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Abstract

Omics techniques are changing the focus of ecotoxicology. In addition to challenges re-

sulting from large amounts of data, there are further difficulties for non-model species:

from lack of annotation to limited number of additional databases for molecular inter-

actions and functions. In this thesis, I demonstrate the use of systems biology to relate

molecular measurements to physiological parameters in non-model species in the context

of environmental stress. Firstly, I make dynamical data-driven model of how gene expres-

sion changes in relation to the nerve conductance in earthworm Eisenia fetida exposed

to single chemicals in the laboratory. The model reveals that gene expression changes

might reflect the recovery from nerve damage. Using a similar approach, I use blue mus-

sel Mytilus edulis sampled from their natural environment to model their annual cycle,

integrating 1H-NMR metabolite levels with physiological and environmental parameters.

I challenge this model created from data from a reference site to see site-effects for mus-

sels sampled from an industrial harbour. Finally, I use systems biology to relate changing

chemical concentrations and traditional toxicity assays in an effluent remediation system

to stickleback gene expression and morphology. I demonstrate that data-driven systems

biology can help the interpretation of complex problems.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Introduction

1.1.1 Problem setting

Increase in population and technology development represent a serious challenge for the

environment. For example, personal care products, pharmaceuticals and industrial chemi-

cals enter the aquatic environment through wastewater treatment plants. Plant protection

products such as pesticides and fertilisers can enter soil and water directly from the sites

of use. In addition to aquatic and terrestrial pollution, air pollution generated by traffic,

heating and manufacturing is also a significant environmental issue. Chemicals can affect

organism’s health in the whole biosphere and affect ecosystem functions. For example

they affect reproduction in aquatic organisms [310, 129], reduce microbial biomass in soil

[14, 340], affect health, reproduction and behaviour of birds ([253], reviewed in [100]),

[330] and affect various mammals, from mice [246] to polar bears [293]. Pollution has also

been linked to human health ([245], reviewed in [162]). For example, pollutant exposure

has been associated with cancer [17] and Alzheimer’s disease [263, 108]. Exposure to

some persistent organic pollutants (POPs) has been shown to increase the risk of type 2

diabetes [187, 188] and cardiovascular disease (reviewed in [42, 143, 79]).

The problem of pollution can be approached from the legal perspective, enforcing
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countries to adhere to norms of chemical release and requiring to achieve certain standards.

For example, in the European Union, the European Water Framework Directive [77] has

been implemented and one of the aims for 2015 was to achieve “good status” of surface

waters. However, legislation should stem from knowledge. To enforce norms for chemical

concentrations or ban the use of certain chemicals completely, the science supporting

legislation should be robust. For example, the ban of neonicotinoids in 2018 follows many

scientific studies showing the effects of these chemicals [350, 345, 222, 161].

Some chemicals have been banned in the past, such as tributyltin which was used as

anti-fouling paint on ships, but the ban only took place in 2008 [116], many years after

the effects were seen and published on organisms and population level, including imposex

and population decline [215, 44]. Similarly, the ban of DDT starting with Sweden in

1970 [321] followed studies showing its effects on the environment [253, 139]. These three

examples from different times are all similar: a chemical is used, its effects are seen and

studied and the chemical is banned.

However, many chemicals are useful or necessary and for example, in June 2018,

there were 21551 chemicals registered to be used in the European Union [86]. Pesticides

from agriculture, plasticisers from home appliances, toys and packaging, flame retardants

from furniture and microplastics from shopping bags and cosmetics, medicines from both

domestic effluent and hospitals, industrial chemicals – these are just some examples of

chemicals entering the environment from anthropogenic sources and have the potential to

affect different organisms, including humans.

Therefore, in addition to knowing, what chemicals are in the environment and trying to

reduce the quantities by reducing the use of chemicals, replacing chemical-based methods

with alternatives, and treating both landfill run-off and wastewater effluent, it is important

to understand their effects.

If a chemical represents a hazard for the ecosystem and for human health, it should

be strictly regulated or ideally, should not be used at all. However, in many cases, first

effects start appearing and later a chemical is linked to these effects via studies performed,
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like was the case of DDT, neonicotinoids and tributyltin. With the current large number

of chemicals in use, there is a large potential for unwanted effects, including effects on

non-target organisms and general mixture effects for different chemicals. These examples

have shown that:

1. It is necessary to understand the effects of chemicals to support legislation about

their use and permitted concentrations

2. It is important to understand the mechanism of action of a chemical across multiple

species.

3. Genomics can be important to elucidate a mechanism of action or to identify poten-

tial biomarkers. To make sense of these data, it is necessary to link the molecular

response of an organism to exposure to higher levels of biological organisation (or-

ganism health and physiology, population changes)

4. It is necessary to develop tools that are able to detect possibly harmful environ-

mental events as early as possible (molecular biomarkers, rather than population

collapse)

The first point is regulated through REACH [93] which is in force since 2007 and re-

quires a company to identify and manage risks associated with manufactured or imported

chemicals before they can be registered in the European Union. European Chemicals

Agency (ECHA) is responsible for further evaluation of chemicals. ECHA also provides

test guidelines which are approved by both OECD and the EU, including testing for effects

on human health, ecotoxicity and environmental fate [87]. Currently, a hazard assessment

of a chemical is performed for human health, physicochemical and environmental hazards

and also assessed for being persistent, bioaccumulative and toxic (PBT) and very persis-

tent and very bioaccumulative (vPvB) [93]. In the US, the risk assessment guidelines are

provided by the US Environmental Protection Agency [324].

However, it is not possible to evaluate the effects for all species and often the effects

are assessed for acute exposure, which is not environmentally relevant. The importance of
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extrapolating effects on lab-species on which the tests are performed to different species

in the environment has been highlighted [40]. The second and third points refers to

the need of understanding how molecular changes relate to other endpoints. Molecular

changes seen in omics studies and traditional assays show changes at organism level,

but especially for the interpretation of molecular measurements, it might be useful to

relate these to more understandable endpoints. The fourth point of developing tools for

detecting early molecular changes is an extension of the previous one, as when there is

understanding of how chemical stressor affects the organism at molecular level and how

these molecular changes relate to physiology and behaviour, it might be possible to use

the molecular markers as early warning signs for unwanted changes at individual health,

population or even ecosystem level.

1.1.2 Road map for the thesis

In this thesis, systems biology methods are used for the analysis of omics datasets from

non-model species as a tool for understanding environmental stress. By using several

non-model species to study different types of environmental stress, I show that system

biology is a powerful tool for relating molecular changes to physiology and environment.

In the first chapter, I wish to develop dynamical models linking earthworm transcrip-

tional response to chemicals to nerve conduction to identify mechanisms of neurotoxicity.

More specifically, earthworms (Eisenia fetida) are exposed to two neurotoxic chemicals,

an explosive that is released in the environment during army training exercises, and an

insecticide. Gene expression is measured before and during exposure and after the re-

moval of the chemical. In addition to this, the conduction velocity of the medial giant

nerve fibre is measured, as an indicator of nerve damage. The aim in this chapter is

to explore, whether it is possible to integrate gene expression analysis to a physiological

parameter and whether the results are biologically meaningful. Indeed, the results indi-

cate that systems analysis of gene expression can be informative of potential biological

pathways affected during the chemical exposure. Moreover, the modelling approach con-
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nects transcriptomic changes with a physiological change and provides hypothesis that

the transcriptomic changes might primarily reflect the recovery from nerve damage.

In the second chapter, I model the metabolic profile of blue mussel Mytilus edulis over

the annual cycle in relation to environmental and physiological parameters. This model is

then used to study how the metabolic profile differs in a more polluted site. The analysis

of the second chapter is building on the experience gained in the first chapter, particularly

in the approaches used for reducing the dimensionality of data. The resulting model of

the annual cycle reveals that metabolites upstream of gonadal stage are affected between

a reference and a more polluted site. A more detailed machine learning approach suggests

that some male mussels in the more polluted site have a female-like metabolic profile.

The third chapter is about using systems biology to gain insight into the process of

wastewater remediation. In this study, gene expression of the three-spined stickleback

(Gasterosteus aculeatus) was used to learn about the effects of remediation. The ultimate

aim was to understand how changing water quality as indicated by chemical concentra-

tions affects the gene expression. To address this aim, first the components of chemical

concentrations and gene expression were analysed separately. Secondly, all available data,

including chemical concentrations, gene expression, toxicity tests and physiological pa-

rameters was integrated into static similarity networks. Thirdly, a Bayesian model was

used for modelling how gene expression changes in each of the remediation stages, also

taking into account the chemical concentrations. The results of this chapter show that

especially polycyclic aromatic hydrocarbons (PAHs) are associated with gene expression

in the stickleback liver and that PAHs are a group of chemicals which decreases during

the remediation in most sites. The Bayesian model further shows that chrysene (a PAH)

is particularly important in driving the gene expression.

Thesis chapters are ordered in a logical order from most simple lab exposure to the

complex wastewater remediation system with many chemicals. Although the scenarios

and even omics platforms are different and they have specific aims, their overall aim is

to interpret the effects of environmental stress to the organism as described by molecular
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level and how these omics measurements relate to physiological parameters.

1.2 Relevant species

Lab species can be used for studying the effect of chemicals, as for these species, many

pathways are known, making them especially suitable for understanding specific molec-

ular responses However, it is also important to understand how various pollutants affect

organisms in the environment.

In this thesis, three species are used: earthworm Eisenia fetida, blue mussel Mytilus

edulis and three-spined stickleback Gasterosteus aculeatus. Two of them (earthworm and

mussel) are invertebrates and the stickleback is a vertebrate. All of these species are

relevant for studying the response of chemicals. The first reason for this is that they are

all present in a wide range of locations. The second is that all of them have a specific

characteristic making them particularly relevant for studies in ecotoxicology.

Earthworm is an annelid that lives in soil, is exposed to many chemicals in terres-

trial ecosystems and have been used as bioindicators [239]. They have been called “soil

engineers” because of their burrowing activity [54]. While various survival, reproduction

and growth parameters [295, 230, 328, 267] in earthworms have been used as indicators

of chemical exposure, there are also molecular markers indicative of chemical exposure

[51, 303, 206, 11].

Mussels are sessile, filter-feeding molluscs which can filter large amounts of water [264],

which is the reason it is suitable for studying the effects of aquatic pollution. The use

in mussels in environmental monitoring has long history since they have been used in

the Mussel Watch Program [118]. In mussels, physiological parameters, such as scope

for growth and survival stress tests have been used [135, 115]. Despite some studies

attempting to use mussels for studying the effects of chemicals which act as endocrine

disruptors in other species, there is currently no evidence that these chemicals have effect

on mussels [283, 281, 282] and the presence of vertebrate sex stereoids have been suggested
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to be due to uptake from water [280].

Stickleback is a vertebrate, a fish that has been suggested to be suitable for studies

in ecotoxicology and particularly for studying endocrine disruption, as it can be used to

detect the effects of both estrogens and androgens [158, 131]. Specifically, in response

to androgens, spiggin (a glue protein used for nest building) is produced in the kidney

of male sticklebacks and while females normally do not produce this protein, it is made

in response to androgen exposure, making it suitable as a biomarker for environmental

androgens [131, 158]. Vitellogenin (which is a female-specific yolk protein induced by

estrogens) can also be measured in sticklebacks and in males, this is a biomarker for

estrogen exposure [131].

1.3 Omics for understanding environmental stress

Traditionally, environmental stress and effects of chemicals have been assessed using end-

points at organism of population level, including growth effects, mortality or changes in

population structure. As technology developed, changes could be observed at histological

level and also single molecules could be measured. However, with the advancement of

high-throughput omics technologies, it is possible to measure changes in thousands of

features in many layers of biological organisation, from DNA to mRNA to proteins and

metabolites. The ultimate aim in using molecular measurements for monitoring or risk

assessment would be to use the earliest changes as a warning or prediction of what would

happen at later timepoints, often seen at tissue, organism or population level.

1.3.1 Transcriptomics

Transcriptomics is the high-throughput measurement of mRNA levels. The basic mecha-

nism of mRNA measurement relies on binding of labelled single-stranded oligonucleotides

to a complementary oligonucleotide strand on a glass slide of many oligonucleotides, each

with specific known sequence and location.
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Initially, simultaneous expression profiling of many genes was done using cDNA arrays

[278], where cDNA probes were spotted on glass slides by robots. Later, the cDNA tech-

nologies were replaced by oligonucleotide arrays [200], GeneChip (Until 2016, Affymetrix)

[154] and Agilent [4] being the most common. These technologies both use chips with

thousands of oligonucleotides in specific locations, but the manufacturing processes of

these arrays are different. GeneChip uses oligonucleotides that are 25bp long (25-mer

probes) which are synthesized on the chip by photolithography, a process using UV light

and mask, allowing the “deprotection” of each DNA strand that is to be added a new

nucleotide in each step. For the addition of each new nucleotide, a new mask is used,

“deprotecting” only the strands which are to be added the relevant nucleotide in this

specific step. Solution containing the relevant nucleotide is then added – the nucleotide

can only bind to the “deprotected” strands. The synthesis of all 25-mers on the chip can

take up to 100 such steps [311]. Overall, the GeneChip technology represents each gene

by 8-16 pairs of (perfect match and mismatch) 25-mers.

The process of Agilent is different, using SurePrint Technology, a technique similar

to an ink-jet printer. Oligonucleotides are synthesized in situ by printing each individual

nucleotide at a time directly on a glass slide (reviewed in [111]). This technology has

enabled customers to easily design custom arrays and has made an impact especially for

non-model species.

The processes of mRNA profiling are similar. In the case of Agilent, after mRNA

isolation, cDNA is synthesised from mRNA by reverse transcriptase and this is amplified

by T7 RNA polymerase with Cy-3 or Cy-5 in the solution, resulting in labelled cRNA

which can then be hybridised to the chip. During incubation, cRNA is hybridised to probes

on chip with complementary strands and excess unbound cRNA is washed away. The chip

can then be scanned and the intensity of light emitted by fluorophores measured. The

GeneChip process consists of the synthesis of cDNA which is then labelled with fluorescent

tags and hybridised to probes on the chip. In both technologies, there is possibility to

use dual-colour or single colour labelling of different samples (pairs of disease-control or

8



treated-control) which are then hybridised on the same chip.

RNA-seq is a newer technology that can also be used for transcriptomics profiling. The

use of RNA-seq in publications has increased exponentially since 2010, reaching the same

number of articles using this technology as RNA microarray in 2014. However, the use of

gene expression microarrays has been decreasing since 2013 [203]. For RNAseq, mRNA

is fragmented and using a reverse transcriptase, double-stranded cDNA is made, which

is then sequenced by high-throughput methodologies. The read length differs depending

on the sequencing technology used, but can be in the range of 30-10000bp (reviewed in

[203]). RNA-seq has the advantage over gene expression arrays, that it can quantify genes

with low or high expression more accurately. Compared to expression arrays, it also has

the advantage of being able to detect the expression of new genes and splice variants

[225, 228]. Compared to expression microarray, where the microarray has to be designed

first, RNA-seq has the advantage that the results are not dependant on the design. This is

the main advantage of RNA-seq for environmental studies, in non-model organisms [89].

However, as RNA-seq was more expensive at the time of the gene expression experiments

in this thesis, cost was one of the major disadvantages, especially as many of the non-

model species had not been sequenced yet and even in the case of de novo assembly or

the transcriptome, many transcripts would have had low quality annotation, if any.

1.3.2 Metabolomics

Metabolomics is the characterisation of small molecules in the organism in a high-throughput

manner. Main methods used for the characterisation of metabolite levels in an organism

are nuclear magnetic resonance (NMR) of mass spectrometry (MS) (reviewed in [262, 3]).
1H-NMR is a technique that uses the properties of protons when an external magnetic

field is applied. With the application of strong external magnetic field, the spinning is

either in the same or opposite direction of the magnetic field, resulting in two energy

states for each proton, lower and higher. The energy difference depends on the strength

of the external magnetic field and also the magnetic fields of other protons. When radio
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frequency is applied, the proton enters a state of high-energy spin and when relaxed,

returns to the original spin and emits radiation.

Resonance is achieved when the protons are entering the high-energy spin continu-

ously, meaning that energy of the applied radio frequency is equal to the energy difference

between spins [132]. Chemical shift frequency of resonance compared to a standard,

which for 1H-NMR is tetramethylsilane [84]. Chemicals shifts, after further processing

are normally used in 1H-NMR analysis by either unknown bins or annotated metabo-

lites based on existing libraries of single metabolite standards. For non-model species

the main advantage of 1H-NMR has been that the technique does not rely on genome

sequence of annotation and existing metabolite libraries can be used for identification

of single metabolites in many species. One of the main disadvantages is the low num-

ber of annotated metabolites. However, chemical shift bins have been used for machine

learning methods and also have been integrated with other omics methods, making the

interpretation easier.

Another frequently-used method for metabolomics is mass spectrometry. For this,

metabolites need to be ionised and in the mass-spectrometer, the ions are sorted based

on their mass-charge ratio. In the mass-spectrometer, the ions are accelerated and either

electric or magnetic field is applied, the ions’ trajectory changes, which is called deflec-

tion. The deflection depends on the mass of the ion and also charge and by detecting

the deflection, the mass-charge ratio can be calculated. The mass-charge ratios with

relative abundance of each ratio are the output of mass spectrometer. Frequently, the

process of preceded by another separation step, for example gas chromatography or liquid

chromatography [75].

The main advantage of mass spectrometry is the ability to identify more metabolites

than 1H-NMR.
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1.3.3 Other high-throughput technologies used

Although transcriptomics and metabolomics are often used in environmental studies, other

methods have also been used. Microbiome as the characterisation of different microbial

species living in the gut, skin or other place or an organism, often characterised by oper-

ational taxonomic units or different types of diversity. There are many studies in human

health relating microbiome to various diseases, environment and diets, but it is also used

in environmental studies. For example, microbiome differences have been studied in dif-

ferent fish in locations of varying pollution [136]. Lipidomics [344] is the study of lipids

and has also been studied in response to chemical exposure. For example, bisphenol S

has been shown to disrupt lipid metabolism [360]. Proteomics has also been used in

environmental studies [315, 8, 355].

1.3.4 Comparison of different omics methods

Different omics methods provide different types of data. All of them have their advantages

and disadvantages. Transcriptomics and proteomics, for example are easier to interpret,

but require species-level sequence information, either to design the microarray, or to align

short reads from next-generation sequencing, unless de-novo transcriptome assembly is

performed in the case of RNA-seq. If knowledge exists about the function of genes or

proteins, or they can be aligned to other species, for example model species, then there

are many methods for interpretation, for example by calculating the enrichment of Gene

Ontology or KEGG terms in a set of genes or proteins.

Metabolomics data, on the other hand does not require species-level sequence or

metabolite data to be available and if for example 1H-NMR metabolomics has been per-

formed on a number of single metabolite standards, they can be predicted in a mixture

of metabolites from differen species. However, the number of metabolites to be anno-

tated from 1H-NMR data is relatively small. Mass spectrometry can provide annotation

of larger number of metabolites, but with increased cost. In Table 1.1, main differences
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between transcriptomics, proteomics and metabolomics methods have been highlighted.

1.3.5 Omics methods used in this thesis

In this thesis, transcriptomics was used for second and fourth chapter and metabolomics

for the third chapter. Although in the case of this thesis, data for the third chapter

was already generated by the time I started the PhD, transcriptomics is suitable for

the biological problem, as it allows more thorough interpretation of biological pathways

involved than metabolomics. Although full genome was not available for the earthworm

at the time this project started, there were ESTs, which could be annotated against

more well-annotated species. Gene expression microarray, as opposed to RNA-seq, was

used as the experiments had been performed in 2010, and the first published articles

describing RNA-seq in model organisms were from 2008. In comparison, gene expression

microarrays were still widely used for non-model species at this time. The array design for

Eisenia fetida was published in 2010, using data from both previous Sanger sequencing

and author’s own unpublished 454 high-throughput experiment. Moreover, the authors

state that high-throughput sequencing would be used more in the future, when they

become more affordable and acceptable, implying that at that time they were still too

expensive [125].

For the fourth chapter, microarrays were used, as for stickleback, sequences could be

annotated against zebrafish and other vertebrates, which would provide opportunities for

interpretation. As the experiments started in 2011, it was still more cost-effective to use

gene expression microarray, as opposed to RNA-seq. Moreover, for non-model species,

the main advantages of RNA-seq, the ability to detect novel genes and splice variants,

although interesting, were not as relevant, as it might not have been possible to annotate

novel genes.

For the third chapter, metabolomics was used. Although for data for this chapter had

also been generated before the start of my PhD project (mussels were collected in 2004-

2005, and descriptive metabolomics were part of Adam Hines’s PhD thesis submitted in

12
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2008, 1H-NMR metabolomics, despite its disadvantage of limited metabolite annotations,

was a suitable choice, as this technology does not require designing species-specific mi-

croarray. Moreover, as multiple species were used, designing the microarray would have

had to take into account both populations and different species of mussels present. In

this light, RNA-seq would have been preferable over microarray, but this was not possible

at the time of the project. Of course, at the time of submission of the thesis, it is quite

common for published studies to combine multiple types of omics data, and for example,

the inclusion of transcriptomics could have improved interpretation in the mussel chapter.

1.3.6 Systems biology as a key to analysing omics datasets

Systems biology is a field of biology aiming to describe biology at the systems level [165].

It relies on using advanced technologies for measuring biological molecules and compu-

tational analysis for generating biological knowledge [165]. The aim of systems biology

is to analyse all parts of a system together, as opposed to by analysing differences in

a single molecule. The term “systems biology”, although mentioned even before [145]

the completion of the Human Genome Project [63]), started increasing to appear in sci-

entific publications after the completion of the Human Genome Project and peaked in

2013, reaching 45000 publications with this keyword (Figure 1.1 B), following the peak of

genomics (Figure 1.1 A).

Systems biology is a wide term, and can be understood in multiple ways. In the

broadest term, systems biology should incorporate data-driven data analysis. Depending

on field, this can be done using statistical modelling, networks, machine learning: using

data to describe the system. Ideally, systems biology should incorporate phenotypical

outcomes with omics data [152]. It has been suggested, that in the future, integration of

data from multiple omics layers will help understanding disease mechanisms and is able

to account for both genomics and environmental factors [356]) and the importance of

multi-omics methods in scientific publications reflects the importance of multiple omics

layers (Figure 1.1 C).

14



Figure 1.1: Number of publications for each of the search terms in Google Scholar. A:
search term “genomics”, B: search term “systems biology” and C: search term “multi-
omics”. Raw data for these plots was extracted from Google Scholar PLotR [209] on
February 6th 2018.
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As has been said before the term systems biology existed: “Essentially, all models

are wrong, but some are useful” (George Box), systems biology is just a first step in

understanding the problem and data and as real life is always more complex than possible

models, models resulting from different methods can and should be different. However,

they should lead to a better understanding of the system and a testable hypothesis.

Systems biology has shown potential to help addressing many complex biological prob-

lems, including drug discovery (reviewed in [46, 146]) and repurposing [119]. Systems

biology has also been used to discovering markers associated with diseases, such as type 2

diabetes mellitus [216] or coronary heart disease [5]. Currently, with large amounts of data

generated, hopes are high for systems biology to also advance medicine [242, 146, 231].

As systems biology developed as a field, many methods were published and mostly used

in model organisms. For example, Cytoscape [285] made it easy for biologists to create

and visualise biological networks, for example connecting genes or proteins that have

been shown to interact or are co-expressed. Databases of biological interactions, such as

STRING [335, 309] further contributed to creating of biological networks based on existing

knowledge in public databases. Additionally algorithms allowing the reconstruction of

biological networks based on gene expression data (such as ARACNE [212]) brought

new opportunities. All these developments made it possible to address most problems

in a data-driven manner. Instead of concentrating on a set of molecules, looking at

specific pathways, it is possible to create network of differentially expressed genes and

interpret these using for example Gene Ontology enrichment [62]. As the methods were

developed and initially used for model species, their potential started to be utilised for non-

model species of environmental relevance a well. These studies faced additional challenges,

especially for the interpretation of results, as for non-model organisms, the annotation

was not of the same quality as for model species. However, the difficulties could be

overcome by mapping transcripts of non-model species to their orthologs in other species,

for example using BLAST2GO [59].

With omics technologies maturing, it is possible to integrate multiple layers of bio-
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logical information. This has already been demonstrated in both human health specific

studies and several tools have been proposed and compared for such integration [313].

Multiple omics layers have also been integrated for environmental scenarios. For exam-

ple, in flounder, the integration of metabolomics and transcriptomics has allowed predic-

tion of sampling sites [348]. In largemouth bass, the integration of transcriptomics with

physiological endpoints has allowed to identify novel endocrine disruptors for this species

[25].

1.4 Data analysis

1.4.1 Finding differentially expressed genes

Univariate statistics is commonly used as the starting point for the analysis of omics

data. Very often, t-test is used to find out which of the variables are different between

two groups, usually treatment and control. The advantages of t-test are its simplicity to

understand and being implemented in various statistical tools. As more advanced methods

to identify genes or metabolites differing between groups, SAMR [312] could be used.

SAMR is non-parametric, permutation-based method that was developed specifically for

finding differentially expressed genes. In addition to two-group analysis, SAMR allows the

analysis of multiple groups and also time-course data. An alternative, limma [289, 265],

takes advantage of replicate spots within array, and uses Bayesian statistics. Although

at the time of submitting the thesis, limma [289, 265] is more widely used, at the time of

starting my PhD, SAMR was more well-known (in 2010, SAM method which is used in

the SAMR package had been cited 7180 times, while limma had been cited 959 times).

Limma and SAMR also work with RNA-seq data, and for RNA-seq data, edgeR [268] is

an alternative also using Bayesian statistics.
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Table 1.2: Comparison of different methods for finding differentially expressed genes
t-test Wilcoxon

signed-rank
test

SAMR limma

Availability in
R

R core (t.test)
[260]

R core
(wilcox.test)
[260]

samr package
[312]

limma package
[288]

Normal dis-
tribution
assumed?

yes no no no

What does it
do for 2 related
samples

Do their means
differ statisti-
cally

Do the means
of the ranks
differ statisti-
cally

Do their means
differ statis-
tically (using
permutations)

Do their means
differ statis-
tically (using
within-array
replicate spots
and Bayesian
statistics)

1.4.2 Exploratory data analysis

For further analysis of data, after finding significantly different genes or metabolites,

various multivariate methods can be used. Omics data is multi-dimensional, each gene,

protein or metabolite being a dimension. It is often useful to reduce this dimensionality

and explore the main characteristics of the data. Principal Component Analysis (PCA)

is an option often used for this. PCA works by transforming multi-dimensional data into

a new set of orthogonal basis so that the first base describes the most of the variability

of the dataset and the next basis follow to describe most of the remaining variability so

that all basis are orthogonal.

Principal components describing most of the variability can then be visualised to see

whether sample groups, for example treatment and control differ based on their gene

expression. Outliers can also be detected by PCA visualisation.

As part of exploratory analysis, clustering can also be used. The simplest clustering

approach is to produce a dendrogram describing the similarities in the dataset by grouping

the variables to be clustered hierarchically. This kind of clustering can for example be

produced by hclust algorithm in the Stats package in [260]. Clustering groups samples
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or omics measurements (genes or metabolites) based on a given distance. For example,

correlation or Euclidean distance can be used. When clustering both samples and omics

measurement, sometimes a heatmap visualisation is also created. Hierarchical clustering is

an unsupervised clustering method. A dendrogram can be used for exploratory purposes,

but it can also be cut at some level to produce clusters to be used in further analysis.

A special hierarchical clustering method, HOPACH [327, 251] algorithm is also avail-

able. It works by recursively splitting or merging clusters at each level and uses Silhouette

function for defining the optimal number of clusters.

1.4.3 Biological networks

Network is a framework that allows the analysis of multiple types of biological data. It

can also be used for analysing correlation matrices in a more complex way than clustering.

In a network (also called a graph by mathematicians), entities are represented as nodes

(also called vertices) which are connected by edges (Figure 2 A and B). Networks can be

used in different fields, for example in a social network, all nodes are people and edges

represent whether they are friends and in an air traffic network, all airports are nodes and

the connecting flight are edges.

The study of networks for biology and other fields and also their topological properties

were established in the works of A-L. Barabasi and R. Albert [21, 20, 22]. Since then,

and especially after Cytoscape [285] was developed, networks have been used extensively

in biological studies, as suggested by the number of times the Cytoscape article [285] has

been cited (11058 citations in June 2018). This is half the number of citations the article

of the human genome [63] has (22073 in June 2018). Comparing these with the number of

citations the Sanger sequencing article [273] has since 1977 (72884 in June 2018), network

biology definitely has potential to play an important role in current and future research.

In a biological network, genes or proteins are usually represented by nodes and inter-

actions between nodes are represented by edges (Figure 1.2 A and B). Static networks,

which are networks where edges do not have a direction (Figure 1.2 C) can be made based
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Figure 1.2: Networks for the representation of data. Panel A shows components of a
network. Panel B shows different types of interactions between nodes: X and Y are
associated, X has positive effect on Y (for example, activation), X has negative effect on
Y (for example, inhibition). Panel C shows a static network. Panel D shows a dynamical
network.
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on known interactions, such as using a database containing protein-protein interactions

or co-expression of genes based on public data. One of such databases is the STRING

database [335, 309]. Although containing data for several species, it is more suitable for

model organisms. An option for creating a network for a set of genes or proteins for non-

model species would be to first map these to a model species and then use interactions of

this model species for creating interaction networks.

An alternative is to create the network from data. The process of inferring the network

from biological data is called network inference. In 2010, it was estimated, that the rate of

the number of network inference methods was doubling every 2 years [211]. Comparison

of network inference methods is shown in Table 1.3.

However, despite the number of methods available in 2010, the only gold standards

to compare the performace of an inference method against were in silico networks [211],

firstly due to nonexistence of a biological network with enough knowledge, and secondly,

the recognisability of such network if it existed [301, 211]. However DREAM3 challenge

provided an in silico gold standard [211] that was used for evaluating the performance

of 29 methods used in the DREAM3 network inference challenge. In the challenge, 29

participating methods could be grouped by their predominant approach: correlation-

based methods, information-theoretical methods, Bayesian methods and methods based

on dynamical models [211]. Interestingly, the top performers included methods from each

of the classes, but representatives of each of these main classes were also amongst lower-

performing entries. The best performed methods included knock-out and perturbation

data [354], and several best-performing teams included all available data, including time-

course. Interestingly, one of the main conclusions from this challenge was that in addition

to the importance of integrating different types of data, community predictions consisting

of the consensus of predictions from different methods can also outperform single methods

[301, 211, 210].
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1.4.4 Static network creation

The simplest way for network inference is to calculate correlations between genes. An

example is network creation from a gene expression correlation matrix is shown in Figure

1.4. Correlation is a statistical measure, that can describe the association between two

variables. Two commonly used correlation methods for network inference are Pearson and

Spearman correlation. Pearson correlation describes the linear relationship between two

variables, and can be described by the following formula:

r =
∑ (xi − x)(yi − y)√∑ (xi − x)2 ∑ (yi − y)2

where x1...xi and y1...yi are variables for which correlation is calculated and x and y are

means of x and y.

Pearson correlation is suitable for normally distributed linear relationships. Another

correlation measure often used is Spearman correlation, rs, which is Pearson correlation

of ranks of two variables. Spearman correlation is non-parametric and suitable for data

for which statistical distribution is not knows. It can also capture non-linear relationships

[69].

Examples of correlation are shown in Figure 1.3. For example, on Figure 1.3, panel

A shows perfect correlation between a and b where all points are on a line, and on panel

B, variables are not correlated at all. Panels C and D show high positive and negative

correlation. Panel E on Figure 1.3 shows non-linear relationship between two variables,

where Pearson correlation r = 0.82 and Spearman correlation rs = 0.89.

After correlations have been calculated between all genes, it is necessary to decide

on a threshold value of which edges are statistically significant, for example by finding

a correlation coefficient that is significantly different from correlations calculated for a

matrix of resampled data of the data matrix, i.e. correlations based on random data. For

all significant relationships, a .sif file can be created, where on each line, there are the two

variables, followed by the correlation coefficent. This file, where two variables on each
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Figure 1.3: Examples of correlation. Panel A shows Pearson Correlation where a = b
(correlation 1), panel B shown two non-correlated variables, panel C shown positive and
panel D negative Pearson correlation. Panel E shows two variables a and e with nonlinear
relationship, where Pearson correlation r = 0.82 and Spearman correlation rs = 0.89.
Panel F shows what R commands were used to create the variables.
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line are nodes, connected by an edge, can be read into Cytoscape [285]. Edge strength is

the correlation coefficient. Of course, in addition or instead of the correlation coefficient,

FDR can also be stored as an edge attribute. This collection of nodes, connected by

statistically significant edges will form a network, which can be used as starting point of

further analysis. Overview of steps involved in network creation are shown in Figure 1.4,

with an example of making correlation-based network from gene expression data.

The main advantage of correlation-based methods is their simplicity and speed and

for this reason, they have been used to calculate correlation-based networks using large

public gene expression databases, such as ArrayExpress [170] of GEO [88].

A more advanced method, designed specifically for the inference of biological net-

works, having the advantage of capturing also non-linear relationships, calculates mutual

information instead of correlation. One of the earliest tools for creating such mutual in-

formation networks from gene expression data was ARACNE [212]. Like in the case of

the correlation-based network, for each pair of variables, a value is calculated, and in this,

case, this value is mutual information. The network is again thresholded by a p-value

given by the user, and resulting network can be visualized with Cytoscape [285].

In addition to ARACNE, other tools based on mutual information exist, such as CLR

[95] as implemented in Minet [219] package or R [260].

1.4.5 Dynamical networks

Static networks are easy to make and can be useful for interpreting large datasets or

integrating many types of data. In a static network, edges do not have a direction. In

dynamical networks they do and in addition to direction, they interaction can also be

described as positive or negative (Figure 1.2 D).

A very intuitive dynamical model to describe biological systems is a Boolean network,

where nodes have values of 1 and 0 and each node can be described as a Boolean function

of its in-nodes. For example, for a gene A, there might be a repressor, B and activator,

C, in which case node B has negative edge towards node A and node C has a positive
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Figure 1.4: Steps involved in network creation, shown with a simple example of
correlation-based network. In step 1, gene expression matrix is made, where rows are
genes and columns different samples. Then in step 2, correlations are calculated between
all genes. In step 3, it is determined, which correlation threshold is statistically significant.
In step 4, a file is made where each line contains two genes with significant correlation.
In step 5, the file from previous step is opened in Cytoscape to be further analysed
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edge towards node A. The overall function can be described by Boolean logic. One of

earlier examples Boolean network models was developed for ABA signalling in Arabidopsis

thaliana and enables predicting network component most important for stomatal closure

[195]. Although simple and intuitive, this kind of networks require experimental knowl-

edge of the molecular interactions and are therefore more useful for prioritising nodes

based on their effect on certain outcome, than for initial data-driven analysis of omics

data for non-model species.

For non-model species with no molecular interactions known, a purely data-based

method would be more appropriate. As with static networks, the simplest way to de-

scribe statistical associations, but with direction, would be to use a correlation-based

method, for example time-delay Spearman correlation [279], where two temporal profiles

are shifted step-by-step and correlation calculated, noting the largest correlation and the

corresponding time-delay. A network can then be constructed connecting nodes (genes or

gene clusters) with largest correlations, with edge length proportional to time-delay.

Time-delay ARACNE [362] as implemented in the TDARACNE R package uses a

similar approach, but instead of correlation, mutual information is calculated, allowing to

capture also non-linear interactions. The procedure as implemented in the TDARACNE R

package [362] computes the mutual information between every combination of variables

given a time delay. More precisely, for a given combination of features X and Y the

algorithm computes the mutual information between datapoints of feature X1..(P-delta)

with feature Y (1+delta)..(P), where P is the number of time-points and delta is the current

delta value. This highest mutual information score across the different deltas is chosen

and the delta value noted. Positive deltas then denote that feature Y is affecting feature

X. Indirect connections are eliminated using the inequality principal (DPI).

Correlation and mutual information-based methods infer statistical and information-

theoretical associations in the network, but are not able to describe the network as a

model which can be simulated.

Ordinary differential equations create deterministic models, where each gene is mod-

27



elled as sum of all of the other genes and the resulting network is a signed, directed

graph. Ordinary differential equations can deal with cycles and use as input both stedy-

state and time-course data. Their main limitation for network inference is that the larger

the network, the more parameters need to be estimated and for this reason, they can best

work with relatively small network sizes, as opposed to tens of thousands as is feasible

with easier methods for undirected networks. A more complex method ARTIVA is based

on Dynamic Bayesian Networks, which create stochastic models, and allows to learn the

time-varying structure of a network [186].

Time-delay Spearman, time-delay ARACNE and ARTIVA create directed networks

from one type of data (time-course omics data), but often it is desirable to integrate

multiple sources of data. For example, in addition to time-course data, knock-out data

can be used, or known interactions from other databases. A framework allowing this,

called NIMOO, is based on multi-objective-optimisation and models the system as a set

of ordinary differential equations [130]. In the NIMOO framework, gene expression of

gene i depends on the expression of all other genes plus the external perturbation:

ẋi =
N∑

j=1
wijxj + bixi

where w is the unknown parameter matrix, xi and xj are the expression of genes i and j.

bj is the external perturbation. ẋi represents the first derivative of xi.

The first objective is to find parameters matrix w so that the square error between

measured and modelled expression is minimised:

ESQE =
N∑

i=1

∑
t

(xmeasured
i − xi)2
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The second objective is to minimise EObject:

EObject =
∑

j

∑
t

(oij − wij)2

where oij is the second objective (for example, time-delay Spearman correlation or knock-

out data)

The result is a parameter matrix w where element wij shows the effect of gene j on

gene i.

Dynamical networks allow inferring the network structure taking into account time,

but as these methods are complex, especially the more advanced ones using complex

modelling or optimisation, they can only be used with a limited number of variables. As

one option, they can be used for a small gene set selected after other methods have been

applied. For example, genes to model can be known to be important for a particular

phenotype from previous experiments, they can also be small subnetworks or hubs from

large static networks. As an alternative, the modelled variables can be representatives

of clusters of similar genes or metabolites, cluster medians or principal components of

particular pathways.

1.4.6 Methods for non-model species in this thesis

In this thesis, I used TDARACNE for the third chapter (mussel). The main reason was

that I only had one type of data available and this was a published method at the time,

based on the ARACNE algorithm. Alternative to be used was Time-Delay Spearman

correlation. As these was no benchmark to be compared against, I chose TDARACNE

because of its ability to infer non-linear interactions.

For the third chapter, I used NIMOO, a newly-developed method in Francesco Fal-

ciani’s group [130]. The reason for this is the knowledge, that by combining different

methods and datasets, network inference accuracy increases. Although I did not have

multiple types of data, I included time-delay Spearman correlation in addition to the
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time-course data.

At the time of doing analysis, there was hope that different methods submitted to

DREAM challenges would be included in an easily usable too to run all of them at once

on the same dataset. However, to this date, such tool does not exist and I decided to use

available already implemented and easy-to-use tools, keeping in mind that although ex-

isting methods might not be mechanistically realistic, they can still give useful knowledge

[301].

The reason for choosing ARACNE for static network inference in the 4th chapter was

that it was an already established method, preferable over simpler correlation because of

the ability to infer non-linear relationships. This method was chosen over an alternative

mutual-information method, CLR, because the original publication of CLR was based on

prokaryotic data.

For the dynamical model in the 4th chapter, Bayesian method as implemented and

published by collaborators [53], was used because they had already demonstrated the use

of this method on a lab-simulation of wastewater purification, i.e. by using consecutive

stages of water tanks where chemical concentrations are known and decreasing and gene

expression is measured in Daphnia living in these tanks.

1.4.7 Analysis and functional annotation of networks

When a network is created, it needs to be analysed. Cytoscape [285] provides several tools

for network analysis and many graph metrics can be calculated. Examples of two most

common measures are shown on Figure 1.5. For example, degree describes the number

of connections a node has and hubs are nodes with high degree. Other metrics, like

betweenness centrality, on the other hand is calculated by finding shortest paths between

every node pair in the network and finding the counting number of shortest paths through

every node, divided by the number of nodes. This measure is also high for hubs. There

are also bottlenecks, which are nodes connecting 2 parts of the network through which the

connections are possible and these nodes have low degree and high betweenness centrality.
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As networks can be quite large, it is useful to functionally annotate them. One way

for doing this is to divide the network into parts that have more connections among the

nodes of each part than with nodes in other parts. This is called modularisation and can

be done by several algorithms. One of the earliest examples is Markov Cluster Algorithm

(MCL) [92], which simulates flow through the network with the paths with more frequent

flow getting stronger. Another algorithm often used is community clustering such as GLay

[304] as implemented in the clusterMaker package [224] in Cytoscape.

Once the modules are found, they can be annotated. For model organisms, there

are packages in Cytoscape [285] enabling enrichment for Gene Ontology [62] terms or

KEGG pathways [235]. However, these resources have not been implemented for all

non-model species. At the moment, the way to perform enrichment analysis for non-

model species would be to have a custom-made gene-term list, which can for example

be made in BLAST2GO [59, 127] and for each term, find 4 values: count of this term

in the module to be annotated, count of this term in the whole annotation list, size of

the module and size of the annotation list. Based on these 4 values, a modified Fisher

test, known as EASE score [147] can be calculated, which should then be corrected for

multiple testing. This custom workflow takes into account the annotated transcriptome

size of the specific organism. The custom annotation allows calculating enrichment for

different data types. For example, in addition to commonly used Gene Ontology [62]

and KEGG [235], data can be downloaded for example from the CTD database [72, 71]

and enrichment performed for chemical targets. An easier alternative would be to map

transcripts to a model species and use a tool implemented for model species. However, as

normally annotation is not complete for non-model species, the full transcript list should

also be uploaded as background, otherwise the significance values do not reflect the true

proportions of different functions in the set of annotated genes.

A proprietary option for data interpretation is Ingenuity [172, 259]. Ingenity Pathway

Analysis Tool uses both external (KEGG and Gene Ontology) and internal databases

(Ingenuity Knowledge base, containing curated information from the literature; now In-
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genuity belongs to Qiagen and the Knowledge Base is called Qiagen Knowledge Base

[259]) databases to calculate enrichment for given gene lists. For every gene list, for every

KEGG, GO or Canonical Pathway term, a p-value is calculated based on the number of

associations for the specific term in the list and in the whole database and number of

genes in the list and in the database.

1.4.8 Machine learning methods used in systems biology

In addition to all exploratory analysis and network methods, machine learning approaches

can also be used for analysing omics data for both model species and non-model species.

Machine learning methods can be classified into unsupervised and supervised: for the

unsupervised, the there is no known structure about the data. One of the most-used

scenarios of unsupervised learning is clustering, where data are divided into similar groups

based on some characteristics. Clustering was described in the section of exploratory

analysis.

In the case of supervised learning, the structure of the data is known. For example,

these could be cases and controls of a disease, or treatment. The aim of supervised

learning is to build a model that can discriminate between these 2 classes. Generally, the

model is built with one part of the dataset (training data), using cross-validation, and

then tested on the test set which has not been used for training.

Two of the most widely-used algorithms for supervised machine learning are Support

Vector Machines (SVM) [27] and Random Forests (RF) [39]. SVM works by separating

two classes by a hyperplane so that the distance from both classes is as large as possible.

An illustration of SVM for 2-dimensional data is shown on Figure 1.6. For real biological

data, the number of dimensions is the number of genes or other biological measurements

and the separator between two classes does not have to be linear.

Random Forests are an ensemble learning method based on decision trees. The training

set data is sampled repeatedly with replacement for a set of features, which are then each

used to build a decision tree, which are then used on the test data for the prediction of
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Figure 1.6: Example of Support Vector Machine in 2-dimensional space. Two classes are
represented by blue and clear circles. The aim of the SVM here is to find a line (here
red) that separates two classes so that the distance (d1 and d2) from the separating line
to the nearest member of both classes is as large as possible

outcome, by taking the majority vote.

Although both Support Vector Machine and Random Forest are widely used in biology,

SVM is generally faster. In some studies, Random Forest has shown better performance

[156], but in others, SVM has outperformed Random Forests [296, 2]. In one comparison

between machine learning methods for gene expression data, although SVM performed the

best on the dataset of all genes, the results showed that performance depends on feature

selection [248]. SVM has also been used for metabolomics data, performing better over

Partial Least Squares Discriminant Analysis, PLS-DA, which is another method [208]. In

this thesis, I used SVM: because the desired accuracy was achieved, this was sufficient

not to try alternatives.

Genetic algorithms can also be used for finding markers predictive of different groups.

Genetic algoritm is a heuristic solution to a NP-complete problem of finding a small set of

variables from a large variable space that are best able to predict different classes. Genetic

algorithm is inspired by biology and works by creating many sets of variables, which are
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called chromosomes and are each evaluated for their predictive ability, using any machine

learning algoritm, including SVM and Random Forest. The chromosomes with better

predictive ability give “progeny” and also participate in the process of “cross-over”.

A genetic algorithm initially implemented for gene expression data is GALGO [317]

and has been used for biological data and also in other fields. The main advantage of

genetic algorithm over using SVM or Random Forest on their own is that in addition to

classification, the best-predicting features can be ranked and the optimal set of predictive

features selected.

1.4.9 Integration of data from additional resources

In addition to data generated for a specific study, the existing data that has been previ-

ously generated can also be used. For this to be successful, there should be standards for

data generation, processing and deposition. For example, Minimum Information About

a Microarray Experiment (MIAME) criteria apply to microarray datasets [38] and there

is also the Metabolomics Standards Initiative (MSI) [97].

Large datasets are generated and public repositories, such as ArrayExpress [170] and

Gene Expression Omnibus [88] for gene expression studies and MetaboLights [134] and

Metabolomics Workbench [306] for metabolomics data allow the re-analysis and integra-

tion of data from previous studies. For the integration of human or mammalian data,

there are tools which allow the integration of various resources, such as Genemania [226],

STRING [335] and Cytoscape [285]. In addition to freely accessible open-source tools,

there are also proprietary manually-curated databases which make the interpretation of

omics studies relatively easy [172]. For the interpretation of gene of chemical lists, tools

also exist, such as the CTD database [72, 71]. Cytoscape [285] also allows the integra-

tion of chemical data with gene or protein networks, for example via CyTargetLinker app

[177]. The AOP-DB [250] also integrates data from several external databases, making it

possible to connect AOP-s with chemicals from the CTD database [71], provide links with

the KEGG pathways [235] and STRING database of protein-protein interactions [309].

35



1.5 Can systems ecotoxicology help in risk assess-
ment?

Risk assessment is a process of assessing various risks associated with each chemical. In

the European Union, this is regulated by REACH (Registration, Evaluation, Authorisa-

tion and Restriction of Chemicals) since 2007 [85] and as described before, consists of

assessment of hazard for human health, for physicochemical hazard, for environmental

hazard and also for the assessment of whether the chemical is persistent, bioaccumulative

or toxic [93].

Adverse Outcome Pathway is a concept that connects the effects of a chemical to

Molecular Initiating Event and through a series of Key Events, to an Adverse Outcome

[6, 331]. The Adverse Outcome Pathway (AOP) framework has been proposed to have

potential for the risk assessment of both individuals and populations [173]. Moreover,

the AOP framework might also be able to draw knowledge from multiple taxa where a

mechanism of toxicity might be conserved [207]. For the advancement of the Adverse

Outcome Pathway framework, there must be experimental data and most importantly,

insightful interpretation and analysis of such data. Systems biology has been proposed

to be “leading the revolution” in understanding and interpreting the effects of various

chemicals [106]. Moreover, systems toxicology consisting of the integration of omics mea-

surements, chemical concentrations and responses at cellular, organ and organism level

and resulting in computational models which are then used for adverse outcome prediction

has been proposed lead to a new paradigm in risk assessment [302].

I have shown the need for risk assessment and reviewed the methods commonly used

for generating and analysing omics data. The main question that needs to be addressed

is whether systems biology approaches can really help in identifying putative AOPs and

markers that are useful in risk assessment.

In a review of omics and systems biology for the Adverse outcome Pathways [40], the

authors propose that the AOP Framework [6, 332] could potentially help in integrating

omics data into risk assessment, as it allows connecting chemical perturbations leading
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to Molecular Initiating Events, and through Key events, to the Adverse outcomes. For

environmental risk assessment, there are already several published studies about effects of

chemicals which have the potential to help in risk assessment [7, 67, 179] and it has been

suggested that the AOP framework might be the platform via which the results of various

omics studies can be incorporated in risk assessment [40]. It has also been suggested by

others, that omics datasets used in ecotoxicological research can results in mechanistic

understanding of chemical effects which can be incorporated in the AOP framework [191],

which in turn might be used in chemical risk assessment. For example, some AOP-s have

already been used in official test guidelines, such as OECD/EU test guideline for human

health, specifically OECD442E for addressing skin sensitisation [234]. An example of

omics data analysed with a systems biology approach has led to a putative AOP has been

demonstrated in Daphnia magna [7].

To develop the best possible understanding of how chemical perturbation leads to

Molecular Initiating Event and through key events to an Adverse Outcome, the results

of systems biology analysis should be validated experimentally. To use this information

for risk assessment, a complicated computational framework addressing several challenges

must be developed. These include species extrapolation [181], and also chemical-specific

properties as described by absorption, distribution, metabolism and excretion (ADME)

[49]. This is a huge challenge which are also being investigated in the area of drug

development and even in this area, there is currently no integrated framework that is

able to integrate many types of available information. However, for predicting molecular

effects, especially for drug repurposing, the extrapolation across species for safety concerns

and the ADME properties of chemicals all have to be taken into account. For this, systems

biology has been proposed as a suitable tool [90, 257, 244]. Additionally, the importance

of the AOP framework has been acknowledged by the drug development community [184].

In conclusion, there is a potential for systems biology to be used for the development

of AOPs and for risk assessment, by providing hypotheses that can be tested further, and

certainly the utility of these approaches is advancing, as shown by recent example of the

37



development of an alternative assay for predicting chemical effects [300]. Moreover, as

the tools for data integration are developing, such as the AOP-DB [250], omics datasets

and systems biology analysis can contribute to the development AOPs and provided the

regulatory acceptance, also used for environmental risk assessment.

1.6 Aims and objectives

The aim of this thesis is learn about the effects of environmental stress in non-model

species, using systems biology. The aim connecting all chapters is to use data-driven

analysis and biological networks created from data to connect omics measurements with

other measurements, such as physiological and environmental measurements. In all chap-

ters, the ultimate aim is to interpret results biologically.

Specifically, in the second chapter, objectives are:

1. To learn whether two neurotoxic chemicals RDX and carbaryl affect gene expression

in earthworm Eisenia fetida.

2. To learn whether genes affected by two neurotoxic chemicals RDX and carbaryl

overlap.

3. To learn whether differentially expressed genes are connected to the conduction

velocity of the medial giant nerve in a directed network?

4. To interpret the results biologically.

In the 3rd chapter, objectives are:

1. To learn whether metabolites in blue mussel Mytilus edulis are associated with

annual cycle, sex and site.

2. To learn how metabolite levels change during the annual cycle.

3. To learn whether metabolites can be associated with environmental and physiolog-

ical parameters in a directed biological network.
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4. To interpret the results biologically.

In the fourth chapter, objectives are:

1. To study whether gene expression changes during water remediation in three-spined

stickleback Gasterosteus aculeatus living in various stages of remediated water.

2. To compare differential expression of genes between sites.

3. Perform exploratory analysis of chemical concentrations in different sites.

4. To explore whether gene expression and chemical concentrations can be analysed

using a static biological network.

5. To interpret results of a collaborator about Bayesian model using the same data

that I used in this chapter.
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CHAPTER 2

A DATA-DRIVEN APPROACH TO UNDERSTAND
THE TRANSCRIPTIONAL RESPONSE TO

CHEMICAL EXPOSURE AND ITS EFFECT ON
NERVE CONDUCTION VELOCITY IN THE

EARTHWORM EISENIA FETIDA

2.1 Contributions

• Jaanika Kronberg-Guzman1,2,5 performed systems biology analysis (differentially

expressed genes, clustering, heatmaps, PCA, network pruning, analysis and inter-

pretation, wrote this chapter (details of the experimental methods were written

based on information provided by Edward Perkins’ lab)

• Ping Gong3 did experimental work (exposure, microarrays and medial giant nerve

fibre measurements)

• Rita Gupta1 ran the ODE framework with her method [130] that was unpublished

at the time of work and not annotated to be easily used by others. She provided

the results in the form of matrix which Jaanika Kronberg-Guzman analysed

• Tim Williams1 made improved annotation with BLAST2GO and found human or-

thologs to be used for Ingenuity annotation
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• Natalia Garcia-Reyero4 oversaw the experimental work, participated in the discus-

sions of computational work

• Edward Perkins3 initiated and organised this study, oversaw the experimental work,

participated in the discussions of the computational work

• Francesco Falciani1,5 oversaw the computational work, provided scientific ideas, par-

ticipated in the computational discussions
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2.2 Introduction

Anthropogenic chemicals released into the environment can enter both terrestrial and

aquatic ecosystems. Within the terrestrial environment, chemical pollutants can affect

the health of organisms living in soil either by direct exposure [57] and/or through the

ingestion of contaminated food [232, 199]. Since soil health is important for the health of

the whole ecosystem (reviewed in [82, 81]) and can also impact human health (reviewed

in [297]), understanding mechanisms of toxicity in earth organisms is of paramount im-

portance in ecotoxicology. Earthworm species have been called “soil engineers” because

of their burrowing activity which is important for maintenance of soil structure [54]. Due

to the widespread presence of earthworms in soils, they can be used for soil monitoring,

for example by measuring species number or biomass (reviewed in [239, 243]). Together

with other causes, chemicals in soil can affect the health of earthworms and this can have

a profound impact on biodiversity and biomass. Therefore, it is important to under-

stand how different chemicals affect earthworms. So far, this has been studied in various

earthworm species, such as Lumbricus rubellus, Lumbricus terrestris and Eisenia fetida

[54, 26], reviewed in [249, 325].

Survival, reproduction and growth parameters [295, 230, 328, 267], avoidance be-

haviour and burrowing activity tests [322, 107, 183], have been used to assess the effects

of various chemicals. Wound healing rates indicating the ratio of exposed worms healed

within a given time compared to control worms [56] have also been shown to indicate

chemical exposure. All these above-mentioned markers indicate changes at the level of

organism or tissue. At the cellular level, neutral red uptake has been shown as indicator of

chemical exposure [284, 11]. At the molecular level, various biomarkers have been shown

to indicate the presence of chemicals [51, 303, 206, 11].

The choice of a specific test or biomarker can set limits on the types of effects seen.

For example, if reproductive tests are used, only effects on the reproductive system can

be observed. These tests have been used extensively for assessing specific hypotheses.

In the last 15 years, the development of high-throughput functional genomics methods
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has provided new ways of investigating molecular networks linked to toxicity mechanisms,

independently of any specific hypothesis. More specifically, omics methodologies can bring

to a better understanding of environmental stress and have been used for many species

of environmental relevance [7, 276, 277, 80, 106]. Earthworms have also been used for

transcriptomics studies [121, 122, 47, 238, 308] and these species has been described as

suitable for toxicogenomics [124].

In Eisenia fetida, gene expression changes and the conduction velocity of the medial

giant nerve fibre (MGF) have been studied in the context of exposure to a neurotoxic

chemical [122]. In this chapter, I present a systems-level analysis of earthworm Eisenia

fetida exposed to two neurotoxic chemicals in the laboratory. The main aim was to develop

a strategy to analyse high-dimensional time course data and relate it to a physiological

measurement. The work in this chapter with lab-exposed Eisenia fetida exposed to single

chemicals establishes ground for using similar approaches with natural populations of

non-model species to understanding the effect of multiple environmental stressors.

More specifically, Eisenia fetida was exposed to two neurotoxic chemicals, RDX (1,3,5-

Trinitro-1,3,5-triazinane) and carbaryl (1-naphthyl methylcarbamate) in the laboratory.

In addition to gene expression, the conduction velocity of the medial giant nerve fibre

(MGF) was measured as a proxy for possible nerve damage. RDX and carbaryl are

especially important to understand as RDX is a neurotoxic explosive that enters the envi-

ronment through military training events and carbaryl is an insecticide. Both chemicals

are toxic to humans and affect the nervous system RDX has been shown to cause seizures

in rats and humans [117, 347].

Carbaryl is a cholinesterase inhibitor [37, 189], a chemical that has the potential to

inhibit the breakdown of acetylcholine by acetylcholinesterase. The activity of acetyl-

cholinesterase has been shown to be indicative of chemical poisoning or exposure in var-

ious different species, for example humans [13], lizards [271] and honeybees [16]. By the

use of another acetylcholinesterase inhibitor (chlorpyrifos; however, this is irreversible

and carbaryl is reversible), the effects of the acetylcholinesterase inhibition have been
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demonstrated in Eisenia fetida, starting with constriction and swelling in the initial 12

hours of exposure and progressing to sluggishness and unresponsiveness to stimuli [261].

In Eisenia andrei (another earthworm species), the acetylcholinesterase activity has been

shown to be affected by carbaryl: maximum inhibitory effects can be observed after 1

day of exposure on filter paper and after 3 days in soil [103]. Earthworm Eisenia fetida

has been shown to tolerate carbaryl better as compared to other earthworms: instead of

lethality, high doses affected its burrowing activity [298]. Carbaryl also affects growth

and reproduction of Eisenia fetida [230].

RDX (also called cyclonite) is an explosive that has been shown to cause seizures in

rats and humans [117, 347]. It has been shown in rats that RDX binds to the GABA

receptor A, reducing synaptic transmission mediated by GABAA receptor [347]. The

mode of action of RDX has been demonstrated to be conserved between several species,

including earthworm Eisenia fetida [105]. In earthworms, RDX has been shown to reduce

fecundity [266] and cause neurophysiological symptoms (rigidity and shrinking) [123].

In this thesis, an ordinary differential equation (ODE) modelling was used to model

the relationship between molecular and physiological response to the two chemicals with

neurotoxic effect. Our approach is data-driven and aims at discovering putative mech-

anisms of action linked to neurotoxic effects. I show that the dynamic gene expression

profile resulting from exposure to one of the chemicals, RDX, is linked to nerve conduction

velocity in the medial giant nerve fibre. The model also suggests that the changes in gene

expression might be involved in the recovery from nerve damage.

2.3 Methods

Overview of both experimental and computational analysis is shown in Figure 2.1. Part

A describes the lab experiments and part B shows the summary of the computational

workflow.
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Figure 2.1: Overview of experimental (A) and computational (B) workflow.
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2.3.1 Laboratory work (done by Ping Gong in Edward Perkins’s
lab)

Experimental setup (Edward Perkins’ lab, experimental details written based
on the thesis of Haoni Li)

A synchronised Eisenia fetida culture was started from cocoons and maintained in the labs

as described previously [123]. Mature worms of 0.4-0.6 g with clitellum were selected for

the experiment. Worms were transferred to individual glass vials (115ml) and acclimated

for 4 days prior to exposure. Worms were then exposed to carbaryl (20ng/cm2), RDX

(2µg/cm2) or acetone (solvent control) on moistened filter paper, as described in [192].

These concentrations were chosen so that they are sub-lethal. The experiment consisted

of 3 phases: acclimation (4 days), exposure (6 days) and recovery (7 days). During

acclimation, worms were sampled daily. During exposure, worms were sampled 13 times

(from 0 to 142 hours, Figure 2.1 A). At 151 hours (the end of the exposure phase), all

worms to be sampled during recovery were placed in new glass vials containing non-

spiked filter paper. During the recovery phase, worms were sampled 14 times (from 151

to 319 hours, Figure 2.1 A) for all treatments. At each sampling, during acclimation,

exposure and recovery, the conduction velocity of the medial giant nerve fibre (MGF)

was measured as described before [123]. Worms were sacrificed by snap-freezing in liquid

nitrogen, fixed in RNAlater-ICE and stored in -80oC (Figure 2.1 A). RNA was extracted

from at least 5 worms per time point per treatment similarly to a previous study from

the same lab [247]. One sample was eliminated due to poor RNA quality in the 10th

timepoint of RDX exposure. RNA was hybridised to custom-designed Agilent array [125]

using Agilent’s one-colour Low RNA Input Liner Amplification Kit. The arrays were from

3 manufacturing batches, so from each sample of 5, replicates were distributed on arrays

from each of the batches. After scanning, gene expression data acquired with Agilent’s

Feature Extraction Software Version 9.1.3. Multi-dimensional scaling was used to check

for batch effects, showing no significant effects [192].
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Pre-processing of microarray data (Edward Perkins’ lab)

Pre-processing consisted of feature filtering, conversion of signal intensity into relative

RNA concentration, normalisation and gene filtering and were done as described in [192].

After these procedures, 43000 genes remained and were used for subsequent analysis.

2.3.2 Systems biology analysis

Statistical processing (Jaanika Kronberg-Guzman)

Differentially expressed genes were identified using SAMR R packege (FDR < 0.05) [312]

between treatment and control, separately for both chemicals. Time-course consisted of

gene expression values (5 replicates for each time point, except recovery point 10 for RDX-

treated worms where there were 4 replicates, and recovery points 5,6,8,10,11 and 12 where

there were 6 replicates for carbaryl-treated worms) for each of the 27 time points in ex-

posure and recovery phases, plus control samples from same time-points. Using two-class

time-course (resp.type="Two class unpaired timecourse", time.summary.type="slope"),

differentially expressed genes were found that differ between control and treatment. SAMR

first computes the standard error of the slope and then uses this slope-summarised data as

regular two-class data. The resulting positive d-statistic shows that the in the treatment

group, gene expression increases in time compared to the control group, and negative

d-statistic shows that in the treatment group, the expression decreases in time compared

to the control group.

For further analysis, transcriptional measurements were expressed as ratio between

exposure and recovery (in each time-point) over the corresponding control measurements,

i.e. the mean of logged control values were subtracted from the exposure log values. The

significance of the overlap between the two gene sets was determined by the R function

phyper (1−phyper(q,m, n, k)) where q = 4158 (overlap), m = 12061 (number of differen-

tially expressed genes in the carbaryl experiment), n = 63542 (total genes) and k = 8852

(number of differentially expressed genes in the RDX experiment).
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Data annotation (Tim Williams)

The E. fetida microarray had been designed to target 63,542 sequences, the majority of

which had been derived from 454 sequencing of E. fetida cDNA [125]. In the current

study, 16,905 sequences were identified as differentially expressed, but only 2,385 of these

had originally been annotated to known proteins by BLASTx at E value < 1E − 06.

Two further annotation strategies were employed; the 16,905 sequences were directly

annotated by Blast2GO [127], and indirectly annotated by first employing BLASTn at

< 1E − 06 versus 630,000 Annelid ESTs (Genbank EST) then annotating the matching

ESTs by Blast2GO. Combining significant matches from all approaches resulted in 4,703

sequences identifiable with known proteins. These protein sequences were used to search

the human proteome [Ensembl Genes 62; Homo sapiens genes (GRCh37.p3)], resulting

in 3712 matches at < 1E − 06. Therefore, the annotation of E. fetida transcripts was

improved and identification of putative human orthologs allowed association of E. fetida

genes with the extensive mammalian gene annotation. Of the significantly differentially

expressed genes, only those with any annotation were used in further analyses.

Clustering and exploratory analysis (Jaanika Kronberg-Guzman)

Expression profiles of annotated differentially expressed genes for both chemicals were

clustered separately with HOPACH [327, 251], a clustering method that automatically

identifies the optimal number of clusters. As a distance matrix, Spearman correlation was

used. The centroid of each cluster was then interpolated using polynomial interpolation

to obtain a high density time series (in this case 143 time points were generated for the

worm by using polynomial interpolation with root 8; this root was chosen based on visual

inspection), ready for the ODE modelling technology NIMOO.

The interpolated gene cluster medians and MGF were visualised as heatmaps using

the heatmap function in R [260]. Principal component analysis was done in R [260], using

interpolated gene cluster medians. R function prcomp was used, and first 2 principal

components visualised, using R plot function [260].
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NIMOO (Jaanika Kronberg-Guzman, Rita Gupta)

Here, a method called NIMOO [130] was used to integrate conventional parameter esti-

mation procedures with a correlation-based method for network inference. Specifically,

two matrices were given as input to NIMOO: a time-course data matrix of interpolated

clusters and MGF and a time-delay Spearman correlation of interpolated clusters and

MGF (a custom script provided by Kim Clarke). The output was a matrix describing the

expression level of each cluster median by all other cluster medians. Since every interac-

tion has weight, and for visualisation and interpretation it is easier to analyse only the

largest effects (strongest edges in the network), both networks were thresholded for the

network visualisation to give similar average connectivity of the network (thresholds were

0.7 for carbaryl and 0.4 for RDX).

Biological interpretation (Jaanika Kronberg-Guzman)

Gene lists of putative human orthologs corresponding to each of the annotated worm

transcripts were input into Ingenuity [172]. Reports of enriched Canonical Pathways and

KEGG pathways [235] were generated based on the Ingenuity Knowledge base [172].

2.4 Results

2.4.1 Two neurotoxic chemicals, carbaryl and RDX, affect the
expression of different genes in Eisenia fetida

I first tested whether these neurotoxic chemicals have any effect on the transcriptional

state of earthworms. There were 12061 differentially expressed genes after exposure to

carbaryl and 8852 after exposure to RDX (FDR 0.05) (Figure 2.2 A) that differ between

control and treatment time-courses, i.e by comparing slopes of each gene between the

two classes. The overlap between the two gene lists was 4158 (significantly different

from the overlap of randomly sampled genes from the same set, p-value=0). Previously,
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from all differentially expressed genes, only 2385 had been annotated to known proteins

by BLASTx at E-value < 1E − 06. With the new Blast2GO annotation, the number of

annotated genes increased to 2885. The number of differentially expressed annotated genes

for carbaryl was 2100 and for RDX it was 1301 and the overlap of annotated differentially

expressed genes between the two chemicals was 516 (Figure 2.2 B). Although the overlap

was significant, there are also many differentially expressed genes which are specific for

each of the chemicals, therefore the two sets of genes were analysed separately.

Figure 2.2: A. Overlap of all differentially expressed transcripts between two experiments.
B. Overlap of differentially expressed transcripts with annotation

In order to reduce the complexity of the dataset and visualise the dynamics of gene

expression, a clustering procedure (HOPACH) [327, 251], which determines the number of
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clusters automatically, was used on the gene expression time-course profiles, and resulted

in 111 gene clusters for carbaryl (31 gene clusters >10 genes) and 15 gene clusters for RDX

(11 gene clusters >10 genes). To obtain an overview of the dynamics of clusters during

Figure 2.3: Heatmap of interpolated clusters for the exposure to carbaryl (left) and for
the exposure to RDX (right). Green shows low expression and red high expression for nor-
malised, standardised cluster medians. Number in brackets indicates number of annotated
transcripts in each cluster.

exposure and recovery, cluster medians were visualised as heatmaps (Figure 2.3). Visual

inspection identified several clusters whose average profile displayed a marked modulation

in response to exposure and recovery. In order to assess the overall dynamics of response

to exposure in the two experiments, I performed principal component analysis using the

averaged profiles as input data (Figure 2.4). Panel A clearly shows that response to car-

baryl exposure follows a trajectory across both components. Interestingly, immediately

after the removal of the chemical (recovery phase) the organism responds by a trajectory

across the second component. On the contrary, after RDX removal, E. fetida gene ex-

pression continues on a trajectory established in the exposure phase for 3 days before it
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shows any sign of responding to the removal of the chemical (Figure 2.4 B).

Figure 2.4: PCA of interpolated clusters for the two experiments. The trajectory of the
gene expression alters immediately after removal of carbaryl, but a similar alteration takes
longer after the removal of RDX. The red dot represents the average of unexposed controls
(C-control), orange dots (E1-E13) are exposure and green dots (R1-R14) recovery. White
dots represent interpolated timepoints.

2.4.2 Advanced computational modelling connects the gene ex-
pression changes with the conduction velocity of the me-
dial giant nerve fibre

As one of the aims was to test whether gene expression trajectories are related to the

dynamics of the conduction velocity of the medial giant nerve fibre (MGF, Figure 2.5), I

decided to use an approach where each biological entity can be described as a function of

all other biological entities to integrate temporal changes in gene expression and MGF.

Here the entities are clusters of interpolated gene expression time-course profiles and the

interpolated MGF time-course. To accomplish this aim, I used an ODE-based approach as

implemented in NIMOO [130] which is a multi-objective optimization framework that has

been shown to be able to work well with different datasets and network inference methods.

NIMOO has the advantage of being able to integrate multiple types of data. Here I used

NIMOO to integrate time-course data and time-delay Spearman correlation of the same
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data. An overview of the approach is shown in Figure 2.6. Specifically, NIMOO models

the expression of each biological entity as a weighted linear sum of all other entities.

During the optimization process, aim can be set for squared error between inferred and

measured expression value. Here the aim for squared error was set for < 10−5 and both

models ran successfully. NIMOO resulted in a matrix of interaction strengths, i.e. how

strong if the effect of one cluster on other ones. For an intuitive interpretation of the

NIMOO model, the matrix can be visualized as a network, where nodes are gene clusters

and MGF, edges the strength parameters from the NIMOO matrix. Although models

could be developed for both chemicals, the network linking gene expression dynamics

with the phenotypic endpoint could be identified only in the case of RDX (Figure 2.7,

Figure 2.8).

2.4.3 Further analysis of network model of RDX exposure sug-
gests that the gene expression changes might be the result
of nerve damage

As the aim of this work was to discover molecular mechanisms controlling the toxicity

mechanisms and network analysis of gene expression linked to the conduction velocity

might enable to understand more of the hierarchy of molecular events, the RDX network

(Figure 2.7) was analysed further. In the RDX network, there are 3 upstream nodes

(clusters 4, 10 and 12) which change before other nodes. Two of these (cluster 4 and

cluster 10) are also directly connected with the conduction velocity of the medial giant

nerve fibre (MGF), which is the most downstream node of the network. Cluster 12 is also

upstream of MGF, but through 3 intermediate nodes. To aid biological interpretation,

functional annotation was performed for the clusters in the RDX network (Table 2.1 and

Table 2.2). For each of the clusters, representative genes are shown for which sequence

homology was confirmed by performing a sequence alignment (an example shown on

Figure 2.9).

Interestingly, many of the clusters are enriched in terms related to signalling. Other
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Figure 2.5: Conduction velocity of the medial giant nerve fibre. A. Raw conduction
velocity measures of control, exposure and recovery from RDX and exposure and recovery
from carbaryl. B. Ratios between exposure and recovery of RDX and carbaryl over control
measurement of same time points.
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Figure 2.6: Overview of the multi-objective optimisation for the time course data

Figure 2.7: NIMOO model of the RDX time-course of both exposure and recovery. The
model relates clusters of genes to the conduction velocity of the giant median nerve fibre
(MGF). Nodes represent gene clusters and the MGF measurement, edges represent the
connection strength (shown numerically) and direction of effect (as arrow). Arrowhead
shows whether the predicted interaction is positive or negative.

55



Figure 2.8: NIMOO model of the carbaryl time-course, of both exposure and recovery.
Nodes represent gene clusters and the MGF measurement, edges represent the connection
strength (shown numerically) and direction of effect (as arrow). Arrowheads show whether
the predicted interaction is positive or negative.

functions that stand out are apoptosis and cell death, lipid metabolism, transport, energy,

oxidative phosphorylation, chromatin remodelling and gene expression. The model de-

scribed was attempted to describe the dynamics of both exposure and recovery. However,

as MGF changes only during recovery and many clusters also do not change much during
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Figure 2.9: An example of sequence alignment of CHRNA7 to confirm homology. A: The
Eisenia fetida sequence was translated in all 6 reading frames, here reading frame 4 is
shown. B: example of a hit from sequence alignment of the translated nucleotide sequence.
C: Interpro scan for the translated reading frame 4 shows a neurotransmitter-gated ion-
channel domain.

exposure, it might be worth modelling the two parts separately. For these models, only

nodes which change during the phase modelled (either exposure of recovery) were used.
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For the exposure phase, the model was built with clusters 9, 6, 1 and 4. In the exposure

network (Figure 2.11), most clusters are related to apoptosis: cluster 1 is enriched in cell

death and other clusters contain genes associated with apoptosis. Clusters in this network

are also enriched in signalling and the cluster hierarchically on top (cluster 6) is enriched

in neurological disease.

The model of recovery phase (Figure 2.12) is larger, as many more clusters change after

the removal of chemical. This model places MGF as the most downstream node, similarly

to the model made for the full time-course. This indicates that the previous model made

for the full time-course might have captured mainly changes associated with the recovery

stage. As the clusters are same as used before, the annotations are same. However, to

ease interpretation, separate visualisations were made for stress, signalling, apoptosis,

response to calcium ion, chromatin regulation and endocytosis (based on Figure 2.10).

These terms are visually highlighted in Figure 2.13. Overall, drug metabolic process is

enriched in all clusters except clusters 8 and 12 (Figure 2.10). ATP metabolic process,

oxidative phosphorylation, organonitrogen compound metabolic process and transport are

significant in all clusters except clusters 2 and 8 (Figure 2.10). The most upstream node,

cluster 3, which is also directly upstream of MGF, is enriched in terms related to stress,

signalling and apoptosis (Figure 2.13). Different types of signalling are also enriched in

many other clusters (clusters 10, 5, 4, 12, 1, 6) (Figure 2.10, Figure 2.13).

2.4.4 The analysis of transcriptional response to nerve damage
in rat supports the prediction of the dynamical model

The exploratory analysis and the network modelling results suggests that the organisms

recover from exposure. Moreover, the analysis of the model derived from the recovery-

stage dataset places conduction velocity of the MGF as the most downstream node as

in the model of full time course, suggesting that transcriptional changes associated to

recovery may mechanistically control the conduction velocity of the MGF. In order to

further test this hypothesis, a previously published proteomics study [155] of recovery after
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Table 2.1: Functional annotation of clusters of the RDX model (KEGG terms). Only
terms with FDR <0.05 are shown. For every cluster, representative genes from significant
pathways are also shown. *Human orthologs annotated with Italics were predicted but
worm sequences did not contain functional domains.
Cl. KEGG pathways Representative genes (human gene ortholog name

and description from the Genecards database)

1
Lipid metabolism; Small
molecule biochemistry; Cell
to cell signalling; Cell death

DCTN6 – Dynactin subunit 6

2

Transport; DNA replication,
recombination, repair; En-
ergy; Cell death; Immune re-
sponse

RCN2 – Reticulocalbin 2, EF-Hand Calcium Binding Do-
main

3 Cell death; Nervous system
development

CHMP6 – Chromatin Modifying Protein 6; this protein is
part of ESCRT-III; AIFM2 – Apoptosis Inducing Factor,
Mitochondria Associated 2

4

Cell to cell signaling; Gene
expression; Glucocorticoid re-
ceptor signaling; Assembly of
RNA polymerase II complex

TRIAP1 – TP53 Regulated Inhibitor of Apoptosis CDK7 –
Cyclin Dependent Kinase 7 KCNAB2 – Potassium Voltage-
Gated Channel Subfamily A Regulatory Beta Subunit 2
SMOC1 – SPARC Related Modular Calcium Binding 1

5 SWI/SNF related protein

SMARCD1 – SWI/SNF Related, Matrix Associated, Actin
Dependent Regulator Of Chromatin; EFCAB1 – EF-Hand
Calcium Binding Domain 1; SEC63 – SEC63 Homolog, Pro-
tein Translocation Regulator

6 Cell death; RNA trafficking;
Neurological disease

CNBP – CCHC-Type Zinc Finger Nucleic Acid Binding Pro-
tein; CHMP1B – Chromatin Modifying Protein 1B; DBI
– Diazepam Binding Inhibitor (GABA Receptor Modula-
tor, Acyl-Coenzyme A Binding Protein); DDR2 – Discoidin
Domain Receptor Tyrosine Kinase 2; PRKAA2 – Protein
Kinase AMP-Activated Catalytic Subunit Alpha 2, Acetyl-
CoA Carboxylase Kinase; LLPH – LLP Homolog, Long-
Term Synaptic Facilitation

7
Drug metabolism; Lipid
metabolism; Small molecule
biochemistry;

FLNB – Filamin B, Beta (Actin Binding Protein 278);
MYL12B – Myosin Light Chain 12B

8

Lipid metabolism; Small
molecule biochemistry; Gene
expression; Retinoic acid
mediated apoptosis signaling

DAP3 – Death Associated Protein 3

9 Lipid transport; Cell to cell
signaling

CARSHP1 – Calcium-Regulated Heat-Stable Protein 1;
APOA1BP – APOA1 Binding Protein (also in rat nerve
study)

10

Cell morphology; Develop-
mental disorders; Cell cycle;
Chromatin remodelling; Cal-
cium signaling

CHRNA7 – Cholinergic Receptor Nicotinic Alpha 7 Subunit;
ARF3– ADP Ribosylation Factor 3

12
Cell to cell interaction; Cell
death; Oxidative phosphory-
lation

*CCT6 – Chaperonin Containing TCP1, Subunit 6A; *SYN-
CRIP – Synaptotagmin Binding Cytoplasmic RNA Interact-
ing Protein
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Table 2.2: Functional annotation of clusters of the RDX model – Ingenuity canonical
pathways
Cluster Canonical pathways from Ingenuity

1
Germ cell-sertoli junction signalling; 14-3-3 mediated signalling; Beta-
alanine metabolism; Mitochondrian dysdunction; Oxidative phospho-
rylation

2 Valine leucine isoleucine degradation; Fatty acid metabolism; Trypto-
phan metabolism; Butaonate metabolism; Oxidative phosphorylation

3
Clathrin-mediated endocytosis signalling; VEGF signalling; Fatty
acid metabolism; Mitochondrian dysdunction; Oxidative phosphory-
lation

4 Valine leucine isoleucine degradation; Purine metabolism; Fatty acid
metabolism; Mitochondrian dysdunction; Oxidative phosphorylation

5 Tyrosine metabolism; Tryptophan metabolism; Arginine and proline
metabolism; Mitochondrian dysdunction; Oxidative phosphorylation

6
Valine leucine isoleucine degradation; Beta-alanine metabolism;
Propanoate metabolism; Fatty acid metabolism; Oxidative phospho-
rylation

7
Virus entry via endocytic pathways; Caveolar mediated endocyto-
sis signalling; Protein kinase A signalling; Regulation of actin-based
motility by rho

8
Germ cell-sertoli junction signalling; 14-3-3 mediated signalling;
Clathrin-mediated endocytosis signalling; Virus entry via endocytic
pathways; IGF-1 signalling

9 RhoA signalling; Glycolysis/gluconeogenesis; Bile acid biosynthesis;
Mitochondrian dysdunction; Oxidative phosphorylation

10 Valine leucine isoleucine degradation; Purine metabolism; Glycoly-
sis/gluconeogenesis; Mitochondrian dysdunction

12 Germ cell-sertoli junction signalling; Axonal guidance signalling; 14-
3-3 mediated signalling; Oxidative phosphorylation
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Figure 2.10: Gene Ontology Biological Process annotation of clusters of genes in response
to RDX exposure. Only terms with FDR<0.05 are shown. Green represents smaller FDR
values close to 0 and red larger FDR values closer to 0.05. Cells where FDR>0.05 are
shown as white.
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Figure 2.11: NIMOO model of clusters changing only during exposure. Red indicates
high expression and green low expression.

nerve damage in rat was used. In this study, many axonal transport proteins were found

to be significantly altered in abundance. Unfortunately, many of the probes representing

worm axonal transport proteins were eliminated from the dataset because they failed the

quality control. However, some genes related to axonal signalling remained in the dataset

and axonal signalling was enriched in cluster 12, which is a central node in the network.

The proteins important for the nerve recovery in rat were compared with corresponding

genes in the RDX dataset – there were 16 genes/proteins that overlap. These worm

genes and corresponding proteins in rat are shown in (Table 2.3). Most interestingly,

genes/proteins related to calcium signalling are among the 16. Moreover, although many

tubulin genes were not used in further analysis due to being annotated in multiple clusters,

there are some that were specific for only one cluster and overlap with proteins from the

rat study. Interestingly, 5 of the genes corresponding to the significant rat proteins are in

cluster 4 which is a central node in the network and also upstream of the MGF (Figure

2.14, Table 2.3).
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Figure 2.12: NIMOO model based on recovery phase. Red indicates high expression and
green low expression.
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Table 2.3: Overlap of genes corresponding to proteins found significant in the rat pro-
teomics study of nerve regeneration [155] and differentially expressed genes in response
to RDX in the current study.
Protein name
(rat) Name Cluster

CALU_RAT Calumenin 2
AL1A3 Aldehyde dehydrogenase 4
AL1A7 Aldehyde dehydrogenase 4
ATPB ATP subunit beta, mitochondrial precursor 4
RSSA_RAT RPSA, 40S ribosome protein, laminine receptor 1 4
TBB2B_RAT Tubulin beta 2B 4
ALDR Aldehyde reductase 6
VIM Vimentin 6
CALM_RAT Calmodulin 7
CATB Cathepsin B precursor 9
AAA Aldolase dehydrogenase 9

FGB Uncharacterised protein, similar to fibrinogen C-
terminal domain 9

TBB2C Tubulin beta 2C 10
ENOG gamma-enolase 10
TBB5_RAT Tubulin beta 5 chain 12
MMSA_RAT Aldehyde dehydrogenase 13
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Figure 2.14: Mapping of genes corresponding to rat proteins into clusters of the earthworm
model. Intensity of the node colour indicates the number of mapped genes.
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2.5 Discussion

2.5.1 Temporal gene expression trajectories are consistent with
the existence of chemical-removal mechanisms

Gene expression analysis showed that for two neurotoxic chemicals, the affected genes are

very different. Moreover, the Principal Component Analysis suggests that carbaryl might

be removed from the organism rapidly, allowing the worm to start recovering as soon

as the chemical is not present in the environment. This is consistent with the fact that

there is a removal mechanism for carbaryl in the earthworm ([299], reviewed in [314]).

However, according to literature, RDX is eliminated rapidly as well [358], making in even

more intriguing why the recovery does not start after the removal of the chemical from the

environment. In the current study, the gene expression pattern continues after removal

of RDX, suggesting that that if the chemical is removed, the continued gene expression

changes might be caused by something else. Moreover, there were fewer clusters of genes

changing during the exposure than during recovery. It is therefore possible that the

network relating the gene expression changes to the conduction velocity of the medial

giant nerve fibre (MGF) captures recovery from nerve damage during this process instead.

2.5.2 Calcium signalling, apoptosis and endocytosis in nerve
damage recovery

Calcium signalling is an important process and has previously been proposed to be in-

volved in the recovery from nerve damage [120]. Genes involved in cell to cell signalling

and cell death have also been shown to be important by other omics studies of nerve

injury recovery [353]. Another transcriptomics study of nerve recovery used clustering

approaches and showed clusters enriched in calcium signalling [120]. Interestingly, in

mentioned studies, immune functions were also highlighted, but were not enriched in the

worm study. This might be because immune-related genes might have been lost in the

annotation process, as the other studies were in rats (and as model species and mammals,
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they have better annotation). The annotation also relies on conservation between rat

and earthworm and even if immune functions were affected, genes involved in immune

system processes might not have been annotated. Interestingly, the hierarchically most

downstream node in the exposure network, cluster 4, which has very little dynamics dur-

ing exposure but has higher expression levels during recovery, contains a gene related

to inhibition of apoptosis (TRIAP1) [254] – and apoptosis is enriched in clusters of the

recovery network. Cluster 4 is also a central cluster in the recovery model and moreover,

it contains the largest overlap with the rat proteomics study of nerve damage recovery.

Another term enriched in several clusters, endocytosis is a process important for nerve

functions [78] and plays a role in the recovery from nerve damage, especially in relation to

membrane trafficking [318]. Additionally, endocytosis is initiated by Ca2+ and calmodulin

[352] and calcium signalling plays a role in endocytosis in synaptic vesicles [66, 78]. One

of the genes in the current study which overlapped with corresponding protein from the

rat study [155] was vimentin. Moreover, a review about nerve injury signalling [1] argued

that the expression of this gene is affected by Ca2+ and Na2+ perturbations following

nerve injury.

In addition to biological functions, there are several genes in the clusters also func-

tionally relating the enriched pathways. For example, it is known that calcium can up-

regulate calcineurin (cluster 2 in the model) and this might also play a role in endocytosis

in synapses [307]. Calcineurin has been shown to be pro-apoptotic [10]. Another gene,

calreticulin, which is also in cluster 2, is a calcium-binding protein, chaperone in the en-

doplasmic reticulum (ER), responding to ER stress [359, 65]. Additionally, Sec63, which

part of the Sec62/Sec63 complex on the human ER is also involved in various signalling

events (reviewed in [198]).

2.5.3 Is the model consistent with known effects of RDX?

It has been shown that RDX exposure affects GABA signalling by reducing GABAA

currents [347]. The effects of RDX on GABA receptor have been shown to be conserved
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between various species [105]. In the models of the current study, the ortholog of human

diazepam binding inhibitor (DBI), a GABA modulator was in the top node in both the

network based on the full time-course and in the network based on only exposure. In

humans, RDX can cause seizures [220, 117] and a gene in one of the top nodes in the

recovery network, CHRNA7, has been shown to be associated with encephalopathy and

seizures in humans (Endris et al. 2010). As the modelling approach and additional

analysis of rat nerve damage suggested, the network might capture recovery from nerve

damage. This is also in concordance with previous studies in the earthworm, where RDX

caused neurological symptoms [123]. Additionally, as the Principal Component Analysis of

the gene expression indicated, the recovery is not immediate after placing the earthworms

in clean environment, despite rapid removal of RDX as suggested by literature [358]. It

has also been previously shown using a physiological endpoint, that after RDX exposure,

the conduction velocity in the medial giant nerve fibre, although returning toward normal

levels, never reached the original conduction velocity [123].

2.5.4 Conclusions and possible improvements

In this chapter, I have shown that by data reduction and ODE models using multi-

objective optimisation, that it is possible to make biologically meaningful dynamical

models relating high-dimensional gene-expression data with a physiological measurement.

Moreover, the RDX model suggested that gene expression dynamics capture recovery

from nerve damage and this hypothesis is supported by previous studies form literature.

This shows the power of data-driven systems biology in non-model species. At the time

of the study, the annotation of the Eisenia fetida transcripts was challenging. However,

the nerve cord transcriptome annotation was made available in 2017 [252]. This makes

it possible to interpret the transcripts further and potentially facilitate the interpretation

of changes. It might also solve the problem assigning gene identities to multiple clusters.

In our approach, such genes were removed from analysis, removing potentially important

biological information. If the annotation was improved, these might give more insight
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into the effects of chemical exposure and changes after the removal of chemical. For ex-

ample, the overlap analysis with rat nerve damage study [155] could be more extensive.

Another limitation is the reliance on human orthologs. It can give some functional in-

sights, especially is the sequences between human and earthworm are conserved, but to

understand specific mechanisms of nerve damage or recovery, more experiments or the use

of earthworm-specific additional datasets would be needed. However, as the main focus

on this chapter was to develop a strategy for analysing dynamical changes in non-model

organisms, and also relate these to other types of measurements, such as physiological

parameters, the current analysis with existing annotation serves the purpose.
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CHAPTER 3

MODELING THE METABOLIC PROFILE OF
MYTILUS EDULIS REVEALS MOLECULAR

SIGNATURES LINKED TO GONADAL
DEVELOPMENT, SEX AND ENVIRONMENTAL

SITE

3.1 Contributions

Parts of the data used for this article and thesis chapter are already published by co-

authors (A. Hines thesis and J. P. Bignell [31] using univariate and multivariate statistics.

The focus of this chapter and paper is systems biology and analysing all types of data

together in a data-driven manner. All the analyses based on previously published data in

this thesis are novel.

• Jaanika Kronberg-Guzman1,2,3 performed computational systems biology analysis

from the metabolite bins (exploratory analysis, annual cycle dynamical models, sex-

prediction), checked automatic metabolite annotations provided by Jonathan Byrne,

did additional metabolite annotations based on literature, interpreted results, wrote

the paper draft and this chapter

• Jonathan J. Byrne2 did 1H-NMR data processing and metabolite annotations ac-

cording to the Birmingham Metabolite Library database. Provided comments on
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the paper.

• Jeroen Jansen5 did statistical processing of the metabolite bins before the systems

biology analysis.

• Philipp Antczak1 provided help and guidence in the systems biology analysis and

also useful comments in the manuscript-writing.

• Adam Hines2 did all the 1H-NMR measurements and had analysed the same data

with different methods for his thesis in the University of Birmingham. Provided

comments for the paper.

• John P. Bignell4 was involved in the sampling of the mussels and histopathology

(this work on the same mussels is already published [31] – without 1H-NMR or

systems biology. Provided comments for the paper.

• Grant D. Stentiford4 was the leader and initiator of this project especially in respect

to design, sample collection and histology.

• Mark R. Viant2* was the leader and initiator of this project in the area of 1H-NMR

experiments and processing, provided comments for the paper.

• Francesco Falciani1,2* oversaw and guided the systems biology aspect of this study,

which is the focus of this chapter. Participated in discussions of all systems biology

analysis and provided comments for the chapter and paper.
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3.2 Abstract

Continuous monitoring of anthropogenic pollution is essential for maintaining high water

quality standards and to minimize the impact of chemicals on aquatic wildlife. In parallel

with monitoring the concentrations of chemicals of concern, biosensor species are essential

tools for environmental monitoring. Among these, mussels are filter-feeding and sessile,

hence potentially a good model system for measuring localized pollution. Here we address

the hypothesis that the metabolic state of the blue mussel, Mytilus edulis, characterized

by 1H-NMR spectroscopy, is correlated to organism physiology and that this relationship

is affected by the environment. We approach this challenge by developing a computational

model representing the reference site and integrating the metabolite seasonal dynamics

with key physiological indicators and environmental parameters. The analysis of the

model revealed that changes in metabolite levels during the annual cycle are potentially

influenced by water temperature and are linked to gonadal development. Moreover, a

statistical model trained in the reference site to predict sex from metabolite markers,

forecast the presence of “molecular intersex” in a population of mussels sampled from

Southampton. This work shows the power of data-driven metabolomics and its potential

in environmental monitoring.

3.3 Introduction

Anthropogenic pollution affects water quality and consequently represents a threat for

ecosystem functioning and human health. Therefore, with a constant increase in the

release of chemicals, there is a need to improve environmental monitoring, especially to

detect early biotic effects of chemical contamination. In the European Union, this monitor-

ing is performed under the umbrella of the Water and Marine Water Framework Directives

[77]. In the US, monitoring is handled by the Environmental Protection Agency′s (EPA)

National Aquatic Resource Surveys according to the Clean Water Act [323]. Both aim

at providing and supporting healthy biological communities in surface and groundwater
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bodies.

Currently, monitoring is performed by measuring water physico-chemical parameters

and biodiversity. In addition, sensitive indicator species are used to assess ecosystem

health and provide additional information on potential environmental pollutants [142].

While absence of such species is an indicator in itself, molecular tools have been proposed

as a more sensitive approach capable of detecting organism-level effects very early on,

with potential predictive power in determining a future deterioration of a populations

fitness [167, 45, 346, 275]. A few of these markers have been proven useful, such as

vitellogenin, which in male fish is a biomarker for endocrine disruption indicating decline

in reproductive potential [9, 138, 159]. The advent of functional genomics technologies has

provided the community with powerful tools which can be used to identify more complex

molecular signatures predictive of toxicity [326, 329, 277, 140, 18, 30, 41, 258]

Mussels represent an excellent indicator species due to their wide range of habitat,

including both salt and freshwater, geographical distribution and their ability to filter

vast amounts of water (e.g. Mytilus edulis can filter up to 15ml water in a minute)

[264, 128, 363, 118, 237]. Mussels have been used in the Mussel Watch program long

before the advent of functional genomics technologies [118]. Physiology-based biomarkers

of toxic effects in mussels, such as scope for growth and survival stress tests (i.e. time

to death outside water) [135] have been recommended by the International Council for

the Exploration of the Sea (ICES) [115]. Mussel biomarkers have been shown to have a

broad range of applications ranging from assessing the effects of UV filters [15], urban

wastewater [73], oil pollution [23, 236, 291, 320], offshore gas platforms [126] and a wide

range of environmental pollution [96, 114, 363].

More recently, functional genomics has been applied to study the mussel stress re-

sponse, such as salinity or response to the tidal cycle, in a number of environmentally

relevant species [61, 19, 76, 60, 201, 256]. While most of the ′omic′ studies have relied on

gene expression profiling, other omics technologies, such as metabolomics [91, 319, 290,

178, 140] and proteomics [8, 168, 292] have also been used and may provide a strongly
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phenotype-oriented view of the animal that aligns well with the objective of environmental

effects monitoring.

Because of the vast amount of data generated by these studies, untangling the effects

of multiple environmental stress factors and identifying molecular mechanisms control-

ling organism physiology requires advanced computational methods. The work in this

chapter tests the potential of systems biology to develop metabolism-based biomarkers

of environmental relevance. I approach this challenge by modelling the complexity of

the global metabolite changes during the annual cycle of blue mussel Mytilus edulis and

their relationship with environmental location, physical parameters such as temperature

and salinity, and physiological parameters such as gonadal stage and adipogranular tis-

sue index (ADG rate). These models identify a hierarchy of connected molecular and

physiological events that are linked to gonadal development. I show that these metabolic

profiles can predict sex in the reference site. Ultimately, I prove that the utility of this

approach by showing that in more polluted waters, the metabolic state predicts the pres-

ence of intersex organisms, generating a hypothesis that would need to be tested in future

studies.

3.4 Methods

3.4.1 Overview of the analysis strategy

Figure 3.1 summarizes the different components of the study, including the data analysis

strategy. The first step (data production) involves the generation of a dataset representing

the metabolic state of mussels sampled from Exmouth (reference site) and Southampton

(more polluted site) over the period of one year (Figure 3.1A). During the data acquisition

the mantle tissue is sampled to acquire both histological and 1H-NMR spectroscopy-based

metabolomics data. Meanwhile, the environmental variables are collected. The second

step (data analysis) involves the identification of metabolites linked to sex, site and sea-
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Figure 3.1: Overview of the data generation and analysis strategy

sonal cycle in the Exmouth reference site, the development of a dynamical model linking

molecular changes to environmental and physiological parameters, and the development

of a statistical model that can predict sex from the metabolote levels (Figure 3.1B). In the

third step, the application of the sex prediction model (developed for the reference site

and applied to the Southampton site) led to the hypothesis that the molecular state char-

acterizing sex in mussels sampled from the Exmouth reference site is altered in organisms

sampled from the more polluted site (Figure 3.1C).

3.4.2 Sample collection, determination of sex and physiological
variables (CEFAS)

A total of 50 mussels were collected from a rural reference site (Exmouth) and an industrial

harbor site (Southampton), every month over a period of one year [31]. Species, sex and
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physiological parameters (gonadal status and the adipogranular tissue scoring index –

ADG rate) were determined as previously described [31]. Gonadal status was defined

as the degree of gonadal maturity scored on a scale between 0 to 4. The ADG rate was

defined as the adipogranular tissue scoring index, where 0 represents absence of ADG cells

in vesicular connective tissue and 4 shows that majority of connective tissue volume are

ADG cells. ADG cells are characterized by intracellular granules storing protein and small

amount of lipids and glycogen as energy reserves. Only individuals for which sex could be

determined by histology were used for 1H-NMR metabolomics. In the analysis steps up to

model creation, I concentrated on M. edulis only, as this species was present in both sites.

However, due to low numbers of male M. edulis in Southampton, M. galloprovincialis and

the hybrids of both species were included in the prediction of sex. ADG rate, gonadal

stage, parasite load and temperature, as described here have been previously published

by Bignell et al. [31] and are used in this thesis as variables in the model.

3.4.3 1H-NMR metabolomics analysis (Mark Viant’s group)

Metabolite extraction: Following dissection and subsequent snap freezing in liquid nitro-

gen, polar metabolites were extracted from mussel tissues using a methanol:water:chloroform

solvent system and a Precellys 24 homogeniser (Stretton Scientific, UK), as described pre-

viously [351]. Each dried polar metabolite extract was resuspended in 650 µl of sodium

phosphate buffer solution (0.1M, 90% H2O/10% D2O, pH 7.0) containing an internal

chemical shift standard of 1 mM sodium 3-trimethylsilyl-2,2,3,3-d4-propionate (TMSP).

Data acquisition: Samples were analysed using a Bruker Avance III 500 MHz NMR spec-

trometer operating at 500.18 MHz 1H resonance frequency, equipped with a 5 mm cry-

oprobe and BACS-60 automatic sample changer (Bruker Biospin, Coventry, UK). For

each sample a two-dimensional 1H, 1H J-resolved (JRES) NMR spectrum was acquired

using 16 transients per increment for 16 increments, collected into 16k data points, and

spectral widths of 6009 Hz (12 ppm) in F2 (chemical shift axis) and 50 Hz in F1 (spin-

spin coupling constant axis), with a 4.0-s relaxation delay. Datasets were zero-filled in

78



F1 and both dimensions multiplied by sine-bell window functions prior to Fourier trans-

formation. JRES spectra were tilted by 45°, symmetrized about F1, and then calibrated

(TMSP, 0 ppm), all using TopSpin (Bruker). Data were exported as the 1-D skyline

projections (along F2) of the JRES spectra (termed pJRES) [205]. Pre-processing: Each

spectrum was binned between 10 and 0.2 with a bin width of 0.005ppm. Two regions

were excluded (4.46 to 5.15 ppm, water; 7.6 to 7.76 ppm, residual chloroform from the

extraction method). Data were normalized to total spectral area (TSA). Next, due to

slight variation in the chemical shifts of some peaks, bins were compressed by calculating

their mean. Six regions were compressed (7.11 to 7.16 ppm, 7.96 to 7.99 ppm, 7.99 to

8.02 ppm; 8.18 to 8.20 ppm, 8.26 to 8.29 ppm, and 8.58 to 8.61 ppm). A generalized log

(Glog) transformation was performed with lambda = 3.75e-9 [241].

3.4.4 Statistical analysis: ANOVA and clustering

Metabolite bins were used for statistical analysis (ANOVA) and clustering (HOPACH

[327, 251]). Using the larger dataset representing the full annual cycle developed with

the reference site (Exmouth) samples, we first performed a two-factor ANOVA (as imple-

mented in TMev) and analyzed the effects of time (12 months of field sampling) and sex for

Mytilus edulis. Since a smaller number of time points was available for the Southampton

site a three-factor ANOVA (implemented in the statistical environment R [260]) analyzing

the effects of time, sex and site (Exmouth and Southampton sites) was performed. In

this ANOVA, time was factorized in three groups (April-May, June-July and December-

January). Spectral peaks with FDR-adjusted p-value < 1% were considered significant.

Data visualization of site-effects in clusters was performed on a more stringent statistical

threshold to focus on the most significant results (FDR adjusted p-value < 1e-8). To

identify sex-specific markers across all species included a two-factor ANOVA was gener-

ated. Due to the reduced number of samples within certain species, sampling time was

binned into 3 groups (July-Sept, Oct-April, May-June). For visualization purposes, the

statistically significant metabolite bins identified by the first ANOVA were standardised
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(µ = 0, σ = 1). In order to reduce the complexity of the dataset we clustered significant

metabolite spectral bins by using HOPACH [327, 251]. The first round of clustering gave

7 clusters and was performed using the abscos similarity measure. Since this groups to-

gether negatively as well as positively correlated profile we performed an additional round

of HOPACH clustering on cluster 3 that contained such heterogeneous profiles (Figure

3.5, Figure 3.4).

3.4.5 Principal Component Analysis (PCA)

In order to visualize changes in the metabolic state of mussels across the annual cycle

a principal component analysis, as implemented by the prcomp command in the Stats

package within the statistical environment R [260], was used. In short, 3 different PCAs

were performed, 1) utilizing all the metabolite bins, 2) using averages computed for each

cluster, and 3) for specific subsets of clusters or metabolites (3.14). To visualise the extend

of the differences between the two sites a PCA was generated based on the Exmouth

samples only. Using the rotation matrix, which represent the calculated PCA parameters

used to transform a dataset into principal components, the Southampton samples were

projected into the same principal component space.

3.4.6 Metabolite annotations (Jonathan Byrne, Jaanika Kronberg-
Guzman

The annotations of the metabolites contributing most to each cluster were then deter-

mined using the web-based automated identification tool developed at the University of

Birmingham (http://www.bml-nmr.org/). This tool makes use of a library of 1H-NMR

spectra of ca. 200 pure metabolite standards [204]. NMR chemical shift data from the

literature [343, 151] were also used to check the metabolite identities.
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3.4.7 Modelling the seasonal dynamics of mussel's metabolic
state

Dynamical models linking metabolite clusters, physiological measurements (gonadal stage,

ADG rate, parasite load) and environmental parameters (salinity, water temperature)

were built separately for male and female mussels in Exmouth using the algorithm TimeDe-

lay ARACNE as implemented in the TDARACNE R package [362]. As our original

dataset consisted of 12 time-points (12 months), we have used polynomial interpola-

tion for each cluster of metabolites to get 120 time points (5th degree polynomial was

used). In the TDARACNE models we choose a DPI tolerance of 0.15 and a time de-

lay N = 20. The models were represented in a graphical format by graphs where each

node represented a cluster of highly correlated metabolites or one of the physiological or

environmental measurements. Edges represented the strength of time-dependent relation-

ship between variables. Nodes representing the metabolite clusters were color-coded to

reflect the percentage of metabolite bins differentially expressed between Exmouth and

Southampton.

3.4.8 Classification

To develop a predictive model able to classify sex a Support Vector Machine (SVM) from

R package Kernlab [157] (linear kernel, C = 70, cross = 4) was used. To train the

model the Exmouth dataset was randomly split 5000 times into 75% training and 25%

testing datasets. For each split an SVM model was generated based on the significant

metabolites. Additional internal training/test splits were used to combat overtraining.

Final model accuracy was determined by predicting sex on the independent test dataset.

All 5000 models were then used to predict sex for the Southampton samples (including

additional samples from Mytilus galloprovincialis and hybrid of M. galloprovincialis and

M. edulis). The resulting 5000 predictions for each sample were then averaged to define a

representative sex prediction. To confirm the visual inspection that GABA and ATP can

discriminate sex in the winter in Exmouth but not Southampton, another KSVM model
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was built based on 2 metabolites (ATP and GABA) with linear kernel as before (C = 70,

cross = 4), but only with cross-validation.

3.4.9 Re-analysis of parasite load from previously published data

Previously published data [31] representing the same mussels were re-analysed to test

whether mussels in the Exmouth and Southampton sites were showing alterations in par-

asite load that could be consistent with the predictions of our model. We tested whether

the proportions of counts of parasite load for Steinhausia mytilovum and bucephalids in

the two sites are the same by using the prop.test function within the statistical environ-

ment R [260].

3.5 Results

3.5.1 Mytilus edulis mantle metabolic state changes in relation
to seasonal cycle, sex and environmental location

I first tested the hypothesis that the metabolic state of the mussel mantle changes during

the annual cycle, and that such variation reflects sex and time. By using a two-factor

ANOVA in the Exmouth site, I found that 79% of the spectral bins are changing signifi-

cantly in at least one of the factors tested (825 out of 1045, FDR-adjusted p-value<1%).

Of these, 45% (474) were linked to seasonal variation, 30% (314) were changing both

in time and between sex, and 37 were sex-specific but time-invariant (Figure 3.2 A). In

the comparison between samples from the two geographical sites I discovered 60% (628)

site-linked spectral bins. From these site-linked spectral bins, 273 were changing in time

only, 38 were sex-specific, and 30 were changing in both time and sex (Figure 3.2 B).
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Figure 3.2: ANOVA for metabolic bins. A. ANOVA for metabolic bins in relation to
month and sex. Tests were performed using 11 months. B. ANOVA in relation to site,
month-group and sex to find site-linked metabolic bins. ANOVA was performed for 3
month-groups (Apr-May, Jun-Jul, Dec-Jan) due to lack of male samples in some months.
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3.5.2 Sex-specific metabolites show different dynamics of sea-
sonal variation in the two sampling sites

Having shown that sex, sampling site and time all affect the metabolic state of mussels, I

asked whether the dynamics of metabolite changes are different in the two sampling sites.

I first addressed this question by analysing the dynamics of change in the metabolic state

of male and female mussels, in the two sampling sites, by using Principal Component

Analysis (PCA). Figure 3.3 shows that in Exmouth, male and female mussels are similar

in the summer months, start diverging in the autumn, and reach maximum differentiation

in late winter (February and March). Interestingly, while samples from the reference site

show considerable separation between males and females in the period of peak gonadal

development in the winter and early spring (Figure 3.3), Southampton mussel samples col-

lected in December and January are mixed with female samples, suggesting the existence

of location-specific alterations during the period of gonadal development (3.3).

3.5.3 Dynamical models, representing seasonal variation iden-
tify metabolite profiles linked to temperature, ADG rate
and gonadal stage

The PCA revealed that the metabolic profile of environmentally-sampled mussels follows

a sex-specific trajectory across a year. It also revealed that the seasonal dynamics are

affected in mussels sampled from the Southampton site to the extent that male mussels

in winter show a very similar metabolic profile to the samples of female mussels from the

reference site. In order to model the relationship between changes in the metabolome

and organism physiology across the seasonal cycle, I applied a computational method

designed to learn the structure of a dynamic network from observational data. In order to

reduce the complexity of the modelling task, I first set to reduce the number of variables

to model. Clustering of metabolites changing over the seasonal cycle revealed that the

dynamics of the annual cycle can be described by 9 clusters (Figure 3.4, Figure 3.5).

Clusters 1, 2, 3.1, 3.2 and 4 have positive correlation with gonadal stage, with maxima
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Figure 3.3: Principal component analysis (PCA) of cluster medians in both sex and sites
during the annual cycle. A: Cluster medians of male and female mussels in the Exmouth
(reference) site. Red represents female mussels and blue male mussels. Summer months
are highlighted with a gray box, months from October to May are highlighted with red
and blue boxes for female and male mussels, respectively. B. Cluster medians of male and
female mussels in Exmouth and Southampton sites. Red represents female mussels and
blue male mussels. Summer months of Southapton mussels are highlighted with gray box,
months from October to May for Southampton mussels are highlighted with red and blue
boxes for female and male mussels, respectively. Numbers 1-12 represent months from
January to December. Exmouth mussels are also shown as reference (same as A).
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in the winter and negative correlation with temperature, with maxima in the summer

(Spearman correlation, as shown in Table 3.1, and Table 3.2). Six clusters (3.1, 3.2,

3.3, 5, 6 and 7) are similar between male and female mussels, as shown in Figure 3.4.

Clusters correlated with gonadal stage (1, 2 and 4) show a stronger sex specific response.

PCA shows that cluster profiles are sufficient to capture the dynamics of the annual cycle

(Figure 3.14).

Then a computational approach was applied to our dataset representing the median

cluster profiles as well as relevant physiological variables (gonadal stage, count of ADG

cells, shown in Figure 3.5) and environmental parameters (salinity and water temper-

ature). I sought to use sex-specific models developed with this approach to identify

molecular signatures that may be linked to gonadal development. The model developed

to represent seasonal dynamics in females (Figure 3.6) places temperature as the most up-

stream node, directly connected to ADG rate and salinity. ADG rate further connects to

a downstream layer of metabolite clusters. Interestingly, three metabolite nodes directly

connect to gonadal stage which is the most downstream node. The model developed to

represent male mussels (Figure 3.7) shows a different structure, from an initial visual in-

spection. In the male model, temperature is directly upstream of 2 metabolite clusters, 5

and 6, and through them, also cluster 3.2. In the female model, temperature is upstream

of the same clusters, although through ADG rate. In both models, cluster 3.3 is central

in the network and downstream of ADG rate. Interestingly, in both male and female dy-

namical models, metabolomics clusters 3.2 and 3.3 are directly upstream of gonadal stage

and include the highest percentage of metabolites that are at different concentrations in

mussels derived from the two sampling sites (Figure 3.6, Figure 3.7).

3.5.4 Development of sex-specific biomarkers

The analysis of the model of the female mussels described in Figure 3.6 has shown that

metabolites that are present at different concentrations in mussels sampled from different

geographical locations are upstream of gonadal development. Moreover, as the principal
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Figure 3.4: Clustering of metabolic profiles in Mytilus edulis. Metabolite bins of Exmouth
mussels have been clustered with HOPACH, a clustering tool that determines the number
of clusters automatically. Cluster medians are used for visualization. The same Exmouth
clusters are used to show cluster medians of Southampton samples. Female mussels are
represented with red and males with blue, Exmouth with solid line and Southampton
with dashed line. Percentage of significantly different (FDR adjusted p-value 1e-8) bins
in each cluster is shown by colour intensity. Putative metabolite identities are also shown.
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Figure 3.5: Alternative clustering visualisation for temporal profiles of female and male
mussels (Mytilus edulis in Exmouth and Southampton

88



Figure 3.6: Dynamical TDARACNE model of the female mussels (Mytilus edulis) sampled
from Exmouth (reference site). Red nodes represent metabolite clusters, green nodes
environmental variables and blue nodes physiological variables. Intensity of red shows
the percentage of metabolites significantly different (FDR adjusted p-value 1e-8) between
sites.
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Figure 3.7: Male TDARACNE model in Mytilus edulis). Blue: physiological measure-
ments, green: environmental measurements, red: metabolite levels. Intensity of red for
metabolite levels indicate the percentage of metabolite bins significantly different between
Exmouth and Southampton
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component analysis (Figure 3.10) showed that especially metabolites in clusters upstream

of gonadal stage might reflect the effects of site, we reasoned that such metabolites may be

effective biomarkers to monitor the detrimental effects of environmental stress on the de-

velopment of the reproductive system. I tested this by developing a statistical model that

can predict sex from the metabolic state of mussels sampled from the reference Exmouth

site (Figure 3.11, Figure 3.8, Figure 3.9). The model was very accurate in identifying

male and female mussels on the basis of their metabolic profile (97.8% accuracy) in the

months between October and April. The model is still effective but less accurate at other

times of the year (Figure 3.11). This is consistent with the timing of the development of

the gonads (greatly reduced after spawning in late spring and early summer). Metabo-

lites contributing to the prediction were mostly mapped to clusters 1, 2 and 4 (Table

3.4), from which cluster 1 is mostly changing in males and not in females, and clusters 2

and 4 are female-specific, with no change in male mussels in the reference site. The top

20 metabolite bins predictive of sex are shown in Table 3.3 together with their putative

identities.

Figure 3.8: Sex predictions for female Southampton mussels for all species (Mytilus edulis,
Mytilus galloprovincialis and their hybrid) from October to April. Bars represent indi-
vidual mussels.
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Figure 3.9: Sex predictions for male Southampton mussels in December and January:
all species (Mytilus edulis, Mytilus galloprovincialis and their hybrid). Bars represent
individual mussels.
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Figure 3.10: Principal component analysis of metabolites not upstream of gonadal stage
(A, B) and upstream of gonadal stage (C, D) in the winter months (October to April).
Red indicates individual female mussels and blue individual male mussels. The analysis
only includes Mytilus edulis
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I then tested whether the markers developed from the Exmouth dataset could be used

to predict sex in the Southampton site. Only 41.9% of male mussels were predicted as

“male” during the winter months (Figure 3.11B left). Conversely many of the male mussels

were predicted as “female” with high probability (Figure 3.11B right, Figure 3.9). Some

examples of individual metabolites that contribute to the sex-prediction model are shown

in Figure 3.12. As expected, all of them show a differential concentration in males and

females in the Exmouth site but not all of them in the Southampton site. We clustered

these metabolites in 4 distinct groups on the basis of their sex and site profiles: 1) same

sex-specific pattern between the two different sites (Figure 3.12 A: glycine, glutamate,

unknown metabolites from cluster 4); 2) Different level of metabolite in the two sites

but sex specific differences are in the same direction (Figure 3.12 B); 3) Different level of

metabolite in the two sites and metabolites in Southampton males are similar to females

in the Exmouth site (Figure 3.12 C: gamma-aminobutyric acid (GABA), ATP, UDP-

GlcNAc, ornithine); 4) Different level of metabolite in the two sites and metabolites in

Southampton females are similar to males in the Exmouth site (Figure 3.12 D: citrate).

Notably, two metabolites that most contribute to sex prediction (GABA and ATP) are

sufficient to separate males and females sampled from Exmouth in the winter (overall

accuracy 90% with ksvm model) but fail to do so in the Southampton site (model accuracy

70% overall, but 82.4% for females and 25.8% for males) (Figure 3.13).

95



Fi
gu

re
3.
12

:
R
ep

re
se
nt
at
iv
e
ex
am

pl
es

of
to
p
se
x-
pr
ed

ic
tin

g
m
et
ab

ol
ite

s.
A
:m

al
e
an

d
fe
m
al
e
m
us
se
ls

ar
e
no

t
aff

ec
te
d
by

sit
e.

B:
Bo

th
se
xe
s
ar
e
aff

ec
te
d,

w
ith

in
cr
ea
se
d
m
et
ab

ol
ite

le
ve
ls.

C
:M

et
ab

ol
ite

le
ve
ls

in
m
al
e
m
us
se
ls

in
So

ut
ha

m
pt
on

ar
e
m
or
e
sim

ila
r

to
le
ve
ls

of
fe
m
al
e
m
us
se
ls.

D
.M

et
ab

ol
ite

le
ve
ls

in
fe
m
al
e
m
us
se
ls

in
So

ut
ha

m
pt
on

ar
e
m
or
e
sim

ila
r
to

le
ve
ls

of
m
al
e
m
us
se
ls.

In
Ex

m
ou

th
,M

yt
ilu

s
ed
ul
is

wa
s
us
ed

,f
or

So
ut
ha

m
pt
on

,M
yt
ilu

s
ed
ul
is
,M

yt
ilu

s
ga
llo

pr
ov
in
ci
al
is

an
d
th
ei
r
hy

br
id

we
re

us
ed

.

96



T a
bl
e
3.
1:

C
or
re
la
tio

n
of

va
rio

us
en
vi
ro
nm

en
ta
la

nd
ph

ys
io
lo
gi
ca
lp

ar
am

et
er
s
w
ith

m
et
ab

ol
ite

cl
us
te
r
m
ed

ia
ns

in
fe
m
al
e
m
us
se
ls

(M
yt
ilu

s
ed
ul
is
)

Pa
ra
m
et
er

C
l.
1

C
l.
2

C
l.
3.
1

C
l.
3.
2

C
l.
3.
3

C
l.
4

C
l.
5

C
l.
6

C
l.
7

Te
m
pe

ra
tu
re

-0
.7
9

-0
.7
6

-0
.7
2

-0
.8
1

0.
72

-0
.5
5

0.
79

0.
8

0.
67

A
D
G

ra
te

-0
.4
8

-0
.3
4

-0
.1
7

0.
14

0.
22

-0
.6
6

0.
48

0.
19

0.
69

G
on

ad
al

st
ag

e
0.
92

0.
94

0.
77

0.
63

-0
.8
7

0.
79

-0
.9
2

-0
.8
5

-0
.8
8

Pa
ra
sit

e
lo
ad

0.
22

-0
.0
3

0.
06

-0
.3
1

0.
07

0.
28

-0
.2
2

0.
11

-0
.3
5

97



T a
bl
e
3.
2:

C
or
re
la
tio

n
of

va
rio

us
en
vi
ro
nm

en
ta
l
an

d
ph

ys
io
lo
gi
ca
l
pa

ra
m
et
er
s
w
ith

m
et
ab

ol
ite

cl
us
te
r
m
ed

ia
ns

in
m
al
e
m
us
se
ls

(M
yt
ilu

s
ed
ul
is
)

Pa
ra
m
et
er

C
l.
1

C
l.
2

C
l.
3.
1

C
l.
3.
2

C
l.
3.
3

C
l.
4

C
l.
5

C
l.
6

C
l.
7

Te
m
pe

ra
tu
re

-0
.7
4

-0
.6

-0
.5
1

-0
.7
7

0.
8

-0
.6
4

0.
77

0.
88

0.
56

A
D
G

ra
te

-0
.5
6

-0
.2
5

-0
.6
6

-0
.1
6

0.
13

-0
.8
5

0.
62

0.
59

0.
65

G
on

ad
al

st
ag

e
0.
93

0.
47

0.
73

0.
66

-0
.7
1

0.
82

-0
.9
4

-0
.9
1

-0
.8
8

Pa
ra
sit

e
lo
ad

-0
.0
8

-0
.3
4

0.
34

-0
.3
1

0.
38

0.
13

-0
.0
1

0.
09

-0
.2
6

98



T a
bl
e
3.
3:

Id
en
tit

ie
s
fo
r
to
p
20

of
se
x-
di
ffe

re
nt
ia
tin

g
m
et
ab

ol
ite

bi
ns

in
M
yt
ilu

s
ed
ul
is
.
M
et
ab

ol
ite

bi
ns

ar
e
gr
ou

pe
d
ba

se
d
on

th
ei
r

as
sig

ne
d
m
et
ab

ol
ite

id
en
tit

ie
sf
or
m

th
eB

M
L
da

ta
ba

se
an

d
lit
er
at
ur
e.

W
he

re
kn

ow
n,

po
llu

tio
n-
eff

ec
ts

ar
ei
nd

ic
at
ed

,a
sa

re
sit

e-
eff

ec
ts

fo
rm

ou
r
st
ud

y

M
et
.c
o d

e
C
he

m
ic
al

sh
ift

se
x-
ra
nk

Pu
ta
tiv

e
m
et
ab

ol
ite

id
en
tit

y
fro

m
BM

L

Id
en
tifi

ca
tio

n
ba

se
d

on
ch
em

-
ic
al

sh
ift

fro
m

lit
er
at
ur
e

eff
ec
ti
n
po

llu
tio

n
(li
t-

er
at
ur
e)

Eff
ec
t
in

ou
r
st
ud

y

M
et
50

6,
m
et
50

9,
m
et
51

0,
m
et
51

4,
m
et
50

3

3.
54

75
,

3.
55

25
,

3.
56

75
,

3.
52

75
,

3.
58

25

1,
2

,3
,
5,

17
G
ly
ci
ne

3.
56

3
[3
43

]
up

in
po

llu
tio

n
[3
43

]
N
ot

aff
ec
te
d

M
et
75

1
2.
34

25
4

G
lu
ta
m
at
e

2.
34

[3
43

]
up

in
po

llu
tio

n
[3
43

]
N
ot

aff
ec
te
d

M
et
38

,
m
et
39

8.
55

25
,

8.
54

75
6,

19
-

A T
P
8.
54

8
[3
43

],
AT

P
8.
53

[1
51

]
do

w
n

in
po

llu
tio

n
[3
43

]
M
al
es

in
So

ut
ha

m
pt
on

sim
-

ila
r
to

fe
m
al
es

(d
ow

n)
M
et
76

3,
m
et
76

4,
m
et
76

5,
m
et
76

6

2.
28

25
,

2.
27

75
,

2.
27

25
,

2.
26

75

7,
8,

18
-

G
A
BA

2.
28

[1
51

]
M
al
es

in
So

ut
ha

m
pt
on

sim
-

ila
r
to

fe
m
al
es

(u
p)

M
et
12

7,
m
et
28

8
7.
94

75
,

6.
00

75
9,

10
U
D
P-

G
lc
N
A
c

7.
95

3
[3
43

]
up

in
po

llu
tio

n
[3
43

]
M
al
es

hi
gh

er
in

So
ut
ha

m
p-

to
n,

bu
t
no

t
hi
gh

er
th
an

fe
-

m
al
es

M
et
96

9
1.
25

25
11

-
1.
25

8
[3
43

]
do

w
n
in

po
llu

tio
n

N
ot

aff
ec
te
d

M
et
6

8.
84

75
12

-
N
ot

aff
ec
te
d

M
et
76

8
2.
25

75
13

-
Va

lin
e
2.
25

[1
51

]
H
ig
he

r i
n
bo

th
m
al
es

an
d
fe
-

m
al
e

M
et

54
9

3.
35

25
14

-

M
et
71

0
2.
54

75
15

C
itr

ic
ac
id

H
ig
he

ri
n
bo

th
m
al
e
an

d
fe
-

m
al
e

M
et
77

1
2.
24

25
20

N
-

ac
et
yl
gl
ut
am

ic
ac
id

99



Figure 3.13: ATP and GABA levels separate male and female mussels in Exmouth (A),
but not in Southampton (B). Red dots represent female and blue dots male mussels. In
Exmouth, Mytilus edulis was used, for Southampton, Mytilus edulis, Mytilus galloprovin-
cialis and their hybrid were used.

Table 3.4: GSEA enrichment for sex-predicting metabolite bins in Mytilus edulis for each
cluster. Column 3 indicates how many nodes upstream of the gonadal stage was that
cluster.
Cluster FDR nodes upstream gonadal stage
Cluster 2 0.000 2
Cluster 1 0.108 Not upstream
Cluster 4 0.126 Not upstream
Cluster 3.2 0.457 1
Cluster 5 1.000 Not upstream
Cluster 6 1.000 1
Cluster 7 1.000 Not upstream
Cluster 3.1 1.000 Not in network
Cluster 3.3 1.000 1
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Figure 3.14: Principal component analysis (PCA) describing the annual cycle in the Ex-
mouth site for male (blue) and female (red) Mytilus edulis. A: all significant metabolites;
B: 9 cluster medians; C: 20 metabolite bins for the clusters (including all identified metabo-
lites plus 5 significant peaks); D: only 15 identified metabolites. Numbers 1-12 represent
months from January to December. October is missing for females and November for
males due to no samples of relevant sex.
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3.6 Discussion

The most important finding of our study is the demonstration that the metabolic state

of mussels sampled from the environment correlates with multiple biologically relevant

parameters such as sex, life cycle, and gonadal development, and that it is potentially

informative of site-specific environmental stressors. Our work provides useful knowledge

to formulate hypothesis on the molecular basis of important biological processes such as

gonadal development and provide markers to improve environmental monitoring, opening

the possibility of revealing the effect of pollution before adverse phenotypic effects are

detected.

3.6.1 Are sex-specific metabolites important in sex determina-
tion?

The five metabolites that are most predictive of sex were glycine, glutamate, gamma-

aminobutyric acid (GABA), ATP and UDP-GlcNAc. Glycine has been previously shown

to have higher levels in male mussels [141]. ATP is an energy currency of the cell and as

it showed higher dynamics in male mussels and was correlated with gonadal development,

it is possible that the sex-specificity is related to the content of ATP in sperm. This is

supported by previous studies that relate ATP content with sperm quality [34]. In addi-

tion to having different dynamics in male and female mussels, ATP was also affected by

site. Interestingly, a previous 1H-NMR metabolomics study in which models predictive of

the scope for growth are reported, showed that pentachlorophenol (PCP, used as pesti-

cide, wood preservative), a chemical that uncouples oxidative phosphorylation, increases

respiration rate and reduces scope for growth in lab-exposed mussels [140]. Moreover,

using 1H-NMR data for adductor muscle for the same mussels as in the current study,

the scope for growth was predicted to be lower in Southampton than in Exmouth [140].

ATP concentrations have been shown to be inversely correlated with respiration rate in

sea urchin [101], meaning that site-effects might be due to specific chemicals which affect
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the oxidative phosphorylation, increase respiration rate and lower ATP concentrations.

Unfortunately, we have no data available for the two sites about chemical concentrations.

Interestingly, gamma-aminobutyric acid (GABA) was linked to gonadal development in

the model represented in Figure 4 and ATP and UDP-GlcNAc were differentially abun-

dant in the Southampton site. Another interesting property of these metabolites is that

three of them (glycine, GABA and glutamate) are known neurotransmitters (reviewed in

[36],[99], [361]).

In addition to ATP being the energy molecule in the cell and controlling a very large

number of biological mechanisms, it also operates a wide range of channels involved in

modulating the neuronal synapse and changes in its levels can have significant effects in

nerve conduction [255], reviewed in [48]). Since glycine, glutamate, GABA and ATP are

all operating various ionotrophic receptors, it is reasonable to hypothesize that they may

be involved in the control of sex determination or at least in the development and differ-

entiation of the gonads. There are several lines of evidence in support of this hypothesis.

A recent gene expression study in the scallop has revealed that sodium- and chloride

depending GABA transporters and sodium- and chloride dependent glycine transporters

were over-expressed in the ovary [196]. Importantly, GABA has been shown to be present

and functional in bivalves [286, 193]. In oyster, the homolog of glutamic acid decar-

boxylase (cgCAD), the rate-limiting enzyme for conversion of glutamate into GABA, has

been identified and shown to be functional [194]. The GABA transporter (GAT2) is also

been found to be functional in oyster [286]. These observations raise the question of

what the role of GABA in the reproductive system of molluscs may be. Although there

are no data in mussels, we know that in vertebrates, GABA regulates GnRH neurons

[342]. Importantly, GnRH plays role in gonadal development in mollusc as well. In the

scallop, GnRH-like peptide has been found in the central nervous system where it stim-

ulates spermatogenesis. In vivo studies in scallop have showed that GnRH accelerates

spermatogenesis in males while inhibiting oocyte development in females whereby shift-

ing sex balance towards males [229]. GnRH is also involved in ovarian cell proliferation
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in abalone [233]. In the absence of a real understanding of sex specification in mussels

the possibility that GABA may also regulate GnRH neurons in molluscs represents an

exciting hypothesis.

3.6.2 Sex prediction models across geographical sites

We have shown that the metabolic state of male mussels sampled from the Southampton

site is similar to females. It is possible that chemicals in the water of the Southampton

sampling site or other environmental and health factors, may be responsible for changes

in the development of the mussel gonads that our model is detecting. This raises the po-

tential that male individuals with the molecular state of a female in the more polluted site

might show the detectable changes underlying complex pathological indicators of health

, offering a new tool for environmental biomonitoring. In fact samples derived from the

Southampton site show a significantly higher parasite load for Steinhausia mytilovum

(p − value = 2.2e − 16) and bucephalids (p − value = 0.002976) (p-values calculated

based on data from [31]) which are known to affect gonadal maturation often leading to a

reduced ADG rate. Moreover, it has been demonstrated that polluted water downstream

of municipal effluents or on shipping routes can alter the male-female ratio or the percent-

age of intersex mussels [102, 287] or up-regulate vitellogenin [73]. This observation raise

the possibility that samples from the Southampton site may be affected in the intersex

ratio, although this was not detected by the original histological analysis.

3.6.3 Conclusions

Results of this chapter show the potential of data-driven systems biology approaches using

metabolomics for describing normal seasonal cycles of mussels. Instead of concentrating

on specific pathways or mechanisms, I show that groups of metabolites with distinct sea-

sonal dynamics are associated with gonadal development. This lead to the development of

sex-prediction models, which reveal markers responsible for molecular intersex in the more
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polluted site. It is possible that molecular intersex in the polluted site might represent

a molecular state just below the exposure threshold where organism phenotypic changes

become visible. If this was true, the biomarkers I have identified would be a very useful

monitoring tool. I also show the potential of this approach for generating hypothesis –

both for physiology and for potential effects of pollution in terms of intersex. The hy-

potheses are experimentally testable. Firstly, the role of GABA in gonadal development in

mussels could be studied, most importantly its relation to GnRH, by injection of GABA,

or by GAT interference (similarly as in [286] to study copper accumulation) and levels of

GnRH measured. The role of GABA could be also studied in relation to other possible

genes or proteins involved in sex determination, for example by transcriptomics or pro-

teomics. Indeed, if this neurotransmitter induces changes related to gonadal development

(either GnRH or other genes/proteins), it would also be possible to test which chemicals

affect the levels of GABA. This could change the way we view mussels as sentinel species.
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CHAPTER 4

DATA-DRIVEN SYSTEMS BIOLOGY APPROACH
GIVES INSIGHT INTO A COMPLEX PROCESS

OF WATER REMEDIATION

4.1 Contributions

• Jaanika Kronberg-Guzman1,2,3 analysed the pre-processed microarray data (which

was provided by Tim Williams), found differentially expressed genes, performed

the exploratory analysis of chemical and gene expression data, integrated the gene

expression data with other data in the form of similarity networks, did network

modularisation, functional annotation and interpretation. Analysed and interpreted

the model created by Alberto Cassese and Marina Vannucci. Wrote the chapter.

• Timothy D. Williams1 was involved in the microarray experimental design, experi-

mental work and microarray data pre-processing. Provoded the description of the

methods that he did (indicated) and mediated the sharing of different types of data

of collaborators.

• Albertinka Murk4 was involved in the mesocosm experiments.

• Erwin Roex4 was involved in the passive sampler measurements and has written

a draft about the chemical data. However, the analysis is non-overlapping and is

different than in this thesis.
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• Laine Wallace1 was involved in the microarray experimental work.

• Alberto Cassese6 developed the Bayesian model on a small number of genes and

chemicals and provided the results to be analysed and interpreted in the context of

the full system.

• Philipp Antzcak2 selected the genes and chemicals to be used in the Bayesian model

for Alberto Cassese.

• Edwin Foekema4 was the leader of the passive sampler measurements.

• Marina Vannucci6 was involved in the development of the Bayesian model, being

the supervisor of Alberto Cassese at the time.

• Ron van der Oost5 was involved in the design of the whole study (mesocosms, passive

samplers and microarrays).

• Kevin Chipman1 was involved in the design of the whole study.

• Francesco Falciani1,2 guided the systems biology side of the study, with discussions

about methodology. He also mediated the collaboration with Alberto Cassese and

Marina Vannucci.
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4.2 Introduction

Environmental pollution, linked to industry, intense farming and to a growing urban

populations pose a challenge to secure clean water resources [337, 336]. Pesticides from

agriculture [110, 169], personal care products [202], medicines from both domestic effluent

and hospitals [223, 55, 24] and other chemicals, such as flame retardants, plasticisers

[218, 163] and industrial chemicals enter our ecosystem despite extensive use of waste

water treatment plants (WWTP). The European Water Framework directive [77] aimed

to oblige European countries to achieve cleaner surface waters, however, the improvement

of water has been modest: In 2015, 47% of all waters still did not meet the required good

environmental status (reviewed in [338]).

Current wastewater treatment plants do not remove all chemicals efficiently [221]. The

REACH programme estimates that there are at least 30000 different chemicals currently

in use in domestic and industrial settings in the EU [94], many of these will enter WWTP.

It has been shown that level of removal depends on the type of technology used [221, 334]

and also the diversity of chemicals [83].

One possibility for achieving the goal set by the Water Framework Directive (WFD)

is to improve the quality of water that is discharged into surface waters from waste water

treatment plants. Some countries, such as Switzerland, have already taken action by

legislation (Swiss Water Protection Act, 2016), requiring selected WWTPs to be upgraded

to use either activated carbon or ozonation (reviewed in [35]). Membrane filtration has

also been shown as effective for reducing concentrations of some chemicals of emerging

concern [175]. However, such advanced purification methods can be applied to selected

WWTPs in a limited number of countries.

4.2.1 Alternative additional remediation

“Effluent polishing” is a biological remediation method that has been recommended for

improving water quality before releasing it from the WWTP [166]. Effluent polishing
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techniques can use constructed wetlands before water enters the surface waters. This type

of remediation has been used for decades since it is a low-cost natural option [52, 166].

One effluent polishing method is the Waterharmonica concept (www.waterharmonica.nl)

that has been used in the Netherlands. Constructed wetlands have been studied in respect

to various pollutants, including phosphorus, nitrogen and ammonia, as well as more recent

pollutants, such as emerging contaminants, personal care products and nanoparticles [52].

However, most studies so far have focussed on one chemical or type of chemicals. For

example, constructed wetlands have been shown to be effective in reducing phenols and

endocrine disrupting compounds [70, 316, 240, 68].

The use of biological markers and especially omics measurements have the potential

to show effects of chemicals that are not (yet) measured and also make it possible to use

advanced machine learning methods to study the effects or predict components of chemical

mixtures [104, 80]. The stickleback (Gasterosteus aculeatis) has been described as a

particularly suitable species for environmental studies due to being present in all Europe,

Northern Asia and America [158] and stickleback biomarkers, especially the male-specific

glue-protein spiggin [131], have been demonstrated to be suitable for biomonitoring [270].

A cDNA microarray has also been developed for stickleback [109] and has been used to

show the effects of various chemicals [109, 159, 274].

In a laboratory-based model of wastewater remediation, gene expression changes in

Daphnia magna have been modelled taking into account the changing chemical concen-

trations [53]. In real wastewater treatment plants, trancriptomics has been used to study

the effects of the WWTP upgrades [213]. In another study, gene expression signatures

of fathead minnow exposed to different effluent gradients were studied [28]. However, to

the best of my knowledge, gene expression has not been used to analyse the consecutive

stages of a whole system of remediation together with measured chemical concentrations

and traditional toxicity tests.
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Figure 4.1: Overiew of the study. Panel A shows the general overview of the Waterhar-
monica remediation after the WWTP and water flow from 4 positions into mesocosms.
Panel B shows the types of data that were generated for each fish and mesocosm.
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4.2.2 Aims of this chapter

In this chapter, I use advanced systems biology integrating chemical concentrations from

passive samplers, traditional toxicity tests, stickleback morphology and stickleback liver

gene expression to understand the effects of the Waterharmonica effluent polishing system

on sticklebacks.

The Waterharmonica wastewater remediation system was used in 3 different sites in

the Netherlands, following the conventional wastewater treatment. The sites were Grou

(Figure 4.2 A), Hapert (Figure 4.3 A) and Land van Cuijk (Figure 4.4 A) and the wastewa-

ter treatment type and capacity are described in Table 4.1. In addition to the conventional

treatment, water was remediated using a type of constructed wetland, Waterharmonica

(www.waterharmonica.nl). Waterharmonica consists of three consecutive stages of reme-

diation: a sedimentation pond, helophyte fields and a 3rd compartment which can vary

in different sites (Table 4.1, Figure 4.2 B, Figure 4.3 B and Figure 4.4 B).

In our study, treated wastewater entered the Waterharmonica and was pumped to

mesocosms from 4 sampling positions as indicated in Figure 4.1 A. In each mesocosm,

sticklebacks were exposed to the continuous water flow from the sampling position during

a period of 1 year. For each mesocosm, chemical concentrations were measured and

traditional toxicity tests performed. For every fish, morphology and liver gene expression

were measured (Figure 4.1 B).

First, the Waterharmonica remediation system is evaluated on water quality by chem-

ical concentrations and risks. Secondly, stickleback gene expression across the sequential

stages of remediation is analysed. The ultimate aim is to understand how gene expres-

sion, traditional toxicity tests and morphological measurements of sticklebacks can help

inferring the improvement in water quality within the different stages of purification.

The analysis has revealed that the approach of using systems biology for the integration

of gene expression with chemical concentrations and morphological endpoints can provide

biologically meaningful hypotheses about how chemicals might affect stickleback. More

specifically, the demonstration that through gene expression, chemical concentrations are
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linked to stickleback growth provide an exciting hypothesis. Additionally, I demonstrate

that many chemicals with concentrations below the predicted no effect concentration

(PNEC) are correlated with gene expression and decrease during remediation, suggesting

that these chemicals have effect during chronic exposure. The analysis also shows that

many of the chemicals correlated with gene expression decrease during remediation.

Table 4.1: Characterisation of different sites by their wastewater treatment plant and
Waterharmonica processes

Grou Hapert Land van Cuijk
Type of purification
process Carrousel Oxidation ditch Activated sludge

Capacity (inhabitants
equivalent) 25000 71000 175000

Additional remediation Waterharmonica Waterharmonica Waterharmonica

WH stage 1 Sedimentation
pond

Sedimentation
pond

Sedimentation
pond

WH stage 2 Helophyte fields Helophyte fields Helophyte fields
WH stage 3 Ecological lagoon Wetland forest Discharge ditch
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Figure 4.2: Overview of the Grou site. Panel A shows the location of the WWTP and
panel B shows the layout of the Waterharmonica remediation system at this site. Numbers
1-4 on different remediation stages indicate positions from where water was flowing to a
mesocosm where fish of this study were living. Panel A was generated with Google maps.
The image on Panel B was adapted from the report of Waternet
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Figure 4.3: Overview of the Hapert site. Panel A shows the location of the WWTP and
panel B shows the layout of the Waterharmonica remediation system at this site. Numbers
1-4 on different remediation stages indicate positions from where water was flowing to a
mesocosm where fish of this study were living. Panel A was generated with Google maps.
The image on Panel B was adapted from the report of Waternet
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Figure 4.4: Overview of the Land van Cuijk site. Panel A shows the location of the
WWTP and panel B shows the layout of the Waterharmonica remediation system at this
site. Numbers 1-4 on different remediation stages indicate positions from where water
was flowing to a mesocosm where fish of this study were living. Panel A was generated
with Google maps. The image on Panel B was adapted from the report of Waternet
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4.3 Methods

4.3.1 General overview of all methodology

The overview of the methodology is shown on Figure 4.5. Figure 4.5 A describes the

mesocosm set-up and data generation. Briefly, data was generated from 4 mesocosms

connected to 4 water sources along the Waterharmonica remediation system in 3 different

sites. In each of the mesocosms in 3 sites, organic chemicals were measured by passive

samplers. Traditional toxicity tests were also done using water from the mesocosms.

For each individual stickleback, morphology parameters were determined and liver gene

expression measured.

4.3.2 Mesocosm set-up (Ron van der Oost)

In each of the sites, Waterharmonica additional remediation was used after the Waste

Water Treatment Plant and before water was released into the surface water. The Wa-

terharmonica consists of three consecutive stages, first and second were same between

all sites and a third one differed. The first stage was a sedimentation pond containing

algae and Daphnia. The second stages were helophyte fields, where reeds are the main

organisms contributing to the remediation. The third stage was ecological lagoon in Grou,

wetland forest in Hapert and discharge ditch in Land van Cuijk. The sampling positions

to be investigated were chosen to be 1)after the WWTP, 2)after sedimentation pond,

3)after helophyte fields and 4)after the 3rd compartment. From each sampling position,

water was continuously pumped (60 l / h) into 4 mesocosms, made of polyester, with the

following measurements: 2m diameter, 1m depth, volume 2.5 m3). The mesocosms were

sheltered with cages or ropes, to avoid public from interfering with the experiment. In

each of the mesocosms, there were aquatic plants of the species Myriophylum spicatum

for providing shelter and nesting material for sticklebacks.
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4.3.3 Exposures (Ron van der Oost, methods description adapted
from of Tim Williams)

The F0 generation consisted of adult sticklebacks migrating from the sea to fresh water

were caught in spring 2010 from Den Helder, Netherlands. These sticklebacks, after

being acclimated to freshwater at IMARES in Dan Helder, were placed in mesocosms

(5 male and 10 female in each mesocosm). In July 2010, after removing the parents,

80 offspring from the F1 generation were kept in each mesocosm. The sticklebacks were

counted in October 2010 and mesocosms were cleaned. In April 2011, sticklebacks were

sorted into “male”, “female” and “unknown” based on their appearance. 10 male and

10 female sticklebacks were killed and morphological parameters (weight, length, liver

weight) determined. Livers were placed in in RNA later (Ambion) for transcriptomics.

4.3.4 RNA preparation (TimWilliams, methods description adapted
from Tim Williams)

Stickleback livers (< 10mg wet weight) that had been preserved in RNAlater were ho-

mogenised and extracted with Trizol (Sigma-Aldrich, Dorset, UK) and chloroform, fol-

lowed by isopropanol precipitation. RNA was resuspended and purified using a Qiagen

RNEasy Mini Kit (Qiagen, Venlo, The Netherlands). On-column DNAase I ligation

was used to remove genomic DNA. NanoDrop (NanoDrop Products, Wilmington, DE,

USA) procedure was used for assessing the RNA quality: after resuspensing the RNA in

nuclease-free water, absorbances were measured for 230nm, 260nm and 280nm using the

NanoDrop 1ul spectrophotometer. The thresholds for RNA quality were A260/A280 > 1.7

and A260/A230 > 1.5 and samples which did not pass these thresholds were re-purified

using ethanol/acetate precipitation. RNA samples were shipped to the University of

Birmingham on dry ice. In Birmingham, the quality was further evaluated by the Agilent

Bioanalyser 2100 with Eukaryote Total RNA Nano chip (Agilent, Wokingham, Berkshire,

UK). A quality threshold of RIN>7 was used and samples not passing this threshold were

excluded from further processing.
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4.3.5 Stickleback sequences and annotation (TimWilliams, adapted
from Tim Williams)

Predicted stickleback cDNA sequences were downloaded from Ensembl [150] and stick-

labeck Unigene [64] sequences from Genbank. To identify the overlap of Unigenes with

Ensembl predicted cDNAs, these sets of sequences were compared using MEGABLAST

[217]. When there was a match between a pair of Unigene and Ensembl sequences, the

Ensembl sequence was kept due to a higher probability of being a full-length sequence.

When the Unigene sequence did not match any Ensembl sequence, the Unigene was kept.

The Blast threshold for a match was P < 1E − 06. There were 29118 predicted Ensembl

sequences and 6425 Unigene sequences did not match any of them, giving a total of 35538

sequences. The annotation of the sequences was done by several resources. In addition

to the Stickleback genome annotations, annotations were predicted based on orthologs

by using Biomart [164]. Secondly, BLASTx was used, searching against Genbank and

Swissprot databases. Finally, BLAST2GO [59] was used to match orthologs from other

species and for GO categories [62] and KEGG pathways [62].

4.3.6 Microarrays (Tim Williams, methods description adapted
from Tim Williams)

The 35538 sequences resulting from the combination of Unigene [64] and Ensembl [150]

stickleback sequences were used for designing the Agilent array, using the Agilent’s EAr-

ray design algorithm. Where possible, 3x60-mer oligonucleotides were designed for each

sequence. The resulting array design, Agilent 027680 consisted of 2x105000 probe arrays

on each slide. First, an optimization experiments was conducted using the F0 sticklebacks

for selecting 15000 probed to be used in the microarray in the main experiment. The op-

timization array was done using pooled RNA from mixed F0 males and females from a

reference site and Grou, Hapert and Land van Cuijk. The microarray experiment was

done using the standard Agilent Protocol (Agilent Technologies, Santa Clara, CA) and

hybridized microarrays scanned with Agilent G2565BA microarray scanner (Agilent Tech-
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nologies, Santa Clara, CA). From the 3 probes of every sequence, the best one with higher

fluorescence spot was selected. For these, additional criteria were applied: their intensity

had to be 2 standard deviations higher than the background score ((F > B + 2SD)). As

the number of resulting probes was lower than 15000, additional probes were added which

are known be protein-coding which were marginally below the initial threshold. Using

these 15000 probes, the 8x15000 microarray was designed using Agilent’s EArray (Design

ID: 029767). This is the design which was used for generating the data in this thesis.

4.3.7 Microarray pre-processing (Tim Williams, methods de-
scription adapted from Tim Williams)

Data was Quantile normalized using the Genespring GX software (v 11.5 or 7.3) (Ag-

ilent). Spots with fluorescence close to the background level (base/proportional score

intensity<19) were removed, as were spots flagged as ‘bad’ or ‘marginal’ by the scanner

software.

4.3.8 Passive sampler measurements: (Ron van der Oost, Edwin
Foekema)

Passive sampler measurements and used methods are described in an unpublished report

by Roex et al. [269]. Briefly, large number of micropollutants were measured: lipophilic

compounds (PAHs, PCBs, organochloride compounds, phthalates and synthetic musks),

alkylated phosphates, plant protection products and Pharmaceuticals and Personal Care

Products. The samplers, after being in the mesocosms of various stages of the Waterhar-

monica for a year, for the same duration as sticklebacks, were rinsed with local surface

water and a scouring pad. The samples were stored at -20 until further processing. The

chemicals were measured with GC-MS, LC-MS and LC-MSMS. The concentrations in the

passive samplers were back-calculated to aqueous concentrations and certainty of mea-

surements calculated [269], based on being detected at least 3 times. Detailed statistical

analysis of the chemical concentrations has been described in an unpublished report [269]
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by the project partners of Waternet (www.waternet.nl).

4.3.9 Chemical analysis (Jaanika Kronberg-Guzman)

The aim of chemical analysis in this thesis is to provide context for gene expression data

interpretation. Full statistical analysis of data from passive samplers is written in an

unpublished report [269] by collaborators.

For each chemical detected by passive sampler, annual means were calculated per

mesocosm per site. Chemical risks were calculated by the following formula: concentra-

tion/PNEC, where PNEC is the Predicted No-Effect Concentration. PNEC values were

provided for each chemical by Ron van der Oost. For the heatmap and clustering of

chemicals, distances between chemicals were calculated as dist = (1 − (cor(t(x))) and for

clustering, complete linkage was used. Heatmap was made in gplots [341] package in R

[260].

4.3.10 Gene expression exploratory analysis (Jaanika Kronberg-
Guzman)

Differentially expressed genes between mesocosms were found in each site and sex sep-

arately using SAMR [312] with FDR 0.01. Although blank control mesocosms existed,

they were not used in the gene expression analysis as the fish were fed different diet.

Mesocosm 4 was not used in this analysis because there were missing samples in this

mesocosm in some sites and also because of a possibility of flood into mesocosm 4 from

mesocosm 1. However, this mesocosm is shown in the heatmap and PCA visualisa-

tions. Significant genes for every site and sex were visualised with heatmaps. These

heatmaps were also used for outlier removal (Cuijk.exposed.4.F.4, Hapert.exposed.3.F.9

and Hapert.exposed.4.F.3, Grou.exposed.3.F.3 removed). Principal component analysis

was used to visualise the overall dynamics of the process. For this, R command prcomp

from the Stats package [260] was used.
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4.3.11 Network analysis (Jaanika Kronberg-Guzman)

ARACNE [212] was used for network reconstruction, using all differentially expressed

genes from all sites, separately for male and female sticklebacks. In addition to differ-

entially expressed genes, physiological parameters were also used. Mutual information

thresholds were 0.171 and 0.186 for the networks of female and male sticklebacks, cor-

responding to p-value of 10e − 7. DPI 0.15 was applied. Chemical concentrations and

toxicity tests were added by calculating Spearman correlations between gene expression

(medians for every pond) and these mesocosm-specific measurements. For finding out

which correlation threshold to use, p-values were calculated to correspond to FDR 0.05,

with the following formula: FDR/(number of genes x number of chemicals). For female

sticklebacks, the p-value corresponding to FDR 0.05 was found to be 7.42e − 08 and for

male sticklebacks, 3.08e − 08. To find the correlation corresponding to each p-value, the

correlations were calculated for reshuffled data: for every chemical and gene pair, the

gene expression and chemical concentration vectors were sampled without replacement

and correlations calculated between these random vectors. For every p-value, ks.test was

performed to calculate whether it is different from the distribution of p-values from the

random data. For male, for p-value 3.08e−08, the correlation cut-off were 0.89 and −0.89.

For female, for p-value 7.42e − 08 the correlation cut-off were 0.9 and −0.9. Chemical-

gene correlations that were significant according to these thresholds were saved as .sif file

(node - node correlation). Both network of gene-gene and gene-chemical were read into

Cytoscape [285]. Instead of using defined pathways (with ortholog mapping to human

of zebrafish pathways) for the functional annotation of the network, we have decided to

use community clustering with the aim of dividing the network into distinct gene sets

that have more edges between the set than with other nodes outside the set. For mod-

ularisation, GLay algorithm [304] from the ClusterMaker package [224] was used. The

modularisation was done again for a second time for larger modules. All modules were

saved as node lists ready for further analysis.
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4.3.12 Network module enrichment (Jaanika Kronberg-Guzman)

Using a Gene Ontology [62] and KEGG [235] term file provided by Tim Williams (using

Blast2GO [59] program to assign GO and KEGG terms to stickleback genes by mapping

the sequences to paralogues in other organisms), custom list enrichment script was written

for counting the presence of each KEGG and GO term in a list and calculating the EASE

score [147] using 4 variables: count of term x in list A, count of term x in the whole gene

set, size of list A, size of whole gene set. EASE score is a modified Fischer test that is

fore example used in the DAVID database and software [149].

4.3.13 Bayesian model (Philipp Antzcak, Marina Vannucci, Al-
berto Cassese, Jaanika Kronberg-Guzman)

This methods section describes work done by Philipp Antzcak, Alberto Cassese and Marina

Vannucci. As part of this thesis, I have interpreted their results biologically and in the

context of the static networks shown in previous paragraphs of this thesis.

The Bayesian model was ran by Alberto Cassese using a previously published method

[53]. In this framework, expression level of a gene in each pond is a sum of mean gene

expression of the same gene in the previous pond plus the gene-pond specific difference.

Variable selection for differentially expressed genes also uses prior probability of change

that takes into account the chemical concentrations. Chemicals to use were selected as

representatives of each cluster of chemicals with additional condition that in CTD [72, 71],

there is information available about this chemical. The genes were selected as targets of

selected chemicals, which have been shown to be modulated in response to environmental

chemicals. The selection of chemicals and genes was done by Philipp Antzcak. Alberto

Cassese developed the model and made Figure 4.23 and Figure 4.24. I have generated

Table 4.11 based on his data and interpreted the results in the context of the static

network.
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4.4 Results

4.4.1 Changes in chemical concentrations in the Waterharmon-
ica effluent polishing system follow complex dynamics

The Waterharmonica effluent polishing system is composed of three sequential stages: a

sedimentation pond, helophyte fields and a third compartment that can vary between

sites (ecological lagoon in Grou, wetland forest in Hapert and discharge ditch in Land

van Cuijk). In order to understand the efficacy of the remediation process, the changes

in concentration of various organic micropollutants measured by using passive samplers

were analysed.

In order to facilitate the interpretation of the dynamics of chemical concentrations

over the different purification stages, cluster analysis was used to identify groups of chem-

icals with similar concentration profiles across the different purification stages. Visual

inspection of the resulting dendrogram (Figure 4.6) shows that three sites have different

chemical profiles. More precisely, three clusters could be identified. Interestingly, while

many chemicals show a desired monotonic decrease in concentration moving from efflu-

ent to the final purification stage, some of the chemicals show a transient increase in

concentration.

In order to study this phenomenon more in depth, an in-depth analysis of the chemical

profiles was performed. First, the number of chemicals showing a desired monotonic

decrease along the purification stages were determined. The dynamics of chemicals in

each large cluster were visualised separately for each site (Figure 4.7, Figure 4.8, Figure

4.9).

These separate clusters of each site were used to categorise the chemicals into two

groups: with “expected” (where chemical concentration decreases) and “unexpected”

(chemical concentrations does not decrease) dynamics and are summarised in Table 4.2.

Cluster 3, which represents chemicals with the highest concentrations in the Hapert site,

has the largest number of chemicals with decreasing concentrations during the purifica-
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tion process (65.1% in Cuijk, 44.2% in Grou and 74.4% in Hapert decrease in cluster 3,

Table 4.2). Chemicals that decrease in cluster 3 include polycyclic aromatic hydrocarbons

(PAHs), musks, herbicides, industrial chemicals and insecticides (Figure 4.7, Figure 4.8,

Figure 4.9).

Table 4.2: Numbers and percentages of chemicals decreasing as expected in all sites,
separated into three main clusters

Cluster
size

Cuijk
chemicals
decreas-
ing

Grou
chemicals
decreas-
ing

Hapert
chemicals
decreas-
ing

Cluster 1 (highest in G) 34 5 (14.7%) 9 (26.5%) 12 (35.5%)
Cluster 2 (highest in C) 24 6 (25.5%) 5 (20.8%) 3 (12.5 %)
Cluster 3 (highest in H) 43 28 (65.1%) 19 (44.2%) 32 (74.4%)
All chemicals 101 39 (38.6%) 33 (32.7%) 47 (46.5%)

Cluster 1, which represents chemicals with the highest concentrations in Grou, only a

small percentage of chemicals show the expected monotone decrease (14.7% of chemicals

in Cuijk 26.5% in Grou and 35.5% in Hapert) (Table 4.2. Cluster 1 contains all PCBs and

personal care products measured (Figure 4.6). Interestingly, PCB concentrations decrease

in both Grou and Hapert (Figure 4.8 and Figure 4.9).

Cluster 2 represents chemicals with the highest concentrations detected in the Cuijk

site and contains chemicals which are not removed very efficiently (25% of chemicals de-

crease in Cuijk, 20.8% in Grou and 12.5% in Hapert). Interestingly, in all sites, chemicals

that are not decreasing have higher concentrations in mesocosms 3 or 4 compared to

mesocosms 1 and 2. Another interesting dynamic is the increase in mesocosm 2, followed

by decrease in mesocosm 3 with return to similar concentrations as in mesocosm 1 (Figure

4.7, Figure 4.8, Figure 4.9).
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4.4.2 Chemical risk analysis confirms complex dynamics in the
remediation process

Although analysing concentrations and their dynamics is interesting, it is difficult to

separate the dynamics at concentration ranges where they might have biological effects

from low concentration fluctuations that may be unlikely to affect organisms. In order to

select only chemicals at concentrations which might have biological effects, biological risk

was calculated (computed as the ratio between the concentration of a chemical and the

predicted no-effect concentration (PNEC) [58]) over the remediation process (Table 4.3).

The chemicals with high and medium risk are mapped to clusters in Figure 4.6.

Table 4.3: Number of chemicals with different chemical risk ranges. Chemical risk was
calculated as concentration/PNEC (predicted no-effect concentration)

Number of chemicals
All chemicals detected 120
Chemical risk >1 17
Chemical risk >0.5 21
Chemical risk >0.1 35

In order to find out whether chemical removal is linked to site or same type of chemicals

are removed in all sites, chemical sets that decrease in risk from mesocosm 1 to mesocosm

3 were compared between the sites. The results indicate that from 72 chemicals decreasing

in any site, 28 are decreasing in all sites. There are further 21 chemicals that are decreasing

in 2 sites and only 23 chemicals are decreasing in only 1 site (Figure 4.10, Table 4.4). From

high-risk chemicals, aldicarb, chlorpyrifos, fluoranthene, pirimiphos methyl, propoxur and

pyrene are all decreasing in all sites. From 11 chemicals of medium risk (risk > 0.1), 6

decrease in all sites. Moreover, most PAHs that decrease during remediation do so in all

sites (9 from 11) Table 4.4. Finally, we asked whether the efficiency of the purification

process is affected by the lipophilicity of the chemical. We addressed this question by

comparing the distribution of a measure of lipophilicity (log Kow) between chemicals that

decrease along the purification process (group 1) and chemicals that are not eliminated
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Figure 4.10: Number of chemicals decreasing in each of the sites and overlaps between
sites.

efficiently (group 2) by the remediation process (Figure 4.11). These distributions are

indeed different (p− value = 0.0123), indicating that chemicals with higher lipophilicity

are eliminated more efficiently.

4.4.3 The transcriptional state of stickleback livers correlates
with changes in chemical concentrations

Having characterised changes in chemical concentration and chemical risk over the re-

mediation process, we then set to assess whether the molecular state of the fish livers

is correlated with the concentration of chemicals in the water. We first set to assess

whether the remediation process affects stickleback liver gene expression. We compared

gene expression in livers between different remediation stages and discovered considerable

differences. Such differences were detected in both male and female fish (Figure 4.12).

More specifically, in female sticklebacks there are 3024 differentially expressed genes
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Figure 4.11: log Kow values of chemicals decreasing and not decreasing during remediation.
The group of chemicals decreasing was defined as decreasing in at least 1 site and the
group of chemicals not decreasing was defined as not decreasing in any site.

Figure 4.12: Venn diagram of overlap between differentially expressed genes (FDR 0.01)
in stickleback livers across sampling points 1-3 in three sites: Land van Cuijk, Grou and
Hapert. Sampling point 4 was not used due to possible flooding from sampling point 1
into 4. Two separate Venn diagrams show differentially expressed genes in female (A) and
male (B) sticklebacks.
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Table 4.4: Chemical risk decreasing between mesocosms 1 and 3 (after sedimentation
pond and after helophyte fields – remediation stages in common between all sites). Red
background colour indicates chemicals that have high risk in at least one site (risk > 1),
yellow shows chemicals with medium risk (> 0.1) and white chemicals with risk < 0.1.
Sites are shown as G for Grou, H for Hapert and C for Land van Cuijk. Chemicals
type is shown for each chemical: insecticides (ins.), herbicides (herb.), fungicides (fung.),
polycyclic aromatic hydrocarbons (PAH), flame retardants (flame r.), industrial (ind.),
phthalates (phth.), pharmaceuticals (pharm.), personal care (pers.).
G, H and C H and C H and G C and G H C G

Aldicarb (ins.) Oxamyl (pest.) Thiacloprid
(ins.)

Estradiol (es-
tro.) Diazinon (ins.) Triclosan (per.)

Chlorpyrifos
(ins.)

Metalachlor
(herb.)

Fluoranthene
(PAH)

Pirimicarb
(ins.)

Pirimiphos
methyl (ins.)
Propoxur (ins.)
Pyrene (PAH)
1,12-
benzoperylene
(PAH)

Endosulfan
(ins.)

9,10-
anthraquinone
(ind.)

Carbofuran
(ins.)

Pendimethalin
(herb.)

Tebufenpyrad
(ins.)

Triazamite
(ins.)

Benz(a)-
anthracene
(PAH)
Galaxolide
(musk)
Simazine
(herb.)
Triphenyl phos-
phate (flame r.)
1,2,5,6-
dibenzanthracene
(PAH)

Benzo(k)-
fluoranthene
(PAH)

Clotrimazole
(fung.)

Anthracene
(PAH)

Bisphenol A
(ind.)

Cycloxydim
(herb.)

Acetaminophen
(pharm.)

4-
dichlorobenzene
(ind.)

Caffeine (pers.) Difenoconazole
(fung.)

butylbenzyl ph-
thalate (phth.)

Cyprodinil
(fung.)

Chlorpropham
(herb.)

Acetanaphtylene
(PAH)

Dichlobanil
(herb.)

Iprodione
(fung.)

Diethyl phtha-
late (phth.) Triallate (herb.) Pyrazon (ins.)

tAcetyl methyl
tetramethyl
tetralin (musk)

Diethyl-
stilbestrol
(pharm.)

tri-(2-
chloroisopropyl)-
phosphate
(flame r.)

Estrone (estro.)

Benzo(b)-
fluoranthene
(PAH)

Dimethyl ph-
thalate (phth.)

Gemfibrozil
(pharm.)

Benzo(a)pyrene
(PAH)

Enilconazole
(fung.)

Nonylphenol
(xenoestro,
ind.)

Bifenox (herb.) Indeno(1,2,3-
cd)pyrene

Prochloraz
(fung.)

Chrysene
(PAH)

Metamitron
(herb.)

Propioconazole
(fung.)

Dibutyl phtha-
late (phth.)

Musk ketone
(musk)

Tributyl phos-
phate (flame
r.)

Dichlorohexyl
phthalate
(phth.)

Pentachloro-
benzene (flame
r.)

Tris(2-
butoxyethyl)-
phosphate
(flame r.)

Diflufenican
(herb.)

Tris(2-
ethylhexyl)-
phosphate
(flame r.)

Hexachloro-
benzene (ind.)
Metazachlor
(herb.)
Musk xylene
(musk)
Thiabendazole
(fung.)
Triadimefon
(fung.)
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between mesocosms 1-3 (FDR 0.01, Figure 4.12 A). In female sticklebacks (Figure 4.12

A), Land van Cuijk has the largest number of differentially expressed genes across the

3 stages of purification (1997), followed by Grou (1450). Hapert has 997 differentially

expressed genes. There are 273 genes that are differentially expressed in all three sites.

While Grou and Land van Cuijk both have differentially expressed genes specific only for

these sites, all differentially expressed genes in Hapert females are same as in Land van

Cuijk. Grou and Land van Cuijk share 150 differentially expressed genes specific for these

two sites but not Hapert (Figure 4.12 A).

Figure 4.13: Heatmaps showing differentially expressed genes (FDR 0.01) for every site
for male and female stickleback. Position 1: after WWTP, position 2: after sedimenta-
tion, position 3: after helophyte fields bed, position 4: after ecological lagoon/wetland
forest/discharge ditch.

In male sticklebacks, there are 1132 differentially expressed genes between mesocosms

1-3 (FDR 0.01, Figure 4.12 B). The largest number of differentially expressed genes is in

Land van Cuijk (835), followed by Hapert (477) and Grou (20). There are no differentially

expressed genes in common between all sites in male sticklebacks. Hapert and Land van
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Cuijk share 197 differentially expressed genes. Grou and Land van Cuijk share 3 genes

while Hapert and Grou share none. This is similar to females, where the largest number

of differentially expressed genes in common is between Hapert and Land van Cuijk, while

Grou and Hapert share none. However, in male sticklebacks, there are 280 Hapert-specific

differentially expressed genes. In order to visualise the overall dynamics of gene expression

during the different stages of remediation we performed cluster analysis (Figure 4.13).

Visual inspection of the heatmaps of clustered genes revealed the existence of “cyclic”

dynamics. Majority of genes increase or decrease in expression between mesocosms 1

(after the WWTP) and 2 (after the sedimentation pond) and then they return to the

initial expression levels in mesocosm 3 (after helophyte fields). Heatmaps also show that

there are some genes for which expression either monotonally increases or decreases. For

example, in Hapert and Grou females, there are genes that show lower expression in

mesocosms 1 and 2 and higher expression in mesocosm 3. In Grou females, some genes

have higher expression in mesocosms 1 and 2 and lower in mesocosm 3. In Hapert males,

there are genes that show higher expression in mesocosm 1 and lower in mesocosms 2 and

3. In Grou males, the 20 differentially expressed genes all follow unidirectional pattern –

either increasing or decreasing from mesocosm 1 to mesocosm 3.

In order to visualise the changing molecular state of fish livers we performed Principal

Component Analysis (PCA) (Figure 4.14). The analysis revealed that in Hapert males

and females and in Grou females, largest changes in gene expression as described by

principal component 1 are “cyclic” (Figure 4.14). Principal component 2 also describes

dynamics during remediation steps – from mesocosm 1 to mesocosm 3, all changes are

in the same direction in male and female stickleback in Hapert and female stickleback in

Grou. Males in the Grou site are different from Hapert and females in Grou, with less

significantly expressed genes (20 in total), showing unidirectional changes on principal

component 1 and cyclic changes in principal component 2. Stickleback gene expression

in Land van Cuijk differs from Grou and Hapert – remediation steps 2 and 3 are not as

distinct as in other sites and also the characteristic cyclic changes as seen in Hapert and
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Figure 4.14: Principal components 1 and 2 in Hapert, Grou and Land van Cuijk positions
1-3, for males and females. PCA was performed in the space of significant genes (FDR
0.01)
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Grou are not seen in Land van Cuijk.

The analysis of chemicals showed that chemical concentrations follow complex pat-

terns, some unidirectional as expected during remediation, but some more unintuitive,

with chemical increase in the later steps of remediation. Exploratory analysis of gene ex-

pression also showed that there are various patterns of dynamics. Most changes described

by principal component one follow “cyclic” changes and 2nd component describes changes

that are more intuitive – gene expression either increases or decreases during the reme-

diation steps. To understand the complex associations between chemical concentrations

and gene expression, an integrated analysis of all available data should be performed.

4.4.4 A systems biology approach linking gene expression to
chemical concentrations of high-risk chemicals and algae
toxicity

Network integration of all data

In order to gain more understanding of the whole system of remediation we integrated

chemical concentrations and their relationship with stickleback morphology (as described

by traditional endpoints), gene expression in the stickleback liver, and toxicity tests. A

convenient way of integrating and analysing such data is to use network representation,

where chemicals, genes, physiological parameters and toxicity are represented by nodes

and the connecting edges represent the similarity between the concentration and expres-

sion profiles. Because of the differences in physiology we made separate networks to

represent both male and female stickleback. Resulting networks included 3306 nodes and

2233 nodes in females and males, respectively).

The network representing female stickleback has 3306 nodes and 86871 edges (Figure

4.15). For ease of interpretation, this large network could be divided into different but

interconnected network modules, based on gene function. Modularisation of the large
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Figure 4.15: GLay modularisation of ARACNE mutual information network of differ-
entially expressed genes (from all sites) in the female stickleback. Modularisation was
performed twice (recursively). Green nodes represent genes, pink nodes physiological
measurements or toxicity tests and yellow nodes are concentrations of chemicals captured
by the passive sampler
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Table 4.5: Individual modules of the female network — two rounds of modularisation are
shown.
Module Nodes Health Toxicity tests Chemicals

0_1 1184
MTT, liver weight,
hepatosomatic index,
ER-luc

0_1_1 536 liver weight, hepatoso-
matic index

0_1_2 490 ER-luc
0_1_3 121

0_2 1056 weight, length, condi-
tion factor microtox TU EC50 11

0_2_1 492 microtox TU EC50 3
0_2_2 295 5

0_2_3 115 weight, length, condi-
tion factor

0_2_4 108 1
0_3 678 % survival Oct 2010 3
0_3_1 352 % survival Oct 2010 2
0_3_2 291 1

0_4 278 AR-luc, algae TU
EC50 47

network of female stickleback resulted in 4 modules (sizes 1184, 1056, 678 and 278 nodes)

(Figure 4.15). Three larger modules could be modularised further (module sizes were 563,

490 and 121 nodes for the network of 1184; 492, 295, 115 and 108 nodes for the network

of 1056; 352 and 291 nodes for the network of 678). Modules are different in respect

to the number of chemicals correlated with gene expression and various physiological

parameters and toxicity tests are also in different modules (Table 4.5). For example,

MTT, liver weight, hepatosomatic index and ER-luc assay are in module 0_1 in the

female stickleback network. Module 0_2 contains weight, length and condition factor, and

also MTT TU EC50 and 11 chemicals. These chemicals include phthalates (dicyclohexyl

phthalate, diethyl phthalate, butylbenzyl phthalate, dibutyl phthalate), white mineral oil,

metazachlor, gemfibrozil, carbofuran, diethylstilbestrol, pyrazon and aldicarb in module

0_2 (Table 4.6). Module with most chemicals (47) was 0_4, which is correlated with the

AR-luc assay and algae TU EC50 toxicity test (Table 4.5).
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Table 4.6: Chemicals correlated with gene expression (FDR < 0.05) in different modules
of the female stickleback network
Module Chemicals
0_1 -

0_2

white mineral oil, metazachlor, dicyclohexyl
phthalate, diethyl phthalate, gemfibrozil, car-
bofuran, diethylstilbestrol, butylbenzyl phtha-
late, pyrazon, aldicarb, dibutyl phthalate

0_3 1,2,5,6-dibenzanthracene, iprodione, ac-
etaminophen

0_4 43 chemicals shown in Figure 4.16

Detailed overview of module 0_4 (Figure 4.16) shows that from chemicals correlated

with gene expression, several have high or medium risk. Many of the chemicals are also

decreasing in at least one of the sites. Especially in the central part of the network, linked

more to Algae TU EC50, there are many polycyclic aromatic hydrocarbons (PAHs).

The network of male stickleback is smaller due to fewer differentially expressed genes

(Figure 4.17, Table 4.7) – however, the overall network is larger than the sum of differen-

tially expressed genes and chemicals, as there were many genes which are not significantly

differentially expressed between 3 stages of remediation, but are correlated with chemical

concentrations. The integrated similarity network of all differentially expressed genes,

physiological parameters, toxicity tests and chemical concentrations has 2233 nodes. This

large network could be modularised further, resulting in 5 subnetworks after first round

of modularisation. The sizes were 441, 413, 337, 305, 202 and 140 nodes. Two larger

networks were modularised further (194, 162 and 91 nodes for the network of 441; 243

and 140 nodes for the network of 413). Similar to the network of female stickleback,

weight, length and condition factor are in one module in the network of male stickleback

(Table 4.7). Also, most chemicals are correlated with genes in one module (0_58), which

is correlated with algae TU EC50 toxicity assay (Figure 4.18, Table 4.7). Another mod-

ule contains genes correlated with liver weight and hepatosomatic index, which is again

similar to the network of female stickleback. However, in the network of male stickleback,
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Figure 4.16: Module 0_4 in the network of female stickleback. Chemicals in different areas
of the network are shown – bold font indicates chemicals that have decreasing chemical
risk in at least one site
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% survival is also in the same module. In the network of male stickleback, ER-luc and

AR-luc assays are in a module that also contains 9 chemicals (Table 4.7).

The network approach shows that differentially expressed genes in both male and

female sticklebacks can be modularised into distinct clusters (Figure 4.15, Figure 4.17,

Table 4.5, Table 4.7). Interestingly, some of the physiological measurements, chemical

concentrations and toxicity tests are also related to specific modules. In networks of both

female and male stickleback, there are modules that contain most of the chemicals and

interestingly, genes in these modules are also correlated with algae TU EC50 toxicity test.

Further analysis of chemicals and genes in the two modules containing most chemicals

in both male and female sticklebacks reveals that 26 chemicals from a total of 50 are

correlated with both male and female gene expression in these modules (Figure 4.19),

including 7 with high risk. Among the 26, there are 1 PAH with chemical risk > 1 and 2

PAHs with chemical risk > 0.1. However, many other PAHs with lower chemical risk are

correlated with gene expression in both male and female stickleback and PAHs are also

decreasing during the remediation stages in most sites. In addition to PAHs, there are

some PCBs and musks correlated with gene expression – for these, PNEC is not known,

so chemical risk could not be calculated.

There are 5 chemicals correlated with gene expression in the network module of male

stickleback (M_0_58) that are not correlated with genes in the network module of female

stickleback (F_0_4) (Figure 4.19 A, Table 4.9). All of these have chemical risk < 0.1

and are phthalates, pesticides and a pharmacological (Paracetamol). There are more

chemicals correlated with only module F_0_4 (Figure 4.19 A, Table 4.10): from 19

chemicals (musks, industrial chemicals, pesticides, pharmacological agents, PCBs and

oils), 3 had chemical risk > 0.1 and others < 0.1 or not known.

Despite many chemicals correlated with gene expression in both male and female

sticklebacks, genes associated with chemical concentrations in these modules are different.

This could be because of sex-specific effects. However, from especially from the analysis

of most chemical-correlated modules, it is clear that high-risk chemicals affect both male
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and female stickleback. Moreover, even chemicals with risk < 1 such as some PAHs which

decrease in all sites are correlated with gene expression in both sexes.

Figure 4.17: GLay modularisation of ARACNE mutual information network of differ-
entially expressed genes (from all sites) in the male stickleback. Modularisation was
performed twice (recursively). Green nodes represent genes, pink nodes physiological
measurements or toxicity tests and yellow nodes are concentrations of chemicals captured
by the passive sampler
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Table 4.7: Individual modules of the male network – two rounds of modularisation are
shown
Module Nodes Health Toxicity tests Chemicals
0_41 441
0_41_73 194
0_41_74 162
0_41_75 91

0_42 413 weight, length, condi-
tion factor

0_42_77 243 weight, length, condi-
tion factor

0_42_78 140
0_45 337 14
0_58 305 algae TU EC50 31
0_55 202 ER-luc, AR-luc 9

0_43 140
% survival April 2010,
liver weight, hepatoso-
matic index

1

Table 4.8: Chemicals correlated with gene expression (FDR < 0.05) in different modules
of the male stickleback network
Module Chemicals
0_41 -
0_42 -
0_43 clotrimazole

0_45

4-dicylochlorobenzene, aldicarb, dibutyl ph-
thalate, hexachlorobenzene, cycloxydim, di-
cyxlohexyl phthalate, diisobutyl phthalate,
galaxolide, lenacil, musk ketone, white min-
eral oil, white mineral oil c16, white mineral
oil c18

0_55

2,3,4,4,5-pentachlorobiphenyl, 9,10-
anthraquinone, estrone (POS), fenofibrate,
cashmeran, cyprodinil, iprodione, isoproturon,
white mineral oil c17

0_58 29 chemicals as shown in Figure 4.18
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Figure 4.18: Module 0_58 in the network of male stickleback.

Table 4.9: Chemicals correlated with gene expression in only male stickleback network
module
Chemicals in male module
0_58 Type Ch. risk Decreasing?

1,2,5,6-dibenzanthracene PAH < 0.1 all
Metazachlor herbicide < 0.1 all
Acetaminophen pharmacological < 0.1 G
Pyrazon insecticide < 0.1 G
Butylbenzylphthalate phthalate < 0.1 H
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Table 4.10: Chemicals correlated with gene expression in only female stickleback network
module
Chemicals in female mod-
ule 0_4 Type Ch. risk Decreasing?

Galaxolide musk > 0.1 all
9,10-anthraquinone industrial > 0.1 H and G
Diuron herbicide > 0.1 -
Hexachlorobenzene industrial < 0.1 all
Cycloxydim herbicide < 0.1 C
Cyprodinil fungicide < 0.1 C
Estrone estrogen < 0.1 H
Musk ketone musk < 0.1 H and C
Nonylphenol industrial < 0.1 H
Fenofibrate pharmacological < 0.1 -
Isoproturon herbicide < 0.1 -
Lenacil herbicide < 0.1 -
Diisobutylphthalate phthalate no PNEC all
Moskene musk no PNEC H and G
2,2,3,4,4,5-
hexachlorobiphenol PCB no PNEC G

2,4,4-trchlorobiphenol PCB no PNEC H and G
White mineral oil c16 oil no PNEC H and G
White mineral oil c18 oil no PNEC H and G
6,7-dihydro-1,1,2,3,4-
pentamethyl-4-(5H)indanone
(Cashmeran)

fragrance no PNEC H
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Functional annotation of network modules

Functional annotation of both male and female networks show that modules are enriched

in different biological functions (Figure 4.20). Significant KEGG pathways (FDR < 0.05)

are related to metabolism (purine metabolism, pentose phosphate pathway, galactose

metabolism, steroid biosynthesis), signalling (PPAR signalling pathway, p53 signalling

pathway, mTOR signalling pathway), cell cycle (DNA replication, cell cycle), immunity

and infection (antigen processing and presentation, shigellosis, pathogenic Escherichia

coli infection) and diabetes (insulin signalling pathway, type I diabetes mellitus, matu-

rity onset diabetes of the young). Module of the female stickleback that contains most

chemicals is enriched in mTOR signalling. Network module of male stickleback with most

chemicals is not significantly enriched in any KEGG pathways. Modules correlated with

length, weight and condition factor (F_0_2 and M_0_42) are enriched in antigen pro-

cessing and presentation, pyruvate metabolism, histidine metabolism in the female stick-

leback network and cell cycle, PPAR signalling pathway, biosynthesis of unsaturated fatty

acids, aminoacyl-tRNA biosynthesis, alpha-linolenic acid metabolism, steroid biosynthe-

sis, synthesis and degradation of ketone bodies, terpenoid backbone biosynthesis, pyrimi-

dine metabolism, DNA replication and ECM-receptor interaction in the network module

of males. Gene Ontology Biological Process enrichment analysis (Figure 4.21, Figure

Elec.Supp2 in the Electronic Supplementary) shows that in networks of male and female

stickleback, xenobiotic metabolic process is enriched in three modules: M_0_41_75 and

F_0_2 and F_0_2_3. M_0_41_75 is a small module of 91 nodes and is not correlated

with any physiological measurements, toxicity tests or chemicals. Module F_0_2_3 is

also small module, but is correlated with weight, length and condition factor. Module

F_0_2 is a large module (parent module of F_0_2_3) and is also correlated with mi-

crotox TU EC50, weight, length, condition factor and 11 chemicals. Biological processes

that were enriched in modules correlated with most chemicals, M_0_58 and F_0_4, were

response to heat, eye morphogenesis and response to cadmium ion. In addition, the male

module was enriched in antigen processing and presentation, steroid biosynthetic process
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and ubiquinone biosynthetic process. The network module of female stickleback was ad-

ditionally enriched in rRNA processing. Network analysis of all differentially expressed

Figure 4.21: Heatmap showing significant Gene Ontology terms in each of the modules.
Only significant (FDR < 0.05) values are shown in colour (green to red) for terms for
which at least 3 genes for this term were present in the module. The aim of this figure
is to show that different modules are enriched in different Gene Ontology terms and a
large zoomable figure with all Gene Ontology terms is in the electronic supplementary
(Electronic Supplementary Elec.Supp2).

genes integrated with chemical concentrations, physiological measurements and toxicity

tests has showed that there are distinct parts of the network associated with certain chem-

icals, physiological parameters and toxicity tests and these modules are also enriched in

several KEGG pathways and Gene Ontology Biological Processes. However, this static

network, although having advantages of integrating large amounts of data, cannot capture

the dynamical characteristics of the real system. Therefore, a more detailed dynamical

model, on a smaller scale might be able to give further insights into the remediation

system.
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4.4.5 Building a Bayesian model that integrates chemicals and
biological response and that explicitly models the wastew-
ater remediation process

Work in this section is the result of a collaboration with Dr. Alberto Cassese (Rice Uni-

versity) and Prof. Marina Vannucci (Rice University) who have developed the Bayesian

model for wastewater remediation [53].

Static networks as shown in previous paragraph have the advantage of allowing inte-

gration of a very large number of variables. However, the static network does not include

the information that the state of a given remediation stage depend on the previous one

and influence the subsequent. In order to address this issue and to identify the chemicals

that are more likely to affect gene expression, the mathematical framework developed by

Cassese et al. [53] was used. Model-based data integration is data-intensive and therefore

can only integrate a smaller number of genes with the available chemical concentration

data. Therefore, a subset of chemicals and genes to perform this analysis was selected.

Chemicals to use were selected so that they represent different types of dynamics during

the remediation process (Figure 4.22). The selected chemicals from each cluster can there-

fore be treated as representatives of the cluster, making it possible to interpret the model

for chemicals with similar dynamics. As different from the static network, Bayesian model

was done for male and female sticklebacks together to have more data for each remediation

step.

For the current study, only the Hapert site was used as an example as in this site,

there was data from all remediation steps (4 mesocosms). In this site, there were more

chemicals of high risk than in other sites and PCA of male and female stickleback gene

expression showed similar dynamics. Chemicals selected as representatives of clusters

were triclosan, alpha-HCH, permethrin-trans, diisobutyl phthalate, chrysene, permethrin-

trans, butylbenzyl phthalate, triphenyl phosphate, PCB-28, diethyl phthalate, di-n-octyl

phthalate, tetramethrin and estrone. Genes selected for the model were selected to be

associated with the selected chemicals according to the CTD database.
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As the static models and Bayesian model were run concurrently, the chemicals used

in these are not overlapping. This is due to the fact that in the static network, the aim

was to integrate data for all 3 sites, separately for male and female sticklebacks, and

only chemicals which were detected with certainty in all sites were used (i.e. no missing

values) to maximize the number of data points. However, as the Bayesian model was ran

separately for all sites, but male and female together, it was possible to include certain

chemicals in the model of one site which had missing values in other sites. Due to this,

some for the chemicals used in the Bayesian model are not in the static networks because

they were filtered out due to missing data or uncertainty in some of the sites. Figure 4.22

shows the overlap of selected chemicals with the chemicals that were used in the static

network analysis: triclosan, triphenyl phosphate and diethyl phosphate as representatives

from the cluster that has highest concentrations in Grou, butylbenzyl phthalate and

estrone from the cluster that has highest concentrations in Land van Cuijk and diisobutyl

phthalate and chrysene from the cluster that has highest concentrations in Hapert.

4.4.6 Identifying chemical drivers of transcriptional response

The model we developed allow us to identify the most relevant transcriptional changes

and in particular the ones that correlate to changes in the concentrations of chemicals. In

our model these genes are identified by having a large posterior probability of inclusion

(PPI) (Figure 4.23). The largest number of changes occur between the 1st and the 2nd

mesocosms while the smaller number of genes are identified between the 3rd and the

4th mesocosms. A PPI threshold of 0.99 applied to the three transitions show that

29 genes from 73 are most affected, with PPI > 0.99 in at least 1 transition (Table

4.11). The set of most affected genes includes vitellogenin and estrogen receptor 1. Other

genes, encoding proteins of cytochrome P450 family, glutathione peroxidase, progesterone

receptor, peroxisome proliferator activated receptors are present in both sets of high PPI

and lower PPI (Electronic Supplementary Table 1). The expression of some genes changes

during all transition steps. One such example is vitellogenin. VTG1 has PPI > 0.99 in all
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transitions and VTG2 and VTG3 in 1st and 3rd transitions. ESR1 and CYP1C1 also have

PPI > 0.99 in all transitions. Some genes have PPI > 0.99 in two transitions: GSTR1,

STAR, STARD3NL, STARD9, SULT1ST4, SULT3A1, ZP3, ZP4, VTG2 and VTG3.

4.4.7 Important chemicals

The model we have developed allow us to identify the chemicals that are most likely to

be responsible for the changes in transcription. The relative importance of each of the

chemicals in driving gene transcriptional changes in the 3 transitions is shown in Figure

4.24. Triclosan and alpha-HCH are in top 3 chemicals in all transitions. Permethrin-

trans has larger effect only in transitions 1 and 3 and has more modest effect in the

second transition.

Interestingly, chrysene, diisobutyl phthalate, estrone and butylbenzyl phthalate, which

are also correlated with gene expression in the static networks, are also within the first 5

chemicals most likely driving the transcriptional changes. In all three transitions, these

top chemicals contributing to gene expression changes were also correlated with gene

expression in the static networks (Table 4.12). Additionally, tri-phenyl phosphate was

placed 4th in the final remediation stage. When considering each of these chemicals in

more details, triclosan has effect on all remediation stages, whereas diisobutyl phthalate

and chrysene have effect on 2 stages of remediation. Butylbenzyl phthalate and tri-

phenyl phthalate have most effect on a single stage of remediation as summarised in

Table 4.12. These chemicals of effect are correlated with several other chemicals which

are also correlated with gene expression in the static networks (Table 4.12).
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Figure 4.23: Posterior probability of inclusion for 73 genes in three transitions: H1 vs
H2 (pre-sedimentation pond to pre-helophyte fields), H2 vs H3 (pre-helophyte fields to
after helophyte fields) and H3 vs H4 (after helophyte fields to after 3rd remediation
compartment).
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Table 4.11: Genes with posterior probability of inclusion > 0.99 in at least one transition.
H2 vs H1 is the transition from sedimentation pond to pre-helophyte fields. H3 vs H2 is
the transition from pre-helophyte fields to after helophyte fields. H4 vs H3 is the transition
from after helophyte fields to after 4th step.
Gene H1 vs

H2
H2 vs
H3

H3 vs
H4

Annotation from Ensembl (Human an-
notation is not specified)

CAT 0.998 0.966 0.912 Catalase
CHGA 0.930 0.997 0.114 Chromogranin A

CYP17A1 0.574 0.995 0.952 Cytochrome P450 family 17 subfamily A mem-
ber 1

CYP19A1 0.784 0.990 0.947 Cytochrome P450 family 19 subfamily A mem-
ber 1

CYP1C1 1 0.999 1 Cytochrome P450 family 1 subfamily C
polypeptide 1 (Zebrafish)

ESR1 1 0.999 1 Estragen receptor 1
ESRRG 0.991 0.755 0.881 Estrogen related receptor gamma
GPX1 0.999 0.986 0.982 Glutathione peroxidase 1
GSTA5 0.992 0.937 0.246 Glutathione S-transferase alpha 5
GSTK1 0.997 0.893 0.908 Glutathione S-transferase kappa 1
GSTM3 0.996 0.946 0.800 Glutathione S-transferase mu 3
GSTR1 1 0.089 1 Glutathione S-transferase rho
GSTZ1 0.999 0.982 0.980 Glutathione S-transferase zeta 1
MUC19 1 0.944 0.877 Mucin 19
PGR 1 0.976 0.960 Pregesterone receptor
STAR 0.995 0.353 1 Steroidogenic acute regulatory protein

STARD10 0.998 0.984 0.880 StAR related lipid transfer domein containing
9

STARD3NL 0.997 0.516 0.997 STARD3 N-terminal like

STARD9 0.992 0.985 0.991 StAR related lipid transfer domain containing
9

SULT1ST4 0.996 0.941 0.996 Sulfotransferase family 1, cytosolic sulfotrans-
ferase 4 (Zebrafish)

SULT3A1 1 1 0.230 Sulfotransferase family 3A, member 1
SULT4A1 0.992 0.867 0.266 Sulfotransferase family 4A member 1
ZP3 1 0.932 0.997 Zona pellucida glycoprotein 3
ZP4 0.996 0.784 1 Zona pellucida glycoprotein 4

ZPAX 0.998 0.784 0.312 Egg envelope component ZPAZ (Xenopus
gene)

ZPD 0.995 0.826 0.660 Zona pellucida protein D (Xenopus gene)
VTG1 1 1 1 Vitellogenin 1 (Zebrafish gene)
VTG2 1 0.972 1 Vitellogenin 2 (Zebrafish gene)
VTG3 1 0.972 1 Vitellogenin 3 (Zebrafish gene)
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Figure 4.24: Effect of each of the chemicals in transitions H1 vs H2 (pre-sedimentation
pond to pre-helophyte fields), H2 vs H3 (pre-helophyte fields to after helophyte fields)
and H3 vs H4 (after helophyte fields to after final remediation compartment).
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Table 4.12: Mapping of chemicals which have importance in the Bayesian model to the
static networks

Chemical Most effect Chemicals in
same cluster

In static net-
work of males

In static net-
work of fe-
males

Triclosan
sedimentation,
helophytes, 3rd
stage

diazinon, endo-
sulfan, caffeine caffeine (0_58) diazinon (0_4),

caffeine (0_4)

Diisobutyl
phthalate

helophytes, sed-
imentation

pendimethalin,
lenacil, estra-
diol, min-
eral oils,
metamitron,
pirimiphos
methyl, phan-
tolid, musk
xylene

estradiol
(0_58), di-
isobutyl ph-
thalate (0_45),
lenacil (0_45),
mineral oils
(0_45, 0_55)

estradiol (0_4),
mineral oil
(0_2)

Chrysene sedimentation,
3rd stage

PAHs
(benzo(b)fluoranthene,
benzo(k)fluoranthene,
benzo(a)pyrene,
indeno(1,2,3-
cd)pyrene,
benz(a)anthracene,
benzo(ghi)perylene,
fluoranthene
and pyrene)

PAHs (0_58) PAHs (0_4)

Butylbenzyl
phthalate helophytes

tri-(2-
chloroisopropyl)
phosphates
a, b and c,
nonylphenol
and gemfibrozil

Butylbenzyl ph-
thalate (0_58)

Butylbenzyl
phthalate
(0_2), gemfi-
brozil (0_2),
nonylphenol
(0_4)

Tri-phenyl
phosphate 3rd stage

DEET, diuron,
white mineral
oils

white mineral
oils (0_45 and
0_55)

diuron
(0_4),white
mineral oils
(0_2 and 0_4)
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4.5 Discussion

4.5.1 Systems biology approach highlights the cumulative effect
of low-risk chemicals

The analysis of chemical risk demonstrated that Waterharmonica remediation decreases

the concentrations of high-risk chemicals. However, this simple evaluation depends on

known PNECs which are computational values based on acute exposures and might un-

derestimate the real risks, due to chronic exposures, bioaccumulation and mixture effects

in real systems. The integration of chemical concentrations with transcriptomics suggested

that even low-risk chemicals might affect gene expression. This effect might be due to

one class of chemicals with same targets, with each chemical having low risk individually,

but together as a class of chemicals, their cumulative risk might be higher. One such

group of chemicals in the static network analysis was PAHs. The Bayesian model further

highlight the importance of PAH removal (as chrysene was one of the chemicals that gene

expression depended on in the model and many other PAH concentrations were correlated

with chrysene). Genes of cytochrome P450 family were also affected in all transitions, but

especially transition 2 (H2 vs H3 – before and after helophyte fields) where PPI values

were > 0.99 for all representatives of cytochrome P450 family. This is supported by the

fact that especially PAHs are biodegraded by organisms symbiotic to the reeds (reviewed

in [133, 227]).

Interestingly, from the toxicity tests (algae, MTT, Daphnia), algae TU EC50 was the

only one correlated with the modules containing most chemicals. It has been shown that

effects on algae are more prominent than on Daphnia or fish [272]. The results of network

analysis support this and might even suggests that algae could be a more suitable species

for monitoring certain chemicals. However, as many of the chemicals in these modules, in

addition to PAHs, were herbicides, the effect on algae might be explained by the nature

of these chemicals to target plant-specific pathways, such as photosystem II. Moreover,

the same systems has also been shown to be sensitive to metals [176], which is especially
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interesting as the modules correlated with toxicity to algae were also enriched in Gene

Ontology term “response to cadmium ion”. Chemicals correlated with genes in modules

linked to survival of algae included several with high risk. For example, chlorpyrifos has

been shown to affect algae [12]. There were many PAHs correlated with gene expression in

both male and female stickleback, in the modules that are correlated with toxicity to algae.

One example is fluoranthene which has been shown to be accumulated and biodegraded in

algae [144]. Moreover, the same article suggests that the biodegradation is more effective

when there is a mixture of PAHs. Other authors have reported that bioremediation of

PAHs by bacteria can be antagonistic or synergistic dependant on mixture [137].

4.5.2 Can systems biology and transcriptomics reveal effects of
chemicals which were not measured?

Gene Ontology analysis showed enrichment for the term “Response to cadmium ion” in

modules of most chemicals in both male and female stickleback models. Cadmium or

any other metals were not measured by the passive samplers as the aim was to detect

organic chemicals, but they have been shown to be toxic to algae [74]. Moreover, this

result suggests that cadmium, or other chemicals with similar effects, might be in the

effluent. In fact, this hypothesis could be further supported by mapping known targets

of cadmium into the network.

4.5.3 Stickleback growth and phthalates

We showed that there are network modules for both male and female sticklebacks that

are correlated with fish length, weight and condition factor. Although these modules

were not correlated with as many chemicals as other modules (F_0_4 and M_0_58),

there were phthalates in module 0_2 and also aldicarb, which has risk > 1. Additionally,

module F_0_2 was enriched in Gene Ontology term “Xenobiotic metabolism”. In fish,

phthalate exposure has been linked to growth inhibition [357, 29]. Exposure to phthalates
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has also been linked to growth hormone levels and growth in humans [148, 32]. The Gene

Ontology term “xenobiotic metabolism” includes several Cytochrome P450 genes which

encode proteins involved in the metabolism of xenobiotics. These genes have also been

linked to chemical exposure, including exposure to PAHs [33]. Associations between ph-

thalates, thyroid hormone and Cytochrome P450 have been shown in the literature. For

example, thyroid hormone, in addition to being linked to growth hormone and growth,

also regulates Cytochrome P450 genes and vice versa, cytochrome P450 is also involved

in thyroid hormone homeostasis [43], therefore it is reasonable to hypothesize that dif-

ferent phthalate concentrations in the remediation system perturbed thyroid metabolism

or cytochrome P450 metabolism in sticklebacks. These affected systems might have also

perturbed growth hormone levels and through this, growth of sticklebacks. Interestingly,

the module (M_0_41_75) in males which is enriched for “xenobiotic metabolism” does

not contain weight, length or any physiological parameters, but is correlated with chem-

icals. This might indicate that the chemical responses are sex-specific. Other possibility

is that the gene expression effects in the modules linked to growth are not because of

chemicals but because of other characteristics of wastewater effluent, such as microbial

composition of the remediated water. Indeed, both modules correlated with weight, length

and condition factor are enriched in GO Biological Process term “antigen processing and

presentation”. The module of female stickleback is also enriched in GO Biological Process

term “defence response to bacterium”. Additionally, Module M_0_42 in the network of

male sticklebacks is enriched for GO Biological Process terms “cell cycle”, “DNA repli-

cation initiation” and “spindle organization”, “cell division”, suggesting that the reduced

size might be caused by perturbed mitosis.
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4.5.4 Detailed Bayesian model shows triclosan and polycyclic
aromatic hydrocarbons as main contributors of gene ex-
pression changes

Bayesian model ran with representatives of several chemical clusters has shown that some

chemicals have more effect on gene expression. The results further supported the conclu-

sion of static network analysis, showing that especially PAHs affect gene expression, as

chrysene, a representative of the cluster of highly correlated PAHs, was shown to affect

the gene expression during the transitions. Another chemical shown to be important in

most transitions was triclosan. Bayesian model highlighted some genes that change dur-

ing all remediation steps: ESR1 and VTG1. According to the CTD database [72, 71],

ESR1 is affected by triclosan , butylbenzyl phthalate, diisobutyl phthalate, estrone and

chrysene – all of these chemicals were found to have effect according to the model. VTG1

and VTG2 are affected by triclosan and estrone according to the CTD database [72, 71].

4.5.5 Data-driven approach has helped interpreting a complex
process

We have shown the potential for data-driven approach for interpreting changes during

water remediation by constructed wetlands. By integrating several types of data, we have

shown that even chemicals with low or unknown risk might have effect on the stickleback

and more importantly, that many high-and low risk chemicals correlated with gene expres-

sion in both male and female sticklebacks decrease during remediation, especially PAHs.

The integration of chemical concentrations, morphology and gene expression has linked

several pathways for which support exists in the literature, suggesting that phthalate lev-

els in the remediation system might be linked to growth by perturbed cytochrome P450

or thyroid metabolism. This might show the importance for analysing mixture effects, as

phthalates had low risk in our analysis, creating a hypothesis that the gene expression

changes associated with growth of sticklebacks might be due to additive or synergistic

effects, either by phthalates or in combination with other chemicals. This highlights the

162



limitations of assessing water quality by quantifying single chemicals and comparing these

to PNEC or other constant which has been estimated based on acute exposure to single

chemicals. As static networks have shown the importance of sex-differences and although

many of the chemicals were associated with gene expression in both male and female stick-

lebacks, it would be useful to make new Bayesian model for male and female sticklebacks

separately and also with a selection of chemicals from the static networks. As the static

model has shown that phthalates might be linked to growth, it would be particularly

useful to make a small model integrating the cumulative risk of all PAHs the expression

of selected genes and also growth parameters. Additionally, instead of using individual

genes, principal components of all KEGG pathways could be used to aid biological inter-

pretation and find out which pathways are most affected during the consecutive stages of

remediation.
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CHAPTER 5

GENERAL DISCUSSION

5.1 Systems biology approach is able to connect molec-
ular changes to physiology

Individual studies on three different organisms in this thesis have shown the potential

of systems biology to connect environmental stress, high-throughput omics data and

organism’s physiological endpoints. I have shown that this approach is able to gener-

ate hypotheses which would need to be tested. A recently published study connecting

transcriptomics with physiology and using additional information on potential molecular

targets has revealed novel endocrine disruptors in largemouth bass [25], further showing

the potential of systems biology to generate biological knowledge potentially relevant for

future environmental risk assessments.

Currently, the effects of chemicals are mainly studied by either measuring traditional

endpoints or analysing omics data on its own, most often by enrichment analysis of dif-

ferentially expressed genes.

These examples, when considered in the context of the Adverse Outcome Pathway

(AOP) framework can represent either only the Adverse Outcome associated with chemical

stressor and in the latter case, might connect chemical stressor with Molecular Initiating

Event or Key Events, if the hypothesis resulting from the omics studies is confirmed and

results in a mechanistic knowledge about the effects of the chemical. However, connecting
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these two parts of the Adverse Outcome Pathway, would be more informative and sys-

tems biology methods integrating chemical stressor, various omics data and physiological

endpoints could help achieving this aim, by providing hypotheses which, when confirmed

experimentally, has the potential to contribute to AOP pathways. The importance of

using the AOP framework to connect molecular measurements with apical endpoints has

also been highlighted in a vision for using omics for environmental monitoring [214].

Of course, for systems biology approaches to be used for integrating all relevant avail-

able data in future studies, with the aim of connecting the different parts of AOP, more

user-friendly technical tools would need to be implemented with Graphical User Interface

(GUI) instead of the need to use multiple R packeges [260], custom scripts and multiple

apps of Cytoscape [285]. Additionally, after several approaches have been studied and

published, the sharing of workflows, such as Taverna [349], could also be used for en-

vironmental systems biology, establishing a standard analysis strategy for many studies

contributing to the generation of knowledge. As systems biology methods have the poten-

tial to connect environmental and omics data with physiological endpoints, the resulting

hypotheses, once tested, can lead to the development of mode AOP-s. Assays can then be

developed to target Key Events in the Adverse Outcome Pathway and based on these, the

Adverse Outcomes can be predicted, reducing the need for animal testing. For example,

AOP-based strategy has been demonstrated in zebrafish, predicting the effect of chemicals

on thyroid function [300].

5.2 Challenges in future for risk assessment: timing,
exposure length and computational resources

The study of mussel in this thesis has demonstrated that timing is important for the

prediction of gender and especially for chemicals that have the potential to affect processes

associated with reproductive cycles, the effects might be seen only at certain times of the

year. This might mean that some exposures, which have been reported to result in no
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effects have been done during a period where these effects are not seen. Another factor

to consider is the exposure length. Currently, many chemicals are tested during acute

exposure, whereas in the environmental scenario, organisms are exposed chronically and

it is not easy to predict, which developmental stage is most crucial for the effects to appear

later. It has even been shown that in addition for the effects to be seen in the organism

that was exposed, the effects can become visible in the next generation. For example, in

medaka, it has been shown that low-dose parental bisphenol A exposure can affect brain

development during the embryonic and larval stage and also cause behavioural changes

of the larvae [153]. In humans it has been shown that prenatal phthalate exposure is

associated with the development of eczema [294].

Therefore, in the future, risk assessment could take into account different times in the

reproductive cycle and should consider the effects of chronic exposure.

Technically, to test every chemical of chemical class for the full reproductive cycle

would be expensive and against the effort to reduce animal-testing. However, if there was

a strategy to develop AOPs for key species that can be used to extrapolate the effects on

others, for chemicals which are representative of different mechanism of action, this could

be informative and could be used in the models of other species and chemicals. Ideally,

as the number of AOP-s grow, there might also be tools available that are able to model

chronic exposures and exposures to mixtures. Of course, these developments depend

heavily on available data and efforts have already been started to generate resources such

as LINCS database and data portal [171] and the Connectivity Map [182, 305] making

it possible to connect chemical perturbations to transcriptional signatures for human

cell lines. Fish connectivity map has also been developed, linking chemical stressors

with transcriptomics profiles [339]. In the AOP community, efforts to integrate different

types of data, especially a wide range of databases, with AOP-s has already started with

the launch of AOP-DB [250]. These resources and developments, for both human and

environmental species provide many opportunities to advance the current state of AOPs.
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5.3 Potential of systems biology for early warning
signs of environmental stress

As previously seen, when certain methods are mature enough in fields of better knowledge,

annotation and experimental control, more challenging problems can be approached with

similar methods. For example, after sequencing the human genome and model species,

many non-model species were also sequenced. Similarly, systems biology methods have

been first demonstrated on either simpler and more easily testable species (E. coli, C.

elegans) or for humans, which although complex, are motivated by understanding human

diseases. It has been proposed that in the future, using both healthy population baseline

and personal baseline of different markers identified from complex omics studies, human

disease can be predicted and prevented [185, 160] and the authors suggest that this kind

of personalised approach with complex machine learning can be used for many scenarios.

Similarly, as individual (human) profiles are to be used as predictors of disease, maybe

there is enough knowledge about the baseline “healthy” ecosystem based on different

indicator species, taking into account also seasonal and reproductive systems and omics

profiles. At the same time, maybe there is also similar data of “unhealthy” ecosystems, i.e.

places with higher pollution, where effects are already seen at organism or population level.

Using regular monitoring at informative times of the year, such as gonadal development,

the shifts of omics profiles from previously healthy ecosystems towards more polluted

places can have predictive power before changes might become visible at organism of

population levels, similarly to the proposed disease prediction in humans. The importance

using available knowledge and continuous baseline monitoring to determine “normal” state

of an ecosystem and investigating further when the profile shifts outside the normal range

has also been suggested in the context of the environment [214].

Of course, continuous monitoring in humans or environmental species is not cost-

effective now, but similarly to the time when the human genome was first sequenced and

it seemed unlikely this could be done for thousands of people later, it is possible that in the

future, longitudinal omics profiling might be used in real life as early sign of later events,
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provided that computational methods and resources are able to manage the amounts of

data.

5.4 Systems toxicology and human health

In this thesis, I have demonstrated how dynamical models can relate omics data with

environmental parameters and physiological endpoints, creating hypotheses that can be

tested and if confirmed, could provide new knowledge for the definition of adverse outcome

pathways.

However, the approach here is not only relevant for environmental pollution concerning

non-model species such as fish, mussels or earthworms. The demonstration that systems

biology integrating omics, physiology and environmental parameters can reveal testable

hypotheses could potentially also be used for human studies.

In fact, an Adverse Outcome Pathway describing how chemical exposure can lead

to Adverse Outcomes in humans has been used in the OEDC test guidelines for an in

vitro skin sensitisation assay [234]. Human exposomics [333] has also already started as

a field, where human omics data is integrated with exposome and health parameters.

In addition to studies designed for exposomics, there is also potential in the current

rise of population-based biobanks to be used for integrating omics data with health and

environmental parameters. For example, once there are sufficient numbers of people who

have various omics profiles, it is possible to integrate this data with environmental and

exposure data, such as smoking status or living in an area with air pollution. Or course,

due to life choices available to humans, these studies are more complex, but also provide

ways of relating pollution to diseases, especially if electronic health records are also linked

to the population biobanks. For example the use of health records and 1H-NMR data has

been used for finding markers for predicting all-cause mortality [98]. More recently, air

pollution has been associated with incident cardiovascular disease using biobank cohorts

from Norway and the UK [50]. The first of these examples has connected molecular
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markers with an adverse outcome and the second has connected environmental pollution

with and adverse outcome. Ultimately, there might be studies where environmental effects

are connected to molecular markers of exposure and these in turn are linked to health

outcomes.

These efforts are in a way similar to the assessment of Adverse Drug Reactions [190]

and in the future, the frameworks assessing the effects of environmental chemicals on

humans or other organisms might be similar to the ones used for evaluating the side

effects of medicines.

Moreover, for some cancers, like breast cancer, it has been shown that in addition to

genetic risks of an individual and their lifestyle, exposure to persistent organic pollutants

might also contribute to the development of cancer [112, 113]. Therefore, it is possible,

that in the future, serum concentrations of various pollutants are also incorporated in

predictive models of diseases, together with genetic risk scores [174] and other factors

currently used, such as age, sex and body mass index [180, 197].

5.5 Conclusions

I have shown the potential of data-driven systems biology in creating models integrating

omics data with environmental and physiological parameters. For all three organisms,

earthworm, mussel and stickleback, the resulting model provided biologically meaningful

results. These results have the potential to contribute to the development of AOPs if

experimentally validated.

169



LIST OF REFERENCES

[1] N. Abe and V. Cavalli. Nerve injury signaling. Current Opinion in Neurobiology,
18(3):276–283, 2008.

[2] H. Abusamra. A comparative study of feature selection and classification methods
for gene expression data of glioma. Procedia Computer Science, 23:5–14, 2013.

[3] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422(6928):198, 2003.

[4] Agilent. Method of producing oligonucleotide arrays with features of high purity.
United States Patent, 2000.

[5] V. Alexandar, P.G. Nayar, R. Murugesan, S. Shajahan, J. Krishnan, and S.S.S.J.
Ahmed. A systems biology and proteomics-based approach identifies SRC and
VEGFA as biomarkers in risk factor mediated coronary heart disease. Molecular
BioSystems, 12(8):2594–2604, 2016.

[6] G.T. Ankley, R.S. Bennett, R.J. Erickson, D.J. Hoff, M.W. Hornung, R.D. Johnson,
D.R. Mount, J.W. Nichols, C.L. Russom, P.K. Schmieder, et al. Adverse outcome
pathways: a conceptual framework to support ecotoxicology research and risk as-
sessment. Environmental Toxicology and Chemistry, 29(3):730–741, 2010.

[7] P. Antczak, T. A White, A. Giri, F. Michelangeli, M.R. Viant, M.T.D. Cronin,
C. Vulpe, and F. Falciani. Systems biology approach reveals a calcium-dependent
mechanism for basal toxicity in Daphnia magna. Environmental Science & Tech-
nology, 49(18):11132–11140, 2015.

[8] I. Apraiz, J. Mi, and S. Cristobal. Identification of proteomic signatures of exposure
to marine pollutants in mussels (Mytilus edulis). Molecular & Cellular Proteomics,
5(7):1274–1285, 2006.

170



[9] A. Arukwe, F.R. Knudsen, and A. Goksøyr. Fish zona radiata (eggshell) protein: a
sensitive biomarker for environmental estrogens. Environmental Health Perspectives,
105(4):418–422, 1997.

[10] A. Asai, J. Qiu, Y. Narita, S. Chi, N. Saito, N. Shinoura, H. Hamada, Y. Kuchino,
and T. Kirino. High level calcineurin activity predisposes neuronal cells to apoptosis.
Journal of Biological Chemistry, 274(48):34450–34458, 1999.

[11] V. Asensio, P. Kille, A.J. Morgan, M. Soto, and I. Marigomez. Metallothionein
expression and Neutral Red uptake as biomarkers of metal exposure and effect in
Eisenia fetida and Lumbricus terrestris exposed to Cd. European Journal of Soil
Biology, 43:S233–S238, 2007.

[12] V. Asselborn, C. Fernández, Y. Zalocar, and E.R. Parodi. Effects of chlorpyrifos on
the growth and ultrastructure of green algae, Ankistrodesmus gracilis. Ecotoxicology
and Environmental Safety, 120:334–341, 2015.

[13] D. Aygun, Z. Doganay, L. Altintop, H. Guven, M. Onar, T. Deniz, and T. Sunter.
Serum acetylcholinesterase and prognosis of acute organophosphate poisoning. Jour-
nal of Toxicology: Clinical Toxicology, 40(7):903–910, 2002.

[14] E. Bååth, Å. Frostegård, and H. Fritze. Soil bacterial biomass, activity, phospho-
lipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust
deposition. Applied and Environmental Microbiology, 58(12):4026–4031, 1992.

[15] M. Bachelot, Z. Li, D. Munaron, P. Le Gall, C. Casellas, H. Fenet, and E. Gomez.
Organic UV filter concentrations in marine mussels from French coastal regions.
Science of the Total Environment, 420:273–279, 2012.

[16] A. Badiou, M. Meled, and L.P. Belzunces. Honeybee Apis mellifera acetyl-
cholinesterase – a biomarker to detect deltamethrin exposure. Ecotoxicology and
Environmental Safety, 69(2):246–253, 2008.

[17] N.V.E. Bagazgoïtia, H.D. Bailey, L. Orsi, B. Lacour, L. Guerrini-Rousseau,
A. Bertozzi, P. Leblond, C. Faure-Conter, et al. Maternal residential pesticide use
during pregnancy and risk of malignant childhood brain tumors: A pooled analysis
of the ESCALE and ESTELLE studies (SFCE). International Journal of Cancer,
142(3):489–497, 2018.

171



[18] P.A. Bahamonde, A. Feswick, M.A. Isaacs, K.R. Munkittrick, and C.J. Martyniuk.
Defining the role of omics in assessing ecosystem health: Perspectives from the Cana-
dian environmental monitoring program. Environmental Toxicology and Chemistry,
35(1):20–35, 2016.

[19] M. Banni, A. Negri, F. Mignone, H. Boussetta, A. Viarengo, and F. Dondero. Gene
expression rhythms in the mussel Mytilus galloprovincialis (Lam.) across an annual
cycle. PloS One, 6(5):e18904, 2011.

[20] A. Barabási. Scale-free networks: a decade and beyond. Science, 325(5939):412–413,
2009.

[21] A. Barabási and R Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[22] A. Barabási and Z.N. Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5(2):101, 2004.
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