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Abstract

This thesis presents three essays on the economics and effectiveness of the environmental

policies implemented in Brazil with the aim of taking into account possible barriers that

contribute to the net forest loss. In the first essay we examine to what extent the Brazil’s

institutional environmental framework (IEF) has been successful in curbing deforestation

by exploring the determinants of Brazilian deforestation for the period 2004-2015. Our

results suggest that the creation of an IEF whilst a positive step, was undermined by

weak enforcement such that the introduction of environmental laws as an instrument of

the National Environmental Policy had little impact on deforestation. The second essay

investigate trends in deforestation in the state of Maranhão. We study the state of Maranhão

because of the uniqueness of the area. The artificial line of Legal Amazon crosses part of

the state and proposes a natural experiment of deforestation in the under the Legal Amazon

Maranhão and Cerrado Maranhão since the former has been subject to fundamentally

different environmental policies compared to the latter. We suggest that cloud cover may

have acted as an impediment to infringement detection via satellites,as is conducted by

the environmental policy program. In our final essay, we investigate further the findings

from the previous essay. We use event history analysis to confirm the previous findings by

considering the heterogeneity within the region because not all sites have the same risk of

deforestation. Our results show that forests inside the specific surveillance policy area had

a lower probability of survival comparing to the area not covered by the environmental

policy.
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Introduction

The natural process of evolution of mankind brought many changes. These changes are

political, social, economic and especially environmental. Economic development has

brought with it changes to the environment and these changes resulted in the improvements

in the use of the environment and its degradation. This is the reason why we have seen an

increase in studies that focus on the impact of global environmental change and the impact

of natural hazards and problems relating to land-use and land-cover change.

In the context of climate change and sustainable development, deforestation remains

the second leading cause of greenhouse gas emissions (Culas, 2014). The world’s forests

play an important role in the global carbon cycle. Forests are integral to any global carbon

management and sequestration strategy and they play a major role in global climatic

regulation as a sink and reservoir for carbon dioxide. The importance of forests in the

process of climate change is reflected by the fact that despite the widespread deforestation

in recent decades there is still more carbon in the world’s forests than in the atmosphere.

Therefore, a growing recognition that forests and climate change need to be treated as

together (Buizer et al., 2014).

Deforestation was extensive in the temperate and sub-tropical areas during the 19th

and 20th centuries but is no longer significant in the developed temperate countries. It can
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now be seen that temperate countries are recovering their forest area mainly in with upper

middle and high income countries (see Figure 1).

Figure 1 Planted Forest Area from 1990 to 2015 in thousand of hectares for afforestation
or reforestation. Forest plantation is a forest established by planting and/or seeding in the
process of afforestation or reforestation. It consists of introduced species or, in some cases,
indigenous species. Forest plantation and natural forests are included in the term forest, a
term that refers to land with a tree cover of more than 10 percent and area of more than 0.5
ha. Forests are determined both by the presence of trees and the absence of other
predominant land uses. The trees should be able to reach a minimum height of 5 m. Young
stands that have not yet reached, but are expected to reach, a crown density of 10m percent
and tree height of 5 m are included under forest, as are temporarily unstocked areas. The
term includes forests used for purposes of production, protection, multiple use or
conservation (i.e. forest in national parks, nature reserves and other protected areas), as
well as forest stands on agricultural lands (e.g. windbreaks and shelterbelts of trees with a
width of more than 20 m) and rubberwood plantations and cork oak stands. The term
specifically excludes stands of trees established primarily for agricultural production, for
example fruit tree plantations. It also excludes trees planted in agroforestry systems.
Source: (UNEP, 2018).

In contrast, tropical deforestation is a relatively modern event that gained momentum in

the second half of the 20th century, more precisely, considerable deforestation happened

during the period 1990-2015 and, was almost entirely confined to the tropical regions.

Figure 2 shows the percentage of forested land in each region. Asia and Latin America

had the highest net loss of forest during the period of 1990 to 2015.

Figure 3 shows that deforestation levels across Latin America concentrated in Meso

America and South America. This is not surprising given that this area contains 86% of

the total tropical forest area found in Latin America. In fact, Brazil accounts for 60%
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Figure 2 Proportion of land covered by forest from 1990 to 2015 in percentage. Forest:
Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover
of more than 10 percent, or trees able to reach these thresholds in situ. It does not include
land that is predominantly under agricultural or urban land use. Explanatory notes 1.
Forest is determined both by the presence of trees and the absence of other predominant
land uses. The trees should be able to reach a minimum height of 5 meters in situ. Areas
under reforestation that have not yet reached but are expected to reach a canopy cover of
10 percent and a tree height of 5 m are included, as are temporarily unstocked areas,
resulting from human intervention or natural causes, which are expected to regenerate. 2.
Includes areas with bamboo and palms provided that height and canopy cover criteria are
met. 3. Includes forest roads, firebreaks and other small open areas; forest in national
parks, nature reserves and other protected areas such as those of specific scientific,
historical, cultural or spiritual interest. 4. Includes windbreaks, shelterbelts and corridors
of trees with an area of more than 0.5 ha and width of more than 20 m. 5. Includes
plantations primarily used for forestry or protection purposes, such as rubberwood
plantations and cork oak stands. 6. Excludes tree stands in agricultural production
systems, for example in fruit plantations and agroforestry systems. The term also excludes
trees in urban parks and gardens. The term is mainly related to FRA 2005 National
Reporting Table T1. Source: (UNEP, 2018).
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of Latin America’s tropical forests. Thus, the slowdown in deforestation in Brazil is

largely responsible for the decline in overall tropical deforestation in Latin America. It

is also possible to aggregate information from Figures 1, 2 and 3 in this process. Lower

middle income and upper middle income tropical countries account for the decrease in the

percentage of land covered by forests from 1990-2015. In other words, these economies

were rapidly changing land use, by converting forests, woodlands and other natural habitat

to agriculture and other land-based development activities (Barbier, 2004).

Figure 3 Forest Average Annual Change from 1990 to 2015 in Thousand Hectares per
Year. Forest Average Annual Change – Total is the net change in forests and includes
expansion of forest plantations and losses and gains in the area of natural forests. Total
Forest includes natural forests and forest plantations. The term is used to refer to land with
a tree cover of more than 10 percent and area of more than 0.5 ha. Forests are determined
both by the presence of trees and the absence of other predominant land uses. The trees
should be able to reach a minimum height of 5 m. Young stands that have not yet reached,
but are expected to reach, a crown density of 10m percent and tree height of 5 m are
included under forest, as are temporarily unstocked areas. The term includes forests used
for purposes of production, protection, multiple use or conservation (i.e. forest in national
parks, nature reserves and other protected areas), as well as forest stands on agricultural
lands (e.g. windbreaks and shelterbelts of trees with a width of more than 20 m) and
rubberwood plantations and cork oak stands. The term specifically excludes stands of trees
established primarily for agricultural production, for example fruit tree plantations. It also
excludes trees planted in agroforestry systems. Source: (UNEP, 2018).
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As can be shown, deforestation, especially tropical deforestation, happens in countries

where the status of development and welfare of the citizens are crucial factors in

determining the extent of the forest loss. The accentuation of deforestation in low income

countries is often explained by poverty, overpopulation and indebtedness. In this sense,

the need for economic growth results in growing demand for agricultural and forest

derived products. As a result, the governments of many developing countries believe that

deforestation is one of the easiest and the most accessible ways of responding to ever

increasing economic pressure (Culas, 2014).

In more recent years, studies are beginning to relate the major human causes of land-

cover change in different geographical and historical contexts (Geist and Lambin, 2001).

Direct and indirect causes of deforestation are concerned with the fact that some causes are

direct in the sense that their occurrence or variation generates more or less deforestation

through simple channels and other causes are indirect in operating through more complex

channels (Combes Motel et al., 2009).

More specifically, direct drivers are identified as the hands-on land-management

activities that lead to a land-use conversion or modification of ecosystems (Leemans,

2009). Geist and Lambin (2002) also define direct drivers as human activities or immediate

actions at the local level, such as agricultural expansion, that originate from intended land

use and directly impact forest cover. Indirect driving forces are the fundamental social

processes that underpin the direct causes and either operate at the local level or have an

indirect impact from the national or global level. In other words, indirect drivers influence

the nature and strength of the direct drivers and include many diverse and often diffuse

factors that often operate at different levels than the ensuing direct drivers. In addition, the

drivers of deforestation must be defined in terms of their spatial and temporal dimensions,

which are often clearly specified, but also defined in terms of institutions, social, cultural

and, environment with their inherent levels (Leemans, 2009).
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Based on several studies, it is widely accepted that the main direct causes for

deforestation in Brazil, the most land converted country in Latin America, are agriculture

expansion, cattle ranching, transport infrastructure and settlement expansion.1 As indirect

drivers of tropical deforestation, Brazil deals with the impact of economic growth and

the changes in global demand for food, along with demographic factors, weak policies

and institutional factors. To curb these actions, the implementation of social-political and

environmental policies played an essential role.

Broadly, there are three major barriers to be able to execute effective policies to reduce

deforestation. The first barrier is the profitability incentives, which is often in contradiction

with forest conservation and sustainable forest management. Secondly, many direct

and indirect drivers of deforestation lie outside of the forest sector and, thirdly, limited

regulatory and institutional capacity and inadequate resources that constrain the ability of

governments to implement forest and sectoral policies related to the forestry sector (Gerold

et al., 2004; Nabuurs et al., 2007; Tacconi et al., 2003).

In this thesis we investigate the effectiveness of the environmental policies implemented

in Brazil with the aim of taking into account possible barriers such as, limited regulatory

and institutional capacity and inadequate resources that constrain the ability of governments

to implement forest policies, the fact that many indirect drivers are outside of the forestry

sector and, environmental factors that contribute to the net forest loss. Our analyses take

an interdisciplinary approach to investigate these aforementioned issues. We combine

the use of remote sensing technique and statistic methodologies that are rarely applied

1See references for Almeyda Zambrano et al. (2010); Arima et al. (2014); Barni et al. (2015); Barretto
et al. (2013); Bhattarai and Hammig (2001); Cabral et al. (2012); Culas (2014); Davalos et al. (2014); Geist
and Lambin (2001, 2002); Imori and Guilhoto (2015); Kuik (2013); Lambin and Geist (2006); Latawiec
et al. (2014); Lopez-Carr and Burgdorfer (2013); Marcellus Caldas and Simmons (2007); Mendes (2009);
Molina Vale (2014); Nepstad et al. (2014); Oestreicher et al. (2014); Olson et al. (2010); Pascale et al. (2010);
Pfaff et al. (2007); Pfaff (1999, 1997); Richards (2015); Richards and VanWey (2015); Silva Costa et al.
(2012); Soler et al. (2014); Stickler et al. (2013)
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to deforestation in Brazil and, by making this statement, we acknowledge the potential

contribution of this thesis.

In the first chapter we examine to what extent the Brazil’s institutional environmental

framework (IEF) has been successful in curbing deforestation by exploring the determinants

of Brazilian deforestation for the period 2004-2015. Although previous studies (Borges de

Lima and Buszynski, 2011; Dias et al., 2015; Nepstad et al., 2014; Oliveira, 2011; Pailler,

2018; Pascale et al., 2010) emphasise the role of institutions in different levels and

policy intervention, little has been done concerning the impact of the environmental

policy expansion on reducing forest loss and how their effectiveness may be affected by

the presence of municipality level institutions for managing environmental policy while

controlling for market expansion in products such as timber, cattle and soy.

The contribution of this chapter is to investigate the impact of both the expansion of the

beef, soy and forest product markets and the effectiveness of Brazil’s policies to protect

the Legal Amazon conditional on the institutional environmental framework (IEF) in place

at the time.1 We provide a comprehensive analysis at the municipality level where we have

detailed information on 562 municipalities where we are able to control for a wide range of

possible determinants of deforestation. We employ a panel fixed effects regression model

that takes into account environmental policies and prices, and the indirect institutional

environmental framework. We expand the analysis by accounting for spatial effects and,

quantify in which level of deforestation may have looked like had Brazil not implemented

its current IEF.

Our results suggest that the creation of an institutional environmental framework (IEF)

whilst a positive step, was undermined by weak enforcement such that the introduction of

environmental laws as an instrument of the National Environmental Policy had little impact

1The Legal Amazon is an area that corresponds to 59% of the Brazilian territory and encompasses all
eight states (Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima and Tocantins) and part of the
State of Maranhão (west of the meridian Of 44ºW), totalling more than 5 million km2.
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on deforestation. However, municipalities who opened a dedicated environmental office

did experience a reduction in the deforestation rate when combined with environmental

policies. In our spatial analysis we find that the existence of an IEF within municipality has

a negative spillover effect on neighbouring municipalities. Our counter-factual simulations

show that the monetary benefits of avoiding deforestation and preserving the forest is worth

the equivalent to 12 billion tonnes of stored CO2.

In chapter 2, we investigate trends in deforestation in the biome most affected by

human occupation over the last three decades in Brazil. Importantly, the Brazilian Cerrado

has also been subject to spatially and temporally heterogeneous environmental policies

discouraging such deforestation. We document what role such interventionist policies may

have played in observed trends in deforestation so it can potentially provide a platform

with which to assess future possible scenarios of deforestation in the Cerrado biome and

the Amazon forest. We conduct this analysis by using remote sensing data and non-linear

models to shape the trends of deforestation and its indirect drivers in the Cerrado region in

the Brazilian state of Maranhão using the non-linear modelling approach of Generalized

Additive Models (GAMs).

The state of Maranhão provides a particularly interesting context within which to study

trends in deforestation and the possible role of environmental policy. More specifically,

Maranhão is divided by an artificial line that separates it in two parts: the Legal Amazon

Maranhão and the Cerrado Maranhão. This division, occurs at approximately 44◦ west

of the meridian, and was established in 1953 due to the necessity to plan economic

development in the region. This scenario provides a unique natural experiment of

deforestation in the Legal Amazon Maranhão (LM) and Cerrado Maranhão (MA) since

the former has been subject to fundamentally different environmental policies compared to

the latter. More specifically, the tropical forest in the Legal Amazon Maranhão is under

a surveillance environmental policy which detects deforestation or fire incidence in the
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region using satellite data and informs the occurrences to the environmental police so that

they can fine or arrest the responsible persons (IBAMA, 2017). In contrast, this specific

environmental policy is not applicable for the other biomes in the Maranhão state. We use

this spatial division to determine how deforestation trends may have been different being

the Legal Amazon Maranhão and Cerrado Maranhão.

Dealing with nonlinear processes trying to approximate to linear estimation methods

may lead to inconsistent results guided by the linear estimator. There is an imposed

assumption regarding the distribution and nature of the data. On the subject of the choice

of distribution, it is doubtful that a satisfactory model could have been produced in this

manner. This is part of the motivation for seeking to allow a more compact and flexible

way of specifying smooth functional relationships within the models. Our use of non-linear

modelling for the task at hand derives from the recognition in recent previous research that

most ecological and climatic data represent complex relationships and thus that non-linear

models, such as GAMs, may be particularly suited to capture confounding effects in trends;

see (Antunez et al., 2017; Auderset Joye and Rey-Boissezon, 2015; Bell et al., 2015; Bio

et al., 1998; de Souza et al., 2017; Halperin et al., 2016; Liu et al., 2018; Lusk et al.,

2016; Moreno-Fernández et al., 2018; Pourtaghi et al., 2016). However, a review of the

literature shows that such models have only been used sparsely to study deforestation and

among trends of deforestation, this methodology has not been mentioned in recent analysis

(Aleixandre-Benavent et al., 2018).

Here we apply a GAM with a negative binomial distribution and logarithmic link

function. We capture deforestation by the construction of monthly time series from

remote sensing sources (MODIS), given that high temporal resolution satellite products are

particularly suitable to obtain detailed knowledge about the seasonal cycles of vegetation in

biomes with strong seasonal contrast, such as the Cerrado biome and Ecotone forest (Bayma

and Sano, 2015). We find that for the Legal Maranhão region most of the deforestation
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happened during the rainy season, while in the unprotected Cerrado Maranhão deforestation

also occurred in the dry season. The fact that precipitation and solar incidence also played

an important role in deforestation in the rainy season in the Legal Maranhão region, we

suggest that cloud cover may have acted as an impediment to infringement detection via

satellites, as is conducted by the environmental policy program. We further substantiated

this claim by showing that for settlements located in both region but that are not the target

of environmental policy deforestation mainly took place during both seasons as well.

In our final chapter, we investigate further the findings from Chapter 2. Given that, the

environmental policy faded in areas of biome transition that coincided with the presence

of cloudiness, we use event history analysis to confirm this findings by considering the

heterogeneity within the region because not all sites within ecological tension zone have

the same risk of deforestation. The uniqueness of the area proposes a natural experiment of

deforestation in the Legal Amazon Maranhão and Cerrado Maranhão since the former has

been subject to fundamentally different environmental policies compared to the latter. We

estimate how the probability of transition between intact forest to disturbed forest, given

risk factors and conditional on the time elapsed until the occurrence of the transition, is

affected by cloud coverage. The results suggest that the presence of clouds has increased

deforestation in the region covered by the satellite detection program, and thus is likely an

active barrier to legal compliance.

Our results show that forests inside the specific surveillance policy area had a lower

probability of survival comparing to the area not covered by the environmental policy.

Forested pixels close to protected areas, which include conservation units and indigenous

land, had a higher chance of being cleared comparing to forested pixels far from these

special zones. Most importantly the presence of clouds was an active barrier to the legal

compliance and, since the studied area has no systematic differences, we can agree on the

lack of effectiveness due to cloud barrier.
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From this economic and policy analyses of deforestation in Brazil it is possible to

derive key policy implications about the potential ways to curb deforestation in the country.

We’ve seen that institutional factors are an important instrument to protect or restrict

deforestation in the Legal Amazon however the framework needs to be tightened up in

terms of enforcement. We also follow the past trend of deforestation in two areas of great

importance for the Brazilian biome, Amazon and Cerrado. From the trends we can deduce

that the deforestation process was shifted to rainy periods and non surveilled areas. One

policy implication is to expand the ecotonic/transition forests along the Amazon Forest. In

addition, the monitoring system that can observe deforestation regardless of clouds and

atmospheric barriers should be considered for the application of the environmental policy,

for example the satellite Sentinel-2. Finally, since the studied areas are severely influenced

by anthropic actions, one step further it would be extending the environmental policy to

the Cerrado region.

The remainder of the thesis is organized as follows. The first essay, "Deforestation

and the role of institutions and environmental policies in the Brazilian Legal Amazon" is

presented in Chapter 1. The second essay, "Trends in Deforestation and Environmental

Policy in Maranhão, Brazil" is presented in the following chapter. The third essay, "Satellite

Monitoring of Deforestation and the Role of Clouds in Maranhão" is presented in Chapter

3. Finally, a brief conclusion is presented at the end of the thesis.



Chapter 1

Deforestation and the role of institutions

and environmental policies in the

Brazilian Legal Amazon



Abstract

In this paper we empirically investigate the impact of environmental legislation and

environmental institutions on deforestation in the Brazilian legal Amazon at the

municipality level for the period 2004 to 2015. Our results show that environmental

policies, whilst giving the impression that they would curb deforestation, tend to be

ineffective unless reinforced by a strong institutional environmental framework. A spatial

econometric analysis to take into account spatial correlation collaborates our main findings.

Counter-factual simulations indicate that the current institutional environmental framework

has resulted in an decrease in deforestation of around 63%.

Keywords: Deforestation; Environmental Policy; Market Condition; Institutions

JEL classification: Q23; Q28.

1.1 Introduction

Forests are integral to any global carbon management and sequestration strategy and play

a major role in global climate regulation. In the context of climate change, deforestation

is recognised as the second major cause of greenhouse gas emissions. With Brazil being

home to over 64 per cent of the Amazon rainforest it has experienced varying degrees of

deforestation for more than five decades. It is therefore important to understand the drivers
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of deforestation and in particular the effectiveness of different government policies and

how they are supported through new and existing institutional structures put in place to

manage and prevent deforestation. Historically, the main causes of deforestation in Brazil

have been identified as transport infrastructure (roads), settlement expansion, agricultural

expansion (e.g. soybeans), and cattle ranching (Geist and Lambin (2002), Pfaff et al.

(2007), Nepstad et al. (2014) and Richards (2015)). In an attempt to reduce deforestation

in the legal Amazon, Brazil has enacted a series of environment related legislation and

established a number of regulatory institutions.12

The purpose of this study is to examine the determinants of Brazilian deforestation

between 2004 and 2015 with a view to investigating the extent to which Brazil’s recently

established institutional framework (IEF) has been successful in reducing deforestation.

More specifically, our first contribution is, conditional on the IEF being in place at the

time, to investigate the effectiveness of Brazil’s policies to protect the Legal Amazon

controlling also for the expansion of the cattle, soy and forest product markets. Our

methodological approach is to estimate a panel fixed effects regression and spatial model

(to control for spatial correlations) for 562 municipalities for the period 2004-2015. A

second contribution, following Assunçao et al. (2015) is to quantify what the level of

deforestation may have looked like had Brazil not implemented its current institutional

environmental framework.

Both the rates and the reasons for deforestation have varied considerably over time.

In the late 60’s there was substantial investment in transport infrastructure with the aim

of increasing the agricultural productivity of isolated regions (Baynard et al., 2012). In

1The Legal Amazon is an area that corresponds to 59% of the Brazilian territory and encompasses all
eight states (Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima and Tocantins) and part of the
State of Maranhão (west of the meridian Of 44ºW), totalling more than 5 million km2. The Legal Amazon
was established in 1953 and its territorial limits stem from the need to plan the economic development of the
region and, therefore, are not limited to the ecosystem, which occupies 49% of the national territory and also
extends into the territory of eight neighbouring countries (IPEA, 2008).

2A draft of this chapter had previously been submitted to the 10th International Research Meeting in
Business and Management in France 2018.
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addition, the government identified land settlement as a means to benefit both the landless

poor and southern Brazilian agribusiness (Diprose and McGregor, 2009; Marcellus Caldas

and Simmons, 2007). During the 1970s, Brazil’s policy shifted from rapid frontier

colonisation to agrarian reform as a strategy to reverse the tendency for land to become

more concentrated into large landholdings resulting in the gradual internationalisation

of the Amazon region. Part of the reform process involved the creation of the Brazilian

Institute of Agrarian Reform (IBRA in Portuguese) and the National Institute of Agrarian

Development (INDA in Portuguese), later replaced by the Institute for Rural Settlement

and Agrarian Reform (INCRA in Portuguese). In the 1980s, the causes of deforestation

changed again and were largely driven by the need for additional land to be cleared to

satisfy the global demand for cattle and soy production (Cropper et al., 2001; Soler et al.,

2014).

By the end of the 20th century, the Brazilian government, through INCRA, implemented

a system of national land reform that promoted various colonisation schemes in areas close

to newly built highways. During this process, for so-called agricultural pioneers, access

to credit and subsidies for agriculture and pasture were increased especially along the

deforestation line that ran next to major road arteries (for example, the BR 153 "Belem -

Brasilia" and the BR 364 "Cuiaba - Porto Velho"). These policies had an indirect effect

on deforestation that was further accentuated by the construction of federal roads, mining,

and hydroelectric projects. Such actions eventually came to the attention of international

organisations who, in turn, exerted pressure on the Brazilian government to reduce levels

of deforestation. As a result, the government introduced a combination of environmental

policies and environmentally focused institutions.

The focus on preventing deforestation resulted, in the early 2000s, in Brazil’s National

Environmental System (SISNAMA in Portuguese) changing the National Environmental

Policy (Política Nacional do Meio Ambiente in Portuguese) on deforestation to make it
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a more decentralised operation in the hope that this would result in increases in both

effectiveness and efficiency. To this end, the National Environmental Policy (NEP)

aggregated federal, state, and local government bodies to form, what we call in this chapter,

Brazil’s institutional environmental framework (IEF). Two of the local institutional actions

were the implementation of environmental laws and the establishment of environmental

offices in municipality city halls. The explicit role of the personnel in these new offices

was to formulate and execute policies related to the environment and to control, monitor,

evaluate, and execute the management of the natural resources within a municipality in

accordance with the local environmental legislation. Importantly, for our study, is that

many municipalities chose not implement this action and would often designate this role

to existing offices (often with different core agendas).

Although the NEP covers all of Brazil, given that much of the world’s tropical forests

lie within the region defined as the Legal Amazon, the focus of the policy tended to be

on this region. In accordance with the NEP, in 2004 the government created the Action

Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm in

Portuguese). The purpose of the PPCDAm is to plan development, control land use and

ensure compliance with environmental laws and to promote sustainable practice. Crucially,

in order to control land use and prevent further deforestation, the PPCDAm includes a

satellite-based monitoring programme PRODES (Projeto de Estimativa do Desflorestameno

da Amazônia in Portuguese) (INPE, 2017). Through PRODES, the government attempts

to record incidents of deforestation that occur throughout the year within a given policy

area. The premise is that the data gathered by the action plan are then used to enforce the

PPPCDAm plan, which includes the issuing of fines for agents who clear or damage the

forest, the organisation of embargoes for those areas in the process of being cleared and

the confiscation of equipment, and restrictions on access to subsidised credit (Aubertin,

2015).1 As part of the PPCDAm, a policy of Protected Areas (PA) was introduced with the

1In order to control for degradation of the forest by selective logging and forest fires, the government
uses the DETER program. In addition, in 2007 two other systems were introduced: DEGRAD (Mapeamento
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aim of limiting the expansion of cleared land where PAs represent ecological mosaics and

corridors considered essential for conserving biodiversity and traditional communities.1

In terms of the existing literature, institutions tend to only be considered in relation to

action plans at an aggregate level, and land tenure insecurity and property rights at the more

disaggregated level (Oliveira, 2011; Pascale et al., 2010). For example, Borges de Lima and

Buszynski (2011) examine the problem of deforestation in the Amazonian region and local

environmental governance and public policies. The study identified some participatory-

based, decentralized models of forest management and regulatory frameworks and how

local environmental governance can be used to strike a balance between the use of natural

resources, conservation and regional planning. Likewise, Nepstad et al. (2014) highlights

the negative impact on deforestation from institutional factors such as the enforcement of

laws, intervention in the soy and cattle supply chains, restrictions to credit, and expansion

of protected areas. However, Dias et al. (2015) found that the deforestation rates were

not significantly influenced by environmental governance. More recently, Pailler (2018)

investigate how local political processes create incentives to manipulate forest resources

and shows that the local electoral processes can lead to increased Brazilian deforestation.

The main finding is that electoral deforestation cycles do not appear to be driven by changes

in agricultural policy implementation but are linked to corruption and campaign financing,

suggesting that weak institutions facilitate the electoral manipulation of forest resources.

da Degradação Florestal na Amazônia Brasileira in Portuguese), for mapping forest degradation in the Legal
Amazon, and DETEX (Mapeamento da Cobertura Florestal na Amazônia Brasileira in Portuguese), for
detecting logging operations in the Legal Amazon region (Pinheiro et al., 2016).

1The Law on the National Register of Conservation Units (Sistema Nacional de Unidades de Conservacao
(SNUC)) dates from 2000 and defines 12 different types of conservation unit (CU). In general, CUs are
territorial spaces, including their environmental resources, with relevant natural characteristics, which have
the function of ensuring the preservation of the biological patrimony. In 2017 there were 334 CUs operating
in the Legal Amazon, of which more than two thirds are classified as conservational sustainable use units
which differ from standard CUs due to the presence of traditional populations. Such populations contribute
to the development of sustainable economic activities. If we include the indigenous lands, nearly 50% of
Amazonian land area is protected (Aubertin, 2015; MMA, 2017; MMA-CNUC, 2017). In this paper we
classify indigenous land and conservational units as protected areas.
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To briefly summarise our results, we find that the overall effectiveness of Brazil’s

institutional environmental framework, was undermined by weak enforcement to such

an extent that the introduction of environmental laws as an instrument of the NEP had

little impact on deforestation rates. However, we find that in those municipalities that

had a dedicated environmental office did experience a reduction in the deforestation

rate when it was combined with environmental policies. When we take account of

spatial dependence (Hargrave and Kis-Katos, 2012) we find that the existence of an

IEF within a municipality had a negative spillover effect on neighbouring municipalities.

Our counter-factual simulations to quantify the amount of forest that would have been

cleared, had there been no institutional environmental framework, show that deforestation

would have been approximately 63% more than it was if there had been no institutional

environmental framework. Following Assunçao et al. (2015), the monetary benefits of

avoiding deforestation and protecting the forest show that the preserved forest area is worth

the equivalent to 12 billion tonnes of stored CO2 with an estimated value of US$ 62b.

The reminder of the essay is organized as follows. Section 2 describes the conceptual

framework and outlines the main testable hypotheses. Section 3 describes the data and our

empirical approach. Section 4 presents the results of our main regressions while Section 5

provides a series of counter-factual simulations. Section 6 concludes.

1.2 Conceptual Framework

1.2.1 Main Hypothesis

Our methodological approach is to include Brazil’s institutional structure within the

framework suggested by Kaimowitz and Angelsen (1998) and Hargrave and Kis-Katos

(2012). As the Legal Amazon is often thought of as a frontier region it is often considered
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open access land in which deforestation depends positively on the expected profits from

using the land for unsustainable activities, such as logging, cattle ranching or farming.1

Moreover, in the Legal Amazon region, land use decisions are made taking into account

the expected profit differential between sustainable (such as protected areas (PAs)) and

unsustainable land use (Hargrave and Kis-Katos, 2012). We assume that the services

from sustainable land use are public goods and thus are ignored by agents when they

decide which land to clear (Kaimowitz and Angelsen, 1998). In this sense, agents can

be considered to be profit maximizing and hence they choose the amount of land to clear

subject to a number of constraints.

Expected profits from land use are determined by the prices of agricultural and forestry

goods, access to markets, and other municipality specific conditions. The costs of

deforestation are driven by the cost of clearing the land, agricultural and cattle ranching

costs, the availability of credit and the costs associated with any fines imposed for being

caught clearing the forest illegally (Hargrave and Kis-Katos, 2012). In turn, given the

satellite monitoring system in place, means that agents may change their behaviour and

clear land when it is cloudy (Calixto, 2016).

In the context of our paper, the term institutional framework is defined as a code

of practice, behaviour, or relationship that has significant tangible or intangible social

outcomes, such as socioeconomic and environmental sustainability (North, 1994). Often

such relationships, behaviour, or practices are facilitated by physical organisations and/or

actors, sanctions or rewards. In this sense, the concept of an institution incorporates

policies and legislation. Strong institutions have the potential to reduce the rate of forest

clearing through the enforcement of environmental laws and environmental management.

For example, the risk of being penalised for illegally clearing a forest is higher when there

1According to Brazilian Forest Service data, by December 2015 there were 68.8 million hectares of
forests awaiting allocation for the recognition of indigenous lands and traditional communities, as well as
conservation units (BRASIL, Serviço Florestal Brasileiro, 2016; Brito, 2017).



1.2 Conceptual Framework 20

is institutional compliance within a local area. However, the strength of any institution

depends in part on political structures within a municipality including the political party,

education of the mayor, the level of corruption, or the election process.1

If institutions are fragile, agents have a greater incentive to misappropriate revenues

(Albuquerque and Ramos, 2006; Brollo et al., 2013; Bugarin and Meneguin, 2016; Garcia,

2003). In addition, how well the institutional apparatus works in a municipality is also

likely to determine the preservation and maintenance of sustainable land (Rochedo et al.,

2018). Our framework divides the expected profits into those drive by market conditions,

policy pressure, predetermined conditions, and institutional factors.

1.2.2 Institutional Environmental Framework

The development of the Brazilian IEF began during the 1970s in response to pressure from

a number of international organisations. As a result Brazil created the Special Secretariat

for the Environment (Secretaria Especial de Meio Ambiente in Portuguese) which was

given the remit to protect the environment and regulate the rational use of the natural

resources within the territory under the supervision of the Interior Ministry. Ten years later

1When dealing with developing countries it is important to account for the fact that regulations may
provide government officials with more levers for extracting rents. Hence, it is necessary to include controls
for government efficiency. One approach is to capture the possibility of corruption within a system. For
example, Brollo et al. (2013) identified that larger federal transfers from the FPM (Fundo de Participacao
Municipal in Portuguese) increased observed corruption. Likewise, Bugarin and Meneguin (2016) found
that the existence of commissioned workers in the Brazilian government lead to corruption in the Executive
body. According to the Survey of Basic Municipal Information commissioners workers are employees,
who are not effective in the City Hall, and whose only job is the commissioned position they carry out.
Usually the position is given by the mayor or city councils in exchange for political favours and benefits
(Bugarin and Meneguin, 2016). Corruption is defined as the attempt to obtain private gain at public expense
such that corruption can be considered to arise whenever an agent, who is responsible for certain public
responsibilities, and is influenced by the prospect of some reward, performs actions in favour of those who
provide such reward, and therefore harms the public to whom such an individual should respond (Friedrich,
2002). The existence of corruption within the municipality governmental infrastructure is therefore related
to the benefits and costs of an unlawful act since each agent is considered a utility maximiser. The costs of
corruption are determined by the probability of detection and by the severity of the punishment, which may
be either loss of popularity for politicians, wages, employment, and also the possibility of being prosecuted
and imprisoned. The benefits are related to the financial gain (Albuquerque and Ramos, 2006; Bugarin and
Meneguin, 2016; Garcia, 2003) or the possibility of being reelected (Brollo et al., 2013).
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Brazil implemented the National Environmental System (SISNAMA in Portuguese) which

provides the structure for national environmental management along with the introduction

of the National Environmental Policy (NEP). At that time, municipalities did not have

political and administrative autonomy and the introduction of a decentralised policy was

considered to be an innovative initiative. 1

The National Environmental System consists of six distinctive bodies and environmental

institutions each with a specific role. At the highest level, the government council consists

of all ministers and the Union’s legal advisers who suggest to the chief in command on

environmental subjects that enables the president to formulate national policy and set the

rules for the correct use of the environment and its resources.

The level below is the environmental council that proposes policy on the environment

and natural resources to the governing council, and deliberates on norms and standards

compatible with an ecologically balanced environment. The environmental council is a

representative body which consists of five groups, namely: federal, state and municipal

bodies, the business sector and society. In this way, it is incumbent upon the environmental

council to establish the federal standards and norms that must be observed by states and

municipalities. However, states and municipalities also have the authority to introduce other

standards, as long as they do not violate the standards established by the environmental

council. As a central body, the Ministry of Environment has to plan, coordinate, supervise,

and control the national environmental policy and the governmental directives set for the

environment as federal level body (Mendes, 2017). The framework is shown in Figure 1.

At the executive level, the Brazilian Institute of Environment and Renewable Natural

Resources (IBAMA in Portuguese) also known as the environmental police (Hargrave

and Kis-Katos, 2012) are responsible for carrying out actions of coordination, control,

1Pailler (2018) considers the National Environmental System to be a centralised central agency. For
more details on the Brazilian decentralised environmental system see Scardua and Bursztyn (2003) and
Sanches et al. (2017).
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Figure 1.1 Organisational structure of the Brazilian Environmental System. Source:
(MMA, 2018b)

supervision, monitoring, and orientation to ensure the execution of actions related to

environmental emergencies using instruments such as fines and embargoes. Even though

the duty to act in cases of environmental emergencies encompasses all of the entities of the

federation (union, states and municipalities), given the common competence established in

the Federal Constitution of 1988, many municipalities and states are not equipped with the

technical capabilities and enforcement officers are often unable to attend environmental

incidents within their jurisdiction. In such a case, the environmental police assist these

bodies at the local level to prevent deforestation (Mendes, 2017; Moraes et al., 2016).1

In terms of enforcement more generally, of the entities within the federation, states

and municipalities are the sectional body and local body, respectively, and are responsible

for most of the environmental control activity. Therefore, each state and municipality is

required to organise its environmental control agency and environmental laws according to

its needs. Finally, municipalities are legally able to exercise environmental management

within their territorial limits by creating specific environmental offices and laws. In

addition, municipalities have environmental police powers, which legitimises them to

apply appropriate sanctions and forbid or close establishments that do not comply with the

legislation. (Mendes, 2017).

1The Federal Constitution from 1988 establishes that the environment is a fundamental right and it is
classified as a public good. Therefore, the environment does not belong exclusively to a person or group, nor
is it attributed to anyone who owns it.
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The institutional framework described above underpins the NEP, the purpose of which

is to regulate the various activities that involve the environment, including preservation,

improvement, and recovery of environmental quality, and the promotion of sustainable

development more generally. The NEP provides policies that are specific to different

regions of Brazil through the creation of programs and action plans.

In order to establish the attributions and actions of a municipal administrative unit

of environment, the so-called environmental offices, a municipality may define criteria

creating and using specific environmental legislation. According to the Brazilian

Environmental System, every municipality has to replicate the National Environmental

Policy at the local level to create means to consolidate its policy. In the legal structure, the

law approved by the City Council may provide actions of local interest; the organisation

of the municipal environmental system; environmental zoning; control of pollution

(sound, water, visual and soil); preventive instrument such as environmental licensing

and authorisation; infractions and penalties; protection of fauna and flora; and, urban

preservation areas (UPAs) and protected areas (PAs). Sometimes environmental offices are

created jointly to other agendas, for instance, tourism and agriculture. Given the nature of

the environmental agenda, many of the offices are turned down during political transitions,

which configure a deficiency of the institutional framework.

As previously discussed, one of the most important tropical forest preservation plans

was the implementation of the PPCDAm which is divided in three strategic phases.1 In the

first phase (2004-2008), the main objectives were to combat deforestation using satellite

monitoring and to create a series of protected areas. Satellite monitoring meant that it

was possible to notify the Brazilian environmental police (IBAMA) of environmental

emergencies related to forest clearing thus enabling the police to penalise the offenders and

prevent further deforestation. The action plan also allowed for the creation of conservation

1During 2016, the Executive Board reviewed the 13 strategic objectives of Phase 3 (2012-2015) with the
objective to listing strategic actions for the period 2016-2020 (BRASIL, 2016).
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units and the ratification of indigenous lands as instruments of policy conservation. During

the first phase, the plan also advised on territorial planning and prioritised the fight against

the illegal takeover of public lands (Mello and Artaxo, 2017).

The second phase of the PPCDAm (2008-2011) included plans to value the forest in

terms of biodiversity conservation, and how best to manage the exploitation of timber

and non-timber products. In this phase incentives were included for the monitoring

of agricultural practices in deforested areas, including technological innovation and

sustainable production systems. According to Mello and Artaxo (2017), the second

phase encouraged the implementation of the Rural Environmental Registry (Cadastro

Ambiental Rural in Portuguese), an instrument through which environmental agencies

geo-reference rural properties in order to qualify the remote monitoring and effectiveness

of field inspection operations, as well as to guide the regularisation process for rural

properties.1

The third phase (2012-2015) included rules to strengthen decentralisation for states

and municipalities through partnerships between the Union, states and municipalities, to

deepen integration and to further improve the prevention of environmental damage and the

promotion of sustainable production systems. During the three phases, the PPCDAm plan

analysed changes in municipality level deforestation with the aim of highlighting possible

improvements at the local level to curb deforestation (Moraes et al., 2016).

1Many properties in the Legal Amazon did not complete the Rural Environmental Registry during the
second phase of the PPCDAm delaying the process. It was eventually concluded at the end of 2015 during
the third phase of the action plan.
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1.3 Data and empirical approach

1.3.1 Data and controls

It is useful to begin by illustrating in Figure 2 the geography of the Legal Amazon which

includes more that 5 million square kilometres across 9 states. Our data consists of yearly

observations for 562 municipalities in the Brazilian Legal Amazon from 2004 to 2015.1

Figure 1.2 The Legal Amazon and Municipalities in the 9 states of Brazil: Rondônia,
Acre, Amazonas, Roraima, Pará, Amapá, Tocantins, Maranhão e Mato Grosso. Sources:
Own construction based on data from IBGE (2017); INPE (2017)

.
1The Legal Amazon officially includes 771 municipalities. However, in order to avoid bias introduced

by municipalities with ecotone forest, we follow Hargrave and Kis-Katos (2012) and exclude those with less
than 5% of rainforest cover. In robustness checks we re-estimate our results using 10 and 15% thresholds.
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Data on deforestation at the municipality level comes from satellite based information

from the Brazilian Institute for Space Research (INPE, 2017) under the project PRODES

and measures yearly deforestation in square kilometres. The same data also provides

information on cloud cover and areas that are unobserved by the satellite. Variables for

cloud cover and unobserved areas are included to control for measurement error related

to the ability of the satellites to detect changes in the land cover across all municipalities.

More specifically, because the satellite used is incapable of detecting land cover changes

when its view of land is obscured by clouds, detection will be delayed until skies are clear

again and it reflects the frailty of the satellite. 1 2

Our dependent variable is the natural log of the extent in km2 of yearly deforestation

within a municipality measured between July and August of any given year. We adjust all

numerical variables to match the July-August year.

To control for commodity markets, we collect soy and timber prices at the municipality

level using data from the Brazilian Statistical Office (IBGE, 2017).3 The beef price is

reported at the state level by the Centre for Advanced Studies on Applied Economics

(CEPEA, 2017). For municipalities with no commodity market data we include average

local prices from neighbouring municipalities weighted by GDP at the municipality level.

This differs from previous studies that impute zero prices for those municipalities with

no commodity output values in order to get the direct effect of commodity prices on

deforestation for commodities producing regions only (Gollnow and Lakes, 2014; Hargrave

and Kis-Katos, 2012). We argue our approach takes into account transport costs from a

municipality to neighbouring municipalities. All prices are deflated by IPCA which is

the official Brazilian consumer price index. GDP is included at the municipality level to

1As a matter of fact, Assunçao et al. (2017) show that cloud coverage is an important predictor of the
extent of deforestation fines issued within municipalities in the Brazilian amazon.

2According to Kintisch (2007) and Achard et al. (2010), the PRODES estimates are considered reliable
by the national and international academic science.

3Timber prices come from the production of timber defined as firewood and logs of wood in cubic
meters.
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control for changes in overall economic activity (IBGE, 2017). We also contorl for federal

paved roads that enables greater access to forests (Baynard et al., 2012; Cropper et al.,

2001; Pailler, 2018; Pfaff et al., 2007).

Data on the IEF come from the Survey of Basic Municipal Information (IBGE,

2017). We therefore include dummy variables to capture whether a municipality has

an environmental office and/or has introduced an environmental law. One important

aspect that may influence whether a municipality has a well functioning IEF is the attitude

and character of the local mayor. Hence, we also collect data from the Survey of Basic

Municipal Information on whether the political party of the mayor is pro-farmer in which

case may lead to greater deforestation, their level of education, gender, age, and the number

of commissioned workers (as a proxy for corruption). We also gather data from BRASIL,

Tribunal Superior Eleitoral (2018) to capture the mayoral re-election process. A recent

study by Pailler (2018) shows that deforestation rates increased 8–10% in election years

when an incumbent mayor ran for re-election.1

In terms of other economic and public policies, the number of settlements in a

municipality and the settlement density are reported by the Brazilian Agency of Agrarian

Reform (INCRA, 2017). We include settlement density to capture rural development in

sparse regions.2 In addition, we control for the presence of housing projects within a

municipality using data from the Survey of Basic Municipal Information (IBGE, 2017).3

We also collect data on the extent to which a municipality benefits from subsidised rural

credits from the Brazilian central bank (BCB, 2017a) and development banks (BASA, 2017;

1More than 20 parties advocate a pro-farmer agenda. PMDB (Partido do Movimento Democrático
Brasileiro), PP (Partido Progressista), PSDB (Partido da Social Democracia Brasileira) parties correspond
to almost 44% of the pro-farmer seats - bancada ruralista in Portuguese - in the deputy chambers. These
political parties represent the center-right political spectrum in Brazil with the largest number of affiliates
(BRASIL, 2017).

2Settlement density refers to number of settled families divided by the area of the settlement.
3Our housing project dummy is intended to capture a set of interrelated and coordinated actions on

housing with the aim of achieving specific objectives such as building houses within the budget limits over a
given period of time. "Plano Nacional de Habitação (PlanHab)" and "Minha Casa Minha Vida (MCMV)" in
Portuguese are examples of this type of housing project (Klintowitz, 2016; Krause et al., 2013).
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BNB, 2017). Within the official credit system in each municipality a rural credit variable is

included to capture the amount of credit provided to a municipality to encourage agriculture

and pasture activities under the economic development policy called the National Program

for Sustainable Family Agriculture (PRONAF in Portuguese).1

Finally, we want to control for other environmental related policies that may impact

deforestation rates. First, we measure the size of conservation units (CUs) and the

size of protected indigenous land at the municipal level using data from the Brazilian

Environmental Ministry (MMA, 2018b). Currently, there are 886 federal, 729 state, and

147 municipal CUs that cover nearly 150 million ha. Sustainable use CUs (1214 sites, or

68.9% of all CUs), which have the goal of conserving ecosystems and habitats and cultural

values and traditional natural resource management systems, are the most numerous and

cover the largest area (about 100 million ha or 65.9% of all CU). Because of their area

and diversity, CUs are essential to maintain biodiversity and ecological services, including

carbon storage and sequestration. Considering indigenous land, in the early 1900s, the

Brazilian Government began to offer protection to the indigenous population, treating

Indians as wards of the state and guaranteeing protection of traditional lands. As most

indigenous peoples resided in the nine states of the legal Amazon, by the beginning of

2000 indigenous lands accounted for 89 million hectares (17.5%) of the land area in

the region, most of which maintained native forest cover despite its use for subsistence

(BenYishay et al., 2017). Our main environmental policy variable is, then, the sum of these

two areas called Protected Areas (PAs). Protected areas (PAs) have been the main strategy

to safeguard biodiversity in Brazil and are key elements for biodiversity conservation and

ecosystem services. Brazil. From 2000s, Brazil substantially expanded its environmental

policy and expanded rapidly the implementation of the policy during the mid-1990s to the

mid-2000s especially with the PPCDAm action plan.We choose to sum the values instead

1The National Program for Strengthening Family Agriculture (PRONAF) aims to stimulate income
generation and improve the family farm production through the financing of rural agricultural and non-
agricultural activities and services developed in a rural establishment or in regional community (BCB,
2017b).
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of including them separately because of the high correlation between the two series. In

robustness checks we include them separately. Second, we collect data on fines imposed at

the municipality level for environmental violations using data provided by the Brazilian

Institute of Environment and Renewable Natural Resources (IBAMA, 2017). Fines reflect

the amount of money that the agents within a municipality receive a penalty in any given

year. In obtain the level of fines per municipality we sum the fines across agents for each

municipality in any given year.

Table A.3.2 provides summary statistics for our explanatory variables. Table A.1.1 and

A.1.2 of the appendix present the summary statistics for the first and final years of our

sample and Table A.3.4 provides the source, level of aggregation and units of measurement

for each of our variables. Our summary statistics show that nearly 45% of municipalities

have an environmental law in place and nearly 75% have an environmental office. We

also find that around 35% of mayors are over 50 years of age and that nearly 90% are

male. Around 40% have an education level that is tertiary or above, nearly 2.2% of the

employees in the city hall are commissioned and that 21% of mayors tend to be re-elected.

On average, municipalities have 3 settlements within their limits and at least 2% of families

live in a settlement. On average municipalities have approximately 20 thousands km2 of

their area protected and impose on average R$3.2 million in fines per municipality. For

our sample period the average value of rural credits per municipality is R$20mi and 78%

municipalities have at least one housing project in place.
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Table 1.1 Summary Statistics - Averages of the sample

Variable Mean St. Dev. Min. Max.

Deforestation 20.200 57.183 0.1 1407.8

Fines 0.324 1.298 0 24.227

Protected Areas 2.188 5.354 0 44.877

Rural Credits 0.235 0.948 0 22.809

Environmental Law 0.450 0.497 0 1

Environmental Office 0.754 0.430 0 1

Housing Projects 0.780 0.413 0 1

Settlements 3.688 5.965 0 76

Settlements Density 0.018 0.034 0 1.016

GDP 0.057 0.331 0.001 9.850

Beef Price 0.852 0.472 0.518 2.419

Soy Price 0.630 0.126 0.201 1.761

Timber Price 0.104 0.080 0.002 0.916

Roads 0.019 0.029 0.001 0.089

Clouds 10.323 47.735 0 1315.286

No obs 0.151 1.507 0 49.786

Mayor Political Party (pro-farmer) 0.920 0.271 0 1

Mayor Gender (Male) 0.901 0.298 0 1

Mayor Age (% above 50) 0.356 0.479 0 1

Mayor Education 0.407 0.491 0 1

Corruption 0.022 0.397 0 25.167

Re-election 0.211 0.408 0 1

Note: Statistics refer to N=6178 observations for 562 municipalities for 11 years (2004 - 2015). In the table,

the variable deforestation is not logged and represents the actual extent in km2.

Before describing our empirical strategy we show the trend in deforestation and our key

variables. Figure 1.3 shows that deforestation reached its highest level in 2004 (27,423

square kilometres) (MMA, 2018b). Since then there has been a fairly clear decreasing trend.

Figure 1.3 also shows the steady increase in the area of land designated as a Protected
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Area and the rapid increase in the amount of fines per area of land deforested. We also

show the cumulative number of municipalities with environmental laws and environmental

offices increased steadily with a distinct jump between 2007 and 2008. Similar trends are

observed when we compare deforestation rates and changes in the market for commodities

that are captured through the price of soy, timber and beef and the IEF captured by the

existence of environmental laws and environmental offices in Figure 1.4.1

1See Hargrave and Kis-Katos (2012) and Gollnow and Lakes (2014) for a detailed discussion of the role
of commodity markets on deforestation.
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Figure 1.3 Deforestation in the Legal Amazon, Environmental Policy and the Institutional Environmental Framework (2004-2015). Left
axis shows deforestation and right axis shows number of municipalities. Source: (IBAMA, 2017; INPE, 2017; MMA, 2018b)
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Figure 1.4 Deforestation in the Legal Amazon, Commodities price and the Institutional Environmental Framework (2004-2015). Left axis
shows deforestation and right axis shows number of municipalities. Source: (CEPEA, 2017; IBGE, 2017; INPE, 2017)
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1.3.2 Empirical strategy

In order to analyse the impact of different economic and environmental policies under

different institutional settings our estimations are based on a panel of municipality level

data between 2004 and 2015. Our baseline regression is given by:

lnDi,t = µi +Xi,t−1β1 +Xi,tβ2 +λt + εi,t (1.1)

where the dependent variable, lnDi,t , is the log of yearly deforestation in municipality

i in year t. We include time dummies to capture the effects of overall changes in the

explanatory variables in deforestation common to all municipalities, λt . The vector of

controls, Xi,t−1, includes economic activity (GDP), agricultural prices at municipality level

(Soy Price and Timber Price) and state level (Beef Price), access to markets (Roads), the

number of settlements within each municipality (Settlements) and number of families

per size of settlement (Settlement Density), the total amount of rural credits granted to

recipients in a given municipality (Rural Credits) and an indicator variable for the existence

of housing projects (Housing Projects) within a municipality. Variables are also included to

control for political factors (Mayor political party, Mayor education, Mayor gender, Mayor

Age) and the amount of commissioned workers standardised by population at municipality

level (Corruption), and whether the mayor is re-elected or not (Re-election). Our policy

variables include fines per municipality in any given year (Fines), the sum of the area of

conservational units plus indigenous land per municipality level (Protected Areas). Finally,

we include dummy variables for when a municipality has an environmental law and an

environmental office (with a value of 1 from the year it was in place and zero otherwise.).

Finally, we include a variable to capture the degree of cloud cover (Clouds) and area of a

municipality that is unobserved by satellite monitoring (No obs), Xi,tβ2.
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As we are dealing with grouped data, the errors are inter-related and hence we

include Driscoll and Kraay (1998) standard errors that are robust to autocorrelation,

heteroskedasticity and cross-sectional dependence. The year and municipality level

dummies are included to capture time and municipality invariant effects (e.g. climate,

infrastructure or population), respectively.

In terms of our right hand side variables in Xi,t−1, one can conjecture a number of

ex-ante expectations of their role in deforestation. The commodity prices of beef, soy

and timber are included to capture the influence of market conditions which reflect local

variations in prices after average municipality differences and general trends have been

removed. For example, an increase in the prices of beef or soy may lead to greater pressure

for further deforestation to clear land for cultivation or grazing. In the case of the price of

timber, the effect is ambiguous as on the one hand, as prices rise it may lead to a greater

incentive to harvest. On the other hand, higher prices may lead to a greater awareness

of the value of forests and lead to greater efforts to protect what is now a more valuable

resource.

Turning to the environmental policies, the expectation is that any policy increases the

risk of being caught which should reduce expected profits. Hence, we expect a negative

sign on the coefficient of our environmental fines variable. The expected sign on our

protected areas variable is ambiguous. On the one hand, if an area is protected in terms of

additional enforcement patrols for example, this should reduce the area in a municipality

that can be easily deforested. On the other hand, the decision to designate an area as

protected may have been in response to previous deforestation Hargrave and Kis-Katos

(2012) and may simply reflect that deforestation problems are more severe in that particular

area. . Hence, the impact of the introduction of a PA might simply be to shift deforestation

activities to areas just outside of the PA but still within the boundary of a given municipality.

More than this, considering that federal and state government regulates most PAs, the role
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of municipal offices might be scant or insignificant to the environmental policy in place.

(Girardi, 2017).1

In terms of other public policies, we expect housing projects to have a negative impact

on deforestation as the provision of affordable housing should reduce the incentive for

agents to move to the frontier and clear forest as a means of finding somewhere to

live. The sign and significance of rural credit variable is uncertain. On the one hand,

the availability of official subsidised credit may fuel deforestation by helping to fund

clearing through investment in machinery, tools and fertilizers. On the other hand, if credit

enables the development of a functioning market in forestry products it may improve forest

management practices and reduce deforestation pressure. For our settlement variables, we

expect that the number and density of settlements to result in an increase in the demand for

deforestation although we expect this relationship to be non-linear (hence we include the

squared terms of each variable).

Finally, our controls for cloud cover and unobserved area variables are expected to have

positive and negative coefficients respectively. For unobserved areas, we expect that the

greater the area not observed within a municipality, the more difficult it will be to detect

the deforestation process. As for cloud cover, we argue that agents are aware of the policy

monitoring program that employs satellite surveillance and hence may use cloudy days

as a cover for their deforesting actions when they know that the satellite cannot detect

deforestation and hence will reduce their chances of being caught and fined. Hence, the

more cloudy days recorded in a given year is expected to be a positive determinant of

deforestation within that year.

1According to ICMBIO (2017) and FUNAI (2017) the signalling process of a PA is through signboards
(but not fences). These signboards are placed in strategic locations and act as a guide to citizens. Other
protection procedures (for herds / planting areas or other protection needs) are implemented when requested
by the community, but this happens in isolated and specific cases and it is not part of the delimitation of
protected areas specifying their physical limits.
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One of the main contributions of our study is to investigate the interaction between

environmental institutions and environmental policies taking into account the expansion in

commodity markets captured through the inclusion of commodity prices.1

Hence, we estimate (3.2) given by:

lnDi,t = µi +Xi,tβ1 +Xi,t−1β2 + (IEF * Env. Policies)i,t−1β3+

(IEF * Prices)i,t−1β4 +λt + εi,t

(1.2)

This equation allows us to estimate the extent to which the effectiveness of

environmental policies depends on the IEF that operates within a municipality. We expect

to see a reduction in those municipalities that no only have policies in place but they are

reinforced by having proper enforcement of the law through a well functioning institutional

framework. Likewise, in those municipalities where the institutional framework is weak

then environmental policies may not be introduced and hence may increase deforestation

rates if loggers are attracted to or pushed away from well regulated municipalities. One

possible driver of the implementation and enforcement of environmental policies are the

characteristics and behaviour of the mayor of a given municipality. Although we have

no priors on age and gender we might expect education to have a negative influence of

deforestation while we might expect a mayor that supports pro-farmer policies to have

a positive influence on deforestation. A related issue is the level of corruption within a

municipality which is expected to have a positive impact on deforestation. Finally, mayors

running for re-election might be expected to exploit forests for economic reasons in the

belief that this will create jobs and hence votes.

One concern with regard to the estimating equation 3.2 and equation 3.1 is the potential

endogeneity of many of the explanatory variables, and hence their interpretation in terms

1The analysis conducted here does not limit the possibility of further studies using different approaches
such as difference-in-difference techniques.
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of causality. Since it would be difficult to find plausible instruments for many, if not for

all, of our independent variables, we instead take a three pronged approach to alleviate

any such concerns. First, we control for municipality fixed effects, allowing us to purge

all time invariant unobservables from the specifications. Secondly, using an extensive set

of other controls we hope that we have been able to capture all likely determinants of

deforestation. Finally, we lag all control variables by one period, so that under assumption

that, after controlling for fixed effects all confounding shocks are only contemporaneous

in nature, we are left with only the exogenous variation in the elements of Xi,t−1.

1.4 Results

1.4.1 The effect of environmental policies and market condition on

deforestation

Results from our estimation of equation 3.2 are presented in Table 1.2. Our baseline model

includes 562 municipalities. In Columns (1) through (7) we experiment with including

separately environmental policies, such as fines and protected areas, the prices of soy,

timber and beef, and our IEF variables given by our environmental law and environmental

office dummies. Taking our institutional variables first (dummies for an environmental

office and an environmental law) we find that neither is significant when included separately

in Columns (3) or (4) or together in Column (8). This suggests that having an office and an

environmental law in place is necessary but not sufficient to reduce deforestation.

Turning to our other controls, in Column (8) we include all the variables together. One

immediate observation from Column(8) is that our fines variable has no significant effect

on the rate of deforestation despite the rapid growth in fines levied over this period. One

explanation relates to enforcement. The environmental police often have limited financial
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resources and manpower to issue fines and more importantly often have insufficient legal

means for collecting the fines once they have been issued (Araújo et al., 2017). For the PA

variable we find that an increase in one unit of protected areas (10,000 km2) is, everything

else equal, associated with a 2.7% increase in deforestation the following year. To put this

number into context if we use the mean value of deforestation for our sample (20.2 km2)

we find that this translates into a mean average increase in deforestation of 0.55 km2. This

intuitively unexpected results may be because PAs are established in response to previous

deforestation pressure which is then displaced to neighbouring areas just outside the PAs

and is therefore capturing the presence of active groups of loggers in a municipality. A

second explanation is that it may be related to limited public monitoring and enforcement

in sustainable use PAs where certain economic activities are allowed (Rico et al., 2017).1

For our market demand variables, we find that the estimated coefficient in Column (8)

for the price of timber is negative and significant. Everything else equal, an increase in the

timber price of 10% leads to an average decrease in deforestation of 2.7%. In terms of our

sample, this percentage would mean average decreases in deforestation of approximately

0.6km2. The coefficients on the price of beef and soy are not significant either together or

individually.

In terms of our other economic policy variables, we find that the greater the number

of settlements within a municipality the greater the degree of deforestation (a positive

liner term) but at a decreasing rate (a negative squared term). Increasing the number

of settlements will lead to, ceteris paribus, an increase in deforestation of nearly 6%.

The turning point is within the sample range. We estimate the turning point to be 16

settlements within a municipality and from our sample we know that only five percent of

1Rico et al. (2017) examines the dynamics of forest loss and governance in PA’s in the Peruvian Amazon.
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our municipalities sample have passed the turning point which suggests that for the vast

majority of municipalities additional settlements lead to increased deforestation.1

For our settlement density variable we find that an increase in the density of settlements

within a municipality leads to higher rates of deforestation but that the effect is non-

linear so that deforestation increases but at a decreasing rate. This suggests that more

densely populated settlements deforest more presumably as there is greater pressure on land

required for expansion. The turning point is 0.62 and within our sample only one settlement

(Altamira in Para) has surpassed that value and is one of the more economically developed

settlements. Hence, increasing the number of families per settlement within a municipality

in 10% is associated with a decreasing rate of 0.6%. Likewise, as expected, housing

projects have a negative effect on deforestation since the incentives for agents living in

poor quality housing to clear land to live is reduced. The estimated coefficient implies

that the existence of housing projects within a municipality decreases logged deforestation

by 15%. To put this number into context, we use the mean value of deforestation for our

sample (20.2 km2) which shows that the average decrease in deforestation is around 3 km2.

Turning to the political factors, only mayor age and the level of corruption have a

significant effect on deforestation. We find that an increase in age above the average

(50 years) results in an average decrease in deforestation of 5.6%. At the mean value of

deforestation for our sample, this represents an average decrease in deforested areas

of 1.1km2. One explanation is that younger politicians who are keen to remain in

power are more likely to allow activities that are more harmful to the environment.

Corruption, captured by the number of commissioned workers per capita, is found to

lead to higher deforestation rates within a municipality. An increase in the number of

commissioned workers per capita of one unit is associated with an increase of 2.4% in

deforestation. For our sample, this would represents an increase of 0.48 km2 per each

1Conceição do Araguaia - Pará, Itupiranga - Pará, Marabá - Pará, Novo Repartimento - Pará and Zé
Doca - Maranhão represent the municipalities with the highest number of settlements.
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additional commissioned worker averaged by the population. Our measure of corruption is

positive and significant in columns (1) through (8), which reinforces the need for some

political control. Gender, being a pro-farmer politician, and having an education level of

tertiary of above have no effect on deforestation rates.

Table 1.2 Effects of Environmental Policies and Commodities Prices on Deforestation

Sample Dependent: ∆ ln Deforestation
(1) (2) (3) (4) (5) (6) (7) (8)

Sett−1 0.080*** 0.070*** 0.078*** 0.079*** 0.074*** 0.079*** 0.078*** 0.064***
(5.36) (4.59) (5.61) (5.50) (4.87) (5.50) (5.08) (3.98)

Sett−1 sq -0.002** -0.002** -0.002*** -0.002*** -0.002** -0.002** -0.002** -0.002**
(3.04) (2.90) (3.16) (3.18) (2.97) (2.94) (3.08) (2.48)

Sett Dens−1 4.056** 4.510*** 4.159** 4.120** 3.866** 4.397*** 4.116** 4.685***
(2.99) (3.36) (2.89) (2.97) (2.97) (3.13) (2.92) (3.73)

Sett Dens−1 sq -3.639*** -3.212** -3.620*** -3.581*** -3.283*** -3.841*** -3.581*** -3.353***
(3.51) (2.88) (3.41) (3.50) (3.60) (3.70) (3.47) (3.34)

Rural Credits−1 0.025 0.025* 0.024 0.024 0.024 0.024 0.028 0.028
(1.75) (1.81) (1.77) (1.77) (1.71) (1.67) (1.61) (1.51)

Housing Projects−1 -0.147** -0.150** -0.147** -0.147** -0.150** -0.147** -0.149** -0.153**
(2.92) (2.83) (2.91) (2.92) (2.91) (2.93) (2.80) (2.71)

GDP−1 -0.237 -0.249 -0.234 -0.248 -0.232 -0.261 -0.232 -0.274
(1.50) (1.56) (1.46) (1.53) (1.50) (1.60) (1.52) (1.66)

GDP−1 sq 0.027 0.028 0.027 0.027 0.025 0.031 0.026 0.031
(1.48) (1.51) (1.46) (1.49) (1.48) (1.68) (1.51) (1.74)

Mayor Party−1 0.041 0.039 0.039 0.042 0.037 0.039 0.042 0.036
(0.90) (0.86) (0.86) (0.93) (0.85) (0.87) (0.89) (0.81)

Mayor Education−1 0.010 0.016 0.011 0.011 0.012 0.019 0.011 0.024
(0.31) (0.57) (0.35) (0.38) (0.41) (0.68) (0.38) (0.96)

Mayor Age−1 -0.065** -0.062** -0.063** -0.064** -0.060** -0.062** -0.060** -0.056**
(2.46) (2.38) (2.40) (2.46) (2.41) (2.29) (2.61) (2.39)

Mayor Gender−1 0.025 0.025 0.023 0.021 0.020 0.030 0.022 0.030
(0.69) (0.66) (0.61) (0.55) (0.53) (0.79) (0.58) (0.78)

Corruption−1 0.026** 0.026** 0.026** 0.025** 0.026** 0.026** 0.025** 0.024**
(2.94) (2.98) (2.78) (2.78) (2.85) (2.88) (2.70) (2.90)

Re-election−1 0.004 0.002 0.003 0.003 -0.004 0.003 -0.000 -0.008
(0.17) (0.11) (0.14) (0.14) (0.21) (0.11) (0.01) (0.35)

Roads−1 -0.614 1.218 -0.954 -0.697 1.134 -0.646 -5.817 -2.007
(0.08) (0.15) (0.12) (0.09) (0.17) (0.08) (0.34) (0.15)

Clouds 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.000
(0.61) (0.47) (0.60) (0.59) (0.63) (0.59) (0.61) (0.47)

NoObs -0.004 -0.002 -0.004 -0.003 -0.003 -0.003 -0.003 0.000
(0.47) (0.25) (0.50) (0.42) (0.37) (0.41) (0.42) (0.09)

Fines−1 -0.015 -0.018
(0.73) (0.83)

PAs−1 0.027*** 0.027***
(4.10) (3.89)

Env. Law−1 0.022 0.022
(0.95) (1.00)

Env. Office−1 -0.054 -0.058
(1.55) (1.51)

Soy Price−1 0.630 0.549
(1.27) (1.18)

Timber Price−1 -1.331* -1.285*
(2.02) (2.11)

Beef Price−1 1.664 1.180
(0.58) (0.49)

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are
indicated in parentheses under the coefficients. PAs stand for Protected Areas.
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1.4.2 Environmental policies and market condition conditioning on

institutional environmental framework

In Table 1.3 we consider the impact of our policy variables conditional on the institutional

environmental framework including the same set of controls from Table 1.2 with the year

fixed effects (Columns 1-8). In Column 9 we show that agents from municipalities that

receive fines when there is an environmental law in place do not reduce deforestation. One

explanation is that in the Legal Amazon many local environmental laws are not enforced

even though the municipalities have the power to do so. Thus, it seems more likely that the

offender will be punished at the state or federal level rather than at the municipality level,

which contributes to the limited effectiveness of fines as a punitive instrument.1

In contrast, we find that fines do deter deforestation if the municipality has an

environmental office. More specifically, the estimated average drop in deforestation

associated with the fines policy when there is an environmental office all else equal is

around 1.8 km2. This finding illustrates that a coordinated process of implementation of the

national environmental system (SISNAMA) that decentralises forces to assist the protection

of the environment can help to reduce deforestation. Hence, environmental offices appear

to act as a primary partner to the SISNAMA together with IBAMA, which operates at

the national level as an administrative arm and the environmental police working through

the Brazilian Ministry of Environment. This coalition appears to make the institutional

framework work more effectively at the local level.

However, we also find that municipalities with an environmental office and protected

areas within their territory tend to increase deforestation by approximately 3%. Using

the mean value of deforestation for our sample (20.2 km2) we translates into an average

1We regress the baseline model as pooled regression and, incrementally, add time fixed effects,
municipality fixed effects and two-way fixed effects so we can observe the contribution to the results.
The table is shown in the Appendix A.2. From the results, the model improves significantly when adding
time and municipality fixed effects.
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increase in deforestation of 0.6 km2. This unexpected result may be explained by the fact

that environmental offices are often set up to work together with other offices, such as

agriculture, tourism, education, and infrastructure offices. In this sense environmental

management may be associated with other themes and the creation of joint offices can lead

to conflict with the agendas of others. For example, given that the expansion of agriculture

is an important determinant of deforestation, having a joint office for the environment and

agriculture could lead to a conflict of interest. Regarding protected areas, conditioned on

the existence of environmental laws at the municipality level, we find no significant effect.

This suggests that protected areas are not effectively monitored at the local level since a

substantial number of these units are regulated at the state and federal level.

Turning to our commodity market variables, we find that the IEF plays an important

role when we condition on commodity prices. An increase in soy prices, conditioned

on the existence of environmental law, of 10% corresponds to an average decreases in

deforestation of almost 5%. Much of this effect is likely to be the result of the moratorium

implemented in 2006.1 In this sense, the IEF was used to help compliance with the soy

moratorium. However, when looking to the overall effect we find that the soy price does

have a positive impact on deforestation. An increase in the soy price by 10% at the mean

values for the existence of environmental law is, all else equal, associated with an average

increase in deforestation of approximately 15.8%. We find no significant effect for other

commodities when conditioning on the existence of an environmental law. 2

In contrast, timber (negative) and beef (positive) prices are significant when conditioned

on the existence of an environmental office. This is consistent with our assumptions that

1The moratorium establishes that companies purchasing grain and its derivatives after 2008 cannot deal
with those farmers who grew the grain in deforested areas, within indigenous lands or that are on a slave
labour list. The moratorium prohibited soy producers from negotiating the sale of production originating
from deforested areas in the legal Amazon for a period of two years.

2Recently, Caviglia-Harris (2018) addressed the existence of a nonlinear relationship with the
intensification of cattle production in part of the Legal Amazon and found that as farms become more
intensive the demand for newly cleared land increases, but this then decreases with further intensification.
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environmental management offices are associated with other strategic themes and that

an institutional framework on its own fails to protect the environment. From our sample,

forestry prices have a negative impact on deforestation and beef market has a positive

impact on deforestation. Taking the mean value of deforestation (20.2 km2) we find out

that an increase in the timber price of 10% results in an average decreases in deforestation

of 0.3 km2 and for the beef market the result is an average increases in deforestation of 2.1

km2.
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Table 1.3 Effects of Environmental Policies on Deforestation: Baseline Model

Sample Dependent: ∆ ln Deforestation
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fines−1 0.079 -0.019 -0.018 -0.017 -0.018 0.080* 0.083* 0.069 0.069
(1.73) (0.89) (0.84) (0.80) (0.84) (1.82) (1.90) (1.64) (1.62)

Protected Areas−1 0.027*** -0.004 0.026*** 0.026*** 0.027*** -0.004 -0.005 -0.003 -0.003
(3.99) (0.38) (3.73) (3.79) (3.91) (0.35) (0.43) (0.30) (0.30)

Env. Law−1 0.024 0.008 0.478*** 0.079* 0.072* 0.010 0.470*** 0.532*** 0.538***
(1.04) (0.36) (3.38) (2.12) (2.19) (0.39) (3.27) (3.18) (3.22)

Env. Office−1 -0.041 -0.094* 0.122 0.131** -0.101 -0.077 0.125 0.293 0.287
(1.03) (2.06) (0.63) (2.38) (1.27) (1.61) (0.63) (1.45) (1.45)

Soy Price−1 0.551 0.558 1.068** 0.553 0.549 0.561 1.109*** 1.114*** 1.188**
(1.17) (1.21) (3.06) (1.20) (1.18) (1.21) (3.20) (3.12) (3.10)

Timber Price−1 -1.263* -1.282* -1.294* 0.855 -1.280* -1.261* -1.270* 0.686 0.639
(2.08) (2.19) (2.12) (1.13) (2.11) (2.16) (2.17) (0.90) (0.81)

Beef Price−1 1.089 1.109 1.232 0.791 1.200 1.014 1.060 0.723 0.685
(0.44) (0.47) (0.53) (0.33) (0.50) (0.42) (0.46) (0.31) (0.29)

Env. Law−1* Fines−1 -0.009 -0.012 -0.014 -0.012 -0.012
(0.47) (0.71) (0.91) (0.74) (0.73)

Env. Office−1* Fines−1 -0.101** -0.101*** -0.103*** -0.089** -0.088**
(3.03) (3.12) (3.18) (2.79) (2.77)

Env. Law−1* PAs−1 0.007 0.008 0.008 0.007 0.007
(1.29) (1.44) (1.50) (1.40) (1.38)

Env. Office−1* PAs−1 0.029** 0.029** 0.029** 0.028** 0.028**
(2.95) (2.94) (2.93) (2.82) (2.83)

Env. Law−1* Soy Price−1 -0.716*** -0.721*** -0.736*** -0.729***
(3.55) (3.40) (3.47) (3.16)

Env. Office−1* Soy Price−1 -0.308 -0.346 -0.339 -0.447*
(1.09) (1.21) (1.25) (1.90)

Env. Law−1* Timber Price−1 -0.483* -0.442 -0.450
(2.19) (1.65) (1.69)

Env. Office−1* Timber Price−1 -2.120*** -1.941*** -1.891***
(6.92) (5.67) (5.35)

Env. Law−1* Beef Price−1 -0.060** -0.011
(2.54) (0.50)

Env. Office−1* Beef Price−1 0.049 0.070**
(1.26) (2.26)

Set of Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses under the coefficients. PAs
stand for Protected Areas.
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1.4.3 Spatial Analysis

One concern with our previous analysis is the possibility of spatial dependence i.e.

deforestation in one municipality affects neighbouring municipalities and when there is a

strong institutional environment in one municipality if may lead to a shift in deforestation to

nearby municipalities with lower enforcement capabilities. In order to test this assumption,

we conduct a spatial analysis following Anselin (1988) and Elhorst (2012). The existence

of spatial autocorrelation can occur if a given event in a given place has a significant impact

on neighbouring regions such that there may be spillover effects from certain activities

or factors that may affect both the characteristics of the data and the nature of the events.

Spatial econometric models with panel data capture the relationship between variables

over time and arising for the existence for spatial autocorrelation. We assume that the area

studied remains constant over our sample period (Almeida, 2012). Our spatial analysis is

estimated on a balanced panel which reduces our sample from 562 to 456 municipalities

which still represents 65% of total Legal Amazon municipalities. We perform LM tests to

establish the dependence factor (see Table A.1.7).The test results point to the spatial lag

model specification being the preferred specification. In view of testing procedure we ran

two models, a spatial auto-regressive model (SAR) and a spatial error model (SEM) (not

shown here). The SAR is preferred in all specifications.

To incorporate the autocorrelation of spatial lag type of dependent variable, our fixed

effects model needs to be modified, generating the Spatial Autoregressive model with fixed

effects:

lnDi,t = µi +ρW1yt +Xi,tβ1 +Xi,t−1β2 + (IEF * Env. Policies)i,t−1β3+

(IEF * Prices)i,t−1β4 +λt + εi,t

(1.3)
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where W1yt is the spatial lag of the dependent variable. The spatial weight matrix W

is defined according to various criteria and is kept unchanged for all years of the panel.

The calculation of the spatial weight matrices used the coordinates from the municipality’s

centroid. We calculate three different weight matrices. Our baseline weight matrix (W1)

finds the 5 nearest neighbours and constructs a spatial weight matrix based on this number

of neighbours, normalised to have row-sums of unity. Alternatively, we create a distance

based spatial weight matrix (W2) with bands using latitude and longitude coordinates a the

Great Circle distance formula. The bands used were 1km to 100km. Finally, we construct a

distance based spatial weight matrix (W3) using latitude and longitude coordinates and the

Great Circle distance formula (Lacombe’s Method) (Elhorst, 2012). Using these techniques

we gradually increase the number of neighbours.

Since it is not possible to compare the coefficient estimates in the non-spatial model,

our baseline, with their counterparts in the spatial models SAR, we use the direct and

indirect effects estimates as a result of impacts passing through neighbouring municipalities

and back to the municipalities themselves. These feedback effects are partly due to the

coefficient on the spatially lagged dependent variable. Our approach is to follow LeSage

and Pace (2009) and present the direct, indirect and total effect of the coefficients separately.

Table 1.4 reports our results for the three different matrices. All results are consistent

with the literature (Lambin and Geist, 2006; Lambin and Meyfroidt, 2011). We first

consider the direct effect of our estimates. We find that one of the institutional

apparatus,environmental law, has no direct effect when conditioning on protected areas

and, timber and beef prices. Our spatial correlation is positive and significant and can

be interpreted as the impact of changes in municipality on deforestation. The impact is

magnified by 1.2 and 1.6 through the spatial lag in the model. For our baseline weight

matrix (W), we can see that the direct effect of fines, from the SAR model, on deforestation

was underestimated by a factor of 0.75. Since the direct effect of fines is 0.517 and its
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coefficient estimate 0.596, its feedback effect is around 0.07 or 15% of the direct effect. For

environmental law and having an environmental office, using the second weighting method,

the effects amount to 0.24 and 0.15 or 79% and 14% of the direct effect respectively.

Looking to the indirect effect on the third model (W3), we can clearly see that the indirect

effect of a change in the amount of fines issued appears to be 62% of the direct effect.

If the amount of fines issued increase in one municipality, the change in neighbouring

municipalities to the change in the municipality itself is in the proportion of approximately

1 to 1.6 in case of increasing fines.

Overall, we observe that the IEF, when established in a municipality, tends to lead

to reduced deforestation in neighbouring municipalities. As an example, in all of our

specifications, conditioning the existence of the IEF and the exercise of fines, we have

a negative effect on neighbouring municipalities. We see the same effect for the market

prices conditioned on the IEF which is consistent with our main findings 1.3.
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Table 1.4 Spatial Analysis - Baseline Model

Dependent: ∆ ln Deforestation

Sample W1 W2 W3

Fines−1 0.596 (10.549) 0.595 (10.532) 0.599 (10.742)

Protected Areas−1 -0.025 (-1.891) -0.025 (-1.890) -0.030 (-2.281)

Env. Law−1 0.542 (2.369) 0.543 (2.375) 0.578 (2.560)

Env. Office−1 1.193 (4.684) 1.191 (4.677) 1.221 (4.854)

Soy Price−1 1.175 (3.080) 1.174 (3.078) 1.261 (3.348)

Timber Price−1 4.429 (6.034) 4.428 (6.032) 4.200 (5.794)

Beef Price−1 1.963 (1.627) 1.962 (1.626) 1.752 (1.470)

Env. Law−1* Fines−1 -0.174 (-5.164) -0.174 (-5.152) -0.174 (-5.216)

Env. Office−1* Fines−1 -0.203 (-3.767) -0.202 (-3.755) -0.213 (-4.015)

Env. Law−1* PAs−1 -0.001 (-0.113) -0.001 (-0.118) 0.001 (0.163)

Env.Office−1*PAs−1 0.014 (1.073) 0.014 (1.072) 0.016 (1.264)

Env. Law−1* Soy Price−1 -0.823 (-2.296) -0.825 (-2.301) -0.846 (-2.390)

Env. Office−1* Soy Price−1 -1.036 (-2.504) -1.035 (-2.500) -1.094 (-2.676)

Env. Law−1* Timber Price−1 0.707 (1.317) 0.708 (1.317) 0.522 (0.984)

Env. Office−1* Timber Price−1 -2.442 (-3.171) -2.440 (-3.168) -2.350 (-3.089)

Env. Law−1* Beef Price−1 -0.050 (-0.506) -0.050 (-0.507) -0.059 (-0.607)

Env. Office−1* Beef Price−1 -0.034 (-0.355) -0.034 (-0.352) -0.026 (-0.267)

σ2 2.081 2.081 2.030

ρ 0.168 (8.904) 0.167 (8.847) 0.389 (14.711)

(Pseudo) R2 0.44 0.45 0.46

LogLik -9541.60 -9541.62 -9484.62

AIC 19155 19155 19042

BIC 19393 19393 19280

t-values are indicated in parentheses next to the coefficients. PAs stands for Protected

Areas.
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Table 1.5 Spatial Analysis - Baseline Model - Direct Effects

Dependent: ∆ ln Deforestation

Sample W1 W2 W3

Direct Effects

Fines−1 0.599 (10.501) 0.598 (10.485) 0.603 (10.840)

Protected Areas−1 -0.024 (-1.800) -0.024 (-1.800) -0.030 (-2.292)

Env. Law−1 0.550 (2.386) 0.552 (2.393) 0.597 (2.633)

Env. Office−1 1.201 (4.612) 1.200 (4.606) 1.238 (4.881)

Soy Price−1 1.197 (3.150) 1.196 (3.148) 1.287 (3.381)

Timber Price−1 4.454 (6.036) 4.453 (6.035) 4.225 (6.012)

Beef Price−1 1.964 (1.594) 1.964 (1.593) 1.724 (1.398)

Env. Law−1* Fines−1 -0.173 (-5.157) -0.173 (-5.161) -0.174 (-5.179)

Env. Office−1* Fines−1 -0.205 (-3.784) -0.205 (-3.773) -0.214 (-3.924)

Env. Law−1* PAs−1 -0.001 (-0.115) -0.001 (-0.121) 0.001 (0.121)

Env.Office−1*PAs−1 0.013 (1.011) 0.014 (1.010) 0.016 (1.253)

Env. Law−1* Soy Price−1 -0.843 (-2.360) -0.846 (-2.366) -0.870 (-2.454)

Env. Office−1* Soy Price−1 -1.052 (-2.491) -1.051 (-2.488) -1.114 (-2.668)

Env. Law−1* Timber Price−1 0.696 (1.304) 0.696 (1.305) 0.515 (0.968)

Env. Office−1* Timber Price−1 -2.422 (-3.091) -2.420 (-3.088) -2.350 (-3.183)

Env. Law−1* Beef Price−1 -0.045 (-0.458) -0.046 (-0.459) -0.059 (-0.619)

Env. Office−1* Beef Price−1 -0.032 (-0.324) -0.032 (-0.322) -0.026 (-0.277)

t-values are indicated in parentheses next to the coefficients. PAs stands for Protected

Areas.
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Table 1.6 Spatial Analysis - Baseline Model - Indirect Effects

Dependent: ∆ ln Deforestation

Sample W1 W2 W3

Indirect Effects

Fines−1 0.119 (6.203) 0.119 (6.180) 0.375 (7.063)

Protected Areas−1 -0.004 (-1.736) -0.005 (-1.735) -0.018 (-2.210)

Env. Law−1 0.109 (2.282) 0.109 (2.287) 0.372 (2.520)

Env. Office−1 0.240 (3.866) 0.238 (3.857) 0.771 (4.234)

Soy Price−1 0.239 (2.862) 0.237 (2.859) 0.803 (3.121)

Timber Price−1 0.889 (4.675) 0.884 (4.665) 2.631 (4.955)

Beef Price−1 0.393 (1.560) 0.391 (1.559) 1.070 (1.380)

Env. Law−1* Fines−1 -0.034 (-4.281) -0.034 (-4.268) -0.108 (-4.584)

Env. Office−1* Fines−1 -0.041 (-3.378) -0.041 (-3.367) -0.133 (-3.582)

Env. Law−1* PAs−1 -0.000 (-0.114) 0.000 (-0.120) 0.001 (0.119)

Env.Office−1*PAs−1 0.002 (0.996) 0.003 (0.994) 0.010 (1.239)

Env. Law−1* Soy Price−1 -0.168 (-2.281) -0.167 (-2.285) -0.541 (-2.364)

Env. Office−1* Soy Price−1 -0.210 (-2.312) -0.209 (-2.308) -0.694 (-2.536)

Env. Law−1* Timber Price−1 0.139 (1.273) 0.138 (1.274) 0.320 (0.962)

Env. Office−1* Timber Price−1 -0.483 (-2.849) -0.480 (-2.845) -1.464 (-2.958)

Env. Law−1* Beef Price−1 -0.009 (-0.458) -0.009 (-0.459) -0.037 (-0.612)

Env. Office−1* Beef Price−1 -0.006 (-0.321) -0.06 (-0.318) -0.016 (-0.274)

t-values are indicated in parentheses next to the coefficients. PAs stands for Protected

Areas.



1.4 Results 52

Table 1.7 Spatial Analysis - Baseline Model - Total Effects

Dependent: ∆ ln Deforestation

Sample W1 W2 W3

Total Effects

Fines−1 0.718 (10.253) 0.717 (10.239) 0.978 (9.886)

Protected Areas−1 -0.029 (-1.798) -0.029 (-1.798) -0.048 (-2.277)

Env. Law−1 0.660 (2.385) 0.662 (2.392) 0.969 (2.615)

Env. Office−1 1.441 (4.575) 1.438 (4.568) 2.009 (4.744)

Soy Price−1 1.436 (3.135) 1.433 (3.133) 2.091 (3.326)

Timber Price−1 5.344 (5.965) 5.337 (5.964) 6.856 (5.781)

Beef Price−1 2.358 (1.594) 2.355 (1.594) 2.795 (1.396)

Env. Law−1* Fines−1 -0.207 (-5.146) -0.207 (-5.135) -0.283 (-5.097)

Env. Office−1* Fines−1 -0.246 (-3.771) -0.246 (-3.760) -0.347 (-3.863)

Env. Law−1* PAs−1 -0.001 (-0.115) -0.001 (-0.121) 0.002 (0.121)

Env.Office−1*PAs−1 0.016 (1.011) 0.016 (1.010) 0.027 (1.252)

Env. Law−1* Soy Price−1 -1.011 (-2.363) -1.013 (-2.369) -1.411 (-2.441)

Env. Office−1* Soy Price−1 -1.262 (-2.480) -1.260 (-2.477) -1.808 (-2.644)

Env. Law−1* Timber Price−1 0.835 (1.303) 0.835 (1.304) 0.836 (0.968)

Env. Office−1* Timber Price−1 -2.906 (-3.083) -2.900 (-3.080) -3.814 (-3.136)

Env. Law−1* Beef Price−1 -0.054 (-0.458) -0.055 (-0.460) -0.097 (-0.618)

Env. Office−1* Beef Price−1 -0.038 (-0.324) -0.038 (-0.322) -0.042 (-0.276)

t-values are indicated in parentheses next to the coefficients. PAs stands for Protected

Areas.

1.4.4 Robustness checks

In order to deal with concerns surrounding the delimitation of the Legal Amazon that

is touched on in a number of studies (Hargrave and Kis-Katos (2012) and Nepstad et al.

(2014)), we re-estimate Column (9) of Table 1.3 taking into account remaining forest
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cover.1 In studies including municipalities with low levels of forest, it is possible that

deforestation rates are low because there is less forest to be cleared. We check whether the

dynamics of deforestation presented in the results from Column (9) of table 1.3 change

when we use a set of different percentages of forest cover. Table 1.8 shows the results.

Column (1) shows that municipalities with at least 5% of remaining forest in any given

year and columns (2) and (3) represent municipalities with at least 10% and 15% of

remaining forest cover in any given year. The results confirm that our main findings hold.

Having a protected area within municipality when there is an environmental office still

increases deforestation. In Column (3) we find that an increase in protected areas by one

unit (10,000 km2) at the mean value for the existence of environmental office is linked

to an approximate average increase in deforestation of 2%. This result suggest that the

existence of an IEF changes the results when we reduce the sample to those municipalities

with a considerable amount of forest remaining. More precisely, fines conditional on there

being an environmental office no longer have a negative effect on deforestation. This

may indicate that municipalities with high levels of remaining forest tend to concentrate

more in isolated areas with limited access to environmental police. Commodity prices

conditioned on IEF are still significant. An increase in the timber price of 10%, at the mean

value for the existence of environmental office, is associated with an average decrease in

deforestation of 0.2 km2. The beef price conditioned on environmental offices has no effect

when we have municipalities with at least 15% of forest cover in any given year although

we find a negative impact on deforestation when conditioning beef prices on environmental

law. The decrease in deforestation within a municipality associated with a 10% increase in

the beef price is on average 1.8 km2. For soy, the overall impact of a 10% increase in the

soy price leads to, ceteris paribus, an average increase in deforestation of 3.2 km2 when

15% of forest remains.
1We re-estimate Table 1.3 adding a lagged dependent variable since we might expect that the current

level of deforestation be heavily determined by its past level. In that case, not including the lagged variable
of deforestation would lead to omitted variable bias and the results could be unreliable. However, the results
presented in the Appendix A.1 exclude the possibility of a dynamic panel or dependence of the model. In
this case, the baseline model stated is preferred to others.
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Table 1.8 Environmental policies and municipal institutional framework - Robustness
Check for Forest Cover

Sample Dependent: ∆ ln Deforestation
(1) (2) (3)

Fines−1 0.069 0.073 0.095
(1.62) (1.59) (1.29)

Protected Areas−1 -0.003 -0.002 -0.001
(0.30) (0.16) (0.10)

Env. Law−1 0.538*** 0.609*** 0.662***
(3.22) (3.30) (3.54)

Env. Office−1 0.287 0.297 0.256
(1.45) (1.72) (1.21)

Soy Price−1 1.188** 1.342*** 1.278**
(3.10) (3.22) (2.97)

Timber Price−1 0.639 0.880 0.485
(0.81) (0.99) (0.46)

Beef Price−1 0.685 1.408 1.464
(0.29) (0.46) (0.42)

Env. Law−1* Fines−1 -0.012 -0.021 -0.021
(0.73) (1.27) (1.49)

Env. Office−1* Fines−1 -0.088** -0.086* -0.102
(2.77) (2.13) (1.55)

Env. Law−1* PAs−1 0.007 0.006 0.002
(1.38) (1.35) (0.37)

Env.Office−1*PAs−1 0.028** 0.025** 0.023***
(2.83) (3.05) (3.11)

Env. Law−1* Soy Price−1 -0.729*** -0.831*** -0.790***
(3.16) (3.33) (3.20)

Env. Office−1* Soy Price−1 -0.447* -0.389* -0.315
(1.90) (1.81) (1.39)

Env. Law−1* Timber Price−1 -0.450 -0.178 -0.227
(1.69) (0.61) (1.10)

Env. Office−1* Timber Price−1 -1.891*** -2.286*** -2.288***
(5.35) (5.41) (5.31)

Env. Law−1* Beef Price−1 -0.011 -0.041 -0.082***
(0.50) (1.76) (3.93)

Env. Office−1* Beef Price−1 0.070** 0.063* 0.070
(2.26) (2.10) (1.78)

Forest Cover 5% 10% 15%
Set of Controls Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Municipality Fixed Effects Yes Yes Yes
Number of Observations 6,178 5,241 4,476
*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are
indicated in parentheses under the coefficients. PAs stand for Protected Areas.
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In many studies protected areas are captured via two distinct variables, namely

conservation units and indigenous land. Since we are summing the areas of indigenous

land and conservation units within a municipality, we need to check whether we are

underestimating the true value of this policy. Based on Table 1.3, we re-estimate our

results excluding protected areas from the analysis and including indigenous land and

conservation units as separate variables. Column (9) from Table 1.9 shows that indigenous

land is insignificant when conditioned on the institutional framework and conservation units

continue to influence deforestation when a municipality has an environmental institutional

environmental framework system. An increase in protected areas of one unit (10,000

km2) at mean values for the existence of an environmental office leads to an increase

in deforestation of 3% or 0.6km2 holding everything else constant. One explanation

is that indigenous lands tend to be regulated and managed by the federal government

and there is no interference or influence from the local governmental body. A second

explanation is that the enforcement of indigenous land within a municipality has no effect

on deforestation, as shown by BenYishay et al. (2017), so the IEF triggers no effect. In

this setting, fines, conditioned on there being an environmental office, increasing by one

unit ($10,000,000 BRL) leads to an almost 1.5% decrease in deforestation. Putting this

percentage in numbers, we consider our deforestation sample (20,2 km2) and find out that

it represents to approximately 1.7 km2.

For commodities prices we observe the same patterns that we find in our baseline model.

Increasing the price of soy and beef by 10%, holding everything else constant and at mean

values of the environmental institutional framework, we see an increase in deforestation

by 0.06% and 62% respectively. Likewise, an increase in 10% of the price for forestry

products leads to a decrease in deforestation by 1.5% or 0.3 km2 when considering our

sample.
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Table 1.9 Environmental policies and municipal institutional framework - Robustness Check for Protected Areas

Sample Dependent: ∆ ln Deforestation
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fines−1 0.080 -0.019 -0.019 -0.018 -0.019 0.078 0.081* 0.067 0.067
(1.75) (0.89) (0.86) (0.83) (0.86) (1.77) (1.83) (1.59) (1.57)

Conservation Units−1 0.026*** -0.006 0.025*** 0.025*** 0.026*** -0.006 -0.007 -0.005 -0.005
(3.84) (0.51) (3.58) (3.67) (3.77) (0.47) (0.54) (0.42) (0.42)

Indigenous Land−1 0.181 0.268* 0.161 0.182 0.174 0.262* 0.248* 0.251* 0.254*
(1.75) (2.07) (1.55) (1.77) (1.57) (1.98) (1.85) (2.03) (2.02)

Env. Law−1 0.024 0.012 0.476*** 0.078* 0.072** 0.014 0.475*** 0.536*** 0.542***
(1.01) (0.52) (3.35) (2.08) (2.26) (0.54) (3.20) (3.12) (3.17)

Env. Office−1 -0.039 -0.078 0.121 0.134** -0.101 -0.062 0.129 0.297 0.291
(0.78) (1.48) (0.58) (2.13) (1.11) (1.14) (0.59) (1.37) (1.37)

Soy Price−1 0.552 0.544 1.067** 0.555 0.551 0.548 1.086*** 1.093*** 1.166***
(1.18) (1.19) (3.07) (1.21) (1.18) (1.19) (3.22) (3.14) (3.13)

Timber Price−1 -1.258* -1.281* -1.289* 0.872 -1.275* -1.259* -1.268* 0.682 0.637
(2.08) (2.19) (2.13) (1.15) (2.11) (2.16) (2.17) (0.89) (0.80)

Beef Price−1 1.122 1.085 1.254 0.817 1.228 1.005 1.049 0.717 0.680
(0.46) (0.46) (0.54) (0.34) (0.52) (0.42) (0.45) (0.31) (0.29)

Env. Law−1* Fines−1 -0.010 -0.013 -0.014 -0.012 -0.012
(0.53) (0.71) (0.90) (0.74) (0.73)

Env. Office−1* Fines−1 -0.102** -0.099*** -0.101*** -0.087** -0.086**
(3.08) (3.16) (3.20) (2.82) (2.80)

Env. Law−1* Conservation Units−1 0.007 0.008 0.008 0.008 0.007
(1.48) (1.63) (1.75) (1.63) (1.60)

Env. Office−1* Conservation Units−1 0.031*** 0.031*** 0.031*** 0.029** 0.030**
(3.29) (3.22) (3.19) (3.07) (3.08)

Env. Law−1* Indigenous Land−1 -0.014 -0.013 -0.014 -0.015 -0.015
(0.56) (0.48) (0.54) (0.59) (0.60)

Env.Office−1* Indigenous Land−1 -0.125 -0.109 -0.101 -0.091 -0.089
(1.57) (1.49) (1.33) (1.19) (1.17)

Env. Law−1* Soy Price−1 -0.714*** -0.722*** -0.737*** -0.728***
(3.51) (3.33) (3.41) (3.12)

Env. Office−1* Soy Price−1 -0.304 -0.330 -0.324 -0.432*
(1.07) (1.12) (1.17) (1.80)

Env. Law−1* Timber Price−1 -0.477* -0.433 -0.443
(2.18) (1.61) (1.65)

Env. Office−1* Timber Price−1 -2.136*** -1.938*** -1.889***
(6.90) (5.72) (5.38)

Env. Law−1* Beef Price−1 -0.061** -0.013
(2.71) (0.61)

Env. Office−1* Beef Price−1 0.051 0.071**
(1.28) (2.28)

Set of Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses under the coefficients.
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Finally, we explore the assumption that environmental offices operating with other

offices and strategic themes negatively influence the environmental agenda. Hence,

we substitute environmental offices combined with other key themes to look only at

environmental offices that deal with the environmental. Column (9) of Table 1.10, shows

that at the 10% significance level, policy variables conditioned on the IEF do not affect

the path of deforestation. This suggests that environmental offices that have a narrow

environmental agendas do not facilitate the execution of environmental policies.1

The results also show that combining environmental offices with other strategic agendas

increases deforestation. For commodities prices, we observe that, ceteris paribus, forestry

products respond negatively to environmental offices with an environmental agenda. A

10% increase in the price of forestry products results in a decrease in deforestation by 0.8

km2 at mean values for the existence of institutional environmental framework. For soy,

we see that with only environmental offices the impact on deforestation is insignificant. We

also observe that beef market has no longer impact when we consider only environmental

offices with a narrow environmental agenda. These results reinforce our finding that

environmental offices working with different kind of strategic agendas might fail to prevent

deforestation.

1In Assunçao et al. (2017) they correlate the annual number of environmental fines applied at the
municipality level to a more stringent monitoring and law enforcement regarding institutional apparatus such
as environmental offices. In this sense, we re-estimate Table 1.3 excluding the variable fines in order to see if
the model changes significantly given the assumption stated by the authors. As can be seen from Table A.1.6,
the results indicate that fines has a positive impact on curb deforestation and the model without the variable
seems to have no improvement of the solely existence of environmental offices.
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Table 1.10 Environmental policies and municipal institutional framework - Robustness Check for Environmental Office

Sample Dependent: ∆ ln Deforestation
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fines−1 -0.235 -0.192 -0.191 -0.162 -0.180 -0.203 -0.222 -0.276 -0.272
(0.80) (0.91) (0.91) (0.76) (0.84) (0.72) (0.80) (1.03) (1.02)

Protected Areas−1 0.027*** 0.017* 0.026*** 0.027*** 0.027*** 0.017* 0.016* 0.016* 0.016*
(3.79) (1.84) (3.77) (3.68) (3.81) (1.85) (1.73) (1.74) (1.75)

Env. Law−1 0.021 -0.000 0.449*** 0.077* 0.057* 0.002 0.438*** 0.489*** 0.492***
(0.88) (0.02) (3.46) (2.06) (1.81) (0.08) (3.61) (3.50) (3.55)

Env. Office−1 -0.003 -0.012 0.397 0.104*** 0.082** -0.016 0.376 0.453 0.473
(0.15) (0.62) (1.35) (5.31) (2.53) (0.87) (1.28) (1.57) (1.75)

Soy Price−1 0.552 0.562 0.987** 0.553 0.550 0.564 1.007** 1.006** 0.998**
(1.19) (1.21) (2.54) (1.20) (1.18) (1.21) (2.57) (2.53) (2.49)

Timber Price−1 -1.295* -1.308* -1.290* -0.790 -1.287* -1.307* -1.300* -0.819 -0.813
(2.09) (2.14) (2.05) (1.12) (2.09) (2.14) (2.10) (1.19) (1.19)

Beef Price−1 1.107 1.050 1.252 1.087 1.186 1.051 1.202 1.188 1.204
(0.47) (0.45) (0.54) (0.46) (0.51) (0.45) (0.53) (0.52) (0.53)

Env. Law−1* Fines−1 -0.048 -0.102 -0.100 -0.060 -0.062
(0.27) (0.70) (0.71) (0.43) (0.44)

Env. Office−1* Fines−1 0.170 0.148 0.148 0.218 0.212
(1.36) (1.15) (1.09) (1.65) (1.68)

Env. Law−1* PAs−1 0.010 0.010* 0.010* 0.009* 0.009
(1.70) (1.86) (1.95) (1.80) (1.79)

Env.Office−1*PAs−1 0.007 0.007 0.008 0.007 0.007
(1.33) (1.22) (1.39) (1.31) (1.26)

Env. Law−1* Soy Price−1 -0.670*** -0.677*** -0.678*** -0.689***
(3.63) (3.79) (3.89) (3.63)

Env. Office−1* Soy Price−1 -0.604 -0.604 -0.571 -0.516
(1.30) (1.29) (1.23) (1.02)

Env. Law−1* Timber Price−1 -0.510** -0.444 -0.440
(2.24) (1.76) (1.77)

Env. Office−1* Timber Price−1 -0.954*** -0.952*** -0.975***
(4.06) (4.22) (4.47)

Env. Law−1* Beef Price−1 -0.047* 0.003
(2.05) (0.17)

Env. Office−1* Beef Price−1 -0.098** -0.065
(2.98) (1.00)

Set of Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses under the coefficients. PAs stand
for Protected Areas.
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1.5 Counter-factual Simulations

Using the estimates from column 9 of table 1.3 we conduct counter-factual simulations in

the spirit of Assunçao et al. (2015) to quantify the contribution of the existence of the IEF

in the Legal Amazon in terms of avoided deforestation associating with CO2 emissions

over our sample period. More specifically, the predicted impact on the natural logarithm of

deforestation for each sample municipality is defined as:

lnD̂i,t = µ̂i +Xi,t β̂1 +Xi,t−1β̂2 + (IEF * Env. Policies)i,t−1β̂3

+(IEF * Prices)i,t−1β̂4 + λ̂t

(1.4)

in which lnD̂i,t is the predicted log of deforestation, calculated using the estimated

coefficients illustrated by the hatted parameters. Given the estimated parameters, we

are able to recalculate each lnD̂i,t under the alternative condition Environmental Law =

0 and Environmental Office = 0. This calculation gives the log of annual deforestation

in a scenario of no environmental institutional framework. We follow the Assunçao

et al. (2015) methodology by accumulating lnD̂i,t across all 562 sample municipalities

and all sample years to calculate total predicted deforestation under the hypothetical

scenario. Table 1.11 shows the total observed deforestation trend from 2004 to 2015. It

also includes the counterfactual analysis for the hypothetical scenario. We can see that total

observed deforestation from 2004 to 2015 was approximately 124,841 km2. Under the

hypothetical scenario of no institutional instrument the level of deforestation would have

been 341 thousand km2 or 2.75 times higher. The results thus indicate that the presence

of institutional environmental framework avoided over 63% of forest clearing that would

have occurred in the absence of such a frawework.
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Table 1.11 Counterfactual Simulations - Observed and predicted deforestation

Year Deforestation in sample municipalities
Observed Predicted

2004 27,423 85,708
2005 23,490 75,555
2006 10,489 23,156
2007 11,332 23,755
2008 13,192 28,229
2009 6,547 16,335
2010 6,324 25,859
2011 5,627 15,571
2012 4,495 9,583
2013 5,435 12,262
2014 5,157 13,789
2015 6,182 11,365
Total deforestation, 2004-2015 124,841 341,167
Avoided deforestation, 2004-2015 - 216,325
Avoided deforestation, 2004-2015 (as % of predicted
deforestation)

- 63%

Sample includes 562 municipalities located in the Legal Amazon region. Regressions include year effects.
Analysis is based on a municipality level panel data set covering from 2004 to 2015. The counterfactual
simulation is based on model 3.1 and uses the specification presented in column (9) of table 1.3.

To provide a basic cost-benefit analysis, we estimate that the preserved forest area is

equivalent to 12 billion tonnes of stored CO2 with a value of US$ 62b.1 Considering the

Environmental Police’s (IBAMA) budget and PRODES project Institute (INPE) through

our sample period was around 8 billion USD (at 2010 prices), we account that any price in

the carbon market set above 0.69 USD/tCO2 would compensate the cost of environmental

monitoring and law enforcement (similar findings were found in Assunçao et al. (2017)).

Taking into account that the price used in current empirical studies is 5 USD/tCO2, the

monetary gains would have the potential to surpass the costs by 6.2 times (51 billion USD

net monetary gains). Although this is a large amount, we emphasise that the hypothetical

scenario is set against there being no institutional framework in the Legal Amazon, which

would be characterised as an open access land with no legal and institutional articulation.

We understand that much of this avoided deforestation also considers the indirect effects
1Following Assunçao et al. (2015), the estimations are based on conversion factors of 10,000 tC/km2

which figures 36,700 tCO2/km2 and 5 USD/tCO2/km2 established by the Ministry of Environment (MMA,
2018b). Fearnside (2016) considers this conversion factor a gentleman’s agreement’ rather than a realistic
measure. He argues that the value was deliberately chosen to be conservative. We took this approach in order
to make a comparative analysis according to the Ministry of Environment (MMA).
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occurring through changes in environmental policies and market condition. Nevertheless,

this result suggests the importance of having a well functioning institutional environmental

framework.

1.6 Conclusion

In this study we quantify the determinants of deforestation in the Brazilian Legal Amazon

introducing an institutional approach into the discussion. More specifically, we analyse

whether environmental policies and market prices conditioned on IEF were responsible for

the decrease in deforestation at municipal level in the Legal Amazon since 2004. In terms of

data, we use municipality level with yearly frequency for environmental policies and market

condition. A spatial analysis was conducted in order to account for spatial dependence.

The results show that the existence of an IEF conditioned on policies and prices reduced

deforestation and has negative spillovers to neighbouring municipalities. Counter-factual

simulations indicate that the existence of institutional environmental framework avoided

63% of total forest clearing that would have occurred had the institutional framework not

been instrumented and this preserved forest corresponds to 12 billion tonnes of stored CO2

with the value of US$ 62b.

Our main findings show that environmental law as an instrument of institutional

environmental framework can have an impact on the path of deforestation, but only through

market conditions. In other words, we find evidence that environmental legislation affected

soy production through the indirect effect of the moratorium mechanism. The existence

of an environmental office has an effect on reduce forest clearing is used in conjunction

with the application of fines. Environmental offices are also responsible inducing the

office to adapt agendas that may be in conflict with environmental actions since in the

Legal Amazon environmental offices can have a number of strategic themes. We observe
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this pattern with regard to the prices of timber and beef which gives an incentive for

forest management in the private sector and thus reducing the effect on deforestation and

prioritising the beef market role in deforestation. However, the Brazilian institutional and

regulatory capacity of government urgently needs to strengthen its environmental actions

and to improve policies to allow a more homogeneous approach among local authorities

considering that the Legal Amazon as a heterogeneous region.

Our results suggest important policy implications regarding the institutional mechanisms

that could be used to curb tropical deforestation in the Legal Amazon. In an unfavourable

institutional environment, the protection of the environment is largely ignored. It is

imperative that the Brazilian institutional and regulatory capacity of government is

strengthened and improvements in policies to allow a more homogeneous approach among

local authorities are made. We concluded that the Brazilian institutional environmental

framework requires tightening and narrowing of environmental policies at local level.
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Appendix A.1

Table A.1.1 Summary Statistics - Year 2004

Variable Mean St. Dev. Min. Max.

Deforestation 53.342 107.654 0.1 1082.5

Fines 0.082 0.307 0 4.290

Protected Areas 1.501 3.428 0 36.930

Rural Credits 0.264 0.830 0 9.649

Environmental Law 0.339 0.473 0 1

Environmental Office 0.479 0.500 0 1

Housing Projects 0.728 0.444 0 1

Settlements 2.570 4.652 0 65

Settlements Density 0.016 0.048 0 1.016

GDP 0.014 0.082 0.001 1.659

Beef Price 2.409 0.035 2.286 2.419

Soy Price 0.703 0.138 0.272 1.034

Wood Price 0.074 0.049 0.002 0.401

Roads 0.018 0.029 0.001 0.081

Clouds 0.284 1.459 0 18.557

No obs 0.260 2.333 0 49.530

Mayor Political Party (pro-farmer) 0.809 0.393 0 1

Mayor Gender (Male) 0.923 0.265 0 1

Mayor Age (% above 50) 0.357 0.479 0 1

Mayor Education 0.347 0.476 0 1

Corruption 0.007 0.007 0 0.056

Re-election 0 0 0 0

Note: Statistics refer to N=6178 observations for 562 municipalities.
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Table A.1.2 Summary Statistics - Year 2015

Variable Mean St. Dev. Min. Max.

Deforestation 11.449 31.028 0.1 308.6

Fines 0.342 1.642 0 24.227

Protected Areas 23.134 57.679 0 448.777

Rural Credits 0.919 0.364 0 3.281

Environmental Law 0.696 0.460 0 1

Environmental Office 0.942 0.232 0 1

Housing Projects 0.822 0.382 0 1

Settlements 4.239 6.460 0 76

Settlements Density 0.018 0.027 0 0.277

GDP 0.110 0.530 0.002 9.850

Beef Price 0.877 0.006 0.866 0.889

Soy Price 0.722 0.060 0.540 0.899

Wood Price 0.105 0.087 0.005 0.649

Roads 0.206 0.028 0.001 0.083

Clouds 9.019 35.686 0 488.1

No obs 0 0 0 0

Mayor Political Party (pro-farmer) 0.944 0.229 0 1

Mayor Gender (Male) 0.866 0.340 0 1

Mayor Age (% above 50) 0.368 0.482 0 1

Mayor Education 0.505 0.500 0 1

Corruption 0.042 0.539 0 12.534

Re-election 0.194 0.396 0 1

Note: Statistics refer to N=6178 observations for 562 municipalities.
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Table A.1.3 Data Description - Scope, Sources and Unit of Measurement

Variable Level Source Unit of Measurement

Deforestation Municipality INPE ln(square km)

Fines Municipality IBAMA in $10,000,000 BRL

Conservation Units Municipality MMA/IBAMA in 10,000 sq km

Indigenous Land Municipality FUNAI in 10,000 sq km

Rural Credits Grants Municipality BASA, BNB, BACEN in $10,000,000,000 BRL

Environment Law Municipality IBGE Indicator of environmental law

Environmental Agency Municipality IBGE Indicator of environmental office

Housing Projects Municipality IBGE Indicator of housing project

Settlements Municipality INCRA Number of settlements

Settlements Density Municipality INCRA Ratio of families per settlement

GDP Municipality IBGE in $100,000,000 BRL

Beef Price State CEPEA per 15kg, $100 BRL

Soy Price Municipality IBGE per 60kg, BRL

Wood Price Municipality IBGE per cubic m, BRL

Roads State DNIT Number of ‘new‘ paved kms averaged by state size

Mayor Political Party Municipality IBGE Dummy if "pro-farmer" party

Mayor Education Municipality IBGE Dummy if mayor has tertiary education

Mayor Age Municipality IBGE Dummy if age is higher than the average of 50

Clouds Municipality INPE in 52 weeks

No Obs Municipality INPE Area not observed per year

Corruption Municipality IBGE Number of Commissioned Workers per City Hall averaged by population

Re-election Municipality TSE Dummy if mayor is running for re-election in election years

Note: All prices and economic values are expressed in constant 2010 Brazil Reais (BRL).

Exchange Rate 1.00 BRL to 0.602 US Dollar.
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Table A.1.4 Effects of Environmental Policies on Deforestation: Baseline Model -
Robustness Check for Two-way Fixed Effects

Sample Dependent: ∆ ln Deforestation
(1) (2) (3) (4)

Fines−1 0.600*** 0.587*** 0.055 0.069
(-10.01) (-10.39) (-1.39) (-1.87)

Protected Areas−1 0.01 0.01 -0.022* -0.003
(-1.03) (-0.54) (-1.9) (-0.3)

Env. Law−1 0.484** 0.414* 0.589*** 0.538***
(-2.09) (-1.89) (-3.9) (-3.84)

Env. Office−1 1.092*** 1.264*** -0.274* 0.287
(-4.32) (-5.19) (-1.7) (-1.88)

Soy Price−1 1.548*** 1.448*** 0.758*** 1.188***
(-4.49) (-3.99) (-3.45) (-5.06)

Timber Price−1 3.824*** 4.985*** -1.690*** 0.639
(-5.37) (-7.40) (-3.07) (-1.23)

Beef Price−1 0.396*** 6.031*** 0.064 0.685
(-5.54) (-5.46) (-1.42) (-0.93)

Env. Law−1* Fines−1 -0.153*** -0.158*** 0.003 -0.012
(-4.25) (-4.69) (-0.11) (-0.56)

Env. Office−1* Fines−1 -0.158*** -0.134** -0.101*** -0.088**
(-2.77) (-2.48) (-2.72) (-2.57)

Env. Law−1* PAs−1 -0.01 -0.01 0.005 0.007
(-1.52) (-1.34) (-0.87) (-1.22)

Env. Office−1* PAs−1 0.02 0.02 0.031*** 0.028**
(-1.05) (-1.55) (-3.42) (-3.33)

Env. Law−1* Soy Price−1 -1.117*** -0.801** -0.933*** -0.729***
(-3.09) (-2.33) (-4.04) (-3.4)

Env. Office−1* Soy Price−1 -2.350*** -1.480*** -0.688*** -0.447*
(-5.72) (-3.70) (-2.67) (-1.82)

Env. Law−1* Timber Price−1 1.153** 1.280** -0.869** -0.45
(-2.14) (-2.52) (-2.23) (-1.25)

Env. Office−1* Timber Price−1 -1.526** -1.845** -0.817 -1.891***
(-2.00) (-2.56) (-1.55) (-3.85)

Env. Law−1* Beef Price−1 0.05 -0.04 0.039 -0.011
(-0.52) (-0.39) (-0.65) (-0.19)

Env. Office−1* Beef Price−1 0.231** 0.04 0.243*** 0.070**
(-2.32) (-0.46) (-4) (-1.23)

Set of Controls Yes Yes Yes Yes
Year Fixed Effects No Yes No Yes
Municipality Fixed Effects No No Yes Yes
Number of Observations 6,178 6,178 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses
under the coefficients using the conventionally derived variance estimator for generalized least-squares regression.
PAs stand for Protected Areas.
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Table A.1.5 Effects of Environmental Policies on Deforestation: Baseline Model -
Robustness Check for Lagged Deforestation

Sample Dependent: ∆ ln Deforestation
(1) (2)

Fines−1 0.069* 0.068*
(-1.870) (-1.840)

Protected Areas−1 -0.003 -0.004
(-0.300) (-0.330)

Env. Law−1 0.538*** 0.532***
(-3.840) (-3.800)

Env. Office−1 0.287* 0.278*
(-1.880) (-1.810)

Soy Price−1 1.188*** 1.168***
(-5.060) (-4.970)

Timber Price−1 0.639 0.648
(-1.230) (-1.250)

Beef Price−1 0.685 0.642
(-0.930) (-0.870)

Env. Law−1* Fines−1 -0.012 -0.012
(-0.560) (-0.560)

Env. Office−1* Fines−1 -0.088** -0.087**
(-2.570) (-2.550)

Env. Law−1* PAs−1 0.007 0.007
(-1.220) (-1.200)

Env. Office−1* PAs−1 0.028*** 0.028***
(-3.330) (-3.310)

Env. Law−1* Soy Price−1 -0.729*** -0.720***
(-3.400) (-3.350)

Env. Office−1* Soy Price−1 -0.447* -0.433*
(-1.820) (-1.770)

Env. Law−1* Timber Price−1 -0.450 -0.453
(-1.250) (-1.260)

Env. Office−1* Timber Price−1 -1.891*** -1.886***
(-3.850) (-3.840)

Env. Law−1* Beef Price−1 -0.011 -0.010
(-0.190) (-0.180)

Env. Office−1* Beef Price−1 0.070 0.071
(-1.230) (-1.250)

ln Def−1 0.011
(-0.970)

Set of Controls Yes Yes
Year Fixed Effects Yes Yes
Municipality Fixed Effects Yes Yes
Number of Observations 6,178 6,177

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses
under the coefficients using the conventionally derived variance estimator for generalized least-squares regression.
PAs stand for Protected Areas.
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Table A.1.6 Environmental policies and municipal institutional framework - Robustness
Check for Fines

Sample Dependent: ∆ ln Deforestation
(1) (2)

Fines−1 0.069
(-1.87)

Protected Areas−1 -0.003 -0.004
(-0.3) (-0.37)

Env. Law−1 0.538*** 0.550***
(-3.84) (-3.94)

Env. Office−1 0.287 0.256
(-1.88) (-1.68)

Soy Price−1 1.188*** 1.159***
(-5.06) (-4.94)

Timber Price−1 0.639 0.743
(-1.23) (-1.43)

Beef Price−1 0.685 0.77
(-0.93) (-1.04)

Env. Law−1* Fines−1 -0.012
(-0.56)

Env. Office−1* Fines−1 -0.088**
(-2.57)

Env. Law−1* PAs−1 0.007 0.006
(-1.22) (-1)

Env. Office−1* PAs−1 0.028*** 0.028***
(-3.33) (-3.38)

Env. Law−1* Soy Price−1 -0.729*** -0.744***
(-3.4) (-3.47)

Env. Office−1* Soy Price−1 -0.447* -0.404*
(-1.82) (-1.65)

Env. Law−1* Timber Price−1 -0.45 -0.478
(-1.25) (-1.34)

Env. Office−1* Timber Price−1 -1.891*** -2.018***
(-3.85) (-4.13)

Env. Law−1* Beef Price−1 -0.011 -0.011
(-0.19) (-0.2)

Env. Office−1* Beef Price−1 0.07 0.073
(-1.23) (-1.29)

Set of Controls Yes Yes
Year Fixed Effects Yes Yes
Municipality Fixed Effects Yes Yes
Number of Observations 6,178 6,178

*, **, *** denote significance at 10%, 5% and 1% levels, respectively. Robust standard error values are indicated in parentheses
under the coefficients using the conventionally derived variance estimator for generalized least-squares regression.
PAs stand for Protected Areas.
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Table A.1.7 LM Tests

W1
Elhorst
LM test no spatial lag, probability 0.0000 1.000
robust LM test no spatial lag, probability 314.0441 0.000
LM test no spatial error, probability 288.3646 0.000
robust LM test no spatial error, probability 602.4087 0.000
Lacombe
LM lag test for omitted spatial lag in panel data 111.2545 0.000
LM error test for spatial errors in panel data 103.5038 0.000
Robust LM lag test for omitted spatial lag in panel data 10.1198 0.001
Robust LM error test for spatial errors in panel data 2.3692 0.123

W2
Elhorst
LM test no spatial lag, probability 0.0000 1.000
robust LM test no spatial lag, probability 314.3242 0.000
LM test no spatial error, probability 288.6314 0.000
robust LM test no spatial error, probability 602.9555 0.000
Lacombe
LM lag test for omitted spatial lag in panel data 111.2895 0.000
LM error test for spatial errors in panel data 104.1005 0.000
Robust LM lag test for omitted spatial lag in panel data 9.7553 0.001
Robust LM error test for spatial errors in panel data 2.5663 0.109

W3
Elhorst
LM test no spatial lag, probability 0.0000 1.000
robust LM test no spatial lag, probability 921.5621 0.000
LM test no spatial error, probability 1370.3817 0.000
robust LM test no spatial error, probability 2291.9439 0.000
Lacombe
LM lag test for omitted spatial lag in panel data 326.6028 0.000
LM error test for spatial errors in panel data 334.1047 0.000
Robust LM lag test for omitted spatial lag in panel data 21.3014 0.000
Robust LM error test for spatial errors in panel data 28.8033 0.000
Note that the results satisfy the condition tha LM spatial Lag + Robust LM spatial error
= LM spatial error + robust LM spatial lag (Anselin, 1988).
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Abstract

This study investigates deforestation trends in the Brazilian Cerrado region in Maranhão,

Brazil, which provides a unique natural experiment in that there were spatially

hetereogenous environmental policies to combat deforestation in place. The analysis

applies the non-linear estimation approach of Generalized Additive Models (GAMs) on

satellite data derived measures of deforestation, where validation is conducted using

features of neural networks. The GAMs confirmed that deforestation is related to climatic

factors in that increased during high levels of precipitation and low levels of solar incidence.

More importantly, the results revealed that there are substantially differences in trends

between seasons across regions according to their policy distinction. This was further

substantiated by showing that deforestation happened during both seasons for settlements

which were not target of the environmental policy, but only during the rainy season for

the protected areas, likely due to the lower rate of remotely sensed detection during cloud

cover.

Keywords: Deforestation trends, Generalized Additive Models, Remote Sensing Analysis.

2.1 Introduction

Tropical deforestation is an event that gained momentum in the second half of the 20th

century. As a matter of fact, the considerable deforestation observed globally during 1990-
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2010 was almost entirely confined to the tropical regions (Culas, 2014). In this regard, the

Brazilian Cerrado is perhaps the biome which has arguably been most affected by human

occupation over the last three decades, mainly due to the increasing pressures for opening

up of new areas for the production of meat, grains and ethanol, mostly at the sacrifice of

forested areas (Bayma and Sano, 2015; MMA, 2018a). Importantly, the Brazilian Cerrado

has also been subject to spatially and temporally heterogeneous environmental policies

discouraging such deforestation. Understanding what role such interventionist policies

may have played in observed trends in deforestation could potentially provide a platform

with which to assess future possible scenarios of deforestation in the Cerrado biome and

the Amazon forest in general (Nepstad et al., 2013). In this paper we use remote sensing

data and non-linear models to model the trends of deforestation and its underlying drivers

in the Cerrado region in the Brazilian state of Maranhão using the non-linear modelling

approach of Generalized Additive Models (GAMs).

Arguably, the state of Maranhão provides a particularly interesting context within

which to study trends in deforestation and the possible role of environmental policy.

More specifically, Maranhão is divided by an artificial line that separates it in two

parts: the Legal Amazon Maranhão and the Cerrado Maranhão. This division, occurring

approximately 44◦ west of the meridian, was established in 1953 due to the necessity to plan

economic development in the region. This scenario provides a unique natural experiment

of deforestation in the Legal Amazon Maranhão (LM) and Cerrado Maranhão (MA) since

the former has been subject to fundamentally different environmental policies compared

to the latter.1 More specifically, the tropical forest in the Legal Amazon Maranhão is

under a surveillance environmental policy, called DETER, which detects deforestation

or fire incidence in the region using satellite data and informs the occurrences to the

environmental police (IBAMA in Portuguese) so that they can fine or arrest the responsible

1The Legal Amazon is an area that corresponds to 59% of the Brazilian territory and encompasses all
eight states (Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima and Tocantins) and part of the
State of Maranhão (west of the meridian Of 44ºW), totalling more than 5 million km2 (IPEA, 2008).
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persons (IBAMA, 2017). In contrast, DETER is not applicable for the other biomes in the

Maranhão state.1 We use this spatial division to determine how deforestation trends may

have been different being the Legal Amazon Maranhão and Cerrado Maranhão.

Our use of non-linear modelling for the task at hand derives from the recognition

by recent previous research that most ecological and climatic data represent complex

relationships and thus that non-linear models, such as GAMs, may be particularly suited

to capture confounding effects in trends; see (Antunez et al., 2017; Auderset Joye and

Rey-Boissezon, 2015; Bell et al., 2015; Bio et al., 1998; de Souza et al., 2017; Halperin

et al., 2016; Liu et al., 2018; Lusk et al., 2016; Moreno-Fernández et al., 2018; Pourtaghi

et al., 2016). However, a review of the literature shows that such models have only been

used sparsely to study deforestation. For example, Chaves et al. (2008) modelled how

deforestation affected incidence rates of a disease in Cuba. Also, Green et al. (2013) used

a binomial GAM model to account for forest and habitat losses in protected areas on

the Eastern Arc Mountains of Tanzania. More recently, Bebber and Butt (2017) studied

the impact of protected areas on global carbon emissions in America, Africa and Asia.

For Brazil, Mendes and Junior (2012) observed the relationship between deforestation,

corruption, and economic growth in the region of Legal Amazon, in Brazil. Here we apply

a GAM with a negative binomial distribution and logarithmic link function. To capture

deforestation we construct monthly time series from remote sensing sources (MODIS),

given that high temporal resolution satellite products are particularly suitable to obtain

detailed knowledge about the seasonal cycles of vegetation in biomes with strong seasonal

1The DETER is a rapid survey of alerts of changes in forest cover in the Legal Amazon made by National
Institute os Spatial Research (INPE in Portugues) since May 2004, with data from Terra’s MODIS sensor,
with a spatial resolution of 250 m. DETER was developed as an alert system to support the environmental
police to curb illegal deforestation. With this system, it is possible to detect only changes in the forest cover
with an area larger than 25 ha. Due to cloud cover not all changes are identified by DETER. The lower
resolution of the sensors used by DETER is compensated by the daily observation capacity, which makes the
system an ideal tool to quickly inform the inspection bodies about new changes DETER operates daily and
delivers deforestation alert maps to environmental policy in a five days after the date of the MODIS image
(BRASIL, 2018).
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contrast, such as the Cerrado biome and Ecotone forest (Bayma and Sano, 2015). Our

climatic covariates are derived from data from meteorological stations.

The results from our GAMs revealed that for the Legal Maranhao region most of

the deforestation happened during the rainy season, while in the unprotected Cerrado

Maranhão deforestation occurred in the dry season as well. The fact that precipitation and

solar incidence also played an important role in deforestation in the rainy season in the

Legal Maranhao region suggests that cloud cover may have acted as an impediment to

infringement detection via satellites, as is done in the DETER program. We further

substantiated this claim by showing that for settlements that were not the target of

environmental policy deforestation mainly took place during both seasons as well.

2.2 Study Context

2.2.1 Study Location

Maranhão, or ’flowing river’ in the indigenous language (Girardi, 2015), is one of the ten

largest States of Brazil with more than 330 thousand square kilometers and located in

the northeast part of Brazil. However, while it is considered one of the richest regions in

biodiversity in the country (Batistella et al., 2014), it has historically ranked among the

states with the worst social and economic indicators (Celentano et al., 2017). The State’s

political boundaries encompass natural hydrological barriers, where within these borders

64.1% of the area of the territory is in the Cerrado/Savana biome, 34.8% in the Amazon

biome, and only 1.1% in the Caatinga biome (Stella, 2011). The Cerrado represents the

largest ecosystem in Maranhão, and is located from the Northeast to the southern region of

the State, covering about 60% of its surface, occurring in approximately 55 of the total
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217 municipalities. Of these, 23 are almost exclusively covered by this type of vegetation

(Batistella et al., 2013b).

In terms of vegetation, in the centre of Maranhão there is a contact area between the

Amazonian and Cerrado biomes of around 21.228km2, where it is possible to observe a

mosaic of savanna vegetation physiognomies concomitant with the ombrophilous forest

formations (open and dense forest). This area is known as an Ecological Tension Zone

(ETZ) of Maranhão and is home to a transitional vegetation which usually occurs with

intermediate characteristics of the two formations, with species common and distinct to

both, providing great biodiversity (Rossatto et al., 2013). In Cerrado Maranhão it is also

possible to distinguish between ecotonic areas and the presence of secondary vegetation

in the central region of the state. Ecotone is defined as the transition area between two or

more distinct habitats or ecosystems, which may have characteristics of both or their own.

Secondary Vegetation includes the various stages of natural succession in areas where

there was human intervention for land use, whether for mining, agricultural or livestock

purposes, or discharging the primary vegetation (Santos-Filho et al., 2013).

There is a strong debate over the definition of the ecotone forest and secondary

vegetation in the state of Maranhão. Considering the Cerrado/savanna territory, almost 10%

represents the transition and secondary forest. Reis and Conceição (2010) state that the

Cocais Forest ("Mata dos Cocais" in Portugues) is considered a characteristic landscape

of the State, although it develops in the transition between several biomes. The authors

pointed out that the Cocais Forest associates with the open fields, towards the North, with

the Cerrado vegetation to the South and East, and gradually joins the forest towards the

west.

More recently, Garcia et al. (2017) studied part of the Maranhão region and defined

forest as a combination of riparian forest, transitional forest, and Cerrado woodland -

the latter defined as having higher tree density and Cerrado, representing physiognomies
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with a wood layer but lower tree density. Their results showed intense conversion and

fragmentation of native vegetation and, consequently, the impoverishment of the quality

of native cover, reassuring the possibility of conducting studies considering ecotone

forest,such as Mata dos Cocais, as a transition forest instead of secondary vegetation.

As noted in the introduction, in addition to the natural barriers, Maranhão is also

divided into two parts: the Legal Amazon Maranhão and the Cerrado Maranhão, with 209

municipalities located in the latter and 138 municipalities in the former. This division

occurs approximately 44◦ west of the meridian and was established in 1953 in order to

plan the economic development of the region comprised of the tropical forest areas of

Maranhão state. We depict this delineation in Figure 2.1
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Figure 2.1 Maranhão State and the Legal Amazon delimitation. The map includes
municipalities centre, rivers and basins, protected areas and indigenous land. Source:
(EMBRAPA, 2018; MMA, 2018b; Núcleo Geoambiental - NUGEO, 2018).
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2.2.2 Deforestation in Maranhão

Large-scale deforestation in the Maranhão Amazon forest began in the 1960s, when the

military government promoted the occupation of this territory through the construction of

highways and provided incentives for large farming projects on public lands and logging

centres. In the 1980s, with the implantation of the iron mining project in the in the

neighbouring state of Pará (Carajas Project), a railroad linking the mine to the port in

Maranhão was built. Moreover, many pig iron facilities were installed in the Maranhão

Amazon region, demanding large quantities of charcoal, which increased the pressure on

forest resources (Celentano et al., 2017).

While many existing studies have focused on the Amazon tropical forests

(Almeyda Zambrano et al., 2010; Arima et al., 2014; Bhattarai and Hammig, 2001;

Celentano et al., 2017; Geist and Lambin, 2001, 2002; Kuik, 2013; Lambin and Geist, 2006;

Nepstad et al., 2014; Olson et al., 2010; Pfaff et al., 2007; Pfaff, 1999, 1997; Richards,

2015; Richards and VanWey, 2015; Soler et al., 2014; Stickler et al., 2013) due to the

fact the ample environmental information was available through specific environmental

policies, such as DETER, studying the Cerrado biome and, consequently, transition forests

remains precarious. The first obstacle in monitoring the Cerrado biome is due to the high

heterogeneity of the forests (open and dense forest, for example) which are substantially

influenced by the climatic seasonality (Bayma and Sano, 2015). The second challenge

is related to the fact that there is no environmental policy in place to prevent rampant

deforestation. Nevertheless, in the context of the Amazon region, it is arguably crucial

to understand the dynamic of Cerrado and its potential to influence adjacent forests of

Amazonia since it provides a valuable endpoint from which climate and anthropogenic

related aspects in the Amazon forest my be better understood (see Figure 2.2).
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Figure 2.2 Estimated Deforestation in Maranhão 2000-2017 (sq Km). Source: (MMA,
2018b).
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In the past many aspects have arguably contributed significantly to deforestation in

the Cerrado Maranhão, such as the agricultural occupation of the Cerrado biome and the

unconstrained use of mechanisation, propitiated by the predominantly flat relief of the

region and the existence of good depth soil conditions and good water supply, making it

possible to practice rainfed agriculture (Bayma and Sano, 2015). In contrast, more recent

forest losses have been due to settlement projects, illegal logging, pasture, subsistence

agriculture and commodities (Celentano et al., 2017; Costa, 2018), and these drivers are

deeply connected to the process of the state’s development. More precisely, during the 40’s,

almost 85% of the population was living in rural areas with low rate of population density

(3,81). At that time, Maranhão had more than 200.000 km2 uninhabitated, which included

transition forest, Cerrado, and pre-Amazon forest. This "territorial gap" (/textitfundos

territoriais in Portuguese) favoured the creation of several settlement projects along with

the creation of federal roads and the Carajas railway project (Ferreira, 2008). Moreover,

the increasing global demand for commodities affected the economic region significantly.

For instance, fiscal incentives increased the production of soy, where the planted area

increased from 42,6 km2 in 1983/84 to 3,940 km2 in 2004/05. The subsequent ecological

tension zone coincides with the Brazilian agricultural frontiers, known as the deforestation

arc, and is an area of intense exploitation. 1

As can be seen from the graph 2.2, deforestation in the Amazon biome of Maranhão

has decreased over the years. Great part of this reduction is likely due to protectionist

policy enforcement in the region. In this regard, the national environmental policy

established in 2004 involved the creation of the Action Plan for the Prevention and Control

of Deforestation in the Legal Amazon (PPCDAm in Portuguese). In order to control

land use and prevent further deforestation, the PPCDAm also included the satellite-based

monitoring programme called DETER, which alerts in real time the environmental police

1The expansion of soybean cultivation in Brazil has shifted the agricultural frontier to an area known as
MAPITOBA. This area includes the states of MAranhão,PIauí, TOcantins, and BAhia„ and has maintained its
expansion across the Cerrado This led to deforestation and degradation, conservation conflicts and conflicts
over land, increased burning, and displacement of traditional populations (Mustin et al., 2017)
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of illegal logging and deforestation. Importantly, until July 2018 there was no systematic

satellite monitoring program for the other parts of Maranhão, such as the transitional forest

of Cerrado and Caatinga. But, in August of the same year, the National Institute of Spatial

Research (INPE in Portuguese) together with several other institutions published an annual

dataset covering 18 years of Cerrado biome deforestation and with this data it was possible

to show the trends of deforestation in the Cerrado biome of Maranhão. As shown in Figure

2.2, deforestation in great Cerrado, which includes the transitional forest, has been two

times higher than in the Amazon region of Maranhão.

2.3 Material and Methods

2.3.1 Remote Sensing

The use of satellite time series along with statistical analysis can be helpful in understanding

the characteristics of vegetation dynamics. More precisely, since vegetation has a unique

spectral feature (e.g., reflectance) it is possible to identify its unique characteristics from an

optical remote sensor on a satellite. In such vegetation mapping, incorporating the spectral

radiances in the red and near-infra-red regions into the spectral vegetation indices (VI)

gives the possibility to estimate forage quantity and quality of grass prairie, for example

(Xie et al., 2008). Earlier studies coarse spatial resolution data from the Advanced Very

High Resolution Radiometer (AVHRR) was used to mainly monitor land cover changes at

regional and global scales, however, since 2000, the availability of Moderate Resolution

Imaging Spectroradiometer (MODIS) data with superior features relative to AVHRR has

provided an improved basis for regional and global mapping (Huang and Friedl, 2014).
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MODIS

The MODIS sensor is flown on two spacecrafts. The Terra satellite is on an AM overpass,

whereas the Aqua platform provides complementary observations in the afternoon. The

instrument on-board NASA’s Terra satellite is a scanning radiometer system with 36

spectral bands, extending from the visible to the thermal infrared wave-lengths, and has a

viewing swath width of 2330km by 10km. The Terra orbital configuration and MODIS

viewing geometry produce full global coverage every one to two days, except for the

equatorial zone where the repeat frequency is approximately 1.2 days (Setiawan et al.,

2014; Zhan et al., 2002a). The high temporal resolution of MODIS is a determining factor

in phenological studies and spectral discrimination, and can be used to obtain detailed

knowledge about the seasonal cycles of vegetation in biomes with strong seasonal contrast,

such as the Cerrado biome and Ecotone forest.

Of the many data products derived from MODIS observations, we use two extensively

used here: MCD12Q1 and MOD13Q1. The MODIS Land Cover Type Product

(MCD12Q1) provides 13 science data sets (SDSs) that map global land cover at 500m

spatial resolution at annual time steps for six different land cover legends from 2001-2016.

In contrast, the MCD12Q1 product is created using supervised classification of MODIS

reflectance data and includes 5 legacy classification schemes such as the University of

Maryland classification (UMD), which recognises 17 classes, covering natural vegetation

(11 classes), mosaic lands (2 classes), and non-vegetated lands (4 classes). A complete

list of the classes and their definitions is given in Table 2.2 (Setiawan et al., 2014; Sulla-

Menashe and Friedl, 2018).

The MODIS Vegetation Indices (VI) (MOD13Q1) product consists of time series

comparisons of global vegetation conditions that can be used to monitor the Earth’s

terrestrial change detection. The two vegetation indices thatr we derive from these are
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the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index

(EVI). The NDVI is a normalized transformation of the NIR (Near Infrared) to the red

reflectance ratio standardized to range from -1 to 1. Ratana et al. (2005) notes that this

index is sufficiently stable to permit meaningful comparisons of seasonal, inter-annual,

and long-term variations of vegetation structure, phenology, and biophysical parameters:

NDV I =
ρNIR −ρred

ρNIR +ρred
(2.1)

where ρred and ρNIR are the surface bidirectional reflectance factors for MODIS bands

1 (620-670nm) and 2 (841-876nm).

To optimise the vegetation signal and minimise atmospheric effect and soil background

noise, the EVI index has been reported to be more responsive to canopy structural variations

including canopy type. The EVI formula is written as:

EV I =
ρNIR −ρred

ρNIR +C1ρred −C2ρblue +L
(G) (2.2)

where ρred and ρNIR and ρblue are the reflectance in MODIS bands 1,2 and 3 (459-

479nm) and, C1 and C2 are the atmospheric resistance coefficients. L and G are the canopy

background adjustment and the gain factor, respectively. The coefficients adopted for the

MODIS EVI algorithm are, L=1, C1 =6, C2 =7.5 and G=2.5. The Enhanced Vegetation

Index differs from NDVI by attempting to correct for atmospheric and background effects.

In addition, EVI is superior in discriminating subtle differences in areas of high vegetation
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density than NDVI because the latter tends to saturate (Didan et al., 2015; Ratana et al.,

2005).

2.3.2 Study area characterization

We compare deforestation trends within the vincinity of both sides of artificial border of

the Legal Amazon. To this end we experiment with three bandwidths of 25km, 50km and

100km in both east and west direction from the line giving a total of 6 sampled areas. The

buffer zone is characterised by intense presence of Ecotone Forest and covers the east

region (MA, hereafter) and west centre region (LM, hereafter) of the Maranhão state. As

can be seen in Figure 2.3 the study area comprises more than one third of the State which

represents our 100km buffer to east and west of the territory.
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Figure 2.3 Maranhão state and 100km buffer departing from the Legal Amazon line to the
east and west portion of the territory. Source: (EMBRAPA, 2018; MMA, 2018b; Núcleo
Geoambiental - NUGEO, 2018).
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The Study area is characterised by the occurrence of a rainfall regime with two well

defined seasons. The rainy season, which is concentrated from December to June, reaching

the highest peaks of rain in the month of March. The sample region presents itself as a

large sloping platform in the south-north direction, with a low dip to the Atlantic Ocean.

The relief is classified into two large units: plains, which are subdivided into smaller units,

and plateaus. Plains are considered to be surfaces with dimensions of less than 200 meters.

The plateaus are areas with heights above 200 meters, restricted to the south-central areas

of the studied region (Batistella et al., 2013a; Feitosa, 2006). Information on the geology of

the ecotonic region were extracted from the official map published in 2011 by the Brazilian

Institute of Geography and Statistics (IBGE) on the scale 1: 1,400,000.

Solar radiation on the terrestrial surface has direct implications for local meteorology,

especially in the studies on climate variability, interfering in satellite image analysis (Cohen

et al., 2002; da Silva, 2004; Pereira et al., 2017). The study region here is privileged in its

energetic potential, since it is located completely in the region bounded by the Tropics of

Cancer and Capricorn, and close to the Equator, a condition that favors high rates of solar

irradiation. The State of Maranhão presents an average annual global irradiation value

of approximately 5.0 kWh / m2 (Pereira et al., 2017). In the ecological tension zone, i.e.

studied area, the municipalities of Caxias (5.4 kWh / m2) (MA), Chapadinha (5.3 kWh /

m2) (MA), Bacabal (4.9 kWh / m2)(LM) and São Luís (4.9 kWh / m2) (LM) are distinct

for having the highest solar irradiation rates.

2.3.3 Data preparation

Handling and preparing spatial data requires specific softwares. I used ArcMap 10.4.1,

ArcPy 10.4.1, and the extensions Geostatistical Analyst, Spatial Analyst and Spatial

Statistics from ArcToolbox (ESRI, 2016a,b), and MATLAB R2017a and its Statistics
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and Machine Learning and Image Processing Toolbox (MATLAB, 2017). For statistical

analysis and modelling I worked with R (R Core Team, 2018) and several packages

specially ’MASS’(Venables and Ripley, 2002), ’mgcv’ (Wood, 2017, 2003, 2004, 2011)

and ’gratia’ (Simpson, 2018).

Vegetation Indices

Two remotely sensed datasets were used – Vegetation Indices 16-Day L3 Global 250m

MODIS13Q1 and Land Cover Type Yearly L3 Global 500m MODIS12Q1. These products

were retrieved from the online Application for Extracting and Exploring Analysis Ready

Samples (AppEEARS) tool courtesy of the NASA EOSDIS Land Processes Distributed

Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science

(EROS) Center, Sioux Falls, South Dakota, (Didan, 2015; Didan et al., 2015; Sulla-

Menashe and Friedl, 2015, 2018).

In the AppEEARS tool it is possible to define the region of interest by uploading a

polygon file in shapefile format and the output file format is in Georeferenced Tagged

Image File Format (GeoTIFF). When selecting GeoTIFF, one GeoTIFF will be created

for each feature in the input polygon file for each layer by observation. After defining

the area of interest, the tool uploads the input polygon and reproject the input file to the

source projection for each data product using the Geospatial Data Abstraction Library

(GDAL) (‘gdalwarp’ function and the PROJ.4 definition) for each data collection (USGS,

2018). In this manner the MODIS images from MODQ131 and MCD12Q1 products were

acquired in GeoTIFF format and the projection chosen was the geographic datum WGS84

– EPSG:4326. Two shapefile with the same coordinate system were used to extract the

location LM and MA. LM (Legal Maranhão) refers to the area under the surveillance

program to the west of the Legal Amazon line and, the MA (Cerrado Maranhão) refers to

the area comprising the east portion of the buffer zone (see Figure 2.3).
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Next, a bounding box for each feature in the MODIS file was determined using the

minimum and maximum latitude and longitude values, with a one pixel buffer applied to

each corner. For each feature, the tool determines which spatial tiles intersect with the

bounding box, and the tiles are then extracted from OPeNDAP (Cornillon et al., 2003)

and mosaiced into a single image. The process is repeated and the MODIS images are

ultimately configured into a time series image stack for each feature in the file. Reprojection

is performed using nearest neighbour resampling technique and the latitude and longitude

of the sample region are maintained in the conversion. Nearest neighbour resampling was

selected to ensure that categorical data sets including quality data layers are able to be

transformed (USGS, 2018).

A total of 776 images of the Vegetation Indices product MOD13Q1 were downloaded,

from February 2000 to December 2016, and 16 images of the product Land Cover

MCD12Q1 for the years 2001 to 2016. Also from the product bands MOD13Q1 the

composite band day of the year was obtained, which provides the date (day of the year:

1 to 366) of acquisition of each pixel that composes the image; the band pixel reliability

summary quality assurance - QA, which provides a summary of the quality of the pixels;

and VI Quality detailed - QA band, which provides detailed pixel quality information. The

product bands MCD12Q1 was downloaded the Land Cover type quality check – QC along

with five different types of land cover data set.

Climatic variables

The climatic data were obtained from the Meteorological Database for Teaching and

Research of the National Meteorological Institute (BDMEP – INMET in Portuguese),

which stores historical series of several conventional meteorological stations of the INMET

station network. The access is through registration but is freely available for academic

purposes (BDMEP, 2018). Each conventional weather station (see Table 2.1 for the 9
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stations in the sample area is composed of several isolated sensors that continuously

record the meteorological parameters (e.g., temperature, precipitation, humidity, and solar

radiation), which are annotated by an observer that sends the measurements to a collection

center. In the historical series the maximum temperature is taken at 00 Universal Time

Coordinated (UTC) of the day and the minimum temperature is collected at 12 UTC of

the day. Precipitation is calculated by accumulating the last 24 hours collected at 12

UTC and solar radiation equals the number of hours the sun shines directly onto the

surface as long as it is not blocked by clouds or any other obstacles. The relative humidity

is obtained by the readings of the wet bulb temperature and dry bulb temperature at

12.00, 18.00, and 24.00 UTC (Vianello, 2011). We use the monthly average maximum

temperature (MAMxT), monthly average compensated temperature (MACT), monthly

average minimum temperature (MAMT), monthly average precipitation (MAP), monthly

average relative humidity (MARH) and number of hours of sunlight in a month as total

solar radiation (TS) from February 2000 to December 2016.

Table 2.1 INMET Metereological Stations

Station Number (ID) Latitude Longitude Altitude Name Area

82571 -5.5 -45.23 153 BARRA DO CORDA LM

82970 -9.5 -46.2 285 ALTO PARNAIBA LM

82460 -4.21 -44.76 25 BACABAL LM

82765 -7.33 -47.46 193 CAROLINA LM

82376 -3.26 -45.65 45 ZE DOCA LM

82476 -4.86 -43.35 104 CAXIAS MA

82382 -3.73 -43.35 104 CHAPADINHA MA

82676 -6.03 -44.25 180 COLINAS MA

82280 -2.53 -44.21 51 SAO LUIS MA

Note: Source: BDMEP (2018); INMET (2018).
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Cross Validation

Cross validation is a necessary approach when dealing with remote sensing data. MODIS

Vegetative Cover Conversion (MOD44A) was acquired from the Global Land Cover

Facility - University of Maryland (GLCF, 2018) to conduct a validation process regarding

the response variables (NDVI and EVI). The VCC product is used as an indicator of

change and not as a means to measure change. It is available for vegetation burning

and anthropogenic deforestation types of land cover conversion. In this sense, using this

product as an indicator of accuracy is useful and reliable as states Zhan et al. (2002b).

As part of the validation process, we used a finer resolution data set to check the

accuracy of the algorithm applied to the MOD13Q product. Hansen et al. (2013) provided

results from time-series analysis of Landsat images in characterising the global forest

extent and change from 2000 through 2017. The scenes utilised for the analysis contained

forest losses during the period 2000–2016, defined as a stand-replacement disturbance, or

a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value

in the range 1–16, representing loss detected primarily for the years 2001–2016 (GFC,

2017).1 Moreover, in 2018 Brazil’s Spatial Research Institute (INPE), in accordance with

the Brazil’s Envinromental Ministry, published a data set covering the forest loss in the

Cerrado Biome. This data consists of bi-annually images from 2000 to 2012 and yearly

images from 2012 to 2016. Several sensors were used to create the composite data set,

such as TM/Landsat5, ETM+/Landsat7, OLI/Landsat8, and LISS-III/IRS2. At a finer

resolution, this product is a justified comparison between national and international land

change products proving to be an acceptable validation procedure (Brito et al., 2018).

1

Data Source: Hansen/UMD/Google/USGS/NASA. Data available on-line from:
http://earthenginepartners.appspot.com/science-2013-global-forest.
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2.3.4 Data Exploration and Interpretation

After the selection of the variables there is a refinement process which configures the most

important part of the research in order to achieve usable answers for statistical modelling.

In this session, we will describes the steps taken to conduct the statistical analysis and the

statistical method applied to the study.

Response Variable

In order to perform the analysis, NDVI and EVI images were imported onto MATLAB and

scaled to the valid range of -0.2 to 1. Two images per month for each year were uploaded

- excluding October and November during leap years because they had only one image

within the month. The VI Quality detailed - QA band for each scene was converted to

unsigned16bit according to the VI User Guide (Didan et al., 2015) and it was used to create

a Goodness mask to exclude pixels with clouds and not produced due to other reason than

clouds.

Before filtering the NDVI and EVI scenes with the VI mask, it was necessary to

condition NDVI and EVI values to a specific threshold so to avoid values not related to

forest. The criterion was taken following Geerken (2009) and Bayma and Sano (2015)

parameters to characterise forest in a transitional biome. Next, the VI indices are filtered

and only values retained that have good quality according to the Goodness mask under the

elimination of cloud coverage.

With the Land Cover product MCD12Q1 it was required to resize and interpolate each

image to the corresponding sizes of NDVI and EVI images. The interpolation method

utilised followed a deterministic method called Nearest Neighbourhood (NN) or Thiessen

method. The nearest method was considered because there is no extrapolation of the data,
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which would not have been suitable for categorical data and because it showed to be the

fastest computation method with modest memory requirements (MATLAB, 2017; Sluiter,

2009). After the interpolation, a land cover mask was produced to select only pixels in

the images presenting forest classification. Following Sulla-Menashe and Friedl (2018),

the University of Maryland classification which corresponded to Land Cover Type 2 in

the MCD12Q1 product was selected. The mask included different types of forests with

at least 40% of tree cover and canopy higher than 2m (see table 2.2 detailing each class

definition). Forests presenting less than 40% of tree cover were excluded because this does

not characterise a transitioning forest being predominantly assigned to Cerrado biome only

(Bayma and Sano, 2015).
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Table 2.2 University of Maryland (UMD) legend and class definitions

Name Class Description

Water 0 At least 60% of area is covered by permanent water

bodies

Evergreen Needleleaf forest 1 Needleleaf Forests 1 Dominated by evergreen conifer

trees (canopy >2m). Tree cover >60%.

Evergreen Broadleaf forest 2 Dominated by evergreen broadleaf and palmate trees

(canopy >2m). Tree cover >60%.

Deciduous Needleleaf forest 3 Dominated by deciduous needleleaf (larch) trees

(canopy >2m). Tree cover >60%.

Deciduous Broadleaf forest 4 Dominated by deciduous broadleaf trees (canopy >2m).

Tree cover >60%.

Mixed forest 5 Dominated by neither deciduous nor evergreen (40-60%

of each) tree type (canopy >2m). Tree cover >60%.

Closed shrublands 6 Dominated by woody perennials (1-2m height) >60%

cover.

Open shrublands 7 Dominated by woody perennials (1-2m height) 10-60%

cover.

Woody savannas 8 Tree cover 30-60% (canopy >2m).

Savannas 9 Tree cover 10-30% (canopy >2m).

Grasslands 10 Dominated by herbaceous annuals (<2m).

Permanent Wetlands 11 Permanently inundated lands with 30-60% water cover

and >10% vegetated cover.

Croplands 12 At least 60% of area is cultivated cropland.

Urban and built-up 13 At least 30% impervious surface area including building

materials, asphalt, and vehicles.

Cropland/Natural Vegetation Mosaics 14 Mosaics of small-scale cultivation 40-60% with natural

tree, shrub, or herbaceous vegetation

Non-Vegetated Land 15 At least 60% of area is non-vegetated barren (sand,

rock, soil) or permanent snow and ice with less than

10% vegetation.

Unclassified 255 Has not received a map label because of missing inputs

Note: Source: Sulla-Menashe and Friedl (2018).



2.3 Material and Methods 95

Finally, to obtain a certain variation within each month, values of NDVI and EVI of the

first period, with 15 first days of the month, were compared to the second period, with 30

days of the month. The assumption considered is explained in Table 2.3. In this sense, the

final scene/image would present pixels assuming the highest quality and no cloud coverage.

At the end of the process, pixels were selected within the bandwidths of 100km, 50km,

and 25km - measured departing from the artificial Legal Amazon line to the west and east

portion of the State. When the pixel had a variation greater than 0.1 within a month, it was

considered a disturbance.

Table 2.3 Algorithm Assumption for NDVI and EVI values

NDV I1 > NDV I2 -> NDV I1 −NDV I2 Numbers (1) and (2) refer to the

order of the period of the month

NDV I1 <= NDV I2 -> NDV I1 = NDV I2 Numbers (1) and (2) refer to

the order of the period of the

month. The second equation

assumes that values did not

change within the month and

then the value assigned is from

the last observation

EV I1 > EV I2 -> EV I1 −EV I2 Numbers (1) and (2) refer to the

order of the period of the month

EV I1 <= EV I2 -> EV I1 = EV I2 Numbers (1) and (2) refer to

the order of the period of the

month. The second equation

assumes that values did not

change within the month and

then the value assigned is from

the last observation

The approach above was undertaken for all the images corresponding to NDVI and

EVI values for each month of each year, giving 406 final image results. For the leap year,
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the process stopped at the land cover mask filtering process. To compose a panel for each

monthly period over 17 years, we took the sum of pixels signalled as disturbed for each of

406 images.

Covariates Variables

The climatic variables needed a more complex processing system since the data from

weather stations were sparse. First, all the data was in a tabular format, i.e. all variables

in one table, and geographic locations in the form of latitude and longitude coordinates

and z-coordinates, such as elevation values, was created for each weather station using

ArcMap. After localising the x,y,z coordinates, a shapefile for each station was created.

Then the shapefiles were selected and extracted by year, using ArcPy environment.

Next, an interpolation method was used to deal with areas with no data available.

The method chosen was ordinary (point) Kriging which has been argued as the best

interpolation technique available for sparse data (Sluiter, 2009). Ordinary kriging is part

of the probabilistic methods in which the concept of randomness is incorporated into

the analysis. This method is the basic form of Kriging, where the prediction relies on a

linear combination of the measured values and the spatial correlation between the data,

determining the weights. As the mean is unknown we assume that intrinsic stationary exists

in the data. This assumption may fail for our data set since this type of data are usually not

stationary. To overcome this issue we used different sizes and shapes of neighbourhood to

adjust the kringing ordinary model (Sluiter, 2009).

After the interpolation, the images were converted to raster, resampled to the size of

the response variable, and exported to MATLAB environment. Generally, for temperature,

precipitation, and other climate data, the best way to interpret and study these phenomenons

is using anomaly measurements which corresponds to the difference between measurement
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and mean. In this sense, the average value of the variable of each image for each month

and each year was computed, giving a total of 408 images analysed for both regions (MA

and LM), and for each climatic variable, a total of 2,448 images. Following this procedure,

the number of pixels with values higher and lower than the average value of the variable

was extracted to a table. At the end, the table contained above and below values compared

to the mean for each variable translating into 12 variables. A summary of the response and

explanatory variables of this study is presented at Table 2.4.
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Table 2.4 Summary Statistics - Response and Covariate Variables

Variable Mean St. Dev. Min. Max.

NDVI 25Km 626 731 0 4803

NDVI 50Km 1279 1415 0 9185

NDVI 100Km 2087 2175 0 12660

EVI 25Km 8277 11353 0 73734

EVI 50Km 2554 3861 0 25250

EVI 100Km 8277 11353 0 73734

Below Min Temp 25km 83711 57037 0 218320

Below Min Temp 50km 159092 112926 0 436290

Below Min Temp 100km 250820 171007 0 633370

Above Max Temp 25km 105094 69290 0 218320

Above Max Temp 50km 201308 134299 0 436300

Above Max Temp 100km 287792 190863 0 633370

Below Sunlight 25km 79678 47638 0 169150

Below Sunlight 50km 167845 98578 0 434760

Below Sunlight 100km 261061 149782 0 633370

Below Humidity 25km 98957 50230 0 213400

Below Humidity 50km 192560 97230 0 324620

Below Humidity 100km 289185 140379 0 633370

Above Precipitation 25km 90697 37384 0 191170

Above Precipitation 50km 186745 77623 0 411370

Above Precipitation 100km 292985 118665 0 633370

Note: Statistics refer to N=204 observations for 17 years (2000 - 2016). The below and above nomenclature

refers to the mean of each variable.

Modelling deforestation trends

Many recent studies of land cover changes focus explicitly on taking account of the trends

and changes in the rates of environmental transformation in terms of their driving forces.

More precisely, these studies try to identify the major causes of land-cover change within
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different geographical and historical contexts (Geist and Lambin, 2001). To this end

proximate and underlying causes of deforestation models are concerned by the fact that

some causes are direct in the sense that their occurrence or variation generates more or

less deforestation through simple channels, while other causes are indirect in that they

impact on the sources of deforestation through more complex channels (Combes Motel

et al., 2009). In this regard, the physical environment strongly influences where agents

deforest, where many studies provide evidence that forests in drier, flatter, higher-fertility

areas, with adequate drainage and thus more suitable for agriculture are more likely to be

cleared (Kaimowitz and Angelsen, 1998). In contrast, poor soil quality is also reported to

lead to relatively high deforestation, since scant soil endowment fuels accelerated clearing

for other activities, such as pasture (Geist and Lambin, 2001; Silva Costa et al., 2012).

Environmental factors and biophysical drivers are also increasingly being recognised

as not only playing a role but being fundamental in deforestation (Geist and Lambin,

2001). To cite, Barni et al. (2015) showed that, independent of the rate and magnitude of

deforested areas, the areas affected by forest fires were dependent on the forest type and

climate factors. Zones with ecotone influence tended to be deforested more than zones

without ecotone influence, i.e., the more dense a forest is the less deforested will be. In

addition, the largest occurrence of forest fires was observed in the zones with ecotone

influence in years with El Nino events, such as Maranhão state. The analysis also indicated

that the areas most affected by forest fires during the studied period were associated with

strong climatic events and the occurrence of these fires was amplified in the zones with

ecotone influence (Barni et al., 2015). These facts strongly suggest that it is pertinent to

control for climatic aspects in ecotone zones when studying trends in deforestation.1

Statistical Modelling
1In this study, ecological tension zone, ecotone zones and transitional forest have the same meaning.
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The most common approach used to model deforestation would be a linear model with

a single or multiple terms. However, things are rarely this simple, and the model might

interact in a complex way. The four approaches presented earlier consider the linear model

as the first premise of the analysis but they are challenging when dealing with non-linear

relationship found between variables (Griffin, 2012). In environmental analysis the data

are seldom modelled adequately by linear regression models.

Dealing with nonlinear processes trying to approximate to linear estimation methods

may lead to inconsistent results guided by the linear estimator. There is an imposed

assumption regarding the distribution and nature of the data. On the subject of the choice

of distribution, it is doubtful that a satisfactory model could have been produced in this

manner. This is part of the motivation for seeking to allow a more compact and flexible

way of specifying smooth functional relationships within the models.

For most ecological and climatic data sets at least some of the assumptions underlying

a linear regression model are unlikely to be valid (Zuur, 2011).1. To address this issue we

here employ a generalized additive model (GAM). A literature review shows that GAMs

are not extensively applied to deforestation models. Chaves et al. (2008) showed that

social factors appear to play a critical role that may ultimately determine disease risk

when evaluated with environmental and climatic factors. They modelled incidence rates

of a disease in Cuba as the response variable and deforestation as one of the exploratory

variables. Mendes and Junior (2012) observed the relationship of deforestation, corruption

and economic growth in the region of Legal Amazon, in Brazil and found no statistical

evidence for the existence of a Kuznets curve. Green et al. (2013) used a binomial GAM

model to account for forest and habitat losses in protected areas on the Eastern Arc

Mountains of Tanzania. More recently, Bebber and Butt (2017) studied the impact of

1An empirical illustration of the innovation of GAMs by comparing estimates using the same data of the
method chosen and the previously best-practice old methods, such as additive moving averages and loess
smooth functions is shown in the Appendix A.2. It is possible to observe that both methods give unwieldy
results and do not allow for data flexibility.
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protected areas on global carbon emissions in America, Africa and Asia. They used splines

regressions in GAMs and suggested that tropical PAs overall reduced deforestation carbon

emissions by 4.88 Pg, or around 29%, between 2000 and 2012.

A GAM is a generalized linear model with a linear predictor involving a sum of smooth

functions of covariates. Mathematically, GAM is an additive modelling technique where

the impact of the predicted variables is captured through smooth functions (Larsen, 2015).

In general, the model has a structure defined as:

g(µi) = Aiθ + f1(x1i)+ f2(x2i)+ f3(x3i,x4i)+ . . . (2.3)

where µi ≡ E(Yi) and Yi ∼ EF(µi,φ). Yi is a response variable, EF(µi,φ) denotes

an exponential family distribution with mean µi and scale parameter, φ , Ai is a row of

the model matrix for any strictly parametric model components, θ is the corresponding

parameter vector, the f j are smooth functions of the covariates, xk, and i refers to the unit

of analysis (Wood, 2017). This model allows for flexible specification of the dependence

of the response on the covariates because the smooth functions are nonparametric. The

smooth function f j is represented by basis expansions for each smooth, each with an

associated penalty function controlling smoothness. According to Wood (2017, 2004),

the estimation can be carried out by penalised regression methods, and the appropriate

degree of smoothness for f j can be estimated from data using cross validation or marginal

likelihood maximisation.

The smooth function f is composed of the sum of basis functions b and their

corresponding regression coefficients β , written in the form of:

f (x) =
k

∑
j=1

b j(x)β j, (2.4)
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where k is the basis dimension (Wood (2017), p.162).

It is possible to regularise the smoothness of the predictor functions to prevent overfitting

using the generalized cross validation score. Technically, GAM is an additive modelling

technique where the impact of the predictive variables is captured through smooth functions,

but provides a regularised, automatic and interpretable solution. Considering an additive

model, the interpretation of the marginal effects of a single variable does not depend on

the values of the other variables in the model. Also, predictor functions are automatically

derived during model estimation (Larsen, 2015).

Autocorrelation

In principle, when the nature of the data is time series, the timing of one period may

depend on the timing of the previous year. This means that one should check for the

possibility of autocorrelation and if necessary take into account of such the auto-correlation

in the data. In GAMs it is possible to include an ARMA error structure. More precisely,

the ARMA model has two parameters defining its order with the number of auto-regressive

parameters (p) and the number of moving average parameters (q). Model 2.3 now can be

expressed as

g(µi) = Aiθ + f1(x1i)+ f2(x2i)+ f3(x3i,x4i)+ · · ·+ εi (2.5)

where εi = φεi−1+φεi−p+ηi is modelled as a function of the residuals of the p previous

time points and white noise, and εi = θηi−1 +θηi−q +ηi is modelled as a function of the

disturbance term and a past value of this disturbance term (Zuur et al., 2014).

Quantifying deforestation
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The generalized additive model (GAM) with an exponential family distribution has

been the most widely applied method to measure and quantify the non-linear association

between phenology and covariates, such as meteorological conditions, mainly because it

allows for non-parametric adjustments of non-linear confounding effects of seasonality and

trends; (Antunez et al., 2017; Auderset Joye and Rey-Boissezon, 2015; Bell et al., 2015;

Bio et al., 1998; de Souza et al., 2017; Halperin et al., 2016; Liu et al., 2018; Lusk et al.,

2016; Moreno-Fernández et al., 2018; Pourtaghi et al., 2016). In an attempt to quantify

forest disturbance as proxy for deforestation, we apply a GAM with a negative binomial

distribution and a logarithmic link function. The negative binomial distribution suitable

for this study since the variance of deforestation is much larger than the mean, which is

frequent feature of ecological data (Zuur, 2011). More precisely, the means of NDVI and

EVI are to 0.04% and 0.01% of their variance, respectively. Hence, the response variable

is negative binomial distributed. The full description is as follows:

Yis ∼ NB(µ i,k)

E(Yi) = µi,and var(Yi) = µi +
µ2

i
k

(2.6)

log(µi) = α + f j(Xi1) + · · ·+ f j(Xiq) or µi = eα+ f j(Xi1)+···+ f j(Xiq)

Yi is the response variable at observation i. The notation f j(Xi1) stands for ’smoothing

function of the covariate variable X’, and NB is a negative binomial distribution with mean

µi and dispersion parameter k. In general, negative binomial distributions are used to

model overdispersed count data or Poisson data.

The geometric distribution is a negative binomial with overdispersion parameter, k, set

to 1. In this sense, the variance increases as a quadratic function of the mean (Zuur et al.,

2014). Correcting the data for overdispersion with the geometric distribution, the model is

stated as
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De f(NDV Ii,EV Ii) = α + fYear(Year)+ fPrecip(aPrecipitation)+ fMaxTemp(aMaxTemperature)

+ fMinTemp(bMinTemperature)+ fSunlight(bSunlight)+ fHumidity(bHumidity) (2.7)

where De f(NDV Ii,EV Ii) is the response variable that can assume NDVI and EVI values

for three different bandwidths (25km, 50km, 100km) in each month i, and i = 1, . . . ,204.

The remaining variables are the intercept α andthe additive smoothing functions of the

explanatory variables Year, and the covariates Precipitation, Humidity, Max and Min

temperature and sunlight. a and b refers to the sum of pixels above and below the mean,

respectively.

The model selection followed the forwarding approach of Zuur et al., 2014, p.391. The

model started with a GAM that used one variable, then fitted 13 different models and a

different set of smoothers (penalised splines "ps", cubic splines "cr", and cyclic splines

"cc") and compared their Akaike information criterion (AIC). The model with the lowest

AIC was elected as the main model and, then it was fitted to 12 different models, each

with the addition of the variable with the lowest AIC. The forward selection stopped at

the moment the main model had the best AIC value comparing to the remaining models.

After the model selection, an autocorrelation test was conducted but none of the models

appeared to be autocorrelated. The model, including the splines takes the form of:

De f(NDV Ii,EV Ii) = α + fYear(Year,bs = cc)+ fPrecip(aPrecipitation,bs = cr)+

fMaxTemp(aMaxTemperature,bs = cr)+ fMinTemp(bMinTemperature,bs = cc)+ (2.8)

fSunlight(bSunlight,bs = cc)+ fHumidity(bHumidity,bs = ps)
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Due to the fact that his method is relatively recent, it is important to acknowledge

that the algorithms available for choosing the optimal smoothing parameter are not yet

well developed and can generate misleading results if care is not taken. Furthermore, use

of such criteria can often lead to over-fitting and deliver implausible associations. The

choice of smoothing parameters for smoothing splines in GAM should therefore always be

accompanied by a graphical verification of functional associations with the outcome to

verify clinical plausibility (Moore et al., 2011).

Model Validation

Validating the results from the algorithm applied to the MOD13Q1 and MCD12Q1

images required features of the machine learning domain. In summary, machine learning

algorithms can figure out how to perform important tasks by generalizing from examples.

This is often feasible and cost-effective where manual programming is not (Domingos,

2012).

There are different types of machine learning algorithms, where the most mature and

widely used one is classification. According to Domingos (2012), a classifier is a system

that inputs a vector of discrete and/or continuous feature values and outputs a single

discrete value, the class. For this study, the filter classifies pixels into deforested or not

deforested and its input may be a Boolean vector x = (x1, . . . ,x j, . . . ,xd) where x j = 1 if the

jth pixel is deforested and x j = 0 otherwise. A learner inputs a training set (xi,yi), where

xi = (xi,1, . . . ,xi,d) is an observed input and yi is the corresponding output, and output is a

classifier. The test of the learner is whether this classifier produces the correct output yt for

future examples xt . A feasible classification validation is the confusion matrix.

The confusion matrix is a two by two table that contains four outcomes produced by a

binary classifier. The classification scheme divides the data randomly into a training set, a
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test set and a validation set. The training method is the Scaled Conjugate Gradient (SCG),

which is a supervised learning algorithm for feed-forward neural networks (Mor, 1993).

In order to optimise the performance, an iterative random sampling approach is applied.

The Cross-Entropy approach is based on sampling and updating an underlying distribution

function over the set of feasible solutions (Hu and Hu, 2009). Finally, calculations for the

confusion matrix are done based on minimum excluded (MEX) calculations (MATLAB,

2017).

The four outcomes produced by the confusion matrix are true positive, true negative,

false positive, and false negative. The true positives (TP) refer to the number of positives

divided by all the positive outcomes and the same applies to true negatives (TN). False

positives (FP) indicate the number of pixels assigned as positive but are, in fact, negative,

divided by all the positive outcome. In turn, false negatives (FN) follow the same

interpretation as false positives.

To validate the response variable results, it was used the MODIS Vegetative Cover

Conversion (VCC) for the available period (2000-2005). The product is further divided in

Deforestation product (MOD44A_C) and Burn product (MOD44A_B) and both were used

to compute the validation test.

The method for the deforestation product is derived from the original space partitioning

method (Zhan et al., 2002a) and relies on a decision tree classification algorithm (Gordon

et al., 1984) to determine antecedent vegetation condition and compares this to current

vegetation condition. Change due to burning product is derived using the difference

Normalized Burn Ratio (dNBR) methodology from two scenes a year apart, as proposed

by van Wagtendonk et al. (2004). Tests were computed per season (raining season and dry

season) and per vegetation index (NDVI and EVI). The confusion matrix showed 100%

true positives and true negatives, which gives high stability to the algorithm created and

applied to the NDVI and EVI indices.
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Checking the results with other datasets was an alternative approach taken in this study.

A confusion matrix was applied to the Hansen et al. (2013) and Brazilian (INPE) data sets

(Brito et al., 2018). The results showed no difference from the results presented in the

VCC validation method. The confusion matrices are provided in the Appendix 2.6.

The covariates variables were validated using cross-validation processes during the

interpolation procedure. Cross-validation uses all the data to estimate the trend and

autocorrelation models. It removes each data location one at a time and predicts the

associated data value. This is also known as leaving-one-out, and can be computed for all

or a subset of the data locations (ESRI, 2016a).

In the kriging method, the cross-validation produced other results that helped evaluate

the best interpolation method. More specifically, the Average Standard Errors (ASE) and

Root Mean Square Standardized Error (RMSE) were computed. If ASE from the model

are close to the RMSE then the model is correctly assessing the variability in prediction.

If ASE are greater than RMSE then the model is overestimating the variability of the

prediction and, finally, if the ASE are less than RMSE, the model is underestimating the

variability in predictions. For the covariates analyses, ASE were on average 95% of the

value of the RMSE, proving to be a reasonable interpolation method with valid results.

In terms of statistics, model validation with additive modelling was visual rather than

numeric after the model selection phase. The steps taken included plotting the residuals

against fitted values to identify violation of homogeneity, and plotting the residuals against

each variable in the model and check for patterns. Also, a histogram of the residuals was

examined to verify normality.
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2.4 Results

2.4.1 Deforestation trend in a ecotone zone of Maranhão

Our baseline model includes 204 monthly observations of NDVI and EVI values changing

over the years with five influencing covariates (Precipitation, Max Temperature, Min

Temperature, Sunlight and Humidity). The baseline model was applied to three different

distance spans (25km, 50km, 100km) considering the Legal Amazon line.1

In general, the deviance explains the models close to the artificial line better. At large

distances (100 km), most of the covariates do not have a significant effect, and thus will be

omitted from this part of analysis. Table 2.5 gives the summary of the results including

deviance, AIC, p-value, degrees of freedom, and the estimated value of the function. The

best way to understand and interpret GAMs is through visual representation. Considering

that the results produced several models, we define the name of these models according

to the location status, whether in Cerrado Maranhão (MA) or Legal Maranhão (LM), the

bandwidth or distance from the Legal Amazon line, in which are 25km,50km and, 100km,

and, finally, regarding each response variable that in our case is related to NDVI (n) and

EVI (e) values. We add an indicative variable to indicate raining (r) and dry (d) seasonality.

Plotting the smoothing functions, it is possible to check for the path of deforestation

through the years and the climatic state during that period. The blue line refers to positive

changes in deforestation or increments, and the red line indicates negative changes in

deforestation or decreases (Simpson, 2018).

With respect to the model ma25n, the explained deviance is 15%, the variance was

set to 1 in the geometric negative binomial distribution. The explanatory variable year is

1It is important to acknowledge that the numerical results of the model should not be interpreted in the
same manner as the linear regression results. According to Wood (2011) in Zuur et al. (2014), p-values close
to 0.05 can be around half of their correct value when the null hypothesis is true. This means that smoothers
with p-values smaller than 0.001 can be trusted but p-values of 0.02 to 0.05 need to be viewed with caution.
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significant at 1% level, and the smoothers significant at 1% level are Min Temperature,

Max Temperature, Humidity and Sunlight. The degrees of freedom for the smoothers are

2.4, 6.8, 4 and 7.9. In summary, for MA at 25km, deforestation had a positive effect after

2010 and, through the years, deforestation decreased during periods of low humidity (high

thermal oscillation). It is also deduced from the model that deforestation decreased during

periods of more hours of sunlight. There were more deforested pixels in periods where

temperature declined.

For the model lm25n, the explained deviance is 30.9%, the explanatory variable year

is significant at 5% level, the smoothers significant at 1% level are Max Temperature,

Humidity and Sunlight. The degrees of freedom for these smoothers are 8.6, 6.1 and

1.4. The results are similar to the ma25n model by showing that deforestation also

decreased during periods of less humidity and extreme higher levels of precipitation.

Examining deforestation as a function of the year showed that there was a positive effect,

i.e., increments on forest loss, during the beginning of the 2000’s.

Models with EVI values were considered better in terms of cross validation. Model

ma25e shows that deforestation increased over time with a positive peak after 2010.

Deforestation also increased when the covariates sunlight and minimum temperature

decreased. For maximum temperature, the negative effect is greater than the positive effect

but, in essence, deforestation decreased with higher temperatures. On the Legal Maranhão

side, the results of the model lm25e show that all variables are significant at the 1% level.

The model explains 36% of the changes in EVI values, i.e., deforestation. From 2007 to

2012, deforestation increased in the region. The positive effect happened during periods of

higher temperature and low humidity.
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2.4.2 The effect of seasonality in the deforestation trend in a ecotone

zone of Maranhão

Given the results in Section 2.4.1, it is clear that seasonality is a key factor for the

deforestation trend in the transition forest of Maranhão. Low values for solar incidence,

low levels of humidity, high levels of precipitation, and reduced values of temperature

indicate possible differences in the trend for the winter and summer season. As explained

in Section 2.3.2, the ecotone forest presents two well defined seasons: the rain period

(summer) and the dry period (winter). In an attempt to refine the analysis, we divided the

sample according these two seasons. The wet season starts in December and continues

until the end of June. From July the dry season starts remaining until the end of November.

Thus there are 102 observations for each season. To allow further comparison, the model

took the same approach given by equation 2.8.

Raining Season

Subsetting the data and applying GAM, model ma25nr explains 53.8% of the deforestation

path in the Maranhão eastern side. From the plot, deforestation increased in year cycles,

i.e., for 2000-2002, 2006 and 2008. Also, increased forest loss happened with less available

sunlight and increased precipitation levels. The deforestation trend shows a decrease when

temperatures reached extreme high and low values. The same pattern is observed for the

humidity covariate. At 25km in the LM area, deforestation over time had only two positive

effects, from 2000-2001 and from 2011-2012. Model lm25nr with a 44% of deviance

explained shows that clear-cutting expanded in periods of high levels of precipitation, and

less exposure to sunlight.

The model with EVI values as the response variable shows a different trend comparing

to NDVI values. Model ma25er indicates that deforestation increased in the MA region
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over the years. Accordingly, deforestation took place when precipitation levels were higher

than the average and during lower hours of sunshine. For the lm25er model, 63.1% of

the model explains the deforestation process. Cutting down the trees was more prominent

during 2000 to 2005 and 2010 to 2015. The removal of trees increased with high levels of

precipitation, and low levels of temperature and sunlight.

Using the areas within 50km of the artificial line, model ma50nr followed the same

arrangement shown in model ma25nr, except for revealing that forest losses icnrease

through time. There is also a clear cycle apparent from the Year plot. A similar cycle is

also shown in model lm50nr for the explanatory variable year. Decreasing deforestation is

associated with high levels of precipitation in the MA region.

Improving the model by deviance explained, model ma50er also exhibits a cycle pattern

for deforestation in the MA region, with no singularities compared to the NDVI model

(ma50nr). Model lm50er shows that deforestation increased before and after 2005 and

when maximum temperatures were even higher than the maximum average. The decreasing

process happened when precipitation levels were much higher than the average as well.

For the models with the largest buffer area in the MA ecotone region, model ma100nr

still showed some deforestation cycle, with a peak right after 2005. At 100km, deforestation

was positive when temperature dropped more than the minimum average and when sun

exposure presented less number of direct sun hours. At the LM 100km-border, the model

lm100nr provides evidence of an increasing path of deforestation through time, with the

highest peak during 2009. Forest losses took place when precipitation levels were higher

than the average up to a certain limit.

Relative to the EVI values analysis, the model ma100er presented similar results from

the NDVI model. It is noticeable, however, that the EVI model shows an increasing path

of deforestation during 2006 - 2010, unlike under the NDVI model (ma100nr). The EVI
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model for the LM side also presented similarities to the NDVI model. Looking over the

years, deforestation had a positive effect until 2005, then again in 2008 to 2010, and once

more recent in the years 2014-2016. However, these cycles were not different from what

was already seen in the NDVI model (lm100nr).

Dry Season

The analysis of the dry season with the GAM model proposed in 2.8 shows that the

deviance explained by the ma25nd model was 52.3%. All the terms were highly significant

at the 0.1% level. The deforestation trend had three positive peaks during 2005-2006,

2011-2013, and after 2015. Forest loss increments appeared in periods of high precipitation

level accompanied by high temperatures. The model looking at a 25km bandwidth on the

LM side has 54.6% of deviance explained. However, only two variables are significant at

1% level, namely Humidity and Sunlight. In the dry season, the Legal Maranhão decreased

deforestation when humidity levels were low and increased deforestation when sunlight

was below the average. Apparently, deforestation did not changed over time during the dry

season.

Turning to the second response variable, the model ma25ed has all the terms highly

significant at the 0.1% level and the deforestation cycle through time is evident. The same

pattern, presented in the model with the NDVI response variable, is seen in this model.

Positive values of forest losses happened in periods of high precipitation accompanied by

high temperatures with less hours of sun. Differently from model lm25nd, model lm25ed

improved significantly with 65.6% deviance explained. One can observe four positive

peaks of deforestation during the studied period 2004, 2006, 2011 and 2015, even though

the overall path shows a significant decrease in 2005, which essentially compensates for

the positive peaks.
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For the 50km bandwidth on the MA side, the explanatory variable and the covariates

are highly significant at 0.1%. In general, an increment on deforestation from the model

ma50nd occurred during 2005 and 2006 and from 2013 until 2016. In general, the process

occurred during high levels of precipitation and low temperatures. In the LM region (model

lm50nd), during the dry season negative changes in the deforestation took place when

humidity levels were low and temperatures were high. There appears to be no deforestation

trend over the years.

Model ma50ed shows an interesting deforestation trend for the Maranhão region. Until

2005, deforestation was decreasing over time but, after 2005, the deforestation process

increased especially after 2013. This process took place during periods of high precipitation

rates and lower temperatures. Looking across the artificial line, for EVI values, the lm50ed

model showed only one period of changes during 2005 (decreasing) to 2007 (increasing).

After that, there appears to be no trend of deforestation through the years. The process

captured during that period followed low temperatures.

Reflecting the same pattern from previous models with smaller buffers, the model

ma100nd presents the explanatory variable and the covariates as highly significant at 0.1%.

Deviance explained 45.2% of the model and a modest trend is seen with an increasing

peak after 2013. With 47.2% of deviance explained, model lm100nd does not show a

deforestation trend over the years, demonstrating accordance with the previous models

(lm25nd and lm50nd). Less humidity in the period of forest change is observed for the

lm100nd model.

The deforestation trend for model ma100ed is very similar to model ma100nd, showing

no significant difference in the peaks. The variables are highly significant at the 0.1%

level and the trend is observed with high levels of precipitation and lower temperatures.

Decreased deforestation was detected during periods of low humidity levels. In terms of

the 100km buffer, the LM region did not experience a trend in deforestation over time.
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Deviance explained 46.7% of the model and forest change happened during periods of low

humidity and low solar radiation.

2.4.3 Settlements

Thus far we have found clear differences the trends, and the factors driving them, in

deforestation across the two regions examined here, regardless of their spatial definition.

To further investigate this we also look specifically examine deforestation trends within

settlements. Settlements areas are allocated and supervised by Brazil’s Special Secretary

of Agrarian Development, and there is virtually no law enforcement these plots, resulting

in low levels of environmental compliance (Schneider and Peres, 2015).1 The Brazilian

Environmental Police (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais

Renováveis—IBAMA) repeatedly fined the federal Agrarian Agency (Instituto Nacional de

Colonização e Reforma Agrária—INCRA) for environmental violations in the settlements.

Usually, the fines are sent to INCRA and not to the settler. When the agency receives the

fines applied by the environmental policy, the justice system frequently takes the side of

the agency or even annuls the fines because, from a legal point of view, the agency does

not commit an environmental crime, but rather acknowledges the presence of preserved

forest within settlements. In this sense the INCRA complies with the legislation because it

leaves part of the forest of the whole settlement intact, but cannot oblige the granted slots

to deforest.
1Due to the intense debate on the issue and the commitment of other Latin American countries with the

implementation of agrarian reform in the decade of 60, the government included it as one of its priorities. An
amendment that allowed the Union to promote the expropriation of social interest, upon payment of prior and
fair compensation in special government bonds, was drafted and approved. Shortly thereafter, Law 4504 was
enacted, which provides for the Land Statute (Estatuto da Terra, 1964). The Brazilian Federal Land Reform
program was launched in 1964 to bring people without land to land without people. This applied not only
to the poor and landless peasants, but also to the expanding Southern Brazilian agribusiness. At the same
time, the Brazilian Institute of Agrarian Reform (IBRA in portuguese) and the National Institute of Agrarian
Development (INDA in portuguese) were created, and replaced by the Institute for Rural Settlement and
Agrarian Reform (INCRA). Brazil was provided with legal and institutional framework that would start a
national land reform program (Ezzine-de Blas et al., 2011).
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Deforestation in settlements is committed by the landowner or landholder. In most

cases, there are loggers who lease lots and even press the small farmer to clear. They may

also threaten and kill the leaderships that hinder the timber business. Moreover, there is

pressure from the local commerce and from sawmills, who buy this wood. Therefore, it

is not the agrarian reform policy that is the cause of deforestation. Under pressure by

public opinion, INCRA established in 2012 the ’Green Settlement Program’ to deal with

the environmental debt of settlements. This policy, however, is still not implemented

and there is no feasibility that could endorse the effectiveness of this policy Pacheco

(2009); Schneider and Peres (2015). Under these circumstances, and in an attempt to

corroborate with the finding results, this study took from the observed region, settlements

areas from both sides MA and LM (see figure A.2.49 since they are not directly affected

by any surveillance monitoring policy in order to check whether the trends of deforestation

differed from the trends presented within settlements.

The analysis of deforestation in settlements follows the same strategy as presented in

Section 2.4.1 and 2.4.2. The sample includes 204 monthly observations of Vegetation

Indices values changing over the years including covariates, such as, Precipitation, Max

Temperature, Min Temperature, Sunlight and Humidity. The baseline model presented

in equation 2.8 is applied to the entire studied area since the environmental surveillance

policy is not applied to the settlers. Plotting the smoothing functions, it is possible to check

for the path of deforestation through the years and the climatic state during the studied

period.

The MA model shows that lower levels of deforestation occurred when the settlements

had lower presence of sunlight during the day. Also, deforestation decreased significantly

before 2007 and no significant changes were observed after that period. Comparing the

indices, the EVI model showed more variability than the NDVI model. Deforestation

increased before 2004 and after 2010, and happened with significant changes in
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temperature, where forest losses took place with higher levels of temperature and preceded

by lower levels of temperature. In general, these results resemble the findings for the

Maranhão side. Deviance explained between 33% to 35% of the model.

Looking at the LM model, significant deforestation appeared when the settlements

had lower presence of sunlight during the day, in contrast with MA model. It can be

seen from the model that deforestation happened at a constant level having no significant

changes throughout the studied years. No differences were found when comparing the two

vegetation indices. The results here also do not provide evidence of significant differences

when compared to the results found for the 100km threshold (see 2.6). Deviance in this

model explained between 23% to 26% of the model.

When sub-sampling the dataset into rainy season, one observes that the MA model

presents a cyclical deforestation trend, in congruence with the main findings. For both

indices the deforestation cycle within settlements had less variability and the number

of pixels deforested did not increase as it did for the findings in 2.4.2. The deviance

explained about 72% of the model. The settlements in the Legal Amazon side experience

similar results to the rainy season sample from the main findings. Deforestation followed a

scenario of higher precipitation levels, less hours with sun visibility, and low temperatures.

Deviance explained 49% to 58% of the model.

The dry season for the settlements within the Maranhão side reveals a similar path

compared to the results found at 2.4.2. Inside settlements deforestation increased during

high levels of precipitation and low levels of temperature. This model also states that

deforestation did not change significantly before 2005, in contrast to the main findings for

this period. Deviance explained 51% to 53% of the model. The deforestation path within

settlements in the Legal Amazon side shows a completely different path when compared

to the main finding results for this region. There is clearly a cycle path of deforestation

within settlements. This result is apparent considering both vegetation indices, but is
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more prominent for NDVI. Deviance ranged from 36% to 41%. The results obtained for

this region supported the three outcomes highlighted in Section 2.5. More precisely, the

findings here suggest that much of the forest loss activity happened similarly between the

two regions. The second outcome, that cloud cover might benefit deforestation because it

inhibits the forest cover detection from satellites, is not observed for the settlements area.

An explanation may be that in the main sample the artificial line was based on a political

and policy barrier, but for settlements this barrier did not have a policy significance since

the settlements are not constrained by it.

2.5 Discussion

Previous studies considering GAM models for modelling deforestation are scarce. Looking

at the pure ecological analyses, there are studies related to changes in phenology using

GAM, for example Antunez et al. (2017). The study here demonstrated that GAM-

based models using satellite derived data could be useful in checking and understanding

deforestation trends in an ecotonic region.

In the results, the GAMs confirmed that deforestation is related to year and covariates,

but also revealed that there are substantially differences in trends between seasons. For

the Legal Maranhão region, most of the deforestation happened during the rainy season.

The results indicate that this event holds across the 25km and 50km buffers. In essence,

the best description of deforestation for this region includes high levels of precipitation,

reaching a threshold that corresponded to 6.3% (25km), 4.4% (50km) and, 3.9% (100km)

of the observations of the whole sample, low incidence of direct sunlight in hours, reaching

a threshold that corresponded to 9.3% (25km), 7.8% (50km) and, 6.8% (100km) of the

observations of the whole sample. During the dry season, several models were not able

capture a trend for deforestation, indicating that no significant changes were picked up by
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the models in this season. One exception was seen with model lm50ed. The model could

capture the following year after the establishment of the environmental policy surveillance

monitoring in that region.

The Maranhão side GAM models behaved very differently during the dry season

compared to the Legal Maranhão area. It was confirmed that there was a trend for

deforestation during this season. In fact, the results indicate that the Maranhão region has

a well-defined deforestation trend for both seasons. Notably, the deforestation process

increased during the dry season from 2005 onwards. The characterisation and environment

that shaped deforestation for that region and was constant were low temperatures and low

availability of sunlight with no thresholds.

These results seem to suggest that deforestation in the Amazon region (LM) was

diminished during the dry season while in the Cerrado region (MA) the clearing process

increased significantly. It is not possible to conclude that there was a shift in this period

for the regions. It is also not possible to conclude the same process during the rainy season

because both regions were characterized by positive increments for deforestation. There

appears to be no spillover effect from the environmental enforcement executed in the LM

region to the MA region during the raining season. One plausible piece of evidence is

that deforestation remained during both seasons with distinct cycles. An interaction with

precipitation and sunlight shows the different paths between seasons for both regions (see

A.2.50, A.2.51 and A.2.52).

With these results, three possible outcomes emerges: i) since the region is a transitional

zone, the two areas don’t differ in biota aspects. In a sense, anthropic actions were

responsible for apparent changes in the deforestation trends and, these changes ii) happened

during high levels of precipitation and low levels of solar incidence which in turn shows

that, in general, cloud cover might be a benefit for clear-cutting practices, keeping in mind

that iii) the artificial line divides the two regions but many of the political boundaries of
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municipalities remain in both sides of the region (MA and LM), which could interfere in

the deforestation path between the seasons.

The first outcome is not supported entirely by the results of the models. In fact,

deforestation is a human activity and the oscillation process is caused by individuals’

choices. The findings, show, however that much of this activity happened differently

between the two regions. As it was mentioned earlier in section 2.3.2, the LM region is

under an environmental monitoring policy (DETER) that uses satellites images to detect

deforestation in the tropical and transitional forest and punish those found at fault. In this

sense, the results inform us that deforestation took place during the raining season, which

suggest an explanation for the second outcome.

The existence of clouds for satellite images is an impediment to detect vegetation

changes. The presence of high levels of precipitation and low levels of direct sunlight

might indicate also the existence of clouds as natural barriers. The second outcome

states that cloud cover might benefit deforestation because it inhibits forest cover change

detection as seen from satellites. Possibly human activity was displaced from dry seasons

with clear sky to rainy season with cloudy days. In other words, human behavior changed

due to the environmental monitoring policy.

Finally, as an artificial line, no concrete boundaries exist in the studied area and many

of the political boundaries of municipalities remain on both sides of the regions (MA and

LM). In other words, municipalities and provinces are split by this artificial line, so that

much of the deforestation process during the dry season was displaced from the Legal

Maranhão (LM) to the Maranhão side (MA), since there was no political or economic

deterrent to these anthropic actions. This can be inferred from the findings of the models

that showed deforestation trends in the MA region increasing, especially after 2010.
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2.6 Conclusions

In this study, a new approach was taken to study deforestation trends in areas of ecological

tension. Generalized Additive Modelling was implemented in the Maranhão state of in

Brazil to detect the path of deforestation in the transitional forest of Amazon and Cerrado

biomes. The technique applied because it allowed non linear relationship with several

response variables. Images from satellite images combined to climatology weather station

dataset formed the database used in this study. It was created an algorithm to capture

Vegetation Indices changes over time in order to create a proxy for deforestation as a

response variable. Climatologic variables were converted and resampled to adjust to the

response variable and were used as covariates of the model. An artificial line, called

the Legal Amazon line was used to divide the analysis in terms of two regions, Legal

Maranhão (LM) and Maranhão (MA), according to their differing treatment in deforestation

protection.

Model validation and cross validation was were taken with the use of neural networks

and artificial intelligence (AI). It was found that models with EVI values as the response

variable were a better fit for the deforestation trends, confirming the assumptions made by

Bayma and Sano (2015); Didan et al. (2015); Ratana et al. (2005) in that ecotone forests

respond better to EVI than NDVI values. Graphical results of the GAMs not only revealed

the trend or turning points of regression, but also showed the possible limits within which

the optimum forest loss of each Vegetation Index value could occur.

In the results, the GAMs confirmed that deforestation is related to year and covariates,

but also revealed that there are substantially difference of trends between seasons and

regions. For the Legal Maranhão region, most of the deforestation happened during the

rainy season. In terms of the Maranhão side the GAM models behaved very differently

during the dry season, compared to the Legal Maranhão area, in that there was a trend for
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deforestation during that season. In fact, the results indicate that the Maranhão region has

a well-defined deforestation trend for both seasons. In particular, the deforestation process

increased during the dry season from 2005 on wards. These findings were further validated

by showing that deforestation happened during both seasons for settlements which were

not target by the environmental policy.

In general, the models employed here arguably served the purpose of the study well,

but this does not rule out exploring other tools in the future, such as applying an analysis

including cloud cover as an indicator of human changing behavior. In addition to the

aforementioned analysis, a natural experiment with regions completely isolated from the

artificial line could be helpful to examine how and why much of the deforestation process

during the dry season was displaced from the Legal Maranhão (LM) to the Maranhão side

(MA), since there was no political or economic deterrent to these anthropic actions.

There are of course a number of limitations to the analysis undertaken here. Following

Murase et al. (2009) approach, possible errors in modeling could be taken into account.

First of all, in terms of predicting the trend of deforestation based on a list of variables,

the model implicitly assumes that the predicted range or potential space is fully occupied

by forest, which in reality might not be true. Additionally, the spatial distribution of

the vegetation indices may exhibit dynamic behavior over time, so that a potential area

may or may not be sparsely vegetated for a certain period (e.g., during sampling) due to

progressive succession of forest. Or a temporary absence could be due to natural causes,

such as, attack of pests or diseases or inter-species competition. Secondly, the regional

environmental conditions follow changing trends of different duration, so it is possible that

in certain cases an observed value may be declining due to regional changes rather local

changes, but the prediction model does not detect this dynamic behavior. Additionally,

the study was based on coarse image resolution which could neglect local changes in

the sample area. The results could also feasibly suffer from overfiting since more data is
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needed to optimize the smoothing algorithms. Finally, our results may not be generalizable

to other areas, such as dense tropical forest and open fields.



Appendix A.2

Figure A.2.1 Moving Averages Additive Model. The method is the moving averages
additive model. In this method, there are the trend and the seasonal parameters defined
separately. The ML analysis is conducted taking into consideration the NDVI values for
band 25km. It is possible to check that there is no smoothness in the trend.
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Figure A.2.2 Moving Averages Additive Model. The method is the moving averages
additive model. In this method, there are the trend and the seasonal parameters defined
separately. The MA analysis is conducted taking into consideration the NDVI values for
band 25km. It is possible to check that there is no smoothness in the trend.

Figure A.2.3 Moving Averages Additive Model. The method is the moving averages
additive model. In this method, there are the trend and the seasonal parameters defined
separately. The ML analysis is conducted taking into consideration the EVI values for
band 25km. It is possible to check that there is no smoothness in the trend.
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Figure A.2.4 Moving Averages Additive Model. The method is the moving averages
additive model. In this method, there are the trend and the seasonal parameters defined
separately. The MA analysis is conducted taking into consideration the EVI values for
band 25km. It is possible to check that there is no smoothness in the trend.

Figure A.2.5 Loess Model. The loess model is a filtering procedure for decomposing a
time series into trend, seasonal, and remainder components. The ML analysis is conducted
taking into consideration the NDVI values for band 25km. It is possible to check that there
is no smoothness in the trend.
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Figure A.2.6 Loess Model. The loess model is a filtering procedure for decomposing a
time series into trend, seasonal, and remainder components. The MA analysis is
conducted taking into consideration the NDVI values for band 25km. It is possible to
check that there is no smoothness in the trend.

Figure A.2.7 Loess Model. The loess model is a filtering procedure for decomposing a
time series into trend, seasonal, and remainder components. The ML analysis is conducted
taking into consideration the EVI values for band 25km. It is possible to check that there
is no smoothness in the trend.
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Figure A.2.8 Loess Model. The loess model is a filtering procedure for decomposing a
time series into trend, seasonal, and remainder components. The MA analysis is
conducted taking into consideration the EVI values for band 25km. It is possible to check
that there is no smoothness in the trend.
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Figure A.2.9 Confusion Matrix Results for 2002 in Cerrado Maranhão. Accuracy
measure using Hansen et al. (2013) dataset. Final confusion matrix is at the bottom right.
The rows correspond to the predicted class and the columns correspond to the true class.
The diagonal cells correspond to observations that are correctly classified. Both the
number of observations and the percentage of the total number of observations are shown
in each cell. The column on the far right of the plot shows the percentages of all the
examples predicted to belong to each class that are correctly and incorrectly classified.
The row at the bottom of the plot shows the percentages of all the examples belonging to
each class that are correctly and incorrectly classified. The cell in the bottom right of the
plot shows the overall accuracy (MATLAB, 2017).
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Figure A.2.10 Confusion Matrix Results for 2002 in Legal Maranhão. Accuracy measure
using Hansen et al. (2013) dataset. Final confusion matrix is at the bottom right. The rows
correspond to the predicted class and the columns correspond to the true class. The
diagonal cells correspond to observations that are correctly classified. Both the number of
observations and the percentage of the total number of observations are shown in each cell.
The column on the far right of the plot shows the percentages of all the examples predicted
to belong to each class that are correctly and incorrectly classified. The row at the bottom
of the plot shows the percentages of all the examples belonging to each class that are
correctly and incorrectly classified. The cell in the bottom right of the plot shows the
overall accuracy (MATLAB, 2017).
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Figure A.2.11 Confusion Matrix Results for 2012 in Cerrado Maranhão. Accuracy
measure using Hansen et al. (2013) dataset. Final confusion matrix is at the bottom right.
The rows correspond to the predicted class and the columns correspond to the true class.
The diagonal cells correspond to observations that are correctly classified. Both the
number of observations and the percentage of the total number of observations are shown
in each cell. The column on the far right of the plot shows the percentages of all the
examples predicted to belong to each class that are correctly and incorrectly classified.
The row at the bottom of the plot shows the percentages of all the examples belonging to
each class that are correctly and incorrectly classified. The cell in the bottom right of the
plot shows the overall accuracy (MATLAB, 2017).
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Figure A.2.12 Confusion Matrix Results for 2012 in Legal Maranhão. Accuracy measure
using Hansen et al. (2013) dataset. Final confusion matrix is at the bottom right. The rows
correspond to the predicted class and the columns correspond to the true class. The
diagonal cells correspond to observations that are correctly classified. Both the number of
observations and the percentage of the total number of observations are shown in each cell.
The column on the far right of the plot shows the percentages of all the examples predicted
to belong to each class that are correctly and incorrectly classified. The row at the bottom
of the plot shows the percentages of all the examples belonging to each class that are
correctly and incorrectly classified. The cell in the bottom right of the plot shows the
overall accuracy (MATLAB, 2017).
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Figure A.2.49 Maranhão State and the Legal Amazon delimitation with buffers of 100km
and the presence of settlements within the buffer. The map includes municipalities centre,
rivers and basins, protected areas and indigenous land. Source: (EMBRAPA, 2018;
INCRA, 2015; MMA, 2018b; Núcleo Geoambiental - NUGEO, 2018).
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Chapter 3

Satellite Monitoring of Deforestation

and the Role of Clouds in Maranhão



Abstract

Deforestation rates in Brazil have declined noticeably over the past decade and it is

believed that environmental policies used as instruments to encourage forest preservation

have played a crucial role in this trend. In particular, the satellite monitoring program has

enabled authorities to identify and react to deforestation in a much more timely manner

than local field detection. However, importantly, cloud coverage, by delaying detection

until skies are clear, has potentially acted as an important impediment to the policy’s

success. To investigate this we use satellite data within a survival analysis. Focusing on the

ecological tension zone of Maranhão that is separated into two parts by an artificial line-

one that was covered by environmental deforestation policy and the other that is not subject

to this - we estimate how the probability of transition between intact forest to disturbed

forest, given risk factors and conditional on the time elapsed until the occurrence of the

transition, is affected by cloud coverage. The results suggest that the presence of clouds

has increased deforestation in the region covered by the satellite detection program, and

thus is likely an active barrier to legal compliance.

Keywords: Remote Sensing, Survival Analysis, Environmental Policies,

Deforestation
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3.1 Introduction

The clear-cutting of forests plays a central role in many environmental threats of our time,

including global climate change, habitat degradation, and species extinction. Reassuringly,

deforestation rates in Brazil have declined over the past decade, and it is generally

believed that an important reason for this reduction has been environmental policies

used as instruments to encourage forest preservation (Celentano et al., 2017; Nepstad et al.,

2014; Richards, 2015; Richards and VanWey, 2015). The best example in this regard is

the satellite monitoring program that has allowed the Brazilian environmental police to

considerably speed up their response to punish clear-cutting agents by detecting local

deforestation remotely and much quicker than through local inspection. More specifically,

in 2004, the Brazilian government created the Action Plan for the Prevention and Control

of Deforestation in the Legal Amazon (PPCDAm in Portuguese), where the purpose of

this program was to plan development, control land use and ensure compliance with

the environmental law and promote sustainable practices. In order to control land use

and prevent further deforestation, the PPCDAm importantly included two satellite-based

monitoring programme PRODES (Programa de Cálculo do Desflorestamento da Amazônia

in Portuguese) (INPE, 2017) that recorded the annual rate of deforestation within the policy

area using fine resolution, and the DETER (Sistema de Detecção de Desmatamento em

Tempo Real in Portuguese) programme, which is a system to support the supervision and

control of deforestation in the Amazon in a coarse resolution throughout the year within

the environmental policy area. DETER reports deforestation alerts on areas, greater than

250m, in the process of deforestation by degradation forest management to fully deforested

areas (shallow cut).1

1In order to control for degradation of the forest by selective logging and forest fires, the government
uses the DETER program. In addition, two other systems were introduced in 2007: DEGRAD (Mapeamento
da Degradação Florestal na Amazônia Brasileira in Portuguese), for mapping forest degradation in the Legal
Amazon, and DETEX (Mapeamento da Cobertura Florestal na Amazônia Brasileira in Portuguese), for
detecting logging operations in the Legal Amazon region (Pinheiro et al., 2016). In order to control land
use and prevent further deforestation, the PPCDAm also includes the satellite-based monitoring programme
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While DETER has certainly allowed much quicker detection of local deforestation, an

important impediment to its success has been local climate. More specifically, because

the satellite used is incapable of detecting land cover changes when its view of land is

obscured by clouds, detection will be delayed until skies are clear again. As a matter of

fact, Assunçao et al. (2017) show that cloud coverage is an important predictor of the

extent of deforestation fines issued within municipalities in the Brazilian amazon. This

may not be surprising since, according to Assunçao et al. (2017); Pinheiro et al. (2016),

Brazil’s institutional setup is such that law enforcement agents can more easily punish

offenders for illegal forest clearings when catching them red-handed, since offenders can

thereby be held directly accountable for the crime. That is, although in principle Brazilian

past deforestation acts can be legally punished, this is difficult to implement ex post in

the Amazon, where land and production property rights are unclear. Moreover, once

deforestation has already occurred, the absence of well-defined property rights makes it

very difficult or even impossible to identify who owns the cleared land, so that sanctions

or punishment becomes pointless if no one can be held responsible for the crime. Not to

mention that accessing these cleared areas requires substantial efforts since illegal roads

are built under precarious way (Pfaff et al., 2007). Additionally, there is considerable

evidence of corruption among local government officials who monitor and fine loggers.

Furthermore, some firms can exert political influence to obtain favourable terms and often

bribe government officials during the concession process to overlook noncompliance. The

reason for this ranges from underpaid inspectors, potentially high rents to resource stocks,

and low penalties and lack of enforcement by centrally located governments in open access

distant native forests (Amacher et al., 2012).

PRODES (Projeto de Estimativa do Desflorestameno da Amazônia in Portuguese) (INPE, 2017) that attempts
to record incidents of deforestation throughout the year within the policy area. All the data gathered by the
action plan are used to enforce the PPPCDAm plan, which includes the issuing of fines for agents who clear
or damage the forest, embargoes of areas in the process of being cleared with the confiscation of equipment,
and restrictions on access to subsidised credit (Aubertin, 2015).
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Despite the potentially crucial importance of cloud coverage in deterring the detection

of deforestation through the DETER satellite program, there is no study that explicitly

examines this.1 The current paper thus sets out to explicitly quantify the effect of cloud

coverage on local levels of deforestation in the Brazilian Amazon. To this end we focus

on the ecological tension zone of Maranhão because it is divided by an artificial line that

separates it in two parts: the Legal Amazon Maranhão and the Cerrado Maranhão.2 This

division, occurring approximately 44◦ west of the meridian, allows the state to be divided

in terms of environmental policies, providing us with a spatial division for which the

effect of cloud coverage is likely to be very different. More precisely, unlike forests in

the Legal Amazon Maranhão, Cerrado Maranhão was not under the satellite monitoring

program and thus clouds should play no direct role in deforestation other than for climatic

reasons. Importantly, the area on both sides of the border is homogeneous in several aspects

such as biota, institutions, and, climate, with the only difference being the surveillance

environmental program that is observed in only one part of the region. This provides us

with a unique context within which to examine the role of cloud coverage in deforestation,

in that we can compare regions that biologically homogeneous but heterogeneous in terms

of deforestation detection policy. To identify local deforestation and cloud coverage within

our two regions we use remote sensing sources (MODIS Vegetation Indices (MOD13Q1)

product) to construct a time event dataset at the individual pixel level (250m). We then use

survival estimation methods to quantify the role of cloud coverage in local deforestation

across these two region.

1Assunçao et al. (2017) do use cloud coverage as an instrumental variable to identify how deforestation
fines have affected deforestation across municipalities in the Brazilian Amazon. However, their implied
estimate of the impact of fines on deforestation through cloud coverage can only be viewed as capturing
the effect of clouds partially and very roughly. Firstly, the cloud coverage will have affected other
aspects of deforestation through other legal coercion such confiscation of assets or access to credit and
commercialisation channels; see (Börner et al., 2015). Moreover, since their analysis undertaken at the
municipality level, where as satellite detection is at the 250m level, i.e., at the resolution of the satellite
images.

2Importantly, in July 2018, the National Institute of Spatial Research (INPE in Portuguese) together with
several other institutions published a dataset covering annual and biannual of Cerrado biome deforestation at
state and national level. From the dataset, it is shown that deforestation in great Cerrado Maranhão, which
includes the transitional forest, has been two times higher than in the Amazon region of Maranhão.
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There are already a number of other studies that use satellite data to examine the factors

driving deforestation. For example, Vance and Geoghegan (2002) estimated a spatially

explicit model of forest clearance process in the southern Mexico implementing a time

event analysis to identify the effect of households on the probability of deforestation. The

results showed a non-linear probability of forest clearance. Greenberg et al. (2005) assessed

the impact of spatial, cultural and economic factors on deforestation using survival analysis

on satellite data from eastern Ecuador. Their results showed that deforestation prediction

was higher when there was proximity to roads. Until now, however, studies combining

satellite data in areas of ecotone forest to detect time event (survival) analysis of the risk of

deforestation process remains scarce in the Brazilian literature.1

According to our survival analysis results, forests inside the specific surveillance

policy area had a lower probability of survival compared to the area not covered by the

environmental policy. Forested pixels close to protected areas, which include conservation

units and indigenous land, had a higher chance of being cleared comparing to forested

pixels far from these special zones. More importantly, the presence of clouds increased

the time to local deforestation in the monitoring area, but not such effect was found for

the non-monitored counterpart. Thus clouds arguably were an active barrier to legal

compliance to deforestation legislation which is corroborated by the results found in

Assunçao et al. (2017) that showed that environmental police is systematically less present

in municipalities with greater cloud cover in any given year, and that these municipalities

exhibit higher deforestation the following year.

1Monitoring the transitional biome is difficult due to the high heterogeneity of the forests (open and
dense forest, for example) which are substantially influenced by the climatic seasonality (Bayma and Sano,
2015). Also, there is no environmental policy in place to prevent rampant deforestation. However, in
the context of the Amazon region which is under a specific environmental policy, it is arguably crucial to
understand the dynamic of the transitional forest borders and its potential to influence adjacent Amazon
forests since it provides a valuable endpoint from which climate and anthropogenic related aspects in the
Amazon forest my be better understood.
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3.2 Material and Methods

3.2.1 Study Context

In the central part of Maranhão there is a contact area between the Amazonian and Cerrado

biomes, where it is possible to observe a mosaic of savanna vegetation Cerrado and open

and dense forest formation, which configures as an Ecological Tension Zone (ETZ). Various

authors discuss the difficulty of delimiting forest areas into transitional and / or ecological

tension regions, mainly Cerrado-Amazon Forest, due to the innumerable indentations

and interpenetrations of savanna formations in the territory of the Legal Amazon. Areas

with these characteristics can be found in the states of Amazonas, Mato Grosso, Pará,

Tocantins and, especially, in Maranhão. Garcia et al. (2017) studied part of the Maranhão

central region and defined forest as a combination of riparian forest, transitional forest, and

Cerrado woodland which definition is adopted in this study.

Site

The studied area comprises a total of 29,307 km2 and corresponds to 21 municipalities. All

the municipalities are crossed by the artificial division that occurs approximately 44◦ west

of the meridian and was established in 1953 in order to plan the economic development

of the region comprised of the tropical forest areas of the Maranhão state called Legal

Maranhão (LM). We depict this delineation in Figure 3.1. More specifically, areas to both

sides of the artificial line is homogeneous in several aspects, such as biota, institutional

framework, and, climate with the only difference being the surveillance environmental

program that is observed in only one part of the municipality. To ensure that we are

comparing homogeneous areas we reduce our study region to a 0.2 degree buffer zone

around the artificial line.
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Figure 3.1 Map of Maranhão Studied Area. The vertical line in the Border refers to the
artificial line that divides Legal Maranhão and Cerrado Maranhão. Source: (MMA, 2018b;
Núcleo Geoambiental - NUGEO, 2018).
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Environmental Policy: DETER monitoring system

As noted previously, the PPCDAm policy has at its core two satellite-monitoring operating

systems, the PRODES and DETER, which were designed to meet different objectives at

different times. PRODES system measures annual clearing rates since 1988, for increments

of over 6.25 hectares. Because it uses a fine resolution, it is more detailed and depends

on the climatic conditions of the dry season for acquisition of cloud-free images. These

images are obtained between May and September, and the deforestation rate is calculated

once a year.

In contrast, DETER alerts are conducted for the purposes of support to inspection.

The alerts are issued bi-weekly and sent to the environmental police (IBAMA) and to

environmental agencies of the states of the Legal Amazon to plan their field actions and

operations to combat illegal deforestation. For the general public, the alerts are combined

into monthly reports for the period between May and October, when the cloud cover

decreases and it becomes possible to observe the region relatively cloud free. During the

period from November to April, when there is greater cloud cover, DETER’s public reports

are quarterly.

The real-time detection system identifies and maps deforested areas in forest formations

in the Amazon. This system uses images from MODIS sensors, aboard NASA’s TERRA

satellite and WFI images aboard the Brazilian CBERS-2B satellite (BRASIL, 2018). These

sensors cover the Amazon with high temporal frequency, of two and five days, respectively,

but with limited spatial resolution of 250 meters and 260 meters (WFI). With this spatial

resolution, the images allow the detection of deforestation the areas of which are greater

than 250m (or 25 hectares). Since the satellite used in DETER is incapable of detecting

land cover patterns in areas covered by clouds, no forest clearing activity is identified in
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these areas, and thus no alerts pinpointing the location of recent deforestation activity are

issued for the region and time covered by clouds (Assunçao et al., 2017).

The high frequency of observation is one way to compensate for the limitation of the

spatial resolution. Most importantly, the high frequency reduces the problems imposed by

the frequent cloud cover in the Amazon region. In the Amazon forest, the cloud formation

depends on the topography of the place. Usually at the north of Amazon forest there is

more cloud persistence, and distance to water basin and the ocean matters, as normally

cloud forms far from water reservoirs. Chagnon et al. (2004); Heiblum et al. (2014); Koren

et al. (2004); Pinto et al. (2009); Wang et al. (2009) discovered that there is a relationship

between cloud cover and land cover in Amazon forest. The evapotranspiration properties

of the land cover vegetation are tightly linked to the dynamics of the boundary layer and

the formation of clouds, which commonly cap the boundary layer. Deforested areas in the

Amazon (either pasture or cropland) usually display higher sensible heat and lower latent

heat fluxes in comparison with the forested areas, which in turn can enhance the growth of

the boundary layer during the day and favour the formation of larger clouds, i.e. deforested

areas enact the presence of clouds and it is difficult to disentangle whether cloud favours

deforestation or deforestation favours the formation of clouds.

In the present study this phenomenon does not seems to happen because there is

no presence of dense forest our study area that could favour cloud formation over the

surrounding forested areas or that could influence the clouds to other areas (deforested

ones). The ecological tension zone allows the clouds to spread uniformly within the

area which excludes the causal effect found by several studies. We hypothesise that

cloud coverage limiting satellite visibility in the DETER monitoring system affects the

enforcement of the environmental policy in the forest transition area of Maranhão.
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3.2.2 Image preparation

When considering vegetation mapping for forest cover loss and forest regrowth path,

traditional methods such as field surveys are time consuming, date acquisition lagged,

and generally too expensive. Over the past four decades, a feasible alternative considered

by researchers and specialists is to apply remote sense technology and subsequent image

analysis. More precisely, the use of satellite time series along with statistical analysis can

be helpful in understanding the characteristics of vegetation dynamics. In this paper we

use images derived from the MODIS sensors.1

Freely available and with high temporal resolution, the MODIS sensor has two

instruments. The Terra satellite is on an AM overpass, whereas the Aqua platform provides

complementary observations in the afternoon. The Terra orbital configuration and MODIS

viewing geometry produce full global coverage every one to two days, except for the

equatorial zone, where the repeat frequency is approximately 1.2 days (Setiawan et al.,

2014; Zhan et al., 2002a). The high temporal resolution of MODIS is a determining factor

in phenological studies and spectral discrimination, and can be used to obtain detailed

knowledge about the seasonal cycles of vegetation in biomes with strong seasonal contrast,

such as the Cerrado biome and the Ecotone forest. An additional advantage of the MODIS

data is that is in a ready-to-use format.

To derive our dataset we use two products created by MODIS sensor: MCD12Q1 and

MOD13Q1. These products were retrieved from the online Application for Extracting and

Exploring Analysis Ready Samples (AppEEARS) tool courtesy of the NASA EOSDIS

Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources

Observation and Science (EROS) Center, Sioux Falls, South Dakota, (Didan, 2015; Didan

et al., 2015; Sulla-Menashe and Friedl, 2015, 2018). The MODIS Land Cover Type

1A detailed summary of satellites, sensors and databases relevant to vegetation can be found in Horning
(2010).
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Product (MCD12Q1) provides 13 science data sets (SDSs) that map global land cover

at the 500m spatial resolution in annual time steps for six different land cover legends

from 2001-2016 and includes 5 legacy classification schemes, such as the University of

Maryland classification (UMD) (see Table 3.1), which recognises 17 classes, covering

natural vegetation (11 classes), mosaic lands (2 classes), and non-vegetated lands (4 classes)

(Setiawan et al., 2014; Sulla-Menashe and Friedl, 2018).
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Table 3.1 University of Maryland (UMD) legend and class definitions

Name Class Description

Water 0 At least 60% of area is covered by permanent

water bodies

Evergreen Needleleaf forest 1 Needleleaf Forests 1 Dominated by evergreen

conifer trees (canopy >2m). Tree cover >60%.

Evergreen Broadleaf forest 2 Dominated by evergreen broadleaf and palmate

trees (canopy >2m). Tree cover >60%.

Deciduous Needleleaf forest 3 Dominated by deciduous needleleaf (larch)

trees (canopy >2m). Tree cover >60%.

Deciduous Broadleaf forest 4 Dominated by deciduous broadleaf trees

(canopy >2m). Tree cover >60%.

Mixed forest 5 Dominated by neither deciduous nor evergreen

(40-60% of each) tree type (canopy >2m). Tree

cover >60%.

Closed shrublands 6 Dominated by woody perennials (1-2m height)

>60% cover.

Open shrublands 7 Dominated by woody perennials (1-2m height)

10-60% cover.

Woody savannas 8 Tree cover 30-60% (canopy >2m).

Savannas 9 Tree cover 10-30% (canopy >2m).

Grasslands 10 Dominated by herbaceous annuals (<2m).

Permanent Wetlands 11 Permanently inundated lands with 30-60%

water cover and >10% vegetated cover.

Croplands 12 At least 60% of area is cultivated cropland.

Urban and built-up 13 At least 30% impervious surface area including

building materials, asphalt, and vehicles.

Cropland/Natural Vegetation Mosaics 14 Mosaics of small-scale cultivation 40-60% with

natural tree, shrub, or herbaceous vegetation

Non-Vegetated Land 15 At least 60% of area is non-vegetated barren

(sand, rock, soil) or permanent snow and ice

with less than 10% vegetation.

Unclassified 255 Has not received a map label because of

missing inputs

Note: Source: ?.
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The MODIS Vegetation Indices (VI) (MOD13Q1) product consists of time series

comparisons of global vegetation conditions that can be used to monitor the Earth’s

terrestrial change detection. The two vegetation indices that we derive from these are

the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index

(EVI). The NDVI is a normalized transformation of the NIR (Near Infrared) and red

reflectance ratio standardized to range from -1 to 1. The EVI is an optimisation of the

vegetational signal that minimises noise, and has been reported to be more responsive to

canopy structural variations, including canopy type. The EVI formula is written as:

EV I =
ρNIR −ρred

ρNIR +C1ρred −C2ρblue +L
(G) (3.1)

where ρred and ρNIR and ρblue are the reflectance in MODIS bands 1,2 and 3 (459-

479nm) and C1 and C2 are the atmospheric resistance coefficients. L and G are the canopy

background adjustment and the gain factor, respectively. The coefficients adopted for

the MODIS EVI algorithm are L=1, C1 =6, C2 =7.5, and G=2.5. The EVI differs from

NDVI by attempting to correct for atmospheric and background effects. In addition, EVI is

superior in discriminating subtle differences in areas of high vegetation density than NDVI

because the latter tends to saturate (Didan et al., 2015; Ratana et al., 2005). The NDVI

takes the form of:

NDV I =
ρNIR −ρred

ρNIR +ρred
(3.2)

where ρred and ρNIR are the surface bidirectional reflectance factors for MODIS bands

1 (620-670nm) and 2 (841-876nm).

To construct our forest survival dataset we collected the 16-days-250m image from

the first period and compared it to the 16-days image from the second period of the same

month. First, we used two masks in the analysis, namely the Goodness of Fit mask and
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Land Cover mask. The Goodness mask was used to filter pixels flagged with bad quality.

For the Land Mask, we resampled the rasters to 250m and applied the mask to differentiate

pixels from land, forest, built-in and water. Through comparison it was possible to detect

if the pixel with NDVI and EVI values survived from period one to period two within

the month. This approach was undertaken for all the images corresponding to NDVI and

EVI values for each 2 periods of the month of each year, which corresponds to 776 image

analyses. For the leap years process we stopped at the land cover mask filtering process and

we used the first period of 16-days as the main period. To compose the dataset we created

a Boolean list of every image acknowledging if the pixel survived during that period or

not, then we aggregated the list to year periods and computed the corresponding year of

deforestation. To determine if the pixel survived, we used the rules outlined in Table 3.2.

At the end of the process pixels were selected within the area studied (see Figure 3.1), and

measured in distance from the artificial Legal Amazon line to the west and east portions

of the municipalities. When the pixel had a variation greater than 0.1 within a month, it

was labelled as a disturbance. Any disturbances below 0.1 are considered measurement

error. Disturbances greater than 0.1 that result in negative changes in vegetation indices

are considered as at least some deforestation having taken place in that pixel. We do

not re-examine the pixel once it has been identified as having been deforested. With the

identification of the time point of deforestation of a pixel we calculate the time of survival

as the time since the beginning of our sample period. As a demonstrative example, we show

the remaining pixels in the Legal Maranhão (LM) and Cerrado Maranhão (see Figures

A.3.1 and A.3.2).
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Table 3.2 Algorithm Assumption for NDVI and EVI values

NDV I1 > NDV I2 -> NDV I1 −NDV I2 Numbers (1) and (2) refer to the

order of the period of the month

NDV I1 <= NDV I2 -> NDV I1 = NDV I2 Numbers (1) and (2) refer to

the order of the period of the

month. The second equation

assumes that values did not

change within the month and

then the value assigned is from

the last observation

EV I1 > EV I2 -> EV I1 −EV I2 Numbers (1) and (2) refer to the

order of the period of the month

EV I1 <= EV I2 -> EV I1 = EV I2 Numbers (1) and (2) refer to

the order of the period of the

month. The second equation

assumes that values did not

change within the month and

then the value assigned is from

the last observation

To obtain the cloud cover dataset we first used the Goodness mask to create an image

from the 16-days first and second periods containing only pixels flagged with clouds.

Flagged pixels considered either period to create the final image. After creating the image

for a month, we summed all month images in order to have the number of months whiting

the period year that a pixel with a cloud upon it. With these we performed a Kernel

Regression of the share of deforested pixels on the number of months with cloud cover to

identify the threshold at which cloud coverage causes deforestation. To this end we used

the optimal bandwidth suggested by Bowman and Azzalini (1997) with 1000 replications

with cross-validation. This suggested a threshold of about 9 months for the whole sample

period of seventeen years. With the identified threshold, we applied a third mask called
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Cloud Mask to all the images processed of each year, considering only clouded pixels

with 9 months persistence within the year. If within a year the pixel was equal to or

exceeded the threshold, then it was flagged as a cloud persistence pixel; see algorithm

implementation in A.3.3 for details. Finally, to integrate this information with the survival

dataset framework, we create a Boolean list to transform the clouded pixels in the binary

form. Considering the time period a forested pixel survived, we indicate as clouded if

within the whole sample period the pixel had cloud at least in one year period. While

this decision rule will inevitable identify some pixels as clouded after their deforestation,

excluding them does not change our results in any noticeable manner. 1

The risk factor (covariate) variables were acquired in shapefile format from different

sources (see Table A.3.4). To get the distance from each pixel to the covariates we

transformed the files into raster format and performed an Euclidean distance calculation

from each pixel to the variable source within the studied area. The source variables were

roads, protected areas, indigenous land, markets, municipalities centre, and, mining/mineral

resources existent before or from 2000. For rivers, latitude, longitude, and elevation we

simply used the distance to them. Time dependent variables were partitioned into five year

averages in order to make their computation feasible. More precisely we calculated 5-year

measures of neighbouring forested pixels and average levels of rainfall and temperature

for the years 2001, 2006, 2011 and, 2016.

3.2.3 Survival Models

Survival analysis is a statistical method designed to study the amount of time an

experimental unit survives. Originally, the event of interest was mortality and the analysis

consisted of following the subjects until death. In recent years, the identification of risk

1We ran regressions taking into consideration pixels presenting cloud cover before deforestation only
and the results don’t change from what we are presenting in this chapter.
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and/or prognostic factors related to survival have been applied much more widely. What

distinguishes survival analysis from other areas in statistics is that survival data are usually

censored (Cao, 2005; Lee and Wang, 2003). The defining feature of censored data is that

the event time of interest is not always fully observed on all subjects under study. We

consider three survival approaches in this study: the Kaplan Meier (KM) model, the Cox

Proportional Hazard model (CPH), and the Extended Cox Proportional Hazard model

(ECPH).

Let n be the total number of pixels of NDVI and EVI values whose survival times,

censored or not, are available. Relabel the n survival times in order of increasing magnitude.

Then

Ŝ(t) = ∏
t(r)≤t

n− r
n− r+1

(3.3)

where r runs through those positive integers for which t(r) ≤ t and t(r) is not censored.

The values of r are consecutive integers 1, 2,. . . , n if there are no censored observations; if

there are censored observations, they are not. The estimated median survival time is the

50th percentile, which is the value of t at Ŝ(t) = 0.5. More precisely, it is a step function,

and is the nonparametric maximum-likelihood estimator of the product limit estimates

proposed by Kaplan and Meier (Lee and Wang, 2003).

Extending the analysis to the inclusion of risk factors and time dependent variables,

the most common approach used is the Cox Proportional Hazard model which can handle

censored and/or truncated observations (Cao, 2005; R., 1972).

Again, let n be the total number of pixels of NDVI and EVI values which consists of

t( j), δ( j), z( j), j = 1,2,. . . ,n, where t( j) is the time under study for the jth pixel, δ( j) is the

deforestation indicator (δ( j) = 1 if the deforestation has occurred and δ( j) = 0 if the pixel
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is right-censored), and z( j) is the vector of risk factor for the jth pixel that may affect the

distribution of X, the time to deforest.

Let h(t|z) be the hazard rate in the sub population with covariate value(s) z. The Cox

proportional hazards regression model relates covariates to the hazard function as follows:

h(t|z) = h0(t)c(β
′
z) (3.4)

where h0(t)c(0) is the hazard function for the sub population with covariate value z

= 0 and is called the baseline hazard function, β = (β1,β2,. . . , βp) is a parameter vector

of regression coefficients, β
′
z = ∑

p
i=1 βkzk, and c(.) is a fixed, known scalar function.

This model is semi-parametric because the baseline hazard model is estimated non

parametrically, while the risk factors are constrained by the parametric representation

c(β
′
z). The parametric function usually assumes the exponential form

c(β
′
z) = exp(β

′
z) = exp(

p

∑
k=1

= βkzk) = e∑
p
k=1=βkzk (3.5)

where

h(t|z) = h0(t)c(β
′
z) = h0(t)exp(

p

∑
k=1

= βkzk) (3.6)

The Cox model is often called a proportional hazards model because, if we look at two

pixels with covariate values z1 and z2, the ratio of their hazard functions at time t does not

depend on t and the hazard rates are proportional (Cao, 2005).

h(t|z1) = h0(t)exp(β
′
z1)

h(t|z2) = h0(t)exp(β ′z2)
= exp[(β

′
(z1 − z2))] (3.7)
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An issue might arise from the possibility of unobserved heterogeneity (spatial and

temporal dimensions) that would result from a misspecification of the survival model. To

control for these two types, we include the 5-year averages of the share of neighbouring

pixels with forest remaining, rainfall, and temperature. Extending the Cox Proportional

Hazard model by adding a time dependent variable, the basic model is done by replacing z

by z(t) (T( j), δ( j), [z( j)(t),0 ≤ t ≤ Tj]), so that

h(t|zs,0 ≤ s ≤ t) = h0(t)exp[
p

∑
k=1

βkzk(t)] (3.8)

where Tj is time on study for the jth pixel, and δ( j) the deforestation event for the jth

pixel (δ( j) = 1 if deforestation has occurred and, δ( j) = 0 if the pixel was not deforested

during the period (right-censored)). In addition, z( j)(t) corresponds to the vector of risk

factors for the jth pixel which includes measures of elevation, and distance to rivers, mining,

roads, markets, municipality centres, protected areas and, cloud persistence. We interact

some of the controls and risk factors with a region dummy (Legal Maranhão = 1 and

Cerrado Maranhão = 0).

Data Analysis

An important assumption of our analysis is that the two buffer zones that we created around

the artificial line to isolate and compare pixels, are homogeneous biologically. To find

further support for this we first calculated an effect size index for the two areas divided.

Following Cohen (1977), we take differences of means expressed in terms of the pooled

within areas standard deviation. The Index is interpreted in terms of the average percentile

standing of one area relative to the other area. The test result shows an index of 0.2 which

indicates that the mean of one area is at the 58th percentile of the buffer zone, i.e the

dissimilarities for the two areas are close to zero. Since the chosen buffer zone may seem
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somewhat arbitrary, we also examined whether forests between the two regions differ right

outside the buffer zone. More precisely, we isolated the areas 0.2 degrees just outside

buffer zone on each side of the two regions and similarly tested their difference. The

corresponding Cohen index was 0.59, which is at the 69th percentile, and thus one can

reject the null hypothesis that there is no difference between these two regions. As a matter

of fact, the index value of 0.59 indicates a distinction of 33% in the two distributions

(Cohen, 1977).

The non parametric and semi parametric models presented in this study are estimated

using MODIS satellite derived data as the dependent variable and several biophysical,

economic and environmental spatial data for the covariates. Table A.3.2 provides the

summary statistics for our response and risk factors variables and Table A.3.4 provides

the variables’ sources. Our sample contains approximately 530,000 observations (for the

combined MA and LM region) with the time each pixel was deforested as well as eight

influencing risk factors and several controls.

Overall, the average time a pixel in our sample becomes deforested is 2.6 years for

NDVI values and 2.4 years for EVI values. Note that nearly 71% of the pixels are covered

by clouds and that the average distance to protected areas is about 58 km2 for the studied

area. Markets, municipalities and roads have an average distance of 55 , 13, and 4 km2,

respectively. The region is extensively surrounded by rivers to which the average distance

is less than 2 km2. Particularly in the region of Maranhão there is a high concentration of

mineral resources, where the average distance between the pixels and mines is equivalent

to approximately 6 km2. In addition, 40% of the pixels belong to the LM region and almost

97% of the analysed pixels were at some time deforested.

To conduct the analysis, we extensively used Python and R language and specific

packages and modules, such as lifelines from Davidson-Pilon et al. (2018) and survival

from Terry M. Therneau and Patricia M. Grambsch (2000); Therneau (2015). In survival
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analysis with censorship it is not appropriate to use a loss function like mean-squared-error

or mean-absolute-loss. Instead, we use the concordance-index, also known as the c-index.

This measure evaluates the accuracy of the ordering of predicted time. It is in fact a

generalization of the AUC (area under the curve), another common loss function, and

is interpreted similarly (Davidson-Pilon et al., 2018). More precisely, if the c-index has

a value around 0.5, then it corresponds to the expected result from random predictions,

whereas 1.0 is perfect concordance and 0.0 is perfect anti-concordance. Usually, survival

models range from 0.5 to 0.7.

To validate the results, we perform k-fold validations. This entails splitting a training

set from the data into k smaller sets (k=3, as default). A model is trained using k−1 of the

folds as training data. The resulting model is validated on the remainder of the data, i.e., it

is used as a test set to compute a performance measure such as accuracy. The performance

measure reported by k-fold cross-validation is then the average of the values computed

in the loop and should be close to 0 (Pedregosa et al., 2011). The c-index and k-fold

validation results are computed in Table A.3.1. As a further validation process we compute

variable importance with p-values for high dimensional data. For this task we applied

random forests classification. This testing approach is based on a modified version of the

permutation variable importance, which is inspired by cross-validation procedures (Janitza

et al., 2016). With an unbiased variable importance measure, the importance values of non-

associated variables vary randomly around zero. Thus, all non-positive importance values

are assumed to correspond to these non-associated variables and are used to construct a

distribution of the importance under the null hypothesis of no association to the response.

Since only the non-positive values of this distribution can be observed, the positive values

are created by mirroring the negative distribution. We calculated less than 250 permutations

and added 1 to the numerator and denominator to avoid zero p-values (Wright and Ziegler,

2017). The results indicated that all variables are important to the model and, hierarchically,

clouds, rivers, and roads are the most important measure in the model.
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Statistical validation included several tests on non parametric and semi parametric fitters.

For the KM estimator we conducted two different logrank tests. For the Cox proportional

Hazard method we conducted Likelihood ratio, Wald, and score tests. All models showed

good tests results rejecting the null hypothesis decisively.

3.3 Results

We first examine the non parametric estimation of Kaplan and Meier (1958) of deforestation

using NDVI and EVI values applied to the two sites (LM and MA) distinguished by the

Legal Amazon line. We secondly implement the semi parametric proportional hazard

model proposed by R. (1972) and, as an extension, the extended proportional hazard model

with time dependent variables. The results from the semi parametric analysis uses NDVI

values because these responded better to our validation process1.

3.3.1 Non parametric Analysis

As can be seen from Figure 3.2, the chance of survival of the forests through the analysis

of pixels was higher in the Cerrado Maranhão (MA) than in Legal Maranhão (LM). For the

529,680 pixel analysis, the rate of survival is lower for EVI values in all settings. In 2001

the rate of survival for EVI pixels in the whole Region was about 59% as compared to 61%

for NDVI pixels, but by 2010, the rate of survival decreased to 2% and 3.2%, respectively

(see Table 3.3). The Log Rank test and Weighted Log Rank test confirms that the stratified

samples differ in terms of distributions.

1Results from EVI values do not differ from the results presented here. The suitability of the vegetational
index is based on validation process.
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Figure 3.2 Kaplan Meier Fitter for NDVI values in the complete Region (LM+MA). Top
left shows the KM fitter for the Region and, at the top right, the stratified KM fitter of the
Region. Bottom left shows the KM fitter for the Region stratifying by cloud coverage. At
the bottom right, it shows the KM fitter stratifying by Clouds and Region.
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Table 3.3 Kaplan Meier Estimation

Time Numbers at

risk

Number of

events

Survival Standard

Errors

lower 95%

CI

upper 95%

CI

Region

2001 512017 197454 0.61436 6.80E-04 0.61303 0.6157

2005 71707 263281 0.10016 4.20E-04 0.09934 0.10098

2011 20594 34998 0.0318 2.45E-04 0.03133 0.03229

2015 3189 15180 0.00216 6.48E-05 0.00203 0.00229

Region MA

2001 302075 96251 0.68137 0.000848 0.6797 0.683

2005 58271 162794 0.14245 0.000636 0.1412 0.1437

2011 19179 27662 0.05087 0.0004 0.0501 0.0517

2015 2946 14404 0.00319 0.000103 0.003 0.0034

Region LM

2001 209942 101203 0.517948 1.09E-03 0.515815 0.52009

2005 13436 100487 0.039306 4.24E-04 0.038484 0.040146

2011 1415 7336 0.004363 1.44E-04 0.00409 0.004654

2015 243 776 0.000667 5.63E-05 0.000565 0.000787

The Table 3.3 shows the number of pixels (forested pixels) at risk of deforestation

or disturbance. In 2001, for the total region, 512,017 pixels were at risk while 197,454

pixels had been deforested. The survival rate at 2001 was around 61%. For the Cerrado

Maranhão (MA), the Kaplan Meier fitter estimation shows that from the 302,075 forested

pixels in 2001, between 64% to 68% had a chance of survival considering both vegetation

indices. By 2010 this decreased to a range of 3% to 5%. At the end of our sample period,

the chance of survival for pixels within Cerrado Maranhão was around 0.3% (see upper

left graph from Figure 3.3 and Figure 3.4) and Table 3.3. The median time of survival for
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the model was two years. This means that the half life of the sample pixels was around

two years (the 50th percentile).

In calculating the survival curves by the presence of clouds one discovers that pixels

with no clouds over the studied period had a higher rate of survival comparing to pixels

with clouds. At the end of 2001, the rate of survival for pixels with no clouds was about

66.6% to 71.2% for both indices. In 2005, the rate lowered to around 15% and, in 2015,

the chance of survival of the forests was approximately 0.4%. Looking at the survival

curve of pixels covered by clouds, the chance of forest survival in 2001 was around 61% to

65%, then decreased to between 11% and 13% in 2005. The rate of survival for forests by

2015 was around 0.2% for both vegetation indices (see upper right graph from Figure 3.3

and Figure 3.4 ). The median time of survival for the survival curves stratified by clouds

did not change from the original set.

We conducted a Log Rank test (Peto and Peto, 1972) to check whether the sub samples

by cloud coverage were originated from the same distribution. The results showed that, in

fact, these sub samples come from significantly different distributions. Since the majority

of the pixels are deforested within two years, we also applied the generalized Wilcoxon

test, also referred to as the Log Rank Weighted test because it gives more weight to earlier

deforestation than later deforestation observations, while the Log Rank test gives equal

weight to the whole deforestation process (Lee and Wang, 2003). The results reinforce the

earlier findings that the two survival curves are different from each other.

The Legal Maranhão (LM) experienced a similar pattern in that the median time of

survival of the pixels was two years. The Kaplan Meier fitter estimation shows that from

the 209,942 forested pixels in 2001 at risk, 51% had a chance of survival considering both

vegetation indices. By 2015, the number of pixels at risk dropped to 243 and the number

of pixels deforested was about 776 giving a probability of survival of less than 0.07%. As

apparent from the survival curve, the rate of survival was lower for the Legal Maranhão



3.3 Results 200

(LM). Stratifying by cloud coverage, the survival curves show that pixels without the

presence of clouds had a higher rate of survival for both indices (see lower right graph from

Figure 3.3 and Figure 3.4). The rate of survival for pixels with no clouds was about 58.8%

to 59.2% in 2001. then dropped to around 2.5% in 2010, and was reduced to a zero rate of

survival of pixels by 2015. The chance of survival for pixels covered by clouds was around

51% in 2001 for both indices, i.e., almost 10% lower when compared to non-clouded

pixels. In 2010, the rate of survival was less than 0.5% and in 2015 was equivalent to

0.065%.

We performed a Log Rank test (Peto and Peto, 1972) to check whether the two sub

samples originated from the same distribution and the differences from these survival

curves were due to other characteristics than the presence of clouds. The test result

showed that the two sub samples are from different distributions. We was also applied the

generalized Wilcoxon test (Lee and Wang, 2003) which rejected the null hypothesis that

the two series came from the same distributional origin.
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Figure 3.3 Kaplan Meier Fitter for EVI values in LM and MA region separately. Top left
and right show the KM fitter for the Cerrado Maranhão and, at the bottom, for the Legal
Maranhão . The top and bottom left show the sides KM fitter. The top right and bottom
show the sample stratified by cloud coverage. The coloured band represents 99%
confidence interval.
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Figure 3.4 Kaplan Meier Fitter for NDVI values in LM and MA region separately. Top
left and right show the KM fitter for the Cerrado Maranhão and, at the bottom, for the
Legal Maranhão . The top and bottom left show the sides KM fitter. The top right and
bottom show the sample stratified by cloud coverage. The coloured band represents 99%
confidence interval.
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3.3.2 Semi parametric Analysis

Studying forest loss and, in consequence, deforestation reveals that many factors potentially

affect the process. In this sense, we expand the analysis to include risk factors (covariates)

to evaluate the effect of these variables on forest survival (see 3.6).

We first start off by pooling the data across the two regions of interest. In this regard,

the preferred model was the NDVI model considering the concordance index (0.755) and

k-fold model validation (0.03). We also checked the proportional hazard assumption with

plots of each estimated regression coefficient as a function of time through the smoothed

scaled Schoenfeld residuals. The results showed that each risk factor curve presents a flat

format suggesting that the proportional hazard assumption holds. To access the goodness

of fit of this model, we plotted the graph of deviance residuals against the survival time.

The results showed that the residuals were distributed about zero, indicating a good fit of

the model.

Table 3.4 shows the estimated regression coefficients, their standard errors, the z values,

and relative hazards. Accordingly, elevation has no effect on the relative hazard, while the

presence of clouds per say increases the hazard by 1.5%. The interaction term between

clouds and the Legal Maranhão region is not significant, however, on its own being on the

Legal Maranhão side increases a cell’s hazard by 29.4%. Thus while clouds and being

on the Legal Maranhão side encourages deforestation, clouds appear to not encourage

deforestation to any greater extent regionally. We also find that greater distance from

protected areas and paved roads decreases hazard by 4.7% and 23.8%, respectively. On

the other hand, greater distance from markets and municipalities centre increases hazard

by 6.5% and 19.1%, respectively. This might reveal that urbanisation accounted for

deforestation in these areas. On the other hand, distancing from markets increased the

probability of a pixel being deforested. It comes to the knowledge that great part of the
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environmental and inspection police are located close to markets, specially those dealing

with logger, grains and cereals products, so forests close to the municipalities had more

visibility to be inspected and accessed and then preserved (Rural, 2018). Latitude and

longitude show an interesting result, forests close to the coast have a higher chance of

survival comparing to forests country-inside. The relative hazard decreases by 7.1% for

forests close to the coastline. Distancing from the artificial line the relative hazard also

increase, in this sense, forests far from the institutional line have a probability 1.29 higher

of deforestation comparing to forests close to the border.

Table 3.4 Cox Proportional Hazard Model - Region (LM+MA)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.015 1.015 0.004 3.634 3E-04 ***

Pas -0.049 0.953 0.010 -4.912 9E-07 ***

Mining 0.340 1.405 0.022 15.633 < 2E-16 ***

Elevation 0.001 1.001 0.003 0.173 0.86

Markets 0.063 1.065 0.010 5.998 2E-09 ***

Municipalities 0.175 1.191 0.026 6.842 8E-12 ***

Rivers 0.252 1.286 0.114 2.199 0.03 *

Roads -0.271 0.762 0.043 -6.250 4E-10 ***

Lat -0.074 0.929 0.004 -19.147 < 2E-16 ***

Lon 0.254 1.290 0.013 19.407 < 2E-16 ***

ML 0.258 1.294 0.080 3.220 1E-03 **

Cloud*LM 0.089 1.093 0.080 1.107 0.27

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas (Indigenous Lands and Conservational Units).

We performed a likelihood ratio test to check if the model could be improved by splitting

the sample into different regions as we did with the non parametric analysis. The results

indicate that we can improve the model by dividing the sample area according to the
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region. Analysing the Cerrado Maranhão (MA) sample separately, the NDVI model was

preferred in many settings when accounting for concordance index (0.767) and k-fold

model validation (0.30) (see Table A.3.1. The diagnostics of the model corroborated with

the assumption of proportional hazard during the studied period and the deviance residuals

exhibit a good fit. Table 3.5 shows the results of the specified model. Pixels covered by

clouds have a decreased risk of the pixel being deforested by 2% compared to those not

covered by clouds. Pixels far from rivers increase the relative hazard by 55%, while greater

distance from protected areas increases the risk of deforestation by 4%. Similarly, being

further away from mines results in an increase of 32% in the relative hazard. Being one

degree further away from markets and municipalities increases the hazard by 6% and 8%,

while a greater distance to roads decreases the relative risk of the pixels being deforested

in that area by 48%.

Table 3.5 Cox Proportional Hazard Model - Cerrado Maranhão (MA)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds -0.015 0.98 0.004 -3.65 3E-04 ***

PAs 0.036 1.04 0.017 2.05 0.041 *

Mining 0.275 1.32 0.028 10.00 < 2E-16 ***

Elevation 0.020 1.02 0.005 4.18 3E-05 ***

Markets 0.061 1.06 0.017 3.48 0.001 ***

Municipalities 0.077 1.08 0.033 2.34 0.019 *

Rivers 0.436 1.55 0.150 2.90 0.004 **

Roads -0.660 0.52 0.052 -12.61 < 2E-16 ***

Lat -0.149 0.86 0.007 -21.59 < 2E-16 ***

Lon 0.258 1.29 0.017 15.21 < 2E-16 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.
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Following the same selection procedure adopted for the previous model, in terms of the

two vegetation indices models for Legal Maranhão (LM) the NDVI model was favoured

considering the c-index and the k-fold validation. Table 3.6 shows the results of the

proportional hazard model for the Maranhão region under environmental policy (LM).

Clouds are not significant in this model and elevation has a constant effect on the relative

hazard. Distancing one unit from protected areas, the risk of deforestation increases

by almost 9%. One possible reason could be that PAs, specially conservational units,

are established in response to previous deforestation pressure which is then displaced to

neighbouring areas just outside the PAs and is therefore capturing the presence of active

groups of loggers in a closed area. The second possible explanation regards to the fact that

there are potentially limited public monitoring and enforcement in this transitional forest

area, specially in the not satellite monitored side.1

Greater distance from river basins decreases the hazard by approximately 34%.

Distancing from roads in the policy area increases hazard by 25%. Roads as a driver

of deforestation is also discussed in the literature (Baynard et al., 2012; Cropper et al.,

2001; Mani and Griffiths, 1997; Pfaff et al., 2007) which support this finding with regard

to roads. The Legal Maranhão (LM) deviance residuals showed that the model presents a

good fit with no pattern detected. The scaled Schoenfeld residuals also show a flat curve

for all the risk factor variables. These results support the assumption of the proportional

hazard model.
1These possibilities were observed in the Conservational Unit of Morros Garapenses on the Cerrado

Maranhão (MA) side. The unit was created in 2008 with the aim to protect the diversity of representative
regional ecosystems that functioned as habitat for native and migratory species, as well as wildlife refuges
from areas already devastated by human activities (ISA, 2018).
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Table 3.6 Cox Proportional Hazard Model - Legal Maranhão (LM)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.108 1.113 0.080 1.344 0.179

PAs 0.081 1.084 0.016 5.137 3E-07 ***

Mining -0.019 0.981 0.049 -0.387 0.699

Elevation -0.011 0.989 0.004 -2.498 0.012 *

Markets -0.023 0.977 0.015 -1.588 0.112

Municipalities -0.070 0.932 0.045 -1.562 0.118

Rivers -0.413 0.662 0.179 -2.307 0.021 *

Roads 0.224 1.251 0.085 2.645 0.008 **

Lat -0.046 0.955 0.006 -8.218 2E-16 ***

Lon 0.282 1.325 0.025 11.396 < 2E-16 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

Up until now the proportional hazards models were assumed to have risk factors

independent of time. However, in practice, deforestation is a process that might have

spatially time dependent factors. In this sense, we extend the Cox proportional Hazard

model for the Region and sampled areas.

To incorporate the spatially and temporal dependence, we include the ratio of

neighbouring forested pixels for each pixel in four different periods (2001, 2006, 2011,

2016). We also include average values of rainfall and temperature distributed within the

specified years and interact them with policy region of Legal Maranhão. Table 3.7 shows

the results from this setting. Clouds increase the chance of deforestation by 1.8%. A

one unit distance from protected areas decreases the hazard by 4.4%. Distancing one

unit from mines, increase hazard by 20% and elevated areas increased hazard by 3.5%.

A degree distance from roads decrease hazard by almost 18%. Clouded pixels in the

Legal Maranhão region do not have an effect on hazard. Observing the time dependent
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variables, having neighbouring pixels with deforestation increase the risk of being cleared

by 31%. Higher rainfall and temperature in the whole region decreases the hazard by 0.1%.

Finally, rainfall and temperature interacted with the Legal Maranhão dummy show that

this region has a lower precipitation effect (0.1%) and higher temperature impact (1.4%)

on the deforestation hazard. This suggests, as might be expected, that forested pixels in the

Legal Maranhão had a higher chance of survival during dry season.

Table 3.7 Cox Proportional Hazard Model Time Dependent - Region (LM+MA)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.018 1.018 0.01 3.20 0.001 **

Pas -0.045 0.956 0.01 -3.07 0.002 **

Mining 0.187 1.205 0.03 6.40 2E-10 ***

Elevation 0.034 1.035 0.00 8.42 < 2E-16 ***

Markets 0.024 1.025 0.02 1.56 0.118

Municipalities -0.057 0.945 0.03 -1.66 0.097 .

Rivers -0.452 0.637 0.155 -2.915 0.003 **

Roads -0.197 0.821 0.06 -3.36 0.001 ***

Lat 0.000 1.000 0.01 -0.06 0.952

Lon -0.034 0.966 0.02 -2.05 0.041 *

ML 0.293 1.341 0.10 3.06 0.002 **

Cloud*LM 0.018 1.018 0.01 1.52 0.130

Neighbours 0.274 1.315 0.03 10.44 < 2E-16 ***

Rainfall -0.001 0.999 0.00 -6.47 1E-10 ***

Rainfall*LM 0.001 1.001 0.00 6.61 4E-11 ***

Temperature -0.006 0.994 0.00 -2.28 2E-02 *

Temperature*LM -0.014 0.986 0.00 -5.36 8E-08 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped and

time-dependent year periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.
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We also checked whether we should split our sample into different regions. To this

end we employed a likelihood ratio test comparing the base specification with that where

all covariations are interacted with our region dummy. The test statistic clearly indicated

that the covariates had different impacts across regions and we thus estimated our survival

model separately for each region, where the Cerrado Maranhão (MA) results are presented

in Table 3.8 and the Legal Maranhão (LM) results are shown in Table 3.9. The results

from the area not monitored shows that the presence of clouds has no effect on the relative

hazard. Forested pixels distant from protected areas decrease the risk of being deforested

by 18%. Greater distance from roads and rivers also decreases the hazard by 23% and

33%, respectively. Examining the time dependent controls, one can see that forested

pixels surrounded by deforested pixels double the relative hazard. Rainfall decreases the

risk of the pixel being deforested by 0.1% and high temperature increases the chance

of deforestation by 6.3%. The interpretation relies possibly in the fact that clear cutting

process became costly when intensive rain occurred. When temperature increased, the risk

of deforestation also increased, differing from the previous findings.
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Table 3.8 Cox Proportional Hazard Model Time Dependent - Cerrado Maranhão (MA)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.003 1.003 0.006 0.534 0.593

PAs -0.207 0.814 0.024 -8.446 < 2E-16 ***

Mining 0.055 1.057 0.041 1.352 0.176

Elevation 0.066 1.069 0.006 10.581 < 2E-16 ***

Markets 0.177 1.193 0.026 6.881 6E-12 ***

Municipalities -0.243 0.784 0.045 -5.373 8E-08 ***

Rivers -0.455 0.635 0.204 -2.232 0.026 *

Roads -0.269 0.764 0.072 -3.713 2E-04 ***

Lat -0.282 0.755 0.011 -24.792 < 2E-16 ***

Lon 0.155 1.167 0.025 6.180 6E-10 ***

Neighbours 0.742 2.099 0.040 18.379 < 2E-16 ***

Rainfall -0.009 0.991 0.000 -26.481 < 2E-16 ***

Temperature 0.062 1.063 0.003 19.476 < 2E-16 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped and

time-dependent year periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

In the surveilled area (Table 3.9) the pattern is different. More precisely, the presence

of clouds increases the risk of a pixel being deforested by 3%. One unit distance from

markets and mining projects increases the hazard by 9.7% and 1.6%, accordingly, being

located to neighbouring deforested pixels increases the hazard by 33% and the increasing

level of temperature decreases the relative risk of a pixel being deforested by 2.1%.

Interestingly, roads is not significant in the monitored area when controlling for time and

space. This aspect might relate to several actions implemented in the Legal Amazon to

detain deforestation through roads surveillance which refrained deforestation process along

major roads.1 Moreover, increasing one unit of temperature decreases the relative hazard

1’Arc of Fire’ special force was created in 2007 by the federal government to combat the increased pace
of deforestation in the Amazon recorded from INPE results (BRASIL, 2018, 2012).
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by 2.1% which corroborates for the fact that pixels in the Legal Maranhão had a higher

chance of survival during dry season.

Table 3.9 Cox Proportional Hazard Model Time Dependent - Legal Maranhão (LM)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.030 1.030 0.011 2.592 0.010 **

Pas -0.060 0.941 0.020 -3.055 0.002 **

Mining 0.175 1.191 0.050 3.518 4E-04 ***

Elevation 0.016 1.016 0.006 2.724 0.006 **

Markets 0.093 1.097 0.021 4.497 7E-06 ***

Municipalities -0.102 0.903 0.054 -1.901 0.057 .

Rivers -0.090 0.914 0.241 -0.374 0.708

Roads 0.026 1.026 0.103 0.252 0.801

Lat 0.034 1.034 0.008 4.149 3E-05 ***

Lon -0.145 0.865 0.027 -5.338 9E-08 ***

Neighbours 0.289 1.335 0.034 8.37 < 2E-16 ***

Rainfall 0.000 1.000 0.000 1.075 0.283

Temperature -0.021 0.979 0.001 -20.965 < 2E-16 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped and

time-dependent year periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

Settlements

We have examined the Region (MA and LM), considering their spatial definition. To

further investigate whether the effectiveness of environmental policy was undermined by

the presence of clouds we also look specifically at the survival time of forested pixels within

settlements. The reason for doing so is that these are known to be allocated and supervised

by Brazil’s Special Secretary of Agrarian Development, and that there is virtually no law

enforcement in these areas. More specifically, usually any deforestation fines are sent to
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the INCRA and not to the settler. Since the justice system claims that this agrarian agency

does not commit an environmental crime because it leaves part of the forest of the whole

settlement intact, it cannot be obliged to detain forest clearing. While, under pressure

by public opinion, INCRA established in 2012 the ’Green Settlement Program’ to deal

with this problem of environmental debt of settlements, as of date this policy has still not

implemented Pacheco (2009); Schneider and Peres (2015). Under these circumstances one

would thus not expect that clouds play a role in deterring deforestation, since in practise

there is no penalty for doing so. To verify this we identified, within our region of study,

settlements areas from both sides MA and ML (see figure 3.5) to check whether the time

of survival of the pixels differed or was equal to the rest of the region and under cloud

coverage.

The survival analysis in settlements follows the Kaplan Meier fitter presented in Section

3.3.1 and the Cox proportional hazard model with time dependent variable as demonstrated

in Section 3.3.2.
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Figure 3.5 Maranhão state and settlements within the studied municipalities. Source:
(MMA, 2018b; Núcleo Geoambiental - NUGEO, 2018).
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The Kaplan Meier fitter shows that from the 37,532 pixels, in 2001, about 55% of pixels

had a chance of survival considering both vegetation indices. For 2010, the chance of

survival decreased to the range of 5.8% to 6.1%. At the end of the studied period, the

chance of survival for pixels within settlements were around 0.4% and 0.6% (see upper

and bottom left graph from Figure 3.6). The median time of survival for the model was

two years. This means that the half life of the sample pixels was around two years (the

the 50th percentile). Sub-setting the survival curves by region, it’s possible to identify

that pixels within Legal Maranhão (LM) had a higher rate of survival comparing to pixels

within Cerrado Maranhão (MA). The presence of clouds in this subset still shows that the

chance of survival was higher in the Legal Maranhão (not shown).

We performed a Log Rank test (Peto and Peto, 1972) to check whether the two sub

samples were originated from the same distribution and the differences from these survival

curves are produced from other characteristics than the region. The results suggested that

these sub samples came from the same distribution which cannot reject the null hypothesis.

However, given that the majority of the settlement pixels are deforested within two years,

we also applied the generalized Wilcoxon test, which can be also referred to Log Rank

Weighted test, because it gives more weight to early deforestation than later deforestation,

while a Log Rank test gives equal weight to all deforestation process (Lee and Wang,

2003). From the Log Rank Weighted test, at 5% level, the two sub samples actually come

from different distribution.
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Figure 3.6 Kaplan Meier Fitter for NDVI values in the Settlements areas of Cerrado
Maranhão (MA) and Legal Maranhão (LM). Top left shows the KM fitter for the Region
and, at the top right, the stratified KM fitter of the Region. Bottom left shows the KM fitter
for the Region stratifying by cloud coverage. At the bottom right, it shows the KM fitter
stratifying by Clouds and Region.

The results from the proportional hazard model is shown in Table 3.10. The presence of

clouds decreases hazard by 5%. Elevation has a constant relative hazard. Distancing from

municipalities centre decreases hazard by almost 27%. Forested pixels within settlements

and under the monitored policy area has a decreasing risk of being deforested comparing
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to non monitored areas. However, the presence of clouds in settlements located in the

Legal Maranhão side increases the hazard by 4.2%.

The results from the proportional hazard model are shown in Table 3.10. The presence

of clouds decreases the hazard by 5%. Elevation has a constant relative hazard. Distancing

from municipalities centre decreases hazard by almost 27%. Forested pixels within

settlements and under the monitored policy area hves a decreasing risk of being deforested

comparing to non monitored areas. However, the presence of clouds in settlements located

in the Legal Maranhão side increases the hazard by 4.2%, as can be seen from the coefficient

on the interaction term between our regional dummy and cloud variable.

Table 3.10 Cox Proportional Hazard Model - Settlements

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds -0.052 0.950 0.014 -3.778 2E-04 ***

Pas -0.011 0.989 0.045 -0.241 0.809

Mining -0.419 0.658 0.085 -4.933 8E-07 ***

Elevation 0.000 1.000 0.000 3.309 0.001 ***

Markets 0.026 1.027 0.029 0.903 0.366

Municipalities -0.306 0.737 0.084 -3.654 3E-04 ***

Rivers 1.431 4.183 0.345 4.148 3E-05 ***

Roads 0.234 1.264 0.139 1.685 0.092 .

Lat -0.154 0.857 0.018 -8.76 < 2E-16 ***

Lon 0.332 1.393 0.048 6.944 4E-12 ***

ML -0.079 0.924 0.022 -3.525 4E-04 ***

Clouds*LM 0.041 1.042 0.021 1.995 0.046 *

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

A likelihood ratio test again suggested that it was better to divide the sample area

according to the region. The results are presented in Tables 3.11 and 3.12. For the non
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surveilled area, the presence of clouds decreased hazard by almost 4%. Also increasing the

distance to protected areas and mining centres by one degree decreases the hazard by 56%

and 50%, respectively. For the Legal Maranhão side, the presence of clouds has no effect

on the relative hazard. Differently from the neighbouring area, distancing from protected

areas and mining centres increase hazard by 38% and 76%. Distancing from urban and

market areas has a negative impact on the hazard. For markets the relative hazard decreases

by 10% and for municipalities centre the amount decreased is almost 56%.

Table 3.11 Cox Proportional Hazard Model - Settlements (MA)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds -0.038 0.963 0.014 -2.665 0.008 **

PAs -0.626 0.535 0.081 -7.69 0.000 ***

Mining -0.684 0.504 0.100 -6.855 0.000 ***

Elevation 0.000 1.000 0.000 -0.915 0.360

Markets 0.535 1.708 0.057 9.469 < 2E-16 ***

Municipalities -0.358 0.699 0.108 -3.328 0.001 ***

Rivers 0.997 2.711 0.448 2.228 0.026 *

Roads 0.266 1.305 0.156 1.702 0.089 .

Lat 0.043 1.044 0.030 1.452 0.147

Lon 0.446 1.562 0.060 7.407 0.000 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.
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Table 3.12 Cox Proportional Hazard Model - Settlements (LM)

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.006 1.006 0.017 0.340 0.734

PAs 0.323 1.382 0.084 3.849 0.000 ***

Mining 0.567 1.762 0.222 2.558 0.011 *

Elevation 0.001 1.001 0.000 3.616 0.000 ***

Markets -0.097 0.907 0.049 -1.976 0.048 *

Municipalities -0.615 0.541 0.170 -3.614 0.000 ***

Rivers 1.377 3.963 0.581 2.372 0.018 *

Roads -0.543 0.581 0.345 -1.573 0.116

Lat -0.236 0.790 0.028 -8.442 < 2E-16 ***

Lon 0.471 1.602 0.110 4.300 2E-05 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped year

periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

The extended Cox model presented in equation 3.8 is also applied to the settlements.

Accordingly, the presence of clouds has no effect in the presence of the relative hazard. In

contrast, a one unit greater distance from protected areas and mines increase the relative

hazard by 12% and 22% , as can be seen from Table 3.13. Municipalities centre are not

significant in the model. The relative hazard decreases 80% if the pixels are far from

markets. Rivers and roads have no impact on relative hazard. The incidence of clouds in

settlement pixels within the Legal Maranhão also has no impact on the relative hazard.

Increasing the level of rain decreases the hazard by 0.01%. Even though an increasing the

level of temperature increases the relative risk of a pixel being deforested, increasing the

temperature in the Legal Maranhão decreases the hazard by almost 3%.

The analysis for the two regions separated suggests similar patterns. Clouds have no

effect on the relative hazard. In contrast, neighbouring forested areas increase the hazard

by 15% in the Legal Maranhão, and twice the relative hazard in the Cerrado Maranhão.
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Increasing rainfall levels will decrease the hazard in both sides by approximately 2%, while

higher levels of temperature increase hazard in both regions ranging from 1 to 5%.

Table 3.13 Cox Proportional Hazard Model Time Dependent - Settlements

Variables Regression Coefficient Relative Hazards Standard Errors z score Pr (>|z|)

Clouds 0.031 1.032 0.020 1.535 0.125

PAs 0.116 1.123 0.066 1.766 0.077 .

Mining 0.573 1.774 0.111 5.162 2E-07 ***

Elevation 0.000 1.000 0.000 2.376 0.018 *

Markets -0.218 0.804 0.042 -5.232 2E-07 ***

Municipalities 0.067 1.069 0.115 0.582 0.561

Rivers 0.873 2.393 0.735 1.188 0.235

Roads -0.293 0.746 0.191 -1.53 0.126

Lat -0.106 0.900 0.026 -4.074 5E-05 ***

Lon 0.016 1.016 0.057 0.288 0.773

ML 0.573 1.773 0.111 5.162 2E-07 ***

Clouds*LM -0.028 0.972 0.028 -0.99 0.322

Neighbours 0.317 1.373 0.111 2.863 0.004 **

Rainfall -0.003 0.997 0.001 -5.331 1E-07 ***

Rainfall*LM 0.001 1.001 0.001 0.859 0.390

Temperature 0.025 1.025 0.004 6.855 7E-12 ***

Temperature*LM -0.021 0.979 0.004 -5.476 4E-08 ***

Signs stand for ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 and denote hazard ratios that are significantly

different from 1 at 99%, 95% and 90% confidence levels. The model contains controls for grouped and

time-dependent year periods. PAs stand for Protected Areas. Indigenous Lands and Conservational Units.

Finally, with the settlements analysis, it is likely that the environmental policy could

not detain deforestation during the last two decades in the ecotonic region of Maranhão.

According to the results, the forests inside the surveillance area had a lower probability of

survival comparing to the area not covered by the policy. The presence of clouds along

with climatic variables was an active barrier to the legal compliance and, since the studied
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area has no systematic differences, we can agree on the lack of effectiveness due to cloud

barrier. Since these barrier indicate different form of seasonality, the probability of a

pixel being deforested in the rainy season is higher comparing to dry season which in turn

evidence the behaviour change. We deduce that our results justify the undermining effect

of the environmental policy caused by the changing behaviour and the presence of the

artificial line.

3.4 Conclusions

In this study, we quantified the effect of cloud coverage, which inhibits satellite detection

of disturbances to local forest, on local levels of deforestation in the Brazilian Amazon. To

this end we focused on the ecological tension zone of Maranhão because it is divided by an

artificial line that separates it in two parts, one for which there is satellite monitoring (the

Legal Amazon Maranhão) and one (Cerrado Maranhão) for which no such monitoring was

in place. Thus, arguably the role of cloud coverage in local forest losses should be different

across this synthetic border. Identification of local deforestation was done through an

algorithm to capture Vegetation Indices changes over time using satellite images. Similarly,

satellite images were used to detect corresponding local cloud coverage. To estimate the

impact of the latter on the former we employed a survival analysis on homogeneously

forested regions near the border. Our results showed that clouds indeed played an important

role in encouraging deforestation on the side that is under the satellite-monitoring program,

while they were not determinants of forest loss in cells across the border. This was further

supported by examining settlement areas on both sides of the border where there was also

no satellite detection in place. This suggests that clouds inhibited the detection process of

the satellite monitoring program in place even though we could not capture significance

when interacting the environmentally controlled region with cloud cover.
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We acknowledge a number of limitations to the resulted analysis. Firstly, the model

implicitly assumes that in the first year of the study all pixels were fully occupied by

forest, which in reality might not be true. It is also possible that the spatial distribution of

the vegetation indices may exhibit dynamic behaviour over time, so that a potential area

may or may not be sparsely vegetated for a certain period (e.g., during sampling) due to

progressive succession of attacks of pests and diseases, which could not be distinguished

from true permanent deforestation by the vegetation indices. Secondly, the study was based

on coarse image resolution which could neglect local changes (< 250m) in the sample area.

Thirdly, our results may not be generalised to other areas, such as dense tropical forests

and sparse open fields. Fourthly, since our measure of forest disturbance is based on the

remainder after controlling for seasonality, it is inevitably just a proxy and thus subject to

measurement error. Our fifth limitation exposes the computational constraints existent for

this analysis. For instance, it would actually improve the model if we considered yearly

climatic control variables for our analysis. However, computing yearly levels of rainfall and

temperature were beyond the processing time available. In addition, we only considered for

the analysis covariates existent before or from 2000, which thus excluded roads, protected

areas, indigenous land, markets, municipalities centre, and, mining/mineral resources

created or discovered after 2000. Finally, we acknowledge that the models were derived

from NDVI values and that one could alternatively have used EVI values, which in some

instances might be more suited for ecotone forests (Bayma and Sano, 2015; Didan et al.,

2015; Ratana et al., 2005).



Appendix A.3

Table A.3.1 Model Selection and Validation

Models Concordance index Std Deviation K-fold (k=3) Std Deviation

NDVI MA 0.767 0.001 0.30 0.0004

NDVI ML 0.691 0.001 0.69 0.0008

NDVI Region 0.755 0.001 0.03 0.0004

EVI MA 0.735 0.001 0.39 0.0011

EVI ML 0.691 0.001 0.69 0.0008

EVI Region 0.732 0.001 0.08 0.0008

NDVI Sett MA 0.780 0.003 0.77 0.0040

NDVI Sett ML 0.798 0.003 0.79 0.0019

NDVI Sett Region 0.785 0.002 0.78 0.0013

NDVI Buffer MA 0.582 0.005 0.58 0.0066

NDVI Buffer ML 0.689 0.003 0.68 0.0052

NDVI Buffer Region 0.668 0.003 0.66 0.0003

Concordance Index is computed along with the statistical results. K-fold validation is computed using the

results from the statistical analysis as input for the calculation.
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Table A.3.2 Descriptive Statistics - Vegetation Indices (Region)

Variables Mean Std Deviation Min Max

Period (N) 2.653 2.628 0.000 17.000

Censored (N) 0.967 0.180 0.000 1.000

Cloud (N) 0.711 0.453 0.000 1.000

Period (E) 2.459 2.344 0.000 17.000

Censored (E) 0.967 0.180 0.000 1.000

Cloud (E) 0.711 0.453 0.000 1.000

Lat -2.683 0.223 -3.064 -2.347

Lon -41.892 1.171 -44.601 -39.584

PAs 0.539 0.355 0.000 1.228

Mining 0.053 0.085 0.000 0.461

Elevation 137.934 100.009 -26 993

Markets 0.502 0.235 0.000 1.095

Municipalities 0.128 0.058 0.000 0.341

Rivers 0.017 0.015 0.000 0.211

Roads 0.037 0.037 0.000 0.218

Region 0.404 0.491 0.000 1.000

Neighbours 0.992 0.161 0.000 1.000

Rainfall 130 35.695 0.000 214

Temperature 31.7 6.241 29 34

Statistics refer to N=529,680 pixels observations. (N) refers to NDVI and (E) refers to EVI. All distancing

values are in decimal degrees. The conversion assumes 0.1 degree to 11km2.
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Table A.3.3 Descriptive Statistics - Vegetation Indices (MA and LM)

Variables (MA) Mean Std Deviation Min Max

Period (N) 3.059 3.053 0.000 17.000

Censoring (N) 0.956 0.205 0.000 1.000

Clouds (N) 0.517 0.500 0.000 1.000

Lat -2.527 0.119 -2.974 -2.347

Lon -41.820 1.174 -43.980 -39.584

Pas 0.512 0.388 0.000 1.228

Mining 0.065 0.098 0.000 0.461

Elevation 123.893 87.687 -26.000 993.000

Markets 0.499 0.172 0.111 0.968

Municipalities 0.130 0.060 0.000 0.341

Rivers 0.017 0.016 0.000 0.211

Roads 0.042 0.040 0.000 0.218

Neighbours 0.995 0.049 0.000 1.000

Rainfall 138.9 24.877 0.000 203.000

Temperature 32.845 1.448 29.000 34.000

Variables (LM) Mean Std Deviation Min Max

Period (N) 2.091 1.643 0.000 17.000

Censoring (N) 0.486 0.500 0.000 1.000

Clouds (N) 0.941 0.235 0.000 1.000

Lat -2.896 0.139 -3.064 -2.347

Lon -41.987 1.134 -44.599 -39.603

Pas 0.580 0.310 0.000 1.227

Mining 0.037 0.065 0.000 0.461

Elevation 1.542 1.094 -0.030 4.940

Markets 0.509 0.291 0.000 1.095

Municipalities 0.129 0.058 0.000 0.341

Rivers 0.016 0.013 0.000 0.079

Roads 0.032 0.031 0.000 0.211

Neighbours 0.991 0.066 0.000 1.000

Rainfall 116.867 44.567 0.000 214.000

Temperature 30.011 9.522 29.000 34.000

Statistics refer to N=529,680 pixels observations. (N) refers to NDVI and (E) refers to EVI. All distancing

values are in decimal degrees. The conversion assumes 0.1 degree to 11km2.
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Conclusions

The natural process of societal evolution has brought many changes in the political,

social, economic and environmental contexts. These changes were mainly a result of

technological progress that spurred an improvement in the use of the environment and

consequently led to its degradation. Considered one of major the causes of climate change,

deforestation releases billions of tonnes of carbon dioxide and other greenhouse gases into

the atmosphere and causes the biodiversity loss in the tropical regions and is damaging the

environmental system in the planet.

The purpose of this thesis has been to examine the economic determinants of

deforestation in Brazil and the effectiveness of environmental policies taking place in

the country using innovative and interdisciplinaries techniques. We analysed first the

institutional environmental framework (IEF) in the economic delimitation of Brazilian

Amazon (Legal Amazon) controlling for market expansion which was characterised the

main driver of deforestation at the time of study. The results from the first chapter suggest

that the Institutional Environmental Framework conditioned on policies and prices curbed

deforestation within municipalities. Since deforestation has a spatial dimension we expand

the study to include spatial analysis. We observe that the Institutional Environmental

Framework when established in a municipality tend to reduce deforestation in neighbouring

municipalities. An anecdotal counter-factual simulation indicated that the existence of
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institutional environmental framework avoided forest clearing that would have occurred

had the institutional framework not been implemented.

Following the results from the first chapter, we focused our analysis on the deforestation

trends observed in the Ecological Tension Zone of Maranhao, which provided us with

unique natural experiment in that there were spatially heterogeneous environmental policies

to combat deforestation. To understand the deforestation trends in that region we used

non-linear modelling for the task since it is recognised that most ecological and climatic

data represent complex relationships and thus non-linear models, such as Generalized

Additive Models (GAMs), may be particularly suited to capture confounding effects in

trends. Our findings suggest that deforestation is related to year and several climatic

covariates, but also revealed that there are substantially differences in trends between

seasons and regions. For the region under a surveillance system most of the deforestation

happened during the rainy season and, for the region not under the monitoring policy, there

was a well-defined deforestation trend for both seasons.

Finally, in chapter 3 we combine the findings from the previous chapters to elaborate on

the motivation. Deforestation rates have declined in Brazil over the past two decades and it

is believed that environmental policies conditioned on the institutional framework have

played a crucial role. Moreover, the satellite monitoring program has enabled authorities to

identify and react to deforestation in a much more timely manner than local field detection.

Given that the trends of deforestation in two regions, under different environmental policies,

of an ecological tension zone (ecotone forest) in Maranhão showed diverged results. We

assumed that cloud coverage, by delaying detection until skies are clear, has acted as an

important impediment to the policy’s success. Focusing on the ecological tension zone

of Maranhão that is separated into two parts by an artificial line- one that was covered by

environmental deforestation policy and the other that is not subject to this - we use satellite

data within a survival analysis framework to estimate how the probability of transition
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between intact forest to disturbed forest, given risk factors and conditional on the time

elapsed until the occurrence of the transition, is affected by cloud coverage. Our findings

suggest that the presence of clouds has increased deforestation in the region covered by

the satellite detection program, and thus was likely an active barrier to legal compliance.

Overall, our results has policy implications for environmental policies in Brazil. We’ve

seen that the institutional environmental framework is important for the protection of the

tropical forests when combined with environmental enforcement. The actual institutional

framework needs to be tightened up in terms of implementation. Most important, it is

pertinent that the established efforts proceed in the Brazilian Amazon, in spite of any

political changes in Brazil and, strengthening the institutional framework must be detached

from any transient actions. We then, observed the past trend of deforestation in two areas of

great importance for the Brazilian biome, Amazon and Cerrado and, the results indicate that

the environmental policies in the Legal Amazon should be expanded to ecotonic/transition

forests along the Amazon Forest because these forests represent the first indication of

anthropic intervention. Also, we believe that the deforestation monitoring system should be

improved by the use of satellites that are not constrained by climatic events such as cloud

cover. Finally, it is important to acknowledge that significant deforestation is happening in

areas of transition between Amazon and Cerrado and, the implementation or expansion of

satellite monitoring program must be applied to further biomes like Cerrado, the second

most degraded biome in the country.

LIMITATIONS Although our results presented in this thesis are in line with previous

studies and our empirical evidence has been corroborated by robustness checks and model

validations, our analysis still suffers from a number of weaknesses.

Our main results in the first chapter might suffer from the issue of omitted variable bias.

We tried to include all possible variables that could potentially affect deforestation but data

limitations prevented us to capture for all possible determinants. To deal with this issue
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we looked for proxies that could minimise this problem. Another possible issue is the

potential endogeneity of many of the explanatory variables, and hence their interpretation

in terms of causality. Since it would be difficult to find plausible instruments for many,

if not for all, of our independent variables, we instead tried to control for municipality

fixed effects, allowing us to purge all time invariant unobservables from the specifications

and, we lagged all control variables by one period, so that under assumption that, after

controlling for fixed effects all confounding shocks are only contemporaneous in nature,

we are left with solely exogenous variation.

In the second and third chapters, we a have a number of limitations that must be taken

into account. First, the model implicitly assumes that the predicted range or potential

space is fully occupied by forest, which in reality might not be true. Secondly, the spatial

distribution of the vegetation indices may exhibit dynamic behaviour over time, so that

a potential area may or may not be sparsely vegetated for a certain period (e.g., during

sampling) due to progressive succession of forest. Or a temporary absence could be due to

natural causes, such as, an attack of pests or diseases or inter-species competition. Thirdly,

the study was based on coarse image resolution which could neglect local changes in the

sample area. Finally, our results may not be generalised to other areas, such as dense

tropical forest and open fields. The same issues for chapter two apply to chapter three

since we use the same dataset. In addition, for the third chapter, we only considered for

the analysis covariates before or from 2000, which thus excluded roads, protected areas,

indigenous land, markets, municipalities centre, and, mining/mineral resources created or

discovered after 2000. Finally, we acknowledge that the models were derived from NDVI

values and that one could alternatively have used EVI values, which in some instances

might be more suited for ecotone forests.

FUTURE RESEARCH This thesis represent a starting point for a research agenda

which can be extended in the future. First, departing from the analysis of deforestation
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in Brazil, it would be interesting to look at other tropical countries investigating the role

of environmental policies taking into account the different settings of the institutional

framework. There are data available on the proxy of deforestation for many tropical

countries and different policies approach have been undertaken for different countries,

such as Bolivia, Colombia and, Venezuela. For this reason, it would be interesting to

conjecture the differences existing with different institutional apparatus. Secondly, the

estimation of the deforestation trends used coarse resolution to the analysis. However, a

more in-depth analysis using fine resolution might be needed given the increasing action

of selective logging that cannot be captured observing at a coarse resolution. Finally, our

analysis of chapter 3 has shown the relevance of climatic events as an impediment of

satellite monitoring program effectiveness. We could corroborate the findings by applying

a fine resolution satellite which is not affected by cloud cover to reassure our findings. In

addition, we could incorporate the yearly climatic event controls to the model that were

not able to be included in this study due to computational limitations.
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