eTheses Repository

A design method for specifying power sources for hybrid power systems

Meegahawatte, Danushka Hansitha (2010)
Ph.D. thesis, University of Birmingham.

Loading
PDF (4081Kb)

Abstract

Many efforts have been made in recent years to address issues surrounding the use of fossil fuels for energy. However, it must be conceded that world’s dependence on fossil fuels cannot cease overnight. In reality, the switch is expected to be a relatively slow migration of technologies over many decades. During this transition period the world will need bridging technologies to aid in the transition to alternate energy sources. One such technology, which shows much promise in boosting energy efficiency while reducing emissions and costs, is the adoption of hybrid power systems. This thesis investigates the motives behind seeking alternate energy sources and discusses the future need to move away from fossil fuels and the likely role hybrid power systems will play in the future. A general outline of a hybrid power system is presented, and its key subsystems identified and discussed, paying attention to power generation, energy storage technologies and the performance of these systems. A novel method of specifying the power sources in bespoke hybrid power systems are presented. A custom software tool aimed at evaluating how different hardware configurations and output duty cycles affect the performance of a hybrid power system is then presented and used in several case studies to investigate the effectiveness of the presented method in specifying power sources for a given application. It was found that the hardware, output application and control strategy of a hybrid power system affects the overall performance of the system. Furthermore, if the output duty cycle of a hybrid power system is repetitive and predictable in nature, it was found that the hardware and control strategy of the system can be fine-tuned using simple techniques to optimise the overall system configuration and performance.

Type of Work:Ph.D. thesis.
Supervisor(s):Hillmansen, Stuart
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Engineering, Department of Electrical, Electronic and Computer Engineering
Subjects:T Technology (General)
TK Electrical engineering. Electronics Nuclear engineering
TL Motor vehicles. Aeronautics. Astronautics
Institution:University of Birmingham
ID Code:1215
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page