Development of novel tools for assisted reproductive technologies based on electrically switchable surfaces

Downloads

Downloads per month over past year

Santos Gomes, Barbara Micaela (2019). Development of novel tools for assisted reproductive technologies based on electrically switchable surfaces. University of Birmingham. Ph.D.

[img]
Preview
SantosGomes19PhD.pdf
PDF

Download (39MB)

Abstract

A variety of stimuli have been explored in the last few decades to develop dynamic interfaces with biotechnological and biomedical applications, such as biosensors, point of care devices, cell behaviour control and tissue engineering. In this work, the use of an electrical stimulus was explored for the development of a smart switchable surface with the ability to, in an on-demand fashion, expose and conceal progesterone - an ovarian steroid hormone which plays a crucial role as a modulator of sperm function. In this system, an electric potential drives a conformational change in the surface bound peptide moiety with fast response time. Focus was given to the design of a device that could be used in assisted reproductive treatments and grown into a commercially marketable product. Whilst being developed for assessment of sperm quality and fertilizing potential, the application of this system can be widely extended as this approach can be applied to other relevant antigen-antibody systems, which have so far only been evaluated in static conditions. Fabrication of a micropatterned surface was performed and a novel method for orthogonal functionalisation of gold and glass was developed, where gold was functionalised with a polyethylene glycol thiol self-assembled monolayer (SAM) and glass was functionalised with a covalently bound poly-d-lysine layer for sperm cell attachment. In addition to the investigations on SAMs and mixed SAMs formed on gold, silicon and glass substrates, studies with fluospheres were also undertaken. These tools are aimed to be used for further studies with cells, namely the investigation of their response in terms of Ca2+ signalling, a key player in the regulation of sperm function.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Mendes, PaulaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemical Engineering
Funders: None/not applicable
Subjects: T Technology > TP Chemical technology
URI: http://etheses.bham.ac.uk/id/eprint/8690

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year