eTheses Repository

Modelling and performance evaluation of coupled micro resonator array for artificial nose

Saad, Nor Hayati (2010)
Ph.D. thesis, University of Birmingham.

Loading
PDF (9Mb)

Abstract

This research presents a new sensor structure, the coupled micro resonator array (CMRA) as an approach to reduce the complexity of large artificial nose sensing system. The aim is to exploit multiple resonant sensors with a simplified readout. The CMRA working principle is based on mass loading frequency response effect; the frequency response of the coupled resonators is a signature for the multiple sensors. The key research outputs are balanced effective mass of the coupled resonators for measurable response and broke the structure symmetry for unique frequency response pattern and stable structure eigenvectors to enhance the system odour discrimination. To develop the CMRA, the structure is modelled and analysed using finite element and lumped mass analysis. Using silicon-on-insulator material, the CMRA is fabricated in order to evaluate the performance. The effect of mass loading is tested by platinum mass deposition using focused ion beam technology (FIB). The inverse eigenvalue analysis was used to estimate the mass change pattern of the CMRA structure. The research also investigates effect of the manufacturing variations on the CMRA structure performance. With the finger print of the coupled frequency response, the output signal of N multiple resonant sensors is monitored by a single processor; hence, reducing the complexity of readout and signal processing system.

Type of Work:Ph.D. thesis.
Supervisor(s):Ward, Michael C. L.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Manufacturing and Mechanical Engineering
Subjects:T Technology (General)
TS Manufactures
Institution:University of Birmingham
ID Code:1093
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page