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Abstract

Agents operating in domains with time budgets shared between planning and execution

must carefully balance the need to plan versus the need to act. This is because planning

and execution consume the same time resource. Excessive planning can delay the time

it takes to achieve a goal, and so reduce the reward attained by an agent. Whereas,

insufficient planning will mean the agent creates and executes low reward plans.

This thesis looks at three ways to increase the reward achieved by an agent in domains

with shared time budgets. The first way is by optimising time allocated to planning, using

two different methods – an optimal plan duration predictor and an online loss limiter. A

second is by finding ways to act in a goal-directed manner during planning. We look

at using previous plans or new plans generated quickly as heuristics for acting whilst

planning. In addition, we present a way of describing actions that are mid-execution to

speed the transition between planning and execution. Lastly, this thesis presents a way

in which to manage time budgets in multi-agent domains. We use market-based task

allocation with deadlines to produce faster task allocation and planning.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The research question addressed by this thesis is how can a goal-oriented system share

its time effectively between planning and plan execution. This is a fundamental problem

in many real world domains since time continues to pass while agents are planning, and

this passage of time can impact the usefulness of the results of the planning process. This

question is addressed by decomposing it into three related sub-questions:

1. How long should an agent plan in the presence of a fixed time budget?

2. What should an agent do when planning? That is, is it better that an agent should

wait until a plan is ready before acting, or should the agent act in the meantime.

3. In domains where timing is an important factor in behaviour, should planning aim

to generate high quality plans, or generate plans quicker?

1.1.1 How Long Should an Agent Plan for?

The main problem when planning and execution have a shared time budget is that if

the agent plans for too long then the resulting plan may not be executable within the

remaining time budget. At its most extreme, what would have been the optimal plan at
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the beginning of planning is not valid, much less optimal, if there is no time in which

to execute. In domains with limited time budgets, the optimal behaviour of an agent is

the one that maximises reward over the entire time budget, whether that means more

or less time is dedicated to planning. However, all things being equal an agent should

plan for the shortest time possible to achieve the maximum reward. This is important

in continual domains where an agent may receive additional goals in the future. Thus,

a reduction in planning time can help maximise the opportunity for attaining reward in

the future. To be able to maximise reward, an agent should be able to make decisions on

how to share its time budget between planning and executing. This could be in the form

pre-computing an amount of time to spend planning, or deciding during the planning

process when planning should stop.

Consider the motivating example of an unmanned aerial vehicle (UAV) that must

make a tour of various areas and take reconnaissance photos of each area. The agent is

given a fixed time budget and a set of areas to visit. The agent must both: compute a

plan; and visit as many of the areas of possible – all within the fixed time budget. If

planning consumes too much time then only as much of the plan that can be executed in

the remaining time is executed. It is therefore important for the agent to be able to reason

about the utility of planning. For planning to be worthwhile it must produce an increase

in reward that is greater than any loss in reward caused by the agent being unable to fully

execute its current plan. This is where the problem differs to pure planning problems in

that additional planning can be detrimental to overall reward achieved by the agent. The

agent must find the right balance between spending time producing a better plan versus

executing the current plan it has and obtaining the reward for that plan.

1.1.2 What Should an Agent do When Planning?

Planning and acting are generally seen as mutually exclusive activities. To act, the agent

must first plan; and if an agent is acting it is because it has already planned. Indeed, this

is assumed to be the case in the previous UAV domain. Acting ideally in goal-directed

2



manner requires planning, or looking ahead. The further into the future the agent looks

ahead and the longer the agent looks ahead for, the better a plan the agent can compute.

However, if it is possible to minimise lookahead (specifically with respect to the amount

of time spent planning) and still be goal-directed, then it can be possible to act whilst

planning. By acting whilst planning the agent could be able to get closer to its goal,

and if the agent is closer to its goal then this will reduce the amount of work required

to compute plans that achieve the agent’s goals. The downside of acting whilst planning

is that any action undertaken cannot be provable optimal (otherwise planning would not

be necessary). If the action is not optimal then it could be detrimental or prevent the

possibility of executing superior plans. Having started the action, the agent will be forced

to commit to plans that contain the action as the starting action. However, it could also

be that starting an inferior plan earlier than a superior plan may mean that a higher

overall reward is achieved.

This thesis looks at domains where a plan can be produced near instantaneously, but

computing a good plan requires significant effort. In such domains, selecting a goal-

directed action is trivial. Rather it is the ordering of such actions that is the focus of

planning. In these domains the quality of a solution to a problem consists of the time

elapsed between when the agent is presented with a goal and time at which it achieves

the goal. For instance, in the previous UAV domain, any ordering of nodes is a valid plan,

and selecting a goal-directed action is a simple as choosing a node that has not yet been

visited. However, without planning it is not possible to know which ordering is the best,

nor which action should appear first in the plan. Consider the example UAV problem in

Figure 1.1. The agent starts at S and must visit all nodes. All edges take 1 time unit

to traverse, except for one edge which takes 0.5 time units to traverse, but can only be

traversed from S to B (it is a directed edge). The optimal plan is to avoid the directed

edge, the nodes should be visited in order of [A,B,C] or the reverse. In this problem

B is the closest node, but not the optimal node to travel to first. However, if the time

required to compute the optimal plan was greater than 0.5 time units, then travelling to

3



B is a better choice than doing nothing whilst planning. That is, the agent selects B to

move to (as it is closest), it then plans as if it were at B, and whilst planning the agent

moves to B (so that the plan will be valid). This results in the agent taking less time to

complete its goal than if it had stayed where it was during planning and planned as if at

S.

1

1 1

1

0.5

C

A

B

S

Figure 1.1: Simple UAV problem with fives edges of which one is directed (S → B)

The domain also consists of multiple actors and unknown knowledge. Here, actor is

used to mean an entity that can capable of executing actions, but has no agency of its

own. A single agent controls many actors and coordinates the activities of the actors.

This gives the domain concurrency, but keeps the domain single agent. The addition of

unknown knowledge means that the agent must make assumptions about the state in

which it is planning. If these assumptions prove to be wrong then it may be that the

agent should replan. In the worst case scenario this would mean the agent needs to replan

as its plan has been invalidated. In the best case scenario, it may mean further planning

could result in the agent achieving it goal earlier. For instance, in a multi-UAV domain it

could be found that a more or less work is required at a node. It may mean that one UAV

can no longer meet its schedule if there is more work, or if there is less work then there
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may exist a better way of distributing the workload amongst the UAVs. In either case

replanning is required if the agent wishes to make use of the new information. However,

the cost of replanning may outweigh utility gained from a better plan. Meaning that

acting whilst planning could offset the cost of planning.

1.1.3 Generating Plans Quickly When Timing is an Important
Factor in Behaviour

When a there is a time budget shared between planning and plan execution, if it takes

too long to generate a plan and then there may not be sufficient time to execute the plan

any more. In such an instance, though the plan may have been valid in at the initial

time, it is not valid at the current time. Finding plans that respect internal and external

deadlines and for which there remains enough time to execute them is more important

than finding the optimal plan for the initial time and state.

A key problem with multi-agent domains is that they have a higher branching factor

than single-agent domains. The planner must consider what action to execute for each

agent. Thus branching factor increases from O(a) to O(a× n), where a is the number of

actions available to an agent, and n is the number of agents in the problem. As such, in

multi-agent domains it is often more important to generate plans quickly than to generate

high quality plans.

Splitting up such a multi-agent problem into a set of independent single-agent problems

can allow the computation of problems to be parallelised, thus considerably reducing

computation time [4, 49]. This, however, creates the new problem of how to break down

a problem into these independent single-agent problems. There are two parts to this:

expressing the overall goal as a set of smaller goals; and how to distribute these smaller

subgoals amongst agents. The first problem is not examined by this thesis, and the

second has already extensively researched (auction-theory [55, 27] and market-based goal

allocation [42, 7]).

This thesis examines more complex multi-agent domains where the problem cannot
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be easily decomposed into independent single-agent problems. We call these domains

Heterogeneous, Cooperative and Synchronised Multi-Agent (HCSMA) domains. These

domains consist of heterogeneous agents, each capable of performing a set of actions that

other types of agents in the domain cannot. The goal cannot be decomposed into sets

of subgoals, where each set can be achieved independently of the other sets and achieved

by one type of agent. That is, no agent has all the requisite actions necessary to achieve

the goal. Moreover, any valid plan will contain at least one action from one type of agent

that is dependent on the action of a second (different) type of agent. Synchronisation is

a requirement in domains where either one agent can undo the state created by a second

agent, or where deadlines exist. In domains where agents can undo the state created

by other agents then it is possible for an agent to undo a precondition to an action of

another agent. Agents must synchronise such that they can complete their plans without

interfering with the ability of other agents to complete their plans. In domains where

deadlines exist agents must also synchronise their actions such that one agent is not

delayed in completing its action because an action that is required of another agent is not

completed on time.

An example of the HCSMA domain is Robocup Rescue [39]. This thesis looks at

a reduced version of the problem. In Robocup Rescue, a city has been struck by an

earthquake and civilians need rescuing from buildings by a deadline (separate for each

civilian), and roads need to be cleared of debris. There exist two types of agent: medic and

police. Medic agents are capable of rescuing civilians from buildings, and police agents

are capable of clearing roads of debris. The cooperative aspect of the problem comes

from the fact that agents cannot move past roads that are blocked by debris. If a medic

agent is tasked with rescuing a civilian for which there exists no clear route to, then it

requires the cooperation of a police agent. Each civilian has a time by which is must be

rescued by, and so police must make sure there exist clear routes to civilians so that they

can be rescued on time. There is no exact route that should be cleared. For instance,

a longer route may be cleared as it requires less work rather than a shorter route that
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requires more work. The clearing of routes is what necessitates synchronisation. There is

no reward gained if a police agent clears a route to a dead civilian, or with not enough

time to rescue the civilian. There is also no reward gained if a police agent clears a route

to a civilian, but that no medic agent is available to rescue the civilian. Agents must

cooperate and decide which civilians they will attempt to rescue.

1.2 Contributions

This section details the contributions this thesis makes to the problems areas set out in

the previous section.

1. A comparison of two different ways of deciding how long to plan for. Using:

(a) An existing algorithm (Hansen and Zilberstein [30]) to compute a fixed amount

of time to plan for before planning starts.

(b) A novel online algorithm that monitors planning and decides when to stop

when it detects that the utility of planning is outweighed by the cost of time.

2. An execution framework that increases reward by acting whilst planning in domains

where planning and acting have a shared time budget. It includes a collection of

novel approaches to solving subproblems within this framework.

3. An algorithm that reduces the time taken to achieve a goal by enabling acting whilst

planning.

4. An algorithm that manages cooperation and synchronisation in domains with mul-

tiple heterogeneous and cooperative agents.

1.3 Thesis Structure

The remaining chapters of this thesis are outlined as follows:
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Chapter 2 (Related Work) discusses research literature associated with this thesis. It

goes into more detail about areas of planning mentioned in the Introduction Chapter.

Chapter 3 (Optimising Planning Durations in Continual Domains) looks at how long to

run an anytime planner for in a continual planning domain. It contains contributions

about monitoring planning in real-time and deciding when to stop.

Chapter 4 (Acting Whilst Planning During Continuous Execution) contributes a way

in which to increase reward by acting in a goal-directed manner whilst planning.

Chapter 5 (Cooperation and Synchronisation in Multi-Agent Environments) details a

way in which to enable cooperation between independent agents that plan separately,

but share a common goal. It also includes a way to synchronise actions within those

plans in temporal domains.

Chapter 6 (Comparison of Execution Frameworks) compares the execution frameworks

(EFs) discussed in Chapter 4 and Chapter 5.

Chapter 7 (Discussion) discusses the strengths and weaknesses of the approaches of

described in Chapters 3 to 6, and also the merits of each approach in comparison

to the others.

Chapter 8 (Future Work) describes how some of the work presented in Chapters 3 to 6

could be extended and in some instances combined. Possible issues that could arise

are also discussed.

Chapter 9 (Conclusion) reiterates the contributions of the previous chapters.

1.4 Resulting Publications

The work of Chapters 3 and 4 have led to the following publications, respectively:

8



• Jeremy W. Baxter, Jack Hargreaves, Nick Hawes, and Rustam Stolkin. Controlling

anytime scheduling of observation tasks. In Proceedings of AI-2012, The Thirty-

Second SGAI International Conference on Artificial Intelligence, December 2012

• Jack Hargreaves and Nick Hawes. What to do whilst replanning? In Workshop of

the UK Planning and Scheduling Special Interest Group (PlanSIG 2014), UK, 2014
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CHAPTER 2

RELATED WORK

2.1 Introduction

Search is the cornerstone of planning. It is rational forethought that allows an agent

to reason about the ways in which the agent is able to affect the world before carrying

out any physical action. Classical planning [22] was the first form of planning, where

knowledge (state) is represented as a conjunction of predicates, and an agent’s possible

actions consist of preconditions which must hold true in the current state and whose effects

will be true of the state after the action finishes. Classical planning makes a number of

assumptions to simplify planning [52]. These are:

1. That the agent knows all pertinent facts about its environment. That is there is no

relevant knowledge that is hidden or uncertain.

2. The effect of actions are known and definite. This means the agent does not have

to reason about action failure or having multiple possible outcomes depending on

circumstances outside the agent’s control.

3. All goals are to be achieved. There is no notion of partial success in completing

only a subset of goals, or completing a goal only partially.

4. The world is static, and the only source of change in the world is the agent itself.

10



5. Goals remain constant throughout planning and execution.

6. Actions are instantaneous. Time does not exist as an explicit resource to reasoned

about within classical planning. This means that actions do not have duration, or

a point in time at which they are scheduled to begin or end (other than occurring

directly after the last action).

These assumptions were necessary at the inception of planning research so as to make

planning tractable. The planning community has since found ways to overcome these

assumptions. However, many of these assumptions do not hold true in real world domains.

These real world problems can consist of:

1. Temporal planning, whereby actions have durations and may occur concurrently.

Typically the goal must be achieved by a deadline.

2. Incomplete or uncertain state, which means it may be unknown if the preconditions

of an action are true, or what the postconditions of the action might be.

3. Dynamic worlds, where the agent must account for changes which it does not cause.

4. Multi-agent systems. Which cause a number of problems that need to be considered.

(a) Goal decomposition – which part of the problem each agent should attempt to

solve.

(b) Coordination – agents must not invalidate the plans of other agents through

their own actions. Agents should not commit to plans which prevent another

agent from achieving its goals.

(c) Cooperation – an agent should assist a second agent if the second agent is

unable to achieve its goals with assistance.

(d) Synchronisation – in temporal domains agents need to synchronise their coor-

dination and cooperation.
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5. Oversubscription – where the agent may not be able to achieve all goals. Instead

the best possible subset of goals should be achieved.

The related work examined in this chapter focuses on: temporal planning problems

where actions have durations and plans are measured by the time it takes to execute

them; oversubscription problems where planners are not only tasked with finding a valid

plan, but finding the best possible subset of goals that can be achieved; multi-agent sys-

tems where goals or tasks must distributed amongst agents; algorithms that are capable

of dealing with incomplete or uncertain information; anytime algorithms that are able

to compute plans almost immediately and provide a stream of plans of increasing qual-

ity; and the planning domain description language (PDDL), which standardises problem

formalisations.

2.2 Temporal Planning

Temporal planning is integral to all three problems (Sections 1.1.1 to 1.1.3) looked at in

this thesis. The ability of planning to reason about time is what allows agents to reason

about what proportion of their time budget to allocate to planning and what proportion

to allocate to execution. Without the ability to reason about how long it will take to

execute a plan, the agent cannot make informed decisions about the relative utility of

planning in comparison to execution. In relation to acting whilst planning the agent

needs to be able reason about how it expects the state to change during planning. To

do so, the agents needs to be able to reason about the duration of planning, and the

duration of any actions it might execute. Without being able to reason about time the

agent cannot know what will happen during planning. Without being able reason about

the duration of actions this is not possible. Finally, in cooperative and synchronisation

multi-agent problems, goals have deadlines. In domains with deadlines an agent must

able to reason about whether a plan achieves a goal before a deadline.

Temporal planning is well researched and covers many areas [19, 20, 3, 16, 32, 9]. Of
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particular relevance to this thesis are coordination and cooperation [10]. This section aims

to look at the basics of temporal planning. Later sections will cover areas that incorporate

temporal planning but are primarily focused on solving a different problem.

Classical planning models actions as being instantaneous – they take no time to ac-

complish and the effects of the action are immediate. A consequence of this approach is

that the quality of a plan can only be measured based on the number of actions in the

plan (the fewer actions the better). This precludes the ability to model domains that

involve some temporal aspect.

By introducing the concept that actions have a duration, the metric for the optimal

plan switches from the plan that achieves the goal with the fewest actions, to the plan

that achieves the goal in the shortest space of time (the time from the start of the first

action to the time at the end of the last action). Both types of metric can be referred to

as a makespan, but in this section and in this thesis makespan refers exclusively to the

temporal duration of a plan.

For the purposes of A* planning (see Section 2.7), the cost function g(x), is the

makespan of the actions already in the plan. The heuristic function h(x) is the estimate

of how much time might be needed by the additional actions that will added to the plan to

achieve the goal. One way of computing this is to create a relaxed plan 1 to estimate the

time remaining. The relaxed plan generates an admissible heuristic. With the addition

of temporal durations it becomes possible not only to specify a goal and then optimise

over makespan, but also to specify a deadline by which the plan must finish by for it to

be valid.

2.2.1 Concurrency

Concurrency is a concept that is distinct from partially ordered plans [5]. A simple

partially ordered plan is one in which actions have been grouped into sets where all

1The fast forward heuristic [36] is one way of computing such relaxed plans. The fast forward heuristic
is where actions only add predicates and not delete them.
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actions in one set must occur before the actions in the next set, but that there is no

constraint on the ordering of actions within a set. Concurrency differs in that actions can

occur simultaneously, but also that their starts and ends do not have to strictly intersect.

Concepts such as ‘contain’, ‘overlap’ and ‘abut’ are introduced. Given two actions a0 and

a1, with start time tstart and end time tend then:

• Action a0 is said to contain a1 if a0[tstart] 6 a1[tstart] ∧ a1[tend] 6 a0[tend]

• Action a0 is said to overlap with a1 if a0[tstart] < a1[tstart] ∧ a0[tend] < a1[tend] or

vice versa

• Action a0 is said to abut a1 if a0[tend] = a1[tstart] or vice versa

These concepts allow for more precise scheduling of actions within a plan. For instance,

a plane can board new passengers and refuel at the same time, but can only proceed

to take-off once both boarding and refuelling have completed. In certain time-sensitive

domains it may even be relevant to wait and do nothing. For example, a plane might

complete boarding and refuelling early, but not immediately proceed to take-off as the

runway might be in use by another plane.

Time as a Resource

Time can be considered as a resource (fluent) when planning. Like other resources it is

consumed by actions. A car moving from one point to another will take time to complete

the action just as it will use fuel. However, time differs from other resources in two key

aspects. The first is that with other (simple) resources the total consumption is equal to

the summation of the usage of the resource by each actions. However, when actions are

concurrent (at least partially) then the total required time is less than the summation

of action durations. This non-linearity in the consumption of time means time requires

special consideration as resource. That is, the cost of executing an action is dependent on

what other actions will also be executing concurrently. Conversely, temporal constraints
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may mean that no action is currently possible and that the agent must wait (see the

example of a plane delaying taking off in Section 2.2.1).

2.3 Over-subscription Planning

Over-subscription planning is a form of planning where it may not be possible to achieve

all the goals that have been set [60]. This may be due to limited resources, conflicting

requirements or limited planning time. Over-subscription planning is needed in temporal

problems which have fixed time budgets, and which do not allow for all goals to be

achieved. Agents must be able to reason about which subset of goals should be achieved

if it cannot achieve all goals assigned to it. Limited resources are when a finite resource is

required to achieve a goal (such as time or fuel), but there is not enough of the resource

to achieve all goals. Goals may also have conflicting requirements, such that achieving

a second goal would require the first goal to be undone. Finally, limited planning time

(separate to time as resource during planning), may mean that a solution that solves all

goals cannot be computed within the allotted time.

Goals can be divided into a set of strong constraints and soft constraints. Strong

constraints are goals that must be achieved for a plan to be valid. Soft constraints are

goals that are desirable, but not required. If a set of goals only contains soft constraints

then the null (or empty) plan is a valid plan. As such, over-subscription planning fits the

anytime planning domain well. That is, planning starts with the empty plan and then

works to add more goals to the plan until either all goals have been achieved or planning

is terminated.

The addition of soft constraints (or preferences) adds a new way in which the quality of

a plan can be analysed. The quality of a plan can be measured not just by how few actions

or how quickly its goals are achieved, but also the number of goals that are achieved. So

whilst the null plan might be valid, it will be an extremely low quality plan. Further,

each soft constraint can be assigned a cost for not achieving it (essentially a reward for
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achieving the goal). This allows for stating that some goals are more important than

others. Planners can use the violation cost to help direct search. A plan that achieves one

important goal, could be better than a plan that achieves several less important goals.

2.3.1 Goal Selection

A new problem that is introduced by over-subscription planning is determining which set

of goals an agent should plan for, and in what order the agent should attempt to achieve

them. Some goals are more important than others, but may be more costly in terms of

resources. This is known as net-benefit [57] – meaning the reward gained for achieving

a goal minus the cost of achieving the goal. That is, a goal with a high reward may

ultimately be of a lower priority because of the cost of the actions required. However, it

is difficult to know this without planning first. Thus, meaning that accurate heuristics

become even more important. One common heuristic is to create a relaxed plan and use

its cost as an estimate to the true cost.

Accurate cost estimates are needed because, rather than planning for the set of goals

that has the highest cardinality, the planner needs to plan for the set of goals with the

highest net-benefit [57, 48]. If costs cannot be accurately predicted then planning may end

up pursuing high reward goals that are costly to achieve and thus exhaust time planning

for suboptimal set of goals. This becomes even more important in time limited anytime

planning, where planning time is a limiting factor and achieving near-optimal plans early

on is highly important.

One simple approach to goal selection is a greedy approach [57]. Greedy goal selection

is applied by selecting the goal with the highest reward and computing the plan for that

goal, then selecting the next goal and planing for that. Within this approach, there are

two ways of adding goals to the plan. The first is to recommence planning with the

previous plan as a start point, and the second is to replan from scratch. The benefit

of the second approach is that, while it duplicates work, it may be able to find higher

quality plans that use less resources. The problem with using a greedy approach is that a
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high reward goal might be mutually exclusive with a set of lower reward goals that have

a higher total reward.

An alternative approach [57] estimates costs of achieving goals by creating relaxed

plans, and then uses these costs to create an orienteering problem to solve. An orienteering

problem is where an agent must gather as much reward as possible by visiting nodes in

a graph, but with a finite amount of resources (fuel/time). A planner is then tasked

with achieving the goals in the solution to the orienteering problem in the order they

are visited in the solution to the orienteering problem. Planning continues until all goals

have been achieved or resources have been exhausted. The problem with this solution

is that it is domain dependent. Goals are located in a spatial graph and do not have

mutually exclusive requirements beyond the consumption of a finite resource. This has

the consequence that in domains where problems contain mutually exclusive goals this

algorithm may produce suboptimal subsets or orderings of goals (where an early goal

prevents later goals, and that the early goal has lower net-benefit than the later goals).

Since actions cost time to execute, it becomes necessary to be able to compare time

against reward. However, this issue can be side stepped by comparing plans as a tuple

of duration and reward. That is, first either duration or reward is compared and if there

is a tie then the other metric is considered. One difficulty is that action costs or goal

rewards need to be equal or multiples of a base factor. Otherwise, the possibility of a tie

is unlikely to be encountered.

In summary, goal selection is a hard problem and makes planning considerably harder

as planners must now plan over ‘goal space’ as well as state space.

2.3.2 Time Dependent Costs

As previously mentioned, a goal can be described as necessary or desirable, or only achiev-

able within a certain time frame. However, in certain domains it becomes useful to merge

these two types of description. For example, rather than having an absolute cut off point,

at which the goal becomes worthless, the goal can instead be described as having dimin-
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ishing reward after a certain time. Alternatively, a goal might ultimately be necessary,

but that it is desirable that it is completed sooner rather than later. This requires the

merging of plan quality metrics. The quality of plan is now a composite function of the

cost of time and reward for each goal, and value of time in comparison to reward needs

to be taken into account. Recent work in over-subscription planning has focused on this

area [8, 44].

Using continuous cost functions outperforms discrete cost deadlines in domains where

the reward for achieving a goal diminishes with time [3]. Discrete cost deadlines being

where several mutually exclusive goals exist with separate deadline/reward tuples. The

fact that these goals are separately stated means a planner may end up attempting to

pursue each separate goal, especially as they will have almost identical requirements. By

instead stating reward as a function of time there will only be one goal, and it will be

easier to ascertain the maximum possible reward available from a given state and thus

lead to more effective pruning of the search space.

2.4 Task Allocation and Coordination

Task allocation is of significance to multi-agent problems. In these problems a goal is

decomposed into a set of smaller subgoals or tasks. These tasks must then be allocated to

the various agents in the problem. The problem of how to allocate these tasks is addressed

by this area of research.

As with goal selection (mentioned in Section 2.3.1), a greedy algorithm is one way of

allocating tasks. In order of decreasing reward, each task is assigned to the agent that

is best suited to achieve the task [28]. However, this suffers from the same problems as

any greedy algorithm suffers from. Namely, that initial allocations may be suboptimal.

One difference that exists with task allocation is that it is possible to decentralise the

allocation algorithm in a way that is not possible with goal selection. That is, make each

agent responsible for calculating the cost of completing the task.
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2.4.1 Market-based Task Allocation

Market based task allocation borrows from the idea of capitalist economic thought – that

self-interested agents lead to the optimal distribution of resources [18]. The efficiency of

the system can be improved as a whole if agents, with the aim of maximising individual

reward, trade resources and tasks with each other. To use a market-based task allocation

algorithm there are five requirements:

1. That the global (team) goal that can be decomposed into subgoals.

2. A global objective function that allows ordering of global plans.

3. An agent cost function.

4. A mapping between global objective and agent costs.

5. A mechanism for redistributing tasks/resources.

It is important that the global objective can be easily decomposed into subgoals.

Market-based task allocation focuses on efficient allocations to agents, rather than the

best way to decompose a problem. A global objective function is needed, so that the

utility of a given global plan can be known. This enables comparisons between different

global plans. An individual cost function is required so that agents can know the amount

of effort that is required to undertake a subgoal. However, often computation of these

costs is a hard problem in itself (requiring planning), and such costs cannot be fully

known until execution (unknown or uncertain information), or subject to change during

execution (dynamic environments). As such, heuristics are normally employed. The

nature of heuristics means that tasks may not be optimally allocated if the heuristic is

wrong. A mapping between the utility of subgoals and cost to an agent is required. It is

used to show how well an agent has contributed towards the global objective.

The last part of the market-based task allocation system is a mechanism by which

agents can trade subgoals and resources. Auctions are the predominant mechanism [18,
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67, 38]. In an auction, goals are announced and agents invited to bid on the goal. After all

bids are received or a predetermined time has elapsed the winning bid is announced. In

planning domains bids are prices that the agent is willing to accept a goal for, and goals are

awarded to the lowest bidder. In some instances, a reserve may be placed on a goal (that

is, the maximum price that will be accepted). Different variations of bidding systems exist,

including: sealed-bid versus open-cry [56]; first-price auctions [43]; versus Vickrey (second-

price) auctions [61]; single-item versus combinatorial versus multi-item [62, 55]. Open-cry

auctions and Vickrey auctions are more concerned with domains with adversarial agents

(agents that will make untruthful bids in order to attempt to win the auction for a lower

price). These auction systems are concerned with extracting truthful bids from agents.

Multi-item auctions help increase the quality of task allocations. By allowing agents to

create their own bundles of tasks and place bids on them, the auctioneer is better able

to find the optimal allocation (that achieves maximum profit). However, computing the

optimal combination of bids that achieves the highest profit is a version of the knapsack

problem and NP-hard.

2.4.2 Heterogeneous Agents and Cooperation

Decentralised market task allocations can help when agents are heterogeneous. The mar-

ket as a whole does not need to know about the specialisations of a particular agent.

Rather it is up to the agent itself to determine whether it can or should bid for a task.

However, whilst literature exists on heterogeneous agents [17], and tight coordination [27],

there exists limited literature on interdependent tasks [7]. Specifically, literature that deals

with interdependent tasks in domains with heterogeneous agents (where not all tasks can

be solved by one type of agent). For example, where task A can be solved by agent a,

but to complete task A it is required that a second (possibly resultant) task B to be

completed by agent b. Task interdependence differs from tight coordination in that tight

coordination focuses on the agents acting to achieve the same task. This thesis contributes

a novel way of discovering and extracting such task dependencies. If further contributes
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a new market allocation algorithm that prioritises allocation of such tasks in relation to

the dependent task. This algorithm is extended to work with homogeneous agents and

create dynamic teams assisting with different parts of the overall goal.

2.5 Continual Planning

Continual planning is an area in which agents operate with one or more of:

1. Incomplete information.

2. Dynamic environments.

3. Time pressure.

It has already been noted that time pressure is an issue of all three problem areas

addressed by this thesis. In addition, the problem detailed in Section 1.1.2 has incomplete

knowledge.

Incomplete or uncertain information mean that plans must either take into account

different possible world states, or make certain assumptions about the world state and

accept that the resulting plan may be incorrect and that replanning might be necessary.

Dynamic environments mean the world state change may be subject to change outside

the actions of the agent, possibly requiring replanning or accounting for this possibility.

Further, these changes may be immediately known or start off as unknown and only

become known when the robot directly observes that the change has occurred. Time

pressures instead focus on the fact that time is shared resource between planning and

execution, and that an agent must balance the need to compute higher quality plans

versus the ability to execute plans and attain the reward.

Incremental search algorithms [40, 58, 41] attempt to reuse previous work when per-

forming new searches (when it is found that the world state has changed or new infor-

mation is encountered). This reduces the amount of planning needed when replanning.
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Lifelong Planning A* (LPA*) [41] finds new routes from the same start node and same

end node. It does so by finding which parts of the search tree are unaffected by the

changed state and uses this to initialise a new A* search. Dynamic A* (D*) [45] is an

online algorithm in that assumes new information is discovered via a robot’s sensors. D*

performs an initial A* search to find an optimal path (according to its knowledge), when

new edge costs are discovered it back propagates these to effected nodes and uses this to

find a new optimal path.

Reuse of the search tree is only useful if changes to the search graph are small. Sig-

nificant changes would mean that there would not be much of the search tree that was

reusable and the computing which parts are usable would cost more than the benefit of

reusing what is recovered. These algorithms also assume that the goal remains the same,

which is why parts of the search tree can be reused. This is not always the case. In

the case of oversubscribed domains, it may be that new information leads to a different

selections of goals and thus invalidating the entire previous search tree.

Limited work has been made at combining replanning and oversubscription problems.

Cushing [15] showed that existing planning technology was capable of dealing with rese-

lecting objectives at the replanning phase, comparing the reward gained by adding new

goals into the plan versus the cost of removing current goals and commitments from the

plan.

When the state changes it may or may not effect the current plan. If the change

invalidates the current plan then the agent must act to find a new plan. However, if the

plan is still valid then the agent is now faced with a choice. The agent can either take

the opportunity to search for a new plan, on the possibility that the state change means

a better plan exists [24]. However, the agent can also choose to continue carrying out its

current plan on the assumption that a better plan does not exist. This is especially true

in temporal domains where time is a dominant metric or deadlines exist. This is because

it may be that the cost of computing the new plan is higher than the increase in reward

of the new plan – and that the best course of action is continuing to execute a possibly
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suboptimal plan.

2.5.1 Contingency Planning

There exist algorithms that are capable of computing more comprehensive plans that

account for incomplete or uncertain information [34, 35]. Contingent planners produce

plans that are trees of actions rather than a sequence. Each branch within the tree

represents a divergence of belief states. That is, if an agent is unsure about the state of

an object in the world it produces two or more separate belief states from the current state

and then solves the planning problem for each belief state. For instance, if it is unknown

whether a particular edge of a graph is traversable and the planning algorithm decides it

may be worth traversing this edge, then it solves two planning problems – one in which it

believes the edge to be traversable and the second where the edge is untraversable (and

an alternate route must be found). Such planners may also produce graphs rather than

trees. That is, the plan contains a cycle. A simple example is that, given that an action

has a chance of failure, then to repeat the action until it succeeds.

One of the major benefits of contingent planning is that it is able to predict possible

failure conditions, where the goal is no longer achievable, and avoid them. That is,

there exists an action whose effects cannot be undone and which also makes the goal

unachievable. Contingent planning accounts for all possible states of unknown variables

and prioritises paths with the highest chance of success. This contrasts with replanning

techniques, where once the actual value of the variable is discovered and the plan found

to be invalid then it is too late.

2.5.2 Back to Replanning

Unfortunately, in many real world domains the world is highly dynamic and often only

partially observable – this makes planning computationally hard. In the majority of cases

this will rule out contingent planning techniques that account for all possibilities.

23



Instead, advances in deterministic planning have meant that a very good and naive

solution to non-deterministic domains is to assume that the domain is actually deter-

ministic [64]. When a node is expanded, the state is made deterministic by assuming

the most likely state is the actual state, and then computing a relaxed planning problem

to derive the heuristic value for each state. Once a plan is obtained it is then executed

until either the plan is completed or an unexpected state is found – at this point replan-

ning is triggered. This approach was state of the art in 2007, beating all other planners

that actually took state uncertainty into account. This approach could be problematic

when action resource consumption is uncertain. However, this could be circumvented by

ignoring these discrepancies unless they invalidate the plan.

One problem with this approach is that it works less well when there is much uncer-

tainty as the algorithm over relies on a state that is the most likely, but still improbable

overall. One way of alleviating this problem is to compute the heuristic value from a se-

lection of deterministic states that have been generated from the non-deterministic state

and then take the average of the heuristic values [65].

Brenner and Nebel [6] describe a principled approach to continual planning that allows

an agent to deliberately postpone parts of the planning process when it does not have

enough information at hand and instead actively gather information pertinent to the plan.

That is, the agent is reasoning about what information it has and does not have and what

information it needs to compute a plan. Introduced are the concepts of assertions and

abstract actions. An assertion is an abstract action that specifies that when certain

preconditions are met then certain effects can be achieved – just like a normal action.

However, the assertion itself does not achieve the effects, it just ‘asserts’ that they can be

achieved. Rather the assertion means that once the agent has certain knowledge about the

state it will be able to create a plan to achieve the desired effects. For instance, if an agent

needs to enter a room and the state of the door to the room is unknown then the agent

must ascertain the state of the door before being able to compute a valid plan for getting

into the room. That is, if the door is open the agent can travel through the door and if the
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door is closed it must be opened and before passing through. By postponing computation

of solutions to these problems, it becomes possible that the agent may become stuck in

a dead end. However, in complex domains where information is dynamic or partially

observable the computation of contingent plans may be intractable.

In contrast to postponing planning, this thesis contributes an algorithm to bring for-

ward plan execution into the planning process. This enables a system to resume execution

immediately upon the clarification of incomplete information or an external environmental

change. The parallelism of planning and plan execution allows for a more efficient use of

time, thus easing time pressures that may be present. A number of strategies for selecting

actions for execution during planning are presented. The best two being to either continue

execution of the previous plan where possible, or to quickly generate a sub-optimal plan

for use during replanning. Planning whilst the agent is actively changing state is enabled

by passing to the planner the expected state for when the planner is due to finish.

2.6 Multi-agent Planning

The third problem that this thesis addresses is a multi-agent domain, and looks at how to

coordinate and synchronise the activities of the agents. This section looks at other work

on multi-agent problems.

Multi-agent planning is typically NP-hard ([1] as cited by [18]), and as such plan-

ning algorithms for multi-agent domains should focus on producing plans that are good

enough [63] given the computational and time resources available. Indeed, the exponential

blow-up of concurrent actions means that it is hard to apply state-of-art single agent algo-

rithms to multi-agent problems [37]. Recent work on multi-agent problems has looked at

how to separate multi-agent problems into multiple single agent problems that are more

easily solvable [4, 14, 12, 13, 49]. Typically however, the decomposition of multi-agent

planning problems into separate single agent planning problems is not easy itself. This

is because there exists several types of interactions between agents that make the sepa-
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ration of the planning problem complex. They are, goal selection, synchronisation and

cooperation. Goal selection has been looked at in Section 2.4, so this section shall focus

primarily on synchronisation and cooperation.

Brafman and Domshlak [4] look at a way of exploiting loosely coupled multi-agent

planning problems (posed as Constraint Satisfaction Problems [CSP]). The state is sep-

arated into parts that an agent knows are not relevant to other agents, and parts that

could be relevant – these are known as private fluents and public fluents, respectively.

The example Brafman and Domshlak use is a logistics domain where trucks are moving

goods from one location to another. In the logistics domain the position of the truck can

be considered as private fluent. This is because the position of a truck does not effect

the ability of a second truck to execute any of its actions. Therefore, an agent can reason

about moving without having to inform other agents. In contrast, loading and unloading

use a shared resource and so only a fixed number of trucks can be loading or unloading at

any one location and time. Therefore, whether a truck is loading or unloading is a public

fluent as it can effect the ability of trucks to execute their own actions and therefore

accomplish the goals of the agent. Whilst enabling the problem to be posed as a series

of single agent planning problems, the planner remains centralised. That is, each agent

in turn solves its own planning problem, creating a series of public fluents in the process.

Planning by subsequent agents must observe these public fluents and not violate them.

The work of Brafman and Domshlak [4] is mostly theoretical in nature and is not

efficient in practice [49]. Nissim et al. ibid. improves on the work of Brafman and

Domshlak, making it fully distributed and more efficient in practice. However, the efficacy

of the work is not discussed beyond the domain of standard STRIPS problems. Neither

temporal nor partial satisfaction domains are discussed. The problem of how to distribute

goals between the agents in the problem is not discussed either.

Crosby and Rovatsos [12] look at multi-agent planning as heuristic search rather than

as a CSP. They take from Brafman and Domshlak [4] the idea of separating out state into

private and public fluents. However, instead of formulating the problem as a CSP they

26



formulate the problem as a search problem. Each agent builds a private planning graph

and public planning graph of the states it can reach. The private planning graph consists

of states that the agent is able to reach on its own. The public planning graph consists

of states that the agent can reach if it relies on the (public) actions of other agents. This

graph is computed using a no-delete effect heuristic for actions. Planning continues until

all the agent’s goals are reached either in each agent’s own private planning graph or

the public planning graph. Reliance on the public planning graph means cooperation is

necessary. Therefore planning in the private planning graph continues to see if cooperation

is indeed necessary. If an agent relies on an effect from an action in the public planning

graph then that effect is added as a subgoal to the agent that added the action to the

public planning graph. Full planning with the agent’s updated goals rather than relaxed

planning takes place to compute single agent plans, which are then subsequently merged

into a single multi-agent plan.

With the exception of adding subgoals, this algorithm assumes that agents have al-

ready been assigned goals. That is, this algorithm does not look at computing a goal

allocation for the agents. The domain that the algorithm works with makes classical

planning assumptions with regards to time and satisfiability. That is, whilst the algo-

rithm does analyse concurrency constraints, it only deals with the ordering of actions and

not on any temporal constraints. With regards to satisfiability, the algorithm does not

deal with partial satisfaction – goals are fully achieved or not at all.

Crosby et al. [14] extend the above work to include distribution of goals amongst

agents by assigning goals to agents with the lowest estimated heuristic cost (using the

same heuristic as before).

Crosby et al. [13] provide a further extension to their work that is able to deal with

concurrent actions rather than just cooperation. Here a concurrent action is one that is

performed simultaneously by multiple agents. The example domain is a grid world where

all agents must get to the goal room. However, there exist transition rules between some

rooms. These include: agents only being able to pass one at a time; only being able to
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pass as a group (not individually); and the transition only being able to made once, but

by any number of agents. Concurrent actions are split into single agent actions and the

separate single agent planning problems solved. The single agent plans are then combined

into a multi-agent plan about the concurrent actions in the single agent plants. The plan

is also compressed so as trying to reduce global costs (the sum of the cost to each agent).

This approach abstracts over time (assuming each action has a unit duration). As it

stands it is unable to work with domains where actions have non-uniform durations, and

where goals have deadlines.

Jonsson and Rovatsos [37] look at plan improvement in domains involving self inter-

ested agents. In the domain multiple agents attempting the same action can increase the

cost of the action to all agents involved. Plan improvement involves motivating agents

to cooperate so as to reduce overall action costs. The example domain they use is where

an increased number of agents traversing an edge means congestion and increased costs.

Agents that achieve higher reward goals by traversing the edge can incentivise other agents

to use another route or wait by sharing reward. An iterative algorithm using an off-the-

shelf planner is used to converge on a plan that balances all agents’ preferences over plan

space.

2.7 Anytime Algorithms

Reasoning about how to share a time budget between planning and execution is one of

the problems addressed by this thesis. To be able to do this an agent needs to be able

to constrain the amount of time a planning algorithm runs for. Anytime algorithms are

planning algorithms that can be interrupted at any time and a valid plan be available.

There is existing work for online monitoring and control of interruptible planning [30, 66].

Hansen (2001) uses statistical models to generate a performance profile of the planner on

similar problems. This requires training on a large number of problems and is fragile to

changes in problem complexity. This thesis adds to that body of work with a monitoring
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“loss limiting” policy that attempts to move to plan execution after the estimated plan

reward has peaked. This monitoring algorithm is fast and resistant to premature termi-

nation of planning as a result of early increases in reward during planning. It is quicker

to train and resistant to changes in problem complexity.

Anytime planning algorithms produces streams of plans of increasing quality. First

an initial plan is produced quickly and then improved upon as the anytime algorithm

continues to work on the problem. This makes anytime planners well suited to domains

where time to plan is a limiting factor.

One approach to creating an anytime algorithm is a modified version of A* [29]. This

modified version of A* is called weighted A* (WA*) [51]. Weighted A* applies a weight

factor w to the heuristic function of A*, where w > 1. This weight factor predisposes the

search to expand nodes whose heuristic value is low in comparison to cost (as opposed

nodes whose cost is low in comparison to heuristic value). The net effect is that, the

greater the value of w the more greedy the algorithm becomes – giving preference to

nodes that look close to a solution as opposed to nodes that have higher quality routes

to get to the current node. WA* can be made into an anytime algorithm by continuing

to run the algorithm after the first solution has been found. This allows the algorithm to

continue exploring for solutions close to the first solution found, attempting to find better

solutions. The reason that it is worth continuing the search after the first solution is

found is because the first solution is no longer guaranteed to be optimal. This is because

applying a weight factor to the heuristic value causes it to become inadmissible. That

is, the heuristic may overestimate the remaining cost that is needed to achieve a solution

from the current node. Instead the first solution is w-admissible [53] (Pearl [50] as cited by

Likhachev [45]). That is, the first solution is no worse than w times the optimal solution.

Using an admissible heuristic to prune the search space, Anytime Weighted A* can

ensure it does not expand states that are guaranteed not to lead to a better solution. That

is, the weighted heuristic guides the order of which states to expand, but the unweighted

heuristic is used to determine whether a state should be included in the search at all.
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This is achieved by comparing the sum of the cost and unweighted heuristic cost of a

state against the best solution found so far. If this is greater than the cost of the best

solution found so far then it is not worth expanding.

2.7.1 Anytime Repairing A*

Choosing an appropriate value for the weight in anytime WA* is a problem in and of

itself. With large weights, returned solutions may be considerably suboptimal, but with

small weights the algorithm will take longer to find solutions. Anytime Repairing A*

(ARA*) [46] works by changing the value of the weight during the course of anytime

search. Unlike anytime WA*, ARA* stops as soon as it finds a solution. At this point a

new lower weight is chosen. States that are still to be expanded (in the open set) have

their heuristic values recalculated. Search restarts at the point, but with a new order over

which to expand unexpanded states. This has the benefit of not requiring previous work

to be recomputed.

2.7.2 Restarting Weighted A*

Rather than just selecting a single weight for the entire search, one possibility is to restart

search each time a solution is found, but with a lower weight value. This is called Restart-

ing Weighted A* (RWA*) [53]. Restarting each time is wasteful though – previous work

must be duplicated [46]. However, the ability to choose ever lower weight values helps

combat ‘low-h bias’. Low-h bias is where an anytime WA* algorithm prefers exploring

states close to the initial solution rather than elsewhere. Richter et al. [53] state that this

is problematic when the heuristic makes early mistakes. That is, the algorithm tries to

find improvements in the end part of the plan rather than attempting to improve parts

of the plan that are near the beginning. By restarting with a lower weight, RWA* can

pay more attention to states encountered earlier in the search. That is, as w tends to 1

RWA* becomes A*.
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2.8 Planning Domain Definition Language

This thesis does not present its own planning algorithm, but rather manages planning and

execution as a whole. As such, it uses off-the-shelf planners. PDDL provides a common

way communicating state to a planner.

Planning Domain Definition Language (PDDL) is a problem specification language set

up for the 1998 Artificial Intelligence Planning Systems (AIPS) planning competition [47].

PDDL is inspired by the STRIPS [22] syntax that was used to provide input to the STRIPS

planner. It uses this syntax for both description of domains and problems within that

domain. The domain specification details of the types of predicate that can exist within

the domain, and the actions that can occur within the domain. Actions are described as

having parameters, preconditions and effects. Parameters describe the atoms to which

the action relates. Preconditions are a conjunction of predicates that must exist before

the action. And effects are a conjunction of predicates that will be true after the action

(effects can also include predicates that will no longer be true). Figure 2.1 shows a simple

move action, with parameters, preconditions and effects.

Figure 2.1: Simple Action

(:action move

:parameters (?x ?y)

:precondition (and (room ?x)

(room ?y)

(at ?x)

)

:effect (and (at ?y)

(not (at ?x))

)

)

The aims for PDDL were to encourage empirical evaluation of planner performance

and the development of a standard set up programs against which new planning algo-

rithms could be tested against [47]. PDDL met those aims with considerable success.

It became the community standard for the representation and exchange of planning do-
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main models [23]. Future planning competitions extended PDDL to handle concepts not

handled in its original specification. This includes: planning with resources and tempo-

ral planning [23], derived predicates and exogenous events [21], preferences [25, 26], and

object fluents (non-numeric values) [33].

The first extension to PDDL added numeric values and time. Time allows actions

to have durations. These durations can be static or dependent on the state of world.

Figure 2.2 details a typical durative action that could be defined by PDDL2. It uses a

fluent (discussed in the next paragraph) to describe how long the action will take. In

addition it also specifies conditions and effects of the action. However, these conditions

are no longer just preconditions, but conditions that must apply at various points in the

action. Conditions can either be true at the start of the action, at the end of the action

or true throughout the period that the action is being executed. This allows for a very

high level of expressiveness. It becomes possible to specify that a condition must hold

true at the beginning and end of an action, but that its state is not restricted during

the course of the action. For instance, given an action “fly”, where an aircraft flies from

one airport to another, then at the beginning of the action (when taking off) everyone on

board must be wearing their seatbelt, and at the end of the action (when landing) this

must also be true. However, during the course of the action (whilst cruising) it is not

necessary for seatbelts to be worn (only recommended). By actions having durations, a

metric is introduced for measuring the quality of plan. Previously the quality of plan was

measured in the number of actions contained in the plan. The less actions the better.

However, now plans can be measured by their cumulative time from the start of the very

first action to the end of the very last action. For instance, a plan with more actions that

takes less time may be preferable to a plan with less actions that takes longer.

In PDDL, fluents are a numeric value or function tied to a predicate. For instance, in

Figure 2.2 the duration of the action is based on the value of (distance ?a ?b). Fluents

are not just static values though, and can be changed by actions. This allows plans to

take into account finite resources (such as fuel). This allows for considerations as to both:
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Figure 2.2: Durative Action

(:durative-action travel

:parameters (?a ?b)

:duration (= ?duration (distance ?a ?b))

:condition (and (at start (at ?a))

(over all (has-fuel))

)

:effect (and (at start (not (at ?a)))

(at end (at ?b))

)

)

the possibility of the action; and whether the action is preferable to another action (or set

of actions) that achieve the same effect. That is, an action might not be possible as the

agent does not have enough fuel to complete the action; or that one route is preferable to

another because it requires less resources. For instance, an agent might choose to drive

around a hill rather than over it as this will consume less fuel even though it is a longer

distance.

In PDDL3, PDDL is extended by adding the ability to express goal states as a con-

junction of preferences rather than absolutes [25]. Rather than stating that there is only

one acceptable sub-state that must exist within the final state, the goal is instead stated

as any permutation of preferences, but with penalties associated with not achieving given

preferences. The full conjunction of preferences remains the ideal solution, but (combined

with other cost measures) may no longer be the optimal solution. The value of a given

state is given by a metric in the domain – a formula that takes into account which pref-

erences have been achieved and the values of any relevant fluents. This allows planning

algorithms to consider whether a given goal is worthwhile, given the resources it takes to

achieve. For example, if an agent is to optimise over reward and remaining fuel (according

a given function), then the reward obtained by achieving a goal may not be worth the

cost in fuel required to achieve the goal. Even in the event that there are no resources

that are directly consumed it allows for anytime planning problems where the objective
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is to achieve as many goals as possible within the given planning time. That is to say,

the problem may be sufficiently complex so as to prevent a full solution being computed

within the time constraints on planning, and so instead a plan that achieves as many

preferences as possible within time set aside for planning. This is especially true of do-

mains where time is a resource shared between planning and execution. In such domains

the time required to compute the optimal plan might be mean there is not enough of the

time budget left to execute the plan.

2.9 Comparison

This section provides a comparison of the work that is closest to the problems addressed

by this thesis. Table 2.1 compares the properties of state-of-the-art planners and execution

frameworks (frameworks that manage both planning and execution). The temporal aspect

of the algorithm is split into two parts. The first is durative, this is whether the algorithm

works on domains where actions have duration. The second is concurrency, this is about

whether the algorithm can cope with multiple actions occurring at the same time. Even

if an algorithm does not work with durative domains it can still work with concurrent

domains. In such cases actions are all assumed to have the same duration. The multi-

agent column refers to whether an algorithm works with domains that include multiple

independent agents. [13] is a special case, as although it works with multi-agent domains,

it plans serially for each agent rather than planning being distributed to each agent.

The individual contributions made by Chapters 3 to 5 each addresses one of the sub-

questions laid out in Chapter 6. Chapter 3 examines how long to plan for in domains

with fixed time budgets. It adds to the existing body of online monitoring and control

of interruptible planning. It requires no more domain knowledge than the Anytime A*

planner it uses. Using the reward function that is necessary to guide planning it can

calculate the cost of planning. With this it can stop planning using a “loss-limiting”

tolerance. This “loss-limiting” is domain specific, but can be calculated from training
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on a few problem instances. This is an improvement on previous online monitoring and

control execution frameworks [30] which require training on a much larger training set.

Chapter 4 examines the sub-question of what an agent should do whilst planning.

Though there exists much work on how planning and plan execution can be interleaved to

improve performance in dynamic environments and reducing the cost of replanning [40,

58, 41, 6, 45]. However, all of this work treats planning and plan execution as exclusive

behaviours. Chapter 4 looks at how agents can parallelise planning and plan execution to

achieve its goals faster. This is a novel concept that can lead to significant gains in reward

where replanning is often required or where replanning is beneficial if the cost of time can

be lowered. By acting whilst planning the cost of time can be significantly reduced.

In domains where timing is an important factor in behaviour, Chapter 5 examines

whether it is better to generate high quality plans or generate plans quicker. It does so

by finding ways to generate plans quicker by It does this in a domain where agents must

cooperate to be able to achieve some goals. This domain property is independent of any

time pressure, deadlines or time budget. That is, agents are only capable of executing a

sub set of all actions in the domain. Therefore, two or more agents must work together

to achieve some goals. This is a unique property amongst the surveyed multi-agent liter-

ature [17, 27, 7]. Market-based goal allocation is an effective way to decompose problems

into sub-problems that can be solved separately as single-agent problems. However, the

requirement of cooperation means this decomposition is hard. This thesis contributes a

novel way of decomposing these goals into subgoals so that they can be solved as sepa-

rately as single-agent problems. It further contributes a new algorithm for allocation of

these subgoals that priorities allocation all the subgoals of a goal before moving on to al-

location of another goal. This increases the chances of goal completion in over-subscribed

domains.
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CHAPTER 3

OPTIMISING PLANNING DURATIONS IN
CONTINUAL DOMAINS

3.1 Introduction

This chapter looks at the problem of “How long should an agent plan in the presence of a

fixed time budget?”. Given an anytime planner, the time budget can be divided between

planning and execution. Any time spent planning is time not spent executing whatever

plan the agent may have. If a plan extends beyond the end of the time budget then

any actions ending after the end of the time budget are not considered to have executed.

Thus, the agent only gains reward for any goals it planned for if they were achieved before

the end of the time budget. This prompts the question of what exactly the split between

planning and execution should be.

This chapter describes a meta-management system (MMS) that decide how to allocate

the limited time budget between planning and execution. This meta-management system

examines the quality of plans computed by the anytime planner and attempts to stop

planning as soon as possible after the optimal balance of plan quality versus available

execution time is found. This MMS is compared against:

1. Several fixed planning times approaches.

2. An algorithm to pre-compute the planning time based on previous performance on
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similar instances of the problem (as described by Hansen and Zilberstein [30]).

3. A hindsight approach. The hindsight approach is the theoretical best an algorithm

could ever achieve. It uses hindsight to analyse the best moment when planning

should have stopped.

We find that a dynamic planning time can help increase the amount of reward achieved

by an agent. In comparison, having a fixed planning time that is good for a majority of

problems, still means that there are problems for which the given planning time is sub-

optimal. In relation to pre-computing the planning, it is found that it is required that the

problem domain and planning algorithm pair have a predictable output of plans, and that

the reward generated by those plans be predictable too. It was found that the domain that

was used did not have this feature. The issues of a dynamic planning time are addressed.

Namely, that off-the-shelf anytime planners are not aware of the decreasing maximum

plan makespan as time passes.

3.1.1 Problem Formalisation

Anytime algorithms (see Section 2.7 in Chapter 2) provide a useful technique for trading

off planning time against execution. In situations where fast, but well-supported, decisions

are needed they can provide bounded optimality [54]. This requires a stopping condition

for anytime planning which provides the plan with the highest reward given the time

budget of an agent.

The domain that we use to explore the abstract problem is a prize-gathering orien-

teering problem. The problem consists of a graph of nodes. At each node is a task that

can be performed to attain reward. Each task has a reward and duration. Tasks may

have the different rewards and/or durations. The goal is to find the tour that maximises

reward given a maximum makespan of the plan. As there is a maximum makespan of the

plan it may be that not all tasks can be completed. Thus, the agent is oversubscribed.

Using an anytime planner means that a sequence of plans of increasing quality are
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produced until the optimal is found. However, later plans will not have as much time

to achieve reward. This is due to consumption of time by planning, which reduces the

available time for execution. Thus, what would have been the optimal plan when planning

commenced may not be the plan that obtains the optimal reward given the limited and

shared time budget. Further, because of the shared time budget, if planning continues

after a plan is produced then the full reward of that plan may not be able to be obtained

if executed later. That is, if planning continues, but no new plan is found before planning

stops then continual planning reduces the available time budget, reducing the amount of

available time to execute the plan. This is subtly different to when computing a new plan.

Here the problem is not being able to execute all the plan.

3.1.2 UAV Surveillance Tours

An instance of the prize-gathering orienteering problem is a UAV surveillance tour. The

problem domain consists of planning surveillance tours where a UAV has to plan a tour

of a number of locations. At each location the UAV needs to make an observation. The

observation tasks have a predicted duration and reward value. The goal is to maximise

the expected reward from a tour. In the UAV domain, the graph is fully connected and

all edges are bidirectional.

Prize-gathering orienteering problems arise in many different situations such as: un-

manned aerial vehicle mission planning, robotic security patrols and the gathering of

scientific data by robotic agents.

We have applied an anytime algorithm based upon weighted A* search [59] which

can plan observation schedules and can provide the optimal solution if given sufficient

time and memory. In initial trial work in a UAV mission planning domain we applied

a simple fixed run time limit for this anytime scheduler. This chapter compares the

performance of different meta-management systems for deciding when to stop planning

and start executing.
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3.2 Research Approach and Methods

3.2.1 Evaluation Criteria

A meta-management system (MMS) should improve total reward achieved between the

start of planning and the end of the time budget. It is not important whether the MMS

spends more time planning to find a higher quality plan or starts executing a lower quality

plan earlier. It is only important that whatever approach is decided should maximise

reward achieved by the end of the time budget.

Reward is only obtained for actions that are completed before the end of the time

budget. Partial execution of an action does not gain the agent any reward.

The MMSs will be tested against fixed planning time approaches. That is, the planner

will always be run for a specified amount of time, regardless of the problem instance or

the progress that the planner is making. The MMSs are also tested on different execution

speeds. That is, computational resources for planning remain the same, but actions will

take longer to execute. The execution speeds that an algorithm will be tested at are 1, 1
3
,

1
5
and 1

10
.

Different execution speeds will change the relative ‘time pressures’ for planning and

executing. As execution speed gets slower an MMS should change the amount of time it

spends planning. As execution costs (duration) increase, it becomes more important that

each action is well considered. However, reward remains the main objective to maximise,

so planning for too long will reduce achievable reward.

3.2.2 Test Environment

All experiments were run on a 2.3Ghz Intel 2 Core Duo computer with 2Gb of RAM.

Real world orienteering problems do not typically contain uniformly distributed tasks.

So in order to better represent real world problems, two types of problems were generated

and each MMS tested on all of them. The first type used a uniform random distribution
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to create a problem consisting 100 nodes. The second type contains clustered tasks. First,

the 100 nodes were split into groups. Each group received a random number of nodes

between 1 and 20, but such that the total number of nodes was 100. Each cluster was

then given a centre (uniform random coordinates) about which the nodes would cluster.

Nodes were distributed about the centre of the cluster using a normal distribution.

To find solutions an anytime planner using WA* [29] was used. The quality of the

plan was based on the average reward obtained per second of the duration of the plan.

The heuristic for selecting the next node to visit was the node with the highest reward

as a proportion of distance. That is, the planner favours near and high reward nodes,

followed by near and low, and far and high reward nodes. The planner is highly effective

at finding high quality solutions very quickly, but is unable to find a provably optimal

plan in a tractable amount of time. Figure 3.1 shows how plan reward increases with

time (averaged over 100 runs). It should be noted that the y-axis is a proportion of the

best reward found by the planner, and so has a maximum value of 1. It shows that initial

improvements are found very fast and subsequent improvements diminish with time.

3.3 Meta-Management Systems to Decide When to

Stop Planning

This section describes two MMSs which decide when to stop planning and start execut-

ing. One uses a predictive algorithm that uses previous observations of similar problem

instances to compute the best time to plan for. This algorithm is the work of Hansen

and Zilberstein [30]. The second MMS is online, and observes the planning process and

decides when to stop based only on data from the current problem instance.

3.3.1 Predictive

This MMS uses the “meta-level control” framework put forth by Hansen and Zilberstein

in [30]. The algorithm takes problem instances of similar complexity and assumes that
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Figure 3.1: Reward proportion of best plan found against time (averaged over 100 runs)

t∗ = argmax
t

∑
i

Pr(qi|t)U(qi, t)

Figure 3.2: Calculating the optimal fixed allocation [30]

progress on finding better solutions can be predicted from an initial first plan. The

algorithm takes the results of planning on previous problem instances and uses it to

derive an estimate of the optimal amount of time to plan for, given the quality of first

solution produced by planning. The formalisation of this algorithm is shown in Figure 3.2.

The optimal fixed allocation time to spend planning is represented by t∗ and q is the

quality of a plan. In the UAV domain quality is defined as the sum of reward gained

if the plan were to be executed for the full time budget. Plan quality is represented as

a discrete function and the summation is over all these discrete values. Pr(qi|t) is the

probabilistic performance profile. It is the probability of getting a plan within a range

of quality, given a planning time of t. U(qi, t) is a time dependent the reward (utility)

function and gives the reward gained from executing a plan of quality qi at time t – that

is, if t <> 0, then the amount of reward gained from only the part of the plan that could
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be executed within the time budget.

We modify the probabilistic performance profile Pr(qi|t) to also take the quality of

the initial solution. That is, the probability of getting a plan with quality qi given an

initial plan of quality q0 and a planning time of t – Pr(qi|t, q0). The initial plan for the

UAV is very quick to compute as it is just to visit each goal in the order they are given

in the initial problem. The makespan is the sum of the time it takes to observe each goal

and the time required to move between each goal (in the order specified).

In our domain we use a mix of similar, but different problem types – random distri-

bution versus clustered distributions of tasks. This was to see how well the Hansen and

Zilberstein approach was able to generalise. As such, this strategy needs an additional

training set of problem instances. For the training set, 100 new problem instances were

created, using the same parameters as the testing set. Planning is run for 60 seconds over

each problem, with plan quality recorded at 100ms intervals.

When deciding how long to plan for on a given problem instance, the planner is first

run until it finds its first plan. In the UAV domain any ordering of goals is a valid plan.

Thus the initial plan is to visit the goals in the order they were specified, stopping after

the full time budget is expended. As the UAV problem is oversubscribed, not all goals can

be achieved. The reward achieved by this plan is then compared against the total reward

available in the problem instance to estimate the progress of planning. The dynamic

performance profile is used to estimate the reward that will be gained by running the

planner for a range of times from 0 seconds to 60 seconds in 100ms intervals. This is

compared against the cost of time which is approximated as the average reward achieved

per second by the first plan. The planner is then run for the amount of time that yields

the highest expected reward.

3.3.2 Loss Limiting

The loss limiting MMS attempts to execute just after execution reward has peaked. It

does so online, comparing the current achievable reward (given the current plan and
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Figure 3.3: Example of net-benefit of planning in domains with shared time budgets

remaining time budget) against the maximum achievable reward seen so far. However,

the MMS does not stop planning immediately as soon as achievable reward goes down so

as to stop being caught in a local optima. An example of such a local optima can be seen

in Figure 3.3.

The MMS decides to stop planning based on three variables. They are the reward

achievable by the current plan (rewardnow), the maximum achievable reward that has

been seen so far (rewardbest), and reward loss tolerance (tolerance). As time progresses it

becomes possible that not all the actions in the best plan can be executed – this is because

of the limited time budget that is shared between planning and execution. Planning stops

once rewardnow < rewardbest × (1 − tolerance), and the current plan is returned. The

reward achieved by this plan is rewardnow. rewardnow is the sum of all reward from

actions that could be completed if the plan were to be executed now.

The MMS takes three inputs: the size of the interval between when to check whether

planning should be stopped (interval); the duration of time budget that is be shared

by both planning and execution (timebudget); and the reward loss tolerance (tolerance).

The MMS sets an anytime planner running, and periodically checks what the current

best plan is. If the reward available for executing the current plan now (rewardnow) is

significantly less than any previous rewardnow then planning stops (the maximum of all
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previous rewardnow is referred to as rewardbest). If a new plan has been produced then it

is set as the current plan. The rewardnow of the plan is calculated and compared against

rewardbest. Should rewardnow be better then it becomes the new rewardbest. However,

rewardnow is not simply the sum of reward for all actions in the plan. This is because of

a diminishing time budget. Rather rewardnow is the sum of all actions in the plan that

can be executed in the remaining time budget.

Algorithm 1 Loss limiting meta-management system

Require: reward(plan, timelimit), a function returning the amount of reward achievable
by a plan given a time limit (rewardnow)

Require: continueP lanning(time), a function that continues an anytime planning algo-
rithm for the given amount of time, returning the best plan found since the beginning
of planning

Require: interval, the interval at which it should be checked whether to stop planning
or not

Require: timebudget, the time in which the MMS has to find a plan and execute it
Require: tolerance, the proportion of reward that can be lost before stopping planning

timeremain ← timebudget
rewardbest ← 0
plan← ∅
while timeremain > 0 do

if reward(plan, timeremain) < rewardbest × (1− tolerance) then
return plan

else
plan← continueP lanning(interval)
rewardbest ← max(reward(plan, timeremain), rewardbest)
timeremain ← timeremain − interval

end if
end while
return failure

◃ Only possible if planner does not return a plan by the end of the time budget

The computation required to check if planning should stop is minimal and so interval

can be set quite low (50ms is the time used in the experiments). Whilst it is technically

possible for the MMS to fail to return an executable plan, this only happens when the

planner produces no plan at all by the end of the time budget.
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Plan Quality Loss Tolerance

Loss tolerance is an important parameter to the MMS. It needs to be adapted to the

domain and planning algorithm being used. Different domains and planning algorithms

will produce different profiles of reward against time. In some domains, planning might

reach near optimal plans very quickly and have lower rates of plan quality improvement

compared to loss of achievable reward because of continued planning. In this case a low

loss tolerance is better. If the reverse is true, in that considerable improvements in plan

quality are made later in the planning process, then a higher loss tolerance is better. This

will mean that the agent continues to plan even though parts of its current best plan are

no longer achievable. The way in which loss tolerance was chosen for the UAV surveillance

tours domain is discussed in Section 3.5.

3.4 Results

In Section 3.2.2, it was stated that varying execution speed would effect how long the

agent should plan for. Figure 3.4 shows the effect of increasing time pressure on the UAV

tour problem. The x axis is the runtime of the planner, and the y axis is the scaled

reward obtained had the plan been executed at that moment in time. Reward is scaled as

a proportion of the reward achieved had the best plan found after 60 seconds of planning

been executed at the beginning of the time budget. This is an unbeatable baseline that no

meta-management system can beat – as planning and execution to do not share a limited

time budget in this baseline. The reward achieved is averaged over 100 runs. It includes

four different execution speeds: 1, 1
3
, 1

5
and 1

10
. The effect of decreasing execution speed

means that actions now take longer to complete, but that planning is unaffected. Planning

for the same amount of time still produces an identical plan of the same quality. It can be

seen that at normal execution speed, planning continues to increase execution reward for

20 seconds. As execution reward increases, less of the reward of a plan is obtainable. This

is because less of the actions at the end of plan can be completed. Figure 3.4 shows that
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Figure 3.4: Effect of time pressure on reward achieved. Achieved reward is as a proportion
of reward achieved by best plan found after 60 seconds if executed at t0 (averaged over
100 runs).

achievable execution reward peaks earlier when execution speed is slower. As the time

pressure increases, the total reward peaks much earlier and decreases swiftly, showing

that the benefit of additional planning is rapidly lost. This means that planning should

finish earlier as execution speed decreases.

A problem with this analysis though is that execution speed increases are simulated

by taking the same plan and seeing how much reward would have been obtained if each

action took proportionally longer. This does not account for that fact that planning might

have produced different results if it had been aware that it had to produce a plan with a

proportionally shorter makespan (that actions took longer to execute). For instance, if a

planner is computing plans for an oversubscribed agent with a makespan t, but the agent

only has t− 1 to execute the plan, then not all actions can be executed. Had the planner

been computing plans with makespan t−1 then different plans might have been produced.

The heuristic used means the planner will prefer reward dense actions earlier in the plan
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(reward dense meaning high reward and low duration). As such, the effects of simulating

an decreased execution speed in this way are unknown. However, anytime algorithms tend

to concentrate improvements to the plan later on in the plan [53]. This means that when

execution speeds are increased, then improvements made to the plan are unlikely to be

realised as later actions are the first to not be executed when execution speed is reduced.

Finally, the planner is unaware that time is passing during in the planning process. That

is, as planning progresses, the time budget decreases, and so there is no point in producing

plans that have the same makespan.

Table 3.1 shows the reward obtained by each policy as proportion of the reward

achieved by the best plan found after 60 seconds. For comparison, it includes three

MMSs that use fixed planning times (1s, 10s and 20s). These MMSs always run the plan-

ner for the same amount of time regardless of circumstances. Hindsight is the unbeatable

baseline, it shows the maximum reward obtainable had a policy picked the optimal time

to plan for. That is, reward achieved by hindsight cannot be improved upon by an MMS.

The only way to improve upon this result would be to improve the planning algorithm.

The best policy for each execution speed is highlighted in bold. The predictive MMS

does not perform well for any individual execution speed. The predictive MMS is limited

because its performance is dependent on the quality of the performance profile of the

problem. If a problem instance is not well represented by the average then the predictive

MMS will make a bad prediction about how long to plan for. This will be especially true

if the training set that the predictive MMS was trained on have a high variance (meaning

very few problems are like the mean average). However, it copes relatively well with dif-

fering execution speeds. The predictive MMS loses reward more slowly than other policies

as time pressure increases. This demonstrates that being able to change the amount of

time allocated to planning is beneficial given different problem instances. However, the

predictive MMS does not achieve the highest reward.

The loss limiting MMS performs better than the other MMSes. It is the best MMS

in two of the execution reward speeds, and the second best in the other two. This is
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Table 3.1: The resulting reward as a proportion of the maximum possible averaged over
100 runs for each policy with varying execution speeds

Rate
MMS 1 1

3
1
5

1
10

fixed 1s 0.967679 0.963957 0.962939 0.955168
fixed 10s 0.970843 0.951745 0.931818 0.881618
fixed 20s 0.965668 0.925464 0.881677 0.770558
predictive 0.966338 0.962636 0.959870 0.955899
loss limiting 0.969283 0.965873 0.962759 0.957427
hindsight 0.988795 0.978987 0.976254 0.972579

because it is better able to react to problems where significant increases in plan quality

are made early on, followed by periods of minimal improvement. In this scenario the loss

limiting MMS quickly finds that an optima has been reached and that planning should

stop. However, the loss limiting MMS is not as good at deciding when to stop when the

majority of plan quality increases are made later on in the planning process. In such a

scenario, the MMS requires sustained plan quality increases to prevent it from stopping

planning prematurely.

3.5 Discussion

The anytime search algorithm we used is highly efficient for finding high reward tours in

the UAV surveillance problem. On average, the tours achieve 93% of total reward that

was found after a minute within the first step (which typically takes 33ms). It should

be noted that the agent is oversubscribed, and that there is no possible way to achieve

all reward. This is further demonstrated by the fact that hindsight ‘meta-management

system’ never achieved all the reward.

3.5.1 Predictive

The predictive MMS generally performs poorly. It is always outperformed by at least

one fixed time MMS except when execution speed is 0.1 of normal speed. The predictive
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MMS is limited because its performance is dependent on the quality of the improvement

probability table as well as the estimates of the maximal reward and cost of time. As its

future value prediction is based on averages over large numbers of problem instances it

tends to perform badly in cases where the current problem instance is non typical and

big improvements are made much earlier or later than the average.

However, the predictive MMS shows much better resilience to changing execution

speeds than the fixed time MMSs. This is understandable given that the predictive MMS

is able to respond to increasing execution time pressure by planning for a shorter amount

of time. That is, as the time budget is reduced and the cost of time increases, the

predictive MMS switches from planning to execution more readily if new plans are not

found.

3.5.2 Loss Limiting

The loss limiting MMS outperforms the predictive MMS and is the best or second best in

all cases. The loss limiting MMS is more robust to early gains (which skew the estimates

of the optimal reward) but still terminates early in cases where the scheduler finds large

improvements relatively late. The 99.5% loss tolerance parameter was found by trial and

error, improved versions could make use of information about the variability of previous

problem instances so as to not require manual training. However, the loss tolerance

parameter could be reliably found from training on only a few problem instances.

One consequence of low loss tolerances for the loss limiting MMS is that planning

typically stops very early. That is planning will continue until the last action in plan is no

longer executable because too much time has passed. The last action in a plan will always

achieve reward, because actions that increase the length of a plan without increasing the

achievable reward of the plan only lower the quality of the plan. Unless loss tolerance is

high, or there are many tasks achieved by the plan then usually the reward for a single

task will be considerably greater than the loss tolerance. This is why planning will nearly

always stop at this point.
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Stopping as soon as an action drops out from a plan is a big problem with the loss

limiting MMS. Anytime planning algorithms tend to explore states close to the initial

solution [53]. This means improvements to the plan are more likely to be towards the end

of the plan. The end of plan is also where improvements are most likely to be lost due to

time pressure in the loss limiting MMS. Should the planner continue after the first action

of a plan is lost then it may be that any improvements to the plan are unusable before

they even found. That is, given t seconds have elapsed since planning began and that a

new plan is computed that contains an action that is completed less than t seconds before

the end of the time budget, then the action could never have been executed.

3.5.3 Further Work

One of the problems with the loss limiting MMS was that planning for an unknown

amount of time in domains with shared time budgets creates problems with regards to

the maximum makespan of a plan should be. That is, in a shared 60 second budget,

if planning goes on for 10 seconds then the maximum duration a plan can have is 50

seconds. If planning continues for a total of 30 seconds then the maximum duration of

the plan should be 30 seconds. Indeed, the planner has no concept that it is planning

in a continual environment. This means that it cannot reason properly about a limited

and decreasing time budget. The solution put forth in the loss limiting MMS is to just

cut off those actions that occur after the end of the time budget. Were planning to occur

for a fixed amount of time then the planner could be passed a future state rather than

the current state. That is, given a planning time of 10 seconds, then the planner should

be asked to produce plans with a makespan of 50 seconds rather than 60 seconds in the

future.

A related problem is that it is assumed that the agent is the only source of change in

the environment. Much like how the planner does not reason about how it consumes the

time budget, so too does it not reason about changes to state that are not caused by the

agent. Being able to predict what changes might occur and when, would be beneficial to
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a continual planner.

3.6 Conclusion

This chapter examined ways of computing how long an agent should plan for (so as to

optimise reward gained), given a fixed time budget shared between planning and execu-

tion. Two meta-management systems (MMS) were described that decide how much of

the time budget to allocate to planning with an anytime planner.

The first is a predictive MMS that estimates the optimal planning time based on a

performance profile. This performance profile is derived from the performance of the

planner on previous problem instances. The second is a loss limiting MMS that monitors

the progress of planning online and decides when to stop planning. The loss limiting MMS

continuously monitors the amount of reward that an agent can achieve and records the

maximum. Should the amount of reward an agent can achieve drop to less than a given

proportion of the maximum then planning is terminated and the current plan executed.

In Section 3.5 it was noted that the predictive MMS was never as good as the loss

limiting MMS. However, there are a number of limitations with the loss-limiting MMS.

The main limitation relates to the fact the loss-limiting MMS is being used in a domain

with a limited time budget, where further planning reduces the amount of time available to

execute a plan. Since the amount of time allocated to planning is not known beforehand,

then the amount of time allocated to execution is not known either. This means that

the planner is unable to optimise the plans it creates for a specific length. That is, the

planner may spend time optimising an end part of the plan that cannot be executed in

reality as too much of the time budget has already elapsed. This has lead the work in the

next chapter which instead uses a fixed planning time, but examines how reward can be

increased by finding ways to execute actions during the planning process.
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CHAPTER 4

ACTING WHILST PLANNING DURING
CONTINUOUS EXECUTION

4.1 Introduction

Planning and execution are usually modelled as separate sub-problems. That is, planning

occurs separately to execution. In the previous chapter, the problem of how to share time

resources between planning and execution was examined. There the problem was how to

balance the competing needs for time between planning and execution. However, this still

treats planning and execution as separate processes that cannot occur simultaneously.

In this chapter, the problem of what an agent should do when planning is examined.

Ways in which to execute goal-directed actions during planning are explored. Acting

whilst planning could be considered paradoxical in nature. Namely, planning is the act

of computing a plan of action, and execution is the enacting of that plan. It is not

possible to execute a plan if there is not a plan already present. However, this chapter

describes multiple execution frameworks (EFs) that are capable of carrying out actions

whilst planning, and that increase reward in doing so. Rather than finding an explicit

way to divide time between planning and execution, these EFs seek to share the planning

time with execution. In doing so, the cost of planning can be recouped (at least partially).

In domains with unknown knowledge an agent must find ways to act despite not

possessing full knowledge of the state. One way of approaching this problem is to assume
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default values for unknown variables and replan if the actual state is found to be otherwise.

However, in problems with large amounts of unknown knowledge an agent may find itself

replanning frequently. In Chapter 3 we have seen that, in domains with shared time

budgets between planning and execution, both excessive planning and insufficient planning

can negatively effect how much reward is achieved. It was shown that an online approach

is the best way to decide how much time to allocate to planning, but that this raises its

own problems in domains with limited time budgets.

This chapter presents a set of execution frameworks (EFs) that enable acting whilst

planning by producing goal directed behaviours that can be executed whilst planning.

These execution frameworks require the amount of time allocated to planning to be known

at the start of planning – making them suitable for domains with fixed time budgets shared

between planning and execution. That is, as there is a fixed planning time, the time when

planning will end and execution will start is known by the planner. The planner can use

this knowledge to create plans that can be executed within the remaining time budget,

and that the planner can safely ignore plans that try to executed actions beyond the end

of the time budget.

4.1.1 Problem Formalisation

Concurrent Temporal and Sensing Action (CTSA) problems are a sub-domain of plan-

ning problems that involve concurrent actions. The concurrency of the problem may be

expressed as a single agent problem where the agent can perform multiple actions con-

currently (single-agent multiple-task – SA-MT [28]). In some instances this can be a

central agent that is controlling multiple actors. We use the term ‘actor’ to denote an

isolated physical entity that can alter the world around it, but which does not have an

independent decision making process (ie. it is under the control of an agent). This is

in contrast to an agent which is an entity of capable of reasoning about purposeful, goal

directed behaviour. Reward for a CTSA problem is measured as a function of the total

time it took to achieve the goal state, from the agent being given the initial state.
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In CTSA problems, the state is only partially known by the agent. That is, the agent

starts with the knowledge that variables exist within the state, and the values with which

the variable may take. However, the agent does not know the actual value of the variable,

nor is it able to reason about the likelihood of the variable taking any particular value

– this precludes probabilistic reasoning. A result of not knowing the full starting state

of the problem means that either the agent must be able to make contingency plans for

the various values a variable might take, or be prepared to replan during execution. For

the replanning approach, the replanner must either entirely avoid the unknown variable

or assume a default value. The former will lead to situations where a solvable problem

is deemed unsolvable and the latter will lead to situations where the replanner produces

an invalid plan or suboptimal plan. Replanning is required when new knowledge shows

that a plan is invalid, but replanning could also be beneficial when the plan is shown to

be suboptimal. However, this is only true if the additional reward gained from planning

outweighs the cost of replanning.

CTSA problems have a limited time budget that is shared between planning and

execution. This means that reward is a function of planning time, and that finding the

optimal plan may not be the best course of action. That is, given a near-optimal plan

returned by an anytime algorithm, the reward gained from finding the optimal plan is

likely outweighed by the additional cost of the time taken to search for the optimal plan.

Finally, the agent is the only source of change and once the value of a variable is

observed it will not change unless the agent directly changes the value itself.

Irreversible Actions

As stated in Section 4.1, there is a difficult to know if an action is goal-directed with-

out first planning. Indeed, sometimes an action might be detrimental to a plan being

computed by planning. In such a situation the plan would have to contain actions that

reverse state changes that took place during planning. However, some actions are harder

to reverse than others. Irreversible actions are actions that do not have an equal and
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opposite action. An opposite action being one which is applicable in the resultant state

of applying the original action, and that the effect of the applying the opposite action

is to reverse the effects of the original action. An equal action is one that has identical

time and resource costs. For instance, a movement action is (generally) reversible as the

object that was moved can be moved back to its original position in the same amount

of time. An irreversible action cannot be reversed – either at all or at least not easily.

An example of an irreversible movement action would be driving off a cliff. Damage may

occur to the actor that cannot be undone in the scope of the problem, and the time and

effort involved in getting back to the top of the cliff is significantly higher than falling

down to the bottom of the cliff.

Irreversible actions present the possibility that through an agent’s own actions, the

agent may permanently reduce the amount or reward available or even make the goal

unachievable. This is of particular concern for many of the execution frameworks (EF)

discussed herein. This is because the EFs select actions to execute that are believed to

help achieve the goals state, as opposed to actions that are known to help achieve the

goal state. If that belief is incorrect, then the agent may well be acting against its own

interests.

4.1.2 Janitor Domain

The Janitor Domain is an example of a CTSA problem (see Appendix A for a full domain

description). The problem is to ensure all rooms in a building are clean. A room has a

dirtiness value that is non-negative. A dirtiness value of 0 indicates a clean room, any

other value indicates a dirty room. A room may also be labelled ‘extra dirty’. Extra dirty

rooms require more than one actor to be present to clean the room. Cleaning extra dirty

rooms is a multi-robot task as opposed to single-robot task (MR and SR respectively [28]).

In the initial state given, the dirtiness value and the whether a room is ‘extra dirty’ is

unknown. Rooms are connected to one or more other rooms. The quality of a plan is

based on how quickly the goal is achieved.
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In the Janitor domain there is one central agent that controls many janitor robots

(actors). The actions available to agent are: to move an actor from one room to another

or to clean a room. The duration of a move action is dependent on the distance between

the first room and the next. The duration of a clean action is dependent on the dirtiness of

a room. In the case of moving to a room with an unknown dirtiness variable then the value

of that variable is immediately discovered. This will either delay the actor in case of the

room being dirtier than expected or expedite the actor’s schedule as less work is needed.

Rooms labelled as ‘extra dirty’ require two actors to clean the room simultaneously. If

one actor is delayed due to taking longer than expected to clean the rooms allocated to

it, then this will result in delays for any actors it is coordinating with to clean extra dirty

rooms.

An expansion to this problem is to make the duration of cleaning a room proportional

to the number of actors cleaning the room. This means there would be a trade off between

trying to discover unknown variables and acting immediately to clean rooms.

4.2 Research Approach and Methods

4.2.1 Evaluation Criteria

This section describes the metrics by which the solution (described in Section 4.3) will be

evaluated. Those metrics are:

1. Completion time (total time taken to reach the goal state). This includes planning

time and execution time (sometimes concurrently).

2. Number of times the planner was called.

3. Time waiting for actions to finish (actwait).

4. Time waiting for planner to finish (planwait).
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The most important metric is the makespan of the solution. That is, in the Janitor

domain the most important factor is to complete the job as quickly as possible. Shorter

execution times for the same problem indicate that the agent is acting in a goal-directed

way during planning. Counter productive actions are ones that lead to a state that

requires more actions to complete the goal that before. Shorter execution times also

indicate higher quality plans are being used by the agent.

As a result of gaining new knowledge the solution may decide to replan. The number

of times the planner was called indicates how often replanning occurred. Replanning

can occur at most, as many times as new pieces of information are received during the

problem.

Execution frameworks that do not allow planning and acting to occur concurrently will

incur an overhead when switching from execution to planning. This is what the actwait

metric measures. A reduction in this number means that planning is able to start sooner

after new information is discovered.

In execution frameworks that do allow planning and acting to occur concurrently, then

it may be that there are times at which actions are not executing during planning. This

potentially represents a suboptimal execution of actions whilst planning. This is what

the planwait metric measures. In execution frameworks that do not allow planning and

acting to occur concurrently, this is simply a measure of total planning time. A value of

zero would indicate that actors (as a group) were always executing at least one action

whenever planning was taking place.

The EFs described in Section 4.3 are compared against a baseline that is able to

pause the world during replanning. The baseline uses the same planning time as each EF.

However, the baseline must still deal with unknown information. Essentially, the baseline

is able to create a plan instantly when replanning is necessary.
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4.2.2 Test Environment

A simulator was created to aid in carrying out plans and interrupting the plans at appro-

priate points when replanning was required. Since actions have durations, and actions can

be executed concurrently by different actors, and events may happen during the execution

of actions, the simulator must account for all of this. The simulator makes sure that the

effects of an action are affected at the appropriate point during execution – actions can

have effects at the beginning or end of the action. As a central controller of the world,

the simulator is also responsible for making sure actions that have been scheduled by

an agent are started and finished at the right point. The simulator is also decides when

new information has been discovered by the agent and is responsible for dispatching this

information to the agent.

Due to the heuristic nature of how some actions are chosen, it may mean that the

action cannot be carried out as its preconditions are not present in the current state.

As such, an EF needs to be run in a simulator that does not trust the agent to always

attempt actions that are possible. Therefore, the simulator must be capable of checking

the preconditions of an action against the current state, before allowing the agent to start

the action.

The agent has very little control in the simulator. It is responsible for sending the

schedule of the plan to the simulator, and deciding how new information effects the

current plan. The agent can either continue to schedule actions in the plan or request

that replanning be carried out.

4.3 Solution

In this section several SA-MT EFs are described. They manage how and when to switch

between planning and execution, and schedule actions for execution during planning. In

addition, several algorithms are presented that one type of EF uses to decide what actions

to execute during replanning.
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We introduce a way of describing a temporal state in which actions can be in the

middle of execution (or partially executed). Several of the EFs exploit the ability to

model a state in which an action is partially executed. This allows the EF to transition

between planning and acting much more quickly and so minimise actwait and planwait.

We also describe a way to model such partially executed actions in PDDL. This mod-

elling is necessary otherwise the use of a specialised planner would be required that is

able deal with actions that are currently mid-execution at the beginning of planning.

For planning, the EFs use an off-the-shelf planner (OPTIC [3]) that is capable of

dealing with temporal problems, but not with sensing actions. The planner is called

when new knowledge is obtained (this includes being given the initial state). Since the

planner is unable to cope with sensing actions, all unknown variables are given a default

value when the current state is given to the planner. To achieve a given goal, the EF

executes a plan returned from the planner until a new observation is made. At this point

the EF decides when to start replanning with respect to currently executing actions, and

what actions to execute until a new plan is returned by the planner. Deciding when

to replan is important as there may be sensing actions that are currently executing and

whose outcomes might effect replanning. Next we list the EFs and, where applicable, the

different algorithms the EFs use to decide what actions to execute whilst planning. The

EFs differ in regards to: what they do when an observation is made; what they do whilst

planning; and what state they pass to the planner.

Wait then Replan (WR) This EF waits for currently executing actions (at the time

of sensing new knowledge) to finish and then replans.

Suspend and Replan (SR) This EF suspends actions and replans using the current

state (including currently suspended actions).

Predict and Replan (PR) In PR actions are executed during the replanning process.

The state that is expected after these actions have executed is given as the initial

state to the planner. The following, differ in what actions are executed during
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replanning.

PR-Finish Finish the currently executing actions and do not start any new actions.

This is similar to WR, but planning starts earlier and with a predicted state.

PR-Reuse Schedule actions from the current plan up until the end of replanning.

This includes any actions that would still be executing at the end replanning.

This approach is similar to SR, but uses a predicted state rather than the

current state.

PR-New Similar to the PR-Reuse, but attempts to compute a new plan quickly

and use this whilst replanning instead.

Across each of the specified EFs, planning is done for a fixed amount of time. This

time is set at 10 seconds for the experiments. This time was chosen as the planner was

found not to produce better plans without being given a significantly larger planning time

than 10 seconds.

4.3.1 Wait then Replan

Upon getting new information about the world, the agent waits for all currently executing

actions to finish, whilst not starting any new actions from the plan. Once all actions have

finished the planner is run with the current state for a set amount of time and then the

agent begins executing the new plan that is returned by the planner. Figure 4.1 shows

how, upon the completion of Actor B’s sensing action, new information is discovered.

However, Actor A is executing an action at that moment in time. The planner waits

for this action to be completed and then passes the current state to the planner. Once

planning is complete, both actors begin executing the relevant parts of their plan.

This EF adheres to the most classical planning assumptions. There is no concept of

partial execution of actions. Actions are uninterruptible and their postconditions always

take effect as planned for (barring external changes).
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Time

Old Plan

New Plan

Actor A Action Action

Actor B Sense Action Action

New information

Planner Planning

Figure 4.1: Wait then Replan

4.3.2 Suspend and Replan

This EF extends WR by eliminating the time that is spent waiting for currently executing

actions to finish, so that planning can begin immediately. The algorithm assumes actions

can be suspended (or interrupted). This state of suspension can be passed into the planner

as an initial state to plan from. For actions whose effect is a function of time, the action

is halted and the effect for the shorter duration of the action is calculated. In the Janitor

domain the progress of a cleaning action is linear. If the action is halted 75% of the way

through, then 75% of the dirt is removed. The remaining 25% is left to be cleaned later.

For actions that have effects that are not functions of time (i.e. actions that alter

discrete values, or add/remove predicates), a temporary state is created to represent the

halfway state between the beginning state of the action and the end state of the action.

In the Janitor domain the effects of a suspended move action are represented this way.

The position of the actor is modelled as being at a particular node. The representation

of the position of a actor when its move action is suspended, is a temporary node which

only it exists at, and two directed edges away from the temporary node to the start and

end nodes of the original move action. This allows the janitor actor to move from the
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temporary node, but not back to it. For a small example problem in the Janitor domain

see Listing 4.1. The length of these edges is proportional to how far through the move

the actor was when it was interrupted. For instance, in Listing 4.1 the length of the

node1 -node2 edge is 10 and temp-node is located 2 from node1 and 8 from node2. The

agent runs the planner with this temporary state. Whilst planning, no actor executes

any action. Execution resumes once the new plan is produced by the replanner. An

example of this can be seen in Figure 4.2. As with the Figure 4.1, it is Actor B that

detects new information. Rather than wait for Actor A to finish its action, the action is

instead suspended by the agent and an intermediary state passed to the planner. This

intermediary state is computed using Algorithm 2. In the plan that results from this

replanning, the suspended action will either be completed or reversed from the temporary

intermediate state.

Time

Old Plan

New Plan

Actor A Start Action Finish Action

Actor B Sense Action Action

New information

Planner Planning

Figure 4.2: Suspend and Replan

4.3.3 Predict and Replan

The PR EF continues to execute actions whilst planning. It predicts what the state will

be after planning finishes, including the effects of any actions it chooses to execute during

planning, and passes along this predicted state as the initial state for planning. To be
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Listing 4.1: Simple Janitor Problem with a Temporary State

( d e f i n e ( problem jan i t o r−temp−node )
( : domain j a n i t o r )
( : ob j e c t s ac tor1 node1 node2 temp−node )
( : i n i t

( agent agent1 )
( node node1 )
( node node2 )
( node temp−node )

; und i r ec ted edge
( edge node1 node2 )
( edge node2 node1 )
(= ( d i s t anc e node1 node2 ) 10)
(= ( d i s t anc e node2 node1 ) 10)

; d i r e c t ed edge
( edge temp−node node1 )
(= ( d i s t anc e temp−node node1 ) 2)

; d i r e c t ed edge
( edge temp−node node2 )
(= ( d i s t anc e temp−node node2 ) 8)

( a v a i l a b l e agent1 )
( at agent1 temp−node )

)

( : goa l ( and
( at agent1 node1 )

) )
)
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Algorithm 2 Representing a partially executed move action

Require:
actor, the actor that is executing the action
move, the action being executed
progress, the progress that has been made on the action (in metres)
state, the state at current moment in time
location, a unique identifier that does not already exist in the state
Assumes speed is 1 and so distance = time

Ensure: A state in which only two prescribed move actions are the possible actions for
the given actor

state← state ∪ { at(actor, location)
∧ edge(location,moveendNode)
∧ edge(location,movestartNode)
∧ distance(location,moveendNode) = moveduration − progress
∧ distance(location,movestartNode) = progress }

able to predict the state when planning ends, PR relies on using a planner which has a

predictable completion time.

A problem arises because of unknown knowledge in the state. If an observation would

be made during planning the EF must model this observation in some way for the planner.

The planner that is being used is not contingent, so the EF must provided an assumed

value for the observation.

The problem with providing an assumed value is that this value might be wrong.

In this case the predicted initial state given to the planner is wrong, and, as such, the

resulting plan will be invalid. The longer the agent spends planning, the more likely it is

to predict an incorrect observation. Thus an agent that uses PR must make a trade off.

Does the agent: (a) spend a longer time planning, such that a better plan is produced,

but at a higher risk of the plan being invalid; or (b) spend less time planning, getting

a worse plan that would otherwise be produced, but at a lower risk of the plan being

invalid.
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PR-Finish – Predicting the End State of Currently Executing Actions

Rather than waiting for an action to finish before beginning replanning, the agent can

predict what the state will be once all executing actions have finished. The agent can

then use this predicted state as the initial state for replanning. This approach should

beat WR as the planner can start running whilst actions are still executing, thus saving

time. There is, however, the possibility that the result of an observation action might be

predicted incorrectly.

This EF does not make full use of planning time to execute actions. This is because of

the concurrent and temporal aspect of the problem. Different actions will have different

durations, some actions will complete before others, and thus some new actions could

begin before the action with the longest duration ends. This means there is further

possible acting that can be done during planning. Figure 4.3 shows how planning begins

before Actor A has finished acting. Note that there is still a gap between the end of

current actions and the beginning of the new plan.

Time

Old Plan

New Plan

Actor A Action Action

Actor B Action Action

New information

Time when predicting

Predicted future state

Planner Planning

Figure 4.3: Predict and Replan (PR-Finish)
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PR-Reuse – Using the Old Plan as Heuristic for Acting Whilst Replanning

This approach hinges on the idea that most new knowledge will not be significant enough

to force a massive change to the overall plan. As such, the old plan remains a good

heuristic as to how to act whilst replanning. The old plan is executed for as long as

the amount of time given for replanning (10 seconds for the Janitor problems). Actions

that cannot be fully completed before replanning completes are partially executed (as in

SR). Again the predicted state for when planning would end is used as the initial state

for the planner. Whilst generally a good heuristic, this approach can run into significant

problems if there exist irreversible actions in the domain. That is, new information, that

once reasoned about, can mean some actions in the old plan would decrease available

reward or make the goal unachievable. However, by the time a new plan was obtained,

that would avoid those actions, then it would be too late. In Figure 4.4 it is shown how

actors continue to act using actions from the old plan whilst creation of the new plan

is under way. This includes partial execution of an action by Actor A, and subsequent

completion of the action in the new plan.

Time

Old Plan

New Plan

Actor A Partial Action Finish Action

Actor B Action Action Action

New information

Planner Planning

Figure 4.4: PR-Reuse
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PR-New – Using a Quick Plan as a Heuristic for Acting Whilst Replanning

This algorithm takes into account that relying on the old plan is not always a good

heuristic (as the old plan is out of date). The old plan might contain actions that are not

possible, irrelevant, counter-productive or, even dangerous (depending on the domain).

In these cases if there exists a quick way of getting a new plan, then that can be used as a

heuristic. In the case of the Janitor domain, the planner (OPTIC [3]) is able to produce

a plan using greedy search in a fraction of a second. Whilst these plans have makespans

longer than plans produced by an anytime planner run for a longer period of time, these

greedy plans are still similar in makespan to their anytime counterparts. Figure 4.5 shows

how planning is split between an initial greedy plan that attempts to a find a solution as

quickly as possible, and a longer planning period where the plan can be improved upon.

The initial actions selected by the greedy search are likely to be in the initial actions of

the new plan as anytime search tends to concentrate improvements to a plan close to the

end of the plan [53]. However, actors are unable to act whilst the greedy plan is being

computed.

Time

Old Plan

Heuristic Plan

New Plan

Actor A Action Action Action

Actor B Action Action Action

New information

Quick Planning

Normal Planning

Figure 4.5: PR-New
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4.3.4 Pause World and Replan

This is not a solution, but represents a baseline against which the other approaches can

be compared. Essentially this approach is the same as SR except that the simulation of

the world is paused whilst planning. The effect of which is that the planner is able to

return a plan immediately as if it had planned for the full replanning period.

4.3.5 The Planner

All the algorithms make use of the same off-the-shelf planner (OPTIC [3]). OPTIC works

on concurrent temporal problems, but has no capability to reason about unknown or

uncertain states. As a result, variables with unknown values have to be given a value

before the planner can be called. The specific unknown variable for the Janitor domain

is dirtiness. As the agent is not aware of the distribution of dirtiness levels in the Janitor

domain it was not possible for the agent to make this value the expected value. Instead

an arbitrary default value is chosen. In all cases this default value was the maximum

dirtiness for the problem. In practice, any non-zero value could be used. A non-zero

value is needed otherwise the planner will perceive the problem as being solved (all rooms

being clean). However, assuming the worst possible value means that a plan does not

need to be rescheduled if the actual dirtiness of a room is less than expected. The reason

for this is that the domain includes cleaning actions that require multiple actors to be

present to perform the clean action. If one actor is delayed because a room it that was

meant to clean is dirtier than expected, then the whole plan may be delayed as a result.

4.4 Experiments

4.4.1 Independent Variables

The Janitor domain consists of several independent variables. These are:
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1. Number of rooms in problem

2. Graph configuration of rooms (room layout)

3. Number of actors

4. Range of the amount of work required to clean a room.

5. Edge length between each room

6. Number of rooms requiring cooperation between actors

7. Duration of planning

The primary independent variables are graph configuration, number of actors, and

range of required work for each room. The graph configurations used are line, rectangle

and square. The difference between spatial configurations is important, as it can help

highlight if plans cluster actors together when cleaning rooms. For instance, if actors in a

line configuration cluster, then they will have to move further to get to the next room to

clean than if they had spread out. This is not as a big a problem in square and rectangle

configurations as, on average, a node has a higher number of neighbours. This makes it

more probable that an actor is adjacent to a node that needs to be cleaned. If shorter

completion times are observed for square configurations than line configurations it means

that actors are clustering.

The number of actors is useful for determining how well the EF scales. As the number

of actors increases the total time to achieve the goal should decrease. This is because

more actions can be done in parallel. However, increasing the number of actors also

increases the branching factor during search and so if planning scales poorly, we will not

see performance increases as large as in domains where planning does scale well. The

number of actors in a problem is either: three, five or seven.

Each room has a uniformly randomly assigned dirtiness. This number will be within

a set range. As the range increases in size, the standard deviation of assumed required
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work compared to actual required work will increase. This increase means there will be

more opportunity to compute superior plans that will complete the problem sooner. The

distribution ranges are: 20-40, 30-60, and 40-80.

The other independent variables were kept constant. Those variables are: number of

rooms in the problem, edge length between rooms, number of rooms requiring cooperation

and duration of planning. The number of rooms was fixed at sixteen (16). Changing the

number of the rooms in the problem would only serve to be able to look at scalability, but

this is already being examined by changing the number of actors. Keeping the number of

rooms fixed at 16 means that the three types of graph configuration are: 1x16, 2x8 and

4x4. Edge length was kept the same as changing it would only serve to increase average

runtime. It would also serve to punish solutions that spend too much time moving to

non-spatially close rooms. However, the configuration of the graph already serves this

purpose. Finally, the time given for anytime planning was always ten seconds. This is

because earlier experimentation showed that significantly longer planning periods (20, 30

and 60 second long planning periods were tested) did not produce better plans (with the

median average reduction in plan length being 0%).

Since several of the independent variables have values assigned at random, it was

decided to test the algorithms on several different variations of the problem for each

configuration of the problem. That is, each configuration had 10 problems created for it.

This meant there are 270 problems – ten for each of the 27 unique configurations. See

Table 4.1 for each of the possible values in the 27 configurations.

4.4.2 Dependent Variables

The dependent variables against which the problems are to be analysed are:

1. Total time from start of problem to completion (runtime)

2. Total planning time

3. Goal achieved
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Variable Values
Number of Nodes 16
Graph Layout 1x16, 2x8, 4x4
No. of Actors 3, 5, 7
Work Required per Room Range 20-40, 30-60, and 40-80
Work Required Distribution uniform
Edge Length 20
Rooms Requiring Cooperation 3
Planning Time 10

Table 4.1: Possible values of variables, with co-varying variables grouped.

Total planning time, and runtime were recorded for each problem run for each EF.

Here planning time is defined as time where the planner was running. Runtime is the

time taken from starting the problem to arriving at the goal state. This includes planning

time and execution time (execution time is where at least one actor is performing an

action). Note that execution time plus planning time does not equal runtime. This is

because some of the EFs act and plan at the same time. In addition to planning time

and runtime, whether the goal was found in the final state was also recorded. This was

necessary as if the planner was unable to produce a plan within the ten seconds allotted

to it then the agent deemed the problem unsolvable.

4.5 Analysis

The first way of analysing the EFs was counting the number of times an EF produced

the smallest runtime (and achieved the goal state). Excluding the ‘Pause World and

Replan’ baseline, PR-New achieved the best – producing the smallest runtime 46% of

the time. This was closely followed by PR-Reuse – it was best 40% of the time. This

shows that acting whilst replanning is an effective way at reducing runtime. Table 4.2

shows the percentage that a given EF produced the smallest runtime for problem where

all execution frameworks achieved the goal.

However, the best time saving seems to come from being able to represent partial

execution states. In the case of the EFs that do act whilst planning, this allows the agent
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WR 0%
SR 2%
PR-Finish 11%
PR-Reuse 40%
PR-New 47%

Table 4.2: Win percentage without ‘Pause World and Replan’ baseline

WR 0%
SR 0%
PR-Finish 7%
PR-Reuse 15%
PR-New 20%
Pause World and Replan 58%

Table 4.3: Win percentage with ‘Pause World and Replan’ baseline

to keep its actors active while waiting for an actor that is executing an action with an

extended duration to finish. This is evidenced by the fact that WR never produced the

best runtime for any problem, whilst SR produced a few of the best runtimes (2%). With

respect to EF that do act whilst planning, presenting partial execution states allows the

agent to act as much as is possible before planning ends. This is demonstrated by the

fact that PR-Finish which does not use partial execution states is outclassed by the two

EFs that do (PR-Reuse and PR-New). PR-Finish produces the best time for 11% of

problems versus PR-Reuse and PR-New which produce the best time in 40% and 46%

of problems respectively. This is because the agent is able to schedule all actors to be

executing actions for entire duration of planning.

The competition as to which EF was best for each problem is only half the picture.

Given EF A is slightly worse in a majority of cases, but significantly better in a minority

of cases in comparison to EF B then A is approximately as good as B, with respect to

average runtime. However, comparing the EFs only with respect to the number of times

they produced the smallest runtime would show B being significantly better than A. As

such, a second way of comparing the EFs is to normalise the runtime for each problem

with respect to the best runtime for that problem. Runtimes were normalised using the

following function.
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normalise(p, e) = runtime(p,e)
min

∀ei∈E
runtime(p,ei)

− 1

Where p is the individual problem, e is the execution framework, E is the set of all

execution frameworks and runtime(p, e) is the time at which the goal was achieved for

a given problem and EF. An optimal EF would have a total normalised score of zero. If

one EF failed to complete a problem then that problem was not included in the results.

An EF that is the best for one problem, 5% slower than another EF that is best for a

second problem and 10% slower for a third would have a total normalised score of 0.15.

WR 49.22
SR 38.60
PR-Finish 33.47
PR-Reuse 11.36
PR-New 3.97
Pause World and Replan 2.89

Table 4.4: Total Normalised Scores

It was expected that the ‘Pause World and Replan’ baseline would have a normalised

score of 0, with no EF being able to produce a shorter runtime than it. However, this

was not the case (as shown in Table 4.4). Of the 270 problems 93 were successfully

completed by all algorithms. The total normalised scored was calculated from these 93

problems. The total normalised score for the ‘Pause World and Replan’ baseline was 2.89.

By comparison, the normalised score for PR-New was 3.97. The highest score was for

WR at 49.22. So we can see that PR-New is highly effective, and sometimes it was better

than the ‘Pause World and Replan’ baseline, as shown in Table 4.3. Whilst PR-Reuse and

PR-New were ranked closely in terms of percentage of problems with shortest runtime

(40% to 46% respectively), PR-Reuse and PR-New got different total normalised scores.

Indeed, the normalised score of PR-New is considerably closer to the baseline than PR-

Reuse. This means that where PR-Reuse is better than PR-New the difference in runtime

was small. However, where PR-New is better than PR-Reuse the difference was large.

One problem with this analysis is that in 91 of the 270 problems PR-New did not

reach the goal state (and thus these problems were not counted). An EF is considered to

have failed a problem if the planner cannot produce a plan within the time given. One
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possible explanation could be that PR-New is not a good heuristic, and initially pushes

the state away from the goal state before travelling toward the goal state again. As the

actor moves further from the goal state, the anytime planner must explore more of the

state space to find a solution – more than can be explored in the ten seconds given to the

planner. However, this explanation seems unlikely since in the cases where PR-New does

succeed it is the best or very close to the best solution in nearly all cases.

It is interesting to note that despite using the same underlying planner on the same

problem, different EFs failed to reach the goal state for different problems. This is pos-

sibly explained by the fact that different EFs will provide different initial states when

replanning. This is because different EFs explore more or less of the world before replan-

ning, and so make different predictions about the future state of world when initialising

the replanner. When initially deciding the planning time to use for planning, a failure rate

of approximately 10% was observed and that this was the result of a few hard-to-solve

configurations.

The non-zero total normalised score of the ‘Pause World and Replan’ baseline can

be explained by the fact that the states of EFs quickly diverge as they choose different

execution paths. As such, the baseline might end up in states that are more complicated,

and so harder to plan for. A more complicated state would be having more actors that

are in temporary states as this adds additional objects that must be considered by the

planner. As such, the baseline might end up producing worse plans than the EFs.

One problem with acting whilst planning is the possibility that replanning may fail to

produce a valid plan due to starting with an wrongly predicted initial state. Due to the

relatively high numbers of actors and the low edge length in relation to planning time,

new information was frequently gathered during the replanning phase – thus invalidating

plan the replanner was working on. The effect of this was algorithms that acted whilst

planning spent considerably more time replanning than other algorithms. Figure 4.6

shows planning times for each algorithm normalised in the same way runtimes for each

algorithm were normalised. This shows that ability to reduce total runtime (combined
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execution time and planning time) came at a cost of increasing the amount of time spent

planning. However, because much of planning was done in parallel with acting this is not

problematic.

WR 1.66
SR 53.82
PR-Finish 13.02
PR-Reuse 47.50
PR-New 51.58

Figure 4.6: Total Normalised Planning Scores

4.6 Conclusion

The sub-question this chapter is addressing is “What should an agent do when planning?”.

Chapter 3 assumes that time is an exclusive resource, and that the question to solve is how

to split this finite and exclusive resource between planning and plan execution. However,

time it not an exclusive resource and parallel activities can occur at the same time. This

chapter shows that by changing the way an agent approaches planing it can share the time

it spends planning with execution. This addresses the main question of this thesis not by

finding a fixed division of time to spend planning and the rest to spend on execution, but

by finding a way to parallelise the process of planning and execution.

In this chapter presents three execution frameworks that increase reward by acting

whilst planning. They are PR-Finish, PR-Reuse and PR-New. By planning with a

predicted future state rather than the current state these Execution Frameworks inform

the planner of actions taking place during planning. This enables the agent to increase

the amount of time spent executing actions, and so long as these actions are goal-directed

they will increase reward. However, for the Execution Framework to accurately predict

the future state the time of the state that is being predicted must be known. This is so

that the EF will know which actions have completed and which are yet to start or are in

the middle of execution. This means that the EF must plan for a fixed amount of time –
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starting planning at the time of the current state and finishing at the time of the predicted

future state. If the EF plans for less time, then the plan cannot be executed immediately

as it might be contingent on the effects of actions that have not finished executing. If the

EF continues to plan after the time of the predicted state then that is time wasted that

could have otherwise been spent on execution. As such, the contribution of this chapter is

incompatible with the main contribution of Chapter 3, which plans for a variable amount

of time (based on online monitoring of the progress of planning).

The EFs parallelise planning and execution in two ways. The first is to provide a

representation of actions that are in the middle of execution to the planner. This enables

replanning to occur at any time, regardless of the execution state of the agent. This is

important in multi-agent domains as an agent in the middle of execution may receive

information from another agent or external source that invalidates the current plan of

the agent or enables better plans that were previously impossible. The second way is by

selecting actions to execute during the planning.

An agent can only plan if it can describe the current state to a planning algorithm.

Planning languages generally do not have ways in which describe actions that have only

being partially executed. And where a planning language does enable descriptions of

partial execution, they focus on the consumption and production of real-valued resources.

Missing from this, is an ability to describe a transient state between two predicates. This

chapter describes how to take a problem description and expand it so that it is capable of

describing such transient states. A transient state is one in which an actor can only take

an action that will move it out of the transient state. By using transient states replanning

can start immediately, regardless of any concurrently executing actions. The planner can

then choose to how it wishes the actor to move out of the transient state (sometimes it

may not have a choice) and then carry on planning as normal. This is especially useful in

multi-actor domains where actors can operate independently, but are controlled centrally.

This is because for planning to begin, all actors must finish the action they are currently

executing. This takes time and can significantly slow down achieving the stated goal.
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Acting whilst replanning in continual planning problems can mean higher rewards can

be obtained than if nothing was done whilst planning. By using a heuristic to estimate

which actions are goal-directed, and to execute these. As with using any heuristic, there

is the possibility that in some problems the actions executed might actually increase the

work required to achieve the goal. However, this chapter has shown that acting whilst

planning can result in higher rewards (even if the actions being executed are not known

to be optimal). In this chapter three ways in which an agent can continue to act whilst

planning were proposed (the PR EFs in Section 4.3.3). These EFs show a decrease in

runtime when compared to classical approach of separating acting and planning (WR)

(expressed as a normalised score in Section 4.5).

PR-Finish and PR-Reuse operated on the assumption that individual changes in state

would not significantly effect the plan, and the current plan that the agent was executing

was a good heuristic on how to act whilst planning was occurring. The two EFs differ

only in that the first only finished currently executing actions, whilst the second would

start to execute new actions from the old plan during replanning process. In the Janitor

domain that the EF was tested on this was found to be effective.

PR-New assumes that the final plan produced by planner will not differ significantly,

at least in the early parts of the plan, from a greedy plan. The EF finds an initial greedy

solution to the planning problem and uses this to as a heuristic on which actions to

execute whilst running the main replanning task. By trading off the ability to execute for

a small part of the replanning process, the agent gains the ability to act in a guaranteed

goal-directed manner. This is because the information that triggered replanning may have

invalidated the plan such that actions the agent would execute next are not possible. In

certain domains, it would even mean avoiding actions that would make achieving the goal

require more work. This EF was shown to be the most effective of the PR EFs that were

tested.
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4.7 Further Work

There are three main areas to extend the EFs proposed. They are the addition of: ir-

reversible actions; dynamic goal adjustment and optional actor cooperation on actions.

The most important of which is the addition of irreversible actions. PR-Finish and PR-

Reuse both execute actions from the previous plan as a heuristic on how to act whilst

replanning. It is assumed that these EFs would perform poorly in the presence of irre-

versible actions as the EF would commit to irreversible actions that will render the goal

unachievable. This is because the old plan is unaware of the information that means

such an action will cause the goal to become unachievable. If the agent were to replan

before acting, it would find that goal cannot be achieved if this action is executed and

so avoid it. This is not a problem for PR-New. This is because all actions are the result

of a plan that is known to be valid given the current knowledge state. However, this

does not stop PR-New producing a suboptimal plan that contains an irreversible action.

That is, there may exist a better plan which becomes invalid if the irreversible action is

executed. Irreversible actions could be further extended to not be completely irreversible,

but rather have varying costs depending on the direction of the actions. For instance,

driving down a hill requires less energy than driving up a hill. Here, driving down the

hill is not irreversible (like driving off a cliff), but driving back up the hill will take longer

and more fuel than driving down. It is expected that PR-New will not avoid plans that

contain actions that are costly to reverse.

Irreversible actions already exist in the Janitor Domain. That is, a janitor actor has

no way to ‘unclean’ a room. However, this is not problematic as the domain always

requires that a room be cleaned and never ‘dirtied’. To introduce an irreversible action

with negative consequences, the clean action can given be negative side effect in specific

situations. That is, the new goal is to clean all rooms unless the room was marked as

‘do-not-disturb’. If a ‘do-not-disturb’ room was cleaned, then it would be marked as

disturbed. The full new goal being:

∀r ∈ R, (cleaned(r) ∧ ¬do not disturb(r)) ∨ (do not disturb(r) ∧ ¬disturbed(r))
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Where R is the set of all rooms. However, these ‘do-not-disturb’ rooms are not known

in advance, and the agent will be required to make contingencies or replan as and when

these rooms are discovered.

4.7.1 Dynamic Goal Adjustment Whilst Executing

The current CTSA problem only allows for a fixed goal, and that goals do not have

deadlines by which they must be completed. An addition to the CTSA problem would

be to have deadlines for individual goals, and to allow the addition of new goals as time

progressed. This allows CTSA problems to represent continual and extended execution

domains. An example of which is modern warehouses. Some modern warehouses dispatch

goods for e-commerce websites on the same day as the goods are ordered. This requires

packing and shipping EFs to be able to respond to new goals throughout the day and

provide plans that will ship as many goods as possible as quickly as possible.

It would not really be possible for a contingent planner to create a policy that would

be robust to the addition of new goals. This is because the planner would have to predict

when a new goal would be added and what form the goal might take. This would mas-

sively increase the plan space that the planner had to search over. Quantising states and

times would simplify matters and might make contingent planning possible. However,

replanning might be a better option due to decreased complexity of the problem (not

having to optimise over multiple branches with plans for different goals).

4.7.2 Optional Actor Cooperation on Actions

One last interesting extension to the CTSA problem is to permit optional cooperation

of actors on an action. This stands in contrast to forcing cooperation as in the case of

‘extra dirty’ rooms. With optional cooperation the duration of an action is reduced with

the number of actors working on it. Each additional actor should produce diminishing

reductions in duration. This presents an interesting interaction between how to distribute
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actors, and where the highest workload is in a problem. In a problem with a uniformly

distributed workload, then the optimal plan would be to evenly distribute actors through-

out the problem. Whereas, if there were concentrated patches of work, then the optimal

plan might be to concentrate actors in these areas and send smaller groups of actors or

single actors to do the work in areas with smaller workloads.
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CHAPTER 5

COOPERATION AND SYNCHRONISATION IN
MULTI-AGENT ENVIRONMENTS

5.1 Introduction

In domains where time is shared between planning and plan execution, being able to

create plans that valid for the time when they are scheduled to be executed is important.

This can be the result of deadlines or external events that change the state of world. These

changes can mean that a plan created with respect to an initial state is no longer valid

for the current state (after planning has finished). In domains where finding high quality

plans can take a substantial amount of time, this means that finding plans quickly is more

important. By finding plans more quickly more time can be dedicated to plan execution

and observing constraints based on deadlines or the occurrence of foreseen external events.

Multi-agent planning is NP-hard [1]. As a result generating high quality plans can take

a long time. An execution framework (EF) working on a multi-agent domain should focus

on computing plans that are good enough rather than computing the optimal plan [63].

Centralised, single-agent planning algorithms are not well equipped to deal with the ex-

ponential blow-up of plan space caused by concurrency of actions in multi-agent domains

(which increases branching factor) [37]. Decentralising the planning process can help

mitigate this problem.

Decomposing a multi-agent problem into a set of single-agent problems is an effective
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way of achieving this [13]. However, in domains that have task interdependence [7], such

decompositions are not simple. Task interdependence is where the goal is for a given

task to be completed, but for that task to be completed a second (possibly unspecified)

task must first be completed. It may be that there is no such agent that is capable of

completing both tasks in domains with heterogeneous agents. In multi-agent domains

with deadlines there is the additional problem how to coordinate and synchronise the

agents quickly and to make sure that all tasks, including dependent ones are completed

by the deadline.

This chapter presents an execution framework for decomposing a multi-agent problem

with deadlines into a set of partially interdependent single-agent problems that can be

partially solved in parallel. This approach is found to be significantly better than a

centralised approach. The decomposition of goals identifies key sub goals around which

synchronisation must occur. By identifying these subgoals, an execution framework can

present a simpler problems for the planner to solve, and in doing so, helps the planner

focus computation resources on the most important parts of the overall problem.

5.1.1 Problem Formalisation

Heterogeneous, Cooperative and Synchronised Multi-Agent (HCSMA) domains are com-

posed of specialised heterogeneous agents that are given a goal that requires more than

one type of agent to take part. Each type of agent has a set of actions that only that

type of agent is capable of. Goals are posed such that the unique actions of each agent

type are required to achieve the goal. Generally, this means that the goal is dependent

on the postconditions of the action(s) of one type of agent, and the preconditions of those

actions are dependent on the postconditions of the action(s) of another type of agent. In

this chapter, this is what is meant by cooperation amongst agents

Individually, agents may either be: incapable of achieving the goal state from the

current state; or incapable of achieving the goal state from any state. However, together

the agents are capable of achieving the goal. A basic example can be seen in Figure 5.1.
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1. Initial state

2. Agent a executes action x

3. Intermediary state

4. Agent b executes action y

5. Goal state

Figure 5.1: Basic HCSMA Example

Agent b can only achieve the goal state from the intermediary state, but cannot reach

the intermediary state from the initial state. It is agent a that can perform action x that

achieves the intermediary state from the initial state.

In addition to cooperation, the agents are also required to synchronise actions with

each other. This requirement is caused by goals having deadlines. That is, not only must

agent a executes action x, but that agent a must execute action x early enough that

agent b can execute action y. A further problem with cooperation (that is not examined

by this thesis), is that agents can actively work against each other (either by design or by

accident). That is, an agent, through the course of its actions, can alter the state in way

that prevents the goals of another agent from being able to be completed. For example,

agent a might require a predicate to be true from tn to tn+m in order to complete its

goal. However, another agent through the course of its actions makes the predicate false

at some point between tn to tn+m, or before tn and no agent endeavours to make the

predicate true again before tn. To simplify the HCSMA domain it is assumed that agents

cannot negate states that other agents require. Instead, the focus of the domain is how

an agent can positively affect the ability of other agents to achieve their goals. That is,

agents are concerned with: which agents to cooperate with, and any deadlines for such

cooperation.
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5.1.2 Robocup Rescue

Robocup Rescue (or RR) [39] is the concrete instantiation of the HCSMA domain used

in this chapter. RR focuses on how best to coordinate a group of independent and

heterogeneous agents in the aftermath of an earthquake. The goal is to rescue civilians

and extinguish fires. However, collapsed buildings means some roads are blocked and

impassable. There are three types of agent: a medic agent that is able to rescue civilians

from rubble and transport civilians to hospitals, a fire agent that is able to extinguish

fires, and a police agent that is able to clear roads. The RR problem has many features:

1. Unknown and uncertain state.

2. A limited communication network.

3. Traffic management.

4. Agent and civilian health.

5. Fire spread management.

However, this thesis uses a simplified problem. This is to simplify analysis of the

solution to the HCSMA domain that this thesis proposes. This means analysis can con-

centrate on the effectiveness of cooperation and synchronisation. As such, we exclude fire

simulation, traffic management, unknown state and uncertain state from the problem. As

a result only medic and police agents remain in the problem; edges in the graph have

infinite capacity for agents to move across; and agents are omniscient. This leaves any

solution to decide on: the order in which to rescue civilians, and which edges to clear and

in which order. For the planning domain that is used see Appendix B.
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5.2 Research Approach and Methods

5.2.1 Evaluation Criteria

There are three major metrics by which to evaluate the solution that this thesis proposes:

1. Number of civilians rescued

2. Total planning time

(a) Allocation time

3. Time to complete problem (including allocation time, planning time and execution

time)

The most important of which is the number of civilians rescued. In RR problems, more

civilians rescued will always dominate any other criteria. However, in other problems this

may not be so important. For instance, ensuring that a certain number of goals are

achieved may be enough.

A more domain independent metric is the amount of time spent planning. This can be

used to show how well the algorithm scales given larger and larger problems. Scalability

is a highly important quality to have as it shows the algorithm to be applicable to a wide

range of real world problems. In multi-agent domains, decomposing the problem into

single-agent planning problems is an important problem. Allocation time will show how

quickly the solution is able to do this.

Time to complete the problem helps demonstrate the quality of the plans produced.

If two plans achieve the same goals, but one plan has a shorter makespan than the other,

then the faster plan is better because it leaves time for new goals to be achieved or time

to replan in case of unexpected world state changes from the environment.
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5.2.2 Test Environment

The simulator from Chapter 4 is reused, but modified to work with multi-agent domains.

As such there is no longer a central agent in control, instead agents are decentralised.

Agents are now responsible for deciding goal allocations, any cooperation and synchroni-

sation between each other, and planning to achieve their goals. The simulator retains its

role in ensuring actions occur then they are scheduled.

5.3 Solution

Our novel solution to HCSMA problems enables cooperation and synchronisation by allow-

ing an agent to bid for tasks it cannot achieve by itself. The agent can then ‘subcontract’

parts of the task it cannot achieve itself. The agent identifies what part of the task it

cannot complete itself and issues new tasks, that if completed, will mean it can achieve its

task. If the agent must complete its task by a deadline it can add appropriate deadlines

to its subtasks. In HCSMA problems a task T is a 3-tuple of the predicate to be achieved,

the deadline by which that predicate should be achieved by, and the reward associated

with achieving the predicate by the deadline.

5.3.1 Task Allocation

First the goal, posed as a conjunction of predicates with associated deadlines, is split into

individual predicates, and each predicate made a task. Tasks are allocated by auction [18,

42, 7] in order of ascending deadlines until all tasks have been successfully allocated or

no agent bids for the current task. If not all tasks are allocated, then allocation of any

remaining tasks will start afresh once the agents have achieved the tasks that they were

allocated. Once all agents have made a bid, the task is awarded to the agent with the best

bid. Agents are compelled to make a bid for a task if they have the capacity to achieve

the task.
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To compute the value of the bid (or cost to the agent) that an agent will make for

a given task the agent plans to see if it can achieve the task and any tasks that it has

already been allocated. If the agent can achieve the task then it uses the makespan of the

plan as the value of its bid for the task. Using the makespan of the plan assists with load

balancing. Agents with many allocated tasks will have a higher makespan than an agent

with less allocated tasks. If the agent cannot find a plan that achieves the task then it

does not bid.

When bidding for a task the agent does not plan with the full state. Instead the

agent creates a relaxed plan whereby any action preconditions it cannot achieve itself it

ignores. If the relaxed plan that the agent bases its bid off contains actions that ignored

any preconditions then the agent issues each precondition as a separate new task. Should

the task that is being allocated have a deadline then this deadline is back-propagated to

the new subtask. That is, the new subtask is given the maximum possible deadline for it

still to be helpful in achieving the task that is being allocated (according to the relaxed

plan).

5.3.2 Planning

Agents then start planning once task allocation is finished. However, not all agents begin

planning immediately. Should an agent have issued any subtasks, it waits for agents that

were allocated to finish planning before planning itself. This is due to two factors. The

first is that the problem is oversubscribed, and so not all tasks may be achieved. An agent

needs to see which of its subtasks are achieved before beginning to plan itself. In an RR

problem a police agent never issues subtasks and so can begin planning immediately. A

medic agent only ever has its subtasks allocated to police agents and so, at most, have

to wait for all police agents to finish planning before starting to plan itself. The other

reason for agents to wait is to see when their subtasks will be achieved. The way in

which deadlines are assigned to subtasks does not guarantee that an agent will be able to

achieve all its tasks if all its subtasks are achieved. That is, if all an agent’s subtasks were
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achieved right on their respective deadlines this might not leave the agent enough time

to achieve all its tasks. Waiting allows the agent to see when a subtask will be achieved

and so which of its tasks be achieved earlier on in the plan.

So far the reward for achieving tasks and subtasks has not been discussed. An agent

has no reason to value one task over another when planning. However, by valuing each

task differently we can inform the planner of which tasks have a higher utility. In the

RR problem we assign unit reward to each civilian that is to be rescued. When an agent

issues new subtasks it assigns each subtask a reward based on the number of subtasks

that are to be issued. That is, if only one subtask is required then the agent assigns the

entire reward for achieving the task to be allocated to the subtask. However, should there

be more than one subtask then reward is split evenly between each subtask.

The time required for task allocation will increase linearly with the number of tasks

to be allocated, but the time allocated to planning is independent of the number of tasks

to allocate. As such, less time is assigned to the relaxed planning done by task allocation

than is assigned to the planning done for task planning. This will help reduce the amount

of time required by task allocation.

5.3.3 Algorithms

This section details how various parts of the solution, described in the previous section,

are achieved. The algorithms described are: the task allocation algorithm; the task cost

function; and the task planning algorithm. Here the purpose of each algorithm or function

is briefly reiterated. The task allocation algorithm is how tasks are allocated amongst

agents. The task cost function is responsible for calculating the values of the bids that an

agent makes. And the planning algorithm shows how each agent coordinates its planning

with other agents (once the task allocation algorithm is complete).

In the following algorithms, values are objects (or records). Records have various

properties that can be referenced using a subscript notation. For example, agenttasks

means the tasks property of the agent record – the tasks that an agent has been assigned
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to complete. Functions that are followed by a subscript are used to indicate a specialised

version of that function. For example, planrelaxed is a specialised form of planning that

ignores the preconditions of actions.

5.3.4 Task Allocation Algorithm

Algorithm 3 Task Allocation algorithm

Require: tasks, A set of tasks to be achieved
Require: agents, A set of agents to assign tasks to
Require: subtasks(task), A function that returns the subtasks of a task
while tasks ̸= ∅ do

task ← argmint∈tasks deadline(t)
tasks← tasks− {task}
agent← argmina∈agents cost(a, task)
agenttasks ← agenttasks ∪ {task}
plan← planrelaxed(agent, task)
if {subtasks(task) | task ∈ plan} ≠ ∅ then

tasks← tasks ∪ {subtasks(task) | task ∈ plan}
end if

end while

Task Cost Algorithm

A relaxed plan is one that has relaxed constraints [36]. For the purposes of this algorithm,

this means that an agent ignores preconditions of actions it cannot achieve itself. For

instance, the medic agent no longer requires a road to be unblocked to traverse it.

Calculating subtasks Any preconditions that were ignored as part of the creation

of a relaxed plan are added to the set of tasks to be achieved as a new subtask. The

deadline for such a subtask is the last possible moment for which the predicates of the

requirements can remain false, but that the task still be achievable.

makespan(plan) is a function that returns the duration of time between now and the

last action in the plan. This is the time it would take to complete the plan were it to

start immediately. This is subtly different to the difference between the first start time
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and the last end time, because the plan might not schedule actions to start immediately.

The function is defined as such:

makespan(plan) := max({actionendtime | action ∈ plan})− tnow

Algorithm 4 Task cost algorithm

Require: task, the task that is being allocated
Require: agent, the agent for which the cost of the task is to be calculated
Ensure: 0 ≤ cost ≤ ∞
if task ∈ agenttasks then

return 0
else

plan← planrelaxed(agent, task)
if plan = ∅ then

return ∞
else

return makespan(plan)
end if

end if

5.3.5 Task Planning Algorithm

In this algorithm, aplanning is a boolean condition as to whether the agent is currently

planning or not. achieves(plan, task) is a function that returns a boolean as to whether

the plan achieves the given task. This function is necessary due to the oversubscription

of the planning algorithm (the plan is not required to achieve all, or indeed any, tasks).

5.4 Results

5.4.1 Independent Variables

Of the experiments conducted there were a number of independent variables. Those being:

1. Time given to agents to come up with plans for their allocated tasks (planning time)

2. Time given to agents to compute a heuristic cost when allocating tasks (heuristic

time)
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Algorithm 5 Task planning algorithm

Require: agent, the agent to which tasks are assigned
Require: tasks, the set of tasks to achieve
Require: subtasks, the set of subtasks needed to complete tasks
Require: events, a global set of external events where each event is a state preposition
and a time at which that state preposition becomes true

wait until subtasks = ∅ ∨ @a ∈ agents : aplanning
◃ an agent is planning if it is not waiting and has not finished planning

if subtasks ̸= ∅ then ◃ Abandon any tasks with unmet subtasks
tasks← {t | t ∈ tasks ∧ (tsubtasks ∩ subtasks) = ∅}

end if
plan← plan(agent, tasks, stateinitial, events)
events← events ∪ {t | t ∈ tasks ∧ achieves(plan, t)}

3. Number of nodes in the graph (locations that the agents and civilians can exist at).

4. Layout/connectedness of nodes in the graph (how nodes were arranged spatially,

and which other nodes they were connected to)

5. The time it takes to traverse an edge from one node to another (edge length)

6. Which edges were initially un-traversable (blocked)

7. The time it takes to make a blocked edge traversable (blocked-ness)

8. The number of medic agents available

9. The number of police agents available

10. The initial starting position of the agents

11. The number of hospitals

12. The location of the hospitals

13. The number of civilians that need to be rescued

14. The location of the civilians
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15. The time it takes to rescue a civilian so that they can be transported to hospital

(buried-ness)

16. The deadline that each civilian must be rescued by to obtain reward

Many of these variables were kept constant for every problem: edge length, proportion

of un-traversable edges to total edges; blocked-ness of un-traversable edges; initial starting

position of agents; the number and location of hospitals; and the configuration of nodes.

Nodes were always arranged in a square layout with an equal width and height, and

were connected to their Manhattan neighbours (the nodes closest in the cardinal compass

directions). This means that the number of nodes in graph is always a square number,

and increases proportionally to the square of the width of the graph. Edge length was set

such that it took 120 seconds to traverse and the blocked-ness of blocked edges was set

such that it took 300 seconds to clear. This was done to keep the amount of time spent

either travelling or clearing edges from dominating the other. The absolute numbers are

arbitrary, but establish a balance between the time spent planning and the time spent

acting. Buried-ness of civilians was also set at 300 seconds. The number of hospitals

was set at two, with one hospital in the top left corner and one in the bottom right

corner. This was to was done to create localised areas of tasks, rather than one central

hub from which all tasks would revolve around. Agents all started at hospitals and were

evenly distributed (by number and type) among the two. The location of civilians were

uniformly selected at random from all nodes, excluding those that were hospitals.

Figure 5.2 is an example of one of the types of problems used. The grey squares and

dark green squares indicate nodes – grey for ordinary nodes and dark green for hospitals.

Lines between the nodes indicate edges – unblocked edges are cyan and blocked edges are

red. Circles indicate agents and civilians – green is a medic, blue is a police, and olive is

a civilian. The location of an agent/civilian is the node to its immediate upper left. We

can see that whilst some civilians are spatially closer to one hospital it may be quicker

to take the civilian to the other hospital. For instance, civ2 is closer to hospital0-0 (240
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Figure 5.2: Example problem in initial state
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units), but it will take a minimum of 840 seconds1 for medic0 to reach civ2. In comparison

medic1 is 480 units from civ2, but it will only take 480 seconds for medic1 to get there

as there is a direct route from hospital3-3 to building0-2 that does not require any edges

to be cleared.

Some independent variables were tied to the value of other variables: heuristic time

was linked to planning time; the number of blocked edges proportional to the number of

edges in the graph; the number of police agents was equal to the number of medic agents;

and the number of civilians that need to be rescued was a function of the number of nodes

in the graph. Heuristic time was always one tenth of planning time. This is because the

amount of time spent on deciding on how costly a task is for an agent to complete should

be low in comparison the amount of time actually spent planning on how to complete

the tasks assigned to the agent. In the initial state 50% of edges were blocked. This was

done so as to ensure that there would be at least some cooperation required by police

and medic agents. Edges were uniformly selected at random to be initially blocked. The

number of police agents was always equal to the number of medic agents. Finally, the

number of civilians to be rescued was always one quarter of the number of nodes in the

graph. This was done so that scaling the problems up only requires the changing of one

variable. The location of a civilian was selected uniformly at random from all nodes that

were not hospitals. This means that more than one civilian can be at a given node.

The remaining independent variables are: planning time; number of nodes in the

graph; number of agents; and time by which a civilian needs to rescued by. For the

possible values of these variables and the variables that covary with them, please see

Table 5.1 on page 97. Planning time represents the ability to find better solutions, but at

the trade off of taking longer to plan. A longer planning time, will lead to a better quality

of solution for the start time that was planned for, but the later start time that results from

a longer planning time may lead to lower overall reward achieved. The number of nodes in

1840 seconds comes from the police agent having to clear one edge (300 seconds) and then move to
building0-1 (120 seconds) and clear the next edge. The medic can travel to building0-1 at the same time
as the police and then travel to building0-2 once the second edge is cleared (840 = 300+120+300+120).

95



the graph serves to increase the difficulty of the problem. The number of nodes can only

increase in square increments (eg. 1, 4, 9, ..., n2), making successive problems quadratically

harder than the last. Finally, the number of agents in the problem also effects difficulty,

but the relationship is expected to be inversely proportional to the number of agents.

The more agents there are, the better overall solution that is produced. Conversely, in a

centralised approach more agents could lead to less reward being achieved. This is because

an increase in the number of agents means an increase in the branching factor of the

problem. This means the planner must consider a larger state space, and will, as a result,

take longer to find higher reward plans. In continual domains (like RR), this will lead to

agents being slower to achieve goals and so reducing overall reward. However, due to a

decentralised approach, adding additional agents will not increase planning complexity.

This is because each agent never directly considers other agents1. More agents should

also lead to a lower average number of tasks assigned to each agent. With less tasks to

plan for, it should be easier to compute plans that achieve all tasks (as planning time is

fixed) and have a lower makespan – thus achieving a higher global reward.

We tested our algorithm on two types of problem. One with deadlines and one without.

In problems without deadlines, the quality of solution was based on the time it took to

rescue all civilians. To create problems with deadlines, the previous problems without

deadlines had deadlines added. For each problem instance, deadlines were set based on

the time it took to rescue all civilians in the respective non-deadline problem instance.

The deadline by which to rescue a given civilian was selected from a uniformly random

distribution between zero the completion time on the non-deadline problem instance. This

will have the effect of causing the problem to not be fully solvable in some circumstances,

but also means a similar proportion of civilians should be ‘rescue-able’ in all problem

instances. That is, problems where it took to rescue all civilians get longer to save

civilians. By looking at how successful the algorithm is when under time pressure, we can

see how well the algorithm is at organising cooperation between agents.

1Agents indirectly consider other agents when achieving subtasks.
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Variable Values
Width of Graph Layout 4, 5, 6, ..., 19, 20
Number of Nodes 16, 25, 36, ..., 361, 400
No. of Civilians 4, 6, 9, ..., 90, 100
No. of Medics 2, 4, 6, 8, 10
No. of Police 2, 4, 6, 8, 10
Task deadline No, Yes
Planning Time 10, 60, 100
Heuristic Time 1, 6, 10

Table 5.1: Possible values of variables, with co-varying variables grouped.

5.4.2 Dependent Variables

The dependant variables that are used to measure the performance of the algorithm are:

1. Time spent allocating tasks to agents

2. Time spent when there is at least one agent planning (planning time makespan)

3. Total time spent by all agents planning (total planning time)

4. Completion time

5. Percentage of civilians rescued

The percentage of civilians rescued is the main metric by which to measure the quality

of a plan. A plan that achieves more of its goals is preferable to one that achieves less.

This is especially true of the RR problem.

Completion time is a second metric that can be used to measure the quality of the

plans that are produced. This is why the problems where all civilians can be rescued exist.

Since all civilians can be rescued in the problems without deadlines, the only metric to

measure the quality of plans is the makespan of the plan. A plan that achieves all the

given goals before another plan is better.

Time spent allocating is expected to linearly increase with the number of tasks that

need to be completed. That is, the police agents plan, then the medic agents plan. If task

allocation is unable to allocate all tasks because agents were unable to come up with cost
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estimates given the heuristic time for the problem, then remaining tasks will be allocated

once all currently allocated tasks have been completed. Agents will cycle between task

allocation, planning, and execution until all tasks have either been achieved or are no

longer achievable (as their deadlines have passed). If the algorithm only plans once then

this indicates that the algorithm is successfully de-constructing the problem into smaller

problems to be solved. Whereas, if planning is required multiple times then the algorithm

has been unable to fully de-construct the problem instance in one pass.

5.4.3 The Effect of Changing Planning Time

This section examines how changing planning time effects plan quality. In these problems

there was no time pressure to complete tasks (no task had a deadline by which it had

to be completed). Thus all problems could be solved given sufficient time and planning

resources. As such, the only metric to used to establish the quality of the plan was how

long it took for all tasks to be completed. As problems got sufficiently complicated, plans

could no longer be produced given planning resources. All problems only had two of each

type of agent (4 overall).

Figure 5.3 shows how long was spent allocating tasks to the agents. This time is the

makespan of the time taken by agents to compute the cost estimates (bid values) for

each task. The figure shows how total allocation time increases with grid height. This

is because of an increase in number of tasks (civilians to be rescued). Recall that the

number of civilians to be rescued (tasks) is tied to the number of nodes in the graph, and

the number of nodes in the graph is the square of the grid height.

Figure 5.3 shows how allocation time varies for each type of planning time as the grid

height increases. This figure shows that total allocation time increases with both problem

complexity and with the amount of time each agent spends coming up with a bid for

each goal (allocation time). It shows that the proportion of total time spent allocating

remains proportional to allocation time regardless of problem complexity. This shows

that increasing allocation time does not necessarily lead to a better distribution of goals
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amongst that agents. That is, with a larger problem, increasing allocation time should

be less than linearly proportional to total allocation time. Meaning better initial goal

allocations mean more goals can be achieved faster, and thus leading to less goals having

to be allocated in future goal allocations. Figures 5.4 to 5.6 show the same data as in

Figure 5.3, but individually for each allocated planning time. Figures 5.4 to 5.6 make

it clear that time spent allocating tasks increases linearly with the number of number

of tasks, until such a point that the algorithm cannot fully solve the problem instance.

For instance, in Figure 5.4 the time spent allocating tasks is linearly proportional to the

number of tasks for the first six data points. The subsequent three data points are where

the algorithm cannot achieve all the tasks as the as agents cannot compute bid values

in the allotted time. As such, the time spent allocating tasks is not proportional to the

number of tasks in the problem instance.

After a certain point, allocation time stops increasing (in Figures 5.3 to 5.6), this is

where the problem has become sufficiently complex that the algorithm cannot fully solve

the problem. As problem complexity increases the time given for calculating the cost

heuristic is no longer sufficient to compute relaxed plans that achieve the task. As such,

the algorithm is unable to allocate those tasks. This also means that the algorithm was

unable to achieve all the tasks in the problem. Figure 5.7 shows allocation time against

the number of civilians rescued. There are a number of problems where the algorithm was

unable to complete a single task. Aside from these problems, there is a rough correlation

between the number of civilians rescued and time spent allocating tasks.

Figures 5.8 and 5.9 show planning times versus grid height. Total planning time is the

sum of the time spent planning by all agents over the course of the problem. Planning

makespan is the total time where at least one agent was planning. Thus a situation

where one agent plans from t0 to t1 and another plans from t0 to t2 would have a total

planning time of ((t2 − t0) + (t1 − t0)), and a makespan of t2 − t0. These planning times

are for problems with 2 agents of each type, thus total planning time is usually twice

that of the planning time makespan. This demonstrates that there are normally only two
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agents planning at the same time. Theoretically this makes sense as the two medic agents

cannot plan until the two police agents have finished planning and reported when they

will complete the medics’ subtasks by.

Typically these planning times are just multiples of time that agents had to spend

planning for their allocated tasks. They represent the number of times task allocation

occurred. The first four problems (with grid heights 4 through 7), all only allocate tasks

once, and thus only plan once. Subsequent problems have larger planning times, this is

due to the algorithm being unable to completely allocate all tasks the first time round.

Each agent is allowed to complete the plan it computes for its task before a second round

of tasks allocation occurs.

For very simple problems, however, planning may find the optimum solution before

planning time has fully elapsed. This can be seen in Figure 5.8 where total planning time

for the 4 × 4 grid when planning time was 100 seconds. This indicates that one of the

agents was able to find the optimal plan in the time allotted and terminate planning early.

If a round of task assignment and subsequent planning occurs where no agent is able

to produce a plan that completes any of the tasks assigned to it, then the algorithm stops.

This happens for more complex problems, and shows that there are still outstanding tasks,

but that they are unsolvable given current resources. This could be because there exists
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Figure 5.8: Grid Height against Total Planning Time

no possible solution for the given goal, or that no possible solution can be computed given

current computational restrictions on planning time or heuristic time.

Figure 5.10 shows how completion time varies with problem difficulty, across various

different planning times. It shows that typically, shorter planning times are able to pro-

duce similar results right up until they are unable to produce any plans whatsoever. For

the purposes of gaining additional reward on a specific problem, increases in planning

time do not sufficiently decrease plan makespans to justify such an increase.

Figure 5.11 shows the proportion of tasks completed. This bar graph makes explicit

what can be deduced from Figures 5.8 and 5.9 (that the main effect of increasing planning

time is that harder problems can be solved). It shows that the ability to complete a

problem drops off erratically. This could be the result of the random distribution of

blocked roads in the graph. That is, police agents can have considerably different problem

difficulties, and that this difficulty depends on the layout of civilians and blocked roads

(rather than just grid size).
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5.4.4 The Effect of Time Pressure

This section discusses the effect of deadlines on the problem domain, and how this effects

the performance of the algorithm. The primary comparison will be the proportion of

civilians rescued. However, the time spent allocating tasks to agents, the time spent

planning and the completion time will also be looked at. In these problems there are two

agents of each type (4 overall).

For each problem deadlines were added to each task to create a new problem. All

other parts of the problem remained the same. This has the effect of making the problem

oversubscribed. The deadline for each task was the time by which it must be achieved

to obtain reward. The agent either gains all the reward for rescuing a civilian or none

at all. There was no reward gained for rescuing civilians sooner rather than later. The

deadlines were taken from a uniform distribution between zero and a maximum value. The

maximum value was the completion time of the algorithm on the same problem without

deadlines, when given 60 seconds planning time and 10 seconds allocation heuristic time

(see Figure 5.10). The mean average deadline for rescuing an agent was therefore half the

completion time.

Figure 5.12 shows the proportion of civilians rescued for each problem. It shows that

where the algorithm was able to successfully rescue civilians, it managed to rescue 50%

or more in all but two cases. In the cases where 50% or more were rescued the average

was 70%. As the number of civilians increases, so too does the proportion of civilians

rescued. The lower proportion of civilians rescued in simpler problem instances can be

explained by the fact that the algorithm attempts tasks with earlier deadlines first, and

that by doing so it precludes the algorithm from achieving a higher proportion of civilians

rescued than it otherwise could have.

The time required to allocate tasks remains proportional to planning time. This is

shown by Figure 5.13 in comparison to Figure 5.3. By looking at the allocation times
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for separate planning times we are able to see the impact of deadlines on the algorithm.

Figure 5.14, Figure 5.15 and Figure 5.16 show that allocation takes longer but becomes less

proportional to problem complexity (grid height). This could be explained by that fact

that the tasks are allocated according to their deadline (those with the closest deadline

allocated first). However, this does not take into account geographical proximity of tasks

and agents may change the order in which they attempt tasks when coming up with their

heuristic cost. As such multiple subtasks that achieve the requirements of a single task

in different ways could be issued. That is, a medic agent might request two routes to a

civilian to be cleared when it only needs one. This is because the task allocation algorithm

contains no way to recall subtasks that are not deemed necessary any more.

5.4.5 The Effect of Varying the Number of Agents

In this section the effect of an increased number of agents on the performance of the

algorithm is examined. This allows for a secondary examination of how the algorithm

performs under increasing complexity. The first measure of complexity was grid height.

The number of nodes in the graph and number of civilians in the problem is always

proportional to grid height. By increasing the number of agents in the problem the
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Figure 5.17: Grid Height against Proportion of Civilians Rescued

branching factor of search is increased. Whereas, increasing the grid size increases the

length of the plan required to solve a problem. In these problems there are no deadlines.

First it is shown that the algorithm is able to cope with an increased number of agents,

but this comes with a reduced ability to deal with larger grid heights (see Figures 5.17

to 5.19. This is surprising as the objective was to decouple the complexity of problems

that can be solved from the number of agents in the problem. Figures 5.20 to 5.22 show

that the algorithm is able to take advantage of the number of agents in the problem by

significantly reducing the time it takes to complete the goal of the problem (completion

time).
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Figure 5.18: Grid Height against Proportion of Civilians Rescued
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Figure 5.19: Grid Height against Proportion of Civilians Rescued

5.4.6 Comparison to Centralised Planner

This section demonstrates the quality of the multi-agent approach the algorithm takes

in comparison to a centralised planner that considered the problem as a whole. The

centralised planner was tested on problems without deadlines, 2 agents of each type,

and all grid sizes. The planner uses the same off-the-shelf planner that the multi-agent

algorithm uses. The planner was given 6 hours to compute a solution for each problem.

As such the centralised planner was not tested in domain with a shared time budget
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Figure 5.20: Grid Height against Completion Time, with planning time of 10 seconds
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Figure 5.21: Grid Height against Completion Time, with planning time of 60 seconds
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Figure 5.22: Grid Height against Completion Time, with planning time of 100 seconds

between planning and execution. Rather only planning was done, and the resulting plan

assumed to have been executed from time zero.

The first thing to note is that the centralised planner is only able to produce plans for

the 4 smallest grid heights, and only able to completely achieve all reward for the problem

with the smallest grid height (as shown in Figure 5.23). In comparison the multi-agent

algorithm with a 10 second planning time (per agent) is able to fully solve the first 8

problems (grid heights 4 though 11 inclusive). It should be reiterated that the complexity

of the problem is quadratically proportional the grid height of the problem. This shows

that the multi-agent algorithm is able to solve significantly harder problems than the

centralised planner with only a fraction of the computational resources. In comparison to

the 21,600 seconds that the centralised planner had, the multi-agent algorithm returned

a solution after a combined total of 30.3 seconds. When the ability of the algorithm to

parallelise computation is taken into account that time is reduced to 19.9 seconds – 0.23%

of the time the centralised planner took. Finally, not only does the multi-agent solution

compute a solution faster, it also produced a better solution. The execution makespan

for the centralised planner was 1980 seconds, whilst the multi-agent algorithm had an

execution makespan of 1620 seconds.
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Figure 5.23: Comparison of the Proportion of Civilians Rescued for a Centralised Single-
agent Approach Versus a Distributed Multi-agent Approach

5.5 Discussion

The heuristic used to see if an agent can complete a task on its own sometimes misidentified

an agent as being unable to complete as task on its own. It makes no attempt to compute

if other plans exist that do not require cooperation from other agents. As such, an agent

may issue subtasks that are not strictly necessary. For instance, a medic agent might

request a blocked road be cleared when a longer but unblocked route already exists.

Further, when it comes to actual planning the unblocked route may instead be used and

so the subtask was never actually required. This means agents will do more work than is

necessary.

Agents are not required to complete all tasks that are assigned to them. This means

that:

1. An agent may no longer require a subtask that was previously issued, because its

plan does not achieve the task that was the cause of the subtask.

2. An agent may not be able to achieve all subtasks assigned to it – meaning an agent

that issued the subtask may be left unable to complete all its tasks.

Some times not all of the subtasks for a particular task may be achieved. As above, this
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may have the problem of meaning that the task is not achievable, but that the algorithm

still thinks valuable work has been done. This is because each precondition is issued as a

separate subtask rather than a collection of preconditions grouped together as one subtask.

This was to: allow large groups of subtasks to be distributed amongst multiple agents;

and prevent multiple agents from attempting to achieve the same precondition that was

common to multiple subtasks. That is, two tasks may require the same precondition to

be achieved, but the precondition only needs to be achieved once. The down side is that

agents see subtasks as atomic rather than part of a larger collection of requirements. This

means agents cannot reason about whether one particular subtask in a set of subtasks has

no value if completed if other subtasks in the set are not also completed. For instance,

consider a cross roads. If all roads and the cross roads itself are blocked then there is a

value for unblocking the cross road itself, but less value for the roads leading to the cross

road. This could lead to a police agent unblocking the cross road, and then moving on to

higher valued subtasks rather than unblocking at least one set of roads that would make

unblocking the cross roads useful (see Figures 5.24 and 5.25). As cooperation between

agents is loosely coupled it is also possible for subtasks to be completed, but the relevant

tasks that rely on these tasks to not be completed – meaning no actual reward is gained

for the work that is done.

In the case of the problem where the grid height is four, the 60 second and 100 second

planning times unexpectedly fail to rescue any civilians. This is due to the decoupling of

planning between agents and decomposition of subtasks into separate tasks. For instance,

if an agent requires two subtasks to be completed to achieve its goal, then it is only useful

if both subtasks are completed. The way in which tasks are valued does not allow agents

to take this into consideration. That is, the agent perceives each subtask as independent.

The problem becomes even worse when a subtask is distributed amongst several agents.

Without inter-agent coordination on which subtasks are to be achieved then there is no

way to consider reward dependencies of subtasks. This is similar to the problem about

cooperation discussed at the beginning of this section, but with the addition of deadlines
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Figure 5.24: Task selection problem with tasks with varying difficulty
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that induce failure rather than delays.

Separating the subtask of a task into individual subtasks was meant to be enable

multiple agents to cooperate on the same subtask. That is, if an agent required two

preconditions to be achieved for it to complete an action then the preconditions could be

allocated as separate subtasks. This would allow for a more flexible distribution of these

subtasks amongst agents capable of achieving the required preconditions. However, this

makes the coupling between the task and the subtasks too loose. As a result the quality

of solutions suffered.

5.6 Conclusion

An execution framework was presented that allows for decomposition of multi-agent prob-

lems which require coordination and synchronisation into inter-related single agent prob-

lems. This decomposition reduces the size of the plan space and so allows for faster

planning. Some of the single-agent problems created by the EF rely on the planning

output of some of the other single-agent problems. Such plans must be computed seri-

ally. However, problems that share no such link can be solved in parallel. This further

increases the speed at which plans are produced. By increasing the speed at which plans

are produced less time needs to dedicated to planning and more time can be spent on

plan execution. This is especially important if the amount of time elapsed during plan-

ning means certain deadlines cannot be met any more, or that an agent no longer has

sufficient time to react to a known future external event. When this happens the quality

of possible valid plans is reduced, and the amount of available reward decreases.

It was shown that the execution framework was able to find good solutions to problems

more quickly than a centralised planner. Indeed, had the centralised planner would not

have been able to provide solutions when the time budget was limited as it spent longer

planning than the entire time budget. The execution framework was able to handle

significantly more complicated domains than the centralised planner. This was both true
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of problems with larger states (increased grid height leads to larger states) and problems

with more agents.

The execution framework also dealt with problems in which different parts of the

goal had different (non-uniform) deadlines. The execution framework was to manage

the cooperation and synchronisation necessary in such domains. However, the execution

framework may not have performed as well as it could have due to overly loose coordination

in the oversubscribed problems.

5.6.1 Further work

One area in which the execution framework could be expanded would be the how agents

calculate costs for tasks during allocation. When calculating the cost the planner starts

with an empty plan. The planner must attempt to find a plan that achieves all the tasks

currently assigned to the agent and the task currently being allocated. There is likely

much similarity in the state space of the previous set of tasks allocated to the agent, and

the state space of that same set of tasks plus one more task. A planner which attempts

to improve and already existing plan could help to reduce unnecessary repetition of work.

As the number of goals in the problem increases so too does the required allocation

time. With too small an allocation time, agents may fail to be able bid for goals allocated

later in the allocation process. This being due to the planner being unable to compute

a plan that achieves all the agents currently allocated goals and the goal currently being

allocated. In large problems total allocation time came to dominate planning time. This

balance of the time budget between allocation and planning may not be optimal. Further

work is required to investigate if there exists a better balance between time spent allocating

tasks and time spent planning.

It may be that the execution framework is over-allocating tasks. This is because if

an agent is allocated a task then it immediately issues subtasks that fulfil the necessary

preconditions. When the agent bids on a second task it attempts to solve both its currently

assigned task and the task that is up for auction (this was to assist with load balancing how
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tasks were allocated to agents). Whilst the planner is required to compute relaxed plans

that achieve both tasks, it is not constrained in how it achieves either task. This means

that the resulting relaxed plan might achieve the currently assigned task in a different

way. This further means that it might produce different preconditions for solving the

same task. That is, more subtasks are produced than necessary and will exacerbate the

problem of both too much time being spent on allocating tasks and the problem of agents

coordinating which subtasks to achieve. A better way to approach task allocation is to

allocate primary tasks first. Only then, once the ancillary subtasks that are required to

achieve the primary tasks have been finalised, should the subtasks be allocated.
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CHAPTER 6

COMPARISON OF EXECUTION FRAMEWORKS

6.1 Introduction

This chapter will compare the execution frameworks (EFs) discussed in Chapter 4 and

Chapter 5. These two different types of execution framework take different approaches to

optimising reward gained when sharing a time budget between planning and execution.

This chapter will show that these different approaches result in different strengths and

weaknesses, but also why they cannot be easily combined.

In Chapter 4 (Acting Whilst Planning During Continuous Execution – AWP) an

execution framework (AWP EF) was discussed that increases reward by acting whilst

planning – according to one of the discussed heuristics (see Section 4.3). This means

goals can be completed faster and, as a result more goals can be completed in a given

time budget. To be able to act whilst planning, the planner must be aware of the resultant

state changes of acting whilst planning. This is done by predicting the future state that

result from the actions executed whilst planning. It needs a fixed planning time, because

without a fixed planning time, the initial state cannot be predicted reliably. This execution

framework is also centralised and so is free to schedule cooperation between agents in the

multi-agent problems in any way possible. What will be shown is that whilst this execution

framework can produce plans with shorter makespans than the CS EF (discussed in the

next paragraph) it also does not scale well. This is due to the centralised approach that
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is taken.

In comparison, the execution framework discussed in Chapter 5 (Cooperation and

Synchronisation in Multi-Agent Environments – CS, CS EF) attempts to increase reward

gained by decentralising planning. This works by splitting the goal up into subgoals that

can be allocated to individual agents. This allows agents to work on a smaller state space

(by only considering their own actions and allocated goals). What is distinctive about this

approach is that agents are not fully isolated during planning. During the goal allocation

sub-phase of planning, agents can request other agents to do certain actions or achieve

a given state or subgoal that will enable them to complete their own goals. Once the

allocation sub-phase is complete, each agent starts planning for the goals it was allocated,

and without further interaction with other agents. The downside of this approach is that

the execution framework is not complete (will not find all plans) and not optimal (may

not find the best plan). This will be discussed later in Section 6.5 and specific examples

given. However, in comparison to the AWP EF, what it can do is produce plans for larger

problems where cooperation is required, and can also find solutions much more quickly

than the AWP execution framework. This allows the execution framework to attempt

larger problems given limited computational resources.

The reason that the centralised and decentralised approaches cannot be combined is

that they have different requirements when it comes to planning. As previously mentioned,

the AWP EF requires a fixed planning time, whereas the CS EF requires a variable

planning time. This is due to the fact that agents are able to create new subgoals if they

need assistance completing one of their own subgoals. This means there will be a variable

number of subgoals to be allocated that are not known ahead of time. Further, agents

that have created such subgoals cannot begin to plan until they know exactly how and

when their subgoals will be achieved. This cannot be known before the agent attempting

to achieve the subgoal has completed planning itself.
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6.2 Domains

The execution frameworks will be compared for performance using two different domains,

the Janitor domain from Chapter 4 and a modified version of the Trucks domain from

IPC-2006 [11] (chosen for its similarity to the Robocup Rescue domain of Chapter 5). The

Trucks domain was modified to require agents to cooperate to achieve goals. As such,

both domains require agents to cooperate to achieve all the main goals of the domain. The

two main differences are: whether the domain has homogeneous or heterogeneous agents,

and the type of cooperation involved. The Janitor domain has homogeneous agents and

the execution framework must tightly synchronise when two agents will perform an action

together at the same time. By comparison, the trucks domain has heterogeneous agents,

and the goals in this domain need less tight synchronisation. The difference being that

agents in the Trucks domain agents must ensure some of their actions have an overall

order (ie. Action A finishes before Action B starts), so that state changes be temporally

consistent. However, with the Janitor domain, agents must schedule some actions to occur

at the same time as another agent (ie. the extra dirty action [see Section 4.1.2]), which

the results will show is a more complex optimisation problem (when taking into account

multiple goals). The reason that cooperation and synchronisation is required in the Trucks

domain is that, as heterogeneous agents, the agents are not capable of all actions. Further,

problems are posed such that the set of actions available to an individual agent are not

enough to achieve their goals on their own. Cooperation is achieved by finding actions

that are required to achieve goal, but that the agent is unable to achieve the preconditions

of these actions. These states are turned into new subgoals that are allocated to other

agents.

The Janitor domain experiments, with its tight synchronisation, will demonstrate that

planning over all agents using the centralised EF is important to producing better plans

for domains with tight synchronisation. That is, the centralised execution framework has

absolute freedom to reorganise the schedules of the agents it is planning over. Whereas,

in a decentralised execution framework, synchronisation timings cannot be changed in an

124



isolated planning phase of a single agent without requiring any agents affected by the syn-

chronisation timing change to replan. By definition a decentralised planner only reasons

over a subset of agents or actions. As such a decentralised execution framework is unable

to reason about globally optimal synchronisation times. Rather, it has to optimise its

part of synchronisation locally. This can result in a suboptimal global plan as the locally

optimal timing for a synchronised action for one agent may lead run-on effects in other

agents – wasting time of other agents and being globally suboptimal. In comparison, the

loose coupling of the Trucks domain will be shown to be better suited to the decentralised

execution framework. By only planning over the actions of one agent, a decentralised

execution framework (distributed over multiple processing cores) is able to search over a

larger state space.

6.2.1 Trucks Domain

To help compare the two different execution frameworks being discussed in this chapter,

we used the transport domain from IPC-2006 [11]. In this domain the problem is to use a

fleet of trucks to deliver a set of packages from their pick-up points to their destinations.

The actions in this domain are ‘move’, ‘load’, and ‘unload’. Trucks can load multiple

packages at the same time, but must unload packages in a first-in-last-out (FILO or

stack) order. This enables an agent to work towards achieving multiple goals at the same

time (moving two loaded packages towards their destination rather than one at a time).

On its own, this domain does not require cooperation between agents. However, this

domain was used as it is the IPC domain that is simplest to turn into a multi-agent

problem requiring cooperation. Each truck can be considered an agent that can be given

a set of packages to deliver. A modification was made such that are two types of transport

agent (as opposed to just one). Each type of agent is able to traverse a different edge

type. As such, a given package might require multiple agents to cooperate in order to

deliver the package from its initial pick-up location to its destination. This could be a

way of modelling separate truck and ship networks where each agent can only traverse
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the land or sea, or as multi-national delivery network where each truck must stay within

its national network.

A new set of problems were created for this domain since it had a new agent type and

edge type, and was, therefore, incompatible with the problems supplied with the original

domains. These problems were created in a square grid that was horizontally separated

into two distinct “networks”. The two networks were sparsely connected with each other

– only being connected at the edge of the grid (ie. on the east-most and west-most

edges). The variables for each problem were grid height, number of agents, and number

of packages.

Cooperation

Cooperation in this domain was similar to the Robocup Rescue domain in Chapter 5,

with its heterogeneous agents. Each agent type has actions that are unique to its agent

type. In the Trucks domain, this is manifested as move actions that enable the agent

to traverse certain edge types in the graph. To establish if cooperation is required, an

agent during the bidding process must see if it can move the package to the destination

on its own. If it cannot, it enters a heuristic planning phase where it places an imaginary

agent of the opposite type at the starting location of the package. This imaginary agent

is allowed to load the package and unload the package that is being bid for precisely once.

This is so that only one new subgoal is created by the bid. That is, an agent bids that

it can deliver a package, subject to another agent delivering the package to a transition

point between the two networks first.

Any heuristic plan that does not involve the bidding agent is rejected automatically.

That is, such a bid only involves the imaginary agent, and so represents an agent saying

it can ensure delivery of package if only another agent does all the work. As such, bids

for such packages should be bid for directly by agents of the corresponding type.

In contrast to the Robocup Rescue domain there is no strict hierarchy about which

type of agent can assist the other type of agent. Instead, the direction of the cooperation

126



between the agents is dependent on which network the package starts in and which it is to

be delivered to. The following example will demonstrate the mutual cooperation between

the agent types. Given two nodes nx and ny with transition point nt, and two agent

types ax and ay, if a package starts at nx and is to be delivered to ny then ay requires

that ax deliver the package to nt if it is to be able to deliver the package to ny. Had

the package started at ny then the reverse would have been true. This creates problems

with the ordering of which agents plan first after bidding. That is an agent achieving the

subgoal of another agent must plan how it will achieve that subgoal before the second

agent can start making plans dependent on when the package arrives at its subgoal node.

If the two agents mutually depend on each other for different goals then they planning is

deadlocked.

To prevent deadlock in the planning process, the bidding process is modified to keep

track of the bidding state of each agent. The bidding state values can be “independent”,

“won bid with requirements” or “won assist bid”. The bid state “won bid with require-

ments” means the agent has won a bid for which it requires assistance from another agent

to deliver the package to an agreed upon intermediary point (a subgoal node). Such agents

need to know when such packages will arrive at the subgoal node before it can plan. An

agent with such a bid state is not allowed to bid on subgoals – this prevents it from getting

into deadlock. In comparison “won assist bid” represents that the agent has won such an

assist subgoal. This agent must finish planning before the agent it is assisting can plan.

As result, agents in such a bid state are not allowed to create bids that creates a new

subgoal. Finally, “independent” is the starting bid state of all agents. It represents agents

that neither require assistance nor are providing assistance. It is entirely independent of

other agents, and can bid for subgoals and create bids that have subgoals – though doing

so will change its bidding state. By using this bidding state, the bidding process is able to

create dynamic teams of agents that are better able to deal with different problems. That

is, given all packages were located in network nx and needed to be delivered to network

ny, a fixed allocation of agents would have some agents unable to bid for anything. For
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instance, agents in ny assigned to assist agents in nx with moving packages from their

start node in ny to their goal node in nx would have no work to do and sit idle for the

duration of the problem. However, a dynamic allocation of agents to different assistance

types allows for all agents to be productive.

6.2.2 Janitor Domain

By default the decentralised execution framework cannot run on the janitor domain. This

is because the domain as specified requires the planner to be able to reason over all agents.

That is, the “extra dirty” action requires two agents to work simultaneously on the action.

To address this issue for the decentralised execution framework the “extra-dirty” action

was separated into two distinct parts. A main clean action that requires a co-operation

predicate over its duration, and an assisting that provides the co-operation predicate

for its duration. The PDDL form of these actions can been seen in Figure 6.1. This

way of separating out the action of cleaning “extra-dirty” rooms allows planning to be

decentralised. First, bidding takes place where the cooperation precondition (the cleaning-

assist predicate) is removed. The agent that is awarded the goal to clean the “extra-dirty”

room then adds a new goal to achieve the cleaning-assist predicate. The assisting agent

that is awarded the cleaning assist goal then plans to achieve all its goals, including the

cleaning-assist one. Once the assisted agent has a plan, the timing of the cleaning-assist

action is extracted and this information included in the initial state information for the

original agent planning problem. In PDDL this takes the form of a Timed Initial Literal

(TIL) that becomes true at the given moment and lasts for the duration of the cleaning

action, when it becomes false again. Thus, the only way for the original agent to complete

the goal of cleaning the “extra-dirty” room is to be in the same place at the same time

as the assisting agent, at which point they can carry out the action.
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(:durative -action extra -clean

:parameters (?a - agent ?rm - room)

:duration (= ?duration (dirtiness ?rm))

:condition (and

(at start (extra -dirty ?rm))

(at start (available ?a))

(over all (cleaning -assist ?rm))

(over all (at ?a ?rm))

)

:effect (and

(at start (not (extra -dirty ?rm)))

(at end (cleaned ?rm))

(at start (not (available ?a)))

(at end (available ?a))

)

)

(:durative -action extra -clean -assist

:parameters (?a - agent ?rm - room)

:duration (= ?duration (+ 0.001 (dirtiness ?rm)))

:condition (and

(at start (extra -dirty ?rm))

(at start (available ?a))

(over all (at ?a ?rm))

)

:effect (and

(at start (cleaning -assist ?rm))

(at start (cleaning -assisted ?rm))

(at end (not (cleaning -assist ?rm)))

(at start (not (available ?a)))

(at end (available ?a))

)

)

Figure 6.1: Action description for a decentralised and synchronised domain
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6.2.3 Decentralised Execution Frameworks and Synchronisation

The task allocation algorithm (TAA) described in Section 5.3.4 does not work well with

domains that require direct synchronisation. This is because the algorithm only considers

deadlines – when a task must be completed by. In fact, it would be considered beneficial

if a task is completed earlier than required, as this is latest at any plan that depends

on the subgoal can be achieved. In direct contrast, the Janitor domain requires that a

cooperating agent execute an action at a specific time – not before and not after. The

agent issuing the subgoal cannot provide the specific time at which the action to achieve

the subgoal should occur as it does not know what is possible for the other agents. It can

be assumed that the agent that wins the bid is the one that can start the required action

at the earliest opportunity. As such, the schedule proposed by the agent that achieves the

subgoal will be acceptable to the issuer of the subgoal. This means that subgoals must

are issued without any timing information whatsoever. Any subgoals produced during

task allocation must be added to the list of goals to auction in a last-in-first-out manner.

This is to make sure there is the highest chance of an agent being available to provide

assistance. The original implementation uses deadlines to decide which goal to auction

next. As the subgoals have no deadlines they will always be auctioned last, when it might

be that all agents already have a won a large set of goals, and so the time allocated to

task allocation is insufficient to come up with a plan for these subgoals.

Allocation with homogeneous agents also provides a new problem. With heterogeneous

agents the distinction between assisted and assister is clear, and it is also clear that some

agents must plan after others as they rely on the planning output of said agents. With

homogeneous agents this distinction is not so clear, but some agents still require the

planning output of other agents to be able to plan. As such agents should be differentiated

based on whether they have issued a cooperation subgoal or have been allocated such a

goal. Any agent that has issued a subgoal must wait for the agents that are tasked with

achieving the subgoal to finish planning, before the assisted agent itself begins planning.

However, this raises a new problem: what if two agents are mutually dependent on each
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other to provide cooperation to each other on separate tasks. That is, agent A is assisting

agent B with goal X and agent B is assisting agent A with goal Y. These agents will

be in a deadlock, each agent waiting for the other agent to finish planning before they

begin planning. To prevent this problem from occurring in the first place, agents are not

allowed to issue subgoals if they have already been allocated a subgoal, nor is an agent

allowed to issue a subgoal if it has already been allocated a subgoal.

6.3 Method

The experiments were run on Amazon Web Service EC2 t2.micro instances. Each instance

has a CPU with a clock speed of 2.5 GHz and 1 GiB of RAM.

In chapter Chapter 4 10 seconds was chosen as the planning time for the Janitor

domain. However, the AWP EF (centralised) with a 5x5 grid a 10 second planning time

failed to find any plans for such problems. Other planning times that were tried were

30, 60 and 120 seconds. Above this, the machine would run out of RAM before planning

finished – meaning performance would deteriorate. Of those, the 120 second planning

time found solutions to 5x5 grid problems most frequently and so was chosen for grid

sizes 5x5 and above. The PR-New heuristic is the best heuristic for the AWP EF (see

Section 4.3). However, the frequency with which planning failed with planning times

less than 120 seconds means that it frequently fails to provide actions to execute whilst

planning. Instead, the PR-Reuse heuristic was used because it does not require planning

to provide actions to execute whilst planning. This heuristic attempts to reuse as much

of possible of the pre-existing plan when replanning. This heuristic is safe for both the

Janitor domain and Trucks domain as there are no negative irreversible state changes in

either. The Trucks domain problems were found to be harder than the Janitor domain

and so the maximum 120 second planning time was also used.

For the CS EF a planning time of 5 seconds and a allocation planning time of 1 second

were chosen. The allocation time was chosen as it was the same as used for the Robocup
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Variable Values
Width of Graph Layout 3, 4, 5
Number of Nodes 9, 16, 25
No. of Packages 4, 8, 12
No. of Trucks 3, 4, 5
No. of Boats 3, 4, 5

Table 6.1: Possible values of variables, with co-varying variables grouped.

Rescue domain in Chapter 5. Five seconds was chosen for the planning time as it is half

of what was used for the Janitor domain used in Chapter 4. That is, 5 seconds for each

assisting agent and 5 seconds for each assisted agent. For the Trucks domain the same

allocation times and planning time were chosen. The CS EF may have performed better

with an increase to these values, but as the planning time for the AWP EF on the Trucks

domain could not be increased further it was decided to keep planning times equal across

both domains.

6.3.1 Trucks Domain Variables

The different grid heights used were: 3, 4 and 5. The number of agents used were 3, 4

and 5. The number of packages was tied to total nodes in the graph (and therefore grid

height) at half the number of nodes in the graph.

6.4 Results

The results section shows the performance of the AWP and CS execution frameworks

on the two different domains. The performance metrics are completion time and success

rate. Success rate is defined as the proportion of problems that the executor was able to

complete all goals for. A run is stopped once all goals are achieved or when, after task

allocation and planning, there exists no agent with a plan that will accomplish at least

one goal or subgoal. If a run is stopped for the latter reason then it is deemed to have

failed. On larger problems the execution framework might be able to achieve a few goals
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that are relatively simple to achieve, but is unable to find plans to achieve goals that

require more complex (longer) plans. Completion time is the average time from start to

completion of all goals, inclusive of any time spent planning. A good EF will have lower

completion times, proportional to problem complexity, and high success rates.

6.4.1 Janitor

For the Janitor domain, it is shown that the AWP EF has lower completion times than the

CS EF. The lower completion times are consistent across all problems sizes for which the

AWP EF had a non-zero success rate. However, the completion times are only marginally

lower. From even from the start, planning for the AWP EF takes up a significant pro-

portion of the total time to achieve all goals (see Figure 6.3). Whereas, for the CS EF

this only becomes problematic for much larger problems. That is, the planner only finds

a partial solution on the first iteration of planning, as opposed to a full solution that

achieves all goals. The agents execute as much of this partial plan as they can, at which

point the planner is asked to find a new plan for the remaining goals, and so on until

all goals are completed. By the time we reach a grid height of 6, the AWP EF has only

managed to successfully complete 1 problem out of 30. For this problem it was planning

for 840 seconds of the 1656 seconds it took to achieve all the goals. This shows that

the ability of the AWP EF to find good plans drops off rapidly as problem complexity

increases.

The CS EF has significantly higher success rates than the AWP EF. In fact, the AWP

EF is only able to produce solutions for problems with a grid height of 6 or less. Whereas

the CS EF still produces solutions for problems with a grid height of 8 or less. It should be

noted that the complexity of the problem increases considerably as grid height increases.

That is, the size of the network to be traversed, the number of goals, the number of goals

requiring cooperation are all related to the square of the grid height. This is because

the Janitor problem uses a square layout of nodes, and each node aside from the starting

node must be cleaned. Further, the number of goals requiring cooperation is linearly
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proportional to the number of goals. Thus, larger grids require more cooperation and

synchronisation between agents. As there are multiple agents, the state space that needs

to be considered by the AWS EF increases even more quickly with grid height. For

example, a problem with grid height 4 and 3 agents has (42)3 = 4096 different spatial

configurations of agents. Whereas, a problem with a grid height of 5 and 3 agents has

(52)3 = 15625 different spatial configurations of agents – a nearly 4-fold increase.

6.4.2 Trucks

With the Trucks domain the AWP EF and the CS EF were unable to find solutions to

problems with grid sizes as large as the Janitor domain. This shows that the Trucks

domain is significantly more complex than the Janitor domain. This is due to the com-

plexity required to achieve a goal. In the Janitor domain an agent need only move to a

location and then perform an action to achieve a goal. By comparison, an agent in the

Trucks domain must first move to a package start location, load it, move to the package

destination, and then unload it. This is further complicated by the fact that agents are

able to reason about loading and moving multiple packages at the same time.

In contrast to the Janitor domain, the CS EF resulted in better completion times than

the AWF EF. This is in addition to the CS EF maintaining a higher success rate than

the AWF EF – having a higher success rate for the same problems, but also being able

to solve more complex problems with higher grid sizes. By agreeing on synchronisation

points between heterogeneous agents, planning can be simplified, and the size of the state

space the planner is required to reason about significantly reduced.

The total planning time of both the AWP EF and CS EF is low compared the com-

pletion time. Especially in comparison to the Janitor domain experiments. The reasons

for which are discussed in Section 6.5.
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Figure 6.2: Completion Time and Success Rate of centralised and decentralised EFs on
the Janitor domain against Grid Height
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Figure 6.4: Completion Time and Success Rate of centralised and decentralised EFs on
the Trucks domain against Grid Height
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6.5 Analysis

An investigation into why the planning times were significantly higher in for Janitor

domain CS EF (Cooperation and Synchronisation EF) shows several reasons why. In exe-

cution logs, it was shown that “extra-dirty” rooms were usually the last to be cleaned, but

that during allocation they were always allocated, and the cooperation subgoal allocated.

That is, when it came to individual agents trying to create plans for their own goals

(including the cleaning the “extra-dirty” rooms) the cooperating agent is responsible for

picking the precise time. It will choose a time that fits best achieving its other goals. This

leads to local optima where individual agents are maximising their reward at the expense

of maximising global reward. The agent requesting cooperation could be required to wait

for an extended period of time before the cooperating agent arrives. Frequently, however,

agents would instead make plans to go off and clean the rooms they can clean by their

self. This is reasonable, as it would lead to higher reward. That is, an agent cleaning

two rooms by itself gets more reward than waiting to clean one “extra-dirty” room. This

is exacerbated by the fact that the total reward to clean an “extra-dirty” room is equal

to cleaning a normal room, and so when this reward is shared between the two agents

it is valued less than the cleaning of normal rooms. Given longer planning time agents

would sometimes be able to find a plan that included cleaning the “extra-dirty” room.

However, such plans had many more actions due to the agent having to move away from

the “extra-dirty” room only to return again later. All of this together shows that decen-

tralised planning does not cope well with the tightly coupled cooperation required by the

Janitor domain.

The CS EF uses decentralised planning and as such lacks a full awareness of the

scheduling constraints of the actions of an agent. Agents are allocated goals based on
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the earliest time which they can achieve that goal (and all other goals that have been

previously allocated). However, it may be that no other agent will be able to cooperate

with the agent for a long time because it is far away and must move towards the first

agent before it can assist. A centralised planner would be able to detect this and plan

for a set of agents to cooperate on a goal at a time that is optimal both locally for both

agents, but also globally. The decentralised planner is only able to optimise locally for

each agent, and such local optimizations might be globally suboptimal, or even result in

not being able to produce a valid plan. That is, in the decentralised CS EF, given three

agents ar, ap1, ap1. Where ar is the agent requesting cooperation, and ap1, ap1 are agents

providing cooperation. ar is allocated two goals that require cooperation. Agents ap1 and

ap1 are both allocated one of these cooperation subgoals each. As no timing information

has been provided for these subgoals, the agents providing assistance are free to schedule

to achieve these goals as it suits them. In this instance it, as they are the agents’ only

goals, they will achieve them as soon as possible. However, these goals might be distant

from each other, that means if both ap1 and ap1 provide the assistance at similar times

then ar may not be able to make use of both the agents providing assistance. In short, ar

cannot be in two places at the same time. This was seen to happen at least once in the

Janitor problems, where an agent provides assistance only for no agent to make use of it.

The Trucks domain had a much higher failure rate than the Janitor domain. Neither

EF was able to cope with as large a grid size for the Trucks domain as it could for the

Janitor domain. This is because in the Janitor domain the state of each agent is very

simple – it is only its location. However, in the Trucks domain each agent also has a

capacity to hold multiple packages, and so for an agent with two packages (p0 and p1), it

can have 5 states before location is even factored in (empty, p0 loaded only, p1 loaded only,

p0 loaded first and p1 loaded second, and p1 loaded first and p0 loaded second). A more

minor cause is that the Trucks domain has slightly more packages requiring cooperation

for a given grid size. In the Janitor domain, a problem with a grid size of N had
N2

5

goals which require cooperation. Whereas, the Trucks domain has
N2

2
goals which require
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cooperation. Further, the allocation for such goals requires multi-agent planning in a way

the Janitor domain does not. That is, during allocation in the Trucks domain, an agent

must compute the intermediary location that the agent requesting cooperation is able

to pick up the package and that the agent providing cooperation is able to drop off the

package at. To do this, the allocation planner must be able to reason about a second agent

with different movement restrictions to the primary agent. If not all agents can reach all

locations then this problem is non-trivial. Even when all agents can reach all locations,

optimising over which intermediate location to exchange the package is non-trivial too.

6.6 Discussion

The difficultly of computing intermediate package exchange locations proved to be more

difficult than anticipated, and not enough time was given to the allocation algorithm.

Further, very little domain information was provided to the allocation algorithm in how

to achieve this. That is, the allocation algorithm was given one additional agent starting

at the package location. It was able to load and unload the package exactly once. With

that the allocation algorithm was asked to find a plan that could deliver the package

(as well as any other packages it had to deliver). If it could, then the location that

the packaged was unloaded at was used when creating the new subgoal of delivering the

package to an intermediary package exchange location.

Problems with the Janitor domain scheduling arose when trying to achieve an extra-

dirty clean goal. This meant the CS EF was not able to complete all small problems

initially. This was detected by the simulator finding that some agents were attempting

an action from an invalid state. That is, cooperation between two agents was achieved

by way of two actions that occur at the same time, but with one having an effect that

is a precondition to the other. As a serial processor the simulator had to process the

start of one action before the other. It just so happened that this was done in the wrong

order and thus the simulator believed that one agent was attempting a cooperative action
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without having actually been provided with cooperation. This was corrected by adding a

second metric by which the simulator sorted how to process actions. That is, actions were

primarily sorted by time and then and by action type. This would ensure that assisting

actions would always start before assisted actions that started at the same instant.

A specific limitation of the implementation of the CS EF is that it cannot create

plans which require cooperation from 3 or more agents. That is, given a Trucks domain

problem, the CS EF cannot create a plan that would have package starting in one network,

be transported across a second network before finally being delivered to its goal location

in a third network. One example of this is delivering a package from the middle of one

island to the middle of another island. The package must first be delivered to port by

truck, then transported by sea to a second port, and then finally transported by truck to

its final destination. This is a because the CS EF algorithm is overfitted to the specifics

of the Janitor and Trucks domain problems. There is no reason the allocation algorithm

cannot be expanded to reason about 3 or more agents. However, increasing the number of

agents the allocation algorithm reasons about will increase its computational complexity.

As noted above, this is already an issue with just two agents. The allocation algorithm is

required to be fast as it is invoked separately for each agent for each goal. If it is not fast

it can quickly come to dominate total planning time. Finding simple plans quickly is also

useful to the AWP EF. This is because the PR-New heuristic gives the best results. For

the PR-New AWP EF to be effective it must be able to find simple, if suboptimal plans,

in a fraction of the time dedicated to planning overall.

6.7 Conclusion

In this chapter the execution frameworks presented in Chapter 4 (Acting Whilst Plan-

ning During Continuous Execution) and Chapter 5 (Cooperation and Synchronisation in

Multi-Agent Environments) were compared against each other on two separate domains.

One domain (Janitor) from Chapter 4 was reused and adapted. The second domain was
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the Trucks domain from IPC-2006. A small modification was made such that the do-

main is relevant to the problem that Chapter 5 addresses, namely managing multi-agent

cooperation. The two domains represent tight synchronisation and loose synchronisation

respectively. Also discussed was why these two execution frameworks cannot be combined.

This is because they each have different requirements to how planning time is set. The

AWP EF requires that the amount of time to be spent planning be known before plan-

ning begins. Whereas, the CS EF is not capable of predetermining how much time will

be spent planning. This is because it does not know how many subgoals will be created

during the planning process and therefore, how much time will be needed for allocation

of all goals.

This chapter showed that the CS EF scales better than the AWP EF due to its ability

to synthesise smaller, inter-related sub-problems from whole problem and solve these

separately. However, this comes at a cost, this being that the CS EF is not complete and

is unable to find all solutions to a given problem. Instead, when planning time is limited,

it finds solutions with more reward than the more centralised approach of the AWP EF.

In contrast, the AWP EF is complete, and will find a solution given enough time and

memory. As such, given smaller problems and enough planning time it will find better,

shorter solutions than the CS EF.

In Section 6.6 the limitations of both EFs were discussed. The AWP EF increases

reward by scheduling actions during planning. However, it requires certain properties

of the problem and/or domain to be effective. These properties being specific to the

heuristic being used. For PR-New it requires that an initial plan can be found quickly.

In comparison, the CS EF has problems with tight synchronisation. The requirement to

have a specific action at a specific time is not well suited to the planning algorithm that

was used.
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CHAPTER 7

DISCUSSION

This chapter discusses the strengths and weaknesses of the approaches of described in

Chapters 3 to 6, and also the merits of each approach in comparison to the others.

7.1 Optimising Planning Durations in Continual Do-

mains

The loss limiting meta-management system (MMS) described in Chapter 3 addressed the

problem of how long should an agent plan for. The loss limiting MMS is a fast and simple

way to optimise how much time is spent on planning. It requires only a reward function

to be able to compute the amount of reward available from executing the plan at the

current time, and a loss tolerance to compare current execution reward against the best

execution reward it knows it could have achieved. As it is fast, the cost of monitoring

is low and will not lead to a degradation of planning performance. However, because

the MMS is loss limiting it can never be optimal. By definition the best reward it can

achieve is the maximum amount less the loss tolerance. Despite this limitation, the loss

limiting MMS was still better than using fixed planning times that are unable to adapt

to the complexity of a specific problem. Its simplicity also means it is easier and faster to

implement than the predictive MMS described in Chapter 3 and the MMS described by

Hansen and Zilberstein (2001) [30].
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Due to the loss-limiting nature of the MMS it requires domains in which new plans

can be found in relatively quick succession. The longer it takes between generation of new

plans the higher the loss tolerance needs to be. In domains where there is a relatively

long time between generation of new plans, but that each new plan has a significantly

higher reward the MMS will terminate planning early as too much of the reward from the

initial plan has been lost. This could lead to situations where the MMS executes plans

of a lower quality than it could have otherwise. However, increasing loss tolerance also

has drawbacks. That is, the MMS will only execute a plan after it has lost so much of

the reward of the plan. Thus, high loss tolerances lead to the MMS being able to only

execute small portions of high quality plans, leading to a lower amount of reward.

The loss limiting MMS works best with oversubscribed domains. That is, in such

domains the planner will return plans that span the full length of the time budget, but

for which not all goals will be achieved. As time passes, less of the goals that could be

achieved by the plan will still be achievable. This gives the MMS a cost of time by which

it can analyse whether planning is productive or not.

As the MMS uses a variable planning time, the start time of the plan will not be

known in advance. As such, the plan cannot make any assumptions about when an action

will happen. This means the MMS is not suited to domains in which scheduling is an

important requirement. That is, given a domain which has external events that happen

at known times in advance, the planner will have trouble optimising plans before the

occurrence of this event. For instance, in the UAV domain, if it is known in advance

that some target locations will cease to be visible after certain times then it would make

sense to visit these locations first. However, if a plan is optimised to visit as many of

these locations as possible, then delaying execution of the plan might a big impact on

the quality of the plan. It could mean that none of the locations with visit-deadlines are

visited on time, with the agent arriving just too a little too late at each location.

145



7.2 Acting Whilst Planning During Continuous Ex-

ecution

Chapter 4 addressed the question of what an agent should do whilst planning. It described

a set of execution frameworks that enable the agent to act whilst planning. This leads

to an increase in reward as the agent is able to spend more time executing, and thus

reduce the amount of time taken to achieve goals. The strengths of this approach allow

an agent to better react to changing circumstances. If a plan is invalidated due to an

environmental change, the agent is able to both react immediately in the short term, and

also plan longer term in response to new information. This technique also allows the agent

to react to new beneficial information without having to consider the cost of replanning.

Without using this execution framework an agent would be required to stop executing

whilst it replans in response to the new information. If there is no new better plan, or

the new plan is only marginally better than the old plan, it may have been better just

to continue executing the old plan. However, by acting whilst planning the agent can

minimise the cost of replanning and always benefit from new information. New goals can

be treated as new information. This enables an agent to react to new goals being added

without having to stop executing.

To be able to act whilst planning, the execution framework requires a fixed planning

time that is known in advance of planning. It uses this to estimate a future state which

it can pass to the planner as its initial state. Without this initial state, the planner is

unable to reason about that actions that are executed during planning. If planing was

terminated early, or allowed to go on for longer, then the initial state that the planner

was given might not match the actual state, and thus the plan that was produced could

be invalid. Thus, the AWP EF must used a fixed planning time. Variable planning times

can be useful though (as discussed in Section 7.1).

Some of the execution frameworks reuse actions from the previous plan to continue

executing. This can cause problems if some states are harder to undo than others. In

Chapter 4 this was discussed as irreversible actions. Actions that once performed cannot
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be undone (such as driving off the edge of a cliff). By reusing the previous plan, an agent

is unable to react to the new information that shows that some actions in the plan are

now irreversible, and that the plan is invalid. The PR-New execution framework avoids

this problem by finding an initial plan as within a short time, and executing that instead

whilst replanning. This means that the agent will never execute an irreversible action

whilst using PR-New.

PR-New sacrifices some of its planning time to come up with the initial plan. During

this time the agent does not execute any actions. Once it has the initial plan, it must

restart planning with the new predicted initial state. However, this means that PR-

New spends less time planning on the full problem than the other execution frameworks

presented in Chapter 4, and so meaning it may not always come up with as high quality

plans as it would have otherwise. However, this weakness was found to be offset by more

often having a plan to execute during replanning. Sometimes, however, PR-New is not

able to find a plan to execute during planning. This is because the time dedicated to

coming up with a plan to execute during planning is insufficient to actually find a plan.

In such situations PR-New decays to the standard model of planning and then executing

the resulting plan.

7.3 Cooperation and Synchronisation in Multi-Agent

Environments

The execution framework presented in Chapter 5 was shown in Chapter 6 (as the CS EF)

to be more effective at producing solutions to problems than the AWP EF (a centralised

planner). It finds solutions to more complex problems and on problems of similar com-

plexity it is capable of finding solutions of similar quality or better. This is despite the

advantages of the AWP EF being able to execute actions during planning. The CS EF

fairs better than the AWP EF because of its ability to synthesise smaller, inter-related

sub-problems from the whole problem and solve these separately. The CS EF is fast,
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effective and scalable.

The first problem that the CS EF has is that it is greedy when it comes to task

allocation. If an agent says it can achieve a goal if another agent cooperates with it, then

it is assigned the goal without first checking that another agent is capable of achieving

the required subgoal(s). If no agent is capable of achieving the subgoal then the original

goal is left unallocated and is forgotten about. In such a situation it might be better to

back track and try allocating the goal to another agent to see if that would work. The

execution framework mitigated this problem by preferring to allocate goals to agents that

did not require cooperation. However, the initial reason for doing this was that sometimes

agents would bid for goals based on plans that required another agent to do all the work.

As such, the task allocation algorithm always allocated goals to an agent that did not

require cooperation if it could. It is possible that this might not be the global optimal

allocation, but it ensures that no goal was unachievable due to a failure in the allocation

process.

A second problem with the execution framework is that it is optimistic about schedul-

ing. That is, subgoals contain no information about how they relate to each other. Thus,

an agent that was allocated two subgoals may fulfil the subgoals at such a time or in

such a way that the agent that issued the subgoals cannot make use of both of them.

For example, take two goals (g0 and g1) which must be worked on serially (eg. two pack-

ages that must be delivered to different location in opposite directions). Each goal has

a distinct deadline and minimum makespan of the plan required to achieve them, this

implies that there is a minimum starting time for an agent to be able to achieve both

goals (s0 and s1). To achieve both goals the agent must achieve one of the goals before

the minimum start time of the other goal. However, the order in which the goals are

achieved is not important. This is a high level concept that is not encoded in the subgoals

an agent issues when it requires assistance. Instead, all the agent communicates is the

maximum time by which that particular subgoal must be achieved. Any agent allocated

these subgoals would not know about the dependency between them. Indeed, without
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analysis the issuing agent will not know about this dependency. Even if the agent could

know about the dependency between these subgoals, there would be problems if the sub-

goals were allocated to separate agents. That is, for an agent to know if it has achieved

a subgoal by a maximum required time it must know when the other agent will achieve

the other subgoal by. This problem could be overcome by assigning both subgoals to the

same agent, but it might be the case that only two agents acting separately can achieve

both subgoals by the required maximum times.

Problems around scheduling were a problem for the Janitor domain in Chapter 6.

Because of the exact start and finish times of the subgoals, agents would sometimes find

that the subgoals it issued were scheduled to occur at mutually exclusive times. Thus,

the agent would have to discard the possibility of achieving both goals. This leads to time

being wasted by the assisting agents that could have been spent on different actions.

The execution framework can work with both heterogeneous agents (as presented in

Chapter 5) and homogeneous agents (as presented in Chapter 6). However, the Robocup

Rescue domain used in Chapter 5 has an explicit directionality about which agents re-

quest assistance and which agents provide help (police agents clear routes for ambulance

agents). When working with homogeneous agents this distinction does not exist as agents

are capable of both providing assistance and receiving assistance. This meant that the

execution framework had to change how it allocates tasks to prevent dependency cycles.

Should agents end up in a dependency cycle there exists no order in which agents can

plan – as each agent is both waiting for the plan of one agent and providing its plan to

another agent. The modification to the execution framework prevents dependency cycles

by limiting agents to being members of one of three teams: an initial team and two other

teams that an agent might be moved to, based on goal dependencies. The exact nature

of the teams is described in Section 6.2.1. The limitation of three teams imposed by the

execution framework is an implementation. Theoretically there could be as many teams

as agents with complex dependencies – just so long as those dependencies are tree-like

in structure with no cycles. By increasing the number of teams the execution framework
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would be able to cope with more complex dependencies. For example, the Trucks domain

used in Chapter 6 was limited to having goals to deliver packages across at most two net-

works (from one network directly to another network). With more teams the execution

framework could create plans which involve packages crossing multiple networks.

By using dynamic teams (rather than arbitrarily splitting agents into predetermined

teams) the execution framework is able to adapt to the specifics of a problem. For

instance, in the Trucks domain agents are split between different networks and cannot

move between them. If, however, the number of packages that are to be delivered from

network A to network B is greater than the other way around then there should be more

agents providing assistance in network A than in network B (as it will be the agents in

network B that issue the subgoals for delivery of these packages). As the goal allocation

algorithm proceeds, agents that have already been allocated goals will produce lower

valued bids. This means that agents that have no allocated goals (and therefore still in

the initial team) are more likely to be assigned goals. If the goal requires cooperation

the agent is assigned to the team that has dependencies, if the goal was the subgoal of

another goal then it is assigned to the team that provides assistance. In doing so agents

will be more likely to be assigned to the team where they are most needed.
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CHAPTER 8

FUTURE WORK

This chapter describes how some of the work presented in Chapters 3 to 6 could be ex-

tended and in some instances combined. Possible issues that could arise are also discussed.

Chapter 3 examined decisions concerned with how much of a limited time budget to

allocate to planning. However, it did not consider the possibility of replanning. That

is, an agent is given a goal, it then finds a plan, and finally executes the plan. This is

because nothing in the domain necessitates replanning. In continual domains, external

state changes or changes to the goals of an agent mean that, replanning is required. As

such, an agent may switch back and forth between planning and execution multiple times.

The ability to vary planning times allocated to planning for each planning phase, could

lead to improvements in the amount of reward achieved. This is because the agent may be

planning for a different number of goals, which would significantly impact the complexity

of the problem instance. For example, in the UAV domain, the complexity of a problem

instance is proportional to the factorial of the number of goals to achieve (when using

brute force search). If replanning were to occur in the UAV domain the “loss limiting”

MMS will spend less time planning. This is because goals are achieved through execution

of the plan, meaning less goals are required to be achieved in future replanning. However,

the planner is not aware of the limited time budget. Further work is needed to create a

planner that is aware of this limited and decreasing time budget. This planner would not

create plans that extend beyond an initial maximum makespan. The planner would also
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reduce this maximum makespan as time passes during planning. This will help prevent

the planner optimising parts of the plan that can never be executed because less of the

time budget is available.

Chapter 4 looked at ways to increase total reward by acting whilst planning. In order

to act whilst planning it is required that the amount of time allocated to planning be

known at the start of planning. The work presented in Chapter 4 used a fixed planning

time. However, a fixed time is not optimal for all problem instances. The combination

of optimising the time allocated to planning with acting whilst planning should lead to

further increases in reward. However, in continual domains, an agent will need to take

into consideration the possibility of unforeseen state changes or the addition/removal of

goals. These two issues can invalidate the state that the agent is planning for. In these

circumstances, plans returned by planning may be invalid. As such, the agent is forced

to abandon the current planning process and start again. This means that an agent must

consider allocating a smaller amount of time to planning than would otherwise be optimal,

so that the agent has an opportunity to act before the plan is invalidated. Future work

could look at pre-empting replanning, and always planning whilst executing. As time

passes, the “initial state” would be changed to reflect the current state. States that are

no longer reachable would be pruned. If any new external state change occurs then any

part of the plan space that is no longer valid because of this state changed pruned. If a

new goal was added then the estimated reward from a given (planning) state reassessed

to take into account the new goal.

Chapter 5 presented a way of using multi-agent planning in domains with shared time

budgets. One of the problems with how tasks were assigned was that the more tasks that

were in a problem instance, the more time was spent on allocating tasks.

It may be possible that an agent can attempt to achieve tasks that is has been allo-

cated before allocation of all tasks has finished. In domains where tasks have deadlines,

then tasks with earlier deadlines will be achieved earlier on in a plan. Using the same

assumption that is made in Chapter 4 (that early parts of the plan will not change signif-
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icantly) and if tasks are allocated in order of ascending deadlines, then agents can act in

a way that is directed towards achieving these initial tasks and increase reward achieved.

However, this is only true if the agent does not require any subtasks to be completed for

it to achieve the task. For example, a police agent can start clearing blocked roads imme-

diately as the clearing of roads has no preconditions that the agent cannot achieve itself.

In contrast, a medic agent that requires a road to be unblocked to rescue a civilian cannot

compute valid plans to rescue the civilian until it knows when the road will be cleared.

Indeed it could be that no police agent is able to clear the road within the deadline, and

so the road is never cleared. Clearly, one avenue for future work is to have different teams

of agents plan with different initial states that reflect the earliest point at which they can

begin executing.

In domains where an agent is oversubscribed, then it is possible for a given task to

not be part of the optimal subset of tasks the agent is able to achieve. This presents a

problem to acting before task allocation has finished. If an agent acts towards achieving

a task before it can decide if that task is part of the optimal set of tasks it can achieve,

then the agent will be committed to a sub-optimal task set. However, it was found in

Chapter 4 that acting during planning increases the reward attained by an agent. This

thesis argues that this will be the case with acting during task allocation, especially in

situations where the time taken to allocate tasks dominates the time allocated to planning.

This warrants further investigation of the AWP EF and how well it copes in domains that

are oversubscribed.

When bidding for a task, an agent performs planning to see if it can achieve the task.

However, the plan that is produced is a relaxed plan though and so may not be valid. If

the relaxed plan does not generate any subtasks, however, then it is a valid plan. This

means that an agent does not need to perform any planning, beyond what is necessary to

bid for tasks, in order to act during task allocation. Future work could look into analysing

the relaxed plan and, if it is valid in the non-relaxed domain, using it as a starting point

to plan from. This would enable the agent to spend its planning time improving this valid
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plan rather than recomputing it afresh.

A limitation of the implementation of the execution framework presented in Chapter 5

is that it can only work with two teams of agents. This is an artificial limitation that

makes it easier to conceptualise about which team is producing subgoals that it needs

achieved to complete its own goals, and which team is achieving those subgoals without

producing subgoals of its own. Conceptually, there is nothing stopping the execution

framework using more teams, just so long as cooperation between agents contains no

cycles. That is, agents that have subgoals are dependent on the plans of the agents that

will achieve those subgoals, and so long as there are no cycles of such dependencies there

exists an order in which the agents may plan. For domains such as the Trucks domain,

having multiple teams of agents would enable the delivery of packages across multiple

networks. Future work would look into managing dynamic team formation. It would also

try to reduce the maximum length of the chain of agents that are dependent on each

other, which will help reduce the total amount of time spent planning. This thesis defines

teams as groups of agents that independent of each other and so can plan in parallel.

Thus, more teams means less agents executing in parallel, and instead executing serially

– meaning more time is spent planning than might otherwise be necessary.

In each of the domains that the multi-agent execution framework was tested on, the

ways in which agents might require cooperation was hand-coded. For instance, in the

Robocup Rescue domain, ambulance agents cannot traverse blocked roads but police

agents are capable of doing so. Thus, the execution framework for the Robocup Rescue

domain uses a relaxed planning domain in which ambulance agents can traverse blocked

roads. If a planner is capable of returning a plan from using this domain, then it can be

inspected for move actions that traverse blocked edges. If such an action is found then it

is used to create a new subgoal. However, there is no reason that the cooperation in the

Robocup Rescue domain had to be hand-coded. If this cooperation could be automatically

extracted from a domain, then the execution framework could be used more easily on other

domains. All this information is in the problem domain and could be extracted. That
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is, future work would analyse the domain for actions with preconditions that are not in

the effects of any of the actions that the agent is capable of executing. If these predicates

could be found in the effects of the actions of other agents then it is known that these

two agent types might have to solve problems with goals that require cooperation. By

detecting these actions it would be possible for future work to create the relaxed planning

domain automatically, and without having to resort to hand-coding it.

8.0.1 Bringing it all together

There are two problems when trying to bring the work from the different research chapters

together. Firstly, there are incompatibilities between how acting whilst planning and using

online monitoring and control to optimise planning duration. To act whilst planning

requires that it is possible to predict time and therefore state at the end of planning.

Without being able to predict this, this information cannot be passed to the planner and

it cannot reason about the effects of actions that are being executed during planning.

Secondly, whilst it is possible to execute whilst acting in multi-agent domains used in

Chapters 5 and 6, time taken to allocate tasks dominates planning time in complex

problems. Thus, the benefit of acting whilst planning is significantly diminished. Multi-

agent domains which have simple decompositions into single-agent planning problems

would still be a significant benefit to acting whilst planning.

If agents do not act whilst planning then it would be possible for future work to

use online monitoring to control planning times of each individual agent in the problem.

In Chapters 5 and 6 we saw that the execution framework would plan for a fixed time

for two separate sets of agents. However, not all agents had dependencies or had other

agents depending on them. In such circumstances these agents could plan for the full

allotment of time – a feature that was not implemented by the EF. But even within the

set of agents that are directly cooperating it could be possible to alter the planning time.

This is because all agents are planning for the state at which all agents will have finished

planning – which is at a fixed point in time. That is, given two agents that are directly
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cooperating and a with total planning time of 20 seconds, the execution frameworks would

split this evenly between both agents. However, there is nothing to stop the first agent

only planning for 5 seconds and letting the second agent plan for 15 seconds. This would

be beneficial if the utility of planning was low for the first agent, but high for the second

agent. The online monitoring and control execution framework presented in Chapter 3

could be used to monitor if early termination of planning for the first agent could be

beneficial.

An issue that future work investigating using dynamic planning times would have to

address is that, when agents are cooperating with multiple other agents it can be hard to

know when to stop. That is, an agent might have a plan for all subgoals for one agent,

but the plan might not have subgoals for a second agent yet. In some circumstances it

will remain beneficial to plan and in others it might be better to stop planning and allow

the dependent agents to plan. An example of the former is if the planning problems for

the agents with subgoals are comparatively easy and would not benefit from additional

planning time, but the additional planning time could lead to a plan that achieves all

subgoals. In this case it would be better to allow the initial agent to continue to plan

and delay the planning of the dependent agents. An example of the latter is the reverse,

that continued planning does not lead to a plan that achieves all subgoals, but that the

reduced planning time for the dependent agents means they fail to generate higher quality

plans that they otherwise would have. In this situation early termination of planning of

the initial agent would have been beneficial.
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CHAPTER 9

CONCLUSION

This thesis examined how to effectively share time between planning and execution. It

explored three sub-questions that look at different ways of sharing time between planning

and execution.

9.1 Optimising Planning Durations in Continual Do-

mains

This chapter addressed the research sub-question of “How long should an agent plan for

in the presence of a fixed time budget”. Specifically, it looked at how long to run an

anytime planner for in a domain where limited time budgets are shared between planning

and execution. It discussed two meta-management systems (MMS) that varied the amount

of time allocated to planning, with the aim of maximising reward achieved by the end of

the shared time budget.

Anytime planners produce a series of plans with monotonically increasing reward until

the optimal plan is found. That is, further planning never produces a worse plan. However,

in domains with a limited and shared time budget, planning has a cost. Planning consumes

time, which reduces the amount of time available to execute actions, which in turn reduces

the maximum reward achievable. This means that further planning is not always beneficial

in domains with limited and shared time budgets.

157



The first MMS uses the outcome of planning on previous problem instances to predict

the optimal time to allocate to planning. Key to this predictive MMS was the idea that

the optimal planning time could be predicted from previous observations of the planning

process on similar problems. That is, planning for problem instances with a similar

complexity should have a similar cost/reward profile. Ultimately this MMS proved to be

weak, as the cost/reward profile of a problem instance can vary substantially even within

narrow bounds of differentiators of problem instances.

The work on the predictive MMS led to the development of an alternative loss limiting

MMS that monitors the planning process online. This MMS decides to stop planning once

the cost of time outstrips the reward increase from further planning. The cost of time

is the loss of reward from not being able to complete as many goals due to a reduced

time budget for execution. The loss limiting MMS was an improvement on the predictive

MMS and fixed planning time MMSes. This thesis found that using an loss limiting MMS

results in more reward than using a predictive MMS. However, a key problem with the

loss limiting MMS is that since the time allocated to planning is not known in advance,

then the planner does not know what the maximum makespan of a plan can be. This

means further planning can end up improving parts of the plan that cannot be executed

within the time budget.

The problems caused by an unknown planning time motivated work into how to in-

crease reward when planning for a fixed time. Namely, how to act in a goal-directed way

during planning.

9.2 Acting Whilst Planning During Continuous Ex-

ecution

This chapter proposed several execution frameworks (EF) that can increase reward in

domains with a shared time budget and unknown knowledge. The EFs make use of two

contributions made by this chapter. The first contribution finds ways to act in a goal
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directed way during planning. The second contribution is a way of modelling actions that

are mid-execution that enables a larger proportion of planning and execution to occur

concurrently than if just the first contribution was used. Each EF planned for a fixed

duration using an anytime planner. These two contributions address the second sub-

question of this thesis – “What should an agent do when planning?”. This thesis finds

that agents are capable of executing goal-directed actions with the use of heuristics, and

that this increases reward.

Two techniques for selecting goal-directed actions were examined. The first technique

assumes that, should replanning be necessary, any new plan generated will not differ

significantly from the current plan. That is, the actions that would have been scheduled

by the old plan to execute during the replanning phase are still worth executing. The

second technique finds a new initial plan quickly, and uses this to schedule actions for

execution during planning. Using a known planning time allows the EF to predict the

actual state at the end of planning and use this as an initial state for planning. This

allows the EF to inform the planner of state changes that are expected be occur by the

end of planning. The second technique assumes that the initial plan produced will not

differ significantly from the final plan produced by replanning, at least not in the early

part of the plan. The second technique has the benefit that all actions in the plan are

valid for the current knowledge state.

Modelling actions that are mid-execution allows planning with initial states that have

actions in such a state. This means the end of planning does not need to be synchronised

with a state in which no actions are executing. This allows replanning to start earlier

and allows more time to be spent executing actions during replanning. Not being able to

model actions mid-execution would mean either not executing actions that extend beyond

the end of replanning, or waiting for actions to finish execution after the end of replanning.

This would increase the time it takes to achieve the goal, and so decrease reward.

Both contributions were found to be effective at reducing the time it took to achieve

the goal. However, the combination of both contributions was found to be highly effective.
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9.3 Cooperation and Synchronisation in Multi-Agent

Environments

This chapter contributed a way of improving cooperation and synchronisation between

agents in multi-agent domains with time budgets shared between planning and execution.

This addresses the research question about whether it is better for an execution framework

to focus on generating plans quickly or generating high quality plans. It was found that in

domains where planning time is shared between planning and executing generating plans

quickly is more important than generating high quality plans. The execution framework

uses a decentralised market-based allocation where agents bid for tasks. Where an agent

cannot achieve a task by itself it can subcontract those parts of task. The agent was also

able to specify a deadline by which a task was required.

The decentralised nature of task allocation and planning means that agents are able

to find good plans quickly, and increase the global reward achieved. When tested in the

Robocup Rescue domain, the algorithm was found to be very successful when compared

to a single-agent planning approach. Beyond trivial problems, single-agent planning ap-

proaches (where a central agent makes all decisions) quickly become intractable. However,

the algorithm sacrifices completeness in order to be able to find near-optimal solutions

quickly. Specifically, the algorithm is unable to find solutions to an individual task that

would benefit from multiple agents cooperating, but that this cooperation is not neces-

sary. For example, given a task where the optimal plan is for two agents to execute two

actions concurrently, the algorithm will produce a plan that uses one agent to execute the

actions on in its own, one after the other.

9.4 Comparison of Execution Frameworks

This chapter compared the Acting Whilst Planning execution framework (AWP EF –

from Chapter 4) and the Cooperation and Synchronisation execution framework (CS EF

– from Chapter 5). It found that the CS EF is able solve more complex problems than the
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AWP EF. Where domains require loose cooperation (eg. the Robocup Rescue and Trucks

domains), the CS EF achieves more reward than the AWP EF. The reason for this is that

the CS EF is able to break complex problems into a set of simpler single agent problems

that can mostly be solved in parallel. However, where domains requires tight cooperation

(eg. the Janitor domain) the AWP CS performs slightly better, obtaining slightly more

reward. This is because of its use of a centralised planner that is able to better able to

reason about global reward.
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APPENDIX A

JANITOR DOMAIN

(define (domain janitor)

(: requirements :strips :fluents :durative -actions :adl

:equality)

(: predicates

(node ?n)

(edge ?n1 ?n2)

(is -room ?n)

(agent ?a)

(at ?a ?n)

(available ?a)

(dirty ?rm)

(extra -dirty ?rm)

(cleaned ?rm)

)

(: functions

(distance ?n1 ?n2)

(dirtiness ?rm)

)

(:durative -action move

:parameters (?a ?n1 ?n2)

:duration (= ?duration (distance ?n1 ?n2))

:condition (and (at start (at ?a ?n1))

(at start (edge ?n1 ?n2))

(at start (node ?n1))

(at start (node ?n2))

(at start (agent ?a)))

:effect (and (at start (not (at ?a ?n1)))

(at end (at ?a ?n2)))
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)

(:durative -action clean

:parameters (?a ?rm)

:duration (= ?duration (dirtiness ?rm))

:condition (and (at start (dirty ?rm))

(over all (at ?a ?rm))

(at start (agent ?a))

(at start (available ?a))

(at start (is-room ?rm))

)

:effect (and (at start (not (dirty ?rm)))

(at start (not (available ?a)))

(at end (cleaned ?rm))

(at end (available ?a))

)

)

(:durative -action extra -clean

:parameters (?a1 ?a2 ?rm)

:duration (= ?duration (dirtiness ?rm))

:condition (and (at start (extra -dirty ?rm))

(at start (not (= ?a1 ?a2)))

(over all (at ?a1 ?rm))

(over all (at ?a2 ?rm))

(at start (agent ?a1))

(at start (agent ?a2))

(at start (available ?a1))

(at start (available ?a2))

(at start (is-room ?rm))

)

:effect (and (at start (not (extra -dirty ?rm)))

(at end (cleaned ?rm))

(at start (not (available ?a1)))

(at start (not (available ?a2)))

(at end (available ?a1))

(at end (available ?a1))

)

)

)
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APPENDIX B

ROBOCUP RESCUE DOMAIN

(define (domain roborescue)

(: requirements :strips :fluents :durative -actions

:timed -initial -literals :adl :equality :typing

:action -costs :preferences)

(:types

predicate - object

moveable - object

agent civilian - moveable

police medic - agent

node - object

building hospital - node

)

(: predicates

(available ?m - moveable)

(at ?m - moveable ?n - node)

(carrying ?m - medic ?c - civilian)

(empty ?m - medic)

(edge ?n1 ?n2 - node)

(blocked -edge ?n1 ?n2 - node)

(buried ?c - civilian)

(unburied ?c - civilian)

(alive ?c - civilian)

(rescued ?c - civilian)

(required ?p - predicate)

(cleared ?n1 ?n2 - node ?p - predicate)

)

(: functions

(buriedness ?c - civilian)

(blockedness ?n1 ?n2 - node)
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(distance ?n1 ?n2 - node)

)

(:durative -action move

:parameters (?a - agent ?n1 - node ?n2 - node)

:duration ( = ?duration (distance ?n1 ?n2))

:condition (and

(at start (at ?a ?n1))

(at start (edge ?n1 ?n2))

)

:effect (and

(at start (not (at ?a ?n1)))

(at end (at ?a ?n2))

)

)

(:durative -action unblock

:parameters (?a - police ?n1 - node ?n2 - node)

:duration (= ?duration (blockedness ?n1 ?n2))

:condition (and

(over all (at ?a ?n1))

(at start (available ?a))

(at start (blocked -edge ?n1 ?n2))

)

:effect (and

(at start (not (blocked -edge ?n1 ?n2)))

(at start (not (blocked -edge ?n2 ?n1)))

(at start (not (available ?a)))

(at end (edge ?n1 ?n2))

(at end (edge ?n2 ?n1))

(at end (available ?a))

)

)

(:durative -action load

:parameters (?m - medic ?c - civilian ?b - building)

:duration (= ?duration 30)

:condition (and

(over all (at ?m ?b))

(at start (at ?c ?b))

(at start (empty ?m))

(at start (unburied ?c))

(at start (alive ?c))

(at start (available ?m))

)

:effect (and
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(at start (not (at ?c ?b)))

(at start (not (empty ?m)))

(at end (carrying ?m ?c))

(at start (not (available ?m)))

(at end (available ?m))

)

)

(:durative -action unload

:parameters (?m - medic ?c - civilian ?b - hospital)

:duration (= ?duration 30)

:condition (and

(over all (at ?m ?b))

(at start (carrying ?m ?c))

(over all (alive ?c))

(at start (available ?m))

)

:effect (and

(at start (not (carrying ?m ?c)))

(at end (at ?c ?b))

(at end (empty ?m))

(at end (rescued ?c))

(at start (not (available ?m)))

(at end (available ?m))

)

)

(:durative -action rescue

:parameters (?m - medic ?c - civilian ?b - building)

:duration (= ?duration (buriedness ?c))

:condition (and

(over all (at ?m ?b))

(at start (at ?c ?b))

(at start (buried ?c))

(at start (alive ?c))

(at start (available ?m))

)

:effect (and

(at start (not (buried ?c)))

(at end (unburied ?c))

(at start (not (available ?m)))

(at end (available ?m))

)

)

(:durative -action clear
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:parameters (?n1 - node ?n2 - node ?p - predicate)

:duration (= ?duration 0)

:condition (and

(at start (edge ?n1 ?n2))

(at start (required ?p))

)

:effect (and

(at start (cleared ?n1 ?n2 ?p))

)

)

)
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APPENDIX C

TRUCKS DOMAIN

; IPC5 Domain: Trucks Time -TIL

; Authors: Yannis Dimopoulos , Alfonso Gerevini and Alessandro

; Saetti

(define (domain trucks -and -boats)

(: requirements :typing :adl :durative -actions :fluents

:timed -initial -literals)

(:types

vehiclearea location locatable - object

vehicle package - locatable

truck boat - vehicle

)

(: predicates

(at ?x - locatable ?l - location)

(in ?p - package ?v - vehicle ?a - vehiclearea)

(connected -by -land ?x ?y - location)

(connected -by -sea ?x ?y - location)

(free ?a - vehiclearea ?v - vehicle)

(delivered ?p - package ?l - location)

(at -destination ?p - package ?l - location)

(closer ?a1 - vehiclearea ?a2 - vehiclearea)

(deliverable ?p - package ?l - location)

)

(: functions (travel -time ?from ?to - location ))

(:durative -action load

:parameters (?p - package ?v - vehicle ?a1 - vehiclearea

?l - location)
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:duration (= ?duration 1)

:condition (and

(at start (at ?p ?l))

(at start (free ?a1 ?v))

(at start

(forall (?a2 - vehiclearea)

(imply (closer ?a2 ?a1) (free ?a2 ?v))

)

)

(over all (at ?v ?l))

(over all

(forall (?a2 - vehiclearea)

(imply (closer ?a2 ?a1) (free ?a2 ?v))

)

)

)

:effect (and

(at start (not (at ?p ?l)))

(at start (not (free ?a1 ?v)))

(at end (in ?p ?v ?a1))

)

)

(:durative -action unload

:parameters (?p - package ?v - vehicle ?a1 - vehiclearea

?l - location)

:duration (= ?duration 1)

:condition (and

(at start (in ?p ?v ?a1))

(at start

(forall (?a2 - vehiclearea)

(imply (closer ?a2 ?a1) (free ?a2 ?v))

)

)

(over all (at ?v ?l))

(over all

(forall (?a2 - vehiclearea)

(imply (closer ?a2 ?a1) (free ?a2 ?v))

)

)

)

:effect (and

(at start (not (in ?p ?v ?a1)))

(at end (free ?a1 ?v))

(at end (at ?p ?l))

)
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)

(:durative -action drive

:parameters (?t - truck ?from ?to - location)

:duration (= ?duration (travel -time ?from ?to))

:condition (and

(at start (at ?t ?from))

(over all (connected -by-land ?from ?to))

)

:effect (and

(at start (not (at ?t ?from )))

(at end (at ?t ?to))

)

)

(:durative -action sail

:parameters (?b - boat ?from ?to - location)

:duration (= ?duration (travel -time ?from ?to))

:condition (and

(at start (at ?b ?from))

(over all (connected -by-sea ?from ?to))

)

:effect (and

(at start (not (at ?b ?from )))

(at end (at ?b ?to))

)

)

(:durative -action deliver -ontime

:parameters (?p - package ?l - location)

:duration (= ?duration 1)

:condition (and

(over all (at ?p ?l))

(at end (deliverable ?p ?l))

)

:effect (and

(at end (not (at ?p ?l)))

(at end (delivered ?p ?l))

(at end (at-destination ?p ?l))

)

)

(:durative -action deliver -anytime

:parameters (?p - package ?l - location)

:duration (= ?duration 1)

:condition (and
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(at start (at ?p ?l))

(over all (at ?p ?l))

)

:effect (and

(at end (not (at ?p ?l)))

(at end (at-destination ?p ?l)))

)

)
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