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ABSTRACT 

Cardiac resynchronisation therapy (CRT) forms part of the established treatment for heart 

failure, but individual response is variable. Deformation imaging permits assessment of 

myocardial mechanics. Echocardiography-based techniques are unable to refine patient 

selection for CRT, although can identify preferential late mechanically activated (LMA) 

targets for lead placement. Feature-tracking (FT) is a rapid cardiac magnetic resonance 

(CMR) deformation technique performed on standard acquisition, overcoming the 

limitations of myocardial tagging (MT).  This work aims to validate FT-CMR against MT and 

establish its role in patient selection and left ventricular (LV) lead deployment in the context 

of CRT. 

A validation study performed on healthy volunteers and cardiomyopathy patients 

demonstrated good intra- and inter-observer variability, and reasonable agreement 

compared with MT. In a retrospective observational study of CRT recipients, greater baseline 

dyssynchrony did not predict LV reverse remodelling (LVRR) or symptomatic response at 6 

months, but low strain was associated with a high risk of cardiovascular mortality. 

Furthermore, lead deployment over non-scarred, LMA myocardium, assessed using late 

gadolinium enhancement (LGE) and FT-CMR was associated with better LVRR and long term 

survival.  

FT-CMR showed no ability to enhance patient selection for CRT but, coupled with LGE CMR, 

has a role in guiding LV lead deployment.   
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1 INTRODUCTION: CARDIAC RESYNCHRONISATION THERAPY – A REVOLUTION IN 

HEART FAILURE THERAPY 

1.1 Heart failure 

Heart failure is a complex syndrome of symptoms and signs resulting from any impairment 

of the function of the myocardial pump.  This impairment can be secondary to any 

abnormality of the structure, mechanical function or electrical activation of the heart. 

1.1.1 The heart failure epidemic 

The burden of heart failure on healthcare systems is increasing in developed countries as a 

consequence of the ageing population and the improving management and survival from 

myocardial infarction.  The prevalence of heart failure within the United Kingdom is 550,000 

(Townsend N et al., 2014) and even larger numbers of patients have discernible impairment 

of left ventricular function on imaging examination, but are at a pre-symptomatic stage 

(Redfield et al., 2003). The prevalence of heart failure rises from 0.7% in the 45-54 years age 

group to 8.4% in those aged 75 years or greater (Redfield et al., 2003). Heart failure currently 

accounts for 2% of inpatient bed days, 5% of emergency admissions, and the National 

Institute for Health and Care Excellence (NICE) projects a 50% increase in heart failure 

admissions over the next quarter of a century (NICE, 2010).     

The devastating effects on quality of life are not restricted to exercise intolerance. Further 

physical symptoms, social consequences and the detrimental effect on mental health lead to 

a comparable decrease in quality of life to that associated with stroke or chronic 
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haemodialysis (Juenger et al., 2002). Survival following an index admission for heart failure is 

shorter than that observed following a new diagnosis of a colon, breast, bladder, ovarian or 

prostate malignancy (Stewart et al., 2001). 

1.1.2 Systolic versus diastolic dysfunction 

Central to the management of the patient with heart failure is categorisation according to 

left ventricular ejection fraction (LVEF). This dichotomises patients into distinct cohorts with 

different demographics, aetiologies, pathophysiology, evidence based management 

strategies and disease trajectories. 

For patients with a LVEF <40% the term heart failure with reduced ejection fraction (HFrEF) 

is widely agreed and the underlying problem is predominantly one of impaired LV systolic 

pump function. The underlying pathophysiology of this group is well understood (1.1.4) 

which has facilitated the development of targeted treatments. 

The management of patients with heart failure despite a normal LVEF is more problematic, 

and there is even deliberation over the most suitable name for this syndrome (Sanderson, 

2014). Impairment of diastolic relaxation and filling are key components, with left atrial 

dilatation, LV hypertrophy and elevated filling pressures seen on imaging (Ponikowski et al., 

2016). The term heart failure with reduced ejection fraction (HFpEF) is preferred to diastolic 

heart failure as reductions in systolic long axis function, strain, LV twist and reserve have 

been demonstrated (Borlaug et al., 2010; Tan et al., 2009). Variance in the diagnosis of 
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HFpEF has obstructed large scale study of this syndrome, and its treatment base lags that of 

HFrEF.  

1.1.3 Aetiology of HFrEF 

The list of aetiologies of heart failure is diverse, and the prevalence of these is geographically 

dependant. Within the United Kingdom coronary artery disease is the major cause of heart 

failure, with many patients having had a previous myocardial infarction (Petersen et al., 

2002), and such patients are labelled as having an ischaemic cardiomyopathy (ICM). Primary 

cardiomyopathies, hypertension, valvular disease, metabolic and infiltrative diseases, 

conduction disease and congenital heart disease are other aetiologies and are occasionally 

categorised together as non-ischaemic cardiomyopathies (NICM), but due to their 

heterogeneity this is often counter-productive.   

Idiopathic dilated cardiomyopathy (IDCM) is a primary heart muscle disorder with LV systolic 

dysfunction in the absence of abnormal loading conditions (Elliott, 2000). After coronary 

artery disease it is the most prevalent cause of heart failure in the developed world. It 

accounts for 50% of heart failure cases where the diagnosis is not clear at presentation 

(Felker et al., 2000). Rather than being a single disease, it is the consequence of a number of 

environmental and genetic processes which present with a similar phenotype. At present 

over 60 causal genes have been identified (Japp et al., 2016).    
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1.1.4 Pathophysiology of HFrEF 

Myocardial injury from any cause leads to reductions in cardiac stroke volume (SV), cardiac 

output (CO), and their product: mean arterial pressure (MAP). This triggers a number of 

compensatory mechanisms and, despite being initially beneficial, these interrelated 

processes sustain a number of deleterious vicious cycles.  

Frank-Starling mechanism. As CO decreases, LV end diastolic volume and pressure (LVEDP) 

rise, and the extra myocardial stretch (pre-load) increases myocardial contractility via a 

process known as homeometric autoregulation (Sarnoff et al., 1960). Whilst this initially 

maintains performance, further increases in LVEDP result in successively smaller contractile 

rewards, and as systolic function falls further so does the benefit of this compensatory 

mechanism. Yet the increasing LVEDP leads to elevated pulmonary capillary pressures and 

dyspnoea, cough and wheeze attributable to pulmonary congestion.  

Ventricular remodelling. The haemodynamic overload leads to myocyte and ventricular 

hypertrophy and dilatation in an attempt to negate increasing wall stress (Cohn et al., 2000; 

Sandler et al., 1963).  This remodelling process leads to changes in ventricular size, shape 

and function. Ventricular dilatation interferes with the sophisticated geometrical construct 

of the ventricle; not only is pump efficiency reduced, but atrioventricular valve ring stretch 

leads to valvular incompetence which exacerbates volume overload.  Eventually, elevated 

wall tension promotes myocyte apoptosis and myocardial fibrosis (Cohn et al., 2000).       
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Neurohumoral adaptations. A number of systemic processes, which are probable 

evolutional responses to shock, leads to increased arterial vasoconstriction and sodium and 

water retention (Camm et al., 2009).  Expanding the intravascular volume initially improves 

cardiac output by exploiting the Frank Starling mechanism. Reduced stimulation of arterial 

baroreceptors augments sympathetic nervous system (SNS) drive, which directly increases 

heart rate, myocardial contractility and arterial vasoconstriction. Sympathetic overdrive is 

also a determinant in cardiac rhythm instability in heart failure.   Direct sympathetic flow to 

Beta-1 adrenergic receptors is partly responsible for increased Renin release from the 

juxtaglomerular apparatus of the kidney, alongside reduced MAP at the renal afferent 

arterioles. Activation of the renin-angiotensin–aldosterone system (RAAS) promotes volume 

retention, vasoconstriction, further activation of the SNS and myocardial fibrosis (Lijnen et 

al., 2000). Angiotensin II mediated Vasopressin release from the hypothalamus further 

contributes to fluid retention.   

1.1.5 Pharmacological treatment of HFrEF 

Clinical trials have focused on patients with LVEF<40%. It is only in HFrEF that there are 

proven therapies that improve symptoms and prognosis. Beta-blockers (CIBIS-II Investigators 

and Committees, 1999; Flather et al., 2005; 1999; Packer et al., 2002) and Angiotensin 

Converting Enzyme (ACE) inhibitors (The Consensus Trial Study Group, 1987; The SOLVD 

Investigators, 1991) have a strong evidence base and, in combination with diuretics, form 

the foundation of heart failure pharmacotherapy.  
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ACE inhibitors diminish the activity of the RAAS by preventing the conversion of inactive 

Angiotensin I to active Angiotensin II within the pulmonary and renal endothelium. In those 

patients in whom the resultant accumulation of bradykinin restricts use due to cough or 

angio-oedema, they can be substituted for an Angiotensin receptor blocker (ARB), which 

inhibits the RAAS at a later stage but provides similar benefits (Cohn et al., 2001; Granger et 

al., 2003; McMurray et al., 2003). The prognostic benefits of beta-blockade are additional to 

those bestowed from ACE inhibition, and are due to protection from the harmful effects of 

excessive sympathetic activation. 

Diuretics ameliorate the signs and symptoms of heart failure by blocking reabsorption of 

sodium and water from the renal tubule. Their widespread use pre-dates the era of the 

randomised controlled trial but, despite no evidence base, their role is unquestionable. 

Whilst loop diuretics are most widely used, mineralocorticoid receptor antagonists also have 

a diuretic effect, further impede the RAAS, and their addition to above therapies provides 

further measurable benefit in selected populations (Pitt et al., 2003; Pitt et al., 1999; Zannad 

et al., 2011).  

The above drugs all target the counter-productive neurohumoral responses. Neprilysin 

inhibitors offer the potential for further advances in management by enhancing 

advantageous systemic responses. Neprilysin degregates biologically active natriuretic 

peptides and its inhibition causes vasodilation, natriuresis, and diuresis. When combined 

with an ARB this compound has been shown to provide a further survival advantage 

compared to ACE inhibition in selected patients (McMurray et al., 2014).   
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1.2 Cardiac resynchronisation therapy 

1.2.1 Dyssynchrony and wasted work 

The temporal sequence of events within the cardiac cycle is commonly disrupted in heart 

failure. This phenomenon, dyssynchrony, exists at the atrioventricular, inter-ventricular and 

intra-ventricular levels and leads to multiple inefficiencies that negatively impact cardiac 

function. The paradigm of cardiac resynchronisation therapy (CRT) is that correction of these 

abnormal electrical and mechanical abnormalities improves cardiac function. 

AV dyssynchrony, readily identified by prolongation of the PR interval on the 

electrocardiogram, is common place in heart failure and can be a factor limiting optimal 

beta-blockade.  With prolonged AV delay, atrial priming occurs too early in diastole, reducing 

both the passive LV filling time and the contribution of the atrial ‘kick’ towards cardiac 

output. Furthermore, the delay in ventricular activation after atrial emptying retards 

papillary muscle contraction and mitral valve closure and, as the left atrium relaxes, a 

ventricular-atrial pressure gradient is generated driving pre-systolic mitral regurgitation 

(Nishimura et al., 1995). These disturbances elevate left atrial pressure whilst reducing LV 

preload at the onset of systole.   

Inter-ventricular dyssynchrony disturbs the harmonic functional relationship between both 

ventricles. With left bundle branch block (LBBB), the pressure generated in the right 

ventricle (RV) during isovolumic contraction is greater than the simultaneous end-diastolic 

pressure within the LV (Grines et al., 1989). This pressure gradient produces an early 

abnormal inward LV septal motion. During LV ejection there is a subsequent paradoxical 
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outward anteroseptal movement due to the low pressure within the now comparatively 

volume deplete RV. This reduces local septal (and thus global) ejection fraction and increases 

the LV end systolic volume (LVEDV). 

Disruption of normal activation leads to dis-coordinate contraction of segments within the 

LV itself. With LBBB, rather than contribute to LV ejection, the forces generated by earlier 

contracting septal regions are dissipated as pre-stretch of the LV free wall. As the postero-

lateral papillary muscle will be yet to contract, further cardiac output will be lost due to sub-

optimal mitral valve closure and mitral regurgitation. Later activated segments contract 

under a higher wall stress, and energy is wasted stretching the now relaxing opposite 

walls.  Although the converse is true in right bundle branch block (RBBB), the deleterious 

effects of intra-ventricular dyssynchrony are not as pronounced (Byrne et al., 2007). The 

septum is still loaded from its right ventricular aspect, which to some extent protects from 

pre-stretch during early contraction of the lateral free wall. 

1.2.2 The theoretical basis of CRT 

The first attempts to resynchronise the heart targeted AV dyssynchrony in isolation with 

conventional dual chamber pacing. The hypothesis was that in patients with first degree 

heart block, dual chamber pacing programmed with a short AV delay would beneficially 

prolong LV filling time and reduce pre-systolic mitral regurgitation. Despite proof of principle 

studies showing an immediate improvement in LV filling time and cardiac output (Auricchio 

et al., 1993; Brecker et al., 1992), this augmentation was seldom maintained and this 

strategy at best provided no benefit (Gold et al., 1995; Linde et al., 1995), but was probably 
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detrimental (Nagele et al., 2002). In hindsight the failure of dual chamber pacing is not 

surprising now that the deleterious consequences of right ventricular pacing are appreciated 

(Sweeney et al., 2003; Wilkoff et al., 2002). 

More complete resynchronisation was demonstrated by Cazeau et al. in 1994, when they 

performed four chamber (bi-atrial and bi-ventricular) pacing  in a 54 year old man with heart 

failure refractory to medical therapy, and electro- and echocardiographic evidence of 

dyssynchrony (Cazeau et al., 1994). The haemodynamic response to this was so considerable 

(cardiac output increased from 3.9L to 5.7L and pulmonary capillary wedge pressure [PCWP] 

decreased from 36mmHg to 25mmHg) that they implanted the first permanent CRT device 

using an epicardial LV lead; the recipient improved from New York Heart Association (NYHA) 

class IV to II and lost 17kg of fluid in less than 2 months.       

 A number of case series demonstrated the acute haemodynamic benefits of cardiac 

resynchronisation. The first studied 8 patients with end stage heart failure refractory to 

optimal medical therapy and wide QRS complexes (Cazeau et al., 1996). Compared to 

baseline, temporary biventricular pacing improved mean cardiac index by 25% and 

decreased PWCP by 17%. These results were duplicated in two similar, but larger (41 

patients in aggregate) case series (Blanc et al., 1997; Leclercq et al., 1998b). Interestingly, in 

all three studies, despite a group improvement in haemodynamics, one third of patients had 

no response to resynchronisation. 
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In these preliminary studies temporary LV pacing was accomplished via trans-aortic arterial 

electrodes with temporary systems. The earliest permanent systems required surgical 

thoracoscopic placed epicardial LV electrodes. This was not suitable for widespread use, but  

before the turn of the century two French centres described the use of specially designed 

pacing leads that could be implanted transvenously to pace the LV epicardially via branches 

of the coronary sinus (Daubert et al., 1998), and this remains the conventional approach to 

CRT implantation.  

1.2.3 Early landmark studies 

The MUSTIC (multisite stimulation in cardiomyopathies) study confirmed that CRT could be 

delivered safely and effectively, producing improvements in patients’ symptoms and 

exercise tolerance (Cazeau et al., 2001). In this single-blinded, randomised, cross-over study, 

active CRT improved performance in the six minute walk test (6MWT) by 23% (p<0.001), 

quality of life scores by 32% (p<0.001), and peak oxygen consumption (VO2) by 8% (p<0.03). 

85% of blinded patients selected active therapy as their preferred modality (p<0.001).     

The MIRACLE (multisite Insync randomised clinical evaluation) study was a double blinded 

randomised controlled trial that confirmed these benefits and showed that CRT reduced 

heart failure admission rates and hospitalisation time, but the study was underpowered to 

detect any difference in mortality (Abraham et al., 2002).      

The COMPANION (comparison of medical therapy, pacing and defibrillation in heart failure) 

study demonstrated that in patients with advanced symptoms (NHYA class III-IV), compared 
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to medical treatment, CRT-D provided a survival benefit at one year (RRR 36%; p=0.003), but 

the study narrowly failed to confirm a similar advantage for CRT-P (RRR 24%; p=0.059) 

(Bristow et al., 2004). The CARE-HF (Cardiac Resynchronisation in Heart Failure) study did 

confirm that CRT can provide a mortality benefit independent of a defibrillator (Cleland et 

al., 2005). Over a mean follow up of 29.4 months, as compared to medical therapy, CRT-P 

reduced the risk of mortality by 36% (p< 0.002).       

1.2.4 CRT and mild symptoms 

These early studies proved the benefit of CRT in populations with advanced symptoms, 

broad QRS and LV systolic dysfunction, and led to guideline driven allocation of CRT to this 

population. These studies did not examine whether CRT modifies disease course when 

provided at an earlier time point.  

The REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular 

Dysfunction) trial (Linde et al., 2008), MADIT-CRT (Multicenter Automatic Defibrillator 

Implantation Trial with Cardiac Resynchronization Therapy) (Moss et al., 2009) and RAFT 

(Resynchronization Defibrillation for Ambulatory Heart Failure Trial) (Tang et al., 2010) 

addressed this and compared CRT-D to ICD in populations with an indication for a primary 

prevention defibrillator. To date, almost 5000 patients with asymptomatic or mild HF have 

been investigated in randomised controlled studies. 

REVERSE randomised 610 patients with NHYA Class I-II to CRT-D on or off in a 2:1 fashion. 

Over 12 months it demonstrated improved LV remodelling (p<0.0001) and delayed time to 
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first HF hospitalisation (p= 0.03).  MADIT-CRT compared CRT-D with ICD therapy in 1820 

patients with NHYA Class I-II symptoms. Over a mean of 2.4 years CRT reduced LV volumes, 

improved LVEF, and delayed the composite of death or a non-fatal heart failure event 

(p<0.001 for all). There was a 34% reduction in the composite end-point, but this was driven 

by a 41% reduction in heart failure events and mortality was similar between cohorts. 

RAFT was the sole study to demonstrate a mortality benefit for CRT (25% RRR); whilst this 

was partly attributable to the longer follow-up (mean 40 months), RAFT studied a sicker 

population. NHYA class III patients were included and overall the mortality rate in the control 

population was 26% compared to 7% in MADIT-CRT, and 2% in REVERSE. 

The recently published long term follow ups of these trials show CRT provides striking 

benefits over the longer term. Mortality in the MADIT-CRT population was 18% in patients 

assigned to CRT-D, compared to 29% among controls (P<0.001) (Goldenberg et al., 2014). 

Annualised and 5-year mortality of the REVERSE cohort were 2.9% and 13.5% which 

compares favourably with historical populations (Linde et al., 2013). LV remodelling benefits 

are sustained over this time frame. 

1.2.5 The role of CRT in contemporary heart failure management 

Following recent evidence of the benefit of CRT in milder heart failure the various major 

societies updated their guidelines to aid clinicians’ allocation of CRT. The European Society of 

Cardiology’s latest device guidelines were published in 2013 (Brignole et al., 2013) and the 

UK NICE guidance was updated in 2014 (Figure 1-1a) (NICE, 2014). Both recommend CRT for   
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Figure 1-1. Contemporary CRT implantation in the United Kingdom 

a) Latest NICE guidelines for device allocation for people with heart failure who have left ventricular 
dysfunction with an LVEF of 35% or less (adapted from NICE guidelines 2014)  b) UK CRT implant rate trend 
2004-2014. (Murgatroyd et al., 2016)  
  

 NYHA Class  

QRS Interval  I II III IV 

<120 miliseconds ICD if there is a high risk of sudden 
cardiac death 

ICD and CRT not 
clinically indicated 

120-149 milliseconds without 
LBBB 

ICD ICD ICD CRT-P 

120–149 milliseconds with 
LBBB 

ICD CRT-D CRT-P OR CRT-D CRT-P 

≥150 milliseconds with or 
without LBBB 

CRT-D CRT-D CRT-P OR CRT-D CRT-P 

LBBB, left bundle branch block; NYHA, New York Heart Association 
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symptomatic patients with LVEF <35%, and either LBBB >120ms or any QRS ≥150ms.   They 

differ in their recommendations for patients with NHYA class I symptoms. Whilst such 

patients should receive a CRT under NICE guidance, they are excluded from ESC 

recommendations. NHYA I recipients made up a very small proportion of REVERSE (15%) and 

MADIT-CRT (18%) and subgroup analysis of these patients did not show a reduced event 

rate.  

Figure 1-1b shows CRT implantation rates within the UK increasing year on year currently at a 

rate of 15% (Murgatroyd et al., 2016). The latest guidelines will lead to a further dramatic 

rise in recommended recipients, with implant rates retarded by the volume of implanters 

and implant centres.     

1.2.6 Response to CRT on an individual level 

Although CRT improves symptoms, exercise capacity, quality of life and LV reverse 

remodelling, whilst reducing heart failure admissions and death on a population level, the 

individual benefit from CRT shows considerable inter-patient variation.  20-40% of recipients 

fail to meet the various ‘response’ criteria set out in land mark studies (Daubert et al., 2012). 

Defining response or non-response in a dichotomous fashion is an oversimplification. The 

multiple potential gains from CRT can each be measured as a continuous variable. An 

individual’s benefit is the aggregate of these; this is unmeasurable in simple binary fashion. 

Moreover, as with all continuous spectrums, zero is a mid-point on the scale and overlooks 
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the possibility that CRT may have negative impact, as seen when delivered to patients with a 

QRS duration < 120ms (Thibault et al., 2013).      

The original notion of ‘responders’ was born from the early haemodynamic studies (Leclercq 

et al., 1995). Problematically, most post implant metrics act as poor surrogates of another. 

An example is the notable disconnect between symptomatic response and LV reverse 

remodelling (Yu et al., 2005), with the former being more susceptible to the placebo effect. 

Our concept of response is likely to change alongside the implanted population. As with any 

new therapy it was originally trialled in the sickest patients in whom an immediate 

improvement in well-being is a priority.  The high event rates in early trials confirm that 

these patients were reaching end-stage disease. As latest guidance dictates we implant CRT 

into patients at an earlier time point in their disease, CRT becomes a disease modifying 

agent. A more valuable metric is prolongation of symptom free (or minimal symptom) 

survival.            

The benefits of any therapy need to be weighed against the potential for harm and cost. CRT 

implantation is an evolving field and, as operator experience develops and delivery tools 

evolve, complication rates are falling (Forleo et al., 2015). Health economics must be viewed 

in the context that most of these patients warrant primary prevention ICDs, and the addition 

of a LV lead only increases upfront costs by around 25% (from £9,692 to £12,293) (NICE, 

2014).   
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Whilst developing our ability to select patients is prudent so that implantation can be 

avoided in populations where benefit is unlikely, a more important focus should be on 

maximising gains from CRT on an individual basis. Strategies include improved post-

operative device optimisation and optimal LV lead positioning at implant.   

1.3 Electrical dyssynchrony and CRT 

1.3.1 QRS morphology 

In clinical practice the electrocardiographic QRS complex provides the most readily available 

indicator of ventricular synchrony. In keeping with the concept of CRT, early studies 

mandated a wide QRS duration, but never differentiated between LBBB, RBBB and 

nonspecific intraventricular conduction delay (NICD).  However, important differences in 

terms of underlying electrical and mechanical activation exist. In keeping with these, pulsed 

Doppler study of 200 conventional CRT recipients pre-implant, showed significantly greater 

interventricular mechanical delay with LBBB than pure RBBB (Haghjoo et al., 2008). Similarly, 

Intra-ventricular dyssynchrony was more frequently observed with tissue Doppler (63% vs. 

31%) in LBBB. Patients with RBBB and left hemi block (LAHF) had intermediate values.  

A retrospective analysis of 632 consecutive CRT recipients over 7 years from a United States 

university hospital showed reduced survival in those with RBBB pre-implant after controlling 

for baseline differences (p=0.006) (Adelstein et al., 2009). Improvements in 

echocardiographic parameters and NHYA class were less probable.    
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A pooled analysis of the Contak CD and MIRACLE trials identified 61 patients with RBBB (34 

randomised to CRT, 27 controls) (Egoavil et al., 2005). At 6 months there was no significant 

improvement in 6MWT, peak VO2 or quality of life scores in CRT recipients. There was a 

significant improvement in NHYA class, although this was also seen in the control 

population.      

In MADIT-CRT, 228 and 308 patients had baseline RBBB and NICD respectively prior to 

randomisation. CRT reduced the likelihood of the primary composite end-point of death or 

heart failure in patients with LBBB morphology (Hazard ratio [HR]: 0.47, p<0.001), but not in 

the non-LBBB population (1.24, p=0.257) (Zareba et al., 2011). There were greater absolute 

reductions in LV end-systolic volume (LVESV) in both sub-groups compared to controls, but 

this reduction was significantly greater in the LBBB sub-group (LBBB: -62mls; Non-LBBB:  -

45mls; Controls: -18mls; p<0.001 for LBBB vs. non-LBBB), with the same trend for other 

volumetric parameters. Sub-group analysis of CARE-HF also showed higher event rates in the 

RBBB population (Gervais et al., 2009).     

RBBB morphology only accounts for 9-13% of subjects throughout all studies, and this limits 

the conclusions that can be drawn from these sub-group analyses. Furthermore, invasive 3D 

electro-anatomical mapping comparisons of heart failure patients showed greater electrical 

abnormalities in RBBB than LBBB (Fantoni et al., 2005).  As anticipated, RBBB was associated 

with more delayed RV breakthrough, RV anterior and lateral activation and total activation 

times. Although LV break through was more delayed in LBBB, regional and total activation 



18 

 

times were similar. Seemingly, RBBB can conceal electrocardiographic evidence of LV 

activation delay, so it is difficult to argue that there is no premise for CRT without LBBB.   

1.3.2 QRS duration 

Whilst landmark studies such as COMPANION and CARE-HF required a QRS duration of >120-

130ms for enrolment, mean QRS duration was around 160ms in these studies with few 

patients just above the inclusion cut-off.  

In MADIT-CRT pre-specified sub group analysis found CRT was associated with event 

reduction in patients with QRS ≥150m (HR: 0.37-0.64), but not if QRS <150ms (HR: 0.74-

1.52). An almost identical association in terms of direction and size was observed in RAFT 

and REVERSE: the other 2 trials of CRT in patients with mild symptoms.  

A meta-analysis of major studies dichotomised 6502 patients according to a threshold QRS 

duration pre-implant of 150ms (4437 with QRS ≥150ms) (Stavrakis et al., 2012). CRT reduced 

the hazard of HF hospitalisation or death in patients with QRS ≥150ms (HR: 0.58, p<0.00001) 

but not in those with QRS <150ms (HR: 0.95, p=0.51). This effect was consistent across NHYA 

classes.      

However, the positive findings in these studies were largely driven by a reduction in heart 

failure admissions. The aforementioned long term survival results from MADIT-CRT found 

that over 5.6 years the survival advantage was irrespective of baseline QRS (HR for death: 

QRS ≥150m: 0.46-0.90, p=0.01; QRS <150m: 0.31-0.97, p=0.04) (Goldenberg et al., 2014). It 
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stands to reason that in this setting an extended time frame is likely to be necessary to 

realise the potential for CRT.    

A recent Italian analysis of 243 patients challenged the concept that the relationship 

between QRS duration and response is linear, and they report a more parabolic effect 

(Sassone et al., 2015). In LBBB there were clusters of non-responders with QRS duration 

below 130ms and above 180ms. LBBB with more marked QRS prolongation also heralded 

poorer event-free survival at 2 years. This is the first electrocardiographic report of an upper 

limit of dyssynchrony at which the benefit from CRT diminishes, although this concurs with 

previous mechanical studies (Chalil et al., 2007b).    

1.3.3 CRT and narrow QRS duration 

The disconnect between electrical and mechanical dyssynchrony led to the theory that there 

may be a sub-group of patients with narrow QRS duration who would benefit from CRT (Yu 

et al., 2003a). On this premise a number of randomised controlled trials have explored CRT 

in this population. The LESSER-EARTH (Evaluation of Resynchronization Therapy for Heart 

failure) trial was terminated prematurely as there was no evidence of benefit, a significant 

reduction in 6MWT, and a trend torwards an increase in heart failure admissions (Thibault et 

al., 2013). 

A shortcoming of the LESSER-EARTH trial was that mechanical dyssynchrony was not a pre-

requisite for enrolment. The earlier RethinQ (Resynchronization therapy in narrow QRS) 

Study did mandate echocardiographic evidence of mechanical dyssynchrony, but this study’s 
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negative findings are potentially attributable to the dyssynchrony parameters utilised and 

the choice of peak VO2 as a primary endpoint (Beshai et al., 2007). The EchoCRT 

(Echocardiography Guided Cardiac Resynchronization Therapy) trial, which required 

echocardiographic dyssynchrony in patients with a pre-implant QRS duration <130ms, was 

stopped due to futility (Ruschitzka et al., 2013). However, an 81% relative risk increase was 

seen for all-cause mortality in the CRT-On arm. This excess mortality was seen late after 

implant and was primarily due to arrhythmias and heart failure, providing the clearest signal 

that CRT pacing in narrow QRS is hazardous (Sohaib et al., 2015). Sub-group analysis failed to 

show evidence of benefit from CRT in the QRS 120-130ms population (Steffel et al., 2015).    

1.3.4 Other ECG methodologies   

The sum absolute QRST integral (SAI QRST) was initially trialled as a marker of risk from 

tachyarrythmias, but its recent evaluation in CRT populations has shown promise 

(Tereshchenko et al., 2011). A standard digital pre-implant 12 lead ECG is converted into 3 

orthogonal leads (x, y and z), and SAI QRST is calculated as the sum magnitude of the QRS 

and T integrals (above and below the baseline) from all 3 leads. Validation of this measure 

has shown it to correlate closely with the SD of activation times recorded by non-invasive 

epicardial electrocardiographic mapping using 291 surface electrodes (r=0.96, p= 0.045). In 

contrast, QRS duration correlated poorly, and SAI QRST is a superior surrogate quantitative 

marker of late activated LV myocardium (Tereshchenko et al., 2015b).  

In the SMART-AV (SmartDelay determined AV optimization: a comparison to other AV delay 

methods used in cardiac resynchronization therapy) trial, those with the highest tertile for 
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SAI QRST had a 2.5 times greater chance of LV remodelling than those in the lowest (OR: 1.3-

5.0, p=0.01) (Tereshchenko et al., 2015a). In a retrospective study of a cohort of 496 CRT 

recipients a SAI QRST <302mV ms was associated with a 60-70% higher relative risk of 

mortality or HF hospitalisation at 2 years (Jacobsson et al., 2016). It remained a predictor of 

outcome even after adjustment for known predictors including QRS duration and 

morphology.  

1.3.5 QLV 

Delivering the LV pacing stimulus at a late activating site will have the greatest potential to 

correct the total myocardial activation time. The aforementioned metrics all prove an 

association between delayed LV activation and response, and it is plausible that this is due to 

the greater probability of LV stimulation being delivered at a region of late activated 

myocardium. Consequently, QLV, a measure of electrical delay at the left ventricular pacing 

site, should be a more specific predictor of response. 

QLV is measured from intracardiac electrograms at CRT implant, and as shown in Figure 1-2, 

is the time delay between initial intrinsic activation at the septum (the onset of the Q wave 

on the standard ECG) and the spread of this wavefront to the site of the LV stimulating 

electrode. It thus quantifies the amount of electrical resynchronisation that pacing at a 

particular site can generate. The degree of electrical delay was shown in a pilot study of 71 

CRT recipients to correlate with the acute haemodynamic benefit, particularly in the absence 

of previous myocardial infarction (Singh et al., 2006). Regardless of aetiology, less electrical 

delay was associated with poorer response.    
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Figure 1-2. Examples of QLV measurements 

The calipers are aligned with the onset of QRS and peak of the left venticular electrogram. The QLV was calculated as 90 ms for the patient in (A) and 165 ms for 
the patient in (B). 

(Gold et al., 2011) 
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QLV was prospectively recorded in a sub-group of the multicentre SMART-AV trial and was 

shown to correlate with QRS duration and morphology. Whilst all three parameters 

predicted the primary end-point of LV reverse remodelling (LVRR), only QLV remained 

statistically important in multivariate analyses, supporting electrical delay at the pacing site 

being the integral determinant of benefit (Gold et al., 2011). The majority of patients had 

posterolateral LV lead positions, preventing assumptions on the utility of QLV to direct the 

implanter to less conventional sites such as the anterior wall or the apex. In a single centre 

observation of 329 patients a shorter QLV as a proportion of the total QRS duration was 

associated with greater cardiac mortality (HR: 1.8, p= 0.01), heart failure mortality (HR: 2.9, 

p= 0.001)  and sudden cardiac death (HR: 2.1, p= 0.01) over a 9 year follow up period 

(Roubicek et al., 2015). 

1.4 Assessment of LV systolic function 

1.4.1 Assessment of LV systolic function by LV volumetric analysis 

Quantitative assessment of LV volumes and function underpins the diagnosis of HFrEF and 

guides prognosis and the allocation of therapies including CRT.  

1.4.1.1 Echocardiography and LV volumetric analysis 

Two dimensional trans-thoracic echocardiography (2DE) is a cardiac ultrasonographic 

technique that remains the cornerstone of diagnostic imaging, not least because of its wide 

availability, speed, portability and non-reliance on ionising radiation. LV function is most 

widely calculated using ‘Simpson’s method’ or the ‘method of disks’ which is a volumetric 
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measure (Leeson et al., 2008). The LV is imaged from an apical window along its long axis 

from 2 orthogonal views. The volume of the LV is calculated by segregating the chamber into 

a series of equal height discs from the apex to the mitral valve annulus. Summation of the 

volume of each disc gives the total LV volume and subtraction of the LVESV from the LVEDV 

provides the LV stroke volume (LVSV). LVEF is an expression of the LVSV as a percentage of 

the LVEDV. Whilst this can be calculated manually, modern day processing software 

calculates this automatically following operator contouring of the LV endocardium. 

As with all 2DE techniques the major limitation is image quality; the main barriers being 

chronic lung disease, obesity and chest wall deformities (Yong et al., 2002).  LV 

foreshortening will lead to underestimation of volumes and sub-optimal LV endocardial 

definition will lead to an overestimation. Harmonic imaging in preference to fundamental 

imaging can improve endocardial definition by reducing reverberation artefact (Spencer et 

al., 1998). LV opacification, using microbubbles that consist of a gas contained in an 

outershell, improves backscatter and enhances differentiation of the endocardial border 

from the blood pool to an even greater extent (Chahal et al., 2010).  Nonetheless, Simpson’s 

method still requires certain assumptions regarding the uniformity of the LV which are less 

valid in the diseased ventricle. Three-dimensional echocardiography (3DE) overcomes these 

geometric assumptions by providing absolute chamber volumes and, in experienced hands, 

has close accuracy with radionuclide angiography (Nosir et al., 1996) and cardiac magnetic 

resonance (CMR) (Kuhl et al., 2004). However, image quality remains a factor and current 

availability is limited.  
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Core lab re-evaluation of 2DE volumetrics from many of the enrolees in the landmark studies 

highlights the deficiencies of this as an inclusion criterion for studies and a means for 

allocating CRT. In MADIT-CRT 38% had a LVEF outside the inclusion criteria (<30%). In some 

cases a massive discrepancy saw LVEF being re-calculated as high as 45% (Kutyifa et al., 

2013). 24% of participants in PROSPECT had a LVEF adjudged to be greater than the 35% cut-

off when reassessed (Chung et al., 2010). 

1.4.1.2 CMR and LV volumetric analysis 

Cardiac magnetic resonance (CMR) is the reference standard for ventricular volumetric and 

functional assessment with robust accuracy and reproducibility (Grothues et al., 2002). A 

series of contiguous cines (‘a stack’) is acquired, during breath-holds, providing full coverage 

of both ventricles so that there are no limitations due to geometric assumptions. This 

process is supported by the unlimited imaging planes that CMR offers, so the stack is 

acquired entirely in plane, running parallel to the AV valve annuli and perpendicular to the 

long axis (using previously acquired orthogonal long axis views as a guide).  

Cine acquisition typically takes a few minutes using steady state free precession (SSFP) 

imaging: a gradient echo sequence, which produces images with a high signal to noise ratio 

and sharp contrast between the blood pool and myocardium. Along with unparalleled spatial 

resolution this makes subsequent volumetric assessment highly reproducible (typically 

conducted remotely and taking an experienced operator around 15 minutes). 

Simultaneously, RV volumetric analysis and LV mass can be obtained (Maceira et al., 2006).  



26 

 

As with any modality CMR is not without limitations. Acquisition requires ECG gated 

segmented imaging. Poor breath-holding or arrhythmias, both potentially problematic in 

heart failure patients, will degrade image quality. 

1.4.2 Assessment of LV systolic function by myocardial strain analysis 

In routine clinical practice the assessment of LV function consists of assessments of global 

systolic and diastolic function. It is well recognised, however, that global measures such as 

LVEF, may not be sensitive enough to detect subtle changes in LV function, as is the case 

with incipient disease (Nagueh et al., 2001; Sutherland et al., 1994).  

Cardiac strain, a sensitive measure of deformation, is defined as the relative change in fibre 

length from end-diastole; strain rate being a measure of the velocity at which this change 

occurs (Figure 1-3). Whilst measuring this in vivo would require a precise knowledge of the 

local fibre direction, clinical imaging modalities circumnavigate this by measuring strain in 

three principle directions (radial, circumferential and longitudinal), relative to the central 

axis of the ventricle. Longitudinal strain is deformation relative to the long axis of the 

myocardium; circumferential and radial strains are orthogonal measures both relative to the 

myocardial short axis (Figure 1-4). By convention cardiac strains are dimensionless, but they 

are expressed as a percentage change from end-diastolic state, with myocardial contraction 

or shortening assigned a negative value and thickening or elongation a positive value. As 

strain rate records the change in strain over time it is typically expressed as the reciprocal of 

time in seconds (S-1).
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Figure 1-3. Displacement, velocity, strain and strain rate.   

(A) shows how to calculate strain and strain rate. Strain= change of fibre length compared to original length, strain rate= difference of tissue velocities at two distinctive 
points related to their distance. ∆L, change of length; Lo, unstressed original length; L, length at the end of contraction; blue arrow, direction of contraction; v1, velocity 
point 1; v2, velocity point 2; d, distance. 

 

(B) The mathematical relationship between different deformation parameters. Using conventional echocardiographic techniques speckle (STE) primarily assesses 
myocardial displacement, whereas tissue Doppler imaging (TDI) primarily assesses tissue velocity.  

Adapted from (Blessberger et al., 2010)

A B 
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Figure 1-4. The layer-specific left ventricular myocardial wall strains and cardiac rotation. 

(Yu et al., 2013) 



 

29 

 

The myocardium can be theoretically sub-divided into any number of smaller units and each 

strain can be calculated at any spatial or temporal point. The peak strains or strain rates are 

the most clinically useful as these relate to maximal function.  This allows both regional and 

global measures to be derived.  

LVEF is load dependant; it incorporates the net result of the neurohumoral compensatory 

mechanisms described in 1.1.4, with an increased LVEDV preventing any discernible change 

in LVEF in early disease. In contrast, myocardial strain is a purer gauge of the myocardium’s 

contractile function. In this respect global strain measures are affected by the degree of 

myocardial scarring (Becker et al., 2006b). In keeping with these intrinsic differences 

between LVEF and strain parameters, whilst they correlate in healthy controls, there is 

disconnect between them in the failing heart (Delgado et al., 2008). Strain rate measures the 

rate at which deformation occurs, it is the least load dependent parameter and a surrogate 

for dP/dt (Weidemann et al., 2002). Figure 1-3 shows the mathematical relationship 

between the key parameters of myocardial motion. 

1.4.2.1 Invasive measures of myocardial strain 

The earliest in vivo assessments of cardiac strain and motion used the surgical implantation 

of markers within the myocardium. The location of implanted radio-opaque markers can be 

monitored fluroscopically (Ingels et al., 1980), and sonomicrometry makes use of tranducers 

comprising piezoelectric crystals that have dual ultrasound transmitting and receiving 

capabilities, so that their relative distance can be identified (Chitwood et al., 1980). The 
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number of regions that can be assessed is limited by the number of placed tags, and whether 

the implants themselves alter cardiac motion is unknown. Regardless, invasive techniques 

are more suited to animal studies and have limited application in the human field, although 

they remain a useful tool by which to validate new non-invasive methods. 

1.4.2.2 Tissue Doppler measures of myocardial strain   

Echocardiography based tissue Doppler imaging (TDI) facilitates the calculation of regional 

tissue velocities relative to the transducer probe. The use of TDI is limited by the inability to 

differentiate true velocity from that of passive stretch that occurs when scarred myocardium 

is tethered to adjacent contractile tissue. However, TDI based strain measures overcome this 

limitation; velocity is calculated at two adjacent myocardial points, and velocity-regression 

allows the computation of the strain rate between the points (Marwick, 2006).  

The technical complexity of this modality limits its accuracy and use.  Underlying velocity 

signals are prone to noise such as that from reverberation artifact (e.g. from ribs) or the 

blood pool (Edvardsen et al., 2002; Miyatake et al., 1995). The necessary high frame rates 

limit spatial resolution. The optimal distance between areas of interest is 12mm, greater 

than the usual thickness of the myocardium, rendering the technique only apt to measure 

longitudinal strain.  The technique is angle dependent, and any loss of alignment reduces 

accuracy so images are best obtained in held expiration to prevent respiratory drift (Castro 

et al., 2000). 
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1.4.2.3 Speckle tracking echocardiography measures of myocardial strain   

Speckle tracking echocardiography (STE) has facilitated strain measures from standard 2DE 

images, thus largely overcoming noise interference and angle dependency. The tracking 

algorithm follows collections of natural acoustic markers and interference patterns 

(speckles) that remain constant throughout the imaged cycle. It has been validated against 

sonomicrometry (Amundsen et al., 2006), and is reproducible by experienced operators 

(Belghitia et al., 2008).  As expected with a 2DE technique, image quality is the limiting factor 

(Amundsen et al., 2006). There is a difficult trade-off balancing temporal resolution, as at 

high levels noise impairs image quality, but at lower resolutions the analysis software loses 

speckles between frames. Feasibility of obtaining utilisable images is reported as 94% in 

healthy populations (Hurlburt et al., 2007), but is considerably less in diseased populations, 

especially IDCM when wider sector widths limit frame rate.        

1.4.2.4 Myocardial tagging measures of myocardial strain 

CMR combined with myocardial tagging is the reference standard technique for the 

assessment of myocardial motion. Myocardial tags, created by manipulating magnetisation, 

act as fiducial markers that conform to the region of interest (Axel et al., 1989). Additional 

radiofrequency impulses are delivered in time with the R wave, perpendicular to the imaging 

plane to saturate the magnetic properties of the tissues. This has the effect of producing sets 

of parallel dark bands within the image creating a tagged pattern. This grid is intrinsic to the 

tissues, so motion of the tags depicts myocardial motion.  
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A variety of techniques exists: a recent review reports 25 different algorithms each requiring 

specific pulsed sequences for acquisition and specific post processing software (Ibrahim el, 

2011), such as harmonic phase analysis (HARP) or spatial modulation of magnetisation 

(SPAMM). These techniques have been validated for the assessment of regional wall motion 

in animals and humans (Kraitchman et al., 2003).  

The acquisition sequences are additional to routine protocols and require lengthy breath 

holds, and requisite post-processing is time consuming and laborious. Whilst successive 

generations of this modality address these shortcomings, they have largely confined its use 

to the research environment. Research applications have focused on systolic assessment as 

tag loss at temporal distances from the R wave, due to T1 relaxation, has constrained 

diastolic assessment with cines acquired using 1.5T scanners (Edvardsen et al., 2006).  

1.5 CRT and mild-moderate systolic dysfunction 

An LVEF <35% is an arbitrary cut-off for allocating CRT and corresponds to the 

echocardiographic definition of severe LV impairment. The natural evolution of any therapy 

sees it initially trialled in the sickest patients and it is easiest to demonstrate value in 

patients with high event rates. However, a single centre registry using conventional 

implantation guidelines retrospectively re-analysed LVEF on the basis of baseline CMR, and 

found that the 27 patients identified as having LVEF >35% had at least similar clinical 

response rates to other recipients (Foley et al., 2009c).  
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Re-analysis of the landmark trials, using core laboratory revised LVEFs provides the richest 

insight into the potential benefits of CRT in more moderate LV systolic dysfunction. In 

PROSPECT 86 patients had an LVEF >35% and broadly similar improvements in the clinical 

composite score and remodelling were seen in this group (Chung et al., 2010). In MADIT-CRT 

696 patients had LVEF >30% (Range: 30.1%-45.3%), and despite the smallest event rate in 

this cohort, the greatest protection from hospitalisation and death was observed (HR: 0.56, 

95% CI: 0.39 - 0.82, p= 0.003) (Kutyifa et al., 2013). Furthermore, the best remodelling 

response was also seen in the least impaired ventricles. The ultimate goal of heart failure 

treatment is to provide complete heart failure remission, i.e. minimal or no symptoms with 

complete recovery of systolic function. An observational study of 520 patients has shown 

that least impaired LVEF at baseline is a predictor of this (Gasparini et al., 2008). When 

normalisation of LVEF is achieved the risk of arrhythmic death becomes minimal (Ruwald et 

al., 2014). 

There is a compelling argument for trialling CRT at an earlier time point in the natural history 

of heart failure, and assessing its utility as a preventative disease modifying therapy rather 

than a last resort therapy. However, designing such a study is challenging and MIRACLE EF, 

which addressed this, was abandoned due to poor recruitment (Linde et al., 2016).  The long 

follow-up required to show benefit in a population with low anticipated event rates proved 

unacceptable to potential enrolees, particularly in the face of the possibility of being 

randomised to the inactive device arm for this period. As strain measures are more sensitive 

to impaired contractility, it is plausible that they could be used to select a sub-population of 
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patients with mild-moderate LV systolic dysfunction who are more suitable for study and 

thus would require shorter follow up.   

The management of patients with a co-existing indication for bradycardia is more resolved. 

Right ventricular (RV) pacing has detrimental effects in heart failure. In the DAVID (Dual 

Chamber and VVI Implantable Defibrillator) trial, rather than prove the hypothesis that 

continuous pacing would facilitate more aggressive medical therapy and improve outcomes, 

dual chamber pacing increased the rate of death and hospitalisation (Wilkoff et al., 2002). 

Echocardiographic studies have shown that the deleterious effects of RV apical pacing are, at 

least in part, due to the induction of mechanical dyssynchrony (Cojoc et al., 2006). The 

BLOCK-HF (Biventricular versus Right Ventricular Pacing in Heart Failure) study demonstrated 

the advantages of CRT over conventional bradycardia pacing in patients with mild to 

moderate LV systolic dysfunction and AV nodal disease (Curtis et al., 2007). CRT resulted in a 

significant delay in time to the primary composite endpoint (HR: 0.74, 95% CI:  0.60 - 0.90).   

1.6 Mechanical dyssynchrony assessment and CRT 

1.6.1 Doppler based dyssynchrony assessment   

The assessment of cardiac dyssynchrony has been the focus of increasing attention with the 

advent of CRT.  The concept that pre-implant dyssynchrony is prerequisite for a benefit from 

CRT has driven the search for imaging markers of dyssynchrony that can refine patient 

selection beyond the use of QRS duration.  This expectation was fuelled by a series of 

promising M-mode (Pitzalis et al., 2002), pulsed Doppler (Achilli et al., 2006) and TDI (Bax et 
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al., 2004; Notabartolo et al., 2004; Yu et al., 2004; Yu et al., 2003b) techniques tested in 

single centre studies.  

The observational PROSPECT (Predictors of response to CRT) study did not support earlier 

findings. 498 patients with conventional CRT indications (LVEF ≤35%, NYHA III or IV, QRS 

duration ≥130 ms) underwent CRT implant at 53 centres from 3 continents (Chung et al., 

2008). Similarly to other trials 69% patients had a symptomatic improvement and 56% 

showed reverse remodelling. Not one of the tested dyssynchrony markers had an AUROC 

curve > 0.62 for its ability to predict either a symptomatic or echocardiographic response. 

Despite each centre having undergone prior training in dyssynchrony assessment, and 

requiring regional accreditation prior to enrolling, yield, intra-, and inter-observer 

reproducibility were all poor. This variability may have been exacerbated by the use of 

different echocardiographic platforms, but this reflects the 'real-world' situation. 

1.6.2 Strain based dyssynchrony assessment utilising echocardiography 

In general, strain based methods involve analysing the timing of peak strain regionally and 

the calculations of various parameters based on these. STE based parameters overcome the 

angle dependence of Doppler. The initial study experience used segmental peak radial 

strains obtained from speckle tracking mid ventricular short axis images to evaluate baseline 

dyssynchrony in 64 patients. 

The earliest studies classed dyssynchrony as a > 130ms delay between peak radial strain 

being reached in the anteroseptal and posterior walls in the mid-ventricle; this parameter 
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was a predictor of an acute haemodynamic response and subsequent remodelling 

(Suffoletto et al., 2006).   In a follow-up study of 176 patients the same group combined this 

STE parameter with a TDI derived longitudinal dyssynchrony marker. Patients with both 

radial and longitudinal dyssynchrony pre-implant had a 95% likelihood of reverse 

remodelling, compared to only 59% or 10% if 1 or neither parameter was positive (Gorcsan 

et al., 2007). This interplay of different dyssynchrony patterns highlights the complexity of 

dyssynchrony assessment and provides insight into the difficulties of utilising any single 

dyssynchrony index. 

The STAR (speckle tracking and resynchronisation) study provides the strongest signal that 

dyssynchrony assessment may be of value.  STAR provides a prospective, multi-centre 

comparison of the predictive value of radial, circumferential, longitudinal and transverse 

(radial strain viewed from the long axis) strain derived dyssynchrony indexes (all adjudged by 

> 130ms opposing wall delay) (Tanaka et al., 2010). Patients without pre-implant radial 

dyssynchrony were three times more likely to die or require heart transplantation or LV 

assist device (LVAD) over 3.5 years follow-up. Circumferential and longitudinal measures 

were not significant predictors. An independent study reiterated these findings and showed 

that a lack of pre-implant radial dyssynchrony was associated with reduced event free 

survival in patients with QRS durations of 120-150ms (Gorcsan et al., 2010).  However, the 

EchoCRT study tested whether such radial dyssynchrony could identify patients with a QRS 

duration <130ms who would benefit from CRT; the study was stopped early due to futility 

(Ruschitzka et al., 2013).  
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A shortcoming in current methodology has been the focus on markers of temporal 

dispersion. This is a particular flaw when late mechanically activated regions have extensive 

scar, so offer minimal contribution to overall contractility. Summations of the difference 

between peak strain and strain at end systole for each segment provide measures of wasted 

work caused by dyssynchrony (Figure 1-5). Such a concept has been tested using speckle 

tracking, proved superior to traditional temporal dispersion based measures (Lim et al., 

2008; Tatsumi et al., 2011), and has recently been shown to predict survival in a single 

centre study (Kydd et al., 2013).     

3DE allows complete assessment of the LV geometry and facilitates dyssynchrony to be 

based on the entire ventricle; offering another scope for investigation.  Commercially 

available packages (TomTec Imaging Systems, Munich, Germany) facilitate the tracking of 

the entire endocardial border which, once segmented into a traditional 16 segment model, 

allows computation of the SD of time to minimal volume (a surrogate for contraction). A dual 

centre study of 187 patients found that this was reproducible with an inter-hospital 

agreement of 7.6%. It had an area under curve (AUC) of 0.66 and 0.86 for predicting LVRR, 

and a 20% improvement in LVEF respectively (Kapetanakis et al., 2011).  Whether 3D STE 

offers superiority to 2D parameters needs investigating.  

1.6.3 CMR based dyssynchrony assessment 

At the time when dyssynchrony assessment was a major research theme CMR was 

comparatively less prevalent, and this is reflected in its literature base. The CMR tissue 

synchronisation index (CMR-TSI) index utilised radial wall motion from each cine of the short   
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Figure 1-5. Concept of the strain delay 

Schematic representation of wasted energy according to timing of myocardial deformation (dyssynchrony) 
and amplitude (contractility) by radial strain. A, In a normal segment (grey), peak deformation occurs close 
to aortic valve closure, contributing fully to end-systolic (ES) function. Peak ejection is assumed to occur at 
end systole, at the point of aortic valve closure (AVC) defined by pulsed wave Doppler. Early and late 
deformation in segments with preserved contractility will not fully contribute to end-systolic function. The 
wasted energy is represented by the difference in strain amplitude at peak and end systole for these 
segments (red). B, The degree of wasted energy increases as segments with preserved contractility become 
more delayed. C, In delayed segments with preserved amplitude (contractility), the degree of wasted energy 
is greater than in low-amplitude segments (minimal residual contractility or scar). 

(Kydd et al., 2013)  
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axis stack (Chalil et al., 2007b). Displacement-time curves were constructed for each 

segment of each slice, and were subject to sine wave fitting. CMR-TSI reflects the standard 

deviation (SD) of all the segmental phase shifts. In contrast to previous dyssynchrony 

studies, patients with the greatest baseline dyssynchrony had poorer survival and more 

frequent hospital admission. This parameter detects dyssynchrony in all patients with heart 

failure, thus challenging the concept of it being an arbiter of benefit from CRT (Foley et al., 

2009a).  

Ratios of the spatial uniformity of strain have the same underlying concept as the CMR-TSI, 

but describe variance in strain rather than motion. A circumferential uniformity ratio 

estimate (CURE) <0.75 (where 1= total uniformity and 0= complete dyssynchrony), derived 

from myocardial tagging, had a 90% accuracy for predicting improvement in functional class 

post CRT (Bilchick et al., 2008).    

1.7 Myocardial scar  

1.7.1 Myocardial scar assessment 

The myocardium consists of myocytes, a variety of non-myocytic cells such as fibroblasts, 

endothelial cells, mast cells and an extracellular matrix, which are maintained in equilibrium 

by a variety of hormones, cytokines and growth factors. When this balance is disturbed by 

an insult, myocardial scar results from expansion of the interstitium, and a net increase in 

collagen synthesis over its degradation (Baudino et al., 2006). This is physiologically 

detrimental due to impaired contractility, increased wall stiffness and distorted electrical 

conductivity that is conducive to cardiac arrhythmogenesis.  
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Historically the gold-standard for detecting myocardial fibrosis was endomyocardial biopsy 

(EMB).  However, this investigation is limited by sampling error. Fibrosis is often patchy, and 

in many disease states the composition of the readily sampled RV is not representative of 

the LV.  Along with the small but real risk of serious complications, EMB has been 

superseded by non-invasive imaging techniques. 

1.7.2 CMR and myocardial scar assessment  

Coupled with late Gadolinium enhancement (LGE) imaging, CMR is the gold standard for 

myocardial scar characterisation. It has an unrivalled ability to quantify the size, location and 

transmural extent of scar. Post injection, Gadolinium is distributed between the 

intravascular space and the interstitium, but is excluded from the intracellular space by 

intact cell membranes.  It accumulates in areas of scar which have an expanded intracellular 

space. Gadolinium is paramagnetic, and shortens the T1 relaxation time, thus delayed 

imaging post administration demonstrates areas of scarred myocardium as having high 

signal intensity (white) compared to nulled myocardium (black) (Simonetti et al., 2001).   

LGE-CMR is not apt for the detection of diffuse fibrotic processes when no reference region 

exists, but this has been facilitated by advances in the parametric mapping of the T1 

magnetic relaxation properties of the myocardium (Flett et al., 2010; Iles et al., 2008). Pulse 

sequences such as Modified Look-Locker (MOLLI) allow this to be performed in a single 

breath-hold, greatly reducing acquisition times compared to earlier methodologies and 

preventing misregistration artefact (Messroghli et al., 2007).  
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1.7.3 Echocardiography and myocardial scar assessment  

Unlike LGE-CMR, echocardiography does not facilitate the delineation of discrete scar, 

although a variety of surrogates have been evaluated against it.  A wall thickness < 0.5cm 

accompanied by an abnormal increase in echo reflectance has been used (Cwajg et al., 2000; 

Mele et al., 2009), and further accuracy is gained by combining this approach with 

examination of regional wall motion abnormalities. Regional myocardial strain measures 

lend themselves to acting as surrogates for scar, and both longitudinal (Gjesdal et al., 2007) 

and radial (Becker et al., 2006a) measures have been validated. 

The increased collagen content of myocardial scar affects its acoustic reflectivity, and this 

can be assessed using echocardiographic integrated backscatter (IBS) as a measure of diffuse 

fibrosis (Picano et al., 1990). IBS correlates with scar content at EMB in aortic stenosis (Di 

Bello et al., 2004) and IDCM (Mizuno et al., 2007). Even though the accuracy of this is 

improved by using pericardial backscatter as a control, its technical complexity and poor 

reproducibility have prevented widespread use (Di Bello et al., 2010).    

1.7.4 SPECT and myocardial scar assessment  

SPECT (Single Photon Emission Computed Tomography) was the first widely available 

modality to detect myocardial viability, and thus indirectly define myocardial scar and 

fibrosis.  After the administration of Thallium-201 or Techetium-99 labelled ligands, a series 

of planar images are taken using a gamma camera at multiple angles. These are 

reconstructed to form tomographic images through the heart which can be aligned with the 

hearts axis. Segments with reduced uptake compared to the area of maximal uptake have 
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the greatest extent of scarring. With Techetium-99 imaging can be performed after 

administration of the tracer, but with Thallium-201 scar mapping needs to be delayed 2-24 

hours post administration of the radionuclide to allow redistribution. 

The value of SPECT for identifying scar is limited by its spatial resolution, which is a factor of 

60x less than LGE-CMR.  A comparison of both against histopathological findings in 

iatrogenic infarcts in canines found, whilst both modalities were able to detect all transmural 

scars, SPECT only detected 28% of sub-endocardial scars (c.f. 92% by LGE-CMR) (Wagner et 

al., 2003). Repeat imaging with SPECT is undesirable due to accumulative ionising radiation 

exposure. 

1.8 Myocardial scar and outcomes from CRT in ischaemic heart failure 

Undoubtedly, the quantity of myocardial scar and its location have an influence on the 

disease course post CRT.   

1.8.1 Scar burden 

A study of 23 patients who underwent LGE-CMR prior to device implantation showed scar 

burden was significantly higher in  non-responders than responders (Interquartile range 

[IQR]: 18.1-48.7% vs. 0.0-8.7%, p= 0.002) as assessed using a clinical composite scoring 

system (White et al., 2006). Scar had an AUC of 0.94 for predicting response. Similarly, a 

study of 62 patients with pre-implant LGE-CMR found clinical response to be 2.3x greater in 

those with a scar burden <33%, compared to those whose scar burden was greater than this 

cut-off (Chalil et al., 2007a). Comparable findings were made when scar burden was 



 

43 

 

assessed using SPECT. The scar burden of each myocardial segment was graded from 0 (no 

scar) – 3 (extensive scar). Clinical responders had a mean scar score of 10, and non-

responders 25 (p< 0.001) (Ypenburg et al., 2007).   

Total scar burden predicts survival in patients with heart failure (Kwon et al., 2009) and this 

trend is not reversed by a CRT device.  Over a mean follow up  of 2 years post implant, 

patients with a low scar burden identified by Thallium perfusion imaging were less likely to 

progress to mechanical circulatory support, transplantation or death than those with a high 

scar burden (p<0.001) (Adelstein et al., 2011).  

Significant heterogeneity between studies, in terms of cohort demographics and outcome 

criteria employed, precludes the identification of a critical level of myocardial scar above 

which a favourable response to CRT is unlikely.  However, there is a linear correlation 

between scar burden and response, and the prognosis of those with the lowest scar burden 

is similar to those with NICM (Adelstein et al., 2011). It is probable that there is a scar 

burden above which CRT will be unsuccessful due to the decreasing quantity of myocardium 

that can contribute to re-synchronised mechanics. 

1.8.2 Scar transmurality 

Myocardial segments with a greater transmural extent of scar are more likely to be non-

viable and are less likely to recover contractility post revascularisation (Kim et al., 2000; 

Selvanayagam et al., 2004). A LGE-CMR study of 45 patients showed that, in patients with 

postero-lateral scar, <51% transmurality was associated with a significant higher likelihood 
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of response, compared to a greater transmural extent (88% vs. 23%; p<0.001). This remained 

significant after adjusting for scar burden and location (p=0.004) (Chalil et al., 2007a). 

1.9 Idiopathic dilated cardiomyopathy and midwall fibrosis 

1.9.1 Diagnosis, prevalence and pathophysiology of midwall fibrosis 

The detrimental effects of myocardial fibrosis in IDCM were first described in autopsy 

studies (Maehashi et al., 1991). Histopathological diagnosis in vivo requires EMB, an 

imperfect tool due to the variable location and depth from the endocardial surface of 

fibrotic tissue (Marra et al., 2013), but the evolution of LGE-CMR has facilitated in vivo 

assessment of myocardial fibrosis and the study of its implication. 

LGE-CMR and histopathological techniques have perfect concordance for identifying and 

delineating the distribution of myocardial fibrosis in IDCM (Gulati et al., 2013) (Figure 1-6). 

The distribution of fibrosis can be patchy, sub-epicardial, or midwall (McCrohon et al., 2003). 

Problematically, some investigators fail to differentiate between these patterns or clearly 

specify the definition of myocardial fibrosis, whilst others confine their investigation to true 

midwall fibrosis (MWF). These differences in the classification of myocardial fibrosis account 

for the inter-study variance of its prevalence in IDCM, which ranges from 1/3 up to 2/3 if 

minor insertional fibrosis is included. 

The pathophysiology of MWF is unclear. One theory is that MWF is a time dependant 

processes representing a late pathway of myocardial damage. However, circumstantial   
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Figure 1-6. Correlation between LGE-CMR, and macroscopic and microscopic histopathological 
specimens patients with idiopathic dilated cardiomyopathy. 

 A-C are from a patient with MWF who experienced sudden cardiac death. D-F are from a patient without 
MWF who underwent cardiac transplantation. A Premortem LGE-CMR demonstrated a near-circumferential 
pattern of midwall LGE (yellow arrow) in the anterior, septal, inferior, and inferolateral segments at 
midventricular level. B Picrosirius red staining in the corresponding postmortem macroscopic short-axis 
section revealed a prominent linear band of collagen (blue arrows), which mirrored the distribution of LGE 
on CMR. C Microscopic examination confirmed the presence of extensive replacement fibrosis (blue arrows) 
in an area of staining seen on the macroscopic section (area of detail in part B); magnification × 300. D On 
LGE-CMR performed prior to cardiac transplantation, there were no areas of LGE. E Following explantation, 
macroscopic assessment revealed no detectable regions of collagen with Picrosirius red stain. F Microscopic 
section from the septal midwall (area of detail in part E) showed small amounts of perivascular fibrosis (blue 
arrow) but no replacement fibrosis; magnification × 300. 

(Gulati et al., 2013)  
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evidence is accruing suggesting an alternative notion that MWF represents a distinct 

phenotype of IDCM. Patients with MWF are significantly younger and more likely to report a 

familial link, suggesting a genotypically different disease subset (Assomull et al., 2006). 

Strengthening this theory, many of the mutations associated with IDCM encode for 

cytoskeletal proteins (McNally et al., 2013). Further suggestion of separate disease entities 

comes from a longitudinal study comparing scans performed at baseline with those at a two 

year time interval. No patient without MWF at baseline developed it during follow-up, in 

contrast to patients with MWF at baseline, in whom fibrosis never receded but commonly 

progressed (Masci et al., 2013).  

1.9.2 Midwall fibrosis and myocardial pump function  

There are conflicting reports with respect to the relationship between LVEF and MWF. The 

largest studies show that LVEF is reduced in the presence of MWF (Assomull et al., 2006; 

Gulati et al., 2013), however, two studies restricted to newly diagnosed patients both find 

equivalent LV function regardless of fibrosis status (Leong et al., 2012; Masci et al., 2013). 

Nonetheless, these studies observed that following optimal medical therapy, reverse 

remodelling and improved systolic function were seen in patients without fibrosis, whilst no 

recovery was seen in ventricles with MWF. Furthermore, over time fibrosis progressed and 

was associated with a further decline in systolic function. 

To date there has been no robust study of the effect that MWF has on contractility. Knappen 

et al. report that fibrosis does hinder contractile function on the basis of a correlation 

between regional perfusable tissue index (PTI) calculated with positron emission 
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tomography and circumferential strain (Ecc) (Knaapen et al., 2006). However, segmental 

reductions in PTI have never been validated as a surrogate for fibrosis (Knaapen et al., 2004), 

and the authors recognised that ‘there is no evidence that the reduction of the PTI in 

patients with IDCM actually represents myocardial fibrosis.’ Furthermore all patients in this 

study had segmental reductions in PTI, and none had any late Gadolinium enhancement.                      

Diastolic function is also influenced by MWF. The replacement of normal myocardial tissue 

with fibrotic tissue increases myocardial stiffness and impedes diastolic function across a 

broad spectrum of pathologies (Moreo et al., 2009), and findings in IDCM are similar 

(Karaahmet et al., 2010; Moreo et al., 2013; Nanjo et al., 2009).  The most comprehensive 

study in this field demonstrated a relationship between the number of segments with MWF 

and LV filling pressures estimated from echocardiography (Moreo et al., 2013). In 

multivariate analyses the burden of MWF positively correlated with estimated filling 

pressures, whereas LVEF and LVEDV did not. The only discordant study found that patients 

without fibrosis had higher LV filling pressures, as estimated from the septal E/E’ ratio 

(Malaty et al., 2011). These results were likely confounded by the inclusion of patterns of 

fibrosis other than true MWF. 

Table 1-1 shows that the impairment in systolic and diastolic function that accompanies 

MWF translates into worse long term outcomes. In multivariate analyses the presence of 

MWF was the sole significant predictor of adverse events, even when right and left 

ventricular function and LV dimensions were considered. Prognosis declined with increasing 
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Table 1-1. Outcome studies in IDCM stratifying patients according to MWF 

 
Study 

 
Patients      
n 

  
No MWF    n 
(%) 

 
MWF 
n (%) 

 
Follow-up 
(Years) 

 
10 Endpoint 

 
Hazard Ratio 

 
20 endpoints reaching 
significance 

Assomull 
2006 

101 66 (65) 35(35) 1.8 All cause mortality/ 
CV hospitalisation 

3.4     

(1.4-8.7)            
p= 0.01 

1. SCD/VT 

Wu* 
2008 

65 38 (58) 27 (42) 1.4 CV mortality/  
HF hospitalisation/ 
ICD shock  

7.1 
(2.0-25.3) 
P= 0.002 

1.CV mortality/ICD shock 

Gulati 
2013 

472 330 (70) 142 (30) 5.3 All cause mortality 2.96  
(1.9-4.7)  
p <0.001 

1. CV mortality        
2. SCD/VT       
3. HF death, hospitalisation or 
transplant 

 

CV= cardiovascular, HF= heart failure, ICD= Implantable cardioverter-defibrillator, IDCM= idiopathic dilated cardiomyopathy, MWF= midwall fibrosis, SCD= 
sudden cardiac death, VT= ventricular tachycardia.  

*subjects from a population referred for primary prevention ICD
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fibrosis, with particularly poor outcomes for those with more than 5% of the myocardium 

replaced with fibrotic tissue (Assomull et al., 2006). In the largest study both the presence 

(HR: 1.62, 95% CI 1.00-2.61, p= .049) and the extent (HR: 1.08, 95% CI 1.04-1.13, P< 0.001) of 

MWF predicted heart failure events (Gulati et al., 2013). 

1.9.3 Midwall fibrosis, ventricular arrhythmias and sudden cardiac death  

MWF also increases the risk of both ventricular arrhythmias and sudden cardiac death 

(Assomull et al., 2006; Gulati et al., 2013). This is unsurprising given that histological 

specimens from macroscopic sections of MWF show collagen and fibroblasts dispersed with 

surviving myocytes (de Leeuw et al., 2001). Such areas are prone to slow conduction and 

functional electrical block; the ideal substrate to facilitate re-entrant arrhythmias (de Bakker 

et al., 1993). Accordingly, an observational study of patients with IDCM and primary 

preventative ICDs found that over a 2 year follow up, 9/31 patients with MWF required 

device therapy, yet no treatments were required in the 30 patients without MWF (Iles et al., 

2011). The role for primary prevention ICDs in IDCM remains unclear, and the powerful 

predictive value of MWF warrants further study.  

The location of scar in IDCM makes VT ablation more problematic. In ICM, scar extends to 

the subendocardium and is usually amenable to endocardial ablation. In contrast, substrate 

modification of a midwall re-entrant circuit may not be reliably achieved with an endocardial 

ablation catheter, and in many cases multiple procedures incorporating both endocardial 

and epicardial ablation are likely to be required (Arya et al., 2010; Soejima et al., 2004).  
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1.9.4 Midwall fibrosis and dyssynchrony 

The solitary study on the influence of MWF on dyssynchrony uses speckle tracking derived 

SD of time to peak longitudinal strain and interventricular mechanical delay (Leong et al., 

2012). At diagnosis, intra- and inter- ventricular dyssynchrony were similar regardless of 

MWF status. Following 5 months of optimal medical therapy, intra-ventricular dyssynchrony 

improved in those without MWF. In contrast, patients with MWF had deterioration in both 

intra- and inter-ventricular synchrony. The observed changes in dyssynchrony paralleled 

changes in LVEF, and their independence is not scrutinised. The benefit of CRT in patients 

with MWF requires examination. 

1.10 Aetiology and response to CRT 

An ischaemic aetiology is inextricably linked to myocardial scarring, and it is generally 

accepted that response is worse in this cohort (Brignole et al., 2013), although the evidence 

base is conflicting depending on the outcome metric viewed. Sub-analyses of REVERSE (Linde 

et al., 2010), MIRACLE (Sutton et al., 2006) and MADIT-CRT (Barsheshet et al., 2011) agree 

that remodelling is much less pronounced in ischaemic heart failure. This phenomenon is 

likely due to the lower myocardial viability and reduced substrate for remodelling.    

Although these sub-analyses and similar analyses from CARE-HF (Wikstrom et al., 2009) all 

showed trends towards an improved magnitude of protection from adverse outcomes in 

NICM, this trend was not statistically significant in any study. Whilst it should be considered 

that these trials were not powered to detect such differences, these trials did all confirm 

worse outcomes in those with an ischaemic aetiology, regardless of treatment arm; this may 
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off-set any differences in outcome modification due to baseline aetiology, as the higher 

event rate in ischaemic heart failure will be in favour of a greater absolute benefit. 

1.11 LV torsional mechanics  

The expansion in diversity and availability of techniques to assess cardiac motion has made 

the assessment of LV rotation and twist accessible.  Furthered understanding of normal 

cardiac mechanics, the deficiencies in various cardiac pathologies, and how CRT modulates 

these aids our understanding of the benefits and limitations of resynchronisation, and 

potentially offers the opportunity for a more tailored management strategy.   

1.11.1 Normal cardiac architecture and torsion 

Using 2D approaches such as 2DE and LV ventriculography, the LV appears to thicken 

uniformly leading to the common misapprehension amongst cardiologists that the LV 

functions homogenously with all fibres contracting and then relaxing simultaneously.      

The earliest in vivo studies of cardiac torsional mechanics used cine angiography (Hansen et 

al., 1988) and sonomirometry (Gorman et al., 1996). The left ventricle comprises a counter-

directional helical arrangement of myofibrils which smoothly transform from having a right 

handed orientation at the sub-endocardium, to a circumferential orientation within the mid-

myocardium, through to a left handed orientation at the subepicardium. Contraction of 

these helices not only causes the heart to shorten in a longitudinal direction, but also to 

twist along its long axis. Contraction of the subepicardial myocardial fibres causes the base 

to rotate clockwise and the apex to rotate in a counter clockwise direction. The oppositely 
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aligned subendocardial fibres cause the exact reverse. To appreciate how these oppositely 

aligned structures exact their mechanical effects, they need to be considered within the 

context of the coincident electro-activation sequences:   

Isovolumic contraction. Electrical activation of the LV myocardium commences at the 

endocardium, due to the impulse for LV depolarisation being well insulated from 

surrounding myocardium as it propagates from the base to the apex via the His-Purkinje 

system.  Initial breakout is infero-septal and anterior (Cassidy et al., 1984) (Figure 1-7), 

before the electrical wavefront spreads from the apex in a basal direction. The myocardium 

is anisotropic, with the wavefront initially being largely confined to the endocardial layer, 

which is entirely depolarised within 40ms (Durrer et al., 1970), due to the relatively higher 

concentration of gap junctions longitudinally along the endocardial helix compared to the 

transmural direction (Saffitz et al., 1995).  

Accordingly, there is shortening of the right handed sub-endocardial helix during this phase 

of the cardiac cycle. The epicardial helix, which is yet to be depolarised, is stretched 

(Sengupta et al., 2005). These opposing deformations, which have shown by tissue Doppler 

to be of equal magnitude (Sengupta et al., 2005), counter-balance one another with no net 

change in cavity dimension. Contraction of the sub-endocardium without a change in volume 

leads to a rapid rise in LV pressure. Furthermore, the shortening subendocardial helix rotates 

the apex in a clockwise fashion and the base anti-clockwise.  Descriptions of the direction of 

this twist vary depending on the technique used. Measurements using cine-angiographic 

markers (Ingels et al., 1989), sonomicrometry (Helle-Valle et al., 2005) or speckle tracking   
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Figure 1-7. Wavefront the electrical activation sequence of the normal heart.  

The activation sequence of a normal left ventricle is demonstrated with time colour coding. The anterior wall 
of the LV has been cut away on the right, but is viewed en face on the left. Activation can be seen to spread 
in an endocardial to epicardial direction. 

(Sengupta et al., 2013) 
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(Helle-Valle et al., 2005) all concur with the description above, but MRI studies using tagging 

(Lorenz et al., 2000) and tissue phase mapping (Jung et al., 2006) report a counter-clockwise 

rotation of both the apex and the base; this incongruity is likely to relate to the lower 

temporal resolution of MRI. 

Ejection phase. Initiation of ventricular ejection correlates with the electrical wavefront 

reaching the sub-epicardium. Epicardial breakthrough is heterogenous between individuals, 

but typically occurs either antero-septally, posteriorly or simultaneously at these sites 

(Ramanathan et al., 2006).  Subsequent epicardial activation occurs in a predominantly 

apico-basal direction, due to a combination of transmural spread of the wavefront and 

spread of the wavefront directly through the epicardial layer. With contraction of the sub-

epicardial helix, the left ventricular cavity shortens along its long axis. As both helices 

shorten from apex to base, blood is emptied out of the ventricle via the outflow tract.  The 

greater torque of the sub-epicardial helix causes the twisting motion seen during isovolumic 

contraction to be reversed, with clockwise rotation of the base and anticlockwise rotation at 

the apex. These counter-directional rotations lead to the LV twisting around its long axis and 

further enhance the mechanical efficiency of the heart. The motion is analogous to the 

wringing of a wet towel. As the magnitude of apical rotation is greater than that of basal 

rotation, it is the former that has the greater influence on total myocardial twist (Gibbons 

Kroeker et al., 1993).     

Diastole. Isovolumic relaxation  is a misnomer for the early stage of diastole, as active 

regional post-systolic shortening continues after aortic valve closure in the subepicardial 
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layers apically and in the subendocardial layers basally (Sengupta et al., 2006; Voigt et al., 

2003). This creates gradients in both a transmural and apico-basal direction, which is 

thought to provide an active mechanism for restoring LV structure and facilitates rapid 

expansion of the LV cavity at the apex. The twisted, sheared and thickened myocardium 

stores potential energy. Rapid recoil during isovolumic relaxation leads to a rapid fall in intra-

ventricular pressure. By the time the mitral valve opens, untwisting of the LV has 

predominantly finished and the above processes have created a pressure gradient from the 

atrium to the ventricle that drives diastolic suction and rapid filling.  

1.11.2 Torsional mechanics and myocardial dysfunction 

Whilst one might predict that LV systolic dysfunction results in reduced torsion, this is not 

singularly true as it is the disturbance of the equipoise between the oppositely aligned 

myofibrils that modulates the net effect on torsional dynamics. In the initial stages of a 

myocardial infarction, ischaemia is limited to the sub-endocardium, and increased 

dominance of the sub-epicardial helix results in hyper-rotation (Kroeker et al., 1995). 

Similarly, microvascular insufficiency of the subendocardial fibres is seen in hypertension 

(Yoneyama et al., 2012), hypertrophic cardiomyopathy (HCM) (van Dalen et al., 2009; Young 

et al., 1994), and as part of physiological ageing (Lumens et al., 2006). In these circumstances 

augmented twist provides a compensatory mechanism.    

Cardiac remodelling leads to changes in fibre orientation and biomechanical models have 

shown that increasing the angulation  between the epicardial and endocardial fibres  from 

the normal +60◦/-60◦ orientation to  +90◦/-90◦ leads to a 50% reduction in peak twist (Taber 
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et al., 1996). This has been confirmed in vivo and Figure 1-8 shows that in patients with 

IDCM, a decreasing sphericity index (a more spherical LV) is associated with a linear 

reduction in LV twist (van Dalen et al., 2010). 

 In a proportion of patients with heart failure the direction of LV rotation is reversed. 

Commonly only one extremity of the ventricle is affected, a particularly detrimental scenario 

as the direction of turn becomes the same at both the base and apex with an absence of net 

LV twist (Kanzaki et al., 2006; Setser et al., 2003). This torsional pattern is commonly termed 

‘rigid body rotation’ and predictably it is associated with more advanced disease (Popescu et 

al., 2009). 

1.11.3 Torsional mechanics and CRT 

The hypothesis that the correction of torsional dysfunction is one mechanism by which CRT 

mediates its benefits warrants investigation. There are conflicting results as to whether 

reduced net twist at baseline identifies a population who may derive a greater benefit from 

CRT.  In 33 patients Sade et al., report that responders had lower baseline twist than non-

responders (1.5 o vs. 5.3 o, p< 0.01) and that net twist improved on average by 4.8o in 

responders (P< 0.0001) yet remained unchanged in non-responders (Sade et al., 2008).  In 

contrast, a study of 40 patients showed no net difference in net twist at baseline between 

responders and non-responders. However, the finding that responders demonstrated a 4.2o 

improvement in twist at 6 months (p <0.001), whilst a reduction was seen in non-responders 

at 6 months, was in accord with the aforementioned study (-2.1o; P< 0.001) (Bertini et al., 

2009).  
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Figure 1-8. Influence of cardiac shape on left ventricular twist 

Left ventricular sphericity index (maximal left ventricular long-axis internal dimension divided by the 
maximal short-axis internal dimension at end-diastole) in (A) a healthy volunteer (sphericity index 1.9) and 
(B) an IDCM patient (sphericity index 1.4). (C) Healthy controls (open symbols) demonstrate a parabolic 
relationship beween LV sphericity and peak twist, but a linear reduction in peak twist is seen as LV sphericity 
index decreases in IDCM patients (closed symbols).  

Adapted from (van Dalen et al., 2010) 

A B 
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Potentially, differing lead positions can be used to manipulate torsional mechanics by 

utilising different electro-mechanical activation sequences. The above small studies found 

that apical and posterolateral LV pacing was associated with the maximal improvements in 

twist. Physiological activation stems from the apex, and pacing here should create a 

depolarisation wavefront that most closely mirrors physiological activation. The thinner 

apical myocardium also offers closer access to the Purkinje network. Orthodoxly, implanters 

avoid positioning the LV lead over apical segments, as in all-comers this results in 

detrimental outcomes (Singh et al., 2011). An apical lead position usually signifies less 

separation from the RV pacing electrodes and involves pacing a region that has less delayed 

electro-mechanical activation in typical LBBB (Auricchio et al., 2004).  However, patients with 

ICM are likely to have had a left anterior descending territory infarct and resultant apical 

scarring. The benefits of avoiding apical placement are less clear in IDCM as the reported 

enhancement of torsional mechanics may promote response.   

1.12 LV pacing site and CRT 

Baseline dyssynchrony and low scar burden increase the probability of a response to CRT, 

but conventionally LV lead positioning is performed ‘blind’ of these parameters. Via this 

approach to implantation one might hypothesise that these parameters only improve the 

probability of an ideal LV lead position being achieved by chance, and specifically targeting a 

preferential site for lead position might further improve this likelihood.  

Elegant support for the impact of individually tailored LV lead position comes from 11 

patients who underwent surgical epicardial LV lead placement so that the pacing site was 
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not restricted by venous anatomy (Dekker et al., 2004).  Intra-patient invasive pressure 

volume loops demonstrated that pacing from different sites engendered very different 

haemodynamic effects, with some pacing sites even having deleterious effects. Furthermore, 

there was marked inter-patient heterogeneity with respect to the optimal pacing site, and in 

4 patients (in difference to common strategy) apical pacing proved most acutely beneficial. 

1.12.1 Site of latest electro-mechanical activation 

The basis of CRT is to correct the non-physiological spread of electrical excitation that results 

in uncoordinated contraction and inefficient cardiac performance (Baller et al., 1988).  Early 

haemodynamic studies found the maximal benefit of LV pacing was derived from pacing at 

either a lateral or postero-lateral site (Cazeau et al., 1994; Leclercq et al., 1998a). However, 

in patients with LBBB this is usually the site of latest activation and thus provides maximal 

correction of dyssynchrony.  

The earliest study to demonstate that LV pacing at the site of latest mechanical activation 

(LMA) could enhance response observed 31 conventional CRT recipients, who had pre-

implant assessment of LMA using TDI (Ansalone et al., 2002).  CRT improved cardiac 

performance in the entire cohort, but there were greater improvements in LV volumes (p= 

0.04), LVEF (p= 0.04) and ergonometer stress test performance (p= 0.03) in the 13 patients 

with LV pacing at the site of LMA.  All patients had IDCM so there were no confounding 

effects due to myocardial scarring. These results are re-producible using alternative 

echocardiographic modalities, including STE (Becker et al., 2007b), 3DE (Becker et al., 2007a) 

and tissue synchronisation imaging (Murphy et al., 2006) to characterise LMA.   
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When a larger observational study of 244 patients studied outcomes from CRT in the context 

of concordance between the site of STE derived LMA and LV lead position, concordance was 

an independent predictor of hospitalisation free survival over a 32 month follow-up (HR: 

0.22, p= 0.004) (Ypenburg et al., 2008). In line with common practice, implanters had 

preferentially targeted a posterolateral site and in 64% of cases this blind approach led to a 

concordant lead position. Thus, worse outcomes were seen in patients with alternative sites 

of LMA.     

1.12.2 Relationship between scar and paced segment  

Early haemodynamic studies found the maximal benefit of LV pacing was derived from 

pacing at either a lateral or postero-lateral site (Cazeau et al., 1994; Leclercq et al., 1998a). In 

patients with LBBB this is usually the site of latest activation and thus provides maximal 

correction of dyssynchrony.  Accordingly, the conventional approach to implantation is to 

attempt to position the LV lead in a tributary of the coronary sinus that overlies this 

territory. However, this is disadvantageous if this is scarred. Pacing over scar leads to 

delayed propagation of the electrical impulse and increased QRS fragmentation 

(Schwartzman et al., 1999). The greater the transmural depth and area of scar, the longer it 

will take for the electrical impulse to propagate around the electrical barrier, attenuating any 

correction of dyssynchrony. Furthermore, scar acts as a substrate for re-entrant rhythms, 

and pacing over scar can induce monomorphic ventricular tachycardia (VT) (Roque et al., 

2014).    
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 In a LGE-CMR study, where response was defined as 1 year survival free from heart failure 

hospitalisation coupled with a symptomatic improvement, a 33% response rate was 

observed in 15 patients paced over posterolateral scar vs. 86% in the 14 patients with a 

similar scar burden but paced at an adjacent site (p= 0.004) (Chalil et al., 2007a). Similarly, a 

SPECT imaging study found only 20% (3/15) of patients with scar in the region of the LV 

pacing lead met the response criteria (Ypenburg et al., 2007). Pacing over scar also 

negatively impacts cardiovascular mortality rate (62% Vs 24%, P= 0.049), and the composite 

of cardiovascular death or hospitalisation (81% Vs 24%, p=0.0009) (Chalil et al., 2007c).  

Approaches to negate the unfavourable effects of pacing over scar have been explored. A 

study of 57 patients (of whom 16 had posterolateral scar) determined if this could be 

achieved by ensuring optimal atrioventricular and intraventricular pacing intervals using 

invasive dp/dt measurement. In multivariate analysis only pre-implant LV dyssynchrony, and 

not the presence of PL scar (odds ratio [OR] 2.07, p=0.48), independently predicted a LVRR 

response. The authors concluded that by optimising pacing delays, some of the pacing 

stimulus could still be propagated to recruit myocardium and still reduce dyssynchrony. 

Nonetheless, LVRR at 3 months was only seen in 25% of patients with posterolateral scar vs. 

89% without (p= 0.001) (Jansen et al., 2008).  

1.12.3 Targeted LV lead position  

In the context of this support for an individually tailored approach to CRT implantation two 

randomised control trials have tested whether response can be improved by implanting the 

LV lead at the site of LMA and over viable myocardium. The STARTER (Speckle Tracking 
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Assisted Resynchronization Therapy for Electrode Region) sastudies both compared an 

echocardiography guided LV lead placement against conventional implantation. Both studies 

used STE radial strain to identify the segments with LMA. In TARGET a prospective evaluation 

of a surrogate of scar, defined < 10% radial strain, was undertaken. STARTER was implicit in 

its avoidance of scar within the echocardiography guided arm. Whilst myocardial scar was 

not formally assessed, segments with low amplitude radial strain were handled as missing 

data, and therefore not offered to the implanter as a target for LV lead deployment. It 

follows that, by virtue of study design, segments which may have contained scar were most 

likely avoided by implanters.  

In TARGET both a LVRR response (70 vs. 55%, p= 0.031) and a clinical response (83% vs. 65%, 

p = 0.003) were seen more frequently in echocardiography guided implantation. Both 

studies reported longer event free survival with echocardiography guided implants 

(STARTER: HR 0.48, p=0.006; TARGET: log-rank test, p = 0.031).     

1.12.4 Multisite pacing 

It must be considered that any added benefit of image guided implantation was restricted to 

the 17-18% of the participants in STARTER and TARGET in whom an echocardiography 

guided approach resulted in a more desirable lead position. LV lead placement can be 

challenging and is constrained by the target branches available, stability, local myocardial 

excitability and phrenic nerve stimulation. In the imaging guided arm of STARTER only 30% 

of patients had the LV lead positioned overlying the ‘sweet spot’.  
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Advances in LV lead technology, and in particular quadripolar leads, are refining our ability 

to pace over a specific location. Early generation LV leads comprised 1 or 2 electrodes 

located at the distal tip which had to be wedged into a branch vessel. Having multiple 

electrodes at more proximal sites means quadripolar leads offer a range of pacing options. 

This also enhances the capability of an electro-anatomical approach to delivering CRT, as 

QLV can be measured from multiple electrodes and therapy delivered from a confirmed late 

activated site.  

An early case report demonstrated a quadripolar lead’s ability to circumnavigate scar, when 

the distal portion of a sole tributary of the coronary sinus was overlying scarred 

myocardium. A bipolar LV lead demonstrated unacceptable pacing thresholds, and 

stimulation produced a fragmented electrogram (Abozguia et al., 2011). A quadripolar lead 

was used so that the distal lead aided stability, whilst the proximal poles, straddling non-

scarred myocardium, provided an advantageous pacing site (Figure 1-9).   

Multi-polar leads also offer the possibility of stimulating the LV from several poles 

simultaneously. Delivering two pacing pulses concurrently may increase the amount of 

myocardium recruited and early studies suggest this evokes a superior acute haemodynamic 

(Pappone et al., 2014b) and LVRR response (Pappone et al., 2015). Beneficially the greater 

possibilities for electro-manipulation of the pacing vector may render the actual position of 

the lead less important than with the conventional delivery of CRT, and there is as yet 

unpublished preliminary data to support this (Pappone et al., 2014a).   
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Figure 1-9. Targeting viable myocardium in cardiac resynchronisation therapy using a multipolar 
left ventricular lead. 

A, A 30° right anterior oblique fluoroscopic view of the multipolar LV lead straddling the calcified LV 
aneurysm. B, The distal poles of the lead subtend scarred myocardium (white, arrows). C, Pacing over poles C 
and D was associated with a longer QRS duration, a higher pacing threshold, and a markedly different QRS 
morphology, compared with pacing from poles A and B. The exact positions of the poles were derived by 
superimposing the fluoroscopic views on the CMR views. CMR indicates cardiovascular magnetic resonance; 
RA, right atrial; RV, right ventricular; LV, left ventricular. 

(Abozguia et al., 2011) 
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Logically, a targeted approach to CRT delivery would be more feasible if the constraints of 

individual coronary venous anatomy were overcome. Direct surgical placement of the LV 

lead via limited thoracotomy provides a greater selection of pacing sites, but in a direct 

comparison to transvenous CRT, reduced functional improvement and higher mortality rates 

were reported at one year (Koos et al., 2004).  However, this study did not employ a 

targeted approach to lead positioning and it was probable that surgeons favoured 

technically easier anterior lead positions which have a lower probability of overlying late 

activated sites. At present there is no direct comparison as to the potential benefit of 

surgical LV lead placement guided by electro or mechanical anatomical guidance, but the 

invasive nature of this technique, coupled with longer hospital stays and recovery time make 

it an unappealing channel for extensive investigation.   

Another method for LV lead placement unrestricted by venous anatomy is endocardially via 

a transeptal transmitral route. Direct stimulation of the more rapidly depolarised 

endocardium offers a more physiological solution. The ALSYNC (Alternate Site Cardiac 

Resynchronization) study showed that outcomes were similar to conventional CRT (Morgan 

et al., 2016), and one would expect further improvement if this was combined with targeted 

LV lead placement. However, safety remains a concern and over 10% of the ALSYNC cohort 

had a cerebrovascular event despite mandated anti-coagulation. A novel alternative for 

providing endocardial LV pacing is using leadless ultrasound based technology, which should 

overcome these safety issues, but is currently at a developmental stage (Auricchio et al., 

2014). 
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1.13 Feature-tracking CMR and study hypotheses 

1.13.1 Feature tracking CMR 

Feature-tracking CMR (FT-CMR) is a novel technique that allows quantification of motion and 

strain using a standard steady state in free precession (SSFP) sequence, which forms part of 

a routine LV study protocol.  

FT-CMR involves the operator manually defining a border which is then automatically 

propagated (tracked) through the cardiac cycle by matching individual patterns (features) 

that represent anatomical structures. These features consist of a group of pixels or a voxel, 

and are found by the method of maximum likelihood between the regions of interest of 

consecutive frames by looking for the closest grayscale match (Hor et al., 2011). Accordingly, 

as with speckle tracking echocardiography, it works on the principle of optical flow. The 

distance moved by individual points within the two-dimensional matrix between frames 

facilitates the computation of displacement and strain.  Their first order derivatives, velocity 

and strain rate are calculated from the time interval between frames (Bohs et al., 2000). 

The high signal to noise ratio and sharp contrast between the blood pool and myocardium 

with SSFP cines lend themselves favourably to measuring deformation at the endocardial 

border. The degree of definition is typically less at the epicardial border and is variable 

depending on the signal from neigbouring structures. The comparatively homogenous 

myocardium is poorly tracked. Thus, unlike myocardial tagging which provides a pan-

myocardial assessment of deformation, FT-CMR is relatively crude, as it is limited to the 

assessment of myocardial edges. 
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Despite its rudimentary nature it offers attractive potential. Theoretically it is substantially 

less time consuming with no special acquisition sequences, and this aspect also enables 

retrospective cohorts to undergo assessment of cardiac mechanics.  

1.13.2 Study aims 

The underlying goals of the studies detailed herein are to: 

(1) Confirm the feasibility, reproducibility and accuracy of FT-CMR to assess cardiac 
strain in multiple dimensions. 

(2) Define normal values for myocardial strain with this novel software.  

(3) Advance our appreciation of the mechanical effects of myocardial scarring. 

(4) Validate FT-CMR as a methodology to calculate novel dyssynchrony parameters and 
test whether these could enhance patient selection for CRT.  

(5) Test whether FT-CMR derived myocardial strain can provide incremental benefit over 
current functional measures at predicting long term outcomes following CRT.  

(6) Validate the concept that using this software to guide LV lead placement could 
improve response to CRT. 
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2 VALIDATION OF CARDIOVASCULAR MAGNETIC RESONANCE FEATURE TRACKING 

MEASURES OF MYOCARDIAL STRAIN AGAINST MYOCARDIAL TAGGING 

Principal hypothesis: FT-CMR has acceptable agreement with SPAMM myocardial tagging 

for the calculation of short and long axis systolic and diastolic strain parameters over a broad 

spectrum of LV function. 

2.1 Introduction 

Cardiac strain is a sensitive measure of myofibre deformation and provides a measure of the 

contractile and relaxation properties of the myocardium. Abnormalities of strain precede 

declines in more conventional markers of LV function, facilitating the recognition of 

cardiomyopathies at a pre-clinical stage (Hankiewicz et al., 2008). Strain measurement can 

enhance the diagnostic utility of ischaemia (Edvardsen et al., 2000) and viability testing 

(Lyseggen et al., 2005) and it aids risk stratification guiding the timing of therapies or 

intervention (Yingchoncharoen et al., 2012). The utility of deformation imaging extends 

beyond the detection of incipient disease and, due to its temporal component, it is of 

particular interest in the field of cardiac resynchronisation. The dispersion of regional strains 

underpins dyssynchrony analyses, and regions with late peak strains have been shown to be 

preferential targets for LV pacing enhancing the delivery of CRT (Khan et al., 2012a). 

Myocardial tagging was the first non-invasive measure of myocardial strain, and due to the 

high signal to noise ratio and spatial resolution of CMR, it is the accepted reference standard 

by which other techniques are evaluated (Amundsen et al., 2006). Specifically designed 
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acquisition sequences manipulate the properties of the imaged region so that a grid of 

magnetically saturated tissue segregates the remaining myocardium into tags (Axel et al., 

1989). Theses render myocardial motion more visible and dedicated processing software 

allows in depth quantitative analysis of myocardial deformation. The evolution of this 

methodology has seen over 20 different pulse sequences devised for the creation of tagged 

cines such as spatial modulation of magnetization (SPAMM) or harmonic phase (HARP). 

Successive techniques have refined shortcomings of forerunners with incremental 

improvements in tag definition, density, persistence (Ibrahim, 2011). To date, however, 

myocardial tagging acquisition and its requisite post-processing analysis are largely confined 

to the research environment, not least because they are laborious and time-consuming. 

Feature-tracking CMR (FT-CMR) is a novel technique that allows quantification of motion and 

strain using SSFP sequences, which forms part of a routine LV study protocol. This technique 

has shown promising agreement with HARP tagging for the calculation of circumferential 

strain within the mid LV cavity in a paediatric population (Hor et al., 2010). However, one 

study reports FT-CMR as inadequate for measuring long axis strain (Augustine et al., 2013) 

and there has been no attempt to validate its use, against a reference standard, for the 

measurement of diastolic parameters (Harrild et al., 2012). This study compares the accuracy 

of FT-CMR for assessing both short and long axis systolic and diastolic strain, using SPAMM 

myocardial tagging as a reference, in a mixed cohort of healthy volunteers and patients with 

IDCM. 
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2.2 Methods 

This study was approved by the West Midlands Research Ethics Committee and carried out 

in accordance with the principles of the Declaration of Helsinki.  All patients provided 

informed written consent. 

2.2.1 Study population 

Healthy controls. Healthy control subjects were identified from a prospective controlled 

observational research study examining the effects of living kidney donation on 

cardiovascular structure and function (NCT01769924)(Moody et al., 2014). Accordingly, all 

participants met the United Kingdom criteria for living kidney donation and were screened 

to exclude a previous history of cardiovascular disease, pulmonary disease, hypertension 

and AF. Both controls and prospective kidney donors from NCT01769924 were used as 

controls in this study, and baseline CMR studies were used.          

IDCM subjects.  Patients with IDCM were those enrolled from a prospective investigation 

into the mechanical effects of midwall fibrosis on cardiac mechanics (REC: 12/WM/0157); 

IDCM was diagnosed on the basis of clinical features plus echocardiographic evidence of LV 

systolic impairment in the absence of: severe structural valvular heart disease; hypertrophic 

or restrictive cardiomyopathy;  coronary artery disease on invasive coronary angiography 

thought to be sufficient to account for the reduced left ventricular systolic function; 

transmural or subendocardial LGE pattern consistent with a coronary territory.  
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2.2.2 CMR acquisition 

This was performed with a 1.5 Tesla scanner (Magnetom Avanto, Siemens, Erlangen, 

Germany), using a phased-array cardiac coil.  

SSFP. A horizontal long-axis cine imaging plane was mapped from the VLA cine and the short 

axis scouts, ensuring maximum lateral dimensions of both ventricles were encompassed and 

avoidance of the LV outflow tract. The short axis stack was piloted from the end-diastolic 

frames of the HLA and VLA cines; contiguous cines were acquired from the atrioventricular 

ring to the LV apex (retrospective electrocardiographic gating, repetition time of 3.2 ms; 

echo time of 1.7 ms; flip angle of 60o; sequential 7 mm slices with a 3 mm interslice gap). 

There were 25 phases per cardiac cycle resulting in a mean temporal resolution of 40 ms.  

Myocardial tagging. Short axis cines at the LV basal, mid cavity and apical level and a HLA 

cine were acquired with slice positioning from the SSFP data set. SPAMM radiofrequency 

pulses gated to the R wave produced a grid of magnetisation saturation with tag separation 

of 8mm using a segmented k-space fast field echo multishot sequence (repetition time 3.9 

ms, echo time 1.7 ms, voxel size 1.99/2.04/8.00 mm3, flip angle 5°, tag grid angle 45° with 

slice thickness 6 mm, minimum 15 phases per cardiac cycle) (Edwards et al., 2010). For IDCM 

patients, tagging was performed prior to administration of Gadolinium to maximise T1 

relaxation time so as to improved tag persistence. 

2.2.3 Myocardial strain and strain rate analysis 

A timed off-line analysis was performed on SPAMM and SSFP cines at identical slice positions 

by two independent blinded observers (R.J.T. and W.M.: 3 and 4 years experience 
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respectively). Two independent CMR experts (12 and 15 years experience) verified the 

quality of all cine acquisitions and any deemed of sub-standard quality were excluded from 

deformation analysis.  

CIMTag dynamic tissue-tagging.  Tagged acquisitions were analysed with the CIMTag 

dynamic tissue-tagging (CIMTag2D) analysis package (Cardiac Image Modelling, University of 

Auckland, Auckland, NZ).   

Figure 2-1 provides an overview of the CIMTag analysis platform. LV geometry is rendered in 

the end-diastolic frame from placing manual guidepoints along the endocardial and 

epicardial contours, following which a mesh grid is automatically aligned to the stripes of   

desaturated tissue using linear least squares optimisation with subsequent user fine-tuning. 

This grid is converted into a visual tissue displacement map which is then automatically 

distorted through sequential frames to model deformation. The end-systolic displacement 

map is manually adjusted by the user to provide the optimum overlay of the inherent grid 

pattern. 

FT-CMR. FT-CMR was undertaken using the Diogenes FT-CMR software (TomTec Imaging 

Systems, Munich, Germany). The four tracked SSFP cines had a matched slice position to the 

tagged sequences.  Endocardial borders were manually drawn in the end-diastolic frame. 

The papillary muscle was excluded from the endocardial contour.  These were then 

automatically propagated (tracked) through the cardiac cycle by matching individual 

patterns that represent anatomical structures. These structures are found by the method of  
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Figure 2-1. Overview of the CIMTag2D analysis platform. 

a) Guide points placed by the user on the endocardial and epicardial border of the LV in the first frame (end-diastole) were fitted by the model using linear least 
squares optimization, resulting in an initial segmentation of the LV with minimal user interaction and subsequent initialization of the finite element model in the 
first frame of the SPAMM sequence. 

b) Visual depiction of the tissue displacement map provided by non-rigid registration image tracking process at end-diastole. 

c) User corrected texture map overlay as seen after placing guide points in end-systole, thereby interactively warping the model to provide a best fit between 
image tags and model stripes. 

(Moody et al., 2015)
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maximum likelihood between the regions of interest of consecutive frames (Hor et al., 

2011). The distance moved by individual points within the two-dimensional matrix between 

frames facilitates the computation of displacement and strain.  Their first order derivatives, 

velocity and strain rate, are calculated by the process of optical flow, i.e. the ratio between 

distance and the time interval between frames (Bohs et al., 2000). For each tracked cine, six 

segmental time-strain plot were constructed, from which a global mean time-strain plot was 

produced. To minimise variability, user adjustments after the first attempt at tracking were 

kept to a minimum. However, as with any deformation technique, inaccuracies can arise 

because the boundary between the trabecular and compact portions of the wall may shift as 

the blood spaces between the trabeculae close during systole, resulting in an artefactual 

apparent inward motion of the endocardial contour. If this was deemed to be a significant 

problem the cine was re-tracked with manual contouring using an end-systolic frame. 

For both CIMTag2D and FT-CMR all strain data was exported into Microsoft Excel and global 

peak systolic longitudinal strain (Ɛll), systolic (SSRll) and diastolic (DSRll) longitudinal strain 

rates were derived from the HLA sequence. Global peak systolic circumferential strain (Ɛcc) 

and systolic (SSRcc) and diastolic (DSRcc) circumferential strain rates were derived from each 

of the short axis acquisitions. Peak DSR was derived during the early rapid filling stage of 

diastole (Figure 2-2).   Using CIMTag2D strains were calculated both transmurally, and after 

subdivision of the myocardium into three equal components (subendocardial, midwall and 

subepicardial). In contrast, only endocardial equivalents were derived with FT-CMR.  
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Figure 2-2. Representative circumferential strain rate profile from cardiac magnetic resonance-feature tracking at the mid left ventricular level of a 
healthy control. 

This example demonstrates a typical strain rate pattern with S (systolic), E (early diastolic) and A (late diastolic) waves. The dotted white line represents the 
global subendocardial circumferential strain rate. 

(Moody et al., 2015) 
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2.2.4 Left ventricular function, volumes and mass 

LV mass, LV end-diastolic (LVEDV) and end-systolic (LVESV) ventricular volumes were 

quantified using manual planimetry of the endocardial and epicardial borders from the short 

axis stack in accordance with validated methodologies (Maceira et al., 2006) using Argus 

software (Siemens, Erlangen, Germany). These were indexed to body surface area using the 

Mosteller formula (Mosteller, 1987). 

2.2.5 Statistical analysis 

Categorical variables are expressed as a frequency and percentage and continuous variables 

are presented as either mean ± SD or median and interquartile range depending on 

distribution. Normality was assessed using the Kolmogorov-Smirnov test and normality 

probability plots. Non-parametric data were log-transformed prior to analysis to achieve 

normality. For continuous variables independent sample t-tests were used for comparisons 

between healthy controls and IDCM patients. Agreement between techniques was tested 

using Pearson’s correlation coefficient and by calculating mean bias and 95% limits of 

agreement (confidence intervals) from Bland-Altman analyses. Spearman's rank correlation 

of the differences with the means for strain parameters calculated by both methods was 

performed. Paired t-tests were used to compare the mean strain parameters as calculated 

by the different methods. Comparisons of myocardial tagging derived strain parameters 

within the different component layers of the myocardial wall were made with repeated 

measures analysis of variance (ANOVA) with a Greenhouse-Geisser correction. Based on the 

prior validation of FT-CMR against HARP tagging (Hor et al., 2010), there was no expected 

mean bias between methodologies, and an expected SD of differences of 2. Accordingly, 15 
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patients would be required to demonstrate a maximum difference between methods of less 

than 7.5% (β= 0.2) (Lu et al., 2016). At the time of study design, there was no published data 

to guide sample size requirements for validating strains in other directions. A p value of < 

0.05 was considered statistically significant. Statistical analysis was performed using SPSS 

v21.0. (SPSS Inc. Chicago, Illinois).  

2.3 Results 

2.3.1 Baseline characteristics 

As shown in Table 2-1 the study included 45 subjects (35 healthy controls, 10 IDCM). 

Compared to IDCM patients, controls were younger (41 ± 12 yrs [mean ± SD] vs. 58 ± 14 yrs, 

p< 0.01) and had lower weight (77 ± 11 kg vs. 87 ± 17 kg, p< 0.01). Otherwise, demographics 

were similar between the two groups. There was a preponderance of male and caucasian 

participants which was similar across controls and IDCM patients (total cohort: 63% and 88% 

respectively). 

 As anticipated, patients with IDCM had larger LV dimensions (LVEDV: 205 ± 51ml vs. 124 ± 

25ml; LVESV: 140 ± 60ml vs. 37 ± 15ml, p< 0.01 for both) and lower LVEF (71 ± 6% vs. 33 ± 

15%, p< 0.01) and stroke volume (64 ± 21ml vs. 87 ± 14ml, p< 0.01) than healthy controls. 

LVEF ranged from 19-79% across the entire study cohort. 

All SSFP cines were of satisfactory quality for analysis using FT-CMR. In 2 subjects, both 

healthy controls, SPAMM acquisitions were unsuitable for tagging analysis (due to breathing  
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Table 2-1.  Baseline characteristics of the study population. 

Baseline characteristics 
Controls               
(n= 35) 

IDCM                 
(n= 10) 

Overall             
(n=45) 

Age (years) 41 ± 12 58 ± 14* 44 ± 14 

Male gender (%) 26 (62) 6 (60) 32 (63) 

Ethnicity 

Caucasian (%) 

Asian (%) 

Afro-Caribbean (%) 

 

36 (90) 8 (80) 45 (88) 

3 (8) 1 (10) 4 (8) 

1 (2) 1 (10) 2 (4) 

Weight (kg) 77 ± 11 87 ± 17* 79 ± 13 

Heart rate (bpm) 66 ± 10 70 ± 10 67 ± 10 

Systolic blood pressure (mmHg) 120 ± 11 112 ± 14** 119 ± 12 

Diastolic blood pressure (mmHg) 72 ± 6 72 ± 11 72 ± 7 

Left ventricular ejection fraction (%) 71 ± 6 33 ± 15† 69 (64 – 74) 

End-diastolic volume (mL) 124 ± 25 205 ± 51† 137 ± 43 

End-systolic volume (mL) 37 ± 13 140 ± 60† 39 (30 – 59) 

Stroke volume (mL) 87 ± 14 64 ± 21† 84 ± 17 

Left ventricular mass (g) 122 ± 27 161 ± 21 123 (106 – 141) 

Left ventricular mass index (g/m2) 64 ± 11 82 ± 20 64 (59 – 73) 

Late gadolinium enhancement result - All negative - 

 

Data are mean ± standard deviation, frequency (percentage) or median (interquartile range). 

IDCM, Idiopathic dilated cardiomyopathy 

 *p<0.01;  **p<0.05;  †p<0.001 (compared with controls using an independent two-tailed Student’s t test). 
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[n=1] and ECG gating [n=1] artefact) and they are excluded from comparisons of strain 

measures. 

2.3.2 Comparison of myocardial tagging vs. FT-CMR for global systolic strains 

Table 2-2 provides an extensive comparison of all FT-CMR and myocardial tagging derived 

deformation parameters. For tagging analyses, all deformation parameters were significantly 

different between the sub-layers of the myocardial wall (p< 0.001 for Ɛll and Ɛcc). All 

deformation parameters were lowest at the sub-epicardium, increasing progressively across 

the mid-myocardial wall and were greatest at the sub-endocardium.  As shown in Figure 2-3, 

FT-CMR derived parameters provide a closer estimate for tagging sub-endocardial strains, 

rather than other myocardial layers or whole wall strains. 

Longitudinal strains. Within the total cohort there was a marginal overestimate of Ɛll (-18.1 ± 

5.0% vs. -16.7 ± 4.8%, p= 0.03) and SRll (-1.04 ± 0.29s-1 vs. -0.95 ± 0.32s-1, p= 0.04) by FT-

CMR when compared to sub-endocardial myocardial tagging measures. Despite this small 

systematic difference there was correlation and agreement between the techniques (Ɛll: r= 

0.70, p< 0.001; bias 1.3 ± 3.8%; SRll: r= 0.64, p<0.001; bias 0.09 ± 0.26s-1) (Figure 2-4 & Figure 

2-5). In patients with IDCM there was no overestimation of peak systolic Ɛll (-9.7 ± 4.7 vs. -8.8 

±3.9, p= 0.44) and correlation (r= 0.80) and limits of agreement (LoA) (± 2.7%) were tighter 

than within the total study cohort (Figure 2-6). Bland Altman analysis of DSRll measures show 

this to be the FT-CMR long axis measure with the greatest overestimation (1.10 ± 0.40 vs. 

0.67 ± 0.32; p< 0.001) and weakest LoA (± 0.4) compared to sub-endocardial myocardial 

tagging, although both techniques remain correlated (r= 0.42, p= 0.007) (Figure 2-7). 
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Table 2-2.  Comparison of FT-CMR versus myocardial tagging derived global strain and strain rate 
parameters for the overall cohort, in healthy controls and in patients with IDCM. 

HEALTHY CONTROLS (n=33) Feature 
tracking 

Tagging whole 
wall 

Tagging sub-
epicardium 

Tagging mid 
wall 

Tagging sub-
endocardium 

Long axis function (HLA) 
Peak systolic Ɛll 

     

  Mean value ± SD (%) -19.5 ± 3.5 -18.0 ± 3.5 -15.9 ± 3.0  -17.7 ± 3.2  -18.0 ± 3.5 

    p-value* - 0.01  <0.001 0.002 0.04 

  Pearson’s correlation coefficient - 0.29 0.25  0.27  0.35 

    p-value** - 0.09  0.15 0.11 0.04 

  Bias ± SD (%) - 2.51 ± 4.0  3.6 ± 4.0 3.6 ± 4.0 1.42 ± 4.0  

Peak SSRll      

  Mean value ± SD (1/s) -1.12 ± 0.22 -0.95 ± 0.24 -0.90 ± 0.23 -0.97 ± 0.24 -1.03 ± 0.26 

    p-value* - 0.001 <0.001 0.002 0.07 

  Pearson’s correlation coefficient - 0.27 0.27 0.27 0.31 

    p-value** - 0.12 0.12 0.11 0.06 

  Bias ± SD (1/s) - 0.17 ± 0.28 0.22 ± 0.27 0.16 ± 0.28 0.09 ± 0.28 

Early DSRll      

  Mean value ± SD (1/s) 1.19 ± 3.5 0.69 ± 0.30 0.67 ± 0.30 0.70 ± 0.30 0.72 ± 0.30 

    p-value* - <0.001 <0.001 <0.001 <0.001 

  Pearson’s correlation coefficient - 0.20 0.22 0.19 0.19 

    p-value** - 0.25 0.20 0.27 0.27 

  Bias ± SD (1/s) - -0.50 ± 0.40 -0.51 ± 0.40 -0.49 ± 0.40 -0.47 ± 0.40 

Short axis function (mid LV) 
Peak systolic Ɛcc 

     

  Mean value ± SD (%) -24.8 ± 2.9 -18.6 ± 2.5 -12.9 ± 2.0 -18.3 ± 2.6 -24.9 ± 3.0 

    p-value* - <0.001 <0.001 <0.001 0.90 

  Pearson’s correlation coefficient - 0.15 0.02 0.10 0.26 

    p-value** - 0.39 0.92 0.55 0.13 

  Bias ± SD (%) - 6.2 ± 3.5 11.9 ± 3.5 6.6 ± 3.7 -0.08 ± 4.0 

Peak SSRcc      

  Mean value ± SD (1/s) -1.48 ± 0.27 -1.01 ± 0.18 -0.72 ± 0.13 -0.98 ± 0.18 -1.34 ± 0.31 

    p-value* - <0.001 <0.001 <0.001 0.02 

  Pearson’s correlation coefficient - 0.22 0.01 0.18 0.28 

    p-value** - 0.21 0.99 0.31 0.09 

  Bias ± SD (1/s) - 0.48 ± 0.29 0.76 ± 0.30 0.50 ± 0.30 0.14 ± 0.06 

Early DSRcc      

  Mean value ± SD (1/s) 1.34 ± 0.32 0.79 ± 0.16 0.48 ± 0.11 0.76 ± 0.16 1.15 ± 0.24 

    p-value* - <0.001 <0.001 <0.001 0.001 

  Pearson’s correlation coefficient - 0.53 0.44 0.52 0.45 

    p-value** - 0.001 <0.01 0.001 <0.01 

Bias ± SD (1/s) - -0.55 ± 0.27 -0.85 ± 0.29 -0.58 ± 0.28 -0.19 ± 0.30 
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Idiopathic DILATED 
CARDIOMYOPATHY (n=10) 

Feature 
tracking 

Tagging whole 
wall 

Tagging sub-
epicardium 

Tagging mid 
wall 

Tagging sub-
endocardium 

Long axis function (HLA) 
Peak systolic Ɛll 

     

  Mean value ± SD (%) -9.7 ± 4.7 -8.2 ± 3.5 -7.6 ± 3.0 -8.3 ± 3.6 -8.8 ± 3.9 

    p-value* - 0.26 0.16 0.30 0.44 

  Pearson’s correlation coefficient - 0.77 0.73 0.75 0.80 

    p-value** - 0.08 0.10 0.09 0.05 

  Bias ± SD (%) - 1.5 ± 2.9 2.1 ± 3.1 1.4 ± 3.0 0.9 ± 2.7 

Peak SSRll      

  Mean value ± SD (1/s) -0.56 ± 0.19 -0.45 ± 0.19 -0.46 ± 0.15 -0.46 ± 0.19 -0.47 ± 0.23 

    p-value* - 0.04 0.16 0.05 0.08 

  Pearson’s correlation coefficient - 0.88 0.65 0.87 0.91 

    p-value** - 0.02 0.16 0.03 0.01 

  Bias ± SD (1/s) - 0.11 ± 0.10 0.10 ± 0.15 0.10 ± 0.10 0.09 ± 0.10 

Early DSRll      

  Mean value ± SD (1/s) 0.49 ± 0.20 0.31 ± 0.22 0.28 ± 0.18 0.31 ± 0.23 0.35 ± 0.26 

    p-value* - 0.07 0.05 0.07 0.17 

  Pearson’s correlation coefficient - 0.57 0.45 0.59 0.60 

    p-value** - 0.24 0.38 0.22 0.21 

  Bias ± SD (1/s) - -0.19 ± 0.20 -0.22 ± 0.20 -0.19 ± 0.19 -0.14 ± 0.22 

Short axis function (mid LV) 
Peak systolic Ɛcc 

     

  Mean value ± SD (%) -9.6 ± 4.8 -7.2 ± 2.4 -6.3 ± 1.8 -7.2 ± 2.2 -8.1 ± 1.9 

    p-value* - 0.15 0.07 0.15 0.36 

  Pearson’s correlation coefficient - 0.70 0.76 0.73 0.61 

    p-value** - 0.12 0.08 0.10 0.20 

  Bias ± SD (%) - 2.5 ± 3.5 3.3 ± 3.6 2.4 ± 3.5 1.6 ± 3.8 

Peak SSRcc      

  Mean value ± SD (1/s) -0.57 ± 0.23 -0.41 ± 0.10 -0.36 ± 0.09 -0.40 ± 0.10 -0.50 ± 0.23 

    p-value* - 0.06 0.04 0.05 0.37 

  Pearson’s correlation coefficient - 0.80 0.67 0.82 0.73 

    p-value** - 0.06 0.14 <0.05 0.10 

  Bias ± SD (1/s) - 0.16 ± 0.17 0.20 ± 0.19 0.17 ± 0.16 0.07 ± 0.17 

Early DSRcc      

  Mean value ± SD (1/s) 0.48 ± 0.26 0.46 ± 0.20 0.30 ± 0.13 0.44 ± 0.20 0.63 ± 0.26 

    p-value* - 0.89 0.23 0.79 0.41 

  Pearson’s correlation coefficient - 0.18 0.20 0.20 0.20 

    p-value** - 0.73 0.71 0.71 0.71 

Bias ± SD (1/s) - -0.03 ± 0.36 -0.18 ± 0.32 -0.04 ± 0.36 0.15 ± 0.41 

DSR, diastolic strain rate; Ɛ, Lagrangian strain; HLA, horizontal long axis; LV,left ventricle; SD, standard 
deviation; SSR, systolic strain rate. *FT-CMR derived means compared with tagging measurements using a 
paired Student’s t test. **Using Pearson’s r, correlation coefficient. 



 

82 

 

 

Figure 2-3. Global strain measures calculated from FT-CMR and myocardial tagging analysis across the three layers of the myocardium. 

Using an ANOVA with repeated measures with a Greenhouse-Geisser correction, the mean scores for peak systolic strain across the 3 layers of the myocardium 
were statistically different for both longitudinal and circumferential strain (P<0.001 for both). 

(Moody et al., 2015)  
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Figure 2-4. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for global Ell calculation using FT-CMR versus tagging  

Spearman’s rank correlation of the differences and the means was non-significant (ρ=0.078, P=0.625). 

(Moody et al., 2015)  
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Figure 2-5. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for peak systolic global longitudinal strain rate calculation 
using FT-CMR versus myocardial tagging.  

Spearman’s rank correlation of the differences and the means was non-significant (ρ=0.196, P=0.213). 

(Moody et al., 2015)  
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Fig 

ure 6  Comparison of CIMTag versus FT-derived global strains between control and DCM subjects. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6. Comparison of myocardial tagging versus FT-CMR derived (a) longitudinal and (b) circumferential strain between control and IDCM 
subjects. 

(Moody et al., 2015)  
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Figure 2-7. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for early diastolic global longitudinal strain rate 
calculation using FT-CMR versus myocardial tagging.  

Spearman’s rank correlation of the differences and the means was significant (ρ=-0.329, P=0.036) suggesting a proportional error with a downward trend. 

(Moody et al., 2015) 
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Circumferential strains. Within the total cohort FT-CMR closely reproduced sub-endocardial 

myocardial tagging derived from mid cavity peak systolic Ecc with no systematic bias (0.2%, 

p=0.80), close correlation (r= 0.83, p< 0.001) and LoA of ± 4.0% (Figure 2-8).  

Figure 2-6b shows that these comparable peak systolic Ɛcc values between techniques were 

consistent in both healthy controls and IDCM patients. Table 2-3 shows that agreement for 

measures of peak systolic Ɛcc at the apex and base were inferior to those from the mid 

cavity. Bland-Altman analysis shows agreement between techniques for peak systolic SRcc 

(bias 0.13 ± 0.33 s-1; r= 0.69, p< 0.001) and early DSRcc (bias 0.14 ± 0.34 s-1; r= 0.64, p< 

0.001) despite a small overestimate by FT-CMR for both measures (Figure 2-9 and Figure 

2-10). 

2.3.3 Rapidity of acquisition and analysis 

As shown in Table 2.4 acquisition of the SSFP cines, a fundamental step of routine CMR 

imaging, took 12.1 ± 3.4 mins. Acquiring the four SPAMM cines increased scan duration by 

8.4 ± 2.3 mins, and their subsequent analysis took 23.2 ± 3.5 mins.  In total, MT added 31.6 

mins to procedural duration in contrast to the 5.9 ± 0.8 mins to perform FT-CMR (p< 0.001). 

2.3.4 Intra- and Interobserver variability 

Table 2-5 provides intra- and interobserver variability for myocardial tagging derived strain 

parameters.  Equivalent reproducibility data for FT-CMR is provided in chapter 3, and it can 

be seen that it compared favourably to myocardial tagging.  
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Figure 2-8. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for peak systolic global circumferential strain calculation 
using FT versus tagging.  

Spearman’s rank correlation of the differences and the means was non-significant (ρ=0.292, P=0.06).  

(Moody et al., 2015) 
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Table 2-3. Comparison of FT versus tagging derived global circumferential strain in the short axis at the apex and base for the overall 
cohort. 

 Feature 
tracking 

Tagging whole 
wall 

Tagging sub- 
epicardium 

Tagging mid 
wall 

Tagging sub-
endocardium 

Short axis function (base) 
Peak systolic Ɛcc 

 

  Mean value ± SD (%) -23.9 ± 6.4 -12.8 ± 4.1 -9.6 ± 2.8 -12.6 ± 4.0 -16.7 ± 5.9 

    p-value* - <0.001 <0.001 <0.001 <0.001 

  Pearson’s correlation coefficient - 0.63 0.52 0.64 0.63 

    p-value** - <0.001 <0.001 <0.001 <0.001 

  Bias ± SD (%) - 11.1 ± 5.0 14.4 ± 5.5 11.3 ± 4.9 7.3 ± 5.3 

Short axis function (apex) 
Peak systolic Ɛcc 

 

  Mean value ± SD (%) -26.2 ± 9.2 -18.5 ± 4.7 -12.7 ± 3.3 -18.2 ± 4.6 -24.9 ± 7.0 

    p-value* - <0.001 <0.001 <0.001 0.27 

  Pearson’s correlation coefficient - 0.56 0.39 0.56 0.59 

    p-value** - <0.001 0.01 <0.001 <0.001 

  Bias ± SD (%) - 7.7 ± 7.6 13.5 ± 8.5 7.9 ± 7.6 1.3 ± 7.6 

E, Lagrangian strain; SD, standard deviation. 

*FT derived means compared with tagging measurements using a paired Student’s t test. 

**Using Pearson’s r, correlation coefficient.  
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Figure 2-9. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for peak systolic global circumferential strain rate 
calculation using FT versus tagging.  

Spearman’s rank correlation of the differences and the means was non-significant (ρ=-0.034, P=0.833).  

(Moody et al., 2015) 
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Figure 2-10. (a) Pearson correlation and (b) Bland Altman plots demonstrating agreement for early diastolic global circumferential strain rate 
calculation using FT-CMR versus tagging.  

Spearman’s rank correlation of the differences and the means was significant (ρ=-0.315, P=0.045) suggesting a proportional error with a downwards trend 

(Moody et al., 2015) 
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Table 2-4.  Time taken for image acquisition and post-processing analysis. 

 Feature tracking Tagging 

SSFP acquisition time (min) 12.1 ± 3.4 12.1 ± 3.4 

SPAMM acquisition time (min) - 8.4 ± 2.3 

Post-processing time (min) 5.9 ± 0.8* 23.2 ± 3.5 

Data are mean ± SD. SSFP, steady-state free precession; SPAMM, spatial modulation of magnetization. 

 *p<0.001 (means compared using a paired Student’s t test). 
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Table 2-5. Intra-observer and inter-observer variability for myocardial tagging derived global strain parameters. 

Parameter Variability Bias ± SD p value Limits of Agreement 
Coefficient of 
Variation (%) 

Intra-class Correlation 
Coefficient (95% CI) 

Ell (%) 
Intra-observer 
Inter-observer 

-0.47 ± 0.62 
-0.47 ± 2.02 

0.04 
0.49 

-1.68 to 0.74 
-4.42 to 3.49 

3.41 
11.44 

0.97 (0.83 to 0.99) 
0.75 (0.29 to 0.93) 

SSRll (1/s) 
Intra-observer 
Inter-observer 

0.00 ± 0.06 
-0.01 ± 0.17 

0.91 
0.90 

-0.11 to 0.11 
-0.33 to 0.32 

6.64 
17.27 

1.00 (0.98 to 1.00) 
0.60 (-0.04 to 0.89) 

DSRll (1/s) 
Intra-observer 
Inter-observer 

0.05 ± 0.10 
0.11 ± 0.20 

0.14 
0.12 

-0.14 to 0.24 
-0.28 to 0.49 

14.15 
31.59 

0.89 (0.62 to 0.97) 
0.45 (-0.11 to 0.82) 

Ecc (%) 
Intra-observer 
Inter-observer 

-0.39 ± 1.22 
-0.53 ± 1.53 

0.39 
0.30 

-2.79 to 2.09 
-3.54 to 2.48 

4.79 
6.01 

0.92 (0.74 to 0.98) 
0.86 (0.56 to 0.96) 

SSRcc (1/s) 
Intra-observer 
Inter-observer 

0.00 ± 0.06 
-0.02 ± 0.18 

0.92 
0.71 

-0.12 to 0.12 
-0.37 to 0.33 

4.63 
13.86 

0.95 (0.82 to 0.99) 
0.46 (-0.25 to 0.83) 

DSRcc (1/s) 
Intra-observer 
Inter-observer 

0.03 ± 0.08 
0.09 ± 0.19 

0.25 
0.15 

-0.13 to 0.19 
-0.27 to 0.46 

7.38 
16.75 

0.95 (0.81 to 0.99) 
0.78 (0.36 to 0.94) 

Ecc, Peak systolic global circumferential strain; Ell, Peak systolic global longitudinal strain; SSRcc, Peak systolic global circumferential strain rate; SSRll, Peak systolic 
global longitudinal strain rate; DSRcc, Early diastolic circumferential strain rate; DSRll, Early diastolic longitudinal strain rate.  
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2.4 Discussion 

2.4.1 Major findings  

The foremost outcome of this study is the validation of an uncomplicated SSFP based 

deformation algorithm against the reference standard myocardial tagging, conducted using 

SPAMM acquisitions and the CIMTag analysis platform. This study supports the recent 

endorsement of this methodology for the computation of circumferential deformation 

parameters during systole (Augustine et al., 2013; Harrild et al., 2012; Hor et al., 2010), and 

further develops its potential by demonstrating its fidelity for longitudinal and diastolic 

measures. Precision for the longitudinal strain assessment is prerequisite for potential 

clinical utility. The subendocardium is most exposed to myocardial ischaemia and with its 

preponderance of longitudinal fibres, reduced deformation in this direction is a key 

parameter for ischaemia testing. Half of patients presenting with heart failure have 

preserved systolic parameters, and markers of diastolic dysfunction predict this syndrome at 

a pre-clinical stage (Kane GC et al., 2011). Myocardial tagging is a sensitive CMR measure of 

diastolic function in patients with LV hypertrophy (Edvardsen et al., 2006), and on the basis 

of this study FT-CMR might be a suitable alternative for diastolic assessment.  A further key 

aspect of this study is that by providing the first timed comparison of these techniques, it 

has been shown that FT-CMR overcomes the major obstacle that has limited the mainstream 

use of myocardial tagging, as it can be conducted in a fifth of the time.  
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2.4.2 Differences from previous validations 

The demonstration of acceptable agreement for longitudinal measures is in contrast to the 

work of Augustine et al., who report that in half of their study recruits FT-CMR 

overestimated peak systolic Ɛll by a magnitude of 25% and by as much as 50% in extreme 

cases.  This can be explained by flaws in their methodology. The tagging analyses in this 

study confirm the previously reported strain gradient that exists across the myocardial wall, 

with greatest deformation recorded at the subendocardium, and least deformation at the 

subepicardium (Moore et al., 2000a). The systematic overestimation of longitudinal strain by 

FT-CMR that Augustine et al, report reflects their comparison of myocardial tagging 

parameters derived from transmural analyses with FT-CMR parameters obtained at the 

subendocardial border, the location richest in longitudinally orientated fibres (Geyer et al., 

2010). It is essential to compare strain from corresponding regions of the myocardial wall, 

and this justifies the a priori decision to compare FT-CMR strain parameters with tagging 

parameters derived only from the sub-endocardium.     

This study also addressed other technical limitations of previous validations. All of the 

acquisitions were performed on 1.5T MR scanners; other studies employed a combination of 

1.5T and 3.T MR scanners (Hor et al., 2010). Validations on retrospective cohorts have 

selected SSFP images that provided the closest match for tagged acquisitions (Hor et al., 

2010), whereas this study used tagging acquisitions matched to the slice location of the SSFP 

cines used for FT-CMR. 
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2.4.3 Differences between methodologies 

Agreement between the techniques was very close for systolic circumferential deformation 

parameters and this is in accord with previous validations  (Hor et al., 2010)(Augustine et al., 

2013). However, Bland-Altman analyses indicate some inter-procedural difference between 

longitudinal and diastolic parameters. This is small for longitudinal strains and likely relates 

to inadequacies of the FT-CMR platform to measure these at the very basal region of the LV 

cavity. The FT-CMR algorithm matches features in consecutive frames based on the 

maximum probabilities assessed using a hierarchical processing system; whilst this is largely 

suited to identifying motion at the blood-tissue interface where there is a high signal to 

noise ratio, it is less apt for discriminating between very basal myocardium and the mitral 

valve apparatus.  

Differences in agreement for diastolic parameters may pertain more to inherent 

shortcomings of myocardial tagging rather than to FT-CMR. The grid of magnetic saturation 

that divides the imaged plane into tags is engineered by specific radiofrequency pulses 

which are gated to the R wave. Longitudinal relaxation occurs exponentially and the sharp 

contrast outline to the tags fades with increasing time interval from the R wave (Edvardsen 

et al., 2006), thus myocardial tagging is prone to underestimate diastolic deformation. This 

likely accounts for the considerably higher values for DSR observed with FT-CMR; and the 

mean DSRcc of 1.34 s-1 observed  in these healthy controls matches the defined reference 

range for STE (Marwick et al., 2009).      
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In the FT-CMR analysis platform there is little scope for user adjustment to compensate if 

tracking errors occur, although visual assessment allows for this to be recognised.  

Nonetheless, this minimal user interaction likely accounts for closer inter-operator 

agreement with FT-CMR than with myocardial tagging (Moody et al., 2015). In contrast, the 

myocardial tagging analysis framework allows the user to assign an unlimited number of 

new guide markers in the end-systolic frame, amending the strain map but enabling far 

greater inter-operator variability. User proficiency is thus considerably more important for 

conducting tagging. 

2.4.4 FT-CMR beyond the mid-cavity 

Circumferential motion parameters at the base and apex have specific clinical relevance as 

they enable evaluation of cardiac torsion. The significance of reduced cardiac torsion is being 

increasingly recognised in a spectrum of pathologies including IDCM (Popescu et al., 2009), 

and manipulation of this offers a potential for individualising CRT delivery (Bertini et al., 

2009). The addition of basal and apical tracking will also be essential in the assessment of 

dyssynchrony and late mechanical activation patterns. FT-CMR derived parameters showed 

reasonable agreement with tagging for tracking in these regions, although in agreement with 

Augustine et al. these were not as robust as measures from the mid-LV slice.  

Both methodologies have shortcomings for the measurement of deformation at the apex. 

More prominent trabeculation can make accurate feature tracking difficult apically, a 

problem compounded if there is end-systolic complete cavity obliteration. Myocardial 

tagging is immune to this, but the thinner apical myocardium has less substrate available for 
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tagging, and the smaller strain map leads to magnification of any error. The LV base is 

particularly exposed to errors in feature tracking due to its greater longitudinal 

displacement. The software intends to track true in-plane deformations, but as through 

plane motion is greatest basally, some apparent in plane deformations are doubtlessly due 

to through plane movement, whilst some voxels tracked in initial frames will be lost out of 

plane. Myocardial tagging is more resistant to this phenomenon.    

2.4.5 Clinical considerations  

Considering that FT-CMR measures strain at the endocardial blood interface, it is paradoxical 

that circumferential deformation is the most accurate and reproducible, as it is longitudinal 

deformation that is predominantly governed by the sub-endocardial fibres (Greenbaum et 

al., 1981).  However, in common with all deformation imaging techniques, FT-CMR does not 

directly assess myocardial fibre mechanics which would require precise knowledge of fibre 

direction, but deformation relative to the central axis of the ventricle. The comparatively 

reduced fidelity for longitudinal strain may have clinical consequence as longitudinally 

oriented fibres and strain are the earliest affected in most cardiac pathologies. Peak systolic 

Ɛll (global longitudinal strain) has been used in the surveillance of patients undergoing 

chemotherapy (Thavendiranathan et al., 2014), and for the early detection of dilated 

(Hankiewicz et al., 2008), hypertrophic (Nagueh et al., 2001; Sutherland et al., 1994) and 

restrictive (Quarta et al., 2014) cardiomyopathies. Circumferential strain deteriorates later 

as this can be compensated by sub-epicardial fibres (Zhang, 2002), and whether global 

circumferential strain can play a similar role in detecting incipient disease requires 

investigation. 
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2.4.6 Limitations 

All scans were performed on a 1.5T MR scanner to maintain uniformity, however a 3.0T MR 

scanning would have improved myocardial tag persistence and diastolic assessment. There 

were relatively fewer patients with myocardial pathology included in this validation, 

nonetheless, the study benefits from comparing individuals with a diverse range of LV 

function.  

The number of patients recruited reflects those available from on-going investigations rather 

than an a priori evaluation. The study design period pre-dated other validations, with the 

exception of (Hor et al., 2010), to facilitate more accurate power calculations. The true 

maximum difference between modalities for measuring strain parameters may be greater 

than that predicted by the LoA. Retrospective power calculations, using a recently described 

methodology (Lu et al., 2016), show this to be the case for longitudinal parameters; the 

difference between techniques could be as high as 11.5% for peak systolic Ɛll and 1.49 s-1 for 

DSRll and this magnitude of difference would be deemed unacceptable. The variance in 

difference between circumferential parameters was as anticipated and the calculated limits 

of agreement between techniques is more precise. 

Intentionally, this study does not validate radial parameters. Myocardial tagging is 

inaccurate for the determination of these due to the small number of tags covering this 

dimension (Moore et al., 2000b) (Swoboda et al., 2011). Our experience upholds this, and it 

would be unconstructive to use this as a comparator. Clearly, the small width over which 

radial deformation is measured adversely influences measurement regardless of the 
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algorithm employed, and a recent investigation of inter-study reproducibility suggests that 

this holds true with FT-CMR, as Ɛrr was the least reproducible global measure (Morton et al., 

2012). 

2.5 Conclusions 

Tested against the reference standard myocardial tagging, FT-CMR shows reasonable 

agreement for the derivation of global measures of circumferential and longitudinal systolic 

and diastolic strains in this study population with a broad spectrum of LV function. In 

difference to myocardial tagging, FT-CMR does not require additional imaging acquisitions, 

and its automated processing makes it considerably less time intensive whilst conferring 

superior inter-operator reproducibility.   
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3 MYOCARDIAL STRAIN MEASUREMENT WITH FEATURE-TRACKING 

CARDIOVASCULAR MAGNETIC RESONANCE: NORMAL VALUES 

Principal hypothesis: To facilitate the clinical application of FT-CMR, healthy population values 

for left ventricular systolic and diastolic strains are required. 

3.1 Background  

The assessment of LV function is, arguably, the most important component of a cardiac 

imaging study.  In routine clinical practice the assessment of systolic function consists of 

either the quantitative LV volumetric assessment or qualitative regional wall analysis. 

However, such methods may not be sensitive enough to detect subtle decline in LV function. 

Assessing diastolic function is even more problematic, and is perceived by many to be too 

complex due to the vast number of parameters that exist and lack of guidance as to how to 

integrate these into a unifying grade. Cardiac strain is a sensitive marker of myocardial 

contractility and abnormalities of strain precede declines in more conventional markers of 

LV function, facilitating the earlier diagnosis of IDCM (Hankiewicz et al., 2008) , hypertrophic 

cardiomyopathy (Nagueh et al., 2001) and chemotherapy induced cardiotoxicity (Poterucha 

et al., 2012). 

Cardiac strain is defined as the relative change in fibre length from end-diastole. Whilst 

measuring this in vivo would require a precise knowledge of the local fibre direction, clinical 

imaging modalities circumnavigate this by measuring strain in three principle directions 

(radial, circumferential and longitudinal), relative to the central axis of the ventricle. 
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Measurements of strain are becoming increasingly popular in both clinical and research 

environments. However, echocardiographic measurements obtained using tissue Doppler 

imaging (Edvardsen et al., 2002; Miyatake et al., 1995) are limited by noise interference and 

angle dependency (Castro et al., 2000). Whilst speckle tracking has largely overcome these 

issues, it is often limited by image quality (Amundsen et al., 2006). Cardiovascular magnetic 

resonance imaging combined with myocardial tagging is the reference-standard technique 

for the assessment of myocardial motion. To date, however, myocardial tagging acquisition 

and its requisite post-processing analysis are largely confined to the research environment, 

not least because they are laborious and time-consuming. 

Feature-tracking CMR (FT-CMR) is a novel technique that allows quantification of motion and 

strain using a standard steady state in free precession (SSFP) sequence, which forms part of 

a routine LV study protocol.  Whereas myocardial tagging provides a pan-myocardial 

assessment of deformation, FT-CMR is relatively crude, as it is limited to the assessment of 

myocardial edges. Nevertheless, its accuracy has been validated against myocardial tagging 

using HARP (Hor et al., 2010) and SPAMM (chapter 2) (Moody et al., 2015).  

In order to facilitate the clinical application of this technique to detect early myocardial 

dysfunction this study defines normal LV systolic and diastolic strain and strain rates in a 

large cohort of healthy adults. This study also explores the demographic, haemodynamic and 

cardiac relationships that influence normal myocardial strain.     
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3.2 Methods 

3.2.1 Study population 

One hundred subjects were recruited in a pre-determined stratified fashion to provide 10 

participants of each gender representing each age decade from vicenarians to 

sexagenarians. Healthy control subjects were identified from an ongoing controlled 

prospective observational research study examining the effects of living kidney donation on 

cardiovascular structure and function (NCT01769924) (Moody et al., 2014). Rigorous 

screening criteria were applied:  a 10-year risk of a cardiovascular event of less than 20% as 

evaluated using the QRISK-2 index (Hippisley-Cox et al., 2008; QRISK®2, 2012); normal 

exercise stress echocardiography and normal haematology and biochemistry profiling. 

Exclusion criteria included: any history of cardiovascular disease; any history of diabetes or 

glucose intolerance; renal impairment; anaemia or atrial fibrillation; first degree relative 

with a proven or potentially inheritable cardiac condition or a history of premature coronary 

artery disease. Recruits with an office blood pressure greater than 140mmHg systolic, or 

90mmHg diastolic had to have a 24 hour ambulatory average of less than 135/85 mmHg to 

meet our inclusion criteria. However, in such individuals their office blood pressure was used 

in analyses as not all recruits underwent ambulatory monitoring. Previous prescription of an 

anti-hypertensive medication was an exclusion criteria.  

3.2.2 CMR acquisition 

This was performed with a 1.5 Tesla scanner (Magnetom Avanto, Siemens, Erlangen, 

Germany) as described in section 2.2.2. A HLA and a short-axis LV stack from the 

atrioventricular ring to the LV apex were acquired using a SSFP sequence (repetition time of 
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3.2 ms; echo time of 1.7 ms; flip angle of 60o; sequential 7 mm slices with a 3 mm interslice 

gap). There were 25 phases per cardiac cycle resulting in a mean temporal resolution of 40 

ms 

3.2.3 Evaluation of LV dimensions, function and mass.  

LV mass, LVEDV and LVESV were quantified using manual planimetry of the endocardial and 

epicardial borders from the short axis stack in accordance with validated methodologies 

(Maceira et al., 2006) using Argus software (Siemens, Erlangen, Germany). These were 

indexed to body surface area using the Mosteller formula (Mosteller, 1987).  

3.2.4 Feature tracking 

FT-CMR was undertaken using the Diogenes FT-CMR software (TomTec Imaging Systems, 

Munich, Germany). The base was selected as the slice closest to the annulus without 

through plane distortion from the LV outflow tract. The horizontal long axis SSFP was used to 

identify the true mid-cavity at end diastole (equidistant between apex and ring), and the 

apical slice used was that closest to being equidistant between the apical tip and the mid 

cavity at end diastole (Figure 3-1).  

Endocardial and epicardial borders were manually drawn in the end-diastolic frame (Figure 

3-2). This was in difference to the previously described validation study where tracking was 

limited to the endocardial border. This advancement of the technique was required to 

facilitate the derivation of deformation, at the epicardial border, and in a radial direction. 

Otherwise tracking was performed as described in 2.2.3. 
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Figure 3-1: Methodology for slice selection for FT-CMR. 

A consistent methodology for slice selection is imperative as FT-CMR offers a greater choice of cines for post processing compared to echocardiography or 
myocardial tagging, particularly as apical images can be tracked.  The schematic demonstrates the optimal slices to select for FT-CMR. All slices are selected in 
end diastole.  The mid slice should represent the mid cavity at end diastole (orange arrows). The apical slice is chosen as the mid-point between the mid slice and 
the apical tip of the LV (green arrows). The basal slice should be the distance of the mitral annular plane systolic excursion away from atrioventricular ring in end-
diastole (purple arrow) to prevent extra-ventricular structures distorting the analyses. These are the optimal positions for slices, but an advantage of FT-CMR is 
that it can be performed on the SSFP sequences which are part of a routine protocol. The slices that correspond closest to these positions should be selected for 
post processing with FT-CMR.  
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Figure 3-2: Feature-tracking CMR. 

a) Endocardial and epicardial contours are traced in the end-diastole frame. b) Peak systolic strain is given for 
each equiangular segment. The anterior segment is manually delineated starting at the anterior septum. The 
(global) peak systolic strain is not an average of the peak systolic strain for each segment, but a true 
instantaneous peak strain (derived from the average global strain at each time point). c) A color coded plot 
of strain vs. time is shown for each segment. For segmental plots only the peak systolic strain is marked. The 
average plot is the masked middle white line but this can be easily recognised as strain is plotted at each 
time point. 
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The HLA cines were tracked to derive longitudinal displacement and strain, whilst the short 

axis cines were used to derive circumferential and radial displacements and strains. Separate 

endocardial and epicardial values were calculated for longitudinal and circumferential strain. 

Only one measure of strain was calculated in the radial direction, as this direction 

(myocardial thickening and thinning) is perpendicular to the endocardial and epicardial 

borders, so both contours are required to derive transmural radial strain. 

Global peak systolic longitudinal (Ɛll), radial (Ɛrr) and circumferential (Ɛcc) strains, global peak 

longitudinal (SSRll), radial (SSRrr) and circumferential (SSRcc) systolic strain rates, and global 

peak early longitudinal (DSRll), radial (DSRrr) and circumferential (DSRcc) diastolic strain rates 

were all derived. Segmental peak systolic circumferential strains (in accordance with the 

American Heart Association’s 16 segment model) were also derived.  

3.2.5 Reproducibility  

For the assessment of inter-observer variability, a randomly generated set of 20 scans were 

tracked by two investigators (R.J.T. and W.E.M.). The same cine was assessed by each 

operator, who saved the results independently of the other so a blinded assessment was 

conducted. Investigator 1 (R.J.T.) repeated this process one month later to assess intra-

observer agreement.    

3.2.6 Statistical analyses 

Continuous variables are expressed as mean ± SD. Normality was tested using the Shapiro-

Wilk test. Comparisons between segments were made using repeated measures ANOVA. 
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Independent sample t-tests were used to compare inter-gender differences. Curve fitting 

was performed to assess the relationship between strain and age. Linear regression analysis 

was used to explore the relationship between strain and baseline variables. Variables 

reaching a p value <0.10 were included in multivariable models. Reproducibility was tested 

by calculating mean bias and 95% limits of agreement (confidence intervals) from Bland-

Altman analyses, coefficient of variation, and inter-class correlation coefficient (ICC). A p 

value of < 0.05 was considered statistically significant. Statistical analysis was performed 

using SPSS v21.0. (SPSS Inc. Chicago, Illinois). 

3.3 Results 

3.3.1 Baseline demographics 

The baseline demographics of the entire cohort of 100 healthy individuals are shown in 

Table 3-1.  They were normotensive (mean daytime ambulatory systolic blood pressure 123 

± 12 mmHg; mean daytime ambulatory diastolic blood pressure 73 ± 7 mmHg). Fasting total 

cholesterol was 5.0 ± 1.1 mmol/L, fasting total cholesterol/HDL ratio was 3.4 ± 1.0, and 

fasting glucose was 4.7 ± 0.4 mmol/L. Estimated glomerular filtration rate, using the 

modification by diet of renal disease (MDRD) equation, was > 60 ml/min/1.73m2 in all 

participants. All participants had a 10 year QRISK-2 score of ≤ 20%. Cardiac volumes, mass 

and ejection fraction were within normal limits for all participants. (Maceira et al., 2006) 

There was an age-dependent effect on LVEF, LVESV and LVEDV (p< 0.001 for all) (Figure 3-3). 



 

109 

 

Table 3-1. Baseline characteristics. 

 Mean ± SD or n (%) 
Demographics  
     Age 44.5 ± 14.0 
     Sex (Male) 50 
     Height (cm) 170.0 ± 9.6 
     Weight (kg) 74.3 ± 12.4 
     Body surface area (m2) 1.85 ± 0.2 
  
Co-morbidities  
     Smoker – Current  8 
     Smoker – Ex  19  
     Fasting total cholesterol (mmol/L) 5.01 ± 1.1 
     Fasting total cholesterol/HDL ratio 3.4 ± 1.0 
     Hypercholesterolaemia (%) * 10 
     Fasting glucose (mmol/L)  4.7 ± 0.4 
     eGFR > 60 ml/min/1.73m2  100 
     10-year cardiovascular risk (%) 3.6 (0.4-5.8) 
     Haemoglobin (g/dL) 13.8 ± 1.3 
  
Haemodynamic variables  

     Sinus rhythm  100 

     Heart rate (bpm) 67.3 ± 11.2 
     Systolic blood pressure† (mmHg) 122.6 ± 12.3 
     Diastolic blood pressure† (mmHg) 73.1 ± 7.1 
     Mean blood pressure (mmHg) 89.5.5 ± 8.1 
  
Left ventricular volumes  
      LVEDV index (ml/m2) 63.1 ± 10.4 
      LVESV index (ml/m2) 18.1 ± 5.9 

      LVEF (%)  71.9 ± 6.0 
      LV mass index (g/m2) 58.8 ± 11.5 

 
Normally distributed continuous variables are presented as mean ± SD,  
Non-normally distributed continuous variables are presented as mean (interquartile limits)  
Categorical variables are presented as n (which is also equivalent to the percentage ). 
*hypercholesterolaemia is defined as a total plasma cholesterol > 6.0 mmol/L or having ever been prescribed 
a cholesterol lowering therapy. 
†mean of three office blood pressure measures on day of assessment.  
eGFR = estimated glomerular filtration rate, HDL = high density lipoprotein, LVEF = left ventricular ejection 
fraction.  
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Figure 3-3. The relationship between age and myocardial volumes 

Our cohort demonstrated age-related changes which are previously well documented. Age was negatively 
correlated with LV volumes and positively correlated with LV ejection fraction. The correlation coefficient R 
is shown for each relationship (p< 0.001 for all).
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3.3.2 Feasibility 

Out of 1600 short-axis and 600 long-axis segments (total 2200) potentially available for the 

study population, 1600 segments (100%) were adequately tracked. Based on one 

investigator, semi-automatic border delineation took 5.6 ± 1.2 minutes. 

3.3.3 Strain  

Peak systolic strains and strain rates are shown in Table 3-2. Peak systolic Ɛll was -21.0 ± 

4.1% at the endocardium and -17.3 ± 4.1% at the epicardium. Peak systolic Ɛcc was -26.5 ± 

3.8%, and -10.8 ± 2.5% at the endocardium and epicardium, respectively. Peak systolic Ɛrr 

was the highest, with a transmural value of 39.8 ± 8.3%. All peak systolic strains were higher 

at the endocardium than at the epicardium; this transmural strain gradient was greatest in 

the circumferential direction.   

The peak systolic Ɛcc was lower in the mid cavity than at the base or apex (p< 0.001 for both). 

Peak systolic Ɛcc measured in the mid cavity correlated strongly with that measured at the 

base (r = 0.71) and apex (r = 0.60) (p< 0.001 for both). As shown in Table 3-3, segmental peak 

systolic Ɛcc was heterogeneous. 

At the endocardium, the margin of error for the calculation of the population peak systolic 

strains was ± 0.75%, ± 0.94%, and ± 1.63% for Ɛcc, Ɛll and Ɛrr respectively (these values are 

presented in absolute terms and represent 2.8%, 4.5% and 4.1% relative to the stated 

population mean). For segmental peak systolic Ɛcc this margin ranged from a low of ± 1.18%   
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Table 3-2. Peak systolic strain and diastolic strain rates. 

 
Peak systolic strain (%) Peak systolic SR (s-1) Early diastolic SR (s-1) 

Longitudinal    

   Endocardial 
 
 
   Epicardial 
 
 
   Mean 

-21.3 ± 4.8 
-11.9 to -30.7 
 
-17.3 ± 4.1 
-9.3 to -25.3 
 
-19.1 ± 4.1 
-11.1 to -27.1 

-1.22 ± 0.36 
-0.51 to -1.93 
 
-0.99 ± 0.30 
-0.40 to -1.58 
 
-1.11 ± 0.30 
-0.52 to -1.70 

1.25 ± 0.39 
0.49 to 2.01 
 
0.97 ± 0.33 
0.32 to 1.62 
 
1.11 ± 0.33 
0.46 to 1.76 

Circumferential    

    Endocardial 
 
 
    Epicardial 
 
 
    Mean 

-26.1 ± 3.8 
-18.7 to -33.5 
 
-10.8 ± 2.5 
-5.9 to -15.7 
 
-18.4 ± 2.9 
-12.7 to -24.1 

-1.56 ± 0.29 
-0.99 to -2.13 
 
-0.61 ± 0.13 
-0.36 to -0.86 
 
-1.09 ± 0.19 
-0.72 to -1.46 

1.43 ± 0.35 
0.74 to 2.12 
 
0.53 ± 0.18 
0.18 to 0.88 
 
0.99 ± 0.24 
0.52 to 1.46 

Radial    

    Transmural 
           

39.8 ± 8.3 
23.5 to 56.1 

1.63 ± 0.36 
0.92 to 2.34 

-1.54 ± 0.48 
-0.60 to 2.48 

 

Results presented as mean ± SD  and 95% confidence intervals. 
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Table 3-3. Regional circumferential strain. 

 
Peak systolic circumferential strain (%) 

 

 Apical Mid Basal p (all levels) 

Global 
-29.3 
± 6.2 

-26.1 
± 3.8 

-28.4 
±4.2 

p<0.001 

Anterior 
-25.6 
± 7.9 

-28.6 
± 6.8 

-27.6 
±8.0 

p=0.002 

Anteroseptal 
-30.6 
± 8.2 

-24.7 
± 6.1 

-28.8 
±8.6 

p<0.001 

Septal 
-24.6 
± 6.0 

-32.3 
±8.1 

p<0.001 

Inferior 
-32.1 
± 7.9 

-29.0 
± 6.3 

-31.7 
±8.5 

p=0.001 

Inferolateral 
-26.0 
± 6.6 

-28.5 
±9.3 

p=0.006 

Lateral 
-28.8 
± 7.0 

-25.8 
± 7.1 

-26.2 
±9.1 

p=0.003 

p 
(all segments) 

p<0.001 p<0.001 p<0.001 
 
 

 

values presented as mean ±SD. 

p values refer to comparison of segments and slices by repeated-measures ANOVA. 
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at the mid septum, to a high of ± 1.82% at the basal infero-lateral wall (relative error: 4.8-

6.4%). A population of 333 would have been required to reduce this absolute margin to less 

than 1%. 

3.3.4   Associations of strain and strain rate 

Peak systolic Ɛcc (-25.6% vs. -26.5%, p = 0.23) and peak systolic Ɛrr (-38.8% vs. -40.9%, p = 

0.20) were similar among males and females. There were significant gender differences (p < 

0.001) in peak systolic Ɛll, with greater deformation in females (-22.7%) than in males (-

19.3%). 

There was a linear increase in the magnitude of peak systolic Ɛcc with advancing age (p = 

0.01, β = 0.07), however, the increase in Ɛcc was greatest for those subjects over the age of 

50 years. Accordingly, polynomial regression (with a quadratic curve) had superior 

modellingpower (R2= 0.11 [vs 0.06 for linear], p= 0.003) (Figure 3-4). Table 3-4 shows age 

adjusted values for peak systolic Ɛcc at the endocardium derived using the best fit regression 

model. There was no similar relationship when peak systolic Ɛcc was measured epicardially. 

There was no association between age and peak systolic Ɛll or Ɛrr. Similarly, there was no 

association between age and peak systolic SRcc or peak early diastolic SRcc (Table 3-5) 

As shown in Table 3-5, Systolic BP (p= 0.04), LVEDV (p= 0.02) and LVEF (p< 0.001) also 

emerged as predictors of peak systolic Ɛcc on linear regression analyses. The relationship 

between systolic BP and peak systolic Ɛcc is also shown in Figure 3-5. In multivariable analysis 

SBP (p= 0.02) and LVEDV (p= 0.01) remained significant predictors.  With respect to peak   
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Figure 3-4. The relationship between age and myocardial strain. 

These scatter diagrams show the relationship between age and peak systolic longitudinal strain (Ell), peak 
systolic circumferential strain (Ecc) and peak systolic radial strain (Err). The best fit linear regression line and 
correlation coefficient R are shown for the relationship between age and Ell and Err. The relationship between 
age and Ecc is shown as a quadratic curve as this had significantly superior modeling power. 
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Table 3-4. Age-adjusted mean endocardial peak systolic Ɛcc. 

Age Ɛcc 

20 26.7 

30 25.6 

40 25.4 

50 26.3 

60 28.1 

70 31.0 

 

 

Age adjusted peak systolic Ecc calculated using the regression formula, Ecc = 0.005x2 -0.363x+31.94, where x = age 
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Table 3-5.  Regression analyses of circumferential strain and strain rate measures.  

Independent 
variables 

Peak systolic Ecc Peak systolic SRcc Peak early diastolic SRcc 

R 
Beta coefficient 
(95% C.I.) 

P R 
Beta coefficient 
(95% C.I.) 

P R 
Beta coefficient 
(95% C.I.) 

P 

UNIVARIABLE ANALYSES 

Age (yrs) 0.25 0.07 (0.2 to 0.12) 0.01 0.10 0.00 (-0.01 to 0.01) 0.89 0.10 0.00 (-0.01 to 0.00) 0.32 
Sex (M=1, F=2) 0.12 0.90 (-0.60 to 2.40) 0.24 0.07 0.04 (-0.08 to 0.16) 0.49 0.13 0.09 (-0.05 to 0.23) 0.21 
Height (m) -0.14 -0.05 (-0.13 to 0.03) 0.19 0.04 0.00 (-0.01 to 0.01) 0.73 -0.12 0.00 (-0.01 to 0.00) 0.26 
Weight (kg) -0.16 -0.05 (-0.11 to 0.01) 0.13 0.00 0.00 (-0.01 to 0.01) 0.99 -0.21 -0.01 (-0.01 to 0) 0.26 
BSA (kg/m2) -0.16 -3.2 (-7.3 to 0.90) 0.13 0.00 0.03 (-0.31 to 0.31) 0.98 -0.20 -0.38 (-0.76 to -0.01) 0.05 
Heart rate (bpm) 0.06 0.02 (-0.11 to 0.03) 0.21 0.27 -0.01 (-0.01 to 0.00) 0.01 0.23 0.01 (0.00 to 0.02) 0.02 
SBP (mmHg) 0.21 0.07 (0.00 to 0.13) 0.04 0.11 0.00 (0.00 to 0.01) 0.29 0.06 0.00 (0.00 to 0.01) 0.61 
DBP (mmHg) -0.06 0.03 (-0.14 to 0.08) 0.57 -0.17 -0.01 (-0.02 to  0.00) 0.10 -0.15 -0.01 (-0.02 to 0.00) 0.15 
LVEDV (ml) -0.23 -0.04 (-0.07 to -0.01) 0.02 -0.19 -0.01 (-0.01 to 0.00) 0.07 0.23 0.01 (0.00 to 0.01) 0.02 
LVEDV (ml/m2) -0.18 -0.07 (-0.14 to 0.01) 0.08 -0.23 -0.01 (-0.01 to 0.00) 0.10 -0.09 0.00 (-0.01 to 0.01) 0.41 
LVEF(%) 0.63 0.39 (0.29 to 0.49) <0.001 0.47 0.02 (0.01 to 0.03) <0.001 0.38 0.02 (0.01 to 0.03) <0.001 
MULTIVARIABLE ANALYSES 
Age (yrs) 0.02 0.00 (-0.07 to 0.08) 0.90 - - - - - - 

BSA (kg/m2) - - - - - - -0.12 -0.19 (-0.55 to 0.18) 0.32 

Heart rate (bpm) - - - 0.19 -0.01(-0.01 to 0.00) 0.07 -0.15 0.00 (-0.01to 0.00) 0.15 
SBP (mmHg) 0.26 0.08 (0.01 to 0.15) 0.02 - - - - - - 
DBP (mmHg) - - - 0.14 0.01 (0.00 to 0.01) 0.18 - - - 
LVEDV (ml) -0.30 -0.50 (-0.87 to -0.01) 0.01 0.17 0.00 (0.00 to 0.01) 0.11 0.22 0.00(0.00 to 0.01) 0.07 

Variables that reached a p value of <0.10 were included in multivariable models (with exception of LVEF given its correlation with strain measures. 

Ecc and SRcc have been analysed as positive numbers to aid interpretation of relationships.  
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Figure 3-5. The relationship between systolic blood pressure and circumferential strain 

This scatter diagram shows the relationship between systolic blood pressure (SBP) and circumferential strain (Ecc). The best fit linear regression line and 
correlation coefficient R are also shown.
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systolic SRcc, heart rate (p= 0.01) and LVEF (p< 0.001) emerged as predictors. For peak early 

diastolic SRcc, body surface area (p= 0.03), heart rate (p= 0.006), LVEDV (p= 0.02) and LVEF (p< 

0.001) emerged as predictors.  

In Table 3-6 we have shown that gender (p< 0.001), height (p= 0.001), weight (p= 0.009), body 

surface area (p< 0.001), SBP (p= 0.09), and LVEDV (p= 0.03) were all predictors of peak systolic Ɛll 

on linear regression analyses. BSA (p =0.08), then gender (p= 0.12) had the greatest influence on 

Ell in mulitivariate modelling. 

3.3.5 Reproducibility 

Table 3-7 shows both intra- and inter-observer variability. On Bland-Altman analyses, peak 

systolic Ɛcc had the best intra- (bias -0.34 ± 0.87, 95% C.I. -2.05 to 1.36), and inter- (bias 0.63 ± 

1.29, 95% C.I. -1.90 to 3.16) observer agreement. Of the three axial strains, peak systolic Ɛrr had 

the largest intra- (-0.03 ± 3.65, 95% C.I. -7.2 to 7.1) and inter- (0.13 ± 6.4, 95% C.I. -12.44 to 

12.71) observer biases. All parameters had an intra-observer ICC of ≥ 0.85. All circumferential and 

longitudinal parameters had an inter-observer ICC of ≥ 0.85, but this coefficient was lower for 

radial parameters. 

3.4 Discussion 

In this study, we have provided normal reference values for LV myocardial strain using FT-CMR, 

derived from a well-characterised group of healthy individuals with tailored age and sex 

stratification. All circumferential and longitudinal based variables had excellent intra- and inter-

observer variability, and, although agreement was less for radial parameters, these still had
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Table 3-6. Regression analyses of longitudinal strain and strain rate measures.  

Independent 
variables 

Peak systolic Ell Peak systolic SRll Peak early diastolic SRll 

R Beta coefficient 
(95% C.I.) P R Beta coefficient 

(95% C.I.) P R Beta coefficient 
(95% C.I.) p 

UNIVARIABLE ANALYSES 

Age (yrs) 0.03 0.01 (-0.6 to 0.08) 0.738 -0.04 0.00 (-0.01 to 0.00) 0.697 -0.34 -0.01 (-0.02 to 0.00) <0.001 

Sex (M=1, F=2) 0.35 3.39 (1.58 to 5.20) <0.001 0.27 0.19 (0.05 to 0.33) 0.008 0.29 0.22 (0.08 to 0.37) 0.004 

Height (m) -0.35 -0.18 (-0.28 to -0.08) 0.001 -0.29 -0.01 (-0.02 to 0.00) 0.005 -0.21 -0.01 (-0.02 to 0.00) 0.048 

Weight (kg) -0.27 -0.10 (-0.18 to -0.03) 0.009 -0.17 -0.01 (-0.01 to 0.00) 0.098 -0.11 0.00 (-0.01 to 0.00) 0.298 

BSA (kg/m2) -0.36 -9.27 (-14.20 to -4.35) <0.001 0.26 -0.47 (-0.84 to -0.10) 0.013 -0.21 -0.40 (-0.79 to -0.01) 0.044 

Heart rate (bpm) 0.16 0.07 (-0.02 to 0.16) 0.113 0.24 0.01 (0.00 to 0.01) 0.019 0.34 0.01 (0.01 to 0.02) 0.001 

SBP (mmHg) -0.18 -0.07 (-0.15 to 0.01) 0.088 -0.18 -0.01 (-0.01 to 0.00) 0.093 -0.28 -0.01 (-0.01 to 0.00) 0.007 

DBP (mmHg) -0.13 -0.09 (-0.23 to 0.05) 0.209 -0.10 -0.01 (-0.02 to  0.01) 0.350 -0.18 -0.01 (-0.02 to 0.00) 0.096 

LVEDV (ml) -0.22 -0.05 (-0.09 to 0.00) 0.030 -0.25 0.00 (-0.01 to 0.00) 0.013 -0.14 0.00 (-0.01 to 0.00) 0.170 

LVEDV (ml/m2) -0.06 -0.03 (-0.12 to 0.07) 0.581 -0.15 -0.01 (-0.01 to 0.00) 0.151 -0.05 0.00 (-0.01 to 0.01) 0.617 

LVEF(%) 0.30 0.24 (0.09 to 0.39) 0.003 0.32 0.02 (0.01 to 0.03) 0.002 0.11 0.01 (-0.01 to 0.02) 0.296 

MULTIVARIABLE ANALYSES 

Age (yrs) - - - - - - -0.30 -0.01 (-0.01 to 0.00) 0.006 

Sex (M=1, F=2) 0.20 1.92 (-0.51 to 4.35) 0.120 0.19 0.13 (-0.05 to 0.31) 0.152 0.18 0.13 (-0.04 to 0.29) 0.135 

BSA (kg/m2) -0.25 -6.38 (-13.41 to 0.65) 0.075 -0.11 -0.20 (-0.72 to 0.33) 0.457 -0.13 -0.25 (-0.71 to 0.22) 0.290 

Heart rate (bpm) - - - 0.17 0.01 (0.00 to 0.01) 0.116 0.30 0.01 (0.00 to 0.02) 0.002 

SBP (mmHg) -0.03 -0.01 (-0.10 to 0.07) 0.750 -0.05 0.00 (-0.01 to 0.01) 0.620 -0.06 0.00 (-0.01 to 0.01) 0.59 

LVEDV (ml) -0.01 0.00 (-0.05 to 0.05) 0.970 -0.08 0.00 (-0.01 to 0.00) 0.553 - - - 
Variables that reached a p value of <0.10 were included in multivariable models (with exception of LVEF given its correlation with strain measures.  
Ell and SRll have been analysed as positive numbers to aid interpretation of relationships. 
DBP was excluded from the diastolic SRll multivariate model due to collinearity with SBP. 
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Table 3-7. Intra-observer and inter-observer variability. 

Variable Variability Mean bias 
± SD 

Limits of 
agreement 

p Coefficient of 
variation (%) 

Interclass correlation 
coefficient (95% CI) 

Peak systolic Err 
Intra-observer 
Inter-observer 

-0.03 ± 3.65 
0.13 ± 6.41 

-7.19 to 7.14 
-12.44 to 12.71 

0.97 
0.93 

8.90 
14.67 

0.85 (0.66 to 0.94) 
0.55 (0.11 to 0.81) 

Peak systolic Ecc 
Intra-observer 
Inter-observer 

-0.34 ± 0.87 
0.63 ± 1.29 

-2.05 to 1.36 
-1.90 to 3.16 

0.09 
0.06 

3.55 
4.95 

0.96 (0.90 to 0.99) 
0.93 (0.81 to 0.97) 

Peak systolic Ell 
Intra-observer 
Inter-observer 

-0.49 ± 1.83 
0.22 ± 1.13 

-4.08 to 3.11 
-1.99 to 2.42 

0.29 
0.42 

7.68 
5.48 

0.88 (0.72 to 0.96) 
0.98 (0.94 to 0.99) 

Peak systolic SRrr 
Intra-observer 
Inter-observer 

-0.01 ± 0.14 
-0.03 ± 0.27 

-0.29 to 0.27 
-0.56 to 0.49 

0.74 
0.61 

8.68 
15.01 

0.89 (0.74 to 0.95) 
0.71 (0.38 to 0.88) 

Peak systolic SRcc 
Intra-observer 
Inter-observer 

-0.02 ± 0.08 
0.02 ± 0.11 

-0.18 to 0.13 
-0.20 to 0.23 

0.21 
0.56 

5.36 
6.68 

0.96 (0.90 to 0.98) 
0.94 (0.84 to 0.98) 

Peak systolic SRll 
Intra-observer 
Inter-observer 

0.02 ± 0.18 
0.02 ± 0.16 

-0.34 to 0.38 
-0.30 to 0.33 

0.70 
0.61 

17.89 
12.95 

0.89 (0.72 to 0.96) 
0.86 (0.67 to 0.95) 

Peak early 
diastolic SRrr 

Intra-observer 
Inter-observer 

0.03 ± 0.18 
-0.04 ± 0.48 

-0.33 to 0.38 
-0.98 to 0.90 

0.52 
0.72 

11.67 
26.77 

0.88 (0.72 to 0.95) 
0.50 (0.05 to 0.78) 

Peak early 
diastolic SRcc 

Intra-observer 
Inter-observer 

0.00 ± 0.07 
-0.01 ± 0.11 

-0.13 to 0.13 
-0.24 to 0.21 

0.92 
0.63 

5.29 
7.82 

0.97 (0.93 to 0.99) 
0.96 (0.89 to 0.98) 

Peak early 
diastolic SRll 

Intra-observer 
Inter-observer 

0.05 ± 0.18 
0.01 ± 0.28 

-0.30 to 0.40 
-0.53 to 0.55 

0.27 
0.90 

14.84 
20.99 

0.85 (0.64 to 0.94) 
0.85 (0.63 to 0.94) 
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acceptable reproducibility. Our definition of a normal range for strain and strain rate 

measures using FT-CMR has emerged in the context of a promising role for this technique to 

detect preclinical disease, as shown by stress CMR studies (Schuster et al., 2011). Further 

studies are undoubtedly needed to determine the role of FT-CMR in both clinical and 

research environments. At this stage, however, an accepted definition of normal values is 

paramount. 

3.4.1 Normal values 

There are key differences between the FT-CMR motion analysis techniques presented herein 

and those reported using other methodologies. In this respect, FT-CMR measures myocardial 

strain at both the endocardial and epicardial border, whilst speckle tracking measures strain 

from a region of interest within the myocardium. The presence of a transmural myocardial 

strain gradient is likely to confound comparisons of strain measures derived from speckle-

tracking echocardiography and FT-CMR. Furthermore, there are differences between 

vendors of speckle-tracking echocardiography in regard to the regions at which strain is 

calculated. Some manufacturers derive strain from the mid-myocardium, whilst others 

permit endocardial and epicardial strain computation. The recently published consensus 

statement aims to standardise strain calculation as at present comparisons of values 

between software is problematic (Mor-Avi et al., 2011). To allow for such gradients, FT-CMR 

global peak strain was expressed as the mean strain of values derived from the endocardial 

and epicardial borders. Accordingly, global strain values are comparable to those reported 

from the largest single normal reference population (250 patients) studied with speckle 

tracking echocardiography which determined mid-myocardial strains. Marwick et al found a 
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mean peak systolic Ɛll of -18.6% compared with -19.1% in our study (Marwick et al., 2009). 

Mean peak systolic Ecc was also similar (-18.7% vs. -18.4%) and peak systolic SRll was also 

comparable (-1.10s-1 vs. -1.11s-1).  

Since there is no agreed normal reference range for diastolic strain parameters current 

consensus currently suggests restricting their use to research applications (Mor-Avi et al., 

2011). Nevertheless, early diastolic strain rate is a sensitive early marker of diastolic 

dysfunction and provides important information about LV relaxation as well as being 

associated with interstitial fibrosis (Park et al., 2006). Moreover, measures of diastolic 

function predict incident heart failure and, therefore, carry prognostic significance (Kane GC 

et al., 2011). Thus far, CMR based assessment of diastolic function using myocardial tagging 

has been restricted by loss of tags. In contrast, FT-CMR offers a more robust method 

because it is not adversely affected by T1 relaxation. Our derivation of a normal reference 

range for early diastolic strain rate is therefore a key aspect of this study as it may have 

future clinical relevance. However the lower temporal resolution of CMR (25Hz in this study) 

compared to echocardiography raises concerns over whether any CMR based deformation 

algorithm is apt for the assessment of early diastolic filling which is the fastest part of the 

cardiac cycle. However, due to the nature of FT-CMR (like speckle tracking) the algorithms 

are more accurate at detecting rapid movements (there is a lower limit of pixel velocity that 

can be tracked from one frame to the next). Whilst increasing the frame rate beyond normal 

acquisition protocols would enhance the quantification of early diastolic strain rate in this 

population, this may actually reduce the accuracy of strain calculation because of the trade 
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off in spatial resolution. Further studies to elucidate the optimal spatial and temporal 

resolution for global and segmental strain assessment in health and disease are required.  

The large standard deviation of peak strains within the normal population is similar to that 

reported with other methodologies (Yingchoncharoen et al., 2013). In view of the small 

measurement bias for repeated measures (both inter- and intra-observer) in our cohort, and 

the reported good intra-subject reproducibility in global measures with repeated imaging 

(Morton et al., 2012), this large spread within this population is likely due to normal 

biological variation.  

3.4.2 Effects of age and sex on strain 

Our findings of greater longitudinal deformation in women (but similar circumferential 

deformation) corroborate with those of Augustine et al. who have recently reported on 

strain values in 116 healthy subjects (Augustine et al., 2013). Their study comprised young 

healthy volunteers with a narrow age distribution (age 29 ± 7 yrs). Our study also shows that 

these gender variations persist across a broad age spectrum. Moreover, we also report an 

age related change in circumferential strain, which is in keeping with a recent 3D speckle 

tracking echocardiography study (Kleijn et al., 2014).  In accordance with this, an age-related  

increase in LV torsion has been recognised, although the biomechanical reasons for this are 

still debated (Yoneyama et al., 2012). Our multivariable regression analyses suggest that age 

related changes in LVEDV and SBP (even within a normotensive population) are important 

factors in this respect. On the other hand, we have not shown any age-dependent variations 

in longitudinal strain. This is in contrast with Kuznetsova et al.(Kuznetsova et al., 2008) who 
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reported a decrease in the magnitude of longitudinal strain, associated with ageing, 

measured using tissue Doppler imaging in a mixed population of healthy individuals and 

hypertensive patients. Dalen et al. (Dalen et al., 2010) also reported an inverse relationship 

between age and longitudinal strain measured using tissue Doppler imaging in a large 

population of healthy individuals. Importantly, however, myocardial strain measured using 

tissue Doppler imaging is not necessarily comparable to speckle-tracking imaging. 

Notwithstanding, our findings of an absence of age-dependent variations in longitudinal 

myocardial strain is in keeping with the aforementioned speckle tracking imaging study 

(Marwick et al., 2009).   

3.4.3 Reproducibility and feasibility  

In the present study, the best reproducibility was obtained for peak systolic Ɛcc, followed by 

peak systolic Ɛll and then peak systolic Ɛrr. Acceptable intra- and inter-observer agreement 

was also found for strain rate, in particular for peak systolic and peak early diastolic SRcc. This 

is consistent with the findings of Morton et al., who found that circumferential strain had 

the best inter-study variability on three serial CMR acquisitions over one day (Morton et al., 

2012). Conversely, radial strain had the lowest reproducibility. This may relate to the fact 

that, as opposed to circumferential strain, radial strain is derived from both endocardial and 

epicardial motion and, therefore, its quantification relies on the simultaneous tracking of 

two regions of interest. In this respect, the contrast in signal intensity at the epicardial 

border is less prominent than that at the endocardial border. This is a likely cause for the 

comparatively low reproducibility of radial strain.  
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Reproducibility does not necessarily equate to accuracy. Theoretically any myocardial 

deformation algorithm could repeatedly quantify strain with a similar but inaccurate result. 

The robust reproducibility of this myocardial deformation algorithm may be a result of its 

highly automated process and background smoothing utilised.  The agreement with 

myocardial tagging demonstrated in chapter 2 is reassuring. Peak systolic Ɛcc can be 

measured with good agreement and peak systolic Ɛll with satisfactory agreement compared 

to the ‘gold standard’ myocardial tagging techniques (Hor et al., 2010; Moody et al., 2015). 

Validation of any radial parameters is more challenging as this is generally less accurately 

quantified by all deformation algorithms. The ‘acid test’ for this modality will be whether it 

can be used to assess pre-clinical disease and these normal values will be beneficial in this 

respect.      

As we have learnt from myocardial tagging, proving feasibility is a necessary step in the 

development of a clinically applicable imaging modality. In this study, we were able to track 

100% of available segments. This is a potential advantage of FT-CMR over echocardiography, 

insofar as the latter is limited by foreshortening at the apex and ‘drop-out’ of the apical and 

anterolateral segments on the apical views. In addition, the sector widths required to image 

dilated hearts during echocardiography often result in frame rates that are suboptimal for 

speckle-tracking.  

3.4.4 Clinical and research applications  

FT-CMR tracks the movement of anatomical structures over time. Tissue inhomogeneities 

and their variance in signal are important in this regards.  Whilst the prominent differences 



 

127 

 

in signal intensity between the myocardial and blood interface means this methodology is 

well suited to measuring global strains, motion components parallel to tissue boundaries are 

more disposed to noise than perpendicular motions and agreement for regional measures is 

more modest (Harrild et al., 2012; Wu et al., 2014). Thus with its rapidity to execute and the 

lack of requirement of specialised acquisitions, FT-CMR lends itself to clinical use more 

favourably than myocardial tagging. An ideal example is the serial assessment of patients 

undergoing cytotoxic chemotherapy (Thavendiranathan et al., 2014). New guidelines for 

cardio-oncology mandate the reporting of global longitudinal strain (Plana et al., 2014), and 

FT-CMR may be appropriate for patients in whom poor acoustic windows prevent repeated 

speckle tracking echocardiography. However, when the assessment of regional function is 

required, such as for the assessment of regional ischaemia, the differentiation of adjacent 

regions of myocardium provided by myocardial tags gives this clear advantages over FT-

CMR. 

Likewise, speckle tracking echocardiography tracks acoustic interference patterns that are 

within the myocardium so is better suited to the regional assessment of function than FT-

CMR. Neither CMR based methodology can rival the much wider availability or speed of 

acquisition of echocardiographic based measures. The disadvantages of speckle tracking 

have already been highlighted. 

One attraction of FT-CMR is that cine images do not need any prior manipulation at 

acquisition equivalent to the myocardial tagging required to facilitate HARP or SPAMM 

analysis. In addition to saving time this permits the retrospective study of cohorts. However, 
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such historical data may have suboptimal frame rates for use with the FT-CMR algorithm. 

Caution is required if such cohorts are compared to the normal values presented within. 

3.4.5 Limitations  

Our 100% yield relates to the high quality of our SSFP cines, and we acknowledge that the 

same image quality will not always be obtainable in a clinical environment, not least because 

arrhythmias may interfere with ECG gating. However, the diagnostic yield reported here 

compares favourably to that achieved by Marwick et al. who only obtained diagnostic quality 

images in 79% of healthy enrollees whilst compiling normal values for speckle tracking 

(Marwick et al., 2009). We present mean segmental values for circumferential but not 

longitudinal strain as sagittal left ventricular outflow tract cines were not part of our 

acquisition protocol. Regardless, the margin of error for population mean peak systolic 

segmental circumferential strains was more than double that for global values, and this will 

limit their practicality.    

Our finding that Ɛcc was lower in the mid-cavity than at the base is in contrast to tagging 

studies (Moore et al., 2000a). Although we cannot be assured of the reason for this 

discrepancy, it is plausible that, despite our slice selection protocol which was designed to 

negate the influence of through plane distortion from the LV outflow tract, this was an issue; 

limitations of the software that would account for this are considered in more detail in 2.4.4. 
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3.5 Conclusions 

We have defined normal values for strain for healthy individuals using FT-CMR. 

Undoubtedly, this technique will undergo refinements in the future, as data from different 

disease groups and applications emerge. As with any imaging modality, normal values may 

vary according to software manufacturer and particular algorithms. It is imperative, 

therefore, that values quoted herein are expressed in the context of the technology used in 

the present study.  
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4 FEATURE-TRACKING CARDIOVASCULAR MAGNETIC RESONANCE AS A NOVEL 

TECHNIQUE FOR THE ASSESSMENT OF MECHANICAL DYSSYNCHRONY 

Principal hypothesis: FT-CMR derived dyssynchrony parameters can act as a biomarker to 

discriminate between healthy controls and patients with NICM.   

4.1 Introduction 

The myocardium is a complex, three-dimensional structure in which motion occurs in radial, 

circumferential and longitudinal directions. These motions are dependent on the intimate 

interplay between electrical activation and myocardial function.  Disturbances of the 

conducting system or myocardial function can lead to an increase in the temporal dispersion 

of contraction and relaxation, or dyssynchrony. It is well established that dyssynchrony can 

leads to myocardial inefficiencies (Prinzen et al., 1990), reduced cardiac output (Park et al., 

1985) and cardiac remodeling (Burkhoff et al., 1986).    

The assessment of cardiac dyssynchrony has been the focus of increasing attention in the 

past decade, particularly with the advent of CRT.  The concept that pre-implant 

dyssynchrony is pre-requisite for a benefit from CRT has driven an extensive array of imaging 

studies.  However, the expectation that dyssynchrony measures might predict the response 

to, or the outcome from CRT (Bax et al., 2004; Pitzalis et al., 2002; Yu et al., 2003b), was not 

supported by multicenter studies (Chung et al., 2008; Conca et al., 2009; Hawkins et al., 

2009; Marwick, 2008). The inability of operators to obtain the various dyssynchrony 

measures, the inordinately high inter-operator variability, as well as the large overlap in 
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values between patients with cardiac disease and healthy controls (Chung et al., 2008) are 

prominent obstacles to the application of dyssynchrony measures in clinical practice.   

FT-CMR is the recently developed CMR-equivalent of speckle-tracking echocardiography 

(Hor et al., 2011). Chapter 2 establishes that it is accurate when compared against 

myocardial tagging using SPAMM. Furthermore, its superior time efficiency and 

reproducibility are attractive attributes for clinical practice. In theory, FT-CMR can be used to 

derive dyssynchrony measures, such as the circumferential uniformity ratio estimate (CURE) 

and the radial uniformity ratio estimate (RURE), both of which reflect the regional 

heterogeneity of strain throughout the cardiac cycle. An important aspect of any biomarker 

is the ability to discriminate between a disease entity and healthy control subjects. The 

chapter explores whether CURE and RURE derived from FT-CMR can discriminate between 

healthy controls and patients with NICM.  

4.2 Methods 

4.2.1 Study population 

Healthy controls. Healthy control subjects were identified from a prospective controlled 

observational research study examining the effects of living kidney donation on 

cardiovascular structure and function (NCT01769924) (Moody et al., 2014) and are described 

in detail in 3.2.1. 

NICM subjects.  Patients with NICM were enrolled through the heart failure clinic at the 

regional tertiary centre as part of a prospective investigation into the mechanical effects of 
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midwall fibrosis on cardiac mechanics. Inclusion criteria were as follows: adults aged of 18 or 

over with a diagnosis of NICM made on the basis of clinical features plus echocardiographic 

evidence of LV systolic impairment; Exclusion criteria: hypertrophic or restrictive 

cardiomyopathy; Coronary artery disease on invasive coronary angiography thought to be 

sufficient to account for the reduced left ventricular systolic function; transmural or 

subendocardial LGE pattern consistent with a coronary territory. Coronary angiography was 

not mandated in all patients, but LGE-CMR was prerequisite for inclusion. All participants 

gave written informed consent, and the study protocol conforms to the ethical guidelines of 

the 1975 Declaration of Helsinki as reflected in a priori approval by the National Research 

Ethics Service. 

4.2.2 CMR acquisition  

This was performed with a 1.5 Tesla scanner (Magnetom Avanto, Siemens, Erlangen, 

Germany) as described in section 2.2.2, although only the cines comprising the short axis 

stack were utilised for this study.  

4.2.3 CURE and RURE 

Feature tracking of each SSFP cine of the short axis stack (as described in 3.2.4.) was used to 

obtain circumferential and radial strain data along the evenly spaced circumferential 

segments of a short-axis slice. The user-interface of the FT-CMR platform provides regional 

strains derived from six equal myocardial segments. Each regional strain is derived from the 

mean strain from a number of points and this more comprehensive dataset can be 
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downloaded as a text file. Strain was determined at 48 evenly distributed segments around 

each slice over the full cardiac cycle.     

As shown in Figure 4-1, the CURE and RURE are ratios of the spatial uniformity of strain, 

averaged over time and over all available slices (Helm et al., 2005; Leclercq et al., 2002). 

These measures assume that, in a perfectly synchronous heart, strain is the same across all 

segments. In a dyssynchronous heart, strain changes along the circumference, with opposing 

walls having opposing strain. In a Fourier space, the zero Fourier coefficient A0 equals the 

mean strain over all segments, and the modulus of the first Fourier coefficient A1 equals the 

sinusoidal amplitude of the strain along all segments, which reflects the discordance of 

opposing myocardial walls. The CURE and RURE ratios normalise the A0 amplitude to the 

total (A1 and A0) signal, so that the measures range between 0 (complete dyssynchrony) and 

1 (perfect synchrony). Intuitively, a dyssynchrony score that reflects dyssynchrony in both 

radial and circumferential directions may be more sensitive than one based solely on one 

direction. On this basis, we also derived the average of CURE and RURE (CURE:RUREAVG) to 

provide an index that reflects both radial and circumferential synchrony.  

4.2.4 Statistical methods 

Continuous variables are expressed as mean ± SD. Normality was tested using the Shapiro-

Wilk test. Comparisons between continuous variables were made using independent 

samples t-tests. Pearson’s correlation coefficient was used to explore the relationship 

between CURE and RURE and baseline variables. Receiver-operator characteristics (ROC) 

curves were constructed to assess the ability of the dyssynchrony measures to discriminate 
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Figure 4-1. Derivation of CURE and RURE.  

Tile A shows a basal short axis slice in FT-CMR, with endocardial and epicardial borders traced at end-diastole. This facilitates the calculation of both 
circumferential and radial strain at 48 evenly spaced regions at each time point. In tile B, these strain measures (at one time point) have been plotted against 
spatial location. The two hypothetical plots demonstrate perfect synchrony (blue) with all points having identical strains, and perfect dysynchrony (orange) 
where opposite points have opposite strains.  Tile C shows the formula for derivation of CURE or RURE, where a0 and a1 are the zero and first order terms from 
Fourier analysis of the time-strain graphs, respectively. The final value is an average over time (t) and space (s). 



 

135 

 

between the groups. Differences between the ROCs were compared using the technique of 

DeLong (DeLong et al., 1988). Optimal cut-offs for each measure were calculated affording 

equal value to sensitivity and specificity. Logistic regression analyses were used to explore 

whether the relationship between the dyssynchrony measures was independent of QRS 

duration. For the assessment of intra- and inter-observer variability, agreement was tested 

by calculating mean bias and 95% limits of agreement (confidence intervals) from Bland-

Altman analyses. A p value of < 0.05 was considered statistically significant. Statistical 

analyses were performed using SPSS v21.0. (SPSS Inc. Chicago, Illinois) and MedCalc v12. 

(MedCalc, Broekstraat, Belgium). 

4.3 Results  

4.3.1 Baseline variables 

There were significant differences between healthy controls (n=55, aged 42.9 ± 13 years) 

and patients with NICM (n=108, aged 64.7 ± 12 years) for all baseline variables (Table 4-1). 

Healthy subjects had a QRS<120 ms, whereas 66% of patients with NICM had a QRS duration 

≥120ms.  CURE (0.79 ± 0.14 vs. 0.97 ± 0.02), RURE (0.71 ± 0.14 vs. 0.91 ± 0.04) and 

CURE:RUREAVG (0.75 ± 0.12 vs. 0.94 ± 0.02) were lower in NICM than in healthy controls 

(p<0.0001 for all) (Figure 4-2). 

4.3.2 Correlates of CURE and RURE 

As shown in Table 4-2, neither CURE nor RURE correlated with age in either control subjects 

or in patients with NICM. Whilst no significant correlations emerged between the three 

dyssynchrony measures and LVEF or LVEDV in healthy controls, significant correlations were  
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Table 4-1. Baseline characteristics. 

 Healthy 
controls 

Patients with 
NICM P 

N 55 108  

    

Age (yrs) 42.9±13 64.7±12 <0.001 

    

Gender (male) 29 (55) 73 (68) 0.06 

    

NHYA functional class    

     I - 14 (13)  

     II - 28 (26)  

     III - 53 (49)  

     IV - 13 (12)  

    

Medication    

     Loop diuretics - 92 (85)  

     ACE-I or ARB - 102 (94)  

     Beta-blockers  - 76 (70)  

     Aldosterone antagonists - 55 (51)  

    

QRS (ms) 88 ± 9 147 ± 29 <0.001 

    

CMR variables    

     LV mass (g) 119 ± 30 139 ± 30 0.046 

     LVEDV(ml) 122 ± 26 237 ± 87 <0.001 

     LVESV (ml) 36 ± 14 176 ± 89 <0.001 

     LVEF (%) 70 ± 5 29 ± 13 <0.001 

    

Dyssychrony measures    

     CURE 0.97 ± 0.02 0.79 ± 0.14 <0.001 

     RURE 0.91 ± 0.04 0.71 ± 0.14 <0.001 

     CURE:RUREAVG 0.94 ± 0.02 0.75 ± 0.12 <0.001 
Continuous variables are expressed as mean ± SD. Categorical variables are expressed as n (%)  
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Figure 4-2. Boxplots of dyssynchrony measures.  

Comparison of (a) CURE, (b) RURE, (c) CURE:RUREAVG in patients with NICM and healthy controls. The middle 
horizontals of the boxes represent the median values, the upper and lower horizontals represent the upper 
and lower interquartile points, respectively. The horizontal lines on the whiskers represent the extreme 
values not deemed to be outliers. Outliers are defined as values greater than 1.5 times the interquartile 
range from the interquartile value, and are shown as individual points.  
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Table 4-2. Correlates of dyssynchrony measures. 

 
 

Healthy controls Patients with NICM All 

CURE RURE CURE:RUREAVG CURE RURE CURE:RUREAVG CURE RURE CURE:RUREAVG 

Age (yrs) 0.21 
(0.13) 

0.10 
(0.46) 

-0.09 
(0.50) 

-0.06 
(0.52) 

-0.13 
(0.18) 

0.12 
(0.24) 

-0.36 
(<0.001) 

0.44 
(<0.001) 

0.45 
(<0.001) 

QRS (ms) 0.32 
(0.83) 

0.20 
(0.19) 

0.23 
(0.12) 

-0.21 
(0.04) 

-0.42 
(<0.001) 

-0.38 
(<0.001) 

-0.53 
(<0.001) 

-0.67 
(<0.001) 

-0.66 
(<0.001) 

LVEF (%) 0.26 
(0.06) 

0.00 
(0.99) 

-0.04 
(0.79) 

0.35 
(<0.001) 

0.59 
(<0.001) 

0.55 
(<0.001) 

0.66 
(<0.001) 

0.78 
(<0.001) 

0.80 
(<0.001) 

LVEDV (ml) 0.14 
(0.30) 

0.06 
(0.65) 

0.06 
(0.67) 

-0.34 
(0.001) 

-0.47 
(<0.001) 

-0.48 
(<0.001) 

-0.58 
(<0.001) 

-0.67 
(<0.001) 

-0.69 
(<0.001) 

Pearson’s correlation coefficient for the correlation between dyssynchrony variables and other baseline variables.  

The P value for each analysis is presented in parentheses.  
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found in both the entire cohort (Figure 4-3) and patients with cardiomyopathy. In the latter, 

CURE, RURE and CURE:RUREAVG correlated positively with LVEF and negatively with LVEDV 

(all p< 0.05).  

4.3.3 Relationship between CURE, RURE and QRS duration 

Neither CURE, RURE or CURE:RUREAVG  correlated with QRS duration within the healthy 

population,  in whom there was minimal variance in the range of QRS duration. All dyssynchrony 

parameters correlated with QRS duration within the cardiomyopathy population; RURE (r= -0.42, 

p= <0.001) was a stronger negative correlate of QRS duration than CURE (r= -0.21, p=0.04). The 

relationship between dyssynchrony parameters and QRS duration was not strengthened when 

only considering individuals in sinus rhythm (CURE: r= -0.18, p=0.12; RURE: r= 0.34, p=0.003). 

4.3.4 Discriminatory ability of CURE and RURE 

Figure 4-4 shows receiver operating characteristic (ROC) curves for the ability of each of the 

dyssynchrony measures to discriminate between NICM and healthy controls. In line with the 

traditional academic point system (Metz, 1978), both CURE (area under ROC [AUC]: 0.96, 

95% confidence interval [C.I.] 0.93 to 0.99)  and RURE (AUC : 0.96, 95% C.I. 0.93 to 0.99) had 

an excellent ability to discriminate between patients with NICM and healthy control 

subjects. No differences emerged between the AUC for CURE and RURE (p = 0.88). The AUC 

for CURE:RUREAVG (0.98, 95% C.I. 0.96 to 1.00), however, was greater than that of RURE (p = 

0.03), but not that of CURE (p = 0.13). Cut-off values with the best discrimination between 

patients with NICM and healthy controls are shown in Table 4-3.  
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Figure 4-3. Correlates of dyssynchrony.  

Scatter diagrams showing the relationship of CURE:RUREAVG in relation to a) QRS, b) LVEF, and c) LVEDV in 
patients with non-ischaemic cardiomyopathy 
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Figure 4-4. Receiver operator characteristics for each dysynchrony measure to discriminate 
between NICM and healthy controls.  

ROC curves for CURE, RURE and CURE:RUREAVG are shown. 
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Table 4-3. Optimal cut-offs for dyssynchrony measures. 

Test Optimal cut-
off 

Sensitivity 
(%) 

Specificity 
(%) 

Positive 
predictive 
value (%) 

Negative 
predictive 
value (%) 

CURE 0.93 88 96 98 80 

RURE 0.87 89 91 95 81 

CURE:RUREAVG 0.89 90 98 99 83 

These relate to the ability of each measure to discriminate between patients and healthy control subjects. 
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As shown in Table 4-4, CURE, RURE and CURE:RUREAVG emerged as strong predictors of 

cardiomyopathy. In multivariable analyses, CURE (p = 0.001), RURE (p = 0.001) and 

CURE:RUREAVG (p = 0.006) were able to discriminate between patients with NICM and 

healthy controls, independent of age and QRS duration.  

4.3.5 Dyssynchrony and normal QRS 

Amongst patients with NICM, RURE (p < 0.001) and CURE:RUREAVG (p = 0.001), but not CURE 

(p = 0.14) were lower in patients with electrical dyssynchrony (QRS≥120ms) (Table 4-5). As 

shown in Figure 4-5, most patients with NICM and a QRS ≥120ms had both circumferential 

(95%) and radial (92%) mechanical dyssynchrony, defined as a CURE ≤0.93, or a RURE ≤0.87. 

Similarly, most patients with NICM and a QRS<120 ms also had circumferential (84%) and 

radial (91%) dyssynchrony.  

4.3.6 Yield and reproducibility 

FT-CMR was possible in all patients with NICM and controls recruited into this study. Twenty 

randomly selected scans of patients with NICM were tracked by two investigators with 4 

months (R.J.T.) and 1-month (C.M.) experience in FT-CMR. Bland-Altman analyses were used 

to compare inter-observer variability for both CURE and RURE. For CURE, the mean bias was 

0.003 ± 0.43 (95% CI: -0.08 to 0.09). Almost identical agreement was demonstrated for RURE 

(mean bias of -0.001 ± 0.44 [95% CI: -0.09 to 0.08]). 
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Table 4-4. Logistic regression of variables in relation to their ability to differentiate between 
healthy controls and patients with cardiomyopathy. 

 Odds ratio (95% CI) P 

Univariable analyses 

  Age 1.10 (1.07-1.13) <0.001 

  QRS 1.12 (1.07-1.17) <0.001 

  CURE 0.53 (0.42-0.66) <0.001 

  RURE 0.67 (0.58-0.78) <0.001 

  CURE:RUREAVG 0.50 (0.38-0.67) <0.001 

   

Multivariable analyses 

  Model 1   

     Age 1.02 (0.96-1.08) 0.53 

    QRS 1.09 (1.01-1.17) 0.03 

    CURE 0.58 (0.42-0.80) 0.001 

  Model 2   

     Age 1.05 (0.99-1.11)  0.14 

    QRS 1.14 (1.03-1.27) 0.009 

    RURE 0.63 (0.48-0.83) 0.001 

  Model 3   

     Age 1.00 (0.93-1.07) 0.99 

    QRS 1.16 (1.02-1.32) 0.03 

    CURE:RUREAVG 0.38 (0.19-0.76) 0.006 

Uniformity ratio estimates have been entered into logistic regression equations as percentages (0%: perfect 
dyssynchrony; 100%: perfect synchrony).  

Encoding for the dependent variable (disease state) was : healthy control = 0, NICM =1.   
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Table 4-5. Dyssynchrony measures in patients with cardiomyopathy, according to QRS duration.   

Measure QRS < 120 ms QRS ≥ 120 ms P value 

CURE 0.81 ± 0.15 0.76 ± 0.14 0.14 

RURE 0.77 ± 0.09 0.66 ± 0.14 <0.001 

CURE:RUREAVG 0.79 ± 0.09 0.71 ± 0.12 0.001 
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Figure 4-5. Relationship between mechanical and electrical dyssynchrony. 

Scatterplot for CURE and RURE against QRS in both healthy controls and patients with NICM. The vertical references mark the conventional discriminator for 
electrical dyssynchrony (QRS ≥120 ms). The horizontal reference lines mark the optimal cut-offs derived from ROC analyses for each measure. 
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4.3.7 Rapid assessment of CURE and RURE    

The dyssynchrony measures described herein are based on semi-automatically tracking an 

average of 6.4 ± 1.1 slices per LV stack. The time taken for tracking all short axis slices was 

5.9 ± 1.4 mins. We re-calculated CURE and RURE in a sub-group of 50 patients with NICM, 

based solely on tracking 3 slices (apical, mid and basal). In Bland-Altmann analyses, there 

was close agreement between the full model and the rapid method for both CURE (bias 

0.005 ± 0.05 and 95% C.I. -0.092 to 0.102) and RURE (bias 0.010 ± 0.05 and 95% C.I. -0.091 to 

0.112). Using this rapid method time taken was reduced to 3.1 ± 0.8 mins. 

4.4 Discussion 

4.4.1 Major findings 

We have shown that Fourier-based dyssynchrony measures derived from FT-CMR, namely 

CURE and RURE, provide almost absolute discrimination between patients with NICM and 

healthy control subjects, independent of age and QRS duration. Important aspects of these 

measures are the rapidity of post-processing and the fact that they are based on SSFP 

imaging, which is part of a routine CMR scan.  

4.4.2 FT-CMR vs myocardial tagging 

CURE and RURE can be calculated from any imaging technique that analyzes wall motion. 

Our results are of importance in the context of a study of 20 CRT candidates, in which CURE, 

derived from myocardial tagging, predicted improvements in functional capacity after CRT 

(Bilchick et al., 2008). Although myocardial tagging is the gold-standard for the assessment 
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of myocardial motion, it has not gained popularity in clinical practice. This has been due to 

the need for specialised tagging sequences and lengthy breath-holds, and to the laborious 

and time-consuming post-processing involved. In contrast, FT-CMR requires no acquisitions 

other than a SSFP sequence, the ‘workhorse’ sequence in CMR. As a further advantage over 

SPAMM, with which myocardial tags fade toward the end of diastole, FT-CMR permits 

measurement of motion and strain throughout the cardiac cycle.  

If QRS duration and dyssynchrony parameters demonstrated perfect negative association, 

this would imply that the assessment of mechanical dyssynchrony was futile as it comprises 

no additional information. Undoubtedly, an association between these parameters is 

anticipated, and provides one potential inspection of this novel technique.  The association 

between CURE and QRS duration in this study (r= -0.21) is weaker than that reported within 

an analogous population using myocardial tagging (r= -0.58) (Bilchick et al., 2008). This may 

indicate that some of the sophistication of this Fourier transformation based index has been 

lost due to the comparative crudeness of FT-CMR. Radial based Fourier measures are not 

previously described in humans, but it is encouraging that the association of RURE with QRS 

duration was stronger than that seen with CURE and closer to that predicted.          

4.4.3 Yield and reproducibility 

The PROSPECT investigators found that the ability to obtain dyssynchrony measures was 

poor, even in elite centers that had served as echocardiographic core laboratories in other 

studies (Chung et al., 2008). In this study, CURE and RURE were obtained in 100% of patients 

with NICM and healthy controls. In agreement with other studies (Morton et al., 2012), we 
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have found that CURE and RURE derived using FT-CMR have an excellent inter-observer 

reproducibility.  This may relate to the fact that the method is semi-automated, requiring the 

operator to manually delineate contours on only one phase (end-diastole) per slice, leaving 

the software to automatically delineate contours in other phases. This, combined with the 

high spatial resolution of SSFP CMR, may contribute to the low interobserver variability. 

4.4.4 Rapidity of acquisition and post-processing 

We have found that operators were able to quantify CURE and RURE after only 1 to 4 

months training in FT-CMR. Moreover, post-processing was as short as 6 min for a whole 

short-axis stack and 3 min for 3 short-axis slices. Although we have not compared FT-CMR 

with other CMR techniques, it is well recognised that myocardial tagging with HARP as well 

as Displacement Encoding with Simulated Echoes (DENSE) involve laborious post-processing. 

This also applies to some echocardiographic techniques. For example, the standard deviation 

of the time-to-peak systolic motion derived from tissue Doppler imaging involves manually 

identifying and computing myocardial wall motion peaks in 12 myocardial segments (Yu et 

al., 2002). In contrast, the FT-CMR described herein, together with the Fourier 

transformation-based indices such as CURE and RURE, do not involve time-consuming 

manual selection of motion or strain peaks. 

4.4.5 Dyssynchrony and narrow QRS duration 

In the field of CRT, there is a debate as to how measures of mechanical dyssynchrony, rather 

than electrical dyssynchrony, can help predict clinical outcome. Major outcome trials of CRT, 

such as CARE-HF (Cleland et al., 2005), adopted a QRS > 120 ms as an arbitrary surrogate 
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marker of electrical dyssynchrony. Echocardiographic (Haghjoo et al., 2007; Takemoto et al., 

2007; Yu et al., 2003a) and radionuclide phase analysis (Marcassa et al., 2007) studies, 

however, have shown that that mechanical dyssynchrony is also present in patients with a 

QRS ≤120 ms. Cardiovascular magnetic resonance has shown that intraventricular 

dyssynchrony is almost universal in patients with heart failure, regardless of QRS duration 

(Chalil et al., 2007b; Foley et al., 2009a). This is consistent with the present study, in which 

most patients with NICM and a QRS<120 ms had circumferential (84%) and radial (91%) 

dyssynchrony. Despite this, in the RethinQ study, in which 172 patients with heart failure 

and a QRS duration < 130 ms were randomly assigned to CRT-defibrillation or implantable 

cardioverter defibrillator therapy (Beshai et al., 2007), CRT did not lead to an improvement 

in the peak VO2 during cardiopulmonary exercise testing. In the light of observational studies 

(Achilli et al., 2003; Bleeker et al., 2006a; Foley et al., 2011b; Yu et al., 2006), some have 

proposed that mechanical dyssynchrony may help to identify patients with a QRS<120 ms 

who may respond to CRT. The role of FT-CMR in this context remains to be explored. 

4.4.6 Study limitations 

Our two cohorts are heterogeneous in terms of age. This led to a spurious correlation 

between age and dyssynchrony measures. However, this correlation was not present when 

healthy controls or patients were analysed as individual cohorts. Similarly, multivariate 

models showed that age had no discriminative ability between health and disease. 
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4.5 Conclusions 

Dyssynchrony measures derived from FT-CMR, such as CURE and RURE, provide almost 

absolute discrimination between patients with NICM and healthy control subjects. This, 

together with rapidity of post-processing, the fact that these measures do not require 

specialized CMR sequences and excellent inter-operator reproducibilty offers potential for 

FT-CMR as a clinically applicable imaging modality for the assessment of mechanical 

dyssynchrony. An important focus will be its ability to contribute to patient selection for CRT.  
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5 LEFT VENTRICULAR MIDWALL FIBROSIS AS A PREDICTOR OF MORTALITY AND 

MORBIDITY AFTER CARDIAC RESYNCHRONISATION THERAPY IN PATIENTS WITH 

IDIOPATHIC DILATED CARDIOMYOPATHY 

Principal hypothesis: In a IDCM population of guideline driven CRT recipients, the presence 

of pre-implant left ventricular midwall fibrosis is associated with an increased risk of 

mortality post-implant. 

5.1 Introduction 

CRT has revolutionised the treatment of selected patients with HF (Bristow et al., 2004; 

Cleland et al., 2005; Gervais et al., 2009; Moss et al., 2009). The clinical outcome of CRT, 

however, is influenced by the underlying aetiology of HF, with an ischaemic aetiology being 

associated with a worse outcome (Barsheshet et al., 2011; Gasparini et al., 2003; Wikstrom 

et al., 2009). This outcome has been linked to the extent (burden) and location of myocardial 

scarring (Adelstein et al., 2007; Bleeker et al., 2006b; Chalil et al., 2007a; Chalil et al., 2007c; 

Leyva et al., 2011). 

In ICM, fibrosis usually follows a subendocardial or transmural distribution, in line with the 

perfusion territories of epicardial coronary arteries. In IDCM, fibrosis tends to be patchy, 

subepicardial, or midmyocardial in distribution (Gottlieb et al., 2006; Mahrholdt et al., 2004; 

McCrohon et al., 2003). It has been shown that non-CRT patients with IDCM and midwall 

fibrosis have a higher risk of mortality and unplanned hospitalisations, as well as a higher risk 

of sudden cardiac death (Assomull et al., 2006). We hypothesised that in patients with IDCM, 
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the presence of LV midwall fibrosis, assessed using LGE-CMR imaging, predicts the clinical 

outcome of CRT. 

5.2 Methods 

5.2.1 Study population 

This retrospective analysis was conducted on a historical prospectively followed cohort of 

consecutive heart failure patients (n= 258) who had undergone successful CRT implantation 

with pre-implant CMR imaging (mean: 1.1 month pre-implant; range: 1 day – 3.2 months). 

All patients were recruited from a dedicated heart failure service at a single centre (Good 

Hope Hospital, Birmingham) between October 2000 and September 2009.     

Inclusion criteria were as follows: clinical HF with NYHA class II-IV symptoms diagnosed on 

the basis of the clinical features plus echocardiographic evidence of LV systolic dysfunction; 

maximum tolerated pharmacological therapy with ACE-I or ARBs, beta-blockers and MRAs; a 

QRS duration ≥120ms and any QRS morphology;  Exclusion criteria were: a history of 

myocardial infarction or acute coronary syndrome within the previous month; severe 

structural valvular heart disease; hypertrophic or restrictive cardiomyopathy; pre-existing 

cardiac implantable electronic devices; any non-cardiac comorbidities that significantly 

reduced the likelihood of survival beyond 12 months.  

Patients were classified as ICM if LV systolic dysfunction was associated with a history of 

prior myocardial infarction (Alpert et al., 2000) or angiographically documented coronary 

heart disease. LGE-CMR was also used in the assessment of aetiology, and in the absence of 
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the above features a diagnosis of an ischaemic aetiology was still made in the presence of a 

transmural or subendocardial LGE pattern consistent with a coronary territory. Patients with 

presumed IDCM, but with fibrosis in distributions other than midwall (subepicardial, 

epicardial, or patchy) suggestive of an alternative NICM were excluded. The study conforms 

with the Declaration of Helsinki and was approved by the local Ethics Committee. 

5.2.2 Device therapy 

Device prescription was based on contemporary indications. Accordingly CRT-P was the 

predominant therapy as NICE guidance and funding for CRT-D in the United Kingdom did not 

exist until 2007. In contrast to other international guidelines, NICE recommended CRT-P 

rather than CRT defibrillation (CRT-D) in patients with IDCM (Barnett et al., 2007). With the 

exception of 2 patients who received CRT-D for secondary prevention, all others with IDCM 

received CRT-P. 

All devices were implanted via a trans-venous approach using either the subclavian, cephalic 

or femoral vein. Right ventricular leads were preferentially deployed at the apex, and right 

atrial leads in the appendage. Subsequent to coronary sinus (CS) balloon venography, the LV 

lead was positioned in a CS tributary, preferentially overlying the LV free wall.    

Patients in sinus rhythm had their device programmed to a DDD pacing mode, with a back-

up atrial rate of 60 beats per minute and no intra-ventricular delay. Patients with atrial 

fibrillation had the atrial port plugged and the device set to a ventricular triggered mode. 



 

155 

 

Patients in sinus rhythm underwent atrioventricular optimising using a transmitral Doppler 

based iterative technique at 6 weeks and at each 6 month check.  

5.2.3 Cardiovascular magnetic resonance imaging 

This was performed using a 1.5 Tesla Signa (GE Healthcare Worldwide, Slough, England) 

scanner and a phased-array cardiac coil.  

A short-axis LV cine stack (from the atrioventricular ring to the LV apex) was acquired using a 

steady state-in-free precession sequence (repetition time of 3.0 to 3.8 ms; echo time of 1.7 

ms; flip angle of 45o; sequential 8 mm slices with a 2 mm interslice gap). There were 20 

phases per cardiac cycle resulting in a temporal resolution of 40-50ms.  

LV volumetric analyses, comprising  LVEDV and LVESV and LVEF, were quantified using 

manual planimetry of the endocardial and epicardial borders from the short axis stack in 

accordance with validated methodologies (Maceira et al., 2006) using MASS analysis 

software (Medis, Leiden, the Netherlands). 

5.2.4 Scar imaging 

For scar imaging, horizontal and vertical long-axis as well as short-axis slices identical to the 

LV stack were acquired using a segmented inversion-recovery technique 10 minutes after 

the intravenous administration of gadolinium-diethylenetriamine pentaacetic acid (0.1 

mmol/kg). Inversion times were adjusted to null normal myocardium (260 to 400 ms).  To 

exclude artefact, the scar pattern was required to be visible in the short-axis and long-axis 

acquisitions, in two different phase encoded directions.  
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Scars were classified into subendocardial, midwall, epicardial, transmural, or patchy, 

according to McCrohon et al. (McCrohon et al., 2003). Scars in a subendocardial or 

transmural distribution following coronary artery territories were regarded as ischaemic in 

aetiology, whereas midwall scars and absence of scar were regarded as indicative of IDCM. 

Patients with IDCM were dichotomized according to the presence or absence of MWF, 

assessed visually. Examples of scars typical of ICM, and IDCM with MWF are shown in Figure 

5-1. Scar volume was calculated by multiplying the manually planimetered area of LGE in 

each slice by the slice thickness. Scar burden was expressed as a percentage of LV 

myocardial volume in the diastolic phase. 

5.2.5 Dyssynchrony 

Intraventricular dyssynchrony was assessed using the CMR–tissue synchronisation index 

(TSI), as previously described (Chalil et al., 2007b). Briefly, segmental radial wall motion data 

were quantified for up to 20 phases (time points) in each RR interval and fitted to an 

empirical sine wave function y = a + b × sin (2πt/RR + c). The mean segmental radial wall 

motion (a), the segmental radial wall motion amplitude (b), and the segmental phase shift of 

the maximum radial wall motion (c) were extracted from the fit. The CMR-TSI, a global 

measure of radial dyssynchrony, was expressed as the standard deviation of all segmental 

phase shifts of the radial wall motion extracted from the fit. This measure was previously 

shown to predict mortality and morbidity after CRT (Chalil et al., 2007b; Leyva et al., 2009). 

In a previous study (Chalil et al., 2007b), intraobserver and interobserver variabilities for 

CMR-TSI were 3.01% and 8.84%, respectively.  
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Figure 5-1. Patterns of myocardial scarring in ischaemic and idiopathic dilated cardiomyopathy 

(A) Short-axis inversion-recovery late gadolinium enhancement cardiovascular magnetic resonance (LGE-
CMR) image showing a transmural, inferior myocardial infarction in a patient with ischaemic 
cardiomyopathy. (B) Short-axis inversion-recovery LGE-CMR image showing a transmural, anterior 
myocardial infarction in a patient with ischaemic cardiomyopathy. (C) Four-chamber and (D) short-axis 
inversion-recovery LGE-CMR images showing midwall LGE, denoting fibrosis, in a patient with idiopathic 
dilated cardiomyopathy. 
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5.2.6 Baseline and follow-up assessment   

Patients underwent a clinical assessment one day pre-implant, then at 1, 3 and 6 months 

and every 6 months thereafter. This comprised assessment of the NYHA functional 

classification, a 6MWT and echocardiography. 2DE was performed using either Vivid 5 or 7 

cardiovascular ultrasound systems (General Electric Healthcare Worldwide, Slough, United 

Kingdom). LVEDV, LVESV and LVEF were calculated using Simpson's biplane method in 

accordance with the American Society of Echocardiography guidelines (Schiller et al., 1989). 

Analysis was contemporaneous with the study, and performed by an accredited physiologist 

who was not aware of the CMR findings.      

5.2.7 Study endpoints.  

Clinical response was quantified according to the composite clinical score (survival to one 

year,  without HF hospitalisation, and improvement by either (a) ≥ 1 NHYA class or (b) ≥ 25% 

in 6MWT distance). A LVRR response at echocardiography was defined as a ≥15% reduction 

in LVESV at the 6 month visit (Konstam et al., 1992) (mean timing of study: 6.4 months; 

range: 5.0 months – 7.9 months). The studies primary endpoint was cardiac mortality, 

defined as death from myocardial infarction, arrhythmia or heart failure (or transplantation). 

Secondary endpoints included death from any cause, and the composite of cardiac 

mortality/unplanned hospitalisation for worsening HF, death from any cause/unplanned 

hospitalisation for major adverse cardiovascular events (MACE), and sudden cardiac 

death/hospitalisation for major arrhythmic events (hospitalisations for worsening HF, 

myocardial infarction, unstable angina, arrhythmia, stroke, or pulmonary embolism were 

included in this endpoint. The first event was included in the analysis. Sudden cardiac death 
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was defined as a “natural, unexpected death due to cardiac causes, heralded by an abrupt 

loss of consciousness within 1 hour of the onset of acute symptoms” (Braunwald et al., 

2011). Death from pump failure was defined as “death after a period of clinical deterioration 

in signs and symptoms of heart failure despite medical treatment”(Rockman et al., 1989). 

Outcome data was collected prospectively through medical records and, when appropriate, 

from interviews with patients' caregivers. Clinical outcome data were collected every 3 

months by an investigator who was blinded to clinical and imaging data. Events were 

adjudicated by the investigators every 3 months. 

5.2.8 Statistical analysis 

Continuous variables are expressed as mean ± SD. Normality was tested using the Shapiro-

Wilk test. Comparisons between normally distributed continuous variables were made using 

analysis of variance with the Scheffe F procedure for multiple comparisons. Variables that 

did not follow a normal distribution, such as NT pro–brain natriuretic peptide, were log-

transformed for statistical analyses. Categorical variables were analyzed using chi-square 

tests and the Scheffe post hoc test. Changes in variables from baseline to follow-up were 

analyzed using paired t tests and Wilcoxon matched-pairs analyses. The ability of MWF to 

predict the various endpoints was assessed using Kaplan-Meier survival curves and the log-

rank (Mantel-Cox) test, as well as Cox proportional hazards analyses. The first event was 

included in the analyses. For large estimates of the coefficient, as in our case of sudden 

cardiac deaths in the IDCM +MWF group, the standard error is typically inflated, resulting in 

a lower Wald statistic, falsely considering the variable not relevant in the model. To 

overcome this, we used the likelihood ratio test, which is considered superior for testing the 
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Cox regression model. The profile likelihood was used to estimate the lower 95% confidence 

interval (CI) bound. Variables reaching p < 0.10 on univariate analyses were considered for 

entry in multivariable models. Given the sample size of patients with IDCM (n=97), the 

proportion of these with MWF, and a total mortality rate of 15% within the IDCM 

population, this study was powered (β=0.2) to detect a 6.0x greater risk of death in either 

sub-cohort during the follow-up period (HyLown Consulting, 2013).   Statistical analyses were 

performed using Statview (Cary, North Carolina) and SPSS version 15.0 (Chicago, Illinois). A 

2-tailed p < 0.05 was considered statistically significant. 

5.3 Results 

5.3.1 Baseline characteristics 

The baseline characteristics of patients with ICM and IDCM are shown in Table 5-1. Of the 97 

patients with IDCM, 20 (26%) had MWF (7.8% of the entire cohort), and the rest of the IDCM 

group had no myocardial scarring at all. The IDCM +MWF and IDCM −MWF groups were well 

matched for age, device type, comorbidities, presence of permanent atrial fibrillation, and 

QRS duration. The +MWF group had a worse NYHA class (p = 0.0271) and LVEF (p= 0.0007), a 

higher LVEDV and LVESV (both p < 0.0001), lower systolic (p= 0.0048) and diastolic (p= 0.008) 

blood pressures, higher NT pro–brain natriuretic peptide levels (p= 0.0064), higher plasma 

creatinine levels (p= 0.0070), but similar estimated glomerular filtration rates than the IDCM 

−MWF group. These groups were also matched for treatment with ACE-Is/ARBs, beta-

blockers, and MRAs, but the +MWF group was more likely to require loop diuretics (p = 

0.0257). In comparison with the IDCM groups, the ICM group had a higher proportion of 

men and was more likely to receive CRT-D (as required by contemporaneous guidelines) but  
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Table 5-1. Characteristics of the study groups. 

 Group A Group B Group C P value * 

 IDCM  +MWF 
(n = 20) 

IDCM  -MWF 
(n = 77) 

ICM 
(n = 161) 

A vs B A vs C B vs C 

Demographics       

Age, yrs 63.6 ± 9.58 66.7 ± 13.0 69.3 ± 9.4 0.25 0.09 0.10 

Male, n (%)  12 (60) 48 (62) 142 (88.2) 0.85 0.0008 <0.0001 

NYHA class, n (%) 3.50 ± 0.51 3.21 ± 0.41 3.25 ± 0.44 0.03 0.0428 0.84 

      III 10 (50) 61 (79) 122 (76)    

      IV 10 (50) 16 (21) 39 (24)    

SBP, mmHg 103.7 (14.6 ) 120.8 (18.4) 119.5 (20.4) 0.0048 0.0061 0.69 

DBP, mmHg 63.7 (11.3) 73.5 (12.8) 70.3 (11.6) 0.008 0.06 0.09 

NT pro-BNP, ng/L 5045.9 (1027.9) 1838.3 (2012.7) 3117.2 (4108.9) 0.0064 0.07 0.07 

Creatinine, µmol/L 130.8 (56.1) 103.2 (33.4) 122.0 (37.1) 0.0070 0.36 0.0013 

eGFR 56.6 (26.6) 67.3 (20.8) 58.8 (20.5) 0.06 0.68 0.0082 

CRT-D, n. (%) 0 2 (2.6) 33 (20.4) 0.4664 0.0657 0.0006 

Co-morbidity, n. (%)       

     Diabetes mellitus 1 (5) 12 (16) 33 (20.4) 0.22 0.09 0.32 

     Hypertension 4 (20) 22 (29) 46 (28.6) 0.44 0.38 0.90 

     CABG  0 0 54 - 0.0017 <0.0001 

Medication, n. (%)       

     Loop diuretics 20 (100) 61 (79) 140 (87.0) 0.0257 0.09 0.10 

     ACE-I or ARB 17 (85) 73 (95) 148 (92) 0.13 0.25 0.51 

     Beta-blockers 11 (55) 39 (51) 102 (63.4) 0.73 0.45 0.05 

     MRAs 8 (40) 32 (42) 60 (37.2) 0.88 0.92 0.78 

ECG variables       

     Permanent AF, n. (%) 3 (15) 16 (21) 27 (16.7) 0.74 0.84 0.22 

     QRS duration, ms 154.1 ± 35.5 144.2 ± 29.1 136.9 ± 32.6 0.4 0.08 0.24 

CMR variables       

     LVEDV, mL 314.0 ± 107.6 205.6 ± 79.7 230.6 ± 97.5 <0.0001 0.0018 0.18 

     LVESV, mL 269.4 ± 103.2 166.5 ± 74.2 194.5 ± 89.4 <0.0001 0.0022 0.08 

     LVEF, % 16.0 ± 6.06 23.9 ± 9.7 23.9 ± 10.9 0.0007 0.0053 0.99 

     CMR-TSI (ms) 91.8 ± 31.9 75.8 ± 33.8 108.6± 44.7 0.44 0.36 <0.0001 

Variables are expressed as mean ± SD, unless indicated otherwise.*, refers to differences between the 
groups from ANOVA with Scheffe’s post hoc test for continuous variables and from chi-squared tests for 
categorical variables.  
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was well matched to the IDCM +MWF for age, medication, and LV volumes and LVEF. The 

CMR-TSI was higher in the ICM group than in the IDCM +MWF group (p < 0.0001). 

5.3.2 Endpoints 

After a maximum follow-up period of 3,166 days (8.7 years; median follow-up time 1,038 

days [2.84 years]), total mortality was 10 of 20 (50%) in IDCM +MWF and 5 of 77 (6.5%) in 

 IDCM −MWF. Cardiovascular mortality was 9 of 20 (45%) and 2 of 77 (2.6%) in the IDCM 

+MWF and IDCM −MWHF groups, respectively. In the ICM group, total mortality was 53 of 

161 (31.8%) and cardiovascular mortality was 49 of 161 (30.4%). 

Among patients with IDCM, +MWF predicted cardiovascular mortality (HR: 18.1; p< 0.0001), 

the composite of total mortality or hospitalisation for MACE (HR: 7.57; p< 0.0001), and the 

composite endpoint of cardiovascular mortality or HF hospitalisations (HR: 9.90; p= 0.0004), 

independent of NYHA class, QRS duration, presence of atrial fibrillation, LV volumes, LVEF, 

and CMR-TSI (Table 5-2). 

Kaplan-Meier survival curves for the IDCM and ICM groups are shown in Figure 5-2 In 

multivariable analyses comprising the IDCM and ICM subgroups, both IDCM +MWF (HR: 18.5 

in model 1; HR: 18.6 in model 2; both p = 0.0002) and ICM (HR: 21.0; p < 0.0001) emerged as 

strong predictors of cardiovascular mortality, independent of NYHA class, treatment with 

beta-blockers, QRS duration, presence of atrial fibrillation, LV volumes, LVEF, and CMR-TSI 

(Table 5-3).
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Table 5-2. Cox proportional hazards analyses of baseline variables in relation to clinical outcome in patients with Idiopathic dilated 
cardiomyopathy. 

 
 

Cardiovascular mortality   Total mortality 
or hospitalisations for MACE 

 Cardiovascular mortality or heart 
failure hospitalisations 

 HR (95% CI) * p  HR (95% CI) * p  HR (95% CI) * p 

Univariate analyses         

+ MWF 22.0 (4.73 to 102.0) <0.0001  7.24 (3.09 to 16.9) <0.0001  11.9 (4.09 to 34.7) <0.0001 

NYHA class (III) 0.41 (0.12 to 1.33) 0.13  0.56 (0.24 to 1.43) 0.19  0.29 (0.11 to 0.78) 0.014 

QRS duration (ms) 1.02 (1.00 to 1.05) 0.0339  1.01 (1.00 to 1.03) 0.11  1.02 (1.00 to 1.04) 0.07 

Permanent atrial 
fibrillation 

0.77 (0.17 to 3.57) 0.73  0.99 (0.36 to 2.68) 0.97  0.74 (0.21 to 2.59) 0.63 

LVESV, mL 1.01 (1.00 to 1.01) 0.0232  1.00 (0.99 to 1.01) 0.12  1.01 (1.00 to 1.01) 0.0316 

LVEDV, mL 1.01 (1.00 to 1.01) 0.0181  1.00 (0.99 to 1.01) 0.13  1.00 (1.00 to 1.01) 0.0297 

LVEF, % 0.93 (0.86 to 1.01) 0.08  0.97 (0.92 to 1.01) 0.16  0.95 (0.89 to 1.01) 0.08 

CMR-TSI (ms) 1.04 (0.99 to 1.08) 0.09  1.02 (0.99 to 1.04) 0.17  1.03 (0.99 to 1.06 ) 0.08 

         

Multivariable 
analyses ** 

        

Model 1         

+ MWF 18.6 (3.51 to 98.5) 0.0008  7.57 (2.71 to 21.2) <0.0001  9.56 (2.72 to 33.6) 0.0004 

NYHA class (III) -   -   0.58 (0.21 to 1.66) 0.31 

QRS duration (ms) 1.01 (0.99 to 1.03) 0.16  -   1.01 (0.99 to 1.02) 0.44 

LVEF, % 0.99 (0.91 to 1.09) 0.92  -   1.00 (0.94 to 1.07) 0.95 
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Model 2         

+ MWF 18.7 (3.53 to 98.7) 0.0008  7.57 (2.71 to 21.2) <0.0001  9.62 (2.74 to 33.8) 0.0004 

NYHA class (III) -   -   0.59 (0.21 to 1.65) 0.31 

QRS duration (ms) 1.01 (0.99 to 1.03) 0.16  -   1.01 (0.99 to 1.02) 0.45 

CMR-TSI (ms) 1.00 (0.96 to 1.05) 0.93  -   1.00 (0.97 to 1.03) 0.94 

 

*, Hazard ratios (HR) and 95% confidence intervals (CI). Only variables with p<0.10 on univariate analyses were included in multivariable models. Variables that 
interact with each other, such as LV volumes, were excluded from the multivariable analyses. **, In addition to +MWF, includes NYHA class, QRS duration, 
presence of atrial fibrillation, LVEF and the CMR-TSI as independent variables. None of the latter reached statistical significance. 
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Figure 5-2. Survival curves after cardiac resynchronisation therapy 

Patients with idiopathic dilated cardiomyopathy (IDCM) were categorised according to presence of midwall 
hyperenhancement (+MWHE) or the absence of midwall hyperenhancement (−MWHE) on late Gadolinium 
enhancment CMR.  ICM = ischaemic cardiomyopathy; MACE = major adverse cardiovascular events.  
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Table 5-3. Cox proportional hazards analyses of baseline variables in relation to cardiovascular 
mortality in patients with idiopathic dilated cardiomyopathy or ischaemic cardiomyopathy. 

 Cardiovascular mortality  

 HR (95% CI) * p 

Univariate analyses   

IDCM + MWF 24.1 (5.20 to 111.7) <0.0001 

ICM 14.3 (3.46 to 58.7)   0.0002 

NYHA class 2.07 (1,23 to 3.48)   0.0063 

Beta-blocker (no) 1.68 (1.01 to 2.79)   0.0451 

QRS duration (ms) 1.01 (1.00 to 1.02)   0.06 

Permanent AF 1.23 (0.68 to 2.24)   0.49 

LVESV, mL 1.00 (1.00 to 1.01)   0.0039 

LVEDV, mL 1.00 (1.00 to 1.01)   0.0087 

LVEF, % 0.95 (0.92 to 0.98)   0.0018 

CMR-TSI (ms) 1.01 (1.01 to 1.02) <0.0001 

   

Multivariable analyses **   

Model 1   

+ MWF 18.5 (3.93 to 87.3) 0.0002 

ICM 21.0 (5.06 to 87.2) <0.0001 

NYHA class 1.55 (0.88 to 2.75) 0.13 

Beta-blocker use (no) 2.28 (1.32 to 3.93) 0.0031 

QRS duration (ms) 1.01 (1.00 to 1.02) 0.07 

LVEF, % 0.96 (0.93 to 0.99) 0.0281 

Model 2   

+ MWF 18.6 (3.94 to 87.4) 0.0002 

ICM 21.0 (5.07 to 87.3) <0.0001 

NYHA class 1.55 (0.88 to 2.75) 0.13 

Beta-blocker use (no) 2.28 (1.32 to 3.93) 0.0031 

QRS duration (ms) 1.01 (1.00 t 1.02) 0.07 

CMR-TSI (ms) 1.02  (1.00 to 1.03) 0.0282 

*, Hazard ratios (HR) and 95% confidence intervals (CI). Only variables with p<0.10 on univariate analyses 
were included in multivariable models. Variables that interacted with each other, such as LV volumes, were 
excluded from the multivariable analyses. **, In addition to +MWF, includes NYHA class, QRS duration, 
presence of atrial fibrillation, LVEF and the CMR-TSI as independent variables. None of the latter reached 
statistical significance.  
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Scar burden in the IDCM group was 2.12% ± 4.96% (range 0 to 26.9%). In Cox proportional 

hazards analyses, scar burden did not emerge as a predictor of total mortality (HR: 0.99; 95% 

CI: 0.87 to 1.14; p = 0.94) or cardiovascular mortality (HR: 1.02; 95% CI: 0.89 to 1.16; p = 

0.82). 

5.3.3 Pump failure 

Of the 60 cardiovascular deaths, 46 were due to pump failure (IDCM +MWF 6 of 20 [30%]; 

IDCM −MWF 2 of 77 [2.6%]; ICM 38 of 161 [23.6%]). In univariate analyses comprising the 

IDCM and ICM subgroups, both ICM (HR: 10.5; 95% CI: 2.52 to 43.5; p = 0.0012) and IDCM 

+MWF (HR: 14.1; 95% CI: 2.85 to 70.0; p = 0.0012) emerged as predictors of death from 

pump failure. 

5.3.4 Sudden cardiac death and arrhythmic events 

Of the 60 cardiovascular deaths, 14 were sudden cardiac deaths (IDCM +MWF 3 of 20 [15%]; 

IDCM −MWF 0 of 77 [0%]; ICM 11 of 161 [6.8%]). In univariate and multivariate analyses 

comparing with IDCM −MWF, both IDCM +MWF and ICM significantly improved the Cox 

regression model using the likelihood ratio test (p = 0.0029), and both IDCM +MWF (HR 

lower 95% CI: 2.65) and ICM (HR lower 95% CI: 4.54) emerged as predictors of sudden 

cardiac death. 

Five patients had unplanned hospitalisations for major arrhythmic events (IDCM +MWF 1 of 

20 [5.0%] for atrial fibrillation; IDCM −MWF 1 of 77 [1.3%]; ICM 1 atrial fibrillation, 1 

ventricular tachycardia, and 1 ventricular fibrillation [total 3 of 161 (5.0%)]). In univariate 
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analyses comprising the IDCM and ICM subgroups, IDCM +MWF emerged as a predictor of 

sudden cardiac death or major arrhythmic events (HR: 16.7; 95% CI: 1.87 to 149.7; p = 

0.0118), whereas ICM reached only borderline significance (HR: 7.03; 95% CI: 0.92 to 53.4; p 

= 0.06). In univariate analyses comprising the IDCM subgroups, IDCM +MWF emerged as a 

predictor of sudden cardiac death or major arrhythmic events (HR: 16.1; 95% CI: 1.81 to 

144.8; p = 0.0128). 

5.3.5 Clinical variables 

Whereas no significant changes in NYHA class were observed in the IDCM +MWF group 

(−1.25; p= 0.17) or the IDCM −MWF group (−1.20; p= 0.07), a significant reduction in NYHA 

class was observed in the ICM group (−1.10; p= 0.0429). The 6-min walking distance, 

however, increased in all groups (IDCM +MWF +101.6 ± 75.8 m, p= 0.0007; IDCM-MWF 

+54.9 ± 74.2 m, p< 0.0001; ICM +63.1 ± 98.17, p< 0.0001). Quality of life scores (a reduction 

denoting an improvement in quality of life) decreased in all groups (IDCM +MWF −13.7 ± 

40.6, p= 0.0202; IDCM −MWF −25.7 ± 29.6, p< 0.0001; ICM −18.5 ± 21.7, p< 0.0001). 

Responder rates, in terms of the clinical composite score, were similar across the groups 

(IDCM +MWF 65.0%; IDCM −MWF 80.5%; ICM 68.2%; p= 0.19). 

5.3.6 Echocardiographic variables 

As shown in Figure 5-3, LVRR was observed in the IDCM −MWF (p= 0.0007) and ICM groups 

(p= 0.0428) but not in the IDCM +MWF group. Similarly, significant reductions in the LVEDV 

were observed in the IDCM −MWF group (p= 0.0019) and the ICM group (p= 0.0238) but not  
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Figure 5-3. Echocardiographic Response to Cardiac Resynchronisation Therapy 

Changes from baseline are shown in box and whisker plots, in which the 5 horizontal lines represent the 
10th, 25th, 50th, 75th, and 90th percentiles from bottom to top. For left ventricular (LV) volumes, the change 
is shown in terms of the percent change in relation to baseline volumes. For left ventricular ejection fraction 
(LVEF), changes are shown in terms of the absolute percentage change.  
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in the IDCM +MWF group. The LVEF increased in the IDCM −MWF group (p= 0.0395) and the 

ICM group (p = 0.05) but not in the IDCM +MWF group. 

5.4 Discussion 

5.4.1 Major findings 

This study shows that in patients with IDCM, MWF (detected by midwall hyper-

enhancement on LGE-CMR imaging) predicts mortality and morbidity after CRT. Compared 

with patients without MWF, patients with MWF were 18 times more likely to die from 

cardiovascular causes after adjustment for NYHA class, beta-blocker use, QRS duration, atrial 

fibrillation, LVEF, and dyssynchrony. MWF was also predictive of the combined endpoint of 

total mortality or hospitalisations for MACE and the combined endpoint of cardiovascular 

mortality or HF hospitalisations. Patients with MWF were less likely to exhibit LVRR, assessed 

by echocardiography. 

5.4.2 Midwall fibrosis as an adverse prognostic marker in IDCM 

A novel finding from this study is that the outcome after CRT of patients with MWF was 

similar to that of patients with ICM. Conversely, the outcome of patients with IDCM and 

without MWF was dramatically better. These findings have emerged in the context of major 

CRT trials showing that patients with IDCM have a better clinical outcome (Wikstrom et al., 

2009), as well as a better LVRR response (Barsheshet et al., 2011; Gasparini et al., 2003; 

Linde et al., 2010) to CRT. Importantly, however, no major trial has used CMR in the 

characterisation of the aaetiology of HF, nor have they used CMR in the differentiation 

between IDCM with and without MWF. It therefore remains unknown whether the super-
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responders to CRT described in such studies are patients with IDCM without MWF. Our 

findings have major implications for prognostic stratification in clinical practice as well for 

the design of CRT outcome trials. It would appear that patients with IDCM without MWF 

have a particularly low clinical event rate. 

Since its description in autopsy studies (Maehashi et al., 1991), and in an LGE-CMR study 

(McCrohon et al., 2003), MWF has been recognised as a prognostic marker for patients with 

IDCM. A prospective cohort study of 65 patients with IDCM and LVEF ≤35% undergoing 

implantable cardioverter defibrillator therapy showed that LGE on CMR in any distribution 

was associated with an 8.2-fold increase in the risk of the composite endpoint of 

hospitalisation for HF, appropriate implantable cardioverter defibrillator shocks, and cardiac 

death (Wu et al., 2008). Assomull et al., showed that MWF on LGE-CMR predicted the risk of 

death or hospitalisations in non-CRT patients with IDCM (Assomull et al., 2006). Our findings 

are largely consistent with these studies and extend the application of this technique to the 

risk stratification of patients undergoing CRT. 

We found that the degree of dyssynchrony was similar in the +MWF and −MWF groups. Yet, 

the clinical outcome was worse in the +MWF group. This suggests that the detrimental 

effects of MWF on clinical outcome is mediated through mechanisms that are independent 

of dyssynchrony. Several aspects may be relevant in this respect. Fibrosis effectively replaces 

viable myofibrils, thus reducing the amount of functional myocardium. It interacts 

mechanically with the complex fiber architecture of the myocardium, which may lead to 

global mechanical effects remote from the affected area, such as LV stiffness, reduced 
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compliance, and reduced contractile reserve. The observation that patients with MWF did 

not exhibit LVRR or an improvement in LVEF is consistent with this notion. Myocardial scars 

are not readily excitable (Soejima et al., 2001; Tedrow et al., 2004), and therefore reduce the 

volume of excitable myocardium available to ventricular depolarization.  

It has been shown that myocardial fibrosis can form a substrate for ventricular arrhythmias 

(Hsia et al., 2002; Wu et al., 1998). Accordingly, midwall fibrosis has been linked to a higher 

risk of sudden cardiac death in patients with IDCM. We too have found that MWF predicts 

sudden cardiac death, as well as the composite endpoint of sudden cardiac death or major 

arrhythmic events. In fact, the association between MWF (HR: 16.7; p = 0.0118) and this 

endpoint was stronger than for ICM (HR: 7.03; p = 0.0597). The occurrence of only 3 sudden 

cardiac deaths in the whole IDCM group in this study, however, precluded reliable statistical 

analysis of MWF in relation to sudden cardiac death. On the other hand, the LVEF was very 

low (16%) in comparison with that of CRT-D trials (20% to 22%) (Bristow et al., 2004), and 

deaths from pump failure occurred relatively early in the follow-up period. Therefore, the 

possibility arises that patients succumbed to pump failure before the occurrence of lethal 

ventricular arrhythmias. 

5.4.3 Midwall fibrosis and clinical response to CRT 

Despite worse outcomes, the symptomatic response in patients with MWF was similar to 

that in patients without MWF. This discordance between outcomes and symptomatic 

response after CRT is well recognised. Yu et al., for example, found no relationship between 

LVRR and changes in NYHA class, 6-min walking distance, or quality of life scores after CRT 
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(Yu et al., 2005). Ypenburg et al., also showed similar improvement in NYHA class, quality of 

life scores, and 6-min walking distance in patients exhibiting ≥15% reduction in LVESV and in 

those exhibiting a reduction in LVESV of <14% after CRT (Ypenburg et al., 2009). Foley et al., 

found similar symptomatic response rates in survivors and nonsurvivors 1 year after CRT 

device implantation (Foley et al., 2011a). There is, in addition, evidence of a discordance 

between outcomes and symptomatic response according to aetiology. In the REVERSE study, 

in which patients in NYHA class I or II and LVEF ≤40% were randomized to CRT or no CRT for 

12 months, HF aetiology was not predictive of the composite clinical response (Linde et al., 

2010). This is in keeping with our finding of similar symptomatic response rates in patients 

with and without MWF. 

5.4.4 Clinical application 

CMR has already gained credence as an ideal investigation for patients with HF because it 

provides unparalleled quality of information on cardiac function and disease aetiology. In 

addition, LGE-CMR is also unique in its ability to allow quantification and localisation of 

myocardial scarring in patients with ICM, in whom it has proven to be valuable in prognostic 

stratification (Chalil et al., 2007a; Chalil et al., 2007c; Leyva et al., 2011). Our findings extend 

the utility of CMR to the prognostic stratification of patients with IDCM undergoing CRT. 

5.4.5 Study limitations 

This study was observational and did not include a control group on maximum tolerated 

pharmacological therapy only. We therefore cannot ascertain whether patients with MWF 

have a worse outcome than patients not undergoing CRT, and we cannot therefore assume 
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that patients with MWF do not benefit from CRT. In addition, the number of patients in the 

+MWF group was small. Therefore, the lack of an effect of CRT on LVRR may be attributable 

to statistical underpowering. Moreover, we have not quantified the severity of mitral 

regurgitation, which could also contribute to differences in outcomes between the groups. 

The lack of systematic collection of arrhythmic events at device interrogation is also a 

limitation. The relatively small number of events in some multivariable models render these 

liable to overfitting, and further validation is desirable. The strength of the association 

between the IDCM +MWF group and the various endpoints is, however, unlikely to be 

affected by further validation. In contrast to other studies in patients with IDCM (Assomull et 

al., 2006) or coronary heart disease (Kwong et al., 2006), we have not found a graded 

relationship between scar burden and mortality in patients with IDCM. This, however, is 

likely to be due to statistical underpowering. 

5.5 Conclusions 

We conclude that MWF, detected by midwall hyper-enhancement on LGE-CMR, is a 

powerful predictor of mortality and morbidity in patients with IDCM undergoing CRT, 

independent of QRS duration, NYHA class, LVEF, atrial fibrillation, LV volumes, and 

mechanical dyssynchrony. Pump failure as well as sudden cardiac death and arrhythmic 

events mediate this association. These findings provide further evidence for CMR in the 

prognostic stratification of patients undergoing CRT. 
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6 MECHANICAL EFFECTS OF LEFT VENTRICULAR MIDWALL FIBROSIS IN 

IDIOPATHIC DILATED CARDIOMYOPATHY  

Principal hypothesis: In a population of patients with IDCM, individuals with MWF observed 

with LGE-CMR have reduced deformation in a circumferential direction and reduced net left 

ventricular twist as compared to individuals without midwall fibrosis. 

6.1 Introduction 

IDCM is a common cause of heart failure (Codd et al., 1989).  The IDCM phenotype ranges 

from patients who remain largely asymptomatic to those who succumb to multiple 

hospitalisations and premature death. In a study of 603 patients with IDCM followed up over 

9 years, Castelli et al found that 45% died or underwent cardiac transplantation (Castelli et 

al., 2013). 

Left ventricular MWF was first described as an autopsy finding in 1991 (Maehashi et al., 

1991). Clinical studies using LGE-CMR have subsequently shown that in patients with IDCM, 

MWF is associated with an increased risk of heart failure hospitalisations, ventricular 

arrhythmias and cardiac death (Assomull et al., 2006; Dweck et al., 2011; Gulati et al., 2013; 

McCrohon et al., 2003; Wu et al., 2008). Patients with IDCM and MWF are also less 

responsive to pharmacologic therapy (Leong et al., 2012) and cardiac resynchronisation 

therapy (chapter 5) (Leyva et al., 2012). Whilst the evidence linking MWF and poor patient 

outcomes is compelling, the mechanism remains unexplored.  
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The LV twists in systole and untwists, or recoils, in diastole. In systole, the LV base rotates 

clockwise and the apex rotates counter-clockwise. This wringing motion is effected by the 

helical arrangement of myocardial fibres, which run in a left-handed direction in the 

subepicardium and in a right-handed direction in the subendocardium. Contraction of 

subepicardial myocardial fibres cause the base to rotate clockwise and the apex to rotate in 

counterclockwise (Nakatani, 2011). Because the radius of rotation of the subepicardium is 

greater than that of the subendocardium, the former provides a greater torque. 

Consequently, the LV gets smaller in systole and LV ejection occurs (Nakatani, 2011). 

Circumferential fibres, which run in the mid-myocardium, are crucial to this process.  During 

ejection, they shorten simultaneously with oblique fibres in the right- and left-handed 

helices. In effect, circumferential fibres provide a horizontal counterforce throughout 

ejection (Buckberg et al., 2008).  

This study tests the hypothesis that injury to mid-myocardial, circumferential myocardial 

fibres, (Wu et al., 2007) as might be expected from MWF, leads to impairment of LV 

circumferential contraction and relaxation and therefore, to disturbances in LV twist and 

torsion. In this study, FT-CMR is used to explore the mechanical effects of MWF in patients 

with IDCM. 

6.2 Methods 

6.2.1 Study population 

Patients with IDCM were recruited through dedicated heart failure units from two centres. 

To ensure adequate numbers of patients with +MWF, prospective recruitment (Queen 
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Elizabeth Hospital, Birmingham, United Kingdom) was supplemented with retrospective 

inclusion (Good Hope Hospital, United Kingdom). Both groups conformed to the identical 

eligibility criteria: Adults aged 18 or over with a diagnosis of IDCM made on the basis of 

clinical history, echocardiographic evidence of LV chamber dilatation (≥112% predicted value 

corrected for age and BSA)(Henry et al., 1980), LV systolic impairment and absence of 

coronary artery disease at invasive coronary angiography (performed in all patients) thought 

to be sufficient to account for LV systolic dysfunction. Exclusion criteria: history of chronic 

alcohol excess; valvular heart disease; congenital heart disease; hypertension (BP >160/100 

mmHg), transmural or sub-endocardial LGE pattern consistent with a coronary territory 

(McCrohon et al., 2003); fibrosis in distributions other than midwall (subepicardial, 

epicardial, or patchy) suggestive of an alternative NICM. The study conforms to the 

Declaration of Helsinki and was approved by the local Ethics Committee. 

6.2.2 CMR 

It is routine clinical practice at the two recruiting dedicated heart failure units to perform 

CMR as part of the diagnostic work-up. Accordingly, all patients underwent CMR at the time 

of the diagnosis. This was undertaken using 1.5 Tesla Magnetom Avanto (Siemens, Erlangen, 

Germany) or Signa (GE Healthcare Worldwide, Slough, England) scanners and a phased-array 

cardiac coil. The acquisition protocols were broadly equivalent between the two units and 

are as described in 2.2.2 (Queen Elizabeth Hospital cohort) and 5.2.3 (Good Hope Hospital 

Cohort). Mean temporal resolution was 38ms, range 24-49ms.  
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Scar imaging was conducted as described in 5.2.4. Patients were dichotomised according to 

the presence or absence of MWF, assessed visually using CVI42 software (Circle 

Cardiovascular Imaging Inc., Calgary, Canada) and only deemed to be present if a crescentic 

or circumferential area of mid-wall signal enhancement (2 SD above the mean intensity of 

remote myocardium in the same slice (Mahrholdt et al., 2004)), surrounded by non-

enhanced epicardial and endocardial myocardium was evident. To exclude artefact, the 

typical scar pattern was required to be visible in the short-axis and long-axis acquisitions, in 

two different phase encoded directions.  Assessment was conducted by an experienced 

observer (F.L.), blinded to FT-CMR data, and on anonymised scans uploaded to the viewing 

platform in a random order determined using online software (Random.org, Dublin, Ireland). 

6.2.3 Cardiac mechanics  

Assessment of cardiac mechanics was undertaken using FT-CMR (Tomtec Imaging Systems, 

Munich, Germany) as previously described in 3.2.4. 

Global peak systolic Ɛcc and Ɛrr, SSRcc and SSRrr and DSRcc and DSRrr were assessed using FT-

CMR of the mid-cavity LV short-axis cine. Ɛll, SSRll and DSRll were assessed using the HLA cine. 

Only the SSFP sequences were uploaded onto the FT-CMR software, ensuring that the 

operator (R.T.) was blinded to MWF status. In addition, MWF status was decided by an 

investigator (F.L.) who was blinded to the findings of FT-CMR. 

Peak systolic rotation was measured using the basal and apical short axis cines. In health, 

peak systolic rotation, as viewed from the apex, is typically clockwise (+) at the base, and 
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anti-clockwise (-) at the apex. Peak systolic rotation was calculated in degrees and expressed 

as both the maximum extent of rotation in the anticipated direction (i.e. if systolic rotation 

at the apex was solely in a clockwise direction this would equate to 0o) and the total 

magnitude of rotation (regardless of direction). Torsional parameters are derived from the 

peak instantaneous net difference in apical and basal rotation. LV twist was defined as (Φ 

apex -  Φ base), twist per unit length ( Φ apex -  Φ base/D), and LV torsion (circumferential-

longitudinal shear angle) as ( Φ apex -  Φ base)( ρ apex  - ρ base) / 2D (where Φ = the rotation angle; 

ρ = epicardial radius, and; D = base-to-apex distance) in accordance with agreed 

methodologies (Russel et al., 2009).  

Systolic torsion was classified as either: a) normal torsion, in which there is predominantly 

anticlockwise rotation of the apex and clockwise rotation of the base; b) rigid body rotation: 

both the apex and base rotating in the same direction; and c) reverse torsion: predominantly 

clockwise rotation of the apex and anti-clockwise rotation of the base (Figure 6-1).   

6.2.4 Statistical analysis 

Categorical variables were expressed as a percentage and continuous variables as mean ± 

standard deviation (SD). Normality was tested using the Shapiro-Wilk test. Comparisons 

between variables were made with Fisher’s exact test for categorical variables and 

independent samples t-tests for continuous variables, after adjustment by the Welch-

Satterthwaite method where Levene’s test showed unequal variance between groups. Post-

hoc power calculations accepted a risk of type II error of 0.20. A p value of < 0.05 was 
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Figure 6-1. Rotational mechanics in IDCM. 

Diagrammatic representation of torsional and rotational patterns identified using feature-tracking 
cardiovascular magnetic resonance. In the bottom tiles, the time in the cardiac cycle, expressed as a 
percentage of the R-R interval on the ECG, is shown in the x axes. Rotation at the base and apex of the LV as 
well as net torsion (the instantaneous difference between apical and basal rotation) is shown on the y axis 
(in degrees) (A) shows a preserved torsional pattern from a patient with IDCM without MWF with 
predominantly anticlockwise rotation at the apex and clockwise rotation at the base. (B) shows reverse 
torsion, where the direction of both apical and basal rotation is reversed. (C) shows rigid body rotation in a 
patient with IDCM and MWF. The apex and base both twist in the same direction so that the heart rotates as 
one solid body with minimal net torsion.  
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considered statistically significant for all tests. Statistical analyses were performed using 

SPSS v21.0. (SPSS Inc. Chicago, Illinois).  

6.3 Results 

The characteristics of the study group are shown in Table 6-1. Amongst the entire cohort, 

32/116 patients (28%) had MWF. Patients were of similar age (63.8 vs. 62.3 yrs, p= 0.29), but 

more patients with MWF were men (84% vs. 61%, p= 0.02). There were no differences in 

NHYA class, atrial rhythm, QRS duration, LVEF, co-morbidities, pharmacological therapy for 

heart failure. 

6.3.1 Systolic deformation 

As shown in Table 6-2, patients with MWF had a lower, global circumferential strain (Ɛcc: -

6.6% vs -9.4%, P=0.004), but similar longitudinal (Ɛll: -7.6% vs.-9.4%, p-0.053) and radial (Ɛrr: 

14.6% vs. 17.8% p= 0.18) strain. Systolic strain rate was reduced in the circumferential 

direction (SSRcc: -0.38 s-1 vs. -0.56 s-1, p= 0.005), but not in radial or longitudinal directions.  

Figure 6-2 shows typical examples. As shown in Figure 6-3, Ɛcc (r = 0.70), Ɛrr (0.57, p <0.001 

and Ɛll (r = 0.62, p<0.001) correlated positively with LVEF. In the case of Ɛcc, the slope of the 

regression line was 0.17 in the +MWF group and 0.31 in the -MWF group, indicating that Ɛcc 

is lower in the +MWF group than in the -MWF at a given LVEF.  
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Table 6-1. Baseline characteristics 

 No MWF 
(n = 84) 

MWF 
(n = 32) 

P 

    

Age, yrs 62.3 ± 13.7 63.8 ± 11.9  0.29 

    

Male, n (%)  51 (61) 27 (84) 0.02 

    

Height, m 1.68 ± 0.09 1.74±0.09 0.02 

Weight, Kg  83.4 ± 18.6 83.3 ± 12.6 0.97 

    

NYHA class   0.20 

      I 4 (5) 3 (9)  

      II 15 (18) 8 (25)  

      III 47 (56) 11 (34)  

      IV 9 (11) 5 (16)  

      Unknown 9 (11) 5 (16)  

    

Diabetes mellitus, n (%)  13 (16) 7 (24) 0.42 

Hypertension, n (%)  18 (22) 5 (17) 0.61 

Atrial fibrillation, n (%) 15 (18)  8 (24) 0.44 

    

Medication, n (%)    

     Loop diuretics  62 (81) 26 (89) 0.47 

     ACE-I or ARB 77 (97) 27 (90) 0.31 

     Beta-blockers  51 (65) 20 (66) 1.00 

     Aldosterone antagonists 36 (46) 10 (35) 0.29 

    

Systolic blood pressure, mmHg 124.3 ± 20.5 119.6 ± 23.1 0.38 

Diastolic blood pressure, mmHg 71.5 ± 11.9 71.7 ± 13.8 0.96 

    

QRS duration (ms)   144 (28) 149 (32) 0.48 

ACE-I: angiotensin-converting enzyme inhibitors; ARB: angiotensin receptor blockers. 
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Table 6-2. Mechanical variables in patients with or without MWF. 

 No MWF 
(n = 84) 

MWF 
(n = 32) 

P 

LV dimensions 

LVEDV, mL 222 ± 80 277 ± 79 0.002 

LVESV, mL 166 ± 79 214 ± 83 0.007 

LV mass, g 137.6 ± 46.6 155.5 ± 71.1  0.052 

 

Systolic deformation 

LVEF, % 27.5 ±10.8 24.3 ± 12.9 0.20 

Ɛcc (%) -9.4 ± 4.76  -6.6 (2.57  0.004 

SSRcc (s-1) -0.56 ± 0.25  -0.38 (0.12  0.005 

Ɛrr (%) 17.8 ± 11.0  14.6 ± 10.1  0.18 

SSRrr (s-1)    0.84 ± 0.37  0.74 ± 0.40  0.31 

Ɛll (%) -9.4 ± 4.35  -7.6 ± 3.34  0.053 

SSRll (s-1) 0.56 ± 0.20  -0.49 ± 0.18  0.13 

 

Diastolic deformation      

DSRcc (s-1) 0.46 ± 0.19  0.34 ± 0.11  0.010 

DSRrr (s-1)   -0.75 ± 0.35  -0.55 ± 0.44  0.038 

DSRll (s-1) 0.50 ± 0.20  0.38 ± 0.14  0.006  

 

Systolic torsion 

Basal systolic rotation (o) 
    Net Clockwise 
    Magnitude 

 
3.40 ± 3.00  
4.63 ± 2.64  

 
3.00 ± 2.23  
3.67 ± 1.97  

 
0.513 
0.082 

Basal rotation rate (o s-1) 31.3 ± 14.5  22.1 ± 8.2  0.002 

Apical systolic rotation (o) 
    Net anti-clockwise 
    Magnitude 

 
-3.50 ± 3.28  
5.18 ± 3.15  

 
-1.99 ± 1.97  
 3.52 ± 2.45  

 
0.024 
0.013 

Apical rotation rate (o s-1) -38.9 ± 21.8  -26.1 ± 15.8  0.005 

Average basal/apical rotation(o) 9.81 ± 4.48 7.20 ± 3.44 0.002 

LV twist (o)   6.31 ± 3.30  4.65 ± 2.18  0.004 

LV twist per unit length (o/cm) 1.34 ± 0.76  0.94 ± 0.55 0.005 

Torsional shear angle 0.83 ± 0.06 0.52 ± 0.07 0.008 

LV twist rate (o s-1) 48.4 ± 23.1 36.1 ± 17.1 0.01 
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Torsional pattern 
    Normal torsion, n (%) 
    Rigid body rotation, n (%) 
    Reverse torsion, n (%) 

 
39 ± 46  
23 ± 28  
22 ± 26  

 
10 ± 32  
21 ± 64  
1 ± 4  

<0.001 

Diastolic torsion 

Basal rotation rate (o s-1) -34.1 ± 14.8  -28.0  ± 11.8  0.053 

Apical rotation rate (o s-1) 38.3 ± 20.1  24.9 ± 13.1  0.001 

LV untwist rate (o s-1) 44.5 ± 21.0 30.5 ± 14.9  <0.001 

 

Variables are expressed as mean ± SD. MWF: mid-wall fibrosis; SSR = systolic strain rate; DSR = diastolic 
strain rate; Ɛ = strain 
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Figure 6-2. Typical examples of strain parameters from patients with and without midwall fibrosis. 

Short-axis, late gadolinium enhancement views of patients with idiopathic dilated cardiomyopathy, without (a) and  with (b) mid-wall fibrosis (MWF, white 
arrows). The bottom tiles show plots of global circumferential strain (Ɛcc, purple), global radial strain (Ɛrr, red) and global longitudinal strain (Ɛll, green) over a 
cardiac cycle. Note the marked reduction in Ɛcc in the patient with MWF.  
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Figure 6-3. Relationship between LVEF and myocardial strain 

Scattergrams for each of the Lagrangian strains plotted against LVEF. Cases are classified according to 
presence (blue circles) or absence (red circles) of mid-wall fibrosis (MWF). The lines correspond to the 95% 
confidence intervals for strain. The top scattergram demonstrates that above an LVEF of 25% (dashed 
reference line) MWF alters the relationship between Ɛcc and LVEF: patients with MWF have lower Ɛcc than 
those with similar LVEF but without MWF.   
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6.3.2 Diastolic deformation 

In patients with MWF, diastolic strains rates were lower in all three directions in patients 

with MWF (DSRcc: 0.34 vs 0.46 s-1, p= 0.01; DSRrr: -0.55 vs -0.75 s-1, p= 0.04; DSRll: 0.38 vs 

0.50 s-1, p= 0.006). 

6.3.3 Torsional mechanics 

Whilst basal rotation was unaffected by MWF (net clockwise: 3.00o vs. 3.30, p = 0.51; total 

magnitude: 3.67o vs. 4.63o,p = 0.08), the rate of basal rotation was reduced (22.1 os-1 vs 31.3 

os-1, p= 0.002). In patients with MWF, apical rotation was also reduced in terms of both the 

total magnitude (3.52o vs 5.18o, p=0.013) and the net anti-clockwise rotation (-1.99o vs. -

3.50o, p= 0.024). The rate of apical rotation was lower in patients with MWF (-26.1 os-1 vs -

38.9 os-1, p= 0.005). This reduction in the magnitude of apical rotation was associated with a 

reduction in LV twist (peak LV twist : 4.65 o vs. 6.31 o, p=0.004;  LV twist per unit length: 0.94 

o/cm vs.1.34 o/cm, p= 0.005; torsional shear angle: 0.52 vs. 0.83, p= 0.008). The rate of LV 

twist (36.1 os-1 vs. 48.4 os-1, P= 0.001) and untwist (30.5 os-1 vs. 44.5 os-1, P< 0.001) was also 

reduced in patients with MWF.  A normal torsion pattern, in which there is predominantly 

anti-clockwise rotation of the apex and clockwise rotation of the base, was observed more 

frequently in patients without MWF (32 vs 46%). Rigid LV body rotation was more frequently 

observed in patients with MWF (64 vs 28%, p< 0.001).  
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6.3.4 Sample size 

Retrospective calculation shows that this study was able to resolve similar reductions in Ɛcc 

(20%) or Ɛll (22%) within the +MWF group compared to the –MWF. This study was only 

powered to detect a 34% reduction in Ɛrr. The study would have required 336 patients to 

have the capability of identifying a 20% reduction in Ɛrr.     

6.4 Discussion 

6.4.1 Major findings 

In this study, we have shown that in patients with IDCM, MWF is associated with a selective 

impairment of circumferential LV myocardial strain. In addition, MWF is associated with 

impaired apical rotation and a reduction in rotation rate, from base to apex. MWF is also 

associated with impaired diastolic function, reflected in reductions in untwist in all 

directions, from base to apex. Together, these findings are consistent with the notion that, 

by affecting predominantly circumferential myocardial fibres, MWF leads to disturbances in 

myocardial contraction and diastolic function. The result is a 'stiff' LV, which is less able to 

twist to an applied torque (rotation) and more likely to move as a solid body. These 

disturbances may be related to the known associations of MWF with reduced pump 

function, heart failure hospitalisations and a poor response to medical and device therapy. 

(Assomull et al., 2006; Dweck et al., 2011; Gulati et al., 2013; Lehrke et al., 2011; Leong et al., 

2012; Leyva et al., 2012; McCrohon et al., 2003; Wu et al., 2008)  
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6.4.2 Systole 

During ejection, circumferential fibres shorten simultaneously with the oblique fibres in the 

right- and left-handed helices to thicken the myocardium and empty the heart. We have 

found that MWF was associated with a selective reduction in circumferential strain, 

suggesting that MWF preferentially affects mid-myocardial, circumferential fibres. As noted 

by Buckberg (Buckberg et al., 2008), circumferential fibres provide a horizontal counterforce, 

or 'buttress' to the simultaneously contracting oblique fibres. Impaired circumferential 

contraction would be expected to lead to impaired rotation, as we have found in patients 

with MWF. Our finding of more frequent rigid LV body rotation supports the notion that 

MWF renders the LV less capable of twisting and more liable to move as a rigid body.   

Chapter 5 shows that patients with IDCM and MWF treated with CRT are more likely to 

suffer pump failure than patients without MWF (Leyva et al., 2012). On the other hand, 

Lamia et al found that CRT improved torsion, stroke volume and stroke work in an animal 

model (Lamia et al., 2011). Using 3-dimensional speckle-tracking echocardiography, others 

found that in patients with IDCM, CRT led to an improvement in LV torsion (Matsumoto et 

al., 2012). If torsion is indeed influenced by CRT, we might expect that the higher risk of 

pump failure observed in patients with MWF undergoing CRT may be due to a permanent 

inability of the LV to twist and untwist. This hypothesis requires further exploration. 

6.4.3 Diastole 

In diastole, release of energy stored in systole (recoil) causes rapid untwisting and a mitral-

to-apical negative gradient (Steine et al., 1999) that 'sucks' blood from the left atrium to the 
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LV (Wu et al., 2006). Untwisting occurs mainly during the isovolumic relaxation period and is 

followed by diastolic filling. Several studies (Beyar et al., 1989) (Moon et al., 1994; 

Rademakers et al., 1992) have shown that whilst cavity volume is fixed during isovolumic 

relaxation, there is a rapid recoil of about 40% of the torsion effected during systole. We 

have found that MWF leads to both a multi-directional impairment in diastolic strain rate, as 

well as to impairment of apical untwist rate. This is likely to account for the higher LV filling 

pressures observed using echocardiography in patients with NICM and MWF (Moreo et al., 

2009). Conceivably, impaired apical untwisting leads to impaired LV suction and to increased 

LV filling pressures.  

6.4.4 Limitations 

The LGE-CMR technique described herein only detects replacement fibrosis. The more 

recent technique of T1 mapping, which detects interstitial fibrosis, was not undertaken. We 

cannot therefore comment as to whether our findings are also influenced by the latter. In 

addition, we have not routinely undertaken myocardial biopsy, nor have we quantified 

myocardial oedema. Therefore, we cannot exclude the possibility that our findings were 

influenced by active myocarditis, despite the absence of evidence from clinical and 

laboratory screening.  

This study was inadequately powered to determine if Ɛrr was reduced in –MWF. However, 

the study was powered to detect reductions in deformation in other directions. 

Problematically, this study investigates a diverse range of different mechanical effects of 

MWF, accordingly multiple simultaneous comparisons are made. No correction is made for 
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this, and the study is insufficiently powered to manage this. It is probable that some 

reported differences are due to type I errors and further testing is required to substantiate 

the hypotheses generated.    

In this study each parameter is calculated only once, in difference to a recent 

recommendation that reproducibility can be maximised with 3 repeated measures, 

analogous to the methodology commonly employed with STE (Schuster et al., 2015).  

However, in a population of 16 healthy volunteers, the same group reports reassuring inter-

study reproducibility and minimal diurnal fluctuation when FT-CMR is utilised for the 

assessment of peak torsional parameters, with torsional shear angle having the greatest 

reproducibility (Kowallick et al., 2016).  They calculated that a sample size of only 15 is 

required to demonstrate a 20% difference in peak torsion between groups. Standardisation 

of slice selection with FT-CMR is likely to be an important contributor facilitating smaller 

sample sizes compared to echo based studies.  Cautionary, FT-CMR was much less robust for 

the assessment of diastolic torsion rate due to the loss of tracked features owing to through 

plane motion during the rapid isovolaemic relaxation phase.  Furthermore, reproducibility 

does not necessarily equate to precision, and the accuracy of FT-CMR to measure torsional 

mechanics still lacks validation against either phantom models, currently utilised echo-based 

modalitities or myocardial tagging.   

6.5 Conclusions 

In patients with IDCM, MWF is associated with profound disturbances in LV global 

circumferential strain, strain rate, LV twist and torsion, in both systole and diastole. In 
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addition, MWF is associated with rigid LV body rotation. These findings provide a 

mechanistic link between MWF and a poor clinical outcome in patients with IDCM, despite 

pharmacologic and device therapy.  
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7 MECHANICAL DYSSYNCHRONY AND BASELINE LEFT VENTRICULAR SYSTOLIC 

FUNCTION AS PREDICTORS OF RESPONSE AND OUTCOME AFTER CRT: A 

FEATURE-TRACKING CARDIOVASCULAR MAGNETIC RESONANCE STUDY  

Principal hypothesis: The assessment of baseline dyssynchrony using FT-CMR on pre-

implant acquisitions predicts response following CRT.   

7.1 Introduction 

Improving the proportion of patients who respond, and outcomes following CRT remain the 

focuses of investigational efforts within this field of cardiovascular medicine. One strategy 

for improving outcomes is to refine patient selection; this forms an important aspect of the 

provision of any therapy, and is of particular relevance in publically funded healthcare 

systems, such as the UK, where financial resources are finite. Under current national (NICE, 

2014) and international (Brignole et al., 2013) guidelines patient selection is based on 

assessment of an individual’s symptoms, the electrocardiogram and left ventricular systolic 

function.    

With the exception of patients who have a concomitant pacing indication (Curtis et al., 

2007), the functional cut-off for allocating CRT remains a LVEF <35% based on the selection 

criteria used in landmark studies (Bristow et al., 2004; Cleland et al., 2005). Investigating the 

benefit of CRT in recipients with more moderate LV impairment has proved challenging and 

MIRACLE EF was abandoned due to poor recruitment, with the long follow-up required to 

prove benefit proving unacceptable to potential recruits (Linde et al., 2016). Investigations in 
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this field, are further complicated by our reliance on 2DE for LVEF assessment, with its 

inherent high interobserver variability  (Wood et al., 2014), and even within the clinical trial 

forum this has proved an inprecise measure (Chung et al., 2010; Kutyifa et al., 2013). Global 

systolic strain is a more sensitive marker of LV function measuring myocardial contractility. 

STE global strain measures are independent predictors of prognosis in heart failure and 

superior to LVEF (Sengelov et al., 2015). However, STE measures are more susceptible to 

image quality than 2DE measures. 

The underlying paradigm of CRT that it rectifies disordered cardiac synchrony has driven 

extensive search for an imaging based measure of mechanical dyssynchrony that can 

enhance patient selection. Nonetheless, no single dyssynchrony parameter has proven 

clinical utility (Chung et al., 2008; Miyazaki et al., 2010), and this is reflected in major 

guidelines that continue to recommend electrocardiographic QRS duration and morphology 

as the sole arbitrators of the presence of dyssynchrony (Brignole et al., 2013; Tracy et al., 

2012). One component of the failure of non-invasive dyssynchrony markers has been their 

reliance on regional delays in time to peak contractions. This is a particular problem in the 

setting of infarcted myocardium, where the identification of low peak amplitudes is 

inaccurate, contributing to poor inter-operator reproducibility, and disregards the negligible 

contribution of late activated non-viable segments to overall performance. In this respect, 

measures of the potential contractile reserve that could be recruited (Kydd et al., 2013; Lim 

et al., 2008; Tatsumi et al., 2011), or Fourier transformations of regional strains that 

encompass a more universal assessment of the entire myocardium throughout the cardiac 
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cycle have both shown promise (Bilchick et al., 2008; Chalil et al., 2007b).  The superior type 

of measure remains unknown. 

Most dyssynchrony and strain assessment has utilised echocardiography, but CMR based 

dyssynchrony assessment using myocardial tagging has shown promise in single centre 

studies (Bilchick et al., 2008). FT-CMR overcomes the time inefficiencies limiting other CMR 

methodologies and its highly automated processing coupled with the high spatial resolution 

of CMR could resolve the poor reproducibility that hamper echocardiographic based 

measures. This study tests the hypothesis that baseline strain and dyssynchrony assessment 

using FT-CMR predicts response to and outcomes from CRT, and examines which type of 

these measures is superior for this purpose. 

7.2 Methods  

7.2.1 Study population 

This retrospective study was conducted on an historical prospectively followed cohort of 118 

consecutive heart failure patients who had undergone successful CRT-P implantation based 

on contemporaneous indications. All patients were recruited from a dedicated heart failure 

service at a single centre (Good Hope Hospital, Birmingham) between June 2002 and 

December 2007. Inclusion criteria were: Clinical HF with NYHA class II-IV symptoms 

diagnosed on the basis of the clinical features plus echocardiographic evidence of LV systolic 

dysfunction; maximum tolerated contemporary pharmacological therapy; a QRS duration 

≥120ms and any QRS morphology; availability of original CMR acquisitions including the 

entire LV short axis stack. Exclusion criteria were: a history of myocardial infarction or acute 
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coronary syndrome within the previous month; severe structural valvular heart disease; 

hypertrophic or restrictive cardiomyopathy; CRT-D as device therapy, pre-existing cardiac 

implantable electronic devices; any non-cardiac comorbidities that significantly reduced the 

likelihood of survival beyond 12 months. 

Baseline and follow-up assessments (5.2.6), and study end-points (5.2.7) are as previously 

described.  

7.2.2 Device therapy and follow-up 

Device prescription was based on contemporary indications. This study examines a 

population exclusively of patients with CRT-P. Device implantation, programming and 

optimisation is as described in 5.2.2. 

7.2.3 LV volumetric and myocardial strain analysis 

CMR acquisition is as described in 5.2.3. LV volumetric analyses, comprising  LVEDV and 

LVESV and LVEF, were quantified using manual planimetry of the endocardial and epicardial 

borders from the short axis stack in accordance with validated methodologies (Maceira et 

al., 2006) using CVI42 software (Circle Cardiovascular Imaging Inc.,Calgary, Canada). FT-CMR 

was undertaken as detailed in 3.2.4. Global peak systolic Ɛll, Ɛrr and Ɛcc were derived. Ɛ3D was 

calculated as summation of the 3 peak systolic axial strains and provides a three-dimensional 

measure of myocardial contractility. 
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7.2.4 Dyssynchrony analyses 

Feature tracking of each SSFP cine of the short axis stack (as described in 3.2.4) was used to 

obtain circumferential and radial strain data along the evenly spaced circumferential 

segments of a short-axis slice. The strain data was processed in different ways to derive 3 

distinct classes of dyssynchrony parameter. 

i)  Time to peak contraction. Circumferential deformation data was obtained from feature 

tracking of the LV basal, mid and apical slices (slice selection was as described in Figure 3-1). 

Time-Ɛcc curves were derived for each of the 16 myocardial segments (in accordance with 

the American Heart Association’s 16 segment model) from which the SD of time to peak Ɛcc 

(SDT2P16) was calculated.  All time data was expressed as a percentage of the cardiac cycle; 

giving a final parameter which is expressed as a percentage, thus adjusting for differences in 

heart rates, both between slice acquisitions and between different patients.   

ii) Fourier transformation. CURE and RURE ratios were derived as detailed in 4.2.3 and 

provide an index of the spatial uniformity of strain from all available slices over the entire 

cardiac cycle.   

iii) Contractile reserve. To quantify the myocardial inefficiency that could be recruited by 

resynchronisation, the strain delay index (SDI16) was calculated from all 16 segmental Time-

Ɛcc curves using the formula ∑16 (Ɛcc peak - Ɛcc es); where Ɛcc peak represents segmental peak 

systolic Ɛcc, and Ɛcc es represents segmental instantaneous systolic Ɛcc at end-systole(Lim et 

al., 2008). Segments with positive strain or biphasic strain patterns with a greater positive 
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(stretch) peak than the absolute negative (contraction) peak were not included in the 

summation as predominantly stretched segments have been shown not to contribute to 

cardiac resynchronisation (Carasso et al., 2009). In accordance with published 

methodologies, end-systole was taken as the time of global peak Ɛcc from all 16 segments 

(Lim et al., 2008). In a sub-set of 20 patients, absolute concordance between this method, 

the minimum LV volume derived from the co-ordinates of the tracked endocardial borders 

and visual inspection of the LV short axis cines was demonstrated. The entire process of 

calculating SDI16 was performed using a custom produced excel spreadsheet and Figure 7-1 

illustrates the methodology. 

7.2.5 Statistical analysis 

Comparisons between LVRR responders and non-responders were made using an 

independent samples t-test for continuous variables and either Chi-squared test or log-

likelihood ratio test for categorical variables (when the expected cell count was less than 5). 

The percentage increase in baseline dyssynchrony (compared to the non-response cohort) 

that the study would detect (β= 0.2) was determined in post-hoc analysis using an online 

calculator (Kane, 2016). ROC curves were constructed to assess the ability of each 

dyssynchrony measure to predict LVRR, and were rated according to the traditional 

academic point system (Metz, 1978). The study population was dichotomised into those with 

more or less dyssynchrony according to each dyssynchrony index and within group changes 

in LVESV were compared using paired sample t-tests and between group differences using 

independent sample t-tests. Cox proportional hazards analyses were used to assess the 

ability of baseline indexes to predict clinical outcomes. Variables reaching p< 0.10 on 
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Figure 7-1. Derivation of SDI16 

This figure illustrates the derivation of SDI16 in a typical subject, a 69 yr old man with a previous LAD territory infarct and LBBB. For clarity only the 6 mid cavity segments 
are shown (in practice all 16 segments are analysed). Time-Ecc graphs are produced for each segment. The mean of these represents global Ecc (black dash), and the time 
of peak contraction (negative peak) represents end systole (ES) (dotted reference line). For each segment Ecc is noted at peak contraction (Epeak) and at end systole (Ees), 
and the differences (Epeak-Ees), represented by the vector magnitude of the coloured arrows, is the wasted work that can potentially recruited by resynchronisation. The 
summation of these quantifies total myocardial inefficiency due to dyssynchrony.  Late activation of the posterior segment, which maintains good contractility but is 
which is stretched at ES, provides the greatest inefficiency and will contribute greatest to the summation. The antero-septum (orange) appears late, but the accuracy of 
identifying a Epeak is poor in a scarred segment. Nonetheless, indifference to time to peak contraction methods where the selection of the peak would have a great 
influence on the final index, the low Epeak-Ees minimises the contribution of this scarred segment to the SDI16. The lateral segment (grey) is predominantly stretched and 
excluded from summation as it will not contribute to the benefit of resynchronisation.       
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univariable analyses were entered into multivariable models after inspection for collinearity. 

The χ2 of the model was used to assess its power. ROC analyses were conducted to assess 

the ability of LV functional parameters to predict 5 year survival from cardiac mortality.  

Optimal cut-offs for each measure were calculated affording equal value to sensitivity and 

specificity, and the cohort dichotomised around this value and was subjected to Kaplan-

Meier survival analyses. Statistical analyses were performed using SPSS v21.0. (SPSS Inc. 

Chicago, Illinois). A p value of < 0.05 was considered statistically significant.   

7.3 Results  

7.3.1 Baseline characteristics  

The study cohort included 118 CRT recipients, who were 67.8 ± 11 yrs old at implant, 88 

(75%) were male, and 66 (56%) had an ischaemic aetiology. 89 patients underwent follow-up 

echocardiography at 6 months and Table 7-1 shows the baseline demographics of the entire 

cohort,  and after dichotomisation according to LVRR response.   

There were no differences in age, gender, aetiology, NHYA class, co-morbidities, baseline 

LVEF or QRS duration between the dichotomised cohorts. There were more patients within 

the non-response cohort who were prescribed beta-blockade compared to responders (71% 

vs. 45%, p= 0.01), but otherwise the groups were similarly matched for prognostic therapies. 

7.3.2 LVRR  

Within the entire cohort 42/89 (47%) exhibited LVRR at 6 months. As shown in Table 7-1 

there was no difference in Ɛcc (-6.5% vs. -6.8%, p= 0.68), Ɛrr (-10.4% vs. 10.5%, p=0.89), Ɛll (- 
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Table 7-1. Baseline differences between LVRR Responders and Non-responders 

 Total Cohort 
(n = 118) 

 LVRR 
Responder 
(n = 42) 

LVRR 
Non-responder 
(n = 47) 

P* 

Demographics      

Age (yrs) 67.8 ± 10.9  68.9 ± 10.8 65.0 ± 10.6 0.09 

Gender (male) 88 (75)  32 (76) 35 (74) 0.85 

Aetiology (ischaemic), n 
(%) 

66 (56)  24(57) 27 (57) 0.98 

NHYA class  
    II 
    III 
    IV 

 
5 (4) 
89 (75) 
24 (20) 

  
0 (0) 
33 (79) 
9 (21) 

 
4 (9) 
34 (72) 
9 (19) 

0.07 

QRS, ms 150.1 ± 23.6  150.9 ± 25.0 148.9 ± 24.9 0.71 

      

Comorbidities, n (%)      

Diabetes mellitus  22 (19)  11 (26) 5 (11) 0.10 

Hypertension  27 (23)  9(21) 11 (23) 0.82 

Atrial fibrillation 24 (20)  8 (19) 9 (19) 0.99 

CABG 21 (18)  6(14) 10 (21) 0.39 

      

Medication, n (%)      

Loop diuretics 100 (85)  33 (79) 40 (85) 0.42 

ACEi or ARB 108 (92)  39 (93) 42 (89) 0.57 

BB 71 (60)   19 (45) 33 (70) 0.02 

MRA                  53 (45)   19(45)  21(45) 0.96 

      

Echocardiogram      

LVEF (%) 22.8 ± 9.9  24.8 ± 10.9 21.1 ± 8.2 0.08 

      

CMR LV volumes      

LVEDV (ml) 248.9 ± 95.6  235.2 ± 74.0 274.0 ± 113.1 0.07 

LVESV (ml) 198.9 ± 93.5  182.2 ± 74.5 224.1 ± 110.4 0.04 
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Continous variables are presented as mean (± standard deviation), categorical variables are presented as n 
(%)    

P* is given for the difference between responders and non-responders using independent samples t-tests 
and Pearson’s Chi-Square for continuous and categorical variables respectively 

ACEi = Angiotensin converting enzyme inhibitor, ARB = Angiotensin receptor blocker,  BB = Beta-blocker, 
MRA = Mineralocorticoid receptor antagonist.   

  

CMR LV functional measures 

LVEF (%) 22.4 ± 9.9  24.6 ± 11.4 20.8 ± 9.3 0.09 

Ɛcc (%)  -7.1 ± 4.0  -6.5 ± 3.0 -6.8 ± 4.1 0.68 

Ɛrr (%) 11.3 ± 4.3   10.4 ± 6.7  10.5 ± 6.9 0.89 

Ɛll (%) -8.5 ± 4.3  -9.0 ± 3.5 -8.0 ± 4.6  0.26 

E3d (%) 26.9 ± 12.5   25.9 ± 10.5 25.3 ± 12.5 0.81 

      

Dyssynchrony parameters (all patients)      

SDT2P16 (%)  17.4 ± 11.6  15.7 ± 8.5 19.3 ± 14.5 0.17 

CURE 0.74 ± 0.13  0.75 ± 0.11 0.73 ± 0.12 0.28 

RURE 0.63 ± 0.14  0.62 ± 0.13 0.63 ± 0.14 0.71 

SDI16 -19.5 ± 10.6  -19.7 ± 10.4 -19.0 ± 10.9 0.78 

      

Dyssynchrony parameters (patients in sinus rhythm)   

SDT2P16 (%) 17.9 ± 13.1   15.9 ± 9.1  19.6 ± 15.8  0.24  

CURE 0.75 ± 0.12  0.77 ± 0.11  0.74 ± 0.13  0.38  

RURE 0.64 ± 0.14  0.63 ± 0.14  0.64 ± 0.14  0.68  

SDI16 -19.3 ± 10.8  -20.1 ± 11.4  -18.6 ± 10.3  0.55  
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9.0% vs. -8.0%, p= 0.26) or Ɛ3D (25.9% vs. 25.3%, p= 0.81) between LVRR responders and 

non-responders. Similarly, there was no significant difference in SDT2P16 (15.7% vs. 19.3%, 

p= 0.17), CURE (0.75 vs 0.73, p= 0.28), RURE (0.62 vs. 0.63, p= 0.71) or SDI16 (-19.7 vs. -19.0, 

p=0.78) between responders and non-responders.   

Compared to the non-response cohort, this study was able to detect an increase in baseline 

dyssynchrony of the magnitude of 45% for SDT2P16, 10% for CURE, 13% for RURE and 34% 

for SDI16 with a power of 80%. 

When analysis was restricted to the sub-group of patients in sinus rhythm, no dyssynchrony 

parameter emerged as a predictor of LVRR (SDT2P16: 15.9% vs. 19.6%, p= 0.24; CURE: 0.77 vs. 

0.74, p= 0.38; RURE: 0.63 vs. 0.64, p= 0.68; SDI16: -20.1% vs. -18.6%, p= 0.55). 

7.3.3 Symptomatic response 

Data on symptomatic response was not collected for 2 patients who survived to 6 months.  

92/116 patients met the composite clinical response criteria. When stratifying the cohort 

according to the composite clinical response criteria there was no difference in LVEF 

between responders and non-responders (22.3% vs. 22.1%, p=0.92). However, global peak 

systolic Ɛrr was significantly lower in those who met the composite clinical response criteria 

(Ɛrr: 10.5 ± 6.5% vs. 14.9 ± 9.5%, p=0.009), a similar non-significant effect was observed for 

strain in other directions (Ɛ 1: -6.7 ± 3.4% vs. -8.8 ± 5.6%, p= 0.09; Ɛll: -8.3 ± 4.1% vs. -9.7 ± 

4.9%, p= 0.18), and Ɛ3D was significantly lower in clinical responders (-25.5 ± 11.9% vs. -33.4 

± 14.4%, p= 0.006).  
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There was a non-significant trend towards lower QRS duration in responders (148ms vs. 

154ms, p= 0.22). None of the baseline dyssynchrony indexes showed any significant 

difference according to symptomatic response (SDT2P16: 17.7% vs. 14.3%, p= 0.19; CURE: 

0.74 vs. 0.74, p= 0.93; RURE: 0.63 vs. 0.64, p= 0.87; SDI16: -17.7% vs. -18.4%, p= 0.82). 

SDT2P16 (17.9% vs. 14.6%, p= 0.32), CURE (0.75 vs 0.75, p= 0.94), RURE (0.64 vs. 0.64, p= 

0.97) or SDI16 (-17.9 vs. -14.6, p=0.39) remained unable to differentiate between responders 

and non-responders when only patients in sinus rhythm were considered. 

7.3.4 Dyssynchrony as a predictor of response. 

The ROC analyses in Figure 7-2 and Table 7-2 demonsrate the ability of each dyssynchrony 

index to predict the likelihood of a LVRR or symptomatic response 6 months post CRT 

implant. CURE had the highest AUROC of 0.58 (0.45-0.70, p= 0.25), but in accordance with 

the traditional academic point system (Metz, 1978), all the examined dyssynchrony indexes 

fail to demonstrate predictive value. Figure 7-3 shows the study population split into halves 

with more or less dyssynchrony using the population median value for each index. SDI16 was 

the only index with which patients with more dyssynchrony had a significant reduction in 

LVESV post CRT (baseline: 208.2 ± 97.6ml, post-CRT 172.1 ± 84.6ml, p= 0.007), but this 

reduction was not significant when compared to that observed in those with less baseline 

dyssynchrony (∆LVESV: 12.6 ± 91.1ml, p= 0.20).     
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Figure7-2. Receiver operator characteristics for each dysynchrony measures ability to predict response.  

ROC curves for each index to predict a) a left ventricular reverse remodelling, and b) a symptomatic response (according to the composite clinical score) 
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Table 7-2. Receiver operator characteristics for baseline dyssynchrony parameters to act as predictors of symptomatic and echocardiographic 
response 

 AUC 95% C.I. P 

LVRR response   

QRS 0.52 0.39 - 0.65 0.77 

SDT2P16 0.48 0.35 - 0.60 0.70 

CURE 0.58 0.45 – 0.70 0.25 

RURE 0.48 0.36 – 0.61 0.80 

SDI16 0.48 0.35 – 0.60 0.70 

    

Symptomatic response   

QRS 0.37 0.23-0.50 0.047 

SDT2P16 0.54 0.54-0.67 0.53 

CURE 0.51 0.37-0.64 0.92 

RURE 0.55 0.42-0.68 0.47 

SDI16 0.44 0.31-0.57 0.38 
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Figure 7-3. Reduction in LVESV according to baseline dyssynchrony 

Bar charts of LVESV at baseline and after CRT, with the cohort split into halves above and below the study population median value for each index.  

 *p= difference in reduction between subgroups.
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7.3.5 Clinical outcomes 

Over a 0.1-8.7 yrs (range; median: 3.2 yrs; mean: 3.8 yrs), 34 patients died from cardiac 

causes, including 1 patient who underwent cardiac transplantation, and there were 27 HF 

hospitalisations.  

The Cox proportional hazard modelling in Table 7-3 shows that of the baseline variables, 

increasing age at time of implant and ischaemic aetiology were predictive of cardiac 

mortality, and ischaemic aetiology was predictive of the composite of cardiac mortality or HF 

Hospitalisation. 

The model shows that baseline LVEF as assessed by CMR (HR 0.93, 95% C.I. 0.89-0.97) but 

not by 2DE (HR 0.97, 95% C.I. 0.93-1.004) was a univariable predictor of cardiac mortality in 

Cox proportional hazards analyses. Both predicted the composite of cardiac mortality or 

hospitalisation for heart failure, although CMR LVEF (HR 0.93, 95% C.I. 0.89-0.97) was more 

powerful than 2DE LVEF (HR 0.96, 95% C.I. 0.92-0.997). Ɛ3D was a strong univariable 

predictor of cardiac mortality (HR 0.94, 95% C.I. 0.90-0.97) and cardiac mortality or 

hospitalisation for heart failure (HR 0.93, 95% C.I. 0.90-0.97). Of the individual strains Ɛll (HR 

0.88, 95% C.I. 0.80-0.97) and Ɛrr (HR 0.93, 95% C.I. 0.87-0.99), but not Ɛcc (HR 1.10, 95% C.I. 

0.99-1.21) predicted cardiac mortality, and all individual strains predicted the composite 

outcome. 

No dyssynchrony parameter predicted cardiovascular mortality (SDT2P16: HR 0.98-1.04; 

CURE: HR 0.1 -22.0; RURE: HR 0.01 - 1.78; SDI16: HR 0.99-1.07). Greater baseline   
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Table 7-3. Cox proportional Hazards Analyses of Baseline Variables in Relation to Clinical Outcome. 

 
 

Cardiac Mortality Cardiac Mortality / HF 
Hospitalisation 

 HR 95% C.I. P HR 95% C.I. P 

UNIVARIABLE ANALYSES 

       

Baseline variables       

Age (yrs) 1.04 1.00-1.07 0.03 1.02 0.99-1.06 0.12 

Gender (male) 2.20 0.85-5.68 0.104 2.26 0.88-5.81 0.09 

Aetiology of HF (ischaemic) 4.24 1.76-10.3 0.001 3.08 1.41-6.74 0.005 

NYHA class 1.80 0.91-3.56 0.09 1.85 0.96-3.57 0.067 

Atrial Fibrillation 2.01 0.98-4.12 0.06 1.04 0.47-2.30 0.92 

QRS duration (ms) 1.00 0.99-1.01 0.59 1.00 0.99-1.02 0.54 

 
LV systolic function 

      

2DE LVEF (%)  0.97 0.93-1.004 0.08 0.96 0.92-0.997 0.03 

CMR LVEF (%)   0.93 0.89-0.97 0.002 0.93 0.89-0.97 0.001 

Ecc (%) 1.10 0.99 - 1.21 0.08 0.88 0.80-0.98 0.02 

Err (%) 0.93 0.87-0.99 0.01 0.91 0.86-0.97 0.004 

Ell (%) 0.88 0.80-0.97 0.01 0.87 0.79-0.96 0.004 

E3D (%) 0.94 0.90-0.97 0.001 0.93 0.90-0.97 <0.001 

    

Dyssynchrony parameters (entire cohort)    

CURE 1.48 0.10-22.0 0.77 0.36 0.24-53.6 0.36 

RURE 0.14 0.01-1.78 0.13 0.06 0.01-0.68 0.02 

SDT2P16 (%) 1.01 0.98-1.04 0.48 1.02 1.00-1.04 0.13 

SDI16 (%) 1.03 0.99-1.07 0.11 1.04 1.01-1.09 0.03 

 

Dyssynchrony parameters (patients in sinus rhythm only) 

CURE 4.4  0.15-132.6  0.39  7.97 0.34-186.3  0.20 

RURE 0. 22 0.01-4.26  0.32  0.09  0.01-1.32 0.08  

SDT2P16 (%) 1.01  0.99-1.04  0.36  1.02  0.995-1.05  0.11  

SDI16 (%) 1.03  0.98-1.08  0.20  1.04  0.996-1.08  0.08  
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MULTIVARIABLE ANALYSES 

       

Model 1       

RURE - - - 0.15 0.01-0.61 0.02 

SDI16 (%) - - - 1.05 1.01-1.09 0.03 

       

Model 2a       

Age (yrs) 1.02 0.98-1.05 0.31 - - - 

Gender (male) - - - 0.37 0.13-1.11 0.08 

Aetiology of HF (ischaemic) 4.25 1.70-10.6 0.002 3.02 1.31-6.94 0.009 

NYHA class 1.83 0.89-3.78 0.10 1.99 0.96-4.13 0.07 

RURE - - - 0.35 0.02-7.89 0.51 

SDI16 (%) - - - 1.03 1.00-1.07 0.09 

CMR LVEF (%) 0.94 0.90-0.99 0.01 0.93 0.88-0.98 0.009 

       

Model 2b       

Age (yrs) 1.04 1.00-1.08 0.048 - - - 

Gender (male) - - - 0.63 0.20-1.95 0.42 

 Ischaemic aetiology 2.62 0.99-6.97 0.053 2.19 0.86-5.52 0.10 

NYHA class 1.93 0.88-4.22 0.10 2.18 1.02-4.65 0.045 

RURE - - - 0.41 0.01-12.1 0.61 

SDI16 (%) - - - 1.06 1.01-1.10 0.01 

E3D (%) 0.94 0.90-0.99 0.009 0.94 0.90-0.99 0.01 

       

       

Model 2       

CMR LVEF (%) 0.94 0.91-1.003 0.06 0.95 0.90-0.998 0.04 

E3D (%) 0.96 0.89-0.999 0.047 0.95 0.91-0.99 0.02 

       

Model 3       

2DE LVEF (%) 0.99 0.91-1.003 0.06 0.98 0.93-1.02 0.25 

E3D (%) 0.94 0.90-0.98 0.005 0.94 0.90-0.98 0.002 
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dyssynchrony as measured by RURE (HR 0.01 - 0.68) or SDI16 (HR: 1.01-1.09), but not by 

SDT2P16 (HR 1.00-1.04) or CURE (HR 0.24-53.6) predicted the composite of cardiovascular 

mortality and HF hospitalisation. RURE and SDI16 were not collinear and both remain 

independently predictive when modelled together (model 1); neither remained predictive 

when only the smaller sub-cohort of patients in sinus rhythm was considered.  

A multivariate model was constructed consisting of all non-colinear univariate predictors 

(Table 7-3). Incorporating CMR LVEF as the functional metric (model 2a), LVEF (cardiac 

mortality: HR 0.94, 95% C.I. 0.90-0.99; cardiac mortality or hospitalisations for HF: HR 0.93 

95% C.I. 0.88-0.98) and an ischaemic aetiology (cardiac mortality: HR 4.25, 95% C.I. 1.70-

10.6; cardiac mortality or hospitalisations for HF: HR 3.02 95% C.I. 1.31-6.94) were the main 

determinants of outcome. When LVEF was substituted for Ɛ3D, Ɛ3D (HR: 0.94 95% C.I. 0.90-

0.99), but not ischaemic aetiology (HR 2.62, 95% C.I. 0.99-6.97) was predictive of cardiac 

mortality (model 2b). The same trend was observed when predicting cardiac mortality or 

hospitalisations for HF (Ɛ3D: HR 0.94 95% C.I. 0.90-0.99; Ischaemic aetiology: HR 2.19 95% C.I. 

0.86-5.52); NYHA class (HR 2.18, 95% C.I. 1.02-4.65) and SDI16 (HR 1.06, 95% C.I. 1.01-1.10) 

were further independent predictors.  

When CMR LVEF and Ɛ3D were considered together, Ɛ3D (HR 0.96, 95% C.I. 0.89-0.999) but 

not LVEF (HR 0.94, 95% C.I. 0.91-1.003) was an independent predictor of cardiac mortality. 

Both parameters predicted the composite outcome (Ɛ3D: HR 0.94, 95% C.I. 0.91-0.99; LVEF: 

HR 0.95, 95% C.I. 0.90-0.998). 
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Table 7-4 shows the optimum cut-off for each functional measure to predict 5 year survival 

from cardiac mortality from ROC analyses; E3D has the greatest AUROC (0.75 95% C.I. 0.65-

0.85) but all parameters were significant predictors. As shown in Figure 7-4, above an 

optimum cut-off of 20.3%, Ɛ3D predicted survival free from cardiac mortality (Log Rank [LR] 

χ2 = 11.63, p= 0.001) and cardiac mortality and HF hospitalisation (LR χ2 = 15.34, p< 0.001). 

Above an optimum cut-off of 16.6%, LVEF similarly predicted event free survival (cardiac 

mortality: LR χ2 = 12.97, p< 0.001; cardiac mortality and HF hospitalisation: LR χ2 = 17.08, p< 

0.001). 

7.3.6 Moderate LV systolic dysfunction 

Based on CMR volumetrics, 15 patients would be reclassified as having an LVEF >35% and 

thus moderate rather than severe LV systolic dysfunction. This sub-group had a better LVRR 

(62% vs. 45%, p= 0.19) and clinical response (93% vs. 77%, p= 0.37) than the rest of the 

cohort although the small numbers meant that these were not significant. Only 1 patient 

reclassified as moderate LVSD had an event (cardiac death preceeded by a HF 

hospitalisation) which translated into significantly better outcomes than other patients 

(cardiac mortality: LR χ2 = 3.85, p= 0.05; cardiac mortality and HF hospitalisation: LR χ2 = 

4.95, p= 0.03).  
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Table 7-4. Optimal cut-offs for functional measures to predict 5 year survival free from cardiac 
mortality. 

 Optimum cut-off AUC 95% C.I. P 

2DE LVEF (%)  17.0 0.59 0.46-0.73 0.01 

CMR LVEF (%)   16.6 0.69 0.58-0.79 0.002 

Ecc (%) 5.97 0.70 0.59-0.80 0.002 

Err (%) 9.98 0.74 0.64-0.84 <0.001 

Ell (%) 5.5 0.67 0.56-0.78 0.009 

E3D (%) 20.28 0.75 0.65-0.85 <0.001 
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Figure 7-4. Cardiovascular mortality and hospitalisations after CRT according to baseline LV function.  
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7.4 Discussion 

7.4.1 Major findings 

In this study we derived 3 distinct classes of CMR based dyssynchrony parameters; none 

proved apt to refine patient selection for CRT implant. More severe dyssynchrony at baseline 

when measured by Fourier or contractile reserve techniques was associated with poorer 

long term outcomes, although this was not independent of LV function and scar. 

This study also provides the first comparison of the utility of 2DE and CMR derived functional 

measures to predict outcomes following CRT. Poorer LV function at baseline regardless of 

the modality used predicted a worse long-term outcome. LVEF is a more powerful predictor 

of outcomes post CRT when it is measured by CMR as opposed to with 2DE. This likely 

relates to 2DEs inferior precision for the quantification of LVEF, and this could explain why 

this relationship is not universally reported (Kreuz et al., 2012). 

In numerous cardiac populations, 2DE studies’ measures of myocardial strain have been 

shown to be more powerful predictors of outcome than LVEF (Ersboll et al., 2013; Mignot et 

al., 2010; Stanton et al., 2009). This phenomenon is not merely due the inaccuracies of 2DE 

for the measurement of LVEF as this concept remains valid when both LVEF and strain are 

measured with CMR.   
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7.4.2 Baseline dyssynchrony assessment and patient selection  

The concept behind cardiac resynchronisation is the correction of the disordered electrical 

and mechanical activation sequence that is frequently associated with HF, and the notion of 

a marker that enhances the quantification of this defect, and thus predicts the possible 

benefit from CRT remains highly desirable yet elusive. This study examined the predictive 

value of FT-CMR derived dyssynchrony and none of the major classes of dyssynchrony index 

demonstrated potential for enhancing patient selection; the implication is that there is a 

deficiency of either this methodology, or of the underlying concept of dyssynchrony analysis. 

At this early stage in its evolution the appropriateness of FT-CMR to assess dyssynchrony 

requires scrutiny. Kuetting et al.,  have recently studied the ability to use FT-CMR to 

discriminate between healthy controls and HF patients with velocity encoding  (VENC) 

proven dyssynchrony using differences between the timing of peak longitudinal velocity at 

the basal septal and lateral basal myocardium (Kuetting et al., 2016). Whilst FT-CMR could 

correctly differentiate 100% of healthy controls, 18% of patients with dyssynchrony were 

misclassified as normal. FT-CMR is a crude tool and the technique used in this investigation 

has a reliance on unfavourable aspects of this methodology. Instantaneous measures such as 

velocity rely on differences between two frames, and are more prone to error than time 

integrals such as strain, which rely on measures over a series of frames.   This is compounded 

by using time to peak methodology that is prone to estimation variance. Fourier 

transformation indexes such as CURE and RURE utilised in this study were designed to 

smooth out such errors by incorporating strain measures at over 7000 spatial and temporal 
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points, and chapter 4 demonstrates their excellent ability for discrimination between 

healthy controls and NICM patients (Taylor et al., 2014). 

Dyssynchrony assessment is intimately related to the temporal resolution of the acquisitions 

and the mean temporal resolution of cines in this study is < 3-4x the suggested optimum for 

STE. Whilst it is plausible that increased temporal resolution would improve our markers’ 

clinical value, this alone should not explain the failure of CURE or RURE to act as predictors 

of response. Our temporal resolution is typical of standard CMR acquisitions, and higher 

than that used in a study by Bilchick et al., who reported that CURE derived from myocardial 

tagging could predict symptomatic response.  Our findings are also in difference to the 

MUSIC (Multicentre study using strain delay index for predicting response to cardiac 

resynchronization therapy) study where a contractile reserve approach to dyssynchrony 

assessment, using STE derived longitudinal strain, had a positive and negative predictive 

value of 80% and 84% above a SDI threshold of 25% (Lim et al., 2011). 

Further support that FT-CMR derived dyssynchrony is a valid technique comes from 

demonstration of its clinical utility in a recent Italian study, where it was used to provide 

incremental value to SSFP imaging for the diagnosis of Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) (Prati et al., 2015). RV dyssynchrony measures based on the SD of 

time to peak strains had an AUROC of 0.80 to differentiate between true ARVC and patients 

with more benign RV outflow tract arrhythmias, even in patients who had an absence of 

conventional CMR criteria for diagnosing ARVC (Marcus et al., 2010). 
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Whilst failure of multi-study trials such as PROSPECT (Chung et al., 2008) and EchoCRT 

(Ruschitzka et al., 2013) to demonstrate a role for dyssynchrony testing to aid patient 

selection may relate to the inability of operators to obtain the various measures, and high 

inter-operator variability, there may be a more fundamental floor in the concept of 

dyssynchrony testing. Response is a difficult entity to measure, and it is dependent on the 

interplay of multiple factors. The notion of a simple parameter that predicts response 

overlooks the contribution of lead position, underlying myocardial substrate, device timing 

optimisation, RV function, valvular incompetence and comorbid states such as anaemia and 

renal dysfunction. A final possibility is that baseline mechanical dyssynchrony is not a pre-

requist to derive benefit from CRT. This theory is supported by MADIT-CRT, where the 

relationship between baseline dyssynchrony and benefit was not linear. Those with the 

greatest dyssynchrony pre-implant fared worse than those with mild-moderate 

dyssynchrony (Kutyifa et al., 2013).     

7.4.3 Atrial fibrillation, CRT and dyssynchrony 

There is a paucity of data to confirm the benefit of CRT in patients with AF, primarily due to 

their under representation in clinical studies. The percentage of biventricular pacing is a key 

determinant of success following CRT (Hayes et al., 2011), this is sub-optimal in the setting of 

AF as irregular and faster ventricular rates result in intrinsic ventricular activation as well as 

fusion and pseudofusion. Furthermore, in AF the loss of atrial transport restricts benefits to 

improved inter-ventricular and intra-ventricular co-ordination, whereas patients in sinus 

rhythm also benefit from improved atrio-ventricular synchrony. Nonetheless, national  

(NICE, 2014) and international  (Brignole et al., 2013) guidelines have been updated to 
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allocate CRT to AF patients with the same clinical indications as those in sinus rhythm, 

reflecting widespread consensus of the benefit in this patient population and corroboration 

from a meta-analysis of prospective cohorts (Upadhyay et al., 2008). European registries 

show that a quarter of CRT recipients are in AF, this has remained uniform over the last 

decade (Dickstein et al., 2009; Dickstein et al., 2018). Accordingly, it is important not to 

restrict patients with atrial fibrillation from research in this field. 

The majority of research in the field of dyssynchrony has excluded patients with AF. It must 

be considered that AF may interfere with the accuracy of dyssynchrony assessment. FT-CMR 

has been validated against STE for radial based time to peak methods, but patients in atrial 

fibrillation were excluded (Onishi et al., 2013). Such patients pose a greater concern in CMR 

studies as in difference to echocardiography, which makes use of real time imaging, 

acquisitions are periodic with a cine loop reconstructed from ECG gated data over several 

cycles. Fourier-based dyssynchrony assessment is likely to be most at risk of diminished 

quality in AF as these incorporate diastolic frames into the total index score, but these are 

likely to be preferentially hindered with prospective gating at R-R intervals shorter than the 

longest seen, as was employed in this cohort. Nonetheless, there was an even spread of 

atrial fibrillation between responders and non-responders, and analysis within the sinus 

rhythm sub-cohort failed to reveal any benefit of dyssynchrony assessment.   
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7.4.4 LV function as a predictor of outcome 

The landmark pharmacotherapy trials demonstrate that lower LVEF is associated with 

reduced survival in HF (Quinones et al., 2000; Solomon et al., 2005; Wong et al., 2004). This 

study suggests that CRT does not break this relationship.  

The predictive value of a parameter will naturally be affected by the precision with which it 

can be measured, and this is the probable explanation for LVEF having greater univariate 

predictive power when derived by CMR as opposed to with 2DE. 2DE volumetric analysis 

relies on the geometric modelling of the LV as a prolate ellipsoid, and this assumption loses 

validity in the remodelled ventricle. 

Higher baseline values of all three axial strains predicted survival after CRT implantation, and 

their summation produced a powerful predictor. It is not surprising that Ɛ3D and LVEF predict 

outcome independently, as whilst they correlate in healthy controls, there is discordance 

between them in the failing heart (Delgado et al., 2008). This stems from the unique yet 

complimentary detail on cardiac function they convey. LVEF is a marker of cardiac output 

and is influenced by the compensatory neurohumoral and systemic vascular responses. In 

difference, myocardial strain is a purer gauge of the myocardium’s contractile function. In 

this respect, global strain measures are affected by the degree of myocardial scarring 

(Becker et al., 2006b), and this is reflected in the survival modelling. LVEF and ischaemic 

aetiology are strong independent predictors of outcome, but when Ɛ3D is utilised as an 

alternative functional measure, it carries a greater weight than LVEF and ischaemic aetiology 

combined (Figure 7-5).
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Figure 7-5.  Multivariate analysis illustrating the incremental value of LV functional measures and ischaemic aetiology when modelling survival 
from cardiac mortality and heart failure hospitalisation. 
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These findngs are in accord with a model to predict survival in a population of 546 all-

comers, attending an echocardiography department for LV function assessment. The 

addition of either LVEF or Ɛll added substantial predictive power, but the latter provided 

greater incremental power (Stanton et al., 2009). Comparable findings are reported in the 

modelling of populations with a less diverse spread of LV function, such as those with HFrEF 

(Mignot et al., 2010), or preserved LVEF post MI (Ersboll et al., 2013). 

7.4.5 Baseline dyssynchrony as a predictor of outcome 

Patients with the greatest dyssynchrony as measured by either RURE or SDI16 had a greater 

event rate even despite resynchronisation. This may reflect that greater dyssynchrony is one 

manifestation of more advanced heart failure. However, that patients with the greatest 

myocardial inefficiency according to the SDI16 had poorer outcomes even despite CRT is in 

difference to the findings of Kydd et al. who reported that higher pre-implant SDI was 

associated with improved outcomes over a 2 year follow-up (Kydd et al., 2013). It is intuitive 

that wasted work is directly associated with poorer long term outcomes, and in MUSIC, 

although this metric was reduced post-implant in responders, it remained higher than in 

those who had minimal wasted work pre-implant (Lim et al., 2011). Conceivably, the 

quantification of wasted work post CRT is a better determinant of outcome, and as yet no 

study has evaluated this relationship.   

7.4.6 CRT and moderate LVSD 

Clinical studies to test whether CRT is a viable proposition for those with more moderate LV 

systolic dysfunction may prove implausible due to the long follow-up period required as 
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exemplified by the failure of MIRACLE EF.  However, in this study, where CMR has been used 

to re-classify 15 patients as having moderate LVSD,  this group showed improved rates of 

LVRR and symptomatic response compared to those with confirmed severe LV systolic 

dysfunction, although small numbers prevent meaningful statistical analysis. This sub-group, 

as anticipated, had an exceptionally low event rate. 

These findings corroborate a subgroup analysis of the 696 patients in MADIT-CRT who were 

adjudged to have more moderate LVSD, where the best remodelling response was seen in 

the least impaired ventricles (Kutyifa et al., 2013). The availability of a control arm in this 

study shows that this group also saw the greatest protection from hospitalisation and death 

(HR: 0.56).  Similarly, an observational study of 520 patients, which defined HF remission as 

improvement to NYHA class I functional status and a normalisation of LVEF (to >50%), found 

that greater function at baseline was a predictor of remission (Gasparini et al., 2008). 

7.4.7 Limitations 

The main limitation is that this is a single-centre study which includes only a moderate 

number of patients. As FT-CMR is applied to standard acquisitions it has the capacity to 

study retrospective cohorts. A drawback to this is that the cine images were not optimised 

for this purpose and it is indeterminable as to whether greater temporal resolution would 

have improved the value of dyssynchrony testing.  Unfortunately, we have not systematically 

collected data on QRS morphology, and this may have had an influence on response. 
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As no dyssynchrony parameter has a proven clinical utility, selecting an adequate sample 

size to test novel indices is challenging. However, the presence of pre-implant dyssynchrony 

has been shown to predict response in single centre studies, and the magnitude of the 

difference in dyssynchrony between responders and non-responders, seen when analogous 

parameters to those herein were calculated with STE, suggests that this study cohort was of 

ample size.  64% and 84% differences in baseline dyssynchrony have been observed between 

echocardiographic responders and non-responders using SDI16 (Lim et al., 2011) and time to 

peak methodologies (Tanaka et al., 2010) respectively in similar sized cohorts. 

7.5 Conclusions 

In this study, FT-CMR derived dyssynchrony variables were not useful in predicting LV 

reverse remodelling or symptomatic improvement in patients undergoing CRT. Greater 

dyssynchrony at baseline as measured by RURE and SDI16 predicted a higher subsequent 

event rate. Baseline functional assessment with CMR was a better predictor of long term 

outcomes following CRT as compared to 2DE derived measures. For CMR measures of LV 

function, myocardial strain was a more powerful predictor of outcomes than LVEF.  
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8 LEFT VENTRICULAR LEAD POSITION, MECHANICAL ACTIVATION, AND 

MYOCARDIAL SCAR IN RELATION TO LEFT VENTRICULAR REVERSE REMODELING 

AND CLINICAL OUTCOMES AFTER CARDIAC RESYNCHRONISATION THERAPY: A 

FEATURE-TRACKING AND CONTRAST-ENHANCED CARDIOVASCULAR MAGNETIC 

RESONANCE STUDY 

Principal hypothesis: The deployment of the LV lead over non-scarred segments with LMA, 

assessed using LGE-CMR and FT-CMR, is associated with increased likelihood of a LVRR 

response from CRT. 

8.1 Introduction 

CRT is a standard treatment for patients with HF, impaired LV systolic function and a wide 

QRS complex. In addition to prolonging survival (Bristow et al., 2004; Cleland et al., 2005), 

CRT reduces HF hospitalisations and improves symptoms, including exercise capacity and 

quality of life (Abraham et al., 2002; Bristow et al., 2004; Cleland et al., 2005). As with any 

other therapy (Foley et al., 2009b), CRT leads to a variable treatment response. This has led 

to the concept of 'non-responders' (Molhoek et al., 2002).  

Whilst patient selection is important in reducing 'non-responders', the response to CRT is 

still variable and unpredictable, even when the LV lead is deployed in fluoroscopically 

'optimal' LV pacing positions. This variability is not surprising, as fluoroscopy is opaque to 

biological properties of the LV myocardium. Echocardiographic studies have suggested that 

better LV resynchronisation, LV reverse remodeling and clinical outcomes after CRT can be 
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achieved by pacing the 'latest mechanically activated' (LMA) LV segments (Khan et al., 

2012a; Saba et al., 2013). FT-CMR has been validated against the gold-standard of CMR-

tagging for the assessment of myocardial deformation (chapter 2) (Moody et al., 2015).   

Studies using LGE-CMR (Chalil et al., 2007a; Chalil et al., 2007c; Leyva et al., 2011) and 

nuclear scintigraphy (Adelstein et al., 2007) have shown that myocardial scarring in the 

segment subtended by the LV lead leads to a suboptimal response to CRT. These findings are 

consistent with the observation that pacing scar is associated increased duration 

(Schwartzman et al., 1999) and fragmentation of the QRS complex, as well as suboptimal 

resynchronisation. (Bleeker et al., 2006b) Moreover, myocardial scars are not readily 

excitable (Tedrow et al., 2004) and effectively reduce the volume of myocardium available 

for LV pacing (Breithardt et al., 2002). We hypothesized that deployment of the LV lead over 

non-scarred segments with LMA, assessed using LGE-CMR and FT-CMR, leads to a better 

LVRR response and outcome from CRT.  

8.2 Methods 

8.2.1 Study population and study design 

This study utilises the same historical CRT population recruited through the dedicated heart 

failure service at a single centre who were the subject of previous chapters. Inclusion and 

exclusion criteria are as described in 7.2.1.  Device therapy (5.2.2), CMR acquisition (5.2.3), 

follow-up (5.2.6) and study end-points (5.2.7) are as described in chapter 5.  
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8.2.2 Scar analysis 

The myocardium was divided into 16 segments (Cerqueira et al., 2002) and scar was 

recorded as present or absent in each segment based on visual assessment by an 

experienced observer (R.T.) using CVI42 software (Circle Cardiovascular Imaging Inc.,Calgary, 

Canada). Myocardial segments were considered scarred or not in a binary fashion; a 

segment was delineated as scar if it contained an area of enhancement >10% of the total 

segment area. 

8.2.3 Identification of site of latest mechanical activation 

FT-CMR (Tomtec Imaging Systems, Munich, Germany) of the basal, mid and apical short axis 

slices was undertaken as previously described 3.2.4. In contrast to speckle-tracking 

echocardiographic studies (Khan et al., 2012b; Saba et al., 2013), which have employed 

radial strain to define LMA, this study used circumferential strain on the basis of previous 

validation against CMR-tagging (chapter 2)(Hor et al., 2010; Moody et al., 2015), and a 

superior reproducibility (chapter 1) (Morton et al., 2012; Taylor et al., 2015). On the basis of 

an initial validation study (Appendix 2: FT-CMR derived myocardial strain as a surrogate for 

scar), a cut-off of -6.3% was selected to favour specificity for scar rather than sensitivity, as 

the latter was more optimally provided by LGE-CMR. The LMA segments were those with the 

latest peak systolic circumferential strain within the imaged cardiac cycle (as a percentage of 

the R-R interval). Only the 11 free wall segments were considered. Segments with a peak 

systolic circumferential strain above zero or between zero and -6.3% were excluded from the 

LMA analysis.  
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8.2.4 Lead positions 

The final position of the LV lead was assessed using the 30o right anterior (RAO) and left 

anterior (LAO) fluoroscopic projections at the time of implantation by an investigator who 

was blinded to all other study data. According to Albertsen et al. (Albertsen et al., 2005), the 

30o RAO projection was used to identify the long-axis position of the LV lead (basal, mid or 

apical) and the 30o LAO projection was used to identify the circumferential position 

(anterior, anterolateral, posterior, posterolateral or inferior). In addition, the LV lead tip was 

mapped to a specific segment based on the AHA 16-segment model. Concordance was 

defined as a LV lead position that met two criteria: i) subtended a non-scarred segment, ii) 

subtended LMA or the adjacent segment. Non-concordance was defined as LV lead tip 

position in scarred and/or earlier-activated segments (Figure 8-1). 

8.2.5 Statistical analysis 

Categorical variables are expressed as a percentage and continuous variables as mean ± SD. 

Normality was tested using the Shapiro-Wilk test. Comparisons between concordant and 

non-concordant lead positions were made using independent samples t-tests for continuous 

variables and either Chi-squared test or Fishers exact test for categorical variables (when the 

expected cell count was less than 5). Within-group comparisons were made using paired 

sample t-tests. Predictors of LVRR were analysed using logistic regression. The influence of 

LV lead position in relation to outcomes was assessed using Kaplan-Meier survival curves, 

the log-rank (Mantel-Cox) test and Cox proportional hazard analyses. Statistical analyses 

were performed using SPSS v21.0. (SPSS Inc. Chicago, Illinois). A p value of < 0.05 was  
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Figure 8-1. Left Ventricular Lead Position, Scar and Mechanical Activation.  

Panel A shows circumferential strain (%) curves over one cardiac cycle, derived using FT-CMR. Segments with a peak circumferential strain above zero or between 
zero and -6.3% were considered scarred and excluded (gray zone) from analysis of LMA. Segments with a peak strain ≤-6.3% included the basal anterior and 
lateral, and the mid anterior and lateral (green boxes). Out of these, the basal lateral segment is the latest to reach peak systolic strain and was selected as the 
LMA segment. Panel B shows short-axis LGE-CMR images, from LV base to apex, with myocardial scar showing in white. Panel C shows the final fluoroscopic LV 
lead position in a mid lateral segment, at a 1 o’clock position on the left anterior oblique [LAO] view and mid position on the right anterior oblique [RAO] 
views)(white arrows), which is considered concordant (non-scarred segment adjacent to the LMA segment).   
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considered statistically significant. Variables reaching p<0.10 on univariable analyses were 

entered into multivariable models. 

In TARGET, a guided approach led to a 15% increase in LVRR compared to the control arm 

(70% vs 55%).  Accepting β= 0.2, 160 patients would be required to replicate a similar 

finding; 89 patients power this study to demonstrate a 20% difference in LVRR (70% vs. 

50%). However, substantially greater benefit was anticipated in this study which compared 

LV concordance against non-concordance; the 15% improvement in LVRR in TARGET was 

seen despite LV concordance only being achieved in 63% with an echocardiographic guided 

approach, compared to 47% of controls. 

8.3 Results 

8.3.1 Baseline characteristics  

As shown in Table 8-1, patients were 66.8 ± 10.8 yrs old (mean ± SD), 67 (75%) were male 

and in 50 (56%), HF was ischaemic in aetiology. The QRS duration was 149.0 ± 25.7 ms and 

the LVEF was 23.1±9.9%. No differences emerged with respect to age, gender, NYHA class, 

co-morbidities, pharmacologic therapy or baseline LV function between patients with 

concordant or non-concordant LV lead positions. Patients with concordant LV lead positions 

had a wider QRS complex (155.3 ± 28.4 vs 143.0 ± 21.4 ms, p=0.02). The LV lead was 

positioned over ‘no scar’ in 71 patients (80%) and over a LMA segment or adjacent segments 

in 57 (64%). Concordant LV lead positions were found in 44 (49%) patients.    
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Table 8-1. Baseline Characteristics 

 All 
(n = 89) 

Concordant 
(n = 44) 

Non-concordant 
(n= 45) 

P 

Demographics     

Age, yrs 66.8 ± 10.8 68.4 ± 11.6 65.3 ± 9.9  0.17 

Gender (male), n (%)  67(75) 30 (68) 37 (82) 0.13 

Aetiology (ischaemic), n (%) 50 (56) 20(45) 30(67) 0.04 

NYHA class  
    II 
    III 
    IV 

 
4 (5) 
67 (75) 
18 (20) 

 
1 (2) 
31 (70) 
12 (27) 

 
3 (7) 
36 (80) 
6 (13) 

0.19 

QRS duration (ms)   149.0 ± 25.7 155.3 ± 28.4 143.0 ± 21.4  0.02 

Echocardiographic LVEF * 23.1 ± 9.9 23.5 ± 10.7 22.7 ± 9.2 0.71 

Comorbidities, n (%)     

Diabetes mellitus  13 (14) 6 (14) 7 (16) 0.80 

Hypertension  17 (22) 11 (25) 6 (13) 0.16 

Atrial fibrillation 17 (19) 9 (20) 8 (18) 0.75 

CABG 18 (20) 11 (25) 7 (16) 0.30 

Medication, n (%)     

Loop diuretics  72 (81) 37 (84) 35 (78) 0.45 

ACE-Is or ARBs 81 (91) 39 (89) 42 (93) 0.44 

Beta-blockers  53 (60) 27 (61) 26 (58) 0.73 

MRAs 39 (43)  20 (45) 19 (42) 0.76 

CMR variables     

LVEDV, ml 255.1 ± 100.3 256.4 ± 106.4 253.7 ± 94.6 0.90 

LVESV, ml 204.4 ± 98.1 204.7 ± 104.7 204.2 ± 92.4 0.98 

LVEF, % 22.4±10.0 22.7 ± 10.7 22.0 ± 9.5 0.76 

Fluoroscopic LV lead position     

Longitudinal position 
  Basal 
  Mid 
  Apex 
Circumferential position 
  Anterior 
  Lateral 
  Posterior 

 
61 (69) 
27 (30) 
1 (1) 
 
8 (9) 
48 (54) 
43 (48) 

 
27 (61) 
16 (36) 
1 (2) 
 
3 (7) 
21 (48) 
20 (45) 

 
34 (76) 
11 (24) 
0 (0) 
 
5 (11) 
17 (38) 
23 (51) 

0.26 
 
 
 
0.57 

Latest contracting segments     

    Basal 
    Mid 
    Apex   

50 (56) 
26 (29) 
34 (38) 

25 (57) 
18 (41) 
17(39) 

25 (56) 
8 (18) 
17 (38) 

0.90 
0.02 
0.94 

p values refer to differences between the groups: no scar and late contraction (LC) or scar and earlier 
contraction (EC) at the paced left ventricular segment. CABG = coronary artery bypass graft operation; ACE-Is 
= angiotensin-converting enzyme inhibibitors; ARBs = angiotensin receptor blockers; MRAs = 
mineralocorticoid receptor antagonists; LVEDV = left ventricular end-diastolic volume; LVESV = left 
ventricular end-systolic volume. 
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8.3.2 LVRR 

In the entire cohort, 41/89 (46%) exhibited LVRR at 6 months.  As shown in Table 8-2, LVRR 

was observed in patients with a concordant LV lead position (∆LVESV = -56.3 ml, p<0.001), 

but not in patients with non-concordant positions (∆LVESV = -0.1 ml, p=0.62) (p = 0.003 for 

group difference) (Figure 8-2). This corresponds to a LVRR rate of 30/44 (68%) patients with 

concordant LV lead positions and11/45 (24%) in patients with non-concordant positions. 

Similarly, LV lead concordance was associated with a reduction in LVEDV (∆LVEDV = -55.6 ml, 

p<0.001), but no change was observed in patients with non-concordant positions (∆LVEDV 

=+2.1 ml, P= 0.68) (p=0.006 for group difference). In addition, an increase in LVEF was 

observed with concordant but not non-concordant LV lead positions (7.05 ± 12.5 vs 0.23 ± 

11.8%, p=0.006 for group difference). 

In univariable regression analyses (Table 8-3) LV concordance emerged as a predictor of 

LVRR (OR: 6.62, 95% C.I. 2.61-16.79). When LMA was considered in isolation, LMA in the 

paced segment or adjacent segments predicted LVRR (OR: 3.27; 95% C.I. 1.29-8.30). When 

scar was considered in isolation, ‘no scar’ failed to emerge as a predictor of LVRR. Age, 

gender, HF aetiology, QRS duration and LVEF did not emerge as predictors.  

In further analyses of the group of patients with concordant LV lead positions, LV lead 

concordance exactly over a segment with LMA was associated with more marked LVRR 

(18/20 [90%]; ∆LVSV = -84.0 ml, p< 0.001; OR: 18.9 (95%C.I. 3.84-84.31), p<0.001). 
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Table 8-2. Clinical and Echocardiographic Measures According to LV lead position. 

 
Concordant 
(n = 44) 

Non-concordant 
(n = 45) 

P 

NHYA 
Baseline 
Follow-up 
Change 
 
 
NYHA responders, n (%) 

 
3.25 ± 0.49 
1.98 ± 0.70 
1.27 ± 0.73 
p< 0.001* 
 
38(86) 
 

 
3.07 ± 0.45 
2.09 ± 0.85 
0.98 ± 0.81 
p< 0.001* 
 
32 (71) 

 
 
 
0.08 
 
 
0.08 

6MWD, m 
Baseline 
Follow-up 
Change  
 

 
246.3 ± 109.3 
323.7 ± 125.6 
70.0 ± 76.0 
p< 0.001* 

 
278.0 ± 105.2 
306.7 ± 110.6 
27.2. ± 72.5 
p= 0.04* 

 
 
 
0.03 

LVEDV,ml 
Baseline 
Follow-up 
Change 
 

 
296.0 ± 115.1 
240.4 ± 116.9 
-55.6 ± 104.3 
p< 0.001* 

 
255.6 ± 90.7 
260.7 ± 88.4 
2.07 ± 82.3 
p= 0.68* 

 
 
 
0.006 

LVESV,ml 
Baseline 
Follow-up 
Change 
 
 
LVRR  ** 

 
232.2 ± 107.2 
179.6 ± 104.7 
-56.30 ± 93.4 
p< 0.001* 
 
30 (68) 

 
198.9 ± 78.5 
204.2 ± 76.7 
-0.10 ± 79.8 
p= 0.62* 
 
11 (24) 

 
 
 
0.003 
 
 
<0.001 

LVEF, % 
Baseline 
Follow-up 
Change 

 
23.5 ± 10.7 
30.5 ± 10.4 
7.05 ± 12.5 
p= 0.001* 

 
22.7 ± 9.2 
23.0 ± 9.4 
0.23 ± 11.8 
p= 0.83* 

 
 
 
0.006 

 

*  refers to p value for within-group changes at 6 months.  

** left ventricular reverse remodeling (LVRR) defined as a 15% reduction in LVESV from baseline 
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Figure 8-2. Clinical and Left Ventricular Reverse Remodeling Response. 

This figure shows the clinical and LVRR response after CRT according to LV lead position.  
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Table 8-3. Logistic Regression Analyses of Predictors of LV Reverse Remodeling.  

 
Odds 
ratio 

95% C.I. P 

UNIVARIABLE ANALYSES    

  Age (yrs) 1.04 1.00-1.08 0.07 

  Gender (male) 1.03 0.40-2.72 0.95 

  Aetiology of HF (non-ischaemic) 0.99 0.43-2.30 0.99 

  QRS duration (ms) 1.01 0.99-1.02 0.54 

  LVEF (%) 
 

1.03 0.98-1.07 0.22 

Left ventricular pacing position    

  No scar in paced segment 2.60 0.86- 8.29 0.09 

  LMA in paced or adjacent segments 3.27 1.29-8.30 0.01 

  LMA in paced segment 6.09 2.00-18.58 0.001 

  Concordant LV lead position 6.62 2.61-16.79 <0.001 

    

MULTIVARIABLE ANALYSES    

  Model 1    

     Age (yrs)  1.04 0.99-1.08 0.09 

     No scar in paced segment 4.17 1.23-14.12 0.02 

     LMA in paced or adjacent segments 3.55 1.32-9.54 0.01 

  Model 2    

     Age (yrs) 1.03 0.98-1.08 0.24 

     No scar in paced segment 4.85 1.24-18.94 0.02 

     LMA in paced or adjacent segments 7.01 1.96-25.10 0.003 

  Model 3    

     Age (yrs) 1.03 0.99-1.08 0.17 

     Concordant LV lead position 6.28 2.45 -16.08 <0.001 
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8.3.3 Clinical outcomes.  

Over a 4.4 yrs (median; range: 0.1-8.7 yrs), 28 patients died from cardiac causes, including 1 

patient who underwent cardiac transplantation (8 deaths in concordant arm and 20 in the 

non-concordant arm). There were 3 HF hospitalisations in the concordant arm and 10 in the 

non-concordant arm. In Kaplan-Meier survival analyses (Figure 8-3) and Cox proportional 

hazards analyses (Table 8-4), patients with a concordant LV lead position had a lower cardiac 

mortality (Log Rank [LR] χ2 = 7.32, p= 0.007; adjusted odds ratio [aOR]: 0.27, 95% C.I. 0.12-

0.62) and a lower cardiac mortality or hospitalisations for HF (LR χ2: 8.31., p<0.004; aOR: 

0.26, 95% C.I. 0.12-0.58) than patients with a non-concordant LV lead position. When 

mechanical activation was considered in isolation, no difference emerged in these endpoints 

emerged between patients with LV lead positions over LMA segments or in remote 

segments. When scar was considered in isolation, a LV lead position over a segment with 

scar emerged as a strong predictor of cardiac mortality (LR χ2 = 21.3, p< 0.001; aOR: 0.24, 

95% C.I. 0.11-0.52) and cardiac mortality or hospitalisations for HF (LR χ2: 22.3, p<0.001; 

aOR: 0.24, 95% C.I. 0.12- 0.49).  

In terms of symptomatic response Table 8-2 shows that CRT was associated comparable 

reductions in NYHA class in patients with either concordant or non-concordant LV lead 

positions (both p<0.001). Similarly, an increase in 6MWT distance was observed in patients 

with concordant LV positions (p<0.001), and to a lesser extent in patients with non-

concordant positions (p=0.04). No differences in the composite clinical score was observed   
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Figure 8-3. Cardiovascular mortality and hospitalisations after CRT according to lead position. 

Kaplan-Meyer survival curves for cardiac mortality (a) and the composite endpoint of cardiac mortality or heart 
failure hospitalizations (b), according to characteristics of paced LV segment.  
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Table 8-4. Cox Proportional Hazards Survival Analyses 

 
 

Cardiac Mortality Cardiac Mortality / HF 
Hospitalisation 

 HR 95% C.I. P HR 95% C.I. P 

UNIVARIABLE ANALYSES 

Age (yrs) 1.04 1.00-1.07 0.046 1.03 1.00-1.06 0.08 

Gender (male) 2.10 0.72-6.05 0.17 1.90 0.73-4.91 0.19 

Aetiology of HF (ischaemic) 4.15 1.57-10.91 0.004 3.10 1.34-7.15 0.008 

QRS duration (ms) 1.00 0.98-1.01 0.78 1.00 0.98-1.01 0.57 

LVEF (%) 0.92 0.87-0.97 0.002 0.93 0.88-0.97 0.001 

Left ventricular pacing site       

 No scar 0.20 0.10-0.43 <0.001 0.22 0.11-0.44 <0.001 

 LMA in paced or adjacent segments  0.82 0.33-2.02 0.662 1.19 0.57-2.51 0.64 

 LMA in paced segment 1.16 0.52-2.57 0.713 1.37 0.65-2.89 0.42 

 Concordant LV lead position 0.34 0.15-0.77 0.01 0.35 0.17-0.74 0.006 

 

MULTIVARIABLE ANALYSES 

Model 1        

Age (yrs) 1.04 1.00-1.08 0.03 1.03 1.00-1.07 0.051 

LVEF (%) 0.93 0.88-0.98 0.004 0.93 0.89-98 0.003 

No scar 0.24 0.11-0.52 <0.001 0.24 0.12-0.49 <0.001 

Model 2       

Age (yrs) 1.06 1.02-1.10 0.002 1.05 1.02-1.09 0.003 

LVEF (%) 0.92 0.87-0.97 0.001 0.92 0.88-0.97 0.001 

Concordant LV lead position 0.27 0.12-0.62 0.002 0.26 0.12-0.58 0.001 
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(37/43 and 36/45, respectively, p = 0.45). As shown in Figure 8-2, a higher symptomatic 

response rate was observed in paced LV segments with LMA, and in segments with LMA and 

no scar, but this was not statistically significant. 

8.4 Discussion 

8.4.1 Major findings 

We have shown that in patients undergoing CRT, a concordant LV lead position was 

associated with marked LVRR and better clinical outcomes than a non-concordant position. 

In addition, LV lead concordance was associated with a 73% lower cardiac mortality and a 

74% lower cardiac mortality or hospitalisations for HF. When scar was considered in 

isolation, 'no scar' was associated with a 76% lower risk of both endpoints. When LMA was 

considered in isolation, no difference in either endpoint was observed, but LV lead positions 

over LMA was associated with marked LVRR.  

8.4.2 Myocardial scar 

This study has emerged in the context of the STARTER (Saba et al., 2013) and TARGET (Khan 

et al., 2012b) studies, which employed speckle-tracking echocardiography to identify 

segments with LMA prior to CRT device implantation. The findings of STARTER have been 

adopted in support for targeting segments with LMA. Whilst myocardial scar was not 

formally assessed, segments with low amplitude radial strain were handled as missing data, 

and therefore not offered to the implanter as a target for LV lead deployment. It follows 

that, by virtue of study design, segments which may have contained scar were most likely 

avoided by implanters. Therefore, it is possible that the findings of STARTER were at least 

partly attributable to scar. In this respect, the TARGET study (Khan et al., 2012b)  also 
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explored LMA as a target for LV lead deployment but in addition, a prospective evaluation of 

a surrogate of scar, defined < 10% radial strain, was undertaken. Whilst TARGET has also 

been interpreted as supporting the use of LMA as a target for LV lead deployment, the 

difference in outcome between the intervention and control groups could largely be 

explained by scar alone (Khan et al., 2012b). In the present study, we have found that a LV 

lead position over 'no scar', assessed using LGE-CMR, was associated with a 76% lower risk 

of cardiac mortality and the combined endpoint of cardiac mortality or hospitalisations for 

HF. In fact, the ORs for 'no scar' (0.24) and concordance (0.27) were almost identical, 

indicating that it is scar rather than LMA that primarily relates to clinical outcomes. 

8.4.3 Latest mechanical activation  

Intuitively, pacing segments with LMA should provide a more effective synchronisation than 

pacing earlier activated segments (Becker et al., 2007b). We have found that a LV lead 

position over segments with LMA is associated with marked LVRR, particularly when it is 

deployed exactly over the segment with LMA. When LMA was considered in isolation, 

however, it did not predict clinical outcomes. These findings further support our 

interpretation of the TARGET (Khan et al., 2012b) and STARTER (Saba et al., 2013) studies 

that it is myocardial viability rather than LMA at the paced LV segment that influences 

clinical outcomes. In this respect, we should consider that that speckle-tracking strain 

measures are not a reliable surrogates of myocardial scarring (Popovic et al., 2007). 

Accordingly, LV leads over LMA segments may actually be over scarred segments. 

8.4.4 Clinical implications 

This study provides further support for a role of CMR guiding LV lead deployment in patients 

undergoing CRT. The assessment of myocardial strain does not add value in predicting 
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cardiac mortality or HF hospitalisations, over and above the assessment of myocardial scar. 

Nevertheless, a LV lead position over LMA segments is associated with LVRR. Importantly, 

LGE-CMR is part of a routine CMR scan and FT-CMR does not require additional imaging. 

Using novel software, FT-CMR analysis can be performed using routine CMR images in under 

6 mins (Taylor et al., 2015). 

8.4.5 Limitations 

The main limitation is that this is a single-centre study which includes only a moderate 

number of patients. It is also an observational study and does not demonstrate that LV lead 

deployment guided by LGE-CMR and FT-CMR is superior to a fluoroscopic approach. 

Importantly, however, the assessment of myocardial strain was undertaken on pre-

implantation CMR scans which were analysed years later. Effectively, therefore, investigators 

were blinded to the findings of FT-CMR. Unfortunately, we have not systematically collected 

data on QRS morphology, which may have influenced our results. 

8.5  Conclusions 

In patients undergoing CRT, a LV lead position over non-scarred segments with LMA, 

assessed using CMR, was associated with marked LVRR and a better clinical outcome than 

deploying the lead over scarred and/or earlier activated segments. Clinical events were 

primarily related to scar, whereas LVRR was mainly related to LMA. These findings add 

support for the use of LGE- and FT-CMR in guiding LV lead deployment. 
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9 FUTURE STUDIES 

9.1 Summary of main findings 

This collection of investigations was undertaken in the context of exploring the potential for 

FT-CMR to be used to optimise the response to CRT. However, at the outset of this project, 

FT-CMR was an innovative technology with a published evidence base limited to two pilot 

studies. First and foremost a comprehensive validation was required. In a study comprising 

of healthy controls and patients with IDCM, as compared to the reference standard 

myocardial tagging, FT-CMR showed reasonable agreement for the derivation of global 

measures of circumferential and longitudinal systolic and diastolic strains. Agreement for 

systolic deformation parameters at the mid cavity was extremely precise, and although less 

robust, remained acceptable at the LV apex and base. Furthermore, excellent intra- and 

inter-observer variability was demonstrated for FT-CMR derived circumferential and 

longitudinal deformation parameters; a product of the largely automated tracking process. 

Additionally, FT-CMR was conducted in a fifth of the time of myocardial tagging. These steps 

were essential to justify further clinical or investigational utility.   

Left ventricular MWF, detected on LGE-CMR, occurs in a quarter of patients with IDCM, and 

predicts mortality. This work shows that midwall fibrosis is a powerful and independent 

predictor of mortality and morbidity after CRT. LVRR was observed in patients without, but 

not in those with, MWF. The LV midwall is the site of circumferential myocardial fibres, and 

FT-CMR analysis found MWF to be associated with a reduction in global systolic 

circumferential strain and strain rate, as well as torsion. In addition, MWF was associated 
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with rigid LV body rotation. These mechanical disturbances may explain the high risk of 

pump failure associated MWF.  

A retrospective study of patients undergoing CRT implantation has shown that no FT-CMR 

based dyssynchrony index derived from a pre-implant CMR predicts clinical or LVRR 

response. Greater dyssynchrony at baseline, as measured by either RURE or SDI16, was a 

predictor of a higher subsequent event rate, although not independently of other baseline 

variables. However, baseline LV function was a strong marker of outcomes, and Ɛ3D was 

more powerful than CMR volumetric analysis in this respect. When considering LV lead 

position, LVRR and better clinical outcomes occur in patients in whom the LV lead has been 

deployed in non-scarred late-activated LV myocardial segments.  

9.2 Limitations 

9.2.1 Validation of FT-CMR techniques 

Validation of any new modality against an accepted standard is a required starting point. 

Shortcomings of the FT-CMR validation study (chapter 2) include the exclusion of radial and 

segmental strains. Radial parameters had poorer intra- and inter-observer variability. 

However, they are less precisely evaluated by any deformation algorithm, as the small 

diameter of this dimension leads to a greater propensity for error. Myocardial tagging is not 

immune to this and would have been an unconstructive comparator. The exclusion of 

regional parameters was in the context of reports of suboptimal reproducibility, and our 

acknowledgement that these were being addressed by the manufacturer’s scientific 
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department. Although the pathological cohorts were tracked with the benefit of these 

enhancements, it is important to appreciate that FT-CMR remains less apt for determining 

motion components parallel to tissue boundaries.     

The torsional, dyssynchrony and LMA parameters used all lack prior validation against an 

accepted imaging modality.  This was not feasible within the time constraints of this project, 

but remains fundamental to the development of work in this field. As discussed below, a 

validation between STE and FT-CMR for some dyssynchrony indexes has been conducted.  

9.2.2 Study endpoints 

Several chapters explore the clinical potential for FT-CMR based analyses to enhance patient 

selection for CRT and guide implant. The raison d'être behind such investigation is to 

evaluate if the strengths of CMR as an imaging technique can overcome some of the 

limitations of echocardiography; thus there is an illogicality in the use of echocardiographic 

LVRR as a primary endpoint. Section 1.4.1.1 reviews limitations that have been reported in 

landmark CRT studies using Simpson’s biplane volumetric analysis. LVRR was performed by 2 

experienced and accredited physiologists, but these studies lack an assessment of intra- or 

inter-operator variability; it is thus difficult to quantify the risk of a type II error in some 

analyses such as the failure of dyssynchrony parameters to predict response.   

Nonetheless, LVESV is an attractive measure of CRT response as it incorporates not only LV 

reverse remodelling, but also function by virtue of any improvement in LVEF lowering LVESV. 

Accordingly, LVESV has been shown to be the strongest echocardiographic surrogate of long 
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term prognosis in both medical (Konstam et al., 1992) and CRT investigations (Yu et al., 

2005). Early CRT studies utilised a 15% reduction in LVESV as a marker of response (Stellbrink 

et al., 2001), and this has been adopted by hundreds of subsequent studies as the 

predominant metric of CRT response.  

These retrospective studies are constrained by the contemporaneous assessments 

conducted.  A prospectively designed trial could benefit from the reduced variability in 

LVESV measurement by using ultrasound contrast agents (Thomson et al., 2001) or 3DE 

(Thavendiranathan et al., 2013).  More attractively for studies designed to evaluate the role 

of CMR in this field, a future prospective study could now benefit from MRI conditional 

implants and pre- and post- implant CMR could facilitate LV volumetric analysis utilising the 

gold standard. Additionally, this would address a further deficiency of these studies, 

permitting post implant analysis of the FT-CMR metrics used.  

The other major class of response parameters are functional. Whilst the studies herein 

employed our validated composite clinical score, this was weighted towards recognising an 

improvement in NHYA class. This scale predominantly reflects the participants’ health status 

from the assessors’ perspective, not that of the patient. The validity of NHYA as a research 

tool is uncertain with little more than a 50% agreement between physicians in differentiating 

between NHYA class II and III (Raphael et al., 2007).  

A recent FDA guidance has suggests that HF trials move towards using clinically meaningful 

end-points; improvement in 6MWD and quality of life scores are advised as they 
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demonstrate clinical benefit and likely act as a surrogate for improved long-term outcomes 

(U.S. Department of Health and Human Services: Food and Drug Administration, 2015). 

However, a recent meta-analysis encompassing 83 heart failure trials found that in only half 

of studies where treatment provided a mortality benefit, there was an improvement in 

6MWD or peak VO2 during cardiopulmonary exercise testing. A trans-Atlantic consort of 

prominent investigators within the field have suggested combining 6MWD or quality of life 

scores with natriuretic peptides to produce consequential endpoints (Ferreira et al., 2016). 

9.2.3 Generic CMR acquisitions   

A major advantage of FT-CMR, the potential to access historical CMR acquisitions, is also the 

source of a major limitation. A number of the chapters make use of this, but these were not 

necessarily optimised to address the study question contributing to a risk of type II error.   

In the study of the predictive role of dyssynchrony assessment it is possible that the use of 

tailored acquisitions with higher temporal resolution would produce different findings. 

Recently, a London based research group reported good inter-study reproducibility for the 

computation of CURE, RURE and time to peak methodologies between the repeated exams 

in healthy volunteers. Uniformity ratio estimates derived with an analogous technique to 

that described in 4.2.3, had the lowest inter-study variability (Coefficient of Variance 6.4%–

8.5%). In difference, their prospectively planned acquisitions consisted of 30 phases per 

cardiac cycle, affording a superior temporal resolution of 25–35 ms (Kowallick et al., 2017). 

Onishi et al, also used similar temporal resolution when validating FT-CMR dyssynchrony 

against STE (Onishi et al., 2013).  However, in isolation improved temporal resolution would 



 

247 

 

reduce the ability of FT-CMR to track tissue motion due to smaller displacements between 

phases, unless matched by improved spatial resolution. The study by Kowallick et al, used a 

3T scanner which will have provided the necessary higher resolution.  

In the same cohort, Kowallick et al. demonstrated good reproducibility and minimal diurnal 

fluctuation when FT-CMR is utilised for the assessment of peak torsional parameters 

(Kowallick et al., 2016). The superior spatial and temporal resolution they employed was 

inadequate to resolve the problem of through plane motion causing loss of tracked features 

during the rapid isovolaemic relaxation phase; reproducibility of diastolic torsion was 

significantly less robust. Again, despite analogous methodology, differences in scanner 

strength and scan protocol raise doubt about the translation of their reported 

reproducibility to the torsional mechanics described in chapter 6.  

A further factor influencing diastolic assessment is differences in ECG gating between 

studies. The diseased populations had CMR studies as part of their routine clinical 

assessment and gating was at the discretion of the scan operator. The majority of patients 

underwent SSFP cine imaging with retrospective gating thus providing coverage of the full 

cardiac cycle. However, in a number of patients, including those in atrial fibrillation, cine 

images were acquired with prospective triggering, with loss of data from the end-diastolic 

portion of the cardiac cycle. Unfortunately, data on gating procedures was not systematically 

collected and this variable may have had particular influence on diastolic parameters and 

Fourier-based dyssynchrony assessment.   



 

248 

 

Future studies to assess the effect of spatial and temporal resolution on the precision of FT-

CMR measures are essential. Nonetheless, any consensus on the ideal acquisition technique 

must balance the risk of counteracting a major benefit that FT-CMR is utilised on routinely 

acquired SSFPs.  

9.2.4 Methodology for parameter assessment   

For some parameters, such as those of dyssynchrony, FT-CMR facilitates the derivation of 

such a vast array of indexes that measuring everything would have been excessively time 

consuming and testing them all in the CRT population and would have predisposed to a high 

risk of a number of false positive findings. The FT-CMR parameters calculated in each 

chapter were largely chosen with the benefit of the wealth of knowledge generated by the 

STE experience.  One difference was the use of circumferential rather than radial parameters 

to utilise the strengths of FT-CMR. However, STE studies that have demonstrated a 

predictive utility for dyssynchrony assessment have focused on radial mechanics, which also 

benefit from being the predominant contributor to systolic function. Similarly, STARTER 

(Saba et al., 2013) and TARGET (Khan et al., 2012b) used radial strains to both define LMA, 

and act as a surrogate for scar.  Albeit limited to assessment from the short axis mid-cavity, 

reasonable agreement has been reported between FT-CMR and STE radially based time to 

peak measures of dyssynchrony (Onishi et al., 2013).  The failure of SDT2P16 and SDI16 to 

predict response may be partly attributable to the decision to use circumferential segmental 

strains.  Nonetheless the RURE index, which was based on radial strain, was also inept to 

predict response (7.3.2).  Future validation studies to identify the optimal way to assess 

dyssynchrony using FT-CMR are required.  



 

249 

 

The evolved wisdom from STE has been to perform a number of repeated measures of 

deformation parameters that are subsequently averaged. All the studies reported herein 

calculate each parameter only once. This is in difference to a recent recommendation that 

reproducibility for FT-CMR parameters can be maximised with 3 repeated measures 

(Schuster et al., 2015).  

9.2.5 Observational design 

The investigations of CRT recipients are observational in design. Missing data due to ‘loss to 

follow-up’ has been described within the relevant chapters. An example of this was not 

having the follow-up echocardiogram performed on all patients to assess for LVRR, and it is 

possible that differential losses to follow up have biased some analyses. Blinding methods 

vary for different analyses and are not of the same rigor that would be feasible with 

prospective research. Nonetheless, whilst the operators performing the echocardiograms 

studies may have had some awareness of the patients’ clinical status, they are not believed 

to have been aware of patients’ MWF status and could not have been aware of FT-CMR data 

that was performed years later. Thorough blinding was conducted with FT-CMR analyses 

which were conducted on anonymised acquisitions.  

The historical cohort was taken from a single centre and only moderate in size; this leads to 

the possibility of some negative findings being attributable to statistical under-powering 

rather than the lack of a true effect. Finally, without a control arm, deductions of the 

benefits of CRT in patients with adverse prognostic features such as MWF or low baseline 
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strain cannot be made. Similarly, one cannot state that LV lead deployment guided by LGE-

CMR and FT- CMR is superior to a fluoroscopic approach. 

9.3 Future directions 

This work provides further evidence of a role for CMR in the prognostic stratification of 

IDCM patients undergoing CRT. My initial research plan had been to examine the mechanical 

effects of MWF both pre- and post CRT implant. A major obstacle was the inability to acquire 

2DE images of adequate temporal resolution and quality for STE, due to the sector widths 

required to image dilated hearts and ‘drop-out’ of the apical and anterolateral segments on 

the apical views. With the advent of CMR conditional CRT devices, FT-CMR offers potential 

to address this. This would be an important step in considering the ethics of planning a trial 

randomising patients with IDCM and MWF to either optimal pharmacotherapy or CRT.   

The final study shows that it is the avoidance of scar rather than targeting LMA that primarily 

relates to clinical outcomes; this is also a possible interpretation of the 2 recent randomised 

controlled echocardiographic studies examining target LV lead placement. This is important 

as LGE-CMR is superior to STE for identifying scar.  This study provides further support for a 

role of CMR guiding LV lead deployment in patients undergoing CRT, and this warrants 

further investigation in a multi-centre randomised study.  

The scope for utility of FT-CMR reaches far beyond the field of CRT. The assessment of LV 

function is key to clinical decision-making both within the field of cardiovascular medicine 

and beyond. At the outset of this project there was no consensus on the best practice for 
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using FT-CMR.  A combination of the best practice methodologies reported herein, coupled 

with the normal values from a population with a broad age range will form a platform for its 

use. Further manufacturers have recently released analogous applications and it is important 

to appreciate that normal values are likely to differ between platforms. An inter-vendor 

comparison of the Tomtec Imaging Systems (Munich, Germany) platform used herein with 

CVI42 software (Circle Cardiovascular Imaging Inc., Calgary, Canada) showed that newer 

application consistently calculated lower Ecc and with poorer reproducibility (Schuster et al., 

2015). However, CVI42 had superior reproducibility for Ɛrr. There is a need for industry 

compliance to make algorithms more visible, and to work towards a more standardised 

methodology; otherwise a lack of inter-vendor agreement will limit the clinical utility of 

feature tracking.   

A more readily accessible alternative to myocardial tagging with preserved accuracy will 

increase the utility of deformation assessment in the research environment. One in-house 

example of its use has been in a controlled observational research study examining the 

effects of living kidney donation on cardiovascular structure and function. These volunteers 

had formed the normal values population, and in view of the precision of FT-CMR 

deformation assessment this was used in preference to myocardial tagging to investigate the 

cardiovascular effects of unilateral nephrectomy in living kidney donors. Compared to 

controls, FT-CMR demonstrated a small but significant decline in peak systolic Ɛcc at one year 

contributing to the evolving picture that living kidney donation is not a benign state (Moody 

et al., 2016). 
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The FT-CMR variables evaluated through this collection of studies makes use of only an 

infinitesimal proportion of the data collected. At each phase, a tracked border has its spatial 

location registered within the software framework by 48 coordinate pairs. Considering a 

stack of 6 cines, this would represent 28800 data points just detailing short axis mechanics. 

Whilst CURE and RURE were designed to harness greater detail from this data, much of the 

subtlety is lost in Fourier transformation. To maximise the potential within the dataset, we 

are collaborating with the department of biomedical engineering with the goal of developing 

a computational model that predicts myocardial mechanics. Using the data sets from healthy 

controls, coupled with clinical parameters, the model will use finite element analysis to 

predict myocardial behaviour. The model will then be upscaled to incorporate pathological 

states with tissue characterisation provided by LGE-CMR to solve how the myocardium 

reacts to structural insults. The intention is to predict myocardial mechanical behaviour in 

response to a given stress, and to identify mechanical markers which predict greater time-

dependant predisposition to myocardial dysfunction with the goal of informing preventative 

and therapeutic decisions. 
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10 APPENDICES  

10.1 Appendix 1 - Patient cohorts    

 

Figure 10-1. Patient cohorts. 

This provides a visual representation of the overlap between healthy volunteers and patients between the different investigations. 

The participants from all three cohorts gave written informed consent, and the studies protocol conforms to the ethical guidelines of the 1975 Declaration of 
Helsinki as reflected in a priori approval by the National Research Ethics Service.   
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10.2 Appendix 2: FT-CMR derived myocardial strain as a surrogate for scar 

In TARGET and STARTER, strain assessment was used to guide LV lead placement. A 

preliminary pilot as part of chapter 8 involved determining whether FT-CMR derived 

myocardial strain below a specific threshold can act as a surrogate for scar.  

20 consecutive patients with angiographically documented coronary artery disease and 

conventional indications for CRT were prospectively recruited through a heart failure clinic.  

CMR acquisition (2.2.2) and scar imaging (5.2.4) were performed as described. Scar analysis 

was performed using CVI42 software. A segment with >10% LGE was considered scarred, and 

this was sub-classified on the basis of trans-mural extent, as being either sub-endocardial 

(<50%) or trans-mural (>50%). Non-scarred segments were sub-classified as being either 

adjacent or distant to scar (depending on the presence of a scar-free border of at least 1/3 of 

a segment’s width from a neighbouring circumferential segment). FT-CMR assessment of 

segmental peak Ɛcc was performed as described (3.2.4). Both scar assessment and strain 

quantification were performed by the same operator, but for both analysis platforms the 

scans were loaded in an anoymised and randomised manner. All analyses were in 

accordance with the American Heart Association’s 16-segment model. 

All 20 patients (62 ± 13 yr, 70% male) had multiple scarred segments; in total 126 (39%) of 

the 320 analysed segments had scar. Ɛcc did not discriminate between segments with sub-

endocardial or transmural scar (-4.9% vs -5.5%; p= 0.42). The mean Ɛcc of scarred segments 

was lower than that in non-scarred segments in 17/20 patients studied (Table 10-1). Overall 

Ɛcc was significantly lower in scarred myocardium compared to non-scarred myocardium (-
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5.3% vs. -9.2%, P<0.001). The magnitude of this difference was less when scarred segments 

were compared against segments adjacent to scar (-5.3 vs -7.6; p= 0.003).  

Ɛcc had an area under the ROC curve of 0.71 for discriminating between scarred and non-

scarred segments (Figure 10-2). At the Youden index (Youden, 1950), Ɛcc < -9.2% predicts 

scar with a sensitivity of 87% and specificity of 45%. This cut-off was felt to provide too great 

an emphasis on sensitivity over specificity. This cut-off would be prone to misclassify 

segments adjacent to scar as scar, preventing from them being classified as LMA.  Ɛcc < -6.3 

provides a cut-off with only minimal reduction in the vertical distance from the line of 

equality, but provides the cut-off closest to the (0,1) point (Perkins et al., 2006), predicting 

scar with a 67% sensitivity and 64% specificity. Favouring specificity rather than sensitivity 

was preferable as the latter was more optimally provided by LGE-CMR. 

 

Figure 10-2. Receiver operator characteristics for segmental Ɛcc to predict scar.  

At the cut-off closest to the (0,1) point X, Ɛcc predicts scar with a 67% sensitivity and 64% specificity   
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Table 10-1. Mean segmental Ecc in relation to myocardial scar. 

 
Patient 

Mean Peak segmental Ecc (%) P 
Scar Full thickness Subendocardial No scar Adjacent scar Distant Scar Scar vs. no scar 

1 -2.8 (5) -2.7 (4) -3.3 (1) -11.4 (11) -6.8 (5) -15.2 (6) 0.01 

2 -2.0 (5) -2.1 (2) -2.0 (3) -7.4 (11) -4.1 (4) -9.2 (7) 0.002 

3 -6.3 (7) -6.8 (3) -6.0 (4) -12.6 (9) -11.8 (2) -12.8 (7) 0.003 

4 -4.9 (8) -5.1 (6) -4.6 (2) -4.6 (8) -4.4 (7) -5.9 (1) 0.79 

5 -4.6 (5) -4.6 (5) - -7.1 (11) -5.8 (6) -8.7(5) 0.18 

6 -4.5 (7) -3.8 (6) -8.9 (1) -7.6 (9) -8.4 (8) -1.2 (1) 0.25 

7 -6.9 (5) -7.7 (4) -3.5 (1) -12.3 (11) -11.9 (5) -12.7 (6) 0.12 

8 -5.5(9) -5.4 (8) -6.2 (1) -7.5 (7) -7.2 (5) -8.2 (2) 0.43 

9 -1.9 (7) -2.1 (6) -0.8 (1) -9.3 (9) -6.8 (5) -12.4 (4) 0.005 

10 -7.6 (5) -7.6 (5) - -11.0 (11) -10.3(6) -12.0 (5) 0.30 

11 -5.7 (7) -4.4 (2) -6.2 (5) -10.0 (9) -6.4 (1) -10.4 (8) 0.01 

12 -6.1 (7) 7.0 (5) -3.8 (2) -10.5 (9) -9.5 (3) -11.0 (6) 0.21 

13 -5.1 (6) - -5.1 (6) -13.9 (10) - -13.9 (10) 0.007 

14 -4.6 (8) -1.3 (2) -5.6 (6) -6.4 (8) -3.0 (1) -6.9 (7) 0.33 

15 -5.3 (7) -5.3 (6) -5.7 (1) -5.5 (9) -4.8 (5) -6.3 (4) 0.93 

16 -12.1 (4) -12.9 (3) -9.9 (1) -8.4 (12) -8.2 (5) -8.6 (7) 0.26 

17 -2.5 (5) -2.5 (5) - -7.0 (11) -6.4 (2) -7.2 (9) 0.02 

18 -7.0 (9) -6.6 (6) -7.8 (3) -14.2 (7) -10.4 (3) -17.0 (4) 0.10 

19 -10.0 (5) -11.8 (4) -2.9 (1) -10.0 (11) -10.1 (5) -10.0 (6) 0.99 

20 -2.3 (5) - -2.3 (5) -7.8 (11) - -7.8 (11) 0.004 

Total -5.3 (126) -5.5 (82) -4.9 (44) -9.2 (194) -7.6 (78) -10.3 (116) <0.001 
 

The number of segments considered is indicated in parentheses 
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