
 

THE UNIVERSITY 

OF BIRMINGHAM 

 

 

 

Acceleration of the Discrete Element Method on a 
Reconfigurable Co-processor 

 

by 

 

Benjamin Carrión Schäfer 
 

 

A thesis submitted to the School of Engineering of  

The University of Birmingham 

for the degree of  

DOCTOR OF PHILOSOPHY 
 

 

 

 

School of Engineering  

Department of Electronic, Electrical and Computer Engineering 

The University of Birmingham 

February 2002 
 



Abstract 
 

Granular materials are important for many different disciplines, e.g. geomechanics, civil 

engineering and chemical engineering. Many approaches have been used to model their 

behaviour, but one of the best and most important is the Discrete Element Method (DEM). 

The DEM was first developed during the 70’s, but its widespread use has been hampered by 

its extremely computationally demanding nature.  

 

The DEM can be run on a parallel computer by farming out different sub-domains onto 

different processors. However, particles transiting from one sub-domain to another create 

communication and synchronisation overheads which limit the speed-up achieved by parallel 

processing. Also, if some cells become much more heavily populated than others, then there 

will be inefficiencies due to load imbalance between the processors. As a result of these 

effects, the speed-up achieved by running the DEM on parallel processor computers is far less 

than linear. 

 

This thesis describes work on the acceleration of the DEM using reconfigurable computing. A 

custom hardware architecture for the DEM has been designed and implemented on a Field 

Programmable Gate Array (FPGA) mounted on a reconfigurable computing card. The design 

exploits the low level parallelism of the DEM by using long, wide computational pipelines 

that compute many arithmetic operations concurrently. It also exploits the high level 

parallelism by overlapping the main computational tasks using domain decomposition 

techniques. Speed-ups of a factor of at least 30 per FPGA have been achieved for simulations 

involving 25,000 to 200,000 particles. A multi-FPGA system has been implemented that 

allows the full overlap of computation with communication, so that an almost linear speed-up 

can be achieved as the number of FPGAs is increased. The effect of the short wordlength 

arithmetic used in the FPGA has been investigated, and the accuracy of the simulations has 

been found to be acceptable. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

To my brother Norbert, 

Thank you very much for everything 
 

 

 

 



 

 

 

Acknowledgments 
 

This research has been supported financially by the University of Birmingham’s 

interdisciplinary research fund, the Department of Electronic, Electrical and Computer 

Engineering and the Department of Civil Engineering. 
 

I would first of all like to thanks my two supervisors Dr. Andrew H.C. Chan and Dr. Steven 

F. Quigley for all their support. Thank you very much for everything, which is quite a lot. 

 

I would also want to thank Dr. Alonso Corona and Dr. Ignacio Llamas for their friendship. 

This would have not been the same without them. 

 

To all the colleagues in room 439. Thank you very much for making the time spent in 

Birmingham so enjoyable. 

 

Last but far from least, thank you very much to my family for their support from the far 

distance. 

 



Contents 
CHAPTER 1 INTRODUCTION        1 

1.1 INTRODUCTION         1 

1.2 CONTRIBUTION OF THIS THESIS      3 

1.3 THESIS ORGANISATION        4 

1.4 REFERENCES         7 

 

CHAPTER 2 THE DISCRETE ELEMENT METHOD     8 

2.1 INTRODUCTION         8 

2.2 ANALYSIS OF THE BEHAVIOUR OF GRANULAR MEDIA   10 

2.3 SIMULATIONS         10 

2.4 ADVENT OF THE DISCRETE ELEMENT METHOD (DEM)   12 

2.5 CONCEPTS OF THE DISCRETE ELEMENT MEHTOD    13 

2.6 DEM ANALYSIS         17 

2.7 PARALLEL ANALYSIS        24 

2.8 SUMMARY AND CONCLUSIONS       28 

2.9 REFERENCES         30 

 

CHAPTER 3 SOFTWARE IMPLEMENTATION OF THE DEM     32 
3.1 INTRODUCTION 

3.2 INITIALISATION OF THE SIMULATION  

3.3 SIMULATOR FEATURES 

3.4 RUNTIME COMPARISON BETWEEN THE FORTRAN AND THE C 

SIMULATOR 

3.5 VALIDATION OF THE SIMULATOR 

3.6 DISCUSSION 

3.7 SUMMARY AND CONCLUSIONS 

3.8 REFERENCES 

32 

34 

42 

45 

 

47 

49 

50 

50 

 

 

 



CHAPTER 4 REVIEW AND ANALYSIS OF PARALLEL DEM IMPLEMENTATIONS   52 

4.1 INTRODUCTION 

4.2 BASIC IDEAS ABOUT PARALLELISM 

4.3 PARALLEL DEM IMPLEMENTATIONS 

4.4 MODELLING OF A MULTIPROCESSOR SYSTEM 

4.5 SUMMARY OF THE PARALLEL DEM IMPLEMENTATIONS  

4.6 USE OF FIELD PROGRAMMABLE GATE ARRAYS FOR THE DEM 

4.7 SUMMARY AND CONCLUSIONS 

4.8 REFERENCE 

52 

53 

57 

69 

79 

80 

81 

82 

 

CHAPTER 5 HARDWARE IMPLEMENTATION OF THE DEM ON A FPGA  84 

5.1 INTRODUCTION 

5.2 MOTIVATION 

5.3 FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) 

5.4 RECONFIGURABLE COMPUTING PLATFORM  

5.5 HARDWARE IMPLEMENTATIONS 

5.6 DATA FORMAT 

5.7 IMPLEMENTATION CLASSIFICATIONS  

5.8 LOW LEVEL PARALLELISM IMPLEMENTATION 

5.9 HIGH AND LOW LEVEL IMPLEMENTATION 

5.10 VALIDATION OF THE HARDWARE DESIGNS  

5.11 DISCUSSION  

5.12 SUMMARY AND CONCLUSIONS  

5.13 REFERENCES 

84 

85 

85 

89 

91 

93 

95 

95 

104

120

124

125

127

 

CHAPTER 6 SOFTWARE AND HARDWARE ANALYSIS     128 

6.1 INTRODUCTION 

6.2 SPEED-UP 

6.3 DATA PRECISION 

6.4 ERRORS IN ARITHMETIC OPERATIONS 

6.5 ERROR PROPAGATION IN COMPUTER ARITHMETIC 

128

129

133

137

140



6.6 ARITHMETIC ERROR ANALYSIS OF TE HARDWARE IMPLEMENTATION 

6.7 COMPARISON OF BULK ERRORS IN SW AND HW 

6.8 DISCUSSION  

6.9 SUMMARY AND CONCLUSIONS  

6.10 REFERENCES 

145

155

166

168

168

 

CHAPTER 7 SUITABILITY OF THE HW DESIGN FOR A MORE COMPLEX DEM   170 

7.1 INTRODUCTION 

7.2 INSERTION OF WALLS 

7.3 MULTIPLE RADII 

7.4 3-DIMENSIONS 

7.5 SUMMARY AND CONCLUSIONS  

7.6 REFERENCES 

170

171

182

185

200

201

 

CHAPTER 8 SCALABLE AND ALTERNATIVE IMPLEMENTATIONS OF THE DEM  202 

8.1 INTRODUCTION 

8.2 MULTI-FPGA DISTRIBUTED MEMORY SYSTEM 

8.3 SHARED MEMORY SYSTEM 

8.4 ALTERNATIVE SINGLE FPGA IMPLEMENTATION 

8.5 SUMMARY AND CONCLUSIONS  

8.6 REFERENCES 

202

203

2012

215

227

228

 

CHAPTER 9 CONCLUSIONS AND FUTURE WORK       229 

9.1 CONCLUSIONS         229 

9.2 FUTURE WORK         233 

 

Appendix A.1: PUBLICATION LIST 



Table of Figures 
 

CHAPTER 2THE DISCRETE ELEMENT METHOD (DEM)   8 

Figure 2–1 Examples of Storage and transportation of granular media 

Figure 2–2 Dem Flow chart 

Figure 2–3 Balls in contact 

Figure 2–4 Screenshots of two system (without and with grid) 

Figure 2–5 Modified DEM flow chart with domain decomposition  

Figure 2–6 Two cases if different number of balls in contact  

Figure 2–7 Geometrical deduction of the maximum number of balls in contact for 

balls of same radius 

Figure 2–8 Graphical representation of the force update equations 

Figure 2–9 Example of a serial and parallel graphical representation of an algorithm 

Figure 2–10 Graphical representation of the position update equations 

Figure 2–11 Examples of domain decomposition in order to make use of the high level 

parallelism of the DEM 

9 

13 

14 

17 

18 

19 

22 

 

25 

25 

26 

27 

 

CHAPTER 3 SOFTWARE IMPLEMENTATION OF THE DEM   32 

Figure 3–1 DEM Flow chart 

Figure 3–2 Example of the simulator initialisation file 

Figure 3–3 Screenshots of the simulators initial data after the particles have been 

generated 

Figure 3–4 Screenshots of an initial state of the simulator after reading in the data file 

Figure 3–5 Data structure of the particles 

Figure 3–6 Data linked list structure 

Figure 3–7 Simulator’s tool bar 

Figure 3–8 Run time graph as a function of the number of boxes 

Figure 3–9 Screenshot of the simulator with different grid sizes 

Figure 3–10 Re-draw option window 

Figure 3–11 Runtime comparison between the FORTRAN and the C simulator 

Figure 3–12 Sequence of the collision of two balls 

34 

35 

38 

 

39 

40 

41 

42 

43 

44 

45 

46 

47 



Figure 3–13 Initial and final state of the simulation 48 

 

CHAPTER 4 REVIEW AND ANALYSIS OF PARALLEL DEM  IMPLEMENTATIONS 52 

Figure 4–1 Transputer Network Configuration 

Figure 4–2 Pseudo Code for the Multi processor systems 

Figure 4–3 Measured speed-up 

Figure 4–4 Speed-up of the parallel implementation as a function of the number of 

processors 

Figure 4–5 Domain decomposition for the Hopper discharge 

Figure 4–6 Single-port and dual-port hopper 

Figure 4–7 Computation time required for the individual tasks of the DEM simulation 

of the single-port hopper 

Figure 4–8 Computation time required for the individual tasks of the DEM simulation 

of the dual-port hopper 

Figure 4–9 Measured speed-up for the DEM simulations of the single-port hopper 

Figure 4–10 Measured speed-up for the DEM simulations for the dual-port hopper 

Figure 4–11 Example of the different regular domain decomposition types 

Figure 4–12 Domain decomposition types in the multi-procession modelling SW 

Figure 4–13 Simulation time for different number of processor systems 

Figure 4–14 Simulation time for different number of processor showing the time spent 

by each unit(domain split into cells) 

Figure 4–15 Initial and final conditions for a simulation decomposing the domain in 

columns and cells 

Figure 4–16 Time needed to perform the last cycle in a simulation with 8 processors 

decomposition the domain in columns 

Figure 4–17 Time needed to perform the last cycle in a simulation with 8 processors 

decomposition the domain in cells 

Figure 4–16 Speed-up for different initial velocities 

58 

59 

60 

62 

 

63 

64 

65 

 

65 

 

66 

67 

70 

73 

74 

75 

 

76 

 

77 

 

77 

 

79 

 

 

 

 



CHAPTER 5 HARDWARE IMPLEMENTATION OF THE DEM ON A FPGA   84 

Figure 5–1 Three FPL waves, PLDs, FPGAs/CPLD and CSoC  

Figure 5–2 Field Programmable Gate Array (FPGA) internal structure 

Figure 5–3 RC100-PP Picture 

Figure 5–4 RC100-PP Block Diagram 

Figure 5–5 System layout 

Figure 5–6 Hardware Software selection 

Figure 5–7 Data format 

Figure 5–8 Low level parallelism FPGA Implementation block diagram 

Figure 5–9 Balls in contact 

Figure 5–10 Neighbour check model  

Figure 5–11 Forces update unit internal structure 

Figure 5–12 Velocity and Position update unit internal structure 

Figure 5–13 Memory map for the low level parallelism implementation 

Figure 5–14 FPGA’s internal memory map 

Figure 5–15 Domain decomposition  

Figure 5–16 High and low level parallelism FPGA implementation block diagram 

Figure 5–17 Scheduling of the computation  

Figure 5–18 Simulation example of the adaptive cell boundaries 

Figure 5–19 Memory map for the high and low level parallelism implementation 

Figure 5–20 High and low level parallelism scheduling 

Figure 5–21 Time needed for each task 

Figure 5–22 Graph of clock cycles needed to compute t(forces) t (pos)+t(interface) and 

t(cc) for a different number of contact check units. 

Figure 5–23 Comparisons of experimental and analytical values to compute the contact 

checking for different number of contact check units. 

Figure 5–24 Screen shot of the initial state of the hardware debugger 

Figure 5–25 Screen shot of a debugged system of 50 balls after 20 cycles  

Figure 5–26 pseudo code of under and overflow registration 

Figure 5–27 Underflows in the forces and position update units as a function of the 

number of bits  

87 

89 

90 

91 

92 

93 

94 

95 

96 

97 

99 

100

102

103

105

106

107

110

111

113

113

116

 

117

 

121

122

123

124

 



CHAPTER 6 SOFTWARE AND HARDWARE ANALYSIS     128 

Figure 6–1 Initial state of the 500 domain assembly for the SW (a) and for the HW (b) 

Figure 6–2 Initial state of the system of 50,000 particles 

Figure 6–3 Graphical representation of the measured and ideal speed-up 

Figure 6–4 16-bit data format 

Figure 6–5 Chopping example 

Figure 6–6 Rounding example and comparison with chopping 

Figure 6–7 Rounding carry example  

Figure 6–8 Truncation/Round off propagation model 

Figure Error! No text of specified style in document.-1 Noise distribution model 

Figure Error! No text of specified style in document.-10 Normal distribution function 

Figure 6–11 Velocity and Position update unit internal structure 

Figure 6–12 Forces update unit internal structure 

Figure 6–13 Special cases for cosine and sin 

Figure Error! No text of specified style in document.-2 Expanded flow graph for the Fx

force pipeline in the forces update unit 

Figure Error! No text of specified style in document.-3 Expanded flow graph for the x

coordinate pipeline in the position update unit 

Figure 6–16 SW window to measure the difference between the SW and the HW 

simulation 

Figure 6–17 Error accumulation in the hardware implementation compared to the 

software implementation for the x and y coordinates 

Figure 6–18 Initialisation file for the simulations 

Figure 6–19 Balls’ contact model 

Figure 6–20 Energy window once the software and hardware system have been generated 

Figure 6–21 System’s Energy progression with damping for the software and the 

hardware implementation 

Figure 6–22 Systems Energy progression without damping for the software and 

hardware implementation 

Figure 6–23 Behaviour of the centroids difference between the software and the 

hardware implementation 

Figure 6–24 Periodic domain example 

130

131

132

133

136

136

137

140

140

142

146

147

148

149

151

154

 

155

 

157

158

159

159

 

160

 

162

 

163

164

165



Figure 6–25 Average velocity progression 

Figure 6–26 System energy for float and double SW simulation 

 

CHAPTER 7 SUITABILITY OF THE HW DESIGN FOR A MORE COMPLEX DEM   170 

Figure 7–1 Dataflow diagram for the DEM with walls 

Figure 7–2 Wall description  

Figure 7–3 Ball-Wall contact detection 

Figure 7–4 Ball-Wall contact for Vertical/Horizontal walls 

Figure 7–5 Equations to compute the forces between a wall and a ball 

Figure 7–6 Equations to compute the new position of the wall 

Figure 7–7 Balls in contact with different radii 

Figure 7–8 Contact detection for particles of different radius 

Figure 7–9 Suggested Contact balls’ data structure for systems with balls 

of different radii in the FPGA 

Figure 7–10 3-D Contact checks 

Figure 7–11 Equations to compute the forces between two particles in 3-D 

Figure 7–12 Equations for the 3-D Position Update  

Figure 7–13 Graphical Representations of the 3-D position update equations 

Figure 7–14 Screen-shot of the 3-D software simulator 

Figure 7–15 Graphical representation of the Simulation time of 2-D and 3-D system 

171

172

174

175

176

177

182

183

184

 

187

190

191

193

197

198

 

 

CHAPTER 8 SCALABLE AND ALTERNATIVE IMPLEMENTATIONS OF THE DEM  202 

Figure 8–1 Distributed Memory Multi-FPGA system 

Figure 8–2 Two RC1000-PP system  

Figure 8–3 Board selection for the Multiple FPGA design 

Figure 8–4 Screenshot of the software program for the multiple FPGA design. The 

domain is split in two equally loaded parts 

Figure 8–5 Columns that need to be transferred from one board to another after every cycle 

Figure 8–6 Domain mapping to the 4 memory units of RC1000-PP board.   

Figure 8–7 Influence of a finer and coarse grained board memory  

Figure 8–8 Example of a shared memory system 

204 

204 

205 

206 

 

207 

207 

210 

2012



Figure 8–9 FPGAs’ memory accesses 

Figure 8–10 Runtime reconfigurable architecture 

Figure 8–11 Reconfigurable sequence 

Figure 8–12 Number of columns to be cached into the FPGA 

Figure 8–13 Internal FPGA structure with microprocessors  

Figure 8–14 Hardware implementation using an FPGA with embedded microprocessors

Figure 8–15 Computation time of the three main task, replacing the forces update unit 

with 4 microprocessors 

214 

217 

218 

219 

222 

223 

225 

 

 

CHAPTER 9 CONCLUSIONS AND FUTURE WORK       229 

Figure 9–1 Mapping of the domain decomposition on the FPGA’s internal memory 230 

 



List of Tables 
 

CHAPTER 2 THE DISCRETE ELEMENT METHOD  (DEM )   8 

Table 2–1 Timing analysis for a system with 500 particles ran for 1000 time steps with 

and without grid 

Table 2–2 Arithmetic operations needed for the contact check 

Table 2–3 Arithmetic operations of the force update functions 

Table 2–4 Arithmetic operations of the coordinate and velocity update function 

18 

 

19 

22 

23 

 

CHAPTER 3 SOFTWARE IMPLEMENTATION OF THE DEM   32 

Table 3–1 Comparison of the simulation time needed for an assembly of 500 particles 

ran for 1000 cycles depending on the amount of times the assembly is re-

drawn. 

Table 3–2 Runtime comparison between between the FORTRAN and the C simulator 

Table 3–3 Energy comparison between the original FORTRAN and the new C 

simulator 

61 

 

 

46 

49 

 

CHAPTER 4 REVIEW AND ANALYSIS OF PARALLEL DEM  IMPLEMENTATIONS  52 

Table 4–1 Listing of the low and high implementations of the DEM on different HW 

platforms 

69 

 

CHAPTER 5 HARDWARE IMPLEMENTATION OF THE DEM ON A FPGA   84 

Table 5–1 Hardware requirements for the low level parallelism units 

Table 5–2 Hardware resources used for by this implementation 

Table 5–3 Growth of ideal number of balls/column as a function of the number of

contact check units to make t(cc) = t(position)+t(r/w). 

Table 5–4 Relation of number of balls allowed in the system to make t(cc)=t(pos)+ 

t(interface) and its memory requirements 

101

117

119

 

120

 

 

 



CHAPTER 6 SOFTWARE AND HARDWARE ANALYSIS     128 

Table 6–1 Simulation time for the SW and the HW implementation for 500 particles 

Table 6–2 Run time for the software and hardware simulation and speed-up results 

Table 6–3 Worst case analysis for the multiplication as a function of the input values 

Table 6–4 Worst case analysis for the division as a function of the input values 

Table 6–5 Worst case analysis for the subtraction as a function of the input values  

Table 6–6 Simulation time for 10,000 and 20,000 particles for 1000 cycles in single and 

double precision floating-point arithmetic 

130

131

138

138

139

166

 

CHAPTER 7 SUITABILITY OF THE HW DESIGN FOR A MORE COMPLEX DEM   170 

Table 7–1 Minimum set of parameters to describe a wall 

Table 7–2 Rest of parameters needed once the wall is interacting will the balls 

Table 7–3 Arithmetic operations needed the check for contacts between walls and balls 

Table 7–4 Number and types of arithmetic operations to check for contacts between balls

and walls, only for vertical and horizontal walls. 

Table 7–5 Additional arithmetic operations needed to calculate the forces between a wall 

and a ball, compared to the arithmetic operations needed forces between two 

balls. 

Table 7–6 Arithmetic operations needed to compute the new position of a wall 

Table 7–7 Number of Xilinx slices needed to perform different arithmetic operations 

Table 7–8 Number of Xilinx slices needed for the additional arithmetic operations to 

include walls 

Table 7–9 Variables to describe a 3-D particle 

Table 7–10 Number of arithmetic operations needed for the contact check in 3-D 

Table 7–11 Number of Arithmetic operations involved in the3-D forces update units for 

particles of the same radius. 

Table 7–12 Number of Arithmetic operations involved in the3-D position update units 

for particles of the same radius 

Table 7–13 Comparison between the arithmetic operations for the 2-D and the 3-D case 

in each task 

Table 7–14Slices needed to accommodate arithmetic operations for 3D 

Table 7–15 Runtime simulation results for 2-D and 3-D assemblies with the same 

172

173

174

175

 

177

 

 

178

178

179

 

185

187

190

 

192

 

194

 

195

198



properties 

Table 7–16 Theoretical speed-up of the 3-D SW simulator and the theoretical HW 

design 1 

 

199

 

 

CHAPTER 8 SCALABLE AND ALTERNATIVE IMPLEMENTATIONS OF THE DEM  202 

Table 8–1 Example of the number of boards that can work in parallel without having to 

stall any operation in any of the FPGAs. 

Table 8–2 Example of the number of boards that can work in parallel without having to 

stall the operation of any FPGA for 8 memory units instead of 

Table 8–3 Comparisons of speed-up obtained by hardware DEM for a single FPGA and 

two FPGAs compared to an optimised software version. 

Table 8–4 Number of units that can be implemented in the reconfigurable area 

Table 8–5 Values of the time needed to compute the cc, forces and position update 

versus the time needed to reconfigure the 50% of the Xilinx XCV2000E. 

Table 8–6 Number of arithmetic operations involved in the forces update unit 

Table 8–7 Number of operations needed for each arithmetic operation. 

Table 8–8 List with the number of units implemented in parallel.  

209

 

210

 

211

 

216

220

 

223

224

224

 



Glossary of Abbreviations 
2-D  Two Dimensional 

3-D  Three Dimensional 

ASIC  Application Specific Integrated Circuit 

CC  Contact Check 

CISC  Complex Instruction Set Computer 

CLB  Configurable Logic Block 

DEM  Discrete Element Method 

FPGA  Field Programmable Gate Array 

GUI  Graphical User Interface 

HDL  Hardware Description Language 

HW  Hardware 

IC  Integrated Circuit 

IP  Intellectual Property 

I/O  Input/Output 

KCM  Constant Coefficient Multiplier 

LAB  Logic Array Block 

LC  Logic Cell 

LE  Logic Element 

LUT  Look Up Table 

MISD  Multiple Instructions Single Data 

MIMD Multiple Instructions Multiple Data 

PAL  Programmable Array Logic 

PC  Personal Computer 

PCI  Peripheral Component Interconnect 

PLD  Programmable Logic Device 

Ulp  Unit of Least Precision 

RISC  Reduced Instruction Set Computer 

RTR   Run Time Reconfiguration 

SIMD  Single Instructions Multiple Data 

SISD  Single Instructions Single Data 

SW  Software 



VHDL  Very High Speed Integrated Circuit Hardware Description Language 



1 CHAPTER CHAPTER 1 

INTRODUCTION 

1.1 Introduction 
The number of transistors that can be integrated onto a single silicon die tends to double 

approximately every 18 months, just as Intel’s co-founder Gordon Moore predicted more 

than 20 years ago [1]. This increase in density is accompanied by a corresponding 

improvement in speed. This has led to a widespread availability of very powerful computer 

equipment at low cost, a development that has affected the design approaches used in 

many branches of engineering. One important consequence is that much wider use is made 

of simulator programs. Simulators have the great advantage of being able to test a system 

without having to actually build it. This saves an enormous amount of time and therefore 

money. Nevertheless, there are still some applications where the available computing 

power of standard computers is still not sufficient to perform many of the desired 

simulations. One of these application areas is the use of the Discrete Element Method for 

modelling the behaviour of granular materials.  

 

Granular materials can be found everywhere in life, and their study is important to many 

different disciplines, such as geomechanics, civil engineering and chemical engineering. 

There are many different approaches to model their behaviour (e.g. analytical, physical and 

1 



Chapter 1: Introduction      

numerical). The numerical techniques are the most powerful, as they have the greatest 

flexibility, and they also provide full visibility of the internal behaviour of the medium at 

every stage.  

 

The Discrete Element Method (DEM) is a numerical method to model the behaviour of 

particle assemblies. The DEM was first developed in the 1970’s, but its widespread use has 

been hampered by its extremely computationally demanding nature. The DEM considers 

every particle as an individual body and computes the total force applied to each particle. 

From this, using Newton’s second law, the acceleration of each particle is established; this 

can be integrated to give each particle’s velocity; this in turn can be integrated to provide 

an updated position. Each particle’s force interaction, acceleration and position are 

calculated individually at each time step. The assumptions underlying the method are only 

correct if no disturbances can travel beyond the immediate neighbours of a particle within 

one time step. This generally means that the time step must be limited to a very small 

value, thus making the DEM extremely computationally expensive.  

 

The particles may be bonded together to represent, for example, rock, or they may remain 

unbonded to represent, for example, soil. Bonded together they can represent entire 

structures, such as dams or bridges. It is has even been suggested [2] that the DEM may in 

future replace the more popular continuum methods such as the Finite Element Method 

and the Finite Difference Method, as these have two main drawbacks. Firstly a suitable 

stress-strain law may not exist; secondly, localised features, such as cracks, are difficult to 

model with the continuum approaches. However in order to use the DEM to simulate entire 

engineering structures, which may involve millions of particles, enormous computing 

power is required. 

 

Although the DEM is extremely computationally expensive, it exhibits an extraordinarily 

high degree of parallelism. Many attempts have therefore been made to run the DEM on 

multiprocessor computer systems. Ideally, one would hope to achieve a speed-up of the 

simulation that is proportional to the number of processors used (linear speed-up). 

However, synchronization and communication overheads, as well as load balancing 

problems, mean that these systems underachieve the ideal limit when the number of 

 2



Chapter 1: Introduction      

processors is large. Other approaches to allow the simulation of realistic particle problems 

(typically hundreds of thousands of particles) are therefore needed.  

 

The impact of Moore’s law has been felt not only by computer processor chips, but also by 

programmable logic. Originally programmable logic was used only for small-scale glue 

logic applications. However, the complexity and speed of programmable logic, in 

particular Field Programmable Gate Arrays (FPGAs), has increased enormously over the 

last decade. FPGAs have now achieved sufficient logic density that they can be used to 

implement an entire complex system with minimal off-chip resources.  

 

One promising application area for these devices is to form FPGA-based reconfigurable 

co-processors within standard computers, which can be used for algorithm acceleration. 

This approach is known as reconfigurable computing1. FPGA co-processors have much 

lower cost and greater flexibility than ASIC hardware (albeit with inferior performance). 

For the right type of application, a reconfigurable computer can rival the expensive parallel 

computers that are normally used to accelerate computationally expensive algorithms. 

FPGAs thus open a new window to low cost hardware acceleration.  

 

The DEM has properties that suggest that it may be suitable for acceleration using FPGAs: 

it exhibits a enormous degree of parallelism, and can be processed using short wordlength 

arithmetic. It is therefore tempting to examine how well this algorithm would map into an 

FPGA coprocessor. 

 

1.2 Contribution of this Thesis 
This thesis presents a study of the use of reconfigurable computing using FPGAs to 

accelerate the DEM. The major contributions made by this work are as follows: 

 

                                                 
1 Some authors use the term reconfigurable computing to refer only to approaches which use run-time 

reconfiguration of the FPGA, whereas others apply the term to any use of an FPGA co-processor. For most of 

this work, the second definition is used. However, in chapter 8 an investigation is presented into the 

application of run time reconfiguration to the DEM problem. 

 3



Chapter 1: Introduction      

1. A novel approach was taken to accelerate the 2-D DEM by designing a dedicated 

hardware architecture on an FPGA. A simpler architecture was developed first, 

which only made use of the low level parallelism of the DEM. Subsequently, a 

more sophisticated architecture was designed, which exploits not only the low 

level, but also the high level parallelism, and involves decomposing the domain 

into different regions. This decomposition is adaptively optimised in order to 

provide good load balancing. 

2. In order to achieve even greater speed-ups, a multi-FPGA design has been 

implemented. This shows that communication and computation by the FPGAs can 

be completely overlapped, thus achieving good scalability of the speed-up. 

3. Predictions are presented as to how well the hardware architecture would map onto 

more sophisticated FPGAs. The effects of additional resources, such as embedded 

multipliers and embedded microprocessors are considered.  

4. The effects of short wordlength arithmetic on the DEM results has been 

investigated, and performance of hardware based on 16-bit fixed point arithmetic 

has been found to be acceptable. For DEM simulations the result of interest is the 

behaviour of the bulk, not the behaviour of the individual particles. For the bulk 

behaviour, the DEM is to a large extent a self-correcting algorithm, thus making 

low numerical precision tolerable. A relatively low wordlength was necessitated by 

the limitations of the FPGA hardware available. 

5. The prototypes built for the hardware implementations were limited by the 

available FPGA resources, and therefore a relatively simple DEM problem was 

implemented (using a 2-D domain containing no walls, with all particles having the 

same radius, and using a simple interaction law). An analysis has been carried out 

that demonstrates the resource requirements that would be needed to extend the 

architecture to a more complicated DEM problem. 

 

1.3 Thesis Organisation 
Chapter 2 introduces the basic concepts of the Discrete Element Method (DEM). The 

principle stages of the algorithm are formulated, and their asymptotic complexity is 

discussed. The most time consuming task involves a search of the domain for contacts 

between particles, which has a complexity of O(N2), where N is the number of particles in 

 4



Chapter 1: Introduction      

the domain. If the one large domain is decomposed into multiple smaller domains, the 

expense of the O(N2) search is greatly reduced. Domain decomposition also provides an 

obvious and natural way to parallelise the DEM, by allocating different domains to 

different processors. However, processing the different domains on different processors 

leads to a communication overhead as particles transition from one domain to another, 

which slows down the speed-up achievable by parallel computers. Chapter 2 discusses 

approaches to domain decomposition, and illustrates the effectiveness of the method. It 

also provides an assessment of the expenses associated with domain decomposition. 

 

Chapter 3 presents the development of the software DEM simulator used in this work. This 

is based on a standard public domain FORTRAN code for the DEM, but is re-written in C, 

and contains numerous enhancements and improvements. These include the use of C’s 

superior data structures to accelerate the simulation, a visual interface, an interface to the 

hardware version, and a debug mode in which the hardware and software versions can be 

run in synchrony and their results compared. Also, the software written for this project has 

the ability to emulate the performance of the code on parallel machines of different 

capabilities (e.g. processor speed, and inter-processor communications bandwidth). The 

simulator tracks the time taken and the amount of communication generated for the 

processing of each sub-domain, and uses this to produce reports on how well the 

simulation would speed up on various types of parallel machine.  

 

Chapter 4 presents a brief review of issues influencing speed-up in parallel processing. It 

then surveys the various attempts at parallelisation of the DEM that can be found in the 

literature. Most of these attempts have chosen problems that are anomalously favourable 

for parallel processing, e.g. domains decomposed into vertical strips in which particles fall 

under gravity. This gives rise to very few transitions between subdomains, which means 

that communications overhead is very low, and good load balance is always achieved. In 

these “nice” problems, high speed-ups can be achieved, but for more realistic problems the 

speed-up is far less than linear. At the end of chapter 4, the simulator developed in chapter 

3 is used to assess the “niceness” of a variety of problem types, domain decompositions, 

and initial conditions. The dependence of the communication and synchronisation 

overheads on the choice of problem and domain decomposition is quantitatively assessed. 

 5



Chapter 1: Introduction      

 

Chapter 5 describes two hardware designs that were implemented in a reconfigurable 

computing board. The first is a simpler implementation, which only makes use of the low 

level parallelism of the algorithm. The second is a more complex implementation, which 

exploits not only the low level parallelism, but also the higher level by performing the 

major tasks in parallel using domain decomposition techniques. In order to allow the 

hardware implementation to fit on the available FPGA boards, a number of compromises 

had to be made. A limited formulation of the DEM was implemented, which performed 

only 2-D simulations of assemblies whose constituent particles all have the same radius 

and whose domains contain no walls. Also, 16 bit fixed point arithmetic was used. 

 

In chapter 6 both hardware implementations are compared with the software 

implementation in terms of speed-up and numerical precision. The complex hardware 

version gives a factor of 30 speed-up compared to the software version, for a simulation 

scenario that was deliberately chosen to be as favourable as possible for the software. For 

other scenarios, the speed-up achieved by the hardware is much greater. Chapter 6 also 

provides a review of issues underlying error propagation in finite precision arithmetic, and 

demonstrates that the hardware is free of pathological cases that cause catastrophic loss of 

accuracy. The actual loss of precision caused by the 16-bit arithmetic is estimated, and the 

estimate is confirmed by measurement of simulations running on the hardware. 

 

Chapter 7 describes how the design can be modified to relax some of the restrictions that 

were used for the design in chapter 5. The use of 3-D, variable particle radius, and walls 

within the domain are considered. Projections are made as to how much hardware is 

required, and what speed-up can be expected. 

 

Chapter 8 presents a design of a system using multiple FPGA boards to achieve a higher 

speed-up. A system using two FPGAs was actually implemented, and its results are used to 

project how well the design could scale to a system using many FPGA boards. Chapter 8 

also discusses how well the design could be adapted to take advantage of the properties of 

more sophisticated FPGAs. Application of run-time reconfiguration and embedded 

microprocessors and multipliers is considered. 

 6



Chapter 1: Introduction      

 7

 

Chapter 9 discusses the conclusions of the study, and offers some directions for possible 

future work. 

 

1.4 References 
[1] Moore, G. “Cramming more components onto integrated circuits”, Electronics, 

Volume 38 Number 8, April 19, 1965 

[2] Cundall, P.A. “A discontinuous future for numerical modelling in geomechanics?” 

Proceedings of the Institution of Civil Engineers, Geotechnical Engineering 149, 

Issue 1 Pages 41-47, January 2001.  



2.   Chapter 2 

THE DISCRETE ELEMENT METHOD (DEM) 

2.1 Introduction 

Granular materials can be found everywhere in life. They appear in civil engineering 

structures in the form of, for example, sand and gravel, in the chemical and pharmaceutical 

industry, e.g. pills, and in the agricultural industry as all kinds of grain. Their behaviour 

has always interested human beings, but their study has been hampered because of their 

distinctive properties. Numerical techniques started to appear in the early 1970’s [1], but 

the lack of computational power made it impossible to simulate real problems in sufficient 

detail. With the increase of computing power these numerical techniques have become 

more and more important, but there is still not enough computing power to solve large 

problems, which involve millions of particles in 2-D and in 3-D. 

 

Granular materials can be defined as large conglomerations of discrete non-biological 

macroscopic particles. (For biological entities a number of difficulties arise. Firstly, for 

collections of animals or plants, individual entities may be capable of autonomous self-

directed motion. For macromolecules, interactions forces are non-local, e.g. Van der Waal 

forces). Typically the radius of such particles has to be at least 1 µm. Granular materials 

8 



Chapter 2: The Discrete Element Method     

behave differently from any other familiar form of matter. Like a liquid, they can flow and 

assume the shape of the container, and like a solid, they can support weight; some can 

support a tensile stress; others cannot [2]. They can therefore be considered as a state of 

matter in their own right. 

 

Many of the raw materials used in the food, chemical and pharmaceutical industries are 

granular media (illustrated in Figure 2–1). With the advent of modern machinery, the speed 

at which granular raw materials are processed has increased dramatically. This increase in 

speed has greatly increased the chance of damage to the fine particles during processing. In 

order to optimise the speed of production, and to reduce the amount of damage caused to 

the particles, the effect of these mechanical interactions needs to be known. In many cases, 

for the purpose of processing speed-up, water and other fluid may be added which would 

alter the surface energy and adhesion between particles. Other manufacturing processes, 

e.g. in the automotive industry, rely on casting large metal parts in carefully packed beds 

of sand. Yet the technology for handling and controlling granular materials is poorly 

developed. Estimates show that 60% of the capacity of many industrial plants is wasted 

due to problems related to the transport of these materials from one part of the factory floor 

 
(a) 

 
(b) 

Figure 2–1 Examples of storage and transportation of granular media 

(a) Particles in a hopper (b) Transporting particles in conveyer belt 

 9



Chapter 2: The Discrete Element Method     

to another [3]. Hence even a small improvement in our understanding of how granular 

media behave should have a profound impact for industry. All these require an 

understanding of the microscopic mechanical properties and the behaviour of their 

interactions so that the macroscopic behaviour of the bulk can be understood. 

2.2 Analysis of the Behaviour of Granular Media 

Granular materials are formed of distinct particles, which displace independently from one 

another and interact with each other only at the contact points [5]. The discrete nature of 

the granular materials leads to a complex behaviour under conditions of loading and 

unloading. 

 

Real physical tests on granular materials have the advantage of getting precise results, but 

have some serious drawbacks. Primarily, the internal stresses cannot be measured 

accurately and must be estimated from the boundary conditions. Secondly it is almost 

impossible to repeat two completely identical experiments. These drawbacks led to the 

development of theoretical models in order to study the behaviour of these materials. 

These models consist of assemblies of discs or polygons (in 2 dimensions) or spheres or 

polyhedra (in 3 dimensions). These models are simulated using physical, analytical or 

numerical means [4]. 

 

The numerical modelling approach is the most powerful of the modelling techniques as it 

is more flexible than analytical modelling and has the advantage over physical modelling 

that any data can be accessed at any stage of the experiment. The major drawback of this 

method is that it is computationally very expensive and therefore very time consuming.  

2.3 Simulations 

In order to simulate the behaviour of a granular material, a suitable model has to be 

developed first. A model is a mathematical representation of a physical problem in a 

certain context. Models vary in their accuracy, but no model is perfect: the only perfect 

model would be the real system itself. Once the model is generated it has to be validated 

with real experiments in order to check for its correctness and robustness in the area of 

interest. A simulation can therefore be defined as the implementation of a particular model 

 10



Chapter 2: The Discrete Element Method     

in a computer. The solution of a typical model will take a predictable period of time before 

it delivers a result. It is therefore necessary to distinguish between: 

 

• The real time that a physical process requires to complete a given action 

• The computation time, which is the time needed by the computer to simulate 

the same physical action. 

 

A process that happens in nature in a few seconds may take hours or even days to be 

simulated on a computer. The simulation time is of course software and hardware 

dependent. The same software simulator will run much faster on a faster workstation. 

However, an optimised software version can run faster on a slower workstation in terms of 

real time, than an un-optimised software version running on a fast workstation. In order to 

have a fast simulation, software and hardware have to be matched as much as possible. 

 

The first numerical simulations of granular materials appeared at the end of the 1970’s [5]. 

Two approaches were taken: 

 

• The continuum approach, which considered the granular assembly as a 

continuum. (The success of the continuum approach for civil engineering 

problems reflects the fact that problems involving soils are of a large scale, for 

which the discrete nature of the soil does not seem to play an important role). 

This approach is only valid for certain types of problem. 

• The discrete approach, which considered each individual particle as an 

individual entity. 

 

The disadvantage of the continuum approach is that the discrete nature of the particles is 

not captured, and that cracks and rupture surfaces are not well captured by this approach 

. On the other hand, discontinuous models, while treating these issues much better, are 

computationally very expensive, with simulations of thousands of particles taking hours 

and even days to finish. In the discrete approach every single particle is considered as an 

entity by itself, which moves following the physical laws of the domain. 

[6]

 11



Chapter 2: The Discrete Element Method     

2.4 Advent of the Discrete Element Method (DEM) 

Cundall introduced the Discrete Element Method (DEM) in 1971 [7]. This numerical 

method considers every particle as a separate entity. The interaction force, acceleration and 

movement of each particle are calculated individually at each time step. The assumptions 

underlying the method are only correct if no disturbance can travel beyond the immediate 

neighbours of a particle within one time step. This is due to the explicit nature of the 

method. This generally means that the time step must be limited to a very small value. 

There are two main types of numerical time integration scheme:  

 

• Explicit 

• Implicit 

 

An explicit method does not require the solution of the global equation. Therefore the 

information is transmitted from one point to another one time step at a time. If the time 

step is too large, excessive extrapolation would result, and the method can become 

unstable. There is  therefore a critical maximum time step. Implicit methods, by contrast, 

involve the solution of the global equation, but have superior numerical stability.  

 

As computing power increases, so does the number of applications that can be modelled 

reasonably using the DEM. An even higher growth is expected during this decade as 

computing power keeps growing, and as the method starts to be used in order to model 

entire engineering structures (such as dams and tunnels), built of particles bonded together 

to represent solid material. It is further suggested that continuum methods will be replaced 

by particle approaches in the future , as these capture the behaviour of localized cracks 

much better than the continuum approach, and a suitable stress-strain law for the material 

may not exist or the law may be excessively complicated with many obscure parameters.  

[6]

 

The main drawback to the application of particle methods to large-scale problems is that 

their very high computational demands limit the size of system that can be simulated 

within a feasible timescale. Also, time must be spent calibrating the laws by which the 

micro-structure affects the overall macro-structure behaviour. 

 12



Chapter 2: The Discrete Element Method     

2.5 Concepts of the Discrete Element Method 

Cundall and his co-worker Strack [1][5][7] developed the Discrete Element Method 

(DEM) in the seventies to model the behaviour of granular materials. The method is based 

on the assumption that particles only exert forces on one another when they are in contact. 

A simulation starts by assuming some initial configuration of particle positions, and then 

computes which of the particles are touching. The simulation then proceeds by stepping in 

time, applying the sequence of operations in Figure 2–2 at each step. The force between  

two particles can be calculated from the strength of 

the contact between them. The resultant force on a 

particle is the vector sum of the forces exerted by 

each of its neighbours. Once the resultant force on 

each particle has been computed, it is simple to 

compute the acceleration, the velocity and the 

position increment for each particle. Finally, the list 

of which particles are in contact must be re-

computed. The force interaction, acceleration and 

movement of each particle are calculated individually 

at each time step. The assumptions underlying the 

method are only correct if no disturbance can travel beyond the immediate neighbours of a 

particle within one time step. This generally means that the time step must be limited to a 

very small value (of the order of milliseconds for the stiffness and density of a typical 

material, though using scaled stiffness or density can change its value). This restriction is 

due to the explicit nature of the method and it makes the DEM extremely computationally 

expensive, since many time steps are needed if the dynamic behaviour of the system is 

required to be modelled accurately. 

Contact  
Check 

Velocity and co-
ordinate update 

Interparticle Forces 
increment 

T= T +∆t 

 
Figure 2–2 DEM Flow chart 

 

This method has been widely used in many applications, such as silo flows [8], rock 

fracture and the collapse of buildings [9]. A detailed description of the three main steps 

involved in the DEM is given in the next section for a two-dimensional case. For the 

purpose of this explanation, the domain is assumed to be two dimensional, and the 

particles are assumed to circular discs. The extension to three dimensions is discussed in 

chapter 7. 

 13



Chapter 2: The Discrete Element Method     

2.5.1 Contact Check 

In order to detect if two particles are in contact the following equation has to be solved for 

circular discs in 2-D: 

 

0)()( 2
21

2
2121 ≥−+−−+=∆ yyxxRRn  Eq. 2–1 

 
 

x1 y1

x2 y2
R1

R2

D

∆n  

Figure 2–3 Balls in contact 

Here xi and yi are the co-ordinates of each particle centre and R1 and R2 are the respective 

radii, D is the distance between the centres and ∆n the separation or overlap of the two 

particles. If ∆n is positive or zero, then the balls are in contact, whereas a negative value of 

∆n indicates that the balls are not in contact. 

2.5.2 Inter-particle Forces Increment 

Once the contact list for a particle has been established, the total force acting on it can be 

determined. For every contact identified between two particles, the resulting force can be 

calculated once the force-displacement law is known. For this study, the simplest possible 

force-displacement law is adopted: the resulting force between two balls is linearly 

proportional to the indentation ∆n between the balls. (This is not exactly correct in reality, 

as the contact area will increase with the amount of contact thus rendering the force-

displacement law non-linear. Although many advanced interaction laws, such as the 

Hertzian law, have been proposed [10], they add to the complexity to the calculations, but 

do not alter substantially the arguments put forward in this thesis). The force displacement 

law used for each ball is as follows: 

xinxi nkF ∆=  Eq. 2–2 

yisyi nkF ∆=  Eq. 2–3 

 14



Chapter 2: The Discrete Element Method     

Mi = Fsi R Eq. 2–4 

 

where ki is the stiffness (subscript n for normal and s for shear), nxi and nyi are respectively 

the x and y components of the current ball indentation against particle i, Fxi and Fyi are the 

components of the force caused by the interaction with ball i, Mi is the moment acting on 

the current ball due to the ith ball, Fsi is the shear force acting on the current ball due to the 

ith ball and R is the ball’s radius. The index i runs from the first to the last ball on the 

present ball’s adjacency list, so the resultant force on a ball is the vector sum of the forces 

caused by each contact with its neighbours. 

 

∑=
i

xix FF  Eq. 2–5 

∑=
i

yiy FF  Eq. 2–6 

RFM
i

si∑=  Eq. 2–7 

It should be noted that Eq. 2–7 is only correct if the rotation involved is small, since the 

direction of Fsi changes with the rotation. 

 

2.5.3 Velocity and Co-ordinate Update 

Once the resultant forces of each ball have been calculated by summing the forces of all 

contacts in vectorial form for every ball, these forces can be used to find the new 

accelerations using Newton’s second law: 

m
Fa x

x =  Eq. 2–8 

m
Fa y

y =  Eq. 2–9 

Where Fx is the resultant force in the x-direction, Fy is the resultant force in the y-direction, 

m is the mass of the particle and ax and ay are the acceleration in the x and y-directions 

respectively. 

 

 15



Chapter 2: The Discrete Element Method     

These accelerations are integrated to obtain the velocities in the x and y directions as well 

as the rotational velocity using the moment of inertia of the particle I: 

tavv xxx ∆+= 0  Eq. 2–10 

tavv yyy ∆+= 0  Eq. 2–11 

( ) tI
M ∆+= 0θθ &&  Eq. 2–12 

The time step, as is the case for all explicit time integration schemes, has to be limited to a 

small value in order to retain numerical stability. For the DEM, the constraint is that the 

time step must be sufficiently small that no disturbances can travel beyond one contact in 

one time step. The critical time step for each particle can be calculated from its stiffness 

and mass properties as shown in Eq. 2–13. 

stiffness
massTcritical 2=  Eq. 2–13 

The critical time step of the whole system is limited by the smallest of the critical time 

steps of the individual particles. The new coordinates can be found by adding the original 

coordinates to the incremental displacement obtained by integrating the calculated 

velocities. 

tvuu xxx ∆+= 0  Eq. 2–14 

tvuu yyy ∆+= 0  Eq. 2–15 

t∆+= θθθ &
0  Eq. 2–16 

It should be noted that both displacements and accelerations are defined at the time points 

which are at the beginning and the end of the time steps, and the velocities are defined at 

the mid-point of the time intervals.  

 16



Chapter 2: The Discrete Element Method     

2.6 DEM Analysis 

As can be seen from Figure 2–2 the DEM consists of three basic steps: 

1. Contact checking: to detect the particles that are in contact 

2.  Forces update: to compute the resultant force applied to each particle by other 

particles in contact with it  

3. Velocity and coordinate update: in order to recalculate the particles’ new 

velocities and coordinates.  

Issues governing the number of arithmetic operations and amount of computer time 

required for each of these stages are discussed in detail in the following sub-sections. 

2.6.1 Contact Checking Analysis 

The identification of which particles are in contact with each is the most time consuming 

operation of the three stages. It requires that each possible pairing of balls be examined, 

which for N particles requires O(N2) operations. Thus, for large problem sizes, contact 

identification dominates the complexity of the problem. Dividing the domain up into cells 

(see Figure 2–4) using the domain decomposition method can alleviate this. Each particle 

is tagged as belonging to a particular cell, and it will only be checked for contacts with 

(a) (b) 

Figure 2–4 Screenshots of two syste . (a)Without grid (b) with grid 

 17



Chapter 2: The Discrete Element Method     

particles within the same cell and adjacent cells. If the number of particles per cell is c, 

then the execution time is proportional to 
N
c

O c( )2 . 

 

Occasionally a particle may transition from one cell to another, or may straddle the 

boundary between two cells. A new sub-step has to be included in the data flow of the 

DEM as reboxing of the particles is now necessary whenever a particle moves to an 

adjacent box (see Figure 2–5).  

 

In order to illustrate the impact of the domain 

decomposition, a set of experiments was 

performed using the software described in the 

next chapter, in order to determine the CPU time 

spent by the software simulator on each of the 

steps of the DEM method. An example domain 

with 500 particles was generated and ran once 

with domain decomposition and once without. 

Table 2–1 shows the difference between the two 

cases. As can be seen, with the new reboxing step 

introduced in the data flow for the case where the 

domain is decomposed, the contact detection time 

falls dramatically and the total time needed to 

perform the contact detection plus reboxing is 

much smaller than the time needed to produce the contact detection without grid. 

Contact  
Check 

Velocity and co-
ordinate update 

Interparticle Forces 
increment 

T= T +∆t 

Reboxing  

 

Figure 2–5 Modified DEM flow chart 
with domain decomposition 

 

Table 2–1 Timing analysis for a system with 500 particles ran for 1000 time steps with and without 
a grid 
Time  Forces Update Coordinates Update Contact check Rebox 

t [No grid] 1.64 s 0.313 s 70.39 s 0 

t [Grid] 1.64 s 0.313 s 2.23 s 0.13 s 

 

 18



Chapter 2: The Discrete Element Method     

In addition to analysing the timing characteristics of the contact check stage, it is also 

necessary to analyse the arithmetic complexity of this stage. The number of arithmetic 

operations needed to compute Eq. 2–1 is given below in Table 2–2. 

 

Table 2–2 Arithmetic operations needed for the contact check 
 Additions and 

Subtractions 

Multiplications Square Roots 

Number of Arithmetic 

operations 

5 2 1 

 

2.6.2 Forces Update Analysis 

For every contact identified between two particles, the contact force has to be calculated. 

This is assumed to be linearly proportional to the indentation between the balls. The 

resultant force on a particle is the vector sum of the forces caused by each contact with its 

neighbours. 

 

The model used throughout this thesis considers a granular medium with all of its particles 

having identical radius R. This greatly simplifies the hardware implementation of the 

algorithm, because it means that for a 2-D implementation, a particle can have a maximum 

of six other particles in contact with itself (see Figure 2–6). 
 

 
(a) 

 

1 

2 3

4

5 6 

 
(b) 

Figure 2–6 Two cases of different number of balls in contact (a) Balls in contact with different 
radii (b) Balls in contact with the same radius 

 19



Chapter 2: The Discrete Element Method     

If the particles had varying radii (see Figure 2–6a) there could be in principle be an 

unlimited number of balls in contact (if Rlargest >>Raverage and Rsmallest << Raverage, where 

Rlargest is the larges radius in the system, Rsmallest is the smallest radius in the system and 

Raverage is the radius of the average sized particles). This would necessitate the use of 

complicated data structures, such as linked lists, which are difficult to handle efficiently in 

hardware. 

 

complicated data structures, such as linked lists, which are difficult to handle efficiently in 

hardware. 

  

That a maximum of six discs can be in contact with a certain disc can be derived 

mathematically in a very simple manner (see Figure 2–7 and Eq. 2–17 and Eq. 2–18).  

That a maximum of six discs can be in contact with a certain disc can be derived 

mathematically in a very simple manner (see Figure 2–7 and Eq. 2–17 and Eq. 2–18).  

o30
2

sin
1

=







×
=

−

R
Rα  Eq. 2–17 

6
60

360602 =⇒=×
o

o

α  Eq. 2–18 

 

 

 

Figure 2–7 Geometrical deduction of the maximum number of balls in contact for balls of the 
same radius 

α
R

2R
R

Having all particles of the same radius R means that adjacency information can be 

represented by a very simple data structure (a 6xN matrix) and that the maximum number 

of interparticle forces computation required is 6 N, for the worst case in which all particles 

have the maximum number of particles in contact.  

 

After determining which particles are in contact, the forces and moments between the 

particles is calculated. The pseudo code for the calculation of the forces and moments is 

given below. As mentioned earlier, the forces between the two balls are assumed to be 

directly proportional to the amount of indentation between the two balls [7]. 

 

 

 

 20



Chapter 2: The Discrete Element Method     

FOR Ball 1:last 

 WHILE Ball has balls in contact 

21 xxxdif −=  (x-coordinate difference) 

21 yyydif −=  (y-coordinate difference) 

22
difdif yxD +=  (distance between particle centroids) 

( )
D

ydif=αsin   

( )
D

xdif=αcos  

21 xxxdif vvv −=  (x-direction relative velocity) 

21 yyydif vvv −=  (y-direction relative velocity) 

( )( ) ( )( )[ ] tvvD ydifxdifN ∆××+×= αα sincos   

( )( ) ( )( ) ( ) ( )[ ] tRRvvD ssydifxdifS ∆××−×−×+×= 2211cossin θθαα  

2
N

NFN
kDD ×=  (Incremental normal force) 

2
S

SFS
kDD ×=  (Incremental shear force) 

FNNcontactN DFF +=  (New total normal force in contact) 

( BDTDFF FNNNT ×+= ) (BDT is the damping contribution) 

FSScontactS DFF +=  (New total shear force in contact) 

(Restoring of normal and shear force in x and y 

directions) 

( ) ( )αα sincos ×+×= STNTx FFF  (Restore normal force to x) 

( ) ( )αα cossin ×−×= STNTy FFF  (Restore shear force to y) 

RFM ST ×=  (Compute moment) 

xxoldxnew FFF −= 11  (Add force increment in x direction) 

yyoldynew FFF −= 11  (Add force increment in y direction) 

MMM oldnew −= 11  (Add moment increment) 

xxoldxnew FFF −= 22  (Same for 2nd particle) 

 21



Chapter 2: The Discrete Element Method     

yyoldynew FFF −= 22  

MMM oldnew −= 22  

 Next Ball in contact 

Next Ball 

 

Where ∆t is the time step and kn and ks are the normal and shear stiffness of the system. 

Table 2–3 gives an overview of the total number of arithmetic operations needed to 

compute the force between two balls in contact. 

Table 2–3 Arithmetic operations of the force update function 
 Additions and 

Subtractions 

Multiplications Divisions Square Roots 

Number of 

Arithmetic ops 

20 18 2 1 

 

In addition to the equations given above, the maximum shear force before the particles 

start sliding is computed (Fsmax). In the case that the shear force (Fs) is larger than this 

maximum shear force (Fsmax), the particle will slide instead of rotating with the particle in 

contact, and the shear force will be set equal to the absolute value of Fsmax preserving the 

sign of Fs. 

2.6.3 Coordinate Update Calculation Analysis 

Movement update entails the solution of Newton's second law for each of the N particles. 

This requires O(N) operations. This is the fastest of the three stages that are performed for 

each time step. The equations that describe how the particles’ new velocities (vxnew, vynew, 

and θ’snew) and coordinates (xnew, ynew and θnew) are calculated are given below: 

 

FOR Ball 1 until last 

( ) Con2tg
mass

FCon1VV x
x

xxnew ×
















∆×






 ++×=  

 22



Chapter 2: The Discrete Element Method     

( ) Con2tg
mass

F
Con1VV y

y
yynew ×
























∆×








++×=  

( ) Con2
I

tMCon1ssnew ×














 ∆×

+×= θθ &&  

( )tvx x ∆×+=newx  

( )tvy y ∆×+=newy  

( )tsnew ∆×+= θθθ &  

 

Next Ball 

Where Con1 and Con2 are constants dependant on the damping of the system, based on the 

Rayleigh damping constants α and β which can be given in terms of minimum damping 

ratio λ and the frequency, f, at which the damping ratio is at the minimum, as shown in Eq. 

2–19, Eq. 2–20, Eq. 2–21 and. Eq. 2–22. 

fπ
λβ

2
=  Eq. 2–19 

fλπα 2=  Eq. 2–20 

2
11 tCon ∆

−=
α  Eq. 2–21 

2
1

12
t

Con
∆

+
=

α
 Eq. 2–22 

M is the mass of the particles, which is constant for particles of the same radius and 

density, ∆t is the time step, I is the moment of inertia and g is the acceleration due to 

gravity (in the x and y direction). The number of arithmetic operations involved is given in 

Table 2–4. 

Table 2–4 Arithmetic operations of the coordinate and velocity update function 
 Additions and 

Subtraction 

Multiplications Divisions 

Number of ops 8 12 3 

 23



Chapter 2: The Discrete Element Method     

2.7 Parallelism Analysis 

The previous sections described the DEM in terms of the computational complexity of the 

tasks and the arithmetic operations they involve. In order to successfully accelerate the 

DEM with custom hardware, the algorithm needs to be checked for parallelism. If there is 

no parallelism at all, it is almost impossible to get any speed-up using custom hardware as 

state-of-the-art serial processors can execute serial code at an enormous speed. 

2.7.1 Basic Ideas about Parallelism 

Programs that run on serial machines make little or no use of the parallelism of the 

algorithm they are running. A dedicated hardware architecture can exploit  the full extent 

the parallelism of the algorithm.  

 

Traditionally a measure of speed-up has been used to judge the quality of parallel 

algorithms running on multiprocessors systems. In the case of designing a dedicated 

hardware architecture for the DEM the term speed-up can be defined as the time needed to 

run certain simulations by an optimised software implementation on a single processor 

machine compared to the time needed by the dedicated hardware design for the same 

simulation. 

 

2.7.2 DEM Parallelism 

The parallelism involved in the Discrete Element Method can be described by a hierarchy 

of computational structures. The lowest level processes involve the arithmetic operations, 

while the highest level corresponds to the major tasks namely contact checking, force 

calculation and position update.  

 

2.7.2.1 Low Level– Fine Grain Parallelism 

The low level parallelism is concerned with the concurrent execution of arithmetic 

operations. Two operations are concurrent if their execution times overlap. One of the 

easiest ways to represent the parallelism of an algorithm is with the help of graphs [11]. 

 24



Chapter 2: The Discrete Element Method     

Eq. 2–23 and its graphical representation in Figure 2–8 shows an example of an algorithm 

in its sequential and a parallel from. 

 

dcbaz +++=   Eq. 2–23

+
+

+

a
b c d z

z

+

+

+

a

b

c
d

Figure 2–8 Example of a serial (left) and parallel (right) graphical representation of an algorithm  

This graphical method has to be applied to the equations given in sections 2.6.2 and 2.6.3 

in order to have a visual representation of the low level parallelism of the DEM. As can be 

seen from Figure 2–9 there are two main paths in the forces update equations: one 

corresponding to the calculations of the normal forces applied to the two balls in contact 

and a second to compute the shear force between the two balls. 

xdif
2

ydif
2

x1
x2

y1
y2

D

cos

sin

vx1-vx2

vy1-vy2

vx1-vx2

vy1-vy2

KCM

0s

Rad

KCM

KCM

TDEL

TDEL

KCM

KCM

STIFN/2

STIFS/2

KCM

KCM

KCM

BDT

BDT

AMU

FN

FS

COH

cos

cos

sin

sin

FNT

FST

FSmax

F'
ST

KCM

Rad

Fx1 old

Fx2 old

Fy2 old

Fy1 old

M2 old

M1 old

Fx1 new

Fx2  new

M1 new

M2 new

Fy1 new

Fy2 new

t

FNT

FsT

Figure 2–9 Graphical representation of the force update equations 

In the position update equations there are three independent paths as seen in Figure 2–10. 

One is for the computation of the velocity and position in the x direction; the second to 

compute the velocity and new coordinate in the y direction and a third path to compute the 

angular velocity of the particle and the angular rotation. 

 

 25



Chapter 2: The Discrete Element Method     

KCM

vx

CON1

KCM

Fx

1/MASS

KCM

KCM
KCM

GRAVx TDEL

CON2
TDEL

nx old

nx new

vy

CON1

Fy

t

1/I

vx new

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVy TDEL

CON2
TDEL

ny old

ny new

vy new

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0old

0 new

0'

CON1

M

0' new

 

Figure 2–10 Graphical representation of the position update equations 

The longest path in these two graphs gives the critical path (CP). These critical paths will 

determine the minimum time needed to compute the algorithm if these are computed 

concurrently. 

2.7.2.2 High Level – Coarse Grain Parallelism  

In contrast to the low level parallelism, the DEM also shows some good possibilities for 

high level parallelism, which is concerned with the larger tasks. If no domain 

decomposition is used, then the tasks are contact detection, forces calculation and position 

update. If domain decomposition is used, reboxing must also be carried out. The key 

question is whether there is a way to compute all these three (or four) tasks simultaneously. 

The only way to make this feasible is by decomposing the domain into boxes or columns. 

This allows three possibilities: 

 

1. By dividing the domain into cells the problem can be split among processors 

i.e. each processor handling part of the domain. This strategy is commonly used 

in symmetric multiprocessor parallelization of the DEM (see Figure 2–11 (a)). 

 

 26



Chapter 2: The Discrete Element Method     

2. All three (four) tasks are performed at the same time. This will only work if the 

order in which the tasks have to be performed is followed (contact checking in 

one cells is performed before the forces update and before position update and 

in turn the forces update unit in one cell has to be performed in one cell before 

the position update unit can be performed on that same cell, see Figure 2–11(b) 

). 

 

3. Combining both methods, dividing the domain into sub-domains and assigning 

different processors to each sub-domain and performing the DEM tasks in each 

sub-domain in parallel in each processor. 

 

Figure 2–11 shows two examples of the use of the domain decomposition to use the high 

level parallelism of the DEM. In Figure 2–11(a), the domain is partitioned into equal sizes 

in order to split the information between several processors, performing the same task 

concurrently but on different parts of the domain. For the example in Figure 2–11(b), all 

three different tasks are computed in a pipelined manner, i.e. all operate at the same time, 

(a) (b) 

Figure 2–11 Examples of domain decomposition in order to make use of the high level parallelism 
of the DEM. Division among multiple processors (a) and concurrent computation of the DEM 

steps (b) 

proccesor
1

proccesor
2

proccesor
3

cc

fc

ps

rb

 27



Chapter 2: The Discrete Element Method     

but on a different part of the domain. In this figure cc stands for contact checking, fc for 

forces update, ps for position updating and rb for reboxing. 

2.7.3 Discussion of the Application of the Low and High Level 

Parallelism of the DEM on FPGAs 

The low level parallelism of the DEM can be fully exploited in an FPGA since as many 

arithmetic operations as are needed can be instantiated in parallel, so far as the logic 

resources allow it. 

 

The high level parallelism is more a factor of scheduling than of arithmetic. As the FPGA 

has a large amount of logic resources with embedded memory, tasks can be scheduled in 

any way, as the control unit, which generates the control signals and steers data across the 

device, will also be customized. 

 

Designing a dedicated hardware architecture to perform a specific task is extremely time 

consuming. The introduction of Intellectual Property (IP) Cores, which are pre-designed 

units that perform a specific task in the design, has alleviated this, allowing the 

implementation of hardware designs much faster than before. FPGAs benefit from these, 

allowing designs to be implemented faster and more reliably, as these IP cores have 

already been validated. 

 

2.8 Summary and Conclusions 

This chapter has demonstrated the importance of the study of the behaviour of granular 

materials, since they have an important role in many different disciplines e.g. civil, 

mechanical and chemical engineering. New approaches have also considered entire 

engineering structures built from bonded particles, and some authors predict that these 

methods could replace the continuum approaches used today, such as the finite element 

method. 

 

The DEM is a computationally very expensive algorithm, because: 

 

 28



Chapter 2: The Discrete Element Method     

• The behaviour of every single particle is computed separately for every time 

step 

• The time step has to be very small so that disturbances cannot travel beyond 

neighbouring balls in every step. 

 

An in-depth study of the algorithm has been made studying the parallelism involved in 

every task and the associated arithmetic operations. A summary of the properties of the 

DEM steps is shown in Table 2–5. 

 

Table 2–5 Summaries of the properties of the main steps in the DEM (assuming N is reasonably 
large) 
 Operations/time step Execution Time Arithmetic ops 

Contact checking O(N2) Slowest 8 

Forces updated O(6 N) Intermediate 41 

Positions update O(N) Fast 21 

Re-boxing O(Ncellsx[4xcelllength/diameter]) Intermediate Only data 

management 

 

The contact checking task is the one that requires the smallest number of arithmetic 

operations, but it is the one that needs to be performed most often (O(N2))( if no domain 

decomposition is used). 

 

The forces update step is the computationally most expensive task. It needs 41 arithmetic 

operations, but needs only a maximum of O(6 N) operations to be performed which is 

intermediate between the contact checking and the position updating task. 

 

The position update task is the one that needs the least operations to be performed, i.e. the 

fastest to be computed, and is the one that needs an intermediate number of arithmetic 

operations, but the potential of parallelism of this task is very large as shown in Figure 2–

10. This is because there are three major independent paths in the computation the 

velocities and positions of the balls. 

 

 29



Chapter 2: The Discrete Element Method     

Re-boxing particles transitioning from one cell to another does not require any arithmetic 

operations, and is purely a data management issue. The number of particles transitioning 

from one cell to another is heavily dependant on the cell size and cell occupancy. The 

smaller the cells are, the more likely a particle is to pass from one cell to another. If the 

cell is to be assumed to be full with balls, then the estimated number of balls that will 

transition to the neighbouring boxes (and therefore the number of re-boxing operations 

needed per cell) is: O(4xcelllength/diameter). 

 

The enormous amount of parallelism in the DEM suggests that a dedicated hardware 

architecture could bring significant benefits in terms of speed-ups to the calculation. 

2.9 References 

[1] Cundall, P.A. “A Computer model for simulation of progressive, large scale 

movements in blocky rock system”, Proc. Symp. Int. Rock Mechanics, Nancy 2, No. 

8. 1971. 

[2] Bardenhagen S.G, Brackbill J.U, Sulsky D, “The material-point method for 

granular materials”. Computer methods in applied mechanics and engineering 187, 

529-541, 2000. 

[3] Heinrich M. Jaeger, Sidney R. Nagel, Robert P. Behringer, Physics Today, April 

1996. “An introduction to granular physics“, page 32. Available at 

http://arnold.uchicago.edu:80/~jaeger/granular2/introduction. 

[4] Oda M, Iwashita, K, “Mechanics of Granular Materials”, A.A. Balkema, 

Rotterdam 1999. 

[5] Cundall, P.A. Strack, O.D.L., “A discrete numerical model for granular 

assemblies“, Geotechnique 29, pp. 1-8, 1979. 

[6] Cundall, P.A.,”A discontinuous future for numerical modelling in geomechanics?” 

Proceedings of the Institution of Civil Engineering, Geotechnical Engineering 149, 

January 2001, Issue 1 Pages 41-47. 

[7] Cundall, P.A. Strack, O.D.L., “The Distinct Element Method as a tool for research 

in Granular Media”, Report to the National Science Foundation Concerning NSF 

Grant ENG76-20711, Appendix 2, pp 20-21, University of Minnesota, November 

1978. 

 30

http://arnold.uchicago.edu/~jaeger/granular2/introduction


Chapter 2: The Discrete Element Method     

 31

[8] Holst JMFG, Rotter JM, Ooi JY, Rong GH, “Numerical modelling of silo filling II: 

discrete element analysis”. J Engng Mech ASCE; 125(1): 104-110, 1999. 

[9] Munjiza A, Owen DRJ, Bicanic N. “A combined finite discrete element method in 

transient dynamics of fracturing solids”, Engng Comput 1995: 12(2): 145-74. 

[10] Hertz, H., “Ueber die Beruehrungfester Elastischer Koerper," J. Renie Angew 

Math., 92, pp 156-171, 1992 

[11] Wanhammer, L. “DSP Integrated Circuits”, Academic Press, San Diego, chapter 6, 

San Diego, 1999. 



3. Chapter  Chapter 3 

SOFTWARE IMPLEMENTATION OF THE DEM 

3.1 Introduction 

This chapter describes and analyses the software implementation of a DEM simulator. A 

software simulator for the DEM was written in order to understand the processes and 

operations behind the DEM better, to allow the functional verification and validation of the 

hardware implementation, and to allow a run time comparison between the sequential 

program and the parallel one implemented on an FPGA, since the ultimate goal of this 

work is to achieve a faster running system. 

 

In order make a fair comparison between the hardware and the software implementation, 

the software was optimised as much as possible. 

 

The DEM software simulator developed for this study is based on the one written by 

Cundall and Strack [1] in 1978 called Ball, which was written in FORTRAN. The software 

is written in C and has the following enhancements and improvements over the Ball code: 

 

• It uses the superior data structure facilities of the C language, together with a 

number of other optimisations, to give better performance 

32 



Chapter 3: Software Implementation of the DEM     

• It has a Visual C++ wrapper which provides a Graphical User Interface (GUI) that 

assists in visualisation of the DEM simulations 

• It has facilities for a variety of domain decomposition approaches 

•  It can communicate with the reconfigurable computing platform, so the 

numerically intensive portions of the code can run in hardware if the user wishes 

• It has facilities for comparing the results produced by the hardware with the 

corresponding results produced by software (both for the bulk and for the 

individual particles) 

• It has facilities for emulating the partition of the problem across multi-processor 

platforms. The simulator produces data about inter-processor communication and 

synchronisation overheads, which can be used to determine what degree of speed-

up, could be achieved on various platforms, and what are the factors that limit the 

speed-up. 

 

The simulator consists of 5000 lines of code and is capable of modelling the behaviour of 

assemblies of particles under conditions of loading and unloading. It is simpler than the 

Cundall and Strack simulator in that it requires all particles to have the same radius, and 

does not allow the domain to contain walls. These simplifications were made in order to 

reduce the complexity of the DEM algorithm sufficiently to be able to migrate the key 

stages of the algorithm into FPGA hardware. 

 

The procedure used by the simulator is illustrated in Figure 3–1. It first reads a data file (an 

example is shown in Figure 3–2), which provides information about the system that is to be 

simulated. It then generates the number of particles requested by the user, within the 

domain area requested by the user.  

 

 33



Chapter 3: Software Implementation of the DEM     

The program then commences the simulation, stepping through the three principal tasks of 

the DEM: contact checking, forces update and 

positions update, as well as the reboxing task 

that re-allocates particles when they transition 

from one box of the grid to another. The grid is 

necessary in order to alleviate the time needed 

to perform the contact checks as explained in 

chapter 2. After every cycle, the simulator 

checks if the number of steps equals the number 

of cycles given in the initialisation file. If so the 

simulation ends and a log file is generated. The 

program writes the final position of the 

particles, the resultant forces between them, the 

total run time of the simulation, the total system 

energy (total kinetic energy and total potential 

energy), as well as the initial conditions of the 

system in the report. The energy calculations 

are used to provide an assessment of the 

numerical stability of the algorithm, as 

explained in chapter 6. 

Contact  
Check 

Velocity and co-
ordinate update 

Interparticle Forces 
increment 

Reboxing  

Generate 
particles 

Read 
Initialisation file 

Cycles = max cycles? 

Cycles++ 

No

Yes 

Gen Log file 
End simulation  

Figure 3–1 DEM simulator flow graph 

 

 

 

 

3.2 Initialisation of the Simulation 

The first thing the simulator does is to read the initialisation file. The program data are all 

stored in a file called BALL.DAT. The format of all input commands is a word followed, 

in most cases, by a number of parameters. Any input line starting with a semicolon (;) is 

regarded as a comment. The format of a typical input file is given below:  

 

 

 34



Chapter 3: Software Implementation of the DEM     

START 4000.00 4000.00 200 1 

RADIUS 45.00 

AUTO 0.00 4000.00 0.00 4000.00 500 1000 0 1 

SHEARSTIFF 20.00 

NORMSTIFF 400000.00 

DENSITY 2.00 

FRICTION 0.00 

DAMPING 0.00 0.00 0.00 0.00 

COHESION 4000.00 

XGRAVITY 0.00 

YGRAVITY 0.00 

FRACTION 0.08 

CYCLE 1000 

Figure 3–2 Example of the simulator initialisation file 

A short description of each command is given below: 

 

START  W, H, NBOX, COL_BOXES 

The first command has to be START, as this defines the area in 

which the particles will be generated. The parameters are as follows. 

W is the width of the domain (x dimension) 

H is height of the domain (y dimension) 

NBOX is the number of boxes or columns requested to form the grid 

COL_BOXES is a flag to show whether the domain is to be divided 

into columns or boxes. (The hardware implementation only allows 

the domain to be split into columns, not boxes). 

 

RADIUS   R  

R is defined as the radius for the particles. All the particles will be of 

the same radius, because this simplifies the hardware 

implementation dramatically as will be shown in chapter 5. 

 

 35



Chapter 3: Software Implementation of the DEM     

AUTO    XL, XU, YL, YU, N, NTRY, SEED, INIT_VEL, 

The program will try to generate N particles within the area within 

the rectangle with corner coordinates (XL,YL) and (XU, YU), using 

a random number generator for the co-ordinates. If the program is 

not able to produce N particles after NTRY attempts (because it is 

not allowed to create an initial condition in which particles overlap), 

it will give up and write a message informing the user how many 

were actually generated. If NTRY is omitted, or given as zero, it 

defaults to 1000. SEED is a flag that establishes whether the 

program should use the same pseudo-random initialisation sequence 

each time the program runs, or whether it should generate a new 

sequence. INIT_VEL is a flag that tells the simulator if the particles 

should be given an initial velocity of zero, or a randomly generated 

non-zero value. 

 

SHEARSTIFF  ks 

ks is the value of the shear contact stiffness of the particles. 

 

NORMSTIFF kn 

kn is the value of the normal contact stiffness of the particles. 

DENSITY   ρ,  

ρ is the value of the density of the particles 

 

FRICTION   µ 

µ is the value of the friction coefficient between the particles 

 

COHESION   c 

c is the value of the cohesion between the particles. 

 

DAMPING   λmin, fmin 

 36



Chapter 3: Software Implementation of the DEM     

Sets the damping parameters for Rayleigh damping, where fmin is the 

frequency at which the minimum damping occurs, and λmin is the 

damping ratio i.e. fraction of the critical damping at that frequency.  

XGRAVITY   gx 

YGRAVITY  gy 

These are the gravitational accelerations in the x and y directions 

respectively. 

 

CREATE    x, y, vx, vy 

Creates a particle with centre at x, y and initial velocities of vx, and 

vy. 
 

CYCLE    n 

The program performs n calculation cycles (i.e time steps). No 

communication with the simulator is possible once it starts. 

FRACTION  f 

Sets the time step used to a fraction f of the critical time step. 

 

Some of the commands must be provided in an appropriate order. For example, no balls 

can be generated if the area in which the balls are to be generated has not yet been defined, 

therefore the first command must always be START. 

 

Figure 3–3 shows a screenshot of the simulator’s program data window once the 

initialisation file, given in Figure 3–2, has been read.  

 

It can be noticed from  that no units are specified in the initialisation file. The 

input parameters are considered to be given either in S.I. units or in a consistent scaling of 

these. 

Figure 3–2

 37



Chapter 3: Software Implementation of the DEM     

Figure 3–3 Screenshot of the simulators initial data after the particles have been generated 

Figure 3–4 shows a screenshot of the simulator’s initial state, once the initialisation file 

given in Figure 3–2 has been read and the particles generated. Once the particles are 

generated, it waits for the user to either make any changes with its parameters or to start 

the simulation. 

 38



Chapter 3: Software Implementation of the DEM     

 

Figure 3–4 Screen shot of an initial state of the simulator after reading in the data file 

 

3.2.1 Data Structure 

Having such an enormous amount of data, with thousands or even millions of particles, one 

needs a well-designed data structure in order minimize the searching time required. It was 

decided to use a linked list data structure. The balls are defined as an object and they are 

linked to each other using a complex singly linked list. 

 

class CBALL: public CBall_data{  

public: 

float x; 

float y; 

float xs; 

float ys; 

float Os; 

float Fx; 

 39



Chapter 3: Software Implementation of the DEM     

float Fy; 

float M; 

float O;  

float FTN[6]; 

float FTS[6]; 

class CBALL *next_ball; 

class CBALL *same_entry; 

class CBALL *ball_contact[6]; 

class CBALL *same_debug; 

}; 

Figure 3–5 Data structure of the particles 

Figure 3–5

 

As seen in every ball structure contains its intrinsic data, plus four pointers to 

other balls.  

 

*Next ball:  Points to the next ball generated by the simulator after the 

initialisation file is read. 

*Same entry:   Points to the next ball in the same box as the current ball. 

*Ball_contact [6]:  Points to the balls that are in contact with this one. For the case of a 

2D system with balls of the same radius, there can be a maximum of 

6 balls in contact, as shown in section 2.3.2. 

*Same_debug:  Used only for debugging purposes when the software system is 

being compared to the equivalent hardware system in order to check 

for similarities in their behaviours. 

 

Figure 3–6 gives a graphical representation of the linked list structure described above. 

Ball 1, 2 and 3 build the linked list of particles in the order that the simulator has generated 

them. Ball 1 points to Ball M, which is a particle in the same box as Ball 1 and in turn Ball 

M points to Ball N, which is also in the same box as Ball M and Ball 1. The last pointer 

entry for Ball 1 also points to Ball X, which is a Ball with which Ball 1 is in contact. 

 40



Chapter 3: Software Implementation of the DEM     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3–6 Data linked list structure 

BALL X 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum, Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

BALL N 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum, Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

BALL M 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum, Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

BALL 3 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum,Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

BALL 2 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum,Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

BALL 1 
 

Ball data 
x, y, xs, ys, Os, 

Fxsum, Fysum,Msum, 
FTN, FTS 

 
*next_ball 

 
*same_entry 

 
*ball contact[X] 

 

 

 

 

 

 41



Chapter 3: Software Implementation of the DEM     

3.3 Simulator Features 

This section will give a brief overview of the features of the simulator. The main features 

are an in-built grid optimiser, which generates the initial grid for the system depending on 

the number of particles, their size and the domain size. Another important feature is the 

energy monitoring option. This option opens a window which shows the current total 

energy of the system, the current total kinetic energy and the current total potential energy 

during each time step. 

 

Figure 3–7

 

 

 

 

 
 

 

 

 

 

Figure 3–7 Simulator’s tool bar 

 shows the tool bar of the simulator with the different options available. 

Generate a 

new init file 

Launches 

debugger 

Convert grid 

from cols to 

boxes and vice 

Show/hides 

the grid 

Monitors the 

energy of the 

Restart the 

simulation

Optimise 

the gird size

Start the 

simulation

Print 

screen 

Save init 

file 

Open an 

init file 

The grid converter, from columns to boxes and vice versa, is needed in order to compare 

the hardware system with the software one, as the hardware system only allows the domain 

to be split into columns and not into boxes. 

 

The Debugger button in Figure 3–7 launches an in-built debugger which prints information 

about the particles in the software simulator and those of the hardware system on the same 

screen, monitors how they behave concurrently and reports any deviations. 

 42



Chapter 3: Software Implementation of the DEM     

3.3.1 Optimal Runtime Grid Size 

As mentioned in the previous section, the software simulator has an in-built grid optimiser, 

which selects the optimum grid size depending on the system parameters i.e. balls’ radius, 

domain size and number of particles The grid size has a dramatic influence on the runtime 

of the simulation as the time to perform the contact check varies as the square of the 

number of particles in each box. Figure 3–8 shows how the simulation time changes as a 

function of the number of boxes used to build the grid for a domain of 2500 particles. A 

number of curves are plotted, corresponding to different values of the system’s stiffness. 

The simulation time for the system without a grid (see Figure 3–9 (a)) is extremely high. 

This is because the contact check task grows with the square of the number of particles per 

box. By making the grid finer, the computing time for the same system falls sharply until a 

minimum is reached; for this system, it is approximately 500 boxes. From this point 

onwards the computing time starts to grow again linearly with the number of boxes in the 

system. This is due to the fact that the time needed to compute the contact check is not 

dominant anymore. Instead the time needed to rebox the particles transitioning from one 

Number of boxes

0 500 1000 1500 2000 2500 3000

Ti
m

e 
[s

]

0

100

200

300

400

500

600

700

Simulation time (stiffness 4000)
Simulation time (stiffness 40 000)
Simulation time (stiffness 400 000)

 

Figure 3–8 Run time graphed as a function of the number of boxes 

 43



Chapter 3: Software Implementation of the DEM     

box to the other starts to become dominant as the grid is very fine and there are many 

particle transitions from one box to another during the simulation.  

 

(a) 
 

(b) 
 

(c) 

 
(d) (e) (f) 

Figure 3–9 Screenshots of the simulator with different grid sizes 

(a) No grid (b) 500 boxes(c) 1000 boxes (d) 1500 boxes (e) 2000 boxes (f) 2500 boxes 

From these results it was established that the ideal grid size is between 4 and 6 times the 

particle radius, and its exact value depends on the system’s stiffness. 

 

The graphs in Figure 3–8 show that the higher the stiffness the lower the runtime of the 

simulation is (for an optimised grid size). This is because a high stiffness means that the 

particles will be in contact for less time than for a system with low stiffness. Thus for high 

stiffness systems the interparticle forces are computed less often than for a low stiffness 

system. An example of a high stiffness system is an assembly of billiard balls, whereas an 

example of a low stiffness system is an assembly of squash balls. 

 44



Chapter 3: Software Implementation of the DEM     

3.3.2 Re-draw Option 

For some purposes it is important for the user to be able to visualize how the particles 

move, whereas for other purposes only the final state is of interest to the user. A facility 

was provided to allow the user to choose how often the system should be re-drawn, since 

re-drawing the complete assembly can be more time consuming than performing the 

computations. Figure 3–10 shows a screen shot of this window.  

 

Figure 3–10 Re-draw option window 

 

In order to illustrate the effect of re-draw frequency on simulation time, a simulation was 

set up with 500 particles and run for 1000 time steps. The elapsed time required to perform 

the simulation without redraw, with redraw every 10 cycles, and with re-draw after every 

cycle was monitored and is shown in Table 3–1. 

 

Table 3–1 Comparison of the simulation time needed for an assembly of 500 particles ran for 1000 

cycles depending on the number of times the assembly is re-drawn. 

 Re-draw after every 

cycle 

Re-draw after every 

10 cycles 

Re-draw only at the 

end of the simulation

Time to run 1000 

cycles 

37 s 26 s 18 s 

 

 45



Chapter 3: Software Implementation of the DEM     

3.4 Runtime comparison between the Fortran and the C 
simulator 

Several simulations were performed in order to verify that the optimisations of the C 

simulator work. Table 3–2 show the time needed by the orignial FORTRAN and the C 

simulator for assemblies of particles ranging from 1000 to 5000 particles. 

 

Table 3–2 Runtime comparison between the Fortran and the C simulator  

Table 3–2

NUMBER OF PARTICLES C SIMULATOR 

(SEC) 

FORTRAN SIMULATOR 

(SEC) 

1000 4.00 10.00 

2000 12.00 22.00 

3000 23.00 33.00 

4000 39.00 59.00 

5000 57.00 80.00 

Figure 3–11

Number of particles

0 1000 2000 3000 4000 5000

S
im

ul
at

io
n 

tim
e 

[s
ec

]

0

20

40

60

80

100

C simulator
FORTRAN simulator

 

Figure 3–11 Runtime comparison between the FORTRAN and the C simulator 

 plots the results given in . It can be observed that the C simulation is 

approximately 1.5 to 2 times faster than the FORTRAN simulation. 

 46



Chapter 3: Software Implementation of the DEM     

These result show that the optimisations made at the C simulator had an effective impact 

on the runtime of the simulations. 

3.5 Validation of the Simulator 

The previous sections have described the functionality and behaviour of the software 

simulator. The next step is to verify that the simulator is doing what it is intended to do. In 

order to validate the simulator, simulations were performed in the original FORTRAN 

simulator and then compared with this simulator. Two cases were considered. First, two 

balls were made to collide and their positions and energies monitored in each cycle. In the 

second case, 500 particles were run for 1000 cycles. These cases are described in the 

following sub-sections. 

3.5.1 Collision of two balls 

In this case only two balls were generated in the system, one with an initial velocity of 

zero, and the other with an initial velocity of 10 units targeted towards the first ball (see 

).  Figure 3–12

 
(a) (b) (c) 

Figure 3–12 Sequence of the collisions of two balls. (a)Left with initial velocity and right 

without. (b) Balls colliding (c) right ball has stopped and left ball moves 

 

This model was also analysed analytically. In the ideal case, without damping, the moving 

ball stops once it has collided with the stationary ball and all its momentum and energy are 

transferred to the stationary particle, which starts moving after the collision. Once the 

contact between both balls is broken, the ball with the initial velocity ceases its motion, 

while the second ball moves off with the same velocity as the first ball possessed when it 

was initialised. 

 47



Chapter 3: Software Implementation of the DEM     

Tests with the FORTRAN simulator of Cundall and Strack [1] were also performed for this 

system and the same results were obtained. The particles behaved identically in both 

simulations and in the analytical study. 

3.5.2 Simulation of Particle Assembly of 500 Balls for 1000 Cycles 

In the second validation case, a full assembly of 500 particles was generated (see 

(a)) in the simulator and run for 1000 cycles (see Figure 3–13(b)). Differences in the 

FORTRAN and the C code made it impractical to generate exactly the same assembly of 

particles simply. Instead the system was initialised with the initial velocities of all particles 

set to zero (i.e. zero initial kinetic energy), but with gravity switched on in the x and y 

direction. The final energy was measured for the system at the end of both simulations. 

The systems energy consists of two components: kinetic energy and potential energy in the 

contacts. 

Figure 3–

13

 
(a) 

 
(b) 

Figure 3–13 (a) Initial and (b) final state of the simulation 

The kinetic energy (Ek ) comes from the moving particles and is calculated using the 

expression given in Eq. 3–1. The potential energy in the contacts is found in the touching 

balls and is proportional to the indentation of the two particles (see Eq. 3–2 and Eq. 3–4), 

which is also responsible for the force between them. (Eq. 3–3 shows the force 

displacement law, by which the force is calculated in the DEM). 

 48



Chapter 3: Software Implementation of the DEM     

22

2
1

2
1 θImvEK +=  Eq. 3–1 

2

2
1 nkEP ∆=  Eq. 3–2 

with nkF ∆=  Eq. 3–3 

nFEP ∆= 2
1  Eq. 3–4 

 

As can be seen from Table 3–3 the energies of the systems once the simulation has finished 

are almost the same. The differences come from the different initial status of the particles, 

due to the different particle random generator. 

 

Table 3–3 Energy comparison between the original FORTRAN and the new C simulator 

 FORTRAN SIMULATOR C SIMULATOR 

Kinetic Energy [J] 570632.51 570630.34 

Potential Energy [J] 81.78 80.11 

3.6 Discussion 

Some of the key features for an efficient software simulator were presented in this chapter; 

the most important of these features are the grid optimizer and the data structures. The way 

data is located, deleted and inserted between the linked lists is crucial to efficient 

simulation.  

 

A never-ending number of improvements could be made, but a trade-off between 

optimization and time spent to design this simulator has to be accepted. Some examples of 

possible further improvements include using a different data structure, e.g. a binary tree, 

using dynamic grid adjustment to provide the optimal grid size in each region of the 

assembly, and having a more efficient contact check detection scheme [2]. 

 49



Chapter 3: Software Implementation of the DEM     

3.7 Summary and Conclusions 

A DEM simulator has been presented and analysed in this chapter. Its mechanism, features 

and data structure have been described in detail.  

 

The simulator has been optimised in order to minimise its run time by using an efficient 

data structure and by having a grid optimiser. The data structures as well as the data 

management part have been implemented with most care as these will control the overall 

performance of the simulation. The in-built grid optimiser has also been described, as the 

contact check task is very sensitive to the grid size. Large grid sizes can make the 

simulation time grow dramatically. Too small a box size would make the simulation time 

grow as well, since the program spends too much time reboxing particles from one box to 

another. 

 

The simulation time of the C simulator was compared to the FORTAN simulator in order 

to verify that the optimisations worked. A speed-up factor of 1.5 to 2 could be observed, 

showing that the advanced data structure and the inbuilt optimisations yield a faster 

simulation. 

 

The program has been successfully validated with an existing and well-established 

FORTRAN simulator, achieving the same results, and two test cases were described. 

 

It can be concluded that this software implementation of the DEM functions correctly. This 

simulator will be used to compare results with the hardware implementation and will be the 

reference for the hardware implementation in terms of run time, accuracy and numerical 

stability among other aspects, as will be explained in the following chapters. 

 

3.8 References 

[1] Cundall P.A, O.D.L. Strack, “A discrete numerical model for granular 

assemblies”. Geotechnique 29, pp. 1-8, 1979. 

 50



Chapter 3: Software Implementation of the DEM     

 51

[2] Ferrez, J.A., “Dynamic triangulations for efficient 3D simulations of granular 

materials”, PhD thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, 

2001. 



4. Chapter  Chapter 4 

REVIEW AND ANALYSIS OF PARALLEL DEM 

IMPLEMENTATIONS 

4.1 Introduction 

Multiprocessor systems are commonly used in order to alleviate the extremely time 

consuming nature of simulations, which would take too long to run on single processor 

machines. A very common example is weather forecasting, where scientists have only a 

few days to predict the weather. It makes no sense to have the results of the simulation 

after 1 or 2 weeks.  

 

As the DEM is a very computationally expensive algorithm, which takes too long to run on 

single processor machines, many different researchers have tried to map it into parallel 

processor machines with different degrees of results.  

 

This chapter will review and analyse the different implementations of the DEM on various 

parallel processing machines. It also presents a novel investigation using the simulator 

described in chapter 3 into the effect of domain decomposition and system geometry on the 

speed-up that can be achieved with multiprocessor computer systems. 

52 



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 

In order to analyse some previous parallel implementations of the DEM some basic ideas 

of about parallelism will be presented in the next section. 

4.2 Basic ideas about parallelism 

There are many definitions of parallel computers. They can be defined as multiprocessor 

systems consisting of several interconnected processors that can share memory [6]. They 

can also been thought of as computers with a hierarchical memory, where the memory on 

another processor is relatively expensive to access, compared to local memory [1]. 

 

In a parallel computing environment, effectiveness is measured by run time instead of 

processor utilization, because the goal of parallel computing is to finish a task as soon as 

possible. In order to make run time smaller it seems obvious that having a larger number of 

processors should diminish the run time. However this is not always true in practice, since 

some algorithms are inherently sequential, and their performance will not be accelerated by 

a parallel machine. Indeed their behaviour may even be worsened due to synchronization 

and communication overheads between the multiple processors [2][3]. 

 

In 1972 Flynn introduced a taxonomy [4] of the various computer architectures based on 

the degree of parallelism they exhibit. He divided computer architectures into four main 

classes based on the number of instruction and data streams. 

 

1. Single instruction stream, single data stream (SISD) machines. Single processor 

systems can be considered to be SISD machines.  

2. Single Instruction stream, multiple data stream (SIMD) architectures, which are 

systems with multiple arithmetic logic units and a single control processor. 

Each arithmetic logic unit processes a data stream of its own directed by the 

single control processor. 

3. Multiple instruction streams, single data stream (MISD) machines, in which 

multiple instruction streams simultaneously act upon the single data stream. 

Some sources consider that this definition does not apply to any sensible 

 53



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

machine; other sources view scalar pipelined processors as being examples of 

MISD machines. 

4. Multiple instruction stream, multiple data stream (MIMD) machines, which 

contain multiple processors, each executing its own instruction stream to 

process the data stream allocated to it. 

There are many ways to evaluate the performance of a parallel algorithm, and a very 

common way is to compare the run time of the best sequential algorithm with the best 

execution ime on a parallel machine. This comparison is called speed-up (see Eq. 4–1). 

Traditionally the speed-up has been used to judge the quality of parallel algorithms running 

on multiprocessors systems. The speed-up achieved by using N processors divided by the  

orithmparallelfastesttheofruntime
orithmsequentialfastesttheofruntimeupspeed

alg
alg

=−  Eq. 4–1 

N
upspeed

NT
T

E
p

s
f

−
==  Eq. 4–2 

value of N gives the efficiency (Ef) of the system (Eq. 4–2), as defined by Kuck [5]. For an 

N-processor system, the ideal speed-up would be of a factor of N. This is also called 

perfect speed-up or linear speed-up [6]. Linear speed-up is almost impossible to achieve 

due to synchronization and communication overheads and load imbalance between 

processors. 

 

Every algorithm can be decomposed into a serial part and a parallel part, as seen in Eq. 4–

3, where the sum of the parallel and the serial part is equal to the unity, which represents 

the entire algorithm. If s represents the serial fraction of the algorithm and p the fraction 

that can be performed in parallel, then if the parallel component is large, then in principle a 

good degree of speed-up should be achievable using either a multiple processor system, or 

a dedicated hardware architecture. Amdahl’s law [7] gives an expression for the speed-up 

1=+ ps  Eq. 4–3 

 54



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

that can be achieved for a certain algorithm as a function of the number of processors used 

to compute it (see Eq. 4–4). If the algorithm has no parallel part then p=0 and the speed-up 

would be 1. This is the worst-case  

N
ps

N
ps

psupspeed
+

=
+

+
=−

1  
Eq. 4–4 

scenario, and means that no speed-up would be achieved. The bigger the parallel part of 

the algorithm, and the more processors are used, the higher the speed-up should be. The 

most important consequence of Amdahl’s law is that speed-up saturates at a value of 1/s. 

 

Gustafson [8], on the other hand, argued that this is only true when a fixed sized problem is 

run on a varying number of processors, but NOT if the problem size is increased according 

to the number of processors available. Essentially Gustafson’s insight was that for most 

parallel processing problems, the user can adjust the computational load of a problem (e.g. 

by using more particles in a DEM, or more elements in a finite element simulation), and 

will choose the load that can be solved within the available time budget. If a computer 

becomes available that offers more parallel processing, the user will respond by tackling a 

bigger problem. Gustafson said that for many problems the parallel part of the program 

scales with the problem size, while the serial part does NOT grow with it. Eq. 4–5 gives 

the mathematical expression for Gustafson’s law (assuming that s+p=1). This equation also 

predicts that speed-up is less than linear, but avoids the saturation predicted by Amdahl’s 

law. Gustafson’s expression reflects much better the speed-up results obtained for the 

DEM implementations, as the serial part of the DEM remains almost constant when the 

problem scales, while the parallel part scales with the problem size, as will be shown in the 

following chapters. 

Nps
ps

Npsupspeed ×+=
+
×+

=−  = N – s ( N-1 ) Eq. 4–5 

 

 55



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

4.2.1.1 Factors affecting speed-up 

There are certain factors that prevent a parallel system from achieving a perfect/linear 

speed-up. Some of the most important ones are listed below: 

 

1. Algorithm Penalty: This penalty is due to the algorithm being unable to keep the 

processors busy with work. This penalty can further be split into four categories. 

Distribution, termination, suspension and synchronization overheads. 

• Distribution Overheads: These are the costs of having to split the tasks into 

different processes for the various processors. 

• Termination Overheads: Overheads due to idle processes at the end of the 

computation. 

• Suspension Overheads: Total time a process is suspended while it waits to be 

assigned a task. 

• Synchronization overhead: When a process, after completing a part of its task, 

becomes idle while waiting for other processes to reach a similar point of 

execution. 

2. Concurrency: Concurrency is the number of operations that can be performed at the 

same time. The speed-up is affected directly by the amount of concurrency in the 

algorithm. 

3. Granularity: The performance of an algorithm depends on the program’s granularity, 

which refers to the size of the processes in terms of the amount of work for each 

process. 

• Fine Granularity: provides greater parallelism, but leads to greater scheduling and 

synchronization costs. 

• Coarse granularity: has lower scheduling and synchronization overheads, but has 

significant loss of parallelism by having larger tasks. 

4.3 Parallel DEM Implementations 

In order to make it possible to simulate present day large-scale DEM problems, parallel 

processor systems are used. Having multiple processors working in parallel should 

accelerate the simulation time considerably, but the factors described in the previous 

section will prevent these systems from achieving linear speed-ups. 

 56



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 

This section will discuss some of the previous attempts to parallelize the DEM on different 

multiprocessor platforms. These attempts are presented in chronological order, so that they 

can also be evaluated in terms of computational resources available at that time. 

4.3.1 Parallel Implementation of the DEM on a Transputer Array 

The parallel processing lab at the Colorado School of Mines was one of the first to 

parallelize the DEM using a parallel computer from Alter Technologies, which has 64 

T805 processors [9]. 

4.3.1.1 System Description 

Each node is a 32-bit T805 transputer with its own memory and high-speed 

communication links. The transputer chip was developed by Inmos Ltd. The name 

transputer was derived from TRANSistor and comPUTER, since the component was to be 

a basic building block, like a transistor, but a complete computer on a chip [10]. 

 

Each T805 transputer is a full 32-bit processor with an on chip floating point unit, 4 kBytes 

of on-chip RAM, and 4 MBytes of external RAM. The T805 processor is rated at 30 MIPS 

(Mega Instructions Per Second). Each processor also has four bi-directional 

communication links, which can transmit data at rates up to 20 Mbits/second 

 

The transputers are connected physically in a 2-D rectangular grid structure, with each 

transputer connected only to its north, east, south and west neighbours, as shown in Figure 

4–1. 

 57



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

Links to the Workstation

X Transputer (T805)

Figure 4–1 Transputer Network Configuration [ . 9]

4.3.1.2 Domain Decomposition 

One of the most important choices when mapping the DEM onto a multi-processor 

machine is the way in which the domain is decomposed, and how each part is assigned to 

the single processors. This means that different processors handle the different geometric 

areas. The obvious choice is to divide the domain into rows, columns or a grid. In this case 

the authors decided to split the domain into vertical columns in order to give good load 

balance, as the only external force applied to these simulations was gravity. This will of 

course have other disadvantages, depending on the simulation performed, as shown in 

section 4.4. 

 

A big advantage of the domain decomposition method is that each processor runs a code 

that is only a minor modification of the serial version. The only notable changes that are 

needed are in the set up stage, where the domain has to be split among the different 

 58



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

processors, and during simulation, where a new step is needed in order to exchange 

information between processors. 

 

The basic steps for the simulation of the DEM implemented on a parallel processor 

machine now become the following, show in Figure 4–2: 

FOR EACH TIME STEP 

Perform contact checks 

Calculate interparticle forces 

Update particle positions 

Rebox particles transitioning from one cell to another 

Exchange border cells 

NEXT TIME STEP 

Figure 4–2 Pseudo code for the Multi processor systems  

A new step is introduced in the process, which involves the exchange of data from the 

border cells from one processor to another.  

4.3.1.3 Results 

A parallel version of the DEM was implemented on this platform. However, because of 

synchronization and communication overheads between the transputers, and an uneven 

load balance, the resulting speed-up was less than linear. As particles move around, some 

processors get more than others, and the workload of each processor varies significantly. 

Figure 4–3 shows the speed-up plotted against the number of transputers used. A speed-up 

of nearly 8 times was achieved for an assembly of 625 particles on a 32-transputer system. 

This result exhibits a very poor system efficiency (25%) (see Eq. 4–2) 

 

 59



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Number of Transputers

5 10 15 20 25 30

S
pe

ed
-u

p

0

5

10

15

20

25

30

Ideal (linear) Speed-up
Real Speed-up

 

Figure 4–3 Measured Speed-up [ . 9]

 

4.3.2 Parallel Implementation of the DEM on a Cray T3D  

The department of mathematics of the École Polytechnique of Lausanne also designed a 

parallel version of the DEM running on a Cray T3D massively parallel computer [11]. 

4.3.2.1 System Description 

The Cray T3D is a Multiple Instruction stream Multiple Data stream (MIMD) machine. 

This means that the data is distributed among the processing elements and each processor 

works independently from each other. The number of processing elements (PE's) can be 

anywhere from 32 to 2048. Each element of the T3D is a DEC 21064 (EV-4) RISC chip 

with its own memory, memory controller, and prefetch queue. A single node on the T3D 

consists of two PE's combined with a network switch. The DEC 21064 Alpha chip used 

runs at a speed of 150 MHz, with a theoretical peak performance level of 150 megaflops. 

 

The nodes on the Cray T3D are connected in a 3-D torus configuration. The connecting 

network operates at a speed of 150 Mhz, with bidirectional transfers and separate routing 

 60



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

for data and communication information. The bandwidth for a 2048-processor T3D is 

approximately 154 gigabytes per second. 

4.3.2.2 Domain Decomposition 

The authors simulated granular media assemblies confined to a rectangular box where the 

only the external force was gravity. In this case it is enough to divide the domain into 

simple vertical stripes, assigning each strip to a processing element in order to have an 

acceptably balanced system.  

 

As in the previous example, calculations rely on locally available data and therefore each 

processor works on its own. Near stripe borders, there are many discs that contact discs in 

the neighbouring stripe, so access to remote data is needed. 

4.3.2.3 Results 

The benchmark used to test the efficiency of this parallel algorithm was a medium 

composed of 200 000 small discs stacked at the bottom of a box. A very large disc was 

allowed to fall under gravity onto the medium, and subsequent behaviour was simulated. 

The simulation of 0.005 seconds of real time took 500 steps of the parallel algorithm, 

which took about 12 minutes on the Silicon Graphics Indigo machine where the serial 

version was run. The results of this parallel implementation are shown in Figure 4–4. 

Though the speed-up starts off almost linear with a small number of processors, when 

more processors are added the speed-up curve starts to bend and for 128 processors only 

around half of the expected speed-up is achieved. The authors of [11] suggest the 

following improvements in order to retain linearity in the speed-up curve: 

 

• Better data and workload repartition 

• Reduction of communications 

• Better local memory management (more efficient cache utilization) 

 

 61



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Number of processors

0 20 40 60 80 100 120

S
pe

ed
-u

p

0

20

40

60

80

100

120

140

linear vs real speed-up
real speed-up

 

Figure 4–4 Speed-up of the parallel implementation as a function of the number of 
processors [ . 11]

4.3.3 Parallel Implementation on a Swiss-T0-Dual machine [12] 

The CSIRO Mathematical & Information Sciences performed another parallel 

implementation of the DEM, this time on a Swiss-T0-Dual machine. 

4.3.3.1 System Description 

The system was implemented on a Swiss-T0-Dual machine. This is a cluster computer 

system consisting of 8 Digital Alpha 21164 dual-processor boxes [13]. Each processor has 

a 4 Mbytes level 3 cache, with the total system having a distributed memory of 8 Gbytes 

and a peak performance of 16 GFlops. The processors are connected via both an EasyNet 

bus and a Fast Ethernet switch. Each dual processor box has one PCI-based connection to 

the EasyNet bus and a Fast Ethernet port. This leads to a memory bandwidth between 

boxes of 35 Mbytes/s for the EasyNet bus and 10Mbytes/s for the Fast Ethernet port. The 

boxes are run using Digital’s UNIX system. 

4.3.3.2 Domain Decomposition 

In this case the domain was divided into subdomains by slicing the domain into columns, 

choosing the number of subdomains equal to the number of processors available. In order 

 62



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

to have load balance, the subdomains are chosen to contain the same number of particles, 

as shown in Figure 4–5. 

1 2 3 4

 

Figure 4–5 Domain decomposition for the Hopper discharge [  12]

As in the previous examples, the particles from the neighbouring subdomains are copied to 

the neighbouring processor. The width of this layer is chosen to ensure that all interactions 

can be calculated from local data. 

4.3.3.3 Results 

Two experiments were set up in order to measure the performance of this parallel 

implementation. As hoppers are common storage devices for granular media, the 2-D flow 

from two different slot hoppers were considered: 

 

1. A generic single-port hopper, with a width of 2.4 m initially filled with 3545 

circular particles with a distribution of diameters from 20 to 100 mm (see 

Figure 4–6a). 

2. A dual-port hopper of 40 m width. This hopper initially contained 200 000 

particles having a distribution of diameters from 50 to 200 mm (see Figure 4–

6b). 

 

For each hopper flow, computations using different numbers of processors were performed 

using the Fast Ethernet (100 Mbits/s) and the EasyNet interconnect. For comparison, 

computations of the serial code on a single processor system were also made. These 

performance measurements were computed for: 

 

 63



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

1. 1 second (around 55 000 time-steps) for the single-port hopper 

2. 0.1 seconds (around 1100 time-steps) for the dual port hopper 

 

(a) (b) 

Figure 4–6 Single–port (a) and dual-port hopper (b) [  12]

 

 64



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Number of Processors

2 4 6 8

Ti
m

e 
[s

]

10

100

1000

Grid Search
Communication
Computation
Total

 

Figure 4–7 Computation time required for the individual tasks of the DEM simulation of 
the single-port hopper [  12]

Measurements of the time needed by the individual tasks of the DEM were also made, in 

order to determine the time spent in computation, communication and synchronization. 

The results of timing measurements for the code are presented in Figure 4–7 and Figure 4–

Number of processors

2 4 6 8 10 12 14 16

Ti
m

e 
[s

]

10

100

1000

10000

Grid search
Communication
Computation
Total

 

Figure 4–8 Computational time required for the individual tasks of the DEM simulation 
of the dual-port hopper [12] 

 65



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

8. Only small differences were measured for the simulation using the Easy Net and the Fast 

Ethernet interconnect bus. 

 

For both hopper discharges the computation time decreases with the number of processors, 

as would be expected. However the inter-processor communication time remains 

approximately constant, flattening the speed-up curve (see Figure 4–9) as the number of 

processors increases, because the communication time dominates the total time taken. 

 

Number of Processors

2 4 6 8

Sp
ee

d-
up

0

2

4

6

8

Ideal (linear) Speed-up
Measured Speed-up

 

Figure 4–9 Measured speed-up for the DEM simulations of the single-port hopper [  12]

For the dual-hopper case, the performance scales linearly until the 8th processor, after 

which synchronization and communications overheads become substantial, degrading the 

speed-up (see Figure 4–10).  

 

 

 66



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Number of Processors

2 4 6 8 10 12 14 16

Sp
ee

d-
up

0

2

4

6

8

10

12

14

16

Ideal (linear) Speed-up
Measured Speed-up

 

Figure 4–10 Measured speed-up for the DEM simulations of the dual-port hopper [  12]

4.3.4 Parallel Implementation of the DEM on various Hardware Platforms 

Another parallel version of the DEM was implemented at the Northwestern University on a 

variety of hardware platforms and compared with their serial version. Comparison of 

Single Instruction Multiple Data stream (SIMD) and Multiple Instruction Multiple Data 

stream (MIMD) operation were also performed [14], showing that the MIMD 

implementations provided the best overall parallelization. 

4.3.4.1 System Description 

The SIMD code was implemented on a Connection Machine 5 (CM5) system, 

manufactured by Thinking Machines. The MIMD codes were ran on a CM5 system, on a 

Scalable POWER Parallel System 2(SP2) IBM system, and on a small network of Intel 

Pentium PRO PC systems using Microsoft’s Windows NT operating system.  

 

The CM-5 system consists of a set of processing nodes Each processing node consists of a 

SPARC processor operating at 32 MHz or 40 MHz. Together with its four vector units, a 

32 MHz processing node is capable of performing 64-bit floating point arithmetic at a rate 

of 128 megaflops. The control processor, which is also referred to as the partition manager, 

 67



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

is a Sun SPARCstation. The CM-5 is a distributed memory machine. The data network is 

capable of delivering messages to nearby nodes at rates up to 20 MBytes/s 

 

The IBM SP2 is a general-purpose scalable parallel system based on a distributed memory 

message-passing architecture. The SP2 system consists of 2 to 10 POWER2 Architecture 

RISC System/6000 processor nodes interconnected by a switched network. Each 

processing node has its own private memory and its own copy of the AIX operating 

system. 

 

The author of [14] states in the paper that communication between processors is the 

bottleneck of these systems, as each processor can rapidly access its own local memory, 

but must access data local to other processors through a slow communication network. 

 

The idea behind the MIMD implementation is to schedule inter-node communication 

concurrently with computation to achieve the greatest possible level of parallelism.  

 

4.3.4.2 Results 

The MIMD algorithm is based on the optimised serial algorithm; however the entire model 

is divided into volumetric zones that are assigned to separate processors. During any time 

step a processor calculates block forces and motions within its zone until data arrives from 

another processor. While the processor continues with the rest of the zone, data travels to 

another processor. 

 

A system with 10 000 particles was generated and ran on the different platforms. Table 4–1 

compares the effect of hardware for both serial and parallel implementations. 

 

 

 

 

 

 

 68



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Table 4–1 Listing of the SIMD and MIMD implementations of the DEM on different HW 
platforms 

 Run Time [s] Speed up over 

serial version 

Parallelization 

CM5 serial version 2035 1 N/A 

CM5 64 nodes 34 59.85 93 % 

PC (Pentium Pro at 

200 MHz) 

252 1 N/A 

2 PCs (Pentium PRO 

at 200 MHz) networked 

133 1.89 95 % 

IBM SP2 1 processor 277 1 N/A 

IBM SP2 10 processors 28 9.89 99 % 

 

The author concludes that the MIMD provides an overall best parallelization for SMALL 

NUMBER OF PROCESSORS than the SIMD implementation 

4.4 Modelling of a Multiprocessor System 

The previous examples have shown some parallel implementations of the DEM on several 

different parallel machines. The results vary from one implementation to another, because 

of the simulations types, as well as the platform properties. However, there are some 

underlying similarities. Simulations with large numbers of processors achieve speed-ups 

that are far less than linear. Also, in most of these investigations, the problem was 

deliberately simplified and made easy for parallel processing by considering the movement 

of particles under gravity in a domain decomposed into vertical columns. This means that 

there is very little horizontal movement of particles across sub-domain boundaries, so there 

is low communications overhead, and little tendency for loads to become imbalanced. 

 

In order to get a deeper understanding of these systems and their bottlenecks, and also to 

investigate pathological cases that are difficult for parallel processing, a DEM simulator 

was developed that models the behaviour of multiprocessor systems. This simulator is 

based on the DEM simulator described in detail in chapter 3, and emulates the effect of 

parallel processing by splitting the simulation into separate processes, and recording the 

 69



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

amount of communication required between processes, and when processes have lost 

synchronisation, so that some would have to stall. The data structure has been changed in 

order to have a regular domain decomposition depending on the number of processors of 

the system. The user can choose to divide the domain into: 

 

• Columns 

• Rows, or 

• Cells 

4.4.1 Domain Decomposition 

If the user decides to split the domain into cells, the number of processors to be used in the 

x and in the y direction needs to be given as well. Figure 4–11 shows an example of the 

different regular domain decomposition techniques for 6 processors. 

Cells Columns Rows

1 4

5

6

2

3

1 2 3 4 5 6

1

2

3

4

5

6

 

Figure 4–11 Example of the different regular domain decomposition types 

Each processor is responsible for the domain it has been assigned. However, before the 

simulation can move on to the next time step, all the processors must have finished their 

computation for the present time step. Therefore the performance of the system will 

depend on the slowest processor, i.e. the one that has the most data to compute, i.e. the 

 70



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

processor that has the most particles in its domain. It is necessary to distribute the work 

amongst the processors as evenly as possible, so that the system is as balanced as possible. 

 

Having an unbalanced system will result in a poor system efficiency. In some simulations, 

a prediction can be made of how the system will behave, and therefore the domain 

decomposition can be chosen in order to have a similar number of particles in each cell. In 

other cases a more complex solution can be taken and dynamically re-partition the domain 

to equalise the load. 

4.4.2 Dynamic Load Balancing 

The goal of load balancing can be defined as: 

 

Given a collection of tasks comprising a computation and a set of computers on which 

these tasks may be executed, find the mapping of tasks to computers that results in each 

processor having approximately equal amount of work [15]. 

 

In order to have a useful load balancing scheme it must be determined, when to perform 

the load balance. This implies two stages: 

 

1.  Detect the load imbalance 

2. Determine if the cost of load balancing exceeds the possible benefits. 

 

In the case of the DEM, if the efficiency of the system reaches a certain user defined 

minimum threshold value, load balancing can be performed.  

 

In all the examples given in section 4.3, none of the systems made use of dynamic load 

balancing. The reason for this is that the simulations in these examples are either quasi-

static or the only external force is gravity, which makes particles head toward the bottom 

of the domain, making it unnecessary to perform dynamic load balancing. 

 

 

 

 

 71



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

4.4.3 Multi-Processor Modelling 

Different kinds of simulations were performed in order to understand the bottleneck of 

these systems. The simulator registers in a log file the time needed by each processor to 

perform the contact checking, forces and position update as well as the time needed to pass 

the particles from one processor to another based on the bus bandwidth, which is specified 

as a variable in the simulator, and for these simulations was set to 32bits@33 MHz. 

 

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

 72



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 
(c1) 

 
(c2) 

Figure 4–12 Domain decomposition types in the multi-processor modelling SW  

(a1) is the initial state of the uniprocessor system’s and (a2) its final state, (b1) is the initial 

state of a 4 processor system split into cells and (b2) its final state, (c1)is the initial state of 

a 4 processor system split into columns and (c2) its final state 

 The domain was decomposed into columns and into cells in order to measure how the 

domain decomposition technique affects the total system performance in the worst case. A 

system of 50 000 particles was generated initialising the velocity of the particles to the 

centre of the domain (this was chosen to be pathological for the domain decomposition 

used). After 1000 cycles the system is completely unbalanced as shown in Figure 4–12. 

 

Simulations of this system for different numbers of processors were performed. Figure 4–

13 shows the time needed to run this simulation for 1000 cycles for different number of 

processors. It can be seen that the time needed to compute the same simulation is smaller if 

the domain is split into cells than if it is split into columns. This is due to the fact that, for 

this example system, the load is more balanced if the domain is split into cells. 

 73



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

number of processors

0 8 16 24 32 40 48 56 64

t [
m

in
]

0

5

10

15

20

25

30

35

t(columns)
t(cells)

 

Figure 4–13 Simulation time for different number of processor systems 

When the number of processors becomes large (32 to 64 processors) the time difference 

between the domain decomposed into columns and cells becomes almost constant, since 

the communication overheads become the dominant part of the simulation time. 

 

The multiprocessor modelling software also registers the time needed in each cycle to 

perform the main computational tasks of the DEM (contact checking, forces update, 

position update, and communication between processors, see Figure 4–15). In this figure 

the asymptotic behaviour of the system can be observed, noting that after 32 processors 

little gain in term of speed-up can be made, as communication overheads remain almost 

constant. 

 74



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

number of processors

0 8 16 24 32 40 48 56 64

t[m
in

]

0

5

10

15

20

25

30

35

t(cc)
t(forces)
t(position)
t(communication)
t(total)

 
Figure 4–14 Simulation time for different number of processor showing the time spent by 

each unit (domain split into cells) 

Figure 4–15 shows the initial and final condition of the 8 processor system, splitting the 

domain into columns and cells.  

 

The same simulation as above was performed, initialising the particles' initial velocity 

towards the centre of the domain. The time needed to compute the main tasks was 

computed after every cycle. 

 

 75



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4–15 Initial and final conditions for a simulation decomposing the domain in 
columns (a)(b) and cells(c)(d) 

Figure 4–16 and Figure 4–17 show the time spent by the processors in each of the tasks in 

the last simulation cycle (1000th cycle). As seen in Figure 4–16 (domain split into columns) 

the load is far less balanced when the domain is split into columns and therefore the 

processor in the centre of the domain (the 5th  processor) has a much heavier load than the 

others. In the case where the domain is split into cells (see Figure 4–17), the work is spread 

more evenly among the processors in the centre of the domain. 

 76



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

Processors

0 1 2 3 4 5 6 7 8 9

La
st

 c
yc

le
 ti

m
e 

[m
s]

0

20

40

60

80

100

120

140

160

180

200

t(cc)
t(forces)
t(position)
t(communication)

 

Figure 4–16 Time needed to perform the last cycle in a simulation with 8 processors 
decomposition the domain in columns 

 

Processors

0 1 2 3 4 5 6 7 8 9

La
st

 c
yc

le
 ti

m
e[

m
s]

0

20

40

60

80

100

120

140

160

t(cc)
t(forces)
t(position)
t(comm)

 

Figure 4–17 Time needed to perform the last cycle in a simulation with 8 processors 
decomposition the domain in cells 

 77



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

The previous simulation showed the importance of the domain decomposition technique in 

order to have the fastest possible simulation. Measurements were done for a pathological 

case, when all the particles’ initial velocities pointed to the centre of the domain. In order 

to investigate the influence of the communication overheads on the total simulation time, 

three simulations were set up decomposing the domain into columns:  

 

1. Only gravity is switched on and all particles have zero initial velocity (best case) 

2. The particles’ initial velocities point to the centre of the domain (pathological 

case) 

3. The particles’ initial velocities are randomly initialised. 

 

Figure 4–18 shows how these systems behave for a different number of processors. For the 

case where only gravity is considered, given that the domain is split into columns no 

particles transition from one domain to anther, hence no communication is needed between 

the processors. Perfect speed-up is achieved for this particular case.  

Number of processors

0 8 16 24 32 40 48 56 64

sp
ee

du
p

10

20

30

40

50

60

70

Only gravity 
Initial velocities pointing to the centre
Random initial velocities

 

Figure 4–18 Speed-up for different initial velocities  

 

 78



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

For the worst case, when the initial velocities of the particles are initialised towards the 

centre of the domain, the worst possible results are obtained as communication overheads 

as well as load balancing problem appear heavily. 

 

The third case, when the particles are initialised with random velocities shows an 

intermediate result, between the perfect, linear speed-up and the worst case. 

4.5 Summary of the parallel DEM implementations 

The DEM is an extremely effective way to simulate the behaviour of granular materials 

and even solids by building them as large conglomerates of particles bonded together. The 

only drawback is that it is computationally very expensive. 

 

The only actual way to simulate realistic problems with cost effective systems (reasonable 

simulation time at a reasonable cost) is to use multiprocessor systems. The ideal situation 

using these systems is to have a linear speed-up. This means being N times faster with N 

processors than with solely one. In practice this is never achieved. Multiprocessor systems 

mean also that the problem has to be partitioned into sub-domains and every partition has 

to be assigned to one processor. Every processor needs to know what is happening in the 

contact area with the sub-domains allocated to other processors, and thus has to 

communicate with them. The processors also need to synchronize with each other in order 

to restart a cycle at the same time. This makes communication, synchronization and load 

balancing of the processors a very important issue, which could become the bottleneck of 

every design.  

 

A number of implementations on multiprocessor systems were surveyed in section 4.3. 

Most of them were based on a SIMD approach, where all the processors were performing 

the same operation at the same time. A MIMD approach was also described which showed 

very good parallelism results, but only for a small number of processors. Communication 

and synchronization overheads grow with the number of processors degrading the 

performance dramatically. 

 

The most important factors that affect the efficiency of these multiprocessor systems are: 

 79



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 

• Communication: Data in the overlap region needs to be exchanged 

between processors.  

• Load balancing: Allocation of subdomains to processors will 

invariably result in an uneven distribution of work. 

• Synchronization: Processors need to be simultaneously at a certain 

point in the algorithm. 

 

A multi-processor software simulator was presented in section 4.4, showing that the 

domain decomposition techniques has a very important impact on the system performance. 

In general the user should aim to minimize the contact area between the sub-domains 

allocated to the processors in order to have the samllest possible number or particles 

transitioning from one sub-domain to another. (Though there are specific cases, e.g. a 

domain of particles falling under gravity, where there is an overall systematic bias to 

particle motion that should also be taken into account in performing the domain 

decomposition.) This simulation results also showed that as the number of processors grow 

the system efficiency decreases dramatically, as the communication overheads become the 

predominant computational part of the simulation. 

 

All these problems point to one question. Is there any other way to go? Can a different 

approach bring better results? The answer, in the opinion of the author, is yes. There are 

several possible directions that involve customisation of the computing resources to the 

DEM problem. These range from custom multiprocessor / DSP systems, to dedicated 

hardware architectures. 

 

4.6 Use of Field Programmable Gate Arrays for the DEM 

The complexity of Field Programmable Gate Arrays is continuously increasing. Modern 

devices allow designers to implement complete systems with minimal requirement for off-

chip resources. One promising application area for these devices is to form FPGA-based 

reconfigurable co-processors within standard computers, which can be used for algorithm 

acceleration [16] [17]. For the right type of application, such a reconfigurable computer 

 80



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

can rival the expensive parallel computers that are normally used to accelerate 

computationally expensive algorithms. FPGAs thus open a new window to low cost 

hardware acceleration.  

 

The DEM has properties that suggest that it may be suitable for acceleration using FPGAs: 

 

• It exhibits an enormous degree of parallelism  

• It is an explicit self-correcting algorithm. 

 

It is therefore tempting to examine how well the DEM would map into an FPGA. 

4.7 Summary and Conclusions 

The DEM is one of the most suitable algorithms to simulate the behaviour of granular 

materials. Nevertheless its extensive use is hampered by its extremely high computational 

demands, since every single particle is considered individually, and disturbances cannot 

travel beyond neighbouring particles in one time-step, necessitating a very short time step 

(typically of the order of milliseconds of physical time).  

 

A number of parallel implementations of the DEM on multiprocessor platforms were 

surveyed. They all suffered the same problems: synchronization and communication 

overheads between processors, as well as poor load balancing between processors, made 

the speed-up less than linear. 

 

Novel computational approaches have to be considered in order to find a more efficient 

way to accelerate the DEM at an affordable price whilst obtaining the computational 

results within a reasonable real time. FPGAs are one way as they can serve, among many 

other applications, as co-processors within standard workstations to form hardware 

accelerators. This work will analyse the use of FPGAs as a hardware accelerator for the 

DEM and study two implementations of the method. 

 

 81



Chapter 4:  Review and Analysis of Parallel DEM Implementations     

4.8 References 

[1] Smith, B., Bjorstad, P., Gropp, W. “Domain Decomposition. Parallel Multilevel 

Methods for Elliptic Partial Differential Equations”, Cambridge University Press, 

New York, 1996. 

[2] Shiva, S.G. “Pipelined and Parallel Computer Architecture”, Harper Collins 

College Publisher, New York, 1996 

[3] Flynn, M.J. “Computer Architecture”, Jones and Barlett Publishers, Sudbury MA 

(USA)1995. 

[4] Flynn, M.J. “ Some computer organizations and their effectiveness”, IEEE Trans. 

Computers C-21 (9). 948-960, 1972. 

[5] Kuck, D., Budnik, S., Chen, S., Towle R,Strebendt, R., Davis, E.,Han, J. Kraska, 

P., Muraoka, Y., “ Mesurements of parallelism in ordinary Fortran programs”, 

IEEE Computer, 7(1), pages 37-46, January 1974. 

[6] Zargham, Mehdi R., “Computer Architecture. Single and Parallel Systems”, 

Prentice-Hall, New Jersey, pp 300 –302,1996. 

[7] Amdahl G. H., “Validity of a Single-Processor Approach to Achieving Large-scale 

Computer Capabilities”, AFIPS Conf. Proc., Vol. 30, 1967, pp 483-485 

[8] Gustafson, J.L., Re-evaluating Amdahl’s Law, “ Commun. ACM, 31(5), pp. 532-

533. May 1988. 

[9] Hustrulid, A. I.” Parallel implementation of the discrete element method”, 

Colorado school of mines, USA. Available at http://egweb.mines.edu/dem/ 

[10] Hull M.E.C., Crookes D. and Sweeney, P.J., “ Parallel Processing. The Transputer 

and its Applications”. Addision-Weseley Publishing Company, 1994 

[11] Ferrez J.A., Mueller D., Liebling T. M.  “Parallel Implementation of a distinct 

element method for granular media simulation on the Cray T3D.” EPFL 

Supercomputing review -SCR No 08, Lausanne, Nov. 96 

[12] Sawley M.L, Clearly P.W “A Parallel discrete element method for industrial 

granular flow simulations“, CSIRO Mathematical & Information Sciences, 

Clayton, Australia., EPLF Supercomputing review -SCR No 11, Nov. 99 

[13] Gruber, R., Dubois-Pelerin, Y., “Swiss-Tx: First experiences on the T0 system”, 

EPFL Supercomputing Review, SCR 10, 19-23, 1998. 

 82

http://egweb.mines.edu/dem/


Chapter 4:  Review and Analysis of Parallel DEM Implementations     

 83

[14] Dowding, C.H., Dymytryshyn, O., Belytschko, T.B., “Parallel processing for a 

discrete element program”, Elsevir Science Ltd., Computer and Geotechnics 25, 

281-285, 1999 

[15] Watts, J., Taylor S., “ A Practical Approach to Dynamic Load Balancing”, IEEE 

Transactions on Parallel and Distributed Systems, 1996 

[16] Hartenstein, R. W., Becker, J., et al. “High-Performance Computing Using a 

Reconfigurable Accelerator”. In CPE Journal, Special Issue of Concurrency: 

Practice and Experience, John Wiley & Sons Ltd., 1996. 

[17] Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U. “On Reconfigurable Co-

Processing Units”. In Proceedings of the Reconfigurable Architectures Workshop 

(RAW'98), Orlando, Florida, USA, March 30, 1998. 



5. CHAPTER CHAPTER 5 

HARDWARE IMPLEMENTATIONS OF THE DEM ON A 

FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

5.1 Introduction 

Reconfigurable Computing is based around the use of Field Programmable Gate Arrays 

(FPGAs) to form co-processors that can be configured to provide custom hardware 

accelerators. The types of problem that can benefit from reconfigurable computing are 

established by the properties of the FPGA. In general, FPGAs are good at tasks that use 

short word length integer or fixed-point data, and exhibit a high degree of parallelism. 

 

Traditionally reconfigurable computing has been regarded as unsuitable for problems in 

computational mechanics, such as are used in civil, mechanical and chemical engineering, 

because these problems generally require floating point arithmetic and long word length. A 

notable exception to this generalisation, found in this research, is the Discrete Element 

Method. The DEM uses simple arithmetic operations in a massively parallel way on a large 

data set, and, as shown by this current work, it can retain numerical stability using short 

word length fixed-point data. 

 

84 



Chapter 5: Hardware Implementation of the DEM     

This chapter will present two hardware designs for the DEM implemented on an FPGA. 

An introduction to FPGAs, their evolution and the current state of the art, will also be 

presented. 

5.2 Motivation 

The complexity of Field Programmable Gate Arrays is continuously increasing, and state 

of the art FPGAs now have up to 10 million system gates . Such devices allow designers 

to implement complete computational systems with minimal requirements for off-chip 

resources. One promising application area for these devices is to form FPGA-based 

reconfigurable co-processors within standard computers, which can be used for algorithm 

acceleration. For the right type of application, such a reconfigurable computer can rival the 

expensive parallel computers that are normally used to accelerate computationally 

expensive algorithms. FPGAs thus open a new window to low cost hardware acceleration.  

[1]

 

Conventional parallel computers suffer from poor system efficiency when solving the 

DEM, which means that they give a relatively disappointing speed-up. The DEM has 

properties that suggest that it may be suitable for acceleration using FPGAs: it exhibits an 

enormous degree of parallelism, and, as found in the current work, can be processed using 

short wordlength arithmetic. It is therefore tempting to examine how well this algorithm 

would map into an FPGA or a number of FPGAs. 

 

The next section will give a brief overview of what FPGAs are, how they have developed 

since they first appeared, their different types and the current state of the art. 

5.3 Field Programmable Gate Arrays (FPGAs) 

This section gives an overview on the evolution of programmable logic as well as a brief 

description of the current technologies. 

5.3.1 Evolution 

The first commercial Field Programmable Logic (FPL) industry appeared around 1978 

when Monolithic Memories introduced the PAL (Programmable Array Logic) architecture. 

These PALs had a matrix array in which only combinational logic could be implemented, 

and were used mostly as glue logic (e.g. to decode addresses between memories and 

 85



Chapter 5: Hardware Implementation of the DEM     

microprocessors). AMD acquired Monolithic Memories in 1984 and the industry came to 

be dominated solely by AMD and its 22V10 architecture. All the remaining competitors 

worked on variations of the 22V10 architecture. 

 

In 1984 Xilinx introduced the Look up Table (LUT) based FPGA architecture, which was 

intended to transform the FPL industry and provide a new direction. Two main reasons 

allowed Xilinx to successfully compete against AMD: 

 

• CMOS technology was scaling to the point where entire subsystems could be 

implemented on a single programmable device. PAL architectures do not scale 

well to larger sizes, whereas FPGAs do. 

• Xilinx went for a fabless model; without having to maintain the expensive fabs, 

it could concentrate only on its designs and their licensing 

 

AMD continued to develop its successful 22V10 architecture into the MACH family of 

PLDs, but it progressively lost market share until 1999, when it exited the FPL market.  

Xilinx and Altera have become the largest and most important FPL vendors since the end 

of the 80’s  

 

The third wave of FPL devices, which arrived around the millennium, is Complex System 

on a Chip (CSoC). These combine FPL with microprocessors, memory and fast I/Os on a 

single die, and allow single chip solution for entire embedded systems. 

 

Figure 5–1 presents a graph of the three FPL waves since 1978, and shows revenues 

achieved/projected by each wave against time. 

 86



Chapter 5: Hardware Implementation of the DEM     

Revenues

1978 1985 2000     Time

PLD

FPGAs/CPLDs
CSoC

US
$2
Bn

 
Figure 5–1 Three FPL waves, PLDs, FPGAs/CPLD and CSoC [2] 

Nowadays CPLDs represent around 35 % of the FPL market, whereas FPGAs represent 

approximately 53 % of the market [3]. 

5.3.2 FPGA Technologies 

FPGAs can be classified according to many different criteria, e.g. vendors and logic 

densities, but the most common and basic classification is according to their technology. 

There are, at the moment, three main programming technologies: anti-fuse, E/EEPROM 

and SRAM. 

 

1.- ANTI-FUSE based FPGAs are only one-time-programmable. They serve a niche market 

with applications that have very tight timing constraints, as these FPGAs have the lowest 

routing delays of all the technologies. Their logic density is far less than the other two 

technologies, and will have great difficulties reaching equality with them, as these devices 

cannot migrate to the newest and most advanced CMOS processes. 

 

2.- EPROM based FPGAs are re-programmable, but this must be done outside of the circuit 

using a programmer, whereas EEPROM based FPGAs can be re-programmed in-circuit. 

One of the main advantages of this technology is that the device does not need to be re-

configured after a power down and will always retain its configuration. This avoids the 

need to use an external PROM that holds the configuration, saving board space. It also 

avoids the problem experienced by SRAM based FPGAs that the design bit stream can 

 87



Chapter 5: Hardware Implementation of the DEM     

easily be read by third parties and reverse engineered. The problem with these devices is 

that the logic density is still smaller than SRAM based FPGAs and that their manufacturing 

process needs some extra steps compared to standard logic devices such as 

microprocessors. 

 

3.-SRAM based FPGAs are the most successful technology at present. These devices store 

their configuration in on-chip latches that in turn control pass transistors to establish the 

connections. SRAM based FPGAs offer the highest logic capacity and flip-flop count. 

They can be configured in milliseconds, depending how big the device is, and re-

programmed in-circuit an unlimited number of times. The device needs to be reconfigured 

every time the power is turned off, normally from an on-board PROM. However its major 

advantage is that it can be easily reconfigured with a new and different program after 

installation. Another major strength of these type of FPGAs is that their manufacturing 

process is the standard CMOS process, allowing it to migrate quickly and easily to the 

most advanced technology available. 

 

The next section will describe the internal architecture of a typical FPGA. 

5.3.3 Internal Structure 

This section will discuss the internal structure of the typical FPGA, which is shown in 

Figure 5–2. It consists of a regular matrix of configurable logic blocks (CLBs), surrounded 

by programmable input/output blocks (IOBs) to connect the package pins with the CLBs 

(This terminology is only used by Xilinx™; other manufacturers, such as Altera™ (the 2nd 

largest FPGA vendor)use a different terminology). The CLBs are interconnected by 

intermediate routing switches. Embedded on-chip RAM is also provided on modern 

FPGAs. In the case of Xilinx™ each CLB is built of 4 logic cells (LCs). Each logic cell 

includes one function generator in the form of a 4-input LUT, one storage element and 

carry logic. Altera™ has a similar approach. Its basic building blocks are called Logic 

Elements (LE) and consist of one function generator in form of a 4-input LUT, one storage 

element and carry logic. Ten of these LEs are grouped to form a Logic Array Block (LAB). 
 
 

 88



Chapter 5: Hardware Implementation of the DEM     

The overall functionality of the FPGA is determined by configuration data that establishes 

the function of each individual CLB, IOB and switchbox. The FPGA is turned into a 

custom coprocessor for a particular task by downloading the appropriate configuration data 

into its configuration memory. 

IOB

CLB CLBCLBCLB

CLB CLBCLBCLB

CLB CLBCLBCLB

CLB CLBCLBCLB

R
A
M

R
A
M

IOB

IOBIOB IOB IOB IOBIOB

IOBIOB IOB IOB IOBIOB

IOB

IOB

IOB

IOB

IOB

IOB

Figure 5–2 Field Programmable Gate Array (FPGA) internal structure 

5.4 Reconfigurable Computing Platform 

The reconfigurable computing platform used in this current work was a PC reconfigurable 

computing PCI plug-in card. Two cards were used: a Celoxica [4] RC1000-PP PCI card 

containing a single Xilinx Virtex 1000–6 with 4 banks of 2 Mbytes of RAM and another 

RC1000-PP board with a Virtex 2000E –6 FPGA also with 4 banks of 2 Mbytes of RAM. 

Figure 5–3 shows a picture of one of the RC1000-PP boards. 

 

 89



Chapter 5: Hardware Implementation of the DEM     

The RC1000-PP hardware platform is a standard PCI bus card equipped with either a 

XCV1000-6 or a XCV2000E-6 chip. It has 8Mbytes of SRAM directly connected to the 

FPGA in four 32-bit wide memory banks. The memory is also visible to the host CPU 

across the PCI bus as if it were normal memory. Each of the 4 banks may be granted to 

either the host CPU or the FPGA at any one time. Data can therefore be shared between the 

FPGA and host CPU by placing it in the SRAM on the board. It is then accessible to the 

FPGA directly and to the host CPU either by DMA transfers across the PCI bus or simply 

as a virtual address. The board is equipped with two industry standard PMC connectors for 

directly connecting other processors and I/O devices to the FPGA; a PCI-PCI bridge chip 

also connects these interfaces to the host PCI bus, thereby protecting the available 

bandwidth from the PMC to the FPGA from host PCI bus traffic. 

 

 

Figure 5–3 RC100-PP Picture 

 

A block diagram of the RC1000-PP architecture is shown in Figure 5–4. 

 90



Chapter 5: Hardware Implementation of the DEM     

FPGA
Xilinx

XCV1000/XCV2000E

PCI-PCI
Bridge

PLX
PCI9080

PCI Bridge

SRAM Bank
2 MBytes

SRAM Bank
2 MBytes

SRAM Bank
2 MBytes

SRAM Bank
2 MBytes

i
s
o
l
a
ti
o
n

i
s
o
l
a
ti
o
n

PMC #1

PMC #2

 

Figure 5–4 RC100-PP Block Diagram 

 

5.5 Hardware Implementations 

This section will describe the hardware designs implemented on the reconfigurable 

computing platform just described. The first implementation only makes use of the low 

level (fine grain) parallelism of the DEM (arithmetic operations) as shown in section 

2.7.2.1. The second implementation is a more complex one and makes also use of the high 

level (coarse grain) parallelism of the DEM by operating on the main tasks: contact check, 

forces update, position update and reboxing concurrently.  

 

The hardware designs were implemented using VHDL (Very high speed integrated circuit 

Hardware Description Language) and consists of approximately 10 000 lines of code, plus 

6 different IP (intellectual property) cores (e.g. dividers, multipliers, FIFOs) 

 91



Chapter 5: Hardware Implementation of the DEM     

5.5.1 System Description (Software-Hardware Partition) 

As explained in chapter 3, where the software implementation was described, the first 

thing the software does is to read an initialisation file where the system data is stored. It 

afterwards generates the requested particles and once it finishes it waits for the simulation 

to start. This initialisation section is performed by the program for both the software and 

the hardware implementation. Figure 5–5 shows a system layout. 

 

 

Figure 5–5 System layout 

Once the particles have been generated by the software program, the user has the option to 

choose to run the simulation in software or in hardware. Figure 5–6 shows the window that 

displays the various options available to the user. The simulation can be run in software, 

i.e. on the PC’s microprocessor, or in hardware i.e. on the reconfigurable computing PCI 

board. If it is decided to go for the hardware simulation, the user also needs to select which 

of the two available hardware configurations should be used. Either the low level 

parallelism or the high and low level parallelism implementation configuration can be 

chosen. In either case the user also needs to select the appropriate FPGA configuration file 

(the bit file), the RC1000-PP board to be used (in case there is more than one board 

installed in the same PC) and the clock rate at which the FPGA should be operated. For the 

high and low level parallelism implementation, the user can also select how many contact 

check units should be used. (As will be described in more detail in later sections, the 

 92



Chapter 5: Hardware Implementation of the DEM     

hardware implementation can instantiate more than one of these units to work in parallel.) 

By default, the maximum number of contact check units is selected, but this can be varied 

if the user wishes to perform performance measurements on the system. 

 

Figure 5–6 Hardware Software selection 

 

5.6 Data Format 

The DEM can be processed using short wordlength arithmetic, so that it uses simple 

arithmetic operations in a massively parallel way on large data sets. By proper scaling of 

the problems, very large and very small numerical values can be avoided, so a large 

dynamic range is not needed. The main features of interest for most discrete element 

simulation is the bulk behaviour of the system (not the detailed behaviour of individual 

particles), which also reduces the need for high precision. It was therefore decided to use 

fixed-point arithmetic instead of floating point, as this maps much better on the FPGAs, 

and needs far less resources. In order to make the design fit onto the available FPGAs, a 16 

bit data format was chosen. When an FPGA with more resources becomes available, the 

 93



Chapter 5: Hardware Implementation of the DEM     

design can be easily modified to use a 24 bit or even a 32-bit data format as the design is 

implemented with the bit width as a generic parameter. 

 

Computer hardware usually represents negative numbers in fixed-point arithmetic in one of 

three different ways: Sign and magnitude, one’s complement or two’s complement. Two’s 

complement was chosen in this work, as this is the most widely used and convenient 

representation, and also because this representation was supported by the pre-designed 

hardware cores used in the design.  

 

Within the 16 bit data format used, 4-bits were used to represent the fractional part as 2-4 = 

0.0625 gives sufficient precision for the DEM and the twelve remaining bits were used for 

the integer part, which means that a maximum number of + 2047/-2048 can be represented, 

as shown in Figure 5–7. 

Wordlength

b0b1b2b3b4b5b6bw-1 bw-2
.......

Sign bit Radix
Point

Least
Significant

Bit  

Figure 5–7 Data format 

The data format is anyway adjusted to the nature of the operations taken place in order to 

safe as most possible HW resources (e.g. if a parameter is always smaller than 1 only four 

bits are allocated to it instead of the 16 bits)Less than 4 bits for the fractional part could not 

be allocated, because the data format needs to be able to represent the time step, which as 

said in chapter 2 is of the order of milliseconds. On the other hand more than 4 bits for the 

fractional part would mean that the maximum value representable with this data format 

would be less than 2048, which would make the stiffness so small that particles would 

transition over neighbouring particles, allowing only the simulation of very soft particle 

assemblies. 

 94



Chapter 5: Hardware Implementation of the DEM     

5.7 Implementation classifications 

Two implementations will be described in this chapter. The first one is a simple 

implementation employed to obtain some preliminary results on how well the 

implementation of the DEM would fit onto an FPGA. The second is a more complex one. 

If the major tasks i.e. contact check, forces update and positions update are considered to 

be machine instructions, the first implementation can viewed as a Single Instruction 

Multiple Data (SIMD) design, as only one of these instructions is active at one time. The 

second implementation can be viewed as a Multiple Instruction Multiple Data (MIMD) 

design, as the three tasks, as well as the reboxing of particles transitioning from one 

subdomain to another, are all performed in parallel. The SIMD design only makes use of 

the low level parallelism of the arithmetic operations; the MIMD design also exploits the 

high level task parallelism. This classification is strictly speaking wrong as it would mean 

that all the processing units are exactly the same, which is not the case here. It is therefore 

more correct to call them low and high-level parallelism implementations, because they 

make use of only the low level parallelism and afterwards of the low and high-level 

parallelism of the algorithm. These two implementations are described in detail in the next 

two sections. 

5.8 Low level Parallelism Implementation 

This first design was implemented on a Celoxica RC1000 board containing a single Xilinx 

Virtex V1000-6 FPGA.  

 

Figure 5–8 shows a block diagram of the hardware implementation. It consists of six main 

units: 

1. A contact check unit, which identifies the particles in contact. 

2.  A force update unit, which updates the interparticle forces. 

3.  A movement update unit, which calculates the particles’ new velocities and 

coordinates. 

4.  A control unit, which synchronizes all the units and generates all the control and 

address signals. 

5.  An interface unit to read and write data to and from the external memory 

 95



Chapter 5: Hardware Implementation of the DEM     

6.  A write back unit to write the results of the arithmetic units back to the internal 

FPGA memory. 

Control
unit

Internal FPGA
memory

PORTA

PORTB

Forces
update

Movement
update

Contact
check

Interface
unit

Write back unit

256256

96

96

96

 32

256

96

 32

 

Figure 5–8 Low level parallelism FPGA Implementation block diagram 

The block RAM of the FPGA is used to hold the data required to describe each particle 

This includes position, velocity, angular momentum, identity of neighbours, and the force 

that it is experiencing. Data is read from and written to the internal FPGA memory at a 

clock speed four times greater than that of the forces update units in order to keep its 

pipelines fully loaded (on each clock cycle of the force unit, it needs to read and write data 

of two particles simultaneously).  

5.8.1 Detailed Unit Descriptions 

Each unit of this implementation will be described in detail in this sub-section. 

5.8.1.1 Control Unit 

The control unit generates the necessary control signals to synchronise data between 

blocks, and to steer the data output from the RAMs to the inputs of the appropriate 

computation unit. The control unit also generates the addresses to read and write data from 

and back to the internal and external memory 

 96



Chapter 5: Hardware Implementation of the DEM     

5.8.1.2 Contact check 

For each particle, a “contact list” is formed, which contains references to each of the 

particles with which it makes contact. In order to detect if two particles are in contact the 

following equation has to be solved: 

0)()( 2
21

2
2121 ≥−+−−+=∆ yyxxRRn  Eq. 5–1 

Where xi yi are the co-ordinates of each particle’s centre and R1 and R2 are the respective 

radii (see Figure 5–9); the repulsive force between the particles is directly proportional to 

this overlap. If the condition of Eq. 5–1 is true, the addresses of the two particles are added 

to each others’ adjacency list. For this investigation, all particles are assumed to have the 

same radius R. Under this circumstance, simple geometry (section 2.6.2) shows that for a 

2-D simulation, the maximum number of contacts that each ball can have is 6. This means 

that contact information can be represented by a very simple data structure, in which each 

particle has six memory slots allocated to hold the identities of the particles potentially in 

contact. 

x1 y1

x2 y2
R1

R2

D

 
Figure 5–9 Balls in contact 

 

If there are N particles within a region of the DEM, then the number of contact checks that 

must be performed is N2. The square roots and multiplications used in Eq. 5–1 are very 

expensive to perform in FPGA hardware, with the implication that a full contact check 

would be prohibitively expensive. 

 

Instead of checking for true contacts, it was decided to check which particles are within 

each others’ bounding boxes, and this acts as a filter before the actual contact check. Under 

some circumstances (see Figure 5–10), this means that a pair of particles will be classified 

 97



Chapter 5: Hardware Implementation of the DEM     

as neighbours even though they are not truly in contact. This causes no real problem, since 

it is detected and correctly handled by the force increment unit. 

R R

R

R

R

R

x1,y1

 

Figure 5–10 Neighbour check model 

Using the bounding box method to perform contact checking makes this unit very cheap in 

terms of hardware resources, as it requires only 2 additions, 2 subtractions and 4 

comparisons. 

5.8.1.3 Inter-particle forces increment 

Once the contact list for a particle has been established, the total force acting on it can be 

determined. This will require a full solution of Eq. 5–1 for each contact identified, but this 

will be needed to be performed only a maximum of 6N times. 

 

For every contact identified between two particles, the resulting force is calculated. For 

this study, a simple force-displacement law is adopted: the resulting force between two 

balls is directly proportional to the indentation between the balls, as shown in chapter 2 

where the DEM was described in detail. 

 

The resultant force on a particle is the vector sum of the forces caused by each contact with 

its neighbours. The force update unit, which does require the computation of the terms in 

Eq. 5–1, requires a large amount of hardware. It also operates at a comparatively low clock 

speed of 7.5 MHz in contrast to the contact check unit which works at the full system clock 

speed of 30 MHz. Figure 5–11 shows the internal structure of this unit, where each column 

represents one pipeline stage. 

 

 

 98



Chapter 5: Hardware Implementation of the DEM     

/

cos

sin

vx1-vx2

vy1-vy2

vx1-vx2

vy1-vy2

KCM

0s

Rad

KCM

KCM

TDEL

TDEL

KCM

KCM

STIFN/2

STIFS/2

KCM

KCM

BDT

BDT

AMU

FN

FS

COH

cos

cos

sin

sin

FNT

FST

FSmax

F'
ST

KCM

Rad

Fx1 old

Fx2 old

Fy2 old

Fy1 old

M2 old

M1 old

Fx1 new

Fx2  new

M1 new

M2 new

Fy1 new

Fy2 new

t

COS
SIN
LUT

Xdif

Ydif

x1
x2

y1
y2

FTN

FTS

KCM

FNT

FST

tan

=

Rad2

contact

xdif2

ydif2

xdif

ydif

xdif2+ydif2

Figure 5–11 Forces update unit internal structure 

It can be seen that there are three main paths in this structure. One that calculates the forces 

in the x direction, another that calculates the forces in the y direction, and another shorter 

path, which computes the terms in Eq. 5–1 (without doing the square root, which is 

expensive but unnecessary), to check if the particles are in contact. 

 

In order to compute the x and y components of the force between two particles, it is 

necessary to compute the sine and cosine of the angle α of the line connecting the two 

particles’ centroids, (see Eq. 5–2, Eq. 5–3 and Eq. 5–4).  

( )
d

yy 12sin
−

=θ  Eq. 5–2 

( )
d

xx 12cos
−

=θ  Eq. 5–3 

( ) ( )1212 yyxxdwith −+−=  Eq. 5–4 

This is done using a Look Up Table (LUT) (in order to avoid using a square root, which is 

very expensive in terms of hardware resources). LUTs can be implemented easily in 

FPGAs, and take up block RAM rather than the logic resources that would be required by a 

square rooter. Predefined values of the cosine and sine are stored in this table. 

 

 99



Chapter 5: Hardware Implementation of the DEM     

 

5.8.1.4 Velocity and Position Update 

Once the resultant force on each ball has been calculated, these forces are used to find new 

accelerations using Newton’s second law. In this study, it is assumed that the masses of all 

the balls are identical. These accelerations are integrated to obtain the velocities in the x 

and y direction and the angular velocity  

 

The new coordinates can be found by adding the original coordinates to the incremental 

displacement obtained by integrating the calculated velocities. The position update unit has 

an intermediate level of hardware complexity, and operates at the same speed as the force 

update unit (7.5 MHz), which is 4-times slower than the system clock, in order to have its 

pipeline fully loaded, achieving one new result per clock cycle. 

 

It consists of three pipelines in parallel (see Figure 5–12). The first computes x and vx, the 

second computes y and vy and the third computes θ and . θ&

KCM

vx

CON1

KCM

Fx

1/MASS

KCM

KCM
KCM

GRAVx TDEL

CON2
TDEL

nx old

x new

vy

CON1

Fy

t

1/I

vx new

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVy TDEL

CON2
TDEL

ny old

y new

vy new

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0old

0 new

0'

CON1

M

0' new

 

Figure 5–12 Velocity and Position update unit internal structure 

 

 100



Chapter 5: Hardware Implementation of the DEM     

5.8.1.5 Write back unit 

The purpose of this unit is to merge the data for each particle that emerges from the 

arithmetic units. Each particle is represented by a 256-bit word, but only certain bits of this 

word are updated by each of the different units. For example, if a new contact list is 

generated, only the memory locations of the old contact list are overwritten, and the rest of 

the old data is preserved. 

5.8.1.6 Interface Unit 

The interface unit reads and writes data from and to the FPGA’s internal memory when 

instructed to do so by the control unit in the low level parallelism implementation, it is 

only used twice in each analysis. Once at the beginning, it is used to read in the new data, 

and once at the end when the calculations have finished in order to write the data back to 

the external memory. 

5.8.2 Hardware requirements 

The hardware requirements for each of the main functional units are shown in Table 5–1. 

Constant coefficient multipliers (KCMs) require much less hardware resource than 

multipliers that allow both inputs to vary. Having balls of the same radius facilitates the 

widespread use of KCMs.  

 

Table 5–1 Hardware requirements for the low level parallelism units 

CONTACT CHECKING FORCE UPDATE MOVEMENT UPDATE 

2 adders 

2 subtractions 

 

23 adders 

10 multipliers 

8 KCMs 

1 dividers 

1 Look Up Table (LUT) 

8 adders 

15 KCMs 

 

The contact checking unit is very simple, requiring little hardware resources, and capable 

of operation at high clock speeds. The force update unit, which does require the 

computation of the terms in Figure 5–11, requires a large amount of hardware. The 

movement update unit has an intermediate level of hardware complexity. 

 101



Chapter 5: Hardware Implementation of the DEM     

5.8.3 Memory Map 

Once it is decided to run the simulation in hardware, and the simulation has started, the 

program formats the data needed by the FPGA, as shown in Figure 5–7, and downloads it 

to the RC1000-PP board’s memory. The data format is shown in Figure 5–13.  

x
y
vx
vy
θs
x
y
v

Figure 5–13 Memory map for 

0000h

000Fh

Normal stiffness
Shear stiffness

Friction coefficient
Damping constant1
Damping constant2
Damping constant3

Cohesion
Inv Moment of inertia

Inv Mass
Radius

Time step
x gravity
y gravity

Number of Balls
Cycles

Memory

0010h

001Eh

Memory cont

1

s

The board has four banks of memory of

takes up only 16 bits, it was decided to s

in future 24-bit or 32-bit arithmetic can 

the control unit. 

 

The first 16 memory locations are fil

FPGA, which have either been pre-com

only ball data is stored. The only data ite

are the x and y coordinates, the velocitie

 

 

Constant

x

vy
θs

 

the low level parallelism implementation  

 512 Kbytes x 32 bits. Although each data e

tore only one element per memory location 

be used without major changes to the addres

led with the parameters/constants needed 

puted by the software or are constants. Aft

ms that are needed by the FPGA to describe

s in the x, y direction, and the rotational velo
Ball
e

Ball2
 

lement 

so that 

sing of 

by the 

r that, 

 a ball 

city. 

102



Chapter 5: Hardware Implementation of the DEM     

Instead of passing the mass and the moment of inertia of the particles to the FPGA, it was 

decided to pass the inverse of these, as this would allow using a KCM instead of a more 

expensive divider. 

 

 

 

 

 

 

Figure 5–14 FPGA’s internal memory map 

 con 5 cont 4 cont 3 cont 2 cont1 cont 0   O  Reserved  M    Fy   Fx    Os    vy   vx    y   x

256-bits

16-bits

FTS[5]  FTN[5]  FTS[4]  FTN[4]  FTS[3]  FTN[3]  FTS[2]  FTN[2]  FTS[1]  FTN[1]  FTS[0] FTN[0]

Once the data has been downloaded onto the FPGA board, a ready signal is generated by 

the software program in order to wake the FPGA up and start the simulation. The first 

thing the FPGA does is to read in all the data stored in the external memory and store it in 

its internal memory in a new format shown in Figure 5–14. This format uses two words of 

256 bits (16 x 16 bits) to represent each ball. Each 256 bit word contains 16-bit 

representations for the particle’s position and angular co-ordinates x, y, θ, the velocities vx, 

vy, , the forces and moment Fθ& x ,Fy, M, a type flag for the particles, and the identities of up 

to 6 neighbouring particles that have been identified during the contact check. For every 

contact, the normal and shear force needs to be stored as well, since the current DEM 

algorithm only calculates force increments at each time step; so an additional 12 items 

need to be stored in the internal FPGA memory. The use of incremental forces is to 

improve the accuracy of the calculations using limited precision. 

5.8.4 Timing considerations 

The number of clock cycles required in order to stream the data corresponding to N 

particles through each of the computations units is shown in Eq. 5–5, Eq. 5–6 and Eq. 5–7. 

4
2

1
)(

2N
cct =  Eq. 5–5 

Nforcest 6)( =  Eq. 5–6 

 103



Chapter 5: Hardware Implementation of the DEM     

Npositiont =)(  Eq. 5–7 

Note that the contact check unit dominates the timing of the system for any realistic size of 

N (the number of balls in the analysis), due to its quadratic dependence on N. The total 

time for contact checking is divided by a factor of four as this unit is clocked at a 4 times 

faster rate than the forces and position update units, since its hardware is very simple. The 

loading and unloading time of the pipelines are not considered here; the number of 

particles is sufficiently large that this effect can be neglected. 

5.8.5 Implementation Drawbacks 

This initial implementation contains several significant inefficiencies. In particular, contact 

checking, force updating and position updating cannot be overlapped; since only one unit 

can be active at a time. This is because the force unit has to wait until the contact data list 

has been built before it can start work. This means that all the particle data held in the 

block RAM must be streamed through the contact check unit, and written back to RAM 

before the force unit can operate. Similarly, the movement update unit must wait for all 

data to be streamed through the force update unit before it can begin. 

 

Another disadvantage of this simple implementation is that the number of particles that can 

be processed continuously is limited by the capacity of the block RAM. When a new frame 

of data needs to be paged from external RAM into the FPGA’s block RAM, all the 

processing of data must stall. This means that the largest number of particles that can be 

processed at full speed is 500 for a Virtex XCV1000 FPGA. This is a too small number of 

particles to simulate practical problems. 

5.9 High and Low Level Parallelism Implementation 

A new design was implemented in order to tackle the inefficiencies identified and 

described in the previous section. This new implementation differs from the previous 

design in the following major ways: 

 

• All units can work simultaneously 

• Multiple copies of each unit can be instantiated  

 104



Chapter 5: Hardware Implementation of the DEM     

• Paging data in and out of the external memory overlaps with 

computation, allowing an extremely large number of particles to be 

treated continuously and efficiently 

 

The arithmetic units (forces update, position update and contact check) are identical to the 

ones described in the previous section. 

 

In order to allow the computational units to operate in parallel, the domain is decomposed 

into k vertical columnar sub-domains, as shown in Figure 5–15. Each particle belongs to a 

particular cell, and for most particles contact checking and force updating need only be 

performed against the other particles within the same cell. For the small number of 

particles that are close to the boundary between two cells, more complicated arrangements 

are necessary. 
Domain

1 2 3 4 5 6  k-1 k

 

Figure 5–15 Domain decomposition  

The hardware architecture used to process the domain is shown in Figure 5–16. As this 

implementation needs more hardware resources than the previous design, it was 

implemented on the RC1000-PP board equipped with the XCV 2000E device. 

 

The architecture divides the internal block RAM of the FPGA into six dual port RAMs. At 

any given time, six of the columnar cells shown in Figure 5–15 are stored within the FPGA 

and undergo processing. The RAM contains two 256 bit entries for each particle within 

that cell consisting of 16 bit entries for x, y, θ, vx, vy, θ’, Fx ,Fy, M, a type flag, and the 

reference of up to 6 neighbouring particles and another to hold the normal and shear forces 

for every contact. This is the same as the first implementation. 

 105



Chapter 5: Hardware Implementation of the DEM     

The control units generate the necessary control signals to synchronise data between the 

blocks, and to steer the data output from the RAMs through the switch array to the inputs 

of the appropriate computation unit. The control units also generate the addresses to read 

and write data back to the internal and external memory. 

Dual

Port

Forces
update

Dual

Port

Dual

Port

Dual

Port

Dual

Port

Switch
addr

Switch
data

PA
PB

Switch

data

PA
PB

Write data back

ContactContact
Contact
check

Movement
update

Dual

Port
256

256

256

256 256

256
 96

 96

 96

Inter
face

Control unit

CU
Cc

CU
Forces

CU
Movement

Load
Balancing 32

160

 32

256

 96

160

 

Figure 5–16 High and low level FPGA Implementation block diagram 

As an example of the scheduling, consider the situation where the six dual port block 

RAMs of Figure 5–16 respectively contain the particle data for columns 1,2,3,4,5 and 6 of 

the domain of Figure 5–15. The particle x, y co-ordinate data for column 5 is streamed 

through the contact check unit and the particle contact list data is written back into the 

block RAM. At the same time, the data for column 2 is streamed through the force update 

unit, and the data for column 1 is streamed through the co-ordinate update unit. The results 

are written back into the appropriate region of the FPGA’s block RAM. The data for 

 106



Chapter 5: Hardware Implementation of the DEM     

column 1 is then written into an external RAM, and new data for column 7 is read from 

external RAM. 

Figure 5–17 shows how the computation progresses. During each epoch, the contents of 

one block RAM (corresponding to all the particles in one columnar cell) are streamed 

through one of the computation units. It can be seen from Figure 5–17 that for each 

column, first a contact check will be performed, then a force update, then a movement 

update in that order. 

 

Epoch 1 

Columns held in block RAM 1,2,3,4,5,6 

Column undergoing contact check 5 

Column undergoing force update 2 

Column undergoing co-ordinate update 1 

 

Epoch 2 

Columns held in block RAM 7,2,3,4,5,6 

Column undergoing contact check 6 

Column undergoing force update 3 

Column undergoing co-ordinate update 2 

 

Epoch 3 

Columns held in block RAM 7,8,3,4,5,6 

Column undergoing contact check 7 

Column undergoing force update 4 

Column undergoing co-ordinate update 3 

 

And so on… 

Figure 5–17 Scheduling of the computation 

 

Due to complexities associated with handling particles close to the cell boundaries, the 

contact check unit may have to update the columns to the left and the right of the column 

 107



Chapter 5: Hardware Implementation of the DEM     

that is currently undergoing contact check, as the contact check unit also deals with 

particles that have transitioned from one column to another. It deletes the particles, which 

have moved from the column where the contact check has taken place and moves them 

either to the right or left column, depending where the particle has moved. Also, the force 

update unit may have to interact with the column to the right of the column currently 

undergoing force update, as a particle in this column might be in contact with particles in 

the neighbouring column. That is why the FPGA must hold six columns at any given time, 

rather than three. This is explained in more detail in section 5.9.1 

5.9.1 Handling Cell Boundaries 

Several complications arise as a result of interactions at boundaries between the columns 

of particles. 

5.9.1.1 Performing Contact Check with Particles at the Neighbouring Sub-
Domains 

Firstly, a particle close the boundary may be in contact not only with particles from its own 

column, but also from an adjacent column. This situation is handled by an auxiliary 

memory located within the control unit that handles inter-cell boundaries. So for example, 

in epoch 1 of Figure 5–17, during the contact check of column 5, each particle of column 5 

is checked to determine whether it is within 2R of the boundary with column 6 (2R, 

because it is the maximum distance at which a certain particle in one sub-domain can be in 

contact with another of the neighbouring sub-domain). If this is true, then after this 

particular particle has completed the contact check, its data is written back as normal into 

the block RAM for column 5 but it is also copied into the auxiliary memory within the 

control unit. In epoch 2, when column 6 is checked, each particle within column 6 is 

checked not only for contact with the other particles of column 6 but also with each 

particle stored in the auxiliary memory that contains the boundary data for column 5. Once 

the correct contact list has been generated for a particle, all subsequent computation will 

proceed correctly, even if a contact straddles a boundary. 

5.9.1.2 Transition of Particles from one Sub-Domain to another 

Secondly, a particle close to a boundary may transition from one column to another during 

coordinate update. For such a particle, after the results of the co-ordinate update are written 

 108



Chapter 5: Hardware Implementation of the DEM     

back to the RAM, the particle would have the correct coordinates, but its data would have 

been stored in the wrong block of RAM. 

 

In order to illustrate how this case is handled, consider epoch 2 of Figure 5–17 and imagine 

that during the previous time step a particle had transitioned from column 6 to column 7, 

but had been written back to the RAM block corresponding to column 6. In epoch 2, the 

contact check unit examines every particle held within the block of RAM corresponding to 

column 6. Its control unit knows the boundaries of this column, and is capable of detecting 

that a particle ought to be in column 7. When it finds such a particle, it does not process the 

particle further, but simply writes it back the memory corresponding to column 7. In epoch 

3, when column 7 is processed, the transited particle will be treated correctly. 

 

The situation is more complicated if at the previous time step a particle had transitioned 

from column 6 to column 5, but had been written back to the RAM belonging to column 6. 

When such a particle is detected, it is checked against all particles in column 6, and against 

the auxiliary boundary list that had been constructed for column 5 during epoch 1. The data 

for this particle is then written back into column 5. This procedure works because it is a 

requirement of the DEM that the time step is sufficiently small that no particle can move 

through a distance greater than its own radius within one time step. This means a full check 

against all particles within column 5 is unnecessary; and a check against the boundary list 

of column 5 will suffice. 

 

It can now be seen why it is necessary to leave a two-column separation between contact 

checking and force update (e.g. columns 3 and 4 of epoch 1 of Figure 5–17). Due to the 

boundary effects, the contact check process of column 5 can update the data in column 4, 

whilst force update of column 2 may make use of data in column 3. 

5.9.1.3 Adaptive Cell Boundaries 

A third complication is that as simulation progresses, particles will move between 

columns, and some columns may become heavily populated, whilst others are sparsely 

populated. It is then necessary to move the cell boundaries, thus expanding some cells and 

contracting others. This is needed in order to provide good load balancing, and also to 

prevent overflow of the block RAMs. Figure 5–18 shows an example of the adaptation of 

 109



Chapter 5: Hardware Implementation of the DEM     

cell boundaries to avoid having more particles than the FPGA can hold in one sub-domain, 

thus losing these particles. 

 

 

Figure 5–18 Simulation example of the adaptive cell boundaries 

Movement of cell boundaries is fairly simple. The control unit monitors how many 

particles are held in each block RAM. When the number falls below a minimum threshold 

or rises above a maximum, the boundary is moved by a distance R so as to expand or 

contract the cell. When the boundary moves, a number of cells will find that their data is 

stored in the wrong column of RAM, but this will be automatically detected and corrected 

by the mechanisms described earlier for handling particles close to boundaries. 

 

Using the procedures described above, the transition of particles from one cell to another is 

handled without causing any loss of performance. Also, the cell size is adaptively 

optimised so that good load balancing is always achieved. 

 

The XCV2000E can only hold a maximum of 128 particles per column, because part of the 

FPGA’s embedded RAM has to be allocated to other functions to make the design fit. If a 

sub-domain were to have more than 128 particles, it would lose the excess particles. This 

can be avoided by dynamically balancing the load in each sub-domain so that no more than 

a certain maximum number (always smaller than 128) will be in each sub-domain. The 

 110



Chapter 5: Hardware Implementation of the DEM     

software program will also issue a warning signal if there is a danger of having more than 

128 particles in a sub-domain. This may happen, for example, when the domain height 

compared to the balls radii is so large that more than 128 balls would fit in one column. 

 

5.9.2 Memory Map 

The memory map is different from the previous implementation, as data is read from and 

written to the external memory after each column has been treated. Therefore the total 

normal and shear force of every contact needs to be stored to the external memory. Every 

column data has a header with four elements. 

• The position of that column (lower x coordinate) 

• The current number of balls in that column 

• The first address where this data is stored in the external memory 

• The last address where this data is stored in the external memory 

Memory cont

Constants

0015h

Normal stiffness
Shear stiffness

Friction coefficient
Damping constant1
Damping constant2
Damping constant3

Cohesion
Inv Moment of intertia

Inv Mass
Radius
Radius2

Time step
x gravity
y gravity

Nr of Columns
Nr of cc units used

Nr balls min/col
Nr ball max/col

Max nr of balls/col
Max nr of balls/col x 17

Cycles

0000h

002Bh

x-column
Nr balls in col

1st addr ext mem
Last addr ext mem

x
y
vx
vy

angular velocity
FTN[0]
FTS[0]
FTN[1]
FTS[1]
FTN[2]
FTS[2]
FTN[3]
FTS[3]
FTN[4]
FTS[4]
FTN[5]
FTS[5]

x
y
vx

0016h

Ball 1

001Ah

Ball 2

1st
Column

 

Figure 5–19 Memory map for the high and low level parallelism implementation 

 111



Chapter 5: Hardware Implementation of the DEM     

Some extra system parameters also are needed, e.g. the total number of columns, the 

maximum number of particles that the internal FPGA memory can store without overflow, 

and the maximum and minimum number of particles allowed in a column before the 

system re-adjusts the boundaries of its columns to balance the load. 

 

Where possible, parameters (for instance, the square of the radius ) are pre-calculated by 

the simulator and passed to the hardware. 

5.9.3 Load Balancing 

With contact checking, force updating and co-ordinate updating being performed in 

parallel, load balancing problems will inevitably appear, since the overall system speed 

will be limited by the speed of the slowest of the three units. As shown in chapter 2, where 

the DEM was described in detail, the coordinate check is the most time consuming, but 

requires very simple hardware and can operate at high clock speed.  

 

In order to improve the load balance, several contact check units are instantiated, and 

operate in parallel. The number of contact check units to be used is a parameter of the 

design, which can be easily changed. The contact check control unit can generate all the 

required control signals to steer the data correctly between the different check units. Lastly, 

the contact check units can run at four times the clock speed (30 MHz) of the force update 

unit and co-ordinate update unit (7.5 MHz), because it is very simple, requiring little 

hardware resource. 

 

It can also be seen from section 2.6 that the coordinate update unit will finish much earlier 

than the forces update unit. The spare time available at the end of the coordinate update is 

used to write the data from the block of RAM corresponding to co-ordinate update that has 

now been finished being processed for this time step, into external RAM. A new set of data 

is also read from external RAM, which corresponds to the next column of the domain that 

is to be processed. The ideal timing schedule is show in Figure 5–20. 

 112



Chapter 5: Hardware Implementation of the DEM     

 

Contact check

Forces

Move 

Data Transfer 

∆t 

 

Figure 5–20 High and low level parallelism scheduling 

In this way, writing to and reading from external RAM can be fully overlapped with 

computation, and the number of particles that can be processed at full speed is limited only 

by the size of the external RAM. This means that problems containing tens of millions of 

particles can be processed easily. 

 

In order to have the system running at its maximal efficiency, there must be as many 

contact check units as needed to make the time for position update and data update 

(t(position)+t(interface)) equal to the time for contact checking t(cc). Figure 5–21 

Number of balls / column

50 100 150 200 250 300

C
lk

 C
yc

le
s

0

1000

2000

3000

4000

5000

t(forces)
t(position)+t(interface)
t(cc) ccu=5

 

Figure 5–21 Time needed for each task 

 113



Chapter 5: Hardware Implementation of the DEM     

illustrates the number of contact check units needed, using theoretical calculations, for the 

above condition to be true. The straight line for t(position) + t(interface) is the number of 

clock cycles required to perform position update plus the time needed to write and read 

new data to and from the external memory, for all particles in one column. Where the t(cc) 

curve intersects with the t(cords + interface) line, this indicates the ideal load balance for 

that number of particles. So, for example, a simulation of 175 particles/column has almost 

ideal theoretical load balancing when 5 contact check units are instantiated. 

 

The time needed to perform the contact check depends not only on the number of particles 

per column, but also on the domain topology and the size of the particles. The larger the 

height of the domain Y is, the larger the contact area is. Also the smaller the radius of the 

particles is, the more particles need to be checked for contacts with the neighbouring 

column. Figure 5–21 is given for a particular value of Y/d with Y being domain height and d 

the balls’ diameter. 

5.9.4 Timing considerations 

The previous section described the ideal case in which all main tasks finished at the same 

time, achieving a perfect load balance. Unfortunately this will never be the case as each 

unit needs a different amount of time and it is almost impossible to make them match. This 

section will analyse the timing requirements for each of the main tasks involved in the 

DEM, i.e. contact checking, forces and position update. 

 

As can be seen from the equations below (Eq. 5–8, Eq. 5–9, Eq. 5–10, Eq. 5–11), the time 

required to compute the force and  the positions of the particles and write data to the has 

not changed from that given by Eq. 5–6, Eq. 5–7. The only unit calculation time that has 

4

2
1

2
1

)(

22

nrccunits

N

nrccunits

N

cct

rightmain
+

=  
Eq. 5–8 

Nforcest 6)( =  Eq. 5–9 

Npositiont =)(  Eq. 5–10 

( )
2

174
4

2174)/( NNmemextwritereadt ×+
=

××+
=  Eq. 5–11 

 114



Chapter 5: Hardware Implementation of the DEM     

changed is the time needed to perform the contact checks. Now it has two terms, and also 

depends on the number (nrccunits) of contact check units used. One term relates to the 

computation of the contact check in the main column (Nmain) and another the computation 

of the particles that might be in contact with the balls in the column to the right (Nright). 

Once the contact check is performed for the main column, the particles within a distance of 

2R from the column to the right are monitored (these are the only particles that could be in 

contact with the particles in the right column). If we assume that Nmain ≈ Nright, Eq. 5–8 can 

be simplified to: 

4
)(

2

nrccunits
N

cct ≈  Eq. 5–12 

This would mean that all the particles in the column would also be checked for contacts in 

the column to the right. Eq. 5–11 gives the expression of the time needed to read and write 

data to the external memory. Every ball is described by 17 parameters: x, y, vx, vy,θ, and 

the size of the normal and shear forces of each contact. Furthermore, every column has a 

header of 4 elements: coordinate of the column, number of balls in it and address of the 

first and last element of that column in the external memory. The whole expression is 

divided by a factor of four as it is performed at a four times faster clock rate than that of 

the forces and position update units and this clock speed is the same as the contact check 

units. Figure 5–22 shows a graphical representation of the theoretical equations given 

above with different cases in which the number of contact check units ranges from 5 to 20. 

 115



Chapter 5: Hardware Implementation of the DEM     

Number of balls / Column

0 50 100 150 200 250 300

C
lk

 c
yc

le
s

0

1000

2000

3000

4000

5000

t(forces)
t(position)+t(interface)
t(cc) ccu = 5
t(cc) ccu = 10
t(cc) ccu = 20

 
Figure 5–22 Graph of clock cycles needed to compute t(forces) t (pos)+t(interface) and t(cc) for 

a different number of contact check units. 

In order to verify these expressions, a special modified hardware design was implemented. 

It was basically the same as in Figure 5–16, but the forces and position update units were 

omitted so that their resources could used to implement more contact check units in 

parallel. The time needed to perform the contact checking was measured running the 

system at a clock speed of 1 MHz for 500 cycles.  

 

The measured experimental results are compared with theoretical predictions in Figure 5–

23. The experimental and analytical values are very close, thus proving that the predictions 

obtained for the contact checking are sufficiently correct for practical design. Slight 

variations are inevitable as the number of particles in each column will never be exactly 

the same. Difference also occurs because the number of particles that need to be checked 

for contact with the particles in the column to the right of the main column will also 

change from column to column and from cycle to cycle. 

 116



Chapter 5: Hardware Implementation of the DEM     

Number of balls / column

0 200 400 600 800 1000

t [
se

c]

0

20

40

60

80

100

120

140

160

cc units = 10 (experimental)
cc units =10 (analytical)
cc units = 20 (experimental)
cc units = 20 (analytical)
cc units = 30 (experimental)
cc units = 30 (analytical)
cc units = 40 (experimental)
cc units = 40 (analytical)

 

Figure 5–23 Comparisons of experimental and analytical values to compute the contact checking 

for different number of contact check units.  

5.9.5 Hardware requirements 

Due to limitations of hardware resources, only a maximum of five contact check units 

could be instantiated in parallel. Table 5–2 shows the amount of resources taken up by 

each individual unit as a percentage of the total FPGA resources. The design also makes 

use of 100% of the block RAM on the FPGA. 

 

Table 5–2 Hardware resources used for by this implementation 

XCV2000E % OF NO. OF SLICES 

Forces update 15 % 

Coordinates update 11 % 

Control unit 21 % 

Interface to external memory 5 % 

Switch inputs 10 % 

 117



Chapter 5: Hardware Implementation of the DEM     

Switch outputs 9 % 

Write back unit 1 % 

5 contact check units 8 % 

  

Total 80 % 

 

An FPGA logic resource utilization greater than 80% could not be achieved, since the 

designs would be impossible to route. 

5.9.6 Internal Memory limitations 

With the internal block RAM of the XCV 2000E device (655,360 bits), a maximum of 128 

balls can be stored in each column, because although only 393,216 bits are used to store 

ball data, the rest is needed to implement e.g. FIFOs and KCMs, in order to save logic 

resources. One important question is whether additional internal RAM would bring any 

benefit to the design. 

 

As the number of balls N is increased, the load balance between the different arithmetic 

units will change, because they have differing dependence on N. This can be offset by 

increasing the number of contact check units so that contact checking completes at the 

same time as the position update. It therefore appears reasonable that an increase of 

internal RAM would need to be accompanied by an increase in logic resources in order to 

have more contact check units working in parallel to speed the contact detection up. 

 

From Table 5–2 it can be seen that 5 contact check units require 8% of the XCV 2000E 

resources. 3% of those resources are consumed by the top level, which controls the single 

contact detection units. Therefore, every contact detection unit requires approximately 1% 

of the FPGA resources. Eq. 5–13 and Eq. 5–14 show the number of extra bits needed to 

have one more ball in each of the six internal memory units. 

bitsbitstoequivalentisball 51222561 =×  Eq. 5–13 

kbitsbitsequivalentiscolumneveryinball 073.365121 =×  Eq. 5–14 

 118



Chapter 5: Hardware Implementation of the DEM     

In order to get a good load balance, the time required to compute the position update, write 

the column data to the external memory should be equal to the length of time taken to 

compute all the contact checks (Eq. 5-17). This can be achieved by increasing the number 

of particles in each column. 

 

)/()()( writereadtpositiontcct +=  Eq. 5–15 

 

For the case of 5 contact check units, substituting into Eq. 5–9 and Eq. 5–11and Eq. 5–12 

gives a number of 175 balls per column in order to that this equation is satisfied. 

 

As seen from this table (Table 5–3), every time the number of contact check units is 

doubled, this allows the doubling of the number of particles that can be stored in a column. 

This means that if the number of balls that can be held in the FPGA is doubled, the number 

 

Table 5–3 Growth of ideal number of balls/column as a function of the number of contact check 

units to make t(cc) = t(position)+t(r/w). 

NR OF CONTACT CHECK UNITS NR OF BALLS/ PER COLUMN 

5 175 

10 350 

20 700 

40 1400 

 

of contact check units have to be doubled as well as shown in Table 5–4, 

 

 

 

 

 

 

 

 

 119



Chapter 5: Hardware Implementation of the DEM     

Table 5–4 Relation of number of balls allowed in the system to make t(cc)=t(pos)+ t(interface) and 

its memory requirements. 

NR OF BALLS/COLUMN TOTAL NUMBER OF BALLS 

IN THE FPGA   

MEM NEEDED 

(BITS) 

175 1050 537,600 

350 2100 1,075,200 

700 4200 2,150,400 

1400 8400 4,300,800 

 

Thus if one contact check unit needs 1% of the XCV2000E device (192 slices), a doubling 

of the number of particles accompanying the doubling of memory size would require an 

increase an additional hardware resource of nrccunits × 192 slices. 

 

5.10 Validation of the Hardware Designs  

The previous sections have described in detail the hardware implementations. In order to 

validate the hardware implementations a debugger was incorporated into the software 

environment in order to compare the behaviour of the software and the hardware design. 

Figure 5–24 shows the initial state of the debugger. The blue lines and circles correspond 

to the hardware implementation and the black ones to the software implementation (but in 

the initial condition of Fig. 5-24 they lie on top of one another). 

 120



Chapter 5: Hardware Implementation of the DEM     

Figure 5–24 Screen shot of the initial state of the hardware debugger 

There are two options available in the debugger: 

 

1.  Debug the result of the VHDL simulation. 

2. Debug directly the hardware results obtained from the reconfigurable 

computing platform. 

 

The debugger has options to give visual feedback, such as simultaneous display of the 

results for both hardware and software. Also, the debugger computes the difference 

between both sets of results. It calculates the sum of absolute differences (SAD) of the 

particles’ coordinates and velocities. It also calculates bulk measures, such as the mean 

absolute velocity, and the centroid of the system. 

 

As can be seen in Figure 5–25, the hardware implementation not only moves the particles, 

but also the column boundaries in order to maintain the same number of particles in each 

column so that the system remains balanced as described in section 5.9.1.3. 

 121



Chapter 5: Hardware Implementation of the DEM     

Figure 5–25 Screen shot of a debugged system of 50 balls after 20 cycles 

From these analyses it was shown that the particles in the hardware system move slower 

than the ones in the software version. This was expected as the round-off error of the 16-bit 

arithmetic makes the values computed by the hardware implementation grow slower than 

their software counterparts. This will not make any major difference to the result of the 

complete simulations, since we are interested, as mentioned in section 5.6, in the simulated 

behaviour of the bulk, and not the behaviour of individual particles. Also in most discrete 

element simulations, the steady state (or static) result is sought and the dynamic path 

reaching it is less important. 

 

16-bit arithmetic is sufficient to compute most of the simulations by scaling the problems. 

Care has to be taken when this scaling is performed in order to avoid many over and 

underflows. The next section will discuss the amount and effect of numerical under- and 

overflows in the design. 

 122



Chapter 5: Hardware Implementation of the DEM     

5.10.1 Over/Underflow Quantification 

In order to quantify the number of over and underflows of the system, the software 

program was modified in order to simulate how the hardware is behaving in order to keep 

track of the under and overflows incurred during a simulation. An example pseudo code of 

this operation is shown in Figure 5–26. After every arithmetic operation an under and 

overflow check is inserted. If the value is bigger or smaller than the range of values 

representable on the hardware using either 16/24/32-bit arithmetic, then the program will 

register this. At the end of the simulation, the statistics will be written to a file. 

ball_Fx_AM = ball->Fx/AM  // Any arithmetic operation 

 

if(ball_Fx_AM > max_value OR ball_Fx_AM < - max_value) 

  count_overflows_motion[0]++  //Register if an overflow happens 

 

elseif((ball_Fx_AM<max_resolution OR (ball_Fx_AM>-max_resolution) 

  count_underflows_motion[0]++// Register if an underflow happens 

Figure 5–26 pseudo code of under and overflow registration 

 

Figure 5–27 shows a graphical representation of the number of underflows of a system of 

50 balls, ran for 1000 cycles. Table 5–1 shows the number of arithmetic operands needed 

to compute the forces and the positions. In total approximately 7,500,000 arithmetic 

operations took place during this simulation (considering only the forces and position 

update unit). The dimensions and parameters were scaled in such a way that no overflow 

occurred. As can be seen, most of the underflows in the case of 16-bit arithmetic occur in 

the position update unit. Examination of Figure 5–12 shows the reason for this. As the 

inverse of the mass and the inverse of the moment of inertia are very small, the values 

multiplied by these parameters can easily become smaller than 0.0624 (2-4). 

 

By increasing the arithmetic to 24-bit or even 32-bits (fixed-point) the number of 

underflows is reduced significantly, as seen in the graph. This is of course at the expense of 

requiring far more hardware resources.  

 123



Chapter 5: Hardware Implementation of the DEM     

The parameters that will influence the amount of overflows and underflows will be the 

domain size (height and width), the particle radius (and hence the mass and moment of 

inertia), and the stiffness for the overflows and the time step for the underflow.  

Precision [bits]

10 15 20 25 30 35 40

N
um

be
r o

f U
nd

er
flo

w
s

0

2000

4000

6000

8000

10000

12000

14000

Forces
Position

 

Figure 5–27 Underflows in the forces and position update units as a function of the number of 

bits 

Knowing this, the software program, when it has read in the parameters from the data file, 

checks the key parameters to see if the generated system will be prone to overflow and 

underflow. If so a warning message is issued. 

5.11 Discussion 

A dedicated hardware architecture implemented on an FPGA was presented in this chapter. 

The low and high-level parallelism of the DEM is exploited in the last implementation, 

which overlaps the main computational tasks.  

 

The validation of the implementations shows that the particles in the hardware simulations 

lag the ones in the software simulations after each cycle due to the limitation to 16-bit 

arithmetic that had to be used in order to fit the design into a Xilinx™XCV2000E FPGA. 

Scaling the problem parameters can avoid the need for a large dynamic range. This is, of 

 124



Chapter 5: Hardware Implementation of the DEM     

course valid for some simulations, but not for all. In some cases 16-bit fixed-point 

arithmetic will not be sufficient e.g. if an assembly with very large stiffness is to be 

simulated.  

 

These implementations should be viewed as prototypes with the minimum requirements to 

allow DEM simulations, as the XCV2000E FPGA was state of the art around 3 years 

before the writing of this thesis. Since then, new larger FPGAs have become available, 

which would allow the system to be run at higher clock speeds, instantiating more units in 

parallel and using 32-bit arithmetic.  

 

As seen from the timing considerations in section 5.9.4, reading and writing data in and out 

of the FPGA to the external memory is the slowest task. This is due to the RC1000 board’s 

external SRAM memory, which allows a maximum transfer rate of 40 MHz.  

 

Splitting the domain into columns to allow the overlapping of the computational tasks is a 

valid solution only if the number of particles in each column is less than the maximum 

number of particles that a memory unit of the FPGA can hold. The software simulator, 

before downloading the data to the FPGA board, checks that no column exceeds the 

maximum number of particles that the specific FPGA can hold per column. If the number 

of number of particles is larger, a warning signal is given to the user. Monitoring the 

number of particles in each column and adaptively moving the cell boundaries helps to 

balance the load (making all three tasks finish at nearly the same time) and to avoid 

overflow of the FPGA internal memory, which would result in loss of particles from the 

system. 

5.12 Summary and Conclusions 

A brief introduction to FPGAs and the reconfigurable computing platform were given in 

this chapter. Two hardware implementations were described. A simpler implementation 

made use only of the low level parallelism of the DEM. A more complex implementation 

was also described. This implementation made use of both the low level and high level 

parallelism of the DEM. This implementation was based on domain decomposition, which 

 125



Chapter 5: Hardware Implementation of the DEM     

meant that issues such as load balancing had to be considered. Both implementations were 

validated with the software implementation. 

 

The main concepts on which the high and low level parallelsim implementation is based 

are briefly summarised below: 

 

1. Firstly, splitting the internal FPGA memory into six independent units allows the 

overlapping of the three main computational tasks of the DEM. The re-boxing of 

particles transitioning from one column to another is completely free in terms of 

computing time as the left and right column of the particles being checked for moving 

to the neighbouring column are already cached in the FPGA’s internal memory. 

 

2. One of the aims of the design is to have all three units working in parallel and never 

having to stall any of them to wait for another to finish. As particles move across the 

domain, some sub-domains become much more heavily populated than others, with the 

result that the computation times for the sub-domains become unequal, so some units 

have to stall to wait for others to finish. Monitoring the number of particles in the 

system and moving the boundaries of each sub-domain adaptively alleviates this, 

giving a well balanced system throughout the simulation. As particles can be re-boxed 

with no time penalty this will not take any of the simulation time. 

 

3. The contact check unit is very cheap in terms of hardware resources, because it does 

not look for true contacts, but instead just looks for particles whose bounding boxes 

overlap. This allows the instantiation of many of these units in parallel. In order to 

force the main tasks to finish at almost the same time, the instantiation of many contact 

check units is desirable, because the time needed to compute the contact between 

particles grows quadratically with the number of particles in that sub-domain. 

 

4. Scaling the parameters of the simulation avoids the need for a large dynamic range, 

thus avoiding the need for floating point arithmetic. The main results of interest of 

DEM simulations is the bulk behaviour of the system and not the individual particles, 

making low precision arithmetic tolerable. 

 126



Chapter 5: Hardware Implementation of the DEM     

 127

 

The great advantage of this architecture is that it exploits the massive parallelism inherent 

in the DEM. It has the advantages of being scalable to newer, faster and bigger FPGAs as 

it can easily be upgraded to 24 or 32 bit arithmetic, and more contact check units can be 

instantiated in parallel by changing a simple generic parameter. 

 

5.13 References 

[1] www.xilinx.com/datasheet 

[2] Kean T., “Tools of the third wave of Programmable Logic”, 1st Celoxica User 

Conference, Stratford Upon Avon, 2001. 

[3] Alfke P., ”The Future of Field Programmable Gate Arrays”, 5th Workshop on 

electronics for LHC (LEB99). Plenary session, University of Wisconsin, 1999. 

[4] www.Celoxica.com 



6. CHAPTER CHAPTER 6 

SOFTWARE AND HARDWARE ANALYSIS 

6.1 Introduction 

This chapter compares the differences between the software and the hardware 

implementations in terms of speed-up, numerical precision and stability. It should not be 

forgotten that the primary aim of this work is not just to have a faster implementation, but 

one with correct results. It does not make sense to have a faster system if the results 

obtained are wrong. A careful precision and stability analysis is therefore needed, as well 

as a good understanding of the algorithm's behaviour. 

 

In the current research, software (SW) and hardware (HW) implementations for the DEM 

were created. It is necessary to compare the results of each in terms of their numerical 

precision difference, as the 16-bit fixed point arithmetic of the hardware implementation 

will inevitably produce different results from those of the 32-bit floating point arithmetic 

of the SW implementation. The results obtained in software implementation using 32-bit 

floating-point arithmetic are considered to be the “correct” ones, against which the results 

obtained with the hardware implementation will be compared. (The reasonableness of this 

assumption is investigated in section 6.6). 

 

128 



Chapter 6: Software and Hardware Analysis     

6.2 Speed-up  

There are many ways to evaluate the performance of a parallel algorithm. A very common 

criterion is speed-up, which is measure of how much faster a computation finishes on a 

parallel machine than on a uniprocessor machine (see Eq. 6-1). This concept was explained 

in detail in chapter 4, section 4.2. 

 

The following sections will present a runtime comparison between the optimised software 

version presented in chapter 3, and the two hardware implementations (SIMD and MIMD) 

presented in chapter 5. In order to give a fair comparison, the domain decompositions used 

by the hardware and software are independently optimised, so that each method performs 

at its best. 

6.2.1 Low Level Parallelism v. Software Implementation 

A 2-dimensional DEM simulation using 500 particles generated randomly in a domain was 

carried out using the low level parallelism hardware implementation. 80% of the Xilinx 

XCV1000 FPGA resources were consumed using one instance each of the contact check 

unit, the coordinate update unit and the force update unit, as described in section 5.8. For 

comparison, a corresponding simulation was carried out on the optimised software version, 

described in chapter 4, on a PC with a 1GHz Athlon processor and 750 Mbytes of RAM. 

The DEM running in FPGA hardware was found to be 5.6 times faster. 

 

The hardware version uses pipelining to obtain one new result (contact identification, force 

component update or movement update) on each clock cycle. The system works at a clock 

speed of 30 MHz, but within the arithmetic pipelines it uses a slower clock of about 7.5 

MHz in order to keep these pipelines fully loaded. By contrast, the software version runs 

on a processor of very high clock speed, but takes many hundreds of clock cycles to 

generate each result. Figure 6-1 shows the initial state of the simulations for the software 

(a) and the hardware (b) simulation.  

 129

algorithmparalleltheofruntime
algorithmsequentialfastesttheofruntimespeedup =  Eq. 6-1 



Chapter 6: Software and Hardware Analysis     

 
(a) 

 
(b) 

Figure 6-1 Initial state of the 500 domain assembly for the SW (a) and for the HW (b) simulation 

For the SW simulation, the domain is split into a near-optimal grid size in order to achieve 

the fastest possible simulation time. The HW simulation has no grid. Table 6–1 shows the 

simulation time for 1000 time steps each of the SW and the HW simulations. 

 

Table 6–1 Simulation time for the SW and the HW implementations for 500 particles 

 T(SW) T(HW) SIMD  

Simulation time 0.73 s 0.13 s 

 

6.2.2 High and Low Level Parallelism v. Software Implementation 

An experiment was set up in order to measure the effectiveness of the high and low level 

parllelism design. Domains with 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, and 

200,000 particles were generated and simulated for 1,000 time steps. The performance of 

the software version was measured and compared with the results obtained by the 

hardware version.  

 

 130

Figure 6-2 shows one of the simulations with 50,000 particles. Figure 6-2 (a) shows the 

initial state of the randomly generated particles in the domain, with their initial velocities 



Chapter 6: Software and Hardware Analysis     

 
(a) 

 (b) 

Figure 6-2 (a) Initial state of the system of 50,00 particles 
(b) Final state after 1000 time steps (SW version). 

pointing towards the centre of the domain. Figure 6-2 (b) shows the final state after 1000 

cycles. 

 

Table 6–2 shows a comparison between the speed-up achieved by the hardware simulation 

as compared to the software running on an 1GHz Intel Pentium III based PC with 1.3 

Gbytes of RAM.  

 

Table 6–2 Run time for the software and hardware simulation and speed-up results 

NO. OF 

PARTICLES 

50,000 75,000 100,000 125,000 150,000 175,000 200,000

Timesoftware[s] 1800 2485 3120 3920 5156 6123 7423 

Timehardware[s] 51 80 103 130 175 196 245 

Speed-

upmeasured 

35.3 31.0 29.8 30.2 29.5 31.2 30.3 

 

 131

Figure 6-3 shows graphically the achieved speed-up. The slight variations between the 

results were due to load distribution differences between the simulations. 



Chapter 6: Software and Hardware Analysis     

The previous chapter showed that for a maximum of 125 balls/column (limited by the 

FPGA’s internal RAM) the position update and the read and write operation of new data to 

the external memory is the slowest stage, and limits the overall speed of the hardware 

system. 

6.2.3 Discussion of the Speed-up Results 

Both HW implementations have accelerated the simulation, the first design by a factor of 

5.6 and the second design by a factor of approximately 30. Given that the FPGA runs at a 

clock speed far lower than the PC microprocessor, this shows that the hardware 

implementations make very good use of the intrinsic parallelism of the DEM. 

 

For a given number of particles within a subdomain, the hardware implementations will 

always take the same length of time to simulate a time step, because it will always treat 

each particle as if it had six contacts, irrespective of how many true contacts it actually has. 

Thus the computing time will grow linearly with the number of particles in the system. By 

contrast, the software implementations run time depends on the number of true contacts 

that the particles have. The system parameter that has the greatest influence on this is the 

stiffness. The lower the stiffness, the more contacts are generated, and the more often the 

 132

Number of particles

50,000 75,000 100,000 125,000 150,000 175,000 200,000

S
pe

ed
-u

p

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Speed-up

 

Figure 6-3 Graphical representation of the measured and ideal speed-up 



Chapter 6: Software and Hardware Analysis     

resultant forces need to be computed for each particle. If the stiffness is sufficiently large, 

the system will behave like a billiard table, thus contacts will last for only a very brief 

duration. In order to ensure that the estimates of speed-up were conservative, the stiffness 

value used for the simulations was set to the maximum allowed by the 16-bit data 

arithmetic used by the hardware implementation, in order to minimise the software SW 

runtime. Use of a lower stiffness value would give even better speed-up results, since the 

software simulator would take longer, due to having a larger number of contacts. 

6.3 Data Precision 

The previous section has shown that the hardware design is faster than the software version 

running on a fast computer, but this has to be examined in conjunction with consideration 

of the accuracy of the results. It does not make sense to have a fast system if the result 

obtained is wrong. This section and the next describe the estimation of the difference in 

precision between the hardware and the software implementation. Section 6.5 describes 

measurements on the hardware system to confirm the estimates. 

 

Some basic concepts regarding this numerical analysis will be analysed in the following 

sub-sections. 

6.3.1 Basic Concepts 

The data format used for the hardware implementations was described in the previous 

chapter in detail and is reproduced in Figure 6-4 in order to define some key concepts 

given below [2]: 

 133

Wordlength

b0b1b2b3b4b5b6bw-1 bw-2
.......

Sign bit Radix
Point

Least
Significant

Bit  

Figure 6-4 16-bit data format 



Chapter 6: Software and Hardware Analysis     

Precision: Precision is the maximum number of non-zero bits representable. For fixed-

point representations, precision is equal to the wordlength. For the 16-bit arithmetic, 

B(12,4) used, with 4-bits reserved for the fractional part: the precision is 16 bits. 

 

Resolution: Resolution is the smallest non-zero magnitude representable. In this particular 

case: resolution  0625.02 4 == −

 

Unit in Least Significant Position (ulp) is the number that corresponds to a 1 in the least 

significant bit, and a zero in all other bits. In this particular case, 1 ulp = 0.0625. 

 

Range: Range is the difference between the most negative number representable and the 

most positive number representable. In this particular case the range would go from 

2047.9375 to –2048. 

 

Accuracy: Accuracy is the magnitude of the maximum difference between a real value 

and its representation. Accuracy and resolution are related as follows: 

2
ResolutionAccuracy =  Eq. 6-2 

For the 16-bit arithmetic with 4 bits reserved for the fraction part the accuracy would be 

03125.02
2 4

=
−

. 

Absolute Error ∆: The absolute error is the distance between the number x and the 

estimate x’. 'xx −=∆  [2]. 

Relative Error δ: The absolute error does not take into account the magnitude of the 

numbers involved. The relative error measures the error relative to the size of the number 

itself.
.x
∆

=δ  

 

 

 134

 



Chapter 6: Software and Hardware Analysis     

6.3.2 Computation Errors 

There can be several sources of computational errors. The most commons ones are: 

 

• Errors in the original data 

• Truncation errors 

• Round-off errors 

• Propagated error (in stable and unstable algorithms) 

• Overflow errors 

 

In this case, since the software and the hardware simulation start with the same data sets, it 

is assumed that there is no error in the original data. As the system parameters are chosen 

in a way that it is guaranteed that no overflows will occur, this source of error is also 

discarded. 
 

The next sub-sections will describe in detail how computational errors appear as a result of 

the 16-bit data format used in the HW implementations. 

6.3.2.1 Chopping Errors 

The easiest way for the hardware system to store a value that has more than 16-bits is to 

chop (ignore) all the digits after the LSB (Least Significant Bit) of the 16-bits. Figure 6-5 

shows an example of chopping. Two numbers are multiplied and the result cannot be 

represented using only four digits for the fractional part. In this example the absolute error 

is 0.015625 and the relative is 9.95x10-4. 

 

The worst cases error that can be introduced to a system due to chopping is equal to the 

resolution, which in this case would be 2-4. 

 

 135

For our design, in the case where results are too large to represent with 16-bit arithmetic, 

where possible, a larger wordlength is used to represent the data until a bit reduction is 

naturally produced. For example, after a multiplication a value is obtained that may have 

24 non-zero bits before the decimal point. These additional bits are retained until the value 

is representable within 16 bits. 



Chapter 6: Software and Hardware Analysis     

Much research into optimum wordlength allocation has been carried out in the last few 

years, especially for DSP systems implemented on FPGAs . Some tools have been 

reported in the literature that allow the designer to perform estimations of a performance 

and area trade-off [6][7]. In this case in order to have a fully working prototype, a trade-off 

between optimum wordlength and the fitting of the system on the available FPGA had to 

be accepted. 

[3][4][5]

6.3.2.2 Rounding Errors 

A rounding error is introduced when a number's precision is reduced by rounding the bits 

to the right of the LSB, in order that the number can be represented with the available bits. 

Figure 6-6 shows an example of rounding error, and compares it with chopping error. The 

 

703125.151875.475.3 =×  

 

 

 

 

015625.06875.15703125.15 =−=∆  

41095.9
703125.15
015625.0 −×≈=δ  

Figure 6-5 Chopping example 

671875.13125.3375.4 =×  

 

 

 

 

 

06875.13671875.13 =−=∆ rounding

0625.13671875.13 =−=∆ chopping

114.1
671875.13
15625.0

×==roundingδ

143.3
671875.13
046875.0

×==choppingδ

Figure 6-6 Rounding example and compariso

0011 1100 x 0111 0011 = 1111 1011 0100 

chop
1111 1011 = 15.6875 

0100 0110 x 0011 0010 = 1101 1010 1100 

1101 1011 = 13.6875 Rounding

1101 1010 = 13.625 Chopping 
Rounding
136

015625.  

046875.  

30−  

30−  

n with chopping 

 result

result



Chapter 6: Software and Hardware Analysis     

worst-case error that can be introduced by rounding is 
2

resolution  and in the current 

hardware implementation 03125.02
2 4

=
−

, which is equal to half the error introduced by 

chopping. 

 

Rounding error is equal to only half the error of chopping, but this is achieved at the 

expense of additional hardware cost. This is because rounding is normally achieved by 

adding 0.1 ulp to the number before chopping, thus requiring an additional adder. An 

algorithm similar to that of Figure 6-7 has to be used. 

 

Due to the fact that the hardware design implemented consumed almost all of the usable 

FPGA, chopping rather than rounding was used. 

6.4 Errors in arithmetic operations 

The different arithmetic operations differ in how badly they are affected by the finite 

precision representation of the result. It is important to know whether the errors can grow 

so large as to cause all accuracy in the solution to be lost. This section attempts to estimate 

the effects of errors in the arithmetic operations on the results of the hardware DEM. 

6.4.1 Worst Case analysis 

Depending on the arithmetic operations used, there are various possibilities in terms of the 

error that may be introduced into the result. For example, in the case that two very close 

numbers are subtracted, almost all of the significant digits could be lost. If the resulting 

answer is then multiplied by a large number, this gives rise to a very inaccurate result. A 

number of different cases are described below for the most common arithmetic operations 

as a function of the operands. 

 137

25.5242188.5  →rounding  

0100.01011110.0011.0101  →rounding  

 

Figure 6-7 Rounding carry example 

carry 



Chapter 6: Software and Hardware Analysis     

MULTIPLICATION (a x b) 

The following table shows the different errors introduced by a multiplication depending on 

the values of the input values.  

 

Table 6–3 Worst case analysis for the multiplication as a function of the input values 

| a | < 1 

| b | < 1 

| a | < 1 

| b | > 1 

| a | > 1 

| b | < 1 

| a | > 1 

| b | > 1 

If (a × b > 2-4) 

       Max. Error = 2-4 

else 

     All accuracy lost 

 

Max. Error = 2-4 

 

 

Max. Error = 2-4 

 

 

Max. Error = 2-4 

(If no overflow occurs) 

 

 

As seen above, only if both input values are smaller than unity and the result of the 

multiplication is smaller than the precision (2-4) will all the digits be lost. An underflow 

condition would have happened. 

 

DIVISION (a / b) 

The following table shows the worst-case scenarios for a division of two 16-bit numbers 

with the previously described data format: 

 

Table 6–4 Worst case analysis for the division as a function of the input values 

| a | < 1 

| b | < 1 

| a | > 1 

| b | < 1 

| a | < 1 

| b | > 1 

| a | > 1 

| b | > 1 

If ( a >> b ) 

2-4 

If ( a≈b ) 

2-4 

If ( b >> a ) 

All accuracy 

lost 

 

2-4 

 

 

If the difference is 

large enough: 

All accuracy lost 

 

2-4 

 

 138

 



Chapter 6: Software and Hardware Analysis     

As seen in this table, there are two cases in which all accuracy can be lost.  

 

• when the denominator b is bigger than the numerator a, and both are smaller than 

one  

• when the numerator is smaller than 1 and the denominator is big  

 

Therefore great care must be taken when divisions are used.  

 

ADDITION (a + b) 

The maximum error for the worst case in all the addition cases, independently of the values 

of a and b, is equal to the precision of the numerical representation. In this case 2-4.  

 

SUBTRACTION (a – b) 

Subtraction, like the division, a very problematic operation, as two close numbers leads to 

the loss of all significant bits. 

 

Table 6–5 Worst case analysis for the subtraction as a function of the input values 

| a | < 1 

| b | < 1 

| a | > 1 

| b | < 1 

| a | < 1 

| b | > 1 

| a | > 1 

| b | > 1 

If ( a ≈ b ) 

        Lose all accuracy 

else 

2-4 

 

2-4 

 

 

2-4 

 

If ( a≈b ) 

    LOSE ALL 

ACCURACY  

else 

2-4 

 

 

 

 

 

 139

 



Chapter 6: Software and Hardware Analysis     

6.5 Error Propagation in Computer Arithmetic 

This section will summarise the basic ideas about how errors propagate through arithmetic 

operations. The error propagation model is presented first, with some basic ideas about its 

statistical analysis. The error propagation in each arithmetic operations is presented 

afterwards.  

6.5.1 Error propagation model 

The truncations/rounding after each arithmetic operation can be modelled by replacing 

each truncation/rounding by and addition with an error signal as shown in Figure 6-8 [8], 

where Opr stands for any arithmetic operations. 

 

 

 

 

Figure 6-8 Truncation/Round off propagation model 

Every time the signal is truncated/rounded, a noise source with variance σ2 is constructed. 

The sources are assumed to be uncorrelated with each other and with themselves [9]. The 

noise model can therefore be described as a standard continuous rectangular distribution 

, as shown graphically in Figure 6-9 and analytical in Eq. 6-3, where the maximum error 

introduced in the system is equal to 2-4, which is the equal to the resolution of the 16 bit 

data representation given in section 6.3. 

[8]

 

 

 

 

 

 

Figure 6-9 Noise distribution model 

4
4 2

2
1)( == −xf  Eq. 6-3 

 

 140

Opr +
input output

error

0 2-4 µ

A = 1

1/2-4 

error 

Probability 
f(x) 



Chapter 6: Software and Hardware Analysis     

µ stands for the mean error of the distribution and is given by Eq. 6-4. 

∫
−

==
42

0

)( dxxfxMean µ  Eq. 6-4 

 

The variance of the distribution on the other hand is given by Eq. 6-5. 

 

∫
−

−==
42

0

222 )( µσ dxxfxVariance  Eq. 6-5 

 

The mean and the variance of the truncation error distribution can be obtained using the 

distribution function shown in Eq. 6-3 and the expression for the mean (µ) and variance 

given in Eq. 6-4 and Eq. 6-5, as shown below. 

 

( )
2

03125.00
2

22
2

22)(
24

4
2

0

2
4

2

0

2

0

4

44 4

ulpxdxxdxxfx ==−====
−

−− −

∫ ∫µ  Eq. 6-6 

The mean of the error introduced after every arithmetic operation is as expected equal to 

half the resolution (ulp), which is half of the worst case value (ulp). 

( ) 4
234

42
2

0

3
4

2

0

2

0

242222 1025.3
23

22
3

22)(
44 4

−
−

×=





−=−=−=−=

−− −

∫ ∫
ulpxdxxdxxfx µµµσ  Eq. 6-7 

 

The next sections will give an overview of two statistical concepts, the normal distribution 

and the central limit theorem, which will be used for the error introduction and propagation 

analysis that follows. 

6.5.1.1 Normal Distribution 

 141

Also called a Gaussian distribution, this is in practice one of the most important 

distributions, since experimental errors are often normally distributed to a good 

approximation. The normal distribution describes many situations where observations are 

distributed symmetrically around the mean. 68% of all values under the curve lie within 

one standard deviation of the mean and 95% lie within two standard deviations. Its density 

function expressioni if given by Eq. 6-8 and shown in Figure 6-10. 



Chapter 6: Software and Hardware Analysis     

( ) 



 −−

=
2

22
1

2
1)(

µ
σ

πσ

x
exf  Eq. 6-8 

The function depends on two parameters: µ, which the mean and σ, which is the standard 

deviation. 

 

Figure 6-10 Normal distribution function 

The normal distribution has the following characteristics: 

• The graph has a single peak at the centre, this peak occurs at the mean.  
• The graph is symmetrical about the mean.  

• The graph never touches the horizontal axis. 

• The area under the graph is equal to 1. 

 

The normal distribution with µ = 0 and σ = 1 is called standard normal distribution and its 

distribution is given in predefined tables, which can be looked at in any statistic book. An 

arbitrary normal distribution can be converted to a standard normal distribution by making 

a variable change in Eq. 6-8 (for more about these concepts please refer to any statistic 

book). 

 

 

 

 

 142

 



Chapter 6: Software and Hardware Analysis     

6.5.1.2 Central Limit Theorem 

Central Limit Theorem states the following:  

 

“The average of the sum of a large number of independent, identically distributed 

random variables with finite means and variances converges "in distribution" to a 

normal random variable” 

 

This definition implies that if a variable is the sum of others: 

• The mean (µ) of the sum is equal to the sums of the means 

• The variance (σ) of the sum is equal to the sum of the variances 

 

Having the distribution of the truncation error introduced in each stage and applying the 

central limit theorem as the sum of the errors introduced in each stage after each truncation 

a global expression for the distribution of the error introduced in the position and forces 

update unit can be obtained. 

6.5.2 Arithmetic Operations Error Propagation 

The following examples show the error propagation in the arithmetic operations. The 

examples use the approximation a’ as the finite precision representation of the number a. 

Let a’ and b’ be the estimate of numbers a and b, so that a = a’ ± ∆a and b = b’± ∆ b (with 

∆a and ∆b being the absolute error). The effect of most important arithmetic operations are 

presented below. 

6.5.3 Addition 

The total error of an addition is: 

 

∆ a+b   = | (a+b) – (a’+b’) | 

= | a-a’ +b-b’ | 

≤ |a-a’| + |b-b’| 

= ∆a + ∆b 

 

Eq. 6-9 

 143

 



Chapter 6: Software and Hardware Analysis     

where the triangle inequality has been used. So the maximum total absolute error of an 

addition is bounded above by the sum of the individual absolute errors. 

 

On the other hand, the relative error is: 

 

'' bababa
bababa

ba +
∆+∆

≈
+
∆+∆

=
+

∆
= +

+δ  Eq. 6-10 

6.5.4 Subtraction 

For subtraction, the total error is given by: 

 

∆ a-b   = | (a-b) – (a’-b’) | 

= | a-a’ – (b-b’) | 

≤ |a-a’| + |b-b’| 

= ∆a + ∆b 

Eq. 6-11 

This expression is the same as for addition. The relative error is similarly the same as that 

of addition. 

 

'' bababa
bababa

ba −
∆−∆

≈
−
∆−∆

=
−

∆
= −

−δ  Eq. 6-12 

As mentioned in the previous section, subtraction (or equivalently addition of two numbers 

of opposite sign) can be problematic when the numbers are close in magnitude, because the 

relative error becomes very large. 

6.5.5 Multiplication 

The mathematical derivation of the propagation of error in multiplication is shown in the 

following expressions: 

 

 144

∆ ab   = | (ab) – (a’b’) | 

= |(a’ + ∆a) (b’ + ∆b) - (a’b’) | 

= |a’∆b + b’∆a + ∆a ∆b | 

Eq. 6-13 



Chapter 6: Software and Hardware Analysis     

≤ |a’∆b| + |b’∆a| + |∆a∆b| 

≈ |a’|∆b + |b’|∆a                    with |∆a∆b| ≈ 0 

 

On the other hand, the relative error is equal to the sum of the individual relative errors. 

 

ba
abab

ab baab
δδδ +=

∆
≈

∆
=

''
 

Eq. 6-14 

6.5.6 Division 

The analysis for division analysis is very similar to that of multiplication. The absolute 

error expression is given below: 

 

∆ a/b  = | (a/b) – (a’/b’) | 

≤ 2'

'

)(
)||

b
b | a | ( ab

' ∆+∆
 

Eq. 6-15 

And the relative error is: 

 

ba
baba

ab baba
δδδ +=

∆
≈

∆
=

'/'/
//  Eq. 6-16 

 

6.6 Arithmetic Error Analysis of the Hardware Implementation 

This section will analyse the introduction of the error after each arithmetic operation in the 

forces and position update unit. 

6.6.1 Discussion of the Worst Case Analysis 

As explained is section 6.3.3, there can arise situations where all significant figures output 

by finite precision arithmetic operators are wrong. This normally occurs where the result of 

an underflow is multiplied by a large number.  

 145

 



Chapter 6: Software and Hardware Analysis     

Figure 6-11 repeats the internal architecture of the velocity and position update pipeline 

(this was originally explained in section 5.8). Whether or not catastrophic loss of accuracy 

will occur is dictated by the nature of the pipelines, and by the data fed to them.  

 

KCM

vx

CON1

KCM

Fx

1/MASS

KCM

KCM
KCM

GRAVx TDEL

CON2
TDEL

nx old

nx new

vy

CON1

Fy

t

1/I

vx new

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVy TDEL

CON2
TDEL

ny old

ny new

vy new

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0old

0 new

0'

CON1

M

0' new

 

Figure 6-11 Velocity and Position update unit internal structure 

Consideration of Figure 6-11 shows that in this pipeline catastrophic loss of accuracy will 

not occur. One situation that might tend to create an underflow is the multiplication of two 

small numbers. If this underflow were then multiplied by a large number, this would cause 

a serious loss of accuracy. However, the paths through multipliers terminate on adders; if 

one of the inputs is an underflow, then the impact on accuracy is minimal.  

 

Another situation that might give rise to underflow is the addition of two numbers that are 

very close in magnitude, but opposite in sign. There are a few places where this could 

happen, e.g. if Fx/mass ≈ Gravx; however, these situations would crop up very rarely in 

practice, and in any case the result is multiplied by the time step, which is always less than 

1.  

 146

 



Chapter 6: Software and Hardware Analysis     

Figure 6-12 repeats the internal structure of the force update unit. There are several areas 

of the pipeline that could present a problem. The first of these is the initial stage that 

computes the argument for the sin/cos look-up table. 

/

cos

sin

vx1-vx2

vy1-vy2

vx1-vx2

vy1-vy2

KCM

0s

Rad

KCM

KCM

TDEL

TDEL

KCM

KCM

STIFN/2

STIFS/2

KCM

KCM

BDT

BDT

AMU

FN

FS

COH

cos

cos

sin

sin

FNT

FST

FSmax

F'
ST

KCM

Rad

Fx1 old

Fx2 old

Fy2 old

Fy1 old

M2 old

M1 old

Fx1 new

Fx2  new

M1 new

M2 new

Fy1 new

Fy2 new

t

COS
SIN
LUT

Xdif

Ydif

x1
x2

y1
y2

FTN

FTS

KCM

FNT

FST

tan

=

Rad2

contact

xdif2

ydif2

xdif

ydif

xdif2+ydif2

possible
problem areas

possible
problem areas

possible
problem areas

Figure 6-12 Forces update unit internal structure 

This contains two subtractions and a division, all of which are potentially problematic 

operations, and could lead to the introduction of a large error. Consideration of the 

meaning of the operands shows that the division is in fact not problematic, since xdif and 

ydif (shown in Eq. 6-17 and Eq. 6-18) will always be of similar size, and are smaller than 

twice the radius. (xdif and ydif represent the differences between the centroid co-ordinates of 

two particles in contact). However, the subtractions will cause a problem if the two 

particles are closely aligned either horizontally or vertically (see Eq. 6-19 and Figure 

6-13). In order to handle this, the hardware checks for the two special cases xdif  = 0 or ydif  

= 0 and handles them separately. If xdif  = 0 then the LUT outputs cos = 0 and sin =1; if ydif  

= 0 the LUT outputs cos = 1 and sin = 0. 

 

 147

21 xxxdif −=  Eq. 6-17 

21 yyydif −=  Eq. 6-18 

dif

dif

x
y

=tan  Eq. 6-19 



Chapter 6: Software and Hardware Analysis     

 

 

r r

xdif  
(a) 

r

r
ydif

 
(b) 

Figure 6-13 Special cases for cosine and sine 

A second potential problem area is at the 8th stage when the incoming number is multiplied 

by the time step (which is normally small) and this result is then multiplied by the stiffness 

(which is normally large). This problem is resolved by adding 4 additional bits to the 

fractional part of these paths, so in this region the number representation is B(12,8) rather 

than B(12,4). 

 

After this stage, there are no further problems areas in the pipeline, as all of the 

multiplications involve values larger than the unity, except for the sine and cosine 

multiplications at stage 12. The outcome of the sine and cosine multiplications is added 

onto the total force, so they do not contribute a large error. 

 

Having established that the pipelines are unlikely to be affected by catastrophic worst-case 

error scenarios, in the next sub-sections an estimate of typical error build up is formulated. 

6.6.2 Forces update unit 

This unit is the most computationally expensive, with the most pipelined arithmetic stages 

(15 in total). This gives rise to a higher possibility of error generation and propagation.  

 

The truncation after each arithmetic operation adds a noise and a bias component to the 

result. These effects are carried over from one pipeline stage to another so that at the end of 

the pipeline the result obtained using this data format will differ from the one obtained 

using floating point numbers by a certain amount.  

 148

 



Chapter 6: Software and Hardware Analysis     

In order to compute this amount Figure 6-12 has been expanded to include the noise and 

bias introduction after each arithmetic operation as shown in Figure 6-14. 

Figure 6-14 Expanded flow graph for the Fx force pipeline in the forces update unit 

Every stage in the pipeline as shown in this figure introduces a noise and a bias due to 

truncation.  

 

Considering N as the noise and B as the bias, than the error introduced in the system due to 

truncation in each arithmetic operation is given by the difference between the global 

expression for the forces without the noise and bias introduction and the expression 

including these factors. 

P2X1 

y1 

vx1 ∑∑∑

Zero vx2 Bias 
Mean

Noiseydif cos
∑∑ ∑∑ ∑∑∑ ∑ ∑ ∑∑∑ ∑∑∑LUT

P1
X2 Zero Zero Zero Zero Zero Bias Bias Bias Bias Bias 

Mean Mean MeanMean Mean
Noise Noise NoiseNoise Noise

∑ vxdif ∑∑∑

Zero Zero y2 Bias sin Bias Mean Mean 
Noise Noise 

FN 
∑ ∑∑ ∑∑ ∑∑ ∑∑∑∑ ∑ ∑ ∑ ∑

P3
Zero TDEL STIFN/2 FTN BDT Zero Zero Zero Zero Bias Bias Bias Bias Bias P3+FNT 
Mean Mean Mean Mean Mean
Noise Noise Noise Noise Noise

Fx1new 
∑∑∑∑ ∑∑∑ ∑ ∑

Zero Zero Bias Bias Bias cos Fx1old MeanMean 
NoiseNoise 

 149

P4



Chapter 6: Software and Hardware Analysis     

The expanded flow diagram given Figure 6-14 shows how the noise and bias stages are 

introduced in the system due to the chosen fixed point format and the truncations at the end 

of each arithmetic operation (for the x-coordinate only, as the y coordinate is analogous). 

E.g. after the first subtraction the result will look as given in Eq. 6-20. 

 

{ } BNxxstageE st ++−= 211  Eq. 6-20 

 

If all the stages are considered and the expression for the forces without error introduction 

and the expression of the forces with noise and bias are subtracted than an expression for 

the error introduced in the forces update unit can be found. This expression, considering 

only the noise (N) is given in Eq. 6-21. 

{ } ( )( ) ( ) ( )( ) ( )( )θθθθ cos2cossincos4 2 STIFNTDELNSTIFNTDELNSTIFNTDELNPE ++=
( )( ) ( )( ) ( )( ) ( ) ( )( )θθθθθ sincossincoscos 2 STIFSTDELNSTIFSTDELNNSTIFNN ++++

( )( ) ( )( ) ( )( ) ( )( ) NNSTIFSNSTIFSNSTIFSTDELN 4sinsinsinsin5 +++++ θθθθ  

Eq. 6-21 

It is interesting to observe that the error introduced in the system is almost halved in the 

case that the particles are in contact completely horizontally or vertically, as the sine or 

cosine would than be respectively 1 or 0. (Note that the whole process of how this 

expression has been derived has not been included as it involves a large amount of 

mathematical derivations) 

 

Eq. 6-22 shows the expression if only the bias is considered. 

{ } ( )( ) ( ) ( )( ) ( )( )θθθθ cos2cossincos4 2 STIFNTDELBSTIFNTDELBSTIFNTDELBPE ++=

( )( ) ( )( ) ( )( ) ( ) ( )( )θθθθθ sincossincoscos 2 STIFSTDELBSTIFSTDELBBSTIFNB ++++
( )( ) ( )( ) ( )( ) ( )( ) BBSTIFSBSTIFSBSTIFSTDELB 4sinsinsinsin5 +++++ θθθθ  

Eq. 6-22 

These errors are introduced to the system in every cycle so that the total error after n cycles 

will be equal to the sum of these errors after each cycle, as shown in Eq. 6-23. 

 150

 



Chapter 6: Software and Hardware Analysis     

{ } ( )( ) ( ) ( )( ) ( )( )θθθθ cos2cossincos4 2 STIFNTDELNSTIFNTDELNSTIFNTDELNPE ++=∑
( )( ) ( )( ) ( )( ) ( ) ( )( )θθθθθ sincossincoscos 2 STIFSTDELNSTIFSTDELNNSTIFNN ++++

( )( ) ( )( ) ( )( ) ( )( ) NNSTIFSNSTIFSNSTIFSTDELN 4sinsinsinsin5 +++++ θθθθ  

Eq. 6-23 

These two expressions give a mathematical expression of the error introduced in the 

system due to truncation after each arithmetic operation and will be used in the next 

section to compare some real results with this model. 

6.6.3 Position Update unit 

The position update unit involves a smaller amount of arithmetic operations and a much 

smaller number of pipeline stages (only 7), which reduces the possible error generation and 

its propagation in the system.  

 

Figure 6-15 shows the expanded flow diagram of the pipeline in the position update unit 

that computes the new x coordinate of the particles. Again as show in the previous section, 

each arithmetic operation in the pipeline inserts a noise and bias error in the system. 

Σ Σ Σ Σ

CON1 Zero
Mean
Noise

Σ

Zero
Mean
Noise

Bias Bias

Σ Σ

Bias CON2 Zero
Mean
Noise

Vx
Vxn

Σ Σ Σ Σ

1/Mass Zero
Mean
Noise

Σ

Zero
Mean
Noise

Bias Bias

Σ Σ

Bias TDEL Zero
Mean
Noise

Fx

GravX

Warning : You have
a large signal chain
before this !!

P1 P2

P3

P4

 

Figure 6-15 Expanded flow graph for the x coordinate pipeline in the  position update unit 

Considering N as the added noise and B as the bias, then the value obtained for vx will be 

given by Eq. 6-24 and Eq. 6-25, where E{P4} is the expression of the value in point P4 of 

 151



Chapter 6: Software and Hardware Analysis     

Figure 6-15 and E{P3} the value at the end of the pipeline (which correspond to the value 

of the x-coordinate). 

{ } BNTDELBNGravXBN
mass
FxPE ++








+++






 ++=4  Eq. 6-24 

{ } ( )( ) BNCONBNPBNVxCONPE +++++++= 2413  Eq. 6-25 

 

Eq. 6-26 shows the result of inserting Eq. 6-24 in Eq. 6-25. 

 

{ } ( ) BNCONBNBNTDELBNGravXBN
mass
FxBNCONVxPE ++








++++








+++






 +++++= 213  

Eq. 6-26 

As from a time instant viewpoint Vx  is used to compute )(t )1( +tVx  the central limit 

theorem, explained in section 6.5.1.2, will start to apply for Eq. 6-4. So stripping out the 

noise component to just look at the mean value will derive in Eq. 6-27. 

( ) BNCONBNBNTDELBNGravXBN
mass
FxBNCONtVxtVx ++








++++








+++






 +++++=+ 2.1)()1(

 

Eq. 6-27 

 

On the other hand stripping out the noise component to just look at the mean value will 

derive in Eq.6-28. 

 

( ) BCONBBTDELBGravXB
mass
FxBCONtVxtVx +








++








++






 +++=+ 2.1)()1(  Eq.6-28 

 

Obviously for the error free value should be: 

 152

 



Chapter 6: Software and Hardware Analysis     

( ) 2.1)()1( CONTDELGravX
mass
FxCONtVxtVx 
















+






+=+  Eq. 6-29 

 

As the Fx is also computed in the same way, as explained in the previous section, it also 

contributes to the error introduced when computing the new x coordinate as shown in Eq. 

6-21. Thus the magnitude of the error for the new coordinate is equal to the difference 

between the error free and the expression which considers the error (xerror free – xerror), as 

shown in Eq. 6-30. 

 

( ) ( ) ( ) ( NTDELNTDELCONNCONTDELNCONTDEL
m
ErrorF

x Fxx
Error 223222 22 ++++







 +
= ) Eq. 6-30 

The first term that includes the error due to the error induced in the forces update unit, and  

will be equal to 0 if the particle has no other particles in contact with it. 

 

Considering the variance alone and taken the square root of the expression given in Eq. 

6-31, would give a 65 % in confidence levels, as we are assuming a normal distribution. 

 

( ) ( ) ( ) ( )BTDELBTDELCONBCONTDELBCONTDEL
m
ErrorF

x Fxx
noise 223222 22 ++++







 +
= Eq. 6-31 

 153

 



Chapter 6: Software and Hardware Analysis     

6.6.4 System error accumulation 

In order to validate the previously discussed error analysis, a simulation was generated and 

run in software and hardware. This system was simulated one time step at a time and the 

differences between the software and the hardware results were monitored and stored. 

Figure 6-16 shows the simulator window that reports the values of the hardware and 

software centroid, average velocity and their x and y-coordinate deviation. 

 

 154

 

Figure 6-16 SW window to measure the difference between the SW and the HW simulation 



Chapter 6: Software and Hardware Analysis     

 Figure 6-17 shows how the mean absolute error in particle position grows with each time 

step. The error is taken to be the difference between the particle positions produced by the 

hardware and software simulations. The blue line corresponds to the theoretical error 

introduction and predicts a linear error growth. The purple and black lines show the real 

error introduction, which is distributed around the predicted error values and grows in a 

similar linear way. As we assumed a normal distribution 65 % of the error introduction 

resides between one standard deviation of the mean error, which is shown in the graph as 

blue crosses. 

 

This result shows that the predicted analytical error study matches the results obtained in 

the arithmetic operation units (position and forces units). 

6.7 Comparison of Bulk Errors in Software and Hardware 

The previous section discussed the build up of errors in the positions of individual 

particles. In fact, the behaviour of individual particles is rarely of interest in DEM 

 155

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

cycles

A
bs

ou
te

 e
rr

or
 (x

 a
nd

 y
 c

oo
rd

in
at

e)

20

theoretical error
measured difference x
measured difference y
65% error bar

Figure 6-17 Error accumulation in the hardware implementation compared to the software 

implementation for the x and y coordinates 



Chapter 6: Software and Hardware Analysis     

simulations. (If it were, then the standard practice of initialising particles with a 

randomised initial position and velocity would be unacceptable.) Instead, the macroscopic 

properties of the bulk are the issue of interest. If the errors in particle positions are not 

systematically biased, then the error incurred in each particle will in general be cancelled 

out by error in other particles, thus giving an overall behaviour of the bulk that is 

accurately modelled, even when the behaviour of the individual particles is not. 

 

The statistical analysis and its experimental verification in the previous section has shown 

on the other hand that there is and biased error introduction in the system due to truncation, 

which makes the hardware values be always smaller than expected. This is a trade-off that 

had to be assumed when designing this prototype and newer FPGAs that allow the 

implementation of this hardware architecture with higher wordlength will minimize this 

effect. The next sections will also discuss and show that this biased error introduction does 

not have any effect on the stability of the system, which behaves in the same qualitative 

manner as the software simulator. 

 

In order to check if the bulk behaviour of a particle assembly behaves equally in the 

software and in the hardware implementations, a set of bulk measures computed. These 

were:  

• The system energy 

• The average particle speed  

• The location of system centroid 

 

A simulation was set up in order to compare the behaviour of these bulk measures between 

software and hardware. The initial parameters are shown in Figure 6-18. The results are 

presented in the following sub-sections. 

 

 156

START 150.00 150.00 7 0 

RADIUS 2.00 

AUTO 0.00 150.00 0.00 150.00 50 100 0 1 

SHEARSTIFF 2.00 

NORMSTIFF 500.00 



Chapter 6: Software and Hardware Analysis     

DENSITY 1.00 

FRICTION 0.00 

DAMPING 0.00 0.00 0.00 0.00 

COHESION 500.00 

XGRAVITY 0.00 

YGRAVITY 0.00 

FRACTION 0.08 

CYCLE 1 

Figure 6-18 Initialisation file for the simulations  

6.7.1 System Energy 

The contributions to system energy are listed below: 

 

1. Kinetic Energy: Eq. 6-32 gives the expression to compute the kinetic energy of a 

single particle. 

22

2
1

2
1 θImvEkinetic +=  Eq. 6-32 

This is summed across the entire assembly to give the total kinetic energy  

 

2. Potential Energy: When two particles come into contact, their velocities diminish 

and they overlap. The repulsive force F between them is proportional to the 

overlap ∆n. In terms of energy, this means that part of the kinetic energy of the 

system is converted to potential energy stored in the contact. When the contact 

between the particles ceases, the potential energy is converted back to kinetic 

energy again. Eq. 6-33 shows the expression needed to compute the potential 

energy of one particle, where k represents the stiffness. 

nFnkEPotential ∆=∆=
2
1

2
1 2  

with nkF ∆=  
Eq. 6-33 

 157

 



Chapter 6: Software and Hardware Analysis     

Figure 6-19 shows how the contacts between particles are modelled by a normally directed 

spring and dashpot, and by a spring–dashpot-slider assembly in the tangential direction. 

This model is explained further in [10]. 

 

Y

X

Spring

Damper

Slider

 

Figure 6-19 Balls’ contact model 

The total energy (neglecting potential energy due to gravity) of the system at every instant 

of time is given by the sum of both energies, as shown in Eq. 6-34. 

 

)()()( tEtEtE potentialKineticTotal +=  Eq. 6-34 

 

In order to monitor the energy in the system after every step, an option was built into the 

software simulator to trace the evolution of the energy components in the software and 

hardware simulations. In debugging mode, both hardware and software simulations are run 

in parallel, thus providing the instantaneous values of the various energies for each time 

step, as shown in Figure 6-20. 

 158

 



Chapter 6: Software and Hardware Analysis     

 

Figure 6-20 Energy window once the software and hardware system have been generated 

Figure 6-21 shows how a DEM system with damping dissipates energy in the software and 

in the hardware version. The hardware version dissipates the energy a little faster, but its 

qualitative behaviour is exactly the same as the software version. 

 159

Time steps

0 5 10 15 20 25

En
er

gy
 [J

]

0

10000

20000

30000

40000

50000

Energy in SW
Energy in HW

 

Figure 6-21 System’s Energy progression with damping for the software and the hardware 

implementation 



Chapter 6: Software and Hardware Analysis     

During testing, it was discovered that the numerical integration scheme used in the DEM is 

intrinsically energy dissipating if any contacts are established between particles. By 

contrast, a real system should not lose any energy if there is no damping and no sliding in 

the system. However, this is not the case for the DEM using the trapezoidal time 

integration scheme; the system loses energy each time a contact is created and released. 

This result was unexpected, so the software was checked against a standard DEM code, 

Cundall and Strack’s BALL [11], to check whether this was due to a bug in the software 

developed for this project, or whether this is a general property of DEM simulators. The 

behaviour of the standard code was identical to the behaviour of our software. 

 

Figure 6-22 shows how the total system energy evolves without damping for the software 

and the hardware implementations. In this case, it can be seen that the energy dissipation is 

much slower. Once again, the hardware implementation dissipates energy slightly faster 

then the software, but the qualitative behaviour is similar. 

Time steps

0 50 100 150 200

E
ne

rg
y 

[J
]

20000

25000

30000

35000

40000

45000

50000

Energy SW
Energy in HW

 

Figure 6-22 Systems Energy progression without damping for the software and hardware 

implementation 

 160

In order to test out the behaviour of a numerically unstable system, a simulation was 

performed where the time step was larger than the critical time step. For the software 



Chapter 6: Software and Hardware Analysis     

simulator, the energy of the system increased rather than decreased. This is a sign of 

numerical instability. For the hardware version, there was an exponential increase in the 

number of overflows within the computational pipelines, and many of the results produced 

were nonsensical. These are symptoms of numerical instability; however, for the hardware 

version, the total energy of the system did not increase. 

 

Another factor that affects the stability of the system are the overflows. As the parameters 

in the system were chosen in a way that overflows did appear extremely rarely this source 

of instability was not considered. 

6.7.2 Assembly Centroid 

Another measure of the bulk behaviour of the assembly is the centroid of the system. After 

every time step, the centroid of the system is computed and stored. The way the centroid is 

computed is given in Eq. 6-35 and Eq. 6-15. 

ballsofnr

x
x

ballsofnr

i
i

centroid

∑
== 1  

Eq. 6-35 

ballsofnr

y
y

ballsofnr

i
i

centroid

∑
== 1  

Eq. 6-36 

 161

The value of the centroid was computed both for the software and the hardware versions. 

The differences between the software and the hardware results are plotted in Figure 6-23 

for a system using a ball radius of 2 units.  



Chapter 6: Software and Hardware Analysis     

Time steps

0 10 20 30 40 50

S
W

 H
W

 c
en

tro
id

's
 d

iff
er

en
ce

s 
(a

bs
 v

al
ue

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

X centroid difference
Y centroid difference

 

Figure 6-23 Behaviour of the centroids difference between the software and the hardware 

implementation 

 162

It can be seen from Figure 6-23 that the discrepancy steadily grows for about the first 30 

time steps, but the size of the discrepancy is a small fraction of a ball radius. After about 

the 30th time step, a point of inflection occurs. This is because the simulator used a periodic 

boundary condition; when a ball exits the domain at one edge, it re-enters the domain at the 

opposite edge, as shown in Figure 6-24. The periodic boundary condition is used in order 

to prevent loss of particles from a finite sized domain. 



Chapter 6: Software and Hardware Analysis     

 

Figure 6-24 Periodic domain example 

Two effects appear here due to the effect of chopping errors: 

 

• The ball positions in the hardware version will lag behind those of the software 

version for positive displacements 

• The ball position in the software version will lag behind those of the hardware 

version for negative displacements (this is due to the fact that chopping 

negative numbers given two’s complement will generate a larger negative 

number) 

 

This means that the particles simulated in software will wrap around the domain earlier 

than they will in hardware for positive displacements and will wrap around the domain 

later for negative displacements. This is the cause of the point of inflection seen in Figure 

6-23. On average and for a large amount of particles both effects should cancel out. 

6.7.3 Average Assembly Velocity 

The last bulk measure to be considered is the average particle velocity of the assembly. 

The average velocity of both assemblies is monitored in the same way as the energies and 

 163



Chapter 6: Software and Hardware Analysis     

the location of the centroid. Figure 6-25 shows how the difference of average velocities in 

the x and y direction changes in every time step for a simulation where the initial velocities 

were initialised to a random number in the range –20 to +20 units. The error grows almost 

linearly, in a manner similar to the behaviour of the centroid before the period boundary 

problem appears. 

A similar conclusion as in the previous cases (sections 6.7.1 and 6.7.2) can be drawn. The 

chopping errors, introduced in the hardware version, are responsible for this growth in the 

difference. The error remains quite small, and the qualitative behaviour of the hardware 

and software simulators is close. 

 

6.7.4 Comparison of Single Precision and Double Precision Software 

So far it has been assumed that the 32-bit floating point software can be taken as a 

“correct” reference implementation against which the hardware results can be evaluated. In 

order to establish whether the software results are affected by the precision used, the 

simulator was modified to use double precision, and its results compared against the single 

precision results. 

 164

Time steps

0 10 20 30 40 50

V
el

oc
iti

es
 d

iff
er

en
ce

s 
(a

bs
 v

al
ue

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Velocity dif x-direction
Velocity dif y-direction

 

Figure 6-25 Average velocity progression 



Chapter 6: Software and Hardware Analysis     

 

Two simulations were run, one for a 10,000 particle assembly and one for 20,000. Both 

were generated with random initial configurations, and ran for 1000 time steps. After 1000 

time steps, the results of both simulation were compared. The discrepancies in particle 

positions were typically 1 part in a billion. Figure 6-26 the behaviour of the energy over 

the first 200 time steps.  

As the importance of the DEM is the bulk behaviour of the assembly, and this was found to 

be almost identical, it can be concluded that in both simulations assemblies behaved 

equivalently. 

 

The major difference was found in the simulation time needed. As the Pentium processor 

on which the software simulator runs is a 32-bit processor, use of double floating-point 

arithmetic increased simulation time by about 20%, as shown in Table 6–6. 

 

 

 

 

 165

Cycles

0 50 100 150 200

E
ne

rg
y

25000

30000

35000

40000

45000

50000

Float
Double

 
Figure 6-26 System energy for float and double SW simulation 



Chapter 6: Software and Hardware Analysis     

Table 6–6 Simulation time for 10 000 and 20 000 particles assemblies for 1000 cycles in the single 

and double precision floating-point arithmetic 

 t(single precision) t(double precision) 

10 000 particles 9 min 33 s 11 min 28 s 

20 000 particles 21 min 17 s 25 min 51 s 

 

6.8 Discussion 

Two main aspects have to be considered when comparing the DEM implemented in 

software and hardware. The effectiveness of the design, i.e. the time it takes to run a 

simulation, and the correctness of the results. 

 

The efficiency has been demonstrated for both hardware implementations (SIMD and 

MIMD) running a range of simulations. The SIMD design gave a speed-up of 5.6, and the 

MIMD design gave a speed-up of about a factor of 30. In order to give a conservative 

estimate of the speed-up, the highest possible stiffness that could be represented in 16 bits 

was selected. This has no effect on the speed of the hardware, but makes the software 

version very fast, because the contacts between particles are very brief, so at any one time 

the number of contacts is low. Also, the software did not use the same domain 

decomposition as the hardware; instead its domain decomposition was independently 

optimised to get the shortest possible run time for the software. 

 

 166

It could be objected that the PC used was rather old and does not represent the state of the 

art: it used a 1 GHz processor, whereas 3 GHz processors are appearing nowadays. 

However, the same argument can be made about the hardware board. It used a Virtex I 

FPGA; the same design implemented on a modern Virtex II would run at a clock speed 

about three times faster. The nature of the hardware pipelines means that trebling the 

FPGA clock speed really would cause the results to be produced three times faster. By 

contrast, trebling the clock speed of a microprocessor may not give a factor of three speed-

up, due to the effect of cache misses and pipeline stalls. Also, the RC1000 board uses very 

slow memory (and this was the bottleneck limiting the speed of the MIMD design). The 



Chapter 6: Software and Hardware Analysis     

static RAM runs at 40 MHz, and requires two clock cycles to perform a write cycle. Use of 

more modern memory could increase the I/O bandwidth by up to a factor of 10. 

 

The parameters of the simulations were scaled so as to minimise the number of overflows 

that occurred. The only important errors introduced therefore into the system were those 

introduced by the chopping after each arithmetic operation. The error distribution 

functions, means and variances for the forces and position update units where obtained 

using the central limit theorem. The mean error would have been halved if a rounding 

scheme is used rather than chopping, however this would increase the expense of 

hardware. 

 

The introduction of the chopping error was demonstrated by setting-up simulations and 

monitoring how the particle positions behaved. A 0.2% deviation was observed after each 

time step for each particle, which overlays with the predicted error introduction in the 

statistical analysis. 

 

Usually when running a DEM simulation, the result of interest is the behaviour of the bulk, 

not the behaviour of every single particle. Some bulk measures were evaluated to analyse 

whether a particle assembly behaves equally in software and in hardware simulation:  

 

• The total energy in the system showed a good behaviour, as both systems lost 

energy at a similar pace. The hardware system energy at a rate slightly higher than 

the software system due to the chopping error. 

• The second bulk measure investigated was the centroid of the particle assembly. 

Chopping makes particles simulated in software wrap around the domain faster for 

when becoming larger and wrapping around the domain slower when exiting the 

domain from the lower end of the domain. These two effects cancel out when 

having a large enough number of particles. 

 167

• Lastly, the average system velocity was investigated. It shows a linear growth in 

the discrepancy, but gave reasonable agreement between the hardware and 

software simulations. 



Chapter 6: Software and Hardware Analysis     

6.9 Summary and Conclusions 

This chapter has presented an in depth analysis of the effectiveness and the correctness of 

the hardware and software implementations of the DEM. 

 

The hardware implementations has shown a very good effectiveness, requiring 30 times 

less computation time to complete the same task as the optimised software version running 

on a fast PC. 

 

The correctness of the results was also investigated. In order to fit the design on the 

available departmental FPGAs, which is a Xilinx XCV2000E, some compromises had to 

be made. 16-bit arithmetic with chopping (rather than rounding) was used. As a result of 

the use of 16-bit arithmetic, a linear error introduction was observed due to the loss of 

precision in the arithmetic operations. Applying a rounding scheme instead of truncating 

could halve the worst case error, but at some hardware costs, which in this case could not 

be afforded, as the design could only just fit onto the available FPGA. Introducing higher 

precision arithmetic (24 or 32-bits) would further reduce the error. 

 

This chapter has therefore demonstrated the validity of the hardware implementation, its 

efficiency and correctness.  

6.10 References 

[1] Yates, R ,”Fixed-Point Arithmetic: An Introduction”, Digital Audio Signal 

Procession, March 3, 2001. 

[2] Wood, Alastair, “ Introduction to Numerical Analysis”, Addison-Wesley, Harlow, 

1999 

[3] Constantinidis, G.A., Cheung, P.Y.K, Luk, W., “Optimum Wordlength Allocation”, 

Field Programmable Custom Computing Machines  (FCCM’02), Napa, California. 

2002. 

 168

[4] Wadeker, S.A., Parker, A.C., “Accuracy sensitive word-length selection for 

algorithm optimisation”, Proc. International Conference on Computer Design, 

Austin, Texas, pp 54-61, October 1998 



Chapter 6: Software and Hardware Analysis     

 169

[5] Nayak, A., Haldar, M, Choudhary, A, Banerjee, P, “Precision and error analysis of 

MATLAB applications during automated hardware synthesis for FPGAs”, Proc. 

Design Automation and Test in Europe, Munich, Germany, pp 722-728, 2001 

[6] Constantinidis, G.A., Cheung, P.Y.K, Luk, W., “The Multiple Wordlength 

Paradigm”, Field Programmable Custom Computing Machines (FCCM’01), Napa, 

California. 2001 

[7] Chang, M.L., Hauck, S.”Précis: A Design-Time Precision Analysis Tool”, Field 

Programmable Custom Computing Machines  (FCCM’02), Napa, California. 2002 

[8] Liu, B. “Effect of finite word length on the accuracy of digital filters – a review”, 

IEEE Trans. Circuit Theory, vol. CT-18, no6, pp. 670-677, 1971 

[9] Constantinidis, G.A., Cheung, P.Y.K, Luk, W., “The Multiple Wordlength 

Paradigm”, Field Programmable Custom Computing Machines  (FCCM’00), Napa, 

California. 2000. 

[10] Rong, G.H., Negi, S. C, “Simulation of Flow of Bulk Solids in Bins. Part 1: Model 

Development and Validation”, Journal of agricultural Engineering 1995 62, 247-

256 

[11] Cundall P.A, O.D.L. Strack, “A discrete numerical model for granular assemblies”. 

Geotechnique 29, pp. 1-8, 1979. 

 



7 CHAPTER CHAPTER 7 

SUITABILITY OF THE HARDWARE DESIGN 

FOR A MORE COMPLEX DEM  

7.1 Introduction 

The hardware implementation described and analysed in the previous chapters worked 

only for a simplified version of the DEM, in order to allow the design fit onto the available 

FPGAs. The simplifications used were: domains contained no walls, all particles had the 

same radius and density, and all simulations were 2-dimensional. This chapter will 

examine how well a more sophisticated DEM implementation could be mapped on the 

high and low level parallelism hardware design. 

 

In the real world, particle assemblies are kept in containers, and move around within 

containers and between them. These containers are represented in the DEM simulators 

 as walls with which the particles interact. These particles, in most cases, also have 

different radii and are 3-dimensional bodies. 

[1][3]

 

170 



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

These three factors were not considered when the hardware implementations were 

designed, as these factors would cost precious hardware resources and would result in a 

design that was too large to map onto the available FPGAs. 

 

This chapter will analyse the alterations to the hardware implementation that would be 

necessary to treat these factors, and will estimate the hardware resources required. 

7.2 Insertion of Walls 

When walls are included in the system, the data flow of the DEM changes slightly: 

 

• The walls can also move, thus their positions have to be updated 

• Contact checking must also be performed between balls and walls 

• Forces between balls and walls need to be computed. 

 

Figure 7–1 shows the new flow diagram. Contact checking would still need to be 

performed for the balls in each domain, but 

the walls need to be considered too. Once 

the contact list has been established, then the 

inter-particle forces must be computed as 

well as the forces between particles and 

walls. 

Contact  
Check 

(Balls and Walls)  

Velocity and co-ordinate update
(Balls and Walls) 

Interparticle Forces 
increment 

(Balls and walls) 

T= T +∆t 

Reboxing 
(Balls and Walls) 

 

Figure 7–1 Dataflow diagram for the DEM 

with walls 

 

If the walls are not static, than their new 

positions must also be computed for the 

balls and the walls.  

 

Finally the balls and walls need to be re-

boxed if they have moved to a different 

domain.  

 

As can be seen, three new sub-steps have 

been introduced into the computation path. 

 171



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

This section shows how these steps can be incorporated into the design. 

 

A wall can be defined as shown in Figure 7–2. The active side of the wall means the side 

facing the balls. The so-called shadowed part is the side of the wall where no balls should 

be found. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7–2 Wall description 

θc 

θ’c 

y’c 

x’c 

h2 

h1 

xc/yc 

Shadow part  

of the wall 

Active side  

wall 

The data needed to completely describe a wall is given below Table 7–1 [2].  

 

Table 7–1 Minimum set of parameters to describe a wall  

PARAMETER DESCRIPTION 

xc  Initial x-coordinate of the wall 

yc  Initial y-coordinate of the wall 

h1 Distance from the initial coordinates to the beginning of the wall 

h2 Distance from the initial coordinate to the end of the wall 

θc Angle of the wall (in degrees) from the x-axis 

cθ&  Angular velocity of the wall (in degrees per time unit) 

cx&  Velocity of the wall in the x-direction 

cy&  Velocity of the wall in the y-direction 

 

 172



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Once the wall has been generated, a new set of data items are needed in order to describe 

its dynamic behaviour as shown in Table 7–2. These parameters can be deduced from the 

parameters given in Table 7–1, and are computed in order to facilitate the remainder of the 

computations involved with the walls. These parameters are also sufficient to completely 

describe a wall. The only difference between these and the previous parameters is that in 

Table 7–2 the wall can rotate from a different reference point. 

 

Table 7–2 Rest of parameters needed once the wall is interacting will the balls. 

x1 Initial x-coordinate of the wall 

y1 Initial y-coordinate of the wall 

x2 Final x-coordinate of the wall 

y2 Final y-coordinated of the wall 

Fxsum Force on the wall in the x-direction 

Fysum Force on the wall in the y-direction 

Msum Moment of the wall 

sinθc Sine of the wall angle 

cosθc Cosine of the wall angle 

7.2.1 Contact checking between Balls and Walls 

The first step of the DEM that has been modified to treat walls is to check if there are any 

balls in contact with the walls. The following calculations have to be performed for that 

purpose. Based on Figure 7–3 the following equations are needed to check if a ball is in 

contact with a wall, assuming that the data shown in Figure 7–2 is available: 

 

( )( ) ( )( )
R

L
xxyyyyxx bb <

−−−−− 112112  Eq. 7–1 

12 hhLwhere −=  Eq. 7–2 

 

In order to check if the ball is in contact with the wall, the distance d (see Figure 7–3) 

needs to be computed and checked against the radius of the particle (R). The simplest way 

 173



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

to achieve this is to compute the area described by the parallelogram formed by the wall 

and a parallel line passing through the ball’s centroid. 

 

Knowing that the area of a parallelogram is given by Eq. 7–3, the distance between the 

ball's centroid and the wall can be compared with the ball’s radius in order to check if the 

ball and the wall are in contact. 

dLA =  Eq. 7–3 

+

x1/y1

x2/y2

xc/yc

dy

xb/yb

L

A

Figure 7–3 Ball

If d is smaller then the ball’s radius, then

shows the number of arithmetic operation

 

Table 7–3 Arithmetic operations needed the c

ADD/SUB MULT

6 

 

θ

x
 

-Wall contact detection 

 the ball and the wall are in contact. Table 7–3 

s needed to solve Eq. 7–1, and Eq. 7–2. 

heck for contacts between walls and balls 

IPLICATION DIVISION 

2 1 

174



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

The method described above requires many arithmetic operations, including one division, 

which do not map well to hardware. 

 

The contact check method could be simplified if the walls were only allowed to be 

horizontal or vertical, as only a simple addition or subtraction would be needed. As shown 

in Figure 7–4 for a horizontal wall below, only one operation is needed. 

+

x1/y1 x2/y2xc/yc

y

x

xt/yt

xb/yb

 

Figure 7–4 Ball-Wall contact for Vertical/Horizontal walls 

For the case that the ball is being checked for contact with a horizontal wall below, only 

the comparison shown in Eq. 7–4 is needed. 

)( 1yradyif b ≤−  Eq. 7–4 

In this case the number of arithmetic operations needed would decrease significantly: only 

2 additions and 2 subtractions are needed, as shown in Table 7–4. 

 

Table 7–4 Number and types of arithmetic operations to check for contacts between balls and 

walls, only for vertical and horizontal walls. 

ADDITIONS SUBTRACTIONS 

2 2 

 

 175



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

7.2.2 Forces between Balls and Walls 

In order to calculate the forces resulting from a contact between a ball and a wall, the 

equations shown in Figure 7–5 must be solved. The equations that are different from the 

simple DEM implemented in chapter 5 are highlighted.  

)sin()cos(

)sin()cos(
1

1

θθ

θθ

difdifR

difdifR

tdif

tdif

XYY
YXX

yyY

xxX

+×=

+×=

−=

−=

 

tradYYDRXDRDS
tangXXDRYDRDN

vvYDR
vvXDR

wallR

yballywall

xballxwall

∆−+=
∆+−=

−=
−=

))sin()cos((
))sin()cos((

θθ
θθ

 

BDTDFSDFSFST
BDTDFNDFNFNT

kDSDFS
kDNDFN

shearstiff

normstiff

×+=
×+=

×=

×=

 

 

)cos()sin(
)cos()sin(

θθ
θθ

FNTFSTFY
FSTFNTFX

+=
−=

 

yywalloldywall

yyballoldyball

xxwalloldxwall

xxoldxball

oldwallwall

oldwallball

FFF
FFF
FFF

FFF
XRFNMM
radFSTMM

−=

+=
+=

−=
×−=
×+=

 

Figure 7–5 Equations to compute the forces between a wall and a ball 

Different 

Different 

Thankfully, most of these equations are the same as those needed to calculate the forces 

between two balls in contact. This means that only a small number of additional operations 

have to be implemented when walls are included. 

 

 176



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Table 7–5 Additional arithmetic operations needed to calculate the forces between a wall and a 

ball, compared to the arithmetic operations needed for forces between two balls. 

ADDITIONS/ SUBTRACTIONS MULTIPLICATIONS 

Multipliers KCM 11 

10 4 

 

In total, only 11 extra additions, 10 extra multiplications and 4 extra constant coefficient 

multiplications are needed.  

 

The next sub-section will analyse the influence of having a system with walls that move. 

7.2.3 Wall Movement 

As walls can also move, their position needs to be updated after every time step. This is 

done using the equations shown in Figure 7–6. 

t
tyyy
txxx

ccc

coldcc

coldcc

∆+=

∆+=

∆+=

'

'

'

θθθ

 

0

0
0

=

=
=

sum

ysum

xsum

M
F
F

 

( )
( )
( )
( )cc

cc

cc

cc

hyy
hxx
hyy

hxx

θ
θ
θ
θ

sin
cos
sin

cos

22

22

11

11

+=
+=
+=
+=

 

Figure 7–6 Equations to compute the new position of the wall 

The total number of arithmetic operations needed to compute the new position of the wall 

is shown in Table 7–6. These arithmetic operations are not too hardware consuming, thus 

there should not be a problem implementing this on the FPGA. 

 

 

 177



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Table 7–6 Arithmetic operations needed to compute the new position of a wall 

ADDITIONS MULTIPLICATIONS LUT (to compute the sin 

and cosine) 

MUL KCM 7 

4 3 

1 

 

The cosine and sine can be computed using a look up table, once the wall's new angle is 

known. 

7.2.4 Hardware Resources needed to accommodate Walls 

The previous sections showed the number of additional arithmetic operations needed in 

order to simulate a system with walls. The question that arises is whether this could have 

been implemented with a state of the art FPGA, and if so, how many resources would this 

need. 

 

The design implemented in chapter 5 took up 80 % of a Xilinx XCV2000E FPGA, which 

consists of 19 200 slices (each slice consists of two logic elements). This means that 15 

360 slices were needed for this design. An estimate of the additional hardware needed in 

order to include walls in the design can be formed based on an estimate of the resource 

requirements of each of the constituent operations, shown in table Table 7–7. 

 

Table 7–7 Number of Xilinx slices needed to perform different arithmetic operations 

 ADD MUL KCM DIV SQRT 

Slices 8 140 110 527 460 

 Not 

pipelined 

Core gen 

Pipelined 

Core gen 

Pipelined 

Core gen 

Pipelined 

Pipelined 

 

From this table, an estimate can be formed of the number of slices needed in order to deal 

with the walls. This is summarised in Table 7–8. 

 

 

 178



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Table 7–8 Number of Xilinx FPGA slices needed for the additional arithmetic operations to include 

walls 

 ADD MUL KCM DIV 

Operations 24 17 7 1 

Slices 192 2380 770 527 

 

The total additional number of slices needed for a design that deals with walls is 3 869, 

thus the overall number of slices is as given in Eq. 7–5 and Eq. 7–6.  

 

wallsprevioustotal slicesslicesslices +=  Eq. 7–5 

slicesslicestotal 19220386915360 =+=  Eq. 7–6 

 

Consideration of the Xilinx datasheets (assuming a maximum achievable utilisation of 

80%), shows that a Virtex E FPGA (XCV 26000E) has the enough resources to deal with 

walls. It has 25 392 slices, while only 19 220 + 20% = 23 064 slices are needed. 

 

In terms of extra memory resources needed to hold the walls in the internal FPGA 

memory, not much is needed, as every sub-domain will hold a maximum of three walls. 

The easiest way to describe a wall is to use the parameters given in Table 7–2. Therefore if 

only x1, y1, x2, y2, Fx, Fy, M, θc and cθ&  are considered to describe a wall (sinθc and cosθc  

are deduced from θc),  Eq. 7–7 shows the total number of bits needed to describe a wall 

using 16 bit fixed point arithmetic. 

 

bitsbitswalladescribetoitemsMemwall 144169 =×=  Eq. 7–7 

 

As there can be a maximum of 3 walls in every column, therefore a maximum of 3x144 = 

432 bits will be required to store three walls in the FPGAs internal memory. This should 

 179



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

not be challenging, since the XCV2600E has also 25 % more Block RAM than the 

XCV2000E used throughout this work. 

7.2.5 Influence of the inclusion of Walls in the Overall Computing Time 

The previous section dealt with the hardware resources needed to compute the different 

steps of the DEM with walls. This section will discuss how the inclusion of the walls 

would influence the computation time of the system. The three stages that must be 

considered are: 

 

1. Contact check detection 

2. Forces Update 

3. Position update 

7.2.5.1 Contact Detection 

The contact detection between a ball and a wall could be computed in parallel with the 

contact detection between balls. Ball data is streamed through the contact check unit and 

this could be compared with the wall data applicable to this cell as well. This means that 

this unit would not cause any delay in terms of contact detection time. 

7.2.5.2 Forces Update 

After the forces due to contacts between the balls have been computed, the forces due to 

contacts between balls and walls are calculated. In order to save hardware resources, some 

of the arithmetic operations needed to compute the forces between balls can be re-used to 

compute the forces between balls and walls. This will of course have an influence in the 

computational time. 

 

The time needed to compute these forces will depend on the number of particles that are in 

contact with the wall(s) in that sub-domain (see Eq. 7–8). 

latencypipeline
diameterball

domaintheoflengthwallwallsforcest +=)(  Eq. 7–8 

 

 180



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Depending on the orientation of the walls in the domain, there could be more balls in 

contact with the walls in one sub-domain than in others. 

 

The depth of the pipeline for ball-wall calculations is the same as the one to compute the 

forces between balls, i.e. about 50 stages. The time needed to compute the forces between 

walls and balls will therefore not be significant in comparison with the time taken for ball-

ball forces, since ball-ball contacts will be much more numerous than ball-wall contacts. 

 

7.2.5.3 Position Update 

The time needed to compute the new position of the wall will depend on the number of 

walls in the system and the depth of the pipeline, which in this case consists of only 6 

stages. 

latencypipelinewallsofnumberwallspositiont +=)(  Eq. 7–9 

 

In a normal system the number of walls would be very small compared to the number of 

particles, which means that the total time required to update their positions will be 

minimal. 

7.2.6 Discussion of the Inclusion of Walls on the Implementation 

The inclusion of walls in the DEM simulation involves the need to re-design the hardware 

implementation. Sections 7.2.1, 7.2.2 and 7.2.3 show the amount of extra arithmetic 

operations needed to perform the contact check between balls and walls, forces between 

balls and walls, and to compute the new position of the moving wall respectively.  

 

The time needed to compute these operations is given in sections 7.2.5.1, 7.2.5.2 and 

7.2.5.3. The timing considerations of these operations are based on the assumption that 

large pipelines can be used in order to achieve one result every clock cycle. If the hardware 

resources are insufficient to allow this type of configuration, then other slower 

configurations can be used; the additional operations needed to compute the effects of the 

walls is small compared to the operations required to compute ball-ball interactions, so it is 

not critical to use a fast method for wall computations. 

 181



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

 

The conclusion of this section is that the insertion of walls would add some extra costs in 

terms of computing time and hardware resources, but this could easily be handled by the 

implementation. However, it should also be mentioned that the additional complexity of 

task scheduling makes the control unit more complex 

 

7.3 Multiple Radii 

The second aspect to take into account is the influence of particles with different radii. In 

principle, there could be some very large particles and some very small ones, with the 

result that a ball could have a potentially unlimited number of other balls in contact (see 

Figure 7–7). Therefore the software frontend to the hardware simulator should impose a 

maximum allowable ratio between the maximum and the minimum valid radii in order to 

avoid having a very large number of possible balls in contact, which could exhaust the 

FPGA’s internal memory. 

 

 

 

 

 

Figure 7–7 Balls in contact with different radii 

r2
r1

The changes to the arithmetic needed as a result of having balls of different radii will be 

discussed next. 

 

7.3.1 Arithmetic Changes: 

The arithmetic changes needed for this case are given below: 

 

1. Contact checks 

The contact check has to change as well. Instead of checking for a ball in the surrounding 

box of 4 x radius, contacts have to be checked for contacts in the surrounding box of 

 182



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

2 rad1 +2 rad2 (see Figure 7–8), and the box size has to be changed for each individual ball 

in the same cell.  

 

 

 

 

 

 

 

 

Figure 7–8 Contact detection for particles of different radius 

r2 

r1 

 

2. Force update: 

Multiplications are performed using the radii of the balls. These multipliers have to be 

changed to generic multipliers instead of cheaper constant coefficient multipliers. In total 

only two KCMs need to be changed to normal multipliers. As the force update unit is 

implemented as a large pipeline, the value of this radius needs to be stored along the 

pipeline in order to be applied at the correct time. Therefore a FIFO of 50 stages needs to 

be added as well, as the radius has to be available at the end to the forces pipeline, when it 

is requested again 

 

3. Position update: 

No multiplications by the radius are involved in the position update unit, but the masses 

and the moment of inertia of the different particles would depend on the radius. Therefore 

the 4 divisions involved in the positions update unit (which were transformed to constant 

coefficient multiplications by mass
1  and I

1 ) have to be computed in full. This means 

that 3 KCM must be transformed into dividers, which consume far more hardware 

resources than KCMs. 

7.3.2 Data Format 

Having balls of different radii also makes the fixed contact list scheme invalid, as there can 

be more than six balls in contact now. An alternative data structure to hold the contact list 

 183



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

could be to allocate a variable number of entire (256 bit) memory slots within the FPGA 

block RAM for contacts. Within a single memory location, a maximum of 16 contacts can 

be stored. Initially one memory slot is allocated to each ball. If during processing the 

number of contacts for a ball rises above a certain threshold x, then an additional memory 

slot will be assigned to this ball as the data is written back to the external memory (see 

Figure 7–9). This increases the amount of FPGA internal memory required in order to 

avoid overflow and loss of data. 

 

This is one of many possible solutions to this problem, and is used to demonstrate that the 

proposed hardware implementation described in the previous chapters can cope with more 

complex DEM problems. 

 

Internal FPGA memory 

 

 

 

 

 

 

 

 

 

 

 

Figure 7–9 Suggested Contact balls’ data structure for systems with balls of different radii in the 

FPGA 

Ball 1Contact Check List

Ball 1 Data

Ball 1 Data

Ball 1 Data

Ball 1 Data

Insert new memory slot next time step If contacts > x ⇒ 

NEW Ball1 Contact Check List

Ball 1Contact Check List

7.3.3 Discussion of the Use of Balls with different Radii 

The use of balls of varying radii has a relatively modest effect on the contact check, force 

and position units. The main effect is to cause the replacement of the constant coefficient 

multipliers by normal multipliers or dividers. 

 

 184



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

A new data format is needed to allow a variable number of particle contacts. The fact that 

data is written back to the external memory allows the allocation and de-allocation of more 

memory space to each particle every time data is read in and out, thus allowing the use of a 

flexible data format.  

 

The main impact of use of differing radii is felt in the increased complexity of the control 

unit and the interface unit that is needed to deal with the new data format, and also in the 

increased memory bandwidth requirements that are needed to handle the additional data. 

7.4 3-Dimensions 

Real world particles are 3-D bodies. In some cases, a 2-D simulation gives sufficient 

practical information for a specific problem, but in many other cases 3-D simulations are 

needed.  

 

This section will discuss the changes needed in the hardware implementation in order to 

allow 3-D simulations to be performed. The discussion starts with a summary of the 

considerations involved in 3-D representation of particles and their memory requirements. 

This is followed by a discussion of the effect of using three dimensions for the main design 

units (contact check and the forces and position update units) 

7.4.1 Ball description in 3-D 

The first implication of a 3-D particle model is that more variables are required to describe 

each particle, since there will be six degrees of freedom rather than three. Table 7–9 shows 

the variables needed to describe a single ball for the 3-D case. All the variables in the 2-D 

case are needed, plus the variables for the z-axis and rotation in y- and z-plane. 

 

Table 7–9 Variables to describe a 3-D particle 

X x-coordinate  

Y y-coordinate  

Z z-coordinate 

Vx Velocity in the x-direction 

Vy Velocity in the y-direction 

 185



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Vz Velocity in the z-direction 

θ’x Angular velocity in the x-direction 

θ’y Angular velocity in the y-direction 

θ’z Angular velocity in the z-direction 

Fx Force in the x-direction 

Fy Force in the y-direction 

Fz Force in the z-direction 

Mx Moment in the x-direction 

My Moment in the y-direction 

Mz Moment in the z-direction 

θx Rotation in the x-direction 

θy Rotation in the y-direction 

θz Rotation in the z-direction 

 

This means that by comparison with the 2-D case, nine further variables are needed. The 

maximum number of particles in contact also changes. If all particles have the same radius, 

then a maximum of twelve balls can be in contact with a ball. If particles of different radii 

are considered, then the maximum number of particles in contact with one will be 

determined by the ratio between the biggest and the smallest ball as in the 2-D case. 

 

To hold the data to describe one single particle in 3-D will therefore need 512 bits (32 x 16 

bits) instead of the 256 bits (16 x 16 bits) needed to describe a 2-D particles using 16-bit 

arithmetic, which involves twice as many memory bits per ball. 

 

The next sub-sections will describe how each of the main units (contact checking, forces 

and position update) must be adapted to solve the 3-D problem. 

7.4.2 Contact checking in 3-D 

The contact checks for the 3-D case are similar to the 2-D case, but the z-component must 

now be included in the check. Instead of having to solve the computationally expensive 

equation of Eq. 7–10, it is sufficient to check for balls in the bounding cube, as with the 2-

D case. Figure 7–10 shows the cube that must be checked for balls in contact. 

 186



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

0222
21 ≥++−+=∆ difdifdif zyxRRn  Eq. 7–10 

r

r
 

Figure 7–10 3-D Contact checks  

The number of arithmetic operations needed to check for balls in the surrounding box is 

shown in Table 7–10. 

 

Table 7–10 Number of arithmetic operations needed for the contact check in 3-D 

 ADDITIONS SUBTRACTIONS MUL 

Number of 

operations 

3 3 0 

 

If the unit is implemented as a pipeline, the time needed to perform this contact check 

would be exactly the same as for the 2-D case.  

7.4.3 Forces Update Unit 

The forces update unit for the 3-D case is the unit that requires the most arithmetic 

operations. It is also the unit that differs most from the 2-D case. 

 

The equations needed to compute the interaction forces between two particles in contact in 

3-D are shown in Figure 7–11. 

21

21

21

zzz
yyy
xxx

dif

dif

dif

−=

−=

−=

 

 187



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

222
difdifdif zyxD ++=  

D
z

zunity

D
y

yunity

D
x

xunity

dif

dif

dif

=

=

=

_

_

_

 

222
difdifdif zyx

tZMT
++

∆
=  

12

12

12

zzzdif

yyydif

xxxdif

vvv
vvv
vvv

−=

−=

−=

 

( ) ( ) ( )zunityvyunityvxunityvUNDM zdifydifxdif ___ ×+×+×=  

zunityUNDMv
yunityUNDMv
xunityUNDMv

zn

yn

xn

_

_

_

_

_

_

×=

×=

×=

 

znzdifzt

ynydifyt

xnxdifxt

vvv
vvv
vvv

__

__

__

−=

−=

−=

 

( )
( )
( ) tvyvyTHDR

tvxvzTHDR
tvzvyTHDR

xtdifytdifz

ztdifxtdify

ytdifztdifx

∆××−×=

∆××−×=

∆××−×=

__

__

__

 

( )
( )
( ) zoldsxoldyyoldsxzs

yoldszoldxxoldszys

xoldsyoldzzoldsyxs

FFTHDRFTHDRF
FFTHDRFTHDRF
FFTHDRFTHDRF

___

___

___

+×+×=

+×+×=

+×+×=

 

( )

( )

( )zszoldsz

ysyoldsy

xsxoldsx

FFF

FFF

FFF

__

__

__

2
1
2
1
2
1

×=

×=

×=

 

Unity vector 

Cross product 

Cross product 

 188



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

1

1
1

122

122

122

rrang
rrang
rrang

zszsz

ysysy

xsxsx

×+×=

×+×=
×+×=

θθ

θθ
θθ

 

xyyxzs

zxxzys

yzzyxs

unityangunityangv
unityangunityangv
unityangunityangv

×−×=

×−×=

×−×=

_

_

_

 

( )
( )
( )tkvFF

tkvFF
tkvFF

stiffshearzszszs

stiffshearyszsys

stiffshearxsxsxs

∆××−=

∆××−=

∆××−=

.___

.___

.___

 

2
_

2
_

2
_ zsysxs FFFFSM ++=  

( )
COHFRICTIONFF

tkUNDMFF

Ns

stiffnormNoldN

+×=

∆××−=

max

.  

FSM
FFF

FSM
FFF

FSM
F

FF

slidingareballsFFSMif

s
zoldszs

s
yoldsys

s
xoldsxs

s

max
__

max
__

max
__

max __);(

×=

×=

×=

>

 

xysyxsz

zxsxzsy

yzszysx

unityFunityFM
unityFunityFM
unityFunityFM

×−×=

×−×=

×−×=

__

__

__

 

zszNZNR

ysyNYNR

xsxNXNR

FunityFF

FunityFF

FunityFF

__

__

__

+×=

+×=

+×=

 

ZNRoldzz

YNRoldyy

XNRoldxx

ZNRoldzz

YNRoldyy

XNRoldxx

FFF
FFF

FFF
FFF
FFF
FFF

_212

_212

_22

_11

_11

_11

+=

+=

+=

+=

+=

+=

 New Fx, Fy, Fz forces 

Shear Forces 

Moments 

Normal forces 

 189



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

222

22

222

111

111

111

radMMM
radMMM
radMMM

radMMM
radMMM
radMMM

zoldzz

yoldyy

xoldxx

zoldzz

yoldyy

xoldxx

×+=

×+=
×+=
×+=

×+=
×+=

 

Figure 7–11 Equations to compute the forces between two particles in 3-D 

New Mx, My, Mz moments 

2

 

The equations used to compute the forces between two particles are completely different 

from the 2-D equations (given in section 2.5.2). The number of equations is over three 

times greater than for the 2D case. The reason for this is that in order to decompose the 

interparticle forces into normal and shear forces at the contact point and than convert these 

back to x, y and z components the cross product needs to be performed. 

 

Table 7–11 shows the type and total number of arithmetic operations that are needed to 

compute the inter-particle forces in the 3-D case with particles having the same radius. 

 

Table 7–11 Number of Arithmetic operations involved in the3-D forces update units for particles of 

the same radius. 

 ADD/SUB MUL DIV SQRT 

  MUL KCM   

Forces 55 48 21 5 2 

 

If all the arithmetic operations are organized as a large pipeline, one result will be obtained 

after every clock cycle. The time needed to compute the inter-particle forces will therefore 

be almost the same as for the 2-D case. (The only difference will be that the latency 

associated with filling the pipeline will increase from about 50 clock cycles to 70; this can 

be neglected if a large number of particles are used.)  

 190



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

7.4.4 Position Update unit 

 The equations required the new position of a particles in 3-D are given in Figure 7–12. 

The number of arithmetic operations involved in the posi

particles have the same radius) is shown in Table 7–12. If th

then the mass and the moment of inertia would not be const

have to be replaced by dividers. 

21

21

21

CONtGRAVZ
m
FCONvv

CONtGRAVY
m
F

CONvv

CONtGRAVX
m
F

CONvv

z
zoldz

y
yoldy

x
xoldx

×







∆×






 ++×=

×











∆×








++×=

×







∆×






 ++×=

 

21

21

21

''

''

''

CONt
I

MCON

CONt
I

M
CON

CONt
I

M
CON

z
zyoldz

y
yoldy

x
xoldx

×













 ∆×+×=

×



















∆×+×=

×













 ∆×+×=

θθ

θθ

θθ

 

tvzz
tvyy
tvxx

zold

yold

xold

∆×+=

∆×+=
∆×+=

 

t

t
t

zzoldz

yyoldy

xxoldx

∆×+=

∆×+=

∆×+=

'

'

'

θθθ

θθθ

θθθ

 

Figure 7–12 Equations for the 3-D Positio

 
 

 

 

 

 

 

 

 

NEW
 

NEW
NEW
NEW
NEW
NEW
tion update unit (assuming all 

e particles have different radii, 

ant and six of the KCMs would 

n Update 

191



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Table 7–12 Number of arithmetic operations involved in the3-D position update units for particles 

of the same radius. 

ADDITIONS/ SUBTRACTIONS MULTIPLICATIONS 

MUL KCM  

15 0 30 

 

The 3-D position update unit would take the same time as the 2-D unit, since the additional 

arithmetic operations required for 3-D can be computed in pipelines in parallel with the 

operations that are common between 2-D and 3-D. Instead of having 3 pipelines in parallel, 

there would be 6, with the same latency and throughput. This is shown graphically in 

Figure 7–13, where the 6 parallel pipelines are shown. 

 192



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

KCM

vx

CON1

KCM

Fx

1/MASS

KCM

KCM
KCM

GRAVx TDEL

CON2
TDEL

nx old

nx new

t

vx new

vy

CON1

Fy

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVy TDEL

CON2
TDEL

ny old

ny new

vy new

vz

CON1

Fz

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVz TDEL

CON2
TDEL

nz old

nz new

vz new

1/I

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0XOld

0 Xnew

0'
x

CON1

M

0' Xnew

1/I

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0YOld

0 Ynew

0'
Y

CON1

M

0' Ynew

1/I

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0ZOld

0 Znew

0'
Z

CON1

M

0' Znew

X,Y,Z
VX,VY,VZ

θx,θy,θz
θ'x,θ'y,θ'z

 

Figure 7–13 Graphical Representations of the 3-D position update equations 

7.4.5 Arithmetic Operations Comparison between the 2-D v 3-D case 

Table 7–13 summarises the different number of arithmetic operations needed by each of 

the tasks in the 2-D and in the 3-D case. 

 

The contact check unit only needs 1 addition and 1 subtraction more, which is very cheap 

in terms of hardware resources. The position update unit needs twice as many resources in 

3-D than in 2-D. 

 

 193



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

Table 7–13 Comparison between the arithmetic operations for the 2-D and the 3-D case in each 

task 

 ADD/SUB MUL DIV SQRT 

3-D  MUL KCM   

Cont check 6 0 0 0 0 

Forces 55 48 21 5 2 

Position 16 0 30 0 0 

2-D      

Cont check 4 0 0 0 0 

Forces 18 10 8 1 0 

Position 8 0 15 0 0 

 

This is logical as there are now 6 degrees of freedom (x, y , z, θx, ,θy,θz) instead of the 3 in 

the 2-D case (x, y,θ). The forces update unit is the one that is changed radically. The 

arithmetic operations needed here are over 3 times more than for the 2-D case. This means 

that a 3-D adaptation of the 2-D design would only be implementable on a very large 

FPGAs. 

 

The internal FPGA memory also needs to be much larger. The extra parameters needed to 

describe the 3-D position and velocity, plus the contact forces (normal and shear) for each 

of the 12 possible contacts (rather than 6 for the 2-D case) gives a total of 864 bits to 

describe a single particle in 3-D for the case using 16-bit arithmetic. By comparison, the 2-

D case needed only 432 bits to describe a particle and its contact forces, so the 3-D particle 

description requires 2 times more memory resources for each particle.  

7.4.6 Hardware Resources needed to accommodate 3D balls 

The previous sections have showed the total number of arithmetic operations needed in 

order to compute the contact checking, forces and position update for 3D balls instead of 

2D. Table 7–14 shows the number of slices needed to accommodate the 3D arithmetic 

operations. 

 

 194



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

 

Table 7–14 Slices needed to accommodate arithmetic operations for 3D 

 ADD MUL KCM DIV SQRT 

Operations 77 48 51 5 2 

Slices 616 6720 5610 2635 920 

 

The total number of Xilinx Virtex slices needed to compute the contact checking, and the 

forces and position update units are 16 501. The implementation uses 15 360 slices. 35% 

of these slices (6,720 slices) were used to for the contact checking, position and motion 

update units and the other 45% (8,640 slices) were used for the rest of the circuit. The total 

number of slices therefore needed is given in Eq. 7–11 and Eq. 7–12. 

 

)(3)( positionforcesccDpositionforcesccnopreviostotal slicesslicesslices ++++ +=  Eq. 7–11 

slicestotal 141,25501,16640,8 =+=  Eq. 7–12 

 

The Xilinx FPGAs that might accommodate this size of design is the XCV3200E (3248 

slices). If it is assumed that around 80% of the device resources could be used in order to 

allow it to route, then an extra 5,028 slices need to be added beyond those required to 

implement the design. The total number of slices would therefore need to be 30,169 

(25,141+5,028) The XCV3200E should present no problems in this respect if a careful 

placement of the components is done. 

 

Another option to free up some logic resources is to use a Virtex II FPGA, which contains 

embedded multipliers. This would free a considerable amount of logic resource, since 

multiplication is one of the most expensive arithmetic operations. In this case, the total 

number of slices needed, can be derived from Table 7–14 to give the result shown in Eq. 

7–13 

smultiplierembeddedslicestotal 991281141718640 +=+=  Eq. 7–13 

 195



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

 

The XC2V3000 probably has insufficient resources for the 3D demands, as this FPGA has 

14 336 slices and 96 multipliers, and the design would need 12.811 slices + 20% (2562 

slices) to route. The next largest Virtex II FPGA is therefore needed, which is the 

XC2V4000, with 23,000 slices and 120 multipliers. This FPGA would have more than 

sufficient resources to fit the 3D equations. 

 

In terms of memory resources needed, particles in 3D need more memory to be described, 

because: 

 

• The Z axis component is added 

• 3D balls of the same radius have a maximum of 12 balls in contact, while in the 2D 

case only 6 balls could be in contact.  

 

bitsbitsandFFparametersMem snDball 86416)(122303 =×







×+=  Eq. 7–14 

bitsbitsandFFparametersMem snDball 43216)(62152 =×







×+=  Eq. 7–15 

As seen from Eq. 7–14 and Eq. 7–15, the total number of bits to describe a ball in 3D takes 

2 times more memory than for the 2D case. From the Xilinx datasheets, it can be seen that 

the XC2V4000 has around 3 times more Block RAM than the XCV2000E, thus it should 

have sufficient memory to hold in 3D the same number of particles that a XCV2000E can 

handle in 2D. 

7.4.7 Timing Comparisons between the 2-D and the 3-D case 

The previous sections formed estimates of the computing time needed by the three main 

units. It has been shown that all three units should take almost the same amount of time as 

in the 2-D case for the hardware implementation. The operation that would be the 

bottleneck in the 3-D case would be the writing and reading data to and from the external 

memory. In order establish a baseline to assess the speed-up between hardware and 

 196



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

software, a 3-D software simulator was implemented. Figure 7–14 shows a screen-shot of 

3-D simulation. 

 

Figure 7–14 Screen-shot of the 3-D software simulator 

This simulator was also optimised, in the same way as the 2-D simulator, in terms of data 

structure and grid size (section 3.3.1). A simulation was run for the 2-D and the 3-D 

simulator, with the same number of particles and same system parameters, for 1000 cycles. 

Table 7–15 and Figure 7–15 (in log scale) show the comparative runtime results of the 2-D 

and the 3-D simulators. It can be seen from the table that as the number of particles in the 

simulated assembly doubles/trebles, the runtime of the 2-D and the 3-D simulation 

approximately. 

 

 197



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

 

Table 7–15 Runtime simulation results for 2-D and 3-D assemblies with the same properties 

NUMBER 

OF BALLS 

1,250 2,500 5,000 10,000 20,000 

T[s] 2-D 5 13 40 113 304 

T[s] 3-D 20 40 105 309 1115 

 

Number of particles

1,250 2,500 5,000 10,000 20,000

S
im

ul
at

io
n 

Ti
m

e 
[s

]

10

100

1000

Simulation time 2-D
Simulation time 3-D

 

Figure 7–15 Graphical representation of the Simulation time of 2-D and 3-D system 

Also, the 3-D software simulation takes on average 3 times longer than the 2-D simulation 

of the equivalent system, because: 

• The SW simulator takes longer to check for contacts as a new degree of 

freedom is now introduced 

• The force update unit’s equation are computationally more intensive, taking 

longer to compute the force between two particles 

 198



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

• The position update units’ equations also require more operations, which 

requires more CPU time. 

• Re-boxing particles transitioning from one box to another takes also longer as 

the number of boxes is also larger. 

 

In the 3-D case, it is assumed that the longest operation to perform will be the position 

update together with the read/write to the external memory, as in the 2-D case. The time 

taken for this is shown in Eq. 7–16. 

 

colsofnr
Hzf

cyclesnrNNslowestt ×××





 ×

+=
][

1
2

33)(  Eq. 7–16 

 

Where f=30Mhz, N=100, nr cycles =1000 and nr of cols = Ntotal/100. The projected speeds-

ups that could be achieved, based on the measured timing of the 3-D software simulation, 

and predicted timing of the hardware simulation are shown below. 

 

Table 7–16 Theoretical speed-up of the 3-D SW simulator and the theoretical HW design 

NUMBER 

OF BALLS 

1,250 2,500 5,000 10,000 20,000 

T[s] 3-D 20 40 105 309 1115 

T[s] HW 0.76 41.46 2.92 5.83 11.66 

Speed-up 26 27 36 53 95 

 

These results show that with the architecture an even higher speed-up could be achieved 

for the 3-D case, at a penalty of extremely high hardware costs, as the arithmetic 

operations involved in the forces update unit are very numerous. 

7.4.8 Discussion of the 3-D Implementation 

This section has shown that it is possible to implement a 3-D DEM version based on the 2-

D high and low level parallelism HW design. The fact that every arithmetic unit is 

implemented as a large pipeline allows the 3-D HW implementations arithmetic units to 

 199



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

finish at the same time as the 2-D. (However, there will be slight time penalty, as the 

bottleneck of the design is not the computational units, but the reading and writing data to 

the external memory; in 3-D every ball has 33 parameters to be written as opposed to 17 

for the 2-D case.) Given that the 3-D software takes about 3 times longer than its 2-D 

equivalent, the speed-up achieved by the hardware should be considerably greater in 3-D 

than in 2-D. 

 

This would of course be at the expenses of some HW costs. Approximately 3 times more 

HW resources are needed in comparison with the 2-D version.  

 

The memory requirements also change for the 3-D case, as every particle needs 864 bits 

for its representation using 16-bit arithmetic, which means that that every particle in 3-D 

needs twice as many memory resources. 

 

7.5 Summary and Conclusions 

It has been shown in this chapter that the previously described HW implementations can be 

adapted for more complex DEM implementation, and that the only limitation is the 

available size of FPGAs.  

 

Inclusion of walls into the design adds very little to the length of time taken by 

simulations. If only horizontal and vertical walls are used, very little additional hardware 

resource is needed. If the walls are allowed to be inclined, then there will be a significant 

cost in extra hardware. However, much of the computation for ball-wall contacts is the 

same as for ball-ball contacts, so much of the hardware can be re-used. This keeps the 

hardware penalty moderate. 

 

The inclusion of particles of different radii would increase the hardware resources required 

due to the use of full multipliers or dividers rather than constant coefficient multipliers. 

However, the number of multipliers involved only 6, so the hardware penalty is not large. 

A more significant issue is that the data format must be changed, as the fixed number of 

contact slots allocated for particles of the same size is no longer valid. One possible data 

 200



Chapter 7: Suitability of the HW Implementation for a more complex DEM     

 201

format is present in section 7.3.2, which shows that it is possible to have a dynamic 

memory allocation scheme, as reading and writing data to and from the external memory in 

each time step allows the allocation and de-allocation of memory dynamically with no 

penalty. 

 

Lastly, a 3-D implementation has been analysed. The contact check and the position update 

unit do not need too much extra hardware resource, but the force update unit would need a 

very large device in order to be able to have a fully pipelined structure generating one 

result per clock cycle. As the forces update unit is not the slowest unit, a different approach 

could be used which compromises on speed to save hardware. The time taken for a 3-D 

simulation in hardware would be the same as for the 2-D case, as one result would be 

obtained every clock cycle. By contrast, software becomes substantially slower on 

migrating from a 2-D to a 3-D approach. The speed-up achieved by hardware for 3-D 

simulations is therefore expected to be considerably higher than for the 2-D case. 

 

The architecture that was actually implemented used a simplified DEM algorithm in order 

that a working prototype could be built in the available hardware. This chapter shows that 

the architecture can be modified in order to perform more complex DEM simulations. 

7.6 References 

[1] Cundall, P.A Strack, O.D.L.  “A discrete numerical model for granular 

assemblies”. Geotechnique 29, pp. 1-8, 1979. 

[2] Cundall, P.A. Strack, O.D.L., “The Distinct Element Method as a tool for research 

in Granular Media”, Report to the National Science Foundation Concerning NSF 

Grant ENG76-20711, pp 40-41, Minnesota, November 1978. 

[3] Antonioletti M., “A program to model granular media using the distinct element 

method”, Available at http://www.epcc.ed.ac.uk/epcc-tec/JTAP/DEM.html 



8. Chapter  Chapter 8 

SCALABLE AND ALTERNATIVE 

IMPLEMENTATIONS OF THE DEM 

8.1 Introduction 

A hardware implementation of the 2-D DEM on one single FPGA was shown to have a 

speed-up of a factor of 30 in chapter 6. This might be enough for some simulations, but in 

the case of entire engineering structures, millions of particles are involved. In order to 

model these structures an even higher speed-up is needed. The only way to achieve speed-

ups that are orders of magnitude bigger than what has been achieved so far is to have 

multiple FPGAs working in parallel. 

 

A very important aspect of the high and low level parallelism hardware implementation 

presented in this thesis is how well it will scale onto a multiple FPGA system. Will the 

speed-up be linear with the number of FPGAs, or will communication and synchronization 

overheads and load balancing problems degrade the overall FPGA speed-up considerably 

as in the multiprocessor systems? 

 

202 



Chapter 8: Scalable and Alternative Implementations of the DEM     

The term “scalability” tries to express the benefit of solving large problems on a system 

with multiple processing elements. The algorithm is regarded as scalable if the efficiency is 

more or less constant as problem size and number of processors varies [1], where the 

efficiency is defined as the speed-up divided by the number of processing units. 

 

The two most popular approaches to parallel computing using multiple processors are: 

 

1. Distributed memory systems, where each of the processing units has its own 

memory. 

2. Shared memory system, where each processing unit can access each of the 

memory banks  

 

Multi-FPGA systems can be developed that are analogous to these configurations. 

 

This chapter will describe a multiple FPGA implementation based on two RC1000 boards 

connected in parallel. Each of these boards has its own 8 Mbytes of memory, as shown in 

section 5.4. As the RC1000 boards each have one FPGA each with its own memory 

connected via the PCI bus, this system can be considered as a distributed memory system. 

 

An alternative multi-FPGA system, a shared memory system, is also considered and some 

predictions of its performance and behaviour are made.  

 

This chapter will also discuss how well the high and low level parallelism hardware 

implementation could benefit from the features of advanced FPGAs: 

 

• Run-time reconfiguration of the FPGA 

• FPGAs with embedded microprocessors 

8.2 Multi-FPGA Distributed Memory System 

This section will describe a multi-FPGA system based on two RC1000 boards connected in 

parallel via the PCI bus. The domain decomposition method used facilitates the spreading 

of the simulation across multiple FPGA boards with minimal communications overhead, 

 203



Chapter 8: Scalable and Alternative Implementations of the DEM     

which means that near linear speed-up can be achieved. It will be shown that the 

implementation allows the full overlap of computation and communication between 

boards. 

8.2.1 System Description 

Figure 8–1

CPU

FPGA 2

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

FPGA N

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

FPGA 1

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

PCI

 
Figure 8–1 Distributed Memory Multi-FPGA system 

 shows the diagram of a distributed memory system containing N RC1000 

boards. Each board contains an FPGA, whose block RAM is organised as 6 dual-port 

RAMs, each of which is to be used to contain the data for a sub-domain. This data can be 

swapped in and out of four banks of static RAM present on each RC1000 board. The 

boards communicate with one another across the PCI bus. As long as the amount of data 

being transferred across the PCI bus between the boards remains small, linear speed-up can 

be expected as more FPGA boards are added, provided that the load balancing is good. 

The software frontend generates the initial configuration of the particles. The boards that 

are to be used must then be selected from a menu, as shown in Figure 8–3. The prototype 

 

 

 

 

 

 

Figure 8–2 Two RC1000-PP system 

PCI 

 204



Chapter 8: Scalable and Alternative Implementations of the DEM     

implementation was set up to accept only two boards, since only two boards were currently 

available in the laboratory. 

 

 
Figure 8–3 Board selection for the Multiple FPGA design 

Initially the domain is split across the boards so as to equalise the workloads between the 

two boards (see Figure 8–4). After one time step is completed, each board needs to 

exchange its right most column including the data structures that catch particles 

transitioning across sub-domain boundaries, (see Figure 8–5) with its right hand neighbour. 

Similarly each board must exchange its leftmost column with its left hand neighbour. If 

this transfer can be completely overlapped with computation, then none of the 

computational pipelines on the FPGAs ever need to stall, and if the load balancing is good 

speed-up should be linear i.e. use of N boards should provide N times speed-up in 

comparison to a single board. 

 

 205



Chapter 8: Scalable and Alternative Implementations of the DEM     

 
Figure 8–4 Screenshot of the software program for the multiple FPGA design. The domain is 

split in two equally loaded parts  

The data for each particle in 2 dimensions consists of 34 bytes: 2 bytes each for x, y, vx, vy, 

, plus the normal and shear force for up to six contacts. The number of particles in a 

column is limited to 128 in order to avoid overflow of the block RAM. The load balancing 

method introduced in section 5.9.2 will adaptively reduce the size of any domain whose 

particle population approaches this limit. So for N boards, the maximum amount of data to 

be transferred across the PCI bus for each time step of the DEM method is 34 × 128 × 4 × N 

bytes, =17,41 N Kbytes. The 4 in the previous calculation comes in because two columns 

(left and right most column) have to be read from each FPGA and two have to be written in 

the FPGA Eq. 8–1 gives the general expression for the amount of data that needs to be 

transferred between boards for each time step. 

θ&

4max2/ ×××= colballsbytesnData parametersof
o

boardtransfered  Eq. 8–1

 

 206



Chapter 8: Scalable and Alternative Implementations of the DEM     

 

 

 
Figure 8–5 Columns that need to be transferred from one board to another after every cycle 

Within each board, the FPGA uses one RAM bank at a time. Transfer of edge data to an 

adjacent board can be initiated when a bank of memory is released by the FPGA. The 

transfer must be completed before the FPGA attempts to re-acquire that bank, which 

occurs after it has finished processing the contents of the other three RAM banks on the 

board (see Figure 8–6). This amounts to a period of time as shown in Eq. 8–4. The slowest 

FPGA 1

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

Domain

FPGA 2

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

 
Figure 8–6 Domain mapping to the 4 memory units of RC1000-PP board. 

 207



Chapter 8: Scalable and Alternative Implementations of the DEM     

operation in the processing of a sub-domain containing M particles is the position update 

and data transfer. The time tpos_dat_transfer, taken for this operation for 1 cycle is shown in Eq. 

8–3, where t1column is the time needed to compute 1 sub-domain, in this case equal to 

tpos_dat_transfer  as this is the slowest task, and f is the clock frequency at which the FPGA 

works.  

 

BytesBalldescribetoParametersballsnrMax

MbytessizeunitMem
n

col

unitmemcols
o

2

][

1

/
××

=  Eq. 8–2 

[ ]Hzf
MMt cycletransferdatapos

1
2

17
)1(__ ×






 ×

+=  Eq. 8–3

unitmemcols
o

cycletransferdatapostransferdata ntunitsMemoryt /)1(__1 ××−=  Eq. 8–4 

PCI

boarddtransferre

transferdata

t
Data

t
N

/
=  Eq. 8–5 

Eq. 8–2

 

The number of sub-domains contained in each RAM is shown in  for the 2MBytes 

memory available on the current FPGAs.  

 

The boards are capable of sustaining DMA transfers across the PCI bus at about 12 

Mbytes/s, which means that saturation of the bus will not occur for a number of boards N 

below about 153. This means that if ideal load balancing is achieved then speed-up can be 

expected to be linear for number of boards to be less than 153. 

 

Table 8–1 shows an approximate number of boards that could be connected in parallel with 

this configuration, if it is considered that all 4 memory units are full with data. 

 

 

 

 

 

 208



Chapter 8: Scalable and Alternative Implementations of the DEM     

 

Table 8–1 Example of the number of boards that can work in parallel without having to stall any 

operation in any of the FPGAs. 

VARIABLE VALUE DESCRIPTION 

M 128 Maximum number of balls in a column. (Limited by 

the XCV2000E internal memory) 

No
parameters 17 Number of parameters that describes each ball 

Datatransferred/board 17.41Kbytes Number of bytes that each board needs to send and 

receive after each cycle (Eq. 8–1) 

tdata transfer 0.223[s] Time needed for the CPU to transfer the data to the 

boards while the FPGAs access the 4th memory unit 

(Eq. 8–4). 

tpos_data_transfer 0.162[ms] Time needed for the slowest unit (position update + 

data transfer) to finish processing one sub-domain 

(Eq. 8–3) 

No
subdomains/mem units 459 Number of sub-domains that each Memory unit of 

the RC1000 board can host (Eq. 8–2) 

tPCI 12 Mbytes/s Transfer rate across the PCI bus (experimental , 

though theoretical should be 133 Mbytes/s) 

N 153 Theoretical maximum for the number of boards that 

could work in parallel without having to stop the 

FPGA (Eq. 8–5) 

 

A very important consideration for this configuration is the granularity of the board 

memory. It is more convenient and efficient to have the memory units split into many 

small banks, which can be accessed either by the FPGA or the CPU, than to have only a 

few large FPGA memory banks. This would allow an even higher number of FPGAs to be 

connected in parallel, as the CPU would have more time to read and write data to the 

FPGAs, before the FPGA requests the information in that particular memory bank. Figure 

8–7 shows an example of this. If, for example, the 8 Mbytes of the board memory were 

distributed across 8 banks of 1 Mbyte (instead of the 4 banks of 2 Mbyte) approximately  

 209



Chapter 8: Scalable and Alternative Implementations of the DEM     

FPGA 2

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

CPU

8 Mbytes

FPGA 2

cache 6 columns

Mem
1

Mem
2

Mem
3

Mem
4

Mem
5

Mem
6

Mem
7

CPU

8 Mbytes

Mem
8

 
Figure 8–7 Influence of a finer and coarse grained board memory 

17 % more boards (179 rather than 153) can be fitted in parallel in the system (assuming 

that all memory banks are filled with data). Table 8–2 shows the new timing considerations 

for this case. 

 

Table 8–2 Example of the number of boards that can work in parallel without having to stall the 

operation of  any FPGA for 8 memory units instead of 4 

VARIABLE VALUE DESCRIPTION 

M 128 Maximum number of balls in a column 

No
parameters 17 Number of parameters that describes each ball 

Datatransferred/board 17.41 Kbytes  Number of bytes that each board needs to 

send/receive after each cycle (Eq. 8–1) 

tdata transfer 0.26 s Time that the CPU has to transfer the data to the 

Boards while the FPGAs access the 4th memory 

unit (Eq. 8–4). 

tpos_data_transfer 0.162 ms Time Needed for the longest unit (position update + 

data transfer) to finish for 1 sub-domain (Eq. 8–3) 

No
subdomains/mem units 229 Number of sub-domains that each memory unit of 

 210



Chapter 8: Scalable and Alternative Implementations of the DEM     

the RC1000 board can host (Eq. 8–2) 

tPCI 12 Mbyte/s Transfer rate across the PCI bus 

N 179 Theoretical maximum number of boards that could 

work in parallel without having to stop the 

operation of any FPGA. 

 

The next sub-section will show the results of the 2 RC1000 board system just described.  

8.2.2 Simulations Results 

In section 6.2.2, a domain was simulated for varying numbers of particles. The average 

speed-up was around 30 in comparison to the optimised software version running on a 

Pentium III processor with 1.3 Gbytes of RAM. It is therefore reasonable to expect a 

speed-up of around 60 with a two-board system, as communication overheads should not 

influence the computing time, as computation and communication are completely 

overlapped. 

 

Table 8–3 Comparisons of speed-up obtained by hardware DEM for a single FPGA and two 

FPGAs compared to an optimised software version. 

NO. OF PARTICLES 50,000 75,000 100,000 125,000 150,000 

Speed-up measured 

(1 board) 

35.3 31.0 29.8 30.2 29.5 

Speed-up measured 

(2 boards) 

54.0 55.2 54.7 53.7 54.9 

 

The hardware simulation for a system with two boards gave a result slightly worst than the 

expected linear speed-up of 60. This is due to the synchronization of the FPGAs needed 

after every cycle. The fastest FPGA needs to wait for the slower ones to complete their 

computation; the system is not completely balanced. 

 

 

 

 211



Chapter 8: Scalable and Alternative Implementations of the DEM     

8.3 Shared Memory System 

This section will analyse if the FPGA hardware architecture would be suitable for a shared 

memory system. A theoretical scalable implementation based on a shared memory 

approach will be described in detail, as well as some speed-up predictions based on the 

single and on the distributed memory system results. 

8.3.1 System Description 

Figure 8–8

Interconnect network

Dual port
Mem 1

Dual Port
Mem 2

Dual Port
Mem N

FPGA 2

cache 6
columns

FPGA N

cache 6
columns

FPGA 1

cache 6
columns

 
Figure 8–8 Example of a shared memory system 

 shows an example of a shared memory structure. Here any of the FPGAs can 

access any of the memory modules through the interconnection network. Computation 

results are stored in the memory by the FPGA that executed the task Two major problems 

can arise in this type of architecture: 

 

1. While the data is in one FPGA cache waiting to be updated another FPGA can 

access that data and generate a different result for it.  

2. Two FPGAs try to write to the same memory location at the same time, i.e. 

memory contention. 

 

A major benefit of the domain decomposition described in the section 5.9 is that it involves 

a geometrical division of the domain, so that all the data corresponding to one sub-domain 

will be stored in one memory unit. Given that each sub-domain is uniquely associated with 

 212



Chapter 8: Scalable and Alternative Implementations of the DEM     

one FPGA, this implies that no two FPGAs will access the same memory location at the 

same time. 

 

It can sometimes occur that two FPGAs attempt to access the same memory unit, but not 

the same memory location. This occurs when the FPGA is dealing with the leftmost and 

rightmost columns of one sub-domain. In this case it also needs to access the columns to 

the right and left of these columns. Using a dual port RAM can enable two simultaneous 

accesses to a memory unit. With the configuration shown in Figure 8–9 an FPGA will 

never try to access a memory location currently accessed by another. In this case FPGA 3 

is lagging slightly compared to FPGA 2. In this case, both might access the same memory 

unit at the same time, but as seen in this figure the memory location will always be 

different as the geometrical distribution of the problem is also reflected in the data storage. 

Thus using dual port RAM would solve the possible memory contention problem. 

 

The only problem that may occur is that the FPGAs need to be synchronized after every 

time step. This means that, as with the distributed memory system, the time needed to 

compute one cycle would be dictated by the slowest FPGA, as the system will never be 

totally balanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 213



Chapter 8: Scalable and Alternative Implementations of the DEM     

 

Domain

Mem 1

FPGA 1

cache 6
columns

FPGA 2

cache 6
columns

FPGA 3

cache 6
columns

Mem 2 Mem 3

 
(a) 

Domain

Mem 1

FPGA 1

cache 6
columns

FPGA 2

cache 6
columns

FPGA 3

cache 6
columns

Mem 2 Mem 3

 
(b) 

Figure 8–9 FPGAs’ memory accesses  

 

 214



Chapter 8: Scalable and Alternative Implementations of the DEM     

8.3.2 Speed-up Predictions 

The configuration given in the last sub-section should give the same ideal speed-up results 

as the distributed memory system, i.e. a factor of 30 for each FPGA. As before, in practice 

the speed up is limited by the quality of the load balancing, but not by the communication 

overheads between FPGAs. The only moment when one of the FPGAs have to stall is 

when it reaches the end of the sub-domain and there is at least one other FPGA that has not 

finished processing its sub-domain. 

 

The advantage of this type of configuration over the distributed memory system is that: 

 

• The system can be built with an unlimited number of FPGAs without any 

penalty, assuming an ideal bus, which doesn’t saturate. 

• The design is independent of the amount of data stored in the external memory 

as it can be guaranteed that no communication overhead will occur as in this 

case an FPGA will NEVER access the same memory location as the 

neighbouring ones. 

 

That having been said, in practice, interconnection networks do not scale well, and this 

solution may not be practical for a large number of FPGAs. 

8.4 Alternative Single FPGA implementation 

This section will provide a review of alternative single FPGA architectures. There are 

many different types of FPGAs, and many different design configuration possibilities 

enabled by newer FPGAs. This section will analyse how well the hardware design can be 

adapted to take advantage of newer FPGA features, such as run-time reconfiguration and 

embedded microprocessors. 

8.4.1 Runtime Reconfigurable Architecture 

Run-time reconfiguration (RTR) has been around since the Xilinx 6200 series [2] Much 

research has been done on runtime reconfiguration since the Xilinx 6200 series was 

released [3][4]. The device allows partial reconfiguration at run-time in a fine-grained 

manner. However, the XC6200 is now obsolete. Instead, the Xilinx Virtex series has 

 215



Chapter 8: Scalable and Alternative Implementations of the DEM     

become available. The Virtex architecture allows partial dynamic reconfiguration in a more 

coarse grained fashion, although this feature is currently not supported by the Xilinx design 

tools. However, it has been very difficult to find numerical intensive applications, which 

could demonstrate an improvement over conventional systems by making use of this 

feature.  

 

Normally the time needed to re-program the FPGA makes RTR prohibitive for most 

applications. As FPGAs have become more sophisticated, the rate at which they can be 

reconfigured has become higher, and the re-programming some parts of the FPGA whilst 

other parts are still performing useful computation has become possible. A theoretical 

design of a HW design using run-time reconfiguration will be presented in this section. 

 

A block diagram of a run-time reconfigurable architecture is shown in Figure 8–10. This 

implementation takes the area used in the static design for the contact check, the force 

update and the position update units, and replaces them with a large pool of logic resources 

that will be reconfigured on demand to perform contact checking, force update and 

position update. The pool of resources left for run-time reconfiguration accounts for about 

35% of the logic resources of the XCV2000E FPGA. The advantage of this architecture is 

each phase of the DEM algorithm can be allocated as much resource as it is capable of 

benefiting from. Table 8–4 shows how many units can be instantiated into this area for 

each of the computational phases of the DEM 

 

Table 8–4 Number of units that can be implemented in the reconfigurable area 

 CONTACT CHECK UNITS FORCES UPDATE POSITION UPDATE 

% slices 

XCV2000E 

for 1 unit 

1 % 15 % 11 % 

Nr of units  35 2 3 

 

 216



Chapter 8: Scalable and Alternative Implementations of the DEM     

Dual

Port

Dual

Port

Dual

Port

Dual

Port

Switch
addr

Switch
data
PA

PB

Switch

data

PA

PB

Reconfig
Area

256

256

256

256

Inter
face

Control unit

CU
Cc

CU
Forces

CU
Movement

Load
Balancing 32

160

Write data back256

 96

 96

 96

 96

 
Figure 8–10 Runtime reconfigurable architecture 

The disadvantage of this approach is that the reconfiguration will take a lot of precious 

time, which might be prohibitive. Eq. 8–6 shows the time needed to compute one column 

of the domain and Figure 8–11 shows a graphical representation of the sequence. The 

reconfiguration time will be the same in each case as the total amount of reconfigurable 

area is used instantiating multiple units in parallel. 

 

)(3)()()()1( timeationreconfigurtpositiontforcestcctcolt ×+++=  Eq. 8–6 

With this approach, the time taken by each of the major phases of the DEM, t(cc), t(forces) 

and t(position), will be decreased significantly. However, a reconfiguration penalty will be 

incurred three times for each sub-domain for each time step. 

 

 217



Chapter 8: Scalable and Alternative Implementations of the DEM     

next colum reconfigure FPGA

forces
update

cc

reconfigure FPGA

reconfigure FPGA

position
update

Domain

Domain

Domain

 
Figure 8–11 Reconfigurable sequence 

It should be noted that in this case the internal FPGA memory is split into just 4 equally 

sized blocks instead of 6, as all three tasks are performed on the same column. So the 

FPGA memory stores the column presently undergoing processing, its two neighbouring 

columns (to handle edge effects), plus one more so that when processing of the current 

column is complete, write back of the column data to the external memory can be 

overlapped with processing of the next column. This is shown more clearly in , 

where it can be seen which columns are cached in the FPGA memory at a particular time 

of the simulation. 

Figure 8–12

 218



Chapter 8: Scalable and Alternative Implementations of the DEM     

Domain

col
1

col
2

col
3

col
4

Internal Memory

FPGA

cc
forces

position

 
Figure 8–12 Number of columns to be cached into the FPGA  

8.4.2 Case Study of a Runtime Reconfigurable Design 

In this case study a run-time reconfigurable system will be analysed based on the Xilinx 

Virtex  XCV2000E device. The configuration bit stream required to configure the entire 

FPGA is 1.2699 Mbytes in size. As only around a third of the FPGA needs to be 

reconfigured after each of the major tasks has been finished, only 

Mbytes4233.03
2699.1 =  will need to be reconfigured. The FPGA has 4 modes available 

for the reading of configuration data [2]: 

 

1. Master-Serial mode 

2. Slave Serial mode 

3. Boundary Scan mode 

4. SelectMAP mode 

 

In both serial modes, and also in boundary scan mode, the FPGA receives the 

configuration data in bit-serial form. By contrast, the SelectMAP mode received the data as 

a 1-byte wide data stream, and is therefore the fastest configuration option. The maximum 

frequency at which the SelectMAP mode can operate for this device is 66 MHz. 

 

 219



Chapter 8: Scalable and Alternative Implementations of the DEM     

In order to analyze whether this design could be faster and more efficient than the static 

architecture presented in chapter 5, an analytical study has been performed. Table 8–5 

shows the time taken for each step of the DEM algorithm, and the time required to 

reconfigure the FPGA using the SelectMAP mode. 

 

Table 8–5 Values of the time needed to compute the cc, forces and position update versus the time 

needed to reconfigure the 50% of the Xilinx XCV2000E. 

Value Description 

0.4233 [Mbytes] Amount of data needed to reconfigure the 35% of the 

XCV2000E device 

66 [MHz] Frequency at which the reconfiguration can take place 

1 byte Data width to write to the FPGA 

6.4 [ms] Time needed to reconfigure the 35% of the FPGA 

9.5 [µs] Time needed to compute the contact check for 100 balls/col 

and 35 contact check units @30MHz 

40[µs] Time needed to compute the forces for 100 balls/col and 2 

forces update units @30Mhz/4 

4.4[µs] Time needed to compute the positions for 100 balls/col and 3 

positions update unit @30Mhz/4 

6.5 [ms] Time needed to compute 1 column  

98.5 % Percentage of computation time spent on reconfiguration 

0.156 [ms] Time needed to compute 1 column with the normal 

architecture (5 cc units, 1 forces and 1 position update unit) 

 

As can be seen from this study, 99.1 % of the time taken to compute the data in one 

column is spent reconfiguring the FPGA, while the major computation tasks take only 0.9 

% of the time. This means that the run-time reconfigurable design would have a very low 

efficiency, as the FPGA spends most of the time in a reconfiguration mode. Comparing 

this result with the time needed to compute one column in the design, where no 

reconfiguration is required, but with fewer units instantiated in parallel, this architecture 

would be 41156.0
5.6 =  times slower than the static design. 

 220



Chapter 8: Scalable and Alternative Implementations of the DEM     

The conclusions that can be drawn from this configuration is that the time needed to 

reconfigure the FPGA is too big, making the efficiency of this design very low. 

 

In order to have a system that would at least perform as well as the design, the FPGA 

would need to be able to reconfigured at 12.5 GHz one byte at time, or with 188 bytes at a 

time at 66 MHz. This can be deduced from Eq. 8–7, where the FPGA needs to be 

reconfigured three times in every cycle. Future FPGAs are unlikely to be able to offer such 

high reconfiguration rates. 

casereconfigunitsarithmetic
ationreconfigur

o tms
fparallelinbytesofn

Mbytes
−=×× ][156.01][4233.03  Eq. 8–7 

8.4.3 Implementation on an FPGA with embedded Microprocessors 

New FPGAs, such as the Xilinx Virtex-Pro FPGA, incorporate up to 4 embedded 

Power PC RISC microprocessors. This section will analyse whether a DEM hardware 

implementation on FPGAs with embedded microprocessors could bring even better results. 

 shows the internal logic structure of an FPGA with embedded 

microprocessors. These microprocessors are embedded between the logic resources so that 

they can work closely with the custom logic. These new FPGAs also have embedded 18 bit 

multipliers (the XC2VP125 has up to 556 multipliers), which could be used to free up 

more logic resources. 

Figure 8–13

 221



Chapter 8: Scalable and Alternative Implementations of the DEM     

IOB

CLB CLBCLBCLB

CLBCLB

CLB CLBCLBCLB

CLBCLB

R
A
M

R
A
M

IOB

IOBIOB IOB IOB IOBIOB

IOBIOB IOB IOB IOBIOB

IOB

IOB

IOB

IOB

IOB

IOB

uP

uP

uP

uP

Figure 8–13 Internal FPGA structure with microprocessors 

 

The next section will describe a theoretical HW implementation of the design on an FPGA 

with embedded microprocessors and will estimate its possible performance. 

8.4.4 Case Study of an FPGA with Embedded Microprocessors 

A design which could be implemented on a Xilinx Virtex2 XC2VP40 with 2 

embedded Power PC microprocessors is analysed in this case study. The processors are 

RISCs (Reduced Instruction Set Computers) type processors with a core running at 300 

MHz. 

 222



Chapter 8: Scalable and Alternative Implementations of the DEM     

Dual

Port

Forces
update

Dual

Port

Dual

Port

Dual

Port

Dual

Port

Switch
addr

Switch
data

PA
PB

Switch

data

PA
PB

Write data back

ContactContact
Contact
check

Movement
update

Dual

Port
256

256

256

256

256

256

256
 96

 96

 96

Inter
face

Control unit

CU
Cc

CU
Forces

CU
Movement

Load
Balancing 32

160

 32

256

 96

160

uP uP

uP uP

 
Figure 8–14 Hardware implementation using an FPGA with embedded microprocessors 

Figure 

8–14

For the design presented in chapter 5, the force update unit is the consumes the most 

hardware. This unit could therefore be allocated to the microprocessors, as shown in 

. This should give the best efficiency for the whole system. 

 

The number of arithmetic operations needed by the forces update unit is shown in 

. 

Table 8–

6

Table 8–6 Number of arithmetic operations involved in the forces update unit 

 Additions/Sub Multiplications Divisions 

Number or arithmetic 

operations 

16 18 1 

 

 223



Chapter 8: Scalable and Alternative Implementations of the DEM     

Xilinx’s data sheets give the cycle time required to compute each of the arithmetic 

operations as shown in Table 8–7. 

 

Table 8–7 Number of operations needed for each arithmetic operation. 

 Additions/Sub Multiplications Divisions 

Cycles needed by the 

Power PC (32 bits ops) 

1 4 35 

 

This means that the time to compute the forces between two particles in contact would now 

be as shown in Eq. 8–8. The unit requires 16 additions that can be done in a single cycle, 

18 multiplications that will take 4 cycles each, and 1 division that will take 35 cycles: 

 

( )[ ] MHzthroughputs
MHz

t forces 4.241.0
300

13541816 =⇒=×+×+= µ  Eq. 8–8 

 

New data has to be fed to the microprocessor after every 0.41 µs, which is equivalent to a 

frequency of 2.4 MHz. This would mean that data should be read from the FPGA’s internal 

memory at 5 MHz in order to keep all the 2 microprocessors fully working. 

 

The resources freed by the microprocessor can now be allocated to the position update unit 

as well as to the contact check units. Considering that the forces update unit took 15 % of 

the XCV2000E device, the position update unit 1%, and the contact check units 1%, the 

space saved by migrating the force update into the microprocessors could be used to 

instantiate additional position update unit and additional contact check units. (The 

XCV2000E and the XC2VP40 have almost the same amount of logic resources available). 

 

Table 8–8 List with the number of units implemented in parallel. 

 Contact check Forces Position 

Nr of units in 

parallel 

9 2 microprocessors 2 

 

 224



Chapter 8: Scalable and Alternative Implementations of the DEM     

The position update task, combined with the reading and writing of data to the external 

memory, was the bottleneck of the original design presented in chapter 5. For the new 

design using embedded microprocessors, this would still be the case. Although the position 

update has been accelerated by a factor of 6, the reading and writing of data to the external 

memory remains the same, as shown in Figure 8–15. 

 

Number of Balls / Column

0 50 100 150 200

C
lk

 c
yc

le
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

t(cc) 9 units 
t(position+interface) 2units 
t(forces) 2 microprocessors

 
Figure 8–15 Computation time of the three main task, replacing the forces update unit with 2 

microprocessors 

As reading and writing data to the external memory is the bottleneck of the design, the 

performance would be improved by using a board with memory of higher speed. 

 

 

 

 

 

 

 

 

 225



Chapter 8: Scalable and Alternative Implementations of the DEM     

8.4.5 Discussion for the Proposed Single FPGA Architectures based on 
the High and Low Level Parallelism HW design 

Two alternative architectures were proposed in section 8.4 that make use of two of the key 

features of modern FPGAs: 

 

• Run-time reconfiguration 

• Embedded microprocessors 

 

The implementation of a hardware implementations using run-time reconfiguration based 

on the high and low level parallelism architecture was presented in section 8.4.1. The 

advantages of this approach is that the total amount of logic resources used by the major 

tasks (contact checking, forces and position update) can be combined to perform each at a 

time, instantiating more of these units in parallel and therefore speeding their processing 

up. The disadvantages are that these operations will no longer be performed in parallel, and 

that the computing will have to stall until the FPGA is re-configured.  

 

A case study using the Xilinx XCV2000E was presented, which showed that 97.4 % of 

the time in each time step was spent reconfiguring the FPGA, thus achieving a very low 

design efficiency. In order to achieve the same computing speed as the original architecture 

presented in section 5.9, the reconfiguration should take place at 8 Gbyte/s instead of the 

66 Mbyte/s supported by present day Xilinx FPGAs. 

 

The second proposed architecture involved FPGAs with embedded microprocessors. By 

using an FPGA with embedded microprocessors, logic resources of the device can be freed 

and some hardware-consuming task can be allocated to the processors. 

 

A case study using a Xilinx Virtex2 XC2VP40 with two embedded RISC 

microprocessors showed that allocating them to the forces update task would free some 

resources which could be used to speed the position update and contact checking units. The 

RISC processors will need to be fed at a frequency of 2.5 MHz,  

 

 226



Chapter 8: Scalable and Alternative Implementations of the DEM     

As the bottleneck of the design is not the computational units, but the data transfer rate 

between the internal FPGA memory and the external memory, no improvements in term of 

speed-up can be projected in this case. Having an improved reconfigurable computing 

platform with higher memory bandwidth could alleviate this bottleneck. 

 

8.5 Summary and Conclusions 

The design of a distributed memory multi-board system has been analysed and 

implemented. As more boards are added, almost linear speed-up is achieved. Only the 

synchronization of the FPGAs after every time step keeps the speed-up slightly worse than 

linear. The overall performance depends on how well the system load is balanced: the most 

heavily loaded FPGA limits the speed-up of the entire system. Up to 153 boards could be 

connected in parallel before an FPGA had to stall because communication and computation 

could not be overlapped. This depends of course on the amount of data in each board, as 

this estimate assumes that four memory banks of the RC1000 board are filled with data and 

that the CPU will have the time that the FPGA needs to compute the data of 3 memory 

units available to perform the data transfer.  

 

An alternative multiple FPGA system has also been proposed, based on a shared memory 

approach. Section 8.3 provides estimates of its theoretical performance. Using dual-port 

external memory units and a suitable interconnect network, a linear speed-up can be 

achieved independently of the amount of particles in the system, thus having a theoretically 

perfect scalable system. However, this system suffers from the same problem as the 

distributed memory. The fastest FPGA will need to wait for the slowest one to complete its 

processing before a new time step can begin. Thus the time to compute one cycle will 

depend on the quality of the load balancing, which must try to ensure that all the FPGAs 

have the same workload. 

 

The last part of this chapter described alternative single FPGA systems, based on the 

hardware design. A runtime reconfigurable design was presented; estimates based on the 

capabilities of present day FPGAs suggest that this approach is not promising, as the 

reconfiguration overhead is unacceptably large.  

 227



Chapter 8: Scalable and Alternative Implementations of the DEM     

 228

 

The use of embedded microprocessors within the FPGA was also considered. According to 

theoretical calculations, this showed some improvements over the pure hardware 

architecture, as the position update task could be computed faster; however the I/O 

bottleneck with the external memory stills exists. 

 

Overall it has been shown that the HW architecture scales almost linearly with multiple 

FPGAs working in parallel and that it can serve as the basis for other single FPGA 

architecture that exploit the features of new FPGAs to provide very promising results. 

 

8.6 References 

[1] Smith, B., Bjorstad, P., Gropp, W. “Domain Decomposition. Parallel Multilevel 

Methods for Elliptic Partial Differential Equations”, Cambridge University Press, 

1996. 

[2] www.xilinx.com 

[3] Lopez-Buedo S, Riviere, P, Pernas, P, Boemo, E, “Run-Time Reconfiguration to 

Check Temperatures in Custom Computers: An Application of JBits Technology”, 

Field Programmable Logic and Applications (FPL’2002) Montpellier, 2002. 

[4] Smit, G.J.M, Havinga, P.J.M, Smit, L.T., Heysters, P.M, Rosien, M.A.J. “Dynamic 

Reconfiguration in Mobile Systems”, Field Programmable Logic and Applications 

(FPL’2002) Montpellier, 2002 

 



9. CHAPTER CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 
The study of granular materials is important to many engineering disciplines. The Discrete 

Element Method is one of the best methods to model the behaviour of particle assemblies. 

Applying the DEM to assemblies of particles bonded together to form a solid body is also 

promising for the modelling of effects, such as crack propagation, that are not well 

modelled by continuum methods such as the finite element method. However, the 

usefulness of the DEM is limited by its extreme computational demands. These derive 

from the fact that it treats every particle individually, and the time step must be very small 

in order to maintain numerical stability. 

 

A number of previous studies have used multiprocessor computer systems to accelerate the 

DEM. However, high speed-ups could only be achieved for "nice" problems, whose 

geometry was chosen so as to be very benign for parallel processing. For more awkward 

problems, speed-ups were far less than linear, due to communication and synchronization 

overheads and load balancing problems. 

 

229 



Chapter 9: Conclusions and Future Work     

This thesis has presented a completely new approach to the acceleration of the DEM 

computation based on reconfigurable computing (this use of FPGAs to provide custom 

hardware accelerators that can be used as co-processors in standard computers). This novel 

approach exploits the intrinsic low and high-level parallelism of the DEM by scheduling 

the arithmetic operations in parallel, and by decomposing the domain so that the main 

stages of the DEM (contact checking, force update and position update) can be performed 

concurrently. A single FPGA implementation exhibited a speed-up of at least a factor of 30 

over an optimised software version.  

 

One of the key features of the design that enabled the exploitation of high level parallelism 

is the domain decomposition used, and the manner in which this was mapped onto the 

FPGA. The domain was decomposed into columns and the FPGA internal memory was 

divided into 6 equal blocks. This allowed 6 columns of the domain to be cached onto the 

FPGA at one time, and is the key factor that enables overlap of the computational units. 

cc
rebox

forces
update

postition
update

col
1

col
2

col
3

col
4

Internal Memory

FPGA

col
5

col
6

Domain

 

Figure 9–1 Mapping of the domain decomposition on the FPGA’s internal memory 

It is important to note that the re-boxing of particles transitioning from one column to 

another is completely free, as is the dynamic adaptation of the domain boundaries in order 

 230



Chapter 9: Conclusions and Future Work     

to maintain good load balance. This is the key to why the FPGA version can achieve a 

more linear speed-up than can a conventional parallel processor computer. 

 

The design included an interesting example of the ability of reconfigurable computing to 

trade off time against hardware. The contact check unit requires O(N2) operations (as 

opposed to the other computational units, which are O(N)). In a purely sequential 

implementation, it would therefore dominate the simulation time. However, the contact 

check unit requires extremely simple hardware compared to the other computational units. 

Therefore a large number of contact check units can be instantiated in parallel without 

consuming excessive hardware resource, thus giving an excellent speed-up. The design is 

organised so that the number of contact check units is a generic parameter within the 

VHDL description. So as the design is retargeted to a larger FPGA, recompilation of the 

design with just one parameter changed enables the additional FPGA hardware to be used 

to instantiate a much larger number of these units, providing still further speed-up. 

 

A multiple FPGA solution was designed that can completely overlap computation and 

communication even for large numbers of FPGAs. A 2 FPGA design was implemented, 

and was demonstrated to have a speed-up of almost a factor of almost 60 over the software 

version. A truly linear speed-up cannot be achieved, since the load balance will never be 

perfect, and there is an overhead associated with re-synchronising the FPGAs at the end of 

each time step. However, the FPGA solution can, without time penalty, overlap 

communication between domains, and perform dynamic domain boundary adjustment in 

order to optimise load balance. It is therefore reasonable to assume that its speed-up should 

be closer to linear than can be achieved by parallel computers. 

 

In order to fit the design onto an FPGA which is, by modern standards, rather small, a 

number of simplifications had to be made to the DEM algorithm. The simulator could only 

treat 2-D simulations of a domain containing no walls with all particles having the same 

radius. An evaluation was carried out of how the design could be adapted to remove these 

simplifications. The resulting hardware complexity was found to be acceptable, and the 

speed-up compared to software would be excellent. However, a design that uses a variable 

radius would be somewhat unsatisfactory due to the complexity of the data structures that 

 231



Chapter 9: Conclusions and Future Work     

would have to be used, which greatly increases the complexity of the control path, and 

imposes a severe strain on the memory bandwidth. 

 

A software simulator for the 2-D and 3-D DEM was also developed. This was used for 

three purposes.  

 

Firstly, it was used to investigate the interaction of domain decomposition and problem 

geometry with the capabilities of a multi-processor computer platform. It was 

demonstrated that for realistic problems, communication overheads are substantial, and 

will impose an overall limit on the speed-up that can be achieved. By comparison, the 

FPGA implementation can totally overlap communication and computation, and escapes 

this problem. 

 

Secondly, the software provided a user-friendly front-end for the hardware simulator, that 

could be used to set up simulations, and could provide visual feedback to the user on the 

progress of the hardware simulation. 

 

Thirdly, the software version was used to provide a reference implementation, whose 

results could be regarded as "correct" for the purpose of evaluating the correctness and 

accuracy of the hardware simulations. (This software version was itself validated by 

comparison of its results with those produced by a standard DEM code and by analytical 

expressions). The software also implemented a debug mode, in which the software and 

hardware versions could be run in parallel, and their results compared. 

 

In order to conserve hardware resources, the FPGA uses short wordlength arithmetic. A 

careful error analysis was carried out, in order to identify areas in the computational 

pipelines that could give rise to problems. At appropriate points, extended wordlength or 

exception-handling hardware was used in order to avoid catastrophic loss of precision. 

Error analysis, and experimental comparison with the software version, demonstrated that 

the results produced by the FPGA are acceptable in 16 bit arithmetic (although 24 or 32 bit 

arithmetic would undoubtedly be better, and should be preferred as very large FPGAs 

become cheaper). 

 232



Chapter 9: Conclusions and Future Work     

 233

 

9.2 Future Work 
The design implementation in this work provides a basic architecture on which more 

complex DEM models can be developed. These might include: 

 

• Having particles with different radii 

• Including walls in the domain 

• A 3-D DEM model  

• Having a higher numerical precision 

 

The feasibility study presented in this thesis certainly indicates that these extensions are 

feasible and desirable (though it must be admitted that variable particle radius is somewhat 

problematic). A full detailed implementation of these features would be a useful extension 

of the work. 

 

The scalability of the multi-FPGA system could only be demonstrated on a 2-FPGA 

system. It would be useful to carry out an experimental evaluation of a system with a large 

number of FPGAs in order to find out how well the load can be balanced, and the 

synchronisation overheads amortized. 

 

More modern FPGAs contain embedded multipliers and embedded processors. This gives 

a much greater freedom to implement the various computational stages in the most suitable 

form, but all combined on the same FPGA. This holds out some very interesting 

possibilities in respect of dynamic load balancing, as tasks might migrate between 

hardware and software according to simulation conditions. A full investigation of the 

possibilities would be an interesting and useful extension of the present work. 

 

 



APPENDIX APPENDIX 

 

Appendix A.1: Publication List 
Journal papers 

1. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Acceleration of the Discrete 

Element Method on a reconfigurable computing platform”, Computers & 

Structures (Under review) 

 

Refereed conference papers 

1. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Numeric Modelling of the 

Mechanical interaction between non-biological particles using reconfigurable 

computing ", 9th Annual conference of the Association for Computational 

Mechanics in Engineering (ACME), 2001, Birmingham, pages 53-56. 

 

2. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Evaluation of an FPGA 

implementation of the Discrete Element Method (DEM) ", 11th International 

Conference on Field Programmable Logic and Applications (FPL), Belfast, 2001, 

pages 306-314 (c) Springer-Verlag. 

 

3. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Description of a dedicated 

Hardware Architecture for the Discrete Element Method (DEM) implemented on a 

Field Programmable Gate Array (FPGA) ",10th Annual conference of the 

A1 



Appendix      

A2 

Association for Computational Mechanics in Engineering (ACME), 2002, 

Swansea, pages 51-54. 

 

4. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Analysis and Implementation of 

the Discrete Element Method using a dedicated highly parallel Architecture in 

Reconfigurable Computing ", 2002 IEEE Symposium on Field-Programmable 

Custom Computing Machines (FCCM), Napa Valley, California. (c) IEEE 

Computer Society. 

 

5. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, " Implementation of the Discrete 

Element Method using reconfigurable computing (FPGAs) ", 15th Engineering 

Mechanics Conference (EM2002), Columbia University, New York. 

 

6. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, "Scalable Implementation of the 

Discrete Element Method on a Reconfigurable Computing Platform", 12th 

International Conference on Field Programmable Logic and Applications (FPL), 

Montpellier, 2002, (c) Springer-Verlag. 

 

7. Carrión Schäfer, B., Quigley, S.F, Chan, A.H.C, “Scalablity Analysis of an 

Implementation of the Discrete Element Method on a Field Programmable Gate 

Array (FPGA” 11th Annual ACME Conference, University of Strathclyde, 

Glasgow, UK, 24th-25th April 2003, WHEEL M. A. (ed.), University of 

Strathclyde, Glasgow, 177-180 


	Abstract
	Acknowledgments
	CHAPTER 1 Introduction1
	CHAPTER 2 The Discrete Element Method8
	CHAPTER 6 Software and Hardware Analysis 128
	CHAPTER 8 Scalable and Alternative Implementations of the DEM 202


	PhD_ch1.pdf
	ChapterChapter 1
	Introduction
	Contribution of this Thesis
	Thesis Organisation
	References


	PhD_ch2.pdf
	Chapter 2
	Introduction
	Analysis of the Behaviour of Granular Media
	Simulations
	Advent of the Discrete Element Method (DEM)
	Concepts of the Discrete Element Method
	Contact Check
	Inter-particle Forces Increment
	Velocity and Co-ordinate Update

	DEM Analysis
	Contact Checking Analysis
	Forces Update Analysis
	Coordinate Update Calculation Analysis

	Parallelism Analysis
	Basic Ideas about Parallelism
	DEM Parallelism
	Low Level– Fine Grain Parallelism
	High Level – Coarse Grain Parallelism

	Discussion of the Application of the Low and High Level Parallelism of the DEM on FPGAs

	Summary and Conclusions
	References


	PhD_ch3.pdf
	Chapter Chapter 3
	Introduction
	Initialisation of the Simulation
	Data Structure

	Simulator Features
	Optimal Runtime Grid Size
	Re-draw Option

	Runtime comparison between the Fortran and the C simulator
	Validation of the Simulator
	Collision of two balls
	Simulation of Particle Assembly of 500 Balls for 1000 Cycles

	Discussion
	Summary and Conclusions
	References


	PhD_ch4.pdf
	ChapterChapter 4
	Introduction
	Basic ideas about parallelism
	
	Factors affecting speed-up


	Parallel DEM Implementations
	Parallel Implementation of the DEM on a Transputer Array
	System Description
	Domain Decomposition
	Results

	Parallel Implementation of the DEM on a Cray T3D
	System Description
	Domain Decomposition
	Results

	Parallel Implementation on a Swiss-T0-Dual machine [12]
	System Description
	Domain Decomposition
	Results

	Parallel Implementation of the DEM on various Hardware Platforms
	System Description
	Results


	Modelling of a Multiprocessor System
	Domain Decomposition
	Dynamic Load Balancing
	Multi-Processor Modelling

	Summary of the parallel DEM implementations
	Use of Field Programmable Gate Arrays for the DEM
	Summary and Conclusions
	References


	PhD_ch5.pdf
	ChapterChapter 5
	Introduction
	Motivation
	Field Programmable Gate Arrays (FPGAs)
	Evolution
	FPGA Technologies
	Internal Structure

	Reconfigurable Computing Platform
	Hardware Implementations
	System Description (Software-Hardware Partition)

	Data Format
	Implementation classifications
	Low level Parallelism Implementation
	Detailed Unit Descriptions
	Control Unit
	Contact check
	Inter-particle forces increment
	Velocity and Position Update
	Write back unit
	Interface Unit

	Hardware requirements
	Memory Map
	Timing considerations
	Implementation Drawbacks

	High and Low Level Parallelism Implementation
	Handling Cell Boundaries
	Performing Contact Check with Particles at the Neighbouring Sub-Domains
	Transition of Particles from one Sub-Domain to another
	Adaptive Cell Boundaries

	Memory Map
	Load Balancing
	Timing considerations
	Hardware requirements
	Internal Memory limitations

	Validation of the Hardware Designs
	Over/Underflow Quantification

	Discussion
	Summary and Conclusions
	References


	PhD_ch6.pdf
	ChapterChapter 6
	Introduction
	Speed-up
	Low Level Parallelism v. Software Implementation
	High and Low Level Parallelism v. Software Implementation
	Discussion of the Speed-up Results

	Data Precision
	Basic Concepts
	Computation Errors
	Chopping Errors
	Rounding Errors


	Errors in arithmetic operations
	Worst Case analysis

	Error Propagation in Computer Arithmetic
	Error propagation model
	Normal Distribution
	Central Limit Theorem

	Arithmetic Operations Error Propagation
	Addition
	Subtraction
	Multiplication
	Division

	Arithmetic Error Analysis of the Hardware Implementation
	Discussion of the Worst Case Analysis
	Forces update unit
	Position Update unit
	System error accumulation

	Comparison of Bulk Errors in Software and Hardware
	System Energy
	Assembly Centroid
	Average Assembly Velocity
	Comparison of Single Precision and Double Precision Software

	Discussion
	Summary and Conclusions
	References


	PhD_ch7.pdf
	ChapterChapter 7
	Introduction
	Insertion of Walls
	Contact checking between Balls and Walls
	Forces between Balls and Walls
	Wall Movement
	Hardware Resources needed to accommodate Walls
	Influence of the inclusion of Walls in the Overall Computing Time
	Contact Detection
	Forces Update
	Position Update

	Discussion of the Inclusion of Walls on the Implementation

	Multiple Radii
	Arithmetic Changes:
	Data Format
	Discussion of the Use of Balls with different Radii

	3-Dimensions
	Ball description in 3-D
	Contact checking in 3-D
	Forces Update Unit
	Position Update unit
	Arithmetic Operations Comparison between the 2-D v 3-D case
	Hardware Resources needed to accommodate 3D balls
	Timing Comparisons between the 2-D and the 3-D case
	Discussion of the 3-D Implementation

	Summary and Conclusions
	References


	PhD_ch8.pdf
	ChapterChapter 8
	Introduction
	Multi-FPGA Distributed Memory System
	System Description
	Simulations Results

	Shared Memory System
	System Description
	Speed-up Predictions

	Alternative Single FPGA implementation
	Runtime Reconfigurable Architecture
	Case Study of a Runtime Reconfigurable Design
	Implementation on an FPGA with embedded Microprocessors
	Case Study of an FPGA with Embedded Microprocessors
	Discussion for the Proposed Single FPGA Architectures based on the High and Low Level Parallelism HW design

	Summary and Conclusions
	References


	PhD_ch9.pdf
	ChapterChapter 9
	Conclusions
	Future Work


	PhD_Appendix.pdf
	Appendix Appendix


