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ABSTRACT 

 

Transient extreme wind events such as tornadoes have received increasing attention among 

Wind Engineers over the last years because those types of winds have been proven to be 

extremely dangerous and devastating. Several attempts of varying simplicity have been made 

to replicate the tornado flow structure analytically and experimentally. However, due to the 

assumptions made, those model results only show an extremely simplified version of what is a 

highly complex full-scale flow phenomenon.  

 

In this work, the ability of those simplified models to replicate the flow field of atmospheric 

tornadoes is discussed thoroughly. A comparison between analytical and experimental models 

highlights that analytical vortex models are not able to represent the entire complexity of the 

three-dimensional flow structure obtained experimentally due to their simplifications. 

Furthermore, this work examines the effect of the simulator’s design on the generated vortex 

flow field and thereby demonstrates that aspect ratio and swirl ratio parity is not enough to 

guarantee the simulation of vortices with similar flow characteristics in different simulators. 

This work shows that a better understanding of the flow fields simulated in physical tornado-

like vortex simulators is required before data obtained from those models can be used with 

confidence in practice.  
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NOMENCLATURE 

 

a [-] aspect ratio 

a̅ [-] constant in the Burgers-Rott and the Sullivan vortex model 

b [-] shape parameter in the Sullivan vortex model 

D1 [m] tornado simulator’s convergence chamber diameter 

D2 [m] tornado simulator’s convection chamber diameter 

D3 [m] tornado simulator’s updraft hole diameter 

g⃗  [ms-2] gravity vector 

H1 [m] tornado simulator’s convergence chamber height 

H2 [m] tornado simulator’s convection chamber height 

K [-] constant in the Baker vortex model 

p [Nm-2] static pressure 

pmin [Nm-2] static pressure minimum 

p̅ [-] normalised static pressure 

Q [m3s-1] flow rate 

r [m] radial distance 

R [m] vortex core radius - radial distance at which  uθ =uθ,max  

�̅� [-] normalised radial distance 

Raverage [m] height-averaged core radius 

Re [-] Reynolds number 

Rglobal [m] vortex core radius - radial distance at which  uθ =uθ,max,global  

Rlocal [m] vortex core radius for each measurement height 

rm [m] radial distance at which ur has its maximum 

S [-] swirl ratio 



   

t [s] time 

ur  [m/s] radial velocity component 

ur̅ [-] normalised radial velocity component 

ur,max  [m/s] maximum of radial velocity component 

uz  [m/s] vertical velocity component 

uz̅ [-] normalised vertical velocity component 

uθ  [m/s] circumferential velocity component 

uθ̅ [-] normalised circumferential velocity component 

uθ,max  [m/s] circumferential velocity maximum 

uθ,max,average  [m/s] height-averaged circumferential velocity maximum 

uθ,max,global  [m/s] overall circumferential velocity maximum 

uθ,max,local  [m/s] circumferential velocity maximum for each measurement height 

z [m] vertical distance from surface 

Z [m] vertical distance at which uθ,max,global has its maximum 

z̅ [-] normalised vertical distance 

zm [m] vertical distance at which ur has its maximum 

α [°] guide vane angle 

γ [-] shape parameter in the Baker vortex model 

Γ [m2s-1] circulation 

Γmax [m2s-1] circulation maximum 

δ [-] length scale ratio of zm to rm 

ĸ [-] kurtosis 

θ [°] circumferential angle 

ν [m2s] kinematic viscosity of the fluid 

ρ [kgm-3] density of the fluid 

σ [*] standard deviation 

ς [-] skewness 

 
* Units of the standard deviation are identical to the units of the parameter the standard deviation is calculated 

for.  
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1. INTRODUCTION 

 

A tornado is a violent rotating column of air attached to a thunderstorm base and in contact with 

the ground (e.g., NSSL1). These devastating meteorological events can cause strong wind 

velocities close to the earth’s surface on a relatively short temporal and small spatial scale 

compared to other wind related phenomena in the troposphere (Figure 1.1). Currently, regional 

meteorological forecasting models very rarely have a horizontal grid resolution of less than 

1km. This means that sub-grid scale processes in the atmosphere are not seen by those models. 

Tornadoes fall under the category of sub-grid scale processes regarding the regional weather 

forecast (Figure 1.1). Figure 1.1 highlights that tornadoes can have a horizontal extent of 

approximately 100m and can last for several minutes. For this reason and due to the complexity 

of determining which thunderstorms may potentially produce a tornado, forecasting when and 

where a tornado will strike is difficult. In the United States (US) an advanced tornado watch 

and warning system, operated by the National Oceanic and Atmospheric Administration Storm 

Prediction Centre in collaboration with the local National Weather Service Forecast Office is 

in place (NSSL2). If atmospheric conditions are favourable for severe weather to occur, a 

convective watch is issued for the respective area (NOAA1). A warning is announced when a 

tornado has been sighted or indicated by weather radar (NSSL2). This system currently allows 

warnings to be given approximately 13 minutes before a tornado strikes (NOAA2). To improve 

this warning system and to avoid tornado related disruptions and fatalities, research is ongoing. 
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Figure 1.1: Atmospheric length and time scales (adapted from Promet, 1971). 
 

On average, wind speeds in tornadoes reach approximately 200km/h (Alexander and Wurman, 

2008) but can be in excess of 500km/h (NSSL3). It is therefore not surprising that those types of 

winds can cause structural failures, disruption to everyday life and even death. Figure 1.2 

illustrates the destruction caused by a tornado, which hit Joplin, Missouri on the 21st of May 

2011. North America experienced one of the most destructive tornado seasons in 2011, with 

approximately 1600 tornado outbreaks reported and the total damage exceeding $28bn 

(NOAA3). Solely during three days from 25th – 28th April 2011, 362 tornadoes hit the south-

easterly part of the US, thereby causing an estimation of 321 fatalities and an approximate 

damage of $11 billion (NOAA4). Significant damage also occurs elsewhere around the world 

but not necessarily as frequent or to such an extent. For instance, between 1950 and 2015, 

approximately 85 tornadoes hit Europe every year (Antonescu et al., 2017). This corresponds 

to only 7% of the number of tornadoes, which hit the US during the same period (NSSL3). 
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Figure 1.2: Illustration of the destruction caused by the Joplin, Missouri tornado on the 21st of May 2011. The 
picture was taken by Melissa Brandes and is adapted from shutterstock image ID 80099773. 

 

Due to the unfavourable combination of forecasting challenges and the deadly environment of 

a tornado, wind speed measurements inside tornadoes are limited, although, available datasets 

are increasing since the development of mobile Doppler radars, which enable wind speed 

measurements in tornadoes from a relatively safe distance. However, due to their working 

principle, the majority of available wind data are captured at heights much larger than the 

averaged common size building height (Alexander and Wurman, 2008). Additionally, due to 

the unsteady nature of a tornado, only instantaneous flow field information can be retrieved and 

for some cases, the spatial resolution of measurements is too low to resolve the highly complex 

flow structure. Because of that, recourse is often made to physical simulations to provide a 

statistical representative data set for tornado-like vortices, measured with a comparably high 

spatial and temporal resolution. In recent years, a variety of physical simulations but also 

analytical calculations have been undertaken in order to analyse tornado flow fields. 

 

Whilst useful, analytical and physical models show a simplified version of a highly complex 

real life phenomenon with a large number of inherent assumptions, which may or may not be 
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correct. For that reason, this work and the publication by Gillmeier et al. (2018) provides 

detailed information about assumptions and limitations of each modelling technique. 

 

Furthermore, despite most physical simulations being based largely on the same principles, i.e., 

tornado-like winds are created by generating a circulation in the presence of a suction updraft 

(Ward, 1972), currently used physical simulators differ in scale and geometric design. This 

makes comparison between vortices simulated in different simulators challenging because there 

is as of yet little understanding of how geometric boundary conditions of a simulator affect the 

similitude of generated vortices. The originality of this work is to investigate the sensitivity of 

experimentally simulated tornado-like vortices to the simulator’s geometric boundary 

conditions.  
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1.1. Aim 

 

The aim of this work is twofold. Firstly, to investigate whether the assumptions of analytical 

and experimental models allow a realistic simulation of tornado flow fields. Secondly, to 

improve our current understanding of physical tornado-like vortex modelling by assessing the 

sensitivity of results on the scale and the geometric design of experimental simulators. 

 

1.2. Objectives 

 

In order to address the above aim the following objectives have been defined. 

 
Objective 1: to compare and contrast the flow field and surface pressure characteristics 

obtained in a physical simulator with those obtained analytically (step 1 in figure 1.3). 

 
Objective 2: to examine the influence that scale (step 2.1 in figure 1.3) and geometry (step 

2.2 in figure 1.3) may exert in the physical simulation of tornado-like vortices. 

 

 

Figure 1.3: Illustration of objectives.  
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1.3. Thesis outline 

 

This thesis is organised as follows.  Sections 2.1 – 2.3 present relevant background knowledge, 

which enables an understanding of tornadoes.  The assumptions made in analytical and physical 

vortex models are introduced in section 2.4 and 2.5, respectively. Section 3 contains a critical 

literature review, which is divided into three sections – section one provides a detailed review 

of a number of analytical models (3.1), section two reflects in detail on different physical vortex 

models with respect to their geometric and dynamic flow field similarity (3.2), whilst section 

three briefly summarises the motivation of this work and identifies the knowledge gap (3.3). 

Physical tornado-like vortex simulators at the University of Birmingham (UoB) are introduced 

in section 4 and the experimental setup including measurement and normalisation techniques 

and data quality are described in section 4.2 – 4.4. The comparison between analytical and 

physical vortex models is examined fully in section 5. Section 6 outlines the influence of a 

tornado simulator’s scale and geometric design on the vortex flow field and section 7 highlights 

the dynamic flow field complexity. Reflections on findings of this work and recommendations 

for further work can be found in section 8. 
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2. BACKGROUND KNOWLEDGE 

 

A significant amount of section 2.4 has been published elsewhere, see Gillmeier et al. (2018) 

and is reproduced with the permission of the authors. 

 

 

2.1. Tornadoes – a meteorological phenomenon 

 

Tornadoes are highly complex meteorological phenomena and require the environment of a 

supercell thunderstorm to occur. For that reason, it is essential to understand the physical 

processes within thunderstorms in order to understand the formation of tornadoes. One of the 

atmospheric preconditions, which is essential for the formation of every thunderstorm, is 

atmospheric instability, which is defined as positive buoyancy of warm air near the surface due 

to density differences (Kraus, 2004). If this near-surface warm layer of air is moist, its water 

content condensates when rising and latent heat is released. For that reason, moist air cools at a 

slower rate (moist adiabatic lapse rate) when rising compared to dry air (dry adiabatic lapse 

rate). In order to quantify the energy, which is available for the vertical air movement in the 

atmosphere, temperature soundings of the atmosphere can be used (Stull, 2015). Figure 2.1a 

shows an example of a temperature sounding during unstable atmospheric conditions. In a 

temperature sounding, the environmental temperature change with height (environmental lapse 
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rate) and corresponding moist and dry adiabatic lapse rates are illustrated. In unstable 

atmospheric conditions, an unsaturated air parcel close to the ground is lifted along the dry 

adiabat until it becomes saturated, which defines the height of the Lifting Condensation Level 

(LCL) (Stull, 2015, Figure 2.1a). Consequently, this height corresponds to the cloud base 

(Figure 2.1b). From the LCL upwards, the now saturated air parcel is lifted along the moist 

adiabat (Figure 2.1a). The Level of Free Convection (LFC) is defined at the altitude from the 

ground where the temperature of the environment drops below the moist adiabatic lapse rate 

(Figure 2.1a). At this point, the parcel accelerates upwards without further need for a forced 

lifting until it reaches the Equilibrium Level (EL), which represents a stable layer of air on top 

of the troposphere at approximately 10km above ground (Stull, 2015). When the updraft reaches 

the EL, the stable layer of air prevents the updraft from further rising. As a result, the air spreads 

out beneath this layer and a cloud forms, which is called Anvil (Doswell and Burgess, 1993; 

Figure 2.1b), because of the strong updraft, an overshooting top may form. 

 

The area enclosed by LCF, the environmental lapse rate, the moist adiabatic lapse rate and EL 

defines the amount of energy, which is available for a thunderstorm’s convective processes 

(e.g., Stull, 2015). This energy is referred to as Convective Available Potential Energy (CAPE) 

(Figure 2.1a). Consequently, the more CAPE is available, the faster storms will build vertically 

due to a strong vertical updraft (NOAA5).  
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a)  b)  

Figure 2.1: Illustration of a vertical temperature sounding of an unstable atmosphere (a) (adapted from Stull, 
2015) and illustration of the initial formation of a thunderstorm (b) (adapted from Letchford et al., 2002). 

 

During the mature stage of a thunderstorm, a downdraft forms beneath the overshooting top 

because cooled air becomes negatively buoyant and therefore, accelerates to the surface, 

associated with heavy rain or hail (Letchford et al., 2002; Figure 2.2a). A strong directional 

wind shear with height must be present in the thunderstorms inflow to initiate the development 

of a rotating updraft (Davies-Jones et al., 2001). If the updraft develops rotation, the 

thunderstorm is defined as supercell and a wall cloud forms at the updraft location at the base 

of the thunderstorm (Doswell and Burgess, 1993; Figure 2.2a). The larger the increase in wind 

speed with height, and the stronger the directional wind shear, the more intense the supercell 

becomes. The supercell’s rotation is sustained by tilting the ambient near-surface horizontal 

vorticity vertically (Davies-Jones et al., 2001; Figure 2.2b). Horizontal vorticity at the surface 

is generated as a result of a strong directional wind shear with height, as illustrated at the top 

left corner of figure 2.2b. The rotational axis of those vortices is tilted vertically when ingested 

by the storm’s updraft (Davies-Jones, 1984; Figure 2.2b). As a result, vertical vorticity is 

generated at mid-level altitudes (~5km) in the storms updraft (Davies-Jones et al., 2001). 

Furthermore, according to the meteorologist Jeff Haby, a sufficiently high enough increase in 

wind speed with height is necessary to tilt the storm’s updraft (Figure 2.2b). This enables the 
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updraft and downdraft to occur at separate regions of the storm (Figure 2.2a) and thereby to 

enforce each other.  

 

One of the contingencies regarding tornado genesis is the development of near-ground rotation 

(Davies-Jones, 2006). One of the theories describes the interaction between downdraft and 

updraft as essential for tornado genesis because the downdraft transports mid-level vertical 

vorticity back towards the surface and thereby initiates near-ground rotation (Markowski and 

Richardson, 2009 and Davies-Jones, 2015). However, this suggested process could not be fully 

verified by field observations (Davies-Jones, 2006). It is also not yet fully understood why 

certain thunderstorms produce tornadoes and others of similar intensity do not. In general, for 

tornadoes to occur, it is important to have a stable and supportive alignment between thermal 

and mechanical atmospheric conditions, which enhance tornado genesis. If a tornado forms, a 

rotating funnel-shaped cloud lowers from the wall cloud (Doswell and Burgess, 1993; Figure 

2.2a). 

 

The final stage of a thunderstorm is the dissipating state, during which, the thunderstorm 

weakens, the updraft loses intensity and only the downdraft remains (Letchford et al., 2002). 

 

a) b)  

Figure 2.2: Illustration of the mature stage of a thunderstorm (adapted from Doswell and Burgess, 1993) (a) and 
illustration of the concept of how mid-level rotation is generated (taken from Davies-Jones et al., 2001).  
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2.2. The tornado flow structure 

 

This section provides a more detailed look into the flow structure of an idealised axisymmetric 

tornado. In a tornado, the near-ground vertical vorticity is intensified by vortex stretching by 

the updraft. This implies that the diameter of the funnel-shaped cloud decreases with decreasing 

height, causing a local concentration of vertical vorticity near the surface due to conservation 

of angular momentum (Lewellen, 1993). This results in the lowering of maximum 

circumferential winds from high in the storm towards the surface (Lewellen, 1993). Due to this 

strong rotation, a region of low pressure occurs at the rotational axis, which causes the 

surrounding air to be sucked inwards (Figure 2.3a). 

 

According to Lewellen (1976), the flow field of an idealised axisymmetric tornado can be 

divided into four regions, which strongly interact with each other (Figure 2.3b). 

 

(I) The core flow: a region surrounding the vertical tornado axis and extending up to the 

radial distance where maximum circumferential velocities occur (the core radius, R). 

Dependent on the intensity of rotation, the flow structure in this region undergoes 

remarkable changes (e.g., Snow, 1982 and Rotunno, 2013). 

(II) The surface boundary layer flow: a region, which is dominated by radial inflow into the 

vortex centre. 

(III) The surface corner flow: where the radial inflow turns and produces some type of vertical 

jet. 



~ 12 ~ 
 

(IV) The upper flow: where the tornado is embedded in the parent thunderstorm (wall cloud). 

In this region, the tornado’s rotation originates and is sustained as outlined in the previous 

section 2.1. 

 

a)  b)  

Figure 2.3: Flow structure of a tornado (a) (adapted from Whipple, 1982) and different flow regions in a 
simplified tornado (adapted from Lewellen, 1976). 

 

Depending on the intensity of rotation, the vortex flow structure in the core flow region (region 

(I) in figure 2.3b) can differ significantly. Figure 2.4 shows an attempt to sketch the potentially 

occurring different flow structures in a simplified way. With increasing rotation, the core flow 

region may undergo the changes illustrated in figure 2.4 (e.g., Snow, 1982 and Rotunno, 2013). 

A single-celled vortex structure with radial inflow and central updraft is seen in figure 2.4a and 

a two-celled vortex structure with a central downdraft, radial outflow from the vortex centre, 

radial inflow at larger radial distances and a vertical updraft in-between the radial inflow and 

outflow region is sketched in figure 4.2c. The transition from a single-celled to a two-celled 

vortex is known as vortex breakdown (e.g., Trapp, 2000). During the vortex breakdown, the 

core flow region is dominated by a central downdraft at greater heights, which terminates aloft 

a stagnation point (Figure 2.4b). Above the stagnation point, the vortex core broadens 

significantly (Trapp, 2000). With further increasing rotation, the stagnation point lowers until 
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it reaches the surface, which then describes the flow structure of a two-celled vortex (Figure 

2.4c). With even further increasing rotation, the two-celled vortex structure becomes unstable 

and breaks into multiple vortices, which circle a strong central downdraft (Figure 2.4d). Each 

of the newly formed vortices can differ in intensity and therefore, flow patterns within their 

respective core flow regions can differ as well (Snow, 1982).  

 
Differences in the observed flow structure can be explained by means of pressure differences 

between the upper flow region (p(IV)) and the surface flow region (p(III)) (Figure 2.3b). If p(IV) < 

p(III), a central updraft is present in the core flow region and a flow structure similar to a single-

celled vortex might be expected. The central downdraft of the two-celled vortex structure results 

in a decrease of the surface pressure deficit at the surface flow region and results in a larger p(IV) 

than p(III). Therefore, it can be expected that the surface pressure deficit at the surface flow 

region is larger for a single-celled vortex than for a two-celled vortex. 

 
It is noted that illustrated flow structures in figure 2.4 are extremely simplified and idealised. 

The flow field of naturally occurring tornadoes can be considerably more complex than 

suggested by any of the illustrated flow structures in figure 2.4 (e.g., Refan et al., 2017b). 

 

 

Figure 2.4: Illustration of vortex flow structure changes in the core flow region of an idealised vortex, with 
increasing rotation (adapted from Rotunno, 2013).  
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2.3. Full-scale tornado measurements 

 

Atmospheric measurements inside tornadoes are extremely difficult because of their 

unpredictability and destructive environment. For that reason, evaluation systems such as the 

Fujita-scale and the Enhanced Fujita-scale in the US and the TORRO-scale in Europe determine 

the intensity of tornadoes based on a subsequent assessment of the caused damage.  

 

The Fujita-scale is based on an interpolation of the Beaufort-scale and the Mach number. It 

clusters tornadoes in twelve intensities from F0 to F12, where F0 represents the tornado causing 

the least destruction and F12 represents the tornado causing the most damage (Fujita, 1971). In 

order to enable a more detailed distinction of tornado intensities within the Fujita-scale range 

where tornado damage has actually been observed, the National Weather Service modified the 

Fujita-scale to the Enhanced Fujita-scale (EF-scale) in 2007 (Edwards et al., 2013). The 

Enhanced Fujita-scale rates tornadoes from EF0 to EF5, where EF5 represents approximately 

the upper limit of the F3 Fujita-scale intensity (Edwards et al., 2013; Table 2.1). The EF-scale 

is based on the American way of construction and therefore, is not accepted outside the US. For 

Europe, the British TORnado & storm Research Organisation introduced a different scale to 

classify tornado intensities in the 1980’s - the TORRO-scale (Meaden, 1976). This scale is an 

extension of the Beaufort-scale and has 10 clusters from T0 to T10, where T0 is the equivalent 

to Beaufort 8 and T7 corresponds to Beaufort 22 and approximately to EF5 and F3 (Meaden, 

1976; Table 2.1). Table 2.1 outlines a rough comparison between different scales and provides 

an approximate estimation of corresponding wind velocities based on Fujita (1971), Elsom et 

al. (2001) and Edwards et al. (2013). 
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Table 2.1: Overview and comparison of tornado damage based velocity evaluation systems such as the Fujita-
scale, the EF-scale and the TORRO-scale. 
 

Fujita-scale  EF-scale  TORRO-scale  Beaufort-scale  wind speed (m/s) 

F 0  EF 0  T 0  8  ~20 

F 1 
 

EF 1 
 T 1  10  ~30 

  T 2  12  ~40 

F 2 
 

EF 2 
 T 3  14  ~50 

  T 4  16  ~60 

F 3 

 EF 3  T 5  18  ~70 

 EF 4  T 6  20  ~80 

 EF 5  T7  22  ~90 

F 4    T 8  24  ~100 

F 5 
   T 9  26  ~115 

   T 10  28  ~130 

 

Thanks to the improving knowledge of radar technology and tornado field projects such as 

TWISTEX (TWISTEX), ROTATE (CSWR) and VORTEX (NSSL4), the number of available 

full-scale tornado flow field measurements is gradually increasing. In particular, for velocity 

measurements inside tornadoes, the development of mobile Doppler radar technology was the 

breakthrough, allowing the flow structure in tornadoes to be mapped from a relatively safe 

distance. Thanks to this development, flow field information of approximately 150 tornadoes 

has been captured between 1995 and 2008 at heights > 20m with an approximate spatial 

resolution of ~50m every 60 seconds (Alexander and Wurman, 2008). For those tornadoes, 

large variations in circumferential velocity maxima (70m/s – 120m/s), core radii (75m – 400m) 

and translation speeds (10m/s – 20m/s) were observed (Alexander and Wurman, 2008). In some 

cases, the spatial resolution of measurements was too large to resolve the complex tornado flow 

structure (Kosiba and Wurman, 2010). However, to date, the three-dimensional flow field of 

multiple tornadoes could be obtained from single-Doppler data, e.g., the Mulhall, Oklahoma 

tornado (Lee and Wurman, 2005), the Harper, Kansas tornado (Kosiba et al., 2008), the 
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Spencer, South Dakota tornado (Kosiba and Wurman, 2010) and the tornadoes at Clairemont, 

Texas (2005), Stockton, Kansas, (2005), Happy, Texas (2007) and Goshen Country, Wyoming 

(2009) (Refan et al., 2017b). Potential single-celled and two-celled vortex flow structures have 

been inferred for most of those tornadoes; however, flow patterns in their vortex cores (r < R) 

have revealed multiple smaller circulation cells and highly complex and unsteady flow 

characteristics. 

 

A detailed insight in the three-dimensional structure and evolution of the boundary layer of the 

Russell, Kansas tornado (2012) was provided by Kosiba and Wurman (2013). Velocity 

measurements obtained at heights greater than 3.5m revealed that the highest circumferential 

velocities occur close to the ground and a strong decrease in circumferential velocities with 

height was observed. This highlights one of the most restricting factors of Doppler radar tornado 

data from a wind engineering perspective, viz., velocity information of most Doppler radar 

measurements are restricted to only a limited number of heights, which very often are much 

higher than the averaged building height of residential, industrial and public buildings. The 

reason for this is the reflectivity of radar lights on obstacles and the earth’s curvature for larger 

distances (Alexander and Wurman, 2008).  

 

A further improvement of forecasting possible tornado events would be extremely beneficial 

for in-situ surface pressure measurements because pressure sensors need to be installed and 

placed in the expected path of a tornado before the tornado strikes, in order to capture relevant 

surface pressure characteristics. It is noted that similar to velocity measurements, also surface 

pressure characteristics are extreme dependent on the radial distance from the tornado’s central 

axis. For that reason, it is important to quantify the distance from the vortex centre to the 
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corresponding pressure sensor; however, the transient behaviour of tornadoes makes an analysis 

of such data sets challenging. Nevertheless, Winn et al. (1999) recorded surface pressure data 

of the Allison, Texas tornado (1995) and Lee et al. (2004) successfully retrieved the surface 

pressure distribution of the Manchester, South Dakota tornado (2003) and Karstens et al. (2010) 

measured the surface pressure distribution of seven individual tornadoes of different intensity 

between 2002 and 2008. 

 

Due to challenges of individual measurement techniques, there is still a lag of detailed 

complimentary velocity and surface pressure measurements of the same tornado. 

 

 

2.4. Existing analytical vortex models 

 

The lack of full-scale data has driven the need to model tornado-like vortices analytically. In 

this section, detailed descriptions of the most commonly used analytical vortex models to 

replicate tornado-like flow behaviour (viz., the Rankine (Rankine, 1882), the Burgers-Rott 

(Burgers, 1948 and Rott, 1958) and the Sullivan (Sullivan, 1959) vortex model) are provided, 

together with their derivations and underlying assumptions. In addition, detailed information of 

the derivation and simplifications of the recently published vortex model by Baker and Sterling 

(2017), hereafter called ‘Baker vortex model’ are provided. 

 

A cylindrical coordinate system has been adopted as illustrated in figure 2.5, in which, r, z and 

θ are the radial distance, vertical distance and circumferential angle, respectively. Thus, ur, uz 
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and uθ represent the radial, vertical and circumferential components of velocity. For the sake of 

simplicity, the flow of the analysed vortex models is considered to be incompressible and a 

density of air of ρ = 1.2kg/m3 is assumed for all calculations. 

 

Using the aforementioned notation, the continuity equation (2.1), radial, circumferential and 

vertical components of the Navier-Stokes-Equations (NSE, equations 2.2 – 2.4) can be 

expressed as:  

 

Figure 2.5: Flow field notation. 
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𝜕𝑢𝜃

𝜕𝑟
)⏟      

𝐶8

−
𝑢𝜃

𝑟2⏟
𝐶9

+
1

𝑟2
𝜕2𝑢𝜃

𝜕𝜃2⏟  
𝐶10

−
2

𝑟2
𝜕𝑢𝑟

𝜕𝜃⏟  
𝐶11

+
𝜕2𝑢𝜃

𝜕𝑧2⏟
𝐶12

)  (2.3) 
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𝜕𝑢𝑧

𝜕𝑡⏟
𝑍1

+ 𝑢𝑟
𝜕𝑢𝑧

𝜕𝑟⏟  
𝑍2

+
𝑢𝜃

𝑟

𝜕𝑢𝑧

𝜕𝜃⏟  
𝑍3

+ 𝑢𝑧
𝜕𝑢𝑧

𝜕𝑧⏟  
𝑍4

=       

−
1

𝜌

𝜕𝑝

𝜕𝑧⏟
𝑍5

+ 𝑔𝑧⏟
𝑍6

+ 𝜈 (
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
)⏟      

𝑍7

+
1

𝑟2
𝜕2𝑢𝑧

𝜕𝜃2⏟  
𝑍8

+
𝜕2𝑢𝑧

𝜕𝑧2⏟
𝑍9

)    (2.4) 

 

where, t is the time, p is the static pressure, g⃗  is the gravity vector in its different components 

and ν is the kinematic viscosity of the fluid. 

 

Different terms in equations (2.1 – 2.4) have been labelled since, as will be demonstrated in this 

section, it is possible to derive the Rankine, the Burgers-Rott, the Sullivan and the Baker vortex 

models by disregarding different terms. 

 

In addition to the aforementioned analytical vortex models, an attempt to analytically model the 

three-dimensional flow in the boundary layer of a tornado-like vortex was made by Kuo (1971) 

by alternatingly solving the two non-linear boundary layer equations for the radial and vertical 

distribution of velocities. The Bloor and Ingham vortex model (1987) and the Vyas-Majdalani 

vortex model (Vyas et al., 2003) are exact inviscid solutions to the Euler’s equations in a 

confined conical and cylindrical domain, respectively. Xu and Hangan (2009) analytically 

modelled an inviscid tornado-like vortex using a free narrow jet solution combined with a 

modified Rankine vortex. However, it is noted that this combined model is not an exact solution 

to the Navier-Stokes-Equations. Wood and White (2011) presented a new parametric model that 

is based on the Vatistas model (Vatistas et al., 1991) and is primarily designed to depict 

realistic-looking circumferential wind profiles observed in atmospheric vortices. An overview 
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of some of the aforementioned vortex models can be found in Kilty (2005), Batterson et al. 

(2007) and Kim and Matsui (2017). 

 

In what follows, the focus is set on the Rankine, the Burgers-Rott, the Sullivan and the Baker 

vortex model. 

 

 

2.4.1. Rankine vortex model 

 

The Rankine vortex model has been adopted by a number of researchers (e.g., Hoecker, 1960; 

Church et al., 1979; Winn et al., 1999; Wurman and Gill, 2000; Brown and Wood, 2004; Lee et 

al., 2004; Mishra et al., 2008a; Bech et al., 2009; Hashemi Tari et al., 2010; Wood and Brown, 

2011; Refan and Hangan, 2016 and Tang et al., 2018) to model tornado-like flow behaviour. 

The following assumptions are made in the derivation of the Rankine vortex model:  

 

 The flow field is one-dimensional and as such equations (2.3) and (2.4), terms R2, R3 and 

R5 can be disregarded. 

 The flow field is steady state, i.e., term R1 can be taken as zero. 

 The flow is inviscid (ν = 0), i.e., terms R8 - R12 can be neglected. 

 Body forces can be neglected, i.e., ( g⃗  = 0). 

 

Those assumptions reduce the NSE to the cyclostrophic equation (Eq. 2.5). 
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𝑑𝑝(𝑟)

𝑑𝑟
= 𝜌 

𝑢𝜃(𝑟)
2

𝑟
      (2.5) 

 

The Rankine vortex model also assumes that the flow consists of two separate flow regions. In 

the core region (i.e., r < R, where R is the core radius, which is defined as the radial distance 

from the vortex centre at which the circumferential velocity component attains its maximum), 

the flow is assumed to have a constant vorticity and is considered to be similar to that of a solid 

body. Outside the core region (r > R), it is assumed that the flow can be described by a potential 

flow field (incompressible, inviscid and irrotational) (Alekseenko et al., 2007) and is inversely 

proportional to the radial distance. Those assumptions enable the circumferential velocity 

component to be modelled via an expression of the form: 

 

𝑢𝜃̅̅ ̅(�̅�) = {   
 �̅�          𝑓𝑜𝑟 (�̅� < 1)
1

�̅�
          𝑓𝑜𝑟 (�̅� > 1)

     (2.6) 

 

where, uθ̅ is the normalised circumferential velocity component (=uθ/uθ,max, where uθ,max is the 

maximum value of uθ) and r̅ is the radial distance normalised by the core radius, R (= r/R). In 

equation (2.6), a discontinuity occurs at r̅ = 1. In order to avoid this, the model is occasionally 

modified as shown in equation (2.6.1). However, the most commonly used form is shown in 

equation 2.6 and hence, will be used in what follows. 

 

𝑢𝜃̅̅ ̅(�̅�) =
2�̅�

(1+ �̅�2)
       (2.6.1) 

 

Combining equation (2.6) with equation (2.5) and integrating, yields an expression for the 

normalised pressure distribution of the Rankine vortex model (Eq. 2.7): 
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�̅�(�̅�) = {
𝑝(�̅�=0)̅̅ ̅̅ ̅̅ ̅̅ +

1

2
(�̅�)2                       𝑓𝑜𝑟 (�̅� < 1)

𝑝�̅�→∞̅̅ ̅̅ ̅̅ ̅ −
1

2
(
1

�̅�
)
2

                         𝑓𝑜𝑟 (�̅� > 1)
    (2.7) 

 

where, p̅(r̅) is the normalised pressure (=p(r)/ ρuθ,max
2), pr̅→∞̅̅ ̅̅ ̅̅  is the normalised static pressure, 

which is unaffected by the vortex and p(r̅=0)̅̅ ̅̅ ̅̅ ̅ is the static pressure at the vortex centre. 

 

 

2.4.2. Burgers-Rott vortex model 

 

The Burgers-Rott vortex model has been adopted by a number of authors (e.g., Winn et al., 

1999; Brown and Wood, 2004; Lee et al., 2004; Kosiba and Wurman, 2010; Wood and Brown, 

2011 and Wurman et al., 2013) to model tornado-like flow behaviour. Explicit in the derivation 

of the model are the following assumptions:  

 

 The flow field is steady state, i.e., terms R1, C1 and Z1 are taken as zero. 

 The viscosity is considered to be constant throughout the entire flow field.  

 Body forces can be neglected, i.e., ( g⃗  = 0). 

 The circumferential velocity component is assumed to be solely dependent on the radial 

distance (uθ=uθ(r)). 

 The vertical velocity component is assumed to be solely and linearly dependent on the 

vertical distance (uz=uz(z) and uz∝ z).  

 As a result of the last two assumptions, the radial velocity component is solely and linearly 

dependent on the radial distance (ur=ur(r) and ur∝ r). 
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 The static pressure is assumed to be solely dependent on radial and vertical distances 

(p=p(r,z)). 

 

Those assumptions reduce equations (2.1 – 2.4) to the following simplified versions:  

 

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
𝜕𝑢𝑧

𝜕𝑧
= 0      (2.1*) 

 

𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
−
𝑢𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑟

𝜕𝑟
) −

𝑢𝑟

𝑟2
)    (2.2*) 

 

𝑢𝑟
𝜕𝑢𝜃

𝜕𝑟
+
𝑢𝑟𝑢𝜃

𝑟
= 𝜈 (1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝜃

𝜕𝑟
) −

𝑢𝜃

𝑟2
)    (2.3*) 

 

𝑢𝑧
𝜕𝑢𝑧

𝜕𝑧
= − 1

𝜌

𝜕𝑝

𝜕𝑧
     (2.4*) 

 

Now, the Burgers-Rott vortex model acknowledges that the flow within a tornado-like vortex 

structure is likely to be subject to changing levels of vorticity, which in turn will have 

implications for the associated pressure field. Thus, it is assumed that the vertical velocity 

component changes with respect to height and the following relationship is adopted: 

 

𝑢𝑧̅̅ ̅(𝑧̅) = 2�̅�𝑧̅       (2.8) 

 

where, uz̅(z̅) is the normalised vertical velocity (=uz(z)/uθ,max), z̅ is the normalised vertical 

height (= z/R) and a̅ is a constant, whose magnitude purports to account for the strength of 
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vortex stretching. It is also assumed that a̅ is related to the viscous dissipation, ν, via an 

expression of the form: 

�̅� =
2𝜈

𝑅𝑢𝜃,𝑚𝑎𝑥
      (2.8.1) 

 

Equation (2.8.1) implies that the viscous dissipation, ν, continuously removes kinetic energy 

from the flow, which is continuously introduced by vortex stretching. Using equation (2.8) and 

integrating the simplified continuity equation (Eq. 2.1*), an expression for the normalised radial 

velocity component can be obtained (Eq. 2.9). 

 

𝑢𝑟̅̅ ̅(�̅�) = −�̅��̅�      (2.9) 

 

where, ur̅(r̅) is the normalised radial velocity (=ur(r)/uθ,max). Using equations (2.8) and (2.9), 

and solving the simplified NSE in the circumferential direction (Eq. 2.3*), an expression for the 

normalised circumferential velocity component, uθ̅, can be found (Eq. 2.10). 

 

𝑢𝜃̅̅ ̅(�̅�) =
1

�̅�
(1 − 𝑒𝑥𝑝(−�̅�2))    (2.10) 

 

It is perhaps worth noting that uz̅ and ur̅ increase to infinity as z̅→∞ and r̅→∞, respectively, 

which, it is suggested, may not be representative of a tornado-like flow structure. 

 

The pressure distribution of the Burgers-Rott vortex model can be obtained by solving the 

simplified NSE (Eq. 2.2* and Eq. 2.4*) using the model velocities (Eq. 2.8, Eq. 2.9, and Eq. 

2.10). This leads to the following equation for the normalised pressure distribution (Eq. 2.11).  
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�̅�(�̅�, 𝑧̅) = �̅�(0,0) + ∫
𝑢𝜃̅̅ ̅̅ (𝑟′̅)

2

𝑟′̅

�̅�

0
𝑑𝑟 ′̅ −

�̅�2

2
(�̅�2 + 4𝑧̅2)   (2.11) 

 

 

2.4.3. Sullivan vortex model 

 

The Sullivan vortex model has also been adopted by a few researchers (e.g., Winn et al., 1999 

and Wood and Brown, 2011) to model tornado-like flow behaviour. The assumptions for this 

vortex model are: 

 

 The flow field is steady state, i.e., terms R1, C1 and Z1 are taken as zero. 

 The viscosity is considered to be constant throughout the entire flow field.  

 Body forces can be neglected, i.e., ( g⃗  = 0). 

 The circumferential velocity component is assumed to be solely dependent on the radial 

distance (uθ=uθ(r)). 

 The vertical velocity component is assumed to be only dependent on radial and vertical 

distances. The dependence on the vertical distance is linear (uz=uz(r,z) and uz∝ z).  

 As a result of the last two assumptions, the radial velocity component is solely dependent 

on the radial distance (ur=ur(r)). 

 The static pressure is assumed to be solely dependent on radial and vertical distances 

(p=p(r,z)). 
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Those assumptions reduce the continuity equation (2.1), radial and circumferential components 

of the NSE (2.2 – 2.3) to simplified versions shown in equations (2.1* – 2.3*). For the vertical 

component of the NSE (2.4) the following simplified version is obtained.  

 

𝑢𝑧
𝜕𝑢𝑧

𝜕𝑧
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= − 1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
))   (2.4**) 

 

One main difference of the Sullivan vortex model compared to the Burgers-Rott vortex model 

lies in the complexity of the model solution. While the Burgers-Rott vortex model only allows 

single-celled vortices to be generated, the Sullivan vortex model potentially enables solutions 

for single-celled and two-celled vortices to be obtained; this is obtained via the use of a shape 

parameter, b (Eq. 2.12 and Eq. 2.13). The effect of this parameter on the tornado-like flow field 

will be discussed in detail in section 3.1.2. Unless stated otherwise, b = 3. The required vortex 

stretching is generated by suction at relatively large heights and is achieved by a non-linear 

increase of the vertical velocity component with height, as illustrated in equation (2.12). The 

same normalisation used for the Burgers-Rott vortex model is applied for the Sullivan vortex 

model.  

𝑢𝑧̅̅ ̅(�̅�, 𝑧̅) = 2�̅�𝑧̅(1 − 𝑏 ∙ 𝑒𝑥𝑝(−�̅�
2))    (2.12) 

 

Following the procedure described for the Burgers-Rott vortex model, expressions for ur̅ (Eq. 

2.13) and uθ̅ (Eq. 2.14) can be obtained. 

 

𝑢𝑟̅̅ ̅(�̅�) = −�̅��̅� +
2𝑏�̅�

�̅�
(1 − 𝑒𝑥𝑝(−�̅�2))    (2.13) 
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𝑢𝜃̅̅ ̅(�̅�) =
1

�̅�

𝐻(𝑥)

𝐻(∞)
      (2.14) 

with  𝑥 = �̅�2   and  𝐻(𝑥) = ∫ 𝑒𝑥𝑝 (−𝑥′ + 3∫
1

𝑥′′

𝑥′

0
(1 − 𝑒𝑥𝑝(−𝑥′′))𝑑𝑥′′) 𝑑𝑥′

𝑥

0
 

 

It is perhaps worth noting, that for r̅ = 0 and z̅→∞ the magnitude of uz̅ increases to infinity. 

Furthermore, also ur̅ increases to infinity for r̅→∞ (Eq. 2.13). Similar to the Burgers-Rott 

vortex model, it is suggested that this behaviour may be physically unrealistic for a tornado-

like flow structure. 

 

The pressure distribution of the Sullivan vortex model can be obtained by solving the simplified 

NSE (Eq. 2.2*, 2.3* and 2.4**) using the model velocities (Eq. 2.12 – 2.14). This leads to the 

following equation for the normalised pressure distribution:  

 

�̅�(�̅�, 𝑧̅) = 𝑝𝐵𝑢𝑟𝑔𝑒𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(�̅�, 𝑧̅) −
18�̅�2

�̅�2
(1 − 𝑒𝑥𝑝(−�̅�2))

2
   (2.15) 

 

where, pBurgers̅̅ ̅̅ ̅̅ ̅̅ ̅ is the pressure distribution of the Burgers-Rott vortex model, which is given in 

equation (2.11). 

 

 

2.4.4. Baker vortex model 

 

Baker and Sterling (2017) developed a vortex model, which can reproduce the flow and 

pressure characteristics of single-celled and two-celled vortices. For simplicity, only the 
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solution for the single-celled vortex with radial inflow and vertical updraft is analysed in what 

follows. The following assumptions are made in the derivation of the Baker vortex model: 

 

 The flow field is steady state, i.e., terms R1, C1 and Z1 are taken as zero. 

 The flow is inviscid, i.e., terms R8 - R12, C8 - C12 and Z7 - Z9 can be disregarded. 

 Body forces can be neglected, i.e., ( g⃗  = 0). 

 The circumferential velocity component is assumed to be dependent on radial and vertical 

distance (uθ=uθ(r,z)). 

 The radial velocity component is assumed to be only dependent on radial and vertical 

distances (ur=ur(r,z)). 

 As a result of the last two assumptions, the vertical velocity component is solely dependent 

on radial and vertical distances (ur=ur(r,z)). 

 The static pressure is assumed to be solely dependent on radial and vertical distances 

(p=p(r,z)). 

 

Those assumptions reduce the continuity equation (2.1) to the simplified version shown in 

equation (2.1*) and the NSE (Eq. 2.2 – 2.4) to the following simplified versions: 

 

𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
−
𝑢𝜃
2

𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
     (2.2***) 

 

𝑢𝑟
𝜕𝑢𝜃

𝜕𝑟
+
𝑢𝑟𝑢𝜃

𝑟
+ 𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
= 0     (2.3***) 

 

𝑢𝑟
𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
     (2.4***) 
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In addition, the Baker vortex model assumes that the radial velocity component takes the 

following form: 

𝑢𝑟̅̅ ̅(�̅�, 𝑧̅) =
−4�̅��̅�

(1+�̅�2)(1+�̅�2)
     (2.16) 

 

One of the potential advantages of this model compared to the Rankine, the Burgers-Rott and 

the Sullivan vortex model is that the radial velocity component is assumed to show a more 

realistic flow behaviour (Eq. 2.16), i.e., rather than increasing to infinity for large radial 

distances, a maximum value is reached at r = rm and for r = 0 and r = ∞ the radial velocity falls 

to zero. In the vertical direction, the radial velocity distribution shows an attempt to replicate 

the tornado boundary layer by assuming a maximum in the radial velocity component at a 

known distance above the ground  (z = zm) and for z = 0 and z = ∞ the radial velocity falls to 

zero. Since the Baker vortex model focuses on the distribution of the radial velocity component, 

different parameters have been chosen by Baker and Sterling (2017) for the normalisation of 

velocities and distances. Velocities are normalised by the maximum radial velocity 

(ur(rm,zm)=ur,max) and radial and vertical distances are normalised by rm and zm, respectively. 

 

Using equation (2.16) and integrating the simplified continuity equation (2.1*), an expression 

for the normalised vertical velocity component, uz̅, can be obtained as follows: 

 

𝑢𝑧̅̅ ̅(�̅�, 𝑧̅) =
4𝛿 𝑙𝑛(1+�̅�2)

(1+�̅�2)2
     (2.17) 

 

where, δ is the ratio zm/rm. Using equations (2.16) and (2.17), and solving the simplified NSE 

in the circumferential direction (Eq. 2.3***), the following expression for the normalised 

circumferential velocity component, uθ̅, can be obtained: 
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𝑢𝜃̅̅ ̅(�̅�, 𝑧̅) =
𝐾�̅�𝛾−1[𝑙𝑛 (1+�̅�2)]

𝛾/2

(1+�̅�2)𝛾/2
     (2.18) 

 

where, γ is a shape parameter, which can be used to adjust the shape of the circumferential 

velocity profile. K is a constant and is related to Baker’s definition of the swirl ratio, SBaker = 

0.347 K. The swirl ratio in the Baker vortex model is defined as the ratio of uθ(rm,zm) 

to ur(rm,zm). It is perhaps worth noting that uθ̅ increases to infinity for z→∞. This increase is 

assumed to be realistic for the lowest heights, relatively close to the surface, where surface 

roughness affects the velocities, but becomes physically unrealistic for larger heights.  

 

The pressure distribution of the Baker vortex model can be obtained by solving the simplified 

NSE (Eq. 2.2*** and Eq. 2.4***) using the model velocities (Eq. 2.16 – 2.18). In order to obtain 

equation (2.19) a shape parameter of γ = 2 was assumed. 

 

�̅�(�̅�, 𝑧̅) = −
8�̅�2�̅�

(1+�̅�2)2(1+�̅�2)2
−
4.15𝑆𝐵𝑎𝑘𝑒𝑟

2(𝑙𝑛(1+�̅�2))
2

(1+�̅�2)
−
4𝑙𝑛(1+�̅�2)(1−�̅�2)

(1+�̅�2)2(1+�̅�2)2
  (2.19) 

 

where, p̅(r,̅z̅) is the normalised pressure (=p(r,z)/ ρur(rm,zm)2). 

 

It is worth noting that the surface pressure distribution equals zero for z = 0. This behaviour is 

physically unrealistic for a tornado and is discussed in Baker and Sterling (2017). It is assumed 

that pressure variations in the vertical direction can be neglected within the boundary layer (z 

< zm) and consequently, it is assumed that p̅(r̅,z̅<1)=p̅(r̅,z̅=1) (Baker and Sterling, 2017). 
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2.5. Physical simulation of tornado-like vortices 

 

The lack of full-scale data has also driven the need to model tornado-like vortices 

experimentally in physical tornado-like vortex simulators. Those simulators by their very nature 

are also simplified models, but arguably more realistic than some analytical vortex models. The 

use of physical simulators results in a number of advantages compared to full-scale 

measurements since it allows us to measure surface pressure and flow characteristics easily and 

safely and to obtain data sets, which are statistically representative due to controlled boundary 

conditions. 

 

The general aim of tornado-like vortex simulators is to simplify the tornado flow field by 

mechanically forcing a vortex to occur (Davies-Jones, 1976). The main forcing mechanisms 

involve the introduction of vorticity and its subsequent convergence (Davies-Jones, 1976). 

Typically, in tornado simulators, vorticity is introduced mechanically by means of guide vanes, 

rotating screens or fans. This is necessary because neither thermally introduced buoyancy, nor 

vertical wind shear are present to introduce a rotating updraft as outlined in section 2.1. 

Resulting from those simplifications, physical simulators generate axisymmetric vortices, 

which are stationary in time and space with respect to their time-averaged flow characteristics 

(unless translation is taken into account). 

 

Ward (1972) was the first to be acknowledged to have simplified the physical processes in a 

thunderstorm in a mechanical way that enabled the simulation of tornado-like vortices (Davies-

Jones, 1976). For that reason, the design of currently used physical tornado-like vortex 

generators is still based on the design introduced by Ward (1972). The simulator by Ward 
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(1972) consists of a convergence region of height H1 and diameter D1 (Figure 2.6), which is 

characterised by radial inflow and corresponds to the atmospheric sub-cloud inflow layer. 

Rotating screens surrounding the convergence chamber introduce vertical vorticity, which is 

responsible for the generation of a swirling flow. A fan on top generates a negative pressure 

difference, which encourages the air to move vertically through the system and stretches the 

vortex towards the convection region of height H2 and diameter D2 (Figure 2.6). This area is 

assumed to represent convective process in a cumulus cloud. A flow rectifier on top removes 

any vorticity at the upper boundary of the simulator and provides a uniformly distributed 

vorticity sink. The surface between convergence and convection chamber prevents convection 

from outside the central updraft region of diameter D3 (Figure 2.6). 

 
 

 

Figure 2.6: Basic schematic of the tornado-like vortex simulator based on the design introduced by Ward (1972), 
illustrating the major components of the apparatus. H1 and D1 are the height and diameter of the convergence 

chamber, H2 and D2 are the height and diameter of the convection chamber and D3 is the diameter of the updraft 
hole (adapted from Church et al., 1979). 
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2.5.1. Parameters governing the flow characteristics and 
flow field similitude 

 

 
This degree of simplicity, lends itself to easily examining which parameters of the simulator 

influence the generated flow field the most. Dimensional analysis is a powerful tool to reduce 

the degree of freedom of a physical system by grouping together parameters, which affect the 

system, solely based on their dimensions in order to form non-dimensional numbers (e.g., 

Gibbings, 2011). In order to simulate similar flow characteristics in different systems, e.g., 

different physical tornado simulators, geometric, kinematic and dynamic similarity between 

those systems needs to be ensured (Munson et al., 2012). This means that the ratio of 

corresponding length scales (geometric similarity), velocity scales (kinematic similarity) and 

forces acting on the fluid (dynamic similarity) have to be equal. The degree to which those 

requirements are satisfied determines the extent to which conclusions drawn from one system 

apply to another system (Davies-Jones, 1976). 

 

Davies-Jones (1973) undertook a dimensional analysis and reported that six non-dimensional 

numbers describe the flow characteristics in a tornado simulator based on the design introduced 

by Ward (1972). Of those, four define the geometric similarity of the simulator. Davies-Jones 

(1973) chose the following set (Eq. 2.20). Geometric length scales are defined as depicted in 

figure 2.6 

𝐻1/
1

2
𝐷3;    𝐻2/

1

2
𝐷1;    

1

2
𝐷2/

1

2
𝐷1;    

1

2
𝐷3/

1

2
𝐷1   (2.20) 

 

It is noted that a different set of parameters could have been chosen. Table 2.2 outlines all 

possible geometric relations in a tornado-like vortex simulator based on the design introduced 



~ 34 ~ 
 

by Ward (1972). Geometric similarity between simulators is assured if four independent 

geometric relations are identical, since this guarantees that all lengths scales are determined and 

scaled in proportion. Furthermore, it needs to be highlighted here that there are geometric 

parameters that have not been taken into account, such as the geometric design of rotating 

screens, guide vanes or fans that introduce vorticity to the flow field. This issue is addressed in 

more detail in section 3.2.2. Furthermore, it is noted that the ratio between convergence 

chamber height (H1) and updraft radius (½D3) is defined as the aspect ratio (a). 

 

Table 2.2: All possible geometric relations in a tornado-like vortex simulator based on the design introduced by 
Ward (1972). 
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In addition to geometric parameters, the flow field is also a function of the flow rate through 

the simulator and the circulation at a certain location in the simulator (Davies-Jones, 1973). 

Therefore, two additional non-dimensional numbers describe the effect of rotational (Eq. 2.21) 

and viscous (Eq. 2.22) forces on the flow field. Davies-Jones (1973) defined them in the 

following way: 

𝛤(𝑟,𝑧)𝐻1

𝑄
     (2.21) 

 

𝑄

𝜈𝐻1
      (2.22) 

 

where, Q is the flow rate through the system and Γ(r,z) is the circulation at a certain location in 

the simulator, which is defined as:  
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𝛤(𝑟, 𝑧) =  2𝜋𝑟 ∙ 𝑢𝜃(𝑟, 𝑧)     (2.23) 

 

Assuming that no losses occur between the simulator’s inlet and outlet, the following 

assumption can be made. 

𝑄 = 𝜋𝐷1𝐻1𝑢𝑟,𝑖𝑛𝑙𝑒𝑡 ≡ 𝜋 (
1

2
𝐷3)

2

𝑢𝑧,𝑜𝑢𝑡𝑙𝑒𝑡    (2.24) 

 

where, ur,inlet (uz,outlet) is a representative radial (vertical) velocity component at the simulator’s 

inlet (outlet).  

 

If Γ and Q are both defined at the circumference of the convergence chamber, where guide 

vanes are potentially in place (r = D1), the non-dimensional number described by equation 

(2.21) can be transformed into the following equation (Davies-Jones, 1973): 

 

𝛤𝑖𝑛𝑙𝑒𝑡𝐻1

𝑄𝑖𝑛𝑙𝑒𝑡
=
𝜋𝐷1𝐻1𝑢𝜃,𝑖𝑛𝑙𝑒𝑡

𝜋𝐷1𝐻1𝑢𝑟,𝑖𝑛𝑙𝑒𝑡
=
𝑢𝜃,𝑖𝑛𝑙𝑒𝑡

𝑢𝑟,𝑖𝑛𝑙𝑒𝑡
≡ tan(𝛼)   (2.25) 

 

where, α is the guide vane angle with respect to the radial distance. 

 

Very frequently, this parameter is found in combination with the aspect ratio, thereby forming 

a dependent non-dimensional number, which is defined as the swirl ratio, S. (Eq. 2.26, Davies-

Jones, 1973). 

𝑆 =  
tan (𝛼)

2𝑎
     (2.26) 

 

The swirl ratio has been found to be of significant importance for the flow field transformation 
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from a single-celled vortex to multiple vortices as outlined in section 2.2. The effect of the swirl 

ratio on flow characteristics of simulated vortices is well understood and has been examined in 

detail (e.g., Wan and Chang, 1971; Ward, 1972; Davies-Jones, 1973; Jischke and Parang, 

1974; Church et al., 1977 and 1979; Rotunno, 1977 and 1979; Monji, 1985; Haan et al., 2008; 

Hangan and Kim, 2008; Hashemi Tari et al., 2010; Liu and Ishihara, 2012; Zhang and Sarkar, 

2012; Refan and Hangan, 2016 and 2018 and Tang et al., 2018). The factor of 2 in the 

denominator of equation (2.26) was introduced by Davies-Jones (1973) in order to form a 

parameter, which is supposed to apply more specifically to atmospheric vortices (Church et al., 

1979). 

 

The non-dimensional number defined in equation (2.22) is known as the Reynolds number, Re, 

and describes the ratio of inertial to viscous forces in the fluid (Reynolds, 1883). Similar to 

traditional wind tunnel experiments, the full-scale Reynolds number cannot be matched in a 

tornado generator because unfeasibly high wind speeds would be required to compensate for 

the geometric down scaling. For that reason, similar to wind tunnel simulations, the Reynolds 

number similarity needs to be relaxed when comparing experimentally simulated tornado-like 

vortices to atmospheric tornadoes. However, above a critical Reynolds number, the fluid 

dynamics are assumed to be similar within a fully developed turbulent flow and therefore, 

independent from the Reynolds number. This assumption originates from the connection of the 

inverse of the Reynolds number to the momentum exchange by molecular motion in the 

dimensionless Reynolds-Averaged-Navier-Stokes-equation (e.g., Doering and Gibbon, 1995). 

Since the effect of molecular motion decreases in a turbulent flow field (at large Reynolds 

numbers) it can be argued that flow characteristics become independent of the Reynolds number 

if the Reynolds number is sufficiently large. However, only if this independence is proven at 
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critical measurement positions (e.g., locations of relatively low wind speed) over a reasonably 

large range of Reynolds numbers, generated data can be considered to be representative. With 

respect to the simulation of tornado-like vortices, this issue was address by Ward (1972), 

Davies-Jones (1976) and Church et al. (1979), who found that above a critical Reynolds 

number, the overall vortex flow structure remains only marginally dependent on the Reynolds 

number. Tang et al. (2018) showed that the first four moments of surface pressure 

measurements are independent from the Reynolds number. However, it is noted that for the 

latter study, the range of Reynolds numbers is relatively small (2.4 × 105 < Re < 3.9 × 105). 

Refan and Hangan (2017a) analysed the effect of the Reynolds number on time-averaged 

surface pressure measurements over a larger range (1.6 × 104 < Re < 2.0 × 106) and reported 

that time-averaged surface pressure measurements are independent from the Reynolds number 

above a critical Reynolds number. 

 

A detailed discussion regarding the design and geometric similarity of currently used tornado-

like vortex simulators can be found in section 3.2.1 and 3.2.2, respectively. The dynamic 

similarity, including the definition of swirl ratio and Reynolds number, plus their application 

and use in current tornado research is discussed in section 3.2.3 and 3.2.4.  
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3. LITERATURE REVIEW 

 

It is noted that the majority of section 3.1 has been published in Gillmeier et al. (2018) and is 

reproduced with the permission of the co-authors. 

 

 

3.1. A reflection on analytical tornado-like vortex 
models 

 

 

In this section, the flow and surface pressure characteristics of the Rankine, the Burgers-Rott, 

the Sullivan and the Baker vortex model, are reviewed in detail. 

 

 

3.1.1. The circumferential velocity component 

 

Unlike the Rankine, the Burgers-Rott and the Sullivan vortex model, the Baker vortex model 

has a shape parameter, γ, which enables the shape of the circumferential velocity profile to be 

varied. The effect of this parameter on the circumferential velocity field is illustrated in figure 

3.1 and table 3.1. It is perhaps worth noting that γ is related to the normalised radial distance (r̅) 

in the following way (r̅2=γ-1) (Baker and Sterling, 2017). Thus, to ensure results, which 
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describe the behaviour of a forced vortex at the centre, and a free vortex at larger radial 

distances, Baker and Sterling (2017) recommend setting γ = 2. 

 

 

Figure 3.1: Circumferential velocity component of the Rankine, the Burgers-Rott, the Sullivan and the Baker 
vortex model. 

 

Table 3.1: Ratios of uθ,max  and R of the corresponding vortex model compared to the Rankine vortex model. 
 

 
uθ,max,x

uθ,max,Rankine
 Rx

RRankine
 

x=Rankine 1.00 1.00 

x=Burgers 0.64 1.12 

x=Sullivan 0.32 2.29 

x=Baker (γ=2,  z=zm) 1.00 1.00 

x=Baker (γ=3,  z=zm) 0.64 1.41 

x=Baker (γ=5,  z=zm) 0.33 2.00 

 

Table 3.1 illustrates the ratio of uθ,max and R of the corresponding vortex model compared to the 

Rankine vortex model with input parameters of R = 10m and uθ,max = 10m/s. For the Baker 

vortex model a swirl ratio of SBaker = 1 is assumed and readings for the maximum 

circumferential velocity component are taken at z = zm. Table 3.1 shows that the Burgers-Rott 

and the Sullivan vortex model underestimate the actual input velocity by a factor of 0.64 and 
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0.32, respectively, and overestimate the core radius position, R, by a factor of 1.12 and 2.29, 

respectively. For the Baker vortex model with a shape parameter of γ = 2, the radius at which 

ur̅ attains a maximum, is identical to the core radius of the Baker vortex model and is also 

identical to the actual input core radius (rm = RBaker  = R). Hence, model parameters of the 

Rankine vortex model and the Baker vortex model for γ = 2 are identical (Table 3.1). With 

increasing γ, RBaker increases and the magnitude of uθ,max,Baker decreases (Table 3.1). For γ = 3, 

R and uθ,max of the Baker and the Burgers-Rott vortex model are similar and show a decrease in 

uθ,max by about 1/3 uθ,max,Rankine (Table 3.1). For γ = 5, R and uθ,max of the Baker and the Sullivan 

vortex model are similar and show a core radius, which is about 2 RRankine and a decrease in 

uθ,max by about 2/3 uθ,max,Rankine (Table 3.1). Thus, in what follows, care has been taken to 

normalise, by the relevant model values of each vortex model as opposed to a standard value; 

hence, radial distances are normalised by the corresponding core radius (Rmodel), velocity 

components are normalised by the corresponding circumferential velocity maximum 

(uθ,max,model) and surface pressures are normalised by the corresponding surface pressure 

minimum (pmin,model). 

 

Figure 3.1 shows that among the four vortex models, large differences in the circumferential 

velocity are found for r < Rmodel between the Sullivan and the Baker vortex model with a shape 

parameter of γ = 2 (Figure 3.1). This is not surprising as those vortex models represent two 

entirely different tornado flow types. The Sullivan vortex model represents a two-celled vortex, 

whereas the Baker vortex model, as shown here, shows a single-celled vortex structure. In a 

two-celled vortex, the downdraft reaches the ground and therefore, decreases uθ̅ close to r = 0, 

whereas the structure of a single-celled vortex shows a strong non-linear increase of uθ̅ inside 

the vortex core (r < Rmodel) (Figure 3.1). 
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For the Baker vortex model, close to the vortex core, uθ̅ increases at a slower rate with 

increasing 𝛾, and the circumferential velocity profile tends towards the shape of a two-celled 

vortex structure (Figure 3.1). For larger radial distances (r > Rmodel), uθ̅ of the Baker vortex 

model decreases at a slower rate compared to the other three models and largest differences are 

found between the Rankine vortex model and the Baker vortex model (γ = 2). Differences in 

the circumferential velocity of all vortex models decrease as r→∞. 

 

The effect of γ on the circumferential velocity component with height is shown in Figure 3.2. 

For relatively small vertical distances from the surface, uθ̅ increases at a slower rate the larger 

γ is. With increasing vertical distance, this behaviour reverses and uθ̅ increases faster with height 

as 𝛾 increases (Figure 3.2). Furthermore, figure 3.2 shows that independent from γ, uθ̅ increases 

to infinity for z→∞, albeit at different rates. It is noted that the Baker vortex model is the only 

model that takes a height dependence of the circumferential velocity component into account. 

However, it does not represent the vertical profile of the circumferential velocity observed in 

simulated tornado-like vortices or full-scale. For instance, Tang et al. (2018) showed that the 

circumferential velocity increases rapidly in the lowest heights with the maximum 

circumferential velocity occurring relatively close to the ground. With further increasing height, 

uθ was found to decrease and to remain relatively uniform in even greater heights. Refan et al. 

(2017b) showed that a similar behaviour was observed in five different full-scale tornadoes of 

different intensity and flow structure.  
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Figure 3.2: Circumferential velocity component of the Baker vortex model in different heights for different 𝛾 
values. 

 

Another parameter that influences the shape of the circumferential velocity profile of the Baker 

vortex model is the swirl ratio, SBaker. The magnitude of uθ increases as the value of SBaker 

increases. The position of the core radius and the shape of the circumferential velocity profile 

are independent from the chosen swirl ratio. For that reason, the effect of SBaker on the 

circumferential velocity profile cannot be seen when normalising uθ with uθ,max,Baker. 

 

 

3.1.2. Radial and vertical velocity components 

 

The Baker vortex model is not the only model to employ a shape component. As shown in 

equation (2.8) and (2.12), both, the Burgers-Rott and the Sullivan vortex model also include a 

‘constant’ to ‘adjust’ the vertical velocity component. In addition, both models have a 

‘viscosity’ parameter explicitly included in the circumferential velocity component (which is 

not evident in equations (2.10) and (2.14) due to the normalisation adopted and assuming the 

relationship given in equation (2.8.1)). If it is assumed that the viscosity parameter corresponds 
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to the kinematic viscosity of air (i.e., ν ~ 10-5 m2s-1 at 20 °C), then the calculated radial and 

vertical velocity components of the Burgers-Rott and the Sullivan vortex model are small. 

Hence, to ensure reasonable magnitudes of the velocity components (Figures 3.3 and 3.4), the 

viscosity needs to be increased by several orders of magnitude (Davies-Jones and Kessler, 

1974). Thus, in this context, the ‘viscosity’ parameter is essentially nothing more than a 

‘simple’ shape parameter. 

 

Figure 3.3 and figure 3.4 show the effect of the ‘viscosity’ parameter on velocity and pressure 

distributions of the Burgers-Rott and the Sullivan vortex model. For the Burgers-Rott vortex 

model, a larger ‘viscosity’ parameter results in larger vertical and radial velocities (Figure 3.3). 

Hence, the larger the value of ν becomes, the greater the radial inflow towards the vortex centre 

becomes and the stronger the vertical updraft gets (Figure 3.3). For the Sullivan vortex model, 

an increase in ν results in larger negative vertical velocities for r < RSullivan, and larger positive 

vertical velocities for r > RSullivan (Figure 3.4). For the radial velocity, the larger ν is, the stronger 

the radial outflow at r < RSullivan becomes, and the stronger the radial inflow for r < RSullivan gets 

(Figure 3.4). The radial distance at which radial and vertical velocity components change sign 

is not affected by changes in the ‘viscosity’ parameter (Figure 3.4). This means that the size of 

the downdraft region close to r = 0 is independent of ν. 
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Figure 3.3: Velocity components of the Burgers-Rott vortex model for different ‘viscosity’ values. 

 

 

Figure 3.4: Velocity components of the Sullivan vortex model for different ‘viscosity’ values. 

 

An additional shape parameter contained in the Sullivan vortex model is denoted as b. This 

parameter influences the distribution of radial and vertical velocity components and can be 

adjusted to model solutions for single-celled and two-celled vortices. Figure 3.5 illustrates the 

effect of b on the radial and vertical flow field of the Sullivan vortex model. For b = 0, radial 

and vertical velocity components of the Sullivan vortex model are identical to the solutions 

obtained from the Burgers-Rott vortex model. For b > 1, a two-celled flow structure can be 

obtained, which is indicated by negative vertical velocities close to the vortex centre. The 
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greater the magnitude of b gets, the larger the magnitude of the central downdraft becomes, and 

additionally, the further the downdraft region extends in the radial direction. For r > RSullivan, 

the vertical velocity converges to a value, which is independent of b, but dependent on the 

height. Radial outflow velocities inside the vortex core are larger for larger b values, and the 

larger b gets, the larger the region of radial outflow extends radially (Figure 3.5). Radial inflow 

velocities obtained with a lower b value increase slightly faster in magnitude close to the vortex 

core, but converge for larger radial distances (Figure 3.5). Hence, differences of b are only 

significant inside the vortex core. 

 

 

Figure 3.5: Velocity components of the Sullivan vortex model for different b values. 
 

The vertical velocity component of the Baker vortex model depends on the value of δ. The 

vertical velocity component at the vortex centre increases with increasing δ (Figure 3.6a). 

Additionally, figure 3.6b shows that the vertical velocity component increases faster with height 

as δ increases. 
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a)  

b)  

Figure 3.6: The effect of δ on the vertical velocity component of the Baker vortex model for different radial 
distances (a) and different heights (b). 

 

 

3.1.3. The static surface pressure distribution 

 

The surface pressure distribution of the Rankine, the Burgers-Rott and the Sullivan vortex 

model are shown in figure 3.7 for the case of ν = 0. This restriction implies that the surface 

pressure distributions are solely dependent on the circumferential velocity profile of the 

corresponding vortex model and equations (2.11) and (2.15) simplify to: 
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�̅�(�̅�, 𝑧̅) = �̅�(0,0) + ∫
𝑢𝜃̅̅ ̅̅ (𝑟′̅)

2

𝑟′̅

�̅�

0
𝑑𝑟 ′̅    (3.1) 

 

The last term on the right-hand side gives the largest contribution to the entire pressure 

distribution of those models. Thus, its value defines the magnitude of the surface pressure 

increase from the vortex centre towards larger radial distances and is determined by the area 

underneath the corresponding circumferential velocity profile shown in figure 3.1. For that 

reason, this term is largest for the Burgers-Rott vortex model and results in what maybe a 

physically unrealistic surface pressure increase from the vortex centre (Figure 3.7). For the 

Sullivan vortex model, the magnitude of this term is of the same order as that one of the Rankine 

vortex model. 

 

The entire pressure distribution of the Burgers-Rott and the Sullivan vortex model, depend on 

the contribution of the circumferential, radial and vertical velocity (Eq. 2.11 and Eq. 2.15) and 

therefore, is dependent on the ‘viscosity’ parameter. Also shown in Figure 3.7, is the effect of 

ν on the pressure distribution. The decrease in surface pressure with increasing radial distance 

originates from a combination of the vertical updraft and the potentially unrealistic increase in 

radial velocity, i.e., a̅
 2

2
(r̅ 2+4z̅ 2). Those terms are identical in the Burgers-Rott and the Sullivan 

vortex model; however, the different magnitudes of this decrease shown in figure 3.7 arise due 

to the normalisation, since RSullivan > RBurgers. 

 

The additional term in the surface pressure distribution of the Sullivan vortex model (i.e., -

18υ̅  2

r̅  2
(1-exp(-r̅  2))

 2
) describes the effect of the non-linear behaviour of radial and vertical 

velocity components inside the vortex core on the pressure distribution. The downdraft close to 
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the centre of the vortex increases the surface pressure and places the minimum pressure at the 

radial position where vertical and radial velocity components are zero (Figure 3.7).  

 

 

Figure 3.7: Surface pressure distribution of the Rankine, the Burgers-Rott and the Sullivan vortex model for 
different ‘viscosity’ values. 

 

In order to enable a meaningful comparison of surface pressure distributions, the ‘viscosity’ 

parameter (ν) and the ‘vortex stretching’ parameters (a̅) need to be adjusted in the 

circumferential velocity distribution and the surface pressure distribution of the Burgers-Rott 

vortex model. This ensures that the increase in surface pressure with increasing radial distance 

of the Burgers-Rott vortex model is of similar order to the one of the Rankine and the Sullivan 

vortex model. Thus, equation (2.10) needs to be modified by means of the relation given in 

equation (2.8.1) in the following way (Eq. 3.2) to obtain a circumferential velocity distribution 

of the Burgers-Rott vortex model, which is dependent on ν and a̅. 

 

𝑢𝜃̅̅ ̅(�̅�) =
1

�̅�
(1 − 𝑒𝑥𝑝 (−

𝑟𝑎 ̅ 𝑢𝜃,𝑚𝑎𝑥

2𝜈
)
2

)    (3.2) 
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Now, in order to ensure a physically reasonable surface pressure distribution, ν and a̅ need to 

be chosen independent from one another, which has the consequence that the input parameters, 

R and uθ,max vary (see Eq. 2.8.1). Unquestionably, this is physically not consistent, but seems 

to be the only way for the Burgers-Rott vortex model to generate a physically meaningful 

surface pressure increase with increasing radial distance. 

 

Figure 3.8 shows the surface pressure distribution for input parameters of R = 10m and uθ,max = 

10m/s for the Rankine, the Burgers-Rott and the Sullivan vortex model. It is worth noting that 

the ‘viscosity’ and ‘stretching’ parameter differ for different input parameters. The two-celled 

structure of the Sullivan vortex model and hence, the decreased circumferential velocity 

component close to the vortex core result in a relatively flat pressure distribution close to the 

vortex centre (Figure 3.8). The surface pressure distribution of the Burgers-Rott vortex model 

increases at a faster rate close to the vortex centre due to a rapid increase of the circumferential 

velocity in this region (Figure 3.8). The largest differences in the surface pressure distribution 

of the vortex models can be found inside the vortex core (r < Rmodel) and for radial distances 

around r/Rmodel = 1.5. This arises due to the relative difference between the circumferential 

velocity profiles predicted by the analytical vortex models (Figure 3.1). 
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Figure 3.8: Surface pressure distribution of the Rankine, the adjusted Burgers-Rott and the Sullivan vortex 
model.  

 

The static ‘surface pressure’ distribution and the effect of the swirl ratio on the shape of the 

distribution of the Baker vortex model is shown in figure 3.9. The ‘surface pressure’ distribution 

of the Baker vortex model falls to zero for r→∞; however, the ‘surface pressure’ minimum is 

not bounded for the Baker vortex model and decreases with increasing swirl ratio as shown in 

figure 3.9 from -1.99 ρur(rm,zm)2Nm-2 to -17.94 ρur(rm,zm)2Nm-2 for SBaker = 1 to 3 due to the 

term -
4.15SBaker

2(ln(1+z̅  2))
 2

(1+r̅  2)
 (c.f. equation (2.19)). The effect of this on the ‘surface pressure’ 

distribution is masked in figure 3.9 due to normalising the pressure distribution additionally 

with p(r,zm)min of the corresponding swirl ratio. This additional normalisation is applied to force 

all pressures to tend to -1 as r/R tends to 0. It is noted that some numerical and experimental 

data such as Natarajan and Hangan (2012) and Haan et al. (2008) show that the central surface 

pressure deficit decreases with increasing swirl ratio, which has been associated with a 

transition from a single-celled to a two-celled vortex as outlined in section 2.2. Although, the 

Baker vortex model in its two-celled form (Baker and Sterling, 2017) is able to represent this 

behaviour, for simplicity this is not incorporated here. 
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Figure 3.9: ‘Surface pressure’ distribution of the Baker vortex model for different swirl ratios (SBaker). 
 

The effect of the radial velocity profile on the ‘surface pressure’ (i.e., - 8r̅ 2z̅

(1+r̅ 2)
 2
(1+z̅ 2)

 2, c.f. 

equation (2.19)) is largest at the core radius (RBaker) since this is where the radial velocity attains 

its maximum for γ = 2. When this term is normalised by the value of p(r,zm)min for each 

corresponding swirl ratio, its magnitude decreases with increasing SBaker. As a consequence, 

figure 3.9 shows that with increasing SBaker, the ‘surface pressure’ increases at a faster rate with 

increasing radial distance. It is noted that this is also an artefact of normalising radial distances 

with the core radius (RBaker), which in the Baker vortex model is independent of SBaker and 

therefore, remains constant even though the swirl ratio changes. The last term in equation (2.19) 

represents the effect of vertical advection of radial velocity on the ‘surface pressure’ distribution 

(i.e., - 4ln(1+z̅  2)(1-z̅  2)

(1+r̅  2)
2
(1+z̅  2)

 2). When z = zm, this term reduces to zero.   
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3.2. A reflection on physical tornado-like vortex 
models 

 

 

In this section, the physical simulation of tornado-like vortices is examined and is evaluated 

with respect to the geometric and dynamic similarity of the generated flow fields. Physical 

simulators based at the University of Western Ontario, Texas Tech, Iowa State and Purdue are 

examined because those simulators cover the variety of physical simulators that are currently 

used to assess tornado-like flow fields experimentally. All of those simulators are based on the 

principle introduced by Ward (1972), i.e., a tornado-like wind is created by generating vorticity 

in the presence of a suction updraft (as outlined in section 2.5). For that reason, in addition to 

the previously mentioned simulators, the original Ward simulator (Ward, 1972) is presented. It 

is noted that physical tornado research is also conducted at other institutes; however, the design 

of their simulators is similar to either one of those, which will be presented in the following. 

For all simulators, the central suction updraft is introduced in a similar way; however, the way 

how vorticity is introduced to the generated flow fields differs. 

 

 

3.2.1. Existing physical tornado-like vortex generators 

 

A variety of large-scale (> 10m), medium-scale (1m - 5m) and small-scale (< 1m) physical 

tornado simulators have been built over the last years. The currently largest facility to generate 

tornado-like vortices is the large-scale WindEEE Dome at the University of Western Ontario 

(Refan and Hangan, 2018; Figure 3.10a). The large size of this facility is helpful in order to 
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simulate tornado-like vortices with a relatively large geometric scale. This is particularly 

important when detailed wind field measurements or wind load analyses are of interest because 

the spatial resolution of velocity / surface pressure measurements can increase with decreasing 

geometric scaling factor. Furthermore, assuming similar velocity magnitudes, a lower 

geometric scaling factor results in larger Reynolds numbers, still significantly lower than in the 

atmosphere, but more similar to full-scale tornadoes than in other simulators (Refan and 

Hangan, 2018). 

 

In WindEEE, rotation is introduced by means of adjustable louvers, which are installed in front 

of fans surrounding the convergence chamber (H1 = 0.8m, D1 = 25m). The introduced vorticity 

is concentrated and stretched vertically in the convection chamber (H2 = 4m, D2 = D1) by an 

updraft, which is generated by fans on top of a bell-mouth. It is at present unclear how the 

rotation and the associated flow disturbance introduced by the fans surrounding the 

convergence chamber affects the characteristics of generated vortices. To allow changes of the 

aspect ratio, the diameter of the bell mouth can be altered from D3 = 1.6m - 4.5m. Furthermore, 

the generated vortex can be translated over a distance of 5m with a translation speed of up to 

2m/s. 

 

VorTECH is a large-scale tornado-like vortex simulator at Texas Tech University (Tang et al., 

2018; Figure 3.10b). Fans on top generate a central updraft through an updraft hole (D3 = 4m) 

and guide vanes surrounding the convergence chamber are used to introduce rotation. In order 

to minimise any possible unwanted flow disturbance, guide vanes have been designed based on 

the shape of an aerofoil (Mayer, 2009). The aspect ratio can be changed by moving the upper 
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cylinder (H2 ~ 4m, D2 = 4m) into the lower one (D1 = 10.2m) and thereby changing H1 from 

1m to 2m. 

 

TTU-VSII is a small-scale tornado-like vortex simulator at Texas Tech (Figure 3.10c) and is 

described in Mishra et al. (2008a). A fan on top draws air through the simulator, generating an 

updraft through the updraft hole (D3 = 0.38m), which is defined in-between the height-

adjustable convergence chamber (H1 = 0.06m – 0.19m) and the convection chamber. Rotation 

is introduced by means of slotted jets, equally spaced around the convergence chamber. A 

vortex blower is blowing air through the slotted jets; hence, circulation can be controlled 

independent from the updraft intensity. At present it is not known how the velocity of those jets 

and the associated flow disturbance affects the characteristics of generated vortices. A flow 

rectifier in front of the fan on top of the simulator removes any vorticity potentially introduced 

into the simulator’s chamber. 

 

The design and construction of the medium-scale tornado simulator at the Iowa State University 

(WIST, Figure 3.10d) is explained in Haan et al. (2008). A rotating forced downdraft technique 

is used to introduce rotation to the flow field. This technique introduces rotation in greater 

heights by means of guide vanes in a pipe system, which guides the introduced rotation 

downwards to the simulator’s inlet. This technique is supposed to replicate the potentially 

important role of the rear flank downdraft close to the surface when the tornado forms (Haan 

et al., 2008). However, the air transported through the guide vanes seems to be affected by the 

fan’s rotation and thereby possibly affects the rotation introduced at the simulator’s inlet. The 

potential effect of this on the generated vortex has not been investigated. 
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The simulator consists of a convergence region, which is adjustable in height (H1 ~ 0.23m – 

1.52m, D1 = 5.2m) and a fixed convection region (H2 ~ 1m, D2 ~ 4.9m). The updraft diameter 

(D3) is 1.83m and a flow rectifier is installed at the outlet of the convection chamber to remove 

vorticity introduced by the rotating fan. Similar to the design of the WindEEE simulator also 

the design of WIST allows the simulation of translating vortices with a translation speed of up 

to 0.61m/s for a distance of 3.35m along the ground plane. 

 

In order to evaluate if simulated translation speeds in WindEEE and WIST are similar to what 

has been observed in atmospheric tornadoes, an additional velocity ratio needs to be introduced. 

In the following, the translation velocity is assessed in relation to the circumferential velocity 

maximum of the corresponding vortex. Despite the large variability of circumferential velocity 

maxima and translation speeds observed in atmospheric tornadoes, averaged values were found 

to be roughly around 60m/s and 15m/s, respectively (Alexander and Wurman, 2008). In other 

words, on average, the translation velocity of full-scale tornadoes is about four times smaller 

than the circumferential velocity maxima. The design of WindEEE seems to allow the 

simulation of translating vortices with a similar velocity ratio only for relatively low swirl ratios 

(Refan and Hangan, 2018). In WIST, circumferential velocity maxima seem to be too large / 

translation velocities are not large enough in order to comply with the atmospheric velocity 

scales (Haan et al., 2008). Therefore, it is questionable if the simulated translation has a similar 

effect on the generated vortex than what is found in full-scale. 

 

Another medium-scale simulator was developed at Purdue University (Church et al., 1977; 

Figure 3.10e). It introduces rotation by means of a rotating mesh screen surrounding the 

convergence chamber, which is adjustable in height (H1 = 0.17m – 0.61m, D1 = 3.04m). 
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Introduced vorticity is concentrated and stretched vertically by a fan on top of the convection 

chamber (H2 ~ 1.66m, D2 = 2.84m). A flow rectifier on top is used to remove any unwanted 

vorticity introduced by the fan. The updraft hole is defined between the convergence and 

convection chamber and has an adjustable diameter of D3 = 0.40m – 1.22m. 

 

The design of the simulator at Purdue University is very similar to the original medium-scale 

simulator introduced by Ward (1972) (Figure 3.10f). The general working principle of the Ward 

tornado-like vortex generator is outlined in section 2.5. In the following, relevant additional 

information is provided. The convection chamber has a diameter of 1.83m (D2) and a height of 

0.92m (H2). The convergence region is 2.44m wide (D1). The aspect ratio can be varied by 

changing the height of the convergence chamber (H1) from 0.31m to 0.61m and the updraft 

radius (D3) from 0.62m – 1.24m (Jischke and Parang, 1974). 
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a) 

 b)  

c)  

d)

 

e)  

f)

 

 
Figure 3.10: Illustration of existing physical tornado-like vortex generators. WindEEE and VorTECH are shown 

in a) and b), respectively, whereas, TTU-VSII, WIST and Purdue are illustrated in c), d) and e). The original 
Ward simulator is illustrated in f). Corresponding illustrations have been adapted from corresponding references 

referred to in the text. 
 

One of the biggest differences between the updraft generation in different simulators seems to 

be the axis alignment of fans, which is horizontal in WindEEE and VorTECH (Figure 3.10a 

and 3.10b) and vertical in TTU-VSII, WIST and Purdue (Figure 3.10c -3.10e). In the Ward 

simulator, a single fan with horizontal axis is responsible for the vertical air movement (Figure 
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3.10f). This design is assumed to represent an overlying straight-line cross flow (Church et al., 

1979) and therefore, potentially simulates conditions similar to what might prevail at the top of 

atmospheric tornadoes (Ward, 1972). As a result, the generated pressure deficit on top of the 

convection chamber is not uniform and therefore, the flow is encouraged to move towards the 

direction of the fan as illustrated in figure 3.10f. With a design like this, it is suggested that 

simulated vortex characteristics might depend significantly on H2 as this length defines the 

distance between the non-uniform pressure deficit and the generated vortex. 

 

The design and arrangement of the fan or fans in other simulators (Figure 3.10a-3.10e) suggests 

the intention of the generation of a uniform pressure deficit across the top of the convection 

chamber. This would consequently result in a uniform flow updraft. However, a potential 

problem arising for fans with horizontal axis alignment could be that the generated surface 

pressure deficit is not uniformly distributed and instead largest pressure deficits are potentially 

sifted towards the individual location of fans, which in turn would result in a slightly tilted 

updraft, directed towards the fans. 

 

In view of the relatively different geometric designs of those simulators, it is surprising how 

little information there is concerning the design’s impact on the generated flow field. An 

important question to ask is whether vortices simulated in different simulators can be compared. 

In order to reflect on this question, the geometric similarity between introduced simulators will 

be discussed in detail in the following section. 
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3.2.2. Geometric similarity 

 

None of the previously introduced tornado simulators have the same design or controlling 

geometric boundary conditions, which consequently leads to differences in their non-

dimensional parameters. For that reason, a meaningful comparison of results obtained in 

different simulators is challenging. Table 3.2 illustrates values / ranges of non-dimensional 

geometric parameters introduced in table 2.2 for the presented simulators. 

 

Table 3.2: Geometric non-dimensional relations for WindEEE, VorTECH, TTU-VSII, WIST, Purdue and Ward. 
 

 H1
H2
⁄  

H1
1
2 D

1

⁄  H1
1
2 D

2

⁄  a 
H2

1
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1

⁄  H2
1
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2

⁄  H2
1
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3

⁄  
1
2 D

1
1
2 D

2

⁄  
1
2 D

1
1
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3

⁄  
1
2 D

2
1
2 D

3

⁄  

WindEEE 0.2 0.1 0.1 
0.4 – 
1.0 

0.3 0.3 
1.8 – 
5.0 

1.0 
5.0 - 
15.6 

5.0 - 
15.6 

VorTECH 
0.3 – 
0.5 

0.2 – 
0.4 

0.5 – 
1.0 

0.5 – 
1.0 

0.8 2.0 2.0 2.6 2.6 1.0 

TTU-VSII - - - 
0.3 – 
1.0 

- - - - - - 

WIST 
0.2 – 
1.5 

0.1 – 
0.6 

0.1 – 
0.6 

0.3 – 
1.7 

0.4 0.4 1.1 1.1 2.8 2.7 

Purdue 
0.1 – 
0.4 

0.1 – 
0.4 

0.1 – 
0.4 

0.3 – 
3.1 

1.1 1.2 
2.7 - 
8.3 

1.1 
2.5 – 
7.6 

2.3 – 
7.1 

Ward 
0.3 – 
0.7 

0.3 -
0.5 

0.3 – 
0.7 

0.5 – 
2.0 

0.8 1.0 
1.5 – 
3.0 

1.3 
2.0 – 
3.9 

1.5 – 
3.0 

 

Ward (1972) showed that the generated vortex structure can depend on the aspect ratio, a. 

Maybe for that reason, the aspect ratio is the geometric relation, which received most attention 

when designing physical tornado-like vortex simulators. The design of all simulators presented 

in table 3.2 allows the simulation of vortices with a similar aspect ratios (0.5 < a < 1), whereas 

values of other geometric relations are widely spread and the effect of those geometric 

differences on the generated vortex flow field are to date largely unknown. In all simulators, 
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the aspect ratio can either be varied by changing the convergence chamber height (e.g., 

VorTECH, TTU-VSII and WIST) or the updraft diameter (e.g., WindEEE). Solely, the design 

of the simulator at Purdue University and the Ward simulator allow individual changes of both 

length scales and thereby enable the simulation of vortices with a relatively large aspect ratio 

range (Table 3.2). 

 

It also needs to be noted that the location of the updraft radius (D3) is defined at different 

locations in different simulators. For example, if the design of the simulator includes a surface 

between convergence and convection chamber, D3 is defined at the surface opening. This is the 

case for TTU-VSII (Figure 3.10c), Purdue (Figure 3.10e) and the Ward simulator (Figure 

3.10f). For other simulators, the updraft diameter is defined as the diameter at the outlet on top 

of the convection chamber (e.g., WindEEE, Figures 3.10a; VorTECH, Figures 3.10b and WIST, 

Figures 3.10d). This highlights the necessity of clarifying specific requirements for the 

simulation of vortices, which are supposed to be geometrically similar. A uniform definition 

for the location of geometric parameters is required to make results obtained in different 

simulators comparable. Relatively large differences in the geometric design of different 

simulators (Table 3.2) give reason to discuss if similar flow characteristics can be generated in 

those geometrically different simulators. 

 

The intention of the simulator designed by Ward (1972) was to simulate the sub-cloud inflow 

layer in the lowest chamber and convective processes in a thunderstorm in the top chamber. 

The chambers are separated by a surface, which prevents convection from outside the central 

updraft region and acts similar to a stable layer of air in the atmosphere (Church et al., 1979). 

However, as outlined in section 2.1, significant vertical motion occurs everywhere in a 
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thunderstorm. Therefore, stable atmospheric conditions as proposed by Ward (1972) do not 

exist at this location in the thunderstorm. For simulators without this surface the question arises, 

if a convection chamber is essential for the simulation of tornado-like vortices or if it is enough 

to ‘simply’ provide a pressure deficit on top of the convergence chamber? (This question is 

formally addressed in section 6.3.2).  

 

Furthermore, it was noted in section 2.5.1 that there are more geometric length scales in those 

physical tornado-like vortex generators, which could potentially have an effect on the simulated 

flow field. For instance, another open question is whether the shape and number of guide vanes 

affect the simulated flow field. Appendix A briefly addresses the latter. Findings presented in 

appendix A suggest that in addition to quantifiable geometric differences illustrated in table 3.2, 

it also seems likely that the chosen way of mechanically introducing rotation to the flow may 

potentially affect the flow structure of the generated vortices. For instance, Zuh et al. (2016) 

analysed the effect of the rotating downdraft on the flow field by comparing simulations 

conducted in WIST with simulations conducted in a simulator based on the design introduced 

by Ward (1972) and found out that dynamic vortex structures depend significantly on the way 

of how rotation is introduced to the flow field. 

 

 

3.2.3. Dynamic similarity 

 

As outlined by Davies-Jones (1973) and discussed in previous sections, the flow field is also a 

function of the swirl ratio, S, and the Reynolds number, Re. Table 3.3 shows the definition of 

Reynolds numbers and swirl ratios used to describe the dynamic non-dimensional properties of 
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simulations conducted in the previously introduced physical tornado simulators. Although, the 

swirl ratio is acknowledged as an important parameter for the characterisation of tornado-like 

flow field structures, its definition is based on the simulator’s design and therefore, is dependent 

on the specific geometric configuration of the corresponding simulator (Refan and Hangan, 

2016). 

 

Table 3.3: Definitions of Reynolds numbers and swirl ratios for WindEEE, VorTECH, TTU-VSII, WIST, 
Purdue and Ward. 
 

Simulator Reference Re S 

WindEEE 
Refan and Hangan 
(2016 and 2018) Re=

Qoutlet
2πH1ν

 S=
Γmax

1
2 D3

2Qoutlet
= 

VorTECH Tang et al. (2018) Re=
Q

r=1
2D

3

2πH1ν
 S=

Γ
r=1

2D
3

1
2 D3

2Q
r=1

2D
3

 

TTU-VSII Mishra et al. (2008a) - S=
uθ(r,z)

2aur(r,z)
 

WIST 
Haan et al. (2008 and 

2017) Re=
Qoutlet
2πH1ν

 S=
ΓmaxR
2Qoutlet

 

Purdue 
Church et al. (1977 

and 1979) Re=
Qinlet

2πH1ν
 S=

Γinlet
1
2 D3

2Qinlet
=

uθ,inlet

2aur,inlet
=

tan(α)
2a

 

Ward 
Jischke and Parang 

(1974) 
- S=tan(α) 

 

Reynolds numbers and swirl ratios defined in table 3.3 are based on equations (2.21) and (2.22), 

respectively; however, slightly different definitions are adopted for each simulator. Differences 

in formulae largely originate from different measurement locations in those simulators to 

estimate the flow rate through the simulator, Q, and the circulation at a certain radial distance, 

Γ. However, generated vortices in different simulators can only reveal similar flow 

characteristics if swirl ratios are similar and have been defined in the same way. In return, this 

means that vortices simulated in different simulators can reveal completely different flow 

structures even though swirl ratios are identical. To the best of the author’s knowledge, this 
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important result has hitherto not been formally acknowledged. This can result in the transition 

of flow characteristics from, e.g., a single-celled vortex to a two-celled vortex, to occur at 

significantly different swirl ratio values. Liu and Ishihara (2012) showed that swirl ratios 

obtained for the same vortex can differ by a factor of 3.6 if swirl ratios are defined at different 

locations in the flow field. This highlights how important it is to document in detail, not only 

the geometric design of the simulator, but also the methodology how Γ and Q are estimated in 

the flow field in order to allow a reasonable comparison between vortices generated in different 

simulators. 

 

Keeping differences arising due to different flow rate definitions aside, swirl ratios presented 

in table 3.3 differ because of different radial distances from the vortex centre at which the 

circulation is estimated. Large differences in the circulation can be expected for different radial 

distances due to a strong dependence of the circumferential velocity component on the radial 

distance. Therefore, the swirl ratio is strongly dependent on the radial distance from the vortex 

centre. In order to form a non-dimensional parameter with Q and Γ, the circulation needs to be 

multiplied with a geometric length scale. It is noted that any geometric length scale in the 

simulator could have been chosen in the numerator of the swirl ratio. At Purdue and in 

VorTECH, D3 was chosen in order to include the aspect ratio in the definition of the swirl ratio. 

Evaluating the swirl ratio defined by Tang et al. (2018) at any radial / vertical position in the 

simulator, the equation given by Mishra et al. (2008a) is obtained. If the swirl ratio is defined 

at the circumference of the convergence chamber, the equation given in Mishra et al. (2008a) 

transforms into the equation provided by Church et al. (1977) and the guide vane angle relative 

to the radial direction can be used instead of the ratio of circumferential to radial velocity 

component (Davies-Jones, 1973). A similar approach is followed in the Ward simulator where 
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a wind vane, installed at the simulator’s inlet, is used in order to evaluate the horizontal inflow 

angle (α) and therefore, the swirl ratio. 

 

In WindEEE and WIST, the circulation is defined at the position where the circumferential 

velocity component attains its maximum (Γmax). This introduces a new vortex dependent length 

scale to the swirl ratio – the vortex core radius, R, which is not necessarily needed to guarantee 

geometric / dynamic similarity. There are circumstances where a definition based on the core 

radius is of benefit, for instance, when a comparison to atmospheric tornadoes is of interest, as 

the core radius is a parameter, which can at least be measured / estimated in an atmospheric 

vortex, whereas the equivalent for corresponding simulator length scales may not be that 

straightforward to determine. However, with the flow rate being defined at the updraft hole, 

swirl ratios in WindEEE and WIST become also dependent on D3. 

 

All of the above highlights how strongly the swirl ratio depends on the geometric design of the 

corresponding simulator. Therefore, flow field similitude of vortices simulated in different 

physical tornado-like vortex simulators can only be achieved if geometric and dynamic 

similarity is guaranteed. This is not possible for any of the previously introduced simulators.  

 

Furthermore, it is noted that the circulation is not only dependent on the radial distance, but also 

the height, which raises the question of how representative the definition of the swirl ratio based 

on a single measurement position is in order to guarantee dynamic similarity between two flow 

systems?  
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Swirl ratios of some flow fields simulated for this work are calculated in appendix B and 

associated challenges are discussed in detail. 

 

Differences in the definition of Reynolds numbers presented in table 3.3 originate from 

differences in the location where measurements were taken in order to estimate the flow rate 

through the system. In WindEEE and WIST for example, the flow rate is estimated by a spatial 

average of vertical velocities through the updraft hole, whereas in VorTECH, an estimation of 

the flow rate is provided by a height average of radial velocity components in the convergence 

chamber at a radial distance equal to the radius of the updraft hole (r = ½D3). At Purdue, the 

flow rate was estimated by measuring the radial inflow velocity at the circumference of the 

convergence chamber.  

 

In theory, the flow rate through the system is assumed to be constant due to mass conservation 

and therefore, in theory, should be independent from the measurement position in the simulator 

(assuming that no losses occur); however, Zhang and Sarkar (2012) observed a decrease in 

flow rate with increasing swirl ratio, which gives reason to suggests that friction losses occur 

somewhere between the fan and the measurement position. Therefore, positions where 

measurements are taken to estimate Q need to be chosen wisely and documented precisely. A 

potentially complex interaction between the fans introducing vorticity and the fans generating 

the suction updraft may be expected for those simulators where two forcing mechanisms are 

installed (e.g., WindEEE, TTU-VSII and Purdue). In those simulators, estimations of the flow 

rate might depend even more on the measurement location than in other simulators with only 

one forcing mechanism. Furthermore, it is noted that instead of H1 in the denominator of the 
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Reynolds number (Table 3.3), any length scale in the simulator could have been chosen in order 

to form a non-dimensional Reynolds number. 

 

 

3.2.4.  Full-scale equivalents to geometric and dynamic 
model parameters 

 

 
In order to reproduce full-scale tornado flows in a geometrically scaled physical simulator, 

geometric and dynamic similarity needs to be ensured in order to draw meaningful conclusions 

from model results. However, it is extremely difficult to define equivalent length scales, a flow 

rate and circulation that are representative to naturally occurring tornadoes. Nevertheless, 

Church et al. (1979) published ‘typical’ values for the required parameters, which are ‘most 

likely’ to occur (Table 3.4a and 3.4b). The expressions ‘typical’ and ‘most likely’ are 

misleading given the high variability in naturally occurring tornadoes. Table 3.4c illustrates the 

possible atmospheric range of non-dimensional geometric relations introduced in table 2.2 

based on values presented in table 3.4a, assuming that either smallest values or largest values 

occur together, whilst figure 3.11 shows an attempt to illustrate the approximate corresponding 

locations of geometric length scales in a full-scale tornado / thunderstorm. It is acknowledged 

that the scaling in figure 3.11 is highly subjective. 
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Table 3.4: Typical geometric (a) and dynamic scales (b) and geometric relations (c) of atmospheric tornadoes. 
 

a) geometric scales 
(Church et al., 1979) length [km] 

b) dynamic scales 
(Church et al., 1979) [-] 

 H1 0.5-2  Re 109-1011 
 H2 5-16  S 0.05-2 
 D1 10-20    

 D2 6-12    

 D3 2-6    
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Figure 3.11: Illustration of a supercell storm in Kansas, US and a tornado in Colorado, US. In addition, potential 
locations of corresponding geometric length scales are illustrated. Pictures were taken by Cammie Czuchnicki 

and Justin Hobson and are adapted from shutterstock image ID 470220380 and 303480896, respectively. 
 

 

3.2.4.1. Geometric similarity and scaling 

 

In order to match the atmospheric ratios given by Church et al. (1979), H2 needs to be 

approximately 6.7, 0.6, 0.7 and 2 times larger than H1, D1, D2, and D3, respectively. In a small 
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or medium-scale physical simulator, this is only feasible if H1, and D3 are relatively small. If 

those parameters are relatively small, this also means that the generated vortex is likely to be of 

relatively small size, which consequently results in a relatively large geometric scaling factor 

in the order of 1000 - 5000, which is about an order of magnitude larger than what is usually 

used in wind tunnel simulations. For that reason, in most physical simulators ratios related to 

H2 are out of range and consequently, most simulators underestimate the extent of H2 given by 

Church et al. (1979) (Table 3.2 and Table 3.4c). 

 

Due to challenges in determining full-scale geometric parameters and the unlikelihood of all 

geometric parameters in a physical simulator scaling up to a specific atmospheric tornado, the 

core radius, R, is frequently used to geometrically scale the flow field (e.g., Hangan and Kim, 

2008; Mishra et al., 2008a; Haan et al., 2008; Zhang and Sarkar, 2012; Sarkar et al., 2014; 

Refan et al., 2014 and Refan and Hangan, 2018). By using the core radius to normalise radial 

and vertical distances, it is assumed that R is a function of all other geometric lengths scales in 

a simulator. However, it is noted that geometric similarity as defined by Davies-Jones (1973) 

is not guaranteed in those simulations. Nevertheless, those simulations have demonstrated that 

it is possible to generate vortices that appear to possess some similar characteristics to those 

found in atmospheric tornadoes. 

 

Hangan and Kim (2008) introduced a geometric scaling method based on two length scales 

closely related to the flow field of the tornado – the core radius, R, and height, Z, which are 

defined at the radial distance and height from the vortex centre where the circumferential 

velocity component attains its overall (global) maximum. This approach has the advantage of 

relying on parameters, which could theoretically be measured in real tornadoes; however, 
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determining R and Z is not without difficulties because a detailed knowledge of a significant 

component of the flow field is required in order to determine the overall velocity maximum and 

typically, in full-scale tornadoes, only a couple of heights are measured. Hence, uncertainties 

in the definition of R and Z are difficult to quantify, but are reflected in the geometric scale. 

Furthermore, Alexander and Wurman (2008) highlighted a relatively large uncertainty 

associated with the measurement height of mobile Doppler radar data, which introduces an 

additional uncertainty to those values. Especially for wind load analyses, an accurate 

representation of the geometric scaling factor is crucial, as it has to match both, the geometric 

scale of the tornado and the geometric scale of the modelled structure. When the size of the core 

radius of naturally occurring tornadoes is used to geometrically scale the modelled flow 

structure, large geometric scaling factor between 1550 and 5000 are obtained (e.g., Mishra et 

al., 2008a and 2008b; Yang et al., 2011 and Refan et al., 2014). The large geometric scaling 

factor makes it impossible to measure wind loads on common size houses as the model 

equivalent to a full-scale structure of approximately 10 × 10 × 10 metres would only be about 

4 × 4 × 4 millimetres in the simulator. This small size makes a sensible assessment of the wind 

field around the structure and wind loads on the structure impossible. A different scaling 

approach was adapted by Haan et al. (2008 and 2010), Hu et al. (2011), Sabareesh et al. (2012 

and 2013a) and Case et al. (2014). In this approach, the size of the simulated vortex core is 

used to geometrically up-scaled the simulated flow field to a hypothetical atmospheric tornado, 

assuming a more reasonable geometric scaling factor of ~100. The problem with this approach 

is that it potentially leads to the simulation of hypothetical atmospheric vortices, which are 

relatively small.  
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In order to allow the simulation of tornado-like vortices with a more acceptable geometric scale, 

larger testing facilities have been built in recent years. In the currently largest physical tornado-

like vortex simulator – the WindEEE Dome at the University of Western Ontario, tornado-like 

vortices of approximately 4.5m width and 4m height can be simulated (Refan and Hangan, 

2018). This leads to geometric scaling factors of approximately 10 – 100 for atmospheric 

vortices with core radii between 45m - 450m. 

 

The geometric scale of some simulations conducted for this work and associated challenges are 

addressed in detail in appendix C. 

 

3.2.4.2. Dynamic similarity 

 

Particularly challenging is also the definition of a full-scale swirl ratio (Table 3.4b) because 

extensive information of the flow field is required in order to estimate the flow rate and 

circulation in a similar way to how it is done in physical simulators. Different to modelled 

tornado-like vortices, those parameters can change drastically within the lifetime of a tornado 

because of its transient and unsteady nature. With respect to different swirl ratio definitions 

presented in table 3.3, defining the circulation and flow rate at the core radius would allow a 

swirl ratio definition based on a parameter, which can at least be measured in atmospheric 

tornadoes. 

 

The combination of geometric and dynamic differences between model-scale and full-scale is 

reflected in the Reynolds number. According the Church et al. (1979), the atmospheric 

Reynolds number is approximately in the order of 109 – 1011 (Table 3.4b), whereas model 
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Reynolds numbers are roughly in the order of 104 - 106 (e.g., Refan and Hangan, 2018). This 

once more highlights the Reynolds number issue addressed in section 2.5.1. 

 

In addition to the geometric and dynamic similarity as defined by Davies-Jones (1973), it is 

noted that parameters such as surface roughness and the tornado’s translation speed strongly 

influence the near surface flow field (e.g., Lewellen et al., 2000; Sarkar et al., 2006; Sengupta 

et al., 2008; Dessens, 1971; Leslie, 1977; Monji and Yunkuan, 1989; Natarajan and Hangan, 

2012 and Sabareesh et al., 2012 and 2013b). 

 

 

3.3. The research gap 

 

In recent years, analytical calculations and physical simulations have been undertaken in order 

to analyse tornado flow fields. With the variety of atmospheric conditions present in real 

tornadoes, it is not surprising that physical tornado generators with different geometric designs 

have been built. Due to the limited amount of full-scale data available for validation, but also 

due to the limitations associated with existing full-scale data sets, evaluating the performance 

of those models is difficult. Maybe for that reason, it has tended to been forgotten that results 

obtained from simplified models are restricted by their assumptions and controlling boundary 

conditions. In order to recall this dependence in the context of tornado research, this work 

critically reviews the assumptions made in order to model tornadoes analytically and 

experimentally. A critical comparison of results obtained from both modelling techniques is 

shown in section 5 and the extent to which experimental results depend on certain geometric 

specifications of the simulator is presented in section 6.  
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4. EXPERIMENTAL TORNADO 
SIMULATION AT UoB 

 

 

It is noted that parts of section 4.1 and 4.3 have been published in Gillmeier et al. (2016 and 

2018). Different normalisation methods (section 4.2) have been presented by the author in 

Gillmeier et al. (2016) and the majority of section 4.4 has been published in Gillmeier et al. 

(2018). For all cases, the work is reproduced with the permission of the authors. 

 

 

4.1. Physical tornado simulators 

 

Two tornado-like vortex simulators of different size have been built at the University of 

Birmingham (UoB). The medium-scale simulator, hereafter referred to as M1, is illustrated in 

figure 4.1a and has an approximate size of 3m × 3m. The small-scale simulator, hereafter 

referred to as S1, is illustrated in figure 4.1b and is approximately 1m × 1m. Both simulators 

are based on the design introduced by Ward (1972). The geometric design of both simulators 

results in an aspect ratio of a = 2, although, it is noted that other relative sizes are not constant 

(Table 4.1). In addition, similar to the geometric design of the simulators introduced in section 

3.2.1, the length of the convection chamber (H2) is underestimated compared to its ‘typical’ 

atmospheric length provided by Church et al. (1979) (Table 3.4a). Furthermore, it is highlighted 
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that the aspect ratio is relatively large compared to the previously introduced simulators (Table 

4.1). Only the design of the simulator at Purdue University and the Ward simulator allow the 

simulation of tornado-like vortices with a similar aspect ratio (Table 3.2). 

 

 

Figure 4.1: An illustration of the medium-scale (M1) (a) and small-scale (S1) (b) tornado-like vortex generator at 
UoB. 

 

In order to analyse the effect of certain geometric parameters on the generated vortex flow 

characteristics, the design of simulator S1 was modified in the following way: 

 

 The convection chamber height (H2) was reduced from H2 = 0.40m (S1) to H2 = 0.25m (S2) 

to H2 = 0.10m (S3), whilst all other geometric lengths were kept constant.  

 The convergence chamber height (H1) was reduced from H1 = 0.30m (S1) to H1 = 0.225m 

(S4), whilst all other geometric lengths were kept constant. The reduction of H1 results in 

an aspect ratio of 1.5 in S4. 

 

a) 

 

 

 

 

 

b) 
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Corresponding geometric length scales for simulators S2, S3 and S4 are proved in table 4.1.  

 

Table 4.1: Geometric non-dimensional relations of the medium-scale simulator M1 and the small-scale 
simulators S1 – S4. 
 

 

As outlined in section 2.5.1, the dynamic similarity of simulated vortices is controlled by the 

Reynolds number, Re, and the swirl ratio, S. In this work, the following definitions have been 

adopted for the Reynolds number (Eq. 4.1) and the swirl ratio (Eq. 4.2), respectively. 

 

𝑅𝑒 =
2𝑄

𝜈𝐷3
       (4.1) 

 

𝑆 =
𝑡𝑎𝑛 (𝛼)

2𝑎
       (4.2) 

 

The diameter of the updraft hole was chosen as geometric length scale in the denominator of 

equation (4.1) because the flow rate was estimated at the updraft hole (Eq. 4.3). Therefore, the 

updraft radius is assumed to be the most characteristic length scale to determine the Reynolds 

number. 

𝑄 = 𝜋 (
1

2
𝐷3)

2

𝑢𝑧,𝑜𝑢𝑡𝑙𝑒𝑡     (4.3) 
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M1 0.5 0.6 0.7 2.0 1.1 1.3 4.0 1.2 3.6 3.1 

S1 0.8 0.7 1.0 2.0 0.9 1.3 2.7 1.5 3.0 2.0 

S2 1.2 0.7 1.0 2.0 0.6 0.8 1.7 1.5 3.0 2.0 

S3 3.0 0.7 1.0 2.0 0.2 0.3 0.7 1.5 3.0 2.0 

S4 0.6 0.5 0.8 1.5 0.9 1.3 2.7 1.5 3.0 2.0 
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where, uz,outlet was calculated based on a spatial average of velocity measurements taken across 

the diameter of the updraft hole (D3). 

 

Whilst it is acknowledged that a number of definitions exist for the swirl ratio, equation (4.2) 

is adopted in this research since it is the version, which has been widely used in ‘Ward-type’ 

simulators and thus is helpful in undertaking relative comparisons between such simulators. For 

the sake of completeness, values of swirl ratios defined at different locations in the flow fields 

measured in M1 and S1 are presented and briefly discussed in appendix B. 

 

For this work, velocity and surface pressure fields have been measured for three vortices of 

different swirl ratio (i.e., S = 0.14, S = 0.30 and S = 0.69) in simulator M1 and S1, and for two 

vortices of different swirl ratio (i.e., S = 0.30 and S = 0.69) in simulator S2, S3 and S4. 

 

 

4.2. Normalisation of results 

 

It has been shown in section 2.5.1 that the flow field in a tornado-simulator depends amongst 

other parameters on the flow rate through the simulator. For that reason, the obtained results 

have to be normalised in order to allow a reasonable comparison between flow structures 

obtained in different simulators. Normalised results show the behaviour of a certain measured 

quantity in relation to a chosen parameter by forming a non-dimensional ratio. The parameter 

chosen for the normalisation needs to be sensitive to the normalised quantity and vice versa. 

Typically, in tornado research, surface pressures, velocity components and radial / vertical 
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distances are normalised by the minimum pressure (pmin), the maximum circumferential 

velocity (uθ,max) and the core radius (R), respectively. This approach was also followed in this 

work. 

 

By adopting pmin, uθ,max and R for the normalisation it is assumed that those parameters are 

functions of dynamic and geometric parameters identified in section 2.5.1. A benefit of using 

those parameters is that they can be determined in simulated vortices and atmospheric vortices 

supposedly with a higher accuracy than the flow rate and other geometric length scales. 

However, this does not mean that the determination of uθ,max and R is straightforward. For 

example, a ‘global’ definition of R (Rglobal) and uθ,max (uθ,max,global) can be used. These ‘global’ 

values correspond to the radial distance from the vortex centre up to the position where the 

overall circumferential velocity maximum occurs. An alternative approach is to focus on ‘local’ 

values, i.e., core radii and circumferential velocity maxima at each measurement height can be 

determined as the radial distance from the vortex centre to the position where the 

circumferential velocity maximum at each height occurs (Rlocal and uθ,max,local). The difficulty 

in using ‘global’ parameters is the strong dependence on the chosen measurement location (as 

has been demonstrated in appendix C), whereas ‘local’ values only provide a good 

representation of the core radius at each height (which can vary significantly depending on 

vertical elevation). 

 

A compromise between the two approaches is to use ‘averaged’ quantities for R and uθ,max, as 

defined in equation (4.4) and (4.5), respectively.  

 

𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒  =  
1

𝑁
∑ 𝑅𝑙𝑜𝑐𝑎𝑙𝑖
𝑁
𝑖=1      (4.4) 
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𝑢𝜃,𝑚𝑎𝑥,𝑎𝑣𝑒𝑟𝑎𝑔𝑒  =  
1

𝑁
∑ 𝑢𝜃,𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙𝑖
𝑁
𝑖=1     (4.5) 

 

where, N is the number of measurement heights in the corresponding simulator.  

 

However, this approach still requires a detailed knowledge of a significant component of the 

flow field. An alternative approach is to calculate R based on the cyclostrophic equation (Eq. 

2.5), thus eliminating the need for any velocity data. Based on equation (2.5), Rcyclostrophic can 

be considered to be given by the location where the radial pressure gradient is the largest. 

However, the estimation of Rcyclostrophic is not without its own challenges since a fine resolution 

of pressure measurements is required. Furthermore, by assuming the validity of equation (2.5), 

the same assumptions as presented for the derivation of the Rankine vortex model are made 

(section 2.4.1). Therefore, it is assumed that the radial profile of the circumferential velocity 

component is solely responsible for the size of the core radius.  

 

Noting the above, the use of averaged quantities was considered to give the best indication of 

the core radius and the maximum circumferential velocity because the averaging process makes 

those parameters relatively independent from the measurement positions as has been shown in 

Gillmeier et al. (2016). Therefore, in the following, surface pressures, velocity component and 

radial / vertical distances have been normalised by pmin, uθ,max,average and Raverage, respectively. 

To unify vertical (radial) distances, in what follows, a further degree of normalisation is 

undertaken, i.e., each height (radial distance) is normalised by the corresponding maximum of 

z/Raverage (r/Raverage) for each swirl ratio. The actual maxima used are given in either the figure’s 

captions or additional tables.  
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4.3. Measurement techniques 

 

4.3.1. Surface pressure measurements 

 

Surface pressure is measured with a Multi-Channel-Pressure-System manufactured by Solution 

for Research Ltd. The device consists of 64 pressure transducers distributed in eight separate 

boxes. By means of 0.3m long polyvinyl chloride (PVC) tube connections, pressure transducers 

were connected to surface pressure taps. The inner/outer diameter of the PVC tube was 

0.001m/0.002m. The method used to correct the effect of the tube’s length on the pressure signal 

is based on the method presented by Irwin et al. (1979) and is shown in appendix D. In addition, 

each pressure transducer was connected to a reference port. The reference pressure (p∞) is 

measured outside the vortex chamber and therefore, is not influenced by the generated vortex 

and represents the ambient atmospheric pressure. The static pressure measured at the transducer 

(p) is the difference between the measured surface pressure at the tap (ptap) and the reference 

pressure. Pressure transducers measure pressure differences as an electrical signal. By means 

of an Analog-to-Digital-Converter, the electrical signal is transformed. A software developed 

by Solution for Research Ltd. converts the digital signal back to pressure difference by means 

of a previously generated calibration file. Collected surface pressure time series were then saved 

to a file for further post-processing. 

 

Surface pressure distributions were measured instantaneously on the ground plane of all 

simulators along two perpendicular lines denoted x and y (Figure 4.2) every 0.01s for a period 

of 60 seconds. In M1, pressure taps are distributed at a spacing of 0.05m from the chamber’s 
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centre up to a distance of 0.75m. In S1 – S4, surface pressure is mapped with a spacing of 0.01m 

from the chamber’s centre up to a distance of 0.15m. Additionally, pressure taps were arranged 

in a circular pattern surrounding the corresponding simulator’s centre up to a radial distance of 

0.04m and 0.20m as illustrated in figure 4.2a and figure 4.2b for S1 – S4 and M1, respectively. 

 

a) b)  

Figure 4.2: Circular arrangement of surface pressure taps in S1 – S4 (a) and M1 (b). 
 

 

4.3.2. Velocity measurements 

 

A two-axis traverse system inside the simulators allows the positioning of measurement devices 

with an accuracy of 1mm. For point velocity measurements, a Cobra Probe (TFI Manual: Series 

100 Cobra Probe, 2011) was mounted to the traverse system. The Cobra probe is a multi-hole 

pressure probe that provides the dynamic pressure in three components. An internal data 

acquisition system converts the analogue signal from the Cobra Probe to a digital signal before 

sending it to a computer. By means of the TFI Device Control software, the digital signal is 

converted to three-component velocity data using a pre-determined calibration (TFI Manual: 

Series 100 Cobra Probe, 2011). Sampling time and frequency can be defined in the software 

and the velocity time series can be saved to a file for further post-processing. 
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Point velocity measurements were obtained every 0.01s for a period of 80 seconds at nine 

heights above the surface of simulators S1 – S4 (0.01m, 0.03m, 0.05m, 0.07m, 0.10m, 0.13m, 

0.15m, 0.17m and 0.20m) and ten heights above the surface of simulator M1 (0.01m, 0.05m, 

0.10m, 0.15m, 0.20m, 0.25m, 0.30m, 0.40m, 0.50m, 0.60m). The corresponding radial spacing 

of measurement positions from the centre of each simulator up to a distance of 0.18m and 0.55m 

for S1 – S4 and M1 was 0.010m and 0.025m, respectively. 

 

It is acknowledged that a Cobra Probe is an intrusive measurement device and therefore, a 

potential effect of the probe on the flow field cannot be avoided entirely; however, it is also 

noted that non-intrusive measurement techniques have their limitations (Church et al., 1979 

and Refan and Hangan, 2016). 

 

Section 4.4 provides detailed information regarding the experimental measurement uncertainty. 

Where appropriate, experimental measurement uncertainties have been illustrated in order to 

enable the reader to immediately comprehend the importance (or otherwise) of the data and the 

conclusions. Furthermore, it is noted that the size of the probe is more than 106 times smaller 

than the convergence chamber of simulator M1 and more than 104 times smaller than the 

convergence chamber of S1. In addition, the influence of the traverse system on surface pressure 

measurements was found to be smaller than the experimental measurement uncertainty. 

Therefore, it is argued that within the limits indicated, the Cobra probe is appropriate to be used.  
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4.4. Data quality 

 

In order to provide sensible information and in order to evaluate potential differences between 

the simulations, it is of crucial importance to acknowledge the experimental measurement 

uncertainty associated with the measurements. The experimental measurement uncertainty is a 

combination of uncertainties due to measuring a finite time series (statistical uncertainty), 

operator errors such as probe and guide vane angle positioning (repeatability) and the 

uncertainty of the measurement device itself. In this study, pressure transducers (type: 

HCLA12X5DB) with a typical uncertainty of ±5 Nm-2 were used. The Cobra Probe is accurate 

to within ±0.5m/s for the velocity vector up to a turbulence intensity of ~30%. Therefore, 

positions with a turbulence intensity greater than 30% were excluded from the analysis. 

Furthermore, the Cobra Probe can measure velocity data greater than 2m/s within a cone of 

influence of ±45°. Those limitations can have a direct influence on the measured data. For 

example, if the recorded data quality (percentage of velocity samples of a measured time series, 

which are > 2m/s and have an angle of attack < ±45°) is less than 100% then this can introduce 

a bias in the calculated velocity vector – the lower the data quality the greater the potential bias. 

To minimize the bias in time-averaged velocities, only those positions with a data quality of 

greater than 80% were accepted for further analysis. This threshold is assumed to provide a 

suitable compromise between data quality and quantity.  
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4.4.1. Statistical uncertainty 

 

The statistical uncertainty is a measure of uncertainty of the time average with respect to the 

unsteadiness of the flow or surface pressure field. Therefore, it is highly important to verify that 

the time average of a statistically, stationary stochastic process converges towards the mean 

value of all possible realisations within the chosen measurement duration. In order to address 

the statistical uncertainty, convergence tests were undertaken for all simulations at the 

corresponding core radius at the lowest measurement height for velocity measurements, and at 

the surface in the centre of the simulators for pressure measurements. For the convergence tests, 

time series were measured for a duration of 600 seconds and running averages (RA) with 

increasing sampling durations (from 10 seconds – 600 seconds) were calculated. Figure 4.3 

shows examples of convergence tests carried out for (a) the circumferential velocity component 

and for (b) surface pressure measurements in M1 for S = 0.69. 

 

a)  b)  

Figure 4.3: Convergence tests of (a) the circumferential velocity component and (b) surface pressures for S = 
0.69 in M1. 

 

Based on all convergence tests conducted, a sampling duration of 80 seconds for velocities was 

found to be long enough in order to determine the time average of circumferential and vertical 

velocity components with an uncertainty below ±2% for all simulations. Statistical 

uncertainties of radial velocity components were found to be below ±6%, ±3% and ±0.5% for 
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S = 0.14, S = 0.30 and S = 0.69, respectively. Gaining a reduction in uncertainty after 80 seconds 

is extremely time-consuming. Percentages given for statistical uncertainties relate to the 

corresponding time-averaged circumferential velocity component (uθ,mean,600s) and surface 

pressure (pmean,600s), which were obtained after sampling for 600 seconds (Table 4.2). The 

decreasing uncertainty with increasing swirl ratio for the radial velocity component can 

therefore, partly be explained by the increase in uθ,mean,600s with increasing swirl ratio (Table 

4.2). 

 

Table 4.2: Time-averaged circumferential velocity components and surface pressures after sampling for 600 
seconds. 
 

 
uθ,mean,600s [m/s] pmean,600s [Nm-2] 

S = 0.14 S = 0.30 S = 0.69 S = 0.14 S = 0.30 S = 0.69 

M1 5.31 9.39 10.51 -136.30 -224.22 -164.44 

S1 4.97 7.34 8.49 -115.43 -188.66 -153.12 

S2 - 8.14 9.22 - -189.36 -148.94 

S3 - 8.21 10.01 - -191.59 -145.69 

S4 - 7.11 8.06 - -193.85 -153.06 

 

For all surface pressure convergence tests, a sampling duration of 60 seconds was found to be 

long enough in order to determine the time average to approximately ±27%, ±6% and ±1% for 

S = 0.14, S = 0.30 and S = 0.69, respectively. The statistical uncertainty of surface pressure 

measurements at the centre of the corresponding simulator seems to be swirl ratio dependent, 

and, similar to the statistical uncertainty of velocity measurements, uncertainties seem to 

decrease with increasing swirl ratio. However, for pressure measurements, this cannot be 

explained with an increasing central surface pressure deficit (pmean,600s) with increasing swirl 

ratio because the smallest surface pressure deficit was observed for the largest swirl ratio in all 

simulators (Table 4.2). Therefore, larger statistical uncertainties of central surface pressures for 
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the lowest swirl ratio could be an indication for a more transient vortex behaviour in time for 

relatively low swirl ratios compared to larger swirl ratios. A potential reason why this is not 

reflected in statistical uncertainties of velocity measurements could be that transient effects 

potentially occur at locations relatively close to the vortex centre, where surface pressure 

gradients are relatively large, especially for the lowest swirl ratio, and that core radius positions 

are not that strongly affected by this potentially unstable vortex behaviour. 

 

The effect of non-stationary processes in tornado-like vortices is analysed in detail in section 7. 

Thereby, some light is shed upon the question why temporally averaged surface pressures for 

relatively low swirl ratios have larger uncertainties close to the simulator’s centre than at larger 

radial distances and for larger swirl ratios. 

 

 

4.4.2. Repeatability 

 

The repeatability is the degree to which repeated measurements under unchanged boundary 

conditions show the same results. Surface pressure measurements and the radial profile of 

velocities in the lowest measurement height were repeated five times for each simulation. The 

measurement repeatability is analysed in the form of a distribution of all possible differences 

of the corresponding repetitions. For example, figures 4.4a and 4.4b show the measurement 

repeatability distribution of circumferential velocity components and surface pressures for S = 

0.69 in M1.  
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a) b)  

Figure 4.4: Distributions of the repeatability of circumferential velocity components (a) and surface pressures (b) 
for S = 0.69 in M1. 

 

The standard deviation, σ, of the corresponding distribution was chosen as representative 

measure to evaluate the repeatability. Percentages given for the repeatability in table 4.3 relate 

to the corresponding values of uθ,mean,600s and pmean,600s, presented in table 4.2. Similar to the 

statistical uncertainty, overall smaller uncertainties are observed with increasing swirl ratio 

(Table 4.3). Table 4.3b also shows that the repeatability of surface pressure measurements is 

dependent on the swirl ratio. Furthermore, for S = 0.14 and S = 0.30 the repeatability is not only 

dependent on the swirl ratio, but also on the radial distance. For that reason, a repeatability 

dependent on r is introduced for those cases because a uniform value would highly 

underestimate the repeatability for measurement positions close to the vortex centre, and highly 

overestimate the repeatability for positions further away from the vortex centre. Therefore, in 

table 4.3b, the repeatability of surface pressure measurements for S = 0.14 is given for 

normalised radial locations (r/Raverage) / (r/Raverage)max < 0.2, equal to 0.2 and larger than 0.2. For 

S = 0.30, no difference in the repeatability was observed for radial positions ≤ 0.2, and no 

significant dependence on the radial distance was found for the repeatability of surface pressure 

measurements for S = 0.69 and all velocity measurements. Consequently, a uniform 

measurement repeatability independent from r is used for those cases (Table 4.3).  
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Table 4.3: Repetition uncertainties for velocity components (a) and surface pressures (b) in M1 and S1 - S4. 
 

a)  S = 0.14 

   uθ [%] ur [%] uz [%] 
 M1 ∓9.6 ∓8.7 ∓3.2 
 S1 ∓10.2 ∓9.3 ∓3.5  
  S = 0.30 S = 0.69 
 uθ [%] ur [%] uz [%] uθ [%] ur [%] uz [%] 
 M1 ∓4.7 ∓6.2 ∓1.7 ∓3.0 ∓2.1 ∓0.8 
 S1 ∓8.2 ∓7.9 ∓3.1 ∓1.6 ∓2.9 ∓2.1 
 S2 ∓3.3 ∓9.7 ∓3.3 ∓4.1 ∓1.7 ∓1.2 
 S3 ∓1.8 ∓5.6 ∓1.9 ∓3.3 ∓5.9 ∓1.9 
 S4 ∓1.4 ∓8.4 ∓2.0 ∓2.5 ∓4.3 ∓1.5 

 

b)  S = 0.14 

   p(<0.2) [%] p(=0.2) [%] p(>0.2) [%] 

 M1 ∓39.3 ∓9.5 ∓1.4 

 S1 ∓41.0 ∓11.4 ∓1.8  
  S = 0.30 S = 0.69 

  p(≤0.2) [%] p(>0.2) [%] p [%] 

 M1 ∓  7.7 ∓1.7 ∓3.3 

 S1 ∓   4.6 ∓1.7 ∓1.7 

 S2 ∓10.6 ∓3.4 ∓2.2 

 S3 ∓  3.2 ∓1.3 ∓1.7 

 S4 ∓  4.2 ∓1.4 ∓1.2 

 

The relatively low repeatability close to the vortex centre for S = 0.14 and S = 0.30 is not 

surprising because the statistical uncertainty found at those positions is limiting the 

repeatability. Therefore, large uncertainties for S = 0.14 and S = 0.30 close to the vortex core, 

can partly be explained by the large statistical uncertainty at those positions. Furthermore, 

repeatability percentages presented in table 4.3b suggest that positions close to the simulator’s 

centre for relatively low swirl ratios are more sensitive to small variations in boundary 

conditions such as the guide vane angle positioning.  
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4.4.3. Experimental measurement uncertainty 

 

The associated experimental measurement uncertainty of velocity and surface pressure 

measurements, illustrated in later figures is based on the measurement repeatability because 

both, statistical and device uncertainties are assumed to be reflected within the uncertainty 

defined by the repeatability. Therefore, the repeatability is assumed to provide a reasonable 

range for experimental measurement uncertainties.  

 

Furthermore, it is noted that an uncertainty is introduced to Raverage. The uncertainty of Raverage 

is dependent on the radial spacing of measurement locations and consequently is ∓0.0050m for 

simulations conducted in S1, S2, S3 and S4 and ∓0.0125m for simulations conducted in M1. 

This uncertainty corresponds to ∓ ½ of the corresponding radial spacing of velocity 

measurements outline in section.4.3.2.  
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5. COMPARISON OF 
ANALYTICAL AND PHYSICAL 

MODEL RESULTS 
 

 

In this section, flow fields and surface pressure data of vortices obtained for three different swirl 

ratios (S = 0.14, S = 0.30, and S = 0.69) in the medium-scale tornado-like vortex generator (M1) 

are analysed and the capability of the Rankine, the Burgers-Rott, the Sullivan and the Baker 

vortex model to replicate the experimental results is evaluated. The majority of this section has 

been published in Gillmeier et al. (2018) and is reproduced with the permission of the co-

authors. 

 

 

5.1. The flow structure 

 

In order to address the complex nature of the analysed flow fields, the 3-D velocity fields 

obtained for S = 0.14, S = 0.30 and S = 0.69 are shown in figure 5.1. Also shown are results of 

selected analytical vortex models, which for the sake of brevity are not repeated for all swirl 

ratios. Experimentally obtained Raverage and uθ,max,average (shown in figure 5.2) are used to 

calculate the flow field of the Rankine, the Burgers-Rott, the Sullivan and the Baker vortex 

model for corresponding swirl ratios. The ‘viscosity’ parameter in the Burgers-Rott and the 
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Sullivan vortex model is assumed to be ν = 0.05 m2s-1. It is noted that for the analysis presented 

in figure 5.1b, the actual ‘viscosity’ value is not that crucial because this comparison focuses 

on the flow structure rather than on the actual velocity magnitude, which is affected by the 

‘viscosity’. Due to the restrictions when measuring with the Cobra probe, the velocity field 

close to the vortex centre for all swirl ratios, and near the surface at larger radial distances for 

S = 0.14 could not be captured. Inside the vortex core (r < Raverage), velocity vectors are only 

shown at positions where absolute values of time-averaged radial and vertical velocities are 

larger than the corresponding experimental measurement uncertainty. Hence, only positions for 

which a clear directionality can be defined are presented in figure 5.1. 

 

a1) b1)  

a2) b2)   

 

Figure 5.1: continued on the following page. 
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a3) b3)  

b4)  

 
Figure 5.1: Experimental results of the 3-D velocity field are shown in a1 (S = 0.14), a2 (S = 0.30) and a3 (S = 
0.69). Corresponding results of the Rankine, the Burgers-Rott, the Sullivan and the Baker vortex model are 

shown in b1 , b2, b3 and b4, respectively. The normalised circumferential velocity component is shown as contour 
and radial and vertical velocity components are shown as 2-D vector field. To normalise heights and distances, 

maximum values of experimentally obtained (z/Raverage)max and (r/Raverage)max are used. For S = 0.14, S = 0.30 and 
S = 0.69, (r/Raverage)max = 5.00, 6.63, 1.80 and (z/Raverage)max = 5.45, 7.23 , 1.97, respectively. 

 

In general, experimentally obtained flow characteristics reveal flow patterns, which are 

significantly more complex compared to the suggested flow structure of the vortex models 

(Figure 5.1). The measured circumferential velocity component for all swirl ratios increases 

towards the core radius and reaches the overall maximum close to the surface. Furthermore, a 

strong decrease in circumferential velocity can be observed with height in the lower heights for 

all swirl ratios (Figure 5.1a). The circumferential velocity components of the Rankine, the 

Burgers-Rott and the Sullivan vortex model (Figure 5.1b1, Figure 5.1b2, and Figure 5.1b3) are 
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not a function of height and consequently, cannot represent the height dependence found in the 

simulator (Figure 5.1a). The circumferential velocity of the Baker vortex model is height 

dependent and increases with increasing height from the ground (Figure 5.1b4), which is also 

not obtained experimentally. Strong radial inflow velocities for all swirl ratios close to the 

simulator’s surface were obtained (Figure 5.1a), and can theoretically be explained by an 

imbalance of the cyclostrophic equation (Eq. 2.5) due to friction (Trapp, 2000). Surface friction 

causes the circumferential velocity component to decrease. The, therefore, unbalanced radial 

pressure gradient drives the strong radial inflow up to the position, where the overall maximum 

circumferential velocity occurs (Figure 5.1a). At this position, the radial velocity decreases 

drastically and the vertical velocity increases significantly. The Rankine, the Burgers-Rott and 

the Sullivan vortex model cannot replicate this flow behaviour due to either a non-existing 

radial velocity component (the Rankine vortex model) or radial velocity components, which are 

height-independent and increase with increasing radial distance (the Burgers-Rott and the 

Sullivan vortex model). The Baker vortex model on the other hand seems to be able to capture 

this phenomenon and places largest radial velocity components at a height (zm) close to the 

surface. 

 

Contrary to what may be expected, Figure 5.1a1 shows a radial outflow from the vortex centre. 

However, this is supported by the work of Mishra et al. (2008a) and Haan et al. (2008), where 

tentative evidence of a radial outflow close to the vortex centre can be inferred for low swirl 

ratios. Various possible reasons for this behaviour (including vortex core unsteadiness with 

respect to height) seem possible; however, firm conclusions as to why this may be the case 

cannot, at present, be drawn. 
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The 3-D velocity field obtained for S = 0.30 (Figure 5.1a2) shows tentative evidence to suggest 

the presence of a counter-clockwise rotating cell near the surface close to the vortex centre, 

covering a normalised area of approximately 0.25 × 0.25. At greater heights, the vortex core is 

dominated by radial inflow and an updraft, which turns into a downdraft at a normalised height 

of ~1. This could suggest the presence of a second counter-clockwise rotating cell in the vortex 

core. The central radial outflow at z = 0.01m could suggest a narrow central downdraft, which 

penetrates all heights and feeds into the outflow caused by the near surface cell. 

 

With increasing swirl ratio (S = 0.69), a downdraft is detected close to the centre of the simulator 

(Figure 5.1a3). This flow structure is expected for a two-celled vortex, such as the Sullivan 

vortex model (Figure 5.1c3). However, the downdraft is directed slightly towards the 

simulator’s centre, which was also observed by Haan et al. (2008) for a high swirl ratio. The 

lack of detailed, fine scale, experimental data at the centre of the vortex, make further 

conclusions difficult. 

 

Due to non-existing radial and vertical velocity components, none of the described radial and 

vertical flow characteristics can be represented with the Rankine vortex model (Figure 5.1b1). 

Notwithstanding the more complex structure of the Burgers-Rott, the Sullivan and the Baker 

vortex model, the experimentally captured flow patterns are far more complex than suggested 

by any of the analytical models.  

 

A more detailed analysis of the flow field can be found in figures 5.2 – 5.4, illustrating the 

circumferential, radial and vertical velocity components for z = 0.01m, z = 0.10m, z = 0.20m 

and z = 0.40m, for S = 0.14 (a), S = 0.30 (b) and S = 0.69 (c). 
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Experimentally obtained results for uθ̅ (Figure 5.2) show that for all swirl ratios, the overall 

maximum of uθ̅ occurs at the lowest measurement height (z = 0.01m, Figure 5.2). The 

distribution of circumferential velocity components obtained for z > 0.01m shows a behaviour, 

which seems to be relatively independent from height and observed differences mostly lie 

within the experimental measurement uncertainty outlined in section 4.4 (Figure 5.2). The 

lowest height reveals an entirely different flow structure compared to the rest of the generated 

vortex. This suggests a similar vertical profile of circumferential velocity components as 

observed by Kosiba and Wurman (2013). Figure 5.2 also outlines differences in the 

circumferential velocity profile for different swirl ratios. Figure 5.2 shows that uθ,max,average 

increases with increasing swirl ratio from 3.65 – 8.75m/s. In addition, Raverage increases with 

increasing swirl ratio from 0.11 – 0.31m. Results obtained for S = 0.30 do not follow this trend 

and reveal an averaged core radius of 0.08m, which is smaller than the one observed for S = 

0.14. This finding is an artefact of the complex flow field of the simulated vortices, particularly 

at greater heights for S = 0.30, where relatively large circumferential velocities occur at 

relatively small radial distances (Figure 5.1a2) and therefore, cause a relatively small Raverage. 

Most commonly in tornado research, Rglobal is used in order to determine a representative vortex 

size (e.g., Haan et al., 2008; Sabareesh et al., 2012; Refan et al., 2017b and Refan and Hangan, 

2018). However, results presented in this study reveal that this size might not be representative 

for the entire flow field. For the sake of completeness, it is noted that if the core radius of flow 

fields presented in figure 5.1 had been defined based on the overall (global) circumferential 

maximum, the vortex radius would increase with increasing swirl ratio from Rglobal ~ 0.075m to 

0.100m to 0.250m for S = 0.14, S = 0.30 and S = 0.69, respectively.  
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In general, the Rankine, the Burgers-Rott and the Sullivan vortex model appear to 

underestimate the trend of uθ̅ for S = 0.14 (Figure 5.2a), although, differences around the core 

radius are close to or within the experimental measurement uncertainty in most cases. However, 

the Baker vortex model appears to predict the trend reasonably well for this swirl ratio. Due to 

the relatively complex flow structure observed for S = 0.30, all models appear to fail to capture 

the distribution of uθ̅ (Figure 5.2b). Inside the vortex core, a comparison between 

experimentally obtained results and vortex models is difficult due to the lack of good 

experimental data for S = 0.14 and S = 0.30 (Figure 5.2a and Figure 5.2b). The circumferential 

velocity component of the Burgers-Rott and the Baker vortex model match the experimental 

data obtained for S = 0.69 relatively well (Figure 5.2c). Results of the Rankine and the Sullivan 

vortex model, again underestimate the magnitude of obtained circumferential velocities for the 

highest swirl ratio. 
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a)  

b)  

c)  

 
Figure 5.2: Measured circumferential velocity component for S = 0.14 (a), S = 0.30 (b) and S = 0.69 (c). 

Additionally, results of the circumferential velocity component of the Rankine, the Burgers-Rott, the Sullivan, 
and the Baker vortex model are shown. To normalise the radial distance, maximum values of experimentally 

obtained (r/Raverage)max are used. For S = 0.14, S = 0.30 and S = 0.69, (r/Raverage)max = 5.00, 6.63, 1.80, 
respectively. 
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Figure 5.3 illustrates the radial distribution of ur̅ for z = 0.01m, z = 0.10m, z = 0.20m and z = 

0.40m. Additionally a height average is calculated and shown for all velocities obtained for z > 

0.01m. It is noted that the swirl ratio (S) defined in equation (4.2) is, unlike the definition 

adopted in the Baker vortex model (SBaker), solely a function of the tornado generator’s 

characteristics. For that reason, values of S and SBaker differ for the same flow field in the 

following figures. As illustrated in figure 5.3a and 5.3b, the Baker vortex model fits the data 

obtained reasonably well close to the surface, whereas the Sullivan and the Burgers-Rott vortex 

model are a better fit for experimental data obtained in greater heights. This is perhaps not too 

surprising given the assumptions embedded in the models. However, for the largest swirl ratio 

(Figure 5.3c), the Baker vortex model only represents the trend in the lowest height for 

normalised radial distances greater than 0.6, whereas the Sullivan vortex model performs better 

for lower normalised radial distances at the lowest height.  

 

For S = 0.14, the radial outflow inside the vortex core suggests the structure of a (limited height) 

two-celled vortex. Thus, in general, the height-averaged structure of ur̅ appears to be reasonably 

represented by the Sullivan vortex model (Figure 5.3a). Even though one feature of a two-celled 

vortex is present for S = 0.14, the vertical downdraft suggested by the Sullivan vortex model at 

the vortex centre was not capture (Figure 5.4a). For the vertical velocity component obtained 

with S = 0.14, none of the vortex models is capable of replicating the maximum updraft just 

outside the vortex core (Figure 5.4a). However, for larger radial distances, results of the 

Burgers-Rott and the Sullivan vortex model can be used to reproduce height-averaged vertical 

velocities (Figure 5.4a). Certainly, it needs to be noted that for this case, the vortex models fail 

to replicate the complex behaviour observed experimentally. Although, there are only few 

positions available for a comparison in the lowest height, radial and vertical velocity component 
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of the Baker vortex model are in relatively good agreement with the experimental data (Figure 

5.3a and Figure 5.4a). 

 

For S = 0.30, radial velocities are mainly directed towards the vortex centre (radial inflow). The 

magnitude of radial velocities in greater heights z > 0.01m is relatively low compared to radial 

velocities obtained in the lowest height (z = 0.01m). The best fit for this ‘single-celled’ flow 

behaviour is achieved with the Burgers-Rott vortex model with a relatively low ‘viscosity’ 

parameter (ν = 0.0015m2s-1), to minimise the increase of radial inflow from the vortex centre 

towards larger radial distances. Similar to the vertical velocity component for S = 0.14, also 

here, the maximum updraft outside the vortex core (Figure 5.4b) cannot be replicated by any of 

the introduced vortex models. However, for larger radial distances the Burgers-Rott vortex 

model can be used to model the height-averaged behaviour (Figure 5.4b). Nevertheless, the 

complex vertical flow structure cannot be captured. Radial and vertical velocity component of 

the Baker vortex model on the other hand are in good agreement with the experimental data for 

z = 0.01m (Figure 5.3b and Figure 5.4b). 

 

For S = 0.69, radial velocities (Figure 5.3c) are found to be directed inwards, towards the vortex 

centre (radial inflow), even though a downdraft close to the vortex centre is found (Figure 5.4c). 

In terms of vortex models, this means that the radial velocity shows a ‘single-celled’ behaviour 

with radial inflow (the Burgers-Rott and the Baker vortex model), whereas the vertical velocity 

illustrates a ‘two-celled’ structure with downdraft (the Sullivan vortex model). None of the 

presented vortex models are capable of representing both of the observed flow patterns. For S 

= 0.69, the obtained flow field is far more complex than the assumed flow structure of a single-

celled or a two-celled vortex. In this case, the flow reveals a ‘multi-celled’ structure with a weak 
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radial inflow and updraft outside the vortex core and a relatively strong radial inflow and 

downdraft inside the vortex core (Figure 5.3c and Figure 5.4c).  

 

For radial and vertical velocity components of S = 0.69, an attempt is shown to use the Sullivan 

and the Baker vortex model to replicate some of the flow patterns observed in the lowest height 

(z = 0.01m). For the radial velocity component in the lowest height (Figure 5.3c), the Baker 

vortex model captures the radial inflow outside the vortex core, but overestimates velocities 

inside the vortex core. The decrease in radial inflow around the core radius can be replicated 

with the Sullivan vortex model; however, close to the vortex centre, the Sullivan vortex model 

is not able to replicate the flow field, and also for larger radial distances the Sullivan vortex 

model fails due to its increasing radial velocity component with increasing radial distance 

(Figure 5.3c). 

 

For the vertical velocity (Figure 5.4c), the Sullivan vortex model can represent parts of the 

observed results. By means of the shape parameter, b, the downdraft region around the vortex 

centre of the Sullivan vortex model can be extended in the radial direction, so that for b = 12, 

results of the Sullivan vortex model show some similarity with the increase in radial inflow 

from the vortex core towards the vortex centre (Figure 5.4c). However, increasing b also results 

in an increasing downdraft at the vortex centre, which for S = 0.69 is highly overestimated. The 

Baker vortex model, in its single-celled form (as shown here) is not able to replicate the 

downdraft close to the vortex centre and the relatively strong vertical updraft around the core 

radius (Figure 5.4c).  
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a)  

b)  

c)  

 
Figure 5.3: Measured radial velocity component for S = 0.14 (a), S = 0.30 (b) and S = 0.69 (c). Additionally, 
results of the radial velocity component of the Burgers-Rott (b) and the Sullivan vortex model (a and c) are 

shown. Results of the Baker vortex model are shown for the lowest height (z = 0.01). To normalise the radial 
distance, maximum values of experimentally obtained (r/Raverage)max are used. For S = 0.14, S = 0.30 and S = 

0.69, (r/Raverage)max = 5.00, 6.63, 1.80, respectively.  
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a)  

b)  

c)  

 
Figure 5.4: Measured vertical velocity component for S = 0.14 (a), S = 0.30 (b) and S = 0.69 (c). Additionally, 

results of the vertical velocity component of the Burgers-Rott (a and b) and the Sullivan vortex model (a and b) 
are shown. Results of the Baker vortex model are shown for the lowest height (z = 0.01). To normalise the radial 

distance, maximum values of experimentally obtained (r/Raverage)max are used. For S = 0.14, S = 0.30 and S = 
0.69, (r/Raverage)max = 5.00, 6.63, 1.80, respectively.  
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5.2. Surface pressure distribution 

 

Figure 5.5 shows the surface pressure distributions for S = 0.14, S = 0.30, and S = 0.69. The 

corresponding surface pressure distributions of the Rankine, the Burgers-Rott, the Sullivan and 

the Baker vortex model are illustrated in figures 5.5(a-d), respectively. Analytical surface 

pressure distributions are calculated based on core radii and maximum circumferential 

velocities embedded in figure 5.2. For the Burgers-Rott vortex model, ν and a̅ are adjusted for 

each swirl ratio to guaranty a physically reasonable surface pressure increase with increasing 

radial distance (Figure 5.5b). To avoid an unphysical decrease in surface pressure with 

increasing radial distance, the ‘viscosity’ parameter of the Sullivan vortex model is chosen to 

be zero (Figure 5.5c). The swirl ratio of the Baker vortex model (SBaker) is responsible for 

differences in the surface pressure distribution as outlined in section 3.1.3. To allow a more 

flexible surface pressure model, the shape parameter, γ, in the Baker vortex model needs to be 

treated as a variable when deriving the static pressure distribution (Eq. 19). However, in this 

work, a shape parameter of γ = 2 is assumed. Consequently, differences of calculated surface 

pressure distributions of the Baker vortex model are largely caused by the different core radii 

for S = 0.14, S = 0.30 and S = 0.69 (Figure 5.5d). 

 

Looking at figures 5.5, it could be concluded that differences in the measured surface pressure 

distribution depend significantly on the swirl ratio. The fastest increase in surface pressure from 

the vortex centre towards larger radial distances is observed for S = 0.14. Consequently, the 

smallest vortex would be expected for this swirl ratio; however, the smallest height-averaged 

core radius was found for S = 0.30 (Raverage,(S=0.30) = 0.08m), compared to Raverage of S = 0.14 
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and S = 0.69 (Raverage,(S=0.14) = 0.11m and Raverage,(S=0.69) = 0.31m). Consequently, all vortex 

models suggest that the surface pressure distribution for S = 0.30 results in the smallest vortex, 

and as a result, underestimate / overestimate the radial surface pressure gradient for S = 0.14 / 

S = 0.30 (Figure 5.5). This finding suggests that Raverage for S = 0.30 might not be representative 

for the vortex core radius at the surface of the simulator. This, once more, highlights the 

difficulty of defining a core radius value, which is representative for the entire highly complex 

vortex structure. The only vortex model, which seems to capture the surface pressure 

distribution for S = 0.30, is the Baker vortex model (Figure 5.5d). This seems to be the case 

because of the additional effect of SBaker on the surface pressure distribution, and since SBaker 

was found to be the smallest for S = 0.30 (Figure 5.5d), the surface pressure distribution is 

affected as outlined in section 3.1.3 and therefore, compensates the effect Raverage has on the 

normalised surface pressure distribution. 

 

The Burgers-Rott vortex model fails for S = 0.14 and S = 0.30 at larger radial distances from 

the vortex centre due to a physically unrealistic decrease in surface pressure, which is also 

explained in section 3.1.3. 

 

The surface pressure distribution of the largest vortex (S = 0.69) illustrates the smallest radial 

pressure gradient (Figure 5.5). The best fit for the experimentally obtained surface pressure 

distribution of the larges swirl ratio (S = 0.69) is found for the Rankine vortex model (Figure 

5.5a). The Burgers-Rott and the Baker vortex model underestimate the radial surface pressure 

gradient (Figure 5.5b and 5.5d). The Sullivan vortex model shows good agreement for 

normalised radial distances > 0.75 (Figure 5.5c); however, for smaller normalised radial 

distances ((r/Raverage) / (r/Raverage)max < 0.75), the Sullivan vortex model overestimates the 
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experimentally obtained surface pressure deficit due to its two-celled flow structure. Even 

though a downdraft is present close to the vortex centre for S = 0.69, the effect of it is not visible 

in the experimentally obtained surface pressure distribution.  

a) b)

c) d)  

 
Figure 5.5: Measured surface pressure distributions for S = 0.14, S = 0.30, and S = 0.69 and corresponding 

surface pressure distributions of the Rankine (a), the Burgers-Rott (b), the Sullivan (c) and the Baker (d) vortex 
model. To normalise the radial distance, maximum values of experimentally obtained (r/Raverage)max are used. For 

S = 0.14, S = 0.30 and S = 0.69, (r/Raverage)max = 5.00, 6.63, 1.80, respectively.  
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5.3. Concluding remarks 

 

Based on this analysis, the following main conclusions can be drawn: 

 

 

 Despite the simplicity of all the models examined, it has been shown that this area of research 

is highly complex, largely due to the interpretation of the different parameters involved.  

 
 Measured flow pattern are far less structured and organised than the pattern suggested by 

any of the vortex models. Consequently, none of the presented models can be used to 

represent the three-dimensional vortex structures of experimentally generated tornado-like 

vortices.  

 
 The Burgers-Rott and the Sullivan vortex model are able to replicate some parts of the flow 

field. However, parameters, which need to be chosen to make the model results fit the 

experimental data (ν, a̅ and b) differ for surface pressure and different velocity components 

of the same vortex. 

 
 The Baker vortex model seemed to be the best model to replicate the radial inflow close to 

the ground. However, it fails for larger heights over the range tested.  

 
 The Rankine, the Burgers-Rott, the Sullivan and the Baker vortex model are able to replicate 

certain parts of the surface pressure distribution, but, due to their limitations, those models 

are not adequate enough to replicate a variety of differently shaped pressure distributions, 

especially when the distribution is influenced by more parameters than just the location of 

the core radius. 
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 It is noted that the comparison presented relates to simulations conducted in only one 

simulator and that there are a variety of ways in which distances, pressure and velocity data 

could be normalised. It is possible that different normalisations could mask or exaggerate 

differences between both modelling techniques.  
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6. THE EFFECT OF THE 
SIMULATOR’S GEOMETRY ON 
THE SIMULATED FLOW FIELD 

 

 

Using the medium-scale simulator (M1) of fixed geometry and the small-scale simulator (S1) 

of variable geometry, this section investigates the influence that the simulator’s scale and 

geometric design can have on the simulation of tornado-like vortices. The majority of this 

section has been submitted for publication to the Journal of Wind Engineering and Industrial 

Aerodynamics and is reproduced with the permission of the co-authors. 

 

 

6.1. Experimental methodology 

 

Ten simulations have been undertaken (details of which are given in table 6.1), in order to 

evaluate: 

 

T1) the effect of the simulator’s scale with constant aspect ratio and swirl ratio. In this case, 

the aspect ratio was fixed at 2 and the medium-scale (M1) and the small-scale simulator 

(S1) were used. 
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T2) the effect that the convection chamber may have on the simulation. In this case, the 

convection chamber height (H2) of the small-scale simulator (S1) was reduced from H2 = 

0.40m to H2 = 0.25m (S2) to H2 = 0.10m (S3), whilst all other geometric lengths were 

kept constant. 

T3) the effect that the convergence chamber may have on the simulation. In this case, H1 in 

the small-scale simulator (S1) was reduced to 0.225m (S4). 

 

In all cases, the flow fields of two swirl ratios (S = 0.30 and S = 0.69) are investigated and where 

necessary, the guide vane angles were adjusted to guarantee constant swirl ratios. Over the small 

range of Reynolds numbers investigated (Table 6.1), no Reynolds number dependence was 

found and as such is not considered further. 

 
Table 6.1: Overview of non-dimensional dynamic parameters for the three comparison test cases. 
 

Test case Simulator α [°] S Re ∙ 105 

T1 
M1 

50 70 0.30 0.69 
10 10 

S1 3 3 
     

T2 

S1 

50 70 0.30 0.69 

3 3 

S2 3 3 

S3 3 3 
     

T3 
S1 50 70 

0.30 0.69 
3 3 

S4 41.8 64.1 3 3 

 

The very nature of the experimental equipment and the scale of the simulator prevents in some 

cases a detailed knowledge of the flow structure across the entire flow field. As a result, for 

some simulations presented in the following, the complex flow structure inside the vortex could 

not be captured in detail. However, sufficient data has been gathered to undertake a relative 
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comparison of flow fields, and as a result, an insight into the question at hand is provided, i.e., 

does the geometry of the simulator influence the generated tornado-like flow field? 

 

 

6.2. Simulations in the small-scale simulator (S1) 

 

6.2.1. The flow field 

 

The 3-D velocity fields obtained in S1 for S = 0.30 and S = 0.69 are shown in figure 6.1. In 

addition, the location of the height-averaged core radius (Raverage) is illustrated as solid vertical 

line. Due to the restrictions when measuring with the Cobra probe, the velocity field close to 

the vortex centre for both swirl ratios could not be captured. Inside the vortex core (r < Raverage), 

velocity vectors are only shown at positions where absolute values of time-averaged radial and 

vertical velocities are larger than the corresponding experimental measurement uncertainty. 

Hence, the analysis is restricted to positions where a clear velocity vector was observed.  
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a) b)  

 
Figure 6.1: 3-D velocity fields in S1 for S = 0.30 (a) and S = 0.69 (b). The normalised circumferential velocity 
component is shown as contour and the 2-D vector field indicates the vector based on the radial and vertical 
velocity component. The vertical solid black line indicates the corresponding location of the height-averaged 

core radius. For S = 0.30 and S = 0.69, (r/Raverage)max,S1 = 2.34 , 1.80 and (z/Raverage)max,S1 = 2.60 , 2.00, 
respectively. 

 

Figures 6.1 illustrates that for both swirl ratios in S1, the behaviour of the circumferential 

velocity component is, in general, as expected and as such is not discussed further. Figure 6.2a 

shows the radial profile of radial velocities at the lowest measurement height and illustrates a 

strong radial inflow with largest radial inflow velocities occurring just outside the vortex core 

for both swirl ratios. For S = 0.69, the radial inflow turns into an outflow at a normalised radial 

distance of ~0.45 (Figure 6.2a), whereas for S = 0.30, only radial inflow velocities are detected 

at the lowest height (Figure 6.2a). Additionally, figure 6.1a and 6.2c show that for S = 0.30 

radial inflow is dominant inside the vortex core for normalised heights < 0.4. This finding, in 

combination with the radial outflow inside the vortex core at larger normalised heights > 0.4 

(Figure 6.1a and 6.2c) could lead to the conclusion of a flow structure similar to what might be 

expected for a ‘vortex breakdown’. For the larger swirl ratio, a central outflow, which seems to 

be independent from height, is present (Figure 6.1b and 6.2c). This is a flow behaviour similar 

to what is expected in a two-celled vortex structure. With increasing radial distance and heights 

> 0.01m, a radial inflow is detected for both swirl ratios, which seems to be height independent 
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and slightly larger (relative to the corresponding uθ,max,average, shown in table 6.2) for the lower 

swirl ratio (Figure 6.2b and 6.2d). 

 

a) b)  

c) d)  

Figure 6.2: Radial velocity component in S1 for S = 0.30 and S = 0.69. The radial profile of the lowest height is 
shown in (a), whereas the radial profile of height-averaged results is shown in (b). The vertical profile of radially 

averaged results inside and outside the vortex are illustrated in (c) and (d), respectively. 
 

The radial profile of vertical velocities illustrates negative vertical velocities close to the 

simulator’s surface for radial distances outside the corresponding vortex core (Figure 6.3a). 

This describes the downward directed inflow visible in figure 6.1a and 6.1b. With decreasing 

radial distance, the vertical velocity at the lowest height increases and becomes positive for both 

swirl ratios, which corresponds to a near-surface updraft inside the corresponding vortex core 

(Figure 6.3a). At greater heights (z > 0.01m), largest updraft velocities occur at an approximate 
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radial distance equal to the corresponding core radius, e.g., ~0.43 for S = 0.30 and ~0.55 for S 

= 0.69 (Figure 6.3b). For both swirl ratios, a weak height dependence can be inferred for vertical 

velocities outside the vortex core (Figure 6.3d). The vertical velocity increases with increasing 

height. Inside the vortex core, no clear height dependence is observed (Figure 6.3c). In general, 

normalised vertical velocities seem to be larger (relative to the corresponding uθ,max,average, 

shown in table 6.2) for the lower swirl ratio. 

 

a) b)  

c) d)  

Figure 6.3: Vertical velocity component in S1 for S = 0.30 and S = 0.69. The radial profile of the lowest height is 
shown in (a), whereas the radial profile of height-averaged results is shown in (b). The vertical profile of radially 

averaged results inside and outside the vortex are illustrated in (c) and (d), respectively. 
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6.2.2. Surface pressure distribution 

 

Figure 6.4 illustrates the surface pressure distribution that arises as a result of the two flow 

fields investigated. The distribution of surface pressures obtained for S = 0.30 increases at a 

faster rate from the vortex centre towards larger radial distances compared to S = 0.69 (Figure 

6.4). This behaviour can be explained by the different flow structures observed for S = 0.30 and 

S = 0.69, e.g., the relatively fast decay of the circumferential velocity component with 

increasing radial distance seems to cause a surface pressure distribution with a larger radial 

pressure gradient for S = 0.30. 

          

Figure 6.4: Surface pressure distributions in S1 for S = 0.30 and S = 0.69. The uncertainty envelope represents 
the corresponding experimental measurement uncertainty of surface pressure measurements outlined in section 

4.4. 
 

 

6.3. Comparison 

 

To assess the influence of the simulator’s scale and corresponding geometric changes, flow 

field and surface pressure data obtained in M1, S2, S3 and S4 are compared to the reference 

flow and pressure fields of simulator S1. Differences between the velocity and surface pressure 
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fields are presented in terms of relative differences, normalised by the corresponding height-

averaged circumferential velocity maximum. As will be demonstrated, in all cases, there are a 

number of similarities, e.g., for all swirl ratios in all simulators, the circumferential velocity 

component increases towards the core radius, reaches the overall maximum close to the surface, 

and decreases with increasing height in the lower heights. The general flow structure of the 2-

D vector fields (based on the radial and vertical velocity components) show a similar flow 

behaviour outside the vortex core, with a strong radial inflow close to the surface up to the 

position where the overall (global) maximum of the circumferential velocity component occurs. 

At this position, the radial velocity weakens drastically and the vertical velocity increases 

significantly. 

 
 

6.3.1. The effect of the simulator’s scale (T1) 

 

6.3.1.1. Differences in the velocity field 

 

a) b)  

 
Figure 6.5: 3-D velocity fields in M1 for S = 0.30 (a) and S = 0.69 (b). The normalised circumferential velocity 

component is shown as contour and the 2-D vector field indicates the vector based on the radial and vertical 
velocity component. The vertical solid black line indicates the corresponding location of the height-averaged 

core radius. 
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The 3-D velocity field obtained in the medium-scale simulator (M1) with S = 0.30 (Figure 6.5a), 

shows tentative evidence to suggest the presence of a counter-clockwise rotating cell near the 

surface close to the vortex centre covering a normalised area of approximately 0.25 × 0.25. At 

greater heights, the vortex core is dominated by radial inflow and an updraft, which turns into 

a downdraft at a normalised height of ~1. This in combination with the radial outflow from the 

vortex centre at z = 0.01m could suggest a narrow central downdraft, which penetrates all 

heights. For the same swirl ratio in S1 (Figure 6.1a), a very different flow field is observed - 

radial inflow velocities at lower heights inside the vortex centre, and the central radial outflow 

at larger heights have been interpreted as a flow structure similar to what might be expected for 

a ‘vortex breakdown’ with a central downdraft at greater heights. 

 

With increasing swirl ratio in M1 (S = 0.69), a downdraft is detected in the vortex centre, which 

is likely to feed into the radial outflow at the lowest height at a normalised radial distance of 

~0.3 (Figure 6.5b). This describes a flow structure, which might be expected for a two-celled 

vortex. For the same swirl ratio in S1, only positive vertical velocities were observed in the 

vortex core (Figure 6.1b). However, the weak radial outflow from the vortex centre led to the 

suggestion of a central downdraft. 
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Table 6.2: Averaged core radii, circumferential velocity maxima, surface pressure minima, relative and scaled 
radial / vertical distances and normalised core radii for S1 and M1. 
 

 S = 0.30 S = 0.69 

 S1 M1 S1 M1 

Raverage [m] 0.077 0.083 0.100 0.305 

uθ,max,average [m/s] 5.38 7.45 6.92 8.75 

pmin [Nm-2] -192.3 -225.2 -152.5 -174.4 

(r/Raverage)max 2.34 6.63 1.80 1.80 

(z/Raverage)max 2.60 7.23 2.00 1.97 

(r/Raverage) / (r/Raverage)M1,max 0.35 1.00 1.00 1.00 

(z/Raverage) / (z/Raverage)M1,max 0.36 1.00 1.02 1.00 

1 / (r/Raverage)M1,max 0.15 0.55 

 

The data presented in table 6.2 illustrate a decrease in magnitude of the surface pressure 

minimum (pmin) with increasing swirl ratio in both simulators. This can potentially be an 

indication of a vortex transformation from a single-celled to a multiple-celled vortex. The flow 

fields in both simulators show tentative evidence of this transformation; however, both flow 

fields appear to be far more complex than a ‘typical’ single-celled or two-celled vortex structure 

might suggest. Furthermore, table 6.2 shows that despite the different scale of the simulators, 

maximum circumferential velocities (uθ,max,average) in both simulators are of similar magnitude. 

 

Maxima of normalised radial and vertical distances ((r/Raverage)max and (z/Raverage)max) in S1 and 

M1 illustrate that flow fields measured for the same swirl ratio in the medium-scale and the 

small-scale simulator correspond to a different normalised radial / vertical area (Table 6.2). For 

S = 0.30 in S1 for example, the flow field was captured within a normalised radial / vertical 

distance of 2.34 / 2.60, whereas in M1 the flow field of a much larger normalised radial / vertical 

area of 6.63 / 7.23 could be determined (Table 6.2). Maximum circumferential velocities that 

occur at relatively small radial distances from the vortex centre in M1 cause this difference. 
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Consequently, this results in a relatively small normalised Raverage of 0.15 in M1, compared to 

the simulator’s size (Table 6.2). For the same swirl ratio in the small-scale simulator, the 

distribution of circumferential velocities causes a relatively large normalised Raverage of 0.43, 

compared to the simulator’s size. Those differences are reflected in the normalisation of radial 

and vertical distances. 

 

In order to ensure that only the relevant parts of the normalised flow fields are compared (and 

that the maximum amount of information is retained), the flow fields are scaled differently for 

each of the following comparisons, i.e., the normalised radial / vertical distance of vortices 

generated in simulator S1 are scaled by the normalised radial / vertical maximum, 

corresponding to the relevant comparison, i.e., M1,max for the comparison study T1, S3,max for the 

comparison study T2 and S4,max for the comparison study T3 (see table 6.2, 6.3 and 6.4 for 

relevant scaling factors). 

 

Table 6.2 illustrates that the flow field obtained in S1 for S = 0.30 is scaled to a normalised 

radial / vertical area of 0.35 / 0.36 (Table 6.2). Therefore, differences in the flow and surface 

pressure field illustrated in figure 6.6 and 6.7 can only be analysed up to this normalised radial 

/ vertical distance. Figure 6.6 shows differences larger than the corresponding experimental 

measurement uncertainty between the flow fields obtained in S1 and M1 for both swirl ratios. 

Differences in the lowest measurement height (z = 0.01m) are shown as solid lines, whereas 

height-averaged differences at larger heights (z > 0.01m) are shown as dashed lines. The 

corresponding largest experimental measurement uncertainty is illustrated by the shaded area.  
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a) b)  

c) d)  

e) f)  

 
Figure 6.6: Differences between the radial profiles of circumferential (a and b), radial (c and d) and vertical (e 

and f) velocity components in S1 and M1. The solid line indicates differences at the lowest measurement height 
(z = 0.01m) and the dashed line corresponds to (height-averaged) differences > 0.01m. The grey shaded area 

represents the corresponding larger experimental measurement uncertainty.  
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Outside the vortex core ((r/Raverage) / (r/Raverage)M1,max > 0.15), the radial profiles of 

circumferential velocity components obtained with the smaller swirl ratio differ significantly, 

especially at the lowest height, circumferential velocities are larger by about 0.5δuθ̅ in M1 

compared to S1 (Figure 6.6a). Those differences are caused by the spatial compression of the 

flow field in the small simulator to a normalised area of 0.35 × 0.36 (Table 6.2). 

 

For S = 0.69, the largest differences between the radial profiles of circumferential velocities 

occur inside the vortex core ((r/Raverage) / (r/Raverage)M1,max < 0.55) at the lowest measurement 

height (Figure 6.6b). Here, circumferential velocities obtained in the medium-scale simulator 

(M1) are lower by ~0.2δuθ̅ compared to the small-scale simulator (S1). This means that 

circumferential velocities in M1 decrease at a faster rate than in S1, from the vortex core towards 

the vortex centre. This is in good agreement with what is potentially expected for a two-celled 

vortex structure. The downdraft, which reaches the simulator’s surface for S = 0.69 in M1 

(Figure 6.5b) seems to decreases the circumferential velocity close to the vortex centre. At 

larger heights (z > 0.01m), differences mostly lie within the experimental measurement 

uncertainty (Figure 6.6b). 

 

Figure 6.6c shows differences between the radial profile of radial velocities for S = 0.30 in M1 

and S1. Those differences are about ±0.2δur̅ in the lowest height (z = 0.01m), and are caused 

by the radial outflow at relatively small radial distances in M1 (Figure 6.5a), which is not 

observed in S1 (Figure 6.1a). With increasing radial distance, the radial inflow in M1 dominates, 

whereas the inflow in S1 already decreases, due to the spatial compression of the flow field. 

 

For the larger swirl ratio, radial inflow velocities outside the vortex core are larger / lower by 
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about ±0.1δur̅ in M1 than S1 for z > 0.01m and z = 0.01m, respectively (Figure 6.6d). 

 

Figure 6.6e illustrates differences between the radial profiles of vertical velocity components 

in M1 and S1 of about ±0.2δuz̅ around the core radius. Those differences are caused by the 

downward directed radial inflow at the lowest measurement height in S1 (Figure 6.1a), which 

was not observed in M1 (Figure 6.5a). At larger heights, the flow field around the core radius 

in S1 is dominated by vertical updraft, whereas in M1, radial inflow dominates, which results 

in lower vertical velocities in M1 than S1. 

 

For S = 0.69, differences of ~0.1δuz̅ between M1 and S1 are shown for the radial profile of 

vertical velocity components at heights > 0.01m inside the vortex core (Figure 6.6f). This can 

be explained by the downdraft captured in M1 at relatively small normalised radial distances 

((r/Raverage) / (r/Raverage)M1,max < 0.4), whereas in S1 this area is dominated by an updraft (Figure 

6.1b and 6.5b). 

 

Similar to figure 6.6, an analysis was undertaken to examine differences between the vertical 

profiles of circumferential, radial and vertical velocity components. In most cases, this supports 

the findings above, but does not contribute significantly to the discussion and as such, is not 

presented here. This transpires to be the case for all following simulator comparisons as well 

and for the sake of clarity and brevity, in what follows, discussions relating to the vertical 

profiles have been omitted in all cases.  



~ 120 ~ 
 

6.3.1.2. Differences in surface pressure distributions 

 

Figure 6.7 illustrates the differences in surface pressure fields between the small-scale and the 

medium-scale simulator. In general, the largest surface pressure differences are to be expected 

where the largest flow field differences were found. Therefore, it is not too surprising that the 

largest surface pressure differences are observed for S = 0.30. To capture those differences, the 

range for ordinates in figure 6.7 is adjusted to reach from 0.1δp̅ to -0.6δp̅ instead of from 0.1δp̅ 

to -0.3δp̅ as for the other comparison studies. Despite the differing magnitudes of surface 

pressure differences for S = 0.30 and S = 0.69, figure 6.7 shows that for both swirl ratios 

normalised surface pressures are generally lower in M1 compared to S1. This consequently 

means that vortices generated in M1 affect a larger normalised radial distance compared to S1. 

Those differences are found to be largest around the region of Raverage. 

 

The reason for surface pressure differences observed for the lower swirl ratio can largely be 

explained by the scaling issue addressed before. Similar to the flow field of S1, the surface 

pressure distribution is compressed into a normalised radial distance of ∓0.35. Consequently, 

this forces the surface pressure to increase at a much faster rate with increasing radial distance 

in S1 than M1, thereby, causing the large surface pressure differences illustrated in figure 6.7a.  

 

Differences observed for S = 0.69 could be caused by flow field differences inside the vortex 

core, where the central downdraft detected in M1 potentially causes a more uniform surface 

pressure distribution around the vortex centre, thereby, causing a slower surface pressure 

increase with increasing radial distance from the vortex centre in M1 than in S1 (Figure 6.7b). 
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a) b)  

Figure 6.7: Surface pressure differences in S1 and M1 for S = 0.30 (a) and S = 0.69 (b). The grey shaded area 
represents the corresponding larger experimental measurement uncertainty. 

 

 

6.3.2. The effect of the convection chamber height (T2) 

 

In this section, the effect of changing the convection chamber height (H2) in the small-scale 

generator (whilst keeping other geometric parameters and the swirl ratio constant) is 

investigated. 

 

6.3.2.1. Differences in the flow field 

 

The 3-D velocity fields obtained in S2 (where the convection chamber height is reduced by 

~38%) and S3 (where the convection chamber height is reduced by ~75%) for both swirl ratios 

are shown in figure 6.8. In both cases, the vortex core (r < Raverage) is dominated by radial 

outflow, which feeds into the updraft at a radial distance approximately equal to the 

corresponding core radius. This flow behaviour appears to become more distinct with 

decreasing H2, irrespective of the swirl ratio. Furthermore, the relatively strong radial inflow 

close to the surface up to the position where the overall maximum circumferential velocity 
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occurs (shown in figure 6.1) appears to weaken with decreasing H2 (Figure 6.8). For S = 0.30, 

the strong radial outflow and updraft observed in the vortex core of S2 and S3 suggests that the 

downdraft in S1, which seems to terminate aloft a stagnation point at a normalised height of 

approximately 0.3 (Figure 6.1a), lowers and reaches the surface of simulator S2 and S3 (Figure 

6.8a and 6.8c).  

 

The overall flow structures of all simulations for the larger swirl ratio suggest vortex structures 

similar to what might be expected in a two-celled vortex (Figure 6.1b, 6.8b and 6.8d). The radial 

outflow inside the vortex core obtained in S1, S2 and S3 suggests a central downdraft. 

 

a) b)  

c) d)  

 
Figure 6.8: 3-D velocity fields in S2 (a,b) and S3 (c,d) for S = 0.30 (a,c) and S = 0.69 (b,d). The normalised 

circumferential velocity component is shown as contour and the 2-D vector field indicates the vector based on 
the radial and vertical velocity component. The vertical solid black line indicates the corresponding location of 

the height-averaged core radius. 
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The data embedded in table 6.3 illustrate that the maximum circumferential velocity 

(uθ,max,average) increases as H2 decreases, i.e., this parameter varies in a range of 5.38m/s – 

6.54m/s for S = 0.30. The same changes can also be observed for S = 0.69 with the maximum 

circumferential velocity varying from 6.92m/s – 8.16m/s. It is noted that differences in the 

circumferential velocity maximum between S1 and S2, and S2 and S3 are smaller than the 

corresponding uncertainty; however, differences between S1 and S3 are larger and therefore, 

can be assumed to be caused by the reduction of H2 (Table 4.3 and 6.3). Also illustrated in the 

embedded data is the opposite trend for the core radius (Raverage), i.e., the core radius decreases 

and varies in the range of 0.077m - 0.052m for S = 0.30. Similar to the circumferential velocity 

maxima, only when reducing H2 by 75% (S3), differences larger than the experimental 

measurement uncertainty are obtained. As the swirl ratio increases, differences in Raverage, which 

are larger than the uncertainty are only found for the vortex simulated in S3 compared to S2 

(Table 4.3 and 6.3).  

 

Differences of minimum surface pressures are masked by the experimental measurement 

uncertainty (Table 4.3 and 6.3). 

 
Table 6.3: Averaged core radii, circumferential velocity maxima, surface pressure minima, relative and scaled 
radial / vertical distances and normalised core radii for S1, S2 and S3. 
 

 S = 0.30 S = 0.69 

 S1 S2 S3 S1 S2 S3 

Raverage [m] 0.077 0.060 0.052 0.100 0.107 0.093 

uθ,max,average [m/s] 5.38 5.96 6.54 6.92 7.22 8.16 

pmin [Nm-2] -192.3 -190.9 -189.1 -152.5 -149.8 149.1 

(r/Raverage)max 2.34 3.00 3.46 1.80 1.68 1.94 

(z/Raverage)max 2.60 3.33 3.83 2.00 1.87 2.14 

(r/Raverage) / (r/Raverage)S3,max 0.68 0.87 1.00 0.93 0.87 1.00 

(z/Raverage) / (z/Raverage)S3,max 0.68 0.87 1.00 0.93 0.87 1.00 

1 / (r/Raverage)S3,max 0.29 0.52 
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For more details, differences between the circumferential, radial and vertical velocity 

components for simulations conducted in S1, S2 and S3 are shown in figure 6.9 with respect to 

the radial distance. Figure 6.9 illustrates differences larger than the uncertainty for radial and 

vertical velocity components for both swirl ratios; although, differences between the flow fields 

of the lower swirl ratio seem to be more distinct. Differences between the radial profile of 

circumferential velocity components of both swirl ratios appear to be largely unaffected by the 

change in H2 (Figure 6.9a and 6.9b). The largest differences are observed for the comparison 

of radial velocity components in S1, S2 and S3 for S = 0.30 (Figure 6.9c). Figure 6.9c illustrates 

that the radial velocity inside the vortex core at larger heights (z > 0.01m) increases significantly 

with decreasing H2 by up to 0.2δur̅ in S2 and up to 0.4δur̅ in S3. As a result, the radial distance 

at which the central outflow turns into an inflow increases with decreasing H2. For larger radial 

distances, differences remain present, but tend to decrease. Differences at the lowest 

measurement height (Figure 6.9c) illustrate the decreasing magnitude of radial inflow velocities 

with decreasing H2 (Figure 6.1a, 6.8a, and 6.8c). This in combination with the radial outflow 

from the vortex centre, which was captured in S2 and S3 for S = 0.30, but not in S1, causes 

differences of up to 0.3δur̅ and 0.6δur̅ around the core radius of S2 and S3, respectively (Figure 

6.9c). A similar trend can perhaps be inferred for radial velocity components of the larger swirl 

ratio; however, differences are not as significant as for S = 0.30 (Figure 6.9d). 

 

Figure 6.9e and 6.9f show an updraft intensification with decreasing H2 for both swirl ratios. 

Differences seem to be most distinct at the corresponding core radius, causing differences of up 

to 0.2δur̅ in S2 and up to 0.3δur̅ in S3 for S = 0.30 and differences of up to 0.1δur̅ in S2 and up 

to 0.2δur̅ in S3 for S = 0.69.  
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a) b)  

c) d)  

e) f)  

 
Figure 6.9: Differences between the radial profiles of circumferential (a and b), radial (c and d) and vertical (e 

and f) velocity components in S1, S2 and S3. Differences at the lowest measurement height (z = 0.01m) are 
shown as solid line, whereas height-averaged differences for measurement locations > 0.01m are shown as 

dashed line. The grey shaded area corresponds to the corresponding larger experimental measurement 
uncertainty.  
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6.3.2.2. Surface pressure differences between S1, S2 and S3 

 

Differences of surface pressures measured in S1, S2 and S3 for S = 0.30 (a) and S = 0.69 (b) are 

presented in figure 6.10. For the lower swirl ratio, it appears that reducing H2 causes the 

formation of vortices with a smaller radial surface pressure gradient (Figure 6.10a). As a result, 

the normalised radial distance affected by the vortex extends from S1 to S3. This can partly be 

explained by the decreasing core radius with decreasing H2 and the applied normalisation 

method for radial distances (Table 6.3). 

 

For S = 0.69, an opposite trend is visible for the surface pressure distribution (Figure 6.10b). 

The surface pressure distribution in S2 reveals larger surface pressures than in S1. A potential 

reason for this behaviour can be found in table 6.3. For S = 0.69, the core radius does not follow 

a clear trend with decreasing H2 and the largest core radius is found for the vortex simulated in 

S2. This difference is reflected in the surface pressure distribution and results in a larger radial 

surface pressure gradient in S2 than S1. The surface pressure distribution obtained in S3 for the 

largest swirl ratio, shows differences, which lie within the corresponding uncertainty. 
 

a) b)  
 
Figure 6.10: Surface pressure differences in S1, S2 and S3 for S = 0.30 (a) and S = 0.69 (b). The grey shaded area 

represents the corresponding larger experimental measurement uncertainty. 

6.3.3. The effect of the convergence chamber height (T3) 
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In this section, the effect of changing the convergence chamber height (H1) in the small-scale 

generator (whilst keeping other geometric parameters and the swirl ratio constant) is 

investigated. 

 

6.3.3.1. Flow field differences 

 

The 3-D velocity fields obtained in S4 for S = 0.30 (a) and S = 0.69 (b) are shown in figure 6.11. 

For the lower swirl ratio, flow fields in S1 and S4 show a similar behaviour - the central 

downdraft, which stagnates at a normalised height of ~0.3 in S1 (Figure 6.1a) seems to lower 

to approximately ~0.15 in S4 (Figure 6.11a). At this height, the downdraft is assumed to feed 

into the radial outflow from the vortex centre.  

 

Flow fields obtained for S = 0.69 in S1 and S4 also reveal a similar flow pattern. The upwards 

directed radial outflow at all heights in the vortex centre of S1 (Figure 6.1b) and S4 (Figure 

6.11b) suggests the presence of a central downdraft that reaches the surface of both simulators. 

This suggests the presence of a large counter-clockwise rotating cell as potentially expected in 

a two-celled vortex structure. 

 

In addition, table 6.4 shows the height-averaged core radius, the maximum circumferential 

velocity and the minimum surface pressure. It is noted, that differences between parameters 

presented in table 6.4 are smaller than the experimental measurement uncertainty and therefore, 

differences are expected to be independent of the H1 reduction. This is perhaps not surprising, 

considering the relatively small reduction of H1 of only 25% from S1 to S4. 
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a) b)  

 
Figure 6.11: 3-D velocity fields in S4 for S = 0.30 (a) and S = 0.69 (b). The normalised circumferential velocity 

component is shown as contour and the 2-D vector field indicates the vector based on the radial and vertical 
velocity component. The vertical solid black line indicates the corresponding location of the height-averaged 

core radius. 
 

Table 6.4: Averaged core radii, circumferential velocity maxima, surface pressure minima, relative and scaled 
radial / vertical distances and normalised core radii for S1and S4. 
 

 S = 0.30 S = 0.69 

 S1 S4 S1 S4 

Raverage [m] 0.077 0.070 0.100 0.098 

uθ,max,average [m/s] 5.38 5.57 6.92 6.79 

pmin [Nm-2] -192.3 -192.3 -152.5 -151.0 

(r/Raverage)max 2.34 2.57 1.80 1.84 

(z/Raverage)max 2.60 2.86 2.00 2.04 

(r/Raverage) / (r/Raverage)S4,max 0.91 1.00 0.98 1.00 

(z/Raverage) / (z/Raverage)S4,max 0.91 1.00 0.98 1.00 

1 / (r/Raverage)S4,max 0.39 0.54 

 

Figure 6.12 shows that altering the height of the convergence chamber by ~25% appears to have 

the least effect – all of the differences illustrated are within the experimental measurement 

uncertainty, with the exception of a few points inside the vortex core. There is tentative evidence 

to suggest that the radial outflow feeding into the updraft inside the vortex core (Figure 6.12c 

and 6.12d), and vertical velocities in general (Figure 6.12e and 6.12f), become more distinct 
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when decreasing H1. Although, it is acknowledged that this is within the experimental 

measurement uncertainty and as such is speculation. 

a) b)  

c) d)  

e) f)  

 
Figure 6.12: Differences between the radial profiles of circumferential (a and b), radial (c and d) and vertical (e 

and f) velocity components in S1 and S4. Differences at the lowest measurement height (z = 0.01m) are shown as 
solid line, whereas height-averaged differences for measurement locations > 0.01m are shown as dashed line. 

The grey shaded area corresponds to the corresponding larger experimental measurement uncertainty. 
 
6.3.3.2. Surface pressure differences 
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Figure 6.13 shows differences between the surface pressures measured in S1 and S4 for S = 0.30 

(a) and S = 0.69 (b). It seems that also the surface pressure distributions are largely unaffected 

by the change of the convergence chamber height, as most surface pressure differences lie 

within the corresponding experimental measurement uncertainty. Only around the core radius 

of S = 0.30, a weak dependence can be inferred with slightly smaller normalised surface 

pressures in S4 (Figure 6.13a). This difference can potentially be explained by a combination 

of the lowering of the downdraft’s stagnation point and the decreasing core radius with 

decreasing H1, thereby, causing a surface pressure distribution with a smaller radial surface 

pressure gradient in S4 than S1. 

 

For the larger swirl ratio, a weak dependence on H1 can be inferred as well, causing slightly 

larger normalised surface pressures in S4 compared to S1 (Figure 6.13b). The increasing vertical 

velocity at the lowest height could be a potential reason for this behaviour, causing a vortex 

with a larger radial surface pressure gradient with decreasing H1. Although, it is acknowledged 

that differences lie within the experimental measurement uncertainty and as such is speculation. 

a) b)  
 

Figure 6.13: Surface pressure differences in S1 and S4 for S = 0.30 (a) and S = 0.69 (b). The grey shaded area 
corresponds to the corresponding larger experimental measurement uncertainty.  
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6.4. Concluding remarks 

 

Based on this analysis, the following main conclusions can be drawn: 

 

 

 Time-averaged velocity and surface pressure data have been presented and illustrate (in 

keeping with previous work) that the swirl ratio has an effect on the size of the core radius, 

pressure distribution and velocity characteristics. 

 
 Velocity and surface pressure characteristics of vortices generated in simulators of different 

scale but swirl ratio and aspect ratio parity can differ significantly. 

 
 Flow field and surface pressure characteristics of tornado-like vortices appear not only to be 

a function of the swirl ratio and the aspect ratio, but also a function of the convection 

chamber height. 

 
 Reducing the convergence chamber height by 25% and thereby changing the aspect ratio 

from 2 to 1.5 showed little effect on velocity and surface pressure fields. 

 
 It was found that the effect of different simulator scales and geometric modifications on the 

flow and surface pressure field can be swirl ratio dependent.  

o For S = 0.30, differences of up to 50% were found between surface pressures and 

circumferential velocity components of vortices generated in simulators of different 

scale, whereas the majority of differences observed for S = 0.69 remained below 20%. 

o For S = 0.30, differences of up to 30% and 60% were found between radial velocity 

components when reducing the convection chamber height by 38% and 75%, 



~ 132 ~ 
 

respectively, whereas differences for S = 0.69 remained below 20%. 

 
 It is noted that there are a variety of ways in which the pressure and velocity data could be 

normalised and it seems possible that different normalisations could mask or exaggerate the 

impact of geometric changes on the generated flow field. 

 
 
Based on the above, it is suggested that ensuring aspect ratio and swirl ratio parity between 

different simulators is not sufficient to generate similar vortices with similar velocity and 

surface pressure characteristics, i.e., the boundary conditions govern the flow.  
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7. AN ANALYSIS OF TRANSIENT 
PROCESSES IN TORNADO-

LIKE FLOWS 
 

 

The relatively large fluctuations of local static surface pressures at the centre of the simulators 

with respect to time (section 4.4) suggested that a detailed investigation of the transient 

behaviour was warranted. The analysis relating to this investigation is reported in this section. 

It is acknowledged that parts of this research have previously been published in Gillmeier et al. 

(2017) and are reproduced with the permission of the co-authors.  

 

 

7.1. Temporal and spatial distributions of surface 
pressures 

 

 

The focus of most physical simulations to date concerns the generation of realistically looking 

tornado-like flow fields, generally expressed in terms of mean flow velocities and mean surface 

pressure distributions. Surprisingly, there is as of yet, little understanding about the effect and 

relative importance of transient (non-stationary) processes (e.g., the spatial movement of the 

vortex centre with time) on the tornado flow and surface pressure field (e.g., Karami et al., 

2017). 
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In order to investigate the transient behaviour of vortices generated in the medium-scale (M1) 

and the small-scale (S1) tornado-like vortex simulator at the UoB, surface pressures obtained 

for three swirl ratios (S = 0.14, S = 0.30 and S = 0.69) will be analysed in this section. The focus 

of this analysis lies on surface pressure measurements because findings presented in section 4.4 

give reason to suggest that transient phenomena occur either at the centre of the simulator or at 

relatively small radial distances from the vortex centre for which velocities could not be 

captured with the desired data quality. 

 

Figure 7.1 shows surface pressure measurements in S1 (a) and M1 (b), which were obtained at 

the corresponding simulator’s centre (a1, b1) and at corresponding core radii (a2, b2) in form of a 

box plot. Each box plot provides information of the median (horizontal line in the box), the first 

and third quartile (top and bottom of the box), and the remaining sample points (dots) of the 

corresponding surface pressure distribution. Surface pressures illustrated in figure 7.1 have 

been normalised by the corresponding time-averaged surface pressure minimum (pmin), which 

is given in the figure’s caption.  

 

In order to investigate and highlight differences between the analysed distributions, the 

skewness (ς) and the kurtosis (ĸ) have been calculated to describe the shape of frequency 

distributions. The skewness is the third statistical moment of a distribution and a measure of 

the symmetry of the distribution in relation to the normal distribution. A skewness of zero 

corresponds to the normal distribution, whereas a negative skewness means that the distribution 

has a tail, which extends further towards the left-hand side than the right-hand side and vice 

versa for a positively skewed distribution. The kurtosis is the fourth statistical moment of a 

frequency distribution and is a measure of the likelihood of a distribution to produce outliers in 
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relation to the normal distribution (Rohatgi, 1976). For this work, ĸ was calculated based on the 

definition given in Pearson (1905), for which outliers are defined by values larger / smaller 

than three times the standard deviation, σ, of the corresponding distribution. A kurtosis of zero 

corresponds to the normal distribution, whereas if ĸ > 0, the tails of the distribution extend 

further than the tails of a normal distribution. Consequently, a frequency distribution of positive 

kurtosis has a larger likelihood for outliers than a normal distribution. 

 

Table 7.1 provides information of skewness and kurtosis of the distributions illustrated in figure 

7.1. In addition, the corresponding standard deviation is shown in percentage of pmin. 

 

a1) a2)  

b1) b2)  

Figure 7.1: Box plot of surface pressure measurements obtained in S1 (a) and M1 (b) for different radial 
distances, r = 0 (1) and r = Raverage (2). For S = 0.14, S = 0.30 and S = 0.69 in S1 pmin =-123.5Nm-2, -192.3Nm-2 
and -152.5Nm-2, respectively. In M1, corresponding pmin values are -168.1Nm-2, -225.2Nm-2 and -174.4Nm-2. 
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Table 7.1: Standard deviation, skewness and kurtosis of surface pressure time series illustrated in figure 7.1 for 
S1 (a) and M1 (b) and different radial positions, r = 0 (1) and r = Raverage (2). 
 

a1) S = 0.14 S = 0.30 S = 0.69 a2) S = 0.14 S = 0.30 S = 0.69 

σ [%] 61.9 12.5 8.4  3.9 3.6 6.9 

ς [-] -2.7 -0.4 -0.6  -1.0 -0.4 -0.3 

ĸ [-] 8.4 0.9 0.9  3.7 0.7 0.3 

        
b1) S = 0.14 S = 0.30 S = 0.69 b2) S = 0.14 S = 0.30 S = 0.69 

σ [%] 46.1 15.0 8.6  6.5 5.1 3.5 

ς [-] -1.2 -0.4 -1.0  -0.7 -0.1 -0.1 

ĸ [-] 6.8 0.3 2.3  1.7 0.3 0.9 

 

 
Figure 7.1a1 and figure 7.1b1 illustrate that the instantaneous surface pressure deficit at the 

centre of the vortex for the lowest swirl ratio (S = 0.14) can be larger than the average surface 

pressure deficit (pmin) by almost 6 times in S1 and almost 3 times in M1. This behaviour is 

reflected in the corresponding statistical quantities presented in table 7.1a1 an table 7.1b1. For 

S = 0.14, standard deviations of approximately 62% and 46% of the corresponding pmin value 

highlight the large instantaneous variability in time at the vortex centre of S1 and M1, 

respectively (Table 7.1a1 and 7.1b1). Furthermore, the relatively large kurtosis of those 

distributions (ĸ = 8.4 in S1 and ĸ = 6.8 in M1) suggests heavily tailed frequency distributions 

with outliers much larger than three times the corresponding standard deviation. In addition, 

the negative skewness of ς = -2.7 in S1 and ς = -1.2 in M1 (Table 7.1a1 and 7.1b1) allows the 

conclusion to be drawn that frequency distributions at the vortex centre of both simulators are 

heavily tailed towards the negative side of the frequency distribution. This results in an 

increasing likelihood of an instantaneous decrease of the central surface pressure deficit for S 

= 0.14.  
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The surface pressure distributions obtained at the corresponding core radii in S1 (Figure 7.1a2) 

and M1 (Figure 7.1b2) for the lowest swirl ratio (S = 0.14) remain slightly left tailed (positive 

kurtosis and negative skewness); however, the shape of those distributions shows a behaviour 

more similar to what is expected for a normal distribution (Table 7.1a2 and 7.1b2). Hence, it is 

suggested that relatively large surface pressure fluctuations with respect to time seem to occur 

solely at, or in close proximity to the centre of both simulators for vortices simulated with the 

lowest swirl ratio (S = 0.14). 

 

With increasing swirl ratio, results presented in table 7.1a and 7.1b illustrate that surface 

pressure distributions obtained at the centre of the simulators and at corresponding core radii 

also retain a slightly left tailed shape but become more similar to a shape that would be expected 

for a normal distribution.  

 

In keeping with findings presented in section 4.4, differences between the shapes of surface 

pressure distributions obtained at the centre of both simulators and at corresponding core radii, 

seem to decrease with increasing swirl ratio, e.g., no radial dependence on the shape of surface 

pressure distributions was observed for the largest swirl ratio (S = 0.69) in both simulators over 

the range of radial distances analysed (Figure 7.1 and table 7.1). In conclusion, it seems that the 

magnitude of local surface pressure fluctuations at the centre of the simulators decreases with 

increasing swirl ratio.  

 

In addition to the temporal distribution of surface pressure measurements, figure 7.2 illustrates 

the non-stationary movement of the vortex centre (which is defined as the local surface pressure 

minimum of the vortex at any time) for S = 0.14, S = 0.30 and S = 0.69 in S1 (a) and M1 (b). 
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The corresponding percentages show relative durations (relative to the entire measurement 

period) for which the vortex centre is located in any of the four quadrants. As the duration for 

which the vortex centre coincides with the simulator’s centre is not accounted for in this 

analysis, percentages shown in figure 7.2 do not integrate to 100 as illustrated in table 7.2, 

which provides an overview of the entire duration for which the corresponding vortex is not 

located at the centre of the corresponding simulator. For this investigation, pressure taps 

surrounding the corresponding simulator’s centre in a circular pattern (as illustrated in figure 

4.2a and figure 4.2b for S1 and M1, respectively) were analysed. 

 

      a) b)  

Figure 7.2: Percentage of the measurement time for which the local surface pressure minimum occurs in any of 
the four quadrants surrounding the simulator’s centre (x,y) = (0,0) for S = 0.14, S = 0.30 and S = 0.69 in S1 (a) 

and M1 (b). 
 

Table 7.2: Relative duration of vortex movement in percentage of the measurement duration in S1 and M1 for S 
= 0.14, S = 0.30 and S = 0.69. 
 

 S = 0.14 S = 0.30 S = 0.69 

Duration of vortex movement in S1 37 % 68 % 95 % 

Duration of vortex movement in M1 34 % 50 % 98 % 

 

Table 7.2 shows that with increasing swirl ratio, the duration for which the corresponding vortex 

centre is not located at the centre of the simulator increases from ~37% to ~68% to ~95% for S 
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= 0.14, S = 0.30 and S = 0.69 in S1 and from ~34% to ~50% to ~98% for S = 0.14, S = 0.30 and 

S = 0.69 in M1. Detailed information regarding the location of the corresponding vortex centre 

throughout the entire measurement duration is provided in figure 7.2. If observed movement 

patterns had shown a more symmetric behaviour with respect to the simulators’ centre, a regular 

vortex movement could have been inferred. However, results presented in figure 7.2 are not 

distinct enough to draw this conclusion, as a certain degree of randomness seems to be present 

for the vortex movement of all analysed vortices in both simulators (Figure 7.2).  

 

Defining the vortex centre as the position at which the lowest surface pressure is located, i.e., 

r(x,y)pmin
, it is possible to calculate a potential normalised vortex wandering velocity from: 

 

𝑢𝑣𝑜𝑟𝑡𝑒𝑥 𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔(𝑥, 𝑦, ∆𝑡) =
∆𝑟(𝑥,𝑦,∆𝑡)𝑝𝑚𝑖𝑛  𝑓

𝑢𝜃,𝑚𝑎𝑥,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
    (7.1) 

 

where, ∆r(x,y,∆t)pmin
= ∆r(x,y,t+1)pmin

- ∆r(x,y,t)pmin
, f is the sampling frequency of surface 

pressure measurements (for this work f = 100Hz) and uθ,max,average is the height-averaged 

maximum circumferential velocity throughout the entire sampling period. Values of which are 

given in the caption of figure 7.3. It is noted that an uncertainty is introduced to the vortex 

wandering velocity due to the surface pressure tap spacing. Because of this, differences of 

vortex wandering velocities, which are lower than 10%, 9% and 7% of the corresponding 

uθ,max,average for S = 0.14, S = 0.30 and S = 0.69 in S1 cannot be detected. Due to the larger 

spacing between pressure taps in M1, corresponding percentages are 70%, 35% and 30%. 
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Figure 7.3 illustrates the results of this analysis expressed in terms of a frequency distribution 

of vortex wandering velocities for S = 0.14, S = 0.30 and S = 0.69 in S1 (a) and M1 (b). The 

vortex simulated in S1 for S = 0.14 mainly moves with a velocity of ~30% of the corresponding 

uθ,max,average (Figure 7.3a). For the second largest swirl ratio, the vortex centre typically moves 

at velocities of around 20% of uθ,max,average,(S=0.30), and the vortex generated with the largest 

swirl ratio (S = 0.69) appears to be continuingly moving with velocities between 10% - 80% of 

its uθ,max,average. In addition, figure 7.3a highlights that vortex wandering velocities of all 

vortices simulated in S1 are lower or equal to the corresponding circumferential velocity 

maximum (uθ,max,average). Therefore, from figure 7.3, it can be concluded that relative vortex 

wandering velocities in M1 seem to be larger than in S1 for all vortices. Vortex wandering 

velocities of all vortices simulated in M1 exceed the corresponding circumferential velocity 

maximum (figure 7.3b). The vortex simulated with the lowest swirl ratio in M1 seems to move 

with velocities of about 1.4 to 2.6 times the corresponding uθ,max,average (Figure 7.3b). For the 

second largest swirl ratio, the vortex mainly moves with velocities between 40% and 120% of 

its uθ,max,average, even though, occasionally, vortex wandering velocities can be significantly 

larger (up to 2.8 times uθ,max,average,(S=0.30)). The vortex with the largest swirl ratio seems to be 

mainly moving with a speed approximately similar to its circumferential velocity maximum. 

For the remaining time, the vortex moves with velocities of approximately 1.2 to 3.2 times of 

its corresponding uθ,max,average. 
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a) b)  

Figure 7.3: Transient vortex wandering velocities for all swirl ratios in S1 (a) and M1 (b). In S1, uθ,max,average = 
3.69m/s, 5.38m/s and 6.92m/s for S = 0.14, S = 0.30 and S = 0.69, respectively. In M1, corresponding values are 

3.65m/s, 7.45m/s and 8.75m/s for S = 0.14, S = 0.30 and S = 0.69, respectively. 
 

 

It is postulated that the transient behaviour in time and space outlined above could possibly be 

associated with a combination of a transient vortex intensifying / weakening in time and a non-

stationary movement of the vortex centre in time (e.g., vortex wandering). In order to 

investigate the non-stationary temporal and spatial behaviour further, the technique of proper 

orthogonal decomposition (POD) is used in an attempt to decouple the influence of a possible 

vortex wandering and a potential vortex intensifying / weakening in time, from the mean flow 

field. 
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7.2. Proper Orthogonal Decomposition (POD) of 
surface pressure fluctuations 

 

 

The POD method assumes that surface pressure fluctuations can be represented by a series of 

spatial and temporal functions, which are the eigenvectors (modes) and the mean square values 

of the eigenvalues of the pressure fluctuation covariance matrix (Baker, 2000). The significance 

of certain modes is determined by their corresponding eigenvalue because the eigenvalue 

represents the amount of ‘energy’ that is carried by the associated mode, hence, the eigenvalue 

also indicates the degree to which this mode might represents the actual surface pressure 

fluctuations. In practice it is found that only the first few modes contain significant energy 

(Baker, 2000). Consequently, in theory, the most relevant features of the surface pressure 

fluctuations can be represented by those first few (‘most energetic’) modes. 

 

For this work, the POD analysis yields 41 modes (due to the 41 experimental measurement 

positions illustrated in figure 4.2). Figure 7.4 shows the cumulative ‘energy’ within the first ten 

modes for S1 (a) and M1 (b) for all swirl ratios (as given by the sum of the eigenvalues up to 

that mode). It can be observed that the eigenvalues of the lower modes contribute significantly 

more to the total ‘energy’ in the flow than the higher modes. In particular, the first three modes 

are responsible for approximately 50% or more of the total ‘energy’. This was found to be the 

case for both simulators and all swirl ratios investigated. For S = 0.14, about 90% of the total 

‘energy’ is given within the first three modes. In what follows, the first three modes are analysed 

in more detail for all swirl ratios, as those are the modes, which individually contain a 

significant amount of ‘energy’ of at least around 20% of the total ‘energy’, and therefore, might 
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be expected to correspond to physical flow mechanisms. The individual contribution of higher 

modes (modes > 3) is relatively small and for that reason, it is unlikely that those modes 

represent coherent physical phenomena. 

 

a) b)  

Figure 7.4: Normalised accumulated eigenvalues in S1 (a) and M1 (b) for the first ten modes and three swirl 
ratios (S = 0.14, S = 0.30 and S = 0.69). 

 

Figures 7.5 and 7.6 show the eigenvectors of the first (1), second (2) and third (3) mode for S = 

0.14 (a), S = 0.30 (b) and S = 0.69 (c) in S1 and M1, respectively. The eigenvector of the first 

mode for the lowest swirl ratio (S = 0.14) shows a strong gradient in ‘energy’ towards the centre 

in S1 and M1 (Figure 7.5a1 and 7.6a1). A similar behaviour can be found for the eigenvector of 

the third mode for S = 0.30 (Figure 7.5b3 and 7.6b3) and the eigenvector of the first mode for S 

= 0.69 (Figure 7.5c1 and 7.6c1) in both simulators. However, the ‘energy’ gradient towards the 

centre decreases with increasing swirl ratio, which can be explained by the different amount of 

‘energy’ carried by those modes (Figure 7.4). Figure 7.5 and 7.6 also show relatively strong 

regions of positive and negative eigenvalues, suggesting an oscillation in the energy for modes 

2 and 3 (S = 0.14), modes 1 and 2 (S = 0.30), and modes 2 and 3 (S = 0.69). It is perhaps worth 

noting that figure 7.5 and 7.6 represent the ‘energy’ over the sampling period and instantaneous 

distributions support the notion of oscillation, since the areas of localised maximum / minimum 
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change sign throughout the sampling period (instantaneous distributions for S1 can be viewed 

here: https://instantaneousdistributions.neocities.org/). It is hypothesised that this oscillation 

might be indicative of a circular vortex movement for all swirl ratios in both simulators, which 

could in turn be indicative of vortex wandering.  

 

The relative radial distance of the localised maximum / minimum (or potentially the region of 

vortex wandering), with respect to the corresponding core radius, appears to remain constant 

for all swirl ratios at approximately 0.3 Raverage  in S1 (Figure 7.5). In M1 (Figure 7.6), the 

relative distance (with respect to the corresponding core radius) increases compared to S1 but 

remains also constant at approximately 0.5 Raverage for all swirl ratios. 

  

https://instantaneousdistributions.neocities.org/
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a1)     a2)     a3)  

b1)     b2)    b3)  

c1)     c2)     c3)  

 
Figure 7.5: Normalised eigenvectors for the first (1), second (2) and third (3) mode in S1 for S = 0.14 (a), S = 0.30 
(b) and S = 0.69 (c), respectively. To normalise the radial distance, maximum values of experimentally obtained 

(r/Raverage)max are used. For S = 0.14, S = 0.30 and S = 0.69 (r/Raverage)max = 0.83, 0.52 and 0.40, respectively. 
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a1) a2)        a3)  

b1)     b2)    b3)  

c1)     c2)     c3)  

 
Figure 7.6: Normalised eigenvectors for the first (1), second (2) and third (3) mode in M1 for S = 0.14 (a), S = 
0.30 (b) and S = 0.69 (c), respectively. To normalise the radial distance, maximum values of experimentally 

obtained (r/Raverage)max are used. For S = 0.14, S = 0.30 and S = 0.69 (r/Raverage)max = 1.82, 2.41 and 0.66, 
respectively.  
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In order to analyse, if any of the observed transient phenomena highlighted in figures 7.5 and 

7.6 occur at a certain frequency in time, the power spectral density distribution of surface 

pressures measured at five radial distances ((r/Raverage) / (r/Raverage)max = 0, 0.25, 0.50, 0.75 and 

1) for S = 0.14 (a1), S = 0.30 (b1) and S = 0.69 (c1) in S1 (Figure 7.7) and M1 was analysed. In 

addition, the corresponding mode spectra of the lowest three modes are investigated for S = 

0.14 (a2), S = 0.30 (b2) and S = 0.69 (c2). To cut off frequencies, which show aliasing, a low-

pass filter was applied to all calculated power spectral density functions at a frequency of 25Hz. 

For brevity, only results obtained in S1 are illustrated in what follows. Findings in M1 reveal a 

similar behaviour and therefore, would not contribute much to the general understanding. 

 

The spectra of the first mode for S = 0.14 (Figure 7.7a2) and S = 0.69 (Figure 7.7c2) and the 

third mode for S = 0.30 (Figure 7.7b2) show an energy distribution (over the frequencies 

analysed), which is similar to the surface pressure spectra obtained at the corresponding vortex 

centre ((r/Raverage) / (r/Raverage)max = 0; Figure 7.7). This is not surprising, taking the findings of 

the POD analysis into account, as those are the modes affecting the surface pressure fluctuation 

at the vortex centre, which have been identified as a possible vortex intensifying / weakening 

(compare Figure 7.5).  

 

The second and third mode of the lowest swirl ratio (Figure 7.7a2) show relatively high energies 

at around 2-5Hz. A potentially similar pattern can be found in the surface pressure spectra for 

the corresponding vortex at radial distances between (r/Raverage) / (r/Raverage)max = 0.25 – 0.75 

(Figure 7.7a1). This might suggest that a combination of those modes can replicate (to some 

extent) the low frequency surface pressure fluctuations at those positions. 
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Figure 7.7b2 shows that surface pressure fluctuations, which are causing a vortex intensifying / 

weakening around the vortex core (mode 3), occur at frequencies, which are relatively high 

(~20Hz) compared to those fluctuations, which are possibly causing a circular vortex movement 

around the vortex core (~3-4Hz, mode 1 and 2). The surface pressure spectra for S = 0.30 

(Figure 7.7b1) shows that the energy content of the dominant frequency of the third mode 

decreases with increasing radial distance and a possible connection between dominant 

frequencies of first and second mode (Figure 7.7b2) and the corresponding surface pressure 

spectra for larger radial distances ((r/Raverage) / (r/Raverage)max > 0.75) can be inferred.  

 

A relation between modes and the corresponding surface pressure spectra is not that obvious 

for the highest swirl ratio. It general, it is not surprising that mode spectra for the lowest swirl 

ratio show a better representation of the actual surface pressure spectra because for this swirl 

ratio the lowest three modes contain about 90% of the entire energy in the flow, whereas for S 

= 0.30 only about 50% of the entire energy is contained in mode 1 to 3, and only 60% for S = 

0.69 (c.f. Figure 7.4a). Nevertheless, it seems likely that the circular vortex movement 

illustrated in Figure 7.5 causes those low frequency peaks in the surface pressure spectra. 

However, the surface pressure fluctuations of all vortices analysed seem to be far more complex 

and cannot be described fully by the lowest three modes. 
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a1) a2)  

b1) b2)  

c1)  c2)  

 
Figure 7.7: Power spectral density functions of surface pressure measurements at (r/Raverage) / (r/Raverage)max = 0, 

0.25, 0.50, 0.75 and 1) for S = 0.14 (a1), S = 0.30 (b1) and S = 0.69 (c1) in S1, respectively. Additionally, the 
power spectral density function of the POD coefficients of the first three modes is shown in (a2), (b2) and (c2) for 

S = 0.14, S = 0.30 and S = 0.69, respectively.  
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7.3. Concluding remarks 

 

Based on this analysis the following tentative conclusions can be drawn: 

 

 

 The flow and surface pressure field of the generated vortices appears to be highly complex 

and unstable. 

 
 The experiments have illustrated that significant vortex wandering can occur in physical 

tornado-like simulators despite of their boundary conditions remaining unchanged.  

 
 The duration for which the vortex centre is moving throughout the measurement duration 

was found to increases with increasing swirl ratio. 

 
 Vortex wandering velocities were found to differ in different simulators with respect to the 

corresponding circumferential velocity maximum. Furthermore, it was observed that vortex 

wandering velocities seem to be swirl ratio dependent and an increasing variability of vortex 

wandering velocities was observed with increasing swirl ratio.  

 
 The first three modes of the surface pressure POD analysis seem to be related to a local 

intensifying / weakening of the vortex centre in time and a circular vortex movement around 

it. However, the surface pressure fluctuations for the three vortices analysed seem to be far 

more complex and cannot fully be described by the lowest three modes.  

 
 Flow phenomena related to a local intensifying / weakening of the vortex were found to have 

a larger effect on vortices simulated with a low swirl ratio. This finding in combination with 
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the movement of a vortex with relatively large radial surface pressure gradients seems to be 

responsible for the relatively large uncertainties of surface pressures, which were observed 

at the centre of the simulator and have been reported and described in section 4.4. 
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8. REFLECTIONS AND 
RECOMMENDATIONS FOR 

FURTHER WORK 
 

 

The focus of this work was set on analytical and experimental modelling of tornado-like 

vortices. A detailed evaluation of assumptions and limitations of experimental and analytical 

tornado-like vortex models (as outlined in the aim of this thesis) has shown that results obtained 

from both modelling techniques can only illustrate extremely simplified versions of 

atmospheric tornadoes (section 2). 

 

The comparison of experimental and analytical model results (as outlined in objective 1) has 

highlighted that analytical models fail to replicate the complexity of the experimentally 

obtained time-averaged three-dimensional vortex structure due to the simplifying assumptions 

made in their derivations. A further benefit of experimental measurements compared to 

analytical results was found to be the ability to capture time-dependent flow characteristics of 

generated vortices, as those transient effects were found to cause instantaneous surface pressure 

changes of significant magnitude. It seems likely that those transient events have a large impact 

on the structural failure of buildings exposed to those types of flow fields. This underlines the 

importance of those processes to be taken into account when simulating tornado-like vortices, 

and since none of the analysed analytical vortex models takes turbulence or transient processes 
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into account, their application with respect to a realistic assessment of flow and pressure fields 

of naturally occurring tornadoes is questionable. Nevertheless, they remain the cheapest option 

to simulate the tornado flow field, which in the future might become profitable if they would 

allow a more realistic representation of atmospheric tornadoes. Relevant information can be 

found in section 2.4, section 5 and section 7. 

 

With respect to the effect of the simulator’s geometric design on experimentally obtained results 

(as outlined in objective 2), this work has proven that to date not all relevant geometric 

parameters of physical tornado simulators that affect the generated flow field are identified. As 

a result, the parity of currently used non-dimensional parameters (i.e., the aspect ratio and the 

swirl ratio) was found to be insufficient to guarantee the geometric and dynamic similarity of 

flow fields obtained in different tornado simulators. This means that results obtained in different 

simulators differ because they depend significantly on the geometric design and controlling 

boundary conditions of the corresponding simulator. This crucial limitation of experimental 

results is not surprising but has not been acknowledged before. This work suggests that there 

are geometric parameters that affect the flow field more significantly than others and that the 

effect of those parameters is not solely dependent on the rate of change, but also on the swirl 

ratio. This complex relationship between the swirl ratio and the effect of geometric parameters 

on the generated flow field, makes a generalised assessment of the effect of those parameters 

challenging, especially because it seems likely that their effect differs for different simulators 

due to their different geometric design and way of introducing vorticity to the flow field. 

Relevant information can be found in section 2.5, 3.2, 6 and appendix A. 
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Even though the swirl ratio is known to affect the generated vortex flow structure, this work 

demonstrates that swirl ratio definitions among different simulators differ, which complicates 

a reasonable comparison between flow fields generated in different simulators even further. 

Those findings are outlined in section 3.2.3 and appendix B. In addition, if the swirl ratio is 

determined based on velocity measurements, it seems sensible to introduce an uncertainty to its 

value in order to indicate the sensitivity of the swirl ratio to flow field changes. To date the 

swirl ratio is defined solely based on the circumferential velocity component. A potential reason 

for this could be that the circumferential velocity component has the largest velocity magnitude 

and therefore, might have received the most attention. Furthermore, due to its larger magnitude, 

measurement uncertainties do not account that significantly as for radial and vertical velocity 

components, whose magnitudes can be close to zero. Nevertheless, if the similarity of the three-

dimensional flow structure is of interest it seems reasonable that non-dimensional parameters 

are introduced that describe the three-dimensional flow structure. Last but not least, since this 

work has proven that results obtained in physical tornado-like vortex simulators are affected by 

multiple geometric parameters, there is no solid reason why the swirl ratio should be dependent 

on the aspect ratio (as it is for most simulations conducted to date). 

 

This work also addresses challenges associated with the geometric scaling factor. Determining 

the geometric scale of experimental simulations is a crucial part of a reasonable comparison 

between flow fields of different scale. However, this work has illustrated that the experimental 

measurement uncertainty can introduce an uncertainty to the geometric scaling factor, which 

consequently affects the accuracy of scaled results. Furthermore, it is noted that to date no 

uniform method exists to determine the geometric scale of physical tornado-like vortex 

simulations. This work shows that dependent on the chosen method, significant differences can 
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be found for the geometric scaling factor. Besides, it seems likely that the uncertainty of the 

scaling factor gets even larger when corresponding values have to be found in atmospheric 

tornadoes, because firstly, those values might change throughout the lifetime of a full-scale 

tornado, and secondly, the spatial resolution and associated uncertainty of full-scale 

measurements might make it difficult to determine required parameters with the desired 

representativeness. Furthermore, it is noted that for Wind Engineers, the lowest few metres of 

the simulated tornado-like flow field are of most interest as this is the part of the flow field, we 

and our built environment are exposed to. However, especially locations close to the surface 

are challenging to measure experimentally if the geometric scale of modelled tornado-like 

vortices is relatively small. This is also the most challenging region with respect to full-scale 

measurements because of the limitations associated with Doppler radar devices. For that reason, 

the question, how well the near-surface tornado flow field can be replicated remains unsolved 

to date. Those important limitation of scaled experimentally obtained results have not been 

acknowledged before and should be addressed in detail before results obtained from simplified 

models are applied with confidence in practice. Relevant information can be found in section 

3.2.4 and appendix C. 

 

One of the currently largest challenges for the Wind Engineering community with respect to 

the simulation of tornadoes, is to establish experimental tornado-like vortex modelling as a 

sensible methodology to assess the flow and pressure field of tornadoes. Currently, results 

obtained from experimental models seem to have the potential to capture some of the flow and 

pressure characteristics present in full-scale tornadoes; however, this work has shown that to 

date many uncertainties and unknowns still exist, which have to be addressed before trustworthy 

results can be obtained from those models. 
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Based on the findings presented in this thesis, the following further investigations are suggested: 

 

A comparison study conducted in a number of the currently used tornado-like vortex simulators, 

for which the flow field of a specific full-scale tornado is generated in all simulators. Based on 

findings presented in section 3.2, section 6 and appendix A, it is assumed that apart from 

different geometric scales, different sets of geometric and dynamic parameters will be required 

for each simulator in order to obtain a flow field similar to the atmospheric one. At first, a 

comparison and detailed assessment of the differences of geometric and dynamic parameters 

would allow an improved understanding of the simulation of tornado-like vortices in different 

simulators. In addition, the experimentally obtained datasets could be used for a comparison 

study in which all experimentally simulated tornado-like vortices that are supposed to be similar 

to the same full-scale tornado flow field are compared. This would allow an understanding of 

how similar results obtained in different simulators can be expected to be if the simulation of 

the same full-scale tornado is of interest. As this work has proven that the effect of geometric 

parameters is swirl ratio dependent (section 6), it would be interesting to conduct this 

comparison for a number of different full-scale tornadoes of different intensity and core radius. 

 

Further to this, an investigation concerning the sensitivity of wind loads on the uncertainty 

associated with the determination of the geometric scale is suggested. Also for this analysis, the 

flow field of an atmospheric tornado has to be simulated and the geometric scale of the 

simulation and its accompanied uncertainty has to be defined. The geometric scale including its 

uncertainty envelope can be used to scale two model structures, i.e., one model has to be scaled 

with the determined geometric scaling factor + ½ the uncertainty, and another model has to be 

scales with the geometric scaling factor – ½ the uncertainty. Differences of the wind load 
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analysis conducted with both model structures would give an improved understanding of how 

accurately wind loads can be assessed in a tornado-like vortex simulator. Also for this analysis 

it would be beneficial to analyse multiple full-scale tornadoes of different core radii to conduct 

this analysis for a variety of geometric scaling factors. In addition, if a similar comparison 

would be carried out in multiple simulators, this would allow conclusions to be drawn regarding 

the trustworthiness / representativeness of wind load results obtained in a specific simulator. 
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APPENDICES 

 

A – The effect of the number of guide vanes on the 
generated vortex 
 

 

In order to address if the number of guide vanes has an effect on the generated vortex, a brief 

experiment has been conducted in the small-scale tornado-like vortex simulator, S1. A detailed 

description of this simulator is provided in section 4.1. The original design of S1 consists of 20 

guide vanes, each of which has a height of 0.30m, a length of 0.13m and a width of 0.01m. All 

guide vanes are equally spaced around the circumference of the convergence chamber. For this 

test, the surface pressure profile across the simulator was measured for a guide vane angle of 

70 degree (S = 0.69), see section 4.3.1 for detailed information regarding the surface pressure 

measurements. 

 

Figure A.1 illustrates surface pressure distributions of vortices simulated with 10 and 20 guide 

vanes. This figure highlights that the radial distribution of surface pressures appears to be highly 

dependent on the number of guide vanes. In addition, the minimum pressure deficit (pmin) is 

also affected, i.e., a decrease of more than 50% (-149.8Nm-2 to -60.4Nm-2) can be observed. 

Furthermore, figure A.1 suggests that not only the intensity of the vortex decreases with 

decreasing guide vanes, in addition, the radial extent of the vortex decreases. These 
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observations are in contrast to the work of Davies-Jones (1973), which implicitly suggested 

that the number of vanes were not important in order to ensure geometric (Eq. 2.20) and 

dynamic similarity (Eq. 2.21 and 2.22). 

 

 

Figure A.1: Surface pressure distributions obtained in S1 with S = 0.69 for all vanes (20 vanes) and a reduced 
number of vanes (10 vanes). 
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B - The swirl ratio and its multiple definitions 

 

In this thesis, the swirl ratio has been defined in equation (4.2) and for the purpose of this 

appendix is denoted as S1. As highlighted in section 3.2.3, a variety of other swirl ratio 

definitions exists (Table 3.3). In this section, swirl ratios are calculated for the flow fields 

obtained in the medium-scale (M1) and small-scale simulator (S1) of the University of 

Birmingham (UoB) for S1 = 0.30 and S1 = 0.69 at all measurement locations in the flow fields, 

using the following equation (B.1). Detailed information regarding the simulations conducted 

in M1 and S1 can be found in section 4. 

 

𝑆(𝑟, 𝑧) =
𝛤(𝑟,𝑧) 𝑟

2 𝑄
     (B.1) 

 

Figure B.1 illustrates the values of S (Eq. B.1) in M1 (a) and S1 (b) for the flow fields obtained 

with S1 = 0.30 (a1/b1) and S1 = 0.69 (a2/b2). The cross in the figures indicates the location where 

the overall largest circumferential velocity occurs, hence, the core radius, R, of the 

corresponding vortex. The solid vertical line, shows the location of the updraft radius (½D3 = 

R3). Radial and vertical distances are normalised in a similar way than figure 6.1 for S1 and 

figure 6.5 for M1. 

 

In addition, swirl ratios have been calculated using the following equations: 

 

𝑆2 =
𝛤(𝑅) 𝑅

2𝑄
     (B.2) 
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𝑆3 =
𝛤𝑎𝑣𝑒𝑟𝑎𝑔𝑒 @ 𝑅3𝑅3

2𝑄
     (B.3) 

with   𝛤average @ 𝑅3  =  
1

N
∑ 𝛤(𝑅3i)
N
i=1  

 

where, N is the number of measurement heights in the corresponding simulator. 

 

The definition adopted for S1 (Eq. 4.2) is identical to the definition used at the Purdue University 

(Church et al., 1977) and the definition adopted for S2 (Eq. B.2) is similar to the definition 

adopted in WIST (Haan et al., 2017). Equation (B.3) is based on a height average of swirl ratios 

at r = R3. This definition is identical to the swirl ratio defined in VorTECH (Tang et al., 2018). 

Furthermore, the following definition is introduced (Eq. B.4) as this is the definition used in 

WindEEE (Refan and Hangan, 2018). 

 

𝑆4 =
𝛤(𝑅) 𝑅3

2𝑄
     (B.4) 

 

The difference between the definition of S4 (Eq. B.4) and S2 and S3 (Eq. B.2 and B.3) is that the 

length scale in the numerator of S4 is not identical to the radial distance at which the circulation 

is estimated, instead the radius of the updraft hole, R3, is used in equation (B.4). 

 

Corresponding swirl ratio values (S1 – S4) are presented in table B.1 for the flow fields obtained 

in M1 and S1 for S1 = 0.30 and S1 = 0.69. In addition, the flow rate and corresponding radial 

distances of R and R3 are given. 
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a1) b1)  

a2) b2)  

 
Figure B.1: Swirl ratios, S (Eq. B.1), in the medium-scale (a) and small-scale (b) simulator for S1 = 0.30 (1) and 

S1 = 0.69 (2). The cross indicates the location of the core radius, R, where the overall largest circumferential 
velocity occurs, whereas the solid vertical line is placed at the updraft radius (½D3 = R3). Radial and vertical 

distances are normalised in a similar way to figure 6.1 for S1 and figure 6.5 for M1. 
 

Table B.1: Swirl ratios (S1 – S4) defined at different locations in M1 and S1. Additionally, corresponding flow 
rates and radial distances of R and R3 are presented. 
 

a) 
Figure B.1 S1 S2 S3 S4 Q [m3s-1] R [m] R3 [m] 

M1 a1) 0.30 0.04 0.38 0.20 7.58 0.100 0.500 

S1 b1) 0.30 0.09 0.35 0.26 0.65 0.050 0.150 

 
b) 

Figure B.1 S1 S2 S3 S4 Q [m3s-1] R [m] R3 [m] 

M1 a2) 0.69 0.29 0.82 0.59 6.86 0.250 0.500 

S1 b2) 0.69 0.31 0.81 0.59 0.55 0.080 0.150 
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Because of the forced aspect ratio and guide vane angle parity between both simulators, S1 is 

identical for flow fields illustrated in figure B.1a1 and figure B.1b1 (Table B.1a) and figure B.1a2 

and figure B.1b2 (Table B.1b), respectively. It is noted that the definition of S1 is the only swirl 

ratio definition of those presented in this section, which is independent of the radial distance 

and any direct velocity measurement. 

 

Figure B.1 illustrates an increase in S with increasing radial distance for both flow fields in both 

simulators. The reason for this can be found in the numerator of equation (B.1). Since the 

circulation is proportional to the radial distance, S (Eq. B.1) is proportional to the square of the 

radial distance. This relation between S and r is also reflected in the definitions of S2 and S3, 

which correspond to the lowest (S2) and highest swirl ratio (S3) of all analysed flow fields 

because S2 is calculated at relatively small radial distances (r = R) and S3 is calculated at 

relatively large radial distances (r = R3) (Table B.1). Because of the dependence on the radial 

distance, swirl ratios obtained at different radial distances in the flow fields of M1 and S1 for 

S1 = 0.30 differ by a factor of ~ 9.5 and ~ 3.9, respectively (Table B.1a). For vortices simulated 

with S1 = 0.69 in M1 and S1, swirl ratios obtained at different radial distances differ by a factor 

of ~2.7 in both simulators (Table B.1b). 

 

The swirl ratio S4 is defined based on a combination of R and R3 (Eq. B.4) and therefore, its 

value lies between the values obtained for S2 and S3 (Table B.1). 

 

Differences of up to 50% are revealed between values of S2 in M1 and S1 for the flow fields 

simulated with S1 = 0.30 (Table B.1a). This relatively large difference seems to be caused by 

the relatively small core radius, R, of the vortex in M1 compared to the size of the simulator 
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(Figure B.1a1). As a result, the value obtained for S2 in M1 is relatively small compared to the 

value obtained for S2 in S1. Differences between swirl ratios defined in a similar way in M1 and 

S1 for S1 = 0.69 were found to be less than 7%, regardless of the definition used (Table B.1b). 

 

To conclude, this section has demonstrated that the swirl ratio value can depend significantly 

on where in the flow field it is defined. Furthermore, results presented in table B.1a seem to 

suggest that swirl ratio parity between flow fields may exist at certain locations; however, those 

locations may not be representative for the entire flow field of those vortices. Additionally, it is 

noted that swirl ratios presented here are calculated based on time-averaged quantities of the 

circulation and the flow rate and therefore, conclusions can only be drawn with respect to the 

time-averaged flow behaviour. The instantaneous flow field of two vortices of similar swirl 

ratio may differ significantly. Furthermore, all swirl ratio definitions presented in this section 

focus on the similarity between circumferential velocity components. Therefore, no conclusion 

can be drawn regarding the similarity of radial and vertical velocity components.  
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C – Geometric scaling of simulated vortices 

 

In order to determine the geometric scale of simulations conducted in M1 and S1 for three 

different swirl ratios (S = 0.14, S = 0.30 and S = 0.69), the flow field around the corresponding 

core radius close to the simulators’ surfaces was mapped in detail and the radial distance, R, 

and height, Z, at which the overall maximum circumferential velocity component occurs was 

determined. Detailed information regarding the simulations conducted in the medium-scale 

simulator, M1 and the small-scale simulator, S1, can be found in section 4. For the purpose of 

this appendix, the spatial distribution of velocity measurements close to the simulators’ surfaces 

around the corresponding core radius of simulated vortices was refined, and measurements have 

been taken every 0.005m in M1 and S1 in the radial direction and at seven heights (0.001m, 

0.003m, 0.006m, 0.008m, 0.012m, 0.016m and 0.020m) in M1 and at five heights (0.001m, 

0.003m, 0.006m, 0.008m, 0.012m) in S1. Figure C.1 illustrates maximum circumferential 

velocities at those measurements heights in M1 (a1) and S1 (b1). Corresponding core radii in 

M1 and S1 are shown in Figure C.1a2 and Figure C.1b2. Table C.1 provides values of R and Z 

based on the geometric scaling method introduced by Hangan and Kim (2008) for S = 0.14, S 

= 0.30 and S = 0.69 in both simulators. 
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a1) a2)  

b1) b2)  

Figure C.1: Maximum circumferential velocities at different heights in M1 (a1) and S1 (b1) for S = 0.14, S = 0.30 
and S = 0.69 and corresponding core radii in M1 (a2) and S1 (b2). 

 

Table C.1: Values of R (a) and Z (b), defined at the radial distance and height at which the overall 
circumferential velocity maximum occurs for vortices simulated in M1 and S1 for S = 0 14, S = 0.30 and S = 
0.69. 
 

a) S = 0.14 S = 0.30 S = 0.69 

R(M1) 0.075m 0.090m 0.225m 

R(S1) 0.045m 0.055m 0.075m 

    
b) S = 0.14 S = 0.30 S = 0.69 

Z(M1) 0.008m 0.006m 0.012m 

Z(S1) 0.008m 0.006m 0.003m 
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In keeping with previous work, R increases with increasing swirl ratio from 0.075m to 0.225m 

in M1 and from 0.045m to 0.075m in S1 (Table C.1a). The height at which the overall maximum 

circumferential velocity occurs seems to lower from 0.008m to 0.003m with increasing swirl 

ratio in S1 (Table C.1b). A similar trend is observed in M1 for S = 0.14 and S = 0.30; however, 

for the largest swirl ratio in M1, the height at which uθ,max occurs increases to 0.012m. Figure 

C.2a illustrates the scaling factors found between R and Z of M1, and R and Z of S1 for the three 

swirl ratios. Obviously, for one flow field only one scaling factor can exist. However, figure 

C.2a illustrates that scaling factors between R and Z of M1, and R and Z of S1 do not match for 

the same swirl ratio. It needs to be noted that an uncertainty is introduced to the values of R and 

Z due to the measurement uncertainty of velocity measurements, which is addressed in section 

4.4. If this measurement uncertainty is taken into account, no definite value of R and Z can be 

defined because Z has an uncertainty of ~ ∓0.005m and ~ ∓0.003m in M1 and S1, respectively, 

and due to the uncertainty in determining Z, an uncertainty is introduced to R. The uncertainty 

for R is approximately ∓0.010m and about ∓0.005m in M1 and S1, respectively. Figure C.2b 

illustrates the same scaling factors as shown in Figure C.2a - in addition, the corresponding 

uncertainty of R and Z is shown. As a result, a scaling factor of approximately 1.5 ∓0.1 can be 

determined in order to scale R and Z of vortices simulated in S1 to values of R and Z of vortices 

simulated in M1 for S = 0.14 and S = 0.30. For the largest swirl ratio (S = 0.69), a scaling factor 

of ~3 ∓0.4 is found to scale values of R and Z in S1 to values obtained for R and Z in M1. It is 

noted that the uncertainty in determining scaling factors is a limiting factor for the accuracy of, 

e.g., wind load analyses, because the size of modelled building structures is directly affect by 

the chosen scaling factor. It also needs to be noted that obtained scaling factors do not guarantee 

that the flow fields show similar flow characteristics (as will be demonstrated in section 6.3.1). 

This method simply scales results obtained in two different simulators of different scale based 
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on values obtained for R and Z. In addition, results shown in figure C.2b highlight that the 

geometric scaling factor of vortices generated in different simulators dependents on the swirl 

ratio. Therefore, no consistent scaling value can be defined that scales vortices simulated in one 

simulator to vortices simulated in another simulator, this was found to be the case even if swirl 

ratio and aspect ratio of the simulated vortices are similar. When a comparison to full-scale 

tornadoes is of interest, the uncertainty of scaling factors is likely to increase even further due 

to the relatively large measurement uncertainty of mobile Doppler radar measurements and the 

transient nature of atmospheric tornadoes. Therefore, it is extremely important to be aware of 

uncertainties associated with the geometric scaling factor because obtained results are directly 

affected. 

a) b)  

Figure C.2: Geometric scaling factors for R and Z of M1 and S1 for S = 0.14, S = 0.30 and S = 0.69 without taken 
the measurement uncertainty of velocity measurements into account (a) and with taken the measurement 

uncertainty of velocity measurements into account (b). 
 

For cases where no flow field information is available but a geometric scaling factor needs to 

be found, the surface pressure distribution has been used to determine the vortex core radius by 

means of assuming the validity of the cyclostrophic equation (Eq. 2.5) (e.g., Mishra et al., 

2008a). More details regarding the determination of Rcyclostrophic are provided in section 4.2. 
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Table C.2 illustrates values of Rcyclostrophic obtained for S = 0.14, S = 0.30 and S = 0.69 in M1 

and S1. It needs to be noted that an uncertainty is introduced due to the spatial distribution of 

surface pressure measurements. The information embedded in table C.2 reveals that scaling 

factors of vortices simulated in S1 and M1 are approximately around 15 , 5 and 3.2 for S = 0.14, 

S = 0.30 and S = 0.69, respectively. For the two lower swirl ratios, the scaling factors obtained 

by means of Rcyclostrophic differ significantly compared to the scaling factors obtained by means 

of the approach presented in table C.1. The results obtained in this section highlight the 

dependence of the scaling factor on the chosen determination method, and the large uncertainty 

associated with it. Since this uncertainty has a direct effect on scaled results, it is crucial that 

the limitations associated with the geometric scaling are addressed thoroughly before results 

from scaled simulators are applied in practice. 

 

Table C.2: Values of Rcyclostrophic, defined at the radial distance from the vortex centre at which the maximum 
pressure gradient in the radial direction occurs for vortices simulated in M1 and S1 for S = 0.14, S = 0.30 and S = 
0.69. 
 

 S = 0.14 S = 0.30 S = 0.69 

Rcyclostrophic(M1) 0.075m ∓ 0.025m 0.075m ∓ 0.025m 0.175m ∓ 0.025m 

Rcyclostrophic(S1) 0.005m ∓ 0.004m 0.015m ∓ 0.005m 0.055m ∓ 0.005m 
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D - The tubing transfer function 

 

The length of the tube, which connects the pressure tap to the pressure transducer can have an 

effect on the measured fluctuating pressures due to distortion effects (Irwin et al., 1979). Those 

distortion effects are known to increase with increasing tubing length. The experimental 

arrangement that was used to quantify distortion effects of the tubing system used for this work 

is shown in figure D.1. A sound wave is propagated by a loudspeaker and the signal is recorded 

at the reference transducer and the measurement transducer with 100Hz, which equals the 

measurement frequency used for this work. The reference transducer measures an undistorted 

signal of the sound wave directly at the small cavity above the loudspeaker, whereas the 

measurement transducer measures the distorted signal of the sound wave after it has propagated 

through the tube of interest. 

 

 

Figure D.1: Experimental arrangement to measure the tubing transfer function. 

 

By means of the Tubing Transfer Function (TTF), the distorted pressure signal can be corrected. 

In order to obtain the TTF, the pressure signals measured at both transducers need to be 

transferred from the time domain into the frequency domain by means of a Fast Fourier 

Transformation. The TTF can then be calculated using the following formula (Eq. D.1) (Irwin 

et al., 1979): 
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𝑇𝑇𝐹 =
𝐵𝑖

𝐴𝑖
        (D.1) 

 

where, Bi and Ai are the complex Fourier coefficients of the pressure signal measured at the 

measurement transducer and the reference transducer, respectively.  

 

The TTF for the 0.3m long PVC tube used for this work is shown in the figure D.2. 

 

 

Figure D.2: Absolute values of the TTF. 
 

By means of the TTF, every pressure signal measured for this work was corrected using 

equation (D.2): 

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐼𝐹𝐹𝑇 (
𝐹𝐹𝑇(𝑝)

𝑇𝑇𝐹
)      (D.2) 

 

where, IFFT is the Inverse Fast Fourier Transformation, pcorrected and p are the corrected and 

distorted pressure signal, respectively. 

 

Looking at figure D.2 in combination with equation (D.2), the decreasing TTF with increasing 

frequency means that the tube’s effect on the pressure signal is larger for fluctuations with 

higher frequencies. This effect can also be seen when comparing distorted and corrected 
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pressure signals (Figure D.3). However, the change in mean values (Figure D.3) is not 

significant and much smaller compared to the experimental measurement uncertainty defined 

in section 4.4. 

 

Since the majority of this work focuses on temporal averages of pressure measurements, those 

findings suggest that the measured (distorted) pressure signal will only be changed 

insignificantly when applying the distortion correction. A potential larger effect of the tubing 

length can be expected for the analysis regarding transient processes in tornado-like flows 

(section 7). Even though, it might seem unnecessary to apply the correction for temporally 

averaged quantities, the correction was undertaken for all measured pressure signals of this 

work. 

 

 

Figure D.3: Difference between corrected and distorted pressure signal 
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