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Abstract 

Diffusion-weighted magnetic resonance imaging (DWI) is a key neuroimaging technique. 

Multi b-value DWI data is composed of an unknown number of exponential components 

which represent water movement in various compartments, notably tissues and blood vessels. 

The bi-exponential model, Intravoxel Incoherent Motion (IVIM), is commonly used to fit the 

perfusion component but does not take account of the multi-component nature of the data. 

In this work, a new fitting method, the Auto-Regressive Discrete Acquisition Points 

Transformation (ADAPT) was developed and evaluated on simulated, phantom, volunteer and 

clinical DWI data. ADAPT is based on the auto-regressive moving average model, making no 

prior assumptions about the data. 

ADAPT demonstrated that it could correctly identify the number of components within the 

diffusion signal. The ADAPT coefficients demonstrated a significant correlation with IVIM 

parameters and a significantly stronger correlation with cerebral blood volume derived from 

dynamic susceptibility contrast MRI. A reformulation of the ADAPT method allowed the 

IVIM parameters to be mathematically derived from the diffusion signal and demonstrated 

lower bias and more accuracy than currently implemented fitting methods, which are 

inherently biased. ADAPT provides a novel method for non-invasive determination of 

diffusion and perfusion biomarkers from complex tissues. 
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1. Introduction 

1.1 Effects of Neurovascular Damage on the Brain 

Neurovascular damage is the disruption of blood vessels that supply the brain and spinal cord. 

Acute disruption to blood vessels or blood flow can quickly impair the central nervous system 

and become life-threatening. Chronic damage to blood vessels leads to neurodegeneration and 

associated neurocognitive and neurological disability (1). Highly sensitive and rapid imaging 

techniques are crucial in our understanding, diagnosis and management of such cerebral 

conditions.   

Neurovascular injuries can present in a multitude of ways (2), dependent upon the 

injury/disease and site of vascular disruption. Neurovascular damage can be caused directly 

from injury, such as blunt force trauma (3) or radiation therapy (4), or from disease, such as 

stroke (5) or a brain tumour (6), and has been linked to dementia (7).  For acute conditions, 

imaging can provide rapid identification of the neurovascular condition, leading to a quick 

diagnosis, essential in the treatment of conditions such as strokes (8). For less acute 

conditions, non-invasive imaging techniques can diagnose and monitor the neurovascular 

damage, crucial for patient management.  

Imaging techniques can be implemented to obtain quantitative perfusion measurements. These 

measurements can aid in the understanding of different conditions, perhaps most clearly 

demonstrated in the assessment of brain tumours (9)(10). All current methods for measuring 

perfusion have significant limitations (11), and in this thesis, novel methods which address 

some of these limitations are developed and evaluated. These methods are developed with a 

specific focus on children who have brain tumours.  However, the techniques developed 

should apply to a variety of conditions. 
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1.2 Measuring Blood Perfusion with MRI 

Cerebral perfusion, the passage of fluid through the circulatory system, can be measured with 

a range of different modalities including Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT) (12), Positron Emission Tomography (PET) (13) and Near-Infrared 

Spectroscopy (NIRS) (14).   

NIRS can provide continuous perfusion measurements through the assessment of the 

absorption of the near-infrared electromagnetic spectrum. However, due to its penetration 

depth, NIRS can only be used to scan cortical tissue (15), and spatial resolution is poor, only 

localised to the site of the source-detector measurements (16). PET is a long-established 

modality for measuring cerebral dynamics, in particular, Cerebral Blood Flow (CBF). 

However, PET uses radioactive tracers, requiring a cyclotron, and limits its repeatability or 

use in healthy volunteers (17).  Additionally, the invasive procedure is at risk of 

complications and is sensitive to noise (18). Hence this modality is only feasible in very 

specific settings (11). CT provides reproducible quantitative perfusion measurements (12) and 

is faster and more readily available than MRI. However, MRI provides a higher spatial 

resolution with greater sensitivity (19). With MRI, perfusion can be measured with high 

temporal and spatial resolution (20).  

With MRI, the most common method for estimating CBF requires the dynamic tracking of a 

paramagnetic bolus and is known as Dynamic Susceptibility Contrast (DSC) (21) (other bolus 

tracking techniques such as Dynamic Contrast Enhanced (DCE) (22) imaging are also 

commonly used and are further discussed in Section 2.3.4)  . Parameters such as Cerebral 

Blood Volume (CBV) and Mean Transit Time (MTT) can also be measured with DSC; the 

results can be visualised as parametric colour maps than can be interpreted qualitatively or 
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quantitatively (23). CBV is considered a robust parameter for the evaluation of brain tumours 

due to the direct relationship to the capillary size and density (24). DSC measurements can aid 

in the grading of tumours (25), provide useful hemodynamic information not available 

through standard MR imaging alone- aiding in diagnosis (26) and also in predicting patient 

outcome (27). However, the interpretation of perfusion measurements can be challenging, 

quantification of parameters can be difficult to determine (28), and post-processing results can 

be user-dependent (22). Poor signal to noise ratio measurements requires the implementation 

of quality control methods (29)(30). In addition, there is no consensus over the protocol to 

implement (31). For methods requiring a bolus, there are serious concerns over the potential 

toxicity of the contrast agents used (32). Hence alternative methods of measuring blood 

perfusion, which are non-invasive, are greatly desired. Arterial Spin Labelling (ASL) is a non-

invasive perfusion measurement technique that is gaining considerable attention (33). 

However, interpretation of ASL measurements can be difficult because of low signal to noise 

ratio levels (34) and the repeated use during examinations for some populations, such as 

children, is restricted due to high specific absorption rates (35). Another non-invasive 

technique for measuring perfusion effects is Diffusion-Weighted Imaging (DWI), which is 

readily available on current MRI scanners and is routinely used in clinical practice as part of 

brain MRI. 
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1.3 Measuring Blood Perfusion with Diffusion-Weighted 

Imaging: Advantages and Limitations 

DWI is a non-invasive MR imaging technique that measures the random movement of water 

molecules within biological tissue. Intravoxel Incoherent Motion (IVIM) imaging is a DWI 

technique that requires multiple b-values (a parameter that is changed by varying the diffusion 

sensitization of the MR sequence) in order to measure diffusion and perfusion-related 

properties of biological tissue (36) (a comprehensive overview of the IVIM method is 

provided in the following chapter). IVIM-based perfusion measurements are gaining 

increasing acceptance, particularly in the field of oncology (37). The perfusion fraction, 

IVIM-f, has demonstrated clinical value in discriminating between high- and low- grade brain 

gliomas (38) and is prognostic for survival in brain gliomas (39). The pseudo-diffusion 

coefficient, IVIM-D*, which macroscopically describes the incoherent motion of blood within 

the capillary network (40), has additionally shown efficacy in the discrimination of low- and 

high- grade tumours (41). The IVIM method has demonstrated a moderate correlation to other 

perfusion methods (42). Furthermore, the IVIM methodology is fundamentally different from 

other perfusion techniques; hence, the measured perfusion information obtained could be 

complementary to these other perfusion methods. 

The IVIM method is confounded by some limitations. There is no consensus as to the number 

of data points ( b-values) or the distribution that should be used (43). Post-processing 

techniques, such as the fitting method implemented can also affect the estimated parameter 

values (44). The impact of these factors is most evident in the IVIM-D* parameter which has 

the greatest measurement error of the IVIM parameters (45). The IVIM method also assumes 

that two compartments, water diffusion and perfusion within the capillary bed, exist within 
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the diffusion signal. However, more compartments may be present, either due to signal 

mixing with other tissues (40) or additional perfusion effects (35). These challenges could 

potentially confound the use of some of the IVIM parameters as robust biomarkers. There is a 

need for a robust method which can fit multi b-value DWI without prior knowledge of the 

number of components and extract relevant information on the perfusion of the tissue.   
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1.4 Robust Biomarkers 

MRI is a popular diagnostic modality with most clinical data assessed by expert qualitative 

review (46). Qualitative assessment can be rapid but potentially challenging when qualitative 

features from multiple image types require consistent interpretation (47). In addition, the 

results from different reviewers of qualitative data can be highly varied. Hence there is a need 

for more robust measurements with quantitative biomarkers (48).   

Perfusion is a complex physiological process that can be measured by a multitude of different 

parameters, attained through a variety of imaging modalities. Although many different 

parameters could be complementary in their characterisation of perfusion, it is unfeasible that 

all will gain clinical use (49). Hence to ensure the implementation of robust biomarkers, a 

multitude of factors have to be considered. 

Imaging biomarkers are a subset of all biomarkers and can be either quantitative or qualitative 

(50). Quantitative Imaging refers to the extraction and use of numerical and statistical features 

from a medical image (51). As defined by the Quantitative Imaging Biomarkers Alliance, 

organised by the Radiological Society of North America (RSNA), a quantitative imaging 

biomarker is:  

“An objective characteristic derived from an In-Vivo image measured on a ratio or 

interval scale as indicators of normal biological processes, pathogenic processes, or a 

response to a therapeutic intervention.” (52) 

Several different groups associated with the development of quantitative imaging biomarkers 

(QIBs) (50) have issued consensus statements for guidelines for the acquisition and analysis 

of some QIBs. Technical validation, clinical validation and cost-effectiveness all have to be 

established for a potential QIB. 
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For the technical validation of a QIB, the robustness of the biomarker has to be validated. 

This is established through determining the QIB’s bias (accuracy), precision (variability), and 

determining its inherent reliability (confidence interval) in parameter measurements. In order 

to interpret the results from multiple studies, the acquisition protocol needs to be standardised 

(53). For DWI, this requires a consensus on factors such as magnetic field strength and 

maximum slice thickness (54).  

In the initial stages of biomarker discovery, the precision and bias of a parameter are 

considered (55) via computer simulations, before being validated in phantoms, preclinical or 

clinical datasets (52). QIBA recommend that quality control metrics such as parameter mean, 

standard deviation, coefficient of variation, bias estimate and noise estimation are 

implemented for technical validation (56).  

For imaging biomarkers, clinical validation occurs simultaneously alongside technical 

validation. Clinical validation of QIBs is conducted by assessing factors such as the 

sensitivity and specificity (57) of the new biomarker. Subsequent technical validation is then 

required by assessing multicentre reproducibility (58). At every stage in the development of a 

new QIB, the cost-effectiveness, i.e. the cost of scan time and assessment, has to be 

considered (50). Any new QIB should strive to adhere to these image biomarker guidelines. 
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1.5 Project Aims and Objectives 

The overall aim of this work was to develop a new MR method to probe and understand 

multicomponent diffusion and perfusion within biomedical systems. The project focuses on a 

novel fitting method for DWI data. The method is validated by investigating if the number of 

components in the diffusion signal can be correctly determined. The model’s coefficients are 

investigated as potential imaging biomarkers with comparisons to DSC-MRI, the current 

standard for MR perfusion. 

1.5.1 Objectives 

1. To develop a new fitting model for multi- b-value DWI data based upon a modified version 

of the Auto-Regressive Moving Average (ARMA) model. Such a model will have the ability 

to fit a variable number of components. 

2. To investigate the performance of the new method to fit multicomponent data and 

determine the number of components. Compare the results to multiexponential fitting 

methods currently implemented. Explore computerised simulations modelling tissues with 

different water motions, including blood flow.  

3. To explore the biophysical origin of the perfusion effects measured with DWI. Compare 

the perfusion MR parameter cerebral blood volume (estimated using Dynamic Susceptibility 

Contrast) to perfusion related parameters obtained with DWI. 

4. To further develop the mathematical formalism of the new method. Compare the 

coefficients of the new method to the parameters of multi-exponential fitting methods. Derive 

the IVIM model parameters from the coefficients of the new method.  
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1.6 Thesis Structure 

In Chapter 2, a background into MR physics and DWI is provided. Common diffusion 

models, such as the ADC and IVIM model are highlighted. The factors confounding image 

quality and the effects these have on biomarker reproducibility are considered. Some of the 

pitfalls of the IVIM model are highlighted, particularly in low perfused tissues such as the 

brain. The relation of perfusion parameters to the IVIM model and the success of correlation 

studies is discussed.  Multiexponential fitting methods, in general, are explored along with 

model selection techniques. Finally, the ARMA Model and its potential for modelling multi-

exponential data is introduced.  

In Chapter 3, the ARMA model is introduced as the ADAPT model, modified for DWI 

signals. A full mathematical formalism is provided and discussed. The methodology for using 

ADAPT to determine the number of components in the diffusion signal is presented. A partial 

volume effects model, combining white matter and cerebrospinal fluid signals is investigated 

and the results compared to those of multi-exponential fitting methods.  

In Chapter 4, the perfusion related measurements from DWI, including the ADAPT 

parameters, are explored. The correlation between the ADAPT(1,1)-α1 and DSC-CBV 

parameters is investigated and compared to the correlation between IVIM-f and DSC-CBV 

across a patient cohort. The ADAPT method is used to determine the number of components 

in the diffusion signal. The impact of the number of components upon the correlation strength 

is investigated.  

In Chapter 5, the IVIM parameters are fully derived from the ADAPT coefficients with a 

particular focus on IVIM-D*. The ADAPT fitting method is compared to the multi-step, non-

linear, least-square fitting algorithm commonly used to estimate the IVIM parameters. Both 
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fitting methods investigate simulated white matter and grey matter brain models, considering 

the accuracy, precision and bias for a range of Signal to Noise Ratio (SNR) levels. Once 

optimised, the fitting methods are applied to In-Vivo data and compared.  
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2. Theory 

This chapter provides an overview of the fundamentals of MR physics and the phenomenon 

of diffusion. The methodology for attaining MR images sensitive to diffusion is explained. 

Modelling of the diffusion signal in order to gain clinically relevant biomarkers, also related 

to perfusion, is discussed. The challenges that different diffusion models encumber are 

explored and the desire for a novel fitting method established. 

2.1 MR Physics 

2.1.1 Magnetic Characteristics of the Nucleus 

The magnetic properties of a nucleus are affected by spin, an intrinsic quantum property of the 

particle’s angular momentum, and the electrical charge distribution of the protons and neutrons. 

Although neutrons have no overall electrical charge, the distribution of charge is 

inhomogeneous. This inhomogeneity, in addition to the nuclear spin, leads to the neutrons 

generating a magnetic field that is equal and opposite to that generated by the protons.  

The magnetic characteristics of a nucleus can be defined by the nuclear magnetic moment, a 

vector dictated by the pairings of constituent protons and neutrons. Individual protons and 

neutrons have an associated magnetic moment and spin ½. The angular momentum of nucleons 

tends to form pairs acting as single entities with intrinsic angular momentum. If the sum of the 

number of protons (P) and neutrons (N) are both even, then no magnetic moment is observed. 

However, if P is even and N is odd, large integer spins are associated with the unpaired nucleons 

and a magnetic moment is observed (59). If P is odd, a half-integer spin is observed associated 

with the odd proton.  
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Several elements present in biological tissue can generate a magnetic moment. Within 

biological tissues, hydrogen is the best candidate for generating such an MR signal due to its 

high isotopic abundance, a strong magnetic moment and being heavily concentrated in water 

and lipids (60). Although other elements, such as 23Na and 13C, have been used to image the 

body, the proton is primarily used to generate the MR signal. 

The spin of the proton can be considered as a spinning gyroscope that is electrically charged; 

this creates a loop of electrical current about the spinning axis which can interact with external 

magnetic fields as well as being capable of generating its own. If many unbound hydrogen 

atoms are considered then, due to their thermal energies, they will assume a random orientation 

of magnetic moments, resulting in no net magnetic moment being observable. Should an 

external magnetic field be applied, the magnetic moment vectors will align themselves as 

parallel or anti-parallel at two discrete energy levels to the field (Figure 2.1). 

 

Figure 2.1: A) Nuclei spins are randomly orientated. B) In the presence of a magnetic field, nuclei 

spins align either spin aligned or spin opposed to the magnetic field. 

 

 

A small majority of spins exist in the lower energy state; the energy gap between the two states 

depends upon the strength of the applied magnetic field (Figure 2.2). Increasing the magnetic 

field increases the number of spin protons in the lower energy state and thus creates an 
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observable magnetic moment, leading to the magnetisation, M0, of the nuclei that runs parallel 

to the magnetic field. 

Figure 2.2: Energy of the interactions between a hydrogen nucleus and the applied magnetic 

field, B0. Two possible spin states with two different energies are possible with the energy 

level dependent upon the magnetic field, the reduced Planck constant ћ, the gyromagnetic 

ratio γ and the spin energy state either ½ or -½. 

 

However, the axis of the nucleus does not perfectly align with the applied magnetic field due 

to its angular momentum, resulting in the nuclei having a transverse magnetic moment 

component.  This component has no fixed direction and can be at any angle perpendicular to 

B0. The angular momentum causes the nucleus to precess about the direction of B0. The angular 

frequency of this precession is known as the Larmor frequency, ω0, dictated by the Larmor 

equation:  

𝜔0 = 𝛾𝛽0 (2.1) 

Where γ is the gyromagnetic ratio, a specific constant determined by the element. For a 

hydrogen nucleus, a proton, γ is approximately 2.68 × 108 rad s-1 T-1. Due to the random 
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distribution of proton alignments, there is no net magnetisation across the nuclei in the 

transverse direction to the magnetic field. 

2.1.2 Applying a Radio Frequency Pulse 

The nuclei can be distributed from equilibrium by the introduction of a secondary magnetic 

field, B1. To excite those nuclei in the lower energy state, they must receive energy equal to the 

energy difference between the two energy states- hence B1 must oscillate with a frequency equal 

to that of ω0. By applying B1 perpendicular to B0, the net magnetisation M0 is rotated and begins 

to precess about the sum direction of B0 and B1. For imaging purposes, B1 is required to be 

rapidly switched on and off; so it has a much smaller magnitude than B0. The total magnetic 

field changes with time as B1 rotates and M0 precesses about the vector sum of these two fields 

(Figure 2.3).  

 

Figure 2.3: Precession of net magnetisation A) Stationary reference frame. B) Rotating reference 

frame- rotates at the Larmor frequency. M0 rotates around the B1 vector and appears stationary about 

B0. 

B1 is applied via a low energy radio frequency (RF) pulse. After the pulse, excited nuclei relax 

back to equilibrium and release detectable energy equal to that of the RF pulse. The number of 

excited nuclei, and therefore the size of the detectable signal, is dependent upon the magnitude 

and duration of the RF pulse. By applying B1 at ω0, M0 can be rotated away from B0. The angle 
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by which M0 rotates away from B0 is known as the flip angle. The rotating magnetisation 

induces an electrical signal in a receiver coil within an MRI scanner; this is the signal that 

creates the MR Image. This signal oscillates at the same frequency as ω0, its strength dependent 

on the angle of M0 from B0. The biggest change in signal is observed when M0 is perpendicular 

to B0, creating the largest fluctuation in the magnetic signal. Consequently, the MRI signal is 

dependent upon the magnitude of magnetisation and its flip angle. 

2.1.3 Relaxation 

Following the RF pulse, nuclei lose magnetic energy and magnetisation returns back to 

equilibrium, a process known as relaxation. The phenomenon can be expressed through two 

components with the longitudinal relaxation being a vector parallel to B0; this vector relaxes 

with time T1. In T1 relaxation the longitudinal component of M0 is recovered as energy is lost 

to the surrounding lattice; T1 is the time taken for the net magnetisation to recover from zero 

to (1-1/e) of the maximum value, approximately 63%. T1 relaxation is modelled by the 

equation: 

𝑀𝑧 = 𝑀0(1 − 𝑒
−𝑡 𝑇1⁄ ) (2.2) 

where t is time and M is the net magnetisation.  

For T1 relaxation to occur, the energy exchange from the nucleus to the surrounding material 

is stimulated through the interaction with another magnetic field close to the Larmor frequency. 

Typically, it is neighbouring protons that induce this relaxation. For molecules with unrestricted 

motion, such as pure water, a wide range of frequencies are possible. At any given time, only a 

small fraction of the water molecules will be at the rotational speed needed for the energy 

exchange. Consequently, water has a long T1. In fat, the water molecules interact with the long 



18 

 

carbon chains resulting in a lower resonant frequency. Fat molecules rotate slower than water 

molecules, resulting in a shorter T1. 

The transverse relaxation is the decay of the transverse component of M0, as energy is 

transferred between the spins, and has a relaxation time of T2.  T2 relaxation occurs at a much 

quicker rate than T1 and is modelled by:  

𝑀𝑥𝑦 = 𝑀0𝑒
−𝑡 𝑇2⁄  (2.3) 

T2 is the time taken for the transverse magnetisation to decay by (1/e), ~37%. T2 relaxation 

occurs via dipole-dipole interactions with other 1H nuclei. As the T2 signal is known to 

exponentially decay, by measuring at time t after relaxation the signal S(t) will be given by: 

𝑆(𝑡) = 𝑆0𝑒
−𝑡 𝑇2⁄  (2.4)  

Such that S0 would be the signal measured instantaneously after relaxation. Hence the signal 

detected is weighted by T2. 

Like T1, a tissue’s T2 is characterised, in part, by the speed of the molecular rotations. 

Consequently, moving water molecules have longer T1 and T2 values, whereas water with 

restricted movement, and lipids, have shorter relaxation times. Subtle differences in relaxation 

times amongst tissues allows for sensitive imaging. For example, white and grey brain matter 

can be readily distinguished on conventional MR images with relaxation observed via either 

the T1 or T2 signal.  

2.1.4 Magnetic Field Gradients 

To differentiate between all the MR signals generated from different locations, it is necessary 

to impose a spatially varying magnetic field gradient (Figure 2.4). This gradient varies linearly 
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and results in the total magnetic field being linearly dependent on the location within the 

scanner. The exact magnetic field strength at location ri:  

𝐵𝑖 = 𝐵0 + 𝐺𝑇 ∙ 𝒓𝒊 (2.5) 

Where GT is the gradient amplitude.  

 

Figure 2.4: Spatially varying gradient field, Gz, within the scanner. The gradient varies linearly and 

results in the total magnetic field being linearly dependent on its location within the scanner. 

This results in an additional term to the Larmor equations: 

𝜔𝑖 = 𝛾(𝛽0  + 𝐺 ∙ 𝒓𝒊) (2.6) 

Hence the resonant frequency of each proton is unique and varies as a function of location. 

By only exciting nuclei within a narrow range of frequencies, with an RF pulse that matches 

their Larmor frequency, selected spins can be isolated across a thin slice. This process is 

referred to as slice selection (Figure 2.5). 
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Figure 2.5: Slice selection with selective nuclei excitation. 

The thickness of the slice is determined by the magnitude of the slice selective gradient (Gss) 

and the range of frequencies within the RF pulse. The orientation of the slice is dependent upon 

the orientation of Gss (i.e. Gz). The slice selection process provides spatial resolution in the 

direction of Gss; the number of images created will be equivalent to the number of slices. To 

gain in-plane resolution in x and y- spatial encoding is required. This is done using two 

gradients: phase encoding and frequency encoding. These supplementary field gradients, whilst 

applied, temporarily change the resonant frequencies of the protons. Once switched off, the 

protons return to their original precessing frequencies but the phase induced remains. Phase 

encoding alters the phase of the voxels in the y-direction. This is done using another gradient 

and is similar to the process used for slice selection. The induced phase shift is proportional to 

the duration of the gradient and the position along the y-direction. After phase encoding, 

frequency encoding is performed where a frequency shift operator is used to change the angular 
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frequency of the spinning protons in the x-direction. The frequency encoding gradient, increases 

linearly in the x direction, predictably distorting the magnetic field such that the resonant 

frequency varies as a function of position. This is performed using a similar method to Gss and 

phase encoding. The bandwidth of these additional RF pulses will determine the resolution of 

the image. For each voxel in the image, we will have a specific phase and a specific angular 

frequency associated to the nuclei within that voxel (Figure 2.6). 

  

Figure 2.6: Spatial encoding: the effects of phase and frequency encoding on nuclei spins. 
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2.1.5 Creating an Image from the MR Signal 

When the RF pulse is switched off, both T1- and T2- relaxation occur. The transverse relaxation 

and dephasing caused by small variations in the magnetic field result in the MR signal decaying. 

To ensure that the signal is detected before it decays considerably, a signal echo is created by 

temporarily reversing the dephasing. Two possible techniques can create a signal echo: spin-

echo and gradient-echo. The spin-echo technique is executed by applying a subsequent 180° 

RF pulse after the initial 90° RF. As the signal begins to dephase after the 90° RF, the 180° RF 

pulse inverts the nuclei magnetisation and phase signal such that as the signal continues to 

propagate it becomes rephased. Spin echo allows more time for the signal to be detected (Figure 

2.7). 

 

Figure 2.7: Spin Echo: the effects of the pulse sequence on nuclei spin. 

 

The gradient echo technique works by applying a magnetic field gradient upon the nuclei and 

then rapidly applying another gradient in the opposite direction. The two field gradients cancel 
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out, and the transverse magnetisation is brought back in phase, creating a strong MR signal. 

The time from the peak of the first RF pulse to the middle of the echo is referred to as echo 

time- TE. The repetition time, TR, is the time between successive 90° RF pulses. For spin 

encoded images, the TE and TR are used to determine the image contrast. The detected signal 

S can be approximated by: 

𝑆 = 𝐾 ∙ [𝐻] ∙ (1 − 𝑒−𝑇𝑅/𝑇1) ∙ 𝑒−𝑇𝐸/𝑇2 (2.7)  

Where K is a scaling factor and [H] is the spin density. When TE is short relative to T2, the 

echo occurs before any substantial T2 relaxation has occurred. However, when TE is long, the 

T2 signal decays exponentially, and the contrast between different tissue types, exhibiting 

different T2 signals will be substantial. A T2-weighted image is acquired with a long TR and 

TE. If TR is long relative to T1, the signal will have time to fully recover from the RF pulse 

and will have no dependence on T1. 

However, if the repeating TR pulse is so rapid such that the nuclei haven’t fully relaxed-then 

the longitudinal magnetisation observed will be dependent upon T1. A T1-weighted image is 

acquired with a short TR and short TE. For the repeated RF pulse technique, the sensitivity of 

the signal can be controlled for different tissues by changing the interval time between repeated 

pulses.  

The attenuation in the signals leads to a decay in the voltage induced in the receiver. The signal 

measurements are stored in a large matrix known as k-space- an array of raw data representing 

spatial frequencies in the MR image. Each element contains information related to the whole 

image space with the kx and ky axes specifying the spatial frequencies in the (x,y) direction. K-

space is converted to image space using a Fourier transform.  
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To reduce the effects caused by patient movement, the slice can be acquired rapidly with a 

single, or a small number, of excitations. This mode of acquisition is referred to as Echo Planar 

Imaging (EPI). Different methods exist for acquiring k-space, but by applying the frequency 

encoding gradient, with an intermittent phase encoding gradient, all of k-space can be acquired 

with a rectangular zig-zag pattern (Figure 2.8).  

 

Figure 2.8: A) Image is acquired in k-space B) Using a zig-zag transversal C) Converted to image space 

using a 2D Fourier Transform. (Edited. Original images Courtesy of Allen D. Elster, 

MRIquestions.com) 

 

 

2.1.6 Image Quality 

A multitude of factors affect MR image quality. The image resolution is determined by the size 

of the 3D voxel. The smaller the voxels, the greater the resolution. Image resolution can be 

increased by reducing the slice thickness and increasing the matrix size (number of voxels) 

relative to the field of view (FOV): 

𝑉𝑜𝑥𝑒𝑙 𝑆𝑖𝑧𝑒 =
𝐹𝑂𝑉

𝑀𝑎𝑡𝑟𝑖𝑥 𝑆𝑖𝑧𝑒
× 𝑆𝑙𝑖𝑐𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (2.8) 

 Increasing the matrix size increases spatial resolution in the xy plane but also increases the 

scan time due to more voxels needing to be acquired. The smaller voxels also result in a 

decreased signal due to there being fewer nuclei. Increasing the slice thickness will increase the 
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signal intensity but result in a poorer resolution in the z plane. Thicker slices can also result in 

partial volume effects, where the signals from different tissue types mix. 

A high image resolution is desirable for improved image quality and enables the delineation of 

tissue structures and small pathologies. However, image resolution is inversely proportional to 

the signal to noise ratio (SNR) level. An MR image is created from the MR signal, containing 

useful information, and noise, signals containing no useful information. The noise causes static 

fluctuations in the image intensity and arises from electrical resistance, within the MR 

hardware, and electromagnetic noise, from the movement of charged particles within the 

subject. For the signal coming from the biological tissue to be distinguishable from the 

background noise, the SNR level needs to be sufficiently high. If the image resolution is too 

high, the poor SNR level will cause image graining (61) and the scan time will be unacceptably 

long. 

SNR levels can be improved by increasing the number of signal averages (NSA). If the slice 

acquisition is rapidly repeated, the amount of signal detected can be increased. An image can 

be calculated from the average of the acquired signals, reducing the effects of artefacts. 

Doubling the NSA improves the SNR by √2. Increasing the NSA greatly increases the scan 

time; doubling the NSA would double the acquisition time. Hence, for a clinically realisable 

scan, there still needs to be a trade-off between image resolution and SNR. 

The MR hardware also impacts image SNR. Given Faraday’s law of induction (62), the voltage 

generated in the receiver coil is proportional to the B0 field strength. In theory, the SNR of the 

MR Signal is proportional to B0. Clinical 3T MRI systems are becoming commonplace, with 

the added value of 3T over 1.5T well documented (63)(64). Hardware developments will 
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continue to improve SNR over the coming decades, with 7T for clinical use recently approved 

(65). 

Localised RF coils are the receivers, and sometimes transmitters, of the B1 field. The SNR level 

is greatly improved when the coil is as close to the anatomy of interest as possible. Hence there 

are a range of dedicated coils for different regions of the body. For MR imaging of the brain, a 

dedicated head coil is used. The RF coil is comprised of multiple channels, where the output of 

each channel provides a partial view of the overall image. The more channels there are, the 

better the image quality and the faster the acquisitions (66). However, to increase the number 

of channels, multiple small coils are required. The smaller the coil, the shorter the penetration 

depth (67); thus, many channels are suitable for cortical imaging but not for imaging deep brain 

structures. Consequently, a compromise is required, and 32-channel head coils are currently in 

routine use. 

A common technique implemented in MR protocols is parallel imaging. By using the known 

sensitivities and locations of the receiver coils, the spatial location of the MR signals can be 

informed. This enables the number of phase encoding steps to be reduced- greatly decreasing 

the scan time. However, such a technique also reduces the SNR. SENsitivity Encoding 

(SENSE) is a widely used parallel imaging technique which still observes a degradation in SNR 

but attempts to suppress the artefacts created by the subsampling (68). 

The receiver bandwidth is the range of frequencies collected during frequency encoding of RF 

pulse and is an adjustable parameter. Reducing the bandwidth increases SNR. However, if the 

receiver bandwidth is set too low, susceptibility artefacts and chemical shift artefacts can occur 

(69). 
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Another method for increasing SNR is the addition of slice gaps. The slice profiles generated 

by the RF pulses are not perfect rectangles. Exciting once slice can cause partial excitation in 

the neighbouring slice. This interference is known as cross-talk and reduces the SNR (70). By 

introducing a small gap between neighbouring slices, the effects of cross-talk can be avoided. 

This is at the expense however, of the information on the slice gaps not being acquired. 

MR hardware developments have led to significant SNR improvements over the past decades 

(48). Future developments in scanner hardware and technology will undoubtedly continue this 

trend. 

TE and TR also affect SNR. A long TR ensures the longitudinal magnetisation to approach its 

maximum, increasing the signal and thus the SNR. However, the TR cannot be too long if T1-

weighting is desired. A long TR would also increase scan time. A short TE, ensuring the 

transverse decay is rapid, can also increase the SNR. However, a short TE is only an option for 

T1-weighted images due to the reduction in T2 effects. Hence changes to TE and TR for SNR 

improvement need to be mindful of the sequence being implemented. 

2.1.7 Measuring SNR 

It is important to know the SNR of an MR image when clinically relevant biomarkers are being 

calculated. The SNR can have a profound impact on the variance of a calculated parameter. It 

is paramount that the robustness of a parameter at relevant SNR levels is investigated before 

clinical implementation. Hence the SNR of the MR Image should be reliably measured. 

Magnitude images are most commonly acquired in MRI; the problems of phase artefacts are 

avoided by discarding the phase information. The noise in the real and imaginary parts of the 

MR signal is assumed to have a Gaussian distribution with zero mean (71). The noise is 

assumed to be uncorrelated between real and imaginary voxels (72). However, the magnitude 
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image is generated through a non-linear transformation, calculating the magnitude from the real 

and imaginary images. This non-linear mapping means the noise distribution is no longer 

Gaussian, instead governed by a Rician distribution (73). However, for the SNR attained in MR 

Images, the Rician noise can be well approximated by a Gaussian distribution (71)(74).  

Conventionally, the SNR can be calculated from the quotient of the mean pixel intensity, S, 

taken from a region of interest (ROI) within the desired tissue, and the standard deviation, σ, 

from a ROI (or multiple ROIs), drawn in the background of the image.  

𝑆𝑁𝑅 = 0.655 ∙
𝑆

𝜎
 (2.9) 

The 0.655 term is due to the Rician distribution; all noise terms are positive, so σ is reduced. 

This method for measuring SNR assumes that the noise is distributed homogeneously across 

the image. However, this isn’t true for parallel imaging techniques (75), where: 

𝑆𝑁𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑆𝑁𝑅

𝑔√𝑅
 (2.10) 

R is the acceleration factor, which quantifies the reduction in the number of phase encoding 

steps; g is the geometric/g factor characterising the specific geometry of the RF coil array (76). 

g is not a constant but a spatially dependent parameter.  Hence the SNR is locally dependent.  

For SENSE images, SNR can be measured using the National Electrical Manufacturers 

Association (NEMA) method (77). If a slice is successively imaged twice, with the same 

protocol, the locally dependent noise can be calculated from the difference between the two 

images. SNR can be calculated from the quotient of the mean pixel intensity, from a ROI drawn 

on both images, and the standard deviation of the ROI, drawn in the same location, of the 

difference image (71):  
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𝑆𝑁𝑅𝑑𝑖𝑓𝑓(𝑛1, 𝑛2) =
𝑆𝑑𝑖𝑓𝑓

𝜎𝑑𝑖𝑓𝑓
=

1
2𝑚𝑒𝑎𝑛

(𝑆(𝑟, 𝑛1) + 𝑆(𝑟, 𝑛2))

1

√2
𝑠𝑡𝑑𝑑𝑒𝑣(𝑆(𝑟, 𝑛1) + 𝑆(𝑟, 𝑛2))

 (2.11) 

 

Where S is the signal intensity, r=(x,y,z) is the position within the ROI, and n is the repetition 

number. The NEMA method requires multiple acquisitions. For time-sensitive scans, where 

only one acquisition is obtained, measuring SNR for parallel imaging is problematic. However, 

if NSA ≥ 2 and presuming the data from each of the acquisitions can be individually accessed, 

this is not an issue.  

If multiple acquisitions are obtained, the noise of a single-pixel can be expressed by the 

stochastic variations in signal intensity. The SNR of the ROI can be calculated from the pixel-

wise standard deviation across multiple acquisitions. 

𝑆𝑁𝑅𝑚𝑢𝑙𝑡𝑖(𝑟) =
𝑆𝑚𝑢𝑙𝑡𝑖
𝜎𝑚𝑢𝑙𝑡𝑖

=
𝑚𝑒𝑎𝑛(∑ 𝑆(𝑟, 𝑁)𝑁

𝑛=1,…,𝑁 )

𝑠𝑡𝑑𝑑𝑒𝑣(∑ 𝑆(𝑟, 𝑁)𝑁
𝑛=1,…,𝑁 )

 (2.12) 

For all of these methods, the SNR measured is dependent upon the location of the ROI. SNR is 

tissue and sequence-dependent. For example, on a T2-weighted image of the brain, grey matter 

appears brighter than white matter with a greater signal intensity and thus a higher SNR. The 

size of the ROI should be large enough to ensure that the variations in signal intensity are 

sufficiently measured. However, this can be restricted by the anatomy of the structure of 

interest. To ensure that the reported SNR is not biased to the ROI, multiple ROIs (~5) should 

be considered across the tissue of interest. Additionally, SNR measurements are dependent 

upon how they are defined and quantified. Hence, the methodology for measuring SNR, the 

size of the ROI and the number of ROIs considered should be reported with any SNR 

measurement. 
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2.2 Diffusion-Weighted Imaging (DWI) 

2.2.1 The Physics of Diffusion 

Molecules within biological tissue can have active movement, such as bulk flow. Alternatively, 

the movement of molecules can arise from diffusion- purely random translational motion. Due 

to the thermal energy of the molecules, they can randomly move around and collide with one 

another, with no overall net direction of flow. This phenomenon is known as Brownian Motion 

(78), where the movement of particles is governed by a Gaussian distribution. Diffusion is 

defined as the net movement of molecules from an area of high concentration to an area of low 

concentration. The mechanisms of diffusion are described by Fick’s first law (79): molar flux 

due to diffusion is proportional to the concentration gradient.  From this law, the parameter D 

arises, the diffusion coefficient (mm2/s). D measures the average area a group of particles will 

move in unit time.  

The diffusion of water molecules in biological tissue is an interesting phenomenon to observe. 

For free water at 37°C, that is no barriers interfere with its motion, Gaussian motion is assumed, 

the diffusion coefficient is 3 × 10-3 mm2/s (80). Unconstrained water molecules freely diffuse 

via Brownian Motion. However, in tissue, the movement of water molecules is restricted by 

cell membranes and macromolecules resulting in a smaller diffusion coefficient (Figure 2.9). 

The restriction is characteristic of the environment in which the water molecules reside (81). 

For tissues with strongly defined membranes and high cellular density, as typical with higher-

grade tumour tissue, water molecules are restricted both within and around the cells. In 

comparison, tissues with a low cellular density and with poorly defined membranes allow for a 

greater level of diffusion. This enables a particular tissue type to be identified by the degree of 

diffusion (82). Hence the movement of water can be used as a contrast for biological tissue.  
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Figure 2.9: A) Movement of water molecules in tissue. B) Distribution of water molecules in 

unrestricted water follows a Gaussian distribution. The movement of water molecules in tissue is 

hindered, resulting in a restricted diffusion. 

 

 

2.2.2 Measuring Diffusion with MR 

By measuring the diffusion coefficient with MR, the structural environment of tissue can be 

probed non-invasively. The sensitivity of MR to diffusion was first documented by Hahn (1950) 

(83) with the spin-echo sequence (2.1.3). Most diffusion sequences are based upon the pulse 

gradient spin-echo (PGSE) sequence developed by Stejskal and Tanner (84) (Figure 2.10). 
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Figure 2.10: Pulsed Gradient Spin Echo (PGSE) sequence 

In this sequence, diffusion sensitive gradients are applied either side of the 180° refocusing RF 

pulse. Stationary spins, those not undergoing diffusion, will be unaffected as any phase shift 

induced by the first gradient will be reversed by the second. However, any spins that move will 

not fully rephase, there will be a net phase shift, and the signal will attenuate. It should be noted 

that the detected movement of spins is not just due to diffusion processes but could be a result 

of any movement of comparable magnitude. 

The diffusion sensitive gradients are known as b-values and are dependent upon the magnitude 

of the gradient, G, the duration of each gradient pulse, δ, and the time interval between the two 

gradient pulses, Δ- encapsulated by: 

𝑏 = 𝛾2𝐺2𝛿2(∆ − 𝛿 3⁄ ) (2.9) 
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The larger G and δ are, the more dephasing happens. The larger Δ is, the more time there is for 

diffusion. The duration of the pulses needs to be rapid to minimise the diffusion that occurs 

during the pulses (85). The greater the b-value, the greater the sensitivity to diffusion and the 

greater the signal attenuation. The detected signal can be related to the diffusion coefficient 

through: 

𝑆(𝑏)

𝑆(0)
= 𝑒𝑥𝑝−𝐷∙𝑏 (2.10) 

S(0) is the detected signal with b-value= 0 s/mm2 (no diffusion weighting) and S(b) is the 

attenuated signal at a particular b-value. S(0) and S(b) are weighted equally by M0, T1 recovery 

and T2 decay (86). By dividing S(b) by S(0), relaxation effects are removed, and the signal is 

only influenced by diffusion effects. To ensure that the signal is diffusion-weighted, the effects 

of T1 are reduced by making TR long. TE is kept as short as possible, but this is limited in order 

to fit the diffusion gradients into the sequence. Consequently, there are some T2 effects in the 

diffusion image. This results in some areas on the diffusion image being bright solely due to T2 

effects- a result known as T2 shine through (87).  
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2.3 Modelling of DWI 

For the diffusion signal to be correctly interpreted, an accurate biophysical model is required 

such that the model’s diffusion parameters can relate to the structural features and phenomena 

on a cellular level (88). This section will focus on isotropic, multi b-value, diffusion models. 

Some of these models are biophysically motivated, relating multicomponent behaviour to the 

tissue structure. Others are data-driven and employ statistically motivated models that ensure 

an optimised fit and the error in the fitting parameters minimised. 

2.3.1 Apparent Diffusion Coefficient (ADC) 

The Apparent Diffusion Coefficient model is the simplest of the diffusion models, assuming 

monoexponential behaviour. To obtain the diffusion coefficient, two b-values are required. 

These are typically b-value=0s/mm2 and b-value=1000s/mm2 (89). The large difference in b-

values enables a large signal attenuation. The apparent diffusion coefficient (90) is calculated 

by modelling the diffusion signal with the equation: 

 

𝑆(𝑏)

𝑆(0)
= 𝑒𝑥𝑝−𝑏∙𝐴𝐷𝐶 (2.11) 

Where ADC is the apparent diffusion coefficient. It is ‘apparent’ in order to emphasise that the 

results differ from Gaussian diffusion observed in free water. For each voxel in an image, the 

ADC can be established from the two diffusion images. (Figure 2.11). By plotting the attenuated 

signal on a logarithm scale and calculating the gradient, the ADC for that voxel is attained (91). 
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Figure 2.11: Modelling the diffusion signal with the Apparent Diffusion Coefficient model with b-

values=0 and 1000s/mm2. 

 

Both theoretical and experimental studies have suggested that the water diffusion in tissue is 

characterised by multi-component behaviour (92)(93). Despite being a simplified 

monoexponential diffusion model, ADC is still the most commonly used model for DWI 

analysis (94). Requiring only two b-values, it is quick and relatively easy to interpret with most 

vendors providing software that automatically generates an ADC map from the raw data (95).  

Acquiring an ADC map is routine in most MR protocols. Despite the oversimplification of the 

model, the ADC provides a robust biomarker (96), and its clinical value is evident, particularly 

in differentiating some human brain tumours (97).  

The ADC parametric maps can be assessed qualitatively by simply comparing the signal 

intensities of different regions for tissue characterisation (98). The ADC maps do however 

provide quantitative information. This can be assessed on a pixel-wise basis, but typically a 

mean value is taken from an ROI drawn on the ADC map (99). These quantitative values can 

be used to grade tumours, where higher grade tumours typically have a greater cellular density 

and consequently, a lower ADC value (100). In the healthy brain, the cerebral spinal fluid (CSF) 
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has an ADC comparable to that of free water ~ 3 × 10-3 mm2/s. Cortical Grey Matter has a 

typical  ADC of 0.78 - 1.09 × 10-3 mm2/s and White Matter 0.62 - 0.79 × 10-3 mm2/s (101). 

2.3.2 Intravoxel Incoherent Motion (IVIM) Model 

Only two b-values are required to calculate the ADC. However, when multi b-value DWI is 

performed, that is more than two b-values are acquired, it can be seen that plotting a straight 

line through the signal intensities no longer explains the behaviour observed, particularly at the 

low b-values (> 200s/mm2) (102). The signal attenuation is more than expected (Figure 2.12).  

 

Figure 2.12: Modelling the diffusion signal with the Intravoxel Incoherent Motion Model. 

 

 

This effect is theorised to be due to the bulk movement of water molecules within intravascular 

compartments, in particular, the movement of blood in the micro-capillaries; a phenomenon 

known as perfusion. A method which takes this perfusion into consideration was proposed by 

Le Bihan et al. (90) in 1986, known as the Intravoxel Incoherent Motion (IVIM) Method. 

Mathematically, the IVIM model is a bi-exponential equation which gives the relationship as: 

𝑆(𝑏)

𝑆(0)
= 𝑓 ∙ 𝑒𝑥𝑝−𝑏∙𝐷

∗
+ (1 − 𝑓) ∙ 𝑒𝑥𝑝−𝑏∙𝐷 (2.12) 
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where D is the diffusion coefficient, D* is the pseudo diffusion coefficient (the diffusion 

affected by perfusion) and f the flowing vascular volume fraction (the component of the 

signal attributed to perfusion) (90). The water flowing in the microcapillaries exhibits a 

random walk such that there is no coherent flow in any given direction (Figure 2.13). 

 

Figure 2.13: Water flowing in the capillaries mimics a random walk (Pseudo-diffusion) 

 

The IVIM parameters have demonstrated their clinical value in the management of acute strokes 

(103), and in the detection, diagnosing, staging and monitoring across a range of cancers 

(104)(105). IVIM-f has been shown to provide added value, distinguishing between high and 

low-grade gliomas (38) and also differentiating different grades of pancreatic cancer (106). In 

some cases, the IVIM parameters have demonstrated a greater sensitivity to pathology than the 

ADC model. IVIM-D* was shown to significantly decrease for mild and severe cases of renal 

dysfunction in the kidneys- the ADC only decreased significantly in severe renal dysfunction 

(107). For the characterisation of liver lesions, IVIM-D and IVIM-f provided more 

discriminatory power than ADC (108). 
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The IVIM parameter values for different organs differ significantly depending on the perfusion 

of the tissue (Table 2.1). 

Table 2.1: Typical IVIM parameters for Volunteers 

Study Organ 

IVIM-D 

(× 10-3 mm2/s) 

IVIM-f 

 

IVIM-D* 

(× 10-3 mm2/s) 

Number of 

Volunteers 

b-value sequence (s/mm2) 

A. Luciani et 

al. (109) 

Liver 1.10 ± 0.5 0.30 ± 0.05 80 ± 20 25 

10 [0, 10, 20, 30, 40, 50, 100, 

200, 400, 800] 

Y. Deng 

et al.(110) 

Kidney 1.85 ± 0.13 0.24 ± 0.04 14.53 ± 6.50 12 

9 [0, 50, 100, 150, 200, 300, 

400, 600, 800] 

W. C. Wu  

et al.(111) 

Brain: 

White Matter 

0.77 ± 0.04 0.07 ± 0.01 7.9 ± 0.9 

18 

12 [0, 15, 30, 45, 60, 100, 

250, 400, 550. 700, 850, 

1000] 
Brain: 

Grey Matter 

0.84 ± 0.05 0.14 ± 0.02 8.2 ± 0.9 

 

In high perfused tissues, such as the liver and kidneys, the volume fraction is high ~30%. The 

IVIM-D* parameter is considerably large, with the IVIM-D*/IVIM-D ratio reported as 70 in 

the liver (45). In low perfused tissue, such as the brain, the perfusion effects are more subtle 

with the IVIM-D*/IVIM-D ratio of 10 (45) and the volume fraction less than 10% (112). 

2.3.3 Challenges of IVIM 

2.3.3.1 Selection of b-values 

For the effects of perfusion to be measured from the diffusion signal, additional b-values are 

required, with a particular emphasis on sampling the signal between 0s/mm2 and 200s/mm2. 

There is, however, no consensus on the number of b-values that should be used in the 

diffusion sequence, nor their distribution. Studies have reported the use of between 5 and 16 
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b-values for IVIM measurements in the abdomen (109,113,114). Typically, between 6 and 8 

b-values are used in the abdomen, with at least four b-values between 0s/mm2 and 100s/mm2 

(102).  

Studies have attempted to optimise the b-value sequence for different tissues (104), i.e. liver 

(115,116), kidney (45,117), prostate (118), breast (119). The optimisation is relative to the 

fitting of the ADC and is focused on attaining the optimal statistical fit for the IVIM method. 

This optimisation relies heavily on the assumption that the behaviour of biological tissue is 

best explained by the IVIM model. 

In low perfused tissues such as the brain, the perfusion compartment is subtle and more b-

values are required, with even more sampling the signal at b-value<200s/mm2 (Table 2.2). 

 

Table 2.2: b-value sequences used for IVIM measurements in the brain 

Study b-value sequence (s/mm2) 

C.Federau et al.(120) 16[0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900] 

E. Meeus et al.(121) 11[0, 20, 40, 80, 110, 140, 170, 200, 300, 500, 1000] 

W. C. Wu et al.(111)  12 [0, 15, 30, 45. 60, 100, 250, 400, 550, 700, 850, 1000] 

S. Zhang et al.(122) 13[0, 10, 20, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800] 

Y. Yao et al.(123) 15[0, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 

S. Bidas et al.(124) 14[0, 5, 10, 20, 30, 40, 60, 80, 90, 100, 200, 700, 1000, 1300] 

 

There is no consensus for the number of b-values required for measuring IVIM effects in the 

brain, typically more than ten b-values are implemented. Most studies assume that the 

perfusion effects are limited to the low b-values, but these may extend to 600s/mm2 in the 

brain with the limit predicted to be tissue and pathologically dependent (104). Different b-

value sequences sensitise the signal to different compartment behaviours and can greatly 
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impact the measured IVIM parameters (119). It is paramount that the b-value sequence 

implemented is optimised.  The relationship between the b-value sequence and the effect on 

the diffusion signal should be fully understood.  

2.3.3.2 Fitting Method 

The fitting method implemented will impact the estimated parameters (125). The IVIM 

method can be fitted on a pixel-wise basis with an unconstrained non-linear least-squares 

fitting algorithm- i.e. the Levenberg-Marquardt algorithm. This unconstrained fitting method 

is known to be sensitive to noise and can lead to incorrect perfusion measurements (37). 

Alternatively, the diffusion signal can be fitted using a two-step process. The perfusion effects 

are assumed to only dominate the low b-value regime.  A log-transformation is applied to the 

diffusion signal and IVIM-D calculated using a linear fitting method with b-values >200 

s/mm2. The Levenberg-Marquardt algorithm is then fitted across the whole diffusion signal to 

calculate IVIM-f and IVIM-D* (121). Another method implemented for fitting the IVIM 

equation takes the log transform of the data with b-values >200 s/mm2 and simultaneously fits 

IVIM-D and IVIM-f from the gradient and y-intercept, respectively. IVIM-D* is then 

calculated using the Levenberg-Marquardt algorithm across the whole diffusion signal. This 

fitting method has been reported to provide more accurate and reproducible IVIM parameters 

in the brain (121).  

The non-linear least-squares fitting algorithms, employed in each of these different fitting 

methods, requires initial starting values for the IVIM parameters. If the Trust Region 

Reflective algorithm is implemented, upper and lower boundaries must be specified for 

parameter fitting (126). These initial starting values can bias the parameters with the estimate 

reaching a local minimum (127). Hence, it is essential for accurate parameter estimation that 
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appropriate initial starting values are selected- these will be tissue-dependent. This is 

problematic if the tissue type is unknown- such as in cases diagnosing pathology. 

2.3.3.3 Number of Compartments 

The IVIM model assumes two compartments. In regions that are cystic or ischemic with no 

perfusion, IVIM-D* will not be defined. In such cases, IVIM-D* can be incorrectly assigned 

the same value as IVIM-D (120) and IVIM-f estimated by any value between 0 and 1, 

evidently increasing parameter variability. However, additional physical processes such as 

multiple diffusion rates within one physical component, bulk flow in tubules or glandular 

secretion (128) may also affect the detected signal (102), which would lead to more than two 

exponential components. If more than two-compartments are present, such as partial volume 

effects between brain tissue and CSF, the high diffusion coefficient of CSF can be 

misinterpreted and be incorrectly measured in the IVIM-D* parameter.  

2.3.4 Relationship of DWI models to Perfusion Measurements 

Perfusion MRI uses techniques sensitive to cerebral haemodynamics to create quantitative 

parametric maps relating to cerebral blood volume (CBV), cerebral blood flow (CBF), and 

mean transit time (MTT) (129). The three most commonly implemented techniques for 

perfusion MRI are Dynamic Susceptibility Contrast (DSC), Dynamic Contrast-Enhancing 

(DCE) imaging, and Arterial Spin Labelling (ASL) (22). 

In DSC, a Gadolinium contrast agent is injected intravenously, and a gradient-echo T2-

weighted sequence is rapidly repeated. As the bolus passes through the vascular space, it 

produces a magnetic field distortion, which depending on the concentration of Gadolinium, 

leads to a significant decrease in signal intensity (130). The signal intensity for each voxel can 

be plotted as a function of time. 
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The Gadolinium concentration is proportional to the changes observed in the rate of relaxation 

in T2. This, in turn, is proportional to the negative logarithm of the relative signal intensity. 

Hence, using a logarithm transformation, the signal intensity curve can be transformed to 

measure the gadolinium concentration as a function of time. 

Ideally, the bolus would be rapidly delivered to the tissue of interest. Unfortunately, the bolus 

is delayed and dispersed as it passes through the circulatory system. The contrast agent input 

to the tissue of interest is described by the Arterial Input Function (AIF) (131). The AIF can 

be measured from a major artery or automatically selected with software (132).  

The perfusion parameter Cerebral Blood Volume (CBV) can be estimated from the area 

below the concentration-time curve. CBV can be made a quantitative value by dividing the 

area below the concentration-time curve with the area under the AIF. The Cerebral Blood 

Flow (CBF) can be estimated with the mathematical process of deconvolving the 

concentration-time curve with the AIF. The parameter Mean Transit Time (MTT) can be 

estimated by the division of CBV with the CBF parameter. 

The DSC perfusion parameters estimated are based on several assumptions. Firstly, that blood 

flow and volume remain constant during the measurement. Secondly, the system has a linear 

response to inputs, and the output follows the principles of superpositions. Finally, the 

parameter estimations rely on the assumption that all bolus exits the system. This is an 

oversimplification as bolus can accumulate in tumours where there is a breakdown of the 

blood-brain barrier. Several strategies have been proposed to address the issue of contrast 

leakage, such as preload dosing of the contrast agent and baseline subtraction techniques to 

account for T1 and T2 effects (133), but there is currently no universally accepted method 

(134). 
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In the brain, DSC is the most prevalent of the perfusion measurements with demonstrable 

clinical value in the characterisation of brain tumour haemodynamics (130). DSC image 

acquisitions are short, typically 2 minutes. DCE is a similar technique, requiring a 

Gadolinium contrast agent, but instead investigates the T1 shortening effects of the bolus. 

DCE scans are typically 5-10 minutes in duration. 

There is some concern regarding the Gadolinium bolus (135). Recent studies have found 

gadolinium deposits accumulating in the brain and other organs after multiple injections of 

the contrast agent (136).  Hence a contrast free method for measuring perfusion is desirable. 

ASL doesn’t require an injectable contrast, instead relying on labelling of the arterial blood as 

it flows through the neck and into the brain (137). RF pulses are used to label protons in the 

adjacent slice with a high magnetisation such that they can be identified when they flow into 

the slice of interest, providing contrast against the stationary tissue. The use of ASL can be 

confounded by the poor signal to noise ratio of the signal acquired (34). The RF sequence 

leads to a high Specific Absorption Rate (SAR), which can cause tissue heating, restricting 

repeated use in some populations, such as children (35).  Therefore, other contrast free 

methods for measuring perfusion are under consideration with diffusion models such as IVIM 

of particular interest.  

The theorised relationships between the perfusion parameters and IVIM parameters are 

presented in Table 2.3:  
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Table 2.3: Theoretical Relationship between IVIM parameters and Perfusion parameters 

IVIM Parameters Perfusion Parameters Theoretical Relationship  

𝐼𝑉𝐼𝑀 𝑓 𝐶𝐵𝑉 𝐼𝑉𝐼𝑀 𝑓 = 𝜆𝐻2𝑂
−1 ∙ 𝐶𝐵𝑉 

𝐼𝑉𝐼𝑀 𝐷∗ 𝑀𝑇𝑇 
𝐼𝑉𝐼𝑀 𝐷∗ =

𝐿〈𝑙〉

6
∙ 𝑀𝑇𝑇−1 

𝐼𝑉𝐼𝑀 𝑓 ∙ 𝐼𝑉𝐼𝑀−𝐷∗ 𝐶𝐵𝐹 
𝐼𝑉𝐼𝑀 𝑓 ∙ 𝐼𝑉𝐼𝑀 𝐷∗ =

𝐿〈𝑙〉

6𝜆𝐻2𝑂
∙ 𝐶𝐵𝐹 

CBV- Cerebral Blood Volume; MTT- Mean Transit Time; CBF- Cerebral Blood 

Flow; λH2O- fraction of MRI visible water; L-Length of the microvascular network; 

l-mean microvessel length 

 

The perfusion parameters are related through the equation:  

𝐶𝐵𝐹 =
𝐶𝐵𝑉

𝑀𝑇𝑇
(2.13) 

The parameters from the perfusion MRI techniques have been correlated with the perfusion 

related IVIM parameters with mixed success (42). H. Kim et al. found a significant positive 

correlation (0.67) between IVIM-f and CBV in the differentiation of glioblastomas (138). C. 

Federau et al. found a strong correlation (r=0.75) between DSC-CBV and IVIM-f for ROIs 

across a range of lesions (120). A correlation was also established between IVIM-f×IVIM-D* 

and DSC-CBF (r=0.65) but a weak relationship between IVIM-D* and DSC-MTT (r=-0.27) 

was attained. Other studies have also struggled to validate the theorised relationship between 

IVIM-D* and mean transit time (MTT) (139). S. Bisdas et al. found no clear link between the 

perfusion related IVIM parameters and the DSC- and DCE- derived metrics in gliomas (140). 

This poor relationship could be due to the different theoretical background and modelling of 

the tumour vasculature in the IVIM theory (140), or due to the fitting method implemented for 

estimating IVIM-f and IVIM-D* (141). The correlation between the perfusion parameters and 
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the diffusion signal require further investigation to determine the feasibility of DWI 

parameters being used as a surrogate for perfusion measurements. 

2.3.5 Multicompartment Modelling 

One of the setbacks of the IVIM model is the assumption of two compartments. This has led to 

investigations into three-compartment models and the fitting of tri-exponential equations: 

𝑆(𝑏)

𝑆(0)
= 𝐴𝑒−𝑏𝛼 + 𝐵𝑒−𝑏𝛽 + 𝐶𝑒−𝑐𝛾 (2.14) 

Studies have shown that at high b-values, diffusion can be differentiated into fast (free 

diffusion) and slow (restricted diffusion) compartments (142,143). Triexponential studies have 

been performed in liver cirrhosis (144), prostate cancer (145),  the characterisation of brain 

tissue (146)(147), and glioma grading (148). In each case, a triexponential fit was found to be 

the optimum statistical fit in comparison to the bi-exponential or mono-exponential fit. This 

suggests that more detailed tissue diffusion can be attained with the additional parameters.  

Similar challenges that confound IVIM are further exacerbated by the tri-exponential fitting 

method. Different b-value sequences and fitting methods are implemented in each of these 

studies. The simultaneous fitting of additional coefficients may result in parameter overfitting 

(149). At high b-values, the assumption of molecular diffusion following a Gaussian 

distribution breaks down. For b-values > 1000s/mm2, deviation from Gaussian behaviour is 

quantified by kurtosis, a dimensionless statistical metric (150). None of the tri-exponential 

models mentioned considering fast and slow diffusion account for kurtosis, despite sampling 

high b-values. The biophysical basis for the two diffusion compartments has been linked to 

extra- and intracellular compartments (147). This is contested by several studies where bi-
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exponential behaviour was observed to govern diffusion within a single cellular compartment 

(151)(152). The physiological basis for two diffusion compartments is not yet fully understood. 

Tri-exponential diffusion signals with two perfusion and one diffusion compartment have also 

been considered with success in differentiating kidney lesions (153) and monitoring kidney 

function (154) and characterising liver tissue (155)(156). Two-compartment perfusion models 

have largely focused on high perfused tissues, where the rationale for fast and slow perfusion 

comes from two different flow regimes (154) from capillaries and medium-sized vessels. 

However, the fast perfusion compartment decays rapidly and can be difficult to measure (35), 

requiring a very short TR. 

2.3.6 Other Diffusion Models 

Other equations have been suggested for modelling the diffusion signal. Within one voxel there 

are a multitude of cells and different components, each with different spin packets, and different 

diffusivities, contributing to the overall detected signal. The stretched exponential model (SEM) 

(157) argues that the number of contributing components cannot be known and should instead 

be represented by a distribution function. The SEM equation: 

𝑆(𝑏)

𝑆(0)
= 𝑒𝑥𝑝−(𝑏∙𝐷𝐷𝐶)

𝛼
(2.15) 

Where DDC is the distributed diffusion coefficient, the mean diffusivity for the voxel, and α is 

the heterogeneity index, a dimensionless parameter ranging from 0 to 1. If only one 

compartment contributes to the signal, α would be 1, and the SEM model would be 

mathematically equivalent to the ADC model. The lower the value of α, the greater the 

heterogeneity. However, the physiological basis for α is uncertain, and therefore α is not yet 
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considered a true biomarker (102). The SEM also doesn’t take perfusion effects into 

consideration. 

The Diffusion Kurtosis Model (DKI) (158) accounts for non-Gaussian behaviour at high b-

values, a challenge for tri-exponential models previously discussed, and is presented as: 

𝑆(𝑏)

𝑆(0)
= 𝑒𝑥𝑝−𝑏∙𝐷+𝑏

2𝐷2𝐾 6⁄ (2.16) 

Where D is the apparent diffusion coefficient, and K is the apparent diffusional kurtosis. The 

DKI model doesn’t take perfusion effects into consideration; however, DKI has been 

incorporated into a hybrid DKI-IVIM model (159)(160). DKI is sensitive to noise due to the 

strong diffusion weightings at high b-values and modelling of the signal with low SNR can be 

challenging (161). In this project, only b-values ≤1000s/mm2 were measured, and the DKI 

model was not considered any further.  
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2.4 Multi-exponential fitting methods 

Fitting of multi-exponential equations to experimental data is a notable problem for many 

different scientific fields. The number of exponential terms within a signal, the decay 

coefficients of each term along with the fractional value of each term, indicating each 

component’s contribution to the overall signal, all have to be determined (162). The accuracy 

of such models is of particular importance in the biomedical field, where multi-exponential 

decay is common and robust biomarkers are required. The complex fitting problem is further 

exacerbated by the poor signal to noise ratios (SNRs) and a limited number of data points (163). 

Diffusion studies considering a range of multi-exponential models will typically use iterative, 

non-linear least-squares fitting techniques such as the Levenberg-Marquardt or the Trust-

Region Reflective algorithm (127) to fit each of the models considered. The optimum model 

will then be decided by which equation provided the best statistical fit. However, a whole range 

of different methods exist for determining the number of exponential components present in a 

signal. Most of these have been developed to describe time series data and we use that language 

in this section. 

2.4.1 Graphical Methods 

Graphical methods attempt to determine the number of exponential components through 

visual inspection. A logarithm is performed and a straight line drawn through the data. The 

cut-off point at which the data begins to deviate from the straight line determines the location 

of the second compartment. Data contributing to the first compartment is removed and the 

process repeated until all compartments are identified. This problem was initially solved by 

hand (164), but advances in software eventually lead to the development of computational 

tools (165). Although simple to execute, graphical methods are subjective and prone to high 
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errors (166). The results are not very accurate, depending on the user-defined cut-off values 

and the method fails when more than two components are present (167). 

2.4.2 Iterative Methods 

Iterative methods start with a user-defined initial guess. The algorithm then iterates, 

improving the approximate solution at each step. The algorithm stops once a user-defined 

level of convergence or the maximum number of iterations is attained. Iterative methods 

require good initial starting guesses to ensure that convergence reaches a global minimum- 

this does require some prior knowledge about the system. If a good initial starting value is not 

provided, the algorithm has to go through many iterations making the method 

computationally expensive. Noisy data can exacerbate the time taken for the algorithm to 

convergence and can result in convergence at a local minimum.  

2.4.3 Algebraic Methods 

Exponential models can be fitted to data using algebraic methods, where simultaneous linear 

equations are solved. A popular method for solving exponential summations is the Prony 

method (168). The signal is regarded as a solution of a homogeneous linear difference 

equation (LDE) with constant coefficients (169). The solution to the LDE will be a 

summation of complex exponentials. Therefore, by solving the LDE, the coefficients of the 

exponential summation can be attained.  The Prony method is restricted to data equally spaced 

in time (163). Also, the Prony algorithms have been demonstrated to be highly susceptible to 

noise and perform poorly when trying to determine the number of exponential terms in signals 

with a large number of components (162,163). Many modifications to the Prony method have 

been developed (169)(170)(171), but the algorithm still struggles with poor SNR and sparse 

data. 
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2.4.4 Transform Methods 

Transform methods have also been developed (162), in which the data is Fourier transformed 

to create a spectral plot with spikes representing exponential components (163). A popular 

technique, known as the Gardner method, uses a Laplace transformation- a continuous integral.  

However, this approach exacerbates high-frequency noise in the deconvolution process (172), 

causing ripples and broadening of the spectral peaks, making interpretations of the results 

difficult.  

2.4.5 Model Selection 

Selecting the optimum number of exponential terms to model a data series is a challenging 

task. Complex models can minimise the error but result in overfitting the data. To avoid the 

risk of overfitting, the Akaike Information Criterion (AIC) (173), is commonly implemented 

as a means of model selection. The AIC estimates the relative quality of each of the 

multiparametric fitting methods, rewarding for goodness of fit and penalising for the 

complexing (Equations 2.15) 

𝐴𝐼𝐶 = 𝑛 ∙ ln (
𝑅𝑆𝑆

𝑛
) + 2𝑘 (2.17) 

Where RSS is the residual sum of squares, n is the number of data points in the sequel, and k 

is the number of parameters in the model. The model with the lowest AIC value is considered 

to be the optimum fit. 
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2.5 The Auto-Regressive Moving Average Model 

2.5.1 The ARMA model 

The Auto-Regressive Moving Average (ARMA) model has been evaluated for the fitting of 

multi-exponential data (174). ARMA models were considered due to their ability to fit a 

broad range of data types without making any previous assumptions about the data. The 

ARMA model is established through a series of equations which can be classified into two 

subsets- the Auto-Regressive (AR) part and the Moving Average (MA) part. The AR model is 

a time series in which the current value of a system is dependent upon a linear function of 

previous values. AR(P), an AR model of order P is described by:  

𝑦(𝑡) =∑α𝑗𝑦(𝑡 − 𝑗)

𝑃

𝑗=1

 (2.18) 

Where the order P specifies how many lagged terms there are, y(t) is the signal at time point t, 

y(t-j) are the lagged signal values at point t-j with lag j, and αj are the multiplication 

coefficients. 

The MA model in a time series has terms dependent upon past errors, or input values. MA 

(Q), a MA model of order Q and dependent upon Q lagged terms, is specified by: 

𝑦(𝑡) =∑𝛽𝑖𝑥(𝑡 − 𝑖)

𝑄

𝑖=0

 (2.19) 

 

 where x(t − 𝑖) are the lagged input values at time (t − 𝑖) with lag 𝑖, and 𝛽𝑖 are the 

multiplication coefficients. Hence an ARMA model is a linear combination of these two 

models, with ARMA (P, Q) giving:  
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𝑦(𝑡) =
∑𝛽𝑖𝑥(𝑡 − 𝑖)

𝑄

𝑖=0⏟        

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

+
∑α𝑗𝑦(𝑡 − 𝑗)

𝑃

𝑗=1⏟        

𝐴𝑢𝑡𝑜 − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

(2.20) 

The 𝛼𝑗 and 𝛽𝑖 coefficients are determined such that the error between the data and the model 

are minimised. Upon selecting the order of the ARMA model, the coefficients are determined 

via establishing the following matrices (175):  

𝑌 =

[
 
 
 
 
𝑥(0)
𝑥(1)
⋮
⋮
𝑥(𝑡)

0
𝑥(0)
⋮
⋮

𝑥(𝑡−1)

⋯
⋯
⋯
⋯
⋯

0
⋮
⋮
⋮

𝑥(𝑡−𝑄)

0
𝑦(0)
𝑦(1)
⋮

𝑦(𝑡−1)

0
0
𝑦(0)
⋮

𝑦(𝑡−2)

⋯
⋯
⋯
⋯
⋯

0
⋮
⋮
⋮

𝑦(𝑡−𝑃)]
 
 
 
 

; 𝐴 =

[
 
 
 
 
 
𝛽0
⋮
𝛽𝑄
𝛼1
⋮
𝛼𝑃]
 
 
 
 
 

; 𝑌𝑃𝑟𝑒𝑑 = [

𝑦(0)
𝑦(1)
⋮
𝑦(𝑡)

]  #(2.21) 

 

Y is a matrix engineered from the previous input and output terms. A is the matrix of ARMA 

coefficients, and Ypred is the final model of the predicted signal. By solving the normal 

equation such that:  

𝑌 ∙ 𝐴 = 𝑌𝑃𝑟𝑒𝑑 (2.22) 

the ARMA coefficients are minimised and the model Ypred established.  

2.5.2 Interpretation of the ARMA model 

The ARMA model is a popular forecasting tool used to study economics and financial time 

series (176)(177). In these applications, the crucial focus is to implement the ARMA model to 

enable the prediction of future time points- the interpretation behind the optimum ARMA 

order or corresponding coefficients is not of interest  

In general, the ARMA models are considered atheoretical (178). However, it is theorised that 

more complex data will require modelling with a higher-order ARMA model (179).  For 
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exponential fitting, it is postulated that the optimum ARMA order will be dependent on the 

number of exponential components present in the signal. A MA(1) process can be modelled as 

an infinite AR process, AR(∞) (180).To ensure each component is fully independent of one 

another, only ARMA(P,Q) orders with P≥Q will be considered.  To avoid overfitting, the 

maximum order considered is limited to ARMA(3,3) with up to 99% of datasets modelled by 

no more than a third-order lag term (181). 

The interpretation of the minimisation coefficients is challenging. For AR(1) models, the 

lower the value of α1, the quicker the rate of convergence. AR(1) structure imposes an 

exponential decay rate (182) and α1 inversely correlates with the decay rate. For MA(1) 

models, the convergence to the mean is linear (183). Higher-order ARMA models can model 

increasingly complex behaviour. For the application of ARMA to exponential decays, the 

signal is not stochastic and will follow trends similar to that of AR(1). The α and β ARMA 

minimisation coefficients will, therefore, relate to the magnitude of decay. The modelling of 

the diffusion signal with the ARMA model will be explored in the next chapter. 

2.5.3 Applications of the ARMA model to MR 

The ARMA model has been implemented for time series analysis across a range of MR data. 

ARMA models have been used to model the error caused in the reconstruction of MR images 

after a Fast Fourier Transform (184). ARMA models have been implemented for the 

calculations of T2 and chemical shift in cases with a limited number of sparsely sampled 

echoes (185)(186). ARMA models have also effectively fitted contrast perfusion signals in 

cardiac MRI (187)(188)(189). 

In each of these studies, ARMA was applied to MR time series data and used as an 

atheoretical model. In the subsequent chapters, the ARMA model is modified for the 
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interpretation of the diffusion signal. The optimum ARMA order and the corresponding α and 

β coefficients are investigated and related to multi-component behaviour, as well as tissue 

diffusion and perfusion behaviour.  
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Chapter 3 

The ADAPT Method for Model Selection 
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3. The ADAPT Method for Model Selection 

In this chapter, the ARMA model is introduced as the ADAPT model, modified for DWI 

signals. A full mathematical formalism is provided and discussed. The methodology for using 

ADAPT to determine the number of components in the diffusion signal is presented. A partial 

volume effects model, combining white matter and cerebrospinal fluid signals is investigated 

and the results compared to those of multi-exponential fitting methods. Once optimised, 

ADAPT is fitted to In-Vivo data. 

3.1 Introduction 

Multi-exponential fitting is a challenging task for diffusion-weighted magnetic resonance 

imaging (DW-MRI) data, where there are a limited number of data points, and the number of 

components within the diffusion signal is unknown. Theoretical and experimental studies have 

suggested that water diffusion in biological tissue is characterised by multi-exponential 

behaviour (35,145,147). Diffusion-weighted imaging (DWI) has been demonstrated to have 

clinical relevance for identifying areas of cerebral ischemia and oncological diagnosis (190). 

As the reported diffusion coefficient is dependent upon the fitting method implemented, it is 

crucial that the optimum method is realised. 

In order to attain the diffusion coefficient for each voxel in the MR image, the scan is repeated 

at different b-values (84). The b-value is related to the duration, strength and time-spacing of 

these two gradient pulses. As the b-values increase, so does the sensitivity to particle motion, 

and the detected signal attenuates exponentially. By plotting the signal on a logarithmic scale 

and calculating the gradient, the diffusion coefficient for that voxel is attained (91) — the 

greater the signal attenuation, the greater the rate of diffusion. 
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Multi-component models have been applied to DWI data previously, and the most common is 

the Intravoxel Incoherent Motion (IVIM) method (90). The IVIM method assumes that the 

signal is composed of two exponentials, accounting for tissue water diffusion and bulk flow in 

small blood vessels. When plotted on a logarithmic scale, the gradient of each component 

provides the diffusion related coefficients for each exponential term. If IVIM is fitted using the 

Levenberg-Marquardt algorithm, initial starting values for the parameters are required, and the 

fitting stability is often improved by using a multistep fitting approach (191). However, the 

assumption that only two components exist might not be appropriate in some cases. Additional 

physical processes (192) and cases where a voxel contains partial volumes (i.e. a mixture of 

brain tissue and fluid) may lead to more than two exponential components. Hence, a method 

that can optimise the number of components could provide new insight into the physical 

properties of water motion in tissue. 

Several variables have to be defined for multi-exponential fitting. The number of exponential 

terms, the magnitude and the fractional contributions to the signal all have to be determined 

(162). Common exponential fitting methods such as graphical methods are simple to execute 

but are subjective and prone to high errors (166). Parametric techniques, such as the Prony 

method which provide a solution as a series of damped sinusoids (168), are also commonly 

implemented but are highly sensitive to noise. Transform methods have also been developed 

(162), in which the data is Fourier transformed to create a spectral plot with spikes representing 

exponential components (163). However, this approach exacerbates high-frequency noise in the 

deconvolution process (172), and interpretations of the results can be difficult. Overall, there is 

a need to develop improved analysis methods for multi-exponential data. 

Auto-Regressive Moving Average (ARMA) models (174) are generalised versions of multi-

exponential models and can predict the behaviour of a data series from previous values alone. 
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ARMA has the flexibility to represent a wide range of data series, with the order (number of 

lag terms) of the optimum ARMA model relating to the complexity of the data. However, such 

a method is restricted to the time domain. Therefore, this chapter aimed to develop a new 

generalised fitting method for multi-exponential data where the number of components is 

unknown a priori and evaluate it on simulated and real multi b-value DWI data.   
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3.2 Materials and Methods 

3.2.1 The Auto-regressive Discrete Acquisition Points Transformation 

(ADAPT) Method 

To adapt the ARMA equation for the modelling of DWI data, the method was modified 

henceforth referred to as the Auto-regressive Discrete Acquisition Points Transformation 

(ADAPT) method. ADAPT models the diffusion signal by the equation:  

ln(𝑆𝑛) =∑ 𝛽𝑖𝑏𝑛−𝑖 +∑ 𝛼𝑗 ln(𝑆𝑛−𝑗)
𝑃

𝑗=1

𝑄

𝑖=0
 (3.1) 

Where Sn-Signal at acquisition point n; bn- b-value at acquisition time point n. αj, βi- 

minimisation coefficients. Here the acquisition point of the b-values is used such that b value=0 

s/mm2 at acquisition point 0, b(0)=0. b-value=20 s/mm2 at acquisition point 1, b(1)=20 and so 

forth. The previously acquired b-values are therefore used as previous input terms. Upon 

selecting the order of the ADAPT(P,Q) model, the α and β minimisation coefficients are 

determined such that the error between the data and the model is minimised. The coefficients 

are determined via establishing the matrices in (Equation 3.2): 
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𝑆 =

[
 
 
 
 
 
 
 
 
 
𝑏(0) 0 ⋯ 0 0 0 ⋯ 0

𝑏(1) 𝑏(0) ⋯ ⋮ ln (
𝑆(0)

𝑆(0)
) 0 ⋯ ⋮

⋮ ⋮ ⋯ ⋮ ln (
𝑆(1)

𝑆(0)
) ln (

𝑆(0)

𝑆(0)
) ⋯ ⋮

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

𝑏(𝑁) 𝑏(𝑁−1) ⋯ 𝑏(𝑁−𝑄) ln (
𝑆(𝑁−1)

𝑆(0)
) ln (

𝑆(𝑁−2)

𝑆(0)
) ⋯ ln (

𝑆(𝑁−𝑃)

𝑆(0)
)
]
 
 
 
 
 
 
 
 
 

; 

𝐴 =

[
 
 
 
 
 
𝛽0
⋮
𝛽𝑄
𝛼1
⋮
𝛼𝑃]
 
 
 
 
 

;                                               𝑆𝑝𝑟𝑒𝑑 =

[
 
 
 
 
 
 
 ln (

𝑆(0)

𝑆(0)
)

ln (
𝑆(1)

𝑆(0)
)

⋮

ln (
𝑆(𝑁)

𝑆(0)
)
]
 
 
 
 
 
 
 

 (3.2)

 

S is a matrix engineered from the input b-values and the detected signal with acquisition point 

n=0, …, N. A is the matrix of ADAPT coefficients. Spred is the final model of the predicted 

signal normalised by S(0)- the initial signal value at b=0 and n=0. By solving the normal 

equation such that:  

S ∙ A = Spred (3.3) 

the ADAPT coefficients are minimised and the model Spred is established.  

 

3.2.1.1 Determining the Number of Components 

Upon selection of the optimum ADAPT order, the transfer function can be expressed as: 

H(n) =
ln(Sn)

bn
=
β0 + β1L̂ + ⋯+ βPL̂

P

1 − α1L̂ − ⋯− αQL̂Q
 (3.4) 

Where L̂ is the lag operator (181) such that  ln(Sn) L̂ = ln(Sn−1). By mapping the transfer 

function of the optimum order to the Z-domain, the following is obtained: 
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H(z) =
β0 + β1z

−1 +⋯+ βPz
−P

1 − α1z−1 −⋯− αQz−Q
 (3.5) 

Equation 3.5 can be rearranged using partial fraction decomposition. An inverse Z-transform 

was then performed, and the number of components established.  

3.2.1.2 ADAPT(1,1) 

For example, ADAPT(1,1) gives: 

ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) (3.6) 

Taking the transfer function of ADAPT(1,1): 

𝐻(𝑛) =
ln(Sn)

bn
=
β0 + β1L̂

1 − α1L̂
(3.7) 

 Converting to the Z-domain: 

𝐻(𝑧) =
β0 + β1z

−1

1 − α1z−1
 (3.8) 

 

 

 Performing partial fraction decomposition (PFD):  

𝐻(𝑧) =
β1

α1 − z
+
β0α1
α1 − z

− β0 (3.9) 

 

And finally, performing the inverse Z transform: 

H(n) = β1α1
n−1 + β0α1

n (3.10) 

Here ADAPT(1,1) is evaluated to be a two-component decay model.  

3.2.1.3 ADAPT(1,0) 

ADAPT(1,0) gives: 
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ln(Sn) = β0bn + α1 ln(Sn−1) (3.11) 

  

And the transfer function of ADAPT(1,0) in the Z-domain:  

H(z) =
β0z

z − α1
 (3.12) 

Performing partial fraction decomposition (PFD) and an inverse Z transform:  

H(n) = β0α1
n (3.13) 

Hence ADAPT(1,0) was also evaluated to be a one-component decay model.  

3.2.1.4 ADAPT(2,0) 

ADAPT(2,0) gives: 

ln(Sn) = β0bn + α1 ln(Sn−1) + α2 ln(Sn−2) (3.14) 

And the transfer function of ADAPT(2,0) in the Z-domain: 

H(z) =
β0z

2

z2 − α1 − α2
=

β0z
2

(z − r1)(z − r2)
 (3.15) 

Where the denominator is factorised such that r1 and r2 are roots of the quadratic expression. 

Performing PFD and an inverse Z transform: 

H(n) = Ar1
n−1 + Br2

n−1 (3.16) 

Where A and B represent the numerators that would be attained through the PFD. Hence 

ADAPT(2,0) was also evaluated to be a two-component decay model.  

3.2.1.5 ADAPT(2,1) 

ADAPT(2,1) gives: 

ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) + α2 ln(𝑆𝑛−2) (3.17) 

And the transfer function of ADAPT(2,1) in the Z-domain:  
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H(z) =
β0z

2 + β1z

z2 − α1 − α2
 (3.18) 

Performing PFD and an inverse Z transform: 

H(n) = Cr1
n−1 + Dr2

n−1 (3.19) 

Where r1 and r2 are roots of the quadratic expression in the denominator of the transfer function 

and C and D, represent the numerators that would be attained through the PFD. Hence 

ADAPT(2,1) was also evaluated to be a two-component decay model.  

3.2.1.6 ADAPT(3,1) 

ADAPT(3,1) gives:  

Ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) + α2 ln(Sn−2) + α3 ln(Sn−3) (3.20) 

And the transfer function of ADAPT(3,1) in the Z-domain: 

H(z) =
β0z

2 + β1z

z3 − α1z2 − α2z − α3
=

β0z
2 + β1z

(z − r1)(z − r2)(z − r3)
 (3.21) 

Where the denominator is factorised such that r1, r2 and r3 are roots of the cubic expression. 

Performing PFD and an inverse Z transform: 

H(n) = Fr1
n−1 + Gr2

n−1 + Hr3
n−1 (3.22) 

Where F, G and H represent the numerators that would be attained through the PFD. Hence 

ADAPT(3,1) was evaluated to be a three-component decay model. 

3.2.2 Data Simulations 

All simulated and acquired In-Vivo data was created or obtained using a range of 11 

exponentially spaced b-values between 0 and 1000 [0, 20, 40, 80, 110, 140, 170, 200, 300, 500, 

1000] s/mm2. All simulations and data analysis were conducted using MATLAB (MathWorks, 

Natick, MA, USA, v.2016b).  
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3.2.2.1 Simulation of a Bi-exponential Signal 

A range of bi-exponential diffusion signals were created by simulating data using the equation 

for the IVIM method: 

S(b)

S(0)
= f ∙ exp−bD

∗
+ (1 − f) ∙ exp−bD (3.23) 

 Where S(b)/S(0) is the signal intensity for a particular b-value, b, normalized by the signal 

intensity when b=0 s/mm2; D is the tissue diffusion coefficient; D* is the pseudo-diffusion 

coefficient (related to the perfusion of blood in the capillary network); and f is the volume 

fraction of incoherently flowing blood in the tissue describing the fraction of the signal arising 

from the vascular network (91). 

Bi-exponential signals were created with a range of f values (0.1, 0.3 and 0.5) and three different 

D*/D ratios corresponding to those observed in the brain, kidney and liver (10, 20 and 70 

respectively) (45). The D parameter was fixed at 0.0007 mm2/s and the D* parameters 

considered were 0.007 mm2/s, 0.014 mm2/s and 0.049 mm2/s. Random white Gaussian noise 

was added to the simulated signals to mimic SNR levels of 50, typical of those measured In-

Vivo data. The ADAPT method was applied to the bi-exponential signals, and a range of orders 

from ADAPT(0,0) to ADAPT(3,3) were considered.  

3.2.2.2 Simulation of a Multi-Component Partial Volume Effects Model 

A partial volume effects (PVE) model was simulated, in which compartments from both 

cerebral white matter (WM), assumed to be a two-compartment model, and cerebrospinal fluid 

(CSF), assumed to be one compartment, are simultaneously detected, thus creating a tri-

exponential model. 
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S(b)

S(0)
= Ae−bα + Be−bβ + Ce−bγ (3.24) 

Such a tissue model is of particular interest to DWI, as the use of the IVIM method in the brain 

requires cautious interpretation in regions of tissue edges due to PVE. The high value of the 

diffusion coefficient in CSF and the much lower diffusion coefficient in WM results in the 

incorrect detection of a large perfusion value within the cerebral cortex, when a voxel contains 

information from both these regions (42). CSF was assumed to exhibit mono-exponential 

behaviour with a diffusion coefficient assumed to be that of free water at  37℃  ( DCSF =

3 × 10−3mm2/s) (80). WM was assumed to be represented by the bi-exponential IVIM 

method. The WM model parameters were taken from averaged IVIM values previously 

reported in a volunteer study (fWM = 0.07; DWM = 0.77 × 10
−3mm2/s ; D∗WM = 7.9 ×

10−3mm2/s )(111). A partial volume effect (PVE) model was created as a summation of the 

CSF and WM model such that Equation(3.24) was parameterised with physically meaningful 

coefficients:  

S(b)

S(0)
= fCSFe

−bDCSF + (1 − fCSF)(fWMe
−bD∗WM + (1 − fWM)e

−bDWM) (3.25) 

Where fCSF indicated the fraction of the signal that was contributed by the CSF compartment. 

A range of PVE models were created with varying CSF:WM ratios (100:0, 75:25, 50:50, 25:75 

and 0:100). White Gaussian noise was added to PVE models to mimic SNR levels ≈ 50. 

3.2.2.3 Robustness Analysis 

Poor signal quality can result in a change of parameter values or in the detection of an additional 

component. Hence the effects of poor SNR on the robustness of the fitting methods were 

investigated. Random white Gaussian noise was added to the simulated signals to mimic SNR 

levels between 20 and 100. Although the noise present in MRI data is governed by a Rician 
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noise distribution, the distribution is approximately Gaussian for the SNR levels considered in 

this study (121). Noise was added using the MATLAB Communications System Toolbox ‘Add 

White Gaussian Noise’ (awgn) function. The data simulations were performed using 1000 

random data iterations for each model and SNR level. 

3.2.3 Physical Phantom 

A physical phantom with multiple compartments containing varying Deuterium Oxide (D2O)/ 

H2O mixtures was designed and scanned to further consider the effects of partial volumes. 

The phantom was created with two hydrogel compartments: the bottom layer, Agarose gel 

formed with 10% D2O/90% H2O; the top layer, Agarose gel formed with 100% H2O and N-

Acetylaspartic acid (NAA). A balloon filled with water was suspended between the two 

hydrogels. The phantom was scanned with the same diffusion protocol used for In-Vivo data 

acquisitions (3.2.4). 

3.2.4 In-Vivo Data Acquisition 

A volunteer brain scan (age 25 years), SNR≈50 in WM at b-value = 0 s/mm2, was acquired on 

a Philips Achieva 3T TX (Philips Healthcare, Best, the Netherlands) MRI scanner at 

Birmingham Children’s Hospital using a 32-multichannel receiver head coil. A patient (age 3.2 

years) with a brain tumour, suprasellar pilomyxoid astrocytoma, was also scanned. The patient 

case was considered as the ventricles were enlarged due to hydrocephalus, allowing for an 

easier investigation of the one compartment CSF. It should be noted that no tumour was present 

on the slice considered. Informed parental consent was obtained for all subjects and the 

East Midlands – Derby Research Ethics Committee (REC 04/MRE04/41) approved the study 

operating under the rules of Declaration of Helsinki 1975 (and as revised in 1983). The 

diffusion-weighted MRI sequence used a sensitivity-encoded (SENSE) approach with the 
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following parameters: b-value data acquired in three orthogonal directions, FOV 230mm x 

230mm, TR/TE 3,214/84ms, matrix size 256x256, 5mm slice thickness and in-plane resolution 

0.9mm x 0.9mm. The spectral presaturation with inversion recovery (SPIR) was used for fat 

suppression and the scan duration was 2.21 minutes. 

3.2.5 Data Analysis 

3.2.5.1 Measuring SNR 

In-Vivo SNR levels were calculated using the standard NEMA method based on the difference 

image from two acquisitions; this is the recommended method for determining SNR when 

parallel imaging techniques are used (77). The quality of parameter estimation depends strongly 

on the SNR, with the SNR for the low IVIM perfusion regime recommended to be above a 

critical value of 40 (45,121). An SNR≈50 was recorded in the White Matter (b-value =0), in 

agreement with previous studies using this acquisition protocol (191). 

3.2.5.2 Model Selection 

The Akaike information criterion (AIC) (173) was used as a means of model selection for 

determining the optimum ADAPT order. The AIC estimates the relative likelihood of a model 

being the optimum fit by measuring the trade-off between goodness of fit and model 

complexity. Such a selection process aims to reduce the risk of over-fitting. As the b-value 

sequence used within the diffusion-weighted imaging (DWI) protocol typically has less than 30 

b-values (11 in the cases considered), they can be considered to be a finite data set (35). Thus 

the corrected AIC (AICc) (193), with a harsher penalty for overfitting, was implemented. The 

AICc formula (11): 

AICc = n ∙ log (
RSS

n
) +

2∙k∙(k+1)

n−k−1
 (3.26)
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Where n is the number of b-values used to fit the signal; k is the number of parameters; and 

RSS is the residual sum squared.  The fit with the lowest AICc value is considered to be the 

optimum fit. The number of parameters, k, includes the diffusion signal S0 (194) and an 

additional parameter is counted due to the Gaussian noise hypothesis for the signal residuals 

(35).There is a debate in the literature that the AIC is only suitable for analysing nested models 

and is consequently inherently biased. Although the models in this study are nested, other 

studies have shown the AIC as a suitable criterion for a wide range of model types, both nested 

and non-nested (195). However, to ensure that such a selection criterion is not ad-hoc, an 

additional selection criterion is also considered- the Bayesian Information Criterion corrected 

for small samples (BICc) (196).  

It is advocated that an approach of using two criteria together can increase the confidence in 

identifying the optimum order (197). Hence the BICc was also calculated: 

BICc =
k∙n∙log(n)

𝑛−𝑘−1
+ n ∙ log (

RSS

n
) (3.27)  

The relative significance of the optimum information criterion fit was justified with the use of 

Bayes Factors (198) where wi is the Weight, indicating the probability of model i being the 

optimum model and the associated statistic the log evidence ratio (LER)  indicates evidence for 

the parsimoniousness of the optimum model against a competing model. The Akaike weight, 

wi:  

wi =
exp(−

1

2
∆iAICc)

∑ exp (M
m=1 −

1

2
∆mAICc)

 (3.28)

Where M is the number of compared models and:  

∆iAICc = AICc(i) − AICcmin (3.29)

Where AICcmin is the minimum AICc value of all the models considered. The Akaike weight 

of all the models summed together should equal one. The Evidence Ratio ER: 
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ERi =
wmax
wi

 (3.30) 

Where wmax is the Akaike weight of the optimum model. The LER is provided by taking the 

log of the ER such that. 

LERi = log10(ERi) (3.31) 

LER values greater than 0, 0.5, 1 or 2 indicate respectively that the evidence is ‘minimal’, 

‘substantial’, ‘strong’ or ‘decisive’. 

 

3.2.5.3 Statistical Analysis 

For the data simulations, correlation analysis (Pearson correlation coefficient, r) was performed 

to determine how the ADAPT(1,1) coefficients were related to the IVIM parameters. 

ADAPT(1,1) was considered as it was found to be the optimum fit for bi-exponential equations. 

The IVIM parameters were calculated using the multi-exponential fitting methods as described 

in the section below (Section 3.2.5.4). The statistical significance of the relationship was 

assessed using the p-value (P <0.05). The robustness of the ADAPT and multi-exponential 

coefficients, when fitted to the PVE models, was assessed by calculating the coefficient of 

variation (CV) over the 1000 iterations measured. 

For the In-Vivo data, correlation analysis (Spearman’s rank correlation coefficient, s) was 

performed to compare the ADAPT(1,1) coefficients to the IVIM parameters. ρ values between 

0.60 - 0.79, and 0.80 - 1.0 were considered to represent a ‘strong’ and ‘very strong’ correlation 

respectively. Five regions of interest (ROIs), each 4x4 pixels, were selected from within both 

the one compartment CSF and the two-compartment WM. The ROIs were drawn upon the DWI 

scans with no additional filtering. The optimum ADAPT and multi-exponential fitting methods 



70 

 

were fitted to each of the ROIs. To investigate the robustness of the fitting parameters, the 

average parameter value and CV was calculated.  

3.2.5.4 Multi-exponential Fitting Methods 

The bi-exponential fitting method for the IVIM equation was assessed using non-linear least-

squares minimisation, with the Levenberg-Marquardt algorithm and a constrained 2-parameter 

fitting method (121). The tri-exponential fitting method used the same minimisation technique 

and a constrained 4-parameter fitting method. The mono-exponential fitting method was also 

considered for the PVE models and In-Vivo data. By plotting the signal on a logarithmic scale 

and calculating the gradient, the Apparent Diffusion Coefficient (ADC) is attained. 

3.2.5.5 Performance of Fitting Methods 

All calculations were performed on OS: Windows 10 Pro 64-bit (10.0 Build 16299), CPU: 

AMD Ryzen 5 1600, 3.2 GHz, Memory: 8192 MB DDR4 RAM.  To compare the performance 

of the ADAPT and IVIM fitting methods, the CPU run time of each method was recorded and 

averaged over 10 iterations. 
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3.3 Results 

3.3.1 ADAPT Method Applied to Simulated Bi-exponential Signal 

3.3.1.1 Selection of Optimum Fit 

 A range of ADAPT orders were fitted to the simulated bi-exponential signal (SNR ≈ 50) with 

varying IVIM parameters (Figure 3.1).  

 
Figure 3.1: The ADAPT orders fitted to a range of simulated bi-exponential signal 
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For each of the 9 scenarios considered ADAPT(1,1) was found to be the optimum order, having 

the lowest AICc for every case (Table 3.1).  

 

For the bi-exponential signals where D*/D=10, the competing order ADAPT(2,1) was found to 

have an AICc-LER just below 0.5 in two instances. For the bi-exponential signals with 

D*/D=70 and f=0.3 or 0.5, the AICc-LER ratio indicates that ADAPT(1,0) and ADAPT(2,0) 

are competing orders that should also be taken into consideration. ADAPT orders (2,2), (3,0), 

(3,1), (3,2) and (3,3) were also considered for each case but possessed comparatively higher 

 

Table 3.1: ADAPT Orders Fitted to Bi-exponential Diffusion Signals-AICc 

   ADAPT Orders 

D*/D f  (0,0) (1,0) (1,1) (2,0) (2,1

) 

10 

0.1 

AICc -73 -97 -120 -97 -115 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  10.0

6 4.85 0 4.94 0.92 

0.3 

AICc -49 -79 -101 -80 -98 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  11.2

2 4.74 0 4.39 0.49 

0.5 

AICc -36 -68 -91 -69 -89 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  11.8

7 5.03 0 4.75 0.42 

20 

0.1 
AICc -65 -88 -106 -93 -103 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  8.93 3.88 0 2.98 0.67 

0.3 
AICc -39 -68 -82 -73 -79 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  9.35 3.12 0 2.02 0.70 

0.5 
AICc -25 -56 -71 -61 -68 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  9.90 3.21 0 2.07 0.70 

70 

0.1 
AICc -59 -78 -84 -80 -80 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  5.39 1.24 0 0.75 0.70 

0.3 
AICc -32 -56 -58 -57 -55 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  5.58 0.48 0 0.23 0.66 

0.5 
AICc -18 -43 -45 -44 -42 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐  5.84 0.39 0 0.09 0.62 

A range of two compartment bi-exponential diffusion signals (SNR≈50) were investigated with a 

range of IVIM-D*/D ratios and IVIM-f values. The ADAPT method was applied to the bi-exponential 

signals and the optimum fit (highlighted) was selected by choosing the method with the lowest AICc. 

Those ADAPT orders lightly shaded have an AICc-LER<0.5 indicating competing models. 
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AICc values and thus very high AICc-LERs. The BICc confirmed that the optimum order was 

ADAPT(1,1) (Table 3.2). No competing orders were detected when D*/D=10. For the signals 

with D*/D=70 and f=0.3 or 0.5, the BICc indicated that ADAPT(1,0) was the optimum order. 

However, the BICc-LER for ADAPT(1,1) was low and the BICc values almost equivalent. 

 

3.3.1.2 Number of Components 

The Transfer function, Z-transform, PFD and subsequent inverse Z-transform were performed 

on ADAPT(0,0), ADAPT(1,0), ADAPT(1,1), ADAPT(2,0) and ADAPT(2,1). ADAPT(0,0) is 

equivalent to the mono-exponential model and thus, a one-component decay model. As 

 

Table 3.2: ADAPT Orders Fitted to Bi-exponential Diffusion Signals-BICc 

   ADAPT Orders 

D*/D f  (0,0) (1,0) (1,1) (2,0) (2,1

) 

10 

0.1 
BICc -68 -89 -109 -86 -101 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 8.79 4.19 0 4.94 1.67 

0.3 

BICc -46 -74 -93 -72 -87 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 10.0

4 4.13 0 4.39 1.15 

0.5 

BICc -34 -63 -83 -61 -78 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 10.7

0 4.42 0 4.75 1.08 

20 

0.1 
BICc -63 -83 -99 -85 -92 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 7.76 3.28 0 2.98 1.33 

0.3 
BICc -37 -63 -74 -65 -68 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 8.18 2.51 0 2.02 1.36 

0.5 
BICc -23 -51 -63 -53 -57 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 8.72 2.61 0 2.07 1.36 

70 

0.1 
BICc -56 -73 -76 -72 -69 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 5.39 1.24 0 0.75 0.70 

0.3 
BICc -30 -50 -50 -49 -44 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 4.53 0 0.12 0.35 1.44 

0.5 
BICc -15 -38 -37 -36 -42 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 4.88 0 0.21 0.30 0.62 

The optimum ADAPT order for the simulated bi-exponential diffusion signals was selected using the 

lowest BICc. Those ADAPT orders lightly shaded have a BICc-LER<0.5 indicating competing 

models. 

 



74 

 

previously stated, ADAPT(1,1) was evaluated to be a two-component decay model. In all bi-

exponential simulations considered, a two-component model was found to be the optimum fit, 

based upon the AICc. ADAPT(2,0) and ADAPT(2,1), which were found to be competing 

orders are also two-component decay models. ADAPT(1,0), a one-component decay model, 

was found to be a competing order for some cases. However, for the D*/D ratio of 70 and f 

value of 0.3, the AICc-LER of ADAPT(1,0) is 0.48 is close to the cutoff and the wi 

probability (ADAPT(1,0) wi=0.14) is more than half that of the optimum order (ADAPT(1,1) 

wi=0.43). ). Using the BICc,  ADAPT(1,0) was identified as the optimum order (wi=0.44). 

However, the BICc-LER for ADAPT(1,1) was very low, 0.12 and wi= 0.33.  For the D*/D 

ratio of 70 and f-value of 0.5, the wi probability of ADAPT(1,0)  (ADAPT(1,0) wi=0.15) is 

more than half that of the optimum order (ADAPT(1,1) wi=0.37). ADAPT(1,0) had the lowest 

BICc and was selected as the optimum order (wi=0.46); however, the BICc-LER for 

ADAPT(1,1) was low, 0.21 and wi= 0.28, indicating a competing model with a comparable 

probability. 

3.3.2 Tri-exponential Partial Volume Effect Models 

3.3.2.1 Selection of Optimum Order 

Mono-, bi- and tri- exponential fitting methods (Figure 3.2) were applied to the PVE models 

(SNR ≈ 50) with varying CSF:WM ratios and the optimum fit selected using the AICc (Table 

3.3) and the BICc (Table 3.4).  
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Table 3.3: Partial Volume Effects Model fitted with ADAPT orders and Multi-exponential fitting 

methods-AICc. 

   Exponential Model ADAPT Orders 

CSF:WM 
Number of 

compartments 
 ADC IVIM TRI (0,0) (1,0) (1,1) (2,0) (3,0) (3,1) 

100:0 1 
AICc -154 -155 -154 -154 -160 -161 -159 -161 -158 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐 0.32 0 0.33 1.45 0.17 0 0.32 0.02 0.55 

75:25 
3 AICc -67 -110 -154 -59 -79 -97 -78 -77 -108 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐 18.85 9.40 0 10.65 6.13 2.32 6.48 6.75 0 

50:50 
3 AICc -64 -108 -152 -60 -83 -101 -82 -80 -110 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐 18.97 9.42 0 11.01 5.83 2.02 6.08 6.59 0 

25:75 
3 AICc -68 -116 -150 -67 -92 -111 -91 -88 -116 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐 17.77 7.47 0 10.75 5.29 1.13 5.40 6.08 0 

0:100 
2 AICc -80 -140 -151 -81 -103 -128 -104 -102 -123 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐 15.50 2.44 0 10.30 5.35 0 5.17 5.71 1.09 

 

 

 

 

A range of PVE models, with varying CSF:WM ratios, were investigated. Multi-

exponential fitting methods and the ADAPT method were fitted. The optimum fit was 

selected by choosing the method with the lowest AICc. 

 

Figure 3.2: The optimum ADAPT order and the multi-exponential models are shown fitted to the PVE 

model CSF:WM   50:50.  The ADAPT model can be used to accurately fit and identify the tri-

exponential signal. 
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Table 3.4: Partial Volume Effects Model fitted with ADAPT orders and Multi-exponential fitting 

methods-BICc. 

 

 

 

 

 

Based on the AICc, the number of detected components did not correspond to the number of 

exponential terms presented in the signal. In particular, a tri-exponential fit was found to best 

represent both two and three-component models. The one-compartment model was best 

represented by a bi-exponential fit. However, the LER-AICc values indicated that all other 

multi-exponential fits were competing. Based on the BICc, the one compartment and three-

compartment models were correctly identified, but a two-compartment model was overfitted 

and found to be best represented by a tri-exponential fit. No other multi-exponential fits were 

found to compete. According to the AICc and BICc, the two-compartment model is wrongly 

fitted by a tri-exponential equation for even very high SNR≈100 (Figure 3.3).  

 

  Exponential Model ADAPT Orders 

CSF:WM  ADC IVIM TRI (0,0) (1,0) (1,1) (2,0) (3,0) (3,1) 

100:0 
BICc -149 -144 -139 -152 -155 -150 -151 -153 -144 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 0 0.94 2.02 0.72 0 1.09 0.75 0.45 2.40 

75:25 
BICc -62 -100 -139 -56 -74 -89 -70 -66 -93 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 16.84 8.64 0 8.07 4.12 0.91 5.07 6.00 0 

50:50 
BICc -59 -97 -137 -57 -78 -93 -74 -69 -96 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 16.95 8.66 0 8.43 3.81 0.61 4.66 5.84 0 

25:75 
BICc -63 -105 -136 -64 -87 -103 -83 -77 -102 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 15.75 6.72 0 8.44 3.55 0 4.27 5.61 0.28 

0:100 
BICc -75 -129 -137 -78 -98 -120 -96 -91 -109 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐 13.48 1.69 0 9.13 4.75 0 5.17 6.37 2.50 

The optimum fitting method for the PVE models (SNR≈ 50) was selected by 

choosing the method with the lowest BICc. 
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The range of ADAPT orders from (0,0) to (3,3) were also applied to the PVE models (Table 

3.4).With the AICc, a distinct number of terms were found to be able to distinguish between 

two and three-compartment models. The two and three-compartment models were found to be 

best fitted by ADAPT orders (1,1) and (3,1) with no other competing order found to be 

significant. All other AICc-LERs were found to be >0.5, indicating that no other fit was 

Figure 3.3: Using the AICc-LERs, the number of compartments, identified by the multi-exponential 

fitting methods was investigated as a function of varying SNR in the PVE models. An AICc-LER<0.5 

indicated a competing model that needed to be considered. An AICc-LER>2 indicated a competing 

model that ‘definitely’ did not need to be considered. 

Figure 3.4: Using the AICc-LERs, the number of compartments, identified by the ADAPT method 

was investigated as a function of varying SNR in the PVE models. 
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statistically significant. The BICc results were found to be similar (Table 3.4), although 

ADAPT(1,1) was found to be a competing order (BICc-LER= 0.28) for the three-

compartment CSF:WM=25:75 signal. The one-compartment CSF model was best fitted by 

ADAPT(1,1) according to the AICc and ADAPT(1,0) with the BICc. Both list a range of 

different orders as the optimum fit, indicating that noise can easily corrupt a one compartment 

signal. The one-compartment signal was investigated at SNR≈100 and decisively found to be 

represented by ADAPT(0,0) (Figure 3.4), mathematically equivalent to the mono-exponential 

equation.  

Comparing the AICc values of the exponential and ADAPT fitting methods, for the one 

component signal, the AICc was lowest with ADAPT, indicating a better fit. However, the 

optimum AICc values are very similar and the RSS values are of the same order of magnitude 

(RSS for ADC = 1.2 ×10-5, ADAPT(0,0) = 1.5 ×10-5, ADAPT(1,1) = 4.0×10-6). For the three 

component signals, the tri-exponential fits have much lower AICc values than ADAPT(3,1). 

The RSS values are also two orders of magnitude smaller (i.e RSS for CSF:WM-50:50, TRI = 

4.3 ×10-5, ADAPT(3,1) =1.0 ×10-4). For the two-component data, the wrongly identified tri-

exponential fit has a very low RSS value (RSS for TRI  = 4.5 ×10-6, suggesting that the signal 

is being overfitted. Although the AICc for IVIM is still lower than ADAPT(1,1) (RSS for 

IVIM = 1.8 ×10-5, ADAPT(1,1) = 7.2 ×10-5), the RSS values are of the same order of 

magnitude, indicating a similar accuracy of fit.  

3.3.2.2 Number of ADAPT Components 

The transfer function, Z-transform, PFD and subsequent inverse Z-transform were performed 

on ADAPT(3,1) which was evaluated to be a three-component decay model(refer to section 

3.2.1.6 ADAPT(3,1)). 
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3.3.3 SNR and Robustness of Data Simulations 

3.3.3.1 Influence of Noise upon the Tri-exponential Partial Volume Effects 

Model 

Using the AICc-LERs, the number of compartments identified by the multi-exponential fitting 

methods (Figure 3.3) and the ADAPT method (Figure 3.4) was investigated as a function of 

varying SNR. The multi-exponential fitting methods correctly identified the mono-

exponential behaviour in the PVE signal CSF:WM 100:0. However, the LER demonstrates 

that the optimum fit quickly becomes bi-exponential below the high SNR of 85. The three-

compartment PVE signals are best represented by the tri-exponential fit down to an SNR of 

35 for the CSF:WM of 75:25 and 50:50, and SNR 40 for 25:75. The PVE signal CSF:WM 

0:100 is incorrectly represented by a tri-exponential fit. This, however, becomes a bi-

exponential fit below SNR 50. CSF:WM 100:0 is best represented by the one component 

ADAPT(0,0) above an SNR of 75. Below SNR 75 the one component ADAPT(1,0), is the 

optimum order. However, ADAPT(2,0) and ADAPT(3,0) have AICc-LERs<0.5, indicating 

significant competing fitting methods. All three-compartment PVE models are best 

represented by the three-component ADAPT(3,1) down to an SNR of 45. For CSF:WM 

0:100, the optimum order is the two-component model ADAPT(1,1) down to an SNR of 45.  

Below this value the one component models and ADAPT (2,0), another two-component 

model, begin to show statistical significance. 

3.3.4 ADAPT Components Applied to Physical Phantom Acquisition 

The ADAPT method was applied to a DWI axial slice of the hydrogel phantom (Figure 3.5).  
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Figure 3.5: Example case of the ADAPT method applied DWI axial slice of hydrogel phantom. a) 

DWI slice of phantom where b value=0 s/mm2. b) Apparent Diffusion Coefficient (ADC) parameter 

map of the phantom (mm2/s). c) ADAPT applied to the diffusion signal and the corresponding number 

of detected components are displayed. 

 

As indicated by the ADC (Figure 3.5b), the diffusivity of the hydrogels and water balloon are 

of the same order of magnitude. The ADAPT method detects one compartment in the 

hydrogels and water balloon (Figure 3.5c). However, at the interface between the water 

balloon and the gels, two-compartment behaviour was exhibited. 

3.3.5 ADAPT Components Applied to In-Vivo Data Acquisition 

The ADAPT method was applied to a DWI axial slice of both a volunteer and a patient case 

(Figure 3.6). Three ADAPT components were observed as a white line along the boundary of 

the ventricles for the volunteer case (Figure 3.6c). Such clusters of high order behaviour are 

consistent with partial volume effects. Few voxels exhibit one-component behaviour in the 

ventricles of the volunteer. This could be due to the limited size of the ventricles. A patient 

case was considered in which the ventricles were enlarged. Large clusters of one component 

behaviour were observed within the ventricles with some three-component behaviour also 

seen in the region (Figure 3.6d). 
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Figure 3.6: Example case of the ADAPT method applied to In-Vivo DWI axial slices. a) DWI 

slice of a volunteer where b value=0 s/mm2. b) DWI slice of patient with enlarged ventricles 

where b value=0 s/mm2 c) ADAPT applied to volunteer slice and the corresponding number 

of detected components are displayed. f) ADAPT applied to patient slice. 
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3.3.6 ADAPT(1,1) Coefficient Study with Data Simulations 

The relationship between the ADAPT α and β coefficients, created as a result of minimising 

(Equation 3.2), and the IVIM f, D and D* parameters were investigated (Figure 3.7).  

 

Figure 3.7: The relationship between the ADAPT(1,1) coefficients and the IVIM parameters was 

investigated. a) Effects on the diffusion signal when only IVIM-D was varied and the other two IVIM 

parameters were fixed. b) Only IVIM-f varied. c) Only IVIM-D* varied. d) Linear relationship 

between IVIM-D and ADAPT(1,1)-β0. e) Between IVIM-f and ADAPT(1,1)-α1. f) Between IVIM-D* 

and ADAPT(1,1)-β1. 
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If IVIM-f and IVIM-D* are fixed, and only IVIM-D is varied for simulated data, the gradient 

of the detected diffusion signal can be observed to increase with an increasing IVIM-D value 

(Figure 3.7a).  An increase in the gradient of the signal would also increase the value of the 

ADAPT-β coefficients and result in a directly linear relationship between the IVIM-D and 

ADAPT(1,1)-β0 with R2=1(Figure 3.7d). When IVIM-f and IVIM-D are fixed, increases in 

IVIM-D* result in a subtle increase in the gradient at the low b-values (Figure 3.7c). Such 

behaviour results in a linear correlation between IVIM-D* and the higher-order ADAPT(1,1)- 

β1 coefficient with R2=0.99 (Figure 3.7f). When IVIM-D and IVIM-D* are fixed, and only 

IVIM-f is varied, an increase in IVIM-f results in an increase in the curvature of the bi-

exponential signal and the prevalence of the second component (Figure 3.7b). Consequently a 

linear relationship is found between IVIM-f and  ADAPT(1,1)-α1 with R2=0.99 (Figure 3.7e).  

 

Figure 3.8: Coefficient of Variation calculated for the coefficients of the optimum ADAPT and multi-

exponential fitting methods for each of the PVE models (SNR ≈ 50) considered. For the one-component 

model, CSF:WM=100:0, the ADC and ADAPT(0,0) fitting methods were implemented. For the two-

component models, CSF:WM=75:25,50:50 and 25:75, the tri-exponential and ADAPT(3,1) fitting 

methods were implemented. For the three-component models, CSF:WM=0:100, the tri-exponential and 

ADAPT(1,1) fitting methods were implemented. The IVIM method was also considered.  For each of 

the fitting methods implemented, the respective coefficients were investigated. 
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The coefficients of ADAPT and the multi-exponential fitting methods were investigated for the 

PVE models (SNR≈50) (Figure 3.8).  For the one-compartment model, the optimum mono-

exponential fitting method and ADAPT(1,0) were considered. ADAPT(0,0) was also 

considered due to being mathematically equivalent to the mono-exponential equation. The CV 

was found to be 0.4% for the mono-exponential ADC and 0.2% for ADAPT(0,0)-β0. Both have 

a CV <1% indicating that both fitting methods were robust for fitting one compartment data. 

For ADAPT(1,0), β0 had a CV of 0.6% and α1 2735.7%. The β0 coefficients from ADAPT(0,0) 

and ADAPT(1,0) had a percentage variation of 0.0002%. Given the similarity in β0  coefficients 

and the high CV for ADAPT(1,0)-α1, it can be theorised that the additional parameter in the 

one component ADAPT(1,0) is a consequence of the noise added to the signal. For the three-

compartment models, the optimum fitting methods, ADAPT(3,1), and the tri-exponential fit 

were compared. In general, the ADAPT(3,1) coefficients have a lower CV than the tri-

exponential parameters. α2 and α3 have a higher CV than the TRI-fCSF and fWM parameters for 

the CSF:WM=50:50 case, but the CV is still less than 6.1%. For the CSF:WM=25:75 case, the 

TRI-fCSF had a CV of 13.2% significantly higher than any of the other parameters associated 

with three compartments. For the two-compartment model, ADAPT(1,1) was compared against 

both the bi- and tri- exponential fitting methods. Although selected as the optimum multi-

exponential fit, it is evident that the tri-exponential is the incorrect fit as the CV of TRI-fCSF is 

193.0%. Comparing the ADAPT(1,1) coefficients to the IVIM parameters, β0, β1, and α1 had 

CVs of 0.4%, 2.8% and 0.8% respectively. IVIM-D, IVIM-D* and IVIM-F were 0.3%, 2.2% 

and 2.9%. Both methods possessed low CVs for their parameters indicating that ADAPT(1,1) 

and IVIM are both robust fitting methods for two-compartment signals. 



85 

 

3.3.7 ADAPT(1,1) Coefficient Study with In-Vivo Data 

The ADAPT(1,1)-β0 (Figure 3.9b), α1 (Figure 3.9d) and β1 (Figure 3.9f) coefficients for an 

In-Vivo axial slice of a patient brain scan were correlated on a pixel-wise basis with the 

IVIM-D (Figure 3.9a), IVIM-f (Figure 3.9c) and IVIM-D* (Figure 3.9e) parameters 

respectively. Upon visual inspection, the IVIM-D and ADAPT(1,1)-β0 parametric maps 

Figure 3.9: Parametric maps of Axial  brain slice of patient with enlarged ventricles a) IVIM-D 

(mm2/s);  c)IVIM-f; e)IVIM-D* (mm2/s); b) ADAPT(1,1)-β0; d)ADAPT(1,1)-α1; f)ADAPT(1,1)-β1. 
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appear similar with the calibration bars also showing comparable scales. Furthermore, when 

the voxels with ADAPT(1,1) identified as the optimum order were selected (n=6002), 

s=0.708 (P <0.001) was obtained, indicating a strong relationship between IVIM-D and 

ADAPT(1,1)-β0. However, the edges of the ventricles appear to be affected by partial volume 

effects more in the IVIM maps than the ADAPT maps. IVIM-D* and ADAPT(1,1)-β1 were 

found to have an s= 0.741 (P<0.001), also indicating a strong relationship. The CPU run time 

of the IVIM fit for one slice was averaged over 10 iterations and found to be 575.0 ± 3.1 

seconds. Comparatively the CPU run time of ADAPT method was just 23.2 ± 0.1 seconds. 

The CV was calculated from the average coefficient values calculated from ROIs within the 

CSF and WM (Table 3.5). For the one compartment CSF, ADAPT(0,0)-β0 was almost identical 

to the ADC value and the CV <1.5%. For the two-compartment WM, ADAPT(1,1)-β0 was 

found to be the same order of magnitude as IVIM-D although the CV of IVIM-D was found to 

be just 4.6% compared to 10.7% for β0. However, ADAPT(1,1)-α1 has a lower CV than IVIM-

f 16.7% compared to 18.2%. ADAPT(1,1)-β1 has a significantly lower CV than IVIM-D*, 

25.0% compared to 78.7%.  
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Table 3.5: Optimum Fitting Methods applied to In-Vivo ROIs- Parameter coefficient of variation (CV) 

Number of 

compartments 

Parameter Average 
Standard  

Deviation. 

CV (%) 

1 

ADC 2.89E-03 4.04E-05 1.40 

(0,0)-b0 2.90E-03 3.73E-05 1.30 

2 

IVIM-D 8.66E-04 4.01E-05 4.64 

(1,1)-b0 6.24E-04 6.71E-05 10.77 

IVIM-D* 4.66E-02 3.67E-02 78.65 

(1,1)-b1 1.01E-03 2.53E-04 24.98 

IVIM-f 0.074 0.013 18.16 

(1,1)-a1 0.601 0.100 16.65 

 

 

  

ROIs were drawn within the WM and CSF on the patient axial slice (Fig. 5b). The parameter 

values for the optimum methods were calculated. 
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3.4 Discussion 

It has been demonstrated that the number of components in diffusion-weighted MRI data is 

determined unreliably by simply applying multi-exponential fitting methods and then 

selecting the optimum fit. For the simulations considered, the ADAPT method is superior at 

identifying multiple components. 

In the physical phantom, the ADAPT method was able to correctly identify bi-exponential 

behaviour at the interface between the two mono-exponential components. However, to 

recreate a partial volume effect exhibiting tri-exponential behaviour, a considerably more 

complex phantom, with flow effects, would be required. Consequently, the development of a 

physical phantom is beyond the scope of this thesis. 

In simulations, the ADAPT method also demonstrated that it could correctly identify the 

number of components in the bi-exponential signal across a large range of IVIM parameter 

values. The SNR analysis demonstrated that ADAPT was more robust at detecting both one 

and two-compartment signals.  

In simulations, ADAPT was superior at identifying three-component behaviour, even when 

the third component is more subtle, i.e. PVE model with CSF:WM 75:25.  However, the BICc 

did detect competing orders, indicating that the third compartment could be difficult to detect 

for cases where the fraction of CSF is more subtle. Although the tri-exponential fitting 

methods had lower RSSs than ADAPT(3,1) for the three-compartment PVE models, the low 

RSSs are more likely due to the study being culpable of the inverse crime (refer to section 3.5 

Study Limitations) and the tri-exponential fitting method being inherently biased towards the 

simulated tri-exponential data. Furthermore, the RSS values for the optimum ADAPT orders 

were still low, and the model selection was more robust. It is recommended that if the number 
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of compartments in a signal is unknown, the ADAPT method should be used instead of multi-

exponential fitting for model selection. 

ADAPT is a generalisation of exponential models and makes no prior assumptions about the 

number of components within the data. Thus ADAPT lends itself as a potential novel method 

for the detection of the number of components in DWI data. The data simulations indicated 

that there is a relationship between the IVIM parameters and ADAPT coefficients. A strong 

relationship between these two methods is also evident in the In-Vivo patient example. 

Although the relationship between the IVIM parameters and ADAPT coefficients is complex 

and non-linear, ADAPT presents the opportunity for complex diffusion biomarkers to be 

obtained by making no prior assumptions about the nature of the data nor does it require any 

multistep fitting processes. 

Consequently, in this study, ADAPT is a much faster fitting method. The In-Vivo ROIs 

showed that ADAPT(1,1) and IVIM had comparable parameter CVs. However, IVIM-D* was 

considerably higher. Although this may be due to tissue heterogeneity within the white 

matter, the average IVIM-D* value is higher than expected (111), indicating that ADAPT 

may be more robust than IVIM at fitting in WM.  

Both the ADAPT and multi-exponential fitting methods struggled to correctly identify the 

number of signal components at poor SNRs (< 45). The addition of noise to the tri-

exponential PVE models resulted in the methods under-fitting the signal. This was most likely 

due to noise modulating the true signal and causing individual components to be mistakenly 

classified together. The addition of noise to the mono-exponential fitting method resulted in 

overfitting the signal. Although ADAPT was still able to detect a one-component model at 

poor SNR, the optimum order, using the AICc, switched from ADAPT(0,0) to ADAPT(1,0) 
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resulting in an additional parameter.  Although more robust than the multi-exponential fitting 

methods, the ADAPT method requires further development to optimise how it handles low 

SNR data, and the inclusion of an additional component or parameter to account for noise 

should be considered.   
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3.5 Study Limitations 

In general, the AICc and BICc selected the same optimum order, increasing the confidence 

that the most appropriate order had been selected. However, a more formal protocol is 

required for when the information criterion methods disagree. 

One should note that only one range of clinically relevant b-values was considered for the 

data simulated or acquired In-Vivo in this study. The number of data points and their 

magnitude could have a significant influence on the performance of the ADAPT method and 

the generality of the findings. However, there is no clear consensus on what optimal b-value 

sequence should be used for DWI (199). As the ADAPT method requires a discrete 

approximation of the diffusion signal, there will inevitably be a truncation in the 

approximation, which is inherent to the method. Another limitation of the simulations in this 

study was the assumption that diffusion in the CSF exhibits mono-exponential behaviour, 

consequently the effects of CSF circulation or pulsatile flow (200) were not considered. 

However, such effects are assumed to have a minimal contribution to the observed signal. 

Given the limited spatial resolution, it is also difficult to ensure that choroid plexus does not 

contribute to voxels in close proximity. 

As far as the authors are aware, no other diffusion models with a perfusion fraction exist for 

simulating data other than the multi-exponential equations explored. Therefore it was not 

possible to avoid committing the ‘inverse crime’ (IC) where multi-exponential equations were 

used to simulate as well as fit the data. To mitigate the IC, Gaussian noise was added to the 

simulated data (201), and a range of different multi-exponential models were explored. In 

addition, the ADAPT method is a different mathematical model, and therefore the IC wasn’t 
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committed with this class of models. Hence the IC would more likely favour multi-

exponential fitting methods such as IVIM. 

The study only considered DWI data, which averages over all the directions in which a 

gradient is applied. Consequently, this method is only able to measure isotropic diffusion 

compartments. If anisotropic effects, such as fanning or crossing of axon bundles, were to be 

investigated, many diffusion-weighted images, with diffusion-weighted gradients in different 

directions, would be required resulting in Diffusion Tensor Imaging (DTI). Although multi b-

value models are not yet routine in clinical settings, it would be interesting to consider an 

application of ADAPT to this technique, in particular investigating anisotropic effects with 

further simulations and In-Vivo studies. 

Further investigations are required to understand how the number of optimum ADAPT 

components relates to the number of exponential terms within the signal. This is considered in 

Chapter 5 with further rearrangement of the transfer function.  
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3.6 Conclusion 

The ADAPT method has shown that it can distinguish between multi-exponential diffusion 

data containing different numbers of components, which cannot be achieved by applying 

multi-exponential fitting methods and selecting the optimum fit. This novel method allows for 

the identification of different components within a diffusion signal. The relationship between 

the ADAPT and IVIM parameters suggest that diffusion biomarkers can be obtained without 

making prior assumptions about the nature of the data. Whilst ADAPT has been applied to 

DWI data; it should find application in other multi-exponential data sets which can be 

manipulated to be represented as a function of acquisition points. 
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Chapter 4 

Correlation of Perfusion Effects in DWI with Perfusion MRI  
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4. Correlation of Perfusion Effects in DWI with Perfusion MRI 

In this chapter, the coefficients of the ADAPT method and their relationship to perfusion 

information are further investigated. The correlation between the Dynamic Susceptibility 

Contrast (DSC), relative Cerebral Blood Volume (rCBV) and the ADAPT coefficients are 

investigated and compared to the correlation between rCBV and IVIM-f.  

4.1 Introduction 

Perfusion MRI uses techniques sensitive to cerebral haemodynamics in order to attain 

quantitative parametric maps. The most prevalent perfusion MRI technique used in clinical 

investigations is Dynamic Susceptibility Contrast (DSC) MRI (202). The  DSC parameter 

Cerebral Blood Volume (CBV), has demonstrable clinical value in the grading of gliomas 

(203), predicting tumour progression (204) and assessing treatment response (205). 

However, the routine use of DSC is confounded by the lack of consensus for an optimised 

DSC-MRI protocol (31) or for the gadolinium contrast agent injected (27). Furthermore, 

absolute quantification of parameters can be difficult to determine (28), and post-processing 

results can be user-dependent (22). There is some concern regarding the Gadolinium bolus 

(135). The use of some gadolinium contrast agents is restricted in some populations, such as 

young children (206). Recent studies have also found gadolinium deposits accumulating in 

patient’s brains and other organs after multiple injections of the contrast agent (136). Hence a 

contrast free method for measuring perfusion is desirable.   

Arterial Spin Labelling (ASL) is another perfusion MRI technique that is gaining considerable 

attention.  ASL doesn’t require an injectable contrast, instead relying on the labelling of 
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arterial blood as it flows through the brain. However, DSC has a higher signal to noise ratio 

(SNR) (33) and better temporal and spatial resolution (207). In addition, the image acquisition 

time of ASL protocols is significantly longer than that of DSC (22). 

Contrast free perfusion measurements may also be possible with Diffusion-Weighted Imaging 

(DWI). The Intravoxel Incoherent Motion (IVIM) model (90) is a bi-exponential equation 

with two components related to diffusion and perfusion-related measurements, respectively. 

The perfusion-related parameters, IVIM-D*; the pseudo-diffusion coefficient and IVIM-f; the 

volume fraction of flowing blood in the tissue, have been shown to be correlated with 

perfusion MRI parameters (42). Assuming the microvascular network is randomly orientated 

and isotropic, the relationship between IVIM-f and CBV is linear (208). 

Several studies have investigated the correlations between CBV and IVIM-f 

(38,111,120,138,140,209–212), with most reporting a moderate correlation (Federau et al. 

determined a Pearson’s r=0.59 in Gliomas (38), Kim et al. determined r=0.67 (P<0.001) in 

Glioblastomas (138)). Moderate correlations have also been reported in healthy tissue 

(Wirestam et al. r=0.56 (P<0.001) (212), Wu et al. r=0.29-0.48 in Grey Matter (111)). In 

contrast Bisdas et al. reported a negative correlative with Spearman’s rank, s=-0.57(P=0.09)  

in healthy tissue and s=-0.43(P=0.10) in Gliomas (140), although results were not significant. 

A poor correlation has been observed in regions of white matter (Wu et al. r=-0.02-0.05 

(111)). 

Across the correlation studies considered, variables that could impact the correlations are 

highly varied. The IVIM model is implemented with a range of different fitting methods 

(unconstrained and constrained with a multi-step approach) and different b-value 

distributions.  The effects of different IVIM fitting methods upon the correlation between 
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IVIM-f and CBV have previously been reported (212).The selection and size of the region of 

interest (ROI) is highly varied. The parameters, CBV and IVIM-f, are either fitted for the 

ROIs on a voxel-wise basis (140,209) or just for the signal average (120,212). The 

correlations are performed either voxel-wise for individual cases (111) or across the whole 

cohort taking the average (38), maximum (211) or 90th percentile (138) parameter values for 

each ROI. 

The choice of fitting method used to determine the IVIM parameters significantly affects the 

estimation of the IVIM-f parameter (121) and therefore, the correlation with CBV. The 

assumption of two-components by the  IVIM model could also affect the correlation with 

some diffusion models predicting multiple perfusion components within the diffusion signal 

(35). An alternative model for fitting multi-component diffusion signals is the Auto-

Regressive Discrete Acquisition Points Transformation (ADAPT) method. The ADAPT 

method is based on the Auto-Regressive Moving Average model (174), a generalised multi-

exponential model. ADAPT has the ability to represent a wide range of data sets and is not 

constrained to assume bi-exponential behaviour. The fitting method does not require any 

initial starting values or any multi-step fitting processes for robust parameters. ADAPT 

presents the opportunity for novel biomarkers to be obtained with no prior assumption about 

the nature of the data. In the previous chapter (Chapter 3), ADAPT(1,1) was shown to be the 

optimum ADAPT model for fitting bi-exponential behaviour (213). In addition, the parameter 

ADAPT(1,1)-α1 was shown to correlate strongly with IVIM-f.  

In this chapter, the correlation between rCBV (relative CBV, which has been normalised to 

white matter) and IVIM-f is investigated for a cohort of children with brain tumours (n=15). 

The correlation between rCBV and ADAPT(1,1)-α1 is also investigated and compared to the 
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correlation with IVIM-f. The impact of the number of components in the diffusion signal 

upon the perfusion-related measurements is also considered. 
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4.2 Materials and Methods 

4.2.1 Study Population  

Fifteen Paediatric brain tumour cases (5 Females, 10 Males, Age Range 1.6 – 10.3 years, 

Median 6.2 years) were considered for the evaluation of the correlation between rCBV and 

the DWI parameters (Table 4.1). Informed consent was obtained and the East Midlands – 

Derby Research Ethics Committee (REC 04/MRE04/41) approved the study operating under 

the rules of Declaration of Helsinki 1975 (and as revised in 1983). 

 

Table 4.1: Patient cohort demographic for the correlation study 

Case 
Age 

(Years) 

Sex 

(M/F) 
Diagnosis 

1 9.1 M Glioneuronal tumour 

2 5.8 F Optic pathway glioma 

3 6.5 M Optic pathway glioma 

4 4.1 M Optic pathway glioma 

5 6.5 F Ganglioglioma 

6 6.9 F Optic pathway glioma 

7 10.3 F Pilocytic Astrocytoma 

8 1.7 M Thalamic optic pathway glioma 

9 1.6 M Optic pathway glioma 

10 2.6 M Supratentorial low-grade glioma 

11 8.6 M Suprasellar pilomyxoid astrocytoma 

12 6.2 M Multisystem Langerhans Cell Histiocytosis 

13 3.3 M Optic pathway glioma 

14 6.2 F Optic pathway glioma 

15 5.0 M Ganglioglioma 

 

4.2.2 MRI Data Acquisition 

All patients were scanned on a Philips Achieva 3T TX (Philips Healthcare, Best, the 

Netherlands) MRI scanner at Birmingham Children’s Hospital using a 32-multichannel 



100 

 

receiver head coil. A T2-weighted TSE scan was performed using the following parameters: 

FOV 240mm x 240mm, TR/TE 4000/100ms, matrix size 288×288, 30 slices with 3.5mm slice 

thickness and in-plane resolution 0.9mm × 0.9mm. 

The Diffusion-weighted MRI sequence, acquired with the same coverage as the T2 scan, used 

a sensitivity-encoded (SENSE) approach with single-shot, spin-echo (EPI) sequence and the 

following parameters:  FOV 240mm x 240mm, TR/TE 4000/91ms, matrix size 96×96, 30 

slices with 3.5mm slice thickness and in-plane resolution 2.5mm × 2.5mm. A b-value 

sequence of 11 exponentially spaced b-values between 0 and 1000 s/mm2, [0, 20, 40, 80, 110, 

140, 170, 200, 300, 500, 1000] s/mm2, was acquired in three orthogonal directions. The scan 

duration of the diffusion protocol was 2.12 minutes.  

The DSC protocol was performed following the DWI protocol and was acquired with the 

same coverage as the T2 and the DWI scan. The FOV and image resolution of the DSC 

protocol was identical to that of the DWI protocol.  The DSC scan was an axial FE-EPI scan 

with the parameters: TR/TE 1865/40ms, flip angle 20° and temporal resolution 1.86s, which 

was repeated 60 times. The gadolinium contrast agent (Dotarem, Guerbet, Frace) was 

administered via a power injector through a cannula inserted in an antecubital vein. The dose 

was administered in two stages; the first dose was administered before the DSC acquisition as 

a pre-bolus to minimise T1 effects (214). The second dose was administered at the start of 

time point 5 in the DSC data acquisition. The total dose of contrast agent given was 0.1 

mmol/kg with an injection rate of 3 mL/s. Each dose was subsequently followed by a saline 

injection at the same rate, up to 10mL dependent on the patient’s weight. 

4.2.3 Data Analysis 

The IVIM equation is given as (Equation 4.1): 
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𝑆(𝑏)

𝑆(0)
= 𝑓 ∙ exp (−𝑏𝐷∗) + (1 − 𝑓) ∙ exp (−𝑏𝐷) (4.1)  

Where S(b)/S(0) is the signal intensity of the normalised signal for a particular b-value; 

IVIM- D is the diffusion coefficient; IVIM-D* is the pseudo-diffusion coefficient; and IVIM-

f is the volume fraction of incoherently flowing blood in the tissue describing the fraction of 

the signal arising from the vascular network (36). The IVIM model was fitted to the diffusion 

scans using a non-linear least-square fitting, and a constrained one-parameter fitting method 

(121). This model assumes that the effects of perfusion are negligible in measurements at high 

b-values.  For b-values > 200 s/mm2, a monoexponential fitting method is implemented. By 

plotting the signal on a logarithmic scale and calculating the gradient and y-intercept, IVIM-D 

and IVIM-f can be calculated respectively. The fitting method was applied on a voxel by 

voxel basis.  

The ADAPT equation is given as (Equation 4.2): 

ln(𝑆𝑛) = ∑ 𝛽𝑖𝑏𝑛−𝑖
𝑄
𝑖=0 + ∑ 𝛼𝑗𝑙𝑛(𝑆𝑛−𝑗)

𝑃
𝑗=1  (4.2)  

Where Sn is the signal at acquisition point n, bn is the b-value at acquisition point n, and αj, βi 

are the minimisation coefficients. At each acquisition point, the signal value can be modelled 

as a linear combination of the previous b-values and corresponding signal values. The 

parameters P and Q indicate the number of previous terms that the input signal depends upon. 

The ADAPT order ADAPT(1,1) was considered (Equation 4.3): 

ln(𝑆𝑛) = 𝛽0𝑏𝑛 + 𝛽1𝑏𝑛−1 + 𝛼1𝑙𝑛(𝑆𝑛−1) (4.3)  

 The ADAPT parameters β0, β1 and α1 were established using the matrices (Equation 4.4):  
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𝑆 =

[
 
 
 
 
 
 
 
 
 
𝑏(0) 0 0

𝑏(1) 𝑏(0) 𝑙𝑛 (
𝑆(0)

𝑆(0)
)

⋮ ⋮ 𝑙𝑛 (
𝑆(1)

𝑆(0)
)

⋮ ⋮ ⋮

𝑏(𝑁) 𝑏(𝑁−1) 𝑙𝑛 (
𝑆(𝑁−1)

𝑆(0)
)
]
 
 
 
 
 
 
 
 
 

;    𝐴 = [
𝛽0
𝛽1
−𝛼1

] ;     𝑆𝑝𝑟𝑒𝑑 =

[
 
 
 
 
 
 
 ln (

𝑆(0)

𝑆(0)
)

ln (
𝑆(1)

𝑆(0)
)

⋮

ln (
𝑆(𝑁)

𝑆(0)
)
]
 
 
 
 
 
 
 

 (4.4) 

              

Where S is a matrix constructed from the b-values and the detected signal with acquisition 

point n=0, …, N. A is the matrix of ADAPT coefficients. Spred is the final model of the 

normalised predicted signal. By finding the least-squares error of Equation 4.4, A is minimised, 

and the model Spred is established:  

 

𝑆 ∙ 𝐴 = 𝑆𝑝𝑟𝑒𝑑 (4.5) 

 

The ADAPT method was used to determine the number of components. A range of ADAPT 

orders from ADAPT(0,0) to ADAPT(3,3) were fitted to each diffusion signal. The optimum fit 

was selected using the corrected Akaike Information Criterion (AICc) (173).ADAPT orders 

between ADAPT(0,0) and ADAPT(1,0) identified signals with one component, between 

ADAPT(1,1) and ADAPT(2,2) identified two component signals and between ADAPT(3,0) 

and ADAPT(3,3) identified three component signals (213). 

The rCBV parametric map was derived from the DSC scan. The tracer tissue concentration-

time course data was obtained from the signal-time course data by considering the relationship 

between the tracer tissue concentration and the T2* signal intensity. By considering the area 

below the tracer tissue concentration-time course, the rCBV value was attained with arbitrary 

units mL/100 mL. Leakage corrections were applied using preload-dosing and baseline 
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subtraction techniques, further details of the method can be found in J. Novak and S. Withey 

et al. (215). 

Tumour regions of interest (ROI) were drawn manually on the T2-weighted images (Average 

Tumour ROI=461 ± 243 voxels). Areas of cyst were excluded from the ROIs. Grey Matter 

(GM) and White Matter (WM) masks were created using the Brain Extraction Tool (BET) (216) 

and the FMRIB’s Automated Segmentation Tool (FAST) (217) from the FMRIB Software 

Library v6.0 (Analysis Group, Oxford, UK) using the T2-weighted images. A probability map 

was generated predicting whether a voxel was WM, GM or cerebrospinal fluid (CSF). WM and 

GM masks were created, using only voxels with a 100% probability of being that tissue type. 

To further mitigate the effects of partial volumes, an image erosion of 1 voxel was applied to 

each mask. The Tumour ROI, areas of cyst and CSF were masked out with an additional 

exclusion of 2 voxels around these areas- (Average GM ROI=4999 ± 1654 voxels, Average 

WM ROI=5719 ± 2149 voxels) (Figure 4.1).  
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Figure 4.1: Example of Region of Interests (ROIs) drawn for each tissue type considered in the 

correlation study. a) T2 axial slice of the whole brain. b) grey matter selected, c) white matter selected, 

d) tumour selected. 

 

 

4.2.4 Statistical Analysis 

For each of the cases in the study population, the correlation analysis between rCBV and 

IVIM-f was assessed using Spearman’s rank correlation coefficient. The correlation between 

rCBV and ADAPT(1,1)-α1 was also considered. The two correlations were directly compared 

across the whole brain and GM, WM and Tumour ROIs.  A summary statistic for the cohort 

was established by considering the correlation across all cases. The average correlation for 

each ROI was determined by implementing the Fischer-Z transformation (35) to normally 



105 

 

distribute the correlation coefficients. As the correlations to compare are dependent and 

overlapping, Zou’s 95% confidence intervals were calculated with lower and upper bounds to 

assess if one correlation was statistically stronger than the other (36). The mean, median and 

standard deviation were also calculated for each parameter across all voxels in each of the 

tissue types considered.  
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4.3 Results 

4.3.1 rCBV, IVIM-f and ADAPT(1,1)-α1 Parameter Comparison  

Parametric maps of rCBV, IVIM-f and ADAPT(1,1)-α1 were calculated on axial slices from 

the cohort (Figure 4.2). 

 

Figure 4.2: Example parameter maps for the perfusion measurements: a) axial b0 image of Optic 

pathway Glioma case and corresponding parameter maps b)DSC-rCBV, c) IVIM-f, d)ADAPT(1,1)-

α1, e)axial b0 image of Suprasellar pilomyxoid astrocytoma and corresponding parameter maps 

f)DSC-rCBV, g) IVIM-f, h)ADAPT(1,1)-α1 

  

 

Upon visual inspection, the parametric maps appear similar with the calibration bars for the 

diffusion measurements showing comparable scales. 

Spearman’s rank was calculated on a voxel-wise basis for each of the cases across the whole 

brain and GM, WM and Tumour ROIs. The Spearman’s rank correlation is reported for each 

of the cases in Table 4.2:  
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Table 4.2: Spearman’s Rank correlations between DWI measurements and rCBV for each case in the 

cohort considering the whole brain. P < 0.001 for all measurements. 

Whole Brain 

 Spearman's Rank   Zou's 95% CI  

Case 
rCBV  

IVIM-f 

rCBV 

 ADAPT(1,1)-α1 

IVIM-f 

ADAPT(1,1)-α1 
n Fisher Z 

Lower 

 Bound 

Upper 

 Bound 

Strongest 

 Correlation 

1 0.471 0.574 0.830 33823 -38.24  -0.11 -0.10 ADAPT(1,1)-α1 

2 0.440 0.456 0.917 32749 -7.77 -0.02 -0.01 ADAPT(1,1)-α1 

3 0.413 0.456 0.922 36647 -23.13 -0.05 -0.04 ADAPT(1,1)-α1 

4 0.262 0.485 0.731 38503 -64.95  -0.23 -0.22 ADAPT(1,1)-α1 

5 0.447 0.422 0.698 37560 7.10 0.02 0.03 IVIM-f 

6 0.584 0.576 0.968 34649 6.92 0.01  0.01 IVIM-f 

7 0.404 0.336 0.936 26655 33.16 0.06 0.07 IVIM-f 

8 0.451 0.589 0.892 35982 -64.34 -0.14 -0.13 ADAPT(1,1)-α1 

9 0.403 0.471 0.868 39494 -29.18 -0.07  -0.06 ADAPT(1,1)-α1 

10 0.463 0.503 0.868 44628 -18.73  -0.04  -0.03 ADAPT(1,1)-α1 

11 0.398 0.610 0.833 36024 -78.31 -0.22 -0.21 ADAPT(1,1)-α1 

12 0.704 0.672 0.965 27078 27.66 0.03 0.04 IVIM-f 

13 0.502 0.597 0.910 31745 -46.65 -0.10  -0.09 ADAPT(1,1)-α1 

14 0.529 0.576 0.949 35955 -33.34 -0.05  -0.04 ADAPT(1,1)-α1 

15 0.277 0.387 0.857 37089 -42.00 -0.11  -0.10 ADAPT(1,1)-α1 

 

Significant correlations were achieved in all cases with moderate correlations observed between 

rCBV and IVIM-f (s= 0.277-0.704, P<0.001) and rCBV and ADAPT(1,1)-α1 (s=0.336-0.672, 

P<0.001). Strong correlations were observed between the diffusion measurements IVIM-f and 

ADAPT(1,1)-α1 (s=0.731-0.968, P<0.001). As determined by Zou’s confidence interval, the 

correlation between rCBV and ADAPT(1,1)-α1 was statistically stronger than the correlation 

between rCBV and IVIM-f in 11 of the 15 cases considered.  
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The Spearman’s rank correlations for each of the cases are shown for all of the tissue types 

considered in Figure 4.3. In the GM ROIs, ADAPT(1,1)-α1 had the strongest correlation to 

rCBV in 12 of the 15 cases, IVIM-f had a stronger correlation to rCBV in one case, and for two 

cases the correlations were determined to be of statistically comparable strength. For the WM 

ROIs, in relation to rCBV, ADAPT(1,1)-α1 had the statistically stronger correlation in 9 cases, 

IVIM-f in 5 cases and for one case the correlations were determined to be of statistically 

comparable strength. For the Tumour ROIs, in relation to rCBV, ADAPT(1,1)-α1 had the 

statistically stronger correlation in 7 cases, IVIM-f in 2 cases and for 6 cases, the correlations 

were determined to be of statistically comparable strength. 

 

Figure 4.3: Spearman’s Rank correlations between DWI measurements and rCBV for each case in the 

cohort considering the whole brain and regions of Grey Matter, White Matter and Tumour. P <0.001 for 

all measurements. 
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Considering the average correlation across the whole cohort (Table 4.3), the correlation 

between rCBV and ADAPT(1,1)-α1(s=0.520, P<0.001) was determined to be statistically 

stronger than the correlation between rCBV and IVIM-f (s=0.433, P<0.001).  For the average 

Spearman’s rank correlation, the correlation between rCBV and ADAPT(1,1)-α1 was 

statistically stronger across GM, WM and Tumour ROIs for the whole cohort.  

 

Table 4.3: Spearman’s Rank DWI measurements and CBV for the different tissue types. The Average 

and total correlations across the cases are reported, P < 0.001 for all measurements. 

 Spearman's (s)   Zou's 95% CI  

ROI 
rCBV  

IVIM-f 

rCBV  

ADAPT(1,1)-α1 

IVIM-f 

 ADAPT(1,1)-α1 
n Fisher Z 

Lower 

 Bound 

Upper  

Bound 

Strongest  

Correlation 

Average 

Whole Brain 0.433 0.520 0.897 35238 -40.72 -0.09 -0.08 ADAPT(1,1)-α1 

Grey Matter 0.557 0.578 0.929 4999 -4.82 -0.03 -0.04 ADAPT(1,1)-α1 

White Matter 0.401 0.425 0.898 5719 -4.43 -0.03 -0.01 ADAPT(1,1)-α1 

Tumour 0.520 0.568 0.892 460 -2.66 -0.08  -0.01 ADAPT(1,1)-α1 

Total 

Whole Brain 0.397 0.471 0.712 491735 -77.42 -0.08 -0.07 ADAPT(1,1)-α1 

Grey Matter 0.506 0.521 0.768 60134 -6.71 -0.02 -0.01 ADAPT(1,1)-α1 

White Matter 0.395 0.419 0.697 74384 -9.22 -0.03 -0.02 ADAPT(1,1)-α1 

Tumour 0.480 0.649 0.807 4254 -21.28 -0.19 -0.15 ADAPT(1,1)-α1 

 

The average correlations for each region of interest considered were statistically stronger 

between rCBV and ADAPT(1,1)- α1  than between rCBV and IVIM-f across the cohort.  

Between rCBV and ADAPT(1,1)- α1, Spearman’s rank, s=0.520, 0.578, 0.425, 0.568 and 
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between rCBV and IVIM-f, s=0.433, 0.557, 0.401, 0.520  (P<0.001) across the whole brain and 

regions of grey matter, white matter and tumour respectively. 

Spearman’s rank correlations were also considered on a voxel-wise basis across every case 

(Total Correlation, Table 4.4). Considering the Spearman’s rank, rCBV had a statistically 

stronger correlation with ADAPT(1,1)-a1 than with IVIM-f for all ROIs considered. Between 

rCBV and ADAPT(1,1)- α1, Spearman’s rank, s=0.471, 0.521, 0.419 and 0.649 and between 

rCBV and IVIM-f, s=0.397, 0.506, 0.395, 0.480 (P<0.001) across the whole brain and regions 

of grey matter, white matter and tumour respectively.  

The voxel-wise parameter values were correlated for an axial slice from one of the cases and 

plotted in Figure 4.4. The strongest correlations were observed in GM; the correlations in the 

Tumour appeared to have the greatest variability. For the rCBV and IVIM-f correlations, the 

relationship is linear. For the rCBV and ADAPT(1,1)-α1 correlation, a non-linear relationship 

is observed. 
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Figure 4.4: Parameter values for each voxel of an axial slice from a patient in the cohort. Correlations 

between (left) rCBV and IVIM-f and (right) rCBV and ADAPT(1,1)-α1. Correlations in regions of 

(top-bottom) Grey Matter, White Matter, Tumour and across the Whole Brain. 
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The parameter mean, median, and standard deviation for each tissue type, calculated across all 

voxels in the cohort, are presented in Table 4.4.  

 

Table 4.4: Mean, Median and Standard Deviation of rCBV, IVIM-f, ADAPT(1,1)-α1 parameters for 

the cohort across different tissue regions on a voxel-wise basis. 

 Grey Matter White Matter Tumour Whole Brain 

 rCBV IVIM-f ADAPT-α
1
 rCBV IVIM-f ADAPT-α

1
 rCBV IVIM-f ADAPT-α

1
 rCBV IVIM-f ADAPT-α

1
 

Mean 4.73 0.12 0.66 2.89 0.10 0.62 2.80 0.21 0.7 3.24 0.12 0.68 

Median 3.76 0.10 0.68 2.61 0.08 0.63 2.44 0.14 0.71 3.03 0.1 0.69 

Std Dev. 3.60 0.07 0.16 1.63 0.06 0.14 2.79 0.21 0.23 1.63 0.1 0.18 

  

The rCBV parameter exhibits the greatest variability. rCBV measurements were respectively 

highest in GM. IVIM-f and ADAPT(1,1)-α1 measurements were higher in GM than WM but 

respectively highest in Tumour ROIs. For all parameters, variability was greatest in the Tumour 

ROIs. 

4.3.2 Number of DWI Components and the Impact on Perfusion 

Measurements 

The optimum ADAPT order was selected for each voxel, and thus the number of components 

in the diffusion signal determined (Figure 4.5). Most of the brain was determined to exhibit 

two-component behaviour; areas of one component behaviour were exhibited within the 

ventricles (Figure 4.5.b). Three-component behaviour was detected near the boundary of the 

ventricles (Figure 4.5.b and 4.5.d), indicating potential partial volume effects. Three-

component behaviour was also exhibited within some tumour ROIs (Figure 4.5.f); this could 

also be due to partial volumes or potentially due to high perfusion in larger vessels. 
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Figure 4.5: Example case of the ADAPT method applied to In-Vivo DWI axial slices. a)  Axial b0 

image, enlarged ventricles, b) ADAPT component map. c) Axial b0 image, enlarged ventricles and 

low perfused tumour, d) ADAPT component map, e) Axial b0 image, high perfused tumour, f) 

ADAPT component map. 

 

The correlations were then performed voxel-wise within the regions identifying as one-, two- 

and three-component behaviour respectively. Spearman’s rank was then calculated for the 

average correlation across the whole cohort (Table 4.5). 
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Table 4.5: Average Spearman’s Rank correlations between DWI measurements and rCBV for each 

case in the cohort considering the whole brain. One, Two and Three-component diffusion signals 

considered (determined with the ADAPT method) P < 0.001 for all measurements. 

 Spearman’s Rank (s)   Zou's 95% CI  

Number of  

Components 

rCBV 

 IVIM-f 

rCBV  

ADAPT-α1 

IVIM-f  

ADAPT-α1 
n Fisher Z 

Lower  

Bound 

Upper 

 Bound 

Strongest 

 Correlation 

Whole Brain- Average 

1 0.133 0.239 0.840 1969 -8.49 -0.13 -0.08 ADAPT(1,1)-α1 

2 0.457 0.505 0.890 30378 -20.87 -0.05 -0.04 ADAPT(1,1)-α1 

3 0.380 0.511 0.860 467 -5.94 -0.18 -0.09 ADAPT(1,1)-α1 

 

Regardless of the number of components detected, the correlation between rCBV and 

ADAPT(1,1)-α1 was statistically stronger than the correlation between rCBV and IVIM-f. Both 

correlations were moderate in regions that exhibited two components within the diffusion signal 

(rCBV and IVIM-f: s=0.457, rCBV and ADAPT(1,1)-α1: s=0.505, P<0.001). In regions of 

three-component behaviour, the correlation between rCBV and ADAPT(1,1)-α1 was 

comparable to the respective correlation in two components (rCBV and ADAPT(1,1)-α1: 

s=0.511, P<0.001)  and the correlation between rCBV and IVIM-f was weaker (rCBV and 

IVIM-f: s=0.380, P<0.001). Both correlations were weakest in regions that exhibited one 

component behaviour (rCBV and IVIM-f: s=0.133, rCBV and ADAPT(1,1)-α1: s=0.239, 

P<0.001). The ratio of one-, two- and three-component voxels was 3:96:1 in GM, 4:94:1 in 

WM and 14:84:2 in tumours. 

4.3.3 High Order ADAPT behaviour  

For the voxels identified as exhibiting three-component behaviour, a higher-order ADAPT 

model, ADAPT(3,1), was fitted to the diffusion signal. The parameter ADAPT(3,1)-α1 was 
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correlated against rCBV (s=0.641, P<0.001) demonstrating a stronger correlation than IVIM-f 

or ADAPT(1,1)-α1 against rCBV respectively (Table 4.5). 
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4.4 Discussion 

Average correlations were statistically stronger between rCBV and ADAPT(1,1)-α1 than 

between rCBV and IVIM across the cohort. Both of these diffusion models are two component 

models. The ADAPT model makes no prior assumption about the diffusion signal and does not 

require multi-step fitting, a key factor that may contribute to the stronger correlation with rCBV. 

A significant correlation was reported between rCBV and IVIM-f in the Tumour and GM ROI 

across the paediatric cohort. These results are in agreement with respective correlation studies 

in the adult population (18–21,23,25).  A significant correlation was also found for the WM 

ROIs, not previously reported (25). 

The Spearman’s rank correlations between rCBV and ADAPT(1,1)-α1 were significantly 

stronger than the correlations between rCBV and IVIM-f for all tissue types considered across 

the cohort. It is evident that the correlation between rCBV and ADAPT(1,1)-α1 is non-linear 

(Figure 4.4). This is due to the ADAPT method fitting the logarithm of the diffusion signal, as 

this provides greater parameter stability (37). Pearson’s r correlation coefficient would be 

unsuitable for investigating this non-linear correlation (38). A transformation could be applied 

to the ADAPT(1,1)-α1 data to ensure a linear correlation. However, given the properties of 

logarithms, if a linear summation of parameters is fitted to a logarithm of linear components, 

the relationship between the fitted parameters and original components cannot be recovered. 

Hence the transformation to ensure a linear correlation would be empirical. As the Spearman’s 

rank correlation remains unchanged by any monotonic transformation (39), it is the 

recommended correlation coefficient to assess the correlations considered here. 

The correlation of the diffusion parameters to rCBV was affected by the number of components 

detected in the diffusion signal. The correlation with voxels identifying one component 
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behaviour was weakest. Theoretically, these voxels have no perfusion component, or a 

perfusion fraction too small to be currently detected.  Hence, voxels with one component 

behaviour should be excluded from perfusion studies. The ADAPT method could be used to 

potentially identify voxels with such behaviour (29). 

The correlations with voxels identifying two or three components were comparable for the 

ADAPT method. In voxels with three component behaviour, the parameter ADAPT(3,1)-α1 

demonstrated an even stronger correlation with rCBV than ADAPT(1,1)-α1 or IVIM-f. The 

correlation between rCBV and IVIM-f in voxels with three components was comparatively 

weaker, highlighting another breakdown of the IVIM model’s two-component assumption. This 

suggests that with more complex diffusion models, a better understanding of the perfusion 

behaviour could be attained. Three-component behaviour could, however, be caused by a 

multitude of reasons, such as partial volume effects (27)(40). Different ADAPT coefficients 

could potentially represent different flow regimes. Other ADAPT coefficients related to three-

component behaviour should also be investigated. The correlations in tumour ROIs were 

moderate despite the heterogeneity. For the tumour correlations considered in each of the 15 

cases, 6 cases were unable to determine which correlation was statistically stronger. This is 

likely due to the small size of the tumours and consequently small ROIs unable to provide the 

statistical power. With a larger cohort, the difference in correlations between low- and high-

grade tumours could be investigated. 

The mean IVIM-f parameter measurements were higher in GM (0.12 ± 0.07) than they were in 

WM (0.10±0.06), in agreement with previous studies (25)(41). However, the parameter values 

were slightly higher than some of those previously reported in adult correlation studies, 

particularly for white matter (Wu et al. IVIM-fGM=0.14 ± 0.02, IVIM-fWM=0.07 ± 0.01(25), 

Grech-Sollars et al. IVIM-fGM=0.10 ± 0.002, IVIM-fWM=0.08 ± 0.002). This could be explained 
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by the increase in perfusion reported in children compared to adults (42). The standard deviation 

of our results was higher, but this is likely due to considerably larger ROIs than other studies. 

In Tumour ROIs, the median IVIM-f was considerably higher than in healthy tissue 

(0.21±0.21). The high variance was likely due to tumour heterogeneity and the different tumour 

types included within the cohort. Within the tumour voxels, 14% were identified as exhibiting 

one component behaviour. As the IVIM equation is a bi-exponential model, the IVIM-f 

parameter could be wrongly estimated in these instances, further contributing to the high 

parameter variance. Although there are relatively twice as many three-component voxels in 

tumour ROIs compared to ROIs in healthy tissue, the overall number of three-component voxels 

is still comparatively small. This suggests that overestimation of IVIM-f is more likely caused 

by the one-component voxels instead of partial volume effects.  

The mean rCBV parameter measurements were higher in GM (4.73±3.36 mL/100 mL) than 

WM (2.89±1.63 mL/100 mL). The grey matter values were comparable to those previously 

reported, but the measurements in white matter were considerably higher (Wu et al. IVIM-

rCBVGM=4.4±0.5 mL/100 mL, rCBVWM=0.07±0.01 mL/100 mL (25)). The discrepancies and 

greater variation are most likely attributed to the age of the cohort and number of voxels 

considered, but also the different fitting methods implemented for DSC data (43). The rCBV 

tumour measurements had the greatest variation (2.30 ± 2.79 mL/100 mL) and is attributed to 

the heterogeneity of tumours and the different types considered within the cohort. There is a 

great range in the reported rCBV measurements for different tumour types (44). 

  



119 

 

4.5 Study Limitations 

There are some limitations to the work presented in this chapter. The distribution of b-values 

in the DWI sequence could change the performance of the two diffusion models considered. 

For the GM and WM, the ROIs were not manually drawn. In previous studies, considerably 

smaller ROIs were manually drawn, resulting in a lower variance. The correlations were also 

enhanced by deliberately selecting voxels that exhibited high IVIM-f values (21). The 

application of such methods to this work could have further increased the correlations observed. 

Although DSC and DWI were acquired with the same image resolution, the sequential 

acquisition could result in patient movement between scans contributing to voxel mismatches. 

Fluctuations in noise could further affect the correlations.  

As with any correlation analysis, a fundamental relationship cannot be proven by the results of 

a correlation study. Furthermore, the biophysical relationship between rCBV and the ADAPT 

parameters is unknown. ADAPT is based on the Auto-Regressive Moving Average model, 

which is considered atheoretical (45). However, the α1 parameter has been shown to relate to 

the decay rate of an exponentially decaying signal (46). For a DWI signal, increased perfusion 

will result in a fast signal decay rate. Although the relationship between the ADAPT parameters 

and the rCBV measurement is complex and non-linear in nature, ADAPT presents the 

opportunity for complex perfusion biomarkers to be obtained by making no prior assumptions 

about the DWI data. 
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4.6 Conclusion 

The ADAPT coefficients have a greater correlation than the IVIM-f parameter with rCBV 

measured by DSC-MRI. The moderate correlations observed demonstrate that perfusion 

information can be obtained non-invasively through diffusion measurements. The ADAPT 

method makes no prior assumptions about the number of exponential components contributing 

to the data, which gives it an advantage over the IVIM fitting method, which inherently assumes 

two-component behaviour. Complex multi-component diffusion and perfusion information 

exists within the DWI signal. To probe and understand this rich information, a highly sensitive 

technique, such as ADAPT, should be implemented. 
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Chapter 5 

The ADAPT Method for Parameter Selection 
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5. The ADAPT Method for Parameter Selection 

In this chapter, the ADAPT method is reformulated, and the IVIM parameters are fully 

derived from the ADAPT coefficients. The ADAPT fitting method is compared to the multi-

step, non-linear, least-square fitting algorithm commonly used to estimate the IVIM 

parameters, with a particular focus on the IVIM-D* parameter. Both fitting methods 

investigate simulated white matter and grey matter brain models, considering the accuracy, 

precision and bias for a range of Signal to Noise Ratio (SNR) levels. Once optimised, the 

performance of the fitting methods is investigated in In-Vivo data.  

5.1 Introduction 

The Intravoxel Incoherent Motion (IVIM) method requires multiple b-values to measure 

diffusion and perfusion-related properties of biological tissue.  The IVIM equation is given as 

(Equation 5.1): 

𝑆(𝑏)

𝑆(0)
= 𝑓 ∙ 𝑒𝑥𝑝−𝑏𝐷

∗
+ (1 − 𝑓) ∙ 𝑒𝑥𝑝−𝑏𝐷 (5.1) 

Where S(b)/S(0) is the signal intensity of the normalised signal for a particular b-value (a 

parameter that is changed by varying the diffusion sensitization of the MR sequence); IVIM- D 

is the diffusion coefficient; IVIM-D* is the pseudo-diffusion coefficient (related to the 

perfusion of blood in the capillary network); and IVIM-f is the volume fraction of incoherently 

flowing blood in the tissue describing the fraction of the signal arising from the vascular 

network (36).The IVIM method assumes the detected signal is comprised of two exponentially 

decaying compartments; with decay constants equal to IVIM- D and IVIM-D*. The effects of 

IVIM-D* are most evident in the acquired signal at the very low b-values (b < 100 s/mm2) 

(102), as values of IVIM-D* are typically several orders of magnitude higher than IVIM-D 



123 

 

(37). The perfusion-related parameters IVIM-f and IVIM-D* have demonstrated clinical value 

in diagnosing diseased tissue, such as liver fibrosis (114) and deteriorating renal function in the 

kidneys (107), and in the grading of tumours (218). Correlations between IVIM-D* and the 

microvascular density in histology samples have also been reported (219). 

Despite the additional perfusion-related information available with IVIM-D*, this parameter is 

not yet routinely calculated. Compared to the other IVIM parameters, IVIM-D* has the largest 

measurement error (111,120), high heterogeneity (111,220,221), poor reproducibility (45,191) 

and is difficult to evaluate (102). Consequently, several IVIM reproducibility studies have only 

considered IVIM-D and IVIM-f (191,222,223), or even questioned the clinical applicability of 

IVIM-D*, particularly in low perfused tissues such as the brain (191,220). 

The estimation of IVIM-D* is dependent upon the diffusion-weighted MR sequence, the 

number of b-values and the fitting method implemented. Parameter estimation can be 

confounded by the inherent assumption of two tissue compartments in the IVIM model. For 

example, in regions that are cystic or ischemic with no perfusion compartment, IVIM-D* is not 

defined. In such a case, IVIM-D* can be incorrectly assigned the same value as IVIM-D (120). 

IVIM-f will then be estimated by any value between 0 and 1, evidently increasing parameter 

variability. If more than two-compartments are present, such as partial volume effects between 

brain tissue and cerebral spinal fluid (CSF), the high diffusion coefficient of CSF can be 

misinterpreted and be incorrectly measured in the IVIM-D* parameter. Other bulk flow 

phenomena, such as tubular flow or glandular secretion (128), may also contribute to the signal 

(102). Furthermore, the range of physiologically possible IVIM-D* values is much greater than 

for the other IVIM parameters, increasing the parameter variance (224). 
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For IVIM-D*, low perfused tissues have a higher measurement error due to the weakly bi-

exponential signal (45). An increase in the number of b-values, sampling more of the low b-

value regime, has been shown to increase parameter robustness (116). However, the b-value 

sequence implemented can influence parameter estimation, causing bias (117,225). To increase 

stability in the parameter estimations, IVIM is typically fitted using a constrained, Multi-Step 

approach. IVIM-D* is estimated via a nonlinear, least-squares fitting method, once IVIM-D 

and IVIM-f have been estimated (121,226). IVIM-D and IVIM-f are fitted using b-values above 

a selected threshold (typically b-values > 200 s/mm2) at which the perfusion effects are 

considered negligible. However, this threshold is postulated to be tissue-dependent and will 

influence the estimation of IVIM-D* (37). Any errors in the fitting of IVIM-D and IVIM-f will 

propagate and increase the error in IVIM-D*. Compared to unconstrained fitting, the Multi-

Step method reduces variability but consequently has a higher parameter bias. A range of 

different fitting methods for the IVIM parameters have been considered (45,125), but there is 

not yet a consensus on the best processing approach. 

Hence there is a need to develop improved analysis methods for fitting DW-MRI data if the 

routine clinical use of IVIM-D* is to be attained. In this chapter, the Auto-Regressive Discrete 

Acquisition Points Transformation (ADAPT) method was implemented for the recovery of the 

IVIM parameters. The ADAPT method is based on a non-stationary, special case of the auto-

regressive moving average model (227), a generalised multi-exponential model. ADAPT 

interprets the diffusion signals as a discrete function of acquisition points where the behaviour 

of the signal can be derived from the relationship between these acquisition points. ADAPT can 

represent a wide range of data sets and is not constrained to assume bi-exponential behaviour. 

ADAPT does not require any Multi-Step fitting processes, initial starting values, nor the 

oversampling of low b-values for robust parameter estimation (213).  
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The ability for ADAPT to correctly identify the number of components was established in a 

previous chapter (Chapter 3) and a strong correlation between the ADAPT coefficients and 

IVIM parameters confirmed. In previous chapters (Chapter 3 and Chapter 4), the ADAPT 

method was applied to a logged DWI signal. However, in this chapter the ADAPT method is 

applied to a normalised DWI signal with an offset of -1 (resulting in a signal value of 0 at b=0 

s/mm2), allowing the ADAPT coefficients to derive the IVIM parameters directly. The 

performance of the ADAPT fitting method is compared with the Multi-Step, non-linear, least-

square fitting algorithm commonly used for IVIM parameter estimation. 
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5.2 Materials and Methods 

5.2.1 The Auto-regressive Discrete Acquisition Points Transformation  

The ADAPT method was modified to model the diffusion signal by the equation (Equation 

5.2):   

(S𝑛 − 1) =∑𝛽𝑖𝑏𝑛−𝑖 +∑𝛼𝑗(𝑆𝑛−𝑗 − 1)

𝑃

𝑗=1

𝑄

𝑖=0

 (5.2) 

Where Sn is the signal at acquisition point n, bn is the b-value at acquisition point n, and αj, βi 

are the minimisation coefficients. Here the acquisition point of the b-values is used such that b 

value=0 s/mm2 is at acquisition point 0. The subsequent b-value in the sequence would be 

acquisition point 1. At each acquisition point, the previously acquired b-values and signal 

values are used as previous input terms. Hence the signal at acquisition point n can be modelled 

by a linear summation of previous b-values and signal values. The parameters P and Q indicate 

the number of lag terms that the input signal depends upon. Upon selecting the order of the 

ADAPT(P,Q) model, the α and β minimisation coefficients are determined by minimising the 

normal equation. The ADAPT method uses the normalised diffusion signal, with an offset of -

1 to ensure that that at acquisition point 0, the output, Sn-1, is 0. This is required so that for the 

first few data points, where the ADAPT order is greater than the acquisition points, a value of 

0 can be substituted for cases where bn−i or Sn−j don’t exist. The αj, βi coefficients are established 

using the matrices in Equation 5.3: 
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𝑆 =

[
 
 
 
 
 
 
 
 
 
𝑏(0) 0 ⋯ 0 0 0 ⋯ 0

𝑏(1) 𝑏(0) ⋯ ⋮ (
𝑆(0)

𝑆(0)
) − 1 0 ⋯ ⋮

⋮ ⋮ ⋯ ⋮ (
𝑆(1)

𝑆(0)
) − 1 (

𝑆(0)

𝑆(0)
) − 1 ⋯ ⋮

⋮ ⋮ ⋯ ⋮     ⋮     ⋮ ⋯ ⋮

𝑏(𝑁) 𝑏(𝑁−1) ⋯ 𝑏(𝑁−𝑄) (
𝑆(𝑁−1)

𝑆(0)
) − 1 (

𝑆(𝑁−2)

𝑆(0)
) − 1 ⋯ (

𝑆(𝑁−𝑃)

𝑆(0)
) − 1

]
 
 
 
 
 
 
 
 
 

;

𝐴 =

[
 
 
 
 
 
𝛽0
⋮
𝛽𝑄
−𝛼1
⋮

−𝛼𝑃]
 
 
 
 
 

;                                              𝑆𝑝𝑟𝑒𝑑 =

[
 
 
 
 
 
 
 (
𝑆(0)

𝑆(0)
) − 1

(
𝑆(1)

𝑆(0)
) − 1

⋮

(
𝑆(𝑁)

𝑆(0)
) − 1

]
 
 
 
 
 
 
 

 (5.3)

              

Where S is a matrix constructed from the b-values and the detected signal with acquisition point 

n=0, …, N. A is the matrix of ADAPT coefficients. Spred is the final model of the normalised 

predicted signal. By finding the least-squares error of Equation 5.4, A is minimised, and the 

model Spred is established:  

𝑆 ∙ 𝐴 = 𝑆𝑝𝑟𝑒𝑑 (5.4) 

5.2.1.1 Determining the Number of Components with ADAPT 

Once the optimum ADAPT(P,Q) order has been selected, the number of components in the 

signal can be determined using the transfer function. The transfer function is given by dividing 

the signal output, (Sn-1), by the signal input, (bn). Equation 5.2 can be rearranged as (Equation 

5.5): 

(𝑆𝑛 − 1) − 𝛼1(𝑆𝑛−1 − 1) −⋯− 𝛼𝑃(𝑆𝑛−𝑃 − 1) = 𝛽0𝑏𝑛 + 𝛽1𝑏𝑛−1 +⋯+ 𝛽𝑄𝑏𝑛−𝑄 (5.5) 

Using the Lag Operator, Equation 5.5 can be re-written as (Equation 5.6): 

(𝑆𝑛 − 1)(1 − 𝛼1𝐿̂ − ⋯− 𝛼𝑃𝐿̂
𝑃) = 𝑏𝑛(𝛽0 + 𝛽1𝐿̂ + ⋯+ 𝛽𝑄𝐿̂

𝑄) (5.6) 
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Where 𝐿̂ is the Lag Operator(181) such that 𝐿̂(𝑆𝑛 − 1) = (𝑆𝑛−1 − 1). Hence the transfer 

function, H(n), is written as (Equation 5.7): 

𝐻(𝑛) =
(𝑆𝑛 − 1)

𝑏𝑛
=
𝛽0 + 𝛽1𝐿̂ + ⋯+ 𝛽𝑄𝐿̂

𝑄

1 − 𝛼1𝐿̂ − ⋯− 𝛼𝑃𝐿̂𝑃
 (5.7) 

By performing a Z-transform on the transfer function, converting the discrete signal to a 

‘frequency’ domain representation, the number of components in the signal can be recovered 

(Equation 5.8): 

𝐻(𝑧) =
𝛽0 + 𝛽1𝑧

−1 +⋯+ 𝛽𝑄𝑧
−𝑄

1 − 𝛼1𝑧−1 −⋯− 𝛼𝑃𝑧−𝑃
 (5.8) 

Providing P ≥ Q, finding the poles of the system, that is, the number of roots for the 

denominator of Equation 5.8 when equated to zero, yields the number of components. For 

example, ADAPT(2,2) gives (Equation 5.9): 

(𝑆𝑛 − 1) = 𝛼1(𝑆𝑛−1 − 1) + 𝛼2(𝑆𝑛−2 − 1) + 𝛽0𝑏𝑛 + 𝛽1𝑏𝑛−1 + 𝛽2𝑏𝑛−2 (5.9) 

Taking the transfer function of ADAPT(2,2) and performing a Z-transform gives (Equation 

5.10):  

𝐻(𝑧) =
𝛽0+𝛽1𝑧

−1+𝛽2𝑧
−2

1−𝛼1𝑧
−1−𝛼2𝑧

−2  (5.10)  

Here the denominator is a quadratic expression with two roots. Consequently, ADAPT(2,2) is 

evaluated to be a two-component decay model. The number of components is determined by 

the Pth order of the optimum ADAPT(P,Q) model.  
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5.2.1.2 Deriving the IVIM parameters with ADAPT 

The IVIM method models a bi-exponential diffusion signal (Equation 5.1). To derive the IVIM 

parameters from the ADAPT coefficients, the Z-transform for the sum of P exponentials is 

required. Equation 5.11, provides a generalised summation of P exponentials:  

𝑆[𝑛] =∑𝑓𝑗 exp(−𝐷𝑗𝑏[𝑛])

𝑃

𝑗=1

 (5.11) 

Where S[n] is the measured signal at acquisition point n; P is the number of exponential terms; 

fi indicates the amplitude of each exponential term; Dj is the decay constant, and b[n] gives the 

b-value at n. If the b-value sequence is linearly spaced with incremental gaps of Δb, then b[n] 

can be replaced with nΔb. This allows the summation in Equation 5.11 to be expressed as 

(Equation 5.12): 

𝑆[𝑛] =∑𝑓𝑗𝑟𝑗
𝑛

𝑃

𝑗=1

;     where 𝑟𝑗 = exp(−𝐷𝑗∆𝑏) (5.12) 

The Z-transform of Equation 5.12 is (Equation 5.13):  

𝑆[𝑧] =∑
𝑓𝑗

1 − 𝑟𝑗𝑧−𝑗

𝑃

𝑗=1

 (5.13) 

By equating the denominators of the Z-transforms of the ADAPT equation (Equation 5.8) and 

the multi-exponential summation (Equation 5.13), such that (Equation 5.14):  

1 −∑𝛼𝑗𝑧
−𝑗

𝑃

𝑗=1

= 1 −∑𝑟𝑗𝑧
−𝑗 

𝑃

𝑗=1

(5.14) 

It can be inferred that the poles, xj, of Equation 5.8 will also be solutions to the denominator in 

Equation 5.14. That is (Equation 5.15) 
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𝑥𝑗 =
1

𝑟𝑗
=

1

exp(−𝐷𝑗∆𝑏)
 (5.15) 

Hence the multi-exponential decay constants can be derived from the poles of the optimum 

ADAPT order (Equation 5.16):  

𝐷𝑗 =
ln(𝑥𝑗)

∆𝑏
 (5.16) 

5.2.2 Data Simulations 

All simulations and data analysis were conducted using MATLAB (MathWorks, Natick, MA, 

USA, v.2017b). Diffusion signals were simulated using the IVIM equation in Equation 5 .1. 

White Matter (WM) and Grey Matter (GM) models were simulated using IVIM parameters 

reported for volunteers in previous studies (DWM=0.77×10-3mm2/s; D*WM=7.9×10-3mm2/s; 

fWM=0.07; DGM=0.84×10-3mm2/s; D*GM=8.2×10-3mm2/s; fGM=0.14) (111). The ADAPT 

method requires linearly spaced b-values in order to derive the IVIM parameters. A series of 

clinically relevant, linearly spaced b-value sequences between 0 and 1000s/mm2 were 

investigated with the number of b-values ranging between 7 and 16. Non-linearly spaced b-

value sequences, optimised for IVIM, were also used for simulations, with a sequence of 11 

exponentially spaced b-values [0, 20, 40, 80, 110, 140, 170, 200, 300, 500, 1000] and an 

optimised sequence of 16 b-values [0, 40, 50, 60, 150, 160, 170, 190, 200, 260, 440, 550, 

600, 700, 980, 1000] considered. The 16 b-value sequence was proposed by Lemke et al. (45) 

for low perfused tissue and has been optimised using Monte Carlo simulations to minimise fit 

error.  

 



131 

 

5.2.3 Robustness Analysis 

The robustness of the fitting methods was investigated with the addition of random white 

Gaussian noise to the simulations to mimic different levels of SNR. Although the noise in 

DWI is governed by a Rician distribution, it is well approximated by a Gaussian distribution 

for the SNR levels considered in this simulation (73). The lowest SNR level considered was 

40, a typical value recorded for DWI measurements in previous studies (45)(121) and also in 

the In-Vivo case considered. SNR levels of 57, 69, 80, 89, 98, 106, 113 and 120 were also 

considered as these correspond to the SNR levels when the number of signal averages 

(NSAs) are linearly increased. When the NSA doubles, the SNR is increased by a factor of 

√2. The SNR level added to the diffusion signal was uniform across the b-values. The data 

simulations were performed using 1000 random data iterations for each model and SNR 

level. 

5.2.4 In-Vivo Data Acquisition 

To validate the performance of the fitting methods In-Vivo, a volunteer brain scan (age 26 

years), was scanned on a Philips Achieva 3T TX (Philips Healthcare, Best, the Netherlands) 

MRI scanner at Birmingham Children’s Hospital using a 32-multichannel receiver head coil. 

Informed consent was obtained and the East Midlands – Derby Research Ethics Committee 

(REC 04/MRE04/41) approved the study operating under the rules of Declaration of Helsinki 

1975 (and as revised in 1983). The diffusion-weighted MRI sequence used a sensitivity-

encoded (SENSE) approach with single-shot, spin-echo (EPI) sequence and the following 

parameters: b-value data acquired in three orthogonal directions, FOV 230mm x 230mm, 

TR/TE 3214/84ms, matrix size 256x256, 5mm slice thickness and in-plane resolution 0.9mm 

x 0.9mm. A b-value sequence of 11 linearly spaced b-values between 0 and 1000 s/mm2, [0, 

100, 200, …, 1000] s/mm2, was used. The scan duration of this protocol was 2.12 minutes. 
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The patient was scanned with the above protocol 8 successive times, with a dynamic scan, 

(duration 16.94 minutes) in order to assess the reproducibility of the IVIM parameters and to 

increase the signal to noise ratio (SNR) by averaging over the repeated measurements.  

5.2.5 Data Analysis 

A range of ADAPT orders from ADAPT(0,0) to ADAPT(3,3) were applied to the simulated 

diffusion signals with the optimum ADAPT order chosen by using the corrected Akaike 

Information Criterion (AICc) for model selection in finite data sets (173). The AICc, selects 

the optimum model by rewarding models for their goodness of fit and penalising for the 

number of parameters in the model. This penalty term discourages overfitting, and the model 

with the lowest AIC is deemed the optimum model (Equation 5.17):  

𝐴𝐼𝐶𝑐 = 𝑛 ∙ 𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
) +

2 ∙ 𝑘 ∙ (𝑘 + 1)

𝑛 − 𝑘 − 1
 (5.17) 

Where n is the number of b-values, RSS is the residual sum squared, and k is the number of 

model parameters. The diffusion signal, S0 is included as a model parameter, and an 

additional parameter is counted due to the Gaussian noise hypothesis for signal residues. The 

optimum fit relative to the other considered models is justified by using Bayes Factors (193). 

The associated statistic, the log evidence ratio (LER) indicates the evidence for a competing 

model being the true optimum fit against that selected by the AICc. LER values greater than 

0, 0.5, 1 and 2 indicate that a competing model has ‘minimal’, ‘substantial’, ‘strong’ or 

‘decisive’ evidence that it is not the optimum fit. 

The IVIM fitting method was assessed using non-linear least-square fitting, and a constrained 

one-parameter fitting method (121). This model assumes that the effects of perfusion are 

negligible in measurements at high b-values.  For b-values > 200 s/mm2, a monoexponential 
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fitting method is implemented. By plotting the signal on a logarithmic scale and calculating 

the gradient and y-intercept, IVIM-D and IVIM-f can be calculated respectively. These 

parameters are given to Equation 5.1 and IVIM-D* is found using the with the Levenberg-

Marquardt algorithm with the result bound between 0 and 5×10-2mm2/s (219) This fitting 

method is henceforth referred to as the Multi-Step method.  

The ADAPT method and Multi-Step method were fitted to the brain tissues models and also 

In-Vivo volunteer data. SNR levels for the In-Vivo measurements were calculated for the 

WM and GM using 5 4x4 pixel ROIs from each tissue type. The SNR of each ROI was 

calculated from the pixel-wise standard deviation across the multiple acquisitions (228). In-

Vivo GM and WM masks were created using the Brain Extraction Tool (BET) (216) and the 

FMRIB’s Automated Segmentation Tool (FAST) (217) from the FMRIB Software Library 

v6.0 (Analysis Group, Oxford, UK) using the T1-weighted images. A probability map was 

generated predicting whether a voxel was WM, GM or cerebrospinal fluid. WM and GM 

masks were created, using only voxels with a 100% probability of being that tissue type. To 

further mitigate the effects of partial volumes, an image erosion of 1 voxel was applied to 

each mask. 

 

5.2.6 Statistical Analysis 

To determine the optimal b-value sequence to implement with the ADAPT method, the 

simulated sequence that returned the lowest total relative error for the WM and GM models 

was selected. The relative error σx for parameter, x, is given by (Equation 5.18):  

𝜎𝑥 =

√1
𝑁
∑ (𝑥𝑖 − 𝑥)2
𝑁
𝑖=1

𝑥
 (5.18)
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Where N is the number of iterations, xi is the fitted parameter result for the ith iteration, and x 

is the true parameter value. The total relative error was found by summing the relative errors 

for each of the 3 IVIM parameters; σTOT=σD+σD*+σf. 

For the model simulations, accuracy was assessed by comparing the mean parameter values 

measured by the fitting methods to their true values. The difference between the fitted 

parameter result and the true value was also measured using the relative bias, θx. for 

parameter x, the relative bias is given by (Equation 5.19): 

𝜃𝑥 =

1
𝑁
∑ (𝑥𝑖 − 𝑥)
𝑁
𝑖=1

𝑥
 (5.19) 

Precision was assessed by calculating the coefficient of variation (CV) over the 1000 

iterations measured. For all accuracy and bias measurements, significance tests were 

performed using Analysis of variance (ANOVA) and the Tukey post hoc analysis (P < 0.05). 

For the In-Vivo data, the average IVIM-D* parameter and CV were calculated from the ROIs 

in the WM and GM and investigated for both fitting methods. To investigate the distribution 

of parameter values, histograms were computed from the WM (n=1327) and GM (n=2687) 

masks.  
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5.3 Results 

5.3.1 ADAPT Method for Model Selection  

A range of ADAPT orders were fitted to GM and WM models.  The diffusion signals were 

simulated with a range of different SNR levels (Table 5.1).   

  

Table 5.1: ADAPT Orders Fitted to White and Grey Matter Model Simulations 

 

 

 

The ADAPT method for model selection was found to be robust down to SNR≈57, with 

ADAPT(2,2), a two-component model determined to be the optimum fit. SNR≈40 was found 

to incorrectly determine the number of compartments in WM, which agrees with previous 

work(213). At SNR≈40, the GM simulations had ADAPT(2,1), also a two-component model, 

as their optimum fit. For WM simulations at SNR≈40, ADAPT(3,1), a three-component 

model, was found to be the optimum fit, indicating that noise was misinterpreted as an 

additional component. For SNR ≥ 80 no other orders competed with ADAPT(2,2) for either 

the WM or GM models with all LERs > 0.5. ADAPT orders (0,0), (1,0), (2,0), and (3,0) were 

Two component White Matter and Grey Matter diffusion models were investigated with a range of b-values and Signal to 

Noise Ratio (SNR) levels. The ADAPT method was applied to the bi-exponential signals and the optimum fit 

(highlighted in dark grey) was selected by choosing the method with the lowest AICc. Those ADAPT orders lightly 

shaded have an LER<0.5, indicating competing models. 
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also considered but had comparatively higher LER values. Sequences with 9, 11 and 13 b-

values with SNR levels 40, 57, and 80 are shown in Table 5.1 and are indicative of the results 

found for other b-value sequences and SNR levels. Due to the model selection performance, 

simulations at SNR≈40 were not considered any further. 

5.3.2 Optimum ADAPT sequence  

The relative error for the IVIM-D* parameter and the total relative error was calculated for 

the WM and GM signals across the range of linearly spaced b-value sequences and SNR 

levels considered. The optimum number of b-values was found to be 11 for all SNR levels 

considered having the lowest total relative error and lowest relative error for the IVIM-D* 

parameter (Figure 5.1). 

 

Figure 5.1: Relative error for the ADAPT method deriving the IVIM parameters as a function of the 

number of linearly spaced b-values in the signal. The relative error for the D* parameter in a) white 

matter, b) grey matter, Total relative error for all IVIM parameters in c) white matter, d) grey matter. 
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The optimum b-value sequence for ADAPT was [0, 100, 200, 300, 400, 500, 600, 700, 800, 

900, 1000] s/mm2. However, it can be noted that the ADAPT model is stable for the b-value 

sequences with 9 to 13 equally spaced b-values. In WM, at SNR≈57, σTOT was minimised 

with an 11 b-values sequence, σTOT=2.206. However, σTOT was comparable for 10 and 12 b-

value sequences with σTOT = 2.351 and 2.285, respectively. At even higher SNR levels the 

minima found at 11 b-values was negligible; in WM, at  SNR≈120,  σTOT =0.013, 0.012 and 

0.013  for 10, 11, and 12 b-value sequences respectively.  

5.3.3 Model Data Simulations 

5.3.3.1 Parameter Variability 

The WM and GM simulation results for estimating IVIM-D, IVIM-D* and IVIM-f with the 

ADAPT method for an 11 b-value sequence linearly spaced are compared to the parameter 

results derived by the Multi-Step method with the 11 b-values linearly spaced, 11 b-values 

exponentially spaced, and 16 b-values optimised sequences (Figure 5.2.)  
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Figure 5.2: Accuracy results for the estimated IVIM parameters from the data simulations using the 

different fitting methods. WM models: a) IVIM-D, b) IVIM-D* c)IVIM-f. GM models: d) IVIM-D, e) 

IVIM-D* f)IVIM-f. The dashed lines represent the true IVIM parameter values, and the error bars the 

standard deviation for the 1000 iterations. 

  

 

At high SNR levels, the ADAPT method provided more accurate IVIM parameters, in 

relation to the parameter averages of the 1000 iterations. This is most notable for IVIM-D* 

where ADAPT is the most accurate fitting method for WM with SNR ≥ 69, and GM with 

SNR ≥ 80. For IVIM-D, ADAPT becomes the most accurate fitting for WM with SNR ≥ 106 

and GM with SNR ≥ 98, For IVIM-f, ADAPT becomes the most accurate at SNR ≥ 106 for 
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WM and SNR ≥ 98 for GM. The error bars for all IVIM parameters derived by the ADAPT 

method were, however larger in comparison to those obtained by the Multi-Step method. 

For all IVIM parameters, the measurements obtained by the ADAPT method compared to all 

those obtained by the Multi-Step method (and various distributions of b-values considered) 

were significantly different (ANOVA P<0.001) with the ADAPT estimations closest to the 

ground truth values (Tukey P<0.05). This was across both the WM and GM models and all 

SNR levels considered with the only exception being IVIM-f in WM at SNR ≈ 69 and 80. 

With the Multi-Step Method, comparing the IVIM parameter measurements obtained with the 

different distributions of b-values, there was no significant difference in IVIM-D or IVIM-f 

(P > 0.05) for SNR ≈ 57, 69 and 80 for either the WM or GM models. IVIM-D* had a 

significant difference across all SNR levels (P < 0.05) and all IVIM parameter measurements 

were significantly different (P< 0.05) for SNR ≥ 113. 

The CV for all IVIM parameters fitted by the Multi-Step method for the three distributions of 

b-values considered were < 10% for the WM and GM models at SNR ≥ 57. As the Multi-Step 

method is typically fitted using an exponentially spaced sequence, the results for the CV, 

relative error and relative bias are shown using both the 11-linearly and 11-exponentially 

spaced b-value sequences in the figures below. However, the 11-linearly spaced method has a 

lower relative error and relative bias for both the WM and GM across all SNR levels 

considered. Consequently, only the results from the 11 linearly spaced b-value distribution 

are discussed any further. 

The CV for all IVIM parameters was greater when fitted with the ADAPT method than with 

the Multi-Step method (Figure 5.3) but an acceptable CV of <10% can be achieved in most 

situations. 
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Figure 5.3: Coefficient of Variation (%) calculated for the fitting of the IVIM parameters with 

the ADAPT method and the multi-step fitting method for 11 equally spaced linear b-values. 

WM models: a) IVIM-D, b) IVIM-D*, c) IVIM-f. GM models: d) IVIM-D, e) IVIM-D*, f) 

IVIM-f. The dashed lines represent a CV=10%. 

 

 

Although the parameter CVs are greater for the ADAPT fitting method, the CV is <10% for 

the WM in IVIM-D, IVIM-D* and IVIM-f at SNR ≥89, 80, 106, and in GM, SNR ≥ 89, 69, 98 

respectively. The relative error was calculated for each of the IVIM parameters along with a 

summation for the total relative error (Figure. 5.4). (σ values in Table 5.2)
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Figure 5.4: Relative Error calculated for the fitting of the IVIM parameters with the ADAPT method and the Multi-Step fitting method for 

11 equally spaced linear b-values. WM models: a) IVIM-D, b) IVIM-D*, c)IVIM-f, d) Total.GM models: e) IVIM-D, f) IVIM-D*, 

g)IVIM-f, h) Total. 

 

  



   

 

142 

 

 

Table 5.2: Relative Error (± standard deviation) of IVIM parameters from White Matter and Grey 

Matter brain models fitted with the Multi-Step and ADAPT fitting method 

 

For SNR≈57, the relative error in the IVIM-parameters for both the WM and GM models is at 

least an order of magnitude greater with the ADAPT model than with the Multi-Step method. 

However, as the SNR level increases, ADAPT begins to outperform the Multi-Step method. 

The performance is most notable for the IVIM-D* parameter. By SNR≈69, the relative error 

in the WM is comparable; σD∗=0.128, 0.189 for the Multi-Step method and the ADAPT 

fitting method respectively. 

For SNR≈89, σD∗ is considerably smaller for the ADAPT fitting method in the WM model; 

σD∗=0.127, 0.013 for the Multi-Step method and the ADAPT fitting method respectively. As 

the SNR level increases, the relative error for the Multi-Step method plateaus while the 

relative error for the ADAPT fitting methods continues to decrease; i.e. at SNR≈120 in the 

WM model, σD∗=0.1271, 0.0004 for the Multi-Step and ADAPT fitting method respectively. 

In the GM model, ADAPT has a smaller σD∗ from SNR≈80. The ADAPT method gives a 
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smaller relative error for the other IVIM parameters at high SNR levels: from SNR≈106 and 

SNR≈98 for the IVIM-D parameter in the WM and GM respectively; from SNR≈113 and 

SNR≈106 for the IVIM-f parameter in the WM and GM. By SNR≈98, the total relative error 

in both the WM and GM is smallest when parameters are fitted using the ADAPT method 

instead of the Multi-Step method. 

5.3.3.2 Parameter Bias 

The relative bias results for the IVIM parameters in the WM and GM tissue models are 

presented in Figure 5.5. In general, the relative bias was positive for IVIM-D and IVIM-D* 

and negative for IVIM-f. For the IVIM parameters fitted by the Multi-Step method, the 

relative bias in each of the parameters appeared unchanged across the range of SNR levels 

considered. Higher biases were apparent in the perfusion related parameters, IVIM-D* and 

IVIM-f for the WM model, a lower perfused model compared to the GM. Conversely, the 

relative bias of the parameters derived by the ADAPT method were varied across the SNR 

levels considered, with the relative bias decreasing by orders of magnitude as the SNR 

increased.  
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Figure 5.5: Relative Bias (absolute values) calculated for the fitting of the IVIM parameters with the 

ADAPT method and the Multi-Step fitting method for 11 equally spaced linear b-values. WM model: 

a) IVIM-D, b) IVIM-D*, c)IVIM-f. GM model: d) IVIM-D, e) IVIM-D*,f)IVIM-f. 

  

 

For the WM model, θD∗ >10% (SNR≈120, θD∗=12.71 ± 0.003%). From SNR≈80, the ADAPT 

method outperforms the Multi-Step method in the WM model, with θD∗=0.80 ± 0.04% 

compared to θD∗=12.73 ± 0.32%. The same trend was observed for θD∗ in the GM (Table 5.3). 

In the WM, ADAPT has a lower relative bias from SNR≈89, 69, 89, for the IVIM-D, IVIM-

D* and IVIM-f parameters, respectively. For the GM the threshold is at SNR≈80 for all three 

parameters. For the 11 exponentially spaced b-values, in WM, at SNR≈120, θD∗=32.54 ± 

0.004%). The relative bias for IVIM-D* in WM was also investigated using the 

unconstrained fitting method (where all IVIM parameters are simultaneously fitted); at 

SNR≈120, θD∗=6.05 ± 0.00024% and θD∗=7.15 ± 0.0028% with 11 exponentially and 11 

linearly spaced b-values respectively. 
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Table 5.3: Relative Bias (%) of IVIM parameters 

  

5.3.4 In-Vivo Data Analysis 

For the In-Vivo data, averaged over 8 acquisitions, the SNR at b-value=1000s/mm2 was 

found to be 122.8±27.9 in the WM ROIs and 138.1±18.9 in the GM. The IVIM-D* parameter 

maps, calculated with the ADAPT and Multi-Step fitting methods for an axial slice, are 

presented in Figure 5.6. 

 

 

Figure 5.6: a)DWI axial volunteer slice where b=0 s/mm2, averaged over 8 acquisitions. b)IVIM-D* 

parameter map calculated using the multi-step method. C) IVIM-D* parameter map calculated using 

the ADAPT method. 

  

In the WM, the average IVIM-D* value was reported as D*WM=7.7×10−3 ± 5.7×10−4 mm2/s, 

CV=7.33% and D*GM=10.3×10−3 ± 5.6×10−4 mm2/s, CV=5.43% for the ADAPT and the 

Multi-Step methods respectively. In the GM, D*GM=9.2×10−3± 5.2×10−4 mm2/s, CV=5.70% 
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and D*WM=9.8×10−3± 5.4×10−4 mm2/s, CV=5.55% for the ADAPT and the Multi-Step 

methods. The WM and GM histograms are presented in Figure 5.7.  

 

Figure 5.7: Histograms of IVIM-D* for In-Vivo data fitted with the multi-step and ADAPT fitting 

methods. White Matter region of interest (n=2687) and Grey Matter region of interest (n=1327). 

 

 

The ADAPT method exhibited a broader histogram curve, implying greater variance in 

measuring IVIM-D*, in comparison to the Multi-Step method.  The histogram peaks were at 

higher IVIM-D* values for the multi-step method in both the WM and GM. 
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5.4 Discussion 

At high SNR levels, the ADAPT method is the superior fitting method, with a lower relative 

error and relative bias for each of the IVIM parameters considered.  With the Multi-Step 

method, relative bias does not improve with increasing SNR levels and is incapable of 

yielding an accurate IVIM-D* in most situations. The bias in the estimated parameter values 

is strongly related to the b-value distribution (116). This is most evident in the IVIM-D* 

parameter. With the multi-step method, low perfused tissues require oversampling of the 

diffusion signal in the ‘low b-value’ regime (b < 200s/mm2) (102)(104) in order to detect the 

subtle behaviour. Consequently, this oversampling means that any non-linear b-value 

sequence will bias the parameter fitting, as observed with the 11 exponentially spaced b-value 

sequence. 

The Multi-Step method had a strong negative bias on all the IVIM-f values indicating that 

this method under fits the IVIM-f parameter and consequently overestimates the IVIM-D* 

parameter. The relative bias for IVIM-D* is greatest in the WM model, as this has a lower 

perfusion than the GM model. Even at SNR≈120, the bias of the Multi-Step method is >10% 

(12.71 ± 0.13%) in the WM model. The relative bias of the unconstrained fitting method was 

also greater than in the ADAPT method. 

The ADAPT fitting method was successfully implemented for the In-Vivo case, with a small 

CV(<10%) observed in the WM and GM. Although the parameter bias couldn’t be measured, 

as the ground truth is unknown, the trends are the same as those observed in the simulations. 

The average IVIM-D* value is greater with the Multi-Step method, and the histograms have 

peaks at higher IVIM-D* for the Multi-Step fitting method, supporting the observation that 

the Multi-Step method overestimates IVIM-D*. 
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It is recommended that providing the SNR level is sufficiently high (SNR ≥ 80) the ADAPT 

method should be used for recovery of the IVIM-D* parameter. However, an even higher 

SNR level is required for the stable recovery of the IVIM-D and IVIM-f parameters with the 

ADAPT method (SNR ≥ 98). As many IVIM studies don’t consider IVIM-D*, if IVIM-D and 

IVIM-f are the only two parameters of interest, then the Multi-Step method should be 

implemented. For IVIM-D and IVIM-f, the Multi-Step method is robust from SNR≈40 with 

the CV and relative bias <10%. 
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5.5 Study Limitations 

Although the ADAPT method can attain a greater precision and accuracy, the time taken to 

achieve such a high SNR could be challenging in a clinical setting. If such a high SNR level 

is not feasible to attain, then a hybrid method for parameter recovery could be possible. At 

SNR≥80, using the equally spaced b-value sequence, the ADAPT method could be used to 

attain IVIM-D*. The same diffusion signal could then be fitted with the Multi-Step method 

to estimate IVIM-f and IVIM-D. As the ADAPT method makes no prior assumptions about 

the diffusion signal nor requires Multi-Step fitting procedures, it is a much faster fitting 

algorithm (213).  

It may be seen as a limitation that the ADAPT method requires the b-values to be equally 

spaced. This is a b-value sequence unlikely to be used in current IVIM protocols. However, 

non-linearly spaced b-value sequences are currently required due to the poor fitting of 

IVIM-D*. The Multi-Step method requires the oversampling of the perfusion regime and is 

thus intrinsically biased. The ADAPT method requires a substantially higher SNR level 

than the Multi-Step method for parameter estimation, highlighting the general limitations of 

parameter estimation from noisy data. Regardless of the number of b-values or model used, 

no fitting method can truly give accurate and precise parameters with noisy data (229).  

Other IVIM fitting methods should also be compared to the ADAPT method. i.e. Bayesian 

probability methods (125,230). Bayesian analysis doesn’t require initial parameter 

estimations. However, the implementation of such a method can be computationally 

intensive and parameter estimations greatly influenced by the prior information specified. 

Additionally, the low variability observed in parameter estimations may be at the expense 

of masking features in heterogeneous tissue (231). 
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The ADAPT method should be further developed to optimise fitting data with low SNR 

levels. The effects of denoising algorithms (232) should also be explored for the potential to 

avoid long acquisition times. The inclusion of an additional parameter or compartment to 

model the noise should also be considered. 
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5.6 Conclusion 

At high SNR levels, the ADAPT method can successfully derive the IVIM parameters from 

the diffusion signal without making any prior assumptions about the nature of the data. The 

ADAPT method can estimate IVIM-D* with an acceptable relative bias and more accuracy 

than currently implemented fitting methods, which inherently provide biased values of this 

parameter. 
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Chapter 6 

Conclusions and Future Work 
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6. Conclusions and Future Work 

6.1 General Overview 

The Auto-regressive Discrete Acquisition Points Transformation (ADAPT) method was 

developed for the estimation of multicomponent diffusion and perfusion behaviour within 

biological systems. The ADAPT method demonstrated that it could correctly identify the 

number of multiexponential components within the diffusion signal. This is something that 

cannot be achieved by applying multi-exponential fitting methods and selecting the optimum 

fit. This is an essential technique as the number of components within the diffusion signal 

greatly affects parameter estimations and consequently, the interpretation of the data. The 

coefficients of the ADAPT method also demonstrated a significant correlation with the 

Intravoxel Incoherent Motion (IVIM) parameters and the Dynamic Susceptibility Contrast 

(DSC) derived cerebral blood volume, highlighting a non-invasive method to obtain perfusion 

information. The ADAPT method and respective coefficients could be used to fully interpret 

the diffusion and perfusion measurements. 

Alternatively, the diffusion signal could instead be interpreted though multiexponential decay 

constants via a reformulation of the ADAPT method. Providing the b-values in the diffusion 

sequence are equally spaced, the IVIM parameters can be mathematically derived from the 

ADAPT coefficients. The ADAPT method can estimate the IVIM parameters with lower bias 

and more accuracy than currently implemented fitting methods, which inherently provide 

biased values of the parameters. This is of particular significance for the perfusion IVIM-D* 

parameter which is not yet routinely calculated due to poor measurement errors with current 

fitting methods.  The technical validation of the ADAPT method, both in component detection 

and parameter estimation, demonstrated that such techniques were robust and could be 
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implemented with In-Vivo data, but highlighted the need for a sufficiently high signal to noise 

ratio and spatial resolution within the data. In this thesis, it has been demonstrated that multi b-

value DWI data contains complex diffusion and perfusion information. With more advanced, 

sensitive techniques, such as the ADAPT method, this information can be probed further and 

establish a deeper understanding of tissue structure and behaviour. 

Final conclusions and suggestions for the direction of future studies are presented below: 
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6.2 Final Conclusions 

1. The ADAPT method demonstrated the ability to robustly fit a variable number of 

components and identify voxels exhibiting partial volume effects. IVIM parameter 

estimation is confounded in regions of partial volume effects, resulting in the 

thresholding of diffusion data in and around the ventricles. Hence the ADAPT method 

could be used to recover useful diffusion and perfusion related parameters from 

information that would otherwise be discarded. Technical validation demonstrated that 

the identification of the components was robust. 

2. The ADAPT coefficients were shown to correlate with the perfusion measurement 

Dynamic Susceptibility Contrast- relative Cerebral Blood Volume (rCBV). The 

correlation was statistically stronger than the correlation between IVIM-f and rCBV. As 

DWI is a non-invasive method, this work highlighted a bolus free method for obtaining 

perfusion information. The performance of ADAPT also demonstrated that the fitting 

method used for interpreting the diffusion signal could greatly impact the correlation 

performance.  

3. The ADAPT method was reformulated to enable the derivation of the IVIM model 

parameters from the ADAPT coefficients.  The ADAPT fitting method was compared 

to the Multi-Step fitting method commonly used for IVIM parameter estimation. 

Considering the technical validations required for a quantitative imaging biomarker, the 

IVIM parameter accuracy and bias was lower with the ADAPT method. These results 

demonstrate that the ADAPT method was demonstrated to accurately measure IVIM-

D* at high signal to noise ratio (SNR) levels. Unlike the Multi-Step method, the ADAPT 

method attained an acceptable relative bias for the IVIM-D* parameter. Providing the 
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SNR is sufficiently high (SNR ≥ 80); the ADAPT method should be used for the 

recovery of the IVIM-D* parameter.  
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6.3 Limitations and Future Works 

1. The physical meaning of the ADAPT coefficients requires further investigations. 

Although the IVIM parameters can be mathematically derived from the ADAPT 

coefficients, error propagation will result in the IVIM parameters being less robust than 

the ADAPT coefficients. Hence the biophysical meaning of each of the ADAPT 

coefficient should be established in order to allow their direct interpretation. This should 

be explored through a range of studies, including establishing relationships with other 

perfusion biomarkers and further investigating computational models. A physical flow 

phantom should also be considered for validating perfusion measurements. 

2. The ADAPT method should be further developed to optimise fitting data with lower 

SNR levels. In particular, the effects of denoising algorithms in combination with 

ADAPT should be explored for the potential to avoid long acquisition times. Selection 

of the optimum denoising algorithm is non-trivial and would require a considerable 

investigation. The inclusion of an additional component or parameter to account for 

noise should also be considered in future developments of the ADAPT method. 

3. The ADAPT method for IVIM parameter extraction requires a linearly spaced b-value 

sequence for estimation of the IVIM parameters. This is a b-value sequence unlikely to 

be used in current IVIM protocols. However, current fitting methods require the 

oversampling of the low b-values in order to measure the effects of perfusion and are 

consequently intrinsically biased. ADAPT provides a method for robust component 

detection and parameter estimation, making no prior assumptions about the nature of 

the data.  

4. With technical advancements, higher quality diffusion data can be attained, and the 

parameters from more complex multiexponential equations could be investigated. The 
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feasibility and robustness of parameters relating to a tri-exponential model should be 

explored. The ADAPT method should also be used to explore anisotropic effects with 

Diffusion Tensor Imaging (DTI). Such a study would require extensive considerations 

for the number of b-values and number of directions to include in the protocol.  The 

ADAPT method would require reformulation and further interpretation of the resulting 

optimum ADAPT order. The trade-off between SNR and scan duration would also need 

to be considered. Although applications to DTI signals require extensive work, such 

work would enable anisotropic effects such as fanning or crossings of axon bundles to 

be explored. Further simulations and In-Vivo studies should be investigated. 

 

The work in this thesis highlights the pitfalls of the assumptions and biases made by current 

multi b-value diffusion fitting methods. A new fitting method was investigated to address these 

pitfalls and evaluated. ADAPT could potentially obtain complex diffusion and perfusion 

biomarkers. Rich multicomponent information is present in the DWI signal.  In order to extract 

this complex tissue behaviour, the ADAPT method is recommended for the fitting of multi b-

value DWI data. 
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