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I 

 

ABSTRACT 

Targeting zeros-emissions in transportation, future vehicles will be more energy-

efficient via powertrain electrification. This PhD research aims to optimise an 

electrified off-highway vehicle to achieve the maximum energy efficiency by 

exploring new artificial intelligence algorithms. The modelling study of the vehicle 

system is firstly performed. Offline design optimisation and online optimum energy 

management control methodologies have been researched. New optimisation 

methods are proposed and compared with the benchmark methods. Hardware-in-

the-Loop testing of the energy management controller has been carried out for 

validation of the control methods. This research delivers three original contributions: 

1) Chaos-enhance accelerated particle swarm optimisation algorithm for offline 

design optimisation is proposed for the first time. This can achieve 200% higher 

reputation-index value compared to the particle swarm optimisation method. 

2) Online swarm intelligent programming is developed as a new online optimisation 

method for model-based predictive control of the vehicle energy-flow. This 

method can save up to 17% energy over the rule-based strategy. 

3) Multi-step reinforcement learning is researched for a new concept of ‘model-free’ 

predictive energy management with the capability of continuously online 

optimisation in real-world driving. It can further save at least 9% energy. 
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Chapter One 

 INTRODUCTION 

Future vehicles are moving towards electrification, connectivity and autonomy. The 

performance of vehicles will be improved with less fuel consumption and emission 

through design optimisation in the R&D process and real-time optimum control in 

real-world driving. This thesis researches on design optimisation and optimal energy 

management for hybrid electric vehicles by exploring new artificial intelligence 

algorithms. This chapter provides an introduction of this thesis, including the 

background, motivations, objectives, and outline. 

 Background 

1.1.1 Thrusts for vehicle electrification 

Numbers of new emission legislations have been launched for reducing CO2 

emission in the transportation sector. International energy agency (IEA) announced 

that the transportation sector produced 7498.6 Million tons of CO2 (with 5695.7 Mt 

produced by road transportation) accounting 24% of global CO2 emission in 2015 

as in Fig. 1-1 (International Energy Agency, 2017). Targeting further CO2 emission 
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reduction, increasing stringent regulations with new testing procedures will be 

launched worldwide (Continental Automotive GmbH, 2017). A summary of historical 

CO2 emissions and future CO2 limitation targets for different world regions is shown 

in Fig. 1-2. European Commission has proposed its 2020/2021 CO2 emission target 

based on the NEDC test procedure which was 95 gCO2/km for passenger cars and 

147 gCO2/km for light commercial vehicles (European Commission, 2014). They 

have also proposed to accelerate the uptake of zero- and low-emission vehicles and 

further 30% CO2 will be reduced by 2030 (European Commission, 2017).  

 

Fig. 1-1 World CO2 emission from fuel combustion by sector (International 

Energy Agency, 2017) 
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Fig. 1-2 Historic CO2 emissions and target for different world regions 

(Continental Automotive GmbH, 2017) 

The growing importance of air quality has forced automotive industries (including 

OEMs and Tier 1 suppliers of passenger cars, bus, commercial vehicle, and off-

highway vehicles) considering carbon reduction solutions with low cost. 

Electrification, which takes full advantages of electric power and electric drive, is the 

most significate solution towards energy saving and emission reduction. The 

Passenger Car Products Roadmap from the UK Advanced Propulsion Centre 2017 

predicts that “thermal propulsion systems will transit from the sole propulsion device 

to being part of a hybrid system” and “vehicle connectivity and autonomy on 

powertrains design will merge” (Advanced Propulsion Centre, 2017). During the past 

decades, the research of electrified passenger cars has delivered many successful 

mass-produced vehicle products, e.g. Toyota Prius, Tesla, Nissan Leaf, Jaguar I-
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PACE, etc. Electrified cars including mild hybrid, full hybrid, plug-in hybrid, fuel cell 

hybrid and pure electric vehicles have been widely adopted by the market.  

Legislations also focus on heavy-duty vehicles, which have contributed 27% of road 

transport CO2 emissions and 5% of EU greenhouse gas (GHG) emissions in 2016 

(Gregor, 2019). The proposal from EU commission has announced that the average 

CO2 emission from new heavy-duty vehicles in 2025 should be 15% lower than in 

2019, and a further 30% reduction would be achieved in 2030. This promotes the 

electrification of commercial and off-highway vehicles, especially for logistics 

vehicles and special utility vehicles working in urban areas.  

Many countries around world have proposed their plans to ban petrol and diesel 

vehicles (e.g. the UK is committed to banning all new petrol and diesel cars/vans 

from 2040), whereas hybrid electric vehicles (HEVs) are still expected to comprise 

45-65% of light-duty vehicles worldwide by 2050 (Global EV Outlook 2018, 2018). 

Hybrid vehicle enjoys longer driving distance and lower life cycle CO2 emission 

compared to the pure electric vehicle, which is far more complex than conventional 

vehicles and pure electric vehicles. It incorporates lots of optimisation processes in 

design and energy management control (Enang and Bannister, 2017a). The design 

of the hybrid system will consider how the design parameters (including component 

size and control parameters) affect the system performance (e.g. vehicle power, fuel 

economy, system cost, size, etc.) and what is the best combination of parameters to 



 

5 

 

achieve the optimal system performance. Energy management system (EMS) is a 

complex system for the supervisory control of the hybrid powertrain, which is 

developed to determine the optimal distribution of energy flow in an HEV to satisfy 

the driver’s demand and achieve maximum energy efficiency (Wang et al., 2017).  

1.1.2 Current development of electrification of vehicles 

Hybridization is a mainstream technology for vehicle electrification to achieve energy 

saving and emission reduction in the automotive industry. A hybrid electric vehicle 

usually equips with at least two power sources, e.g. a combination of internal 

combustion engine and electric motors.  

Hybrid electric vehicles can be classified into four categories according to their 

degree of hybridization, i.e. micro-hybrid, mild hybrid, full hybrid and plug-in hybrid 

(Chan, 2007). Taking passenger cars as an example, the electric power for the 

micro-hybrid vehicle is about 2.5kW at 12V, which can contribute to 5%~10% 

energy saving comparing with conventional engine-driven cars. The mild-hybrid 

vehicle is usually equipped with a 10-20kW motor at 48~200V level which can help 

to save 20%~30% energy with 20%~30% cost increase. The 48V mild-hybrid is the 

most commonly used technology for most OEMs (ReportLinker, 2016). The full 

hybrid car is powered by a motor around 50kW with 200-300V power supplier, which 

has the potential to save 30%~50% energy while the cost would increase by about 



 

6 

 

30%-40%. Plug-in hybrid electric vehicle (PHEV) is mainly refuelled by the power 

grid, which is designed with all-electric ranges of 30-60km using lithium-ion batteries. 

The energy efficiency of PHEV can be very high, for example, the BMW X1 plug-in 

edition (a compact size SUV with 37-mile electric range) can achieve a fuel 

consumption rate of 1.8L/100km in a combined driving cycle (Padeanu, 2016).  

It is also commonly accepted that the hybrid vehicle can be classified into three 

mainstreams, including series, parallel and power-split (series-parallel). 

a) Series hybrid electric vehicles 

The series hybrid vehicle has the longest history. Porsche built the first hybrid car 

using an internal combustion engine to spin a generator that provided power to 

electric motors located in wheel hubs in the 1890s (Chan, 2007). Many modern auto 

companies also have their series hybrid products, e.g. Mitsubishi, Volvo and BMW 

(Enang and Bannister, 2017b).  

As shown in Fig. 1-3, the series hybrid is purely driven by the electric motor, and 

there is no mechanical link between the internal combustion engine and driving 

wheels. The engine is used to power a generator to transfer fossil energy into electric 

power to charge the battery or power the electric motor(s). An inverter (or power 

converter) is used to control the direction of power flow. Normally, there are four 

working modes for series hybrid vehicle: 1) battery drive; 2) charging only; 3) engine 
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boosting; and 4) regenerative brake. For the design of a series hybrid powertrain, 

the maximum engine power can be less than the average power requirement of the 

vehicle. In the control aspect, the energy management system will ensure the series 

hybrid vehicle working in battery drive mode at most of the operation hours. Fuel 

consumption and exhaust emissions would be minimised by making the engine 

working at its most efficient region (Enang and Bannister, 2017b). The drawbacks of 

series configuration are mainly concerned on its total system efficiency and the 

increasing of cost led by a large battery and electric driving system (Hu, Ni and Peng, 

2018). 

 

Fig. 1-3 Configuration of series hybrid vehicle (Hu, Ni and Peng, 2018) 

b) Parallel hybrid electric vehicles 

The first parallel hybrid electric vehicle was designed by H. Piper in 1905, which uses 

a small electric motor to provide boosting power to its internal combustion engine in 
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the low-speed zone (Chan, 2007). Both internal combustion engine and electric 

motor are physically connected to the driving wheels as shown in Fig. 1-4, so that 

the engine and the motor can work independently or simultaneously to propel the 

vehicle. This configuration is usually used for micro and mild hybrid vehicles which 

allow a relevant larger internal combustion engine compared to the series 

architectures. The parallel configuration is widely used for hybridisation of 

conventional powertrains with an internal combustion engine. 

 

Fig. 1-4 Configuration of parallel hybrid vehicle (Hu, Ni and Peng, 2018) 

Based on the position of the electric motor, there are five main powertrain 

architectures for parallel hybrid vehicles (i.e. P0, P1, P2, P3, and P4) as shown in 

Fig. 1-5. In P0 architecture (also named belt starter generator architecture), a 48V 

motor/generator would replace the starter (normally a 12V motor) and connect with 

the internal combustion engine with a belt. The 48V P0 structure is a mainstream 
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technology adopted by automotive manufacturers because it combines a relatively 

low integration cost with considerable benefits in terms of CO2 emissions reduction 

and dynamic performance boost (X-engineer, 2019). The P1 architecture mounts a 

motor at the end of the engine crankshaft (before clutch), and it can provide more 

torque than P0 architecture. P2, P3 and P4 architectures have better energy flow 

efficiency because the electric motor is integrated with the transmission to allowed 

higher transmission efficiency. The motor of P2 architecture is allocated before the 

transmission (after the clutch). P3 architecture arranges its motor at the output shaft 

of the gearbox (before final reducer) and the motor of P4 architecture is located at 

the output shaft of the final reducer. 

 

Fig. 1-5 Different architecture for a parallel hybrid vehicle (X-engineer, 2019) 

c) Series-parallel hybrid electric vehicles 

The series-parallel hybrid architecture was firstly introduced by Toyota Prius in 1997, 

as a newborn of the hybrid vehicle before a fad-away since the 1920s (Chan, 2007). 

As shown in Fig. 1-6, the series-parallel architecture contains an internal combustion 
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engine, a generator, an electric motor, a battery and a power convertor. The engine, 

generator and electric motor are physically connected with a power split device 

(normally a planetary gear set) so that this architecture can work in both series mode 

and parallel mode. The series-parallel configuration enjoys the advantage of having 

the engine decoupled from the vehicle, thus making it possible for the vehicle to be 

powered using the electric motors only (Liu, Peng and Filipi, 2005). Series-parallel 

architecture requires the internal combustion engine and the electric motors to be 

bonded together by the power-split device, which limits the flexibility of layout. 

Compared to parallel hybrid architectures, this architecture is generally more 

expensive; torque constraints can limit towing capacity and acceleration (Wu, Zhang 

and Dong, 2015). 

 

Fig. 1-6 Configuration of series-parallel hybrid vehicle 

There are three fundamental topologies of series-parallel hybrid vehicles, including 

input-split, output-split, and compound-split, as shown in Fig. 1-7. More complicated 
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power-split can be generated from the three fundamental architectures (Wu, Zhang 

and Dong, 2015). In all topologies, the internal combustion engine (ICE) connects 

with a generator via a planetary gear set (PGS). For input-split architecture, as 

shown in Fig. 1-7 (a), the output shaft of the planetary gear-set and the electric motor 

(EM) are connected at the input shaft of the differential. Output-split architecture 

requires ICE, one EM and output shaft are connected to three ports of PGS and the 

second EM is linked to ICE fixedly (Miller, 2006), as shown in Fig. 1-7 (b). 

Compound-split architecture, as shown in Fig. 1-7 (c), is more complex since the 

compound power-split device contains two interconnected planetary gear sets, 

which are bonded by two compound branches inside the power-split device. 

 

Fig. 1-7 Fundamental series-parallel architects: (a) input-split; (b) output-split; 

and (c) compound-split (Wu, Zhang and Dong, 2015) 

d) Axle-split hybrid electric vehicles 

Axle-split hybrid architecture allocates the engine/generator and the traction motor 

separately in different axles. In 2008, Ohio State University developed an axle-split 
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hybrid car for Challenge-X competition sponsored by General Motors and the US 

Department of Energy (Koprubasi, 2008). University of Victoria (Canada) has also 

developed this kind of architecture for Eco car 2 competition (Wu, Zhang and Dong, 

2015). The most famous axle-split hybrid electric vehicle is the BMW i8. Normally, 

the front axle applies a parallel hybrid topology, where the front wheels are 

connected physically with the engine and the motor/generator. The rear axle is driven 

purely by an electric motor, and there is no mechanical connection between the front 

axle and the rear axle, as in Fig. 1-8. The axle-split architecture is a variant of series-

parallel architecture without the planetary gear set so that the total cost can be 

reduced. Without the auto torque compiling function enabled by the planetary gear 

set, the axle-split architecture requires advanced control algorithm to allocate power 

for the front and rear axles. 

 

Fig. 1-8 The operation model of axle split hybrid vehicle: (a) pure electric drive 

mode, (b) series mode, (c) parallel mode, and (d) engine driving mode 

(Wu, Zhang and Dong, 2015) 
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The axle-split hybrid vehicle can work in four different modes as shown in Fig. 1-8, 

including pure electric drive, series mode, parallel mode, and engine driving mode. 

The vehicle is purely driven by the rear axle in a purely electric drive model, and it is 

front axle driven by the internal combustion engine in engine driving mode. In series 

mode and parallel mode, the energy flow can be controlled as a series hybrid or 

parallel hybrid architecture. 

1.1.3 The hybrid powertrain for heavy-duty applications 

The electrification of heavy-duty vehicles, including buses, trucks, tractors, special 

utility vehicles and military vehicles, have also been researched for many years. 

Most of the above hybrid architectures have been applied in heavy-duty vehicles. 

Series and parallel architectures are usually used for hybrid buses and light trucks 

(Wang, Zeng and Wang, 2003; Chomchai, Sonjaipanich and Cheewaisrakul, 2011; 

Liu et al., 2017), and the series architecture is very commonly used for heavy trucks 

and tractors (Okui and Kobayashi, 2015; Zou et al., 2016). Power-split architecture 

is rare to be found in heavy-duty application because it is hard to develop a cost-

efficient and reliable power-split device for heavy-duty application. Series topology 

is adopted by most powertrains of heavy-duty vehicles because it allows more 

flexible allocation of traction motors and it takes full advantage of electric drive in 

high-torque and low-speed domains. For example, the researchers from the Beijing 
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Institute of Technology have developed a tracked vehicle using series architecture, 

as shown in Fig. 1-9, which is equipped a diesel engine-generator with a maximum 

power of 300kW and a 50Ah 470V battery package to power two 150 kW traction 

motors for each track (Liu et al., 2015b).  

 

Fig. 1-9 The architecture of a hybrid tracked vehicle (Liu et al., 2015b) 

For special utility vehicles, the power for the operation parts (e.g. the swing system 

of an excavator) would also require large power while vehicle in operation. Komatsu 

has developed a series of hybrid crawler excavator using series hybrid architecture, 

which includes a deiseal engine-generator, electric swing motor, power inverter and 

a capacitor package. The swing motor can capture and regenerate electric power 

from the slow-down of the upper part of the excavator. The regenerated energy is 

stored within the capacitor and will help to swing or help the engine to accelerate. 

The system with a 202kW engine-generator has the capability to provide power for 

up to 37tone operating weight and save up to 30% energy comparing with the 

conventional hydraulic swing system (Komatsu Hybrid Technology, 2019).  
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Fig. 1-10 Hybrid swing system of Komatsu’s excavator (Komatsu Hybrid 

Technology, 2019) 

 Motivations 

This PhD research is partially supported by an Innovate UK project (No.102253) 

which aims to develop a brand-new product of hybrid electric aircraft-towing tractor. 

This is a highly industrial-oriented project which motivates the innovation and 

research in new artificial intelligence methodologies for hybrid vehicle design and 

energy management control. This research is based on the following four 

observations: 

1) Legislations for electrified off-highway vehicles have forced the OEMs 

seeking for new design methodology for hybridization and electrification of 

special utility vehicles.  

2) Challenge of modern design process involving multiple variables and multiple 

objectives requires reliable and rapid offline optimisation technology to 
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replace the complex iteration of trial-and-error.  

3) Advanced model-based predictive energy management control is still under 

development which is seeking for effective real-time nonlinear model-based 

predictive control.  

4) Vehicle system would have the capability of continues self-optimisation to fulfil 

the requirement of future RDE (real-world driving emissions) test procedure 

which involves more uncertainties that are hard to be modelled in the R&D 

process.  

 Objectives 

This PhD research aims to develop an artificial intelligence methodology for hybrid 

powertrain design optimisation and real-time energy management control, which will 

help the OEMs to develop their new vehicle prototype meeting design targets and 

achieving maximum energy efficiency in daily operations. In addition, this research 

will also demonstrate how artificial intelligence assists the electrification of off-

highway vehicles and improve the competitively of vehicle products. The specific 

objectives are: 

1) To build a fully real-time system model of the electrified aircraft-towing tractor 

with scalable powertrain components, for design optimisation and real-time 



 

17 

 

energy management control. 

2) To develop a particle swarm intelligence algorithm for off-line multiple 

objective design optimisation with multiple variables, including variables for 

sizing and rule-based energy management control. 

3) To develop online optimisation method for real-time optimal energy 

management control with a nonlinear predictive model of vehicle energy-flow. 

4) To develop life-long continuous vehicle performance optimisation method to 

maximise the vehicle efficiency in real-world operations based on 

reinforcement learning. 

5) To evaluate the vehicle performance in each stage and demonstrate the 

advancement of the proposed artificial intelligent methodology for design 

optimisation and energy management control of the hybrid vehicle system. 

 Thesis Outline 

The rest of this thesis is organised into six chapters, including one for literature 

review, one for methodology introduction, three main chapters presenting the original 

contributions, and the last one for the conclusions. 

Chapter Two reviews current state-of-the-art technologies relevant to modelling 
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method for vehicle electrification research, offline and online optimisation methods 

for hybrid powertrain developments. This chapter also highlights the future trend for 

modelling method, offline design optimisation of hybrid vehicle and its real-time 

energy management control. 

Chapter Three introduces the methodology and facilities used for this study. Firstly, 

the vehicle development process is divided into four main tasks, including modelling, 

Hardware-in-the-Loop (HiL) testing, design optimisation and optimal energy 

management control. The methodologies for research on design optimisation and 

optimal energy management control are illustrated, followed by the introduction of 

the driving cycles for aircraft-towing tractor development. The HiL testing system and 

research facilities are introduced in this chapter, followed by the development of real-

time models for HiL testing. 

Chapter Four carries out the research into offline design optimisation. A new design 

optimisation method using chaos-enhanced accelerated particle swarm optimisation 

(CAPSO) algorithm is proposed. The outcomes of this chapter have been published 

with Applied Energy (Zhou et al., 2017). The design optimisation (including 

component sizing and control parameter calibration) is first formulated as a multi-

objective categorical optimisation problem by mathematical modelling. The 

optimisation is firstly carried out using conventional accelerated particle swarm 

optimisation (APSO) algorithm, and then a new CAPSO algorithm is proposed to 
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improve the optimisation performance. The design optimisation result is secured via 

a two-stage optimisation based on CAPSO algorithm. 

Chapter Five studies the model-based predictive control method for real-time 

energy management. This chapter proposes a new cyber-physical control for energy 

management using online swarm intelligent programming (OSIP), which has been 

published with IEEE Transactions on Industrial Informatics (Zhou et al., 2018). The 

optimisation problem for energy management control is firstly formulated, followed 

by control-oriented modelling for model-based predictive control. The OSIP for 

solving the online optimisation problem is developed based on the CAPSO algorithm 

proposed in Chapter Five. The advantages of model-based predictive energy 

management control are validated by HiL testing. 

Chapter Six researches a new concept of ‘model-free’ predictive energy 

management method with multi-step reinforcement learning to maximise vehicle 

efficiency in daily operations. The original contribution of this chapter has filed a UK 

patent (Zhou and Xu, 2018), and a research paper has been published with Applied 

Energy (Zhou et al., 2019). Firstly, the energy management of the vehicle is 

formulated as a Markov decision problem. The model-free predictive energy 

management with three algorithms for multi-step reinforcement learning is then 

studied through the investigation of their learning performance in different 

optimisation scenarios. The real-time control feasibility and performance of the 
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proposed energy management method are examined and evaluated by hardware-

in-the-loop testing. 

Chapter Seven summaries the outcomes and impacts of the research conducted in 

this thesis. A recommendation for future work is also given in this chapter following 

a critical analysis of this research. 
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Chapter Two  

 LITERATURE REVIEW 

Modern vehicle engineering incorporates many optimisation problems. Model-based 

development, which uses mathematical models to predict the vehicle’s performance 

with different design and control parameters for optimisation, is widely used for offline 

and online optimisation of vehicle systems. This chapter presents a comprehensive 

literature review about 1) modelling method for research of electrified vehicles; 2) 

offline optimisation methods for hybrid electric vehicles; and 3) real-time control 

method for energy management of hybrid electric vehicles. The literature study 

provides the foundation of the development of the methods used in this thesis. 

 Modelling Methods for Hybrid Vehicle Research 

Modelling is necessary for the research and development of hybrid vehicles because 

accurate vehicle system models can help evaluate the performances of the vehicles 

with the minimised cost. It allows simulation of a vehicle’s performance (e.g. fuel 

economy, cost, emission) with different design parameters and control strategies 

before a physical prototype is built. This section introduces four mainstream 

modelling methods for hybrid vehicles: the kinematic approach, the quasi-static 
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approach, the dynamic modelling approach, and the semi-hardware-in-the-loop 

modelling approach. 

2.1.1 The kinematic approach 

The kinematic modelling approach, as shown in Fig. 2-1, is a backward calculating 

method, which firstly determines the wheel speed and wheel torque from the velocity 

and acceleration of the given driving cycles. Using the speed and torque of the wheel, 

a powertrain model is used to calculates the energy consumption (including fuel 

consumption and battery usage) and engine emission through a series of look-up-

tables (Genta, 1997). A well-known hybrid vehicle simulation software ADVISOR is 

developed based on the kinematic modelling method (Gao, Mi and Emadi, 2007). 

 

Fig. 2-1 kinematic model of HEV: (a) vehicle level, and (b) powertrain level 

(Guzzella and Sciarretta, 2007) 
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For hybrid electric vehicles, an energy management system would be modelled 

before the transmission model in Fig. 2-1 (b), which is used to allocate the required 

torque and speed to relevant engine and electric motors. Fuel consumption and 

exhaust emission of the internal combustion engine will be obtained through a 2D 

look-up-table (BMEP and engine speed as inputs, fuel rate/emission rate as output) 

as shown in Fig. 2-2. Electric motors will use another 2D look-up table to determine 

its electric-to-mechanical efficiency at current speed and torque point so that the total 

electric energy consumption can be obtained. The electric energy will then be 

transferred into voltage and current so that the battery state-of-the-charge can be 

obtained via the battery model. The energy management system model would also 

be used to determine when to use the engine to charge the battery. 

 

Fig. 2-2 Engine fuel consumption and emission simulation using 2D Look-up 

tables in a kinematic model (Millo, Rolando and Andreata, 2011) 
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The kinematic approach assumes that driving speed profile will be exactly followed 

and the vehicle will meet the dynamic target performance so that the vehicle speed 

should be determined in advance; thus, this method enjoys the advantage of 

simplicity and low computational cost (Millo, Rolando and Andreata, 2011). However, 

there exist no guarantees that a given vehicle will actually be able to meet the desired 

speed trace, since the power request is directly computed from the speed and not 

checked against the actual powertrain capabilities (Enang and Bannister, 2017b).  

2.1.2 The quasi-static approach 

The quasi-static approach introduces a drive model to a frontward-facing calculation 

process to control the vehicle system following the target speed profile to simulate 

the dynamic performance of the vehicle in the scenario of tracking a given driving 

cycle, as shown in Fig. 2-3. The driver model in quasi-static approach usually applies 

a PID control (Millo, Rolando and Andreata, 2011) or fuzzy logic control (Zhou et al., 

2017, 2018; Cash et al., 2018a) to control the vehicle with the signals (of vehicle gas 

pedal and brake pedal) which are calculated with the speed error between the actual 

speed and desired speed. The energy management system allocates the torque 

demands of engine and motor according to the driver command and sends the 

signals to the relevant downstream controllers (e.g. engine controller, motor 

controller). In the quasi-static method, engine and motor are modelled by static 
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performance maps (e.g. torque, fuel consumption, efficiency, emission, etc. al.) or 

using 0-D dynamic models (Millo, Rolando and Andreata, 2011). The model uses 

control signal and current speed or velocity as input to calculate their available torque 

and transfer the toque to its downstream models. The quasi-static method is well-

adopted by many commercial vehicle simulation software, e.g. AVL CRUISE, PSAT, 

IPG CARMAKER, CARSIM, etc. al. (Gao, Mi and Emadi, 2007).  

 

Fig. 2-3 Quasi-static powertrain model (Guzzella and Sciarretta, 2007) 

Bond graph modelling is one of the most effective modelling tools for quasi-static 

modelling (Xia, Linkens and Bennett, 1993; Hubbard and Youcef-Toumi, 1997), 

which is a graphical tool to describe subsystem interactions in the form of power 

exchange as in Fig. 2-4. Three elements, including resistance (R), capacitances (C), 

and inertias (I) are used to model a second-order dynamic system of power 
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interchange. Although these names initially suggest a direct application in electrical 

systems, they are used in any other domains as well, e.g., friction as mechanical 

resistance, a compressible fluid as capacitance, and a flywheel as an inertial element 

(Gao, Mi and Emadi, 2007). The power exchange of each element is based on the 

port(s) of each element (normally one or two ports) using the product of two variables 

including effort (e) and flow (f). Taking a mechanical system as an example, torque 

is an effort and speed is a flow, and the power is torque times speed. Detailed hybrid 

vehicle modelling procedure using bond graph can be found in (Xia, Linkens and 

Bennett, 1993; Hubbard and Youcef-Toumi, 1997). 

 

Fig. 2-4 Bond graph model of an HEV (Gao, Mi and Emadi, 2007) 

The quasi-static modelling approach provides reasonable accuracy when it comes 

to the evaluation of the fuel consumption and NOx of a vehicle equipped with 

conventional powertrain (Enang and Bannister, 2017b). For pollutants like soot, the 

transient operations and related “turbo-lag” phenomena significantly contribute to the 

cumulative emissions of the cycle; thus a more detailed model is needed to properly 
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capture the engine transient behaviours (Guzzella and Sciarretta, 2007). 

2.1.3 The full dynamic modelling approach 

Full dynamic modelling approach would consider the dynamics of internal 

combustion engines and batteries, in which, the fluid mechanics and chemical 

reactions will be modelled in details. For an internal combustion engine, the intake 

and exhaust systems can be represented as a network of ducts connected by 

junctions that represent either physical joints between the ducts, such as area 

changes or volumes, or subsystems such as the engine cylinders (Millo, Rolando 

and Andreata, 2011). The finite element analysis technique is widely used for solving 

the  governing equations of the conservation of mass, momentum and energy flow 

(Enang and Bannister, 2017b). The full dynamic modelling method allows 

reasonable accurate simulation of highly dynamic events such as abrupt vehicle 

accelerations. However, the implementation of full dynamic models requires huge 

computational effort, and it is hard to be applied in modelling for vehicle control level. 

2.1.4 The hardware-in-the-loop modelling approach 

The hardware-in-the-loop approach is developed for modelling of a hybrid vehicle 

system by involving one or more real hardware to obtain the real-time performance 

of the device(s) under research. The models for hardware-in-the-loop approach 
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should have the capability of real-time simulation; therefore, the model is always built 

by the kinematic method or the quasi-static method (Gao, Mi and Emadi, 2007). 

Hardware-in-the-loop test is widely used in controller development and concept 

validation, which is usually developed with controller-in-the-loop, powertrain-in-the-

loop, or driver-in-the-loop for hybrid electric vehicle development.  

Controller-in-the-loop system is the most compact version for hardware-in-the-loop 

testing, as shown in Fig. 2-5, which includes a physical controller and a real-time 

computer connecting via inputs/outputs interface or CAN interface for vehicle 

controller development. With the models running in a real-time computer, the 

performance of the control algorithms can be tested and evaluated by the controller-

in-the-loop test. The controller-in-the-loop system requires reliable real-time 

computers to provide necessary signals generated from the vehicle model. dSPACE, 

ETAS, and National Instruments (NI) are the world-leading suppliers for real-time 

testing. dSPACE DS2202 Mid-size plant was used by the Ohio State University for 

development of the supervisory controller for a hybrid vehicle (Mura, Utkin and Onori, 

2015). The University of Birmingham has developed a controller-in-the-loop system 

with ETAS DESK-LABCAR real-time computer for cyber-physical control of a hybrid 

vehicle (Zhou et al., 2018). NI PXI-8135 was used to develop a controller-the-loop 

system for control of an electric vehicle (Ciornei et al., 2018). 
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Fig. 2-5 Controller-in-the-loop testing system (Mura, Utkin and Onori, 2015) 

It is necessary to involve some real powertrain subsystems or the whole powertrain 

in the real-time simulation loop to research the dynamic performance of the hybrid 

vehicle, especially for the subsystem that is hard to be accurately modelled, e.g. 

engine, battery, and ultra-capacitor. An engine-in-the-loop system is developed for 

research of soot emission of a diesel hybrid vehicle, as shown in Fig. 2-6, in which a 

real diesel engine is connected within the simulation loop via EMCON 400 flexible 

testbed (Kim et al., 2015). The soot emission from the real engine with the proposed 

power management strategy (PMS) was measured with DMS500 manufactured by 

CAMBUSTION Ltd. A transmission-in-the-loop system is developed for a series-

parallel hybrid vehicle using PROCYON and UNICODRIVE (Zhang, Zhang and Yin, 

2016), in which, the real-time vehicle model is running in PROCYON and generate 

a synchronised signal to the UNICODRIVE to control an electric motor. A fuel-

cell/battery-in-the-loop system is developed with CHROMA DC load and a real-time 
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PC to research the power management system of a hybrid energy storage system 

(Gauchia and Sanz, 2010). 

 

Fig. 2-6 Engine-in-the-loop testing system (Kim et al., 2015) 

Driver behaviour is an immediate response to the traffic conditions, which affects the 

energy use of the vehicle system significantly (Zhang et al., 2017). Recent proposal 

on real-world driving emissions (RDE) testing procedure has drawn lots of attention 

on drivers’ behaviours for vehicle powertrain development (Martínez and Cao, 

2019b), and the dynamics involved by human driver is hard to be fully modelled via 

simple PID or fuzzy logic control as it is in a quasi-static model (Zhou, Ravey and 

Péra, 2019). Therefore, it is necessary to involve a real human driver into the 

simulation loop for the research on driver behaviour modelling and advanced vehicle 

control algorithms. A driver-in-the-loop testing system is built by the Ohio State 
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University for the development of driver models, as shown in Fig. 2-7 (Zeng and 

Wang, 2017). A six-degree-of-freedom driving simulator is developed for the 

research of control strategy for a hybrid truck (Martínez and Cao, 2019c). 

 

Fig. 2-7 Driver-in-the-loop testing system (Schnelle et al., 2017) 

2.1.5 The outlook of modelling methods for hybrid vehicles 

With the rapid development in computer science and information technology, future 

hybrid vehicle products are expected to be more ‘information integrated’ and 

‘intelligent’. The individual vehicles and the OEMs would be parts of the Internet of 

Vehicles (IoV) and will be benefit from the sharing of information and connected 

computing sources. 

In the process of future vehicle research and development, and integrated 

information system including physical coupling (of physical hardware) and data 

coupling (of cybernetic hardware and software) will connect all the testing facilities 

and Cloud computing resource via the Internet for global optimisation of vehicle 
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products as in Fig. 2-8 (Yi Zhang et al., 2018). The concept of supper-hardware-in-

the-loop (or X-in-the-loop) is under development in academia and industry, which is 

expect to be integrated with artificial intelligence algorithms for real engineering 

development (XiL Approach: An ETAS Solution, 2019). The University of Birmingham 

together with Textron Ltd. and Hyper-drive Ltd. have demonstrated the development 

of a hybrid aircraft-towing tractor (including sizing and energy management) based 

on information integration and artificial intelligent algorithms (Rachel Cooper, 2017). 

These make it possible for future vehicle development with advanced optimisation 

algorithms for design optimisation and controller calibration with multi-variable and 

multi-objective (Ma et al., 2017; Zhou et al., 2017; Cash et al., 2018a; Yunfan Zhang 

et al., 2018). 

 

Fig. 2-8 Information integration for future electrified vehicle development (Yi 

Zhang et al., 2018) 
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Future hybrid vehicles will also benefit from information fusion of on-board sensor 

signals and V2X (vehicle-to-everything) network data, in terms of operation safety 

and further energy efficiency improvement (Martinez et al., 2017). An iHorizon 

(intelligent horizon) system is proposed as a concept prototype for future hybrid 

vehicle, which integrates the functions of driving style recognition (DSR), short-term 

speed prediction (with the help of on-board sensors), and long-term speed prediction 

(with the help of V2X, ITS), as shown in Fig. 2-9 (Martínez and Cao, 2019a). This 

framework allows the hybrid vehicle to be personised via online control strategy 

optimisation (Orecchini et al., 2018; Qiu et al., 2019) and control parameter 

calibration (Ma et al., 2014, 2017). The short-term prediction and long-term 

prediction with vehicle platooning would also be developed based on online 

optimisation algorithms, which can help the vehicle operate in a more safe and 

efficient way (Alam et al., 2015; Jia et al., 2016). 

 

Fig. 2-9 System framework of the iHorizon (Martínez and Cao, 2019a) 
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 Offline Optimisation of Hybrid Vehicles 

Offline optimisation deals with the problems that the start point and target point are 

available, and the decision should be made from a lot of candidate routes from the 

start to the target. Offline optimisation of hybrid vehicle determines the optimum 

components’ size and control parameters based on a given driving cycle (e.g. WLTP, 

NEDC). The optimisation results will allow the vehicle achieving its best performance 

(e.g. fuel economy, emission, power). This section provides a review of existing 

research on components sizing and controller calibration for electrified vehicles.  

2.2.1 Components sizing 

The components sizing is an essential procedure in vehicle development, which was 

based on the experience of human engineers in the early stage by considering the 

target vehicle specification, e.g. packaging, components availability, etc. Normally, 

the sizing results can be obtained using the OEM’s database with the help of some 

computer aid design and engineering software (CAD, CAE) such as ADVISOR 

(Wipke, Cuddy and Burch, 1999) and AVL CRUISE (Zamora et al., 2013). Recently, 

optimisation methods have been developed for component sizing based on the 

‘model-in-the-loop’ framework, as shown in Fig. 2-10. 
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Fig. 2-10 Model-in-the-loop design optimisation process (Gao and Mi, 2007) 

Main optimisation objectives of components sizing include fuel economy, energy 

efficiency, cost and size of components, etc. The most concerned objective is to 

minimise the fuel consumption with the constraint of the battery SoC level at the end 

of the given driving cycle (Yang et al., 2019). Normally, component sizing is 

formulated as a multi-objective optimisation process with more than two objectives, 

for example, fuel economy and components’ price are considered (Ebbesen, Dönitz 

and Guzzella, 2012; Murgovski et al., 2012b); energy efficiency and component size 

are considered in (Zhou et al., 2017). Recently, component sizing with ‘many-

objective’ (more than three) has been researched. Fuel economy and emissions 

including NOx, CO, HC are considered as a weighted four-objective optimisation in 

the component sizing of a parallel hybrid vehicle in (Xiaolan Wu et al., 2008). A 

seven-objective optimisation has been carried out for hybrid vehicle optimisation 

(Cheng et al., 2017), in which three evolutionary algorithms have been researched 

to identify the decision-maker's preference. 

In terms of the driving cycles used for component sizing, there is a trend of 
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incremental transformation from the conventional quasi-static driving cycle (e.g. 

NEDC), towards driving cycles with more transient operations (e.g. WLTP), and 

finally, real-world driving data (e.g. RDE) will be used. The operation points of 

different driving cycles including conventional NEDC (New European Driving Cycle), 

ongoing WLTP/WLTC (Worldwide Harmonised Light Vehicle Test Procedure/Cycle), 

future RDE (Real-word Driving Emission) are compared in Fig. 2-11. There is also a 

trend to optimising the components’ size considering their life-cycle performance, 

e.g. life-cycle CO2 emission, life-cycle cost, etc. 

 

Fig. 2-11 Cycle operating ranges comparison of NEDC, WLTC, and RDE 

(Sanguinetti, 2018) 

The state-of-the-art optimisation algorithms have been implemented for component 

sizing. Dynamic programming has been developed for component sizing of a hybrid 

vehicle, the advantage of which is the capability of global optimisation with nonlinear, 

non-convex objective functions of the components consisting of continuous and 

mixed integer variables (Zoelch and Schroeder, 1998). Convex optimisation was 
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used for component sizing of a plug-in hybrid powertrain in (Murgovski et al., 2012b), 

which determines the size of the engine and electric machine simultaneously using 

thermal models of components. The paper suggests that component sizing using 

convex optimisation enables two or more variables optimisation with low 

computation time (Murgovski et al., 2012b). A multi-objective optimisation problem 

of sizing drive-train components is solved by particle swarm optimisation in (Ebbesen, 

Dönitz and Guzzella, 2012) which indicates the proposed algorithm performs 

significantly better than the baseline methods (i.e. Nelder-Mead simplex algorithm 

and exhaustive search algorithm). A chaos-enhanced and accelerated particle 

swarm optimisation algorithm for component sizing is developed by the author (Zhou 

et al., 2017). According to the research, the proposed chaos-enhanced accelerated 

particle swarm optimisation (CAPSO) algorithm can accelerate the convergence and 

prevent the diversity of optimisation results so that the proposed algorithm can help 

to obtain more reliable sizing results (Zhou et al., 2017).  

2.2.2 Controller calibration 

Hybrid vehicles can operate in many different modes, as discussed in Section 1.1.2. 

In the design process, the control parameters should be carefully tuned to ensure 

the basic functionalities and guarantee the vehicle products satisfying the regulations 

and legislations. The process of tuning control parameters is called ‘calibration’. The 
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most commonly used method for calibration in the industry is the design of 

experiments (DoE). Although the design of experiment can be assisted with software 

(e.g. AVL CAMEO, ETAS INCA), the calibration process still needs human’s 

experience to select proper set points and control parameters initially (Ma et al., 

2014).  

Obviously, human’s experience cannot always guarantee the calibration results are 

the global optima, and it is hard for human engineers to deal with multi-objective 

optimisation simultaneously (Tayarani, Yao and Xu, 2015). ‘Model-in-the-loop’ 

methods, as discussed in Section 2.2.1, can also be used for the optimisation of 

control parameters. Recently, a new ‘Hardware-in-the-loop’ optimisation scheme or 

so-called ‘non-model-based optimisation’ has been developed for controller 

calibration which can prevent the negative influence (caused by inaccurate models) 

to the optimisation results (Ma et al., 2017). Taking the engine calibration process as 

an example, a diagram illustrating the difference between model-based calibration 

and non-model-based calibration is shown in Fig. 2-12.  
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Fig. 2-12 Model-based and non-model-based method for engine calibration (Ma et 

al., 2017) 

Emerging technologies of artificial intelligence have been researched and developed 

in the field of control parameters calibration for both supervisory controllers and 

subsystem controllers of electrified vehicles (Huang et al., 2018). Hadj-Said et al. 

developed a convex optimisation method for energy management control 

parameters of parallel hybrid electric vehicles (Hadj-Said et al., 2016). A rapid 

dynamic programming approach was developed for power split control of a hybrid 

vehicle, which can save 6.56% and 3.15% fuel under FTP72 and HWFET cycles 

respectively (K. T. Chau and Wong, 2002). Particle swarm optimisation was used to 

calibrate the energy management controller (Shen et al., 2017). Model-based 

calibration with SPEA-II algorithm was developed for control parameter optimisation 

of HCCI engine and GDI engine in (Ma et al., 2014) and (Ma et al., 2018) respectively.  
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Calibration results determine the performance of the vehicle system and subsystems; 

this will affect the optimal size of the hybrid vehicle (Sundstrom, Guzzella and Soltic, 

2010). Therefore, the research on simultaneous optimisation for optimal sizing and 

control calibration emerges. The multi-objective genetic algorithm was used for 

simultaneous optimisation of hybrid vehicle parameters (Fang et al., 2011). An 

optimisation considering both control parameters and component size is a 

performance with a two-stage algorithm, which dynamic programming was used for 

control optimisation while genetic algorithm was used for component sizing (Chen, 

Lin and Ren, 2018).  

2.2.3 Outlook for offline optimisation of hybrid vehicle 

There is a trend for the future hybrid vehicle to involve more energy storage systems 

(Cheng et al., 2017) as well as more sensors and information fusion controllers to 

improve its energy efficiency, which will increase the complexity in the design 

process (Huang et al., 2018). It can be predicted that future design optimisation will 

include: 1) multiple-objective or even many-objective optimisation tasks considering 

both system-level global performance as well as subsystem level local performance 

(Cheng et al., 2017); 2) unified optimisation combining component sizing and 

controller calibration (Xu et al., 2015); 3) more engagement of artificial intelligence 

algorithms, cybernetic information, and Cloud computing (Pothirasan, Rajasekaran 
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and Muneeswaran, 2018); 4) consideration of the differentiation of driver behaviour 

and traffic dynamics in real-world driving (Pourabdollah et al., 2017). 

This thesis will research into a simultaneous offline optimisation for intelligent 

components sizing and control parameters tuning of an aircraft towing tractor in its 

most common driving condition. A Particle Swarm Optimisation algorithm is used for 

the offline optimisation as the baseline method for the following reasons: 1) It is a 

derivative-free optimisation algorithm which does not require detailed mathematical 

expressions for the nonlinear systems; 2) It is a global search algorithm which can 

deal with mixed discrete and continuous variables, and multiple objectives that 

cannot be solved by convex optimisation; 3) Its algorithm has fewer parameters to 

be tuned compared with the genetic algorithm, the bee algorithm, the ant colony 

algorithm, and the simulated annealing algorithm, so that it is easier to implement for 

mechanical engineers who have limited knowledge of computer science; 4) It is a 

computational more efficient algorithm compared with dynamic programming, so that 

it can be implemented for real-time optimisation.  

A new variant of the PSO, Chaos-enhanced Accelerated Particle Swarm 

Optimisation (CAPSO) algorithm (Gandomi, Yun, X.-S. Yang, et al., 2013), will be 

explored as an improved method in this thesis. Different chaotic mapping strategies 

will be researched for the development of the best CAPSO algorithm for the 

optimisation of the hybrid tractor powertrain. The new algorithm will accelerate the 
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convergence of the ‘particles’ with faster speed than the baseline method. The 

consistency of the results will be improved to make the optimisation more reliable for 

real engineering application. 

 Energy Management of Hybrid Vehicles 

For any hybrid electric powertrains, there are normally two energy-flow paths 

including the electric energy flow path (through batteries, ultra-capacitors, electric 

motors, etc.) and mechanical energy path (through the engine, transmission, clutch, 

driveshaft, differentials, etc.). Energy Management System (EMS) determines the 

optimal distribution of energy flows (including the electric path and mechanical path) 

in HEVs to satisfy the driver’s demand and achieve maximum energy efficiency. 

Generally, energy management strategies can be classified into two main categories 

including rule-based strategies and predictive strategies. 

2.3.1 Rule-based methods for energy management 

Energy management strategies with explicit control rules include the thermostat 

strategy, power following strategy and state machine strategy. Controlled by the 

thermostat (on/off) control strategy, internal combustion engine operates at its 

highest efficiency point once it turns on, while the battery’s state-of-charge (SoC) is 

always maintained between its pre-set upper and lower bounds by switching the 
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internal combustion engine ‘on’ and ‘off’ (Wang et al., 2017). Power following strategy 

uses the battery as an energy buffer to smooth the power demand so that the engine 

can work in a relevant high efficient condition to follow a smoothed power demand, 

which has been successfully applied in mass-produced HEVs such as Honda Insight 

and Toyota Prius (K. . Chau and Wong, 2002). The state machine-based approach 

determines the transition between operating modes (as described in section 1.1.2) 

by a state machine that is based on vehicle operating conditions and driver’s 

command (Tie and Tan, 2013).  

Fuzzy logic control enables energy management with fuzzy rules which have the 

capability to handle numerical data and linguistic knowledge. Two separated fuzzy 

logic controllers for Mode Decision and Parallel-driving Energy Management are 

proposed in (Xiong, Zhang and Yin, 2009), which can help the hybrid vehicle reduce 

30.3% energy consumption comparing with the one using explicit rule-based 

strategies. The robustness of the energy management system to variations of driving 

cycles can be improved by applying an adaptive fuzzy inference system (Mohebbi, 

Charkhgard and Farrokhi, 2005). 

The energy management strategy with fixed control rules lacks the ability to deal 

with the uncertainties brought by dynamics in real-world driving (Salmasi, 2007). The 

control rules, including explicit rules and fuzzy rules, can be optimised as an offline 

optimisation or calibration in the R&D process to ensure the hybrid vehicle product 
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passing the regulations as discussed in Section 2.3.2. Online optimisation 

technologies for control rules of energy management system are emerging, which 

can adjust the control rules during real vehicle operation to make the control strategy 

more adaptive to the real-world driving comparing with the energy management 

control using fixed control rules (Martinez et al., 2017; Wang et al., 2017; Huang et 

al., 2018). Operation-mode prediction is used for optimisation-based rule-correction 

of the energy management control, which results in at least 9.6% fuel economy 

improvement in selected driving cycles (Liu et al., 2018). The threshold of the energy 

management rules of a series hybrid vehicle was optimised online based on 

Pontryagin Minimum Principle, which can reduce 6.83% fuel consumptions (Shabbir 

and Evangelou, 2019).  

2.3.2 Predictive methods for energy management 

Trip information is critical to the energy management of hybrid electric vehicles 

(Martinez et al., 2017). The energy management methods based on the prediction 

of future information of vehicle speed and power demand are being researched as a 

global online optimisation method for hybrid vehicles (Huang, Wang, et al., 2017). 

Model predictive control (MPC) is currently considered as one of the most effective 

approaches for online systems optimisation with multiple variables and objectives. 

As shown in Fig. 2-13, predictive model and online optimizer are the two key 
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elements for MPC.  

 

Fig. 2-13 Problem-solving structure of MPC (top) and inputs/outputs signal of a 

single iteration in the MPC algorithm (bottom) (Martinez et al., 2017) 

The operation of MPC comprises four main steps: 1) prediction over a fixed horizon 

with length N, which depends on the historical data recorded and system model; 2) 

control policy calculation from t to t+N based on the previous prediction; 3) 

application of the control policy calculated for the current instant t, discarding the rest; 

4) update with real measurements at t, and return to Step 1. Using fast control 

algorithms in step 2 is particularly important due to the requirement of real-time 

computations (Borhan et al., 2009). 

The essential procedure of MPC is the prediction of future vehicle speed or power 
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demand over a predictive horizon. The simplest method to predict the future vehicle 

speed information is the exponential varying expression method, which assumes the 

future driver’s torque demand is exponentially decreasing over the prediction horizon 

(Chao Sun et al., 2015). A fuzzy predictor was developed to determine future states 

(i.e. vehicle speed and torque demand) according to the historical data through a 

look-ahead window (Tie and Tan, 2013). Stochastic Markov chain modelling, which 

predicts the future events using the transition possibility matrix, is a promising and 

important method utilized in modelling driver behaviour or predicting the vehicle 

velocity and power demands (Moura et al., 2011; Shen et al., 2018). A fuzzy encoder 

is integrated with the transition possibility matrix for identification of vehicle states, 

which can improve the accuracy of Markov chain model for vehicle power demand 

prediction in various of driving conditions (Liu et al., 2017). A new deep fuzzy 

predictor is developed by the author’s team to achieve 19% more accurate vehicle 

speed prediction compared to a discrete Markov chain model (J. Li et al., 2019). 

Artificial neural networks have also been used for vehicle state prediction. Recurrent 

neural network (RNN) has been used for energy management of a mild hybrid 

vehicle in (Feldkamp, Nasr and Kolmanovsky, 2009). Long-term-short-term-memory 

(LSTM) deep network is developed for electric load forecasting (Bouktif et al., 2018). 

An appropriate solver is necessary for the optimisation at each time interval for MPC. 

MATLAB command ‘quadprog’ (Sampathnarayanan et al., 2010), ‘CVXGEN’ (Romijn 
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et al., 2015) and ‘qpOASES’ (Huang, Khajepour, et al., 2017) can be used for 

quadratic programming (QP) of linear constrained MPCs. The nonlinear MPC can 

be solved by sequential quadratic programming (SQP) (Hu, Wang and Tang, 2017); 

the mixed-integer optimisation problems in hybrid MPC can be solved by the hybrid 

optimisation toolbox in MATLAB (Ripaccioli et al., 2009). However, only linear MPCs 

have been realized the feature of the real-time implementation, running nonlinear 

MPC (NMPC) with QP or SQP for HEV energy management in real-time controllers 

has yet to be demonstrated (Huang, Wang, et al., 2017). Particle swarm optimisation 

(PSO) algorithm is a potential candidate for real-time NMPC solving (Xu et al., 2016) 

since it works with fewer tuning parameters and less computational effort. PSO also 

has the capability of dealing with integer variables (Ostadi and Kazerani, 2015; 

Pourabdollah et al., 2015). Chaos-enhanced accelerated particle swarm 

optimisation (CAPSO) algorithm for real-time model-based predictive control was 

developed by the author (Zhou et al., 2018).  

Currently, researchers are exploring and investigating more advanced methods for 

online optimisation problems in real-time with the help of Cloud computing and 

Artificial Intelligence (AI) for HEV energy management (Hu, Wang and Tang, 2017; 

Zhou et al., 2018). Energy management of HEV with reinforcement learning 

algorithm is an emerging research topic, and there are only a few publications can 

be found in this field. Zou and Liu have proposed a series of predictive energy 
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management strategies using conventional Q-learning (Liu et al., 2015a, 2015b, 

2017; Zou et al., 2016), the methods can significantly improve the vehicle 

performance compared with conventional rule-based strategy. The authors have 

proposed a multi-step reinforcement algorithm for model-free energy management 

control of a hybrid vehicle, which can save at 7.8% energy (Zhou et al., 2019). 

2.3.3 Outlook for hybrid vehicle energy management 

The performance of existing MPC-based energy management is affected by three 

main aspects including 1) accuracy of predictive models (Murphey et al., 2012; C 

Sun et al., 2015; Soriano, Moreno-Eguilaz and Álvarez-Flórez, 2015; Sun, He and 

Sun, 2015; Sun, Sun and He, 2017); 2) length of predictive horizon (Nuijten, Koot 

and Kessels, 2003; Huang, Khajepour and Wang, 2016) and 3) optimisation ability 

of the control algorithm (Ripaccioli et al., 2009; Sampathnarayanan et al., 2010; 

Romijn et al., 2015; Hu, Wang and Tang, 2017; Huang, Khajepour, et al., 2017).  

It can be predicted from the existing researches that future efforts would be made in 

1) more accurate vehicle information prediction using information fusion of both near-

field sensors and global information from V2X network (Martínez et al., 2019); 2) 

more powerful computing technology for real-time optimisation of vehicle control 

system (Huang, Wang, et al., 2017; Zhou et al., 2018); 3) collaborative control with 

model-based predictive control framework and emerging ‘model-free’ control with the 
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self-learning capability of control strategies through reinforcement learning (Liu et al., 

2017; Bouktif et al., 2018; Xiong, Cao and Yu, 2018). 

This thesis will research into predictive methods for energy management of the 

aircraft-towing tractor. This will follow the most commonly used model-based 

predictive method. New nonlinear model-based predictive methods will be explored 

by the implementation of the online particle swarm optimisation algorithm. The 

CAPSO algorithm will be used for solving the nonlinear programming problem of 

energy management in real-time. Reinforcement learning, which is a powerful online 

optimisation method, will be explored as an advanced predictive method for energy 

management. New multi-step reinforcement learning will be researched to enable 

the ‘model-free’ predictive control of the energy flow. It will allow a parallel system 

(to the conventional rule-based/model-based control system) which can 

continuously optimise the vehicles’ energy efficiency in real-world driving.  

 Summary 

This chapter provides a comprehensive review of 1) modelling methods for hybrid 

vehicle development, 2) offline design optimisation technologies of hybrid vehicles 

and 3) energy management method for hybrid vehicles. From the existing literature, 

the future trends of the above areas can be summarised as: 
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• The modelling method for hybrid vehicles is transiting from the kinematic 

approach to the methods that can present the real dynamic of the HEV system 

with the capability of real-time computing. Emerging IoT and Hardware-in-the-

Loop technologies will allow the simulation and validation of the vehicle 

system in a more realistic environment. 

• It is the tendency to consider both component size and control parameters 

simultaneously during the design optimisation process, and advanced 

artificial intelligence is expected to help boost the design optimisation process 

with reliable and robust results. PSO algorithm and its variants are suitable 

candidates for solving the simultaneous optimisation problem. 

• Model-based predictive control (MPC) is a robust optimal control method; 

however, advanced technologies for online nonlinear optimisation is still 

needed to be developed for energy management of the hybrid electric vehicle. 

• Artificial intelligence with the capability of reinforcement learning is expected 

to enable the adaptive optimisation of control policy with model-free predictive 

control, which will sit along MPC for further control performance optimisation. 
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Chapter Three 

 RESEARCH METHODOLOGY, FACILITIES, AND 

REAL-TIME MODELS 

This PhD thesis focuses on the development of an electrified aircraft-towing tractor, 

including design optimisation and optimal energy management control. This chapter 

firstly introduces the research target and technical route for technology development, 

followed by the description of the research methodologies for design optimisation 

and optimal energy management. This chapter illustrates the research facilities as 

well as the development of a demonstrator and its testing system. The vehicle 

system and subsystems are modelled in this chapter for real-time simulation and the 

hardware-in-the-loop (HiL) test. 

 Research Target and Methods 

The vehicle system under research is an aircraft-towing tractor, as shown in Fig. 3-

1. Different from passenger cars, the aircrafts towed by the tractor can significantly 

affect the fuel consumption and emission of the vehicle. The vehicle is initially 

equipped with a solo diesel engine, and it will be transient into a series hybrid vehicle 

in this study. The main target of this research is to develop a new electrified aircraft-
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towing tractor prototype with minimum components size and maximum energy 

efficiency in use. Both design optimisation (offline) and control optimisation (online) 

will be carried out for vehicle development, and advanced optimisation 

methodologies will be researched. 

 

Fig. 3-1 Aircraft-towing tractor system 

The development of the hybrid aircraft-towing tractor consists of four main tasks, as 

shown in Fig 3-2. Task 1 develops models of the electrified aircraft-towing tractor for 

1) offline optimisation, 2) HiL testing, and 3) model-based predictive control. The 

work in Task 1 will be introduced in this chapter. A Hardware-in-the-Loop Testing 

system will be built in Task 2 (as described in this chapter), and it will be used for 

evaluation and validation of the control algorithms. Task 3 carries out the design 

optimisation and develops the optimisation algorithms for offline optimisation and 

model-based predictive control. Chapter Four gives the details on the complement 
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of Task 3. Task 4 develops online optimisation methods for optimal energy 

management control. Model-based predictive control method and model-free 

predictive control method for energy management are developed in Chapter Five 

and Six respectively.  

There will be five deliverables from this research: 1) a real-time model of the hybrid 

aircraft-towing tractor, 2) a HiL testing system for control algorithm evaluation and 

validation, 3) the components’ size and the parameters for rule-based energy 

management control to achieve the maximum energy efficiency with the minimum 

components’ dimension, 4) MPC-based energy management method, and 5) Model-

free predictive method for energy management. 

 

Fig. 3-2 The technical route for the development of the hybrid off-highway vehicle 

system 
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3.1.2 Research method for the design optimisation 

The procedures of the research on design optimisation method are illustrated in Fig. 

3-3. The offline optimisation for obtaining the optimum component size and control 

parameters will be carried out using the vehicle models developed in Task 1.  

 

Fig. 3-3 The research on design optimisation 

Initially, conventional Accelerated Particle Swarm Optimisation (APSO) algorithm will 

be used to carry out the optimisation. The drawbacks and limitation of the APSO will 

then be analysed. The algorithm development for both offline optimisation and online 

model-based predictive control will be progressed from APSO to Chaos-enhanced 

Accelerated Particle Swarm Optimisation (CAPSO) algorithm. Different chaotic 

mapping strategies will be investigated to improve the performance of CAPSO. 

Monte-Carlo analysis, reputation analysis and Pareto Analysis will be carried out for 
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a comparison study on the performance of design optimisation using APSO and 

CAPSO. A two-stage optimisation using CAPSO will be carried out to secure the final 

optimisation result, and the result will be validated by HiL testing. The deliverable of 

this task will be the optimum powertrain component size of hybrid tractor. The 

optimum control parameters for rule-based energy management control and the 

proposed CAPSO algorithm will be used for the investigation on online optimum 

energy management control in Task 4. 

3.1.3 Research method for energy management control 

The research program for energy management control is shown in Fig. 3-4. The 

research will be firstly carried out an evaluation of rule-based energy management 

method, and the necessity of the development of predictive control will be discussed. 

Following the modelling work in Task 1, the control-oriented models will be built for 

model-based predictive energy management control. A new online optimisation 

scheme named ‘Online Swarm Intelligent Optimisation’ will be investigated based on 

the CAPSO algorithm developed in Task 3. The model-based predictive energy 

management control will be evaluated via HiL testing. To further improve the 

performance of a predictive energy management method, a model-free predictive 

control method will be developed based on multi-step reinforcement learning. The 

multi-step reinforcement learning strategies will be investigated. The model-free 
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predictive energy management control will also be evaluated via HiL testing. 

 

Fig. 3-4 The research on real-time energy management  

 Driving Cycles 

Speed and push-back load of the aircraft-towing tractor varies in real practice. This 

research uses the Push Back Driving Cycle (PBDC) provided by the OEM based on 

statistical data collected at London Heathrow airport. The PBDC is made up of four 

typical driving cycle components, namely, heavy pushback, medium pushback, light 

pushback and solo run, as shown in Fig. 3-5.  

(a) 
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(b) 

(c) 

(d) 

Fig. 3-5 Speed and plane mass profile of driving cycle components: (a) heavy 

pushback, (b) medium pushback, (c) light pushback, (d) solo run 

Each driving cycle component includes the profile of vehicle speed and the push-

back load (plane mass), as shown in Table.3-1. 
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Table.3-1 Cycle Component Profile 

Cycle component  Max. speed  Plane Mass  Acc. time length 

Heavy pushback (H) 8 km/h 200tonne 43s 155s 

Medium pushback (M) 10 km/h 120tonne 16s 133s 

Light pushback (L) 22 km/h 60tonne 17s 45s 

Solo run (S) 30 km/h 0tonne 7s 35s 

PBDC-I gives a comprehensive driving cycle, including all the possible scenarios, as 

shown in Fig. 3-6, i.e. the tractor may pushback a heavy aircraft to the track and then 

come back solely without the aircraft, or pushback a medium aircraft and then come 

back solely, or pushback a light aircraft and then come back solely.  

 

Fig. 3-6 Profile of a push-back duty cycle (BPDC-I) 

In an airport, some tractor may also serve a terminal in which the size of aircraft is 

similar. Therefore, PBDC-II to PBDC-IV is created for those tractors which only serve 
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the specified terminals. The detailed driving cycle profiles are shown in Table.3-2. 

Table.3-2 Push-back Driving Cycle Profile 

Cycle name Cycle components arrangement  

BPDC-I 6 L&S+3 H&S+3 M&S+6 L&S+3 H&S+6L&S+6 M&S 

BPDC-II 6 L&S+ 6 L&S+ 6 L&S+ 6 L&S+ 6 L&S 

BPDC-III 3 M&S+ 3 M&S+ 3 M&S+ 3 M&S 

BPDC-IV 2 H&S+2 H&S+ 2 H&S+ 2 H&S+ 2 H&S+ 2 H&S 

  Research Facilities 

This research is carried out at the Advanced Engine and Vehicle Technology 

Research Centre at the University of Birmingham. Facilities for HiL testing supplied 

by ETAS (including both hardware and software) will be used for demonstration and 

testing validation.  

3.3.1 Hardware-in-the-loop testing systems 

Hardware-in-the-Loop (HiL) testing is a widely accepted technology in the industry 

for development and test of complex embedded system, in which, real-time 

computing and signal emulating technologies are used to enable the functionality 
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test of control systems. ETAS is a supplier providing world-leading HiL testing 

facilities for the automotive industry. This research builds a HiL testing system using 

the hardware provided by EATS including a prototype controller (ES910) and a real-

time computer (LABCAR) as shown in Fig. 3-7. The energy management strategies 

are implemented in ES910 to control the LABCAR for functionality validation. 

LABCAR emulates the signals as in real vehicles using real-time models and 

communicates with the ES910 via CAN bus. ETAS software (including ITECRIO, 

INCA, IP and EE) is used for the real-time implementation of control algorithms and 

HEV model.  

 

Fig. 3-7 Hardware-in-the-Loop Testing System 
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3.3.2 ETAS Desk LABCAR 

The LABCAR real-time system used for this research consists of three main sub-

systems, including ES5100 simulation target real-time PC, ES5340 HEV simulator, 

and IXXAT PC/CAN interface as shown in Fig. 3-8. 

 

Fig. 3-8 System diagram of the ETAS LABAR system 

a) ES5100 simulation target real-time PC 

ES5100 is a compact real-time PC for HiL testing which can be located on the 

desktop, as shown in Fig. 3-9. There is an embedded system with Linux pre-installed 

in ES5100, and real-time models can be download from the host computer via 

Ethernet. ES5100 is configured with an Intel Core i7-4700 @3.1GHz process, 8GB 

RAM and 500GB hard disk. There are five external PCIe slots available for add-on 

modules such as ES5400 HEV simulator and CAN card module. ES5100 is equipped 
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with a breakout-box (BoB), which can enable the signal by-pass for controller testing. 

ES5100 sits in the centre of the HiL system which enables the communication with 

host-PC and external ECU. 

 

(a) 

 

(b) 

Fig. 3-9 ES5100 real-time PC: (a) front view; (b) rear view 

b) ES5340 hybrid vehicle simulation board 

ES5340 hybrid vehicle simulation board is used for ECU testing in signal level, as 

shown in Fig. 3-10, which can emulate signals communications as in the real vehicle 

with the inputs/outputs of real-time models. ES5340 communicates with ES5100 via 

PCIe interface. There is a configurable FPGA-based inverter/PMSM model 

embedded in the board for simulating the motor performance with ultra-high-speed. 

The FPGA model generates all electrical and mechanical values for the inverter and 

the electric motor and takes into account all important physical effects, such as 

saturation and temperature effects. Analogue signals, digital signals and PWM 

signals can be generated by ES5340. It also allows analogue, digital and PWM 

inputs from the external controller. In this study, ES5340 is used for real-time 
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simulation of the HEV plant model. 

 

Fig. 3-10 ES5340 hybrid vehicle simulation board 

c) IXXAT iPC-I XC16/PCIe PC/CAN interface 

The IXXAT iPC-I XC16/PCIe PC-CAN interface, as shown in Fig. 3-11, is a powerful 

electronic component which enables the communication between LABCAR and 

external ECU via CAN bus. It is installed on the ES5100 with PCIe interface. 

Configured with a 16-bit microprocessor with 40MHz clock, 512Kb RAM, 128Kb flash, 

and two independent CAN lines, the PC-CAN interface can enable CAN bus 

connection in accordance with ISO 11898-2 (High-speed), as well as the connection 

in accordance with ISO 11898-3 (Low-speed). In this study, IXXAT PC/CAN interface 

is used to enable the CAN bus communication between the LABCAR and the 

prototype controller. 
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Fig. 3-11 IXXAT PCIe PC/CAN interface 

3.3.3 ETAS ES910 

ETAS ES910 is a controller prototype for HiL testing, whose core components 

includes a 1.5 GHz microprocessor, 4Gb RAM, 1Gb/s Ethernet communication and 

communication interfaces. The communication interfaces including CAN, LIN and 

ETK enables the control communication with down-stream ECUs. Software and 

control functionalities can be implemented in ES910 and validated by HiL testing 

network, as shown in Fig. 3-12. CAN and LIN bus can be used to control downstream 

controllers using ES910 as a supervisory controller. ES910 can also be used to 

bypass a commercial ECU for specified functions development using ETK. In this 

study, ES910 is used as a supervisory HEV controller for functional validation of 

energy management strategies.  
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Fig. 3-12 The testing network of ES910 

3.3.4 Software for the HiL testing 

The software for the HiL testing is used mainly for modelling, compiling and 

implementation, as shown in Fig. 3-13. The software is installed in host-PCs which 

communicate with ETAS hardware via Ethernet. The real-time models for the hybrid 

vehicle and energy management controller are built by MATLAB/Simulink. The real-

time models connected with the hardware interface (e.g. CAN) and compiled into C-

code for real-time computing in the compiling procedure. ETAS EE and INTECRIO 

are the model compiling software used for LABCAR and ES910 respectively. 

Complied models of vehicle and controllers are implemented in the LABCAR and 

ES910 through ETAS Experiment Environment (EE) and INCA respectively. The 

model performance in LABCAR and ES910 can be monitored in the host-PCs 
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through EE and INCA. 

 

Fig. 3-13 Software for HiL testing 

 Real-time Modelling for the HiL Testing 

Computing models are critical keys for today’s vehicle development, especially for 

model-based design optimisation, model-based predictive control and real-time 

simulation for control functionality testing and validation. This chapter will develop 

the full real-time models of the hybrid powertrain system (including vehicle dynamics 

and power-flow, engine generator unit, electric motor, and lithium-ion battery 

package) mainly for Hardware-in-the-Loop (HiL) testing purpose. These models will 

also be used for design optimisation in Chapter 5, and its simplified version will be 

used for model-predictive control in Chapter 6. 
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3.4.1 Vehicle system dynamics and power-flow 

The vehicle system is frontward modelled as in Fig. 3-14, which is built-in 

MATLAB/Simulink. The driving cycle used as the system input is obtained with the 

help of Douglas Equipment Ltd. from a real aircraft towing tractor working in London 

Heathrow. The driver model is a fuzzy-logic controller using the driving cycle speed 

as the target speed and generates the control signals to traction motor and brake 

with the feedback of real vehicle speed.  

 

Fig. 3-14 Information-flow of the electrified aircraft-towing tractor model 

The vehicle dynamics are modelled with newton’s theory: 

(𝑚𝑣𝑒ℎ +𝑚𝑝𝑙𝑎𝑛𝑒) ∙
𝑑𝑣𝑟

𝑑𝑡
=

(𝑇𝑡−𝑇𝑏)

𝑟𝑤ℎ𝑙
− 𝐹𝑓 − 𝐹𝑎 − 𝐹𝑔  (3-1) 

where, 𝑚𝑣𝑒ℎ  and 𝑚𝑝𝑙𝑎𝑛𝑒  are the vehicle mass and aeroplane mass respectively 

and 𝑣𝑟 is the real vehicle speed; 𝑇𝑡 and 𝑇𝑏 are the torque generated by traction 



 

68 

 

motor and friction brake; 𝐹𝑓, 𝐹𝑎 and 𝐹𝑔 are the friction, air drag and resistance of 

gradient respectively, which obey: 

{
 
 

 
 
𝐹𝑓 = (𝑚𝑣𝑒ℎ +𝑚𝑝𝑙𝑎𝑛𝑒) ∙ 𝑓𝑓 ∙ cos⁡(𝛼)

𝐹𝑎 =
1

2
∙ 𝜌𝑎𝑖𝑟 ∙ 𝐶𝑑 ∙ 𝐴𝑓 ∙ 𝑣𝑟

2

𝐹𝑔 = (𝑚𝑣𝑒ℎ +𝑚𝑝𝑙𝑎𝑛𝑒) ∙ 𝑔 ∙ sin⁡(𝛼)

  (3-2) 

The values of vehicle parameters used for modelling are presented in Table.3-3. 

Table.3-3 Vehicle parameters 

Parameter Description Value 

𝑚𝑣𝑒ℎ The mass of the aircraft-towing tractor 16t 

𝑟𝑤ℎ𝑙 The radius of the wheels 0.75m 

𝑓𝑓 The friction coefficient 0.02 

𝜌𝑎𝑖𝑟 The density of the air 1.2258 

𝐶𝑑 Aerodynamic drag coefficient 0.8 

𝐴𝑓 Effective front area 6.8m2 

𝛼 Gradient angle 0 

The brake model is a 1-D lookup table using the data from AVL Cruise. The traction 

motor is a 3-phase permanent magnet synchronous motor, which is modelled in 

Section 3.4.4. 

3.4.2 Driver model for speed control 

A fuzzy logic controller is used to regulate the vehicle speed subjective to the desired 
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vehicle speed. The inputs of the driver model are the desired vehicle speed and the 

feedback of actual vehicle speed from the vehicle model. The outputs of the driver 

model are the torque demand to the electric motor and brake demand. These 

controllers use the linguistic terms Positive Large (PL), Positive Medium (PM), 

Positive Small (PS), Zero (Z), Negative Small (NS), Negative Medium (NM) and 

Negative Large (NL). 

The membership functions for the FL speed controller are given in Fig. 3-15 and the 

rule base is given in Table.3-4. This controller uses the vehicle’s velocity error ∆𝑉𝑥 

at time 𝑡 as the first input and its time derivative as the second input to generate a 

suitable pedal activation level. Positive controller outputs represent gas pedal 

activation levels, and negative outputs represent brake pedal activation levels. 

∆𝑉𝑥(𝑡) = 𝑉𝑥
∗(𝑡) − 𝑉𝑥(𝑡)  (3-3) 

Table.3-4 Fuzzy logic speed controller rule base 

 

∆𝑽𝒙 

NL NM NS Z PS PM PL 

∆𝑽𝒙
𝒅𝒕

 

NL NS Z Z PS PM PM PL 

NM NM NS Z Z PS PM PL 

NS NM NM NS Z PS PM PL 

Z NL NM NS Z PS PS PM 

PS NL NM NS Z PS PS PM 

PM NL NM NS Z Z PS PM 

PL NL NM NM NS Z Z PS 
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An input range of ±5kph in Fig. 3-15(a) is used for the controller’s first input ∆𝑉𝑥 

because this offers the best trade-off between a low steady-state velocity error and 

control realism. Reducing this input range improves the steady-state error of the 

vehicle, but it also resulted in erratic pedal control. The second input range 

±20kph/s in Fig. 3-15(b) for the time derivative of ∆𝑉𝑥 is used. Most typical drivers 

would accept ±20kph/s to be a large acceleration value. A controller output with a 

magnitude 1 shows that the pedal is fully activated.  

 

Fig. 3-15 Fuzzy Logic speed controller membership functions: (a) Input 1 - Velocity 

error, (b) Input 2 – Velocity error time derivative, (c) Output- Acceleration 

pedal movement 
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According to Table.3-4, some examples of the rule base for the fuzzy logic speed 

controller are explained in Fig. 3-16. 

 

Fig. 3-16 Rule base for the fuzzy logic speed control 

3.4.3 Engine generator unit 

The engine-generator unit is modelled with the capability of flexible scaling to any 

size, which is centred around a Williams approximation (as shown in Fig. 3-17.) with 

a baseline internal combustion engine (Luján et al., 2016). 

 

Fig. 3-17 Diagram of the engine-generator unit model 
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The mean effective cylinder pressure is approximated by an affine function of mean 

effective fuel pressure⁡𝑝𝑚𝑓, 

𝑝𝑚𝑓 = 𝑒(𝑛𝑖𝑐𝑒) ∙ 𝑝𝑚𝑓 − 𝑝𝑚𝑒0(𝑛𝑖𝑐𝑒) (3-4) 

where, 𝑒(𝑛𝑖𝑐𝑒)  is the indicated efficiency and 𝑝𝑚𝑒0(𝑛𝑖𝑐𝑒)  is the mean effective 

pressure loss due to friction, gas exchange, and auxiliary devices; the total torque 

generated by the engine is calculated as: 

𝑇𝑒0 = 𝐼𝑖𝑐𝑒 ∙ 𝑛𝑖𝑐𝑒̇ +
𝑑𝑖𝑠𝑖𝑐𝑒∙𝑝𝑚𝑒0(𝑛𝑖𝑐𝑒)

4𝜋∙𝐻𝑓
 (3-5) 

where, 𝐼𝑖𝑐𝑒 is the inertia of the engine; 𝑑𝑖𝑠𝑖𝑐𝑒 is the displacement of the engine; 𝑛𝑒 

is the rotation speed of the crankshaft; 𝐻𝑓 is the heat value of the fuel. The fuel 

consumption 𝑚𝑓̇  is calculated by: 

𝑚𝑓̇ =
𝑝𝑚𝑓∙𝜔𝑒∙𝑑𝑖𝑠𝑖𝑐𝑒

4∙𝜋∙𝐻𝑓
 (3-6) 

Using Equation 4-6 and 4-7 the engine torque and fuel consumption could be scaled 

by its displacement. And for the generator, this report assumes that it works on a 

steady-state and the power generating power could be calculated by: 

𝑃𝑒𝑔𝑢 =
𝑇𝑖𝑐𝑒
∗ ∙𝑛𝑖𝑐𝑒

∗

9.55
 (3-7) 

where, 𝑇𝑖𝑐𝑒
∗   and 𝑛𝑖𝑐𝑒

∗   are the most efficient torque and speed of the internal 

combustion engine, respectively. The parameters of the baseline engine-generator 

used for engine generator unit modelling are listed in Table.3-5.  
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Table.3-5 Parameters of the baseline engine  

Parameter Description Value 

𝐿𝑖𝑐𝑒 Engine displacement (L) 6.8 

𝑃𝑖𝑐𝑒_𝑚𝑎𝑥 Rated power of baseline engine (kW) 157 

𝑛𝑖𝑐𝑒_𝑚𝑎𝑥 Rated speed of baseline engine (rpm)  2750 

𝑁𝑢𝑚𝑖𝑐𝑒_𝑐𝑙 Number of cylinders 6 

𝑚𝑓̇  Engine fuel mass-flow rate (kg/s) Map data1 

𝐼𝑖𝑐𝑒 The inertia of baseline engine (kg*m^2) 1 

3.4.4 Electric motor 

A permanent magnet synchronous motor (PMSM) is used to propel the vehicle. The 

inputs of the PMSM model is the torque demand from the drive 𝑇𝑡𝑚_𝑟𝑒𝑞  and 

equivalent motor speed 𝜔𝑚 in rad/s. The output of the PMSM model is the required 

electric power from the battery. The PMSM is modelled as two systems, including 

mechanical system and electric system. 

The mechanical system of the electric motor is used to calculate the motor speed⁡𝜔𝑚: 

𝜔𝑚 = ∫
1

𝐼𝑚
(𝑇𝑒 − 𝑇𝑓 − 𝑓𝑚 ∙ 𝜔𝑚 − 𝑇𝑚) (3-8) 

where, 𝐼𝑚 is combined inertia of rotor and load; 𝑇𝑓 is the rotor shaft static friction 

torque; 𝑓𝑚 is combined viscous friction of rotor and load; 𝑇𝑚 is the output torque of 

 

1 Map data using engine speed and engine torque as input to obtain the fuel rate which is provided by the engine supplier 
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the motor; 𝑇𝑒 is electromagnetic torque, which can be calculated using the electric 

system as (Cash et al., 2018b): 

𝑇𝑒 = 1.5 ∙ 𝑛𝑝𝑜 ∙ [𝜆𝑝𝑚 ∙ 𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞) ∙ 𝑖𝑑 ∙ 𝑖𝑞] (3-9) 

where, 𝑛𝑝𝑜 is the number of pole pairs; 𝜆𝑝𝑚 is permanent magnet flux linkage; 𝐿𝑑 

is direct axis inductances; 𝐿𝑞 is quadrature axis inductances; 𝑖𝑑 and 𝑖𝑞 are direct 

axis current and quadrature axis current respectively, which obeys (Cash et al., 

2018b): 

{

𝑑

𝑑𝑡
𝑖𝑑 =

𝑉𝑑

𝐿𝑑
−
𝑅𝑡𝑚_𝑠

𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
∙ 𝑛𝑝𝑜 ∙ 𝜔𝑚 ∙ 𝑖𝑞

𝑑

𝑑𝑡
𝑖𝑞 =

𝑉𝑞

𝐿𝑞
−
𝑅𝑡𝑚_𝑠

𝐿𝑞
𝑖𝑞 −

𝐿𝑞

𝐿𝑑
∙ 𝑛𝑝𝑜 ∙ 𝜔𝑚 ∙ 𝑖𝑞 −

𝜆𝑝𝑚∙𝑛𝑝𝑜∙𝜔𝑚

𝐿𝑞

 (3-10) 

where, 𝑅𝑡𝑚_𝑠 is the resistance of the stator windings; 𝜔𝑚 is the rotation speed of 

the motor rotor. 

The torque generated by the motor is controlled by a proportional-integral (PI) 

controller with relevant 𝑖𝑑 and 𝑖𝑞, which are calculated based on the driver’s torque 

requirement 𝑇𝑡𝑚_𝑟𝑒𝑞 and the feedback of actual electromagnetic torque 𝑇𝑒. Motor 

parameters provided by the industrial partner for modelling are list in the table below: 
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Table.3-6 Motor parameters 

Parameter Description Value 

𝑛𝑝𝑜 Number of poles 8 

𝑃𝑡𝑚_𝑚𝑎𝑥 Rated power of traction motor (kW)  245 

𝑛𝑡𝑚_𝑚𝑎𝑥 Rated speed of traction motor (rpm)  3375 

𝑉𝑡𝑚_𝑠 Rated voltage of traction motor (V) 155 

𝐼𝑡𝑚_𝑠 Rated current of traction motor (A) 450 

𝑅𝑡𝑚_𝑠 Rated stator resistance of motor (omega) 0.0083 

𝜆𝑝𝑚 Permanent magnet flux linkage (Wb) 0.071 

𝐿𝑑 d-axis inductance (mH) 0.174 

𝐿𝑞 q-axis inductance (mH) 0.293 

𝐼𝑡𝑚_𝑚 Rotor inertia of traction motor (kg*m^2) 0.5 

3.4.5 Lithium-ion battery package 

The inputs of the battery package model are: the number of battery cells 𝑛𝑏𝑐 and 

the required power 𝑃𝑏𝑝 from the DC link. Battery package model outputs the battery 

state of charge to the hybrid system for energy management control. Battery cell 

current and voltage are used for the iterative calculation to simulate the dynamics of 

battery cells. From the beginning of each iteration, the battery cell current 𝐼𝑏𝑐⁡is firstly 

calculated by: 

𝐼𝑏𝑐 =
𝑃𝑏𝑝

𝑛𝑏𝑐∙𝑉𝑏𝑐
 (3-11) 

where, 𝑉𝑏𝑐 is the available voltage which can be provided by the battery cell. A two 
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R-C equivalent battery model is used to model the current-voltage dynamics of a 

lithium-ion battery cell, as shown in Fig. 3-18.  

 

Fig. 3-18 Electric model of the battery cell 

The battery’s voltage dynamics obey (Hu et al., 2014): 

{
 
 

 
 
𝑉𝑏𝑐 = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑉𝑏1 − 𝑉𝑏2 − 𝑅𝑏𝑒𝑠(𝑆𝑂𝐶)𝐼𝑏

𝐶𝑏𝑠𝑡(𝑆𝑂𝐶) ∙
𝑑𝑉𝑏1

𝑑𝑡
= 𝐼𝑏 −

𝑉𝑏1

𝑅𝑏𝑠𝑡(𝑆𝑂𝐶)

𝐶𝑏𝑙𝑡(𝑆𝑂𝐶) ∙
𝑑𝑉𝑏2

𝑑𝑡
= 𝐼𝑏 −

𝑉𝑏2

𝑅𝑏𝑙𝑡(𝑆𝑂𝐶)

  (3-12) 

where, 𝑅𝑏𝑒𝑠, 𝑅𝑏𝑠𝑡, and 𝑅𝑏𝑙𝑡 are the effective series resistance; the short transient 

resistance and long transient resistance respectively and all of them are a function 

of the battery cell’s state of charge (SoC); 𝐶𝑏𝑠𝑡  and 𝐶𝑏𝑙𝑡  are the short transient 

capacity and long transient capacity, respectively, which are functions of SoC; The 

SoC of the battery cell is calculated by: 

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 − ∫
𝐼𝑏

𝑄𝑏

𝑡

0
𝑑𝑡 (3-13) 

The battery cell data and calibrated model parameters are provided in Table.3-7. 
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Table.3-7 Battery cell parameters 

Parameter Description Value 

𝑉𝑏𝑐_𝑚𝑎𝑥 Rated battery cell voltage (V) 3.6 

𝐼𝑏𝑐_𝑐𝑚𝑎𝑥 Rated battery cell charge current (A) 2.25 

𝐼𝑏𝑐_𝑑𝑚𝑎𝑥 Rated battery cell discharge current (A) 11.25 

𝑄𝑏𝑐_𝑚𝑎𝑥 Rated battery cell capacity (mAh)  2900 

𝑉𝑜𝑐 1.031 ∙ 𝑒−35∙𝑆𝑂𝐶 + 3.685 + 0.2156 ∙ 𝑆𝑂𝐶 − 0.1178 ∙ 𝑆𝑂𝐶2 + 0.3201 ∙ 𝑆𝑂𝐶3 

𝑅𝑏𝑒𝑠 0.1562 ∙ 𝑒−24.37∙𝑆𝑂𝐶 + 0.07446 

 

𝑅𝑏𝑠𝑡 0.3208 ∙ 𝑒−29.14∙𝑆𝑂𝐶 + 0.04669 

 

𝑅𝑏𝑙𝑡 6.603 ∙ 𝑒−155.2∙𝑆𝑂𝐶 + 0.04984 

 

𝐶𝑏𝑠𝑡 −752.9 ∙ 𝑒−13.51∙𝑆𝑂𝐶 + 703.6 

 

𝐶𝑏𝑙𝑡 −6056 ∙ 𝑒−27.12∙𝑆𝑂𝐶 + 4475 

 

 Summary 

This chapter introduces the methodology and facilities for the research. The main 

work which has been carried out in relevant to this chapter are: 

• The technical route for the overall research has been developed and 

introduced in this chapter. The overall design objective is specified into four 

sub-tasks: real-time modelling, the hardware-in-the-loop test, the design 

optimisation, and the real-time energy management control. 
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• This chapter discussed the methodology for design optimisation, which 

stresses the main challenges and the specified procedures for offline 

optimisation methodology development.  

• The real-time energy management of hybrid electric vehicle is defined as an 

online optimisation process in this chapter. Model-based predictive control 

method will be investigated, and the research will focus on advanced online 

programming method for online optimisation. Reinforcement learning method 

will be then researched to enable further optimisation of the energy 

management control. 

• This chapter described the work of HiL testing setup. The main facilities used 

for the research are also introduced. 

• Real-time models have been developed for the design optimisation, the 

optimal control, and the HiL test. 
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Chapter Four 

 OFFLINE OPTIMISATION OF COMPONENTS’ 

SIZE AND CONTROL PARAMETERS 

The development of the electrified aircraft towing tractor starts from offline 

optimisation of component size and energy management control parameters. The 

offline optimisation is formulated firstly as a multi-objective integer optimisation via 

mathematical modelling of the vehicle powertrain system. A new algorithm is 

developed to enhance the performance by upgrading the conventional APSO 

algorithm to chaos-enhanced accelerated particle swarm Optimisation (CAPSO) 

algorithm (Zhou et al., 2017). Monte Carlo analysis and reputation evaluation are 

carried out to investigate the optimisation performance. Pareto analysis is also 

carried out to explore the ‘trade-off’ phenomena using different weighting factor. 

Finally, the optimum design parameters are secured by a two-stage optimisation.  

 Optimisation Objectives and Constrains 

4.1.1 Objective functions 

The offline optimisation aims to determine the optimal combination of design 
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parameters (including components’ size and the energy management control 

parameters), to achieve the maximum energy efficiency over a selected driving cycle, 

with the minimum component size. This will determine the optimum size of the 

engine-generator (represented by displacement of the engine) and battery package 

(represented by the number of battery cells). The control parameter to be optimised 

is a coefficient in the function for the battery’s SoC-dependent power distribution 

control.  

The mathematical expression of the offline optimisation can be formulated as: 

[𝐿𝑖𝑐𝑒
∗ 𝑛𝑏𝑐

∗ 𝑐𝑒𝑚𝑠
∗ ] = argmin(𝐽𝑙𝑜𝑠𝑠 𝐽𝑠𝑖𝑧𝑒) 

s. 𝑡.

{
 
 

 
 

𝐿𝑖𝑐𝑒
− ≤ 𝐿𝑖𝑐𝑒 ≤ 𝐿𝑖𝑐𝑒

+

𝑛𝑏𝑐
− ≤ 𝑛𝑏𝑐 ≤ 𝑛𝑏𝑐

+

𝑐𝑒𝑚𝑠
− ≤ 𝑐𝑒𝑚𝑠 ≤ 𝑐𝑒𝑚𝑠

+

𝑛𝑏𝑐 ≥ max⁡[𝑐𝑒𝑖𝑙 (
𝑃𝑚𝑎𝑥−𝐿𝑖𝑐𝑒∙𝑃𝑖𝑐𝑒∙𝜂𝑒𝑔𝑢

𝑃𝑏𝑐𝑛∙𝜂𝑏𝑝𝑛
) , 𝑐𝑒𝑖𝑙 (

𝐸𝑚𝑖𝑛

𝑃𝑏𝑐𝑛∙𝜂𝑏𝑝𝑛
)]

   (4-1) 

where, 𝐿𝑖𝑐𝑒 is the displacement of the engine for the engine generator and 𝐿𝑖𝑐𝑒
∗  is 

the optimal engine displacement; 𝑛𝑏𝑐 is the number of battery cells for the battery 

pack and 𝑛𝑏𝑐
∗  is the optimal size of battery package; 𝑐𝑒𝑚𝑠 is the coefficient for the 

battery’s SoC-dependent power distribution function, and 𝑐𝑒𝑚𝑠
∗   is the optimal 

coefficient value; 𝐿𝑖𝑐𝑒
− , 𝑛𝑏𝑐

− , and 𝑐𝑒𝑚𝑠
−  represent the lower boundary of the design 

parameters, whereas 𝐿𝑖𝑐𝑒
+  , 𝑛𝑏𝑐

+  , and 𝑐𝑒𝑚𝑠
+   represent the higher boundary of the 

design parameters; 𝑃 is the power requirement while 𝐸 is the energy requirement; 

𝑃 and 𝐸 are calculated using a vehicle model; 𝐽𝑙𝑜𝑠𝑠 is the total energy loss of the 
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HEV system over a selected driving cycle and 𝐽𝑠𝑖𝑧𝑒 is the total dimension of the 

powertrain components. 

The first optimisation objective 𝐽𝑙𝑜𝑠𝑠  is to minimise the total energy loss over a 

selected driving cycle. This loss can be calculated using the measurement of the fuel 

consumption of the engine generator, and the measurements of the voltage, the 

current and the SoC of the battery package as in the following Equation (Murgovski 

et al., 2012a):  

𝐽𝑙𝑜𝑠𝑠 = ∫ 𝑃𝑓𝑢𝑒𝑙(𝑡) ∙ 𝑑𝑡
𝑡𝑝
𝑡0

+ ∫ (𝑉𝑒𝑠𝑡(𝑆𝑜𝐶(𝑡)) − 𝑉𝑟(𝑡)) ∙ 𝐼𝑟(𝑡) ∙ 𝑑𝑡
𝑡𝑝
𝑡0

  (4-2) 

where SoC(𝑡) , 𝑉𝑟(𝑡) , 𝐼𝑟(𝑡)  are the real-time SoC (State-of-Charge), voltage and 

current of the battery package; 𝑉𝑒𝑠𝑡 is the estimated battery source voltage, which 

is a function of the battery’s SoC; 𝑃𝑓𝑢𝑒𝑙(𝑡)  is the equivalent power for engine-

generator fuel usage. 

As the overall size of the vehicle is limited, the second optimisation objective 

considers the size of the overall components, which is formulated as: 

𝐽𝑠𝑖𝑧𝑒 = 𝑣𝑜𝑙𝑒𝑔𝑢(𝐿𝑖𝑐𝑒
∗ ) + 𝑛𝑏𝑐 ∙ 𝑣𝑜𝑙𝑏𝑐  (4-3) 

where, 𝐺𝑔𝑝𝑢 indicates the size gain value, which represents the linear relationship 

between the engine displacement and the engine generator’s size; 𝑣𝑜𝑙 indicates 

the volume of each battery cell. The influence of the components size and control 

parameter on the design optimisation objectives will be discussed in the following 
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sections for component scaling (4.1.2) and power distribution function (4.1.3). 

4.1.2 Component scaling 

The components required to be sized in this research includes an engine-generator 

set and battery package. The engine-generator set will use the data provided by JCB, 

and the battery pack will be made up of several Litmus-ion cells from Panasonic. 

a) Scaling of the engine-generator 

JCB is a supplier providing hundreds of types of engine-generator sets from small 

scale to large scale. It is necessary to model the relationship between the overall 

size of the engine generator and its engine displacement. A diagram of an engine 

generator and the definition of its dimensional parameters are shown in Fig. 4-1. The 

dimensional parameters of five different types of engine-generators used for 

modelling are listed in Table.4-1. 

Table.4-1 Dimensional parameters of engine-generator sets 

Engine Size (L) W (mm) H (mm) D (mm) 

2.2 1948 1423 835 

3.4 2265 1567 950 

4.4 2850 1850 1140 

4.8 3334 1912 1200 

6.8 3800 2033 1270 
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Fig. 4-1 The engine-generator set and its geographic parameters 

In this research, a logistic function is used to map the nonlinear relationship between 

engine displacement and the volume of an engine generator as: 

𝑣𝑜𝑙𝑒𝑔𝑢(𝐿𝑖𝑐𝑒) =
1

𝑐𝑒1+𝑒
−(𝑐𝑒2∙𝐿𝑖𝑐𝑒+𝑐𝑒3)

  (4-4) 

where, 𝑣𝑜𝑙𝑒𝑔𝑢 is the total volume of the engine generator; 𝐿𝑖𝑐𝑒 is the displacement 

of the engine; 𝑐𝑒1, 𝑐𝑒2, ⁡𝑐𝑒3 are the tuning parameters of the logistic function. The 

tuning parameters are determined using the MATLAB data fitting toolbox with the 

original data in Table.4-1, the optimal value of which are listed in Table.4-2.  

Table.4-2 Parameters for the function of engine-generator size  

Parameter Value 

𝑐𝑒1 9.5e-5 

𝑐𝑒2 0.9006 

𝑐𝑒3 5.685 
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Two curve-fitting methods, including the widely used linear method and the proposed 

logistic method, are compared with the original data in Fig. 4-2. 

 

Fig. 4-2 Fitting results comparison of engine-generator size 

According to the goodness of fit of both fitting functions as shown in Table.4-3, the 

logistic function has a better fitting performance than the linear function because it 

has a higher R-square value, and a lower value of root mean square error (RMSE) 

and squared errors of expectation (SEE). 

Table.4-3 The goodness of fit for logistic function and a linear function 

Indicates Logistic Linear 

R-square 0.975 0.951 

RMSE 484.4 784.6 

SSE 0.938e6 1.847e6 

The fuel consumption 𝑓𝑢𝑒𝑙𝑒𝑔𝑢 of the selected engine-generators at different power 



 

85 

 

rates 𝑟𝑒𝑔𝑢 are illustrated in Table.4-4. Five engine generator sets are selected, and 

their fuel consumptions at five different power rates from 0~100% are measured by 

the supplier. These data are used to model the equivalent power of the fuel 

consumption of different selected engine generators for scaling. 

Table.4-4 Fuel consumption of the selected engine-generator 

 
Fuel consumption at different power rates 𝑢𝑒𝑔𝑢 (L/h) 

Max. Power (kW) 25% 50% 75% 100% 

15 2.60 4.40 6.30 8.60 

32 3.30 5.70 8.10 11.10 

86 6.90 13.00 18.60 25.80 

100 7.80 14.50 21.10 29.00 

120 9.80 17.80 25.40 34.80 

In this research, the fuel consumption is modelled as a first-order function of power 

rate 𝑢𝑒𝑔𝑢 and a second-order function of the maximum output power of the selected 

engine-generator unit 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥 (Murgovski et al., 2012a): 

𝑓𝑢𝑒𝑙𝑒𝑔𝑢(𝑟𝑒𝑔𝑢, 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥) = 𝑐𝑓00 + 𝑐𝑓10 ∙ 𝑢𝑒𝑔𝑢 + 𝑐𝑓01 ∙ 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥 + 𝑐𝑓11 ∙ 𝑢𝑒𝑔𝑢 ∙ 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥 +

𝑐𝑓02 ∙ 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥
2  (4-5) 

where, 𝑐𝑓00 , 𝑐𝑓10 , 𝑐𝑓01 , 𝑐𝑓11 , and 𝑐𝑓02  are the model parameters, the values of 

which are calibrated with the MATLAB curve fitting toolbox as in Table.4-5.  
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Table.4-5 Parameters of the scaled fuel consumption model 

Parameter Value 

𝑐𝑓00 9.032 

𝑐𝑓10 38.71 

𝑐𝑓01 -0.352 

𝑐𝑓11 2.566 

𝑐𝑓02 2.822e-3 

The fuel consumptions of different engine generators at different power rates 

compared with the original testing data are shown in Fig. 4-3.  

 

Fig. 4-3 Fuel consumption model vs the testing data 

According to the goodness of fit assignment result as shown in Table.4-6, the scaled 

fuel-consumption model is acceptable to represent the equivalent power of fuel 

consumption at different power rates for different engine generators. 
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Table.4-6 The goodness of fit for the scaled engine-generator model 

Indicates Value 

R-square 0.9978 

RMSE 5.25 

SSE 551.2 

b) Scaling of the battery package 

The Panasonic NCR-18650 series battery cell, as shown in Fig. 4-4 is used to build 

the battery pack. The V-I dynamics of the battery package have been discussed in 

Chapter 3.4.5. The size of the battery package 𝑣𝑜𝑙𝑏𝑎𝑡𝑡⁡is scaled by the number of 

Lithium-ion battery cells as: 

𝑣𝑜𝑙𝑏𝑎𝑡𝑡(𝑛𝑏𝑐) = 𝑛𝑏𝑐 ∙ 4 ∙ 𝑟𝑐𝑒𝑙𝑙
2 ∙ ℎ𝑐𝑒𝑙𝑙  (4-6) 

where, 𝑟𝑐𝑒𝑙𝑙 is the radius of the battery cell and ℎ𝑐𝑒𝑙𝑙 is the height of the battery cell.  

 

Fig. 4-4 Panasonic NCR-18650 series battery cell 
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4.1.3 Power distribution function 

The power supplied by the engine generator and battery is calculated as: 

{

𝑃𝑒𝑔𝑢 = 𝑢𝑒𝑔𝑢(𝑆𝑜𝐶) ∙ 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥

𝑃𝑏𝑎𝑡𝑡 = 𝑃𝑟𝑒𝑞 − 𝑃𝑒𝑔𝑢

 (4-7) 

where, 𝑃𝑏𝑎𝑡𝑡  is the power supplied by the battery pack and 𝑃𝑒𝑔𝑢  is the power 

supplied by the engine generator; 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥  is the maximum power that can be 

provided by the engine generator; 𝑃𝑟𝑒𝑞 is the required power for driving the traction 

motor and powering the onboard auxiliary devices.  

The power distribution between the battery 𝑃𝑏𝑎𝑡𝑡⁡and engine⁡𝑃𝑒𝑔𝑢, is controlled by 

the engine generator using a power distribution function 𝑢𝑒𝑔𝑢(𝑆𝑜𝐶) of the battery’s 

SoC level (Huang, Wang, et al., 2017).  

𝑢𝑒𝑔𝑢(𝑆𝑜𝐶) =

{
 
 

 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑜𝐶𝜖(0.8⁡1]⁡⁡⁡

𝑟𝑜𝑢𝑛𝑑(20 ∙ 𝑒
(−

(𝑆𝑜𝐶−𝑆𝑜𝐶−)2

2∙𝑐𝑒𝑚𝑠
2 )

)/20⁡⁡⁡⁡𝑆𝑜𝐶𝜖[0.2⁡0.8)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑜𝐶𝜖[0⁡0.2)

 (4-8) 

Where, the core of the power distribution function is a rounded exploration function, 

which rounds the control command to a number with a resolution of 0.05; 𝑆𝑜𝐶 is the 

current battery’s SoC; 𝑆𝑜𝐶− is the lower battery SoC boundary, normally 𝑆𝑜𝐶− =

0.2 is chosen to ensure battery safety; 𝑐𝑒𝑚𝑠 is the control parameter to be optimised 

for power distribution control, power distribution functions with different control 
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parameter values are shown in Fig. 4-5. 

 

Fig. 4-5 Power distribution function with different control parameter value 

 Optimisation with the conventional APSO 

4.2.1 Optimisation algorithm 

Particle Swarm Optimisation algorithms need fewer tuning parameters and less 

computational effort. They also have the capability of dealing with integer variables. 

Furthermore, the convergence speed of PSO can be improved by the accelerated 

particle swarm optimisation (APSO) algorithm. A standard CAPSO is used as the 

base-line method for design optimisation. The process of design optimisation using 

the APSO is illustrated in Table.4-6, which consists of three main procedures: 1) 

initialization, 2) main iteration, and 3) co-simulation with MATLAB/Simulink. The 
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procedure of initialization defines the position of the particles as well as the 

constraints of their search space. The optimisation algorithm iterates with the vehicle 

model for several rounds in the main iteration procedure to determine the 

optimisation results with the system performance feedbacks from the co-simulation 

with the MATLAB/Simulink model. Details of each procedure are described as 

follows. 

 

Fig. 4-6 Flow-chart of design optimisation with APSO 
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a) Initialization 

In the initialization procedure, the particles (computing agent) are defined using a 

Euclidean coordination system as: 

𝑥𝑖,𝑗 = [𝐿𝑖𝑐𝑒 𝑛𝑏𝑐 𝑐𝑒𝑚𝑠]
𝑇

𝑖 = 0,1,2, … ,𝑁; ⁡𝑗 = 1,2, . . , 𝑝
  (4-8) 

where, 𝑥𝑖,𝑗 is the position of the 𝑗𝑡ℎ particle at 𝑖𝑡ℎ iteration; the coordinate of the 

particle position is represented by the engine displacement, number of battery cells 

and energy management control parameter respectively; 𝑁  is the maximum 

number of iterations, which is used to terminate the iterations; 𝑝 is the population of 

the particles, which defines the capability of the global search in each iteration via 

computing agents.  

b) Main iteration 

The first step in the main iteration is to generate initial particles randomly within the 

search area and use the particles to determine their objective function values at their 

current positions. The objective function value is the call-back from the co-simulation 

with the vehicle model in MATLAB/Simulink. The best position in the initial trial is 

then obtained by: 

𝑥0,∗ = arg𝑚𝑖𝑛. 𝐽(𝑥0,:) (4-9) 

where, 𝑥0,∗ is the best position in the initial trial; 𝐽(𝑥0,:) is the cost function, which is 
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modelled as a weight sum function:  

𝐽(𝑥0,:) = (𝑤 ∙
𝐽𝑙𝑜𝑠𝑠(𝑥0,:)

𝐽𝑙𝑜𝑠𝑠
∗ + (1 − 𝑤) ∙

𝐽𝑠𝑖𝑧𝑒(𝑥0,:)

𝐽𝑠𝑖𝑧𝑒
∗ ) (4-10) 

where 𝑤 is the weight factor of each objective; 𝐽𝑙𝑜𝑠𝑠
∗  and 𝐽𝑠𝑖𝑧𝑒

∗  are the scale factor 

in ensuring the values of the objective functions are on the same scale (normally 

between 0 and 1); 𝐽𝑙𝑜𝑠𝑠(𝑥0,:)  and 𝐽𝑠𝑖𝑧𝑒(𝑥0,:)  are the objective function values 

calculated with all the particles in the initial trial 𝑥0,: = [𝑥0,1, 𝑥0,2, … , 𝑥0,𝑝]. 

After the initial trial, two dummy sets are defined as: 

{
𝑿 = [𝑥0,∗, 𝑥0,∗, … , 𝑥0,∗]

𝒀 = [𝐽(𝑥0,∗), 𝐽(𝑥0,∗),… , 𝐽(𝑥0,∗)]
  (4-11) 

where 𝑿:ℛ3×𝑁 is the local best variable set, which will be updated at the end of 

each iteration; 𝒀:ℛ3×𝑁 → ℛ1×𝑁 is a local best cost-function value set to allocate the 

cost-function values with the local best of each iteration. With the local best variable 

set and local best objective value set, the global best position can be calculated as: 

𝑔𝑏𝑠𝑡 = argmin𝐹(𝑋) ∈ 𝑋⁡ (4-12) 

The following iteration starts at a random move of the particles. The APSO algorithm 

updates the position of the particles using: 

𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 + 𝛽 ∙ (𝑔𝑏𝑠𝑡 − 𝑥𝑖,𝑗) + 𝛼
𝑖+1 ∙ 𝑟𝑖,𝑗

𝑖 = 0,1,2, … ,𝑁; ⁡𝑗 = 1,2, . . , 𝑝
 (4-13) 

where, 𝑥𝑖+1,𝑗  and 𝑥𝑖,𝑗  are the position of the 𝑗𝑡ℎ  particles at 𝑖 + 1𝑡ℎ  and 𝑖𝑡ℎ⁡ 
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iteration respectively; 𝑔𝑏𝑠𝑡  is the global best position; 𝑟𝑖,𝑗  is a unique random 

number that is different for each particle in each iteration; 𝛼𝑖+1 is a decreasing factor 

in reducing the influence of random move; 𝛽 is the attraction factor which controls 

how the global best position will attract the moving of each individual particle. For 

the APSO algorithm, the value of the attraction factor is fixed, and 𝛽 = 0.5 is usually 

used (Chopard and Tomassini, 2018).  

A series of new cost function 𝐽(𝑥𝑖+1,:)  values are then determined with the new 

particle positions 𝑥𝑖+1,:  and the local optimal solution at 𝑖 + 1𝑡ℎ  iteration is then 

obtained by: 

𝑥𝑖+1,∗ = arg𝑚𝑖𝑛. 𝐽(𝑥𝑖+1,:) (4-14) 

At the end of each iteration, the local sets of variables and objective function values 

will be updated as: 

{

𝑿(𝑖 + 1) = 𝑥𝑖+1,∗

𝒀(𝑖 + 1) = 𝐽(𝑥𝑖+1,∗)
 (4-15) 

where 𝑿(𝑖 + 1) and 𝒀(𝑖 + 1) denote the 𝑖 + 1𝑡ℎ element of the vector 𝑿 and 𝑭, 

which are updated with the value of 𝑥𝑖+1,∗ and 𝐽(𝑥𝑖+1,∗). Therefore, the global best 

position value 𝑔𝑏𝑠𝑡 will also be updated with the new set of variables and objective 

function values, which will guide the particles moving in the next iteration. 
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c) Co-simulation with powertrain model in MATLAB/Simulink 

A co-simulation platform, including the optimisation algorithm and vehicle simulation 

models, is established to perform the design optimisation, as shown in Fig. 4-7.  

 

Fig. 4-7 The interface of the co-simulation platform for design optimisation 

In each iteration, the inputs of the vehicle model are the control parameter for energy 

management strategy ⁡𝒄𝑒𝑚𝑠 ∈ ℛ
𝑝 , the number of battery cells ⁡𝒏𝑏𝑐 ∈ ℛ

𝑝 , and the 

displacement of the internal combustion engine ⁡𝑳𝑖𝑐𝑒 ∈ ℛ
𝑝 . The vehicle model in 

Simulink runs the simulation of 𝑝 cases in parallel at each iteration and outputs the 

total power loss 𝑱𝑙𝑜𝑠𝑠 ∈ ℛ
𝑝  and total components’ size 𝑱𝑠𝑖𝑧𝑒 ∈ ℛ

𝑝 . The power 

requirement profile is obtained separately by a forward-looking vehicle model 

(developed in Chapter 4) using the PBDC-I (as discussed in Chapter 3). The outputs 

are also a 𝑝-dimension vector, which is used to 1) retrieve the local best particle 

position, 2) update the global best position; 3) move all the particles to new locations 
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for the next round iteration. The iteration ends when the pre-set condition (𝑖⁡ = ⁡𝑁) is 

met, and the algorithm will output the optimal sizing information in the last iteration. 

The pseudo-code for the design optimisation is provided in Fig. 4-8. 

 

Fig. 4-8 Pseudo-code for design optimisation using APSO 

4.2.2 Optimisation results with the APSO 

With the APSO algorithm using 50 particles and terminating at the 35th iteration, the 

evolution of the optimisation process of a single trial is present in Fig. 4-9. The 

optimisation is performed in MATLAB version 2017a using a desktop computer (with 

i5 processor and 8G RAM), which requires a total computing time of 282 seconds 

(around 5 minutes) to obtain an acceptable design optimisation result. In each 

subplot of Fig. 4-9, the red round line shows trajectories of the optimal value and the 
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respective optimal component size in each iteration while the other lines are the 

trajectories of other particles. The convergence of the cost function values is shown 

in Fig. 4-9 (a). Fig. 4-9 (b), (c) and (d) presents the convergence of the three design 

variables which represent the positions of the particles. Using the APSO algorithm, 

the optimisation can converge to an optimal result within 35 iterations.  

(a) 

(b) 
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(c) 

(d) 

Fig. 4-9 Evolution of the optimisation results with APSO 

4.2.3 Diversity of the optimisation results by the APSO 

To evaluate the consistency of the optimisation results, 20 repeated experiments 

have been carried out, and the optimisation results are listed in Table.4-7. According 

to the tests, the cost function value of 0.7414 and 0.73942 are achieved for 15 times 

and 2 times respectively, whereas the global optimal value should be 0.7374 which 

was only obtained for 3 times. The diversity of the cost-function value obtained in 

each trial is caused by the particles converged to a local position. 
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Table.4-7 Diversity of optimisation results by APSO 

No. of Test Cost function Value Engine disp. No. of cells Ctrl. parameter  

1 0.741410742 4 10400 0.08 

2 0.741410742 4 10400 0.08 

3 0.741410742 4 10400 0.08 

4 0.741410742 4 10400 0.08 

5 0.741410742 4 10400 0.08 

6 0.741410742 4 10400 0.08 

7 0.739426271 4 10900 0.07 

8 0.741410742 4 10400 0.08 

9 0.741410742 4 10400 0.08 

10 0.741410742 4 10400 0.08 

11 0.741410742 4 10400 0.08 

12 0.739426271 4 10900 0.07 

13 0.737496805 4 12100 0.06 

14 0.741410742 4 10400 0.08 

15 0.741410742 4 10400 0.08 

16 0.741410742 4 10400 0.08 

17 0.741410742 4 10400 0.08 

18 0.737496805 4 12100 0.06 

19 0.737496805 4 12100 0.06 

20 0.741410742 4 10400 0.08 

For the APSO algorithm, the convergence of particles is controlled by two vectors 

including a random vector 𝑉𝑎⃗⃗  ⃗ and a vector towards the global best position 𝑉𝑏⃗⃗⃗⃗ , as 

shown in Fig. 4-10. The magnitude of the random vector 𝑉𝑎⃗⃗  ⃗  decreases as the 
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progression of the iteration and the vector towards the global best position 𝑉𝑏⃗⃗⃗⃗  is a 

fixed proportion of the distance between the current position and the global best 

position. 

At the initial iterations, the distance between the particles’ current position and the 

global best position may be very long, and the vector 𝑉𝑏⃗⃗⃗⃗  will significantly affect the 

direction of the particles’ move. As the iteration progresses, although the magnitude 

of 𝑉𝑏⃗⃗⃗⃗   decreases, the magnitude of 𝑉𝑎⃗⃗  ⃗  is reduces more significantly as an 

exponential function. Therefore, the vector towards the global best position 𝑉𝑏⃗⃗⃗⃗  is 

always more powerful than the random vector 𝑉𝑎⃗⃗  ⃗ and will convergence the particles 

to the global best position 𝑔𝑏𝑠𝑡.  

 

Fig. 4-10 Two vectors for particle convergence control 

For example, if the particles located in 𝑥𝑖,∗ = [4, 12100, 0.06] was regarded as the 

‘global’ best position 𝑔𝑏𝑠𝑡, all the other particles will move towards this particle until 

convergence. The particles may sometimes jump out from the local optima only if a 

better position is located on the route from 𝑥𝑖,𝑗 → 𝑥𝑖,∗, however, the probability is very 

low. Therefore, a more effective search method should be developed to avoid the 

local falling of particles so that the consistency of the optimisation results would be 

improved. 
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 Optimisation with CAPSO 

The basic idea of the chaos-enhanced accelerated particle swarm optimisation 

(CAPSO) algorithm is introducing an iteration-variant attraction factor value 𝛽(𝑖) to 

reduce the power of 𝑉𝑏⃗⃗⃗⃗  at initial iterations to allow enough local search to avoid the 

drop of the local optima, and further enhanced the power of 𝑉𝑏⃗⃗⃗⃗  at later interactions 

to further accelerate the speed of convergence. The core algorithm for the particle 

position update of the CAPSO is developed as: 

𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 + 𝛽(𝑖) ∙ (𝑔𝑏𝑠𝑡 − 𝑥𝑖,𝑗) + 𝛼
𝑖+1 ∙ 𝑟𝑖,𝑗

𝑖 = 0,1,2, … ,𝑁; ⁡𝑗 = 1,2, . . , 𝑝
 (4-16) 

where the most significant development rooted from Equation 4-13 is an iteration-

variant attraction factor 𝛽(𝑖). In this study, the attraction factor at the initial iteration 

is 0.3. Iteration-variant functions will be investigated to generate a series of different 

{⁡𝛽(1), 𝛽(2),… , 𝛽(𝑁)}, and converge its value to a higher value (between 0.5 and 1) 

as the iteration progresses. 

Chaotic maps are used to build the iteration-variant attraction factor 𝛽(𝑖) . Four 

typical mapping strategies are studied in this research: Gauss/mouse map, singer 

map, sinusoidal map and logistic map, which have been evaluated as the best four 

out of twelve candidates for solving the standard algorithm testing functions (i.e. 

Griewank function, Ackley function, Sphere function) (Gandomi et al., 2013). 
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a) Gauss map 

A Gauss/mouse map is defined using a mod function as (Di He et al., 2001): 

𝛽(𝑖 + 1) = {

1 𝑖𝑓⁡𝛽(𝑖) = 1⁡

1 −
1

1−𝛽(𝑖)
𝑚𝑜𝑑(1) 𝑖𝑓⁡𝛽(𝑖) ≠ 1

 (4-17) 

where, 𝛽(𝑖) is the attraction factor at 𝑖𝑡ℎ iteration; 𝛽(𝑖 + 1) is the attraction factor 

at (𝑖 + 1)𝑡ℎ iteration; 
1

1−𝛽(𝑖)
𝑚𝑜𝑑(1) is the remainder of the division of 

1

𝛽(𝑖)
 by 1, for 

example 
1

0.8
𝑚𝑜𝑑(1) = 0.25. The CAPSO algorithm using the Gauss map is named 

CAPSO-I in the rest of this thesis. 

b) Singer map 

A Singer map is a quartic polynomial as (Fister et al., 2015a): 

𝛽(𝑖 + 1) = 1 − 𝜇1 ∙ ∑ 𝑐𝑘(1 − 𝛽(𝑖)
𝑘)4

𝑘=1

𝑘 = 1,2,3,4
 (4-18) 

where the value of 𝜇 is 0.95; the value of 𝑐1 is 7.86; the value of 𝑐2 is -23.31; the 

value of 𝑐3 is 28.75; the value of 𝑐4 is -13.30 (Fister et al., 2015b). The CAPSO 

algorithm using the singer map is named CAPSO-II in the rest of this thesis. 

c) Sinusoidal map 

A sinusoidal map is defined as a sinusoidal function as (Li, Deng and Xiao, 2011): 

𝛽(𝑖 + 1) = 1 − sin(𝜋 ∙ (1 − 𝛽(𝑖))) (4-19) 
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The CAPSO algorithm using the sinusoidal map is named CAPSO-III in the rest of 

this thesis. 

d) Logistic map 

A Logistic map uses an Equation which appears as the nonlinear dynamics of 

biological population evidencing chaotic behaviour as (Gandomi et al., 2013): 

𝛽(𝑖 + 1) = 𝜇2 ∙ 𝛽(𝑖) ∙ (1 − 𝛽(𝑖)) (4-20) 

where, 𝜇2 = 4  is chosen for this research (Gandomi et al., 2013). The CAPSO 

algorithm using the logistic map is named CAPSO-IV in the rest of this thesis. 

 Results and Discussion 

4.4.1 Optimisation results with CAPSO 

The process of design optimisation in a single trial using the CAPSO algorithm is 

presented in Fig. 4-11. The logistic map is used for mapping the attraction factor 

value in this case. The red dots in Fig. 4-11 (a) tracks the evolution trajectory of the 

best cost-function value of the design optimisation while the red dot in Fig. 4-11 (b), 

(c), and (d) indicate the moving of the best particle positions. The swarm can search 

for the optimal position with a wide range at the initial iterations, and convergence at 

around 30 iterations (faster than the APSO which requires 33 iterations to converge 
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the swarm). 

(a) 

(b) 
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(c) 

(d) 

Fig. 4-11 Evolution of the optimisation results with CAPSO (logistic map) 

The optimisation results (including the values of the design parameters and the 

corresponding cost function values) of 20 different trials using the CAPSO (with 

logistic map) are listed in Table.4-8.  The CAPSO can achieve the minimum cost-

function value (0.737497) for 9 times (the APSO only achieves 3 times). The CAPSO 

algorithm significantly reduces the chance to local optimum result (0.741411) from 

11 times to 2 times. 
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Table.4-8 Diversity of optimisation results by CAPSO (logistic map) 

No. of Test Cost function Value Engine disp. No. of cells Ctrl. parameter  

1 0.739426 4 10900 0.07 

2 0.739426 4 10900 0.07 

3 0.739426 4 10900 0.07 

4 0.741411 4 10400 0.08 

5 0.737497 4 12100 0.06 

6 0.737497 4 12100 0.06 

7 0.737497 4 12100 0.06 

8 0.737497 4 12100 0.06 

9 0.741411 4 10400 0.08 

10 0.739426 4 10900 0.07 

11 0.737497 4 12100 0.06 

12 0.737497 4 12100 0.06 

13 0.737497 4 12100 0.06 

14 0.737497 4 12100 0.06 

15 0.739426 4 10900 0.07 

16 0.737497 4 12100 0.06 

17 0.739426 4 10900 0.07 

18 0.739426 4 10900 0.07 

19 0.739426 4 10900 0.07 

20 0.739426 4 10900 0.07 

4.4.2 Monte Carlo analysis 

A Monte Carlo analysis is carried out to evaluate the performance of the algorithms, 
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including the standard APSO and CAPSOs with the proposed chaotic maps from the 

perspective of statistics. With running each set-off 20 times with uniformly distributed 

random initial values, the statistic results of the cost-function values obtained by the 

five optimisation algorithms in the 20 trials are listed in Table.4-9.  

Table.4-9 Statistic property of the 20 individual optimisation tests  

Algorithm Best value Mean value 𝛔 

APSO 0.7375 0.7405 2.18e-6 

CAPSO-I 0.7375 0.7393 2.62e-6 

CAPSO-II 0.7375 0.7394 2.01e-6 

CAPSO-III 0.7375 0.7394 3.73e-6 

CAPSO-IV 0.7375 0.7338 2.04e-6 

All of the APSO and CAPSO algorithms have the capability to converge the swarm 

to the same best value of 0.7375, which can be regarded as the global optimisation 

result in this study. The mean values of the cost-function values obtained by the 

CAPSO algorithms are smaller than those obtained by the APSO, which shows the 

advancement of the CAPSO algorithms. The CAPSO-IV algorithm with a logistic map 

achieves the minimum average cost function value of 0.7338, resulting in a 0.91% 

improvement compared with conventional APSO. In terms of the standard derivation 

of the 20 trials which indicates the diversity of the optimisation results, the CAPSO-

II with a singer map enjoys the lowest standard derivation value; while the CAPSO-

IV with a logistic map has the second-lowest standard derivation value. 
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4.4.3 Reputation evaluation 

In real practice, engineers always concern more about the probability of how an 

optimisation algorithm achieves the real global best results, which is a more strict 

and observable evaluation compared with the Monte Carlo analysis. The reputation 

evaluation of the optimisation algorithm is performed in this research, and the 

reputation index is defined as: 

𝑅𝑖 =
𝑁𝑢𝑚𝑜𝑝𝑡.

𝑁𝑢𝑚𝑡𝑟𝑖𝑎𝑙
 (4-21) 

where, 𝑅𝑖 is the reputation index; 𝑁𝑢𝑚𝑜𝑝𝑡. is the number of achieving the global 

best result; 𝑁𝑢𝑚𝑡𝑟𝑖𝑎𝑙 is the total number of the trails in the random repeat test. The 

reputation index values of all the APSO and CAPSOs are listed in Table.4-10. 

Table.4-10  The reputation index value for different algorithm 

Algorithm Total Trials No. of Best 𝑹𝒊 

APSO 20 3 0.15 

CAPSO-I 20 7 0.35 

CAPSO-II 20 5 0.25 

CAPSO-III 20 4 0.20 

CAPSO-IV 20 9 0.45 

The reputation index value of the conventional APSO is 0.15, which indicates the 

APSO algorithm can only access to the global best from 3 times out of 20 trials. All 

CAPSOs have a higher reputation index value than the conventional APSO. The 
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CAPSO-IV algorithm with a logistic map has the highest reputation value of 0.45 

which is twice as higher as that of APSO.  

A comprehensive reputation evaluation is performed to choose the most suitable 

swarm intelligent algorithm for design optimisation considering the average cost-

function value, the standard derivation of the cost-function value, and the reputation 

index value. A scoring system is established based on the ranking of each algorithm 

in terms of its reputation index value as well as the mean value and standard 

derivation of the cost-function values. The higher the ranking of the algorithm is the 

higher score it will win. For example, a 5 score is given to the algorithm with the 1st 

ranking, and 1 score is given to the algorithm with the 5th ranking. The scoring of the 

conventional APSO and CAPSOs are shown in a spider chart in Fig. 4-12. According 

to the comprehensive evaluation, the CAPSO-IV with a logistic map is considered 

as the most effective optimisation algorithm for design optimisation. 

 

Fig. 4-12 Spider-chart of scoring for APSO and CAPSOs 
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4.4.4 Pareto optimal frontier 

The Pareto frontier of the design optimisation is obtained using CAPSO-IV with the 

weight factor changing from 0 to 1, as shown in Fig. 4-13. The weight factor of 1 

means the optimisation only consider the minimisation of energy loss whereas the 

weight factor of 0 means only the minimisation of the component size is considered. 

The Pareto optimal frontier is a set of non-dominated results considering both 

optimisation objectives with different weight values and shows the trade-off between 

the two objectives.  

 

Fig. 4-13 The Pareto frontier of the multi-objective design optimisation 

The analytical result showing how power-loss can be reduced by the increase of the 

component size is presented in Fig. 4-14. The results are calculated with the Pareto 
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frontier set, which indicates a 3.3% energy loss can be reduced by an increase of 

0.36% in components size when the weight value changes from 0 to 0.25; an 11.52% 

component size increase can result in a 10.36% energy loss reduction when the 

weight value changes from 0 to 0.5; a 19% energy loss reductions requires at least 

a 29% component size increase when weight value changes from 0 to 0.75; a 37% 

increase of the component sizing can only achieve a 20% energy loss reduction 

when the weight value changes from 0 to 1.  

 

Fig. 4-14 The trade-off between two optimisation objectives 

4.4.5 Final optimisation results confirmation 

According to the requirement of the OEM, the global optimum result of the design 

optimisation using weight factor value of 0.5 is chosen which determines the optimal 
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engine size is 4.0L, the optimum number of battery cells is 12100, and the optimum 

control parameter value is 0.06. The engine-generator set is the most expensive 

subsystem for the hybrid powertrain. It is more cost-efficient to choose an existing 

product from the product library of JCB. Therefore, a JCB engine-generator unit with 

a 4.4L diesel engine is chosen for this study and second-round design optimisation 

is operated to determine the optimal battery cell number and the control parameter.  

The process of the second-round optimisation is shown in Fig. 4-15. 

(a) 

(b) 
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(c) 

Fig. 4-15 Process of second-round optimisation 

According to another 20 trials for the second round design optimisation, the optimum 

battery cell number and control parameter are 8200 and 0.07 respectively. The 

second-round optimisation result is adopted by the OEM, and it helped them to 

confirm the size and control parameter for their prototype finally. The optimisation 

result will also be used for the research of new energy management methodologies. 

 Summary 

The design optimisation for component sizing and control parameters calibration of 

the electrified vehicle is performed in this chapter. Well-adapted accelerated particle 

swarm optimisation (APSO) is used as the base-line technology for this research. A 

new design optimisation methodology is developed based on a chaos-enhanced 

accelerated particle swarm optimisation (CAPSO) algorithm. Four different chaotic-
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mapping strategies are investigated and evaluated using Monte-Carol analysis and 

reputation evaluation. The Pareto frontier of the design optimisation has been 

obtained, and the principle of the weight-sum function design has also been 

discussed. The conclusions drawn from the investigation are as follows: 

• Both APSO and CAPSO have the capability of global optimum search and the 

electrified vehicle in this research is expected to achieve the global optimal 

design target with an engine size of 4.0L, a battery package of 12100, and 

power distribution function parameter value of 0.06. 

• CAPSOs algorithms with all four proposed chaotic mapping strategies have 

the capability of optimisation result improvement over the conventional APSO 

according to the Monte-Carlo analysis. A significant improvement of 200% has 

been achieved by a CAPSO with a logistic mapping strategy in terms of 

reputation index. This contribution is extremely important, which can improve 

the reliability of global search with the proposed algorithm in real engineering 

practice. 

• According to a comprehensive evolution in terms of the Monte-Carlo analysis 

and reputation evolution, the CAPSO with a logistic map is selected as the 

most effective algorithm for design optimisation of electrified vehicles. 

• The Pareto optimal frontier is obtained to illustrate the trade-off of the design 
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objectives by different chosen weigh values. When the weight value changes 

from 0 to 0.5, a higher energy loss reduction rate can be achieved with less 

increase in the size of the components. 

Further research and investigation of online optimal energy management control will 

be progressed with the results from the second-round optimisation (i.e. engine size 

of 4.4L, the battery cell number of 8200, and control parameter of 0.07); which have 

been confirmed with an industrial partner. In addition, the proposed method has the 

capability of exploring the optimum combination in a ‘free-selection’ world when 

using different settings for the optimisation constraints. Therefore, it can break the 

restrictions from the available on-the-shelf components and provide 

recommendations to the component suppliers. 
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Chapter Five 

 ONLINE PARTICLE SWARM INTELLIGENCE 

OPTIMISATION FOR MODEL-BASED PREDICTIVE 

ENERGY MANAGEMENT CONTROL 

This chapter develops a new model-based predictive energy management control 

strategy, which enables the capability of online control optimisation of the electrified 

aircraft-towing tractor. The proposed energy management strategy is centred on the 

Online Swarm Intelligent Programming (OSIP), which implements a new particle 

swarm optimisation scheme for online nonlinear optimisation (Zhou et al., 2018). The 

online optimisation is firstly analysed via control-oriented modelling followed by the 

development of the OSIP. After the implementation of the proposed control strategy 

with a distributed control system, the advantages of the proposed method are 

demonstrated and evaluated.  

 Optimisation Problem associated with the Energy 

Management 

The optimisation problem associated with the energy management of the electrified 

vehicle is to retrieve the optimal control signals of the battery package 𝑢𝑏𝑎𝑡𝑡 and the 
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engine generator 𝑢𝑒𝑔𝑢  in real-time to minimise energy loss (namely the useless 

energy dissipated by heat) over any given prediction horizons so that the vehicle 

efficiency can be improved in real-world operations. If the control signal of the engine 

generator is determined, the control signal of the battery pack can be calculated with: 

𝑢𝑏𝑎𝑡𝑡(𝑡) =
𝑃𝑟(𝑡)−𝑢𝑒𝑔𝑢(𝑡)∙𝑃𝑒𝑔𝑢_𝑚𝑎𝑥

𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥
  (5-1) 

where, 𝑃𝑟 is the power demand for driving the vehicle which can be calculated using 

the predictive model (will be discussed in section 5.2.1); 𝑃𝑒𝑔𝑢_𝑚𝑎𝑥 and 𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 are 

the maximum power of the engine generator and the battery package, respectively. 

Therefore, the optimisation problem in each time interval is to obtain the optimal 

control signal of the engine generator: 

𝑢𝑒𝑔𝑢
∗ (𝑡) ⁡= argmin(∑ 𝑥𝑒𝑔𝑢(𝑖) ∙ ∆𝑡 + ∑ 𝑥𝑏𝑝(𝑖) ∙ ∆𝑡

𝑡+𝑝
𝑖=𝑡

𝑡+𝑝
𝑖=𝑡 )

𝑠. 𝑡.

{
 
 
 

 
 
 

𝑢𝑒𝑔𝑢
− ≤ 𝑢𝑒𝑔𝑢 ≤ 𝑢𝑒𝑔𝑢

+

𝑠𝑒𝑔𝑢(𝑡) = 𝑢𝑎𝑝𝑢(𝑡) ∙ 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥(1 − 𝜂𝑓2𝑒(𝑢𝑎𝑝𝑢(𝑡) ∙ 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥))

𝑠𝑏𝑎𝑡𝑡(𝑡) = (
1

2
(𝑉𝑜𝑐(𝑆𝑜𝐶) − √𝑉𝑜𝑐(𝑆𝑜𝐶)2 −

4𝑅𝑙𝑜𝑠𝑠(∙)∙𝑢𝑏𝑎𝑡𝑡(𝑡)∙𝑃𝑏𝑝_𝑚𝑎𝑥

𝑛𝑏𝑐
))2 ∙

𝑛𝑏𝑐

𝑅𝑙𝑜𝑠𝑠(∙)

𝑢𝑏𝑎𝑡𝑡(𝑡) =
𝑃𝑟(𝑡)−𝑢𝑎𝑝𝑢(𝑡)∙𝑃𝑎𝑝𝑢_𝑚𝑎𝑥

𝑃𝑎𝑝𝑢_𝑚𝑎𝑥

SoC− ≤ SoC ≤ SoC+

  (5-2) 

where, 𝑢𝑒𝑔𝑢
∗ (𝑡) is the optimal control command for the engine generator at 𝑡𝑡ℎ time 

interval; 𝑠𝑒𝑔𝑢  and 𝑠𝑏𝑝  are the transient states of the engine generator and the 

battery pack respectively which will be predicted in model-based predictive control; 

𝑢𝑒𝑔𝑢
− = 0  and 𝑢𝑒𝑔𝑢

+ = 1  are the lower boundary and higher boundary for the 

command signal; SoC− = 0.2 and SoC+ = 0.8 are the lower and higher boundaries 
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of the battery’s SoC; 𝜂𝑓2𝑒 is the power conversion efficiency of ‘fuel to electricity’; 

𝑉𝑜𝑐 is the average open-circuit voltage of the battery cell; SoC is the State of Charge 

of the battery; 𝑅𝑙𝑜𝑠𝑠 is the internal resistance of the battery; 𝑛𝑏𝑐 is the number of 

battery cells within the battery pack. 

According to Equation 5-2, the optimisation is an online optimisation with nonlinear 

constraints:  

{

𝑠𝑎𝑝𝑢(𝑡) = 𝑢𝑎𝑝𝑢(𝑡) ∙ 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥 ∙ (1 − 𝜂𝑓2𝑒(∙))

𝑠𝑏𝑎𝑡𝑡(𝑡) = (
1

2
(𝑉𝑜𝑐(𝑆𝑜𝐶) − √𝑉𝑜𝑐(𝑆𝑜𝐶)2 −

4𝑅𝑙𝑜𝑠𝑠(∙)𝑢𝑏𝑎𝑡𝑡(𝑡)∙𝑃𝑏𝑝_𝑚𝑎𝑥

𝑁𝑢𝑚𝑏𝑐
))2 ∙

𝑁𝑢𝑚𝑏𝑐

𝑅𝑙𝑜𝑠𝑠(∙)

  (5-3) 

In this case, the control signal of the engine generator has a resolution of 0.05. 

Therefore, the optimisation problem associated with energy management control is 

an integer nonlinear optimisation problem. 

 Model-based Predictive Energy Management Control 

To solve the integer nonlinear optimisation problem in real-time, this Chapter 

proposed a new model-based predictive control methodology. Predictive models are 

firstly developed for control purpose based on a necessary simplification of the real-

time models in Chapter 3. The online swarm intelligent programming is then 

proposed as a new method for online nonlinear optimisation. 
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5.2.1 Control-oriented predictive modelling 

The control-oriented models are necessary for prediction of the system performance 

feedback with different trial control signal inputs so that the optimal control signals 

can be obtained by online optimisation. The control-oriented models should have the 

capability of computing with ultra-high-speed comparing with the real-time system. 

This section carries out control-oriented modelling based on the reasonable 

simplification of the real-time models developed in Chapter 3. 

a) Power-flow of hybrid electric vehicle  

The power-flow among the traction motor, the engine-generator unit, and the battery 

package are studied considering energy conversion and transfer. The battery pack 

(BP) and the engine generator unit (EGU) are connected within the DC-link. The 

traction motor could be powered by either the BP only or BP and EGU together. The 

EGU can also be used to charge the battery pack to maintain its SoC within the 

proper level. The power flow of the vehicle system obeys: 

𝑃𝑙𝑖𝑛𝑘(𝑡) = 𝑃𝑎𝑝𝑢(𝑡) + 𝑃𝑏𝑝_𝑑(𝑡) − 𝑃𝑐(𝑡) (5-4) 

where, 𝑃𝑒𝑔𝑢(𝑡) is the output power provided by the EGU, 𝑃𝑏𝑝_𝑑(𝑡) is the discharge 

power of the BP, 𝑃𝑐(𝑡) is the charge power for the battery pack, and 𝑃𝑙𝑖𝑛𝑘(𝑡) is the 

power of the DC-link, and it obeys: 

𝑃𝑡𝑚(𝑡) = 𝑃𝑙𝑖𝑛𝑘(𝑡) − 𝑃𝑙𝑜𝑠𝑠,𝑡𝑚(𝑡) (5-5) 



 

119 

 

where, 𝑃𝑙𝑜𝑠𝑠,𝑡𝑚(𝑡) is the power loss in the traction motor, and 𝑃𝑡𝑚(𝑡) is the power 

for driving the vehicle, and it obeys: 

𝑃𝑡𝑚(𝑡)∙𝜂𝑡

𝑉𝑑𝑒𝑚(𝑡)
= (𝑚𝑣𝑒ℎ +𝑚𝑡𝑜𝑤(𝑡)) ∙

𝑑𝑣𝑑𝑒𝑚(𝑡)

𝑑𝑡
+ (𝑚𝑣𝑒ℎ +𝑚𝑡𝑜𝑤(𝑡)) ∙ 𝑔 ∙ 𝑓𝑣𝑒ℎ_𝑟 +

𝐶𝑑∙𝐴∙𝑣𝑑𝑒𝑚(𝑡)
2

21.15
  

(5-6) 

where, 𝜂𝑡 is the transmission efficiency (in this work a fixed transmission efficiency 

is chosen as 80% as an approximation); 𝑣𝑑𝑒𝑚(𝑡) is the vehicle driving speed; 𝑚𝑣𝑒ℎ 

is the vehicle mass; 𝑚𝑡𝑜𝑤(𝑡) is the towing mass and it varies with time while towing 

different aircraft; 𝑔 is the gravity acceleration which equals to 9.81𝑚 𝑠2⁄ ; 𝑓𝑣𝑒ℎ_𝑟 is 

the rolling resistance coefficient; 𝐶𝑑  is the drag coefficient, and 𝐴  is the vehicle 

front area. 

As the push-back tractor is mainly working in the plain ground, only the acceleration 

resistance, rolling resistance and drag resistance need to be considered when 

modelling the vehicle dynamics. The major vehicle information for vehicle dynamics 

calculation are listed in Table.3-3. 

b) Prediction of future power demand 

Future power demands of the hybrid off-highway vehicle are obtained by the 

exponential varying expression method, in which torque demands of the traction 

motor 𝑻𝑒𝑚 ∈ 𝑅1×ℎ  over the prediction horizon are predicted to be exponentially 

decreasing as(Li et al., 2011; Borhan et al., 2012): 
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𝑇𝑡𝑚(𝑘 + 𝑖 − 1|𝑘) = 𝑇𝑡𝑚(𝑘 − 1|𝑘) ∙ 𝑒
(−

𝑖𝜏𝑠
𝜏𝑑
)
(𝑖 = 1, 2…ℎ)  (5-7) 

where, 𝑇𝑡𝑚(𝑘 − 1|𝑘) is the known motor torque value measured at the end of the 

last time interval; 𝑇𝑡𝑚(𝑘|𝑘), 𝑇𝑡𝑚(𝑘 + 1|𝑘), 𝑇𝑡𝑚(𝑘 + 2|𝑘)…𝑇𝑡𝑚(𝑘 + ℎ − 1|𝑘)  are the 

predicted motor torque over the prediction horizon ℎ; 𝜏𝑠 = 1𝑠 is the sampling time 

and 𝜏𝑑 is the decay rate, which was a constant for passenger cars.  

In this work, the plane mass is much larger than the vehicle mass, and the torque 

demand varies significantly when pushing back different aeroplanes, therefore, a 

mass-varying parameter 𝜏𝑑(𝑚𝑎𝑠𝑠𝑝𝑙𝑎𝑛𝑒) is proposed as a function of plane mass in 

kilogram in this research as: 

𝜏𝑑(𝑚𝑎𝑠𝑠𝑝𝑙𝑎𝑛𝑒) = 𝜏0 ∙ 𝑚𝑎𝑠𝑠𝑝𝑙𝑎𝑛𝑒 (5-8) 

where, 𝜏0 = 2.36 × 10
−3 is the unit decay rate which is tuned when assuming the 

pushing back mass is 1 tonne. The vehicle speed could be predicted by solving the 

vehicle dynamics Equation as: 

𝑣𝑣𝑒ℎ(𝑘 + 𝑖 − 1|𝑘) = 𝑣𝑣𝑒ℎ(𝑘 + 𝑖 − 2|𝑘) +
(𝑇𝑒𝑚(𝑘+𝑖−1|𝑘)∙𝑖𝑓𝑟∙𝑟𝑡𝑖𝑟𝑒−𝐹𝑟−𝐹𝑑)

𝑚𝑣𝑒ℎ+𝑚𝑝𝑙𝑎𝑛𝑒
∙ 𝜏𝑠 (𝑖 = 1, 2…𝑝)

 (5-9) 

where, 𝑣𝑣𝑒ℎ(𝑘 − 1|𝑘) is the known vehicle speed at the end of the last time interval, 

𝑣𝑣𝑒ℎ(𝑘|𝑘), 𝑣𝑣𝑒ℎ(𝑘 + 1|𝑘), 𝑣𝑣𝑒ℎ(𝑘 + 2|𝑘)…𝑣𝑣𝑒ℎ(𝑘 + ℎ − 1|𝑘) are the predicted vehicle 

speed over the prediction horizon 𝑝, 𝑇𝑡𝑚(𝑘 + 𝑖 − 1|𝑘) is the predicted motor torque 

calculated by Equation (24); 𝑖𝑓𝑟 is the final drive gear ratio, 𝑟𝑡𝑖𝑟𝑒 is the radius of the 
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wheel; 𝐹𝑟 and 𝐹𝑑 are the vehicle’s rolling resistance and drag resistance that could 

be calculated by Equation (3-2). 

Power demands for the electric motor is predicted by: 

𝑃𝑟(𝑘 + 𝑖 − 1|𝑘) =
𝑇𝑡𝑚(𝑘+𝑖−1|𝑘)∙𝑣𝑣𝑒ℎ(𝑘+𝑖−1|𝑘)∙𝑖𝑓𝑟∙𝑟𝑡𝑖𝑟𝑒

𝜂𝑡𝑚(𝑇𝑡𝑚(𝑘+𝑖−1|𝑘),𝑛𝑡𝑚(𝑘+𝑖−1|𝑘))
(𝑖 = 1, 2…ℎ) (5-10) 

where, 𝑃𝑟(𝑘|𝑘), 𝑃𝑟(𝑘 + 1|𝑘), 𝑃𝑟(𝑘 + 2|𝑘)…𝑃𝑟(𝑘 + ℎ − 1|𝑘)  are the predicted power 

demand over the prediction horizon ℎ; 𝑛𝑒𝑚 is the motor speed; 𝜂𝑡𝑚 is the motor 

efficiency. 

c) Traction motor 

The selected traction motor in this study is a heavy-duty electric motor (type: 

LSM280A HV-2700) provided by TM4 electrodynamic system Ltd. The motor 

specification is listed in Table.3-6. As for a heavy-duty application under investigation 

in this work, the vehicle usually operates in low speed and high load duty cycle, so 

it is not cost-effective to apply a regenerative braking system. Therefore, the traction 

motor is only working in traction mode. 

In the controller, the mechanical power generated by the motor is modelled as: 

𝑃𝑡𝑚(𝑡) =
𝑇𝑡𝑚(𝑡)∙𝑛𝑡𝑚(𝑡)

9550
 (5-11) 

And the motor loss is characterized by a quadratic function of the motor torque(Hu 
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et al., 2013): 

𝑃𝑙𝑜𝑠𝑠,𝑡𝑚 = 𝑎2(𝑛𝑡𝑚) ∙ 𝑇𝑡𝑚
2 + 𝑎1(𝑛𝑡𝑚) ∙ 𝑇𝑡𝑚 + 𝑎0(𝑛𝑡𝑚) (5-12) 

where, 𝑎𝑖 (𝑖=0,1,2) are motor-speed-dependent coefficients, which are modelled as 

cubic functions of the motor speed: 

𝑎𝑖(𝑛𝑡𝑚) = 𝑎𝑖,3 ∙ 𝑛𝑡𝑚
3 + 𝑎𝑖,2 ∙ 𝑛𝑡𝑚

2 + 𝑎𝑖,1 ∙ 𝑛𝑡𝑚 + 𝑎𝑖,0⁡⁡⁡(𝑖 = 0,1,2) (5-13) 

In Equations (5-11) and (5-12), the coefficient values are determined by curve fitting 

the testing data, and the motor efficiency properties calculated by: 

𝜂𝑡𝑚 =
𝑃𝑡𝑚

𝑃𝑡𝑚+𝑃𝑙𝑜𝑠𝑠,𝑡𝑚
 (5-14) 

Performance of the traction motor model is validated with the original data provided 

by the motor supplier in Fig. 5-1. 

 

Fig. 5-1 Validated control-oriented model of traction motor efficiency  

d) Engine generator unit 

In this powertrain system, an 86.2 kW engine-generator unit (EGU) produced by JCB 
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(JCB Generator Technical Specifications, 2015) is selected. The EGU is powered by 

a 4.4L diesel engine and generates electric power with a 3-phase AC generator, the 

EGU itself has a 120Ah battery, and therefore, this work assumes no energy required 

from the vehicle battery pack when the engine is starting. Main technical parameters 

of the selected EGU are listed in Table.5-1 

Table.5-1 Specification of the engine generator 

EGU specification Value 

Max. primer power 86.20 kW 

Frequency 50 Hz 

Voltage 230V~ 

Phases 3-AC 

Fuel type diesel 

50% load fuel rate 13.00 L/h 

75% load fuel rate 18.60 L/h 

100% load fuel rate 24.10 L/h 

Fuel tank capacity 285 L 

The on-board model for EGU fuel-electricity conversion uses a quadratic function of 

the EGU’s power output 𝑃𝑎𝑝𝑢, thereby yielding diesel fuel power (Hu et al., 2013): 

𝑃𝑓𝑢𝑒𝑙 = 𝑏2 ∙ 𝑃𝑎𝑝𝑢
2 + 𝑏1 ∙ 𝑃𝑎𝑝𝑢 + 𝑏0 (5-15) 

where,⁡𝑃𝑓𝑢𝑒𝑙 is the equivalent power of fuel consumed, which could be calculated as: 

𝑃𝑓𝑢𝑒𝑙 =
𝑣𝑓̇∙𝜌𝑓∙𝐻𝑓

3600
 (5-16) 
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where, 𝑣𝑓̇ is fuel consumption rate in L/h; 𝜌𝑓 is the density of the fuel, for the diesel 

fuel, 𝜌𝑓 = 0.87 kg/L; 𝐻𝑓  is the heat value of the fuel, for the diesel fuel, 𝐻𝑓 =

44 × 106J/kg(Isermann, 2014).  

Then, the coefficient 𝑏1 and 𝑏2 are determined using curve fitting of the fuel rate 

data in Table.5-1. The fuel-electricity conversion efficiency 𝜂𝑓2𝑒 is obtained by: 

𝜂𝑓2𝑒(𝑃𝑎𝑝𝑢) =
𝑃𝑎𝑝𝑢

𝑃𝑓𝑢𝑒𝑙
=

𝑃𝑎𝑝𝑢

𝑏2∙𝑃𝑎𝑝𝑢
2+𝑏1∙𝑃𝑎𝑝𝑢+𝑏0

 (5-17) 

Performance of the traction motor model is validated with the original data provided 

by the motor supplier in Fig. 5-2. 

 

Fig. 5-2 Validated control-oriented model of engine-generator efficiency  

e) Battery pack 

The battery pack (BP) is made up of the battery cell type NCR-18650 series provided 

by Panasonic Automotive & Industrial System Ltd. The basic parameters of each 

individual cell could be found at (Lithium Ion Battery-Cylindrical, Type: UR-18650, 
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2017). The voltage of battery cells ranges from 2.5 V to 4.2 V, and the nominal battery 

voltage is 3.7V. The battery cell’s rated capacity is 2450mAh. The battery pack 

parameters are obtained by arranging the battery cells in parallel and series. For this 

study, the battery pack is made up of 8200 battery cells. For the control-oriented 

battery model, a simple resistive circuit is chosen (Murgovski et al., 2012b). 

For the BP, the output power 𝑃𝑏𝑝(𝑡)  is simplified as the difference of discharge 

power 𝑃𝑏𝑝_𝑑(𝑡) and charge power 𝑃𝑐(𝑡): 

𝑃𝑏𝑝(𝑡)=𝑃𝑏𝑝_𝑑(𝑡) − 𝑃𝑐(𝑡) (5-18) 

where the power output of the battery package is: 

𝑃𝑏𝑝(𝑡) = 𝑁𝑢𝑚𝑏𝑐 ∙ 𝑉𝑜𝑐(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑐(𝑡) − 𝑁𝑢𝑚𝑏𝑐 ∙ 𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑐(𝑡)
2 (5-19) 

where, 𝑁𝑢𝑚𝑏𝑐 is the total number of battery cells in the BP, 𝑉𝑜𝑐(𝑆𝑜𝐶) is the open-

circuit voltage of a single battery cell, and 𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶) is the internal resistance in the 

equivalent battery circuit. Both 𝑉𝑜𝑐  and 𝑅𝑙𝑜𝑠𝑠  are SoC dependent functions. In 

Equation (10) 𝐼𝑏𝑐(𝑡) is the battery cell current, and can be expressed as: 

𝐼𝑏𝑐(𝑡) =
1

2𝑅𝑙𝑜𝑠𝑠
(𝑉𝑜𝑐(𝑆𝑜𝐶) − √𝑉𝑜𝑐(𝑆𝑜𝐶)2 −

4𝑅𝑙𝑜𝑠𝑠𝑃𝑏𝑝(𝑡)

𝑁𝑢𝑚𝑏𝑐
) ∈ [𝐼𝑏𝑐_𝑚𝑖𝑛, 𝐼𝑏𝑐_𝑚𝑎𝑥] (5-20) 

where [𝐼𝑏𝑝_𝑚𝑖𝑛, 𝐼𝑏𝑝_𝑚𝑎𝑥] is the battery cell current limits. The open-circuit voltage 𝑉𝑜𝑐 

and the battery’s internal resistance 𝑅𝑙𝑜𝑠𝑠  are modelled as SoC dependent 

exponential functions using the original data from the battery manufacturer. As 

discussed in (Chen and Rincón-Mora, 2006), the model for the open-circuit voltage 
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𝑉𝑜𝑐 and the battery internal resistance 𝑅𝑙𝑜𝑠𝑠 are: 

{

𝑉𝑜𝑐(𝑆𝑜𝐶) = 𝑐4 ∙ 𝑒
𝑐5∙𝑆𝑜𝐶 + 𝑐3 ∙ 𝑆𝑜𝐶

3 + 𝑐2 ∙ 𝑆𝑜𝐶
2 + 𝑐1 ∙ 𝑆𝑜𝐶 + 𝑐0

𝑅𝑙𝑜𝑠𝑠 (𝑆𝑜𝐶，𝐼𝑏𝑐) =
𝑆𝑜𝐶

𝑐5(𝐼𝑏𝑐)+𝑐6(𝐼𝑏𝑐)∙𝑆𝑜𝐶

 (5-21) 

where, 𝑐𝑖⁡(𝑖 = 0,2,3…7) are the model parameters, in which, 𝑐1⁡to⁡𝑐4 are constant 

and 𝑐5  and 𝑐6  are 𝐼𝑏𝑝  dependent polynomial functions, all of which are 

determined by curve fitting using the test data. And the battery cell’s SoC is 

calculated by: 

𝑆𝑜𝐶 = 𝑆𝑜𝐶0 − ∫
𝐼𝑏𝑐

𝑄𝑏𝑐
𝑑𝑡 (5-22) 

where, 𝑆𝑜𝐶0 is the battery’s initial SoC value, 𝑄𝑏𝑐 is the battery cell’s rated capacity. 

The battery V-I dynamics is validated with the original data provided by the battery 

supplier in Fig. 5-3. 

 

Fig. 5-3 Validated control-oriented model of battery cell V-I dynamics  

5.2.2 Online swarm intelligent programming with CAPSO 
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Fig. 5-4 shows the core algorithm developed for OSIP in a single time instant. The 

algorithm is developed based on CAPSO, which has three main procedures, namely, 

initialization, main iteration, and optimal position retrieving. The details and principle 

of the CAPSO algorithm working procedure are discussed in Chapter 4.3. To solve 

the optimisation problem in Equation (5-2) online, the algorithm is customised and 

modified in the following aspects:  

 

Fig. 5-4 Flow-chat of CAPSO algorithm for online optimisation 

a) The definition of particle position 
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In the initialization procedure, the position of particles is defined as: 

𝑥𝛿,𝜀 = 𝒖𝑎𝑝𝑢𝑡 𝛿 ∈ [1,max⁡ _𝑖𝑡𝑒𝑟], 𝜀 ∈ [1, 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑛𝑢𝑚]   (5-23) 

where, 𝒖𝑎𝑝𝑢_𝑙 = [𝑢𝑎𝑝𝑢_𝑙(𝑘|𝑘), 𝑢𝑎𝑝𝑢_𝑙(𝑘 + 1|𝑘), … , 𝑢𝑎𝑝𝑢_𝑙(𝑘 + ℎ − 1|𝑘)]  is the EGU 

command modification vector over the predictive horizon ℎ; 𝛿 is the index for the 

number of iterations; 𝜀 is the index for each particle. To obtain sufficient adequate 

accuracy with the least computing effort, the value of maximum iteration 𝑚𝑎𝑥⁡ _𝑖𝑡𝑒𝑟 

is 30 and the number of particles 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑛𝑢𝑚 is 15 as (Xu et al., 2016).  

b) Random number generation with a specific resolution 

In the main interaction procedure, the key step is moving the particles to the new 

position, and the random number with the resolution is required for moving particles. 

The random number generation with a resolution of 0.05 is modified from the 

standard Linear Congruential Generator (LCG): 

{
𝑅𝜖 = (𝑎 ∙ 𝑅𝜖−1 + 𝑐)⁡𝑚𝑜𝑑⁡𝑀

𝑟𝑛𝑑(𝑘 + 𝜖 − 1) = 𝑟𝑜𝑢𝑛𝑑(20 ∙
𝑅𝜖

𝑀
)/20

 (5-24) 

where, multiplier⁡𝑎 , additive constant⁡𝑐, and modulus 𝑀 are integers; Equation (5-

24) defines a series of random number with the initial seed ⁡𝑅0 . The vector 

{𝑟𝑛𝑑𝑖,𝜖⁡(𝜖 = 1,2, … ℎ)} is a random number sequence from 0 to 1, with a resolution of 

0.05. To maximise the pseudo-random number performance, the parameters of the 

LCG are (Xu et al., 2016): 𝑅0 =9, 𝑎 = 27, 𝑐 = 0, and 𝑀 = 220. 
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c) Updating of particles’ position 

In the main interaction procedure, the position of particles is updated as: 

𝑥𝛿+1,𝜀 = 𝑟𝑒𝑠 ∙ 𝑟𝑜𝑢𝑛𝑑{(1 − 𝛽) ∙
𝑥𝛿,𝜀

𝑟𝑒𝑠
+ 𝛽 ∙

𝑔𝛿,∗

𝑟𝑒𝑠
+ 𝛾𝛿 ∙ ζ ∙ [rand(0,1) − 0.5]} (5-25) 

where, 𝑝𝛿+1,𝜀 is the updated position; 𝑝𝛿,𝜀 is the particle’s position at the current 

iteration; 𝑔𝛿,∗  is the best position of the present iteration; 𝛿  is the iteration 

generation; 𝜀 is the particle’s individual index; ⁡𝑟𝑒𝑠 = 0.05 is the variable resolution; 

γ = 0.85  is the convergence parameters of CAPSO; ζ = 80  is the search area 

factor, and 𝛽 is the attraction parameters of CAPSO.  

The study in Chapter 4 suggested that the CAPSO with the logistic chaotic-map is 

the best for integer optimisation (Zhou et al., 2017). The attraction parameters 𝛽 is 

mapped in logistic map as: 

𝛽𝛿+1 = 𝛼 ∙ 𝛽𝛿 ∙ (1 − 𝛽𝛿) (5-26) 

where, 𝛽1 = 0.7 and 𝛼 = 4 are used for the logistic chaotic-map (Zhou et al., 2017).  

d) Final outputs 

When convergence has been achieved, the algorithm ends the main iteration and 

outputs the best position at the end iteration 𝑔max⁡ _𝑖𝑡𝑒𝑟,∗  as the global optimal 

solution. Then the first element of the control sequence 𝑢(𝑘) = (𝑢𝑎𝑝𝑢_𝑐(𝑘|𝑘)) is the 

final output of the OSIP controller. 
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 Implementation with a distributed control system 

With the proposed cyber-physical system, tractors will be connected to the remote 

server in the airport control via the roadside units (RSUs) near the tractors’ working 

area. The remote server will enable the real-time optimisation based on cloud 

computing via advanced online programming algorithms, Through the V2I 

communication, the online swarm-intelligent programming will be available working 

on the remote server located in the airport control and will send the optimal control 

command to the local vehicle controller. Subsequently, the V2V communication 

between the tractor and aircraft will enable the basic control function of the tractor 

controller. 

The real-time optimal control system includes the local energy-flow control and the 

Cloud-based Online Swam Intelligent Programming (OSIP) in Fig. 5-5. The local 

control performs on the on-boarded vehicle controller, and the OSIP operates on the 

connected server. As the energy management system mainly considers the energy 

split and management, one second is chosen according to (Zhang, Xiong and Sun, 

2015) as the sampling time, which is approved to be able to track the system 

dynamics while reserving enough time slot for algorithm computing. The mechanism 

of local energy-flow control and OSIP is as follows: 
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Fig. 5-5 Real-time optimal energy flow control based on OSIP 

 Performance and Discussions 

5.4.1 Optimisation performance 

The performance of the proposed optimisation method is researched via a 

comparison study with a Genetic Algorithm (GA). Both algorithms are written in 

MATLAB 2017b. The GA uses the default settings in MATLAB’s GA toolbox (a 

population of 30 individuals with maximum interaction of 50). The OSIP uses CAPSO 

algorithm with 30 particles for 15 iterations. Table.5-2 shows that the OSIP is able to 

find the global optimal solution identical to that obtained by the GA but in a much 

shorter time. The results were obtained using a desktop computer configured with 

an i5 processor and 8GB RAM. The optimisation process in four random selected 
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time instants (500s, 1800s, 5050s and 6800s) is repeated using the two methods 

respectively for 20 times, and the optimal cost in the 20 trials is considered as the 

‘global optima’. Although the average cost function value is slightly lower with GA 

(<4%), the average computing time using GA for each time instant is more than 20s, 

whereas it is only less than 1s using CAPSO. Therefore, the advantage of CAPSO 

is outstanding because this fast response is extremely important for real-time control. 

Table.5-2 Optimisation performance in single time instant 

Time instant Algorithm Optimal Cost Average Cost Ave. time 

500s 

GA 180678.53 194348.41 23.36s 

CAPSO 180678.53 200038.25 0.72s 

1800s 

GA 4787.43 5245.43 25.10s 

CAPSO 4787.43 5377.13 0.81s 

5050s 

GA 236331.20 244481.97 24.58s 

CAPSO 236331.20 252185.55 0.76s 

6800s 

GA 1653523.00 1662715.87 26.20s 

CAPSO 1653523.00 1687830.51 0.83s 

5.4.2 Computational effort 

The computational cost is a natural concern for real-time implementation, and the 

prediction horizon size is the most sensitive factor which affects the computational 

cost (Hu, Wang and Tang, 2017). The computational cost of the proposed method 

with the respective size of the predictive horizon ⁡𝑝  is hereby investigated. The 
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optimisation problem is solved by the ETAS ES910 real-time controller. The average 

computational cost per time step including the data communication, is shown in Fig. 

5-6. It indicates that while the augmented prediction horizon size 𝑝  leads to 

increased computational load, prediction horizon size 𝑝 being less than 36s can 

make the controller implementable in real-time, as the computing time is less than 

the sampling time of 1 second.  

 

Fig. 5-6 Average computation time per step 

5.4.3 Vehicle system performance in real-time 

The real-time performance of the connected system is evaluated and compared with 

the system using local control only. Different battery initially SoC values of 80% and 

20% are investigated respectively. The proposed control method can maintain the 

HEV’s components working within the proper range in real-time. Fig. 5-7 (a) shows 

the HIL test result in PBDC-I assuming the battery is initially in full charge. In this 
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condition, the connected system can save more energy than the one with local 

control only. Fig. 5-7 (b) shows the HIL test result in PBDC-I assuming the initial 

battery SoC is low due to some unknown error. The connected system can work 

properly and also outperform the one without OISP. 

(a) 
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(b) 

Fig. 5-7 Real-time performance: a) 80% initial SoC, b) 20% initial SoC 

5.4.4 Robustness and repeatability 

Working conditions vary among different scenarios in real-world driving; therefore, 

the test of robustness and repeatability is needed. The HEV systems in four PBDCs 

with different initial SoC values (80%, 50% and 20%) are evaluated. The results, as 

shown in Table.5-3, indicate that in all the scenarios under investigation, the 

proposed method can save energy from online control optimisation. The proposed 

method can reduce up to 13.06% of total energy loss. The highest energy saving 

rate are obtained over PBDC-III with the initial SoC of 80%. 
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Table.5-3 Vehicle performance over different Scenarios 

Driving cyc. Initial SoC  Control Method Power loss(MJ) Savings 

BPDC-I 

80% CD/CS 526 - 

80% OSIP 509 3.24% 

50% CD/CS 695 - 

50% OSIP 682 1.87% 

20% CD/CS 856 - 

20% OSIP 843 1.55% 

BPDC-II 

80% CD/CS 139 - 

80% OSIP 132 5.09% 

50% CD/CS 310 - 

50% OSIP 307 0.66% 

20% CD/CS 474 - 

20% OSIP 467 1.47% 

BPDC-III 

80% CD/CS 95 - 

80% OSIP 82 13.06% 

50% CD/CS 261 - 

50% OSIP 242 7.59% 

20% CD/CS 424 - 

20% OSIP 403 4.89% 

BPDC-IV 

80% CD/CS 198 - 

80% OSIP 185 6.70% 

50% CD/CS 306 - 

50% OSIP 295 3.67% 

20% CD/CS 411 - 

20% OSIP 399 2.77% 
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 Summary 

Model-based predictive energy management method has been researched in this 

chapter. A new online optimisation method named online swarm intelligent 

programming (OSIP) is proposed to fill the technical gap of solving nonlinear 

optimisation problems in real-time. Another contribution of this chapter is providing a 

demonstration of vehicle energy management control use a distributed system with 

V2X connectivity; this is extremely important for the future development of advanced 

vehicle control and optimisation technology taking full advantages of internet of the 

things (IoT). The conclusions drawn from the investigation of this chapter are: 

• The global optimum control outputs can be determined using the proposed 

OSIP with much faster computing speed comparing with the bench-mark GA. 

• OSIP can optimise the vehicle performance in real-time with a maximum 

prediction horizon size of 35 s, and the optimal control signal can be obtained 

and sent to relevant controllers within 1 s. 

• The vehicle with OSIP outperforms the system without it in energy saving at 

all initial battery SoC level, and it has more potential in fuel-saving when initial 

battery SoC is high. 

• The proposed energy management method is robust and reliable for energy 
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saving in all push back driving cycles, and up to 13% total energy loss can be 

saved via the proposed cyber-physical control. 

This research has provided an efficient and rapid online optimisation method for 

solving nonlinear optimisation problems which are not limited in energy management 

of the hybrid off-highway vehicle but also for a wide range of engineering application. 

Some relevant research has implemented the proposed method in 1) the model-

based predictive control of diesel engine air-path (Zhang, 2018); 2) online 

optimisation of gasoline direction injection engines ; 3) online optimisation of driver 

behaviour classification and forecasting model. 
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Chapter Six 

 MULTIPLE-STEP REINFORCEMENT LEARNING 

FOR ‘MODEL-FREE’ PREDICTIVE ENERGY 

MANAGEMENT CONTROL 

This chapter proposes new ‘multiple-step’ reinforcement learning algorithms for 

‘model-free’ predictive energy management, which enable all-life-long adaptive 

control optimisation without human knowledge of predictive modelling (Zhou et al., 

2019). Firstly, the energy management of the electrified vehicle is formulated as a 

Markov decision problem. The model-free predictive energy management strategy 

with three multiple-step reinforcement learning algorithms is then studied through 

the investigation of their learning performance in different optimisation scenarios. 

The real-time control feasibility and performance of the proposed energy 

management method are evaluated with the hardware-in-the-loop test.  

 Markov Decision Process of Energy Management 

Energy management of hybrid vehicles can be formulated as a Markov decision 

process (MDP), which includes interactions between the energy management 

system (EMS) and its external environment (e.g. driver’s power requirement and the 
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vehicle system)(Liu et al., 2015a; Zou et al., 2017; Hu et al., 2018). The variables in 

the Markov decision process are the states (driver’s power requirement, battery 

SoC), the actions (control commands of power units), and the rewards (fuel 

consumption and battery’s SoC remaining). The main uncertainty involved in this 

Markov decision process is the driver’s power demand in real-world driving condition, 

which varies according to different driver and road condition and it directly affects the 

power demand from the hybrid system. The interaction between the energy 

management system (EMS) and its external environment is a periodic process, as 

shown in Fig. 6-1, which includes three main steps repeating in each time interval: 

1) a power demand from the driver is sent to the HEV and the EMS; 2) the EMS 

makes the decision of power distribution by observing the state variables; 3) on 

receiving the control command from the EMS, the vehicle outputs the reward 

variables.  

 

Fig. 6-1 Interaction between the EMS and the environment 
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 Model-free Predictive Control System 

A new ‘model-free’ predictive control system is researched to optimise the Markov 

decision process of energy management, which is a layered and distributed system 

as in Fig. 6-2. The system includes two main layers connected via a V2X network: a 

control layer located in the vehicle controller, and a learning layer in the server 

computer.  

 

Fig. 6-2 Layered control system for model-free predictive control 

The control layer with the EMS control policy allocates the power-flow based on the 

driver’s power demand and the observation of current vehicle states. A parallel 

learner in the learning layer performs a multiple-step reinforcement learning 

algorithm to update the control policy regularly. Thus, the control policy of the EMS 

can be adaptive to real-world driving as the result of online multi-objective 

optimisation over a predictive horizon. 
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The working process of the parallel learner is shown in Fig. 6-3, which introduces 

two additional elements to the MDP system, namely ‘policy’ and ‘value function’. The 

‘policy’ defines the control policy, which represents the learner’s way of behaving at 

a given time. The ‘value function’ specifies the performance of the vehicle system 

with an immediate sense of ‘reward’ (i.e. a cost function of multi-objective) (Zou et 

al., 2016). 

The predictive models for the MDP are no longer needed in the proposed ‘model-

free’ control method. With the experience from the past ‘state’, ‘action’ and ‘reward’ 

within the same step length as the predictive horizon, the reinforcement learning 

algorithm will learn how the action in the current step will affect the vehicle 

performance over the predictive horizon. The optimised control policy learnt through 

real-world interactions will ensure that each action will gradually lead to the optimal 

vehicle performance. 

 

Fig. 6-3 Working process of the parallel learner in each time step 
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The rotational working process of parallel learner includes three main steps in each 

round of learning. Firstly, the learner receives the measured data from the vehicle 

including power demand, EMS command, energy consumption and battery SoC; and 

the data is recorded in the learning layer as a history set labelled by time. Secondly, 

the learning layer will optimise the control policy using a ‘multi-step’ reinforcement 

learning algorithm with the recorded data. Thirdly, the updated control policy will be 

sent back to the control layer before a new round of the learning process starts. 

At the time step, the state history set 𝑺𝒉(𝒕), the action history set 𝑨𝒉(𝒕), and reward 

history set 𝑹𝒉(𝒕) used for reinforcement learning are: 

{
 
 

 
 
𝑺𝒉(𝒕) = {𝑠(𝑡 − 𝑝) 𝑠(𝑡 − 𝑝 + 1) 𝑠(𝑡 − 𝑝 + 2) … 𝑠(𝑡)}

𝑨𝒉(𝒕) = {𝑎(𝑡 − 𝑝) 𝑎(𝑡 − 𝑝 + 1) 𝑎(𝑡 − 𝑝 + 2) … 𝑎(𝑡)}

𝑹𝒉(𝒕) = {𝑟(𝑡 − 𝑝) 𝑟(𝑡 − 𝑝 + 1) 𝑟(𝑡 − 𝑝 + 2) … 𝑟(𝑡)}

   (6-1) 

At (𝑡 + 1)𝑡ℎ the time interval, the state history set 𝑺𝒉(𝒕 + 𝟏), the action history set 

𝑨𝒉(𝒕 + 𝟏) , and reward history set 𝑹𝒉(𝒕 + 𝟏)  used for reinforcement learning are 

rotationally updated as: 

{
 
 

 
 
𝑺𝒉(𝒕 + 𝟏) = {𝑠(𝑡 − 𝑝 + 1) 𝑠(𝑡 − 𝑝 + 2) 𝑠(𝑡 − 𝑝 + 3) … 𝑠(𝑡 + 1)}

𝑨𝒉(𝒕 + 𝟏) = {𝑎(𝑡 − 𝑝 + 1) 𝑎(𝑡 − 𝑝 + 2) 𝑎(𝑡 − 𝑝 + 3) … 𝑎(𝑡 + 1)}

𝑹𝒉(𝒕 + 𝟏) = {𝑟(𝑡 − 𝑝 + 1) 𝑟(𝑡 − 𝑝 + 2) 𝑟(𝑡 − 𝑝 + 3) … 𝑟(𝑡 + 1)}

   (6-2) 

where, 𝑝 is the control horizon; 𝑠(𝑖) is the state value at i-th time interval (𝑖 = 𝑡 −

𝑝,… , 𝑡, 𝑡 + 1); and 𝑟(𝑖) is the reward value at i-th time interval (𝑖 = 𝑡 − 𝑝,… , 𝑡, 𝑡 + 1). 
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In this case, the state variables recorded in each time interval are defined as: 

𝑠(𝑡) = [𝑃𝑑𝑒𝑚(𝑡) 𝑆𝑜𝐶(𝑡)]  (6-3) 

where, 𝑃𝑑𝑒𝑚  is the real-time power requirement from the driver and 𝑆𝑜𝐶  is the 

battery’s state of charge. To minimize the vehicle power loss and maintain the battery 

SoC level at the same time, a value function of the system reward is defined as a 

multi-objective function of overall vehicle power loss 𝑃𝑙𝑜𝑠𝑠⁡and battery’s SoC. Here, 

the power loss 𝑃𝑙𝑜𝑠𝑠  and absolute SoC value lower than the reference SoC, 

|𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)| are added as a penalty to the initial constant reward 𝑟𝑖𝑛𝑖 so that 

the learning system can remember which actions have been attempted and the 

rewards received after these actions: 

𝑟(𝑡) = {
𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡) 𝑆𝑜𝐶(𝑡) ≥ 𝑆𝑜𝐶𝑟𝑒𝑓

𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡) − 𝛼|𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)| 𝑆𝑜𝐶(𝑡) < 𝑆𝑜𝐶𝑟𝑒𝑓
  (6-4) 

where, 𝑆𝑜𝐶𝑟𝑒𝑓 is the reference battery SoC value for maintaining the battery’s SoC 

within an acceptable SoC level, for the best performance and health condition of the 

battery, 𝑆𝑜𝐶𝑟𝑒𝑓  is chosen as 30%; 𝛼  is a scale factor used to balance the 

consideration of the SoC level and power efficiency; 𝑃𝑙𝑜𝑠𝑠(𝑡) = 𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡) +

𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡) is the total power loss of engine and battery; the power loss of the engine 

generator 𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡) and power loss of the battery 𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡) can be calculated 

by measuring the fuel consumption rate 𝑚𝑓̇ , engine torque 𝑇𝑒𝑛𝑔, engine speed 𝑛𝑒𝑛𝑔 

and battery current 𝐼𝑏𝑎𝑡𝑡 as: 
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{
𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡) = 𝑚𝑓(𝑡)̇ ∙ 𝐻𝑓 −

𝑇𝑒𝑛𝑔(𝑡)∙𝑛𝑒𝑛𝑔(𝑡)

9550

𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡) = 𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑎𝑡𝑡(𝑡)
2

  (6-5) 

where, 𝐻𝑓  is the heat value of fuel (for diesel, 𝐻𝑓 = 44 × 106 J/kg), 𝑅𝑙𝑜𝑠𝑠  is 

equivalent internal resistant of the battery; and 𝑅𝑙𝑜𝑠𝑠 is a function of the battery’s 

SoC. 

The control policy for the model-free predictive control is to determine the optimal 

control action based on the current state observation, state history, and reward 

history as: 

𝑎(𝑡) = Π(𝑠(𝑡) 𝑄(𝑺𝒉, 𝑨𝒉, 𝑹𝒉))  (6-6) 

where, 𝑎(𝑡) is the current control action/command; 𝑠(𝑡) is the current vehicle state 

observed, 𝑺𝒉, 𝑨𝒉, and 𝑹𝒉 are the state history set, action history set, and reward 

history set respectively; 𝑄 is the Q-table storing the relationship among state, action 

and reward. The reinforcement learning aims to optimize the control policy⁡Π, and 

the core of the optimisation is to update Q-table with reinforcement learning. 

 Multiple-step Reinforcement Learning Algorithm 

6.3.1 Fundamental of reinforcement learning 

Reinforcement learning is an episode-based repeatable process. As shown in Fig. 
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6-4, each episode has two main procedures: the action-taken procedure and the 

policy-learning procedure.  

 

Fig. 6-4 Flowchart of Q-learning procedure in one episode 

In the action-taken procedure, the action signal of the power distribution command 

is taken with the most widely used ε -greedy policy: a random number εϵ[0,1]  is 

generated and compared with a decreasing number 𝛾𝑖 (where 𝛾ϵ[0,1] and i is the 

generation of episodes). When ε is greater than 𝛾𝑖, action will be taken by data-

sampling from the action set; otherwise, the action will be taken by observing the 

action with the maximum Q value in the current state as: 

𝑎(𝑡) = argmax𝑄(𝑠(𝑡), : ) 𝑎(𝑡) ∈ 𝑨 (6-7) 

where, 𝑎(𝑡) is the action at 𝑡-th time interval and A is the action set. In this study, 
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the action is the control command for EGU 𝑢𝑒𝑔𝑢 ∈ 𝑨 = {0: 0.05: 1} as in (Zhou et al., 

2018). Q is a table storing the system performance when taking different actions ‘a’ 

at different state ‘s’. The Q table will be optimised and updated in the learning sector. 

The learning procedure records the current state 𝑠(𝑡), current action 𝑎(𝑡) and the 

reward value 𝑟(𝑡)  feedback from the HEV system and updates the Q table 

𝑄(𝑠(𝑡), 𝑎(𝑡))  with the learning strategy based on the reward 𝑟 . For one-step 

reinforcement learning, the Q value 𝑄(𝑠(𝑡), 𝑎(𝑡)) for the current state 𝑠(𝑡) and the 

current action 𝑎(𝑡) updates directly from current system reward 𝑟(𝑡) as: 

𝑄(𝑠(𝑡), 𝑎(𝑡)) ← 𝑄(𝑠(𝑡), 𝑎(𝑡)) + 𝛼[𝑟(𝑡) + 𝑚𝑎𝑥𝑄(𝑠(𝑡 + 1), : ) − 𝑄(𝑠(𝑡), 𝑎(𝑡))] (6-8) 

where, 𝛼 is the learning rate, 𝑚𝑎𝑥𝑄(𝑠(𝑡 + 1), : ) is the estimated Q value for the 

next step, which is obtained by looking up the old Q table. One-step Q learning is 

based on the Bellman’s ‘principle of optimality’(Bellman, 2010) which indicates that 

for an optimal Markov decision chain, the Q value of each time interval can be linked 

directly with the reward as (Liu et al., 2015b; Sutton and Barto, 2017): 

𝑄∗(𝑠(𝑡), 𝑎(𝑡)) = 𝑟(𝑡) + 𝑄∗(𝑠(𝑡 + 1), 𝑎(𝑡 + 1)) (6-9) 

where, 𝑄∗(𝑠(𝑡), 𝑎(𝑡))  and 𝑄∗(𝑠(𝑡 + 1), 𝑎(𝑡 + 1))  are the optimal Q value for 𝑡 -th 

time step and (𝑡 + 1) -th time step. Theoretically, when the optimal Q table is 

obtained, the Q value will not be updated anymore. Therefore, the learning strategy 

illustrated in Equation (7-8) can secure that the control policy learned from 
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reinforcement learning converges to the optimal control policy. 

6.3.2 Multi-step learning strategy 

The multi-step learning strategy is developed based on the one-step learning 

strategy in Equation (7-8), and in each time step it enables the capability of multi-

step prediction by learning from the history sets with the same length as the 

predictive horizon including state set 𝑺ℎ, action set 𝑨ℎ⁡and reward set 𝑹ℎ. The Q 

value of each time step within the history set is updated as: 

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝛷(𝑸, 𝑺ℎ(𝑡), 𝑨ℎ(𝑡), 𝑹ℎ(𝑡)] (6-10) 

where⁡𝑠(𝑖) ∈ 𝑺ℎ(𝑡) and 𝑎(𝑖) ∈ 𝑨ℎ(𝑡) are the state and action value at the 𝑖-th time 

step (𝑖 = 1,2,3…𝑝) of the history set collected 𝑡-th time interval; 𝑺ℎ(𝑡), 𝑨ℎ(𝑡), and 

𝑹ℎ(𝑡) are the history set of state, action and reward collected at 𝑡-th time interval; 

𝑸 is the Q-table before updating; 𝛷 is the multi-step learning strategy and three 

multi-step learning strategies are introduced as follows. To clearly illustrate how the 

multi-step learning strategies work, some concepts are defined: 

Definition 1. ‘Data-set package’ with notation 𝑫(𝑡) defines the history sets of state, 

action and reward used for multi-step learning at t-th time interval as 𝑫(𝑡) =

{𝑺ℎ(𝑡), 𝑨ℎ(𝑡), 𝑹ℎ(𝑡)}. 

Definition 2. ‘Elements’ with notation 𝑑(𝑖) defines the components within the data 
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set package; where, 𝑖 ∈ [1, 𝑝]  is the index of elements which will be defined in 

Definition 3. Each element includes the value of the state, action and rewards within 

the data-set package as 𝑑(𝑖) = {𝑠(𝑖), 𝑎(𝑖), 𝑟(𝑖)}. 

Definition 3. ‘Order Index’ with notation 𝑖 defines the order of each element in the 

data-set package used for reinforcement learning at each time interval. For example, 

the order index of element 𝑑 = {𝑠(𝑡 − 𝑝 + 1), 𝑎(𝑡 − 𝑝 + 1), 𝑟(𝑡 − 𝑝 + 1)} in the data-

set package 𝑫(𝑡) is 3, but in data-set package⁡𝑫(𝑡 + 1), its order index will be 2. 

Definition 4. ‘Table-Lookup Index’ with notation τ defines the position of each state 

and action in the set of state and action, which are used to find the respective Q 

value of each state and action from the Q table. For example, as the action set is 

A = {0, 0.05,0.10,0.15… .0.95,1}, the table lookup index of action variable 𝑎 = 0.05 is 

τ(𝑎 = 0.05) = 2; a similar principle can be applied to state variables.  

a) Sum-to-Terminal Strategy (S2T) 

The first multi-step learning strategy named ‘Sum-to-Terminal (S2T)’ is a 

straightforward strategy which connects the current Q value at each step of the 

predictive horizon 𝑄(𝑠(𝑖), 𝑎(𝑖))⁡ to the terminal Q value 𝑄(𝑠(𝑝), 𝑎(𝑝))  directly with 

the sum of the reward during the time interval ∑ 𝑟(𝑗)𝑝
𝑗=1  as: 
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𝑄(𝑠(1), 𝑎(1)) ← 𝑄(𝑠(1), 𝑎(1)) + ⁡𝛼[∑ 𝑟(𝑗)𝑝
𝑗=1 +𝑚𝑎𝑥𝑄(𝑠(𝑝), : ) − 𝑄(𝑠(1), 𝑎(1))]  

(6-11) 

where 𝛼 is the learning rate; 𝑚𝑎𝑥𝑄(𝑠(𝑝), : ) is the estimated terminal Q value which 

is obtained by looking up the old Q table. 

 

Fig. 6-5 Sum-to-Terminal (S2T) strategy for Q table updating 

The relationship between the Q values of each time step to the terminal Q value is 

established as the extension of Equation (6-10) as shown in Fig. 6-5. In general, the 

S2T strategy could be summarised as: 

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) + ⁡𝛼[∑ 𝑟(𝑖)𝑝
𝑗=𝑖 +𝑚𝑎𝑥𝑄(𝑠(𝑝), : ) − 𝑄(𝑠(𝑖), 𝑎(𝑖))] (6-12) 

where 𝑖 = 1,2…𝑝 is the order index of each element within the data-set package. 

The pseudo-code for the S2T strategy is provided in Fig. 6-6. 
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Fig. 6-6 Pseudo-code for multi-step reinforcement learning with S2T strategy 

b) Average-to-Neighbour Strategy (A2N) 

The ‘Average-to-Neighbour (A2N)’ is proposed by building the relationship of each 

step by updating the Q value with the average reward of the predictive horizon 

1

𝑝
∑ 𝑟(𝑡 + 𝑖)𝑝
𝑖=0  as shown in Fig. 6-7. The A2N strategy connects the action taken in 

each time step with the global performance over the predictive horizon, by replacing 

the reward in each time step for one step reinforcement learning, with the average 

reward of the predictive horizon as: 

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) + ⁡𝛼[
∑ 𝑟(𝑗)
𝑝
𝑗=1

𝑝
+𝑚𝑎𝑥𝑄(𝑠(𝑖 + 1), : ) − 𝑄(𝑠(𝑖), 𝑎(𝑖))] (6-13) 

where 𝑖 = 1,2…𝑝 is the order index of each element within the data-set package. 

The pseudo-code for the A2N strategy is provided in Fig. 6-8. 
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Fig. 6-7 Average-to-Neighbour (A2N) strategy for Q table updating 

 

Fig. 6-8 Pseudo-code for multi-step reinforcement learning with A2N strategy 

c) Recurrent-to-Terminal Strategy (R2T) 

As shown in Fig. 6-9, the ‘Recurrent-to-Terminal (R2T)’ strategy is developed as an 

extension of the S2T based on the Q(𝜆) learning algorithm (Peng and Williams, 1996). 

This updates the Q value recurrently from the current step to the terminal step, with 

consideration of the gap from the current time step 𝑖 (𝑖 = 1,2…𝑝) to the terminal 

time step 𝑝 by introducing the discount factor 𝜆 to scale the reward value in the 

different time step as: 
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𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) + ⁡𝛼 ∙ ∑ 𝑉(𝑗)𝑝
𝑗=𝑖  (6-14) 

where 𝑖 = 1,2…𝑝 is the order index of each element within the data-set package; 

𝑉(𝑗) is the value function for R2T for the element with order index 𝑗, which is defined 

as: 

𝑉(𝑗) = 𝜆𝑗𝑟(𝑗) + 𝜆𝑗+1maxQ(𝑠(𝑗 + 1)) − 𝑄(𝑠(𝑗), 𝑎(𝑗)) (6-15) 

where 𝜆  is the discount factor, 𝑟(𝑗)  is the reward at (𝑗) -th time interval. The 

pseudo-code for the R2T strategy is provided in Fig. 6-10. 

 

Fig. 6-9 Recurrent-to-Terminal (R2T) strategy for Q table updating 
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Fig. 6-10 Pseudo-code for multi-step reinforcement learning with R2T strategy 

 Performance and Discussions 

6.4.1 Learning performance 

According to the research in Chapter Five, the maximum predictive length of the 

model-based method using ES910 is 35 steps (Zhou et al., 2018). Therefore, the 

performance evaluation starts from the model-free predictive energy management 

with 35 steps. The system efficiency of powertrain energy conversion is calculated 

for every 4252s (total time of the given driving cycle) with the measured data of 

equivalent power loss for fuel consumption, battery power loss, and the power used 

by the traction motor, which is used to evaluate the learning performance. The 

process of ‘learning from scratch’ (initial Q table is a zero-set) is monitored, and the 
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improvement of the vehicle efficiency during the learning process is shown in Fig. 6-

11. It indicates that all three proposed learning strategies in chapter 6.3.2 have the 

capability of continuous improvement with self-learning, and this demonstrates that 

the model-free predictive system works for the desired purpose. In Fig. 6-11, the 

process of ‘learning from scratch’ with each learning strategy can be roughly 

classified into two stages, i.e., a rapid improving stage (at the beginning) and a slowly 

improving stage (after sufficient experience for Q-table filling). To generate an 

exponential, ε − greedy is used for reducing function for controlling the probability 

for self-exploration, as in (Liu et al., 2017), which can lead to a logarithmical 

improvement in system efficiency theoretically. The discrete sampling of the system 

efficiency, therefore, generates an inflect point at about 5 hours for the 35 step Q-

learning. Among the three proposed learning strategies, the ‘Recurrent-to-Terminal 

(R2T)’ strategy is the most effective strategy for model-free predictive energy 

management with the prediction horizon of 35 steps. 

 

Fig. 6-11 Learning performance of different learning strategies (35-step) 
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For HEV energy management, the longer the predictive horizon is, the better the 

system performance will be (Huang et al>, 2017). The performance of the model-

free predictive energy management has been investigated by tracking the 

improvement of the system’s efficiency with the prediction length increasing, and the 

results are presented in Fig. 6-12.  

(a) 

(b) 
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(c) 

Fig. 6-12 Performance of different prediction length: (a)-S2T strategy; (b)-A2N 

strategy; (c)-R2T strategy 

The system efficiencies after 24 hours reinforcement learning of Driving Cycle 1 with 

four different prediction step lengths are listed in Table.6-1.  

Table.6-1 System energy efficiency of the proposed learning strategies 

with different prediction length 

 Prediction step length 

 35 55 85 125 

R2T 44.66% 53.00% 55.47% 58.38% 

A2N 44.12% 52.53% 55.46% 58.14% 

S2T 44.55% 52.70% 54.99% 58.08% 

It is shown that all three proposed learning strategies have the capability of improving 

the system performance by increasing the prediction length. In each selected 

prediction size, the R2T strategy outperforms the other strategies by achieving 
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higher system efficiency at the end of the learning process. 

6.4.2 Real-time Implementation Feasibility 

The computational cost is a natural concern for real-time implementation, and the 

prediction length is the most concerning factor which affects the computational cost 

(Hu, Wang and Tang, 2017). The computational cost of the proposed method with 

respect to the size of the prediction horizon is hereby investigated using ES910. The 

average computational cost per time step including the data communication, is 

shown in Fig. 14. It indicates that while the augmented prediction size leads to 

increased computational load, a prediction step size of less than 65 steps can make 

the controller with the A2N and S2T strategy implementable in real-time; while 60 

steps can make the model-free energy management with the R2T strategy 

implementable in real-time, as the computing time is less than the sampling time of 

1 second. 
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Fig. 6-13 Average computation time per step for different predictive horizons 

The model-free predictive energy management with the R2T learning strategy 

outperforms other proposed strategies by achieving the best vehicle system 

efficiency with the same prediction length (as discussed in chapter 6.4.1). The 

advancement of the R2T strategy is that it includes more iteration loops (as shown 

in Fig. 6-10) to build up a more systematic learning system for storing more ‘learning 

experience’. This additional complexity in contract costs more computational 

resources and shortens its maximum predictive step length in real-time. The full 

performance in real-time of the different learning strategies is investigated by 

monitoring the learning performance of each strategy with its maximal step length in 

real-time (e.g. 60 steps for R2T, 65 steps for A2N and S2T) and the results are shown 

Fig. 6-14. In real-time, although the maximum prediction step size of the R2T 

strategy is shorter than the other proposed strategies, it still outperforms others by 

achieving a better system efficiency at the end of the learning process and tends to 

be a further improvement. 
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Fig. 6-14 Full performance in real-time of different learning strategy 

6.4.3 Performance compared with the MPC 

The real-time performance of model-free predictive energy management (with the 

R2T learning strategy) for the electrified aircraft-towing tractor is compared with the 

model-based method. The predictive horizon length for both the model-free method 

and the model-based method is 35 steps. Different battery initial SoC value of 80% 

and 20% are investigated under Real-World Cycle-1 in Fig. 6-15 (a) and (b) 

respectively.  



 

161 

 

(a) 
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(b) 

Fig. 6-15 HiL testing results: (a) Initial SoC=80%; (b) Initial SoC=20% 

The HiL testing results for the model-free method are shown in solid blue lines, and 

the results of the model-based method are presented in magenta dashed lines. The 

time history of the energy loss, the battery’s SoC, the engine command, and the 

battery cell’s current/voltage are compared. The proposed control method can 

maintain the HEV’s components working within the proper range in real-time. The 

model-free predictive energy management method outperforms the model-based 
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method, in terms of both energy consumption and the remaining battery’s SoC. 

The working condition varies among different scenarios; therefore, a test for 

robustness and repeatability is needed. The HEV systems in three driving cycles 

with different initial battery SoC values (80%, 50% and 20%) are evaluated. To make 

the comparison fair, the performance of the model-free method and the model-based 

method are firstly compared with the same prediction length of 35 steps (the maximal 

real-time step size for model-based method) in Table.6-2. Both the model-based and 

the model-free method can maintain the battery SoC at around 30% as predefined 

in the objective function. This will make full use of the electric energy in a plug-in 

hybrid tractor so that the vehicle users can save fuel. This will also help to reduce 

the emissions by reducing the operation time of the internal combustion engine.  

The results indicate that in all the scenarios under investigation, the model-free 

method outperforms the model-based method in energy saving. With the same 

prediction length, the model-free method can save up to 10.54% energy compared 

with the model-based method. The full performance in real-time of the model-free 

method (with a prediction length of 60 steps) is then investigated and compared with 

the model-based method (with prediction length of 35 steps) in Error! Reference 

source not found.. It indicates that the upgrading of the model-free method to its 

full performance capacity leads to further performance improvement. Compared with 

the model-based method (maximum prediction step of 35 steps in real-time), the 
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model-free method (maximum prediction step of 60 steps in real-time) shows its 

advancement by at least 7.79% energy. The highest energy saving range is obtained 

over the Real-world Cycle-2 with the initial battery SoC of 50%. 

Table.6-2 Performance of model-free method and model-based method 

(same prediction length) 

Cycle  Initial SoC Method End SoC Energy Usage (MJ) Saving 

Driving Cycle 2 

80% Model-based 29.74% 844.08 - 

80% Model-free 28.68% 800.95 5.11% 

50% Model-based 29.69% 1016.96 - 

50% Model-free 28.66% 951.6 6.43% 

20% Model-based 29.73% 1177.86 - 

20% Model-free 28.68% 1105.35 6.16% 

Driving Cycle 3 

80% Model-based 29.74% 293.08 - 

80% Model-free 28.81% 262.17 10.54% 

50% Model-based 29.74% 469.34 - 

50% Model-free 28.81% 423.12 9.85% 

20% Model-based 29.74% 628.75 - 

20% Model-free 28.81% 579.37 7.85% 

Driving Cycle 4 

80% Model-based 29.74% 234.9 - 

80% Model-free 28.81% 213.5 9.11% 

50% Model-based 29.68% 394.2 - 

50% Model-free 28.81% 366.71 6.97% 

20% Model-based 29.68% 555.34 - 

20% Model-free 28.81% 520.45 6.28% 
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Table.6-3 Performance of model-free method and model-based method 

(full performance - 60steps for model-free, 35steps for model-based) 

Cycle Initial SoC Method End SoC Energy Usage (MJ) Saving 

Driving Cycle 2 

80% Model-based 29.74% 844.08 - 

80% Model-free 28.68% 778.25 7.79% 

50% Model-based 29.69% 1016.96 - 

50% Model-free 28.66% 922.41 9.29% 

20% Model-based 29.73% 1177.86 - 

20% Model-free 28.68% 1071.34 9.04% 

Driving Cycle 3 

80% Model-based 29.74% 293.08 - 

80% Model-free 28.81% 254.80 13.06% 

50% Model-based 29.74% 469.34 - 

50% Model-free 28.81% 401.78 14.39% 

20% Model-based 29.74% 628.75 - 

20% Model-free 28.81% 552.29 12.16% 

Driving Cycle 4 

80% Model-based 29.74% 234.9 - 

80% Model-free 28.81% 208.34 11.31% 

50% Model-based 29.68% 394.2 - 

50% Model-free 28.81% 354.75 10.08% 

20% Model-based 29.68% 555.34 - 

20% Model-free 28.81% 505.15 9.04% 

 Summary 

A new model-free predictive energy management method for a hybrid off-highway 
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vehicle has been studied and compared with the conventional model-based energy 

management method. Three different multi-step reinforcement learning strategies 

are proposed and investigated for model-free predictive control. The learning 

performance and real-time implementation feasibility of the model-free method are 

evaluated in a HiL testing system. The conclusions drawn from the investigation are 

as follows: 

• The model-free predictive energy management method can improve the 

energy efficiency of the hybrid off-highway vehicle after a certain time length 

of vehicle operation, through the proposed learning strategies.  

• The proposed learning strategies can optimise the control policy in real-time 

with a maximum prediction length of 65 steps. The optimal control policy can 

be obtained and implemented in an ES910 controller within 1 second; 

• The proposed R2T learning strategy is the most effective multi-step 

reinforcement learning strategy for the model-free predictive energy 

management in the case study. It outperforms other proposed strategies in 

terms of same prediction step length and full performance in real-time; 

• The proposed model-free predictive energy management method is robust for 

energy saving, and it outperforms the conventional model-based method by 

saving at least 7.8% energy. 
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Chapter Seven 

 CONCLUSION AND FUTURE WORK 

This thesis demonstrates a methodology for solving challenging engineering 

problems with the help of cutting-edge technologies of artificial intelligence. This 

chapter draws the conclusions from this PhD research, summarises the research 

impact, and discusses possible future research activities.  

 Conclusions 

Artificial intelligent (AI) methodologies have been developed for design optimisation 

and optimal energy management control of an electrified off-highway vehicle. AI 

technologies (including evolutionary computing and reinforcement learning) and 

cyber-physical control technologies have been used for this research. The 

conclusions of this thesis are drawn as follows, corresponding to the relevant 

chapters: 

a) The proposed multi-objective optimisation using the CAPSO algorithm is 

an effective method for the design of an electrified off-highway vehicle.  

According to the research carried out in Chapter 4, the proposed design optimisation 
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method with the CAPSO algorithm outperforms the conventional APSO algorithm by 

improving the consistency of the optimisation results and the probability of accessing 

the global optima. Specified conclusions drawn from this research are: 

• The CAPSO algorithm can reduce the probability of local optima falling by 

introducing a dynamic attraction factor (which is a constant for the APSO) with 

chaotic maps. 

• The logistic map is the most effective mapping strategy for the CAPSO, 

according to a comprehensive evaluation, including Monte Carlo analysis and 

reputation evaluation. 

• When the weight value of the cost-function changes from 0 to 0.5, a higher 

energy loss reduction rate can be achieved with less increasing of components 

size. 

b) The proposed online swarm intelligent programming enables real-time 

nonlinear model-based predictive control of the energy-flow for the hybrid off-

highway vehicle. 

Chapter 5 carries out the research concerning new nonlinear model-based predictive 

control; where online swarm intelligent programming (OSIP) is proposed to operate 

online nonlinear optimisation in real-time. The findings from this research are as 
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follows: 

• The proposed OSIP using the CAPSO algorithm for online nonlinear 

optimisation can determine the optimal control outputs with a much faster 

computing speed compared to the bench-mark genetic algorithm (GA). 

• The increasing of the prediction length increases the computational effort of the 

OSIP. The maximum prediction length can be 35 steps when using the ES910 

rapid control prototype. The prediction length could be extended with the 

upgrading of vehicle controllers and computing devices in the future. 

• Energy management with the proposed OSIP can save more energy when the 

initial battery SoC is relevant high; which can save up to 13% energy among the 

driving cycles in this research. 

c) The proposed model-free predictive energy management method has the 

capability of online control optimisation without prediction models. 

New ‘multiple-step’ reinforcement learning algorithms for ‘model-free’ predictive 

energy management have been researched in Chapter 6. These enable all-life-long 

adaptive control optimisation without human knowledge of predictive modelling. 

Conclusions drawn from the investigation are: 

• Model-free predictive energy management with a longer prediction step 



 

170 

 

length provides better performance in energy saving. The maximum energy 

efficiency will be achieved when the prediction step length is equal to the time 

length of a driving cycle; however this is not realistic for real-world driving. 

• The computation effort increases as the prediction step length increases. The 

maximum number of prediction steps of the model-free control is 65 steps 

when using the ES910 prototype controller, which is longer than for the model-

based control. This is because the model-free predictive control can save the 

computing resources which are used for prediction models and model-based 

optimisation in model-based predictive control. 

• Multi-step reinforcement learning with R2T strategy is the most effective 

method for model-free predictive energy management. It can save at least 7% 

of energy compared with the model-based predictive control. 

 Innovation and Impact Summary 

This four-year PhD research delivers three main novel features, which are: 

• Chaos-enhanced swarm intelligence for design optimisation of an 

electrified off-highway vehicle. This work provides a new solution for design 

optimisation using artificial intelligence rooted from the well-adapted accelerated 

particle swarm optimisation (APSO) algorithm. This research investigates four 
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chaotic mapping strategies to improve the consistency of vehicle design 

optimisation for the first time. The probability of achieving a global optimum 

result has been improved by 200% over the conventional APSO. The research 

outcomes have been published with Applied Energy (Zhou et al., 2017) which 

is a top journal (IF=8.462, JCR Q1) in the field of energy systems and their 

optimisation. 

• Online swarm intelligent programming for solving nonlinear model-based 

predictive control in real-time. This research provides a new real-time 

nonlinear model-based predictive control method based on online swarm 

intelligent programming. The CAPSO algorithm is used in a real-time 

optimisation scenario for the first time, which shows 20 times faster than the 

genetic algorithm (GA). The computing effort of the OSIP is investigated for the 

first time to provide a guide for the design of model-based control for energy 

management. The journal IEEE transactions on Industrial Informatics 

(IF=7.377, the top one journal in industrial engineering and a journal of top four 

in automation and control systems) has published this research (Zhou et al., 

2018). 

• Multi-step reinforcement learning for model-free predictive energy 

management control. A new energy management method is developed with 

the capability of both the ‘model-free’ and ‘predictive’ methods, based on a 
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layered control framework. Three strategies for multi-step reinforcement 

learning are proposed and investigated for the first time. The learning 

performances with different learning strategies and different amounts of 

prediction steps are researched. This research also tested the computing efforts 

of different learning strategy. The new energy management method has been 

filed with a UK patent (GB1810775.77). One research paper reporting this 

research has been published with Applied Energy (Zhou et al., 2019) and 

another one in the relevant area is being prepared for submission to IEEE 

transactions. 

The outcomes of this research, including 1) real-time models of the electrified off-

highway vehicle system and subsystems; 2) an intelligent design optimisation 

software packages; 3) a model-based predictive energy management system, and 

4) a model-free predictive energy management system, have provided impact on the 

following beneficiaries: 

• Government and policymakers – The feedback from our recent contact with 

the EU Joint Research Centre (who make proposals to EU Vehicle Legislation 

and Testing Procedures) indicates that “this research is very in line with the 

scope and objectives of our ongoing research concerning the impact of 

connected and intelligent vehicles”. The proposed methodology has the 

capability to determine the potential of future vehicle products in terms of energy 
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efficiency and emissions, which will assist the government and policymakers in 

the development of policies and regulations. 

• Industries – Allan Cairns, CEO of HYPERDRIVE Innovation (our partner for the 

electrified vehicle development) said: “The project has been a fantastic 

collaboration bringing together innovation and technology from across the UK”. 

The senior programme manager of the automotive sector at Innovate UK also 

agreed the collaboration between the partners had delivered an “exciting world-

leading prototype vehicle” (Rachel Cooper, 2017). These are examples of how 

the proposed methodology can assist industrial partners to develop and 

optimise their vehicle products.  

• Research communities – This research has provided a demonstration of how 

interdisciplinary research can help improve vehicle performance and provided 

ideas that can inspire other researchers. A review paper in ‘Renewable and 

Sustainable Energy Reviews’ indicates the CAPSO algorithms developed by the 

author is a state-of-the-art technology for component sizing and energy 

management of electrified vehicles (Huang et al., 2018). Another review paper 

in ‘Automotive Innovation’ cited the author’s work and indicates future engine 

and vehicle control development will 1) involve more AI technologies and 2) 

progress from model-based to model-free development (Shuai et al., 2018). 
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• Students – The research outcomes have assisted a few PhD students at the 

University of Birmingham in their research. The model developed in Chapter 3 

has been used for vehicle system development (Cash et al., 2019) and 

component sizing (Cash et al., 2018a). The code of the CAPSO has been used 

for air/fuel ratio control optimisation (Z. Li et al., 2019), transient calibration of a 

diesel engine (Yunfan Zhang et al., 2018) and driver-oriented energy 

management control (J. Li et al., 2019). Several projects for undergraduate and 

master’s students have been set up in relation to this research.  

 Future Work 

This research opens a gate to enter the world of artificial intelligence and the Internet 

of the Things. A good demonstration prototype has been developed in the area of 

electrified off-highway vehicles. However, the optimisation and control of passenger 

cars and fleets on the highway and in urban driving are more complex and 

challenging. Future efforts are expected to extend this research in the following 

aspects: 

• To consider the impact of different drivers which may result in different power 

demand inputs to the energy management system. 

• The integration of model-based predictive control and model-free predictive 
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control to ensure functional safety as well as to improve the learning speed in 

different driving scenarios. 

• The virtual generation of driving scenarios for ‘back play’ of reinforcement 

learning with limited training data. Advanced reinforcement learning and deep 

learning technologies, including generative adversarial network, deep Q 

network, and neuro-evolution are expected to be investigated for the next stage. 

• To improve the prediction performance with data from the V2X and near-field 

sensors. The impacts of V2X and fleet management are expected to be 

considered in future research.  
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