
TEST MASS METROLOGY
FOR TESTS OF THE EQUIVALENCE

PRINCIPLE

by

SACHIE SHIOMI

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Birmingham Gravitation Group

School of Physics and Astronomy

The University of Birmingham

March 2002



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

The Equivalence Principle is accepted as one of the most fundamental principles in
modern Physics. However, theories towards the unification of the four forces typically
predict violations of this principle. Testing it at a high sensitivity is expected to make
a breakthrough in the current understanding of Physics.

A space-based project, STEP (Satellite Test of the Equivalence Principle), aims at
testing the principle to the level of 10−18. This corresponds to an improvement of the
current limits, established by ground-based experiments, by approximately five orders
of magnitudes. To achieve the sensitivity, imperfections in STEP test masses, such as
density inhomogeneity and thermal distortion, could be a problem.

This thesis presents preliminary work on the verification of STEP test masses.
We have measured density inhomogeneities in materials intended to be used as STEP
test masses (beryllium and niobium). In addition, we have developed a device to
measure differential thermal expansion of samples that cannot be machined, by using a
capacitive sensing method. It is shown that the device has a precision of approximately
0.3 % in the differential thermal expansion of beryllium. This device could in principle
be applied for the measurements of the real STEP test masses in the final shape. Our
analysis based on the results of our measurements and literature survey shows that it
is feasible to obtain materials that satisfy STEP requirements.
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Chapter 1

Introduction

1.1 Equivalence Principle

1.1.1 Weak Equivalence Principle

Newton’s law of gravitation can be written as:

→
F= mP

→
g (1.1)

where
→
g is a gravitational field and mP is the mass of a point mass. Bondi called mP

passive gravitational mass1 [1] to distinguish from the inertial mass, which appears in

Newton’s second law.

Newton’s second law of motion of a point mass can be expressed as:

→
F= mI

→
a (1.2)

where
→
a is the acceleration of the inertial mass, mI .

The passive gravitational mass responds to gravity, while the inertial mass responds

1Bondi classified masses into three kinds; inertial, passive and active gravitational mass. The
first two are described in Section 1.1.1. The last one is the mass that is the source of gravitational
fields. Newton’s third law, the law of action and reaction, implies the equality of active and passive
gravitational mass.

1



to the external force which is applied to the mass. The postulate stating that these

masses are equivalent for every material is called the Equivalence Principle.

If there is a coordinate system which is freely falling in a homogeneous and static

gravitational field, g, Newton’s second law of motion of an observer (a point particle)

who is in free fall with the coordinate system can be written as follows (see Figure 1.1):

mIa = −mP g + mIaC , (1.3)

for the observer himself/herself. Where a is the acceleration of the observer. The

second term of the right-hand side of Equation (1.3) corresponds to the fictitious force

which originates from the acceleration of the coordinate system, aC .

Figure 1.1: Free fall of an observer (a point mass, m) in the gravitational field g.

If it is possible to make the acceleration of the observer zero, a = 0, by adjusting

the fictitious force, Equation (1.3) reduces to the following condition:

mP

mI

=
aC

g
= k, (1.4)

2



where

aC = kg (1.5)

and k is a constant.

Therefore, if Equation (1.4) is valid for every material in the coordinate system,

that is to say, the ratio of mP and mI takes the same value for any material (material

1, material 2, material 3, ...) in the coordinate system:

(
mP

mI

)
1

=
(

mP

mI

)
2

=
(

mP

mI

)
3

= ... = k, (1.6)

the observer does not observe the effects of the gravitational field. He/she feels that

he/she is in a region free of gravitation. In other words, in the coordinate system, the

laws of motion take the same form as in an unaccelerated coordinate system in absence

of gravitation. The condition (1.6) expresses the Equivalence Principle.

The value of k is included in the gravitational constant. When one determines the

gravitational acceleration (g) by a free-fall experiment, g always includes a coefficient

of 1/k (Equation (1.5)). The acceleration g is proportional to mA/r2, where mA is the

(point) source mass (active gravitational mass) and r is the distance between the source

mass and the mass in free-fall. Therefore, the sole coefficient of g, the gravitational

constant, is proportional to 1/k. The gravitational constant is conventionally fixed so

that k = 1.

In summary, the Equivalence Principle allows any (freely falling) coordinate system

in an arbitrary gravitational field to be a coordinate system in absence of gravitation.
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(If the gravitational field is not uniform, an infinitesimal region, in which the gravita-

tional field can be considered as uniform, can be considered as the coordinate system.

This coordinate system referred to as a local Lorenz system of coordinates (e.g. [2]).)

In this coordinate system, the laws of motion take the same form as in an unaccelerated

inertial frame of reference in absence of gravitation.

This principle has to be tested experimentally. It is said that Galilei did the famous

leaning tower experiment at Pisa to check whether different materials freely fall at the

same rate. Newton compared the periods of pendulums for various materials (gold,

silver, lead, glass, sand, common salt, wood, water and wheat) and checked this princi-

ple to ∆k < 10−3 [3], where ∆k is the difference in k between materials. Currently, it

is verified to the 10−13 level (see Section 2.2). This principle is now generally referred

to as the Weak Equivalence Principle (e.g. [4, 5]) or as the Universality of Free Fall,

to distinguish it from the Strong Equivalence Principle, which will be described in the

following section.

1.1.2 Strong Equivalence Principle

The Weak Equivalence Principle only refers to the uniformity of the laws of motion,

as discussed in the previous section. In 1911, Einstein introduced a principle which

extends the validity of the Weak Equivalence Principle to all the laws of nature [6].

That is to say, in a freely falling coordinate system, all the laws of nature take the same

form as in an unaccelerated Lorentz coordinate system in the absence of gravitation.

This extended Weak Equivalence Principle is called Strong Equivalence Principle (e.g.
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[4]).

According to the Strong Equivalence Principle, light in a freely falling coordinate

system S’, for example, behaves in the same way as in an unaccelerated Lorentz coor-

dinate system (e.g. [2]). In S’, the square of the distance which light travelled from x′µ

to x′µ + ∆x′µ can be expressed as:

∆s2 = −(c∆t′)2 + (∆x′)2 = ηµν∆x′µ∆x′ν (1.7)

where c is the velocity of light. For an observer in an inertial coordinate system S,

S’ is freely falling. Therefore, the observer in the system S sees that the light path is

distorted. If there is a general relation between S and S’ as follows:

x′µ = fµ(x) (1.8)

then ∆x′µ can be written as:

∆x′µ =
∂fµ(x)

∂xν
∆xν . (1.9)

Substituting Equation (1.9) in Equation (1.7), ∆s2 can be expressed with space-time

of S, xµ, as:

∆s2 = ηρσ
∂fµ

∂xρ

∂f ν

∂xσ
∆xµ∆xν = gµν(x)∆xµ∆xν , (1.10)

where

gµν(x) ≡ ηρσ
∂fµ

∂xρ

∂f ν

∂xσ
. (1.11)

By comparing Equations (1.7) and (1.10), it can be seen that gµν is a quantity which

expresses the deflection of the light path. gµν is called the Einstein’s gravitational
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potential in Einstein’s General Relativity [2]. However, gµν is mathematically called

a metric tensor, which determines the characteristic of geometry. Geometry in which

the definition of distance is given by Equation (1.10) is called Riemannian Geometry

(e.g. [2]).

Therefore, it can be said that the Strong Equivalence Principle introduced an un-

precedented idea; it gives the metric tensor of geometry the meanings of gravitational

potential. In other words, the Strong Equivalence Principle implies that the physical

substances, which produce gravitational fields, determine the geometry of space-time.

He presented his gravitational theory of General Relativity in 1916, postulating the

Strong Equivalence Principle as the basis of the theory [7].

In summary, it can be said that the Weak Equivalence Principle is the basis of

both of Newtonian mechanics and Einstein’s General Relativity. These theories are

fundamental in modern physics and should be tested as precisely as possible. One of

the most sensitive tests is to search for the violation of the Universality of Free Fall.

This experimental search will be discussed in Chapter 2.

The Strong Equivalence Principle is also called Einstein Equivalence Principle (e.g.

[5]). The Strong Equivalence Principle is sometimes distinguished to two versions [4]:

a “very strong” principle, which applies to all phenomena, and a “medium-strong”

principle, which applies to all phenomena except gravitation itself. Nordtvedt noted

that the very strong principle can be tested by using the Lunar Laser Ranging2 (LLR)

2As we will describe in Section 2.3.2, measurements of geodesic precession by the Lunar Laser
Ranging experiment put one of the most stringent limits on a composition dependent force.
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to compare the acceleration of the Earth and the Moon, whose gravitational self-energy

is not negligible, toward the Sun [8, 9]. The ambiguity in the results of LLR, due to

the composition difference between the Earth and Moon, is removed by laboratory

experiments [10].

1.2 Predictions of new interactions

1.2.1 Introduction

It is now believed that there are four fundamental interactions in nature, namely,

strong, weak, electromagnetic and gravitational interactions. All the interactions are

believed to be based on a gauge theory. We will briefly describe what a gauge theory

is below (see for example [11] for more detailed description).

For electromagnetism, local gauge transformation is individual rotation of phase

(by an angle α(x)) of a wave function of a charged particle (e.g. [11]):

ψj(x) → eiα(x)Qjψj(x) (1.12)

With the introduction of a vector field (Aµ) into the theory of electromagnetism, any

interactions of wave functions are invariant under the local gauge transformation be-

cause of the conservation of charge, Q. The requirement that interactions are invariant

under local gauge transformations is called gauge principle.

The gauge principle generally requires introduction of fields like Aµ in electromag-

netism. The fields are called gauge fields. Quantized gauge fields are called gauge

bosons. In the gauge theory, gauge bosons mediate forces between the conserved quan-
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Interactions Gauge bosons Gauge groups
Strong interaction gluons SU(3)
Weak interaction W-bosons, Z-bosons SU(2)

Electromagnetic interaction Photons U(1)
Gravitational interaction Gravitons

Table 1.1: Interactions based on the gauge principle. Weak interaction and electro-
magnetic interaction are unified as electroweak interaction based on SU(2)×U(1) gauge
group. Gauge theory of the three interactions except gravitational interaction, based
on SU(3)×SU(2)×U(1) gauge group, is called the Standard Model of Particle Physics
(see Section 1.3).

tities (electric charges in electromagnetism). Because of the required invariance under

local gauge transformation, gauge bosons are generally massless particles. In the elec-

troweak field theory, spontaneously broken symmetry in Higgs mechanism gives mass

to gauge bosons.

Each interaction has different gauge transformations and gauge bosons. The local

gauge transformation (1.12) is called U(1) group in mathematics. Other interactions

are summarised in Table 1.1.

As we will describe in more detail in Section 1.2.4, properties of a force (repul-

sive/attractive, spin dependence and effective range) are determined by the property

of gauge bosons (spin, parity and mass). We will briefly describe the relation between

the mass of gauge bosons and the effective range of a force below.

Heisenberg’s uncertainty relation is given as follows (e.g. [11]):

∆E × ∆t ≥ h̄, (1.13)

where h̄ = h/2π (h is Planck’s constant). ∆E and ∆t are uncertainties in energy and

time, respectively. Virtual particles can exist within the allowed uncertainty. Gauge
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bosons are considered to exist as virtual particles and mediate forces. The range

that they can travel is the range over which the force is effective. By assuming that

the velocity of virtual particle (mass, m) may be approximately the speed of light,

c, and ∆E ≈ mc2, the distance they can travel is c∆t ≈ h̄/mc. This range, λ, is

called Compton wavelength (e.g. [11]). When m is zero, the virtual particle can

travel an infinite distance. For example, photons are massless particles and mediate

electromagnetic forces, whose effective range is infinite. We will describe in Section

1.2.3 that forces mediated by massless gauge bosons obey an inverse-square law, while

gauge bosons with mass result in Yukawa-type interactions.

In summary, in gauge theory, properties of a force are determined by properties of

the gauge bosons that are necessarily introduced by the gauge principle. The charge

of the force is the conserved quantity. The strength of the force has to be determined

by experiments.

We will first see below a force, suggested by Lee and Yang, which is mediated by

massless vector particles. Then we will see more general case when the mediating

particles have a mass.

1.2.2 Lee and Yang’s work

As described above, conservation of electric charge is related to gauge invariance. In

1955, Lee and Yang [12] suggested that the conservation of baryon number should also

be related to some gauge invariance. If it is so, there should be a gauge boson which

corresponds to the gauge invariance, in analogy with photons that correspond to the
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U(1) gauge invariance in electromagnetism. The gauge boson would mediate a new

force between baryons.

In this assumption, the potential energy between point baryon charges, B1 and B2,

can be written as:

V (r) = β
B1B2

r
(1.14)

from analogue of electromagnetism:

V (r) = α
Q1Q2

r
(1.15)

where α = e2/4πε0 and β = f 2
B/4πε0. e and fB are the fundamental electric charge

and fundamental charge of the new force, respectively. Q1 and Q2 are point electric

charges.

The bosons that mediate the suggested force would be vector massless particles

(like photons). The baryon number differs for each chemical element. Therefore, this

suggested force would violate the Universality of Free Fall3.

1.2.3 Yukawa-potential type

We can proceed with Lee and Yang’s idea; instead of the massless vector boson, we

can think of more general cases; bosons with natural parities (JP = 0+, 1−, 2+) and

with mass m5. For these generalized bosons, the Schrödinger equation becomes the

Klein-Gordon equation, which is obtained by quantization of the relativistic relation

3We will see in Section 2.1 that the differential acceleration of two test masses made of different
chemical compositions is expected to be proportional to the difference in the putative charge, such as
the baryon number.
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between energy (E) and momentum (p): E2 = p2c2 + m2
5c

4. The static Klein-Gordon

equation is as follows: {
∇2 +

(
m5c

h̄

)2
}

φ = 0 (1.16)

When m5 = 0, the Klein-Gordon equation reduces to the Laplace equation:

∇2φ = 0 (1.17)

The potential appearing in the electromagnetism (Equation (1.15)) and Lee and Yang’s

work (Equation (1.14)) is proportional to 1/r. This type of potential is a solution of

the Laplace equation.

A solution to the Klein-Gordon equation is proportional to e−r/λ/r, which is called

Yukawa-potential. Then the potential energy between some point charges Q5i and Q5j

would be:

V (r) = ±β5
Q5iQ5j

r
e−r/λ (1.18)

where β5 = f 2
5 /4πε0, and f5 is a fundamental charge. The subscript of 5 is used as this

type of putative forces is often referred to as fifth force.

More generally, Q5 may be written as a linear combination of baryon number (B),

Lepton number (L) and Isospin (Iz) [13]:

Q5i = B cos θ5 + Iz sin θ5 (1.19)

or

Q5i = B cos θ̄5 + L sin θ̄5, (1.20)
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where −90◦ < θ̄5 ≤ 90◦. Most experiments to search for new forces uses electrically

neutral bulk matter because the presence of charges would introduce spurious effects

from electromagnetic forces. For neutral matter, L = Z, where Z is proton number.

Therefore:

B = Z + N (1.21)

Iz = N − Z = B − 2L, (1.22)

where N indicates neutron number.

To sum up, the new interactions have been introduced naturally basing on the

conservation of baryon number and the gauge principle. The potential of Equation

(1.18) is the typical form of new putative interactions suggested by various theories.

We will review these theories in Section 1.3.

If a new force exists, the total potential energy of (neutral) point masses of mi and

mj may be written as a sum of Newtonian potential energy and Equation (1.18) (e.g.

Equation (2.1.6) in [13]):

V (r) = −G∞
mimj

r
± β5

Q5iQ5j

r
e−r/λ (1.23)

= −G∞
mimj

r

(
1 − ±β5Q5iQ5j

G∞mimj

e−r/λ

)
(1.24)

= −G∞
mimj

r

(
1 + αije

−r/λ
)

(1.25)

where

αij ≡ −Q5i

µi

Q5j

µj

ξ ≡ −q5iq5jξ (1.26)

ξ ≡ ±β5

G∞m2
H

(1.27)
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Where mH ≡ m(1H
1) = (1.00782519 ± 0.00000008)u and, therefore, mi = µimH . G∞

is the value of the Newtonian constant when r/λ � 1 (see Equation (1.29)).

Differentiating Equation (1.25), �F = −�∇V (r), we obtain the force:

�F = G(r)
mimj

r2
�r, (1.28)

where

G(r) ≡ G∞
{
1 +

(
1 +

r

λ

)
αije

−r/λ
}

. (1.29)

1.2.4 Characters of putative forces

The following aspects may characterize a force:

1. whether it is a repulsive or attractive force,

2. what the range (λ) of the force is,

3. whether it depends on spin or not,

4. how strong the interaction is,

5. what kind of charges (Q) is associated with the force.

The first aspect is determined by the spin of the mediated bosons. Whether a force

is attractive or repulsive, namely the sign in Equation (1.18) or in ξ (Equation (1.27)),

depends on the spin of mediated bosons [14]. The force mediated by bosons whose spin

is even (0,2, ...) is attractive, while the force mediated by bosons with odd-spin (1,3,

...) can be either repulsive or attractive, depending on the signs of charges, and takes
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either a positive or negative sign. For positive charges, the sign in Equation (1.18) or

in ξ (Equation (1.27)) is negative for forces mediated by even-spin bosons and positive

for forces mediated by odd-spin bosons. Gravitation is an example of attractive forces

as it is mediated by spin-2 particle (graviton). Electromagnetic forces, mediated by a

spin-1 particle (photon), are attractive or repulsive, depending on the charges.

As we have discussed previously, the second aspect is determined by the mass of

mediating bosons. It can be examined by experiments with different distances between

source mass and test masses. The third aspect is determined by whether the mediating

bosons have a natural parity or unnatural parity. Natural parities (JP = 0+, 1−, 2+)

generally results in spin-independent forces, while unnatural parities (JP = 0−, 1+, 2−)

generally results in spin-dependent forces. The fourth aspect corresponds to ξ. ξ − λ

plots show the constraints on a new force, as we see below. The fifth aspect would be

investigated by operating experiments with various combinations of test mass materials

and source mass materials. These aspects are summarized in Table 1.2.

The properties of a force are generally predicted theoretically but these predictions

depend strongly on the models and/or unknown parameters. Therefore, they must be

determined by experiments. It is clear that a single experiment would never be enough

to constrain the theoretical models with various combinations of the above factors.

We limit our discussion to spin-independent forces. Searches for spin-dependent

interactions can be found, for example in [13]. Also, detailed descriptions on develop-

ments of an instrument to search for a spin-mass coupling new force can be found in
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Parameters Characters
Spin of mediating bosons Repulsive/attractive

Mass (m5) Effective range
Parity spin dependency

Coupling constant (ξ) strength
Charge (Q) Charge

Table 1.2: Parameters that determine the characters of forces are summarized. The
first three parameters are characteristics of the mediating bosons.

[15, 16].

1.3 Predictions from theories towards unification of

four forces

One of the dreams of many physicists is to build an ultimate theory that unifies all the

interactions satisfactory. The Standard Model of Particle Physics is accepted as a fun-

damental theory for three of these interactions, excluding the gravitational interaction

(see Table 1.1). The Standard Model is consistent with experimental data, but it is not

satisfactory as a ultimate theory. First of all, it is rather complicated. For example,

the three interactions are all based on a gauge theory, but there are three different

gauge coupling constants corresponding to each interaction. The biggest problem of

the Standard Model is that it does not include gravitational interaction, whose exis-

tence is well known. New theories beyond the Standard Model have been suggested

towards the unification of the four interaction (e.g. [11, 17]):

Grand Unified Theory (GUT) unifies the three interactions into a single gauge

group and introduces a large mass scale of approximately 1015 GeV. However, GUT
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does not explain the origin of the large ratio of the large mass scale and the mass

scale of weak interaction, about 100 GeV. A solution to this problem is introduction

of supersymmetry, which is a new symmetry between fermions and bosons.

Supergravity is a theory that has supersymmetry and could include gravity. In

Supergravity, a fermion with spin 3/2 appears as a partner of graviton (spin 2). This

spin 3/2 fermion has a boson partner with spin 1, and this boson with spin 1 has a

fermion partner with spin 1/2. This spin 1/2 fermion has a spin 0 partner. The bosons

(spin 1 and spin 0) introduced here could mediate new forces related to gravitational

force. The bosons with spin 1 and spin 0 are called graviphotons and graviscalars,

respectively (e.g. [18]).

As we have seen before, the mass of the mediated particle decides the effective

range of the force and the spin of the mediated particle decides the sign of the forces.

Supersymmetric particles are expected to have the same mass as their partner. Exper-

imental searches for supersymmetric particles using high energy accelerators have been

done [e.g. [19]]. However, none of supersymmetric particles has been observed so far.

Therefore, it seems that supersymmetry is broken and masses of the supersymmetric

particles are too heavy to be created with the current accelerators. Therefore, the

range of the force would be finite and the force would be the Yukawa-potential type.

Force mediated by graviphotons could be repulsive or attractive like electromagnetism,

while force mediated by graviscalars would be attractive like gravity.

It is said that the most promising theory that unifies gravitation with the other
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forces is superstring theory. This theory also generally introduces new bosons called

dilatons and moduli. These bosons could also mediate new forces that could violate

the Universality of Free Fall.

Because there are many unknown factors in those theories, no precise estimation

of the predicted violations of the Universality of Free Fall have been made. However,

Damour and Polyakov’s work [20] (see Table 1.3), motivated by string theory, presents

a level of a violation of the Universality of Free Fall as 10−14 ∼ 10−23. The mediating

particles are massless, therefore, the range of the new force would be infinite.

As we will briefly describe below, Damour and Polyakov’s proposal suggests that the

putative charge would be baryon numbers (B = N +Z), isospins (IZ = N −Z, neutron

excess) and electrostatic energy density of a nucleus (E = Z(Z − 1)(N + Z)−1/3):

According to [20], the coupling constant of dilatons (φ) to mass A (mA) is given as

(Equation (3.6) in [20]):

αA(φ) =
∂lnmA(φ)

∂φ
(1.30)

while mA(atom) can be given as follows:

mA = Zmp + Nmn + Zme + Es + Ec (1.31)

where mp, mn and me denote masses of proton, neutron and election. Es and Ec

denote the strong-interaction contribution to the binding energy of the nucleus and

the Coulomb interaction energy of the nucleus. This equation may be written:

mA = a0 + a1B + a2IZ + a3E (1.32)
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where a0, a1, a2 and a3 are constants. The difference in the rate of free-fall (∆a) between

two test masses made of different chemical compositions (A and B) in a gravitational

field (g) would be proportional to the difference in the coupling constant, namely

∆a/g ∝ αA − αB. Therefore, the expected violation of the Universality of Free Fall

depends on B, IZ and E.

Damour and Polyakov’s proposal is interesting as a motivation for experimental

searches of violations of the Universality of Free Fall; the current limits are approxi-

mately 10−13 and the space-based experiment, STEP (Satellite Test of the Equivalence

Principle), is aiming at a sensitivity of 10−18.

In short, those theories towards the unification of four forces typically predict new

bosons, which would mediate new forces. The proposed charges for the new forces

depend on models. Table 1.3 lists some of the theories that predict violations of

the Universality of Free Fall. The putative charges predicted by the theories can

be classified into three categories: the baryon number, isospin (neutron excess) and

electrostatic energy density (Table 1.3).

1.4 Summary

It can be said that the equivalence of two quantities (inertial mass and gravitational

mass) that apparently relates to the completely different forces is a surprising coinci-

dence. However, the basis of modern physics, namely the Newtonian mechanics and

Einstein’s general relativity, is based on the Weak Equivalence Principle. Therefore,
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Motivated by Bosons (Spin) Mass Charge References
Conservation vector bosons (1) No B [12]

of baryon charge
Supersymmetry U-bosons (1) Yes B, Iz [21]

(very light)
String theory dilatons (0) Yes Ordinary matter [22, 23]

dilatons (0) No B, Iz, E [20]
moduli (0) Yes Ordinary matter [24]

(millimeter range)

Table 1.3: A list of proposals of (spin-independent) new forces. Yes and No in the third
column indicate that the mediating particles have/do not have a mass, respectively.
B, Iz and E are the baryon number, the isospin and a contribution proportional to
electrostatic energy of a nucleus.

experimental approaches are necessary to test the Weak Equivalence Principle as pre-

cisely as possible.

Another motivation for the experimental tests of the Weak Equivalence Principle

is due to the predictions of violations of the Weak Equivalence Principle from theories

towards the unification of four forces. Those theories typically predict Yukawa-potential

type interactions. The predicted putative charge falls into three kinds: baryon number,

isospin and electrostatic energy density. Results from sensitive experiments, such as

STEP, could guide a way towards the unified theory.
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Chapter 2

Experimental tests of the Weak
Equivalence Principle

In this chapter, experimental tests of the Weak Equivalence Principle will be presented.

After an introduction in Section 2.1, we will review the current limits that result from

experimental searches. In Section 2.4, space-based future experiments will be described.

We will focus on the description of STEP, which aims at the most sensitive test of the

Weak Equivalence Principle.

2.1 Introduction

Experimental Search for a Yukawa-potential type new force can be viewed from two

aspects [25]:

• Search for deviation from the inverse-square law and

• Search for violations of the Universality of Free Fall.

The former is to search for the variation of G(r) (Equation (1.29)) and often referred

to as a search for composition independent effects. This type of search also can study
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composition dependent effects if test masses of different chemical compositions are

used.

The latter aims at measuring the differential acceleration between test masses of

different compositions. It is often referred to as a search for composition dependent

effects. The differential acceleration of a new force of Yukawa potential-type between

point objects j and j′ can be written as follows from Equation (1.28):

∆�aj−j′

ag

= −ξq5i∆q5j−j′e
−r/λ

(
1 +

r

λ

)
�r, (2.1)

where

∆q5j−j′ = q5j − q5j′ (2.2)

ag = G∞
mi

r2
(2.3)

Here −→r is a unit vector and ag is the gravitational acceleration toward the point source

mass i.
∆�aj−j′

ag
is equal to the difference in k (see Equation (1.4)) between the objects,

∆k. The experimental results often expressed in terms of a parameter η(j, j′) [26]:

η(j, j′) =
(mP /mI)j − (mP /mI)j′

1
2
{(mP /mI)j + (mP /mI)j′} (2.4)

It should be noted that η is equivalent to ∆k by taking k as 1.

According to Equation (2.1), the sensitivity of searches for composition dependent

effects may depend on the following factors:

1. attracting field of the source, ag,

2. charge of the source mass, q5i, and
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3. difference in charge between test masses, ∆q5j−j′ .

Increasing these values, one obtains a better sensitivity.

As we have seen in Section 1.2.2, a force mediated by massless bosons could not

produce deviations from the inverse-square law. Therefore, the search for composition

independent effects is insensitive to forces mediated by massless bosons. However,

the search for composition dependent effects is inevitably insensitive to the case when

q5j = q5j′ . Therefore, these two searches are complementary to each other as searches

for new Yukawa-potential type forces. However, we will focus on the searches for the

composition dependent forces, which can be viewed as the search for the violation of

the Universality of Free Fall.

2.2 Current limits

Figures 2.1 and 2.2 (adapted from [13]) are the current limits on the Yukawa-type new

forces mediated by bosons with an odd-spin1. Values of (ξ, λ) above the curves are

excluded with a confidence level of 2σ. The values are estimated from Equation (2.1),

basing data from the most sensitive experiments. Where ξB and ξI denote the coupling

constants to baryon number, when θ5 = 0◦ in Equation (1.19), and to isospin, when

θ5 = 90◦ in Equation (1.19), respectively (see also Equation (1.27)).

Almost all the ranges of λ are constrained by torsion balance experiments (referred

to as Eötvös in Figures 2.1 and 2.2) done by the Seattle group [27, 28, 29, 30], except

1Limits on Yukawa-type new forces mediated by bosons with an even-spin can be obtained by
estimating −ξB and −ξI from experimental results, and are presented, for example, in [27, 28].

22



Figure 2.1: Limits on Yukawa-type new forces, plotted assuming that the charge is the
baryon number (see the text). Eötvös refers to torsion balance experiments.

Figure 2.2: Limits on Yukawa-type new forces, plotted assuming that the charge is
isospin (see the text). Eötvös refers to torsion balance experiments.
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the short range (λ ∼ 10−1m for ξB and λ ∼ 10−2m for ξI) limited by inverse-square

law experiments [31] and the range from approximately 108 to 109 m for ξB, where

the Lunar Precession data are sensitive. The regions denoted by Solar Eötvös were

obtained by a solar torsion-balance experiment by Braginskii and Panov [32].

The wide-diagonally shaded regions denote the region where the constrains are un-

certain. The uncertainty is due to the difficulty in modelling Earth’s mass distribution

with sufficient accuracy on length scales where Earth cannot be approximated as a

fluid in equilibrium [27]. The diagonally shaded regions show the constrains by recent

data from the Seattle group [30, 28].

We summarise these three sensitive experiments (torsion balance experiments, inverse-

square laboratory experiments and lunar laser ranging experiments) in the following

sections. Reviews of various experiments can be found, for example, in [13, 25].

The plotted results in those figures can be converted into the limit on η (Equation

(2.4)). For example, the best limit, obtained from the result of the lunar precession, is

the level of 10−13 in η as B/µ ∼ 1 and ∆B/µ ∼ 10−3 (see Table 2.1 in [13] for the first

92 elements in the periodic table or Table 1.3 in this thesis for some of the elements).

The constraints on ξB are less sensitive than for ξI by a factor of approximately

10 over most of the range. This is because of the magnitude of relative charge for

non-Newtonian force in Equation (2.1):

|∆(B/µ)|(B/µ)source ∼ 1

10
|∆(Iz/µ)|(Iz/µ)source (2.5)
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2.3 Sensitive methods at various ranges

2.3.1 Torsion balance experiments

The region denoted by Solar Eötvös, Terrestrial Eötvös (Entire Earth), Terrestrial

Eötvös (Local Source) and Laboratory Eötvös in Figures 2.1 and 2.2 were limited by

torsion balance experiments using the Sun [32], the Earth [27], local terrestrial source

(hill) [27] and laboratory source (U238) [30, 28] as the source.

As shown in Equation (2.1), for a given q5i and ∆q5j−j′ and a fixed ξ, the maximum

sensitivity is achieved when r < λ. This tendency is shown Figures 2.1 and 2.2.

We will briefly review the experiments in this section.

Detection principle

Torsion balances are used to compare the horizontal accelerations (a⊥) of two test

masses. To describe the detection principle of the torsion balance, we consider an ideal

simplified torsion balance, as shown in Figure 2.3, which has one arm (with length s)

that is holding two test masses (m) made of different chemical compositions (A and

B) at both ends. The total force on a test mass would have contributions from gravity,

centrifugal force and possibly from a new force. If one of the test mass is attracted

more than the other toward a putative charge, and if the net force on each test mass

does not lie in the same plane, the torsion balance experiences a torque:

T5 =
1

2
sm∆a⊥ =

1

2
sm∆a sin δ (2.6)
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where δ is an angle between the average new force and the sum of all the forces (gravity,

centrifugal force and the new force). As we will describe later, the experiments should

be designed so that the net force does not lie in the same plane and sin δ is maximised.

Figure 2.3: A schematic view of a torsion balance (This figure was quoted from [33].)

Disturbances

Torsion-balance experiments are generally limited by systematic error (e.g. [25]). In

general, experiments are designed as symmetrical as possible to have less susceptibility

to sources of systematic error. For a sensitive experiment, significant efforts are required

to reduce systematic errors associated with gravity gradients, thermal variations and

mechanical disturbances.

To reduce gravity gradient effects, the leading-order gravitational moments of test

masses are generally minimized and also the ambient source mass gravitational mo-

ments are reduced by means of a compensating mass distribution (see [27, 30] for

Seattle group’s procedures).
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Temperature variations are typically minimized by controlling the thermal environ-

ment of the apparatus and by maximising the symmetry of the experiment.

Mechanical disturbances of the suspension fiber can easily produce systematic er-

rors. For example, a tilt of the fiber attachment changes the orientation of the pendu-

lum and can cause a rotation on the torsion fiber that mimics a new force. Nonlineari-

ties in the fiber can convert vertical seismic noise into the torsional period, though the

peak of seismic noise is at larger frequencies than the typical torsion period.

Solar source experiments

Modulation of a signal can eliminate spurious disturbance. As the Sun has approxi-

mately one-day period, the expected signal of a solar source experiment has the same

period of approximately 24 hours. However, this is not a very convenient period as

many sources of disturbances, such as temperature and vertical seismic motion, vary

with the same cycle.

The solar experiments loose sensitivity for range of less than 1 AU.

Terrestrial and laboratory source experiments

To explore ranges shorter than 1 AU, terrestrial sources and laboratory sources are

used.

For a range which is larger than the radius of the Earth, a new force and the

gravitational force would be aligned. However, because of the Earth’s rotation (angular
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velocity ω), the torsion fiber tilts from those forces by (e.g. [25]):

δ 
 ω2RE

2gE

sin 2Θ (2.7)

where Θ, RE and gE are the latitude of the experiment, the radius of the Earth and the

Earth’s gravity, respectively. The maximum sensitivity of terrestrial source experiments

is obtained at a latitude of 45◦. In addition, in the configuration with the torsion

arm aligned along the North-South direction, the effect of a new force towards the

Earth would not produce a torque because their resultant forces are in the same plane.

Theretofore, East-West configuration is preferred for terrestrial source experiments.

The Seattle group continuously rotates their torsion balance by means of a high-

precision turntable [27]; they can choose a convenient period of signal modulation,

which is considerably shorter than the 24 hours period of the Sun. This eliminates

the disturbances with daily cycle that was involved in the solar source experiments.

Even though the rotation of the apparatus principally introduces noise, they achieved

a sensitivity comparable to the solar source experiment (see Figures 2.1 and 2.2) that

does not involve the active rotation of the apparatus, using the entire Earth as the

source. This high sensitivity is because of the advantage of the choice of the period

and because of the larger signal by using the Earth as the source (roughly three times

as large as the case of the solar source experiment).

To obtain a sensitivity to terrestrial local source, experiments are set at the edge of

a cliff or on the slop of a hill. The Seattle group’s experiments are located on a hillside

at the University of Washington [27]. To investigate shorter ranges, they rotate their
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laboratory source mass of U238 around the stationary balance [30, 28].

Seattle group’s experiments, using the entire Earth [27], the local terrestrial source

[27] and the laboratory source [30, 28], put the constraints on the regions shown in

Figures 2.1 and 2.2.

Summary

Modern torsion balance experiments have a sensitivity of better than 10−12 in ∆a/ag

(η). The sensitivity is limited by thermal noise and seismic noise. The thermal noise

could be reduced by a factor of ten or so by operating a cryogenic torsion balance

[34]. There are no good solutions to the problem of the seismic noise. A large fraction

of the vertical seismic motion originates from human activity. Only one solution to

avoid this noise source may be to set the experiment at a quiet place, such as a remote

region or in space. There are Indian torsion balance experiments that are operated in

an underground laboratory at a remote village in South India [35]. The Indian group

aims at a sensitivity of 10−14 in ∆a/ag (η). Also, several space-based experiments have

been proposed as future experiments. We will discuss them in Section 2.4.

2.3.2 Lunar laser ranging

Lunar Laser Ranging Experiment (e.g. [36]) is to measure the distance between the

Earth and the Moon by laser ranging. Laser retro-reflectors were placed on the Moon

by astronauts of Apollo (11, 14, 15) and French-Russian collaboration during 1967 to

1973.
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General relativity predicts geodetic precession of the lunar orbit with respect to

inertial frame of the solar system by 19 ms of arc per year [36]. Search for deviation

from this predicted value of precession can investigate a new force.

For a putative Yukawa-type new force of the form given in Equation (1.25), the

deviation from the lunar precession angle can be given by the rate of precession per

orbit [37]:

δϕ ∼= +παij(a/λ)2e−a/λ (2.8)

where a is the semi-major axis of the Moon from the Earth. One can see the effective

sensitivity of this method from Equation (2.8). For a fixed value of αij, the maximum

sensitivity is achieved at a/λ = 2. As shown in Figure 2.1, the sensitivity vanishes for

both of a/λ → ∞ and a/λ → 0.

A result of the Lunar Laser Ranging experiment shows a deviation of −0.3 ± 0.9%

from the predicted value of 19 ms of arc per year [26]. This uncertainty corresponds to

δϕ ∼ 2 nrad/orbit. With this value and Equation (2.8), we obtain the exclusion plot

in Figure 2.1.

2.3.3 Inverse-square law experiments

For the shortest range in Figures 2.1 and 2.2, the inverse-square law experiments es-

tablish the most stringent limits. This type of experiment belongs to the category of

search for composition-independent effects, which examines the variation of the New-

ton’s constant with r (G(r)), as described in the Section 2.1.
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In order to check the variation of G(r), measurements of G at two different positions

of r1 and r2 are compared. Torques, τ1 and τ2, experienced on a torsion balance toward

a source mass at position r1 and r2, respectively, are measured. Uncertainties in each of

the torques are attributed to the mass measurements of the proof masses and the source

mass, the determination of the distances (r1 and r2) and the Newton’s gravitational

constant. In order to eliminate the uncertainty due to the absolute accuracy of the

mass measurements and the value of the Newton’s constant, the ratio of the torque

difference is generally considered:

∆ =
τ2 − τ1

τ1

. (2.9)

In order to conduct the short-range experiments, various experimental geometries

have been investigated. One of these ideas is to use a principle that a test body inside

the gravitational field of a spherical shell or a cylindrical shell with an infinite length

ideally does not feel the force from the shell as it is moved. This is the case when the

inverse-square law is valid. If one measures a torque of the test body inside the source

mass of cylindrical shell, it would be attributed to a new non-inverse square force.

Hoskins et al. [31] carried out experiments with this type of experimental geometry

(cylindrical shell with inner radius 3 cm) and put the most sensitive limit at the range

of a few centimeters as shown in Figures 2.1 and 2.2.
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2.4 Space-based Experiments

As we have seen in Section 2.2, Seattle group’s experiments give the most stringent

limits on the Yukawa-type new force at almost all over the range of λ in Figures 2.1 and

2.2. Thermal effects, gravity gradients and seismic noise basically limit the sensitivity of

the experiments. Although the ground-based experiment can be improved, the seismic

effects may ultimately limit the improvement of sensitivity. Space-based experiments

have been planned as future experiments to explore the violation of the Universality of

Free Fall. They are designed to improve the current sensitivity by, at least, one order

of magnitude. As described in Section 1.3, Damour and Polyakov suggested that a

superstring theory would violate the Universality of Free Fall at the level of 10−14 to

10−23 [20], which could be explored by some of the suggested space-based experiments.

We will summarise some space-based experiments in this section. We will emphasize

the STEP project as the main body of this thesis discusses disturbances associated with

test masses for STEP. We will compare other space-based projects with STEP.

2.4.1 STEP

Overview

STEP (e.g. [38]) is an international project and was originally proposed by Stanford

University nearly 30 years ago [39]. STEP aims at testing the Universality of Free Fall

to the level of 10−18.

As shown in Figure 2.4, pairs of test masses made of different chemical composi-

tions are to be put in a low Earth orbit (approximately 500 km above the surface of
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the Earth). The test masses are to be in free fall in the Earth’s gravity field. The

difference in acceleration between the test masses is to be detected using a SQUID

(Superconducting Quantum Interference Device) position detector (we will describe

these details later.).

As shown in Figure 2.4, test masses are belted cylindrical shapes (see below for

details on the shape design). The test masses can move relative to each other along

the axial axis, z. Figure 2.4 shows the case when the inner test mass is attracted by the

Earth with a larger acceleration than the outer test mass. The expected signature of

a violation of the Universality of Free Fall is a modulation of once per Earth orbit (see

Figure 2.5). However, in the normal mode of operation, the spacecraft is to be spun

about an axis perpendicular to the orbital plane to shift the expected signal frequency

from the orbital frequency (the spin frequency is to be in the range from -3 to +3

revolutions per orbit to prevent it from disturbances due to destabilization). Many

disturbances potentially have the orbital frequency, such the electric charging from

South Atlantic Anomaly and gravitational couplings of the test masses to the Earth’s

higher moments when the spacecraft is in an elliptical orbit.

A schematic view of the STEP cryostat and the test mass housing are shown in

Figures 2.6 and 2.7, respectively. The cylindrical dewar vessel (length 1.3 m, diam-

eter 1.0 m, Figure 2.6) can contain 180 l of liquid helium. The experiment operates

throughout the mission at 1.8 K. The liquid helium holds about seven months. Detailed

descriptions of the spacecraft can be found, for example, in [40, 41].
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Figure 2.4: A schematic view of STEP (adapted from [42], not drawn to scale). A
pair of test masses (belted cylinders) is in a low Earth orbit. The test masses can only
move relative to each other along the z-axis. If the inner test mass is attracted by the
Earth with a larger acceleration than the outer test mass, the relative motion would
be schematically as shown in this figure. (Spin of the spacecraft (see text) is omitted
in this figure for simplicity.)

Figure 2.5: An expected signal of a violation of the Weak Equivalence Principle (quoted
from [43]) when the spacecraft was not spun.
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Figure 2.6: A schematic view of the STEP cryostat (quoted from [41]). The height
and the diameter of the dewar are roughly 1.3 m and 1 m, respectively (p. 5 in [40]).

Figure 2.7: A schematic view of the STEP test-mass housing (quoted from [41]). The
length of each differential accelerometer is approximately 165 mm.
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Advantages in STEP

The STEP spacecraft orbits around the Earth at approximately 500 km altitude; the

full value of the Earth’s gravity field at that altitude (
 8.4 m/s2) is to be balanced

against the spacecraft’s orbital acceleration. The Earth’s gravity is larger than the

Sun’s gravity by a factor of roughly 1000. Also, the Earth’s gravity is larger than

the maximum centrifugal force due to the Earth’s rotation (at a latitude 45◦) by a

factor of approximately 700. The increase of the attracting field (ag in Equation (2.1))

improves on the sensitivity of the ground-based experiments by approximately 3 orders

of magnitude for the range larger than roughly 7000 km (radius of the Earth plus the

latitude of the orbit (∼ 500 km)).

Another improvement of approximately 2 orders of magnitude comes from the re-

duction of the seismic noise in space. In space, the disturbance due to the seismic

noise of the ground-based experiments is replaced by noise due to atmospheric drag.

This disturbance is reduced by the drag compensation system which maintains the test

masses in an almost absolute inertial reference.

These two advantages, taken together, could produce an improvement on the limits

established by the ground-based experiments by approximately 5 orders of magnitude.

According to the error analysis by Worden et al. [44], the STEP sensitivity would be

limited by the SQUID noise.

The experiment chamber is cooled to cryogenic temperatures (1.8 K). This cryogenic

operation has several advantages [38]:
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• The SQUID magnetometer, a very stable and sensitive position detector, is avail-

able (it can detect a relative acceleration of 10−15m/s2 in 1 sec.).

• Superconductors can be used to shield the Earth’s magnetic field (a thin lead bag

around the experiment chamber, together with niobium coating of test masses

(see the description of detection system below), attenuates the Earth’s magnetic

field by a factor of at least 1010.).

• Gas pressure can be reduced because all gases except helium are frozen at 1.8 K

(pressures less than 10−10 torr are feasible).

• Radiation pressure disturbances due to temperature gradients can be reduced.

Detection system

The differential acceleration, between the test masses is monitored by a SQUID position

detector.

A single accelerometer is composed of a test mass placed between two supercon-

ducting pickup coils (spiral pancake coils of inductances L1 and L2 in Figure 2.8) wired

in series, with a persistent supercurrent flowing around the circuit. The test mass is

coated by a thin film of superconducting niobium. The coating is used to constrain the

test mass’s movement on a magnetic bearing that is aligned with the axial direction

(z-direction) of the test mass. Motion of the test mass towards one of the pickup coils

will change the magnetic flux of the pickup coils and a current will flow to the third

coil (L3) in parallel with the two pickup coils. This signal current is proportional to
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the first order to the displacement and is to be detected by the SQUID magnetometer.

By employing two such detection circuits in an accelerometer, the differences in

displacement between test masses can be measured (see Figure 2.9). STEP uses this

principle for the measurement of differential acceleration between a pair of test masses.

The common mode signal of two test masses will be detected by SQUIDs and be used

for the drag-free control.

Test mass design

The Equivalence Principle only holds for test masses in an uniform gravitational field.

However, according to gravitational theories, uniform gravitational fields do not exist

(see Section 3.1). Gravity gradients in general disturb tests of the Universality of Free

Fall. Possible origins of gravity-gradients effects in STEP are in the spacecraft and

from the Earth’s gravity.

The Earth’s gravity-gradients effects are to be eliminated by adjustment of the

centres of mass of the test masses. The effects are at twice per signal frequency. The

adjustment is to be done until the gradient signal is nulled. This adjustment eliminates

not only the Earth’s gravity gradient effect, but also most of the gravity gradients due

to the spacecraft.

With this adjustment and the drag-free control system, the test masses are con-

trolled to be in free fall in the same gravitational field.

Even though they are put in the same gravitational field by the adjustment of

their centres of mass, they would not fall at the same rate unless they have the same
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Figure 2.8: Concept of an accelerometer (quoted from [43])

Figure 2.9: Measurement of differential acceleration (quoted from [41])
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gravitational higher moments. Their gravitational higher moments would couple to

the higher moments of surrounding materials around the test masses (see analysis in

Section 3.2).

The possible disturbances at the signal frequency are due to the helium tide (see

below) and thermal deformation of the spacecraft (by thermal radiation from the Earth)

(p. 59 in [40]).

Helium bubbles are evaporated from the liquid helium in the dewar (see Figure 2.6

for the configuration of the cryostat). The tidal bulge on the body of the liquid helium

would give disturbances at twice per signal frequency. As the surface tension of the

body of liquid helium tries to minimize its surface area, helium bubbles, formed in the

dewar, may pump up and form a single large bubble. This bubble would follow the

tidal force and rotate around the test masses at the expected signal frequency. This

motion of helium could produce a spurious acceleration at the same frequency as the

signal of the violation of the Weak Equivalence Principle by coupling differently to

higher moments of each test mass in a pair (see Chapter 3 for further analysis).

To eliminate those disturbances two approaches have been done for STEP: one is to

reduce the higher moments of the test masses and the other is to suppress the helium

motion.

The shapes of STEP test masses are optimized to reduce the gravitational higher

moments and simultaneously to have the same gravitational higher moments [45], by

taking the advantage of the belted cylindrical shapes suggested by Speake [46] (see
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Section 3.5). Other factors that could produce gravitational higher moments are density

inhomogeneities and thermal distortion of test masses. These aspects will be discussed

in this thesis.

To suppress the helium motion, a two-chamber dewar (the inner and outer radii

of approximately 25 cm and 50 cm, respectively) (Section 3.4.2 in [43]) and aerogel

confinement techniques [47, 48] (see Figure 2.6 for the configuration of the cryostat)

are under study. The inner and outer chambers of the dewar are designed to have

the same volume. This dewar is designed so that the inner chamber is kept full with

liquid helium during the first half of the mission and empty during the second half;

there would be no helium motion. Aerogel filled in the inner chamber is expected to

suppress the helium motion.

Disturbance due to the thermal deformations of the spacecraft would be less than

that due to the helium motion because the spacecraft is farther away from the test

masses. However, the spacecraft should be designed so that thermal deformations are

minimised as source.

Test mass selection

Materials selection is a compromise between the technical requirements and theoretical

motivation. Technical requirements includes machinability, coatability (with super-

conducting thin film), dimensional stability, density homogeneities and low magnetic

susceptibility.

As discussed in Section 2.1, a signal of a violation of the Weak Equivalence Principle
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is expected to be proportional to the difference in charge to a new force between test

masses (∆q5j−j′ in Equation (2.1)). One would like to chose test masses so that the

difference in charge is as large as possible to achieve a better sensitivity. Three kinds of

putative charges, baryon numbers (B = N +Z), isospins (Iz = N−Z) and electrostatic

energy density of a nucleus (E = Z(Z − 1)(N + Z)−1/3), have been proposed by the

theories to be related to new forces (see Sections 1.2 and 1.3, and Table 1.3).

Figure 2.10 shows the relative differences2 in the baryon number, isospin and elec-

trostatic energy density all relative to atomic mass (µ) for various elements that could

possibly be used as STEP test masses. Table 2.1 lists the absolute values.

As one can see in Figure 2.10, beryllium is expected to be a key element to ob-

tain high sensitivities; no elements have similar levels of those putative charges with

beryllium.

From a theoretical point of view, Be, Pt and Si (or elements close to Si in the plot,

such as Mg and Al) are suggested as test mass materials to distinguish between the

three putative charges [49]. However, the choice of materials is still under discussion

because of lack in the information on the technical aspects. Technical aspects have

to be experimentally checked for all candidate materials. At the moment, pairs of

Be-Pt, Be-Nb and Nb-Pt are the strongest candidate as STEP test masses. The main

reason why niobium was chosen is its superconductivity; there is no need to coat with

a niobium thin film. A prototype outer beryllium test mass and inner niobium test

2The relative differences are given by (qi − qBe)/(qBi − qBe), where qi is a charge (B/µ, IZ/µ or
E/µ) of an element i.
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Figure 2.10: Relative differences in B/µ (circle), Iz/µ (square) and E/µ (triangle)
between elements considered as STEP test mass materials, plotted as a function of
atomic number. The absolute values are listed in Table 2.1.

43



Element Z B µ B/µ Iz/µ E/µ
Beryllium 4 9 8.942211 1.006462 0.11183 0.64514

Magnesium 12 24.3247 24.120799 1.008453 0.01346 1.88871
Aluminium 13 27 26.772043 1.008515 0.03735 1.94232

Silicon 14 28.1088 27.867542 1.008657 0.00390 2.14796
Titanium 22 47.9305 47.507173 1.008911 0.08273 2.67719
Vanadium 23 50.9976 50.546037 1.008934 0.09887 2.69948

Iron 26 55.9121 55.413691 1.008994 0.07060 3.06757
Nickel 28 58.771192 58.249142 1.008962 0.04757 3.33819
Copper 29 63.616522 63.052162 1.008951 0.08908 3.22601
Zinc 30 65.4595 64.879191 1.008944 0.08414 3.32728

Germanium 32 72.708329 72.066646 1.008904 0.12084 3.29799
Zirconium 40 91.3185 90.515443 1.008872 0.12504 3.82721
Niobium 41 93 92.185017 1.008841 0.11933 3.92665

Molybdenum 42 95.9838 95.145077 1.008815 0.12595 3.95288
Silver 47 107.96341 107.030804 1.008713 0.13046 4.24217

Tantalum 73 180.999877 179.542926 1.008115 0.19494 5.17521
Tungsten 74 183.890595 182.414337 1.008093 0.19675 5.20766
Iridium 77 192.254 190.723678 1.008024 0.20057 5.31628

Platinum 78 195.116262 193.565933 1.008009 0.20208 5.34965
Gold 79 197 195.437208 1.007996 0.19955 5.41867

Bismuth 83 209 207.35778 1.007920 0.20737 5.53082

Table 2.1: Average values of B/µ, Iz/µ and E/µ (over the stable isotopes) for the
elements plotted in Figure 2.10, calculated using the values of Z, B and µ in [13]. The
values of B are weighed by stable isotropic abundances.
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mass were fabricated as a trial (platinum test masses were not made because of the

cost.). Technical aspects of density inhomogeneities and thermal dimensional stability

of the materials for the prototype test masses will be examined in this thesis.

In practice, Pt/Ir alloy is considered to be used as test masses, instead of pure

platinum. Pure platinum is probably too soft. Also, HIPed (Hot Isostatically Pressed)

beryllium is considered to be used because crystalline beryllium has anisotropic thermal

expansion (see Section 6.1.1).

2.4.2 Microscope

Microscope is a space-based French project of ONERA (Office National d’Etudes et

de Recherches) [50, 51]. This experiment can be viewed as a simple version of STEP.

The objective is to test the violation of the Universality of Free Fall at the level of

10−15. This is the only one project that is funded and will be launched in 2004. The

main differences between STEP and Microscope are: it operates at room temperature;

test masses are straight hollow cylindrical shapes (without belts); two electrostatic

accelerometers to be used; one pair of test masses made of 90Pt-10Rh (weight percent)

alloy and Ti (0.5 kg - 0.4 kg) and another pair made of the same material, 90Pt-10Rh

alloy (0.5 kg - 1.7 kg), are to be used [52].

2.4.3 Galileo Galilei

Galileo Galilei (GG) [53, 54] is an Italian project and funded by ASI (Agenzia Spaziale

Italiana). It is designed to achieve a sensitivity of 10−17 at room temperature. It
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consists only one electrostatic accelerometer to simplify the apparatus. It uses hollow

cylindrical test masses that are nested within each other (see Figure 2.11). It modulates

the signal of the violation of the Universality of Free Fall, by spinning the spacecraft

at 2 Hz along the test masses’ axial axis which is directed parallel to the Earth orbit

of the spacecraft. This modulation frequency is higher than STEP and Microscope by

approximately three orders of magnitude. This high frequent signal of GG reduces low

frequency noise. Two pairs of capacitance plates between the test masses measure any

relative displacements of the centre of mass of the test masses.

Another feature of this experiment is the room temperature operation. The reason

why GG could achieve the sensitivity compatible to the cryogenic experiment of STEP

is that they use roughly 100 times heavier test masses of 10 kg. Thermal noise is

proportional to (T/M)1/2, where T is temperature and M is mass. Therefore, one can

reduce thermal noise by increasing the weight of the test masses.

According to [54], residual air drag is the limiting factor of the GG experiment.

2.5 Summary

We have seen the current limits on the violation of the Weak Equivalence Principle

and reviewed sensitive experiments and future experiments. The current limits are

established by the torsion balance experiments of the Seattle group over the most of the

range. To improve the current limits, space-based experiments have been suggested.

Some of them would have the sensitivity to test the prediction motivated by string
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Figure 2.11: A schematic view of GG (quoted from [54], not drawn to scale). A cross
section of the coaxial test cylinders and capacitance sensors in the plane perpendicular
to the spin axis. The entire spacecraft spins at an angular velocity of ωs while orbiting
around the Earth at an angular velocity of ωorb. This figure shows the case when
the inner test mass is attracted by the Earth more than the outer test mass because
of a violation of the Universality of Free Fall. The signal is modulated at ωs as the
capacitance sensors that detect the relative motion between test masses spin at ωs with
the spacecraft.
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theory. However, the space-based experiments are sensitive only for ranges longer than

approximately the Earth’s radius, while the laboratory experiments are sensitive to

short ranges and long ranges; simple models suggest that elimination of short range

forces also eliminates long range forces. Single experiment is never enough to test the

principle because of the variety of the possible new forces that violate the principle.
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Chapter 3

STEP test masses

In this chapter, we review the design of STEP test masses and discuss the allowable

magnitude of gravitational higher moments of the test masses. After an introduction,

we describe the acceleration of a test mass in a gravitational field in Section 3.2 and

differential acceleration of a pair of test masses in Section 3.3. We describe quantities

that express the magnitude of the gravitational multipole moments in Section 3.4. We

describe the current shape design of STEP test masses in Section 3.5 and discuss the

allowable magnitudes of the gravitational multipole moments in Section 3.7. Metro-

logical issues, density inhomogeneities and thermal distortion, follow in Sections 3.6.1

and 3.6.2.

3.1 Introduction

Newton’s inverse square law can be written as a Poisson equation:

∇2Φ = 4πGρ (3.1)
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where Φ is a gravitational potential due to an active mass with density ρ. G is the

gravitational constant. This equation is replaced by the Einstein equation in Einstein’s

General Relativity (e.g. [2]):

Gµν =
8πG

c4
T µν (3.2)

The above equations show that the gravity gradients (the left-hand sides of those

equations) are determined by mass/energy densities (the right-hand sides). From these

equations, one can see that if there is mass/energy, there are gravity gradients produced

by them; there are no uniform gravitational fields.

In Section 1.1, we have seen that the Equivalence Principle allows any free falling

coordinate system in arbitrary gravitational field to be a coordinate system in absence

of gravitation. However, the cancellation of the gravitational force and the fictitious

force occurs only at one point. In reality, as we have seen above, there are no uniform

gravitational fields. Therefore, to test the Universality of Free Fall to a high precision,

it is essential to design the test masses to be gravitational monopole (point mass)-

like as much as possible. As we will see later in this chapter, the STEP test masses

are designed to be virtually a monopole-like. Other possible causes to make the test

masses differ from the gravitationally monopole-like behavior are imperfections in test

masses, such as density inhomogeneities and thermal distortion. We will discuss these

metrological aspects in this thesis.
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3.2 Acceleration of a test mass

Previously during the process of optimizing the geometry of the test masses, axial

symmetry was assumed [38, 55]. However, as shown in Section 5.4, our measurements

of the density inhomogeneities in real materials indicate that a more general approach

is required. The acceleration of a non-axially symmetric test mass will be described in

this section. We will first review the form of gravitational potential.

3.2.1 Gravitational potential

The gravitational potential energy of a point test mass (MTM) in a gravitational field

due to a point source mass (MSM) can be written as follows:

V (r) = −G
MTMMSM

r
(3.3)

where r is the distance between the test mass at x′ and the source mass at x, |x− x′|.

When MTM and MSM are not point masses, they are derived by integrating the

density distribution, ρ(x′) for the test mass and ρ(x) for the source mass, over the

volume, v, for the test mass or V for the volume of the source mass:

MTM =
∫

v
ρ(x′)d3x′, (3.4)

MSM =
∫

V
ρ(x)d3x. (3.5)

Therefore, Equation (3.3) becomes:

V (x) = −G
∫

v

∫
V

ρ(x′)ρ(x)

|x − x′| d3x′d3x. (3.6)
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1/|x − x′| can be expanded as follows (Equation (3.70) in [56]):

1

|x − x′| = 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

r′l
rl+1

Y ∗
lm(θ′, φ′)Ylm(θ, φ). (3.7)

By substituting Equation (3.7) into Equation (3.6), we obtain:

V (x) = −4πG
∞∑
l=0

l∑
m=−l

1

2l + 1
qlmQlm (3.8)

where

qlm =
∫

v
ρ(x′)r′lY ∗

lm(θ′, φ′)d3x′, (3.9)

Qlm =
∫

V
ρ(x)r−(l+1)Ylm(θ, φ)d3x. (3.10)

qlm and Qlm represent the mass distribution of the test mass and the source mass,

respectively. qlm are called gravitational multipole moments.

3.2.2 Shift of multipole moments

As described in Section 2.4.1, the STEP test masses are to be belted-cylindrical shapes

and their movement is restricted to the axial direction. The force between the test mass

and the source mass in the axial direction can be obtained by shifting the multipole

moments of the test mass along the axis by dZ ′ [57].

The leading order term of the shifted multipole moments (q̃LM) can be obtained as

follows using the formula by D’ Urso and Adelberger, Equation (10) in [58]:

q̃LM =

√√√√4π(2L + 1)!

3!(2l + 1)!
dZ ′Y ∗

10(0)C(1, 0, l,m, L,m)qlm, (3.11)

where L = l + l′(= l + 1). Because of the small displacement l′ is taken as 1. Also,

because the displacement is along the axial direction, the selection rule of M = m [58]
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is applied in Equation (3.11). The spherical harmonics [56] and the Clebsh-Gordan

coefficient [59] in Equation (3.11) are given as follows, respectively:

Y ∗
10(0) =

√
3

4π
, (3.12)

C(1, 0, l,m, L,m) =

√√√√(l − m + 1)(l + m + 1)

(2l + 1)(l + 1)
. (3.13)

By substituting Equation (3.12) and (3.13) into Equation (3.11) we obtain:

q̃LM =

√
(2L + 1)(L − m)(L + m)

2L − 1
dZ ′qL−1,m. (3.14)

With Equation (3.14), the force (= −dV/dZ ′) is given as follows:

FZ = 4πG
∞∑

L=1

L∑
m=−L

√√√√ (L − m)(L + m)

(2L − 1)(2L + 1)
qL−1,mQLm. (3.15)

By dividing Equation (3.15) by the mass of the test mass (MTM), the acceleration

of the test mass is given as follows1:

aZ =
4πG

MTM

∞∑
L=1

L∑
m=−L

√√√√ (L − m)(L + m)

(2L − 1)(2L + 1)
qL−1,mQLm. (3.16)

By replacing L − 1 by l,

aZ =
4πG

MTM

∞∑
l=0

l∑
m=−l

√√√√(l + 1 − m)(l + 1 + m)

(2l + 1)(2l + 3)
qlmQl+1,m (3.17)

This equation agrees with [61], which was obtained by direct differentiation of

the gravitational potential. A detailed description of the differentiation is given in

Appendix A of [62].

1Equation (3.16) was firstly obtained by Speake in September 2000 [60] and described in [57].
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3.3 Differential acceleration of test masses

The differential acceleration between a pair of test masses can be obtained by taking

their difference in acceleration (3.16):

∆aZ = aZ
outer − aZ

inner, (3.18)

where outer and inner stand for outer test mass and inner test mass, respectively.

When the test masses are in the same gravitational field (Ql+1,m), the differential

acceleration is given as follows:

∆aZ = 4πG
∞∑
l=0

l∑
m=−l

√√√√(l + 1 − m)(l + 1 + m)

(2l + 1)(2l + 3)

(
∆qlm

MTM

)
Ql+1,m (3.19)

where

∆qlm

MTM

=
qouter
lm

M outer
TM

− qinner
lm

M inner
TM

. (3.20)

As described in Section 2.4.1, the differential acceleration of STEP test masses is to be

measured with a sensitivity of 10−18g (g = 8.4m/s2 at the orbital latitude of 500 km).

Thus, the differential acceleration noise levels should be kept, say, to below 10−18m/s2.

STEP test masses are not designed to monitor the noise sources; it is impossible

to perfectly discriminate real signals due to the violations of the Weak Equivalence

Principle and false signals due to the noise source masses. Therefore, it is essential

for the STEP experiment to have the accelerometer sufficiently insensitive to the noise

source masses. As mentioned in Section 2.4.1, this requirement may be achieved by

either or both of the following approaches; one is eliminating the higher multipole
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moments of the test masses (or the difference in higher multipole moments between

the test masses) and the other is reducing the noise source (Ql+1,m). The STEP team

used the former approaches in the process of the design of the test masses (see Section

3.5 for the detailed design). In addition, higher multipole moments produced by the

imperfections in test masses, due to for example density inhomogeneities and thermal

distortion, have to be examined. These metrological aspects will be dealt in this thesis.

The latter approach is under study; the new aerogel confinement techniques [47, 48]

are being developed to exclude helium motions as a source of disturbance (see Section

2.4.1).

3.4 Gravitational multipole moments of test masses

In this section, we review three quantities that express the magnitude of gravitational

multipole moments of the STEP test masses. The first two quantities, the differential

gravitational quadrupole moments and the gravitational susceptibility [55], have been

conventionally used by the STEP team.

3.4.1 Differential gravitational quadrupole moments

The shape design of STEP test masses has been done by assuming that their density

is homogeneous [38, 45, 55]. When test masses are homogeneous, Equation (3.16)

becomes simpler; all the odd terms (l = 1, 3, 5, ...) of the multipole moments (Equation

(3.9)) vanish because of the integrals over the cylindrical (belted) test masses with

mirror-symmetry about a mid-plane perpendicular to the z-axis [55]; because of the
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axial symmetry, m = 0.

The multipole moments of a simple cylinder (with radius R, half-length L and

density ρ) can be written as follows:

qlm = ρ
∫

v
r′lY ∗

lm(θ′, φ′)d3x′ (3.21)

= MTMklm (3.22)

where

klm =
1

2πR2L

∫
v
r′lY ∗

lm(θ′, φ′)d3x′. (3.23)

klm are determined by the geometry of the test mass. Equation (3.20) becomes:

∆qlm

MTM

= kouter
lm − kinner

lm = ∆klm (3.24)

The first terms (l = 0) of multipole moments (Equation (3.9)) generally corresponds

to a point or spherical test mass2:

q00 =
∫

v
ρ(x′)Y00d

3x′ (3.25)

=
1√
4π

MTM (3.26)

Therefore, the first terms in the multipole moment expansion to contribute to the

differential acceleration are quadrupole moments (q20) by assuming the axial symmetry

of the test mass. The contribution from the quadrupole moments is most likely to be

2Spherical objects are not the only one gravitational monopole. A non-spherical gravitational
monopole shape was discussed for STEP by Connes et al [63]. An asymmetric monopole was discussed
by Barrett [64].
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dominant; when l gets larger the contribution become smaller as Ql+1,m ∝ 1/rl+2 (see

Equation (3.10)). The differential acceleration (Equation (3.19)) is given as follows:

∆aZ,20 =
12πG√

35
(∆k20)Q30, (3.27)

As mentioned before, the differential acceleration should be kept below the required

noise level, SZ (= 10−18m/s2):

|∆aZ | < SZ . (3.28)

With this requirement and Equation (3.27), the difference in quadrupole moments

should satisfy the following condition:

∣∣∣∣ ∆q20

MTM

∣∣∣∣ <
κ · SZ

Q30

(3.29)

where κ is a coefficient:

κ =

√
35

12πG
= 2.4 × 109. (3.30)

The moment of inertia of the cylinder can be given as follows:

IZ = ρ
∫ L

−L

∫ 2π

0

∫ R

0
σ′2 · σ′dσ′dφ′dz′ (3.31)

=
MTM · R2

2
(3.32)

where MTM = 2πR2Lρ.

By dividing Equation (3.29) by the moment of inertia of test masses (Equation

(3.32)), which has the same dimensions as quadrupole moments, we obtain:

∣∣∣∣∆q20

IZ

∣∣∣∣ <
2κ · SZ

Q30 · R2
, (3.33)

57



We call |∆q20/IZ | differential (gravitational) quadrupole moment.

We can use the same argument for the other quadrupole moments (q21 and q22) when

the axial-symmetry is not assumed. If the density of test masses is not homogeneous,

other terms in the multipole moments could be dominant. It depends on the exact

form of the inhomogeneities. We will discuss this in more detail in Section 3.6.1. For

the density inhomogeneities which we observed, q20 were dominant (see Section 5.4).

3.4.2 Gravitational susceptibility

Gravitational susceptibility can be defined as follows [55]:

χdiff =
∆aZ

aCM

(3.34)

= 4πG
∞∑
l=0

l∑
m=−l

√√√√(l + 1 − m)(l + 1 + m)

(2l + 1)(2l + 3)

(
∆qlm

MTM

)
Ql+1,m

aCM

(3.35)

where aCM is the first-order common-mode acceleration of test masses:

aCM = G
MSM

r2
(3.36)

where r is the distance between the centre of mass of the test mass and the source

mass, as defined previously. Gravitational susceptibilities have to satisfy:

|χdiff | <
SZ

aCM

(3.37)
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3.4.3 Differential gravitational multipole moments per unit
mass

From Equations (3.17) and (3.28), differential gravitational multipole moments per

unit mass can be defined:∣∣∣∣∣∣
∞∑
l=0

l∑
m=−l

(
∆qlm

MTM

)∣∣∣∣∣∣ <

∣∣∣∣∣∣ 1

4πG

∞∑
l=0

l∑
m=−l

√√√√ (2l + 1)(2l + 3)

(l + 1 − m)(l + 1 + m)

SZ

Ql+1,m

∣∣∣∣∣∣ (3.38)

Differential gravitational multipole moments per unit mass are determined only by the

details of the test mass. The limit on them is determined only by the details of source

mass (Ql+1,m).

3.4.4 Summary

We have described the definitions of three quantities that express the magnitude of

multipole moments of test masses. The characteristics of the quantities are summarized

in Table 3.1. Differential gravitational multipole moments per unit mass (∆qlm/MTM)

and differential quadrupole moments (∆q20/IZ) do not depend on the details of the

source mass. However, susceptibilities (χdiff ) depend on r. The limits on ∆qlm/MTM

and on χdiff are determined only by the details of the source mass, while the limit on

∆q20/IZ depends on the size of the test mass (R) (see the right-hand side of Equation

(3.33)).

∆qlm/MTM is useful when one wishes to independently determine the quantity, to

indicate the magnitude of multipole moments of a test mass, and the limit on the quan-

tity. However, ∆qlm/MTM is not dimensionless. χdiff has been used during the opti-

mization of the shape design of STEP test masses (see Section 3.5). We use ∆qlm/MTM
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Quantity Dependence on Dependence on Limit is determined by
details of TM details of SM

q20/IZ Yes (q20 and R) No Q30 and R
χdiff Yes (qlm) Yes (Ql+1,m and aCM (or rl)) aCM

qlm/MTM Yes (qlm and MTM) No Ql+1,m

Table 3.1: Summary of the quantities to express the magnitudes of multipole moments
of STEP test masses. The second and the third columns are the dependence of the
quantities on details of the test mass (TM) and the source mass (SM), respectively.
Yes/No means that the quantity depends/does not depend on the details of the test
mass or the source mass. The fourth column is the parameters that determine the
limits on the quantities.

when we estimate the allowable levels of density inhomogeneities as the calculation be-

comes simple due to cancellation of MTM and also dimensionless arguments are not

required in the calculations (Chapter 4). Use of ∆q20/IZ is not convenient to estimate

the allowable levels of density inhomogeneities as the moment of inertia depends on

the density distribution. We use ∆q20/IZ in the estimation of the allowable level of

anisotropy of thermal expansion of a test mass as dimensionless arguments without

any information on the source mass is convenient for this purpose (Section 6.2).

3.5 Shape design of STEP test masses

The current design of the STEP test masses by Lockerbie is shown in Figure 3.1 [45].

The dimensions (R1, R2, R3, L1 and L2 in Figure 3.1) are given in Table 3.2. The

contributions to the susceptibility for a source mass at r = 250 mm is given in Table

3.3. Radii of 0.2 mm for the internal machined edges, and 0.2 mm external chamfers

on these test masses were taken into account in the estimation.
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A test mass in the form of a solid or hollow cylinder without a belt can be designed

to have q20 = 0 and q60, q80, q10, etc. very close to zero. However, q40 can never be

nulled. The belted cylindrical shapes allow to have q20 = q40 = 0. Also, there are

sufficient dimensional degrees of freedom to control the higher moments in the belted

cylindrical shapes. The belted cylindrical shapes were originally discussed by Cook

[65] and were suggested for STEP by Speake [46].

By taking advantage of the belted cylindrical shapes, the current designs were

chosen to have q20, q40 and q60 nominally zero for the two test masses, and to minimize

the absolute difference of q80 terms [42, 45] (see Table 3.3).

By summing each contributions of multipole moments to the susceptibility in Table

3.3, we obtain +0.06 ppm and -4.71 ppm for the inner test mass and the outer test mass,

respectively. Therefore, the gravitational susceptibility is -4.77 ppm (outer-inner) by

taking the difference between them.

Figure 3.1: A cut-away view of a STEP test mass (quoted from [45]). Nomenclature
used in Table 3.2 is defined in this figure.
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Outer test mass [mm] Inner test mass [mm]
R1 24.237 5.100
R2 26.739 10.950
R3 43.122 19.237
L1 69.416 21.158
L2 31.364 11.948

Table 3.2: Dimensions of STEP test masses at the operating temperature, 1.8 K

Quadrupole Hexadecapole 64-pole 256-pole 1024-pole
Inner test mass 0.02 0.01 0.03 0.00 0.00
Outer test mass -0.03 -0.01 0.03 -4.25 -0.45

Table 3.3: Contributions to the gravitational susceptibility of the STEP test masses,
expressed in parts per million, for a source mass at 250 mm from the common centre
of mass of the test masses (quoted from [45]).

Machining tolerances on the test masses, including those on parallelism and concen-

tricity, were derived by Lockerbie to limit the multipole moments. From his analysis,

the machining tolerances required for the STEP test masses are better than 1 µm

[66, 67].

3.6 Metrological aspects

As one can see in the definition of the gravitational multipole moments (Equation

(3.9)), they depends on the density variation (ρ(x′)). Thermal distortion changes the

shape of a test mass and affects the limits of the integral of the gravitational multipole

moments. In this section, an introduction to the main topics of this thesis will be

presented.
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3.6.1 Density inhomogeneities

Davis and Quinn have demonstrated high precision measurements of density inho-

mogeneities for STEP using a hydrostatic weighing method [68]. We will estimate

allowable density variations for STEP test masses in Chapter 4. We will report mea-

surements of the density inhomogeneities in materials intended to be employed in STEP

by using the hydrostatic weighing method in Chapter 5. In addition, we will estimate

the disturbance which would be produced by these density inhomogeneities (Chapter

5).

Density inhomogeneities of lth power dominantly contribute to lth multipole mo-

ments. Density inhomogeneities of higher terms (such as a cubic variation (l = 3) or

higher (l > 3)) would be more unlikely to occur in materials. In addition, as mentioned

before, higher terms in acceleration decay more quickly.

Dipole moments could be the dominant term for some density variations (e.g. a

linear density variation along the z-axis). As one can see in Equation (3.19), dipole

moments (q10) couple to Q20 [56]:

Q20 =

√
5

4π

(
3

2
cos2 θ − 1

2

)
MSM

r3
(3.39)

=

√
5

4π

(
3

4
cos 2θ − 1

4

)
MSM

r3
(3.40)

One can see that Q20 does not have cos θ/sin θ terms, which produce spurious signals

at the expected signal frequency. Other Q2m do not have cos θ/sin θ terms either.

However, Q3m, which couple to quadrupole moments of test masses, include cos θ terms
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(see Equations (3.42) and (3.42)). Therefore, quadrupole moments would be generally

the dominant term to contribute the differential acceleration.

In fact, Q3m do not fully contribute to produce spurious acceleration at the signal

frequency [69], as shown below [56]:

Q30 =

√
7

4π

(
5

2
cos2 θ − 3

2
cos θ

)
MSM

r4
(3.41)

=

√
7

4π

(
5

8
cos 3θ +

3

8
cos θ

)
MSM

r4
(3.42)

Other Q3m terms have a similar cos θ dependence.

However, during the process of designing STEP test masses, χdiff was estimated

by assuming that all the terms of Q3m contribute to the spurious acceleration (see the

definition of χdiff in Equation (3.35)). This overestimates, for example the contribution

of q20 to χdiff , by approximately a factor of 3.

However, at the moment, it is impossible to give precise arguments on the allowable

level of multipole moments of STEP test masses because of lack in information on the

details of source masses. We follow the conventional way of estimation of the gravi-

tational multipole moments, used for the shape design of STEP test masses (Section

3.5); we consider all terms in Q3m and use its maximum value in the estimation of

allowable level. We will review the allowable level in Section 3.7.

3.6.2 Thermal distortion

STEP test masses will be operated in liquid helium. Even test masses designed by

carefully considering their gravitational behavior could disturb the STEP experiment
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if they deform at the cryogenic temperature from the machined shape at room tem-

perature. We discuss the acceptable level of thermal distortion for STEP test masses

by considering a change of the aspect ratio of a simple cylinder (Chapter 6). Also, we

investigate thermal distortion of the materials intended to be employed in STEP by

surveying existing literature (Chapter 6) and by experiments developed by ourselves

(Chapter 7).

3.7 Allowable levels of the differential gravitational

multipole moments

In this section, we review allowable levels of the gravitational moments of test masses.

We focus on quadrupole moments because they would be the dominant term to con-

tribute spurious acceleration.

As described before, the differential acceleration, between a pair of test masses, is

to be measured with a sensitivity of 10−18g in the STEP experiment. Thus, the target

noise level should be below 10−18m/s2.

In Section 3.5, we have reviewed that the gravitational susceptibility of a pair of

perfect STEP test masses is approximately 5 ppm (r = 250 mm). For this pair of

test masses to achieve the required noise level of 10−18m/s2, the source mass has to be

smaller than 0.5 g (Equation (3.37)).

The requirements for the performance of aerogel confinement, which is expected to

reduce the helium bubble motion, depends on how small the gravitational susceptibility

is. In other words, the allowable level of the gravitational susceptibility depends on
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how good the performance of the aerogel confinement technique is. The STEP team

plans to estimate the noise level due to the helium bubble by checking the performance

of the aerogel confinement techniques [70]. At the moment, we use a conventional noise

source described below.

Conventionally, the design of the STEP test masses has been done by aiming to

achieve the gravitational susceptibility (r = 250 mm) less than a few parts per million

[38, 42]. A part per million (1 ppm) of the gravitational susceptibility (r = 250 mm)

corresponds to the level that is just enough to achieve the required noise level (10−18

m/s2) when a 1-g spherical helium bubble3 at 250 mm away from the test mass is acting

as a source mass (the common mode acceleration is approximately 1 × 10−12 m/s2).

We use this conventional noise source of 1-g helium-bubble at 250 mm throughout this

thesis.

For this noise source, Q30 in Equation (3.33) is as follows from Equation (3.10)4:

Q30 =

√
7

4π

0.001[kg]

0.254[m4]
∼ 0.2 (3.43)

Therefore, the condition (3.33) becomes:

∣∣∣∣∆q20

IZ

∣∣∣∣ < 1 × 10−5, (3.44)

for a test mass with radius of 50 mm. 50 mm-radius was used here because it is roughly

the size of an outer STEP test mass (see Figure 3.1 and Table 3.2).

3The radius of 1-g spherical liquid helium (density of 145.6 kg/m3 at 2 K) is roughly 12 mm.
4As described in Section 3.6.1, we use all the terms of Q30 though we note that only the cos θ (or

sin θ) term could be a significant disturbance for STEP.
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From Equations (3.38) and (3.43), we obtain the following condition for quadrupole

moment per unit mass by assuming the conventional noise source,

∣∣∣∣ ∆q20

MTM

∣∣∣∣ < 1 × 10−8[m2] (3.45)

It would be impossible to make the imperfections, such as density inhomogeneities

and thermal distortion, identical for each test mass of a pair. Therefore, each test mass

should satisfy the conditions described above, namely:

∣∣∣∣q20

IZ

∣∣∣∣ < 10−5(R = 50mm) (3.46)

χa < 10−6(r = 250mm) (3.47)∣∣∣∣ q20

MT

∣∣∣∣ < 10−8[m2] (3.48)

where χa = aZ/aCM . Here, the limits are expressed in terms of q20 (except χdiff ) for

simplicity. But other quadrupole moments (q21 and q22) are equally important.

3.8 Summary

We have seen that the shapes of STEP test masses are optimized to reduce spurious

differential acceleration of the test masses. Even if the test masses are designed care-

fully, imperfections in test mass materials, such as their density inhomogeneities and

thermal distortion, could produce extra gravitational multipole moments. The differ-

ential acceleration due to those imperfections should be sufficiently smaller than the

required noise level of 10−18m/s2. We have reviewed three quantities that express the

magnitude of gravitational moments of test masses and discussed the allowable levels:
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the gravitational quadrupole moments of each test mass (|q20/IZ |) should be less than

a level of 10 ppm (R = 50 mm); the gravitational susceptibility should be less than 1

ppm (r = 250 mm); the quadrupole moments per unit mass should be less than 10−8

m2. We assume the conventional noise source of 1-g helium bubble at 250 mm from

the test masses. In this thesis, we deal with the density inhomogeneities and thermal

distortion.
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Chapter 4

Allowable levels of density
inhomogeneities

We have measured the density inhomogeneities of two materials, which are intended

to be used as the STEP test masses: HIPed beryllium and niobium, using the hy-

drostatic weighing method (see Chapter 5). Before we get into the description of the

measurements, we discuss the allowable levels of the density inhomogeneities for typ-

ical density variations in this chapter. We also discuss the required precision in the

hydrostatic weighing method in Section 4.2.

4.1 Allowable levels of density inhomogeneities

4.1.1 Introduction

We consider the quadrupole moments as they would dominantly contribute to the

differential acceleration, as discussed in Section 3.6.1. For example, q20 is given as

follows from Equation (3.9):

q20 =
∫

v
ρ(x′)r′2Y ∗

20(θ
′)d3x′ (4.1)
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Figure 4.1: Coordinate systems

=

√
5

4π

∫
v
ρ(x′)r′2

(
3

2
cos2 θ′ − 1

2

)
d3x′, (4.2)

where

r′ =
√

σ′2 + z′2 (4.3)

cos θ′ =
z′√

σ′2 + z′2
(4.4)

Therefore, they become, in the cylindrical coordinates (see Figure 4.1):

q20 =

√
5

4π

∫
v
ρ(x′)(σ′2 + z′2)

(
3

2
· z′2

σ′2 + z′2
− 1

2

)
σ′dσ′dφ′dz′ (4.5)

=
1

4

√
5

π

∫
v
ρ(x′)(2z′2 − σ′2)σ′dσ′dφ′dz′. (4.6)

We consider a cylinder as a test mass, instead of a belted cylinder, for simplicity1.

The quadrupole moments of a cylinder are zero when it has an aspect ratio of R/L =

1Multipole moments of a belted cylinder can be obtained by adding and subtracting multipole
moments of simple cylinders.
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2/
√

3, where R and L are the radius and the half-length of the cylinder. We assume

that the cylinder has this aspect ratio with R = 50mm (L 
 43mm), which is roughly

the size of the belt of a STEP outer test mass2 (Table 3.2).

Spherical harmonics used in the following calculations are quoted from [56] and

listed in Appendix A.

Density distributions of cylindrical materials proportional to σ2 [71] in the radial

direction and proportional to z [68, 72] in the axial direction of the cylindrical coordi-

nates, and a cos θ angular density variation [72] have been reported:

Fitzgerald et al [71] reported that a stainless steel rod (approximately 100 mm

in diameter and 1 m long) had density variation, proportional to σ2 in the radial

direction, of 250 ppm over the diameter, and no significant differences along the axial

and angular directions. The uncertainty in the hydrostatic weighing measurements was

approximately ± 30 ppm.

Davis and Quinn [68] reported that a Cu-2%Te rod (80 mm in diameter and 500

mm long) had 40 ppm linear density variation along the z-axis over 500 mm. The

uncertainty in the hydrostatic weighing was a few ppm. Also, Quinn et al [72] reported

that the density in Cu-0.7%Te rods varied linearly across the diameter (about 120

mm) by about 100 to 200 ppm and linearly along the axial direction by 100 ppm over

roughly 120 mm.

We examine the density inhomogeneities that are likely to occur in each of the three

2The belt of an outer test mass has an aspect ratio of R3/L2 ∼ 1.4 (Table 3.2), which is close to
2/
√

3.
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directions: the radial, axial and angular direction in the cylindrical coordinate system.

We examine continuous functions of density variations and, in addition, a case of the

existence of a void.

As for the radial direction, we examine the density variation proportional to σ2

(Section 4.1.2). The term proportional to σ is not a continuous density variation

across the diameter. As regards the axial direction, the term proportional to z and

z2 are considered (Section 4.1.3). The term proportional to z results in shifting the

centre of mass of the test mass from the centre of figure. The multipole moments have

to be integrated over the test mass with the origin at the centre of mass of the test

mass; the centres of mass of the pair of the test masses are going to be adjusted to

coincide as mentioned in Section 2.4.1. As regards the angular direction, the term of

cos nφ is considered, where n is an integer. As we will see in Section 4.1.4, the first

term to contribute to the quadrupole moments is cos 2φ. We estimate the allowable

density inhomogeneities for the cos 2φ. Higher terms may be more unlikely to occur in

materials.

4.1.2 Radial density inhomogeneities

We consider the density variation ρ(σ′) = ρ0(1 + Aσ′2), where ρ0 is a standard density

and A is a constant. From Equation (4.6), the quadrupole moments become as follows

for this density variation:

q20 =
2π

4

√
5

π

∫ L

−L

∫ R

0
ρ0(1 + Aσ′2)(2z′2 − σ′2)σ′dσ′dz′ (4.7)
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=
1

48

√
5

π
AMTMR4ρ0

ρ
(4.8)

where MTM is the mass of the test mass:

MTM = 2πR2Lρ. (4.9)

ρ is the average density of test mass3. From Equation (4.8),

q20

MTM

=
1

48

√
5

π
AR4 ρ0

ρ
(4.10)

To satisfy the condition (3.48), the density variation over the radius of 50 mm (R =

50mm) has to be:

∣∣∣∣∣AR2ρ0

ρ

∣∣∣∣∣ < 48

√
π

5

1

R2
× 1 × 10−8 ∼ 2 × 10−4. (4.11)

4.1.3 Axial density inhomogeneities

Density variation proportional to z′

We consider the density variation ρ(z′) = ρ0(1 + B1z
′), where B1 is a constant . The

quadrupole moment, Equation (4.6), vanishes because of the odd functions of z′ in the

integral over z′ from −L to L. However, as mentioned previously, the integral must be

calculated with the origin at the centre of mass of the test mass, instead of the centre

of figure.

The position of the test mass shifts by lz when its centre of mass is shifted from

the centre of figure by lz. Multipole moments of the shifted test mass can be obtained

by using the formula by D’ Urso and Adelberger, Equation (3.14).

3ρ0/ρ is nominally one.
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With this formula, the quadrupole moment is:

q̃20 = 2

√
5

3
q10lz, (4.12)

where q10 is given as follows from Equation (3.9):

q10 =
∫

v
ρ(x′)r′Y ∗

10d
3x′ (4.13)

=

√
3

4π

∫ L

−L

∫ 2π

0

∫ R

0
ρ0(1 + B1z

′)z′σ′dσ′dφ′dz′ (4.14)

=
4
√

3π

9
ρ0B1L

5. (4.15)

lz can be obtained as follows:

lz =

∫
v ρ(z′) · z′d3x′

MTM

(4.16)

=
1

3
B1L

2ρ0

ρ
. (4.17)

With Equations (4.15) and (4.17) the quadrupole moment is as follows:

q20 =
8
√

5π

27

(ρ0B1)
2

ρ
L7. (4.18)

By dividing this by MTM (Equation (4.9)),

q20

MTM

=
1

9

√
5

π

(
ρ0B1

ρ

)2

L4. (4.19)

To satisfy the condition (3.48), the relative difference in density over the half-length L

(= 43 mm) should satisfy the following condition:

∣∣∣∣∣ρ0B1L

ρ

∣∣∣∣∣ <

√√√√1 × 10−8

1
9

√
5
π
L2

∼ 6 × 10−3. (4.20)
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By using Equations (4.17) and (4.20), the shift, lz, should satisfy the following

condition:

lz < 2 × 10−3L. (4.21)

Density variation proportional to z′2

As for the density variation proportional to z′2 (ρ(z′) = ρ0(1 + B2z
′2)), the quadrupole

moment is given as follows from Equation (4.6):

q20 =
2π

4

√
5

π

∫ L

−L

∫ R

0
ρ0(1 + B2z

′2)(2z′2 − σ′2)σ′dσ′dz′ (4.22)

=
2

45

√
5

π
B2MTML4 ρ0

ρ
, (4.23)

where B2 is a constant. Therefore,

q20

MTM

=
2

45

√
5

π
B2

ρ0

ρ
L4 (4.24)

To satisfy the condition (3.48), the relative difference in density over the half-length

(L = 0.43 mm) has to satisfy the following condition:

∣∣∣∣∣B2L
2ρ0

ρ

∣∣∣∣∣ <
45

2

√
π

5

1

L2
× 10−8 ∼ 1 × 10−4 (4.25)

4.1.4 Angular density inhomogeneities

We consider the density variation ρ(φ′) = ρ0(1+
∑
n

Cn cos nφ′), where Cn is a constant

and n is an integer. For these density inhomogeneities the quadrupole moments to be

considered are q21 and q22. However, q21 is zero by calculating it from Equation (3.9)

because of the integral of the odd function of z′ from −L to L.
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q22 is as follows from Equation (3.9):

q22 =
∫

ρ(x′)r′2Y ∗
22(θ

′, φ′)d3x′ (4.26)

=
1

4

√
15

2π

∫ L

−L

∫ 2π

0

∫ R

0
ρ0(1 +

∑
n

Cn cos nφ′)σ′3

(cos 2φ′ − i sin 2φ′)dσ′dφ′dz′ (4.27)

=
3

16

√
5π

2
C2ρ0R

5. (4.28)

Therefore,

q22

MTM

=
1

8

√
15

8π
C2R

2ρ0

ρ
(4.29)

Using Equation (3.38),

q22

MTM

<

√
7

4πG

SZ

Q32

. (4.30)

From Equation (3.10) (see discussion on Q3m in Section 3.6.1)4:

Q32 =
1

16

√
105

π

0.001[kg]

0.254[m4]
∼ 0.1[kg/m4] (4.31)

for the source mass of 1-g helium bubble at 250 mm away from the test mass. Therefore,

the required level for q22 is:

∣∣∣∣ q22

MTM

∣∣∣∣ < 3 × 10−8[m2]. (4.32)

With Equation (4.29), the allowable level of the density inhomogeneities over the

radius of R (= 50 mm) is as follows:

∣∣∣∣∣C2ρ0

ρ

∣∣∣∣∣ < 8

√
8π

15

1

R2
× 3 × 10−8 ∼ 1 × 10−4. (4.33)

4When we consider only the cos θ term, we obtain: Q32 = 1
16

√
105
2π

0.001[kg]
0.254[m4] ∼ 0.1[kg/m4].
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4.1.5 Void

We consider the presence of a void (radius rvoid), which is inside of a test mass. The

worst case would be when the void is at the end of the z-axis of the cylinder, namely

at (σvoid, zvoid) = (0, L − rvoid). Then, the centre of mass of the test mass shifts from

the centre of figure by lvoid. The shifted quadrupole moments are given by Equation

(4.12).

The shift is given as follows from Equation (4.16):

lvoid = −mvoid · zvoid

MTM

, (4.34)

where mvoid is the lacking mass due to the void. The void is assumed as a sphere. From

Equations (4.13) and (4.34):

q10 = −
√

3

4π
mvoidzvoid (4.35)

= −
√

3

4π
lvoidMTM (4.36)

Therefore, we obtain:

q20 =

√
5

π
MTM l2void. (4.37)

Therefore,

q20

MTM

=

√
5

π
l2void[m

2] (4.38)

In order to satisfy the condition (3.48):

|lvoid| < 90µm (4.39)
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Equation (4.34) can be written as follows by noting that mvoid = 4
3
πr3

voidρ and by

using Equation (4.9):

lvoid

L
=

1

2
ν3(1 − ν) (4.40)

where

ν =
rvoid

L
. (4.41)

In order to satisfy the condition (4.39):

rvoid < 0.17L. (4.42)

where ν  1 was assumed. The relative density variation due to the void with the

maximum allowed radius is:

∆ρ

ρ
=

Vvoid

VTM

<
4
3
π(0.17L)3

8
3
πL3

∼ 3 × 10−3, (4.43)

where Vvoid and VTM are the volume of the void and the test mass, respectively.

4.1.6 Summary

The results obtained from the above calculations are summarized in Table 4.1. The

quadratic density variations (σ2 and z2) would cause more significant disturbances than

the linear density variation (z). One of the most stringent requirements comes from

the angular density distribution. However, among the others, this density variation

would be the most unlikely to occur in materials.
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Density variation Maximum allowed Maximum allowed shift
density variation: of the centre of mass:

∆ρ
ρ

l
L

σ2 2 × 10−4 n.a.
z 6 × 10−3 2 × 10−3

z2 1 × 10−4 n.a.
cos 2φ 1 × 10−4 n.a.
void 3 × 10−3 2 × 10−3

Table 4.1: Summary of the allowable levels of the density inhomogeneities for a simple
cylinder with the aspect ratio of R = 2L/

√
3 (= 50 mm). The first column is the

density variations considered in this chapter. The second and the third columns are
the allowable levels of the density variations and the relative shifts of the centre of
mass, respectively. (n.a. indicates not applicable.)

4.2 Required precision for the measurements of den-

sity inhomogeneities

We have reviewed the allowable levels of various density inhomogeneities in the previous

sections. The most strict requirement of 100 ppm in the relative difference in density

comes from the quadratic density variations and the angular density inhomogeneity

(Table 4.1). The relative density differences that we measure using the hydrostatic

weighing method may be smaller than the actual density variation in the samples

because of the cancellation of the variation over the volume of the samples.

As we will describe in Section 5.2, the relative density difference between samples

were determined by the measurements of the apparent weights of the samples in air

and in a liquid. The uncertainty in the measurements is approximately proportional to

√
2δmL/ρLV (Equation (5.11)), where δmL is the uncertainty in the measured apparent

weight in the liquid. ρL and V are the density of the liquid and the volume of the
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sample, respectively.

For a sample with volume of 25 cm3, δmL has to be less than approximately 880

µg with water as the liquid (ρL ∼ 1g/cm3) to achieve the precision of 50 ppm.

The device, developed by Davis [68] at BIPM (Bureau International des Poids et

Mesures), to measure density differences between samples by using the hydrostatic

weighing method has sufficient precision (a few ppm or δm ∼ 50µg, see Section 5.4).

We have conducted measurements using the device at BIPM as we will discuss in

Chapter 5.

4.3 Conclusions

We have estimated the allowable levels of the density inhomogeneities. The most

stringent requirement comes from the quadratic density variations and the angular

density variation. From this requirement, the precision better than 50 ppm in the

relative difference in density is necessary for the measurements.
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Chapter 5

Measurements of Density
Inhomogeneities

In this chapter, we will describe the measurements of the density inhomogeneities of

materials to be used for the STEP test masses using the hydrostatic weighing method.

First, we will view the dissection of our samples in Section 5.1. Then, we will

describe the hydrostatic weighing method in Section 5.2 and the measurements in

Section 5.3. The results are presented in Section 5.4. Discussion and conclusions

follow.

5.1 Samples

5.1.1 Specifications

A HIPed (hot isostatically pressed) beryllium rod (approximately 140 mm long by

a diameter of 90 mm) of grade I220-H was purchased from Brush Wellman Inc. A

niobium rod (approximately 225 mm long by a diameter of 45 mm) of grade RRR was

purchased from the Wah Chang Company. The respective companies recommended

these grades as they were ones of the most uniform or chemically pure grades among
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others1.

5.1.2 Dissection

The samples have to be dissected in a way to give enough information to examine the

typical density variations, which were discussed in Chapter 4. For this purpose, we

have considered two aspects: the number of sampling points and the volume of the

samples.

In Chapter 4, we have discussed the levels of allowable density variations for STEP

test masses. We have seen that the axial density variation proportional to z and the

existence of a void are not as critical as the others. To test the quadratic radial density

distribution (σ2 variation, see Section 4.1.2), at least three sampling points across the

diameter are required. For the density variation proportional to z2 (see Section 4.1.3),

at least three sampling points along the z-axis are required. To test the cos 2ϕ variation

(see Section 4.1.4), at least five sampling points are required in the angular direction;

if it is four, the variation could cancel out.

In summary, we need to have at least three sampling points across the diameter

and along the z-axis, and five sampling points around the axial direction.

As we saw in Section 4.2, the uncertainty in the measurement of density inhomo-

geneities in the hydrostatic weighing method depends on the volume of the samples.

We made sure that the volume of samples were large enough to achieve the required

sensitivity (Section 4.2).

1The STEP team at Stanford University discussed with the respective companies and chose those
grades.
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By considering these two aspects, we chose the dissection methods for the beryllium

and the niobium as shown in Figures 5.1 and 5.2.

As shown in these figures, a prototype outer test mass and a prototype inner test

mass were made from the beryllium rod and the niobium rod, respectively. The re-

maining pieces of the rods were used for the density measurements.

5.1.3 Numbering

Numbering was done on each sample, as shown in Figures 5.1 and 5.2. Though it is

not shown in the figures, a line was drawn on the samples to indicate their original

orientation. With the numbering and the line, we can trace the original location and

orientation exactly. For the analysis of the density inhomogeneities, we do not need

the information of the orientation of the samples. However, it may be useful in the

future if we need to perform further analysis with the samples.

5.2 Hydrostatic Weighing Method

When a standard sample (density ρS, volume VS) is weighed on a balance, the reading

in air (density ρA) and in a liquid (density ρL) is given as follows, respectively:

VS(ρS − ρA) = fmSA (5.1)

VS(ρS − ρL) = fmSL (5.2)

where f is a constant which is related to the calibration of the balance, and mSA and

mSL denote the balance reading (apparent weight) when the standard is weighed in
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Figure 5.1: Dissection of the HIPed beryllium rod. A prototype outer test mass was
made from the rod. The offcuts No. 102 through No. 114 were used for the homogeneity
measurements.

Figure 5.2: Dissection of the niobium rod. A prototype inner test mass was made from
the rod. The pieces that are labelled with numbers were used for the homogeneity
measurements.
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air and in the liquid, respectively. Similarly, the following equations are obtained by

weighing another sample (density ρX , volume VX) in air and in the liquid with the

same balance:

VX(ρX − ρA) = fmXA (5.3)

VX(ρX − ρL) = fmXL (5.4)

where mXA and mXL indicates the apparent weight of the sample in air and in the

liquid, respectively.

By taking the ratios of Equation (5.1) and (5.2), and of Equations (5.3) and (5.4),

we obtain the following equations:

ρS − ρA

ρS − ρL

=
mSA

mSL

(≡ RS) (5.5)

ρX − ρA

ρX − ρL

=
mXA

mXL

(≡ RX). (5.6)

Combining Equation (5.5) and (5.6), the relative density of a sample X to a sample S

is given as follows [73]:

ρX

ρS

=
RX

RS

(
RS − 1

RX − 1

)
(1 + δ) (5.7)

where

δ =
ρA

ρS(RS − 1)

(
1 − RS

RX

)
. (5.8)

Because δ is sufficiently small (δ < 10−6), Equation (5.7) becomes:

ρX

ρS

=
RX

RS

(
RS − 1

RX − 1

)
. (5.9)
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Equation (5.9) can be written in a different way as follows [73]:

ρX

ρS

=
(
1 − mSA − mXA

mSA

) {
mSA − mSL

mSA − mSL − (mSA − mXA) + (mSL − mXL)

}
. (5.10)

We used this formula to analyse data (see Section 5.3.2).

By propagating errors in the measurements, the uncertainty in the relative density

is approximately given by2:

δ

(
ρX

ρS

)



√√√√(
δmXL

ρLVX

)2

+

(
δmSL

ρLVS

)2

, (5.11)

where δmXL and δmSL is the uncertainty in the measurement of mXL and mSL, respec-

tively. Here, it is assumed that ρA  ρL, ρX ∼ ρS and ρL  ρX . Also, it is assumed

that the uncertainty in the measurement of the apparent weight in air is much less

than the one in the liquid; this situation was observed in the measurements (Section

5.4.1).

5.3 Experiment

5.3.1 Overview of the device

The density measurements using the hydrostatic weighing method were carried out

with a device which was developed by Davis at BIPM [68]. The device is mainly

composed of a servo type balance (resolution 10µg, maximum capacity 205 g) and a

liquid bath under the balance (Figure 5.3). The apparatus is capable of measuring up

to four samples at the same time. To minimise force due to the surface tension on the

2Equation (5.11) is presented here to show the dominant terms in the uncertainty of the measure-
ments. This equation was not used to analyse the data presented in this chapter.
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suspension at the boundary of the air and the liquid, a liquid with small surface tension

(nonane, density 0.72g/cm3) and a suspension wire with small radius were chosen.

The temperature of the liquid was not controlled. Measurements were done quickly

in the small bath to minimize thermal effects in the liquid. The temperature (22◦C)

and the humidity (55%) in the laboratory was controlled continuously throughout the

measurements.

5.3.2 Measurements

The samples were cleaned with an ultrasonic cleaner before the measurements. After

the cleaning, they were wrapped in aluminium foil to keep them clean. The samples

were weighed in air and then in the liquid. We measured the niobium samples first

and then the beryllium samples.

When the samples were measured in the liquid, they were located on an aluminium

disk (the diameter is 9 cm) fixed in the bath (the outside diameter and the depth are

both roughly 15 cm). The disk has four small clearance holes (the diameter is 1.2 cm).

Each sample was located over one of the holes in the disk. They were left in the liquid

for more than one hour to allow them to thermalize, before the measurements were

started.

A c-shaped device with a pan (the diameter is 0.8 cm) at the end was suspended

from the bottom of the balance and immersed in the liquid. Because of the c-shape,

the pan can get access through the holes from the bottom of the disk and it can lift

a sample (Figure 5.4). The disk was manually controlled to locate the samples in the
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Figure 5.3: The device for the hydrostatic weighing at BIPM. The total height of the
device is about 80 cm.
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Figure 5.4: A schematic cross-section of the apparatus for hydrostatic weighing. A
segmented sample is lifted by the pan in the liquid for measurement.
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position to be lifted by the pan for the measurements. When one measurement was

finished the disk was rotated to locate the next sample in the position to be lifted.

The c-shaped device was not touched to avoid any fluctuation in the readings of the

balance. The samples were weighed one by one in the order described below. The four

samples were kept in the liquid until all of the measurements were completed.

Generally, one set of measurements was done with four samples. Two of them were

used as standards. We used the same standards for all sets of measurements3. Samples

with cylindrical shapes, such as the beryllium samples 107-109, and the niobium sample

6, were too large and did not fit on the disk to be measured in the liquid. Therefore,

spoon-shaped tools were made to deal with them in the liquid (Figure 5.5). Because

of the limited space in the bath, only one standard was used in the measurements for

the beryllium sample 108.

We have measured their apparent weights in a symmetric order. For example, two

standards (S1 and S2) and two samples (X1 and X2) were measured in the following

order: S1, X1, S2, X2, S1, X2, S2, X1 and S1. This symmetrical measurement order

helps to eliminate the drift, which is typically liner with time (see Section 5.4.1).

5.3.3 Measurement verification

The following checks were carried out to confirm the measurements. The first mea-

surements were repeated after a series of measurements. Some of these measurements

were repeated several days later. Some samples with greater density differences than

3Two niobium standards were used for the measurements of the niobium samples and two beryllium
standards for the measurements of the beryllium samples.
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Figure 5.5: Sample 108 is weighed on the pan in the bath for the measurement. Spoon
shaped tools were used to deal with the big sample.
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others were measured twice. In all cases the measurements were reproducible within

the range of uncertainties.

The difference in shape of the samples could give different results because of different

convective flows when they are suspended in the liquid. The worst case would have

occurred in the curved samples (niobium samples 7A-7C in Figure 5.2). We checked

the difference between the measurements with both convex and concave samples. The

results agreed with each other within the range of uncertainties.

The native oxide, upon exposure to air, of the beryllium and niobium samples may

affect the analysis of the density inhomogeneities [74]4. As we will discuss below, the

largest effect would be at the level of a few parts in 107 for the difference in relative

density.

The difference in surface area between niobium sample 1 and niobium sample 7A is

about 9 cm2. For a native oxide of 4 nm thickness, the volume difference is 3.6× 10−6

cm3. Since the native oxide has a density around 4.47 g/cm3 (versus 8.57 g/cm3) for

niobium, there is a difference in the mass of this oxide of approximately 16 µg. The

mass of sample 1 and sample 7A are both approximately 90 g. Therefore, the density

difference due to the niobium oxide is approximately 16 µg/90 g ∼ 0.2 ppm. This is

too small to be resolved by the experiment.

The effect of beryllium oxide is the same level as that of niobium. The maximum

surface difference in the beryllium samples, which appears between samples 108 and

4The effects of native oxides were pointed out by Gill and the analysis presented here was originally
done by Gill [74].
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107/109, is approximately 22 cm2. Therefore, the difference in mass of the native oxide

(BeO with density of 3.01 g/cm3 and thickness of 4 nm) is roughly 27 µg. The mass

of sample 108 is roughly 95 g. Thus, the density difference is about 0.3 ppm.

5.4 Experimental Results

5.4.1 Measured apparent weights

Typical raw data of measured apparent weight in air and in the liquid is given in

Tables 5.1 and 5.2, respectively. In these tables, the data are listed in the order of

the measurements. Note that the measurement orders are symmetrical as described

in Section 5.3.2. From these tables, one can see that the apparent weight measured

in the liquid increased with time, while one in air did not show significant differences

between the first and the last measurements.

The differences in the apparent weights, measured in the liquid, between the first

and the last measurements are plotted in Figure 5.6, using the data in Table 5.2. For

sample 102, the difference in the apparent weights between the first and the second

measurements (marked as 102’) and one between the second and the last measurements

(marked as 102”) are also plotted in the figure. As one can see in Table 5.2, the time

interval between the first and the last measurements was the shortest in the following

order: 104, 111, 103 and 102. The time intervals for the values of 102’ and 102” are

expected to be roughly the same as one of 111. Therefore, the plot indicates that the

drift increased with time.

The drift seems mainly due to the change in the thermal expansion of the liquid (∼
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Sample Apparent weight (g)
102 47.40982
111 48.20430
105 48.45437
105 48.45435
111 48.20431
102 47.40982

Table 5.1: Typical measured apparent weights of beryllium samples in air, listed in the
order of measurements. Samples 102 and 111 were used as the standards.

Sample Apparent weight (g)
102 29.14899
103 29.78991
111 29.63966
104 30.20586
102 29.14944
104 30.20636
111 29.64053
103 29.79113
102 29.15050

Table 5.2: Typical measured apparent weights of beryllium samples in the liquid, listed
in the order of measurements. Sample 102 and 111 were used as the standards.
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Figure 5.6: Drift of the apparent weights measured in the liquid. The x-axis corre-
sponds to the time interval between the measurements (see text).

10−3/◦C); the temperature of the liquid seemed to increase during the measurements.

This is probably because of the convective currents which arise in the liquid when the

disk was moved to set the samples for the measurements. The maximum difference in

the measured apparent weight of approximately 0.0014 g (Figure 5.6) can be due to a

temperature change of roughly 0.04 ◦C.

5.4.2 Density variations

The relative densities were estimated from Equation (5.10). The drift can be eliminated

by taking averages; for example, we took the average of the measured weights of the

first and the last measurements of a standard in the liquid. The average value was used

as mSL in Equation (5.10). The change in the average value of mSA between the sets

of measurements was relatively small compared to one of mSL. Therefore, we took the
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average of mSA over the sets of measurements and used it as the representative value

for mSA. The differences in apparent weight between a standard and a sample, such as

mSA −mXA and mSL −mXL in Equation (5.10), were estimated by taking the average

of the first and the last measurements of the sample and subtracting it from mSA or

mSL, accordingly. The relative density between two standards was used to check the

consistency between the sets of measurements.

Residual drift contributes to the uncertainty in the measurement of an apparent

weight in the liquid, δmXL and δmSL, in Equation (5.11).

The results of the beryllium and the niobium samples are shown in Tables 5.3 and

5.4, respectively. The uncertainty in the measurements is 3 ppm for the beryllium

and 5 ppm for the niobium samples. The maximum difference in the relative density

between samples was approximately 240 ppm and 60 ppm for the beryllium and the

niobium, respectively.

Several patterns may be observed in the density distributions. It was found that

the beryllium rod had approximately a linear density distribution across the diameter

(Figure 5.7). Also, it appeared that the niobium had a radial density gradient; samples

7A, 7B and 7C were of lower density than sample 6.

5.4.3 Fitting the results of the measurements

We attempted to fit the sampled data, using the least squares method, to various

continuous spatial functions of density.

There were two data inputs: the positions of samples and the measured relative
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Sample ∆ρ/ρ0 ± 3ppm
No. [ppm]
102 -21
103 -99
104 -25
105 90
106 74
107 -4
108 -35
109 -2
110 140
111 81
112 -37
113 -93
114 76

Table 5.3: Difference in density of the beryllium samples.

Sample ∆ρ/ρ0 ± 5ppm Sample ∆ρ/ρ0 ± 5ppm
No. [ppm] No. [ppm]
1 6 I 7
2 -7 II 11
3 3 III 2
4 17 IV 11
5 3 V 3
6 23

7A -36
7B -23
7C -39
8 0 VIII 4
9 6 IX 14
10 4 X 14
11 7 XI 2
12 -1 XII -3

Table 5.4: Difference in density of the niobium samples.
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Figure 5.7: Angular density distribution in the beryllium samples. An approximate
linear density variation across the diameter was observed.

densities. As for the former, the centres of mass of the samples were used.

The following functions fit best the beryllium and niobium data, respectively:

ρBe(x, y, z) = ρBe0(1 + a1x + a2y + a3z + a4x
2 + a5y

2 + a6z
2

+ a7xy + a8yz + a9zx + a10xyz) (5.12)

ρNb(x, y, z) = ρNb0(1 + b1x + b2x
2 + b3y

2 + b4xy + b5yz + b6zx) (5.13)

where ρBe0 and ρNb0 are the density of a beryllium and niobium standard sample,

respectively. The values for the fitted coefficients and their uncertainties are given in

Tables 5.5 and 5.6. χ was 4.3 and 1.6 for the beryllium and the niobium, respectively5.

These fitting functions are long and some of the coefficients are smaller than others.

We attempted to simplify these functions. However, for instance in the case of the

beryllium, a simplified function gave larger errors in the estimation of the disturbances

5χ is a square root of normalized chi-squared.
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a1 (1.1 ± 0.2) × 10−6 mm−1

a2 (−2.9 ± 0.2) × 10−6 mm−1

a3 (−2.5 ± 0.7) × 10−7 mm−1

a4 (1.5 ± 0.9) × 10−8 mm−2

a5 (1.8 ± 0.9) × 10−8 mm−2

a6 (1.4 ± 0.7) × 10−8 mm−2

a7 (2.8 ± 1.1 × 10−8) mm−2

a8 (3.6 ± 3.2 × 10−9) mm−2

a9 (−6.4 ± 3.2 × 10−9) mm−2

a10 (−2.6 ± 2.1 × 10−10) mm−3

Table 5.5: Coefficients in function (5.12), which fits the beryllium results in Table 5.3.

b1 (2.4 ± 1.6) × 10−7 mm−1

b2 (−2.4 ± 0.3) × 10−7 mm−2

b3 (−2.2 ± 0.3) × 10−7 mm−2

b4 (−1.3 ± 1.2) × 10−8 mm−2

b5 (1.6 ± 1.0) × 10−9 mm−2

b6 (−1.1 ± 1.0) × 10−9 mm−2

Table 5.6: Coefficients in function (5.13), which fits the niobium results in Table 5.4.
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in STEP signals by roughly 25 %. The analysis with simplified functions was presented

in [57]6 and is represented in Appendix B.

5.4.4 Estimation of disturbances due to the density inhomo-
geneities

By substituting the fitting functions (Equations (5.12) and (5.13)) into Equation (3.9),

we have estimated quadrupole moments of the STEP test masses. As discussed in

Section 3.6.1, quadrupole moments would be the dominant terms, among multipole

moments, to contribute the spurious differential acceleration of test masses with density

inhomogeneities.

The integrals over the volume of STEP test masses have been calculated with

Mathcad 8. The integrals were done over the volume of an outer test mass for the

beryllium and an inner test mass for the niobium, respectively. The dimensions of

these test masses are given in Table 3.2. The origins of the coordinate system was

taken to be at the centre of mass of the test mass on the z-axis.

The internal machined edges and external chamfers on the test masses were not

taken into consideration in this calculation for simplicity. However, it was checked

that the effect of small change of the dimensions of test masses was not significant for

the estimation of the difference in the quadrupole moments between a homogeneous

and inhomogeneous test mass.

As a result, the dominant contribution to the differential acceleration was from q20

6The results presented in the paper were found to be wrong following computational error; the
disturbance should be roughly half and twice of the value presented for the beryllium and the niobium,
respectively. The correction is given in Appendix B.
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for both of the beryllium and niobium7. The extra quadrupole moments due to the

density inhomogeneities (q20/IZ , see Section 3.4.1 for the definition) were found to be

(4.1±3.0)×10−6 and (7.7±0.7)×10−6 for an outer test mass made from the beryllium

rod and an inner test mass made from the niobium rod, respectively. Using Equation

(3.16) (or (3.17)), we estimated that these quadrupole moments would produce a spu-

rious acceleration of ∆a = (3.9 ± 2.8) × 10−19m/s2 and (1.0 ± 0.1) × 10−19m/s2 for

the beryllium outer test mass and the niobium inner test mass, respectively. We note

that these spurious accelerations are equivalent to the gravitational susceptibilities of

χa = (0.36 ± 0.26) ppm and (0.10 ± 0.01) ppm for the beryllium and the niobium,

respectively (see Sections 3.4.2 and 3.7 for the definition of χa).

As discussed in Section 3.7, we have followed the conservative STEP convention

and assumed a 1-g point mass (helium bubble) at 250 mm from the centre of the test

mass as a source mass to estimate the spurious acceleration.

5.5 Discussion

We found that the density inhomogeneities in our samples of HIPed beryllium and nio-

bium would not significantly disturb the STEP experiment as STEP’s target sensitivity

is roughly 10−17m/s2 [38] and the target noise level, due to the gravitational multipole

moments of test masses, is about 10−18m/s2. However, they could be significant in the

following cases:

7Contributions from q21 and q22 were smaller than one from q20 by more than two orders of
magnitude for both of the beryllium and niobium.
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The dominant density variation observed in the beryllium samples did not con-

tribute to the quadrupole moments directly because it was linear across the diameter;

as discussed in Section 4.1, the quadratic density variations contribute more to the

quadrupole moments than the linear density variations do. The maximum difference

in the relative density of 240 ppm exceeds the allowable inhomogeneous level of 100

ppm for quadratic density variations, which we estimated in Section 4.1 (see Table 4.1).

We have investigated the niobium rod for an inner test mass. The density inho-

mogeneities in the niobium could be significant if they occur in a niobium rod used

for an outer test mass. We have estimated the disturbance for an outer test mass by

assuming that the niobium density variation we measured occurred in a rod used for

the outer test mass. The result shows that the differential acceleration, due to the

density inhomogeneities, would be (2.4 ± 0.2) × 10−18 m/s2 for the outer test mass.

To find a more homogeneous material, another HIPed beryllium rod (grade O30-H)

was purchased from Brush Wellman Inc. This grade is a new product. Its chemical

purity is the best of all their products and it is made using a specially produced spherical

powder [92]. We are planning to prepare samples from it for measurements of density

inhomogeneities, using the same hydrostatic weighing method at BIPM. In addition,

we are planning to collaborate with Brush Wellman Inc. to find a way to fabricate

more homogeneous HIPed beryllium.

Also, a larger niobium rod, from which an outer test mass can be made, was pur-

chased from Wah Chang Company. The samples will be prepared from the larger rod
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for density inhomogeneities measurements.

Engineer drawings of the dissection plan for the new rods are presented in Appendix

C. We plan to use the same dissection scheme for beryllium and niobium. We plan

to take more samples than the dissection presented in this chapter to increase the

sampling points; the estimation of the disturbance is not limited by the uncertainty in

measurements. Also, we plan to take cubic samples for the measurements of anisotropy

of thermal expansion (see Section 7.8). We also plan to improve the capacity of the

hydrostatic weighing device at BIPM by employing a larger bath [75].

5.6 Conclusions

The inhomogeneities of density in materials for the prototype STEP test masses,

HIPed beryllium and niobium, have been determined by using the hydrostatic weighing

method. Our analysis showed that the measured density inhomogeneities in those sam-

ples would be insignificant for the STEP experiment. However, the observed density

inhomogeneities in HIPed beryllium could be significant if the same level of density

inhomogeneities occurred as a quadratic variation. In addition, the density inhomo-

geneities observed in niobium could be significant for an outer test mass. Further

studies to obtain more statistics and to find more homogeneous materials are planned.
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Chapter 6

Thermal expansion and thermal
distortion of materials for STEP
test masses and the housing

In this chapter, we mainly discuss thermal distortion of HIPed beryllium. Firstly,

we review thermal expansion of the materials to be used as the STEP test masses

(niobium, HIPed beryllium and Pt/Ir alloy) and the housing in Section 6.1. We discuss

the required level of uniformity of thermal expansion for the STEP test masses in

Section 6.2. Then, we review thermal distortion of HIPed beryllium, which potentially

has anisotropic thermal expansion, from existing literature. We view the origin of

thermal distortion in HIPed beryllium in Section 6.3.1. We review the development

and performance of specific grades of HIPed beryllium, which are considered to be used

as STEP test masses, in Section 6.3.2. We describe the performance of the grade of

our samples, I220-H, in Section 6.3.4, and discuss appropriate ways to prepare HIPed

beryllium test masses for STEP in Section 6.3.5.
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6.1 Summary of thermal expansion

Thermal expansions of materials to be used for the STEP test masses and the housing

are necessary to decide on their machining dimensions. The required accuracy for this

purpose is about 10%. Data of sufficient accuracy can be found in existing literature

[76, 77] for all materials to be used except HIPed beryllium and Pt/Ir alloy. There

is only one published value for HIPed beryllium (instrument grade O-50) at cryogenic

temperature [78]. Thermal expansion of the specific HIPed beryllium to be used has

to be studied for STEP. Thermal expansion data for Pt/Ir alloy at low temperature

(lower than room temperature) was not found in literature.

Table 6.1 summarises thermal expansion data for various materials (HIPed beryl-

lium, niobium, fused quartz and sapphire), which are to be used for the STEP test

masses and the housing. In the table, thermal expansion is defined as follows:

�L

L
=

L1.8 − L293

L293

(6.1)

where L293 and L1.8 indicate the length of a specimen at temperatures 293 K and 1.8

K, respectively.

The materials listed in Table 6.1 can be classified into two groups: materials for

STEP test masses and for the housing. The source of data in Table 6.1 and some notes

for each material are described below.
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Material Thermal expansion Uncertainty (%) To be used as
(Specification) ×102

HIPed beryllium -0.1298 ± 1.5 OT, IT
(O-50)
Niobium -0.147 ± < 3 IT, Coating

(Recommended value)
90Pt-10Ir n.a. n.a. IT
weight %
Fused quartz 0.0047 ± 1.2 Housing
(SRM739- (Certificated value

of NIST)
vitreous silica)
Sapphire -0.0635 ± < 1.9 Housing
(Alumina, (Recommended value)
α − Al2O3

single crystal)

Table 6.1: Integrated thermal expansions (Equation (6.1)) of materials for STEP test
masses and the housing. OT and IT stand for outer test mass and inner test mass,
respectively. n.a. stands for not available.

6.1.1 STEP test-mass materials

As described in Section 2.4.1, HIPed beryllium, niobium and Pt/Ir alloy are the

strongest candidate for STEP test masses. Especially, beryllium is expected to be

a key element for a better sensitivity (Section 2.4.1).

HIPed beryllium

As mentioned previously, there is only one published value of thermal expansion of

HIPed beryllium at cryogenic temperature1. Swenson [78] measured thermal expansion

of HIPed beryllium (instrument grade O-50) purchased from Brush Wellman Inc. to 4

1There are some unpublished data. Swenson [78] mentions unpublished measurements of S-220F
HIPed beryllium (1.06 % BeO), which shows systematic orientation difference below 150 K. Paquin
[80] shows preliminary results of I70 HIPed beryllium, which we review in Section 6.3.2.
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Figure 6.1: The coefficient of thermal expansion of single beryllium crystal is higher
by roughly 35 % in the basal plane than the axial direction, at all temperatures. (This
figure was quoted from [80])

K. His value is quoted in Table 6.1.

Single crystal beryllium is anisotropic because of its hexagonal close-packed struc-

ture. The coefficient of thermal expansion in the basal plane is roughly 35 % higher

than it is in the axial direction, normal to the basal plane at all temperatures [76] (see

Figure 6.1).

HIPed beryllium is supposed to have isotropic thermal expansion as it is made by

packing beryllium powder. This is the reason why we chose HIPed beryllium. However,

anisotropy and inhomogeneities of thermal expansion of HIPed beryllium have been

reported (e.g. [79, 80]). We discuss this in detail in later sections of this chapter.

Niobium

There is a lot of literature on thermal expansion of niobium over a wide range of

temperature. The value in Table 6.1 is taken from the recommended value in [76].
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90Pt-10Ir alloy (weight percent)

Its thermal expansion is not well studied. Thermal expansion data at low temper-

ature (lower than room temperature) was not found in literature.

Thermal expansion of a composite in which the thermal stresses are small (when it

can be assumed that only uniform hydrostatic stresses exist in the phases) is given by

Turner’s formula [81]:

αc =
α1x1K1 + α2x2K2 + α3x3K3 · ··

x1K1 + x2K2 + x3K3 · ·· , (6.2)

where α1, α2, α3 ···, x1, x2, x3 ··· and K1, K2, K3 ··· are the thermal expansion coefficients,

the volume fractions and bulk modulus of the composite materials of phases 1, 2, 3 · ··.

By using this formula, the coefficient of thermal expansion of 90Pt-10Ir alloy is given

as 8.5×10−6/K at room temperature. This is in good agreement with the experimental

data value of 8.7 × 10−6/K [82].

However, we do not discuss Pt/Ir alloy in detail in this thesis as it is unclear if it

would be used as a STEP test mass and it is not accessible at the moment as it is very

expensive.

6.1.2 Materials for the STEP test-mass housing

Fused Quartz (Silica)

Vitreous silica [83] is used widely as a reference material because of the small

thermal expansivity. The value in Table 6.1 is the certificated value of NIST (National

Institute of Standards & Technology) for SRM 739 and taken from [83]. The thermal
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expansion is isotropic, though crystalline quartz has hexagonal close-packed crystal

structure and anisotropic thermal expansion. The thermal expansion of fused quartz

varies with methods of preparation, particularly heat treatment.

Sapphire

Sapphire is available as a polycrystalline ceramic or in single crystal form [83]. The

crystal structure is hexagonal close-packed and, therefore, it has anisotropic thermal

expansion (like beryllium crystal and quartz). The values in Table 6.1 are the average

thermal expansion of the crystal form and quoted from the recommended value in [84].

6.1.3 Summary and conclusions

We have discussed thermal expansions of materials for the STEP test masses and the

housing. There is a certificated/a recommended value for all the materials except

HIPed beryllium and Pt/Ir alloy. Thermal expansions of HIPed beryllium and Pt/Ir

alloy have to be studied for STEP because of the lack of published data. In addition,

HIPed beryllium potentially has anisotropic thermal expansion because of the crystal

structure and it has been experimentally verified as we describe later. The presence of

anisotropy and inhomogeneities of thermal expansion could induce thermal distortion.

We discuss thermal distortion of HIPed beryllium in the later sections of this chapter.
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6.2 Required level of uniformity of thermal expan-

sion for the STEP test masses

The worst shape which can be imagined for the STEP test mass would be when the

aspect ratio of the cylinder changes; this type of deformation directly affects the value

of the quadrupole moments.

We consider a simple cylinder as a test mass for simplicity in the following argu-

ment2. For a simple cylinder (with radius of R and half-length of L), the quadrupole

moments vanish when the aspect ratio is R/L = 2/
√

3 (see Section 4.1.1).

When the radius changes to R + δ, the cylinder obtains quadrupole moments:

∣∣∣∣∆q20

IZ

∣∣∣∣ =
1

4

√
5

π

δ

R4
(2R3 + 5R2δ + 4Rδ2 + δ3), (6.3)

where IZ is the moment of inertia (Equation (3.32)) of the cylinder with the aspect

ratio (R/L). In order to make this less than 10−5 (R = 50mm, see Section 3.7 for the

requirements on gravitational quadrupole moments):

δ

R
< 1.6 × 10−5. (6.4)

For a test mass with a radius3 of 50 mm, δ should be less than 0.8 µm. This requirement

is consistent with the requirement on machining tolerance (< 1 µm) for STEP test

masses (belted cylinders), which was derived by Lockerbie (Section 3.5).

The difference in thermal expansion in different direction, ∆TE, should be less

than δ/R. The relative difference in thermal expansion, ∆TE/TE, has to be less than

2Real STEP test masses are belted cylinders as described in Sections 2.4.1 and 3.5.
3This is roughly the radius of the outer STEP test masses (Section 3.5).
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1.2 % for beryllium whose thermal expansion is −1.3× 10−3 and 1.1% for the niobium

whose thermal expansion is −1.5 × 10−3, from room temperature to 1.8 K.

In general, this requirement may not be difficult to achieve. Data of thermal expan-

sion have uncertainties less than ± 3 % (Table 6.1) in the absolute values. However,

recommended values of thermal expansion were determined by considering data of

different samples by various experiments by different people [76, 77, 83, 84].

Thermal expansion of niobium is supposed to be isotropic. Published results show

no systematic difference in the thermal expansion (e.g. [76]). According to Valder [85]

at Wah Chang Company, from which our niobium samples were purchased, thermal

expansion of the niobium produced by the company should agree at least within 1% of

the accepted value. However, as mentioned in Section 6.1, HIPed beryllium may have

anisotropic thermal expansion because of the crystal structure of beryllium crystal. In

fact, anisotropic properties of HIPed beryllium were reported (e.g. [79, 80, 86]), as

mentioned before. Therefore, we focus on thermal distortion of HIPed beryllium.

6.3 Thermal distortion of HIPed beryllium

6.3.1 Origin of the thermal distortion

Beryllium products manufactured by consolidation of beryllium powder, such as HIPed

beryllium and VHPed (vacuum hot-pressed) beryllium, could have anisotropic and/or

inhomogeneous thermal expansion if the beryllium powder has anisotropy and it is

not packed randomly. In other words, there would be no anisotropic nor inhomoge-

neous thermal expansion in those products if the particles are packed randomly. Here
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inhomogeneities refer to spacial variations in anisotropy.

Beryllium powder made by milling is mainly cleaved along the basal plane (e.g.

[79, 86, 87]). The particles tend to be flat and the faces correspond to the basal plane.

If there are alignments of the basal plane in the product, it results in anisotropic

thermal expansion.

Two causes for alignment of the basal plane are known [79, 80, 86]: (1) vibration

of the consolidation bed; when the beryllium powder is put on the consolidation bed,

it tends to align because of the vibration, (2) reorientation of the basal plane normal

to the direction of the applied stress of compressing beryllium powder.

The anisotropy and inhomogeneity in thermal expansion result in thermal distor-

tion. Mechanical anisotropy and thermal anisotropy, inhomogeneity and distortion

were observed in beryllium products (e.g. [79, 80, 86]). As we will describe below,

more thermal dimensionally stable (more thermally isotropic and homogeneous) beryl-

lium products can be obtained by improving the powder morphology and consolidation

conditions.

6.3.2 Development of beryllium products

Intensive studies have been done on thermal dimensional stability of HIPed beryllium

mainly by those who have developed optical mirrors, as we will see below. Their results

show that sufficiently thermally stable HIPed beryllium is feasible. We will discuss the

development of the products and their performance in this section.
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Studies in 1970 and 1980s

In 1970, Goggin and Moberly [79] showed that the anisotropy and inhomogeneities

in crystal orientation in the products cause corresponding levels of thermal distortion.

The crystalline anisotropy and inhomogeneities were measured by x-ray diffractometry.

Here, anisotropy is defined as the amount of preferred orientation of the crystal planes,

or departure from complete randomness and inhomogeneities refers to spacial variations

in crystalline anisotropy [80]. They compared the measured intensity of peaks due to

the crystalline planes in the scanned image with theoretical predictions for the isotropic

case. Thermal distortion was measured interferometrically with samples polished to

mirror finish.

Anisotropy in the thermal expansion coefficient can be estimated from measured x-

ray diffraction intensities of the basal plane. In the mid-1980’s, Paquin [80] investigated

HIPed beryllium made by a new type of beryllium powder called impact ground powder.

The amount of basal plane cleavage in the new powder was greatly reduced. He mea-

sured the basal plane preferred orientation in samples, prepared from various positions

of a 9.5-inch mirror, by the x-ray diffraction method. Then, he calculated anisotropy in

the thermal expansion coefficient by using the relationship between anisotropy in the

thermal expansion coefficient and basal plane texture. He experimentally obtained the

relationship by investigating many samples, using the x-ray diffraction method and

measurements of difference in thermal expansion. The results show that the HIPed

beryllium made from a impact ground powder of I-70 A was the most isotropic prod-
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uct. The estimated anisotropy and inhomogeneities in the thermal expansion coefficient

were 0.03 ppm/K and 0.02 ppm/K, respectively. This corresponds to roughly 0.2 %

of the relative difference in thermal expansion coefficient at room temperature. For a

10 cm-long sample made from this HIPed beryllium, the difference in contraction from

room temperature to 1.8 K would be roughly less than 0.2 µm. This is less than the

requirement of 0.8 µm, we obtained in the previous section.

The consolidation of beryllium powders may depend on the geometry of the prod-

ucts. Also, the limited number of samples may not be representative. Paquin prepared

HIPed beryllium billets, made by the same powder (I-70), with different geometries

(see Table 6.2) for the x-ray diffraction measurements and thermal expansion measure-

ments [80]. The results of the differences in thermal expansion from room temperature

to 60 K showed little anisotropy4. Figure 6.3.2 shows one of the results5(quoted from

[80]).

According to the results of Paquin et al. [88], the most homogeneous and isotropic

billets have an aspect ratio of 1 : 1. In billets with high aspect ratio, such as long

cylinders, shrinkage during the HIPing process is dominant in the radial direction and,

therefore, the basal planes tend to align parallel to the circumferential surface. For

billets with a low aspect ratio, such as disks, the shrinkage is dominant in the axial

direction, therefore, the basal planes tend to be parallel to the plane of the circular top

4Full results are not published.
5This is a preliminary result presented in [80]. In [89], it is described that the full results of

measurement of differences in thermal expansion were presented at the annual meeting of the Optical
Society of America in 1986, but data is not presented in the reference.
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Figure 6.2: Directional difference in thermal expansion of HIPed beryllium. A result
of measurements by Paquin et al. [80] showed little difference in thermal expansion
along the transverse and axial direction of HIPed beryllium (I-70) billets.
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Shape Diameter/Length [inches]
Rod 1/8
Plate 8/1

Cylinder 5/5
Disk 6/1 (rigid Mandrel)
Disk 6/1 (Soft Can)

Table 6.2: Geometries of HIPed beryllium billets prepared for the x-ray diffraction
measurement and differential thermal expansion measurement by Paquin et al. [80].
The cylinder has roughly the same size as the billet for STEP outer test masses.

and bottom surfaces.

Recent studies

More recently, the fabrication methods of beryllium products have been improved fur-

ther. Paquin et al. [90] successfully produced large mirrors that are some of the most

thermally and dimensionally stable, regardless of materials, by developing the novel

fabrication method. They achieved a thermal distortion, from room temperature to 4

k, of 0.63 µm peak-to-valley for a HIPed beryllium mirror, made of I70 powder, with

an outer diameter of 50 cm, an inner diameter of 10 cm and a thickness of 8.5 cm.

This may be converted into differential thermal expansion by taking the ratio of 0.63

µm/8.5 cm, 0.42 ppm. The relative difference in thermal expansion is therefore 0.03

%. The fabrication method is summarized in the next section.

Also, Swenson reported that the data of thermal expansion coefficient of six samples,

from one billet of HIPed beryllium (O-50) (no record of orientation of the samples),

were consistent to within ± 0.3 % from 100 to 300 K and ±1.5% below 80 K [78].

The HIPed beryllium of the instrument grade of I220, which was also investigated
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for the application to large mirrors [90], is expected to be more homogeneous than

I70-H (H stands for HIPed products) [88]. I220-H is our samples’ grade. We discuss

this grade in Section 6.3.4.

The best beryllium products available most recently are made from spherical pow-

der [87, 91, 92]. Measurements of the coefficient of thermal expansion of a grade O30-H

made of a spherical powder by HIPing showed no difference between three orthogonal

directions over the temperature range from 5 to 65 ◦C. The precision of the measure-

ment was ± 0.1 ppm/K [91].

In summary, anisotropy and inhomogeneities of thermal expansion is well studied

mainly for optical mirrors. Sufficiently isotropic and homogeneous HIPed beryllium

products for STEP are available.

6.3.3 Fabrication of thermally stable HIPed beryllium

Paquin et al. conclude that the fabrication process to yield high quality beryllium

products, with isotropic and homogeneous properties, made of impact ground powders

is as follows [90]:

• Start with clean, fine grained, moderate to low oxide, impact ground beryllium

powder,

• Consolidate by HIP,

• Use progressive machining for all steps,

• Acid etch after every machining and every rough grinding step,
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• Anneal at 785 ◦C after HIP and every rough machining step and

• Thermally cycle after the last machining step and after every grind and polish

step.

Brush Wellman Inc. uses this fabrication method for this type of beryllium products

[93]. According to Parsonage at Brush Wellman Inc., the billet of I220-H from which

our samples were prepared should have been fabricated with this method by considering

the details and the fabrication date [93].

Large mirrors have complicated shapes like a honeycomb; it would be easier to

fabricate thermally stable products of simpler shapes, such as cylinders, from which

STEP test masses are to be machined.

6.3.4 Performance of our samples, I220-H

The samples used for the measurements of the density inhomogeneities (Chapter 5)

were the grade of I220-H purchased from Brush Wellman Inc. This grade was investi-

gated for the application of large optical mirrors. The stable performance was observed

for a large mirror (outer diameter 1.12 m, inner diameter 4.6 cm and thickness 13 cm)

of I220 fabricated by the same process described in Section 6.3.3. As mentioned be-

fore, Brush Wellman Inc. followed the same fabrication for the grade of I220-H [93],

therefore, this grade should be highly isotropic and homogeneous. Paquin said that it

was expected to be more homogeneous than I70-H and similar in anisotropy because

of the finer particle size of the I220 powder [88].
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Therefore, there should be no problem with thermal distortion of STEP test masses

made by I220-H, if the post machining processes described in Section 6.3.3 are followed.

The samples used for the measurements of density inhomogeneities (see Chapter 5)

were dissected by Speedring (AXSYS Technologies). There are no records of whether

they were stress relieved after the machining [94].

The rod, from which the samples were made, was obtained from a stock at Speedring.

There is no record of the original HIPed size of the rod.

6.3.5 Preparation of STEP test masses

By considering these aspects described above, the best way to fabricate HIPed beryl-

lium STEP test masses with sufficient thermal dimensional stability may be as follows:

1. Purchase a HIPed beryllium cylinder made of a impact ground powder such as

I70 and I220 (preferably, the aspect ratio of the cylinder is 1 : 1),

2. Machine the cylinder to the STEP test mass shape by following the post machin-

ing process described in Section 6.3.3.

Test masses prepared in this way would have sufficient thermal dimensional stability

for the application.

Even if test masses are prepared in this way, it is still important to check their

thermal dimensional stability. As described in Section 6.3, several methods have been

used to check thermal dimensional stability of beryllium. Anisotropy and inhomo-

geneity in the thermal expansion have been checked by measuring differences in the
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thermal expansion and by measuring the preferred orientation of basal plane using

x-ray diffraction methods. Also, the thermal distortions have been measured by using

the cryogenic holographic methods [95].

For STEP test masses, the most concerned thermal dimensional instability is the

change of the aspect ratio (Section 6.2). This change can directly be checked by

measuring anisotropy in thermal expansion. We have developed a device to measure

differential thermal expansion using a capacitive sensing method. Capacitive sensing is

one of the most sensitive methods to measure thermal expansion. Also, unlike optical

methods, capacitive sensing methods can easily be applied to cryogenic measurements

and do not require special surface preparation. The x-ray diffraction methods can

also be used to check anisotropy in thermal expansion. However, the x-ray diffraction

methods can only examine the surface of samples (the x-ray penetration depth (Cu

Kα) is about 2.5 mm for beryllium) and may not be applicable for denser test masses

(such as Pt/Ir alloy and niobium).

The device that we have developed was particulary designed to measure differences

in thermal expansion between available HIPed beryllium samples, which were used

for the density inhomogeneity measurements. We have developed a mounting system

that allows to fix samples without machining them. This device and mounting system

could be developed for the measurements of anisotropic thermal expansion of STEP

test masses in their final shapes. We will describe the device and preliminary results

in Chapter 7.
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The usage of the products made from spherical powder, such as O30-H, may be

another option, though it will not be necessary as the thermal dimensional stability

of products of impact ground powder is sufficient. The stress involved during the

machining may not be significant for the products made from spherical powder; the

fabrication process may be simpler than the one for the products made from impact

ground powder.

Choice of grades of HIPed beryllium for the STEP test masses has to be done by

considering both properties of density homogeneity and thermal dimensional stability.

6.4 Conclusions

We have summarised thermal expansion of materials to be used for the STEP test

masses and the housing. Recommended values or certificated values were found in

literature for all of the materials, except HIPed beryllium and Pt/Ir alloy, which are

the strongest candidates as STEP test masses.

We have discussed the thermal dimensional stability of HIPed beryllium, which po-

tentially has anisotropic thermal expansion. The achievable stability of HIPed beryl-

lium is much higher than the required level of thermal distortion for STEP. HIPed

beryllium made of impact ground powder would be sufficient for STEP test masses as

regards the thermal dimensional stability. We have discussed ways to prepare HIPed

beryllium test masses for STEP.

However, it is still important to experimentally check the thermal dimensional sta-
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bility of specific materials prepared for STEP test masses. For example, residual stress

in the particular materials may be significant. The most concerned thermal dimen-

sional instability in STEP test masses is the change of the aspect ratio. This change

can be checked by measuring the differences in thermal expansion between their axial

and radial directions. We have developed a device to measure differential thermal ex-

pansion, which can be developed for this purpose. We will describe this device in the

next chapter.
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Chapter 7

Measurements of differential
thermal expansion

7.1 Introduction

As discussed in Section 6.2, thermal distortion of STEP test masses could produce

extra gravitational multipole moments and disturb the STEP experiment. Among

the materials suggested for the STEP test masses, HIPed beryllium is probably most

likely to have a significant level of thermal distortion because of the hexagonal crystal

structure. As we reviewed in Section 6.3, the studies of thermal dimensional stability

of HIPed beryllium showed that nominal thermal distortions of the specific grades,

which are intended to be used as the STEP test masses, would be small enough.

However, it is still important to check the thermal dimensional stability of the specific

materials prepared for STEP. For example, residual stress in the particular materials

may be significant. The most concerned thermal dimensional instability in STEP test

masses is the change of the aspect ratio. This change can be checked by measuring the

differences in thermal expansion between their axial and radial directions. We have
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developed a device to measure differential thermal expansion, which can be developed

for this purpose.

The device is designed to measure differences in thermal expansion between sam-

ples by using the three-terminal parallel-plate capacitor method. A mounting system

has been developed to mount samples stably without machining the samples. The

device is designed particularly for the HIPed beryllium samples used for the density

inhomogeneities measurements (Chapter 5).

The experiment has been cooled down to near the liquid nitrogen temperature

(approximately 77 K). It is ideal to measure the differential thermal expansion by

cooling down to liquid helium temperature as STEP test masses are to be operated

at 1.8 K. However, the coefficient of thermal expansion is very small at the cryogenic

temperatures, therefore, the change of the results of differential thermal expansion

under the liquid nitrogen temperature would be insignificant. Augason et al. reported

that virtually no change was observed between the 77.5 K and the 4.4 K measurements

of thermal distortion of a HIPed beryllium (I-70) mirror [96].

We will describe the formulae to calculate differential thermal expansions from mea-

sured capacitances in Section 7.3, and review the device in Section 7.4, the mounting

system in Section 7.5 and the experimental results in Section 7.7.
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Figure 7.1: A schematic view of three-terminal capacitance (quoted from [97]). Termi-
nals (1) and (2) are electrodes to form a capacitor and terminal 3 is the ground shield
of the capacitor.

7.2 Three-terminal parallel-plate capacitor method

The three-terminal parallel-plate capacitor method is one of the most sensitive ways to

measure thermal expansion. This method was originally applied for thermal expansion

measurements by White [97].

Experiments of thermal expansion, which use this method, are usually designed

so that the changes of the length of a sample relative to a reference change the gap

between two electrodes (terminals (1) and (2) in Figure 7.1) (see for example [97]).

The change of the gap, which is roughly proportional to 1/C (C is the capacitance

formed by the two electrodes), is measured by a capacitance bridge.

In the design of this type of experiment, it is important to make the change of the

capacitance insensitive to stray capacitances in the surroundings. A terminal (terminal

(3) in Figure 7.1) connected to the bridge ground surrounds the capacitance to shield

it from stray capacitances.

A diagram of an equivalent circuit for a three-terminal capacitance bridge, with
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an ideal transformer, is shown in Figure 7.21. The stray capacitances (Cs1 and Cs2)

are connected to the bridge ground. Current flow from Lo to the bridge ground is

detected. If the transformer is ideal and the impedance of the transformer is zero,

the voltages applied to the capacitances (CX and CRef) are independent of stray ca-

pacitances. Therefore, the voltages applied to the capacitances (CX and CRef) are

identical to the voltages induced in the transformer winding, as drawn in Figure 7.2.

The balance condition of the capacitance bridge is:

CX

CRef

=
VRef

VX

(7.1)

The detector is insensitive to the stray capacitances.

Oscillator Cx

Transformer V

C
Ref

Cs1

Cs2

D

Hi

Lo

Hi

X VX

VRef VRef

Figure 7.2: An equivalent circuit for a three-terminal capacitance bridge. It is assumed
that the transformer is ideal (see text). The electrodes of low voltage and high voltage
are indicated as Lo and Hi, respectively. D© indicates the detector.

The error in the reference capacitor (CRef) is given by ω2
V lT CT, where ωV = 2πfV .

1Figure 7.2 was provided by Chang [98] and was slightly modified by the author.
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fV and lT are the frequency of the supplied voltage and the transformer leakage in-

ductance, respectively [99]. CT = CRef + CGT + CGN, where CGT and CGN are the

transformer winding capacitance and stray capacitance, respectively. For our measure-

ments with a capacitance bridge (General Radio Company, Type 1615-A), the error

in the reference capacitance is 2.4 ppm (ωV ∼ 2π × 5kHz[rad/s], lT ∼ 4µH [99],

CRef ∼ 0.5pF , CGT ∼ 500pF [99] and CGN ∼ 100pF ). This error is negligible as it

corresponds to approximately 1.2 aF and the resolution of the capacitance bridge is 10

aF. In addition, the error in the absolute value of the capacitances is not important

for the measurement of differential thermal expansion (see Sections 7.3.4 and 7.7.3).

A schematic view of the three-terminal configuration of our capacitance cell (see

Section 7.4 for further details) for the measurements of differential thermal expansion

is shown in Figure 7.3. All the conductors of the capacitance cell, except the electrodes

(Hi) and samples (Lo), are connected to the bridge ground.

7.3 Calculations of differential thermal expansion

7.3.1 Thermal expansion

Assume a capacitance whose gap at a temperature T is given by the difference in the

length of a reference, LR, and a sample, LS:

d = LR − LS. (7.2)

The gap at another temperature T ′ can be given as follows:

d′ = LR(1 + TER) − LS(1 + TES) (7.3)
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Figure 7.3: A schematic cross section of our capacitance cell, showing its three-terminal
configuration. The high and low voltages were supplied to the electrodes (meshed area)
and the samples (slashed area), respectively. Insulators were filled with grid lines. The
other parts (the top and bottom disks, the spacer and the aluminium tube) were
connected to the bridge ground.

128



where TER and TES are the integrated thermal expansion of the reference and the

sample over the temperature change, respectively.

The change in the gap from the temperature T to T ′ can be written as follows:

∆d = d′ − d (7.4)

= LRTER − LSTES. (7.5)

From this equation, the thermal expansion of the sample is given as follows:

TES =
LRTER − ∆d

LS

. (7.6)

The value of TER can be obtained from literature. The values of LR and LS can be

obtained by measurements using a micrometer. The value of ∆d is obtained from the

capacitance measurements as we will discuss in Section 7.3.4.

7.3.2 Differential thermal expansion

By employing two capacitances such as those described in the previous section, the

difference in thermal expansion between two samples can be obtained as follows by

using Equation (7.6). Here, we assume that the same reference is used for both of the

samples as a common reference:

∆TE2,1 = TES2 − TES1 (7.7)

=
1

LS2

(LRTER − ∆d2) − 1

LS1

(LRTER − ∆d1) (7.8)


 ∆d1 − ∆d2

LS

, (7.9)
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where TES1 and TES2 are the thermal expansions of sample 1 and sample 2, respec-

tively. LS1 and LS2 are the lengths of sample 1 and sample 2, respectively. It is

assumed that LS1 
 LS2 = LS in Equation (7.9). This assumption is acceptable for

our measurements; the difference in the length of our samples is within 8 µm and its

contribution to the differential thermal expansion should be less than 0.02 % of ther-

mal expansion of beryllium. This is negligible as we want to measure the differential

thermal expansion of about 1.2 % (Section 6.2).

7.3.3 Capacitance

A capacitor usually has a guard ring around an electrode to reduce the effects of

electrical field distortion at the edges of the electrodes (Figure 7.4). Maxwell derived a

formula to calculate a capacitance of circular electrodes (of radius REle) with a guard

ring [100]:

C =
επR2

Ele

d
+

επREleω

d + 0.22ω

(
1 +

ω

2REle

)
, (7.10)

where ε is the permittivity and ω is the width of the gap between the electrode and

the guard-ring (see Figure 7.4). The electrodes and the guard-ring are assumed to be

thick compared with ω. The first term of the right-hand side of Equation (7.10) is an

ideal parallel-plate capacitance and the higher terms are the correction for the edge

effect.
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Figure 7.4: A schematic section of circular electrodes with a guard-ring (quoted from
[100]). The dashed lines show the electric field. ω is the gap between the electrode and
the guard ring.

7.3.4 Change in the gap

The gap is obtained by solving Equation (7.10) with d. From Equation (7.10),

d ∼= επR2
Ele

C

{
1 +

ω

REle

(
1 +

ω

2REle

) (
1 − 0.22ω

d

)}
(7.11)

=
επR2

Ele

C

{
1 +

ω

REle

+
1

2

(
ω

REle

)2
}
− δd (7.12)

where

δd =
επR2

Ele

C
· ω

REle

(
1 +

ω

2REle

)
· 0.22ω

d
(7.13)

The uncertainty in the absolute value of the gap (d) is not crucial for the estimation

of differential thermal expansion2. For our experiment, δd/d is as small as 1.3 × 10−3

(ω = 0.15 mm and REle = 3.9 mm). This would contribute to the uncertainty of

differential thermal expansion by roughly 0.1 % of the differential thermal expansion,

2The uncertainty of the gap, δd, contributes to the uncertainty of differential thermal expansion
as ∼ (∆TE/TE)(δd/d).
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∆TE/TE. Therefore, the effect of δd is negligible for the estimation of differential

thermal expansion.

The difference in the change of the gap between samples in Equation (7.9) becomes:

∆d1 − ∆d2 =

{
επR

′2
Ele1

C ′
1

(1 + o′1) −
επR2

Ele1

C1

(1 + o1)

}

−
{

επR
′2
Ele2

C ′
2

(1 + o′2) −
επR2

Ele2

C2

(1 + o2)

}
(7.14)


 επR2
Ele

[{
(1 + TEREle

)2

C ′
1

− 1

C1

}

−
{

(1 + TEREle
)2

C ′
2

− 1

C2

}]
(1 + o), (7.15)

where

o =
ω

REle

+
1

2

(
ω

REle

)2

(7.16)

Where TEREle
is the thermal expansion of the electrodes. In the above equations, a

dash (′) was used for the quantities at temperature T ′, and the subscripts 1 and 2

indicate sample 1 and 2 respectively. For our experiment, o is approximately 0.04 and

can be ignored. From this equation and Equation (7.9),

∆TE2,1 =
επR2

Ele

LS

[{
(1 + TEREle

)2

C ′
1

− 1

C1

}
−

{
(1 + TEREle

)2

C ′
2

− 1

C2

}]
(7.17)

This equation was used to obtain the results presented in Section 7.7.4.

In the above discussion, we have assumed that the apparatus is identical for both

of the samples. However, in reality, they are deferent. The maximum gap difference

of roughly 0.1 mm (about 10 % of the gap) was observed between different positions

in our device. The possible origins of the difference are, for example, the difference
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in the depth of the tetrahedron-shaped blind holes, the length of the electrodes and

the height of the alumina balls, and tilts of the top disk (see Section 7.4 for a detailed

description of the device). In the worst case (when the difference is due to a titanium

part, whose thermal expansion is the largest among other parts), 10 % of gap difference

can produce a spurious signal of about 0.25 % in ∆TE/TE. This systematic error was

taken into account in the final results presented in Section 7.7.4. We have rotated

the samples and compared the result with one before the rotation. We observed no

significant differences between them (Section 7.7.4).

7.4 Experimental set-up

7.4.1 Overview

As described in Section 7.2, the three-terminal parallel-plate capacitance method was

used to measure the differential thermal expansions. The device is able to measure

differential thermal expansion of three samples. The device mainly comprises of three

parts: the capacitance cell (Figure 7.5), glass dewars and a capacitance bridge (Figure

7.6).

The capacitance cell mainly comprises of an aluminium tube, two titanium disks

(the diameter and the thickness are approximately 80 mm and 10 mm, respectively.),

three circular electrodes (of diameter 7.8 mm) made of titanium, one titanium spacer,

three samples and a mounting system for each sample. One of the disks (bottom disk)

is attached to the aluminium tube (Figure 7.5). The spacer is kinematically mounted

at the middle of the bottom disk and three samples are mounted on the bottom disk
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around the spacer (Figure 7.7) by using the mounting system described in Section 7.5.3.

The other disk (top disk) is kinematically mounted on the spacer and three electrodes

are kinematically mounted on the top disk (Figures 7.8 and 7.13). The height of the

samples is shorter than that of the spacer to form a gap of approximately 1 mm between

the top disk and the samples. Therefore, the spacer acts as the common reference for

the three samples. Each electrode is aligned to one sample to form a capacitor (Figure

7.5).

As described in Section 7.2, high voltage (100 V, peak to peak) was supplied to

the electrodes and the low voltage was supplied to the samples with coaxial cables

and wires (see Section 7.4.2). All the other conductors in the capacitance cell, such

as the aluminium tube, the top and bottom disks and the spacer, were connected to

the ground of the capacitance bridge to achieve the three-terminal set-up. They were

electrically isolated from the high and low voltage electrodes by insulators of alumina

and macor (see Section 7.5.3 for details). The capacitance cell was wrapped by an

aluminium sheet to shield it from external electrical fields and connected to the bridge

ground (Figure 7.9).

The capacitance cell was attached to a cryostat insert (Figure 7.9) and placed in the

inner glass dewar (Figure 7.6). Before the measurements, the air in the inner dewar

was pumped out by a vacuum pump and replaced by helium gas. Liquid nitrogen

was supplied in the outer dewar to cool the capacitance cell. The capacitances were

manually measured at temperatures of approximately 20 ◦C (293 K) and 77 K by
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Figure 7.5: A photograph of the capacitance cell.
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Figure 7.6: A photograph of the dewars and the capacitance bridge
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Figure 7.7: The titanium spacer (in the middle) and three samples are mounted on the
bottom disk.

Figure 7.8: A photograph of the top disk of the capacitance cell set in the aluminium
tube, taken from top. Three electrodes are kinematically mounted on the top disk.
Three mechanical supports for the SMC connectors are firmly fixed on the aluminium
tube so that the top disk is insensitive to the movement of the coaxial cables during
the cooling down (see Section 7.4.2).

137



using the capacitance bridge (General Radio 1615-A, resolution 10 aF or 10−17 F). The

cooling took approximately 5 hours.

Temperatures were measured by two platinum resistance thermometers (Farnell

541-102, temperature range -200 ◦C to 800 ◦C [101]) fixed at two positions on the

aluminium tube as shown in Figure 7.5.

7.4.2 Technical details

Fixing cables

Coaxial cables (diameter 2.5 mm, RG179) and SMC connectors were used to apply

voltage on the capacitors. As shown in Figure 7.8, the connectors were mechanically

attached to the aluminium tube so that the movements of the coaxial cables would

not disturb the measurements. The coaxial cables can move because of the thermal

contraction/expansion during cooling down/warming up. One end of copper wires/gold

wires (of diameter 20 microns) were soldered to copper washers fixed at the top parts

of the electrodes and the other ends were soldered to the SMC connectors. Similar

mechanical supports were used for the supply of the low voltages (Figure 7.5). It

is essential to use fine wires; if they are too stiff, the movement of the wires during

cooling down could push the electrodes and/or the top disk and disturb the experiment

by changing the gap.
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Figure 7.9: A photograph of the cryostat insert suspended on a wooden stand. The
capacitance cell is wrapped by an aluminium sheet.
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7.5 Mounting system

The measurements of differential thermal expansion are directly affected by the change

in the height of the samples to be measured. Therefore, stable mounting of the samples

is essential for the experimental design. Sufficiently stable mounting is achievable by

employing kinematic mounts (see Section 7.5.1 for details). Every time it is mounted,

proper kinematic mounts allow a sample to be located at an unique position within 0.1

µm [102]. As we will see in Section 7.5.1, kinematic mounts normally involve machining

of samples.

A special facility is necessary to machine the beryllium samples because of the

hazard; inhalation of beryllium powder can cause death [103]. We do not have any

access to a facility that can machine beryllium. Therefore, we developed a mounting

system that can fix samples stably without machining the samples.

7.5.1 Typical kinematic mounts

To fix a sample at an unique position, it is necessary to constrain six degrees of freedom

of the sample: x, y, z, α, β and γ (see Figure 7.10). The restriction of the six degrees

of freedom can be achieved by having the sample touched by six points.

A typical kinematic mount3, which is generally used for various experiments to

mount a sample, is shown in Figure 7.11 [104]. For instance, a cylindrical sample with

three balls, each of which fits in a v-groove on the disk, firmly attached to it can be

mounted at a unique position on the disk. Usually, three cones are machined on the

3See, for example, [104] for other typical kinematic mounts.
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sample to fix the three balls (as we will see in Section 7.5.3, we used tetrahedron-shaped

blind holes instead of the cones to prevent instability caused by imperfect machining

of the cones). The six degrees of freedom of the sample are constrained as the balls

touch at the six points drawn in Figure 7.11.

Kinematic mounts generally satisfy the following requirements:

• a sample can be located at one unique position,

• good tolerances are not required in the design of the kinematic mounts.

It is clear that high precisions are not crucial for the typical kinematic mount of Figure

7.11; the separation of the v-grooves does not have to be exactly 120 degrees; the

positions of the three ball bearings can be anywhere within the allowed length of the v-

grooves as, in general, any three points that define a plane can find one unique position

in three v-grooves.

Figure 7.10: Six degrees of freedom
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Figure 7.11: A schematic view of a typical kinematic mount (quoted from [104]). Three
balls (circles of dashed lines), fixed on the sample to be mounted, sit in the v-grooves
and touch at the six points.

The kinematic mounts used for the spacer, the top disk, and the electrodes are

slightly different from the one we described above. In the kinematic mounts used for

these parts, both the piece to be mounted and the mounting piece have v-grooves (see

Figures 7.7, 7.12 and 7.13 for the v-grooves). Therefore, the ball bearings can move

along the v-grooves, and every time the pieces are assembled, they sit at a different

position. The magnitude of this difference depends on the machining tolerance of

the v-grooves. However, this mounting is stable unless the ball bearings move. In

our experiment, all the components (except the ball bearings) are made by the same

material (titanium) to avoid the movements of the ball bearings by the differential

thermal expansion. We used this mounting because we believed that this method

requires less machining tolerances than having cones to mount ball bearings; the cones
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Figure 7.12: A photograph of the bottom disk with alumina balls. Three v-grooves at
the central part of the disk is to mount the spacer.

should not be elliptic to a high precision, otherwise, the ball bearings cannot sit on

them stably.

However, we cannot use these typical kinematic mounts described above for the

beryllium samples as we cannot fix balls on the sample nor machine v-grooves on it.

We will describe the conditions required for the mounting system for our experiment

in the next section.

7.5.2 Conditions for the mounting system in our experiments

There are three requirements on the mounting system for our experiment: firstly, it

has to work at a cryogenic temperature. The relative length of materials changes with
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Figure 7.13: A photograph of the top disk, with alumina balls set on the v-grooves,
and the electrodes.

temperature because of their different thermal expansions. For example, if there is no

room for the materials used in the mounting system to move, the difference in thermal

expansion could destroy some parts of the system. Secondly, as mentioned before, the

samples cannot be machined. Thirdly, no adhesive can be used between the sample and

the position where the sample sits. Performances of our prototype mounting methods

(not described in this thesis) showed that use of adhesive (superglue and cryogenic

epoxy) between them introduced significant instability in the measurements.

However, the horizontal movement (parallel to the bottom disk) of the samples is

not crucial for our experiment. The capacitances are sensitive to the change in the

gap, but not sensitive to the horizontal movement to the first order. In our device, the

rotation axis (perpendicular to the bottom disk) of the samples is aligned to the centre
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of the electrode. Therefore, the rotation of the sample is not critical either.

In summary, the mounting system for our experiment should satisfy the following

conditions:

1. it has to work at cryogenic temperatures,

2. samples do not require machining,

3. no adhesive should be used between the sample and the place where the sample

sits and

4. horizontal movements and axial rotations of the sample are not critical.

7.5.3 Mounting system for our experiment

In this section, we will describe the overview and the principle of the mounting system,

and three aspects considered in the design of the mounting system.

Overview

We have developed a mounting system which satisfies the conditions described in the

previous section. A schematic extended view of the mounting system is shown in Figure

7.14. There are several differences between the real mounting system and that shown

in Figure 7.14. This figure shows one set of holes for the mounting of a cylindrical

sample on the titanium disk. However, the shape of the measured samples was not a

cylinder but a segment (Figure 7.16). The real disk has four such sets of holes as shown

in Figure 7.12. Three of them were used to mount segmented samples and the spacer
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was mounted in the center by the typical kinematic mounts, as shown in Figure 7.7.

Tetrahedron-shaped blind holes instead of cones (Figure 7.12) were used to prevent

instability caused by imperfect machining of cones.

Figure 7.14: A schematic extended view of the mounting system

A piece referred to as the centring piece in Figure 7.14 is composed of a plunger

screw, two macor screws with hemispherical ends and a titanium cylinder with a blind

hole (Figure 7.15). The plunger screw contains a spring and the macor head can slide

within the screw.

The centring piece is glued on a flat surface of a sample. Stainless steel studding

is screwed into macor studding as shown in Figure 7.14. A ring attached to the stain-

less steel studding loops around the plunger screw of the centring piece. The ring is
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sufficiently large so that the connection between the centring piece and the stainless

steel studding is flexible. The sample sits on the three alumina ball bearings which sit

in the cones (the tetrahedron-shaped blind holes in the real system) of the titanium

disk. The pieces attached to the sample (Figure 7.16) go through a clearance hole,

with a v-groove, in the disk and the centring piece fits in the clearance hole as shown

in Figure 7.15. The compression spring goes outside of the studdings. A nut with a

washer is screwed on the macor studding to compress the compression spring. The

force due to the compressed spring pulls down the sample on the three ball bearings.

The final assembly can be seen in Figure 7.5.

Figure 7.15: A cross section of the centring piece which fits in a clearance hole with a v-
groove of the disk (this figure is drawn to scale, except the spring in the plunger screw).
The diameter of the blind titanium cylinder is 9 mm and the height is 6 mm. The
centring piece touches the disk at four points to constrain the three degrees of freedom
(x, y and γ) of the sample. The head of the plunger screw touches the v-groove. The
head of the plunger screw and the hemispherical screws are made of macor. All the
other parts, except the spring in the plunger screw (the spring is made of stainless
steel), are made of titanium.
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Figure 7.16: A sample with pieces for mounting attached. The height of the sample is
37.1 mm.

Principle of the mounting system

The mounting system constrains the six degrees of freedom of a sample as follows. Here

we set the origin of the coordinates shown in Figure 7.14 at the center of figure of the

centring piece in the clearance hole. This coordinate system will be used throughout

the rest of this section.

1. the three ball bearings constrain the plane where the sample sits, namely z, α

and β,

2. the v-groove through the clearance hole of the disk constrains the rotation of the

sample around the z-axis, namely γ (see Figure 7.15) and

3. the centring piece constrains the horizontal shift of the sample, namely x and y

(see Figure 7.15).
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Even though there are seven contact points (three points touch the ball bearings and

four points of the centering piece touch the bottom disk) in the mounting system, it

is not over-constrained. Two contact points by the plunger screw at the v-groove does

not constrain any degree of freedom completely because of the spring of the plunger

screw (see Figure 7.15).

Mechanical aspects

If a force is applied to the sample, it can move in any direction around any pivot point

out of the seven contact points. It is important that the sample comes back to its

original position to a sufficient level when the force is released. There should not be

any friction that is large enough to prevent the sample from coming back to the original

position. For example, if the friction between the centring piece and the surface of the

clearance hole is too big, the plane may be determined by the contact points of the

centring piece and the sample may not sit on the three ball bearings.

The mounting system is designed to minimise friction. The height of the centre of

the hemispherical macor heads of the centring piece and the centre of the ball bearings

are aligned as shown in Figure 7.17. This alignment minimises the friction that arises

between the macor heads and the surface of the clearance hole of the disk when the

sample tilts around the x and y axes. Figure 7.17 shows a track of a macor head of the

centering piece when the sample tilts around a ball bearing. From the track, one can

see that the sample is virtually free to tilt around the x and y axes and to come back

to the original position.
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Figure 7.17: A schematic cross section of the mounting system. (The studding and
the compression spring are omitted in this figure. This figure schematically shows the
tetrahedron-shaped blind holes and macor screws/head of the centring piece on one
plane. However, of course, they are not on the plane in the real mounting system as
one can see in, for example, Figures 7.14 and 7.15.) The horizontal dashed lines show
the alignment of the centres of ball bearings and the contact points of the centring
piece. The dashed arc shows the track of the macor head when the sample tilts around
the left ball bearing.
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The force applied by the compression spring to pull down the sample on the three

balls should not produce any torque. The best point to apply the force is in the plane

of the centre of three ball bearings, namely roughly the middle of the centring piece

(Figure 7.17). In the mounting system, the ring is looped around the plunger screw.

The joint is flexible so that there is no need for aligning the point of application of the

force with high accuracy.

The force applied by the compression spring has to be sufficiently small to avoid

making dents on the samples and the bottom disk. We have estimated the maximum

allowed load by using a formula in [105]. For this purpose, the spring should not be

compressed more than 0.5 mm, which corresponds to approximately 0.5 N. Here, the

weight of the pieces is included in the calculation.

As for the rotation around the z axis, the four contact points of the centring piece

can be a pivot point. In any case, the plunger screw works to let the sample come back

to the original position.

As regards the horizontal shifts, again, the plunger screw guides the sample back

to the original position.

However, the freedom that allows the head of the plunger screw to slide allows some

rotation and horizontal shift of the sample. However, as described in Section 7.5.2, the

rotation and horizontal shift are not crucial for our experimental set-up.

We have carefully lifted up a sample, mounted on the disk by using the mounting

system, by pushing up the nut by roughly 0.5 mm and letting it go. We have measured
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the capacitance before and after the lift and repeated this process more than 10 times

for the three samples mounted. The change in the capacitance was within 30 aF for all

the samples, which corresponds to roughly 80 nm. This shows that the performance of

our mounting system is equivalent or better than the typical kinematic mounts. How-

ever, it should be noted that the capacitance measurements are dominantly sensitive

only to the change in the gap. Therefore, it can be said that our mounting system may

not be good enough for some experiments that are sensitive to the horizontal shift or

rotation, but it works, at least, at the same level as the typical kinematic mount for

our purpose.

Electrical aspects

The sample has to be electrically isolated from the bottom disk, where the sample

is mounted, as the bottom disk is connected to the ground of the capacitance bridge

(Section 7.2). For this purpose, the ball bearings and the contact points of the centring

piece were made from insulators of alumina and macor, respectively.

Differential thermal expansion

To make the mounting system work at a cryogenic temperature, thermal expansions

of the materials used for the mounting system have to be taken into consideration.

The centring piece is glued on the sample. The main body of the centring piece is

made of titanium, whose thermal expansion is close enough to beryllium. We have tried

several materials, such as brass and macor. We glued these materials to a beryllium

sample with several adhesives (superglue, Aroldite and cryogenic epoxy) and immersed
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them into liquid nitrogen. But they came off after the immersion.

As macor shrinks more than titanium by roughly 50 % at the liquid nitrogen tem-

perature ([106] and [76] for the thermal expansion of macor and titanium, respectively.),

the spring in the plunger screw, which is compressed when it is set in the clearance

hole at room temperature, expands when cooled and introduces a small horizontal shift

of the sample. In order to minimize this shift, it is best to make the centring piece

from the same material as the disk. However, as mentioned before, we have to use an

insulator at the contact points. We chose macor as it is a machinable insulator and

the thermal expansion of macor is close to titanium among other insulators.

7.6 Measurements

7.6.1 Experimental procedure

The experimental set-up and measurements were proceeded in the following order:

1. All the parts for the capacitance cell were cleaned using acetone and a air duster.

2. They were assembled to build the capacitance cell.

3. The cables were connected with the SMC connectors and wires were soldered to

connect the connectors and the electrodes.

4. The capacitance cell was set in the insert and placed in the inner dewar.

5. The air in the inner dewar was pumped out with a vacuum pump, and replaced

with helium gas.
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6. The experiment was left for at least a few hours until the readings of the capac-

itance settled down after the pumping.

7. The capacitances and the temperatures at room temperatures were measured

with the capacitance bridge and the thermometers, respectively.

8. Liquid nitrogen was supplied into the outer dewar until the readings of the ther-

mometers stopped changing.

9. The capacitances were measured at the cool temperature.

10. The experiment was warmed up naturally for roughly one day.

11. The capacitances were measured at the warm temperature.

We cooled down the experiment eight times and took data. After the eighth cool

down, we took out the capacitance cell from the dewar and rotated the position of

the samples. With this setting, we cooled down three times and took data to check

whether there is a dependency of sample positions. No significant position dependency

was observed (see Section 7.7.4).

No temperature control system was employed.

7.6.2 Samples

Three samples (samples 102, 104 and 112) were chosen from the HIPed beryllium

samples used for the density inhomogeneity measurements (Chapter 5). The three

samples showed the least density differences.
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7.7 Experimental results

7.7.1 Measured capacitance

Typical raw data of measured capacitances for samples 102, 104 and 112 are plotted in

the order of measurements in Figure 7.18, respectively. Figure 7.19 shows the average

capacitance of three. In these figures, capacitances measured at a warm and a cool

state are indicated by warm and cool, respectively. No allowance has been made for

the variation in ambient temperature in these plots.

The first thing to notice is that before the fourth warm state (warm 4), the capaci-

tances of all samples were larger at warm states than cool states. At the fourth warm

state, the capacitances of sample 104 increased from the third cool state (cool 3) but

the capacitances of samples 102 and 112 decreased. The average capacitance did not

show a dramatic change at the fourth warm state.

Figure 7.20 shows all the measured capacitances (scaled to make the average capac-

itance of each sample zero) at warm temperatures versus temperature. In this figure,

one can see that the average capacitance showed a smooth curve through the temper-

ature range, but the individual capacitances at the low temperature region (roughly

12.0 ∼ 14.0 ◦C) and at the high temperature region (roughly 19.5 ∼ 22.5 ◦C) are dis-

continuous. The data at the high temperature region were from the first three cooling

downs. From the fourth warm states, the warm temperature decreased because of the

cut-off of the central heating over Christmas vacation, 2001.

From these figures, it is likely that a tilt of the top disk, which makes the gap of
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Figure 7.18: Capacitance of samples 102, 104 and 112
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sample 104 small, occurred before and after the cut-off of the central heating.

7.7.2 Estimation of differential thermal expansion

We have estimated the differential thermal expansions between the samples for each

cooling down, which has a warm state before the cooling-down, a cool state and a warm

state after the cooling-down.

Raw data were analysed in the following way to estimate the differential thermal

expansion between the samples:

1. the capacitance at the average temperature of each warm state was estimated by

least square fitting of the measured capacitances at the warm temperatures.

2. we took the average of the estimated capacitances at the two warm states and

used it as the representative capacitance of the warm states.
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Figure 7.20: The average capacitance of each sample is subtracted from the measured
capacitances and plotted versus temperature. Triangles, squares, circles and stars are
the values of samples 102, 104, 112 and the average, respectively.
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3. the capacitance at the cool state was estimated by least square fitting.

4. the representative capacitances of the warm state and the cool state were used

to estimate differential thermal expansion by using Equation (7.17).

7.7.3 Uncertainty

Differential thermal expansion is roughly proportional to the difference in the change of

capacitance between two samples (see Equation (7.17)). The estimation of differential

thermal expansion between sample 1 and 2 is not affected if C1 and C2 changes by the

same amount. This common change of capacitance can occur, for example, if there is a

drift in the readings of the capacitance bridge; if there is a leak in the inner dewar and

helium gas is replaced by the air; if the top disk or the spacer tilted towards sample 1

by the same amount as sample 2.

However, the estimation of differential thermal expansion is affected by non-common

changes, such as the tilt of the top disk by a different amount towards the samples and

some problems in an individual mounting system. These non-common effects can be

estimated by comparing ∆C12 at the warm temperature before the cooling with one at

the warm temperature after the cooling. A significant discrepancy between them can

be considered as the result of the non-common effects during the cooling down. When

the discrepancy/
√

2 is more than the uncertainty in C1 and C2, estimated from the least

square fitting (see Section 7.7.2), we took the discrepancy/
√

2 as the uncertainty of C1

and C2. Because no temperature control system was employed, the warm temperatures
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before and after the cooling down were usually different. Therefore, the discrepancy

contains the temperature effects, which are due to the differences in thermal expansion

between the samples. We estimated the temperature effects from the data taken at the

room temperatures and subtracted it from the discrepancy. The maximum tempera-

ture effect is approximately 40 aF by considering the observed maximum temperature

difference of approximately 6.5 ◦C (before and after the cut-off of the central heating).

However, any spurious effects that repeat when the experiment is cooled down and

warmed up cannot be estimated in the way described above. Spurious effects may be

checked by cooling down several times. In general spurious effects would not repeat

after several cooling-downs. In our experiment, spurious effects seem dominantly due

to the tilts of the top disk (Section 7.7.4).

7.7.4 Results

Figure 7.21 shows the estimated differential thermal expansions ∆TE/TEBe, where

TEBe is the integrated thermal expansion of beryllium, estimated from Swenson’s data

[78], over the temperature change (for example TEBe = −1.29 × 10−3 for the tem-

perature change from 293 K to 77 K). The drawn errors were estimated in the way

described in the previous section.

The data presented in Section 7.7.1 correspond to the results of the numbers from

3 to 8 on the x-axis of Figure 7.21. The results of number 5 and 6, which showed

discontinuous changes in the individual capacitances (Section 7.7.1), are significantly

different from the other results. The experimental set-up of the measurements for the
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Figure 7.21: The differential thermal expansion of the beryllium samples. Squares,
circles and triangles are ∆TE102,112/TEBe, ∆TE112,104/TEBe and ∆TE104,102/TEBe,
respectively. Asterisks are ∆TEAvg,Be/TEBe (scaled to make the average of the plotted
∆TEAvg,Be/TEBe zero).
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results of the numbers 1 and 2 was the same as one for the results of the numbers from

3 to 8. The results after rotating the position of the samples are plotted from number

9 to 11 on the x-axis of Figure 7.21.

The difference between the average thermal expansion of the three samples and

the expected thermal expansion from Swenson’s data (∆TEAvg,Be/TEBe = (TEAvg −

TEBe)/TEBe) is also plotted in Figure 7.21 (scaled to make the average of the plotted

∆TEAvg,Be/TEBe zero). TEAvg was obtained from Equation (7.6)4. ∆d in Equation

(7.6) was obtained from Equation (7.10) by substituting the average capacitances of

three capacitances estimated in the way described in Section 7.7.2. The values of

∆TEAvg,Be/TEBe for the results of number 10 and 11 are not plotted because of the

following reason: the pipe to supply helium gas into the dewar was closed without

any notice by a technician because of a sudden failure in the helium supply system.

Therefore, we could not estimate the permittivity to a sufficient accuracy for those

data. However, this is a common effect for all the samples and did not affect the

results of the differential thermal expansion significantly as shown in Figure 7.21.

As shown in Figure 7.21, no significant differences in ∆TEAvg,Be/TEBe were ob-

served. It indicates that the large differences at number 5 and 6 are effects that cancel

out. If the large difference of approximately 6 % is due to some problems of one sample

(sample 104), the average thermal expansion should be different from others by ap-

proximately 2 %. Therefore, together with the observation described in Section 7.7.1,

4For simplicity, the gap was assumed as the difference in length between the reference and the
sample (Equation (7.2)) when Equation (7.6) was derived. In practice, all the factors on which the
gap depends, such as the height of the ball bearings, were considered.
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the anomalies at number 5 and 6 are possibly due to tilts of the top disk. The standard

deviation of ∆TEAvg,Be/TEBe for all the plotted values is 0.3 %.

By taking the weighted average of all the results, we obtain:

∆TE102,112/TEBe = (−0.7 ± 0.3)% (7.18)

∆TE112,104/TEBe = (−0.6 ± 0.3)% (7.19)

∆TE104,102/TEBe = (0.9 ± 0.3)% (7.20)

where the uncertainties includes systematic errors in the quantities used in the cal-

culation (namely, ε, LS, REle, C and TEEle in Equation (7.17)) and due to the gap

difference between positions (see the discussion at the end of the Section 7.3.4). The

maximum difference in the thermal expansion was (0.9 ± 0.3)%.

7.8 Discussion

We have observed the maximum differential thermal expansion of (0.9 ± 0.3)%, which

is the level of the maximum allowed anisotropy of the thermal expansion of a beryllium

STEP test mass (Section 6.2). This could be due to the residual stress in the samples.

Stress relief of the samples may reduce the differential thermal expansion. It is reported

that extensive stress relief is important to fabricate thermally stable HIPed beryllium

[90] (see also Section 6.3.3).

In general, residual stress in samples seems to affect the thermal expansion. Usually

measurements of thermal expansion are done using stress relieved samples (e.g. [76,

77]). Rosenfield and Averbach have measured the coefficient of thermal expansion of
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Figure 7.22: Effect of stress on the thermal expansion of a 1020 steel (quoted from
[107])

specimens under tensile stress and after the stress has been removed for steels and

Invar [107]. One of the results is shown in Figure 7.22. When the applied stress was

below the elastic limit, the coefficient of thermal expansion returned to the original

value when the stress was removed. However, if the applied stress exceeds the elastic

limit, the contraction on unloading differed from the original value. In the figure, the

maximum residual difference in the coefficient of thermal expansion, which occurred at

the stress of approximately 6 × 104 psi5 or 0.4 GPa, is roughly 4 %.

There may be two aspects related to the tilt of the top disk: (1) the kinematic

mounts for the disks and the spacer are not to work properly if the ball bearings move

(see Section 7.5.1); their movement could cause tilts. Even though the spacer and the

51 p.s.i. = 6.894757 ×103 Pa [108]

164



disks are made from the same material, the ball bearings may move. For example,

if there is a temperature difference between the spacer and the top disk during the

worming up/cooling down, the different rate in their expansion/contraction could move

the ball bearings. Friction between the v-grooves and the ball bearings could cause

instability in the mounting system as the ball bearings move. In fact, the surfaces of

the v-grooves in the disks for the spacer were rough even though they were etched6,

(2) because the spacer is inside of samples, the tilt effects are magnified.

Use of the typical kinematic mounts shown in Figure 7.11 would avoid the move-

ments of the ball bearings because the positions of cones determine the positions of the

ball bearings. The surfaces of the v-grooves and the cones (or alternatively tetrahedron-

shaped blind holes) have to be sufficiently smooth to prevent friction and spurious

effects due to roughness of the surfaces; the contact points of the ball bearings in the

v-grooves or cones change with temperature because of the difference in thermal ex-

pansion of the disks (titanium) and the ball bearings (alumina). Experiments would

be less affected by tilts if the spacer sits outside of samples, for example by employing

a hollowed cylindrical spacer. However, we would need a larger dewar to have this con-

figuration in the device. There would not be enough room for cables in the aluminium

tube, which fits tightly to the inner dewar.

By using the device, it is possible to obtain thermal expansions of the samples

6Surface finishes of the v-grooves on the disks looked much rougher than ones for the tetrahedron-
shaped blind holes. The v-grooves were machined by a tool with a wide edge, while the blind holes
were machined by a tool with a point edge. After the v-grooves and blind holes were machined, they
were etched by a solution (1 % HF, 20 % HNO3, 54 % Acetic Acid and 25 % of Lactic acid, where %
in volume).

165



by using Equation (7.6). We have estimated the integrated thermal expansion from

the average capacitance of three samples. The average of all the plotted values of

∆TEAvg,Be/TEBe in Figure 7.21 was 2.3 %. The values of ∆TEAvg,Be/TEBe do not

depend on temperature to the first order. Therefore, with the average value and

Swenson’s value, we obtain the integrated thermal expansion from 293 K to 77 K

as (−1.26 ± 0.04) × 10−3. The uncertainty is dominantly given by the uncertainty in

the thermal expansion of the reference material (TET i = (−1.46 ± 0.04) × 10−3 (from

293 K to 77 K), quoted from the recommended value in [76]). Our result agrees with

the Swenson’s value, (−1.29 ± 0.02) × 10−3 [78].

However, to determine the thermal expansion it is important to calibrate the ca-

pacitance cell using stress relieved and recommended materials, such as copper and

silicon, as a reference. We have used the titanium spacer as the reference. But the

spacer is not stress relieved. Therefore, the recommended value of the thermal expan-

sion of titanium may be different from the one of this particular spacer. Also, titanium

is not recommended as a reference material of thermal expansion in literature [83]. A

temperature control system is essential to measure thermal expansions/coefficients of

thermal expansion as a function of temperature.

As a trial, we have supplied liquid helium into the inner dewar to cool down the

capacitance cell to the liquid helium temperature. But the result looked limited by the

tilt of the top disk, possibly caused when the liquid helium was boiling off at the level

of the top disk.
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We have measured differential thermal expansion of samples in their axial direction.

However, the worst effects on the STEP experiment would come from the change in

the aspect ratio of the test masses. Therefore, it is important to measure the difference

in thermal expansion between the axial and the radial direction. For example, this

difference can be measured with the device if the samples are cubes. Firstly we can

measure difference in thermal expansion between a cubic sample in the axial direction

and a reference. Secondly we can rotate the cubic sample so that we can measure

the difference in thermal expansion between the sample in the radial direction and the

reference. We can estimate the anisotropy of the sample by comparing the results of

the first and the second measurements.

7.9 Conclusions

We have seen that the device developed here has a sufficient precision to check the

anisotropy in thermal expansion of HIPed beryllium for STEP.

The results of three HIPed beryllium samples, prepared from the billet for a proto-

type STEP test mass, showed a maximum difference of (0.9 ± 0.3) % in the thermal

expansion. This is the level of the allowed anisotropy of thermal expansion for STEP

test masses, derived in Section 6.2. The difference could be due to the residual stress

in the samples. Annealing the samples may reduce the differential thermal expansion.

For example, we can measure the differential thermal expansion of the samples after

annealing them and compare the results presented here. Stress relief also may improve
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the density homogeneities (see Section 8.5).

The mounting system developed here can mount a sample without machining it.

This mounting system might have several applications. By using the mounting system

the device can potentially be developed to measure, for instance, the thermal expansion

(and isotropy of the thermal expansion) of the real STEP test masses in the final shape.

Also, we could study the thermal expansion of the Pt/Ir alloy, one of the strongest

candidate material for STEP test masses.
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Chapter 8

Discussion

8.1 Test mass selection

We have discussed STEP test-mass selection in Section 2.4.1. In Figure 2.10, the most

different pair of elements is Be-Bi. From the figure, it is clear that Be should be

used. However, the heavy elements (Ta, W, Ir, Pt Au and Bi) are close each other

in the figure. Therefore, we can choose any of them as a test mass material without

significantly losing the sensitivity of STEP. As regards machinability, none of the heavy

elements in pure form seems suitable as test masses, except Ta. They are probably too

soft or brittle and, therefore, they have to be used as alloy.

At the moment, Pt is the most strongest candidate among them. Pt/Ir (Ir 10%)

alloy is an alternative to pure Pt as this is probably too soft. However, Pt/Ir alloy

might have a significant density inhomogeneity because it is not a single element; ie

the distribution of Ir may not be sufficiently even. The average density of two different

Pt/Ir ingots typically differers by about 500 ppm and it is correlated with variations

of iridium content of 10 % by mass [68]. However, density measurements of sliced
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Pt/Ir samples (7 samples, the diameter and height are both approximately 40 mm)

from one ingot showed a density variation of less than 7 ppm [68]. The uncertainty

of the measurements was about 1 ppm. The value of thermal expansion of Pt/Ir at

low temperature is not available in literature (see Section 6.1). Therefore, studies on

density inhomogeneities, thermal expansion and distortion of Pt/Ir alloy are necessary.

However, it is difficult to obtain samples for those studies because it is very expensive.

Tantalum satisfies most of the technical requirements; it is not difficult to machine

and its thermal expansion data is available in existing literature [76]. Also, there are no

possible causes of density inhomogeneities nor thermal distortion; it is a single element

(not a composite) and has isotropic thermal expansion. In addition, according to

Goodfellow’s catalogue [109], tantalum is roughly five times less expensive than Pt/Ir

alloy.

8.2 Estimation of allowable local source masses for

STEP

We have discussed density homogeneity and thermal distortion in this thesis. So far,

we have assumed a 1-g helium bubble at 250 mm from the test masses as a source

and the target noise level as 10−18m/s2 to discuss allowable levels of the gravitational

quadrupole moments (see Sections 3.6 and 3.7). We will estimate allowable magnitude

of a source mass from the gravitational quadrupole moments, due to the imperfections

in the test mass materials, which were estimated from our experimental results. As

discussed in Section 3.6.1, so far we have considered all terms in Q30. However, here
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we will consider spurious acceleration at the signal frequency.

From Equation (3.38) we obtain:

∣∣∣∣ q20

MTM

∣∣∣∣ <
1

4πG

√
5

3

SZ

Q30

(8.1)

By taking the cos θ term of Q30 (Equation (3.42)), we obtain:

MSM <
4

3G

√
5

21π

∣∣∣∣∣MTM

q20

∣∣∣∣∣ SZ · r4 (8.2)

From our density inhomogeneity measurements (Chapter 5) and differential thermal

expansion (Chapter 7), we obtain the quadrupole moments per unit mass (|q20/MTM |,

see Section 3.4.3) as follows.

From the density inhomogeneity measurements of the beryllium samples (from the

rod for a prototype outer test mass) and of the niobium samples (from the rod for a

prototype inner test mass), we obtain:∣∣∣∣∣ qouter
20

M outer
TM

∣∣∣∣∣
Be

= (4.8 ± 3.5) × 10−9m2 (8.3)∣∣∣∣∣ qinner
20

M inner
TM

∣∣∣∣∣
Nb

= (1.4 ± 0.1) × 10−9m2 (8.4)

Using Equation (8.2), allowable masses of a source mass at 250 mm from the centre of

mass of test masses to achieve the spurious acceleration of 10−18m/s2 are 2.6 g and 14

g for the beryllium outer test mass and the niobium inner test mass, respectively.

By assuming that an outer test mass had an anisotropic thermal expansion of

(0.9 ± 0.3), which is the maximum difference observed in the beryllium outer samples

(see Section 7.7.4), we obtain,∣∣∣∣∣ qouter
20

M outer
TM

∣∣∣∣∣
Be

= (1.0 ± 0.4) × 10−8m2 (8.5)
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The allowable source mass for the outer test mass is 1.5 g.

As discussed in Section 3.7, the allowable source mass determined by the shape

design of STEP test masses is about 0.5 g.

8.3 Thermal expansion measurements

We found that there were no published values of the HIPed beryllium (of grade I220)

and Pt/Ir alloy at cryogenic temperature (Section 6.1). Absolute values of thermal

expansion of STEP test masses may be inferred from data in existing literature with

a sufficient accuracy for STEP. However, it would be possible to measure them non-

destructively with the device developed for differential thermal expansion measure-

ments (Chapter 7). Reference materials have to be chosen carefully to determine the

thermal expansions.

8.4 Measurements of gravitational multipole mo-

ments of STEP test masses

We have estimated quadrupole moments of test masses, due to the imperfections, by

studying samples taken from the rods from which prototype test masses were made.

By using the mounting system we developed, it would be possible to measure

anisotropy in thermal expansion of STEP test masses in their final shapes. Also,

thermal distortion of STEP test masses may be checked by using holographic tech-

niques. This holographic method is under study at this university as an undergraduate

project supervised by Speake.
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Lockerbie demonstrated a method to determine gravitational quadrupole moments

of STEP test masses by measuring imbalance of moment of inertia of test masses

[45, 110]. Also, Trenkel and Speake suggested direct measurements of quadrupole

moments of test masses by using a cryogenic torsion balance [111].

8.5 Relationship between density inhomogeneities

and differential thermal expansion

Thermodynamically, if the applied uniaxial stress σs is below the elastic limit the

change in expansion coefficient αTE is given

(
∂αTE

∂σs

)
T

= − 1

E2

(
∂E

∂T

)
σs

(8.6)

where

σs = E · εl (8.7)

E, T and εl are Young’s modulus, temperature and strain. Or the effect of applied

pressure P on the coefficient of volumetric thermal expansion βTE is given by

(
∂βTE

∂P

)
T

=
1

B2
T

(
∂BT

∂T

)
P

(8.8)

where

P = −BT · εv (8.9)

BT is the isothermal bulk modulus and εv is volume strain (fractional volume change).
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From Equation (8.8), the difference in βTE between two samples under a different

amount of pressure may be given

∆βTE =
1

B2
T

(
∂BT

∂T

)
∆P (8.10)

= − 1

BT

(
∂BT

∂T

)
∆εv (8.11)

where a relation, ∆P = −BT ∆εv from Equation (8.9), is used. By using a relation,

∆εv = ∆V/V = −∆ρ/ρ, we obtain

∆βTE =
1

BT

(
∂BT

∂T

)
∆ρ

ρ
(8.12)

or by integrating both sides of this equation over temperature

∆TEV TE =
∆ρ

ρ

∫ 1

BT

(
∂BT

∂T

)
dT (8.13)

From these equations, one can see that difference in thermal expansion is related to

difference in density.

For instance, in the case of copper,
∫
(1/BT ) (∂BT /∂T ) dT ∼ 0.04 (from 300 K to

77 K) [112]. Therefore, from Equation (8.13), the difference in volumetric thermal

expansion is roughly 0.1 % (TEV TECu
∼ −9×10−3) for a density inhomogeneity of 200

ppm.
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Chapter 9

Conclusions

Preliminary work for the verification of STEP test masses were presented in this thesis.

We have discussed the allowable density inhomogeneities and thermal distortion of

STEP test masses by using a general formula that we derived to describe acceleration

of STEP test masses with arbitrary density distribution. Previously during the process

of the optimization of STEP test masses, a simpler formula assuming a homogeneous

density distribution was used.

We have measured the density inhomogeneities of the candidate materials (HIPed

beryllium and niobium) by hydrostatic weighing. Samples were made from the parent

rods from which prototype STEP test masses were prepared. Gravitational quadrupole

moment (q20, the dominant term to contribute to the differential acceleration) per unit

mass, due to the density inhomogeneities, was found to be (4.8 ± 3.5) × 10−9m2 and

(1.4 ± 0.1) × 10−9m2 for an outer beryllium test mass and an inner niobium test mass

made from the rods, respectively. A source mass (at 250 mm from the test masses) of

45g and 153g for the beryllium and the niobium respectively, rotating around the test

175



masses at the signal frequency, produces a spurious acceleration of 10−17m/s2 at the

signal frequency, by coupling to those quadrupole moments.

Beryllium is most likely to have a significant level of thermal distortion among the

other candidate materials because of its hexagonal crystal structure. We have devel-

oped a device to measure differential thermal expansion of the beryllium samples. This

device includes mounting systems for samples that cannot be machined. The differen-

tial thermal expansion of the beryllium samples, used for the density inhomogeneity

measurements, were measured non-destructively by using this device. If the measured

maximum differential thermal expansion (0.9 ± 0.3 %) occurs in an outer STEP test

mass as anisotropic thermal expansion and the aspect ratio is changed, the quadrupole

moment per unit mass becomes (1.0± 0.4)× 10−8m2. To achieve the STEP sensitivity

of 10−17m/s2, a source mass, rotating around the test masses at signal frequency 250

mm away from test masses, has to be less than 15 g.

The contributions from the metrological aspects of test masses to the spurious

acceleration seem small compared to that from the shape of the test masses. The

perfect STEP test masses allow a maximum source mass of about 5 g at 250 mm from

the test masses. The aerogel confinement techniques and the two-chamber helium

dewar are required to restrict a helium bubble to be less than 5 g.

We have discussed appropriate grades of HIPed beryllium and preparation methods

of beryllium STEP test masses. The grades made of impact ground powder, such as

I70 and I220, which were originally developed for thermally stable large mirrors, would
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have sufficient thermal dimensional stability. According to literature and our results

of the measurements of differential thermal expansion, extensive stress relief of HIPed

beryllium test masses after the final machining seems important to prevent thermal

distortion.

By using the mounting system we developed, it may be possible to measure thermal

expansion and anisotropy in thermal expansion of STEP test masses in their final

shapes.
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Appendix A

Spherical harmonics

Spherical harmonics (Ylm(θ, φ)) used in this work follow the definition in [56]. The

followings were used in calculations in this work.

Y00 =
1√
4π

(A.1)

Y10 =

√
3

4π
cos θ (A.2)

Y20 =

√
5

4π

(
3

2
cos2 θ − 1

2

)
(A.3)

Y21 = −
√

15

8π
sin θ cos θeiφ (A.4)

Y22 =
1

4

√
15

2π
sin2 θe2iφ (A.5)

Y30 =

√
7

4π

(
5

2
cos3 θ − 3

2
cos θ

)
(A.6)

Y32 =
1

4

√
105

2π
sin2 θ cos θe2iφ (A.7)
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Appendix B

Analysis of density inhomogeneities
with simpler functions

The simplified fitting functions are as follows for the beryllium and the niobium, re-

spectively:

ρBe(x, y, z) = ρBe0(1 + a1x + a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy) (B.1)

ρNb(x, y) = ρNb0(1 + b1x
2 + b2y

2) (B.2)

where ρBe0 and ρNb0 are the density of a beryllium and niobium standard sample,

respectively. The values for the fitted coefficients and their uncertainties are given in

Table B.1 and B.2. χ was 5.7 and 1.8 for the beryllium and the niobium, respectively.

As a result, the extra quadrupole moments due to the density inhomogeneities

(q20/IZ) were found to be (3.8± 4.0)× 10−6 or < 7.7× 10−6 and (7.7± 0.7)× 10−6 for

an outer test mass made from the beryllium rod and an inner test mass made from the

niobium rod, respectively. Using Equation (3.16), we estimated that these quadrupole

moments would produce a spurious acceleration of ∆a = (3.6 ± 3.7) × 10−19m/s2 or

< 7.3 × 10−19m/s2 and (1.1 ± 0.1) × 10−19m/s2 for the beryllium outer test mass and
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a1 (1.1 ± 0.2) × 10−6 mm−1

a2 (−2.9 ± 0.2) × 10−6 mm−1

a3 (−2.5 ± 1.0) × 10−7 mm−1

a4 (1.5 ± 1.2) × 10−8 mm−2

a5 (1.8 ± 1.2) × 10−8 mm−2

a6 (1.3 ± 0.9) × 10−8 mm−2

a7 (2.8 ± 1.4) × 10−8 mm−2

Table B.1: Coefficients in func-
tion (B.1), which fits the beryl-
lium results in Table 5.3.

b1 (−2.4 ± 0.3) × 10−7 mm−2

b2 (−2.2 ± 0.3) × 10−7 mm−2

Table B.2: Coefficients in func-
tion (B.2), which fits the niobium
results in Table 5.4.

the niobium inner test mass, respectively. We note that these spurious accelerations

are equivalent to the gravitational susceptibilities of χa = (0.33± 0.35) or < 0.68 ppm

and (0.1 ± 0.01) ppm for the beryllium and the niobium, respectively.
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Appendix C

Dissection plan of new samples
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