Mitchell, Philippa (2019). Molecular imprinting of glycoprotein recognition sites using surface initiated radical polymerization. University of Birmingham. Ph.D.
|
Mitchell2019PhD.pdf
Text - Accepted Version Available under License All rights reserved. Download (5MB) | Preview |
Abstract
Since the importance of glycoproteins and their role in the development of diseases are becoming increasingly recognised there is a growing need for highly sensitive and selective glycoprotein recognition platforms. Herein, a novel molecularly imprinted glycoprotein sensor that displays a high affinity for its target glycoprotein was developed using surface-initiated radical polymerisation. The sensor was developed by first fabricating a suitable self-assembled monolayer (SAM) that was then used as the foundation from which the polymerisation procedure to later be used for the imprinting procedure was developed. Particular focus was given to establishing control over the polymerisation reaction in order to optimise the thickness of the polymer layer to the desired depth. Alongside these investigations, complexation studies aimed at elucidating the binding of a functional boronic acid monomer to the model glycoprotein, RNase B, were undertaken using mass spectrometry. Here, we aimed to optimise the binding conditions to encourage the monomer ligand to bind the glycoprotein, whilst also ensuring that the protein remained stable in these conditions. Finally, we brought together these studies to then form imprints for RNase B. Several imprints were fabricated and then extensively characterised, following which surface plasmon resonance (SPR) was used to examine their binding affinities towards the RNase B target and control glycoproteins.
Type of Work: | Thesis (Doctorates > Ph.D.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | |||||||||
Supervisor(s): |
|
|||||||||
Licence: | All rights reserved | |||||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | |||||||||
School or Department: | School of Chemical Engineering | |||||||||
Funders: | Engineering and Physical Sciences Research Council | |||||||||
Subjects: | Q Science > Q Science (General) Q Science > QD Chemistry T Technology > TP Chemical technology |
|||||||||
URI: | http://etheses.bham.ac.uk/id/eprint/8865 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year