eTheses Repository

Imaging of luminescent nanoparticles in flows: development of surface active luminescent lanthanide complexes

Hammond, Stephen Peter (2009)
Ph.D. thesis, University of Birmingham.

Loading
This item has no file(s) to display.

Abstract

We have developed a new ligand (H\(_3\)L\(^2\)) based on a DTPA bis-amide backbone which improves upon previous work within the group. The quantum yields of the europium and samarium complexes of H\(_3\)L\(^2\) are greatly enhanced over that of H\(_3\)L\(^1\). The previously observed nanoparticle-based quenching of the lanthanide luminescence lifetime of EuL\(^1\) is suppressed in EuL\(^2\). We have demonstrated the functionalisation of gold and platinum nanoparticles of various sizes with the surface active lanthanide complexes of H\(_3\)L\(^1\) and H\(_3\)L\(^2\). As a proof of principle, we have imaged, tracked and measured velocities of individual EuL\(^2\) functionalised nanoparticles in an aqueous flow, providing flow-rates accurate to micrometer resolution of fluids through a 2 mm diameter tube. We have also observed the microscale mixing of a nanoparticle labelled solution with water on time-scales of milliseconds to seconds. We can study the development and measure the dimensions of features present during mixing and therefore assess the efficiency of that mixing. We have also visualised a turn-on event at the boundary of aqueous solutions of Eu(III) ions and H\(_3\)L\(^2\)-functionalised nanoparticles during mixing, demonstrating a novel optical method for ascertaining the degree of mixing between two solutions and the position and area of that mixing.

Type of Work:Ph.D. thesis.
Supervisor(s):Pikramenou, Zoe
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemistry
Subjects:QD Chemistry
Institution:University of Birmingham
Library Catalogue:Check for printed version of this thesis
ID Code:1235
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page