with a bootstrap mean reduction with the 

fractional polynomial transformation of 0.12 (bootstrap percentile 95% CI: -8.7 to 9.2) in 1000 

bootstrap resamples.  

 

One of the main advantages of this additional dataset is the large sample size allowing further 

bootstrap analyses to be carried out which enabled an unadjusted univariate fractional polynomial 

transformation for each continuous covariate to be recalculated within each of 200 bootstrap 

resamples taken from the original dataset and comparing against a 5-knot restricted cubic spline 

using in-house developed SAS program. The %RCSPLINE and %MFP8 macros also had to be 

adapted to enable them to run within the %BOOT macro in SAS since they automatically delete 

temporary SAS datasets which were required to enable output of the -2log-likelihood, hence 

further calculation of the AIC, from each model in each bootstrap resample. The comparison of 

models was interesting since a final selected fractional polynomial model may be selected as the 

null model (i.e. no prognostic significance under any transformation including the linear model) 

and as such it was important to address the number of times each bootstrap sample compared a 

null model against the 5-knot restricted cubic spline. The large size of this additional dataset 

allowed this process to be repeated reducing the bootstrap resample sizes from that of the size of 
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the original dataset. When reducing the bootstrap size, consistency with conclusions made from 

analysis of the full dataset were not seen until a sample size of 20,000 resamples based on both 

the observed bootstrap mean difference and the inclusion/ exclusion of covariates by the fractional 

polynomial function. The fitted functions generated by restricted cubic splines and fractional 

polynomials were similar with similar model fit but larger differences were seen when the resample 

sizes were reduced in favour of the fractional polynomial functions albeit a reduction in available 

evidence to detect non-linearity. 
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10.8. Recommendations 

 Stage of disease, sex, CA19-9, Albumin, Alkaline Phosphatase and LDH have been 

identified as statistically validated prognostic factors 

 WBC, AST and BUN were prognostic in the development dataset but require external 

validation 

 Performance status and grade of disease were prognostic in the validation dataset but 

require external validation 

 All of these data should be routinely collected in future studies, minimising missing data, so 

the prognostic index can be continually updated and validated 

 Multivariable analysis should be standard, automated selection procedures used with care 

 Analyses should include dataset(s), stratification factor(s) and treatment group(s) as „forced‟ 

covariates to adjust parameter estimation of effect size of possible prognostic factors 

 Functional form should always be assessed specifically the underlying assumption of 

linearity between continuous covariates and log-hazard 

 Dichotomisation is not a solution for non-linearity, rather non-linear transformations should 

be considered 

 Fractional polynomial transformations are an alternative approach to restricted cubic spline 

transformations for multivariable model building of continuous covariates with non-linear 

relationships with log-hazard 

 Frailty models should be considered to investigate clustering in response, specifically due 

to centre or country effect and particularly where the number of events per cluster is small 

 Internal validation should be carried out, estimates adjusted for overfitting if necessary 

 Predicted separation methods to quantify prognostic ability of the model should be reported 

 The prognostic index should be based on characteristics known at the time of diagnosis, 

excluding dataset and treatment group, but retaining parameter estimates adjusted by 

these factors 

 The prognostic index can be used to classify patients into one of four distinct clinically 

relevant risk groups 

 Estimates of predicted survival and hazard ratios are available for  each prognostic group 

 A prognostic calculator could be made available on a pancreatic/ trials specific web page 

 The prognostic index could aid patient management and treatment decision making 

 Stratification for randomisation of patients in future trials could be based on the most 

significant of the validated prognostic factors specifically, Stage of disease, CA19-9 and 

Albumin 

 Stratification could be based on categorising laboratory variables according to their normal 

laboratory range but retaining the continuous nature of each covariate at analysis 

 Stratification factors could be updated based on other identified factors, once validated 
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10.9. Further Research 

 Investigate the inclusion of interactions of non-linear continuous covariates in the 

prognostic model and consider the amount of evidence available to be able to detect (the 

need for ~four times as many patients to detect an interaction) 

 Investigate the functional form of longitudinal non-linear continuous covariates, such as 

CA19-9 measurements during the treatment phase 

 Investigate the prognostic value of quality of life, longitudinal data usually collected 3-

monthly from the date of randomisation in prospective randomised controlled trials 

 Further investigate „centre‟ effect and more specifically ‟country‟ effect in the international 

trials of adjuvant treatment for resected pancreatic cancer considering  interactions with 

prognostic factors 

 Apply the adopted strategy for the development of prognostic models in the adjuvant 

setting with full statistical validation in an international group of patients undergoing 

„curative‟ surgery 

 Investigate alternative parametric models which assume specific distributions for the data 

but if appropriate can result in a more efficient estimation procedure yielding more precise 

parameter estimates, smaller standard errors, more clinically meaningful results and more 

accurate prediction of survival 
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10.10. Final Conclusions 

This thesis has further advanced the knowledge of prognostic factors in pancreatic cancer and 

has developed a validated prognostic index intended for use by clinicians to help in treatment 

decision-making and inform clinical trial design. This thesis has applied advanced statistical 

techniques in the development and validation of the prognostic index, has evaluated empirically 

the application of different polynomial based methods for addressing non-linearity in continuous 

data and further endorses the use of these methods. This research has provided 

recommendations for statistical analysis of pancreatic cancer datasets, recommendations for 

clinical use of the prognostic index and future clinical trial design and recommendations for further 

research in this area. 
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APPENDIX 

 

/*******************************************/ 

/**** PROGNOSTIC FACTORS IN ADV PANC CA ****/ 

/****  FP VS RCS BOOTSTRAP RESAMPLING   ****/ 

/*******************************************/ 

 

LIBNAME BB 'H:\Debs\pfadvpancca'; 

%INCLUDE 'H:\Debs\pfadvpancca\FORMAT.SAS'; 

 

proc format; 

  value trialfmt 1='BB128' 2='BB193'; 

  value racefmt 1='WHITE' 2='BLACK' 3='ORIENTAL' 4='OTHER'; 

  value sexfmt 1='MALE' 2='FEMALE'; 

  value deadfmt 0='ALIVE' 1='DEAD'; 

  value STATFMT 0='NEG' 1='POS' 2='MISS'; 

  VALUE TRTFMT 0='GEM+PLACEBO' 328='GEM+MARIM' 901='GEM' 1328='MARIM10'  

1329='MARIM25' 1337='MARIM5' ;  

  VALUE TRT2FMT 0='GEM' 1='MARIM'; 

  VALUE AGEFMT 1='<=63' 2='>63'; 

  VALUE NORMFMT 0='NORMAL' 1='ABNORMAL'; 

  VALUE STAGEFMT 1='I/II' 2='III/IV'; 

RUN; 

 

/**** SETUP COMPLETE CASE FP AND RCS DATA 

/**** n=556 complete case, 520 events 

/**** univariate transformations 

 

/* %INCLUDE 'H:\Debs\phd\RCS macro\rcspline.sas'; 

RUN; 

 

DATA BB.CC; 

  SET BB.BBMERGE; 

  LOGBILI=LOG(BILI); 

  LOGLDH=LOG(LDH); 

  CA199FP1=CA199**0.5; 

  CA199FP2=CA199**0.5*LOG(CA199); 

  %RCSPLINE(CA199, 10, 710, 70000); 

  IF STAGEGP NE . AND ALB NE . AND CA199 NE . AND LDH NE . AND WBC NE . AND ALKPHOS NE . 

  AND AST NE . AND BUN NE . ; 

RUN; 

*/ 

 

/**** BOOTSTRAP ANALYSIS: COMPARE FP vs. RCS using AIC */ 

 

FILENAME JACKBOOT 'H:\Debs\phd\jackboot.sas'; 

%INCLUDE JACKBOOT; 

 

%MACRO ANALYZE (DATA=, OUT= ); 
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/* FP MODEL USING AUTOMATED BACKWARD SELECTION */ 

 

ods output FitStatistics=AICFP; 

PROC TPHREG DATA=&data; 

  CLASS M (MISSING REF='0') N (MISSING REF='0'); 

  MODEL SURVDOE*DEAD(0)= TRIAL STAGEGP SEX TRTGP CA199FP1 CA199FP2  

      M N ALB AGE AST ALKPHOS BUN HAEM WBC LOGBILI LOGLDH 

     / SELECTION=BACKWARD INCLUDE=6 RL; 

run; 

 

DATA FP;   

  SET AICFP; 

  where criterion='AIC     '; 

  AICFP=WithCovariates; 

  keep criterion AICFP; 

RUN; 

 

DATA FP2; 

  SET FP;  BY criterion; 

  IF LAST.criterion; 

RUN; 

 

 

/* RCS MODEL USING AUTOMATED BACKWARD SELECTION */ 

 

ods output FitStatistics=AICRCS; 

PROC TPHREG DATA=&data; 

  CLASS M (MISSING REF='0') N (MISSING REF='0'); 

  MODEL SURVDOE*DEAD(0)= TRIAL STAGEGP SEX TRTGP CA199 CA1991  

     M N ALB AGE AST ALKPHOS BUN HAEM WBC LOGBILI LOGLDH 

     / SELECTION=BACKWARD INCLUDE=6 RL; 

run; 

 

DATA RCS;   

  SET AICRCS; 

  where criterion='AIC     '; 

  AICRCS=WithCovariates; 

  keep criterion AICRCS; 

RUN; 

 

DATA RCS2; 

  SET RCS;  BY criterion; 

  IF LAST.criterion; 

RUN; 

 

 

/* MERGE RESULTS */ 

 

DATA AIC; 

  SET FP2;  

  SET RCS2; 

  AICDIFF=AICRCS-AICFP; 

RUN; 
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/* SUMMARY STATISTICS ACROSS SAMPLES */ 

/* IF AICDIFF= + then AICFP<AICRCS indicating FP is better fit */ 

 

DATA &OUT; 

  SET AIC; 

  RUN; 

%MEND; 

 

title1 'BB: BOOTSTRAP ANALYSIS COMPARING AIC DIFFERENCE IN FP VS RCS MODELS'; 

title2 '1,000 bootstrap samples'; 

%BOOT(DATA=BB.CC, ALPHA=.05, SAMPLES=1000, RANDOM=123); 

run; 

quit; 

run; 

 

 

/************ END ************/ 
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/********************************************/ 

/****  PROGNOSTIC FACTORS IN HEART DATA  ****/ 

/**** BOOTSTRAP COMPARISON OF FP AND RCS ****/ 

/********************************************/ 

 

/**** RERUN with: BOOTSTRAP SIZE=1000, 5000, 10 000, 20 000, SAMPLES=200 */ 

 

LIBNAME NF 'H:\Debs\phd\HEART'; 

RUN; 

 

PROC FORMAT; 

  VALUE op  1 = "CABG Only"  2 = "Valve(s) Only"  3 = "CABG+Valve(s)" 

  4 = "CABG+Other" 5 = "Valve(s)+Other" 6 = "CABG+Valve(s)+Other" 

  7 = "Other" ; 

RUN; 

 

%INCLUDE 'H:\Debs\phd\RCS macro\rcspline.sas'; 

RUN; 

 

%INCLUDE 'H:\Debs\phd\FP macro\boxtid.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\brename.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\datasave.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\exinc.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\exlabb.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\fpmodels.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\funcfm.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\labs.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\MFP8.SAS'; 

%INCLUDE 'H:\Debs\phd\FP macro\xtop.sas'; 

%INCLUDE 'H:\Debs\phd\FP macro\xvars.sas'; 

RUN; 

 

FILENAME JACKBOOT 'H:\Debs\phd\jackboot.sas'; 

%INCLUDE JACKBOOT; 

RUN; 

 

/* CREATE COMPLETE CASE DATASET FOR ANALYSIS AND COMPARISON OF MODELS 

/* COMPARING 5-KNOT RCS BE MODEL WITH MV FP MODEL: SET UP 5K TRANS */ 

 

/* 

DATA NF.BOOT2; 

  SET NF.HEART2; 

  IF FU_DAYS NE . AND BMI NE . AND SMOKING2 NE .; 

  %RCSPLINE(BMI, 20.998698976, 24.84, 27.11, 29.714285714, 35.338593031); 

  %RCSPLINE(CS, -3.5072, -2.0447, -0.539, 1.9408, 5.6578); 

  %RCSPLINE(ES, 1, 3, 5, 7, 11); 

RUN; 

PROC CONTENTS DATA=NF.BOOT2; 

run; 

*/ 

 

/****  BOOTSTRAP ANALYSIS ****/ 

 

%MACRO ANALYZE (DATA=, OUT= ); 
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/* FP MODEL USING AUTOMATED MPF8 MACRO */ 

  

DATA NF.TEMPNF; 

SET &data; 

RUN; 

 

%mfp8 (DSNAME= NF.TEMPNF, 

 YNAME=FU_DAYS, 

 XNAME=BMI , 

    MODEL=S, 

    PW=-2 -1 -0.5 0 0.5 1 2 3, 

    M=2, 

    CENSVAR=DEATH_AT_FU, 

    CENSVAL=0,  

    TIES=BRESLOW, 

 ALPHA=0.05, 

 MSELECT=RA2, 

 MACPATH=H:\Debs\phd\FP macro, 

 DSOUT=FPOUT, 

 SHOWRES=r /* n */ 

 ); 

RUN; 

 

DATA NFFP; 

  SET FPOUT1;  

  OUT=1; 

RUN; 

 

/* FFORM: -1="Omitted", 0="Linear", 1="First Degree", 2="Second Degree", 3="Third Degree" */ 

 

PROC SORT DATA=NFFP; BY OUT; 

DATA NFFP2; 

  SET NFFP;  BY OUT; 

  IF LAST.OUT; 

  DEVFP=DEVIANCE; 

  IF FFORM=-1 THEN Q=0; 

  IF FFORM IN (0 1) THEN Q=1; 

  IF FFORM=2 THEN Q=2; 

  IF FFORM=3 THEN Q=3; 

  AICFP=DEVIANCE+(2*Q);  

  KEEP DEVFP AICFP ; 

RUN; 

 

 

/* RCS MODEL USING TPHREG */ 

 

ods output FitStatistics=NFRCS; 

PROC TPHREG DATA= &data; /*no summary;*/ 

 MODEL FU_DAYS*DEATH_AT_FU(0) = BMI BMI1 BMI2 BMI3 / RL;   

RUN; 

 

DATA NFRCS2;   

  SET NFRCS; 

  where criterion='-2 LOG L'; 

  DEVRCS=WithCovariates; 

  AICRCS=DEVRCS+(2*4);  /* BETA ESTIMATE FOR RCS(5) */ 

  keep criterion DEVRCS AICRCS; 

RUN; 
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DATA NFRCS3; 

  SET NFRCS2;  BY criterion; 

  IF LAST.criterion; 

RUN; 

 

 

/* MERGE RESULTS */ 

 

DATA DEV; 

  SET NFFP2;  

  SET NFRCS3; 

  DEVDIFF=DEVRCS-DEVFP; 

  AICDIFF=AICRCS-AICFP; 

RUN; 

 

 

/* COMPARISON OF AIC WITHIN BOOTSTRAP RESAMPLES: IF DEVDIFF= + then FP is better fit */ 

 

DATA &OUT; 

  SET DEV; 

  RUN; 

%MEND; 

 

title1 'NF HEART DATA: BOOTSTRAP ANALYSIS COMPARING AIC IN FP VS RCS MODELS'; 

title2 '200 bootstrap samples, SAMPLE SIZE =20,000'; 

%BOOT(DATA=NF.BOOT2, ALPHA=.05, SAMPLES=200, SIZE=20000, RANDOM=2001);  

run; 

quit; 

run; 

 

 

/******************** END ********************/ 
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