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Abstract 

Skill learning and motor adaptation are key components within the area of motor 

control. Skill learning can be described as the process whereby movements 

become more accurate and are executed more quickly with practice. On the other 

hand, motor adaptation involves external perturbations which require a response 

to these altered conditions in order to improve performance. For example prism 

adaptation where participants are required to point at a target after looking 

through prism glasses which shift vision horizontally. It is thought that the motor 

adaptation process updates current internal models to produce the required 

response to these new demands or perturbations, this can often be shown by the 

presence of aftereffects when the perturbation is removed. To our knowledge 

there are no imaging studies within current motor control literature that attempt 

to specifically identify the different neural substrates that are involved in skill 

learning and motor adaptation in a single experiment. 

 

The present study attempts to develop a novel rotary behavioural task, involving 

force field motor adaptation, using an MRI compatible force field robot. Protocol 

development outlined the most effective behavioural task to differentiate between 

skill learning and motor adaptation. Time on target and average deviation were 

selected as the most appropriate outcome measures to distinguish between the 

components of skill learning and adaptation respectively. Behavioural results 

demonstrated skill learning by a significant increase of time on target within the 



 

early stages of a learning curve before plateauing. Adaptation and deadaptation 

curves, along with a significant difference in average deviation between session 1 

and 2 identified an initial large adaptation which then also plateaued. Overall, 

skill learning and motor adaptation were outlined as separate entities within the 

same behavioural task. fMRI pilot sessions for the behavioural task were 

promising, confirming the feasibility of running this task in an fMRI scanner. 

Further development of the fMRI protocol and analysis is to take place within 

future research in order to obtain results to provide a more thorough 

understanding of the neural mechanisms which govern skill learning and 

adaptation. 
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Introduction 

 

Within the area of motor control, the concepts of skill learning and motor 

adaptation have sometimes been used interchangeably to describe 

transformations or improvements in performance when completing a motor task 

(Nezafat, Shadmehr and Holcomb, 2001; Graydon et al., 2005). However, more 

recent literature has differentiated between the two concepts, suggesting that they 

can be classed as separate entities underpinned by unique neural networks 

(Dierdrichsen et al., 2005; Seidler, Noll and Chinralapati, 2006; Krakauer and 

Mazzoni, 2011; Diedrichsen and Kornysheva, 2015; Chen, Holland and Galea, 

2018). These findings pose the hypothesis whether skill learning and motor 

adaptation work independently of one another but can also coincide to produce 

optimal motor performance.  

 

 

Skill Learning 

Skill learning in terms of motor control, refers to an improvement in a pre-

determined movement above baseline levels. As the skill is learnt, movements 

become more accurate and are executed quicker through repetition and practise. 

An improvement in skill learning results in a positive shift in the speed-accuracy 

trade-off function (SAF). The SAF represents how effective skill learning is as a 

trade-off between speed and accuracy when one increases and the other decreases 

(Reis et al., 2009; Krakauer and Mazzoni, 2011; Diedrichsen and Kornysheva, 
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2015; Chen, Holland and Galea, 2018). These improvements do not represent a 

single process and are dependent on several mechanisms, such as action selection, 

the identification of the environment and context, response selection and action 

execution (Shmuelof et al., 2014; Chen, Holland and Galea, 2018). Skill learning 

can take place on multiple time scales. Often in the initial stages of learning, large 

improvement in performance is observed over a short period of time, followed 

then by a slower improvement. However, this speed of skill learning is dependent 

on task complexity and can take place online during practise but also offline 

during memory consolidation (Dayan and Cohen, 2011). These aspects of skill 

learning further link to the SAF, and how speed and accuracy must have a trade-

off in order to reach the optimal performance when learning a new skill. This 

theory is used by Reis et al. (2009) as a measure of skill, where a change in the 

trade-off between speed and accuracy would reflect a change in skill. Although if 

both components, speed and accuracy, opposingly increased or decreased at the 

same rate, this would not reflect a change in skill and performance would not 

improve. Therefore a balance of both components is necessary for successful skill 

learning. Skill learning can also be measured by the level of automaticity; the 

response to task requirements becomes more automatic without the need for 

conscious attention (Floyer-Lea and Matthews, 2004). The neural networks 

involved in this form of skill learning include the cortico-striatal and cortico-

cerebellar circuits. In addition to this, fast learning specifically involves use of the 

dorsolateral prefrontal cortex (DLPFC), the motor cortex (M1) and the 

presupplementary motor area (preSMA). These areas can differ during the slow 
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stage of motor skill learning which involves neural activation in M1, the primary 

somatosensory cortex, the supplementary motor area (SMA) and decreased 

activation in the cerebellum (Doyon and Benali, 2005; Floyer-Lea and Matthews, 

2005; Dayan and Cohen, 2011).  

 

 

Motor Adaptation 

Motor adaptation can be defined as a “form of learning characterised by a gradual 

improvement in performance in response to altered conditions”. In laboratory 

adaptation tasks, subjects initially complete a baseline performance with no 

external perturbations, following this an external perturbation is applied to which 

the subjects must adapt. Initially, subject performance declines from baseline and, 

at most, subject performance returns to this baseline, but no improvement takes 

place above this level (Krakauer and Mazzoni, 2011). It is known that our nervous 

system has the ability to adapt to altered conditions via prediction and correction 

to prevent errors and manufacture the most efficient movements possible 

(Shadmehr, Smith and Krakauer, 2010). In addition, motor adaptation is the 

result of environmental changes or perturbations causing a miscalibration of 

subject dynamics or kinematics, in a mechanical or visual environment (Shadmehr 

and Mussa-Ivaldi, 1994; Diedrichsen et al., 2005; Krakauer and Mazzoni, 2011).  

 

Specific laboratory tasks used to test motor adaptation, generally require subjects 

to adapt to the kinematic or dynamic aspects of the movement in question. 



 

 4 

Kinematics refers to the “geometrical and time-based properties of motion; the 

variables of interest are the positions and their corresponding velocities, 

accelerations, and higher derivatives” (Wolpert, Ghahramani and Jordan, 1995). 

An example of kinematic adaptation includes visuomotor rotation within a 

reaching adaptation task, using a hand-held joystick or robotic manipulandum. 

Visuomotor rotation is an adaptation task which can display aftereffects and 

consolidation (Diedrichsen et al., 2005; Krakauer, Ghez and Ghilardi, 2005). 

Another example of kinematic adaptation is prism adaptation in which a prism is 

used to shift the visual environment. Such adaptation tasks clearly identify 

aftereffects, a key component of adaptation, when the goggles are removed. 

Aftereffects can be defined as the failure to inhibit a previously formed internal 

model (Shadmehr and Holcomb, 1999). These aftereffects can be experiences for 

a long duration, lasting for a number of days (Shadmehr and Mussa-Ivaldi, 1994; 

Hatada, Miall and Rossetti, 2005). In contrast to kinematics, dynamics refers to 

“the forces required to produce motion and the properties of arm such as its mass, 

inertia, and stiffness; the variables of interest include joint torques, forces acting 

on the hand, and muscle commands” (Wolpert, Ghahramani and Jordan, 1995). 

Changes in subject dynamics are often formed by a hand held robotic 

manipulandum producing a force field within a reaching adaptation task. Subjects 

adapt to move in a way that counteracts the force field, which once removed, 

reveals aftereffects demonstrated by trajectories with an inverse curve to the 

original force field trajectory. Aftereffects exist because the participant’s brain still 

expects a force field when it is no longer present (Shadmehr and Mussa-Ivaldi, 
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1994; Shadmehr and Brashers-Krug, 1997; Li, Padoa-Schioppa and Bizzi, 2001; 

Nezafat, Shadmehr and Holcomb, 2001; Diedrichsen et al., 2005).  

 

Motor adaptation and internal models 

Motor adaptation is an error driven process that allows movements to retain 

accuracy when faced with changes in the environment. It is widely acknowledged 

that when movements become inaccurate in the face of environmental changes, 

error signals alter the internal models of the body schema to make them accurate 

again (Shadmehr and Mussa-Ivaldi, 1994; Diedrichsen et al., 2005; Krakauer and 

Mazzoni, 2011; Bedard and Sanes, 2014). The concept of the internal model was 

first presented in literature several decades ago, where when the dynamics of a 

task change, such as increasing force, the subject must remain in control in order 

to maintain a successful performance. The subject adapts to the dynamics 

presented through updating the internal model, which in turn is controlled and 

updated by the central nervous system (CNS) (Shadmehr and Mussa-Ivaldi, 

1994). Internal models can also be seen as motor memories, which were formed 

mainly by classification of the visual and mechanical properties of the task or 

object in question. These motor memories are learned and updated through 

experience. This process of internal model formation is dependent on the ability 

of the individual to inhibit former dynamic or kinematic responses, or experiences, 

to similar motor learning tasks. When individuals who form an internal model of 

a specific motor task are presented with a new motor task, interference takes 

place. Aftereffects are present when the individual fails to inhibit a previously 
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formed internal model, which cannot be simply cancelled but must be unlearnt or 

de-adapted. A successful performance therefore relies on inhibition of the previous 

task and the sufficient acquisition of the new internal model (Shadmehr and 

Holcomb, 1999).  

 

Later work by Shadmehr and Krakauer (2008) identified neural regions 

responsible for forming the neural processes mentioned previously. The 

cerebellum was identified as largely important in the formation of internal models, 

and therefore had a critical role within motor adaptation. Internal models are 

updated when a new environmental perturbation requires a specific motor 

response. During the planning of this motor response, updating of the forward 

model takes place in the cerebellum. This is in order to provide a motor prediction, 

along with a prediction of sensory feedback, of the next movement to occur 

(Blakemore, Frith and Wolpert, 2001; Krakauer and Mazzoni, 2011; Izawa, 

Criscimagna-Hemminger and Shadmehr, 2012; Marko et al., 2012). The inverse 

model is then responsible for producing the motor plan, following information 

being received from the forward model (Izawa, Criscimagna-Hemminger and 

Shadmehr, 2012; Takemura, Inui and Fukui, 2018). Together, the forward and 

inverse models (internal models), work in conjunction with one another, as a loop, 

to form a control mechanism called “model predictive control” (Takemura, Inui 

and Fukui, 2018), which vastly uses error signals and predictions. Due to these 

models, it is suggested that adaptation is the result of error signals, formed due to 
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the difference between sensory predictions and sensory feedback in order to 

produce optimal motor performance (Marko et al., 2012). 

 

 

Neural correlates of motor adaptation 

The cerebellum is highly responsible for controlling processes involved in 

adaptation (Nezafat, Shadmehr and Holcomb, 2001; Graydon et al., 2005; 

Shadmehr and Krakauer, 2008; Krakauer and Mazzoni, 2011). Imaging studies 

suggest the cerebellum is involved in the primary stages of adaptation in  force 

field and visuomotor tasks, where errors take place and the adaptation process 

ultimately results in error reduction (Floyer-Lea and Matthews, 2004; Diedrichsen 

et al., 2005; Seidler, Noll and Chinralapati, 2006; Bedard and Sanes, 2014). The 

error signals in adaptation which occur at the end of arm movements are due to 

complex spikes produced by purkinje cells in the cerebellum. These complex 

spikes are also largely involved in the initiation of reaching movements (Kitazawa, 

Kimura and Yins, 1998), which are widely used in motor adaptation tasks. Tseng 

et al. (2007) provided evidence to prove the cerebellum’s vital role in adaptation. 

The study involved a reaching task, where subjects with cerebellar ataxia, in 

comparison to healthy controls, experienced performance and adaptation 

impairment in the trials with regards to error and adaptation rate, both of which 

the cerebellum is largely responsible for. Moreover, saccadic adaptation studies 

have proved that the effect of small cerebellar lesions in monkeys results in the 

permanent loss of the ability to adapt to saccades (Barash et al., 1999). Subjects 
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suffering from different cerebellar diseases also showed similar saccadic deficits 

relating to adaptation (Golla et al., 2008). Furthermore, there is research which 

shows cerebellar damage or degeneration has negative effects on reach adaptation 

tasks involving force field perturbations (Masche et al., 2004; Smith and 

Shadmehr, 2005; Rabe et al., 2009). Criscimagna-Hemminger, Bastian and 

Shadmehr (2010) advanced this research by proving that abrupt large force field 

perturbations had a greater negative effect on adaptation in subjects with 

cerebellar ataxia, compared with smaller, progressive perturbations. Additionally, 

it is thought the cerebellum is involved in implicit adaptation processes which can 

update body movements through prediction of the movement to come, this takes 

place trial by trial (Statton et al., 2018). Research suggests that both implicit and 

explicit processes are useful during motor adaptation, within visuomotor rotation 

and force field motor tasks, but implicit processes are dominant and can override 

explicit strategy (Mazzoni and Krakauer, 2006; Hwang, Smith and Shadmehr, 

2006; Taylor, Krakauer and Ivry, 2014).  

 

In imaging studies, specific areas of the cerebellum have been identified as neural 

regions which are activated during motor adaptation tasks. Lobule V of the 

cerebellum is known to be very important in force-field adaptation especially 

relating to hand movement. This is along with activation in the intermediate and 

lateral zones of the anterior cortex of the cerebellum, specifically in the early 

stages of force field adaptation (Rabe et al., 2009; Burciu et al., 2014). Other 

neural regions are widely supported by literature to be involved in the processes 
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of motor adaptation, specifically in the initial stages of adaptation. These include 

cortical regions such as prefrontal, bilateral sensorimotor and parietal cortices, as 

well as the caudate nucleus (Floyer-Lea and Matthews, 2004; Graydon et al., 

2005).  As previously mentioned, neural networks involved in sensorimotor tasks 

include a high amount of activation from the bilateral cerebellum, but also from 

the left basal ganglia, shown from the result of a meta-analysis of 70 motor 

learning experiments (Hardwick et al., 2012). The putamen, a structural part of 

the basal ganglia, is involved in the processes of motor adaptation beyond the 

initial stages, as is the thalamus, which is closely interconnected with the basal 

ganglia (Floyer-Lea and Matthews, 2004; Graydon et al., 2005). Neural networks 

of motor adaptation also include the areas of the motor cortex, which are sensitive 

to motor and visual aspects of reaching (Dierdrichsen et al., 2005; Eisenberg et 

al., 2011). Moreover, during reaching movements, visual feedback to the motor 

system travels from the posterior parietal cortex to the premotor areas, and 

proprioceptive feedback travels from the somatosensory cortex and the thalamus 

to the primary motor cortex (Shadmehr and Krakauer, 2008). 

 

 

The current study 

The current study involves a novel rotary motor adaptation task which has 

similarities to the pursuit rotor task. The pursuit rotor task was developed in the 

early part of the last century and was extensively used for several decades 

(Eysenck and Frith, 1977). The pursuit rotor began as a motor task to test the 
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ability of subjects to learn how to track a target using circular movements with 

their hand and arm. Koerth (1922) describes the first setup of the pursuit rotor, 

which used a phonograph, a rotating wooden disc, a hinged pointer and a brass 

target. The pursuit rotor task and apparatus was built upon from Koerth’s 

paradigm (1922) and advanced throughout the 20th century, where it now can be 

replicated electronically on a computer. In our study we implement the same 

tracking paradigm with a tracking target, controlled with a magnetic resonance 

imaging (MRI) compatible manipulandum that can be moved in the horizontal 

plane. 

 

There are a limited number of imaging studies using positron emission topography 

(PET) which have attempted to study force field motor adaptation tasks using the 

arm (Shadmehr and Holcomb, 1999; Nezafat, Shadmehr and Holcomb, 2001). 

Diedrichsen et al., (2005) completed the only functional magnetic resonance 

imaging (fmri) study, which investigated neural correlates of learning and 

adaptation within a dynamic and kinematic reaching task, involving force fields 

and visuomotor rotation, using similar equipment to that used in our study. The 

behavioural data obtained from this study identified target errors in response to a 

visual target jump, and execution errors in response to a force field or visuomotor 

rotation. Using the state-space model of adaptation, the behavioural data 

identified a higher rate of motor adaptation within the force field and visuomotor 

trials. The functional data presented by Diedrichsen et al. (2005) is consistent with 

their behavioural data. Although there was some overlapping with neural 
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correlates of target and execution errors, potentially due to on-line error 

correction, it was concluded that the neural correlates of target errors included 

the posterior superior parietal lobe and the striatum. In contrast, the neural 

correlates of motor adaptation due to execution errors included the anterior 

parietal cortex, areas of the post central sulcus bilaterally, parietal area five and 

the dorsal premotor cortex.  

 

To our knowledge there are no imaging studies within current motor control 

literature that attempt to specifically identify and support the difference between 

skill learning and motor adaptation in a single experiment. As a result, the present 

study aims to define both skill learning and motor adaptation whilst using fmri to 

identify neural correlates for each, and therefore differentiate between the two 

during the completion of a single motor task by an individual. This study fills a 

gap in the literature, investigating whole head fmri during a novel rotational 

motor task. It is hypothesised that skill learning and motor adaptation are separate 

entities, but they can take place simultaneously within the same motor task. 

Taking all available evidence into account, we hypothesised that skill learning, 

described above as an increase in speed and accuracy of response, will take place 

throughout the duration of the task within all different trial types. Adaptation, by 

contrast, will only take place during force field perturbation trials, and aftereffects 

will be evident following adaptation. Additionally, we will be able to observe 

separate neural correlates for both skill learning and motor adaptation. 
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Materials and Methods 

 

Participants 

A total of 31 neurologically healthy volunteers took part in the current study, 

consisting of 10 males and 21 females. All participants were between the age of 

18-35, with an average age of 23±5 years, 29 participants were right handed and 

2 participants were left handed. All participants took part in the current study 

voluntarily, to earn educational credits in the School of Sport and Rehabilitation 

Sciences or for a monetary reimbursement. Data sets were collected for 24 

participants who took part in one of the three behavioural experiments (8 per 

experiment). Two participants took part in the imaging experiment. The data sets 

for the remaining 5 participants were excluded due to task errors. The University 

of Birmingham Ethics committee approved the current study procedures. 

 

 

Apparatus  

The current study obtained behavioural and functional data using a mock 

magnetic resonance imaging (MRI) scanner (figure 1.0.) and a functional MRI 

(fMRI) scanner, at The Birmingham University Imaging Centre. The study used an 

MRI compatible velocity dependent force field robot (MRIbot) (figure 1.1. B), 

which is a planar robotic manipulandum. The MRIbot allowed two dimensional 

horizontal movements and produced velocity dependant forces at 200Hz on the  
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right hand and arm of the participant. The MRIbot arm length extending from the 

shoulder, to the elbow, to the hand was approximately 114cm. Participants held 

a handle grip located at the hand of approximately 9cm in height and 3.2cm in 

diameter. The MRIbot (figure 1.1 B) was connected to an air compressor, at a 

pressure of 100 PSI, providing air to the manipulandum pistons. The position of 

the manipulandum was provided by the position of the pistons, determined via 

linear optical encoders on the elbow and shoulder joints with an endpoint 

accuracy of 0.01mm. These encoders in turn connected to a PC which controlled 

the behavioural task, shown on a projected image to the participant via a mirror 

located directly above eyesight (figure. 1.1 A).  

 

 

 

 

 

Figure 1.0. 
Participant located 
within the mock 
fMRI scanner during 
the behavioural 
study with MRIbot 
located just outside 
the scanner within 
reaching distance of 
the participant’s 
right hand. 
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Protocol Development - Behavioural task  

 

 

 

The current study involved the development of a novel motor rotary behavioural 

task. The overall goal of the study was to develop a task that could be used in the 

fMRI scanner. Prior to this, it was important to identify the most effective 

behavioural task which allowed a differentiation to be observed between skill 

learning and motor adaptation, and to certify that the behavioural task was as 

compatible as possible with the requirements of fMRI scanning. This process of 

protocol development took place first using a velocity dependent force field robot 

(vBOT) which is a robot manipulandum. The vBOT was controlled by the hand 

and arm in a seated position, where movements took place in a horizontal plane. 

The following stages of protocol development involved the use of the MRIbot 

within the mock fMRI scanner. 

 

Figure 1.1. A Image of participant within mock fMRI scanner, showing how the 
projected visual behavioural task is observed by the participant via a projector and 
mirror directly above eyesight. B MRIbot located next to the mock fMRI scanner, 
attached to a table at the same height as the fMRI bed. This image shows the robot arm 
controlled by air pistons. 

A B 
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Desired qualities of protocol: 

• Movement qualities 

o Smooth movements for reduced movement artefacts. 

o Continuous movement rather than discrete individual movement for 

block design. 

• Block design 

o To fit contrast design (rest vs movement; force vs no-force). 

o Behavioural task to fit time to repeat (TR time) of fmri scanner. 

• Behavioural outcomes  

o Clearly separate measures of skill learning and motor adaptation 

within task. 

 

Taking the desired qualities of protocol into account, the current study involved 

four-stages of protocol development, to produce an effective behavioural task. All 

data from the behavioural sessions were collected on the MRIbot and transferred 

to a pc for offline analysis. This data was then analysed to extract behavioural 

parameters related to skill learning and motor adaptation. All behavioural data 

was analysed using MATLAB and SPSS. Statistics were produced, using dependent 

t-tests and repeated measures analysis of variance (ANOVAs) where post hoc tests 

were Bonferroni corrected, to investigate any significance using SPSS. The current 

novel motor rotary behavioural task is outlined in figure 1.2. The white ring target 

(diameter, 1.5 cm) had a linear acceleration for 4s at the beginning of each block 

where this acceleration was a value of 45 degrees per second per second. 
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Following these 4 seconds, the white ring target then travelled at an angular 

velocity of 180 degrees per second where each rotation was completed in 2s until 

the end of the block. The length of each block varied, which is stated within the 

protocol development section below. 

 

 The objective of the task was for the participant to control the red circular cursor 

(diameter, 1.0 cm), using their right hand holding the robotic manipulandum, and 

aimed the cursor to remain within the target ring for as long as possible (figure 

1.2). The behavioural task included null trials which contained no external 

perturbation, representing skill learning. Additionally, the behavioural task also 

included force field trials which contained external force field perturbations of 

18Ns-1 in an outward direction away from the target ring, representing both skill 

learning and motor adaptation. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Visual image of the rotary task which was 
projected onto a mirror (14x10cm) directly above the 
eyesight of the participant. White dashed circle 
represents the movement of the target but is not visible 
to the participant throughout the task. A Red circle 
(cursor) chases the white ring (target) in an 
anticlockwise direction. B Red circle turns green when 
the centre of the circle is inside the white ring. The 
length of time when the cursor is green defines the time 
on target measure. 

A B 



 

 17 

Behavioural task outcome measures 

Time on Target (%) 

Introduced by Renshaw and Weiss (1926) and used early on in pursuit rotor 

behavioural studies and has since been widely acknowledged in research (Eysenck 

and Frith, 1977).  Measured as the percentage (%) time during one full rotation 

in which the centre of the cursor has reached any point of the white target ring. 

This provided positive feedback to the participant, with the cursor to turning from 

red to green, showing they successfully reached the target. Outlier removal of a 

single trial was implemented which included any values outside the mean value 

±2xSD (standard deviation). 

 

Average Deviation (cm) 

Measured as the average distance and direction from the circumference of the 

target ring to where the cursor was located in centimetres in one full rotation. 

Outlier removal of a single trial was implemented which included any values 

outside the mean value ±2xSD (standard deviation). 

 

 

Protocol development of the behavioural task: Stage 1 

Stage one of protocol development involved testing the new novel rotary task for 

the first time on five participants. This behavioural task (figure 1.3.0) used the 

vBOT and included seven baseline null blocks (N) which took place on two 

consecutive days to test for consolidation of skill learning. Then four force field 
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blocks (F) and two washout blocks (WO) to test for motor adaptation and 

aftereffects. Each movement block contained ten trials of 20s, interspersed with 

20s rest. During the force field blocks, the force field was applied to the cursor in 

relation to the hand movement of the participant through space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N N N N F F F F W
O 

W
O N N N BREAK 

Figure 1.3.0. Timeline for stage one of protocol development of the behavioural task. 
N = Null field block, F= Force field block, WO= Washout block. 

Figure 1.3.1  
Results for A time on target, and B average deviation for stage one of protocol 
development of the behavioural task. Each point on the graph is an average of five 
participants’ results for one trial. Error bars represent standard error (SE). 

A 

B 

AVERAGE DEVIATION 
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Figure 1.3.1. A and 1.3.2 showed a significant increase from start to finish in time 

on target of 30.858±10.990% (t(4)=6.279, p=.003) as skill learning took place 

and performance improved for the participants. Additionally, there were 

significant increases in time on target from start to end of the second baseline 

block (14.813±11.393%, t(4)=2.907, p=.044), the force field block 

(24.986±8.800%, t(4)=6.349, p=.003) and the washout block 

(18.999±13.897%, t(4)=3.057, p=.038). This significance implied skill learning 

took place efficiently within all types of trial. However, performance never 

improved above 50% for time on target, which suggested the task needed to be 

altered to allow for higher level performance.  

 

Figure 1.3.1 B and 1.3.3 outlined two adaptation curves which were produced 

after the force field was implemented where the ability of the participants to track 

the target ring closer to the central point of the ring improved over time. During 

the force field block average deviation decreased by 1.508±.655cm from start to 

end (t(4)=5.147, p=.007). This significant decrease was followed by a similar but 

mirrored image for the washout block where average deviation increased by 

1.764±.810cm from start to end (t(4)=4.867, p= .008), this displayed aftereffects 

from the previous force field lock after the perturbation was removed. During this 

protocol of the behavioural task, skill learning and motor adaptation were 

observed. However, the overall duration of the task was very long, therefore it 

was aimed to produce a shorter behavioural task which included skill learning and 

motor adaptation observed at greater levels.  
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Protocol development of the behavioural task: Stage 2 

Stage one of protocol development demonstrated that the task produced 

measurable levels of skill learning and motor adaptation. In stage two of protocol 

development (figure 1.4.0.) the task was transferred to the MRIbot. During 

piloting it was noticed that the forces applied to the hand became very unstable 

when the force was dependent on the movement of the cursor controlled by the 

participant, due to the lags in the pneumatic system on the MRIbot. Therefore, the 

outward force applied to the hand was dependent on the target cursor to produce 

a smoother and more predictable force profile. This stage also identified an order 

of null blocks (N) and force blocks (F) to ensure the study protocol recognised 

Figure 1.3.3.  
Results for average deviation from the 
target. Each trial type contained the 
average of two trials from eight 
participants. Error bars represent SE. 
Significant differences indicated by 
**(p<.01). 

Figure 1.3.2.  
Results for time on target, representing skill 
learning. Each trial type contained the average 
of two trials from eight participants. Error bars 
represent SE. Significant differences indicated 
by *(p<.05) or **(p<.01). 
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both skill learning and motor adaptation, but was shorter than the previous 

protocol. Four blocks of null trials were carried out to allow initial skill learning. 

Following this were four blocks of force trials, to allow for further skill learning, 

but also motor adaptation due to the external force perturbations where 

participants had to compensate for the forces applied. Following this were two 

washout (WO) blocks, made up of null trials, to show aftereffects of the motor 

adaptation and provide evidence that adaptation took place. Each movement 

block contained ten trials of ten rotations of the white ring target. Every rotation 

took approximately two seconds, resulted in each trial lasting approximately 20s. 

Individual trials were separated by a rest of 15s and each block by a one-minute 

break to take allow rest time for each participant. 
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Figure 1.4.1  
Results for A time on target, and B Average deviation for stage one of protocol 
development of the behavioural task. Each point on the graph is an average of eight 
participants’ results for one trial. Error bars represent SE. 

Figure 1.4.0. Timeline for stage one of protocol development of the behavioural 
task. N = Null field block, F= Force field block, WO= Washout block. 

0 10 20 30 40 50 60 70 80 90 100
trial

0

20

40

60

80

100

tim
e
 o

n
 t
a
rg

e
t 
(%

)

TIME-ON-TARGET

Baseline (null field)
Adapt (force field)
Washout (null field)

0 10 20 30 40 50 60 70 80 90 100
Trial

-1.5

-1

-0.5

0

0.5

1

1.5

A
ve

ra
g
e
 d

e
vi

a
tio

n
 (

cm
)

IN/OUT

Baseline (null field)
Adapt (force field)
Washout (null field)

0 10 20 30 40 50 60 70 80 90 100
Trial

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

A
ve

ra
g
e
 A

n
g
u
la

r 
e
rr

o
r 

(c
m

)

(LEAD - LAG) ANGULAR ERROR

Baseline (null field)
Adapt (force field)
Washout (null field)

A 

B 

AVERAGE DEVIATION 



 

 22 

In figures 1.4.1 A and 1.4.2, a dependent samples t-test identified a gentle 

significant increase of 29.048±7.642% in time-on-target from the beginning of 

baseline until the end of washout (t(7)=10.751, p<.001), although this was an 

improvement, the task could have been modified to show a greater rate of skill 

learning. Although significant increases within blocks were present (figure 1.4.2), 

a greater improvement would be expected between each trial type to represent 

constant skill learning (start to end of baseline, 19.457±8.125%, t(7)=6.773, 

p<.001; start to end of force, 11.043±11.657%, t(7)=2.679, p=.032; start to end 

washout, 9.583±6.132%, t(7)=4.420, p=.003).  

 

In figure 1.4.3. the difference between “End Baseline’ and ‘Start adaptation’, 

outlines motor adaptation took place following the force perturbation, where 

average deviation increased significantly by .891±.514cm (t(7)=4.898,p=.002). 

Figures 1.4.1. B and 1.4.3. identified motor adaptation within the ‘Adapt (force 

field)’ section with a motor adaptation curve, in which the significant decrease of 

average deviation of .0696±.395cm (t(7)=4.983, p=.002) from start to finish of 

the adaptation block ended near to baseline. This motor adaptation took place at 

a very fast pace, observed on the graph (figure 1.4.1. B), in the initial force field 

block after only one trial where performance then plateaued at minimal average 

deviation. Following ‘End Adaptation’, an opposite de-adaptation curve took place 

in the ‘Washout (null field)’ (figures 1.4.1. B and 1.4.3.) where the average 

deviation significantly decreased by .668±.380cm (t(7)=4.965, p=.002). This de-

adaptation was evident following the removal of the external force perturbation, 
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also representing aftereffects from the previous force field blocks. Furthermore, 

the similar deviation of ‘Start Adaptation’ and ‘Start Washout’, but in opposite 

direction, further confirms motor adaptation (p=.632, when negative values were 

converted to positive values to directly compare deviation). Although adaptation 

was present, this could only be seen for two trials before returning to baseline, 

therefore the task was modified to encourage motor adaptation to be more 

prominent within the results.  

 

 

 

 

 
 

 

 

Protocol development of the behavioural task: stage three 

At the end of the second stage of protocol development, it was identified that the 

rate of skill learning and motor adaptation needed to be increased and made more 

Figure 1.4.3.  
Results for average deviation from the 
target. Each trial type contained the 
average of two trials from eight 
participants. Error bars represent SE. 
Significant differences indicated by 
**(p<.01). 

Figure 1.4.2.  
Results for time on target, representing 
skill learning. Each trial type contained 
the average of two trials from eight 
participants. Error bars represent SE. 
Significant differences indicated by 
*(p<.05), **(p<.01) or ***(p<.001). 
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prominent. The current protocol was adjusted due to learning and adaptation 

plateauing relatively quickly in stage two of protocol development. The null (N) 

and force (F) blocks were alternated to increase difficulty to observe if skill 

learning could continuously take place throughout, but also to see if motor 

adaptation could occur in every force block (figure 1.5.0.). Both null blocks and 

force blocks contained five trials in a counter clockwise direction. Additionally, 

the behavioural task was adjusted to be compatible with timing requirements for 

BOLD fMRI scanning, therefore the timing of each movement trial was altered to 

21s, separated by a rest of 21s. A two-minute break took place at half way through 

the testing blocks to allow recovery time for the participants. 
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Figure 1.5.1.  
Results for A time on target and B average deviation for stage two of protocol 
development for the behavioural task. Each point on the graph was an average of 
8 participants for one trial. Error bars represent SE. 

Figure 1.5.0. Timeline for stage two of protocol development of the behavioural task. 
N = Null field block, F= Force field block. 
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In figures 1.5.1 A and 1.5.2, an increase in time on target took place from start to 

finish (‘Null field 1’ to ‘Null field 6’), representing skill learning, with a significant 

increase of 36.540±14.624% (t(7)=7.067, p<.001). This increase in time on 

target mainly occurred within the first four blocks where the significant increase 

from ‘Null field 1’ to ‘Force field 2’ was 37.229±19.159% (t(7)=5.496, p<.001), 

suggesting a fast rate of initial skill learning. This initial fast rate of skill learning 

was followed by a much slower rate of skill learning between ‘Force field 2’ and 

‘Null field 6’ with a minor overall increase of .690± 8.843% (p=.832). The highest 

time on target was also observed within the force field trials (‘Force field 2’ = 

69.518±7.126%, ‘Force field 4’ = 74.571±5.278%), implying skill learning took 

place more efficiently within the force field trials and perhaps the subjects found 

these trials easier. 

 

The average deviation measure in figure 1.5.1 B displayed motor adaptation 

taking place, observed by the adaptation curves within the force-field blocks 

decreasing to near zero at the end of each block. Additionally, the null field blocks 

showed elements of de-adaptation as these results mirrored curves observed in 

the adaptation blocks. Initial level of high average deviation, following ‘Null field 

1’, at ‘Force field 1’ (.744±.579cm, t(7)=3.632, p=.008) and ‘Null field 2’ 

(.686±.296, t(7)=6.544, p<.001) displayed the first significant stages of the 

participants adapting to the force field and also being able to de-adapt during the 

null fields. In the second half of the experimental session, beginning at ‘Null field 

4’ overall average deviation had decreased and plateaued, implying adaptation 
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had improved and subjects were able to adapt to the alternating force fields and 

null blocks. There were no significant differences consecutively between these last 

5 blocks or between ‘Null field 4’ to Null field 6’ (.191±.284cm, p=0.099). 

 

Both measures of time on target and average deviation were promising 

throughout this stage of protocol development, following significant statistical 

analysis. However, the two null fields which occurred consecutively (Null field 3 

and 4) allowed greater repetition of the null field and reduced the repetition of 

the force field trials, therefore disrupted the rate of adaptation which decreased 

with the following force field trial. Consequently, in the final stage of protocol 

development, the current protocol was separated into 2 deliberate sessions with a 

dividing baseline or washout block to act as a break between the sessions. 

 

 

 

 

Figure 1.5.2.  
Each trial type contained the average of one trial from 8 participants at the beginning of 
each block. Error bars represent SE. Significant differences indicated by ***(p<.001). 
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Protocol development of the behavioural task: stage four 

At the end of the third stage of protocol development of the behavioural task, it 

was identified that skill learning and motor adaptation became more prominent 

within the results. Next it was important to make sure the behavioural task 

complied with fMRI requirements. The individual movement trials were changed 
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Figure 1.5.3.  
A Each trial type contained the average of one trial from 8 participants. Null field 1 was 
the end trial of this baseline block which presented the mean optimal performance of each 
participant. Every other plot was the first trial of each block. B All results from A converted 
to positive values. Both graphs contain only null and force field blocks. Error bars represent 
SE. Significant differences indicated by **(p<.01) or ***(p<.001). 
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to a total time of 21s, with each being separated by a rest period of 21s. This was 

because the TR time of the fMRI scanner was three seconds, therefore the 

behavioural task had to have a total time for movement and rest of a multiple of 

three. Next, reverse blocks were implemented into the protocol (R) which 

contained only two trials of rotations in the clockwise direction. These blocks were 

implemented to provide a baseline which could be compared to parts of skill 

learning and motor adaptation during the behavioural task and specific parts of 

the BOLD signal during fMRI scanning. These blocks only included two trials to 

ensure the participant did not repeat the task enough for adaptation to take place 

and improvement to occur. Null (N) and force (F) blocks contained five trials in 

the counter clockwise direction. A two-minute break took place approximately half 

way through the testing blocks in order to allow recovery time for the participants 

(figure 1.6.0.). 

 

 

 

 

 

Please see Appendix for methods section relating to fMRI. 
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Figure 1.6.0 Timeline for protocol development stage three of the behavioural task. 
R= Reverse field block, N = Null field block, F= Force field block. 
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Results  

Behavioural results from the finalised protocol performed in the mock fMRI 

scanner are presented here. Additional preliminary imaging data from two 

subjects who performed the task during fMRI are also presented.  

 

Behavioural results 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1.  
Each trial type contained the average time on target of one trial from eight 
participants at the end of each block. Error bars represent SE. Significant differences 
indicated by *(p<.05), **(p<.01) or ***(p<.001). 
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Figure 2.0.  
Results for (A) ‘Time on target’ and (B) ‘Average deviation’ for the behavioural task. 
Each point on the graph represented an average of eight participants for one trial. Error 
bars represent SE. 
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Time on target (%) 

The measure of time on target in the results represents the level of skill learning 

of the participants. During statistical analysis of time on target results (figure  2.0. 

A and 2.1.), behavioural data were split into groups. Reverse field blocks were 

analysed separately from the other behavioural data, as previously mentioned 

they were used as time point baselines to compare fMRI data to. The participants 

significantly increased their ability to track the target within the reverse field 

Figure 2.2.  
A Each trial type contained the amount of motor adaptation or de-adaptation within 
each block. These results were determined by difference in average deviation 
between the beginning and end of each block as an average of eight participants. B 
All results from A converted to positive values. Both graphs contain only null and 
force field blocks. Error bars represent SE. Significant differences indicated by 
*(p<.05). 
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blocks which only contained two trials in each block. This increase was shown by 

a repeated measures ANOVA, which revealed a significant time effect between the 

three reverse field blocks (F(2, 14) = 42.431, p<.001). Post hoc tests, which were 

Bonferroni corrected, revealed a significant increase between RF1 and RF2 of 

18.829±3.556% (p=0.003), RF2 and RF3 of 7.136±2.216% (p=.044), RF1 and 

RF3 of 25.965±2.809% (p<.001). 

 

The remaining behavioural blocks, which included null and force field blocks, 

were split into session 1 (null field 1, force field 1, null field 2, force field 2 and 

null field 3) and session 2 (null field 4, force field 3, null field 5, force field 4 and 

null field 6), shown in figure 2.1.  Participants learnt the behavioural task initially 

at a fast pace in session 1, this was followed by slower learning in session 2, which 

overall produced a learning curve in the results. A repeated measures ANOVA 

displayed this learning curve with analysis of the last trial of each block for every 

participant, this revealed a significant time effect between session 1 and session 2 

(F(1, 7) = 349.796, p<.001).  Post hoc tests, which were Bonferroni corrected, 

revealed significant differences within session 1, where participants very quickly 

learned how to track the target throughout both null and force field blocks. This 

fast learning was revealed in the post hoc analysis, which showed significant 

increases in time on target from the baseline null field 1 to null field 2 of 

14.892±2.455% (p=.005), from null field 1 to force field 2 of 21.329±4.692% 

(p=.027), from null field 1 to null field 3 of 21.360±3.926% (p<.001). 

Additionally, post hoc analysis revealed no significant differences in any blocks 
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within session 2, the difference in session 2 from null field 4 to null field 6 was 

0.454±1.406% (p=1.000). These results outlined how performance plateaued 

and the skill of tracking the target was learnt by the participants and could no 

longer improve.  

 

 

Average deviation  

Adaptation and the aftereffect (de-adaptation) show decrease in error in the 

opposite directions. In order to analyse the total amount of adaptation and de-

adaptation in each session without direction, positive and negative values were 

flipped in the de-adaptation trials to match the data of the adaptation trials, and 

produce a positive average value (figure 2.2B). The measure of mean block 

adaptation (the difference between the start and end of each block) in the results 

represented the level of motor adaptation or de-adaptation of the participants.  

 

During statistical analysis of mean block adaptation (figure 2.0. B), behavioural 

data was split into groups. Reverse field blocks were analysed separately from 

other behavioural data, as previously mentioned they were used as time point 

baselines to compare fMRI data to. The participants showed no change in 

behaviour within the reverse field blocks as no force was applied for motor 

adaptation to take place. It should also be noted that there is no aftereffect in the 

reverse blocks which suggests there is no transfer from adaptation in one circular 

direction to the other. These results were obtained by a repeated measures ANOVA 
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which revealed no significant time effect between the three reverse field blocks 

(F(2, 14) = 1.899, p=.186). 

 

The remaining behavioural blocks, which included null and force field blocks, 

were split into session 1 (null field 1, force field 1, null field 2, force field 2 and 

null field 3) and session 2 (null field 4, force field 3, null field 5, force field 4 and 

null field 6), shown in figure 2.2. Observed by adaptation curves (figure 2.0 B), 

following null field 1, there is within block motor adaptation throughout all force 

field blocks and de-adaptation observed by a mirrored curve, within all null blocks. 

Once the force had been implemented in force field 1, the amount of motor 

adaptation increased in subsequent blocks up until force field 2 (figure 2.2 B). 

This increase outlined the first stages of the participants adapting to the force field 

and also being able to de-adapt during the null fields. This initial increase however 

was non-significant, we believe, due to the high variability within the first 3 

blocks. This high variability suggested that the number of trials within each block 

needed to be increased in future testing to allow more practise for each 

participant. It was not until null field 3 where the rate of adaptation began to 

plateau as the ability of the participants to de-adapt to the previous force field 

block became more efficient by effectively by forming a motor memory of the 

block to come. This de-adaptation was represented in post hock tests, which were 

Bonferroni corrected, by a significant decrease of .389±.078cm (p=.016) between 

force field 2 and null field 3.  
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A repeated measures ANOVA revealed a significant time effect between session 1 

and session 2 (F(1, 7)=6.459, p=.039), suggesting a larger amount of motor 

adaptation taking place within session 1 compared with session 2. Subjects still 

adapted to force fields in session 2, observed by motor adaptation curves in figure 

2.0. B, however this motor adaptation plateaued to a similar rate which is why 

motor adaptation stabilised in blocks in session 2. This stabilisation was outlined 

by no significant difference (p=1.000) in motor adaptation between all blocks in 

session 2.  
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Discussion 

 

The current study was designed to develop a task that would provide a clear 

differentiation between skill learning and motor adaptation within a single 

behavioural task, with an ultimate aim to identify the neural networks which 

underpin both; whilst also providing evidence that skill learning and motor 

adaptation can take place simultaneously. A protocol development process took 

place throughout the study, involving a number of protocols which were improved 

at each stage of development. The novel motor behavioural task, inspired by the 

pursuit rotor (Koerth, 1922; Eysenck and Frith, 1977), was developed in order to 

gain the most effective behavioural results relating to skill learning and motor 

adaptation, which aimed to be replicated within the fMRI scanner.  

 

The findings of the current study show promise for the proposed identification of 

skill learning and motor adaptation as separate entities. The measures of time on 

target and average deviation were used to quantify skill learning and motor 

adaptation, respectively. Skill learning is difficult to define as it does not have a 

single definable feature. However, as previously mentioned, skill learning 

represents an improvement in motor movements within a behavioural task 

following repetition and practise. Skill learning can be captured by measuring 

improvement in speed and accuracy and therefore represents a positive shift in 

the speed-accuracy trade-off function (SAF) (Krakauer and Mazzoni, 2011; 

Diedrichsen and Kornysheva, 2015; Chen, Holland and Galea, 2018).  
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Previous skill learning studies used the aspects of speed and accuracy present in 

the SAF to produce measures of skill learning. Floyer-Lea and Matthews (2005) 

conducted a skill learning imaging study where participants held a magnetic 

resonance-compatible pressure sensor between their right thumb and fingers. The 

participants observed two vertical bars on a monitor and were instructed to 

control the pressure sensor by squeezing it at a required force so that the second 

vertical bar matched the height of the first vertical bar. Floyer-Lea and Matthews 

(2005) observed performance improvement in terms of accuracy and timing. 

Performance error was tracked and measured as the percentage of maximum 

force. Additionally, Reis et al. (2009) conducted another skill learning study, 

including anodal transcranial direct current stimulation (tDCS) on the motor 

cortex, which involved a sequential visual isometric pinch task. Participants were 

required to squeeze a force transducer with their thumb and index finger to 

control a cursor to produce a specific sequence with speed and accuracy. They 

produced a measure of skill learning relating to the SAF called the error rate which 

was measured as 1-accuracy, where accuracy was the trials per block with target 

hits in the correct sequence. Although the current study cannot directly measure 

the SAF because there is no measure of response time to a stimulus as the speed 

of the target is set, aspects of speed and accuracy were still incorporated into the 

results, via the measure of time on target. The percentage time on target was 

chosen as a measure of skill learning, as time is a ratio of distance and speed, this 

measure focused on the ability of the participants to generate the correct speed to 

track the target and how accurately the cursor could follow the target with 
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minimal distance away from the centre of the target. Time on target was also 

introduced by Renshaw and Weiss (1926) for the original pursuit rotor task to 

measure performance.  

 

Following the formation of an efficient measure of skill learning, time on target, 

trends in results could be observed. It is clear that skill learning is transferable 

between all movement blocks (whereas motor adaptation is not – see below). This 

transferable skill learning was evident in the current study, due to the 

improvement in time on target results throughout alternating of null, force and 

reverse field blocks. Specific evidence of transfer of skill learning in the current 

study was outlined in the reverse field blocks. These blocks were initially used to 

provide a baseline during functional scanning. As only two reverse trials were 

present in each block, it was expected that no skill learning would be able to take 

place here. However, the significant increase between reverse blocks shown in the 

results of time on target suggested motor skill learning took place during these 

two blocks even in a small amount of time and repetition. 

 

It is important to outline the stages of fast and then slow skill learning which took 

place consecutively throughout the behavioural blocks. Participants were initially 

able to increase the speed and accuracy of their responses to tracking the target 

ring at a quick pace, this can be seen in the first session of results. Following this, 

results suggest the motor skill learning capacity was reached at the start of session 

two where skill learning plateaued and no significant increase in time on target 
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was seen. Overall, this behavioural data represents a learning curve, which 

involves the fast initial motor skill learning, common in behavioural tasks, 

followed by slow skill learning, where the response to the task becomes more 

automatic and resistant to interference (Floyer-Lea and Matthews, 2004; Doyon 

and Benali, 2005; Dayan and Cohen, 2011). In comparison to current literature, 

previously identified as skill learning imaging studies, Reis et al. (2009) observed 

very similar results where a learning curve was present as skill measure increased 

and plateaued over time with practise. Floyer-Lea and Matthews (2005) also 

observed a learning curve as percentage tracking error initially decreased at a fast 

rate and then plateaued. 

 

 

Motor adaptation, in comparison to skill learning, is easier to define where an 

external perturbation requires a response to remain accurate under these altered 

conditions (Krakauer and Mazzoni, 2011). Previously, force field tasks have 

typically been used in reaching movements in a straight line where the required 

straight-line trajectory is deviated by a force (Shadmehr and Mussa-Ivaldi, 1994; 

Brashers-Krug, Shadmehr and Bizzi, 1996; Nezafat, Shadmehr and Holcomb, 

2001; Dierdrichsen et al., 2005). Therefore motor adaptation for these tasks is 

often measured as deviation, following a perturbation, often from a central line 

or a specific target. Specifically, lateral deviation or perpendicular displacement 

are accepted measures of error from a straight line, produced following force field 

implementation (Shadmehr and Holcomb, 1999; Nezafat, Shadmehr and 
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Holcomb, 2001; Dierdrichsen et al., 2005). In the current study, due to the circular 

movement of the behavioural task, average deviation was used rather than lateral 

deviation. Average deviation gave us a measure of error distance away from the 

target with direction. Most recent theories of motor adaptation used in force field 

reaching studies incorporate a multi-rate model. This model suggests that two 

processes underpin motor adaptation, a fast and slow process. These processes 

can be captured using clamp or catch trials (Shadmehr, Smith and Krakauer, 

2010). During these trials the amount of learning is measured by the lateral forces 

produced by the participants against the walls of a thin linear channel (Malfait 

and Ostry, 2004; Shadmehr, Smith and Krakauer, 2010). This specific measure of 

motor adaptation was not possible in the current study due to the circular 

trajectory however it is planned in future research to see if an equivalent clamp 

trial for a rotary task in a circular motion is plausible. 

 

Motor adaptation within the current study, represented by the average deviation 

measure can be seen as adaptation curves and de-adaptation curves (aftereffects). 

Unlike skill learning, motor adaptation appears not to transfer from forward to 

backward rotation, as adaptation curves are only present in force field blocks and 

opposite de-adaptation curves take place in the following null field blocks. 

Initially, following the implementation of a force field, participants began 

producing adaptation curves with large error. In subsequent trials, participants 

continued to adapt to the perturbations as performance improvement took place, 

outlined by a curvilinear decrease in average deviation within each block with 
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aftereffects in the opposite direction. This improvement also demonstrates savings 

where faster re-adaptation and a lower error at start took place every time the 

subject was exposed to the adaptation condition again (Dayan and Cohen, 2011). 

Motor adaptation, and therefore performance, then plateaued in session 2 where 

the adaptation curves observed in each block became much shallower. Internal 

model formation is key within these processes of motor adaptation where an 

internal model of the experienced force field is developed. Such developments 

take place mostly in the early stages of the task, which is why a steep adaptation 

curve is often observed initially, followed by a more shallow curve where motor 

error decreases to low levels (Shadmehr and Mussa-Ivaldi, 1994; Nezafat, 

Shadmehr and Holcomb, 2001).  

 

These theories suggest that motor adaptation involves the adaptation of a forward 

model in response to the force dynamics which were experienced. This forward 

model is then able to predict the required response whenever the force field is 

experienced. This forward model along with the inverse model, which is also 

adapted to produce the required rotational trajectory of the cursor, together, 

construct the most effective response to the force field trials (Flanagan et al., 

2003). 

 

During the task, participants reported that it was easier to respond to the forces, 

rather than the null field trials. The constant outward force gives the subjects a 

reference to continually push against, which naturally would create a circular 
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movement. Therefore, along with the ability to adapt, it may be that a factor 

leading to improvement in performance in the adaptation trials could be due to 

the stiffness or stabilisation of the arm, wrist and hand during the task, which 

reduces the sensitivity to the forces perturbed upon the subject (Shadmehr and 

Mussa-Ivaldi, 1994; Flanagan et al., 2003). 

 

 

 

Further research  

The intention of this study was to confirm the feasibility of this behavioural task 

within an fMRI scanner, including the large amount of equipment associated with 

the behavioural task such as an air compressor and numerous wired connections. 

Positively, the behavioural task successfully took place within the fMRI scanner 

and pilot imaging data was recorded (see Appendix). Initial fMRI imaging data 

managed to highlight some areas of activation which were comparable to other 

motor adaptation behavioural tasks, however overall the data was inadequate and 

needed improving. In future research, the relevant procedures will be 

implemented to reduce movement artefacts to confirm these results. These 

procedures will include fMRI scans to gain the neural activations related to vision 

which will then be discarded from results to acquire the most accurate neural data 

relate to the production of motor behaviour for the rotary task (Dierdrichsen et 

al., 2005; McGregor and Gribble, 2015). Furthermore, sample size will be 

increased and an effective general linear model will be produced for higher level 
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fMRI statistical analysis; ultimately producing optimal fMRI results relating to the 

neural regions which underpin skill learning and motor adaptation. 

 

Conclusion 

Overall, this study endeavoured to isolate measures of skill learning and motor 

adaptation separately within a novel rotary behavioural task. After completing 

this, it is evident from behavioural results of time on target and average deviation 

that motor skill learning did take place throughout the entire behavioural task 

alongside adaptation. Adaptation was only produced and observed within the 

force field blocks and with after effects observed in following null field blocks. 

This study aimed to further provide evidence of skill learning and motor 

adaptation within fMRI results. Nevertheless, the two case studies produced from 

fMRI scanning identified many areas to improve in order to gain the most effective 

results. The current behavioural task, in comparison to reaching force field tasks, 

was ideal for an fMRI study due to its continuous design which lends itself to fMRI 

scanning. Further research of this behavioural task within fMRI scanning is 

promising and the protocol and analysis will be improved with greater fMRI 

experience and practise. 
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Appendix 

FMRI scan acquisition 

All data was acquired on a Philips 3T Achieva system with a 32-sense head coil. 

For functional scans, four dummy scans initially took place, which were followed 

by functional scans of 400 dynamics, time to repeat (TR) 3 seconds, flip angle 85°, 

time to echo (TE) 40ms, resolution 2.5x2.5x3mm, slice thickness 3mm. T1-

weighted structural images were acquired with a resolution of 1x1x1mm. A B0 

field map was acquired with 3x3x2mm resolution, TR shortest, TE 9.22ms, and 

46 slices.  

 

 

Artifacts 

The potential occurrence of artifacts was reduced by asking the participant to keep 

as still as possible during scanning and any metal was removed from the 

participant before entering the scanner room. Rest time was also provided during 

the scanning session, between movement trials and between the two sessions, so 

the participant could remain relaxed for the duration of the scan to avoid any 

unwanted head movement which could lead to the occurrence of artefacts. 

 

 

Imaging procedures 

Prior to fMRI scanning, all participants received verbal instructions on what they 

should expect in the scanner and how the task was to be completed. Participants 

were positioned in the scanner in a supine position where they were in a 
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comfortable reaching distance of the MRIbot handle with their right hand. Before 

scanning started, all participants completed a training session which included 

familiarisation with the behavioural task within the scanner. This involved 

approximately one minute of unperturbed movement within a null field block. It 

also enabled the participants to find the most comfortable position within the 

scanner where they could reach all points of the behavioural task comfortably with 

their right hand and arm. 

 

 

Imaging behavioural task 

As outlined in the protocol development, the behavioural task was adapted several 

times to ensure it would be the most effective during scan acquisition. A final 

protocol development took place prior to the first scan (figure 1.5).  

 

 

 

 

The behavioural task was split into identical sessions (session 1 and session 2) 

which took place before and after a break occurred (figure 1.5.). Each session 

lasted approximately 18 minutes and triggered the start of the functional scan 

once the task was initiated. Each block included four trials rather than five 

included in the previous protocol, to reduce scan time to ensure the most detailed 

R N N F F N R BREAK R N N F F N R 

Figure 1.5. Timeline for protocol development of the behavioural task to be used 
within fmri scanning. R= Reverse field block, N = Null field block, F= Force field 
block. 
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scan possible was acquired. The break included a five-minute anatomical scan 

which also acted as a rest for the participants. This protocol meant that both 

sessions of behavioural and functional data could be compared directly. 

 

 

Imaging Data Analysis 

Functional imaging data was analysed using functional magnetic resonance 

imaging of the brain software library (FSL) FMRI expert analysis tool (FEAT) 

FMRI analysis and FSLeyes, in which this analysis was based on general linear 

modelling (Woolrich et al., 2001). During data pre-processing, high-pass temporal 

filtering took place to remove certain low frequency trends with a cut off frequency 

of 100s, along with 5mm spatial smoothing of full-width at half maximum 

(FWHM) resolution, along with functional magnetic resonance imaging of the 

brain’s (FMRIB) motion correction linear registration tool (MCFLIRT) for motion 

correction (Jenkinson et al., 2002). The brain extraction tool (BET) provided by 

FSL was used for brain extraction, and functional scans were normalised to the 

Montreal Neurological Institute (MNI) template. Following this, statistics were 

completed to produce a statistical model which included seven regressors as 

explanatory variables with a convolution of double-gamma haemodynamic 

response function. Contrasts of movement>rest, force>null, null>force, average 

deviation and time on target were acquired. Whilst time on target, average 

deviation, speed and the temporal derivative of speed, acceleration, were also 

used within the statistical model to account for some motion correction, these 
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were removed from the results. Post statistics used cluster thresholding with a z 

threshold of 4.0. and a p value of 0.05. 

 

 

fMRI results 

The current study aimed to produce a novel rotary behavioural task, resulting in 

successful behavioural results which could be replicated within an fMRI scanner 

where neural correlates of skill learning and motor adaptation could be recorded. 

Following successfully obtaining behavioural results which differentiated between 

skill learning and motor adaptation in the mock scanner, the task was transferred 

to the real fMRI scanner, where similar behavioural results were displayed. 

Importantly, we have produced a novel motor task which can successfully take 

place within an fMRI scanner. However, the two data sets which were collected 

within fMRI scanning, due to large movement artefacts, did not display data of 

the quality we hope for. The fMRI data collected involved large movement 

artefacts around the edge of the brain which could potentially be driving all 

activations. During the completion of first level analysis of the fMRI data, the 

highest voxel cluster activations did in fact take place in expected neural regions 

related to motor adaptation. But these cluster activations along with large 

movement artefacts, observed in the results below, highlight errors and points for 

improvement within the fMRI scanning protocol and analysis. 
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fMRI case study one 

Figures 3.0., 3.1. and 3.2 represented some neural areas which presented the 

highest activation during force field trials. These highlighted neural areas, which 

consisted of voxel clusters, had a significance value of <.001. These areas of 

neural activation were believed to be the neural correlates relating to force field 

trials, and therefore motor adaptation. Neural correlates with the highest 

activation included large areas of the cerebellum (figure 3.0.) and areas of the 

temporal lobe (figure 3.1.). Additionally, neural correlates of vision were observed 

within the occipital lobe and visual cortex, which were largely important in 

observation of the behavioural task. Moreover, the temporal gyrus, cerebral 

cortex, primary somatosensory cortex, premotor cortex, primary motor cortex and 

areas of the basal ganglia such as the putamen contained areas of activation 

(figure 3.2). 

 

 

 

 

 

Figure 3.0.  
Activation (p<.001) for case study one within A sagittal, B coronal and C axial planes. Statistical 
contrast of force>null. These image planes, together, outline the greatest activation in areas of 
the cerebellum. The cluster with the greatest fMRI activation within the cerebellum consisted 
of  256 voxels. 
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fMRI case study two 

In comparison to case study one, which presented the neural correlates of 

force>null, the second case study (figures 4.0., 4.1. and 4.2.) represented some 

neural areas which presented the highest activations during movement, using the 

statistical contrast of movement>rest. During this second case study, statistical 

data could not be acquired for the contrast of force>null, so could not be 

compared with case study one. As a result, given this statistical fMRI data was 

Figure 3.1.  
Activation (p<.001) for case study one within A sagittal, B coronal and C axial planes. Statistical 
contrast of force>null. These image planes together outline the greatest activation, mainly in 
areas of the temporal lobe. The cluster with the greatest fMRI activation within the temporal 
lobe consisted of 116 voxels. Within these images, areas of noise activation were observed 
which did not correlate with a neural atlas. 
 

Figure 3.2.  
Activation (p<.001) for case study one within A sagittal, B coronal and C axial planes. Statistical 
contrast of force>null. These image planes, together, outline the greatest activation in areas of 
the primary somatosensory cortex, premotor cortex and the primary motor cortex. The cluster 
with the greatest fMRI activation within these neural areas consisted of  68 voxels. 
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from another individual participant, it was important to present results which 

highlighted neural areas relating to the behavioural task, in this case, movement. 

All highlighted neural areas, which consisted of voxel clusters, had a significance 

value of <.001. Neural correlates with the highest activation include large areas 

of the pre-motor cortex, the primary motor cortex and the primary somatosensory 

cortex (figure 4.0.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.0.  
Activation (p<.001) for case study two within A sagittal, B coronal and C axial planes. Statistical 
contrast of movement>rest. These image planes, together, outline the greatest activation in 
areas of the pre-motor cortex, the primary motor cortex and the primary somatosensory cortex. 
The cluster with the greatest fMRI activation within these areas consisted of  1234 voxels. 
 

Figure 4.1.  
Activation (p<.001) for case study one within A sagittal, B coronal and C axial planes. Statistical 
contrast of movement>rest. These image planes, together, outline the greatest activation mainly 
in the parietal and temporal lobes. The cluster with the greatest fMRI activation within the 
parietal and temporal lobes consisted of  361 voxels. 
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Figure 4.2.  
Activation (p<.001) for case study one within A sagittal, B coronal and C axial planes. Statistical 
contrast of movement>rest. These image planes, together, outline the greatest activation in the 
occipital lobe and visual cortex. The cluster with the greatest fMRI activation within the parietal 
and temporal lobes consisted of 78 voxels. 
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