Semi-supervised methods for out-of-domain dependency parsing

Yu, Juntao (2018). Semi-supervised methods for out-of-domain dependency parsing. University of Birmingham. Ph.D.

[img]
Preview
Yu18PhD.pdf
Text - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview

Abstract

Dependency parsing is one of the important natural language processing tasks that assigns syntactic trees to texts. Due to the wider availability of dependency corpora and improved parsing and machine learning techniques, parsing accuracies of supervised learning-based systems have been significantly improved. However, due to the nature of supervised learning, those parsing systems highly rely on the manually annotated training corpora. They work reasonably good on the in-domain data but the performance drops significantly when tested on out-of-domain texts. To bridge the performance gap between in-domain and out-of-domain, this thesis investigates three semi-supervised techniques for out-of-domain dependency parsing, namely co-training, self-training and dependency language models. Our approaches use easily obtainable unlabelled data to improve out-of-domain parsing accuracies without the need of expensive corpora annotation. The evaluations on several English domains and multi-lingual data show quite good improvements on parsing accuracy. Overall this work conducted a survey of semi-supervised methods for out-of-domain dependency parsing, where I extended and compared a number of important semi-supervised methods in a unified framework. The comparison between those techniques shows that self-training works equally well as co-training on out-of-domain parsing, while dependency language models can improve both in- and out-of-domain accuracies.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Bohnet, BerndUNSPECIFIEDUNSPECIFIED
Lee, MarkUNSPECIFIEDUNSPECIFIED
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: None/not applicable
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
URI: http://etheses.bham.ac.uk/id/eprint/8734

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year