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Abstract 

This thesis tested the hypothesis that immunosenescence contributes to reduced immunity 

to Streptococcus pneumoniae. The effect of age on neutrophil and monocyte responses to S. 

pneumoniae and on CD4+ T cell polarisation during health, pneumococcal carriage and 

clinical pneumonia infection were determined.  

Older adult’s neutrophils produced less ROS in response to serotypes 19A and 23F, but not 

4, and increased NETs towards 23F. However, neutrophils of older pneumonia patients 

produced high levels of ROS to all three serotypes but had impaired NET release. Older 

patients also had immature granulocytes and CD16highCD62Ldim neutrophils in blood. CCR2 

and CD11b expression, TNF-α and IL-6 production by monocytes were unaffected by age. 

Pneumococcal colonisation of the nasopharynx is an immunising event. The effect of age on 

carriage was tested using a human carriage model. Older adults had elevated Th1 and lower 

Th17 frequencies and failed to generate Th17 memory. During pneumonia, pro-

inflammatory subsets increased with age, but Treg frequency and function were maintained.   

In conclusion, failure of pneumococcal carriage to generate immune memory, together with 

altered neutrophil responses to S. pneumoniae and high frequencies of inflammatory Th 

subsets in older adults who succumb to infection, could contribute to their increased 

susceptibility to pneumococcal infection. 
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Chapter 1  

Introduction 
  



 2 

1.1 Streptococcus pneumoniae 

Streptococcus pneumoniae, also referred to as the pneumococcus, is a Gram-positive 

bacterium. It is a diplococcus species, encapsulated by a protective polysaccharide capsule. 

Variation in the capsule carbohydrate structure determines different serotypes, of which 

more than 90 have been identified [1].  

While the pneumococcus can inhabit the human nasopharynx as a commensal species, it can 

cause invasive and non-invasive diseases [2]. Serotype distribution varies worldwide, but 

approximately 20 serotypes are responsible for 70% of invasive pneumococcal disease [3]. In 

2017 S. pneumoniae was added to the list of 12 bacteria species on the new Global Priority 

List of Antibiotic-Resistant Bacteria of the World Health Organization (WHO) [4]. 

 

1.2 Pneumonia and ageing 

Pneumonia is a major cause of death that shows a remarkable age-related incidence, with 

those under 5 years and over 65 being the most susceptible [5] (Figure 1.1). Independent of 

age, S. pneumoniae is the main causative pathogen of community-acquired pneumonia 

(CAP) worldwide [6].  
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Figure 1.1. Cases of invasive pneumococcal disease by age and gender. Rate per 100 000 of 
confirmed cases in the European Union and European Economic Area, in 2016. The figure is taken 
directly from “Invasive pneumococcal disease. In: ECDC. Annual epidemiological report for 2016” by 
ECDC, 2018 (Ref 6). 

 

According to the World Health Organization [8], respiratory diseases are among the five 

major causes of premature death in people aged 60 years and over, with chronic obstructive 

pulmonary disease and lower respiratory infections among the most common causes of 

death in this age group [8–10]. Among lower respiratory infections in older individuals, CAP 

caused by S. pneumoniae is associated with a high mortality [11,12], which increases with 

advancing age, rising from 7.8% of deaths of people aged 65 to 69 years, to 15.4% in people 

aged 90 years or older [13]. Moreover, following discharge, older patients have a 16% 

reduction of quality-of-life and six-fold increased mortality within a year [14].  

Increased susceptibility of older adults to pneumonia is multifactorial [15], and includes lack 

malnutrition [16], smoking habits and coexisting medical conditions [17], such as diabetes, 

congestive heart failure, respiratory or renal diseases and cancer  [13], but also social 

factors, such as being resident in care or nursing homes [13,18]. 
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As a disease preventive strategy, two types of pneumococcal vaccines are in use today. 

These generate humoral protection against subsets of the 90 capsular serotypes, based on 

the immunogenicity of the polysaccharide capsule. The 13-valent protein-conjugated 

polysaccharide vaccine PCV13 (against serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 

and 23F) and the 23-valent polysaccharide vaccine PPV23 (against serotypes 1, 2, 3, 4, 5, 6B, 

7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F). PCV13 is 

recommended for children under 2 years and is a conjugated vaccine that uses CRM197, a 

nontoxic variant of diphtheria toxin, to elicit a T-cell-dependent response [5,19]. PPV23 

induces a T cell-independent response, generated by antibody-producing B cells, and is 

recommended for adults over 65 years [5,20]. 

These strategies reduce the incidence of invasive pneumococcal disease (IPD) in both 

children and adults [19,21]. However, although pneumococcal vaccines are effective in 

children, they have reduced efficacy in older adults [19,22]. Moreover, while IPD cases 

caused by serotypes in the PCV vaccines have declined suggesting that vaccination of 

children can elicit herd protection of adults [20,21], the introduction of PCV vaccines has 

changed the serotype distribution in vaccinated populations [23,24]. This has led to an 

increase in disease cases caused by non-vaccine serotypes [2,25], i.e.  19A, that was not 

present in PCV7 increased its distribution globally, until it was later added to PCV13 [2,26]. 

Also, reports from different countries show that serotypes 1, 3, 19A, 19F and 23F are 

commonly isolated in older adults during IPD and CAP cases [19,22,27–30], and that some of 

these serotypes, 1, 3 and 19A, were found in both bacteraemic and non-bacteraemic 

pneumonia [31].  
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1.3 Population ageing  

Life expectancy continues to increase, and in the coming decades the older population is 

expected to increase significantly across the developing and developed world. There were 

962 million people aged over 60 years in 2017 and this number is expected to more than 

double by 2050, reaching 2.1 billion [32]. For comparison, in the United Kingdom, 11.8 

million were aged 65 years, corresponding to 18% of the population in 2016 [33], while in 

Brazil, although 14.6% of the population was over 60 years of age in 2017, this percentage 

corresponds to 30.2 million people [34]. Of concern is that the increase of life expectancy 

may not be associated with increased healthy life expectancy and a recent paper suggested 

that the proportion of adults living with multimorbidity will increase significantly in the 

coming years [35]. The increase in lifespan thus represents a great achievement for medicine 

and public health, but the growth of this age group also raises concerns for health care 

services, as this sector of the population is at greater risk for many chronic diseases including 

life threatening infections such as pneumonia. Understanding the reasons for increased risk 

of infections could have great benefits for the individual and society.  

  

1.4 Immunosenescence 

In the last decade, it has become clear that the immune system undergoes changes during 

ageing that compromise its function and integrity, and this may be a major contributor to 

increased susceptibility to pneumonia in older adults [36]. This phenomenon, termed 

immunosenescence, encompasses phenotypical alterations and loss of function of a broad 

range of immune cells. 
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Age-related changes in parameters of the immune system have also been used a predictor of 

mortality in older adults, determined by the “Immune Risk Phenotype” (IRP). It includes a 

reduced CD4/CD8 ratio, infection by cytomegalovirus, and accumulation of CD8+CD28- T cells 

[37,38]. Conversely, longevity has been associated with preservation of a high CD4/CD8 ratio 

and a low number of CD8+CD28- T cells [38]. Haematopoietic stem cells also change with 

ageing, marked by lower self-renewal capacity and skewing towards production of myeloid 

cells [39,40].  

Alongside these changes, inflammaging, a low grade chronic inflammation that consists of 

raised serum levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8, IFN-γ, C-reactive 

protein (CRP)) and low levels of anti-inflammatory IL-10, is present in healthy older adults 

[37,41–44]. This rise in pro-inflammatory mediators has been associated with age-related 

increase risk of dementia [42,45], atherosclerosis [43], frailty [46,47], chronic diseases 

[44,48,49] and mortality [37] and is thought to be a major cause of the age-related 

phenotype.  

Age-related changes in the immune system are discussed in the sections below and 

summarised in Table 1.1. 

 

1.4.1 Ageing of the innate immune system 

Innate immunity encompasses both cellular and humoral elements as well as physical and 

chemical barriers that provide immediate host defence against pathogens and that undergo 

structural and functional changes with ageing. 
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1.4.1.1 Mucosal barriers and changes in the respiratory system with age 

Loss of integrity in mucosal barrier structure and function are associated with ageing. 

Changes in both nasal and lung epithelium in older adults can also contribute to 

susceptibility to S. pneumoniae [50,51]. These include reports of reduced nasal mucociliary 

clearance in older individuals, which delays clearance of airway spaces [52,53]. Aspiration of 

oropharyngeal secretion during sleep also contributes to transport of contaminated 

secretions to the lungs, and in older and debilitated individuals, such as dementia patients, 

can increase the risk of infection [18,54]. 

Levels of antimicrobial peptides human surfactant protein (SP) A and SP-D in the alveolar 

lining fluid of older adults and aged mice are increased, but hydrolase levels are reduced in 

the fluid [55], possibly compromising its protective function. Studies in aged mice 

demonstrated that lung tissue (blood vessel, bronchi and alveoli) have elevated A20 

production, a cytosolic inhibitor of nuclear factor kappa B (NFkB) and mitogen-activated 

protein kinase (MAPK) cascades [56]. NFkB regulates surface expression of Polymeric 

Immunoglobulin Receptor (pIgR) and Platelet-Activating Factor receptor (PAFr), which are 

elevated in lungs of aged mice [57,58], allowing increased binding of the pneumococcus to 

respiratory epithelium [58]. In humans, analysis of bronchoalveolar lavage of healthy older 

individuals revealed an age-related increase in absolute number and frequency of 

neutrophils in the air spaces, as well as higher levels of IL-8 and neutrophil elastase [59], 

providing more evidence that the air spaces undergo changes that may affect susceptibility 

to pneumococcal infections. 
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1.4.1.2 Complement system 

The complement system is a group of fluid phase proteins that via its activation promotes 

direct lysis of pathogens, opsonisation and production of anaphylatoxins C3a and C5a, 

inflammatory mediators produced by cleavage of C3 and C5 components. Studies concerning 

the effect of ageing on the complement system are few and contradictory. Serum levels of 

C3, C4 have been reported as unaltered [60] or increased with ageing [61,62]. Haemolytic 

activity of alternative and classic complement pathways in the elderly were comparable to 

young adults [60], but classical pathway activity has been reported as increased by other 

groups [61,62].  

 

1.4.1.3 Dendritic cells 

Dendritic cells are present at low frequencies in the blood, around 1% of peripheral blood 

mononuclear cells (PBMCs) [63]. Dendritic cells (DCs) are divided into two subsets, based on 

lineage predecessors: myeloid dendritic cells, the conventional DCs (mDCs), which express 

CD1c (mDC1), and a less frequent subset, identified by expression of CD141 (mDC2); and 

lymphoid-derived dendritic cells, plasmacytoid DCs (pDCs). mDCs can initiate activation and 

differentiation of naïve T lymphocytes following presentation of antigens, while pDCs have a 

role in anti-viral host response, through production of large quantities of type I interferon 

(IFN) [63]. 
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Despite the low frequency of DCs in peripheral blood, most studies in humans report 

findings in this tissue due to its accessibility. The effect of ageing on the frequency of mDC1 

is uncertain, as there are reports of reduced [64–66] or unaltered frequency [67–69]. 

Concerning pDCs, some studies report no changes in the frequency of this subset with 

ageing [66,68], but a larger number of studies demonstrate frequency reduction 

[64,65,67,70,71]. Low frequencies of both mDCs and pDCs in older individuals following 

immunisation with live-attenuated yellow fever (YF) vaccine were associated with low YF-

specific CD4+ and CD8+ T cells [65].  

mDC1 

A decline in stimulatory ability of DCs in old subjects has been proposed in the literature, 

demonstrated by poor induction of T cell proliferation in mice [72] and humans [65,73]. 

Additionally, upon activation of pattern recognition receptors (PRR) Toll-like receptors (TLR) 

1/2, TLR2/6, TLR3, TLR5 and TLR8, mDCs of old individuals produced lower levels of TNF-α, 

IL-6, IL-12(p40) and IFN-α [73,74]. In frail older adults, production of IL-12(p70) and IL-23 by 

DCs after TLR4 and TLR7/8 stimulation was also decreased, compared to young subjects [75]. 

Such age-related decline in mDC cytokine production was associated with reduced antibody 

levels following influenza vaccination [74]. However, expression of co-stimulatory molecules 

CD80 and CD86 were not affected by ageing [66,69,76,77].  

Phagocytosis and chemotaxis also decline in mDCs with ageing, and this defective function is 

associated with impairment of the phosphoinositide 3-kinase (PI3K) signalling pathway 

[68,72,78]. As PI3K is required for migration and phagocytosis and is a negative regulator of 
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TLRs, the authors suggest that altered PI3K function may underlie reduced DCs activities in 

aged subjects [68].  

 

 

mDC2 

mDC2, a subset of mDCs expressing CD141, are found in blood and tissues at very low 

frequencies, usually corresponding to 10% of the frequency of mDC1, and are distinct for 

their ability to cross-present antigens to CD8+ via major histocompatibility complex (MHC) 

class I and promote CD4+ T-helper 1 (Th1) responses via IL-12 secretion [79]. 

Studies of the effects of ageing on this subset are few. One report showed that distribution, 

migration and maturation of mDC2 in lung and intestines were conserved with ageing [80], 

but another study reported decrease of mDC2 frequency in the bloodstream of old 

participants [81]. 

pDCs 

Similar to mDCs, cytokine production by pDCs declines with age. pDCs of older adults 

produced lower levels of TNF-α, IL-6, IL-12(p40) and IFN-α in following activation of TLR7 and 

TL9 [74], and stimulation of pDCs with influenza virus generated lower levels of IFN- α, IL-6 

and TNF- α in old donors, compared to young [69]. Age-related decline in IFN-I and IFN-III 

production [70,82] was associated with impaired phosphorylation of the IFN regulatory 

factor (IRF)-7 transcription factor [82,83].  Lower levels of pDC-secreted IFN were associated 

with impaired induction of cytotoxic enzymes in CD8 T cell of old donors [82]. 



 11 

 

1.4.1.4 Monocytes and Macrophages 

Monocytes are among the main innate mediators of inflammatory response. They migrate 

from the bloodstream to infection or injury sites and promote antimicrobial activities, such 

as phagocytosis, killing and cytokine release. In the tissues, they differentiate into 

macrophages, and by production of cytokines alongside antigen presentation via MHC, can 

mediate functions in both innate and adaptive immunity. 

Overall monocyte frequency is reported as increased with ageing [64,66,84], but total 

numbers remain unaltered [84,85]. Based on surface expression of CD14 and CD16, 

monocytes can be divided into three subsets: the classical, CD14++CD16− subset, 

intermediate CD14+CD16+ and the non-classical CD14+CD16++. Classical monocytes 

correspond to 80-90% of the monocyte pool, are competent phagocytes and producers of 

reactive oxygen species (ROS). The intermediate phenotype corresponds to 2-8% of the pool 

and also mediates pro-inflammatory responses, ROS production and angiogenesis. Lastly, 

the non-classical subset, corresponds to 2-10% of the monocyte population, are producers 

of pro-inflammatory cytokines, but also of IL-10 [86,87]. With age, there is an increase of 

intermediate and non-classical monocytes [85,87–89], indicating a change in the proportion 

of classical to non-classical monocytes. 

Expression of adherence molecule CD62L and CX3CR1 in monocytes of old subjects is 

reduced with ageing [88,90], which could contribute to impaired chemotaxis [91]. 

Furthermore, monocyte phagocytosis [88,91] and ROS generation [92,93] are reduced with 

ageing. These functional declines could be attributed to age-related changes in TLR 

expression and signalling. Decreased expression of TLR1 and TLR4, but not TLR2, were 
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reported in monocytes from old compared to young adults, and decreased TNF-α and IL-6 

production was detected after TLR1/2 ligation [94]. Monocytes from advance-aged frail 

elderly showed impaired TNF-α, IL-6, IL-1β and IL-8 expression following stimulation with 

TLR2 and TLR4 agonists [64,95]. Stimulation of TLR4 and TLR7/8 in monocytes of older adults 

also generated lower IFN-α, IFN-γ, IL-1β, CCL20, and CCL8 [96]. Decline in cytokine 

production has been associated with reduced PI3K-AKT signalling [95], reduced 

phosphorylation of p65 NFκB, JNK and p38 MAPK [97], as well as lower cytoplasmic levels of 

Jun N-terminal kinase (JNK) and p38 [98] have been demonstrated. ‬‬‬‬‬‬‬‬‬‬‬‬ 

Moreover, monocytes of old individuals had TLR-induced expression of CD80 and CD86 

diminished [99], as well as decreased surface expression of HLA-DR (MHC class II) [85], which 

could contribute to an impaired antigen presentation and activation of T cells. 

Tissue macrophages are among the main phagocytic cells of the immune system, and the 

effect of ageing on these cells has been mostly reported in murine models. In aged mice, 

phagocytosis promoted by peritoneal macrophages was reported as reduced [100]. In 

macrophages from the spleen marginal zones of old mice, reduced phagocytosis was 

associated with lower expression of phagocytosis-promoting receptors MARCO and SIGN-R1 

[101]. In humans, reduced phagocytosis was reported in CD14+ monocytes of older 

individuals [88]. Ageing also impairs cytokine production in macrophages following TLR 

activation, with stimulation of TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 in macrophages 

producing lower levels of TNF-α and IL-6 [98,102] and lower production of pro-IL-1β 

following TLR4 activation [103].‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Furthermore, macrophages of aged mice had lower 

expression of MHC class II following stimulation with IFN-γ, compared to young mice and 

such alteration could contribute to impaired antigen-presenting function [104] 
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Alveolar macrophages have a distinct phenotype than interstitial macrophages, such as 

expression of CD11c and CD205, and have a higher ability to cross-present antigens than 

other macrophage populations [105,106]. In aged mice, decreased production of pro-

inflammatory cytokines by alveolar macrophages was linked to elevated presence of A20, a 

cytosolic suppressor of NFκB [56] and with lower phosphorylation of p65 NFκB, JNK and p38 

MAPK following TLR2 activation [97]. With ageing, alveolar macrophages showed reduced 

self-renewal in the lungs of aged mice, reduced phagocytosis of particles and of apoptotic 

neutrophils [107]. Also, adoptive transfer of alveolar macrophages from healthy young mice 

to old mice infected with influenza virus reduced lung damage in the later [107]. 

In the elderly, the absolute number of macrophages were elevated in bronchoalveolar 

lavage fluid [108]. In contrast, immunohistochemical analysis of lung tissue of patients with 

pneumococcal pneumonia showed older adults had lower frequencies of macrophages, 

compared to young patients [109]  

 

1.4.1.5 Neutrophils 

Neutrophils originate from myeloid-derived precursors and are the most abundant leukocyte 

in the blood. They are the first immune cells to arrive at the site of injury and infection and 

capture a wide range of microorganisms and mediate different bactericidal functions. As fast 

responders to antigens, neutrophils are an early source of pro-inflammatory cytokines, 

which mediate activation of other cell types and modulate the microenvironment [110]. 

Production 
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Under physiological conditions, neutrophils are short-lived cells with an 8-hour half-life in 

the circulation and are produced at a range of 1-2x1011 cells per day by the bone 

marrow [110]. Production is regulated by granulocyte colony stimulating factor (G-

CSF) [111], and while the numbers of neutrophil precursors in the bone marrow are not 

reduced with ageing, proliferative activity following G-CSF is reduced, whilst proliferation 

with GM-CSF and IL-3 stimulation remain similar to young [112]. The number and frequency 

of circulating neutrophils are unaltered with ageing under physiological conditions 

[38,85,113], and neutrophilia during infection is comparable to that of young subjects [114]. 

However, there is evidence that centenarians have higher numbers of circulating 

neutrophils, in comparison with 55 years old adults [38]. 

Neutrophil heterogeneity  

During health, the neutrophil pool comprises mostly of mature, CD16+ neutrophils [115]. 

Neutrophils age in the time they circulate in the bloodstream [116], and migration from and 

to the bone marrow is controlled by CXCR2 and CXCR4 [116]. Aged neutrophils have 

increased phagocytosis and ROS production [117]. During sepsis or systemic inflammatory 

response syndrome (SIRS), the bone marrow intensifies the production of neutrophils and 

the frequency of immature neutrophils, expressing CD16dim and with hyposegmented 

nuclear morphology, increases [115]. In recent years, a new population of neutrophils was 

identified in the blood of adults after LPS challenge and severe injury, which expressed 

CD16bright/CD62Ldim and hypersegmented nuclear morphology [118]. However, whereas this 

phenotype had only been found in injured patients or during endotoxin challenge [118–120] 

a recent study found this population in the circulation of healthy older adults [121], 

indicating that ageing also affects the circulating neutrophil pool. 
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Migration 

During infection, neutrophils leave the circulation to migrate towards the inflamed site. 

Neutrophil adherence to activated endothelial cells is mediated by integrins CD11b and 

CD11a, whose expression on the surface of neutrophils in older subjects has been reported 

as unchanged [121–123] or increased [124]. In contrast, chemotaxis is reduced in 

neutrophils of older adults towards a wide range of stimuli: including the chemokines IL-8 

[124–126], LTB4, C5a and CXCL1 [126] and chemoattractants lipopolysaccharide (LPS) 

[127,128] and N-formyl-methionyl-leucyl-phenylalanine (fMLP) [124,127–129]. Interestingly, 

neutrophil chemotaxis towards IL-8 was improved by physical activity in an older cohort 

[125]. Reduced chemotaxis itself may be detrimental not because neutrophils may take 

longer to reach a site of infection; indeed, during infection with S. pneumoniae older 

patients had higher neutrophil infiltration in the lung, when compared to young 

patients [109]. Instead, reduced chemotaxis may be detrimental because neutrophils may 

release more proteases, such as neutrophil elastase, as shown by increased expression of 

the marker CD63 [126], during a lengthy migration, potentially increasing tissue damage and 

inflammation in older pneumonia patients [126]. Interestingly, constitutive PI3K activity was 

also found to underlie this chemotaxis defect and reduced chemotaxis was corrected in vitro 

by inhibition of PI3K, specifically the delta isoform (PI3Kδ) [126]. 

Phagocytosis and production of reactive oxygen species  

Activation of neutrophils via TLRs, Fc receptor CD16, complement receptors, such as CR3 

(CD11b/CD18), initiate a process of phagocytosis, followed by killing of 

microorganisms [130]. Most authors report reduced phagocytosis in response to microbial 
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challenge in neutrophils from older adults [131]. Phagocytosis of beads [128,132], opsonised 

Escherichia coli [121,122,129,133] and Staphylococcus aureus [129] were all reduced with 

ageing, whereas phagocytosis of antibody-opsonised Group B Streptococcus was not [134]. 

These differences could be associated to age-related changes in the receptors for 

complement opsonins or antibodies; however current data indicate no altered expression of 

complement receptors CR1 and CR3 [62], whist reduced expression of antibody receptors 

[122] is not a uniform finding, with no difference in neutrophil FcγRII and FcγRIII (CD16) 

expression with age [62]. 

Phagocytosis or activation of pattern recognition receptors (PRRs) trigger the production of 

reactive oxygen species (ROS) [130]. These are produced via NADPH oxidase system which 

converts molecular O2 into O2
- (superoxide) by electron transfer. Although superoxide itself 

is toxic to bacteria, it is involved in the generation of a wider range of oxygen free radicals, 

as O2
- is converted into H2O2 by the superoxide dismutase. The reaction between O2

- and 

H2O2 produces OH·, and H2O2 can be converted into other oxygen species, such as HOCl and 

HOBr. O2
- can also be produced by nitric oxide synthases, following conversion of substrates 

such as L-arginine into O2
- and NO. By reacting together, both species produce peroxynitrite 

(OONO-) that decomposes into oxidants OH· and NO2 [130] 

Interestingly, ROS generation data are conflicting depending on the stimuli used. Neutrophil 

production of ROS is reduced with ageing following stimulation with fMLP [121,127,135–

137], PMA [136] and S. aureus [129], but not to E. coli [129] and Candida albicans [136,137]. 

Thus, there is a suggestion that older adults may have divergent responses to Gram-positive 

and Gram-negative bacteria. Although there was no difference in the phagocytosis of E. coli 

and S. aureus, production of ROS in response to S. aureus was reduced in neutrophils of old 
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donors [129]. Moreover, with ageing, priming of neutrophils with agonists of TLR1/2, TLR4, 

TLR7/8 induced lower levels of ROS following secondary stimulation with PMA or fMLP 

[121]. Impaired TLR signalling has been proposed to be one of the causes for diminished 

phagocytosis and ROS production in neutrophils of older individuals. A study of the 

distribution of IRAK-1 and MyD88 in lipid rafts in neutrophils showed altered redistribution 

of these molecules in the lipid raft microdomains following LPS stimulation with ageing 

[127]. However, most studies covering age-related changes in TLR signalling were performed 

in monocytes and macrophages [95,98,127]. 

Another neutrophil mechanism for bacterial control is the release of proteases 

extracellularly, known as degranulation [130], which was reported as reduced in neutrophils 

with age [138,139]. However, a more recent study indicates an increase, supported by the 

increased expression of CD63 in the surface of neutrophils of older donors, a marker for 

degranulation [126]. 

Neutrophil extracellular traps  

Neutrophils can also trap and kill bacteria extracellularly by a mechanism called neutrophil 

extracellular traps (NETs). Here DNA is extruded triggered by ROS generation and the NET 

produced contains neutrophil granule proteins, such as myeloperoxidase, elastase and 

lactoferrin [140]. NET generation has been shown to be reduced in response to both IL-8 and 

PMA in TNF-primed neutrophils from old donors [141].  
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Table 1.1. Summary of age-associated changes in innate and adaptive immunity 
Cell type and function Species Effect References 

Levels of pro-inflammatory cytokines in 
the circulation 

Human  [37,41–44] 

Haemolytic activity of alternative and 
classic complement pathways 

Human  or = [60], [61,62] 

Dendritic cells    

mDC1 

Frequency in the circulation Human  or = [64–66], [67–69] 

Cytokine production upon TLR activation Human  [73,74, 75] 

Expression of CD80 and CD86 Human = [66,69,76,77] 

Phagocytosis and chemotaxis Human   [68,72,78] 

pDC 

Frequency in the circulation Human   [64,65,67,70,71] 

Cytokine production after TLR activation Human  [69,70,74,82] 

Monocytes and macrophages 

Monocytes 

Frequency in the circulation Human  [64,66,84] 

Phagocytosis Human  [88,91] 

ROS production Human  [92,93] 

Cytokine production after TLR activation Human  64,94,95,96] 

Expression of CD80 and CD86 Human  [102] 

Expression of HLA-DR Human  [85] 

Macrophages 

Frequency in BAL Human  [108] 

Cytokine production after TLR activation Mice  [98,102,103] 

Phagocytosis Mice  [100,101] 

Neutrophils 

Numbers in circulation Human = [38,85,113] 

Chemotaxis Human  [124,127–129] 

Phagocytosis Human  [121,122,128,129,132,133] 

ROS production Human  or = [121,127,135–137], [129, 136,137] 

Degranulation  Human  or  [138,139], [126] 

NET generation Human  [141] 

T lymphocytes 

Frequency of naïve T cells Human  [146,147] 

T cell proliferation Human   [150,151] 

Expression of surface CD28 Human  [152,153] 

Expression of surface CD40L Mice  [178,179] 

Frequency of Th1 subset Human   [156–158] 

Frequency of Th17 subset Human  [147,159–161] 

IL-17 production by memory Th17 cells Human  [147] 

Frequency of thymically-derived Tregs Human  [164] 

Frequency of induced Tregs Human  [167–169] 

Treg function Human  or = [174,176], [175]  

B lymphocytes    

Frequency of naïve B cells Human  [181,184] 

Class switch recombination Human  [181,189] 

Antibody levels Human  or = [190] 

Antibody functionality Human  [62,191] 
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1.4.2 Ageing of the adaptive immune system 

B and T lymphocytes comprise the adaptive immune system. Its hallmarks are highly antigen 

specific responses that assist in the neutralisation of toxins or pathogens by antibody 

binding, killing of pathogen-infected cells, and induction of memory cells, all of which are 

altered by ageing, contributing to increase of autoimmunity, infections and reduced vaccine 

response.   

 

1.4.2.1 T lymphocytes 

The thymus is the organ in which T cells originate and mature. Thymic involution starts in 

puberty and leads to reduction of output of naïve T cells with age [142]. This mechanism is 

thought to have evolved to limit the output of naïve cells to avoid autoimmunity while 

keeping a broad repertoire of memory cells [142,143]. However, thymic atrophy is one of 

the factors associated with reduced vaccine efficacy and increased infection rates in the old 

[144,145]. Ageing is also accompanied by an accumulation of memory cells [146,147], which 

is associated with thymic atrophy, but also driven by repeated exposure to antigens 

throughout life and proliferation of the peripheral T cell pool [143]. There is also reduction of 

T-cell receptor (TCR) diversity, due to accumulation of clonal cells in naïve and memory 

compartments [148]. 

The frequencies of mature T lymphocytes, which are divided in CD4+ and CD8+, undergo a 

change in their proportion, with a lower CD4/CD8 ratio in older adults [38,149]. Decline in T 

cell proliferation also occurs with ageing and is associated with shortened telomeres 

[150,151] and loss of expression of the co-stimulatory receptor CD28 [152,153]. Reduced IL-
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2 production has been reported in aged mice [154] and could also contribute to reduced 

proliferation. Loss of CD28 is more predominant in CD8+ T cells and is a rare event in CD4+ T 

cells [155]. In addition to impaired antigen-induced proliferation, CD28- T cells have shorter 

life-span and CD8+CD28- T cells have enhanced cytotoxicity, but are often specific for 

cytomegalovirus [153]. 

In older adults, there is a trend of differentiation of CD4+ T-helper subsets towards Th1 and 

Th17. Frequency of Th1 (IL-2 and IFN-γ secreting cells) [156–158] and of Th17 (IL-17 

producers) [147,159–161] are increased with ageing. However, earlier studies report a shift 

of Th1 subset to Th2 (IL-4, IL-5, and IL-13 producers) in older adults [157,162,163]. An 

interesting finding is that memory CD4+ T cells from older adults produced lower levels of IL-

17 than naïve cells, compared to young [147].  

Due to thymic involution, the number of thymically-derived regulatory T cells (Tregs) 

declines with ageing, but it is suggested that expansion of peripheral Tregs and conversion of 

non-regulatory T cells into this phenotype compensate for the loss of thymic output [164]. 

This population regulates immune activation by secretion of IL-10 and TGF-β and by cell-to-

cell contact, inducing apoptosis by release of Granzyme B [165,166]. The frequency of Tregs 

has been reported as increased in older humans [167–169] and mice [170,171]. However, 

such accumulation of Tregs with ageing can promote reactivation of chronic infections [169] 

and poor response to vaccination [172]. The effect of age on the function of Tregs is not 

conclusive, as reports in mice [169,173] and humans [174–176] have described cytokine 

release as reduced [174,176], increased [169,173] or unaltered [175]. An interesting finding 

is that while Tregs from aged mice successfully suppressed IFN-γ+ CD4+ T cells, they failed to 

control IL-17 release from CD4+ cells compared to young mice [177].   
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Ageing also compromises CD4+ T cell-mediated B cell responses, by reduced CD40L (CD154) 

expression by T cells of old mice [178,179]. 

1.4.2.2 B lymphocytes 

Another consequence of the decline of the quality of the immune response in older adults is 

the decrease in antibody levels, which could be a consequence of the poor expansion of B 

cells in the smaller germinal centres found in older adults [180]. The overall population of B 

cells is reduced [181,182], associated with reduced numbers of B cell precursors in the bone-

marrow [183]. Similar to T cells, naïve B cell are reduced with ageing [181,184], but the 

effect of age on the memory B cell pool is still debated. Absolute numbers and frequencies 

of memory B cells and plasma cells have been reported as declined with ageing [181,185], as 

well as increased [186,187]. One report on regulatory B cells has reported both their 

frequency and IL-10 secreting function to decline with age [188]. 

Class switch recombination is negatively affected by ageing [181,189], but reports of age-

related changes of serum and salivary antibody levels are not definitive in reporting higher 

or lower levels in older individuals [190], although studies from different groups show 

antibodies have reduced functionality with ageing [62,191]. 

 

 
1.5 Pneumococcal colonisation 

Pneumococcal nasopharyngeal colonisation (carriage), is often asymptomatic in adults [192], 

but it is also regarded as a reservoir for transmission of S. pneumoniae and a precursor of 

disease [193]. Commensal pneumococcal carriage is common during infancy and decreases 
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with ageing, an observation associated with the development of specific immunity with 

increasing age [194]. However, these findings contrast with the high incidence of 

pneumococcal pneumonia in older adults [5]. For comparison, a study found that between 

the age of 0-2 years, 50% of children were carriage-positive, as were 45% of children aged 3-

4 years, with the frequency decreasing to 1-10% in adults [195]. In older adults, carriage 

rates are even lower, present in 0.85% in individuals living in their own home, increasing to 

1.45% in nursing-home residents, as reported by a Slovenic study [196], and 2.3%, reported 

in a Portuguese cohort [197].  

Studies in infants and children show that disease was associated with acquisition of new 

serotypes [198,199], and could be a possible explanation for disease in older adults in the 

absence of carriage. In a Portuguese study [197], the most prevalent serotypes were 19A, 

6C, 22F, 23A, 35F, 11A, and 23B, while a study from the Netherlands reported that carriage 

of serotypes 1, 3, 6A/B, 9A/V, 19A, or 23F were present during influenza-like illness in older 

adults [200]. Serotypes vary in their potential to cause disease, and this “invasiveness 

potential” was shown to be inversely correlated to carriage duration [201]. However several 

serotypes found in colonised older individuals, such as 1, 3, 19A and 23F, were also isolated 

from several IPD and CAP cases in this age group [19,22,27–30], suggesting  a role for the 

ageing immune system in this context. 

 

1.5.1 Changes in the nasopharyngeal microbiota with age 

Carriage of S. pneumoniae by itself is not a determinant factor for infection, since the 

pneumococcus is present in the nasopharynx of healthy humans [202]. However, microbiota 
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diversity in the adult upper respiratory tract is significantly reduced in older adults, with the 

oropharyngeal area highly populated by different Streptococcus genera [203]. Bacterial 

diversity in the upper respiratory tract of young and adult mice is also diminished after S. 

pneumoniae infection and clearance of infection was shown not to reconstitute the baseline 

microbiota [204]. 

Changes in bacterial density also influence interaction between species, and synergistic 

interactions can turn into competition [205]. Colonisation by S. pneumoniae was found to 

occur more frequently in patients carrying Haemophilus influenzae than in individuals 

carrying S. aureus [202]. This prevalence of S. pneumoniae in the presence of H. influenzae 

appears to be due to the evasion of opsonophagocytic killing by S. pneumoniae [206]. 

Moreover, S. pneumoniae and S. aureus compete for the same niche in the upper respiratory 

tract and a dominance of S. pneumoniae during colonisation leads to a decrease of S. aureus 

[202]. These studies highlight how the presence of S. pneumoniae in the nasopharynx alters 

the dynamic of the microbiota in the upper respiratory tract.  

 

1.6 Invasion of the host by the pneumococcus 

S. pneumoniae is found in the mucosal microbiota of healthy individuals, but for the 

pneumococcus to start a respiratory infection it is necessary to colonise the upper 

respiratory tract. Colonisation begins in the nasopharynx and oropharynx and following 

inhalation or aspiration of the pneumococcus to the lungs, the bacteria can initiate infection 

in the bronchioles and alveoli [207]. Soon after entering the nasopharynx the pneumococcus 

encounters mucus which has a protective effect. One of the most important virulence 



 24 

factors of S. pneumoniae is its polysaccharide capsule, which can help the bacterium to 

evade mucus [208]. The variable polysaccharide composition of the capsule determines the 

greater than 90 serotypes of S. pneumoniae, presenting significant challenges for a 

successful vaccination strategy and for host immunity. Furthermore, the pneumococcus 

controls capsule expression, making it opaque or transparent, with the opaque phenotype 

determined by the augmented concentration of polysaccharide in the capsule [209,210]. 

During contact with and invasion of host cells, the pneumococcus capsule is reduced [210], 

whereas absence of a capsule reduces colonisation [211]. 

The key elements of the infection process are summarised in Figure 1.2. Colonisation starts 

with adherence of the pneumococcus to epithelial cells of the respiratory tract, with the 

capsule facilitating access to the epithelial surface [208]. The first phase is asymptomatic and 

corresponds to the bacterium binding to carbohydrates (e.g. N-acetyl-glycosamine) on the 

surface of the epithelial cells, under non-inflammatory conditions [207], using choline-

binding proteins (CBPs) that have an important role in adhesion and virulence. What 

influences the transition between non-invasive and invasive colonisation is unclear, but 

might be associated with an immunosuppressive state of the host, or to a primed 

epithelium, as could occur in older adults where inflammaging produces a more 

inflammatory microenvironment [41]. 
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Figure 1.2. The key features of the immune response to S. pneumoniae infection and the changes 
with age. Colonisation starts with adherence of the pneumococcus to epithelial cells of the 
respiratory tract. In the first phase, pneumococci bind to carbohydrates on the surface of the 
epithelial cells. Transition to invasive disease may occur when inflammatory cytokines are produced. 
Inflammaging produces a more inflammatory microenvironment and may aid this process. 
Complement and antibody opsonise the bacteria, mediating recognition, uptake and killing by 
neutrophils and monocytes. Th17 based immunity provides protection via maintenance of neutrophil 
and monocyte recruitment by production of IL-17. Ageing results in reduced phagocyte chemotaxis, 
phagocytosis and killing of bacteria and reduced pro-inflammatory cytokine production by 
monocytes due to reduced TLR2 signalling. Differentiation of Th17 cells may also be reduced, 
compromising maintenance of the neutrophil response. The possible effects of age are shown in the 
red boxes. 

 

When inflammatory factors, such as TNF-α, IL-1β or thrombin are produced, platelet-

activating factor receptor (PAFr) expression is increased on epithelial cells and binds to the 

phosphorylcholine on the cell wall of the pneumococcus [212].  The same interaction occurs 

during the migration of the bacteria from the lung tissue to the blood [213,214]. Studies in 

mice have shown that PAFr has a role in induction of inflammation, as mice lacking this 

receptor show reduced signs of infection, with lower numbers of colony-forming units of S. 

pneumoniae and reduced levels of inflammatory cytokines and chemokines in the lung, 

when compared to wild type (WT) animals [213]. Studies in human cells have revealed that 

subsequent to PAFr expression, the adhesin CbpA (also known as PspC), a protein of the CBP 
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family, binds glycoconjugates from epithelial [210,212] and endothelial cells to the choline in 

teichoic acid or lipoteichoic acid in the pneumococcus cell wall. This step is involved in 

advancing the colonisation to invasion via stimulation of an inflammatory response [215] as 

the binding of CbpA to human endothelial cells leads to the production of the chemokine IL-

8 and expression of ICAM-1 [216], a molecule that binds to integrins (LFA-1, CD11a/CD18) on 

neutrophils, monocytes and other cells of the immune system. CbpA can also bind to human 

Factor H, molecule that protects C3b deposition in the host’s own cells, contributing to 

modulate inflammation during infection [217]. Many other virulent factors from the 

pneumococcus are involved in binding to the host’s cells, such as PspA, lytA, NanA and NanB 

[207,218,219]. After receptor binding, endocytosis effects pathogen internalisation 

[220,221]. Although S. pneumoniae can be killed at this stage by lysosome mediated 

degradation, the bacteria that manage to evade killing in this way will translocate through 

the cell and continue the infection of the host’s tissue [222].  

 

1.7 The Immune Response to S. pneumoniae  

Serial colonisations with multiple serotypes through childhood result in a complex antibody 

and cell based immune profile in adults [223]. Complement and antibodies to the capsular 

polysaccharide opsonise the bacteria, mediating recognition, uptake and killing by 

phagocytes (neutrophils and monocytes) [62,224]. Although vaccination with conjugate 

vaccines based on capsular polysaccharides generates high levels of antibody that protect 

against colonisation [225], colonisation in humans is associated with little induction of anti-

capsular antibody and clearance does not coincide with antibody generation [223]. 
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Moreover, antibody acquired to a particular serotype confers only 30-60% reduction in 

subsequent colonisation [226] and Th17 based immunity is proposed to provide the 

remainder of protection via maintenance of neutrophil and monocyte recruitment 

[227,228]. Immunity to S. pneumoniae is thus complex: natural immunity is largely 

phagocyte and Th17 mediated, whilst protection by capsular polysaccharide vaccine 

additionally requires generation of antibody.  These key elements of the immune response 

to S. pneumoniae are now described in brief. 

 

1.7.1 Innate immune response to S. pneumoniae 

1.7.1.1 Pattern Recognition Receptors  

S. pneumoniae has characteristic virulence factors that activate pattern recognition 

receptors (PRRs) on immune cells as well as epithelial cells of the respiratory tract, initiating 

its detection by the host. Toll-like Receptors (TLRs) are a major component of the PRR 

detection system and studies in mice and humans have shown that TLR2 is the main TLR 

involved in cellular activation by S. pneumoniae [229,230]  and this detection is assisted by 

membrane CD14 [231] as well as soluble CD14 [232]. TLR2 recognises lipoteichoic acid (LTA) 

present on the cytoplasmic membrane of S. pneumoniae and this leads to NFκB-dependent 

production of TNF-α by monocytes/macrophages [232].  However, TLR2 does not mediate 

bacterial clearance in the lungs but promotes inflammation and recruitment of further 

phagocytes (neutrophils) with the production of a range of pro-inflammatory cytokines 

including TNF-α, IL-1β, IL-6, KC/Gro-α and MIP-2 by alveolar macrophages [233]. Although 

TLR2 is the main receptor for S. pneumoniae lipoproteins [229] co-operation with other 
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receptors enhances the inflammatory response. Knockout mice for TLR2 and TLR4 or TLR2 

and TLR9 showed a significant decrease in production of cytokines and chemokines in the 

spleen after infection with S. pneumoniae, when compared with mice lacking only one of 

these receptors [234]. 

Pneumolysin, another virulence factor of the pneumococcus, is recognised by TLR4 [235]. It 

is a cytoplasmic protein that induces cell death by pore formation in cell membranes [215]. 

The production of pro-inflammatory mediators, TNF-α, IL-6 and IL-8 after TLR4 activation 

drives further neutrophil recruitment. Intracellular TLR9, that recognises unmethylated CpG 

motifs, can also offer protection against S. pneumoniae via production of IL-8 [236]. Studies 

in TLR9 knockout mice showed that activation of TLR9 was also necessary for control of 

bacterial burden by activating phagocytosis by lung macrophages in the early stages of 

infection, but it was not involved in the control of nasopharynx colonisation [237]. 

The scavenger receptor SIGN-R1, expressed by macrophages of the spleen marginal zones 

[238], has a significant role in the clearance of S. pneumoniae in blood as shown in mouse 

models [239,240]. Although SIGN-R1 is not involved in the clearance of the pneumococcus in 

the lungs, it may still be important in the early response against encapsulated 

pneumococcus, as macrophages from marginal zones lacking this receptor failed to capture 

the pneumococcus, activate splenic B cells and generate antibody [239,240].  Another 

macrophage scavenger receptor, MARCO (Macrophage Receptor with Collagenous 

Structure), also has a protective effect against pneumococcus. Mice lacking MARCO had 

impaired clearance of bacteria [241], delayed transcription of mRNA of TNF-α, IL-6, IL-1β and 

IFN-β in macrophages, and did not promote cellular recruitment to the nasopharynx during 
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colonisation [242]. MARCO also enhances TLR2 signalling in response to S. pneumoniae in a 

mouse model [242]. 

1.7.1.2 Complement system  

Complement is also fundamental to prevent systemic replication of S. pneumoniae. The 

classical pathway is the major contributor in the defence against S. pneumoniae and is 

activated by binding of C1q to natural IgM that opsonises the pneumococcus, aiding its 

uptake by phagocytes [243]. Complement can also be activated by C1q [244], the acute-

phase protein serum amyloid P [245] and by SIGN-R1 which can bind C1q directly and 

assemble a C3 convertase to generate the opsonin C3b [246]. 

The polysaccharide capsule protects the pneumococcus from deposition of C3b [247], and 

C3b deposition also differs between capsular serotypes [248]. Another strategy the 

pneumococcus uses to evade complement is reduction of chain length, as C3b deposition is 

higher on bacteria in long chains [249]. Interestingly, antibody binding and subsequent 

agglutination of pneumococci counters this strategy by augmenting formation of bacterial 

clumps, facilitating opsonophagocytosis and killing [249]. Pneumococcal surface protein 

PspC can also inhibit complement deposition by binding of factor H [224,250], a plasma 

protein that inhibits the formation of C3b convertase in the alternative pathway, and this 

effect varies with capsular serotypes [251].  

Complement opsonic function rather than its lytic ability is important for killing of 

pneumococcus. As demonstrated by Van Der Maten et al. (2017), in vitro incubation of S. 

pneumoniae in plasma did not promoted killing of bacteria, which was observed in whole 
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blood, indicating phagocytes are necessary for killing [224]. The group also demonstrated 

that blocking of CD11b (CR3 receptor) decreased killing of the pneumococcus [224]. 

In patients with bacteraemic pneumococcal pneumonia, levels of complement components, 

including C3, were decreased in serum [252]. Moreover, patients lacking C1q or C2 were 

shown to be more susceptible to pneumonia infection, and this also demonstrate that the 

classical pathway is vital for promoting S. pneumoniae opsonisation by the complement 

system [253].  

 

1.7.1.3 Neutrophils  

Neutrophils constitute the main cellular defence against S. pneumoniae, and together with 

monocytes and alveolar macrophages, are responsible for phagocytosis and intracellular 

killing of the pneumococcus [224,254]. The involvement of neutrophils is seen at all stages of 

pneumococcal infection [255] and neutrophil depletion in mice models results in increased 

susceptibility to pneumococcal infection and a higher bacteria burden in the lungs [256–

258].  Infiltrating neutrophils are fundamental for pulmonary clearance of the 

pneumococcus and at earlier stages of pneumonia and recruitment to the lungs is 

dependent on IL-6 [259], TNF-α and IL-1β [260] secreted by epithelial lung cells, by IFN-γ 

secreted by NK cells [256] and later, also by IL-17 [261]. In aged mice, lower levels of IL-10 in 

the lung tissue were associated with higher neutrophil influx to this site and higher 

production of chemokines by neutrophils at earlier stages of pneumococcal infection [262].  

Neutrophil phagocytosis of pneumococci is mediated by TLR2 [263–265] and by P-selectin 

glycoprotein ligand-1 (PSGL-1) [266], and can be further enhanced by surfactant proteins A 
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and D [267], opsonisation by complement and antibodies [268] and by stimulation with IL-

17A [269]. S. pneumoniae can evade phagocytosis by capsule expression, and heavily 

encapsulated strains are more resistant to neutrophil killing [270], but if complement 

opsonisation is present, phagocytosis is significant increased [224,253]. For instance, 

serotype 6B is more susceptible to C3b deposition and opsonophagocytosis than 19F [271].  

Following phagocytosis, neutrophil mediates killing of pneumococci by generation of ROS 

generated within the phagosome [62,272] and serine proteases cathepsin G, elastase and 

proteinase 3 released from intracellular granules [273]. Neutrophil ROS production by the 

pneumococcus is dose dependent and differs between capsulated and non-capsulated 

strains [272]. Neutrophil ROS generation was elevated in response to the non-capsulated R6 

strain (serotype 2 avirulent mutant), compared to D39 (serotype 2 clinical isolate strain), but 

not to other non-capsulated mutants [272]. Such production was abrogated in response to 

the capsulated D39 strain by an intracellular calcium chelator, but only partially to blockage 

of the p38 MAPK signalling pathway, that can activate NADPH oxidase [272]. ROS production 

by the non-capsulated R6 was partially suppressed by inhibition of PI3K and completely 

abrogated by inhibition of PKC, indicating that S. pneumoniae can induce neutrophil ROS 

production by more than one mechanism [272], and that could also vary between capsular 

types. 

However, neutrophil activation may also be detrimental, as demonstrated by a study where 

mice lacking neutrophils had a prolonged survival after infection with S. pneumoniae 

serotype 8 and distinct pathological features in the lungs, when compared to control mice 

[274]. Another interesting finding is that S. aureus remained viable after being internalised 

by mice neutrophils, whereas S. pneumoniae (serotype 3) did not [275]. Recently, it was 
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reported that S. pneumoniae remained viable in mice and porcine CD169+ splenic 

macrophages and was able to replicate [276]. This could suggest a different role for 

neutrophils and macrophages in the containment of S. pneumoniae. 

Neutrophils can also contain and kill pneumococci extracellularly by releasing NETs. S. 

pneumoniae induces NET release by promoting neutrophil autophagy and PI3K activation, 

but independent of pneumolysin [277]. Still, PLY alone can induce NET release, independent 

of TLR4 and only partially dependent on NADPH oxidase-derived ROS production [278]. 

Nonetheless, the pneumococcus has mechanisms to evade NETs, by degrading the DNA 

filaments with an endonuclease [279] and by expressing capsule [280].  

Although neutrophils can contain S. pneumoniae by several mechanisms, they are 

susceptible to activation and lysis by PLY. In the nasal-associated lymphoid tissue (NALT), this 

event is beneficial as neutrophil lysis by PLY promotes antigen delivery [281], however, in 

the lungs, elastase release by lysed neutrophils damaged alveolar epithelial cells and 

impaired macrophage phagocytosis [282]. Moreover, activation of neutrophils by PLY 

induces a series of pro-inflammatory events, such as ROS generation [283,284], NFκB 

activation and IL-8 production [285], all which could aggravate damage in lung epithelial cells 

and worsen patient outcome. 

Immunohistochemical analysis of lung tissue of patients that died of pneumococcal 

pneumonia revealed that older adults had significantly higher frequencies of neutrophilic 

infiltrates than young patients, who had more alveolar macrophages [109]. Moreover, 

during non-responding pneumonia, neutrophil apoptosis in BAL and blood was higher than 

in responding CAP patients [286], but non-responding patients that had higher neutrophil 
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apoptosis reached clinical stability earlier, suggesting that in these cases, such an event can 

be beneficial to reduce local inflammation [286].  In old individuals, impaired phagocytosis 

and killing of S. pneumoniae were associated with low levels of specific IgG in the serum of 

old individuals and reduced antibody functionality [62,134].  

1.7.1.4 Monocytes and Macrophages  

Monocytes infiltrate the lungs after neutrophils and can differentiate into macrophages, 

which have enhanced phagocytic and killing functions [287]. In mice models, depletion of 

alveolar macrophages increased susceptibility to pneumonia and mortality [288], but 

bacteria clearance remained controlled by neutrophils [288]. Macrophages are essential for 

clearance of apoptotic cells in alveolar spaces and modulate inflammation during 

pneumococcal pneumonia [288]. 

However, production of prostaglandin E2 by macrophages during clearance of apoptotic 

cells greatly reduced S. pneumoniae killing by H2O2 in macrophages in vitro, albeit not 

reducing its phagocytosis [289]. Macrophage apoptosis following S. pneumoniae incubation 

is also suggested to be another mechanism for control of bacterial dissemination, as 

apoptosis was associated with killing of pneumococci [290].  

During pneumococcal carriage, phagocytosis by monocytes and macrophages contributes for 

clearance, after migration to the upper airway [261]. Both migration and clearance are 

dependent on TLR2 signalling [261], and secretion of C-C motif chemokine ligand 2 (CCL2) by 

activated monocytes/ macrophages recruits additional monocytes to the site of 

pneumococcal infection [291,292]. In infant mice, delayed CCL2 production led to late 

macrophage recruitment and consequent longer colonisation period [293]. Alveolar 
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macrophages assessed in BAL fluid following pneumococcal colonisation in humans showed 

no difference between the frequency of classical and non-classical phenotypes, suggesting 

pneumococcal colonisation does not drive polarisation in the alveolar microenvironment 

[294].  

Activation of monocytes by S. pneumoniae induces the production of several cytokines, such 

as NFκB-dependent production of TNF-α [232], IL-6 [89] and IL-12p40 [295], and can further 

drive differentiation of CD4+ T-helper subsets [295]. Interestingly, it was demonstrated that 

in vitro, bacteria viability was determinant for differentiation of CD4+ cells into Th1 or Th17 

by human monocytes, as live pneumococci induced Th1 response and heat-killed led to Th17 

differentiation [295]. Furthermore, pneumococcal serotypes can induce different levels of 

TNF-α production by macrophages, with commonly invasive serotypes such as 4, 6B, 14, 19F 

and 23F inducing lower TNF-α secretion than rarely invasive serotypes, such as 7C, 24F and 

37 [296], indicating this could be a mechanism for some serotypes to evade clearance by the 

immune system. 

 

1.7.2 Adaptive immune response to S. pneumoniae 

1.7.2.1 T lymphocytes 

The efficient nasopharyngeal and lung clearance of S. pneumoniae requires both cellular and 

humoral immunity [257]. In mice it is well established that the CD4+ Th17 cell subset is 

fundamental for the clearance of the infection through their production of IL-17 

[257,261,297,298] and for avoiding re-occurrence of nasopharyngeal colonisation 

[257,261,269,297], but in humans the role of Th17 is still not conclusive [299]. 
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Th17 response can be induced by several pneumococcal antigens, such as polysaccharide 

from the cell wall [300] and PsaA, PcsB and StkP [223,301]. In mice, Th17-mediated control 

of colonisation involves recruitment of monocytes and macrophages in the first phase, 

dependent on TLR2 activation, followed by a sustained phase of neutrophil infiltration [261]. 

IL-17 also enhances neutrophil [269] and macrophage[302] killing of opsonised 

pneumococcus in vitro. 

Pneumococcal carriage also promotes expansion of the Treg population, required for 

controlling bacterial growth in the lungs [303]. During carriage, Tregs can be found in the 

human NALT and have been shown to suppress anti-pneumococcal Th1 and Th17 responses 

[227]. In recent years, studies in children have found a correlation between the ratio of 

Th17/Tregs and presence of carriage [304,305], and that as the ratio increases with age, 

carriage rates decrease [304]. 

Pneumococcal colonisation can induce Th1-mediated immunity as well as Th17 

[230,306,307]. The Th1 and Th17 responses to pneumococcal infection are dependent on IL-

23, as mice lacking this cytokine have decreased levels of IL-6 and IL-12p70 in bronchiolar 

lavage and significantly reduced neutrophil infiltration in the lungs, associated with low 

levels of IL-17A [308]. 

 

1.7.2.2 Antibodies 

Humoral responses against pneumococcal capsular polysaccharide are the base for current 

vaccine strategies and can provide protection against colonisation [309]. Nasopharyngeal 

colonisation by the pneumococcus promotes generation of IgG and IgA [310]. At this site, 
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anti-capsular antibodies promote agglutination of bacteria facilitating phagocytosis and 

mucociliary clearance [311], and in mice, antibody generated after nasopharyngeal 

colonisation protected against invasive disease [297]. 

However, pneumococcal-specific protection against reacquisition of carriage following 

exposure to S. pneumoniae is not exclusively mediated by antibodies, but is also dependent 

of CD4+ T cells [228,299,312]. In human volunteers, protection against acquisition of a new 

pneumococcal serotype following natural colonisation was achieved in those who had 

polysaccharide-specific memory plasma cells [313]. However, another study showed that 

clearance of colonisation in healthy individuals was achieved independent of anti-

pneumococcal antibodies, despite their presence [314]. 

In contrast with anti-capsular antibodies generated by vaccination, naturally acquired 

antibodies are found against various pneumococcal antigens, such as PspA and PspC [315]. 

During infancy, development of IgG against pneumococcal proteins following 

nasopharyngeal colonisation started earlier than anti-capsular IgG, as the former were found 

in serum from 2 months of age, while the later were detected in the serum from months 6 of 

age [316]. However, during the first 2 years of life, colonisation episodes promoted increase 

in levels of anti-capsular IgG, but not of anti-protein antigens [316]. In adults, naturally 

acquired antibodies against pneumococcal proteins, such as PspC, corresponded to a larger 

fraction of naturally-acquired antibody, instead of anti-capsular antibodies [317]. 

In older adults levels of naturally acquired IgM and IgG against pneumococcal capsular 

polysaccharide were lower than in young adults, and this decline was aggravated with 

increasing age [318]. Further analysis revealed anti-capsular IgG antibodies had reduced 



 37 

functional activity [62]. Interestingly, while levels of anti-pneumococcal polysaccharide IgM 

were reduced in older adults [318,319], levels and functional activity of IgM against whole-

cell non-encapsulated pneumococcus and PspA were not [320]. Thus, development of 

vaccines targeting conserved pneumococcal proteins across serotypes are considered a new 

strategy to generate protective immunity against pneumococcal disease, considering the 

decline in levels and efficacy of anti-capsular polysaccharide antibodies reported in elderly  

[62,318,319].  

 

1.8 Thesis aims and hypotheses 

The central hypothesis of this thesis is that age-related changes in the immune response to 

S. pneumoniae contribute to the increased susceptibility of older adults to pneumonia. 

Although neutrophils and Th17 cells have a significant role on immunity against S. 

pneumoniae, several aspects of the immune response to this bacterium in older adults 

remain unclear. Thus, this thesis addresses the effect of age on neutrophils responses 

against the pneumococcus and on CD4+ T-helper subsets involved in immunity against S. 

pneumoniae. 

Thus, the aims of this thesis were: 

1. To determine the effect of age on neutrophil activation, reactive oxygen species 

production and NET generation against S. pneumoniae serotypes dominant in older adults. 

2. To determine age-related changes in CD4+ T cell polarisation following pneumococcal 

nasopharyngeal colonisation. 



 38 

3. To investigate changes in neutrophil responses to S. pneumoniae and frequencies of CD4+ 

T-help subsets during pneumonia infection in older individuals. 

 
 

 

 

 

 

 

 

 

Chapter 2  

Materials and Methods 
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2.1 Bacterial strains 

Streptococcus pneumoniae serotypes 4, strain TIGR4, 19A and 23F were chosen for this 

study. The TIGR4 strain was chosen as this is a virulent, genome-sequenced strain [321,322] 

widely used in studies with both mice [56,293,323,324] and human cells 

[224,280,295,323,325], for which mutant strains are available, such as capsule-negative 

mutant 403j. Serotypes 19A [27,29,30,326] and 23F [27,28] were chosen due to their high 

incidence in older adults during community-acquired pneumonia and invasive disease [27–

30,326].  

The TIGR4 wild type strain and its capsule-negative mutant 403j, which will be referred as 

TIGR4cps, were provided by Prof Tim Mitchell. Serotypes 19A and 23F were clinical isolates 

from older patients with pneumococcal pneumonia obtained from the Scottish Microbiology 

Reference Laboratories and were provided by Prof Tim Mitchell. For the experimental 

human pneumococcal carriage study (EHPC), serotype 6B, strain BHN418, was used and the 

heat-inactivated sample used in this study was kindly supplied by Dr Daniela Ferreira from 

the Liverpool School of Tropical Medicine (Liverpool, UK).  

 

2.1.1 Bacteria growth conditions and storage  

With the exception of the 6B strain, all bacteria were grown on Blood Agar Base 2 (BAB) 

(Oxoid, UK) plates supplemented with 5% defibrinated horse blood (E&O laboratories, UK) 

overnight at 37°C in 5% CO2, from bead stocks (MicrobankTM, Pro-Lab Diagnostics, UK), from 

Prof. Mitchell’s laboratory. Purity of the colony was checked by streaking S. pneumoniae on 

a BAB plate and adding a 5 μg optochin disk (Oxoid, UK) in the centre of the plate, which was 
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incubated overnight at 37°C in 5% CO2 incubator. For culture storage of pneumococcal 

strains, bacteria were grown statically in Brain Heart Infusion media (BHI) (Oxoid, 

Basingstoke, United Kingdom) in water bath at 37°C, to mid log phase (OD660nm, 0.55-0.65), 

which was measured using a spectrophotometer (Biochrom, Cambridge, UK, model WPA 

Biowave CO8000). Once bacteria reached mid log phase, the liquid culture was centrifuged 

(4000 x g, 10 minutes, 4°C) and the supernatant discarded. The pellet was resuspended in 

sterile BHI containing 15% glycerol and aliquoted (1 ml/ vial). Aliquots were frozen at -80°C 

for use in the subsequent experiments. 

 

2.1.2 Quantification of S. pneumoniae stocks 

To determine the concentration of the glycerol stocks, the viable counting method was used 

[327]. 24 hours post freezing, 1 vial of each strain was quickly thawed at 37°C in a water 

bath. Under sterile conditions, the content was mixed well and 20 l of the glycerol stock 

was added to 180 l of sterile phosphate buffered saline (PBS, Sigma-Aldrich, UK) in a 96-

well round bottom plate (Corning, USA), and ten-fold serially diluted until a dilution of 10-8 

was reached. A BAB plate was divided into 6 sections and for each, 3 drops of 20 l of each 

dilution was placed under its identified section of the plate. Plates were left to dry and then 

transferred to an incubator overnight (37°C, humidified 5% CO2 atmosphere). The following 

day, spots from a chosen dilution containing 20-100 colonies each were counted and 

recorded. From these counts the concentration of the bacterial stock was calculated and 

expressed as CFU/ml (colony forming units/ml) using the equation: 
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CFU/ml = (average of colony counts from 3 spots) x (50 which gives the CFU value/ml) x 

dilution factor 

2.1.3 Fixation of S. pneumoniae with 2% paraformaldehyde 

S. pneumoniae TIGR4 was grown in BHI media as described in 2.1.1. Once mid log phase was 

reached, 20 l was collected for viable cell count (as in 2.1.2) and culture was centrifuged at 

4000 x g for 10 minutes, room temperature (RT). The supernatant was discarded and 

bacteria were resuspended in 2% paraformaldehyde and incubated for 1 hour at RT. 

Paraformaldehyde solution was centrifuged (4000 x g, 10 minutes, RT), the supernatant 

discarded and pellet washed twice in sterile PBS (4000 x g, 10 minutes, RT). The pellet was 

resuspended in PBS, aliquoted and stored at 4°C. 

 

2.1.4 Labelling of S. pneumoniae with fluorescein isothiocyanate (FITC) 

Fluorescein isothiocyanate (FITC) (Sigma-Aldrich, Dorset, UK) was prepared according to 

manufacturer instructions. Under sterile conditions, FITC powder was resuspended in DMSO 

at concentration of 10 mg/ml and used immediately.  

Vials of glycerol stocks with live S. pneumoniae TIGR4 were thawed, washed twice with PBS 

(13000 x g, 5 minutes, RT). Vials of live and of fixed S. pneumoniae TIGR4 (2x108 CFU/ml) 

were resuspended in 1ml of filter sterile (0.22 μm pore size, Millipore, Darmstadt, Germany) 

0.1 M sodium bicarbonate buffer, pH 9. To that suspension, FITC solution was added to a 

final concentration of 0.3 mg/ml. Vials were incubated for 30 minutes at RT, with rotation, in 

the dark. Following incubation, bacteria were washed three times with PBS (13000 x g, 5 

minutes, RT), live S. pneumoniae were resuspended in BHI with 20% of fetal calf serum (FCS) 
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(Invitrogen, Paisley, UK) and stored at -20°C, and fixed bacteria were resuspended in PBS (1 

ml/vial), and stored at 4°C, protected from the light. The next day, a vial of live FITC-labelled 

S. pneumoniae was thawed for viable count (as described in 2.1.2). 

 

2.1.5 Heat inactivation of S. pneumoniae TIGR4 

Vials of glycerol stocks containing live S. pneumoniae TIGR4 were thawed at 37˚C in a water 

bath and from these 1x108 CFU/ml stocks were prepared in PBS. Vials were centrifuged 

(13000 x g, 5 minutes, RT), and pellets were resuspended in PBS. Bacterial stocks were heat 

inactivated by incubation at 65˚C in a dry bath incubator (Labnet Dry Baths, Edison, NJ, USA) 

for 10 minutes. Vials were then stored at -20˚C until further use. 

 
2.2 Ethical approval and participants 

2.2.1 Healthy volunteers  

For the study of the effect of age on the immune response to S. pneumoniae, 42 young 

(mean age 26.1 ± 3.4 years; range 21-32 years) and 39 old (mean age 72.4 ± 5 years; range 

67-83 years) healthy volunteers were enrolled. Older participants were recruited from the 

Birmingham 1000 Elders group, which is maintained by the Institute of Inflammation and 

Ageing and are all clinically healthy and largely medication free with anti-hypertensives 

being the most common medication taken. All subjects gave written informed consent and 

the study was approved by the University of Birmingham Ethics committee (reference 

ERN_14-1166). All volunteers had no significant co-morbidity or immunological illness and 

were not on medications known to interfere with immune function. 
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2.2.2 Pneumonia patients 

In total, 3 young (mean age 33±2.6 years; range 30-35 years) and 21 old (mean age 79.8±9.1 

years; range 66-96 years) patients diagnosed with pneumonia were enrolled in this study. 

Ethical approval was given by the Coventry & Warwickshire Research Ethics Committee 

(reference 16/WM/0026) and written informed consent was given by the patients or their 

relatives at the time of recruitment. Patients were recruited at the Queen Elizabeth Hospital, 

Birmingham, UK, during September 2016 to February 2018. Inclusion criteria required all 

participants to be over the age of 18 and with a confirmed diagnosis of pneumonia infection. 

Clinical diagnostics of pneumonia were assessed following the guidelines of the British 

Thoracic Society. Exclusion criteria were pregnancy, use of immunosuppressive medications, 

such as inhaled corticosteroids, and immunocompromised patients. Patients with 

concurrent respiratory diseases, such as bronchitis, COPD and asthma, malignancies and 

palliative care patients were also excluded. Demographics of young and old patients are 

shown on table 2.1, however information such as ethnicity, comorbidities and mortality 

were not available on all patients.  
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Table 2.1.Pneumonia patient demographics and comorbidities 

 Young (YP) Old (OP) 

Number of participants 3 21 

Mean age (years) 33±2.6 (30-35) 77.7±9.8 (66-96) 

Male (%) 1/3 (33%) 9/21 (42%) 

Influenza (qPCR) 0 5/18 (27%) 

Sepsis (SIRS) 0 3/19 (15%) 

Pneumococcal vaccine 0 7/21 (33%) 

Influenza vaccine 0 12/21 (57%) 

Current smoker 1/3 (33%) 2/10 (20%) 

Ethnicity  

Caucasian 2/3 (66%) 8/10 (80%) 

Black or Black British 1/3 (33%) 1/10 (10%) 

Asian or Asian British 0 1/10 (10%) 

Comorbidities 

Angina 0 1/10 (10%) 

Aortic stenosis (mild) 0 1/10 (10%) 

Arthritis 0 3/10 (30%) 

Atrial fibrillation 0 2/10 (20%) 

Chronic kidney disease 0 1/10 (10%) 

Depression 1/3 (33%) 0 

Diabetes mellitus type 1 1/3 (33%) 1/10 (10%) 

Diabetes mellitus type 2 0 2/10 (20%) 

Guttae Psoriasis 1/3 (33%) 0 

Hypercholesterolaemia 0 1/10 (10%) 

Hypertension 0 8/10 (80%) 

Iron deficiency anaemia 0 2/10 (20%) 

Ischemic heart disease 0 3/10 (30%) 

Mitral valve prolapse 0 1/10 (10%) 

Osteomyelitis 0 1/10 (10%) 

Secondary generalised 
epilepsy 

0 1/10 (10%) 

Vascular dementia (mild) 0 1/10 (10%) 

Mortality 

30 days 0 0 

90 days 0 1 (83 years old female. Cause: 
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Bronchial pneumonia) 

 

2.2.3 Experimental Human Pneumococcal Carriage cohort 

For this study, stored PBMCs samples from 15 healthy young (mean age 20.73 ± 3.7 years) 

and 15 older adults (59.8 ± 7.1 years) from the Experimental Human Pneumococcal Carriage 

(EHPC) study were used. The recruitment of participants was conducted by and at the 

Liverpool School of Tropical Medicine (LSTM). All participants gave written informed consent 

at start of the study. Ethical approval was given by the NHS Research Ethics (older 

participants recruitment: reference 16/NW/0031, young participants recruitment: reference 

14/NW/1460). This experimental model of carriage has been described in detail previously 

[328]. Briefly, healthy individuals aged 18-80 years old that were not natural nasal carriers of 

S. pneumoniae, were inoculated intranasally with live 6B pneumococcus (80.000 CFU/100l/ 

per nostril). Nasal and blood samples were collected prior to pneumococcal inoculation and 

at days 2, 7, 9, 14, 22 and 29 days after inoculation. For this thesis, I had access to peripheral 

blood mononuclear cell (PBMC) samples from pre-inoculation and at post inoculation at day 

14, for the young cohort, and day 29, for the older cohort.  

 

2.3 Blood sampling and assays 

Peripheral blood from volunteers was collected by venepuncture into BD Vacutainers 

(Becton Dickinson, UK) containing lithium heparin, ethylenediaminetetraacetic acid (EDTA) 

or clot activator. 
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2.3.1 Preparation of serum  

Blood samples were collected into vacutainers containing clot activator and allowed to clot 

for 20 minutes at RT. Tubes were then centrifuged at 1500 x g for 10 minutes at 4°C. Serum 

was collected, aliquoted and stored at -80°C. 

 

2.3.2 Preparation of pooled sera 

Two large pooled sera batches were prepared as a source of complement to opsonise the 

pneumococcus for neutrophil phagocytosis and oxidative burst assays in order to minimise 

assay variability across the thesis studies. One contained sera from 10 healthy young and the 

other sera from 14 older volunteers. Serum samples were thawed in a 37°C water bath, 

placed in ice (4°C) and pooled together under sterile conditions. The pooled sera were 

aliquoted (100 l) and stored at -80°C until further use. 

 

2.3.3 Measurement of anti-pneumococcal antibodies levels in pooled sera 

Levels of anti-pneumococcal IgGs were measured in sera samples using a multiplex assay, 

which was carried out by Dr Siân Faustini, at the Clinical Immunology Services of the 

University of Birmingham. 

Briefly, pneumococcal polysaccharide capsules (serotypes 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 

19F, 23F) were conjugated with beads. Beads were sonicated and pre-diluted on coupling 

buffer (activation buffer (0.53g NaH2PO4 and 0.16g Na2HPO4 to 50 ml reagent grade water), 
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normal human serum, (15 mg in 300 μl activation buffer) and EDC, (15 mg in 300 μl 

activation buffer)). The mixture was added to a 96-well MultiScreenHTS BV filter plate (Merk-

Millipore, New Jersey, USA) and incubated for 30 minutes on a plate shaker at RT, protected 

from light. Next, buffer was aspirated using a vacuum manifold and 150 μl of pneumococcal 

capsule added to each well, and incubated for 3 hours on a plate shaker at RT. The plate was 

then washed using a vacuum manifold, beads resuspended in blocking buffer and collected 

from wells. The beads were then counted ahead of use in the assay. Beads were mixed 

together into a mastermix solution (25µL per well) and added to a new 96-well 

MultiScreenHTS BV filter plate. After the plate was washed twice with wash buffer using a 

vacuum manifold, 25 µl of serum samples were added to the wells, and plate was incubated 

for 1 hour, protected from light, on a plate shaker at RT. Next, the plate was washed three 

times with wash buffer using a vacuum manifold ahead of incubation with anti-human IgG 

PE-conjugate antibody diluent and incubated for 30 minutes, protected from light, on a plate 

shaker at RT. After incubation, the plate was washed twice with wash buffer using a vacuum 

manifold and well contents resuspended in 125 µl wash buffer. The plate was analysed in a 

Luminex analyser (Bio-Rad Laboratories, Germany). 

 

2.4 Preparation of S. pneumoniae for use in assays 

Glycerol stocks of live S. pneumoniae serotypes 4, 19A, 23F and TIGR4cps were thawed at 

37°C in a water bath. From these an intermediate 1x108 CFU/ml stock was prepared in PBS. 

Preparation of FITC-labelled TIGR4 or heat-killed (HK) TIGR4 also followed the following 

steps. These new stocks were centrifuged (13000 x g, 5 minutes, RT), the supernatant 
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discarded and the pellets were resuspended in PBS. From the 1x108 CFU/ml stocks, bacteria 

were aliquoted into a new Eppendorf tubes at the concentration required for each assay and 

centrifuged (13000 x g, 5 minutes, RT). The supernatant was collected, and the pellet was 

resuspended in assay media. Bacterial preparations were used immediately.   

 

2.4.1 Pre-opsonisation of pneumococcal serotypes 

From the 1x108 CFU/ml stocks prepared as described in 2.4, bacteria (8x106 CFU total; 4x106 

CFU/ test) were aliquoted into a new Eppendorf, centrifuged (13000 x g, 5 minutes, RT) and 

resuspended according to the opsonins of interest: 

 Non-opsonised control: resuspended in PBS; 

 Antibody-opsonised: TIGR4 and TIGR4cps strains were resuspended in anti-type type 

4 capsule serum, 19A was resuspended in Pneumococcus Group 19 antiserum, and 

23F was resuspended in Pneumococcus Group 23 antiserum (all raised in rabbit, 

Statens Serum Institut, Copenhagem, Denmark). All anti-capsular serum was pre-

diluted 1:150 in PBS; 

 Pooled sera from young volunteers (to be referred as young serum): resuspended in 

50% young pooled sera prepare in 2.3.2, diluted in PBS; 

 Pooled sera from older volunteers (to be referred as old serum): resuspended in 50% 

old pooled sera prepare in 2.3.2, diluted in PBS. 

Bacteria were incubated for 20 minutes at 37°C in 5% CO2. After incubation, samples were 

centrifuged (13000 x g, 5 minutes, RT) and resuspended in RPMI-1640 media (Sigma-Aldrich, 
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UK) supplemented with 2 mM L-glutamine (Thermo Fisher, USA) and 10% fetal calf serum 

(assay media) and used immediately.  

2.5 Analysis in whole blood 

2.5.1 Blood cell count 

Whole blood cell analysis was performed using a Sysmex XN-1000 analyser (Sysmex UK, UK). 

This instrument generates a full blood cell count that also includes complementary 

parameters such as immature granulocytes (IG) and other parameters of immature 

granulocytes and monocytes. For Sysmex analysis, 200 l of heparin anticoagulated blood 

from 31 healthy young, 27 healthy older adults, 24 older pneumonia patients and 3 young 

patients were analysed. 

 

2.5.2 Measurement of neutrophil phagocytosis of S. pneumoniae TIGR4 in whole blood 

This phagocytosis protocol is a modified version of the PhagoTestTM kit (Glycotope 

Biotechnology, Heidelberg, Germany). For assessing phagocytosis, 100 μl of heparinised 

blood was aliquoted into FACS tubes and rested on ice for 10 minutes. Next, pre-opsonised 

FITC-labelled S. pneumoniae (4x107CFU/tube), prepared as described in 2.4.1 were added to 

blood aliquots, samples were vortexed and incubated at 37°C in a water bath for 10 minutes. 

Stimulations were performed in duplicate. One tube containing antibody-opsonised TIGR4 

was kept on ice, protected from light, as a negative control. After incubation, samples were 

immediately placed on ice and ice-cold Trypan blue (1:4 diluted in PBS, Sigma-Aldrich, UK)) 

was added to quench the fluorescence of non-internalized bacteria. 2ml of PBS was added to 

tubes ahead of centrifugation (250 x g, 5min, 4°C). The supernatant was discarded, and the 
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wash step repeated. The supernatant was discarded, and the pellet resuspended in 2ml of 1x 

BD FACS lysing solution (1:10 dilution in deionized water, BD Biosciences, UK). Tubes were 

incubated at RT for 20 minutes, in the dark. Following incubation, samples were centrifuged 

(250 x g, 5min, 4°C), the supernatant discarded, and cells washed with 2 ml PBS. After 

centrifugation, the supernatant was discarded, and the pellet resuspended in 200 μl of 

propidium iodide (PI) (Sigma-Aldrich, UK) 10 μg/ml solution (prepared in 3.4 M sodium 

citrate buffer) and incubated for 10 minutes on ice. Samples were analysed within 1 hour 

using a BD Accuri™ C6 flow cytometer. Neutrophils were gated based on their forward 

scatter/sideward scatter properties, 15,000 cells were acquired. The amount of 

pneumococcus phagocytosed was measured by the median fluorescence intensity (MFI) of 

gated neutrophils using CFlow software (BD Biosciences, UK). The phagocytic capability of 

neutrophils was determined by the phagocytic index, which considers both the percentage 

of phagocytosing neutrophils and MFI from ingested bacteria, as shown by the equation 

below: 

Phagocytic index = (% of cells with ingested bacteria x MFI)/100 

 

2.6 Isolation of immune cells from whole blood 

2.6.1 Neutrophil isolation 

Under sterile conditions, EDTA-anticoagulated blood was transferred to a 50 ml FalconTM 

tube (Thermo Fisher, USA). 2% Dextran (diluted in 0.9% saline, Sigma-Aldrich, UK) was added 

to the blood at the proportion of 1 ml for every 6 ml of blood and mixed gently. Blood was 

left to rest for 40 minutes at RT to allow erythrocytes to sediment. Next, the layer on top of 
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the erythrocytes, containing plasma and leukocytes, was collected and layered on top of a 

Percoll (Scientific Lab Supplies, UK) density gradient. The Percoll gradient was prepared by 

carefully adding 2.5 ml of 80% Percoll under 5 ml of 56% Percoll. After transferring the 

serum on top of the gradient, the tube was centrifuged for 20 minutes, 220 x g at RT, with 

no brake. Following centrifugation, the neutrophils at the 56%-80% Percoll interface were 

collected and transferred to a new Falcon tube and resuspended in RPMI-1640 media 

(Sigma-Aldrich) supplemented with 2 mM L-glutamine (Thermo Fisher) and 10% fetal calf 

serum (Sigma-Aldrich) (assay media). Neutrophils were washed (220 x g, 10 minutes, RT) 

resuspended in assay media at a concentration of 1x106 /ml for the following experiments.  

 

2.6.2 Peripheral blood mononuclear cell (PBMC) isolation 

Heparinised blood was transferred to a sterile FalconTM tube (Thermo Fisher) and diluted 1:1 

in assay media. Diluted blood was then layered on top of 6 ml of Ficoll-Paque PLUS (GE 

Healthcare, Uppsala, Sweden) and centrifuged for 30 minutes, at 400 x g, RT, with no brake. 

Following centrifugation, the layer of mononuclear cells was collected and transferred to a 

universal tube (Sarstedt, Leicester, UK), in which cells were resuspended in magnetic 

assisted cell sorting buffer (MACS; PBS, 0.5% bovine serum albumin (BSA), 2 mM EDTA and 

0.09% azide; Miltenyi Biotec, Gladbach, Germany). Cells were pelleted (400 x g, 10 minutes, 

RT) and washed once again in MACS buffer. After the supernatant was discarded, the PBMCs 

were resuspended in assay media at a concentration of 1x106 cells/ml and used for 

subsequent experiments. PBMCs destined for T lymphocyte stimulation were frozen as 

described in 2.6.3. 
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2.6.3 Freezing and thawing of PBMCs 

For immunophenotyping of T lymphocytes, PBMCs isolated as described above were 

resuspended in 1ml of freezing media (FCS containing 10% dimethyl sulfoxide (DMSO), 

Sigma-Aldrich), following the last wash with MACS buffer and stored in cryovials. The 

cryovials were placed into a freezing container (Mr Frosty, Sigma Aldrich) and stored at -80°C 

for future experiments. Thawing of samples was performed by placing the cryovials at 37°C 

in a water bath. The contents were then transferred to a 15 ml FalconTM tube (Thermo 

Fisher, USA) and warm assay media supplemented with 50 μg/ml DNase (reconstituted in 

0.15M NaCl solution; Sigma-Aldrich) was slowly layered on top of the freezing media [329]. 

PBMCs were centrifuged (300 x g, 10 minutes, 23°C) and the supernatant was discarded. 

Pellet was resuspended in warm assay media supplemented with DNase as before and 

centrifuged again. The supernatant was discarded, and cells were resuspended in 2 ml of 

complete RPMI to which Benzonase® Nuclease (Merk-Millipore, New Jersey, USA) was added 

at the proportion of 1 μl per 106 of cells frozen. PBMCs were incubated for 1 hour at 37°C in 

5% CO2. This step was performed to enhance cell viability following the thaw process, as 

nuclease digests cell clumping, allowing an increased recovery of viable cells [329]. Following 

nuclease incubation, cells were washed with assay media (300 x g, 10 minutes, 23°C), the 

supernatant was discarded, and PBMCs were resuspended in assay media at a concentration 

of 5x106 cells/ 5 ml. Cells were incubated overnight at 37°C in a humidified atmosphere of 

5% CO2.  

Thawing of PBMCs from the EHPC cohort did not undergo the nuclease incubation step, as 

these samples were frozen using the CTL-Cryo™ ABC Media kit (ImmunoSpot, Cleveland, US), 

that allow recovery rates higher than 70% and high cell viability post-thawing. The next day, 
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cells were centrifuged (300 x g, 10 minutes, 23°C), re-suspended in assay media at a 

concentration of 1x106 cells/ml and used in the subsequent experiments. 

 

2.7 Analysis of neutrophil and monocyte function following stimulation with S. 

pneumoniae 

2.7.1 Measurement of neutrophil reactive oxygen species (ROS) 

Generation of ROS by isolated neutrophils was assessed by incubating 1x105 neutrophils in a 

96-flat bottom well plate (Corning, USA) together with pre-opsonised live S. pneumoniae 

serotypes strains (4x106 CFU/well) (prepared in 2.4.1) in duplicate. As a negative control, a 

well containing only neutrophils was used, and as positive control, neutrophils were 

stimulated with PMA (1.62 μM). The plate was incubated for 15 min at 37°C in a 5% CO2 

incubator. Next, dihydrorhodamine 123 (DHR 123) was added at a concentration of 100 

µM/well and neutrophils were incubated for 15 min at 37°C in a 5% CO2 incubator. After 

incubation, neutrophils were transferred to FACS tubes and 2ml of PBS was added, tubes 

were centrifuged at 250 x g for 5 minutes at 4°C. Supernatants were discarded and pellets 

resuspended in PI solution (10 µg/ml) (prepared as described in 2.5.2) for 10 minutes, on ice, 

protected from light. 1% paraformaldehyde was then added to tubes, for fixation of 

remaining live bacteria, and samples were incubated for 10 minutes on ice. ROS generation 

was measured within 30 minutes, using a BD Accuri™ C6 flow cytometer. Acquisition of 

15,000 neutrophils was done by gating on their forward scatter/sideward scatter properties. 

Analysis of ROS production was assessed using CFlow software as explained in section 2.5.3. 
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2.7.2 Generation of neutrophil cell-free DNA  

To assess neutrophil extracellular trap (NET) generation in response to S. pneumoniae 

strains, a modified version of a published protocol was used [141]. Neutrophils (2x105/well) 

were added to a 96-flat bottom well and cells that were to be incubated with bacteria were 

pre-treated with 10 µg/ml Cytochalasin D (Sigma-Aldrich, UK), for 15 minutes at 37°C in 5% 

CO2, as described previously [280], to inhibit phagocytosis, by inhibiting actin polymerization. 

Following incubation, S. pneumoniae strains (2x106 CFU/well), prepared as described in 

section 2.4, were added to neutrophils. Unstimulated neutrophils were used as a negative 

control, and 25nM PMA (Sigma-Aldrich) was used as a positive control for NET generation. 

Wells containing bacteria alone in assay media were also used, for measurement of any DNA 

release by the pneumococcus. All stimulations were performed in duplicate. The plate was 

then incubated for 3 hours at 37°C in 5% CO2. Within 30 minutes of incubation, 100 µg/ml 

gentamicin (Thermo Fisher) was added to all wells. This high dose of gentamicin was used to 

inhibit S. pneumoniae growth in culture, a strategy previously used by other groups 

[295,330]. Gentamicin is also a non-lytic antibiotic [331], which could reduce DNA release 

from S. pneumoniae following death. The susceptibility of all the pneumococcal strains used, 

to the dose of 100 µg/ml gentamicin, was confirmed before these experiments were carried 

out. Neutrophils and bacteria untreated with gentamicin were included as controls. 

Following 3 hours of incubation, cell-free DNA release was measured by fluorimetry. Briefly, 

the supernatant was carefully collected and transferred to 500 µl Eppendorfs and 

centrifuged at 2200 x g for 10 minutes at 4°C to pellet bacteria and cells. Following 

centrifugation, 150 µl of cell-free supernatant were transferred to a black 96-flat bottom 

well plate (Corning). To these, 1 µM of SYTOX Green stain (Thermo Fisher, Life Technologies, 
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UK) was added for staining of extracellular DNA, and incubated for 10 minutes, protected 

from light, at RT. Next, fluorescence was measured using a BioTek® Synergy 2 fluorometric 

plate reader, with excitation and emission set at 485 nm and 528 nm, respectively. All 

samples were analysed in duplicate. 

 

2.7.3 Visualisation of neutrophil extracellular traps using fluorescent microscopy 

This methodology was adapted from the one described in Dr Jon Hazeldine’s doctorate 

thesis and as published by Halverson et al. (2015) [332]. For NET visualisation, 2x105 isolated 

neutrophils (200 µl) resuspended in assay media, were seeded onto 24-well flat bottom 

plates (Corning) and incubated for 30 minutes at 37°C and 5% CO2 atmosphere, to allow 

neutrophils to adhere. Next, 10 µg/ml Cytochalasin D (Sigma-Aldrich) was added to wells and 

incubated for 15 minutes at 37°C in 5% CO2. S. pneumoniae TIGR4 (section 2.4), was 

resuspended in assay media and added to neutrophils at a proportion of 10:1 (2x106 

CFU/100 µl) and 100:1 (2x107 CFU/100 µl). PMA (25nM)-treated neutrophils served as 

positive control. Assay media was added to unstimulated neutrophils to reach a final volume 

of 300 µl/well. The plate was then centrifuged at 800 x g for 10 minutes, at 23°C, and then 

incubated for 3 hours at 37°C in a humidified 5% CO2 atmosphere. Within 30 minutes of 

incubation, gentamicin (100 µg/ml) was added to wells containing S. pneumoniae. Following 

stimulation, neutrophils were fixed with 4% paraformaldehyde (20% PFA stock, diluted into 

wells to final concentration of 4%) and incubated for 30 minutes at 37°C in 5% CO2. Next, the 

culture media was collected, and the contents of the wells washed with 500 µl of PBS for 5 

minutes, at RT. The PBS was collected, and this step repeated. After PBS removal, cells were 
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permeabilised with 0.1% Triton X-100 (200 µl) (Sigma-Aldrich) for 1 minute ahead of a 5 

minute PBS wash. Next, cells were stained with 1 µM SYTOX Green stain (200 µl) (Thermo 

Fisher, Life Technologies) for 5 minutes at RT, protected from light. After the stain solution 

was collected, wells were washed with PBS for 5 minutes and a drop of mountant was added 

to each well (ProLong Diamond Antifade, Thermo Fisher) and a coverslip applied. Images 

were acquired with a LEICA DMI 6000 B microscope at X20 objective (Leica microsystems, 

Milton Keynes, UK). 

 

2.7.4 Stimulation of neutrophils and monocytes for assessment of receptor expression and 

cytokine production 

Neutrophils (2x105) isolated from EDTA-anticoagulated blood and PBMCs (2x105) isolated 

from heparin-anticoagulated blood were transferred into FACS tubes or 96-well round 

bottom plates. PBMCs were used to assess monocyte activation. Both neutrophils and 

PBMCs were incubated with S. pneumoniae strains TIGR4, 19A, 23F, TIGR4cps or heat-killed 

TIGR4, prepared as described in 2.4, at a multiplicity of infection of 40:1 (8x106 CFU/test). 

Neutrophils or monocytes were left unstimulated as a negative control and 

lipopolysaccharide (LPS) (50 ng/ml) (Sigma-Aldrich) stimulation was used as positive control. 

After 30 minutes within the incubation time, Gentamicin (100ug/ml) was added to tubes 

containing S. pneumoniae, to stop bacterial growth. Cells were stimulated for different 

purposes: 

 For analysis of surface receptor expression and intracellular cytokine production: 

Brefeldin A (10μg/ml; Sigma-Aldrich) was added to neutrophils and PBMCs in FACS 
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tubes, and cells were stimulated for 4 hours at 37°C, with 5% CO2. At the end of the 

incubation, samples were processed for immunostaining and flow cytometry analysis. 

 For analysis of pro-inflammatory and other cytokine production by neutrophils: 

neutrophils were stimulated with LPS (50 ng/ml) or pneumococcal strains in a 96-well 

round bottom plate for 18 hours at 37°C in a humidified atmosphere of 5% CO2. Once 

the incubation had ended the plate was centrifuged for 5 minutes 250 x g, at 4°C. 

Supernatants were collected, aliquoted into Eppendorfs and stored at -80°C for later 

assay of cytokine content. 

 For analysis of IL-17A production by neutrophils: neutrophils were stimulated with LPS 

(50 ng/ml) or pneumococcal strains in FACS tubes for 18 hours at 37°C in a humidified 

atmosphere of 5% CO2. BD GolgiPlug™ (1:100 then 1:100 into wells, BD Biosciences, 

UK) was added to cells 16 h before the end of incubation. After the incubation, 

neutrophils were stained for IL-17 and flow cytometry analysis. 

 

2.7.4.1 Measuring surface receptors expression and intracellular cytokine production by 

neutrophils and monocytes 

Following a 4-hour incubation with S. pneumoniae strains, neutrophils and PBMCs 

stimulated as described in section 2.7.4, were washed with 1 ml of PBS and pelleted by 

centrifugation (5 minutes, 250 x g, 4°C). PBMCs were used to assess monocyte activation 

following stimulation with the pneumococcus. The supernatant was dispensed, and the cells 

were resuspended in the residual volume left in the tubes. A cocktail of primary antibodies, 

detailed in Table 2.1, were added to FACS tubes containing neutrophils or PBMCs. The tubes 
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were vortexed and incubated for 20 minutes, at 4°C, protected from light. After incubation, 

1 ml of PBS was added to tubes for washing unbound antibody (5 minutes, 250 x g, 4°C). The 

supernatant was dispensed, and pellets resuspended in 100 µl of Fixation Medium (Medium 

A, Fix and Perm kit, Invitrogen, UK), and were incubated for 30 minutes in the dark, at RT. 

Post-fixation, cells were washed with 1 ml of PBS and centrifuged (5 minutes, 250 x g, 4°C). 

The pellet was resuspended in 100 µl of Permeabilisation Medium (Medium B, Fix and Perm 

kit, Invitrogen) and intracellular antibodies, as shown in Table 2.1. Samples were incubated 

at RT, protected from light, for 30 minutes. Next, cells were washed with 1 ml of PBS and 

pelleted by centrifugation (5 minutes, 250 x g, 4°C). Finally, cells were resuspended in 250 µl 

of PBS and acquired using a BD Fortessa flow cytometer (BD Biosciences, UK). Neutrophil 

acquisition was performed by counting 20,000 events on the CD15+ gate. Monocyte 

acquisition was achieved by counting up to 5000 events on the CD14+ gate. Analysis of 

neutrophil expression of CD11b, CD62L, TLR2 and TLR4 and IL-8 production, and of 

monocyte expression of CD11b and CCR2 and production of IL-6 and TNF-α were done using 

FlowJo software (version 10.4.1, FlowJo, LLC, Ashland, Oregon, USA).  

Table 2.2 Antibodies used for neutrophils and monocytes staining for flow cytometry 

Panel 1:  Neutrophils Clone Company Volume per tube 

CD15 eFluor® 450 MMA eBiosciences 3 µl 

CD11b APC ICRF44 eBiosciences 1 µl 

CD62L PE-Cyanine7 DREG56 eBiosciences 1 µl 

TLR2 FITC TL2.1 eBiosciences 5 µl 

TLR4 PE HTA125 eBiosciences 5 µl 

IL-8 PE-CF594 G265-8  BD Biosciences 2 µl 

    

Panel 2:  Monocytes Clone Company Volume per tube 

CD14 eFluor® 450 61D3 eBiosciences 3 µl 

CD11b APC ICRF44 eBiosciences 1 µl 

CCR2 PE-Cyanine7 357212 Biolegend 1 µl 

IL-6 PE MQ2-13A5 Biolegend 2 µl 
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TNF-α FITC MAb11 Biolegend 2 µl 

 

 

2.7.4.2 Staining for neutrophil IL-17A production by flow cytometry 

To investigate if neutrophils could produce IL-17A in response to S. pneumoniae strains, 

following stimulation of isolated neutrophils as in 2.7.4, neutrophils were washed with 1 ml 

PBS and pelleted by centrifugation (5 minutes, 250 x g, 4°C). Next, pellets were resuspended 

in 25 µl of viability dye (diluted 1:500 in PBS, LIVE/DEAD™ Fixable Near-IR Dead Cell Stain, 

Invitrogen) and incubated at 4°C, for 15 minutes. Next, anti-human CD15-eFluor® 450 

antibody (3 µl, clone: MMA, eBiosciences, UK) was added, and neutrophils incubated for 15 

minutes at 4°C. Next, tubes received 1 ml of PBS and were centrifuged (5 minutes, 250 x g, 

4°C). Once supernatant was discarded, neutrophils were fixed with 100 µl of Fixation 

Medium (Medium A, Fix and Perm kit, Invitrogen), for 30 minutes in the dark, at RT. Cells 

were washed with 1 ml of PBS and pelleted (5 minutes, 250 x g, 4°C) before resuspension in 

100 µl of Permeabilisation Medium (Medium B, Fix and Perm kit, Invitrogen). Anti-human IL-

17-APC (2 µl, clone: eBio64DEC17, eBiosciences) was added and cells were incubated for 30 

minutes, at RT, in the dark. Neutrophils were washed with 1 ml of PBS, pelleted by 

centrifugation (5 minutes, 250 x g, 4°C) and resuspended in 250 µl of PBS for flow cytometry 

analysis. Acquired was performed using the BD Fortessa flow cytometer (BD Biosciences), by 

gating on live CD15+ neutrophils and counting 20,000 events. Analysis of neutrophil IL-17A 

production was done using FlowJo software (version 10.4.1, FlowJo, LLC, Ashland, Oregon, 

USA).  
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2.9 Measurement of cytokines levels in serum and in neutrophil supernatants 

Levels of cytokines in serum and supernatants of neutrophil cultures (described in 2.7.4) of 

healthy young, healthy older adults and pneumonia patients were determined using 

multiplex technology and commercial kits according to the manufacturer’s instructions (Bio-

Rad Laboratories, Germany). The cytokines measured were IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, 

IFN-γ, TNF-α, IL-17A, IL-21, IL-23 and IL-33. Sera were diluted 1:4 in Sample Diluent provided 

by the kit and supernatants were diluted 1:2 in assay media ahead of assay. 

 

2.10 Immunophenotyping by flow cytometry 

2.10.1 Staining of neutrophils and monocytes subsets  

Aliquots (100 µl) of fresh heparinised blood were transferred to a FACS tube. To the aliquot 

destined for neutrophil immunophenotyping, a cocktail containing anti-human CD15-FITC, 

CD16-eFluor 450 and CD62L-Phycoerythrin (PE)-Cyanine7 (PEcy7) was added to the blood. 

For monocyte immunophenotyping, cells were stained with a cocktail of antibodies against 

human CD16-eFluor 450, CD14-allophycocyanin (APC) and CCR2-PEcy7. Information about 

antibodies used is detailed in Table 2.2. Tubes were incubated for 20 minutes on ice, 

protected from light. After incubation, 1 ml of PBS was added to FACS tubes ahead of 

centrifugation (5 minutes, 250 x g, at 4°C). The supernatant was dispensed, and pellet was 

resuspended in 2 ml of 1x BD FACS lysing solution (1:10 dilution in deionized water, BD 

Biosciences). Samples were incubated for 20 minutes, at RT, in the dark. Following lysis of 

erythrocytes, cells were pelleted by centrifugation (250 x g, 4°C, 5 minutes) and resuspended 

in 1 ml PBS, for another centrifugation (250 x g, 4°C, 5 min). Next, supernatant was 
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discarded, cells resuspended in 250 µl of PBS, and stored at 4°C until acquisition by using a 

BD Fortessa flow cytometer (BD Biosciences). Acquisition of neutrophils was performed by 

setting the acquisition gate on CD15 positive cells and counting 10,000 to 15,000 neutrophils 

within this gate. Acquisition of monocytes was performed by counting up to 15,000 events 

within the CD14+ gate. Post analysis of CD16brightCD62Ldim neutrophil population and 

CD14+CD16+ monocytes subsets were performed using the FlowJo software (version 10.4.1, 

FlowJo, LLC, Ashland, Oregon, USA).  

 
Table 2.3. Antibodies used for immunophenotyping of neutrophils and monocytes by flow 
cytometry 

Panel 1:  Neutrophils Clone Company Volume per tube 

CD15 FITC HI98 Biolegend 5 µl 

CD16 eFluor® 450 eBioCB16 eBiosciences 3 µl 

CD62L PE-Cyanine7 DREG56 eBiosciences 2 µl 

 
  

 
Panel 2:  Monocytes Clone Company Volume per tube 

CD14 APC 61D3 eBiosciences 3 µl 

CD16 eFluor® 450 eBioCB16 eBiosciences 3 µl 

CCR2 PE-Cyanine7 357212 Biolegend 2 µl 

 

2.10.2 Staining of dendritic cells 

This protocol was established by Dr Simon Jochems, from the LSTM and the experiment 

were performed by me at Dr Daniela Ferreira’s laboratory, at the LSTM. 

Following thawing of pre-colonisation PBMCs of the EHPC cohort (section 2.6.3), 1x106 cells 

were transferred to FACS tubes. Cells were washed with 1 ml of PBS (5 minutes, 440 x g, RT). 

The supernatant was discarded, and tubes blotted on absorbant towel to reduce residual 

volume. The pellet was resuspended in 20 µl viability dye (diluted 1:200 in PBS, LIVE/DEAD™ 

Fixable Violet Dead Cell Stain, Invitrogen, UK) and incubated for 15 minutes at RT. Next, cells 
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were stained with a cocktail of anti-human antibodies for targets described in Table 2.3, and 

incubated for 15 minutes, at RT. Following staining, cells were washed in 1 ml of PBS (5 

minutes, 440 x g, RT). The pellet was resuspended in 200 µl of PBS and acquired in a BD LSR 

II flow cytometer (BD Biosciences).  

 

Table 2.4. Antibodies used for staining of dendritic cell 

Antibody target Clone Company Volume per tube 

Violet LIVE/DEAD™ dye Fixable dye Invitrogen 20 µl of 1:200 

Lineage cocktail 1 (CD3, CD14, 
CD16, CD19, CD20, CD56) FITC 

SK7, MφP9, 3G8, SJ25C1, 
L27, NCAM16.2 

BD Biosciences 10 µl 

CD1c (BDCA-1) PE F10/21A3 BD Biosciences 5 µl 

CD303 (BDCA-2) APC AC144 Miltenyi Biotec 5 µl 

CD141 (BDCA-3) BV711 1A4 BD Biosciences 4 µl 

HLA-DR PE-Cyanine7 L243 Biolegend 1 µl 

CD40 BV605 5C3 Biolegend 5 µl 

 

2.11 Assessment of phagocytosis by CD16brightCD62Ldim neutrophils from pneumonia 

patients 

Analysis of phagocytosis in neutrophils from pneumonia patients was performed using E. coli 

and the PhagoTestTM kit (Glycotope Biotechnology, Heidelberg, Germany). Due to the raised 

numbers of circulating neutrophils in these patients the volume of blood added to the assay 

has to be adjusted to maintain the ratio of bacteria to neutrophils to within the range 

suggested by the manufacturers. The whole blood count (WBC) of the patients was firstly 

assessed by the Sysmex analyser. The average value of 4.921, calculated based on the WBC 

of healthy subjects was use as reference to determine the volume of blood from patients 

required for the assay. This value was divided by the WBC count from the patient. If the 

result was higher than 1, 100 µl of heparinised blood was used. If lower than 1, the value 



 63 

was multiplied by 100, giving the volume of blood required for assay. In this case, the 

volume of 100 µl was achieved by completing the volume with plasma from the patient. 

Plasma was obtained from centrifugation of heparinised blood (10 minutes, 400 x g, 4°C). 

Once the required volume of blood and plasma were transferred to FACS tubes and rested 

on ice for 10 minutes, 20 µl of opsonised FITC-labelled E. coli from the PhagoTestTM kit was 

added and samples were incubated for 10 minutes at 37°C water bath. One control tube 

remained on ice, as a negative control for phagocytosis. After incubation, 100 µl of ice cold 

trypan blue 4% (diluted 1:4 in PBS) was added to quench fluorescence of non-internalised 

bacteria. Tubes were vortexed, 2 ml of PBS was added to each sample and tubes were 

centrifuged (5 minutes, 250 x g, 4°C). Supernatant was collected, cells stained with anti-

human CD16-eFluor® 450 (3 µl, clone: eBioCB16, eBiosciences) and anti-CD62L-PE-Cy7 (2 µl, 

clone: DREG56, eBiosciences) antibodies, for 20 minutes, on ice, protected from light. 

Samples were then washed in 1 ml PBS (5 minutes, 250 x g, 4°C), before pellets were 

resuspended in 2 ml of 1x BD FACS Lysing Solution (1:10 dilution in deionized water, BD 

Biosciences) and incubated for 20 minutes, at RT, in the dark. Next, samples were 

centrifuged (5 minutes, 250 x g, 4°C), the supernatant dispensed, and cells washed with 2 ml 

PBS. Finally, pellets were resuspended in 200 µl and acquired using the BD Fortessa flow 

cytometer (BD Biosciences). Neutrophils were gated based on their forward 

scatter/sideward scatter properties, 20,000 cells were acquired. The amount of 

pneumococcus phagocytosed by CD16brightCD62Ldim neutrophils was assessed using the 

FlowJo software (version 10.4.1, FlowJo, LLC). 

 

2.12 Stimulation of CD4+ T lymphocytes with S. pneumoniae  
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PBMCs from healthy volunteers, EHPC participants and pneumonia patients were thawed 

and rested overnight (section 2.6.3). Following overnight incubation, PBMCs were 

centrifuged (440 x g, 10 minutes, RT), resuspended in assay media and re-counted using 

trypan blue to determine viability. Cells were resuspended to a concentration of 1x106 

cells/ml and 2x105 PBMCs were transferred to a 96 flat-bottom plate for stimulations. Cells 

were stimulated for 66 hours. Every stimulation was performed in duplicate, accordingly: 

 Mock controls: unstimulated PBMCs. 

 PMA/Ionomycin: treated with 10 ng/ml Phorbol 12-myristate 13-acetate (PMA) and 

50 ng/ml ionomycin (both from Sigma, UK), added at 48 hours. 

 S. pneumoniae TIGR4: cells (2x105) were stimulated with 2x106 CFU/5µl of S. 

pneumoniae TIGR4 (MOI 10) (section 2.4). 30 minutes within the incubation time, 100 

µg/ml gentamicin (Thermo Fisher) were added to wells to stop overgrowth. 

 S. pneumoniae 6B: 5 µg/ml of HK 6B (3.65 mg/ml stock, diluted to 250 µg/ml, of which 

4 µl were added into 200 µl cells). 

After adding bacteria to PBMCs, cells were incubated for 48 hours at 37°C in a humidified 

atmosphere of 5% CO2. After 48h, cells were re-stimulated. Untreated cells were stimulated 

with PMA and ionomycin, TIGR4-stimulated cells were re-stimulated with HK TIGR4 

(2x106/well, prepared as described in 2.4), 6B-stimulated cells were re-stimulated with 5 

µg/ml of HK 6B. 2 hours post re-stimulation, BD GolgiPlug™ (1:100 then 1:100 into wells, BD 

Biosciences) was added to all cells to inhibit cytokine secretion. The culture was incubated 

overnight at 37°C in 5% CO2 for 16 hours. After incubation, cells were added to FACS tubes 
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by combining the content of 2 wells together and processed for immunostaining and flow 

cytometry analysis. 

 
 
 
 

2.12.1 Immunophenotyping of CD4+ T lymphocytes for flow cytometry analysis following 

stimulation with S. pneumoniae 

Following 66-hour stimulation of PBMCs, cells were transferred to FACS tubes. To these, 1ml 

of PBS was added cells were pelleted (5 minutes, 440 x g, at 4°C). The supernatant was 

dispensed, and the tubes blotted on absorbent towel to reduce residual volume. The pellet 

was resuspended in 25 µl of viability dye (diluted 1:500 in PBS, LIVE/DEAD™ Fixable Near-IR 

Dead Cell Stain, Invitrogen) and incubated at 4°C, for 15 minutes. Cells were then stained for 

CD4+ T cell subsets, using three distinct colour panels, as detailed in Table 2.4. The anti-

human antibodies for surface molecules were mixed together into a cocktail and added to 

the cells, which were incubated 4°C, for 15 minutes. Next, cells were washed with 1 ml PBS 

(5 minutes, 440 x g, at 4°C) ahead of incubation with 800 µl of Working Solution, prepared by 

diluting 1 part of Fixation/Permeabilisation Concentrate with 3 parts Diluent (both from the 

Foxp3/Transcription Factor Staining Buffer Set, eBiosciences). Tubes were incubated 

protected from light, for 30 minutes at RT. Next, 2 ml of 1x Permeabilization buffer (1:10 

dilution with deionized water, Foxp3/Transcription Factor Staining Buffer Set, eBiosciences) 

was added to tubes ahead of centrifugation (5 minutes, 440 x g, at 4°C). Supernatant was 

dispensed, pellets were resuspended in residual volume left from supernatants and 

incubated with a cocktail of intracellular anti-human antibodies targeting intracellular 
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cytokines and transcription factors, according to their respective colour panel, detailed in 

Table 2.4. Following a 30-minute incubation at RT, cells were washed with 1 ml of 1x 

Permeabilisation buffer and centrifuged (5 minutes, 440 x g, at 4°C). Finally, the pellets were 

resuspended in 250 µl of PBS and stored at 4°C until time of acquisition by flow cytometry. 

Acquisition of 20,000 live CD3+CD4+ T cells was performed with BD Fortessa flow cytometer 

(BD Biosciences), and analysis of CD4+ T lymphocytes subsets was done with FlowJo 

software (version 10.4.1, FlowJo, LLC). Gates were set based on isotype controls. 

Table 2.5. Anti-human antibodies used for flow cytometry staining of CD4+ T subsets 

Panel 1:  Th1/Th2 Clone Company Volume per tube 

Near-IR LIVE/DEAD™ dye Fixable dye Invitrogen 25 µl of 1:500 

CD3 PE-Cyanine7 UCHT1 eBiosciences 1 µl 

CD4 eFluor® 450 OKT4 eBiosciences  3 µl 

IL-4 APC 8D4-8 eBiosciences 2 µl 

IFN-γ PE B27 Biolegend 1 µl 

T-bet BV711 4B10 Biolegend 3 µl 

GATA3 PerCP/Cy5.5 16E10A23 Biolegend 10 µl 

Panel 2:  Th17, naïve & 
memory 

Clone Company Volume per tube 

Near-IR LIVE/DEAD™ dye Fixable dye Invitrogen 25 µl of 1:500 

CD3 PE-Cyanine7 UCHT1 eBiosciences 1 µl 

CD4 eFluor® 450 OKT4 eBiosciences 3 µl 

CCR7 (CD197) FITC G043H7 Biolegend 2 µl  

CD45RA PerCP/Cy5.5 HI100 Biolegend 2 µl  

IL-17A APC eBio64DEC17 eBiosciences 2 µl 

RORγt PE AFKJS-9 eBiosciences 2.5 µl 

Panel 3:  Treg Clone Company Volume per tube 

Near-IR LIVE/DEAD™ dye Fixable dye Invitrogen 25 µl of 1:500 

CD3 PE-Cyanine7 UCHT1 eBiosciences 1 µl 

CD4 eFluor® 450 OKT4 eBiosciences 3 µl 

CD25 APC BC96 Biolegend 2 µl 

CD127 PerCP/Cy5.5 A019D5 Biolegend 1 µl 

GARP PE 7B11 Biolegend 5 µl 

Foxp3 FITC PCH101 eBiosciences 5 µl 

Isotype controls Clone Company Volume per tube 

Mouse IgG1k APC P3.6.2.8.1 eBiosciences The volume of 
isotype control was 
calculated based on 

Mouse IgG1k BV711 MOPC-21 Biolegend 

Mouse IgG1k PE MOPC-21 Biolegend 
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Mouse IgG1k PE-Cyanine7 P3.6.2.8.1 eBiosciences the same 
concentration as 
the antibody in use 

Mouse IgG1k PerCP/Cy5.5 MOPC-21 Biolegend 

Mouse IgG2aκ FITC eBM2a eBiosciences 

Mouse IgG2bk eFluor® 450 eBMG2b eBiosciences 

Mouse IgG2bk PE MPC-11 Biolegend 

Mouse IgG2bk PerCP/Cy5.5 MPC-11 Biolegend 

Rat IgG2aκ PE RTK2758 Biolegend 

Rat IgG2aκ FITC RTK2758 Biolegend 

 
2.13 Assessing IL-10 and TGF-β1 production by Tregs post CD3 and CD28 stimulation 

To analyse the production of IL-10 and TGF-β1 by Tregs, firstly, a round-bottom 96-well plate 

was pre-incubated with 50 µl RPMI solution containing 5 µg/ml monoclonal anti-human CD3 

(clone OKT3) and 5 µg/ml anti-human CD28 (clone 28.2) (both from eBiosciences), for 1 hour 

at 37°C in a humidified atmosphere of 5% CO2. To these wells, 150 µl of PBMCs (at 1x106 

cells/ml), prepared as described in section 2.6.3, were added. As controls, 150 µl of PBMCs 

were added to wells containing only 50 µl of RPMI. The cells were stimulated for a total of 66 

h. BD GolgiPlug™ (1:100 then 1:100 into wells, BD Biosciences, UK) was added to cells 16 h 

before the end of incubation. Next, cells were transferred to FACS tubes and washed once 

with PBS for 5 minutes, 440 x g, at 4°C. After discarding the supernatant, pellet was 

resuspended in 25 µl of viability dye (diluted 1:500 in PBS, LIVE/DEAD™ Fixable Near-IR Dead 

Cell Stain, Invitrogen) and incubated at 4°C, for 15 minutes. To these, a cocktail of antibodies 

targeting surface molecules, containing anti-human CD3-PEcy7, CD4-eFluor® 450, CD25-APC, 

CD127-PerCP/Cy5.5, GARP-PE at the concentrations described in Table 2.4, was added and 

cells were incubated for 15 minutes, at 4°C. Next, cells were washed once in PBS for 5 

minutes, 440 x g, at 4°C, prior to incubation with 800 µl of Working Solution, prepared by 

diluting 1 part of Fixation/Permeabilisation Concentrate with 3 parts diluent (both from the 

Foxp3/ Transcription Factor Staining Buffer Set, eBiosciences). Tubes were incubated for 30 
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minutes at RT, in the dark, before washing with 2 ml of 1x Permeabilisation buffer (1:10 

dilution with deionized water, Foxp3/Transcription Factor Staining Buffer Set, eBiosciences), 

for 5 minutes, 440 x g, at 4°C. Pellets were resuspended in residual volume left from 

supernatants and incubated with a cocktail of intracellular antibodies targeting anti-human 

Foxp3-FITC (5 µl, clone PCH101; eBiosciences), TGF-β1- PE-CF594 (5 µl, clone TW4-9E7; BD 

Biosciences) and IL-10-BV711 (5 µl, clone JES3-9D7; BD Biosciences), for 30 minutes, at RT, in 

the dark. Following wash with 1 ml of 1x Permeabilisation buffer for 5 minutes, 440 x g, at 

4°C, the cells were resuspended in 250 µl of PBS. Acquisition of 10,000 to 20,000 live 

CD3+CD4+ T cells was performed with BD Fortessa flow cytometer (BD Biosciences), and 

analysis of CD25+CD127-Foxp3+ population positive for GARP, IL-10 and TGF-β1 was done 

with FlowJo software (version 10.4.1, FlowJo, LLC). 

 

2.14 Statistical analysis 

Statistical analysis of all data was performed using GraphPad Prism® (version 7.0, Graph Pad, 

La Jolla, USA). Data distribution was checked using a D'Agostino-Pearson normality test. For 

normally distributed data of unpaired samples, parametric T-test was used, while unpaired 

nonparametric data was analysed with Mann-Whitney test. For paired analysis between 

normally distributed data, Paired T-test was used, and nonparametric analysis was done 

using Wilcoxon test. For comparison of three or more groups, a One-Way ANOVA test with 

Tukey’s post hoc test was performed if data was normally distributed, while a Kruskal-Wallis 

test with Dunn’s post hoc test was used when data was nonparametric. For paired analysis 

of three or more groups of nonparametric data, Friedman test with Dunn’s post hoc test was 
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used. The relationship between two variables was assessed with linear regression analysis. A 

p value of <0.05 was considered significant.  

For analysis of flow cytometry data from neutrophils and monocytes following 4-hour 

incubation with treatments, the level of statistical significance was adjusted manually for 

comparisons between unstimulated controls and LPS or S. pneumoniae serotypes. The 

threshold for statistical significance was adjusted to p<0.0084 in these analyses only, to 

correct for the use of multiple Wilcoxon tests (nonparametric paired T tests). Raw data and 

adjusted p values are shown in Table A.1 and A.2 in the appendix II. 
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Chapter 3  

The effect of age on the innate immune response to S. pneumoniae 
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3.1 Introduction 

Neutrophils are a crucial component in the defence against bacterial and fungal infections, 

they are the main phagocytic cells for S. pneumoniae, followed by monocytes [224,261]. 

During pneumococcal pneumonia neutrophils are present in all stages of infection, from 

arriving quickly to inflamed tissues and mediating anti-microbial functions, to being 

recruited by Th17 cells to the infected site later in the infection, and phagocytosing 

antibody-opsonised bacteria [257,261,297]. Neutrophil-mediated phagocytosis followed by 

ROS production and neutrophil extracellular trap (NET) generation are key to containing and 

eliminating the pneumococcus [224,273,277,333]. 

The incidence of pneumococcal infection and community acquired pneumonia is increased 

in adults over 65 years of age [8,18,334]. Despite high uptake of vaccination, the case-fatality 

ratio is the highest in adults over 65 years [19], in part due to vaccine effectiveness greatly 

decreasing in individuals older than 80 years [22]. S. pneumoniae serotype distribution varies 

around the globe, but reports are consistent that serotypes 1, 3, 19A, 19F and 23F are more 

common in aged individuals [19,22,27,28]. Carriage of some of these strains remains 

prevalent post-vaccination [22] and some, such as 3, 19A, 19F and 23F, are associated with 

higher risk of death due to pneumococcal pneumonia [335]. 

Immunosenescence, the decline of immune function in older adults, affects several immune 

cell types involved in the response against the pneumococcus. In vitro studies have 

demonstrated that neutrophils show reduced chemotaxis, phagocytosis, ROS production and 

NET generation against microbe or LPS challenge with advancing age [122,126–129,141]. 

Furthermore, Menter et al. (2014) reported that of patients who died of pneumococcal 

pneumonia, older adults had more infiltrated neutrophils in the lung than did the young, 
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who had more monocytes [109], reinforcing the hypothesis that changes in immune function 

with the advance of age is one of the factors underlying increased susceptibility to 

pneumonia in older adults. However, no study to date has examined whether neutrophil 

activation, ROS production and NET generation, as well as monocyte activation in response 

to S. pneumoniae serotypes changes with age and whether these functions are impaired 

during pneumonia infection in older adults. These are the core questions addressed in this 

chapter. 

 

3.2 Aims 

The aims of this chapter were: 

 To analyse the effect of age on neutrophil functions involved in immunity against S. 

pneumoniae; 

 To analyse neutrophil functions involved in immunity against S. pneumoniae during a 

period of infection in the old, including the impact on the neutrophil pool and 

monocytes subsets; 

 To investigate the effect of selected S. pneumoniae serotypes on neutrophil and 

monocyte cytokine production, during health or pneumonia infection in older adults. 

 

3.3 Results 

3.3.1 Healthy Participants 

In total 42 young (mean age 26.1 ± 3.4 years; range 21-32 years) and 39 old (mean age 72.4 

± 5 years; range 67-83 years) healthy volunteers were enrolled in the studies on the impact 
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of age on immunity. All volunteers had no significant co-morbidity or immunological illness 

and were not on medications known to interfere with immune function. Information about 

age and gender of all participants is summarized in Table 3.1. Healthy young volunteers will 

be referred to as HY and healthy older adults, as HO. 

Table 3.1. Demographics of healthy volunteers 

 

 

 

 

3.3.2 Pneumonia cohort 

Recruitment of patients with pneumonia was part of a pilot study coordinated by Prof David 

Thickett. For the work on this thesis, blood samples were collected from patients at least 

24h after hospital admission. All patients recruited to this study were above 18 years of age 

and had confirmed pneumonia by chest X ray with presence of consolidation in the lung. As 

this was a pilot study, only routine investigations were performed by the hospital and these 

did not include a detailed diagnosis of the causative pathogen of pneumonia. A total of 24 

patients were included in this study, recruited in the course of two periods: September 2016 

to March 2017 and January 2018 to February 2018. During recruitment of pneumonia 

patients, only 3 samples were obtained from young patients. The demographics of patients 

in the study, including whether they had previously had a vaccination for influenza or 

pneumonia, are shown in Table 3.2. None of the 3 younger patients had been vaccinated. Of 

older patients, 33% had been previously vaccinated with pneumococcal vaccine and 57% 

previously vaccinated against influenza. 

 Young (HY) Old (HO) 

Number of participants 42 39 

Mean age and range (years) 
26.14 ± 3.4 

(21-32) 
72.43 ± 5 
(67-83) 

Male (%) 19/42 (45%) 11/39 (28%) 
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To predict severity and mortality of diagnosed pneumonia, CURB-65 score was used. This 

predictor factor accounts 1 point for the presence of risk factors as confusion, blood urea 

nitrogen higher than 7mmol/l, respiratory rate ≥ 30/min, blood pressure < 90 mmHg systolic 

or ≤ 60 mmHg diastolic and age ≥ 65 years. The risk of death is assessed based on the patient 

score, grouped in one of the categories: low severity (0-1 point, risk of death < 3%), 

moderate severity (2 points, risk of death 9%) or high severity (3-5 points, risk of death 15–

40%). Figure 3.1 shows mean patient age for each CURB-65 score category, indicating that 

the severity of pneumonia increases with age in this study cohort. 

Of patients diagnosed with pneumonia, 5 (27%) had coinfection with influenza and were 

over 65 years. The presence of sepsis was determined using the SIRS criteria, for which 3 

older patients were positive. Of these, 2 were also positive for influenza infection, 

determined by qPCR assay.  

During the first recruitment period, neutrophil ROS and NET release assays were performed, 

and on the second, neutrophil and monocyte cytokine production and subsets were 

assessed. Young patients will be referred to as YP and healthy older patients, as OP. 
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Table 3.2. Pneumonia patient demographics 

 Young (YP) Old (OP) 

Number of participants 3 21 

Mean age (years) 33±2.6 (30-35) 77.7±9.8 (66-96) 

Male (%) 1/3 (33%) 9/21 (42%) 

Influenza (qPCR) 0 5/18 (27%) 

Sepsis (SIRS) 0 3/19 (15%) 

Pneumococcal vaccine 0 7/21 (33%) 

Influenza vaccine 0 12/21 (57%) 

 

 

 

Figure 3.1. CURB-65 score according to age of pneumonia patients. Patient (n=27) age is shown as 
mean ± SD. Differences between groups were analysed by Kruskal-Wallis test with Dunn’s post hoc 
test. 
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3.3.3 Changes in circulating leukocytes with age and during pneumonia 

Analysis of leukocyte populations using peripheral blood samples from healthy donors and 

pneumonia patients was performed using a Sysmex XN-1000 analyser, to assess the effect of 

age and pneumonia infection in the leukocyte pool. 

In healthy aged volunteers, the frequency of neutrophils, immature granulocytes (IGs), 

lymphocytes, eosinophils and basophils were unaltered by ageing, compared to young 

controls (Figure 3.2). The frequency of circulating monocytes was increased with age (HY, 

7.52±2.64 vs HO, 9.67±2.19, p=0.002) (Figure 3.2 C), but absolute numbers were unchanged 

(Figure 3.3 C). The absolute numbers of the other cell types did not change with age (Figure 

3.3). 

During pneumonia infection, older patients had an increased frequency of circulating 

neutrophils (OP, 81.02±10.98 vs HO, 57.3±7.04, p<0.0001) and immature granulocytes (OP, 

0.8±0.61 vs HO, 0.26±0.1, p=0.0001), whereas lymphocytes (OP, 10.66±6.85 vs HO, 

29.39±6.68, p<0.0001), eosinophils (OP, 0.3±0.5 vs HO, 2.81±2.01, p<0.0001; vs YP, 2.4±1.55, 

p=0.002) and basophils (OP, 0.3±0.11 vs HO, 0.81±0.37, p<0.0001; vs YP, 0.56±0.25, p=0.043) 

were decreased, compared to healthy old and young patients (Figure 3.2). Young patients 

also presented lower lymphocyte frequency than healthy young (YP, 18.07±8.75 vs HY, 

30.64±7.44, p=0.036) (Figure 3.2 D). Monocyte frequency was unaltered in older patients 

(Figure 3.2 C), but absolute numbers of monocytes were increased in the circulation of 

patients (OP, 0.86±0.49 vs HO, 0.54±0.15, p<0.003) (Figure 3.3 C). The absolute number of 

eosinophils was reduced in both young (p=0.016) and older (p=0.0001) patients during 

pneumonia, compared to healthy controls (Figure 3.3 E). To verify If the decline in eosinophil 
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numbers was associated with pneumonia severity and not ageing, patient data was plotted 

according to patient CURB-65 score. However, numbers of circulating eosinophils were no 

different between patients with moderate (scores 0-1) or severe (scores 2-3) pneumonia 

(Figure 3.3 E). 
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Figure 3.2. Frequency of circulating leukocytes in healthy volunteers and pneumonia patients. 
Whole blood analysis was performed using a Sysmex XN-1000 analyser in healthy young (n=27) and 
older (n=24) adults, and in young (n=3) and older (n=21) pneumonia patients. Data are shown as 
mean ± SD. Differences between age groups and healthy and pneumonia groups were analysed by 
unpaired T test. Mann Whitney test was used for comparisons with data from young patients.  
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Figure 3.3. Absolute number of circulating leukocytes in healthy volunteers and pneumonia 
patients. Whole blood analysis was performed using a Sysmex XN-1000 analyser in healthy young 
(n=27) and older (n=24) adults, and in young (n=3) and older (n=21) pneumonia patients. Data is 
shown as mean ± SD. Differences between age groups and healthy and pneumonia groups were 
analysed by unpaired T test. Mann Whitney test was used for comparisons with data from young 
patients.  
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3.3.4 Analysis of neutrophil CD16brightCD62Ldim subset in healthy ageing and pneumonia 

Having found heterogeneity in the circulating neutrophil pool of older patients with 

pneumonia, the presence of CD16brightCD62Ldim neutrophils was investigated in this cohort. 

This immunosuppressive neutrophil subset is present in patients with severe injury or acute 

systemic inflammation [118,119] and reported to be increased in older adults [121].  

During pneumonia, the CD16brightCD62Ldim subset was found in older patients, as shown by 

the representative plots in Figure 3.4 A. As reported before by Sauce et al. (2017) [121], the 

frequency of CD16brightCD62Ldim neutrophils increased with age (p=0.007), and older 

pneumonia patients showed a trend towards an increase in this population frequency, but 

statistical analysis found no difference between groups of older adults (Figure 3.4 B).  

Neutrophil phagocytosis was tested in samples from pneumonia patients (Figure 3.4 C), as 

the CD16brightCD62Ldim subset has been shown to have a lower phagocytic capacity [121]. 

However, the sample size was too small to confirm if phagocytic function is low in this subset 

in this group. 
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Figure 3.4. Frequency of CD16highCD62Ldim neutrophils in healthy volunteers and older pneumonia 
patients. Whole blood samples were stained with anti-human CD15, CD16 and CD62L for analysis of 
CD16highCD62Ldim subset. (A) Representative dot plots of neutrophils according to CD16 and CD62L 
expression in volunteers. (B) Frequency of CD16highCD62Ldim neutrophil subset in healthy young 
(n=10), old (n=9) and in older pneumonia patients (n=11). Whole blood samples were incubated with 
FITC-labelled E. coli for 10 minutes at 37°C ahead of staining with anti-human CD16 and CD62L for 
assessing the (C) Phagocytic capacity of neutrophil populations in older pneumonia patients (n=4). 
Data is expressed as mean ± SD. Differences between healthy cohorts or healthy older adults and 
patients were analysed by Mann Whitney test. Differences between phagocytic index of neutrophils 
were analysed by Friedman test with Dunn’s post hoc test. HY = healthy young, HE = healthy old, OP 
= old with pneumonia. 
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3.3.5 Analysis of monocytes subsets in healthy ageing and pneumonia 

Parallel to neutrophil immunophenotyping, fresh whole blood was stained for monocyte 

subsets and CCR2 expression. CCR2 is required for monocyte transit from the blood to 

inflamed tissues [336].  As shown at the start of this chapter, older participants had a higher 

frequency of circulating monocytes than young, while older pneumonia patients had 

increased absolute numbers of monocytes (Figures 3.2 and 3.3). There was no age-related 

difference in frequency of monocyte subsets between healthy young and old participants, 

but older patients with pneumonia had a higher frequency of intermediate monocytes 

compared to healthy old (p=0.042) (Figure 3.5 A). Analysis of CCR2 surface expression on 

these subsets from all cohorts showed variation, with classical (CD14highCD16-) monocytes 

expressing higher levels of CCR2, followed by intermediate monocytes (CD14+CD16+) and 

non-classical (CD14lowCD16+) (Figure 3.5 B). CCR2 expression in non-classical monocytes was 

increased with age (p=0.017), while CCR2 expression on intermediate monocytes from older 

patients was higher than healthy old (p=0.035).  

 



 83 

 

Figure 3.5. Frequency of intermediate monocytes in healthy subjects and older pneumonia 
patients. Whole blood aliquots were stained with anti-human antibodies CD14, CD16 and CCR2 for 
flow cytometry analysis of the (A) frequency of monocytes subsets and of (B) surface density (MFI) of 
CCR2 in monocytes subsets of healthy young (HY, n=10), healthy old (HO, n=10) and in older 
pneumonia patients (OP n=11). Data are mean ± SD. Differences between healthy cohorts or healthy 
older adults and patients were analysed by unpaired T test. 
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3.3.6 Cytokine levels in serum during pneumonia infection 

Cytokines were measured in serum using a multiplex assay. In total, 22 serum samples were 

measured in each group. The cohort of young pneumonia patients was only n=3, and for 

these patients some of the cytokines shown in Figure 3.6 were not detected. IL-1β (Figure 

3.6 A) was detected in the serum of a small number of healthy participants, but no 

difference was found with older subjects. There were no age-related changes in serum levels 

of IL-6, but IL-8 levels were increased in healthy older adults, compared to young (Figure 3.6 

B and D). During pneumonia infection, both IL-6 (p=0.005) and IL-8 (p<0.0001) were elevated 

in the serum of older patients, compared to healthy subjects. Levels of serum IL-6 and IL-8 

were not statistically different between patients with moderate (scores 0-1) and severe 

pneumonia (scores 2-3), as indicated by the CURB-65 score (Figure 3.6 B and D). 

TNF-α was detected in the serum from all cohorts, but no significant changes were observed 

between subjects (Figure 3.6 C). Also, older patients showed high levels of IL-33 in serum, 

compared to healthy (Figure 3.6 E). 

Levels of IL-2, IL-4, IL-10, IFN-γ, IL-17A, IL-21 and IL-23 were also measured but were below 

the detection threshold.  

There was a positive trend between the levels of serum IL-6 and elevated CCR2 expression in 

intermediate monocytes (p=0.017) (Figure 3.7 A). Also, IL-8 levels in the bloodstream 

positively correlated with frequency of CD16highCD62Ldim neutrophils found in our cohorts 

(p=0.003) (Figure 3.7 B). 
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Figure 3.6. Cytokines levels in serum from healthy donors and patients with pneumonia. Serum 
samples were collected from healthy young (n=22) and old (n=22) donors and young (n=3) and older 
(n=22) patients with pneumonia and analysed for the presence of cytokines (A) IL-1β, (B) IL-6, (C) 
TNF-α, (D) IL-8 and (E) IL-33. Data are mean ± SD. Differences between healthy cohorts or healthy old 
and patients were analysed by Mann Whitney test 
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Figure 3.7. Trends between pro-inflammatory cytokine in serum and monocyte and neutrophil 
phenotype. (A) Correlation between CCR2 surface density (MFI) in intermediate (CD14+CD16+) 
monocytes and serum IL-6 (n=16); (B) Correlation between the frequency of CD16highCD62Ldim 
neutrophils and serum IL-8 (n=27). 

 

3.3.7 Effect of age on neutrophil phagocytosis of S. pneumoniae in whole blood 

Neutrophil function of healthy young and older donors was initially assessed in whole blood, 

after adapting protocols from the commercial PhagoTestTM kit. S. pneumoniae serotype 4, 

TIGR4 strain was used at a concentration of 4x107 CFU/100 l of blood. To verify if 

opsonisation enhanced neutrophil phagocytic activity, bacteria were pre-opsonised with 

anti-capsular antibody or complement, for which pooled serum from healthy volunteers 

(described in 2.3.2) was used as source of complement and autologous antibody. 

In both groups, phagocytosis was significantly enhanced by pre-opsonisation with sera of 

both age groups, compared to non-opsonised bacteria (Figure 3.8 A, C and D). Also, antibody 

opsonisation with a specific serotype 4 antibody enhanced phagocytosis by neutrophils of 

young, but not by neutrophils of older volunteers (Figure 3.8 A, C and D).  

However, there was no difference between neutrophil phagocytosis of TIGR4 in young and 

old donors. It is possible that this observation is due to the unexpectedly large variation of 
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fluorescence data in both groups (Figure 3.8 A). To try and determine why the data were so 

variable, the stability of the FITC label on the pneumococcus was examined and, as shown in 

Figure 3.7 B, fluorescence of FITC-labelled pneumococcus was not fully preserved during the 

period of data acquisition (Figure 3.8 B). Also, by using whole blood aliquots instead of a 

fixed number of isolated neutrophils, the MOI varied between subjects, as the number of 

circulating neutrophils vary across individuals. These could explain the data variability 

observed. 

 
Figure 3.8. Neutrophil phagocytosis of S. pneumoniae TIGR4. Whole blood samples were incubated 
with FITC-labelled S. pneumoniae TIGR4 pre-opsonised or not, for 10 minutes in a 37°C water bath, 
ahead of flow cytometry analysis. (A) Neutrophil phagocytic ability of healthy volunteers. (B) Decay 
of fluorescence of FITC-labelled S. pneumoniae stocks, expressed as median of fluorescence intensity 
(MFI). Comparison of neutrophil phagocytic ability in the presence or absence of opsonins in (C) 
healthy young and (D) old. Data are mean ± SD. Healthy young (n=21), old (n=20). Differences 
between groups were analysed by unpaired T test. Comparison between non-opsonised vs opsonised 
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data was performed by Friedman test with Dunn’s post hoc test and statistical significances are 
shown on top of bars. 

3.3.8 The effect of age on neutrophil ROS production to S. pneumoniae serotypes 

Epidemiological studies have shown that distribution of S. pneumoniae serotypes vary across 

age groups [19,22,337–341]. Therefore, neutrophil oxidative burst generation to different 

pneumococcal strains was tested, aiming to identify changes with increasing age and during 

pneumonia infection. Alongside laboratory strain TIGR4, isolates 19A and 23F from older 

patients, and TIGR4 capsule-negative mutant TIGR4Δcps were used to induce neutrophil 

respiratory burst, at multiplicity of infection (MOI) of 40:1 (4x106 CFU). During recruitment 

of pneumonia patients, only 3 samples from young patients were received, therefore not all 

serotypes were tested in all patient samples. 

Figure 3.9 A shows no age-related changes between baseline levels of ROS production while 

in pneumonia patients, resting unstimulated neutrophils had high levels oxidative burst than 

in healthy volunteers (OP, 38964±41604 vs HO, 14795±2572, p=0.027; YP, 79312±100162 vs 

HY, 14113±3719 p=0.009). Upon PMA stimulation, neutrophils from all cohorts produced 

high levels of ROS (Figure 3.9 B). Healthy older adults showed higher PMA-induced ROS 

production than young (HO, 3646546±901541 vs HY, 3078740±590468, p=0.028), but 

neutrophils from older patients did not reach the same level of ROS production as their 

healthy counterparts (HO, 3646546±901541 vs OP, 2716918±1229159, p=0.04). 

Overall, all serotypes, opsonised or not, were able to induce neutrophils from all cohorts to 

generate ROS, with the exception of TIGR4Δcps, when compared to baseline ROS 

production. 
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Figure 3.10 A shows that live, non-opsonised, pneumococcal serotypes induced different 

levels of oxidative burst in neutrophils of all cohorts. 19A induced the highest level of 

oxidative burst observed, followed by TIGR4, 23F, and TIGR4Δcps. 

ROS generation to TIGR4 was not different between healthy cohorts, but production to 19A 

(HY 902711±244918 vs HO, 710882±231915, p=0.029) and 23F (HY, 212009±138497 vs HO, 

48019±17860, p<0.0001) were diminished in healthy older adults, which could indicate a 

susceptibility to these serotypes with ageing in the non-infected state. Neutrophils from 

pneumonia patients had increased oxidative burst activity in response to all serotypes, 

including the capsule-negative mutant (TIGR4Δcps), compared to healthy controls. There 

was no difference between ROS production by older and young patients. 

 

Figure 3.9. ROS production by resting and PMA-treated neutrophils. ROS production by (A) 
unstimulated and (B) PMA-treated neutrophils of healthy young (n=15) and old (n=15), and of young 
(n=3) and older (n=10) pneumonia patients. Data are mean ± SD. Differences between age groups 
and healthy and pneumonia groups were analysed by unpaired T test. Mann Whitney test was used 
for comparisons with data from young patients. 

  



 90 

3.3.8.1 Role of opsonins 

Age-related changes in neutrophil ROS production during health and pneumonia in response 

to opsonised pneumococcal serotypes are shown in Figures 3.10 B and Figure 3.11. The 

same data is presented again in Figures 3.12 and 3.13, which compare the effect of different 

opsonins on neutrophil ROS generation to S. pneumoniae serotypes. 

Comparison of neutrophil ROS production induced by non-opsonised and opsonised bacteria 

show that this function was enhanced by all opsonins for TIGR4, but only by the presence of 

serum for serotypes 19A and 23F, in all cohorts tested (Figures 3.12 and 3.13). TIGR4Δcps did 

not induced ROS production even in the presence of opsonins, compared to baseline 

control, in any cohort. 

Levels of ROS produced following incubation with antibody-opsonised TIGR4 were the same 

between healthy cohorts, but pre-opsonisation with anti-capsular polyclonal antibody was 

unable to enhance ROS production to 19A (p=0.032) and 23F (p<0.001) in healthy older 

adults to the same levels as young subjects (Figure 3.10 B). In older patients, ROS generation 

to antibody-opsonised TIGR4 (p=0.007), 19A (p=0.006) and 23F (p=0.02) (Figure 3.10 B) 

remained higher than in healthy, even though antibody was not able to enhance ROS 

production against 19A and 23F, compared to non-opsonised control (Figures 3.13 C and E). 

There was no statistical difference between neutrophil ROS production following 

opsonisation of bacteria with pooled sera of young or older donors (Figures 3.11 A and B). In 

neutrophils from healthy old, ROS levels were lower following stimulation with young sera-

opsonised TIGR4 (p=0.017). Of note, ROS production by neutrophils of healthy older adults 

in response to 23F was lower than of young, with all opsonins tested (non-opsonised, 

p<0.0001, antibody, p<0.001, pooled sera from young, p=0.001, pooled sera from old, 
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p=0.002). ROS generation was again elevated in neutrophils of pneumonia patients in 

response to these serotypes (pooled sera from young: TIGR4, p=0.016; 19A, p=0.070 (ns); 

23F, p=0.0008; pooled sera from old: TIGR4, p=0.023; 19A, p=0.021; 23F, p=0.001). However, 

in older patients, opsonisation was mostly enhanced by sera opsonisation (Figures 3.13 A, C, 

E and G).  

In all cohorts, neutrophils did not produce significant levels of ROS in response to TIGR4Δcps, 

in the presence or absence of pre-opsonisation (Figures 3.12 G and H, Figures 3.13 G and H), 

indicating that the pneumococcus capsule has a significant role in the induction of oxidative 

burst. 
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Figure 3.10. Neutrophil ROS production in healthy participants and pneumonia patients following 
incubation with S. pneumoniae serotypes. Oxidative burst generation following incubation with (A) 
non-opsonised or (B) antibody-opsonised pneumococcus by neutrophils (1x105) from healthy young 
(n=15) and old (n=15), and of young (n=3) and older (n=10) pneumonia patients. Data are mean ± SD. 
Differences between age groups and healthy and pneumonia groups were analysed by unpaired T 
test. Mann Whitney test was used for comparisons with data from young patients. No statistical 
analysis was performed in n<3.  
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Figure 3.11. Neutrophil ROS production in healthy participants and pneumonia patients following 
incubation with serum-opsonised S. pneumoniae serotypes. Oxidative burst following stimulation of 
neutrophils (1x105) with pneumococcal strains opsonised with pooled sera from (A) young or (B) 
older donors. Healthy young (n=15) and old (n=15), young (n=3) and older (n=10) pneumonia 
patients. Data is expressed as mean ± SD. Differences between age groups and healthy and 
pneumonia groups were analysed by unpaired T test. Mann Whitney test was used for comparisons 
with data from young patients. No statistical analysis was performed in n<3. 
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Figure 3.12. Effect of opsonisation on neutrophil ROS production to S. pneumoniae serotypes in 
healthy participants. Neutrophil (1x105) ROS production in healthy young (n=15) and older (n=15) 
adults following incubation with non-opsonised or antibody-(Ab), young (Y) or (O) old serum-
opsonised S. pneumoniae serotypes. (A and B) TIGR4, (C and D) 19A, (E and F) 23F, (G and H) 
TIGR4Δcps. Data are mean ± SD. Differences between treatments were analysed by Friedman test 
with Dunn’s post hoc test and statistical differences with non-opsonised control are shown on top of 
the bars.  
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Figure 3.13. Effect of opsonisation on neutrophil ROS production to S. pneumoniae serotypes in 
pneumonia patients. Neutrophil (1x105) ROS production in young (n=3) and older (n=10) adults 
following incubation with non-opsonised or antibody-(Ab), young (Y) or (O) old serum-opsonised S. 
pneumoniae serotypes. (A and B) TIGR4, (C and D) 19A, (E and F) 23F, (G and H) TIGR4Δcps. Data are 
mean ± SD. Differences between treatments were analysed by Friedman test with Dunn’s post hoc 
test and statistical differences with non-opsonised control are shown on top of the bars. No 
statistical analysis was performed in n<3. 
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3.3.9 Characterization of pooled sera 

These assays were performed by the Clinical Immunology Service at the University of 

Birmingham, except the assay with heat-inactive sera. 

To study the effect of ageing on neutrophil phagocytosis and oxidative burst in the presence 

of opsonins such as the complement system, pooled human sera were used as a source of 

opsonins. Therefore, two pooled sera were prepared, one containing sera from healthy 

young donors and another with sera from older donors. Of the 14 older donors, 10 had been 

previously vaccinated with the PPV23 vaccine in the last 5 years. All young volunteers were 

between 21 to 30 years old, therefore, were not vaccinated. 

Both pooled sera were tested for the presence of anti-pneumococcal IgG against serotypes 

1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F (Figure 3.14). All the serotypes tested are 

present in the PPV23 vaccine. Of those, only IgG titres against serotypes 3 and 4 of young 

and old pools were below the protective threshold established by WHO (0.35 µg/ml). 

The activity of the classical and alternative pathways of the complement system were also 

tested in pooled sera, and both achieved the same levels of activity, measured by haemolytic 

assays (CH50 >45 KU and AP50 117%). 

Following heat inactivation of pooled sera at 56°C, to denature proteins of the complement 

system, S. pneumoniae TIGR4 and 19A were pre-opsonised with HI-sera and incubated with 

neutrophils of young donors as described in Chapter 2. The levels of ROS generated 

following incubation with bacteria opsonised with HI sera were not different from those 

opsonised with normal serum (Figures 3.15 A and B), suggesting that the presence of anti-
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pneumococcal antibodies in the sera samples used (Figure 3.11) also participate in the 

neutrophil oxidative burst response to S. pneumoniae in the assays tested. 

 

 

Figure 3.14. Levels of anti-pneumococcal antibodies in pooled sera of healthy participants. Anti-
pneumococcal IgG levels were measured in the pooled sera used as opsonins for ROS assays. The 
ticked line shows the protective threshold established by WHO (0.35 µg/ml). 

 

 

Figure 3.15. Neutrophil ROS production following incubation with S. pneumoniae opsonised with 
heat-inactive sera. Neutrophil ROS production in young donors following incubation with (A) TIGR4 
or (B) 19A (MOI 40) pre-opsonised with normal pooled sera from young or older donors (n=15), or 
heat-inactivated pooled sera samples (n=5). Data are mean ± SD. Differences between groups were 
analysed by Mann Whitney test. Ns = non-significant. 

 



 98 

3.3.10 Neutrophil extracellular traps generation in response to S. pneumoniae 

To determine the ratio of pneumococcus to neutrophils necessary to induce cell-free DNA 

(cf-DNA) release and the best stimuli, NET generation was assessed in response to a range of 

live and fixed bacteria concentrations. Cell-free DNA measured from supernatants of 

neutrophils from healthy young donors (n=3) after 3-hour stimulation with live or fixed 

TIGR4 is shown in Figure 3.16. Based on these assays, a MOI of 10:1 (2x106 CFU) with live 

bacteria, but not fixed, was chosen, as only the former was able to induce significant cf-DNA 

release by neutrophils. 

Figure 3.17 shows NET generation in response to S. pneumoniae serotypes compared 

between healthy individuals and pneumonia patients. Figure 3.18 presents the same data to 

compare NET generation with bacteria only controls. 

PMA, TIGR4, 19A and 23F stimulation all induced NET generation though there were 

differences between the subject groups (Figure 3.17), while NET release was not seen 

following TIGR4Δcps incubation (Figure 3.18 B).  

Stimulation of neutrophils using 25nM PMA promoted a significant increase in NET 

generation (Figure 3.17). However, PMA-induced NET generation seem to be lower with 

increasing age, as NET generation appears lower in healthy older adults, in comparison with 

young subjects, but that difference did not reach statistical significance. In neutrophils from 

healthy young donors, NET formation did not vary in response to S. pneumoniae capsular 

serotypes, but neutrophils from older adults showed a trend towards increased cf-DNA 

release to 23F (p=0.058) compared to HY. 
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During pneumonia infection, older patients had significantly lower levels of NET generation 

following PMA treatment than the healthy counterparts (p=0.003) (Figure 3.17). NET 

generation in response to TIGR4 and 19A was seen in pneumonia patients (Figures 3.18 A 

and D). However, 23F stimulation promoted cf-DNA release only in healthy subjects (HY, 

p=0.003, HO, p=0.0001, OP, p=0.324) (Figure 3.18 C). Compared to healthy, older pneumonia 

patients had decreased NETosis in response to serotypes 4 (p=0.034) and 23F (p=0.0006). 

Although only n=3, neutrophils of young patients released higher levels of cf-DNA in 

response to TIGR4 (p=0.028) and 19A (p=0.049) than older patients. 

 
 
 

 

Figure 3.16. Fixed S. pneumoniae does not promote neutrophil NET release. Isolated neutrophils 
from healthy young (n=3) were stimulated for 3h with a range of MOI of live or fixed S. pneumoniae 
TIGR4. Wells containing only bacteria at the MOI tested were used as controls. Cell-free DNA 
released in the supernatants after incubation was measured by fluorometry. Data are presented as 
arbitrary fluorescence units (AFU) and are mean ± SD. 
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Figure 3.17. NET generation in response to S. pneumoniae serotypes in healthy subjects and 
pneumonia patients. Isolated neutrophils (1x105) from healthy donors or patients with pneumonia 
were incubated for 3h with S. pneumoniae serotypes (MOI 10). Unstimulated (Unst) or 25nM PMA 
were used as control treatments. Cell-free DNA released in the supernatants after incubation was 
measured by fluorometry. TIGR4: healthy young n=17, old n=15; young patient n=3, old n=10. 19A: 
healthy young n=17, old n=15; young patient n=3, old n=10. 23F: healthy young n=8, old n=13; young 
patient n=2, old n=9. TIGR4Δcps: healthy young n=8, old n=7; young patient n=1, old n=7). Data are 
presented as arbitrary fluorescence units (AFU) and expressed as mean ± SD. Differences between 
groups were analysed by unpaired T test. When n≤10, Mann-Whitney test was used for analysis. No 
statistical analysis was performed in n<3. 
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Figure 3.18. NET generation in response to S. pneumoniae serotypes compared to bacteria alone 
controls. Levels of cell-free DNA released in the supernatant of neutrophils and S. pneumoniae 
cultures or serotypes alone treated with gentamicin (100 µg/ml) were measured after 3h incubation. 
Cell-free DNA released in the supernatants after incubation was measured by fluorometry. S. 
pneumoniae serotypes tested were (A) TIGR4, (B) TIGR4Δcps, (C) 19A and (D) 23F. Data are 
presented as arbitrary fluorescence units (AFU) and expressed as mean ± SD. Differences between 
bacteria only control and neutrophil and S. pneumoniae cultures were analysed by unpaired T test 
and are shown on top of lines. When n≤10, Mann-Whitney test was used for analysis. No statistical 
analysis was performed in n<3. Statistical differences with unstimulated controls (not plotted) are 
shown on top of the bars (One-Way ANOVA test with Tukey’s post hoc test). Ns = non-significant. HY, 
n=17. HO, n=15. OP, n=10. YP, n=3. 
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3.3.10.1 Visualization of NETs by fluorescence microscopy 

NET formation by S. pneumoniae was also demonstrated by fluorescence microscopy. 

Neutrophils from healthy young controls showed robust NET generation with 25 nM PMA, 

observed by the presence of extracellular DNA (green fluorescence), while unstimulated 

neutrophils preserved their characteristic lobular nuclear shape. Stimulation of neutrophils 

pre-treated with cytochalasin D ahead of TIGR4 incubation showed that in ratios of 10 and 

100, S. pneumoniae induced nuclei decondensation, a hallmark of NET generation. In the 

absence of cytochalasin D pre-treatment, TIGR4 (MOI 100) induced both nuclear 

decondensation and NET release, as shown in Figure 3.19. 
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Figure 3.19. Ex vivo NET generation following incubation PMA or with S. pneumoniae TIGR4. 
Fluorescence microscopy of neutrophils (2x105) pre-treated or not with cytochalasin (15 min at 37°C, 
5% CO2 atmosphere) and stimulated with PMA (25nM) or S. pneumoniae TIGR4 (MOI 10 or 100) for 3 
hours. DNA is stained green with SYTOX Green Stain. Nuclear structure is preserved in unstimulated 
neutrophils, while ex vivo NET generation is observed in response to PMA and TIGR4 at MOI 100 
(white arrows) by neutrophils from a healthy young donor. All images are taken at 20x magnification. 
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3.3.11 The effect of age and pneumonia infection on neutrophil activation following 

stimulation by S. pneumoniae 

A time course experiment was performed to determine the optimal time for production of 

IL-8 by neutrophils. Isolated neutrophils (2x105) healthy young donors (n=3) were incubated 

with LPS (50 ng/ml) or live S. pneumoniae TIGR4 (MOI of 40:1, 8x106 CFU) for 4h and 6h. 

Intracellular cytokine production was detected in neutrophils following 4h incubation with 

increased production at 6h (Figure 3.20 A). Next, neutrophil expression of TLR2 and TLR4 

was determined at 2h and 4h to test if stimulations with LPS (50 ng/ml) or live S. 

pneumoniae TIGR4 (MOI of 40:1, 8x106 CFU) could modulate these receptors. TLR2 

expression was increased by both stimuli at 2h and 4h, and TLR4 expression remained the 

same following 4h (Figures 3.20 B and C). Thus, hereafter neutrophils were stimulated for 

4h, as IL-8 production was detectable at this time point and modulation of TLR2 and TLR4 

expression in neutrophils remained detectable. 
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Figure 3.20. Intracellular IL-8 production and TLR expression by neutrophils. Isolated (2x105) 
neutrophils were incubated with or without LPS (50 ng/ml) or S. pneumoniae (MOI 40) for 2h, 4h or 
6h and stained for flow cytometry analysis of (A) intracellular IL-8 production and surface expression 
of (B) TLR2 and (C) TLR4 by neutrophils. Healthy young, n=3. MFI values are expressed as mean ± SD. 
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On examining neutrophil oxidative burst of healthy young and old donors as well as of 

pneumonia patients, ROS production was reduced in response to serotypes 19A and 23F in 

healthy older adults but increased in pneumonia patients (Figure 3.10 A). As pre-

opsonisation enhanced oxidative burst to these serotypes by neutrophils from healthy older 

adults, TLR2 and TLR4 expression were measured following pneumococcal stimulation, as 

these receptors are involved in immunity against non-opsonised S. pneumoniae [229,231–

235,342] and their expression and signalling impaired with age [75,94,99,343]‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

Briefly, isolated neutrophils from volunteers were stimulated with S. pneumoniae strains for 

4h at 37°C. Following incubation, the cells were stained for flow cytometry analysis of 

CD11b, CD62L, TLR2 and TLR4 expression as well as IL-8 production. Neutrophil activation is 

associated with increased Mac-1 complex (CD11b/CD18) and loss of L-selectin (CD62L) [344]. 

Expression of both receptors was analysed following a 4-hour incubation of neutrophils, in 

the presence or absence of stimulation. LPS was chosen as a positive control [345,346]. The 

data show no age-related changes in CD11b and CD62L, as neutrophils from healthy aged 

volunteers had similar expression of both molecules as of young, in both unstimulated and 

LPS-stimulated neutrophils (Figures 3.21 A and B). Older pneumonia patients, however, 

showed higher CD11b (p=0.004) and lower CD62L (p=0.011) expression in unstimulated 

neutrophils and lower shedding of CD62L expression (p=0.007) following LPS stimulation 

than healthy old, indicating that neutrophils showed an activated phenotype even in the 

absence of stimulation and, when LPS stimulation is present, expression of both molecules 

did not reach the same levels shown by neutrophils of healthy older adults. This is likely due 

to the presence of inflammatory cytokines in the bloodstream which could have primed the 

neutrophils. 
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Following stimulation with the pneumococcus, neutrophils from all cohorts were activated 

by the serotypes. There were no differences in CD11b and CD62L expression between 

healthy volunteers and older pneumonia patients. Overall, neutrophil activation by TIGR4 

was higher than for 19A and 23F, in all cohorts. This observation is supported by presence of 

increased CD11b expression following TIGR4 stimulation, compared to 23F, in young 

(p=0.001) and patients (p=0.004), and to 19A in healthy older adults (p=0.034) (Figure 3.21 

A). Complementary to these data, CD62L expression following TIGR4 incubation was 

diminished in neutrophils of healthy participants, compared to 19A (HY, p=0.048; HO, 

p=0.009) and 23F (HY, p=0.004; HO, p=0.022) (Figure 3.21 B).  
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Figure 3.21. Neutrophil phenotype in healthy subjects and older patients with pneumonia. 
Neutrophils isolated (2x105) from healthy young (n=7), old (n=7) donors or older patients with 
pneumonia (n=7) were stimulated with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40) for 4h 
ahead of flow cytometry analysis. Surface density (MFI) of (A) CD11b and (B) CD62L are expressed as 
mean ± SD. Differences between healthy cohorts or healthy old and patients were analysed by Mann 
Whitney test. Comparison between S. pneumoniae serotypes was analysed by Friedman test with 
Dunn’s post hoc test. 
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Expression of TLR2 (Figure 3.22 A) and TLR4 (Figure 3.22 B) in unstimulated neutrophils was 

the same between healthy participants. In older pneumonia patients, there was a trend 

toward increased expression of TLR2 (p=0.053) in unstimulated neutrophils, while TLR4 

(p=0.024) expression was higher than in healthy old. LPS stimulation in vitro significantly 

reduced expression of TLR2 by neutrophils of healthy donors (HY, p=0.005; HO, p=0.002, 

Table A.1), but in pneumonia patients, levels of TLR2 (p=0.011) remained higher than in 

healthy older adults and TLR4 (p=0.054) showed a trend towards this effect. 

Following stimulation with S. pneumoniae, no modulation of neutrophil TLR2 expression was 

detected in healthy donors, but its expression increased in patients, following incubation 

with serotypes 4 (p=0.002) and 19A (p=0.002) (Figure 3.22 A, Table A.1). Neutrophil TLR4 

expression (Figure 3.22 B) was significantly upregulated by 23F (p=0.005), in the young. 

Expression of TLR4 was decreased in the old in response to 19A (p=0.011) and 23F (HY, 

p=0.007, OP, p=0.004), compared to healthy young and patients, however, as shown on 

Table A.1, TLR4 expression following stimulations with these serotypes were not different 

from unstimulated control in healthy old donors, meaning that these differences actually 

demonstrate an overall lower expression of TLR4 by neutrophils of this group. 

Age-related changes in resting neutrophil IL-8 levels were observed, which were higher in 

neutrophils from healthy old individuals, even in the absence of stimulation (p=0.011) 

(Figure 3.22 C), indicating a possible feature of inflammaging. This is similar to the finding 

that IL-8 levels were increased in the serum of healthy older adults (Figure 3.6 D). Both LPS 

and S. pneumoniae serotypes promoted IL-8 generation by neutrophils in all cohorts, though 

TIGR4 strain induced higher IL-8 production than 23F (HY, p=0.001; HO p=0.048; OP, 

p=0.009). In neutrophils of older pneumonia patients, there was a trend towards reduced IL-
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8 production following stimulations, and its intracellular levels were significantly reduced in 

response to 23F (p=0.026), compared to healthy old.  

Taken altogether, these data suggest that serotype 4, TIGR4 strain is a more potent activator 

of neutrophils than 19A and 23F. No evidence was found that, in health conditions, ageing 

significantly impacted neutrophil surface integrin or TLR modulation and IL-8 production in 

response to the selected pneumococcal serotypes. However, during pneumonia infection in 

older adults, neutrophils presented an activated phenotype, as seen by CD11b, CD62L, TLR2 

and TLR4 surface expression, in the absence of in vitro stimulation.  
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Figure 3.22. TLR expression and IL-8 production in healthy subjects and older pneumonia patients. 
Neutrophils isolated (2x105) from healthy young (n=7), old (n=7) donors or older patients with 
pneumonia (n=7) were stimulated with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40) for 4h 
ahead of flow cytometry analysis. Surface density (MFI) of (A) TLR2, (B) TLR4 and (C) intracellular 
levels IL-8 are expressed as mean ± SD. Differences between healthy cohorts or healthy old and 
patients were analysed by Mann Whitney test. Comparison between S. pneumoniae serotypes was 
analysed by Friedman test with Dunn’s post hoc test. 
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3.3.11.1 Further investigation of S. pneumoniae TIGR4-induced neutrophil activation 

As demonstrated by the data above, S. pneumoniae serotype 4, TIGR4 strain, successfully 

activated neutrophils. This strain is known to be virulent and to cause invasive disease 

[321,322].  

Although no evidence of ageing susceptibility to this serotype was found, based on the data 

above and neutrophil ROS production and NET release, older patients released less cf-DNA in 

response to this serotype. Also, neutrophils from healthy older adults showed a trend 

towards lower TLR4 expression, which is the receptor for pneumolysin [235] . By using 

different forms of TIGR4, a further investigation of the activation of neutrophils by this 

serotype was performed. Previous experiments were performed with live bacteria within 30 

minutes of incubation, following inhibition of growth with gentamicin. For the following 

analysis, neutrophil activation by live and heat-killed TIGR4, or capsule-negative mutant, 

TIGR4Δcps were compared. Using the same strain allowed to analyse conditions in which the 

whole bacterium was present but its proteins inactive, by heat inactivation or in which all 

proteins were present, but the capsule absent (Δcps). The hypothesis was that lack of 

capsule on TIGR4Δcps could expose more pneumolysin, allowing it to interact with TLR4.  

Both HK TIGR4 and Δcps failed to modulate neutrophil CD11b (Figure 3.23 A). Interestingly, 

Δcps increased CD62L expression in neutrophils from healthy old, compared to unstimulated 

control (p=0.002) (Figure 3.23 B). Neither TLR2 and TLR4 (Figures 3.23 C and D) were 

significantly modulated by HK TIGR4 or Δcps on neutrophils from young donors or patients, 

but expression of TLR4 in neutrophils from healthy old volunteers was reduced following 

incubation with Δcps (p=0.015). Moreover, although Δcps-induced IL-8 production by 
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neutrophils of healthy older adults was higher than in neutrophils from young (p=0.011) 

(Figure 3.23 E), IL-8 levels were not different than unstimulated controls (Table A.1). 
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Figure 3.23. Neutrophil activation induced by S. pneumoniae TIGR4, live, HK or Δcps. Neutrophils 
isolated (2x105) from healthy young (n=7), old (n=7) donors or older patients with pneumonia (n=7) 
were stimulated with live, heat-killed (HK) or capsule-negative (Δcps) S. pneumoniae TIGR4 (MOI 40) 
for 4h ahead of flow cytometry analysis. Surface density (MFI) of (A) CD11b, (B) CD62L, (C) TLR2, (D) 
TLR4 and (E) intracellular levels IL-8 are shown as mean ± SD. Differences between healthy cohorts or 
healthy old and patients were analysed by Mann Whitney test. Comparison between S. pneumoniae 
serotypes was analysed by Kruskall-Wallis test with Dunn’s post hoc test. 
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3.3.12 Neutrophil cytokine production following stimulation by S. pneumoniae 

IL-17A has been reported to mediate neutrophil recruitment to infected sites during 

pneumococcal pneumonia. Although Th17 cells are accounted as the main producer of this 

cytokine, neutrophils have been reported to produced IL-17A in both human [347–349], 

mice [348,350] and in a mice model of S. pneumoniae-induced acute otitis media [351]. The 

hypothesis was that S. pneumoniae could induce IL-17A production in human neutrophils 

and that this production was altered in older patients during pneumonia infection. To 

determine if IL-17A could be detected in human neutrophils following S. pneumoniae 

stimulation, isolated neutrophils were incubated for 4h in the presence of Brefeldin A or for 

18h, in the presence of GolgiPlug, ahead of immunostaining and flow cytometry analysis. An 

increase in intracellular IL-17A following 18h of incubation of neutrophils with TIGR4 was 

detected (Figure 3.24). Therefore, this length of incubation was chosen to measure 

neutrophil IL-17A intracellular production and release of cytokines in supernatants.  

 

 
Figure 3.24. Time course of intracellular IL-17A production by neutrophils. Isolated (2x105) 
neutrophils from healthy young donors (n=3) were incubated with or without S. pneumoniae TIGR4 
(MOI 40) for 4h with Brefeldin A or 18h with GolgiPlug and stained for intracellular IL-17A. MFI values 
are mean ± SD. 
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Neutrophils from healthy donors and pneumonia patients were then stimulated with S. 

pneumoniae for 18h and intracellular IL-17A production was measured by immunostaining 

and flow cytometry. Only a small number of assays were performed (HY, n=4; HO and OP, 

n=3). The frequency of IL-17A+ neutrophils (Figure 3.25 A) and of intracellular IL-17A (Figure 

3.25 B) was low in all subjects but IL-17A-expressing cells were readily detected following 

stimulation with LPS and TIGR4, 19A and 23F. Due to the small sample sizes, no statistical 

differences were found between groups. 

With a larger sample size (n=7) IL-17A release from neutrophils was assessed. Although 

intracellular IL-17A in neutrophils cultured with S. pneumoniae was detected (Figure 3.25), 

the levels of this cytokine (Figure 3.26 A) and of IL-21, IL-23 and IL-33 in supernatants of 

neutrophils were barely detectable (Figures 3.26 B, C and D). Therefore, it is not possible to 

confirm the secretion of this cytokine by neutrophils in response to S. pneumoniae.  

Broader cytokine release after 18h of incubation was also measured using a multiplex assay. 

Inflammatory cytokines were the most abundant in the supernatant of neutrophils cultured 

with S. pneumoniae serotypes. Neutrophils from all cohorts produced IL-1β, IL-6, IL-8 and 

TNF-α, IL-10 and IFN-γ but there was great variation among participants (Figure 3.27). 

Among healthy older adults, neutrophil cytokine production was similar to young, but 

neutrophils from aged adults produced more IFN-γ than young, in response to serotype 23F 

(p=0.03). Overall, during pneumonia infection neutrophils from older patients seem to 

produce less cytokines than during health. Patients showed lower levels of neutrophil 

derived IL-1β following LPS treatment (p=0.026) and IL-6, following incubation with 

pneumococcal strains (TIGR4, p=0=036; 19A, p=0.046; 23F, p=0.073).  
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Figure 3.25. IL-17A production by neutrophils in response to S. pneumoniae. Neutrophils isolated 
(2x105) from healthy young (n=4), old (n=3) donors or older patients with pneumonia (n=3) were 
stimulated with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40) for 18h ahead of 
immunostaining and flow cytometry analysis. (A) Frequency of CD15+IL-17A+ neutrophils and (B) 
levels of intracellular IL-17A in neutrophils. Data are mean ± SD. Differences between healthy cohorts 
or healthy old and patients were analysed by Mann Whitney test. 
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Figure 3.26. Presence of Th17 family cytokines and IL-33 in supernatants of neutrophils challenged 
with S. pneumoniae. Neutrophils isolated (2x105) from healthy young (n=7), old (n=7) donors or 
older patients with pneumonia (n=7) were stimulated with LPS (50ng/ml) or S. pneumoniae serotypes 
(MOI 40). Cytokines were measured in culture supernatants after 18h. Levels of (A) IL-17A, (B) IL-21, 
(C) IL-23 and (D) IL-33 are shown in pg/ml.  Data are mean ± SD. Differences between healthy cohorts 
or healthy old and patients were analysed by Mann Whitney test. 
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Figure 3.27. Presence of cytokines in supernatants of neutrophils cultured with S. pneumoniae. 
Neutrophils isolated (2x105) from healthy young (n=7), old (n=7) donors or older patients with 
pneumonia (n=7) were stimulated with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40). 
Cytokines were measured in culture supernatants after 18h. Levels of (A) IL-1β, (B) IL-6, (C) TNF-α, 
(D) IL-8, (E) IL-10 and (F) IFN-γ are shown in pg/ml. Data are mean ± SD. Differences between healthy 
cohorts or healthy old and patients were analysed by Mann Whitney test. 
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3.3.13 Effect of S. pneumoniae on neutrophil viability 

The low levels of neutrophil-produced cytokines in older patients (Figures 3.26 and 3.27) 

could be associated with neutrophil apoptosis due to the long 18h incubation. Therefore, 

neutrophil viability was assessed using a dye (LIVE/DEAD™ Fixable Near-IR Dead Cell Stain, 

Invitrogen, Paisley, UK), that fluoresces upon reacting with amine proteins inside the cells 

that become accessible via damaged membranes of dead cells. Data suggest that in the 

presence of pneumococcal strains, neutrophils from healthy controls are more likely to die 

than neutrophil from older patients (19A, p=0.091; 23F, p=0.091) (Figure 3.28), but this 

trend could not be confirmed due to the small samples size. Therefore, the low cytokine 

levels detected in neutrophil supernatants were not due to reduced number of viable 

neutrophils after an 18h incubation. 

 

Figure 3.28. Neutrophil viability after 18h incubation. Neutrophils isolated (2x105) from healthy 
young (n=4), old (n=3) donors or older patients with pneumonia (n=3) were stimulated with LPS 
(50ng/ml) or S. pneumoniae serotypes (MOI 40) for 18h. Cells were then stained with viability dye 
and anti-human CD15 ahead of flow cytometry analysis. Cells negative for viability dye were deemed 
as viable. Data are mean ± SD. Differences between cohorts were analysed by Kruskal-Wallis test 
with Dunn’s post hoc test. 
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3.3.14 Monocyte activation following stimulation by S. pneumoniae in healthy older adults 

and pneumonia patients 

Monocyte TNF-α [260] and IL-6 [259] can drive neutrophils to alveolar spaces during 

pneumococcal pneumonia and production of both cytokines was shown to be impaired in 

monocytes from older adults and mice [89]. Having found that monocyte phenotype (Figure 

3.3), population frequency and CCR2 expression (Figure 3.5) were altered with ageing and 

pneumonia infection in the old, monocyte TNF-α and IL-6 intracellular cytokine production 

and CD11b and CCR2 surface expression following in vitro stimulation with S. pneumoniae 

serotypes was investigated.  

A time course experiment was performed to determine the optimal time for production of 

TNF-α and IL-6 by monocytes using flow cytometry analysis. Isolated PBMCs (2x105) of 

healthy young donors (n=3) were incubated with LPS (50 ng/ml) or live S. pneumoniae TIGR4 

(8x106 CFU) for 4h and 6h. Both cytokines were detected at 4h and 6h (Figures 3.29 A and B). 

Thus, hereafter monocytes were stimulated for 4h, as cytokine production was detectable at 

this time point. 

 

Figure 3.29. Time course experiments showing intracellular cytokine production by monocytes. 
Isolated (2x105) PBMCs were incubated with or without LPS (50 ng/ml) or S. pneumoniae (MOI 40) 
for 4h or 6h and stained with antibodies anti-human CD14, TNF-α and IL-6 for flow cytometry 
analysis of intracellular (A) TNF-α and (B) IL-6 production by monocytes. Healthy young, n=3. MFI 
values are expressed as mean ± SD.  
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Results in Figure 3.30 show the level of expression of CD11b and CCR2 in total CD14+ 

monocytes from healthy young, older adults, and older pneumonia patients. Different from 

neutrophils (Figure 3.21), monocytes from healthy old donors increased CD11b expression 

following LPS incubation, compared to unstimulated control (p=0.002) (Figure 3.30 A, Table 

A.2). Following incubation with pneumococcal strains, CD11b was diminished in monocytes 

from both older adults’ groups (HO, TIGR4 p=0.002, 19A p=0.005, 23F p=0.005; OP, TIGR4 

p=0.001, 19A p=0.002, 23F p=0.001) (Figure 3.30 A, Table A.2), but no difference was found 

between cohorts. CCR2 expression on resting monocytes was not changed between the 

cohorts, but LPS-stimulated monocytes from healthy older adults showed increased surface 

expression of CCR2, compared to young (p=0.048) (Figure 3.30 B). Monocytes from both 

older groups showed decreased CCR2 expression following stimulation with pneumococcal 

strains (HO, TIGR4 p=0.002, 19A p=0.005, 23F p=0.002; OP, TIGR4 p=0.001, 19A p=0.001) and 

patients had higher CCR2 expression than healthy older adults (TIGR4, p=0.003; 23F, 

p=0.003) (Figure 3.30 B). 

Monocyte cytokine production was not changed with age (Figure 3.31), but intracellular 

levels of IL-6 were increased in older patients, compared to healthy, in the absence of 

stimulation (p=0.018) (Figure 3.31 B). Incubation with pneumococcal strains did not lead to 

TNF-a or IL-6 production by monocytes of young but did in both older cohorts. TNF-a was 

produced following TIGR4 (p=0.002) and 23F treatment (p=0.002) in healthy old, while IL-6 

was produced following TIGR4 incubation in this group (p=0.002) and following 19A 

treatment (p=0.001) in monocytes from pneumonia patients (Table A.2). 

Overall, there were no significant age-related changes in monocyte CD11b and CCR2 

expression, TNF-α and IL-6 production following stimulation with S. pneumoniae. 
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Analysis of monocytes by immunostaining following 4h-stimulation was difficult, due to the 

low numbers of cells acquired. This was due to reduced monocyte viability after 4h-

incubation with live S. pneumoniae (Figure 3.32 A), not observed with LPS or heat killed 

bacteria. Although neutrophils were incubated under the same conditions, their viability 

remained high after incubation with live pneumococcus (Figure 3.32 B). This could indicate 

that monocytes are more susceptible to apoptosis following contact with S. pneumoniae, 

while neutrophils are more resistant, but this observation requires further investigation. 

  



 124 

 
Figure 3.30. CD11b and CCR2 expression on monocytes from healthy subjects and older patients 
with pneumonia. PBMCs (2x105) from healthy young (n=6), old (n=7) donors or older patients with 
pneumonia (n=8) were stimulated with LPS (50ng/ml) or with S. pneumoniae serotypes (MOI 40) for 
4h ahead of flow cytometry analysis. Surface density (MFI) of (A) CD11b and (B) CCR2 are expressed 
as mean ± SD. Differences between healthy cohorts or healthy old and patients were analysed by 
Mann Whitney test. Comparison between S. pneumoniae serotypes was analysed by Friedman test 
with Dunn’s post hoc test. 
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Figure 3.31. Monocyte intracellular cytokine production in healthy subjects and older patients with 
pneumonia. PBMCs (2x105) from healthy young (n=6), old (n=7) donors or older patients with 
pneumonia (n=8) were stimulated with LPS (50ng/ml) or with S. pneumoniae serotypes (MOI 40) for 
4h ahead of flow cytometry analysis. Intercellular levels (MFI) of (A) TNF-α and (B) IL-6 in CD14+ 
monocytes are expressed as mean ± SD. Differences between healthy cohorts or healthy old and 
patients were analysed by Mann Whitney test. Comparison between S. pneumoniae serotypes was 
analysed by Friedman test with Dunn’s post hoc test.  
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Figure 3.32. Monocyte and neutrophil viability after incubation with S. pneumoniae. Isolated 
(2x105) neutrophils or PBMCs from healthy older adults (n=3) were incubated with or without LPS (50 
ng/ml) or live or heat-killed (HK) S. pneumoniae TIGR4 (MOI 40) for 4h and stained with anti-human 
CD15 or CD14 antibody and viability dye for flow cytometry analysis. Frequency of live, viable (A) 
monocytes and (B) neutrophils are expressed as mean ± SD. Comparison between groups was 
analysed by Kruskall-Wallis test with Dunn’s post hoc test. 

 

 

3.4. Summary of key findings 

This chapter aimed to analyse the effect of age on neutrophil and monocyte populations, 

neutrophil activation, NET generation and ROS production following incubation with three 

different S. pneumoniae serotypes in healthy older individuals and in older adults with 

pneumonia. Thus, the main findings of this chapter were: 

 Older adults had higher frequencies of the neutrophil CD16highCD62Ldim subset. This 

subset was also present in older patients with pneumonia, alongside mature 

neutrophils and immature granulocytes. 

 Neutrophil ROS production in response to S. pneumoniae serotypes 4 and 19A was 

unaltered with ageing, but was reduced in response to 23F, while neutrophils of 

older pneumonia patients generated higher levels of ROS in response to all S. 

pneumoniae serotypes, compared to healthy controls. 
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  There were no age-related changes in NET generation in response to serotypes 4 and 

19, but this function was increase towards 23F, while older patients with pneumonia 

had reduced NET generation in response to TIGR4 and 23F, compared to healthy 

older subjects. 

 Neutrophil TLR2 expression was increased in older patients with pneumonia in the 

presence or absence of stimulation, while intracellular IL-8 production was reduced, 

compared to healthy elderly.  

 The frequency of monocytes subsets was not altered with ageing, whilst the 

frequency of immature monocytes was increased in older adults with pneumonia. 

Monocyte TNF-α and IL-6 production following in vitro stimulation with S. 

pneumoniae serotypes was not changed with ageing or during pneumonia infection. 
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3.5 Discussion   

Considered as one of the main mediators of immunity against bacteria, neutrophils, together 

with monocytes, have a central role in combatting pneumonia infection. Neutrophils are key 

mediators of bacterial killing during pneumococcal infection, as bacterial clearance is 

severely impaired in neutrophil-depleted mice [256–258]. Due to immunosenescence, 

neutrophils show reduced chemotaxis [124,126,127] and phagocytic activity [62,134], 

altered free radical production [127,129] and impaired NET generation [141] in older adults.  

S. pneumoniae, the main causative pathogen of pneumonia, can inhabit the nasopharynx as 

a commensal species, an event that often precedes disease [193]. The distribution of S. 

pneumoniae serotypes causing invasive or non-invasive pneumonia in older adults varies 

around the globe, and among the most common are serotypes 19A [27,29,30,326] and 23F 

[27,28]. Thus, for the experiments in this thesis serotypes 19A and 23F were used, both 

isolated from older patients with bacteraemia, alongside a genome-sequenced serotype 4, 

strain TIGR4, originally isolated from an adult male [321,322]. 

Although neutrophil and monocyte functions have been investigated previously in the 

context of ageing, the aim of the work described in this chapter was to verify if the immune 

response of these cells to different strains of S. pneumoniae was altered with age in the 

context of health and pneumonia. 

 

3.5.1 Age-related changes in the innate immune response to S. pneumoniae 

In line with other studies, the frequency of neutrophils [38,85,113], eosinophils and 

basophils [113] was unaltered with advanced age, but monocyte frequency increased 
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[64,66,84]. Lymphocyte frequency has been reported to decrease with age [113], but in our 

healthy older cohort there was no difference in lymphocyte frequency compared to young 

subjects. This may be because our older adults were very healthy and possibly also younger 

overall than in some of the previous studies, even though they show signs of inflammaging, 

such as increased levels of IL-8 chemokine and a trend toward higher IL-1β in the circulation 

in agreement with other studies of older adults  [37,41,352,353]. 

Although the total number of neutrophils was unaltered with age, there was a higher 

frequency of CD16highCD62Ldim neutrophils in the circulation of older participants, which has 

recently been reported by others [121].  This subset was also found in patients with severe 

injury and in an acute human model of inflammation of LPS-injected volunteers [118,119], 

but it is still unclear what drives neutrophil differentiation into this subset. We found a 

positive correlation between serum IL-8 and frequency of this subset, suggesting that 

increased levels of IL-8 caused by inflammaging could be driving CD16highCD62Ldim 

differentiation or entry in to the bloodstream. These cells were reported as having 

functional migration towards IL-8 but poor adhesion to endothelium [119], and may be 

regulatory as they suppress human T-cell proliferation in vitro [118]. A single study reported 

that CD16highCD62Ldim neutrophils of older individuals showed reduced phagocytosis and 

ROS generation [121]. Although more studies are required to confirm these reports in older 

cohorts, the presence of such a subset with functional impairments and suppressive activity 

could contribute to the susceptibility of older adults to infection. 

Total numbers of monocytes were not altered with increasing age, in agreement with some 

published studies [85,354]. Further investigation of monocyte subsets in our older cohort 

showed that frequency of intermediate and non-classical monocytes remained unaltered, 
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though other groups have reported that these populations increased with age [85,89]. These 

subsets had different levels of CCR2 expression, however only non-classical monocytes 

showed increased CCR2 expression compared to cells of young donors. A higher expression 

of CCR2 in this subset could be driving an early egress from the bone marrow [336], and 

potentially be involved in functional alterations, as reported by Ong et al. (2018), in which 

non-classical monocytes exhibited more features of cellular senescence than classical and 

intermediate monocytes, which led to secretion of higher levels of TNF-α, CCL3 and CCL4 

[355]. Similarly, increased CCR2 expression in intermediate monocytes led to premature 

egress from the bone marrow and impaired TNF-α production in old mice [89]. In this thesis, 

stimulation of total monocytes with S. pneumoniae serotypes decreased CCR2, as well as 

CD11b expression, hence shedding of both receptors could inhibit migration. Considering 

that monocytes are mostly likely to interact with the pneumococcus in the tissue, shedding 

of both receptors would allow monocytes to remain in the tissue to aid clearance of the 

pneumococcus or differentiate into activated macrophages. In addition, monocyte TNF-α 

and IL-6 production showed no age-related effect. It is possible that age-related changes 

were not detected due to the small sample size of only 7 donors or because whole PBMCs 

were used for stimulation and monocytes stained with anti-human CD14 subsequently. 

Using isolated monocytes in the future could be a better method. 

Continuing our investigation on the effect of ageing on neutrophils, neutrophil phagocytosis 

of fixed S. pneumoniae TIGR4 was not impaired by ageing. Reduced phagocytosis of E. coli 

[122,129], S. aureus [129] and phagocytic killing of Group B Streptococcus and opsonised S. 

pneumoniae [62] have been reported in neutrophils of older adults previously. Here, data 

generated by the phagocytosis assay was inconclusive, due to the high variability 



 131 

experienced in our dataset. One limiting factor was the fluorescence degradation of labelled 

bacteria used in the test. FITC-labelling of bacteria was chosen because the stock could be 

stored and staining new batches of bacteria every time was not a feasible strategy, as the 

assay had to be performed in a large sample size on separate days. It was also used a high 

bacterial CFU per test (4x107 CFU, estimated MOI of 400), the same used in the PhagoTestTM 

kit. Although high bacterial concentrations have been used previously [272], it is not a 

physiological stimulus. Another limitation of this assay was the use of whole blood instead of 

isolated neutrophils, which made impossible to accurately assess MOI, adding more 

variability to data acquisition, as the number of circulating neutrophils vary between 

individuals. Thus, all these factors contributed to the variation observed in our dataset. 

Next, reactive oxygen species (ROS) production was investigated, after incubation of isolated 

neutrophils with S. pneumoniae. Generation of ROS occurs via the NADPH oxidase system, 

which can be triggered by phagocytosis or by activation of pattern recognition receptors 

(PRRs) [130]. Electron transfer by NADPH oxidase converts molecular O2 into O2
- 

(superoxide). In this thesis, ROS generation was measured using DHR123, a chemical that 

fluoresces upon reaction with superoxide. Here neutrophils from healthy older donors 

successfully generated ROS in response to PMA, at slightly higher levels than young 

participants. This is not in full accordance with the literature, as ROS generation by PMA 

stimulation in TNF-α-primed neutrophils was equal to that of young [141] or diminished 

[136]. Of note, the older cohort of this last study was from an outpatient clinical service, 

therefore not all participants could be in the “healthy” scope or condition. There are also 

reports of increased ROS generation by neutrophils of older individuals with periodontitis 

isolated from the oral cavity [356]. Overall, neutrophil ROS production can be altered with 
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increasing age but this appears to depend on the stimuli given [127,129] with response to 

PMA less affected than microbial stimuli. 

Because PMA is a soluble stimulus that bypasses the cellular membrane to activate protein 

kinase C PKC directly, then activating NADPH oxidase [357], neutrophil ROS generation by 

non-opsonised pneumococcal strains was also tested, as this production is dependent on 

PRRs such as TLR2, which binds surface lipoproteins or lipoteichoic acid from the 

pneumococcus [229], and TLR4, that binds pneumolysin (PLY) [235], or  phagocytosis [130].  

Although in this thesis the polysaccharide capsule is referred to as the main component that 

distinguishes one serotype from another, other factors of the biology of the pneumococcus 

have to be taken into account in a more detailed study, such as genotype and levels of 

expression of virulence factors; however, these are beyond the scope of this thesis. 

Capsular pneumococcal serotypes were found to promote different levels of ROS generation 

in neutrophils, with the highest levels of ROS being produced by 19A, followed by TIGR4 and 

23F. Such an effect was expected, as serotypes have different resistance to neutrophil 

phagocytosis [270] and induce variable levels of ROS by neutrophils of young donors [283]. 

Although this pattern of ROS production was observed in both healthy and patient cohorts, 

generation of ROS in response to 19A and 23F were lower in healthy older adults. Capsule 

has been shown to be the main component determining resistance to neutrophil killing [270] 

and indeed, 23F is a heavily encapsulated serotype [270]. Therefore, it is possible that this 

serotype was more resistant to neutrophil-mediated phagocytosis in the old, thus leading to 

lower ROS generation. Levels of PLY can also modulate ROS generation [283], and although 

19A has been shown to express PLY with high haemolytic activity compared to non-

pathogenic serotypes 19B and 19C [358] and 23F to have low levels of PLY within its capsule 
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[359], PLY expression varies depending on strains and can have different levels of haemolytic 

activity [360]. A more detailed investigation of the serotypes used in this thesis is necessary 

to confirm the role of this toxin in the bactericidal response of neutrophils from older adults.   

The TIGR4 capsule-negative mutant did not induce ROS generation in neutrophils of both 

healthy and patient cohorts. Conversely, Barbuti et al. (2010) reported that the non-

capsulated R6 (serotype 2) strain induced greater ROS generation than the wild type 

capsulated D39 strain [272]. This result was achieved by using a MOI of 250, whilst in this 

thesis a MOI of 40 was used, indicating that ROS generation by a non-capsulated strain may 

require a higher MOI.  

Opsonisation of the serotypes with commercial anti-capsular antibody was able to enhance 

ROS generation of neutrophils of older donors to TIGR4 and 19A, but not by 23F. It is 

possible that this is related to the quality of the commercial antibodies used. For instance, 

the commercial antibody used for TIGR4 opsonisation was against anti-type 4 only, whilst for 

19A and 23F the company only provided antibody pools against “Group 19” or “Group 23”. 

Therefore, levels of anti-19A or anti-23F could be diluted in the commercial antibody mix. 

Pooled sera from both age groups had detectable levels of anti-capsular 19A and 23F, which 

could explain the higher ROS generation by sera-opsonised serotypes compared to 

commercial antibodies.  

Independent of pre-opsonisation, neutrophils from older volunteers generated lower ROS in 

response to 23F. Whether reduced neutrophil ROS generation to 23F in older participants 

also correlates with reduced killing remains to be tested. However, lack of a strong 
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inflammatory response to this serotype could lead to reduced control of bacterial CFU thus 

leading to infection in older adults.  

ROS generation is also an integral part of the formation of neutrophil extracellular traps.  

Here NET generation by PMA was not impaired in healthy older volunteers, in contrast to a 

previous report of our group [141], in which PMA-induced NETs were reduced in older 

participants after IL-8 priming. One explanation for this divergence could be that for the 

work in this thesis neutrophils were not primed ahead of incubation with stimuli. In regard 

to NET generation in response to S. pneumoniae, NET release did not vary in response to 

different serotypes in young adults, while neutrophils of older donors generated more NETs 

in response to 23F. These observations are interesting, however, the mechanisms underlying 

NET generation by S. pneumoniae are still unclear. Branzk and colleagues (2014) 

demonstrated that neutrophils can selectively release NETs depending on size of the 

microbe, as demonstrated by selective release of NETs to Candida albicans hyphae, but not 

to single yeast, which was dependent on dectin-1 receptor and Syk/ERK signalling [361]. 

Another group demonstrated that pneumococcal capsular polysaccharide can induce dose-

dependent NET generation [362]. As mentioned earlier, 23F is a heavily encapsulated 

serotype [270], therefore capsule thickness and bacterial size could be associated with 

elevated NET release in response to 23F in older individuals.  

Additionally, the mechanisms underlying ROS interaction with signalling pathways that lead 

to NET generation and whether these are impaired with ageing is still unknown. A recent 

study showed that pneumococci can induce autophagy in neutrophils via PI3kinase class III, 

which also requires activation of autophagy gene Atg5, an event required by NET formation 

[277]. In neutrophils of older donors, compromised PI3K class I signalling is associated with 
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loss of chemotaxis accuracy [126], but no study to date has investigated the effects of age on 

PI3K class III. Therefore, it also remains to be further investigated if augmented NET 

generation to 23F by neutrophils of older adults is a consequence of bacteria size or of 

impaired phagocytosis and ROS production in response to this serotype.  

As neutrophil ROS generation in response to non-opsonised S. pneumoniae serotypes was 

diminished but PMA-induced NETs and ROS was achieved in older subjects, expression of 

TLR2 and TLR4 was assessed in neutrophils, as well as IL-8 intracellular production and 

release. TLR2 is the main activator of IL-8 production in neutrophils [363], although TLR4 also 

mediates the production of this cytokine [364].  Confirming previous observations, TLR4 

[127,141] and TLR2 expression were not altered with age in freshly isolated neutrophils [94]. 

LPS stimulation successfully activated neutrophils of healthy older volunteers, as observed 

by the diminished expression of surface TLR4 and high IL-8 production. An interesting finding 

is that pneumococcal serotypes did not modulate TLR2 expression in neutrophils of both age 

groups, whilst TLR4 expression were distinct in neutrophils of young and old. Stimulation 

with 19A and 23F, but not TIGR4, increased TLR4 expression in neutrophils from young, 

while expression decreased in older adults. Although IL-8 production via TLR1/TLR2 

heterodimer activation was shown to be reduced with age previously [94], following S. 

pneumoniae or LPS stimulation intracellular levels of neutrophil IL-8 were comparable 

between young and old. Higher neutrophil IL-8 production and CD11b/CD62L activation was 

induced by S. pneumoniae TIGR4, followed by 19A and 23F, a different pattern than 

observed in ROS generation. However, levels of secreted IL-8 following an 18-hour 

incubation of neutrophils showed that production of this cytokine was comparable between 

serotypes at this later time point and was not changed with age.‬ ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Surprisingly, after 18-hour 
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incubation, neutrophils of older adults produced high levels of IFN-γ in response to 23F. 

Production of IFN-γ during pneumococcal pneumonia has been found in mice models 

[365,366] and it is suggested that this cytokine is produced by neutrophils early in the course 

of bacterial pneumonia [367]. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

 

3.5.2. Changes in innate immunity against S. pneumoniae during pneumonia infection in 

older adults 

In contrast to the few age-related effects observed in neutrophil and monocyte populations 

and functions in our healthy cohort, older patients with pneumonia infection demonstrated 

the expected increase in circulating neutrophils and immature granulocytes. Recently, a high 

neutrophil-to-lymphocyte ratio has been used as a predictor of mortality for older patients 

with community-acquired pneumonia [368]. Additionally, mortality between centenarians 

has been associated with increased frequency of neutrophils [38], thus indicating that 

elevated frequency of neutrophils in the bloodstream is not always beneficial and this may 

depend on the specific population of neutrophils seen with infections that has not been 

extensively studied previously. 

As observed with increasing age, a high frequency of CD16highCD62dim neutrophils was also 

present during pneumonia infection. As previously mentioned, it is possible that increased 

levels of IL-8 found in serum contributed to maintain this population in the bloodstream 

during infection. Moreover, compared to the healthy condition, during pneumonia infection 

older adults had immature granulocytes as a third neutrophil phenotype present in blood, 

alongside increased frequency of CD16highCD62dim and of mature neutrophils. Compared to 
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mature neutrophils (CD16brightCD62Lbright), the CD16highCD62dim subset has normal phagocytic 

function, [120], superoxide production and levels of MPO [118] and migration towards IL-8 

[119,120] in LPS-injected volunteers, but has reduced migration towards fMLF and poor 

adhesion to activated endothelium, due to its low expression of L-selectin [119]. 

Furthermore, a recent study showed that CD16highCD62Ldim neutrophils fail to contain 

intracellular growth of methicillin-resistant Staphylococcus aureus (MRSA), compared to 

mature neutrophils [120]. This impaired bacterial containment was associated with 

decreased acidification of the phagolysosome [120]. A single study reported that 

CD16highCD62Ldim neutrophils of older adults have reduced phagocytosis and ROS generation 

[121]. Conversely, immature (CD16dim) neutrophils are reported as successfully containing 

MRSA in LPS-injected volunteers [120], but show reduced migration, phagocytosis and ROS 

production, and prolonged lifespan during sepsis [115]. Taking these findings into the 

context of pneumococcal infection in older adults, the presence of immature granulocytes in 

these patients may be a strategy to compensate for the functionally impaired 

CD16highCD62dim subset [120] and, if immature neutrophils have reduced functional capacity 

during pneumonia, as observed in sepsis, that could lead to accumulation of non-functional 

neutrophils in the lungs of the patients [109], thus worsening patient outcomes. However, 

no study to date has addressed the function of CD16highCD62dim and immature neutrophils 

during pneumonia infection. 

The monocyte population was also altered in older patients with pneumonia. Patients had 

increased frequency of intermediate monocytes compared to healthy, and elevated CCR2 

expression in this subset. Intermediate monocytes from healthy older adults were the major 

monocyte subset to produce TNF-α and IL-6 following in vitro stimulation with S. 
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pneumoniae, 6B serotype [89]. The same study reported that in mice, CCR2 expression in 

Ly6Chigh (intermediate) monocytes increased with age. The group proposes that in old mice, 

TNF-α drives the increase in CCR2 expression by intermediate monocytes, which then enter 

the circulation, and release higher levels of TNF-α upon challenge with S. pneumoniae. 

Whether these findings are replicated in humans remains to be confirmed, but one could 

hypothesize that age-related changes in monocyte populations could be aggravated during 

pneumonia infection, in which high levels of pro-inflammatory cytokines could elevate CCR2 

expression on intermediate monocytes and promote premature egress from the bone 

marrow. Supporting this hypothesis, here there was a positive correlation between CCR2 

expression of intermediate monocytes and levels of serum IL-6. When stimulated with S. 

pneumoniae, monocytes from older patients showed similar decreases in CD11b and CCR2 

surface expression and intracellular TNF-a or IL-6 levels to healthy older participants. As 

mentioned earlier, it is possible that no changes were observed because of the small sample 

size (n=7) or the time point the cells were collected and stimulated [369]. 

On testing neutrophil function, PMA stimulation promoted ROS generation in both 

pneumonia cohorts, however in the older subjects, levels of ROS were not as high as in 

healthy older volunteers. One possible explanation is that pro-inflammatory cytokines TNF-

α, IL-6 and/or IL-8 found in patients’ serum primed peripheral neutrophils, thus inducing 

higher ROS generation at baseline, but lower levels following PMA treatment. A similar 

hypothesis has been tested by Sauce et al. (2017), who reported lower PMA-induced ROS 

generation by neutrophils from older donors, following priming with TLR agonists or TNF-α 

[121]. Additionally, TNF-α priming ahead of S. pneumoniae incubation generated higher 

levels of ROS than S. pneumoniae incubation alone [370], and here, data show that 
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pneumonia patients produced higher ROS in response to S. pneumoniae serotypes than 

healthy participants. Yet, in patients, pneumococcal-induced ROS generation was lower than 

PMA-induced indicating that the response to a maximal stimulus such as PMA could be 

compromised in patients.  

Although neutrophil ROS generation is involved in clearance of the pneumococcus, 

overproduction is detrimental and can cause tissue damage. In a pneumonia model using 

knockout mice missing the gp91phox subunit of NADPH oxidase, disease outcome was 

improved by absence of ROS generation [371]. KO mice had increased neutrophil 

recruitment to the lungs and reduced neutrophil apoptosis, while neutrophil activation, 

elastase release and bacteria clearance in the lungs were comparable to control mice [371]. 

This indicates that targeting overproduction of ROS during pneumonia infection could be a 

strategy to improve the outcome of patients, but also that pneumococci clearance depends 

on other mechanisms apart from ROS generation. During pneumonia infection in older 

adults, if other strategies to contain the pneumococcus are impaired, such as discussed 

below, targeting ROS generation alone would not be sufficient.  

During pneumonia infection, neutrophils from the older cohort had reduced NET generation 

in response to PMA, TIGR4 and 23F, but not 19A. This finding raises two hypotheses: (1) the 

elevated ROS production by neutrophil of patients could activate a pathway other than 

autophagy/NETs, and therefore be sufficient for killing the pneumococci or, (2) high levels of 

ROS induced during a short incubation could not be sustained for the longer period required 

for NET generation, leading to functional exhaustion of neutrophils. To address the first 

hypothesis, neutrophil killing function could be tested in the future. Considering the second 

hypothesis, neutrophil ROS production could be tested over time. Additionally, a study from 
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our group demonstrated that TNF-α-primed neutrophils of healthy older adults generated 

lower levels of NETs following IL-8 or LPS stimulation, but not PMA, suggesting that the lack 

of response to secondary stimuli was related to receptor signalling upstream PKC [141]. 

However, during pneumonia infection, both young and older volunteers generated lower 

NETs upon incubation with PMA or pneumococcal serotypes, suggesting signalling both 

upstream and downstream of PKC were altered during pneumonia. Lower ex vivo NET 

generation by PMA was also detected in patients with sepsis [372] and burn injury [373]. 

Considering pneumococcal activation of NETs, which can be induced by the whole bacterium 

[277,279,280] or PLY alone [278], impaired NET generation in pneumonia patients could 

facilitate pneumococci evasion, of neutrophil-mediated clearance. 

Pneumonia patients also had increased Mac-1 complex (CD11b/CD18) and loss of L-selectin 

(CD62L) in unstimulated neutrophils, as well as increased TLR2 and TLR4 expression. As 

suggested before, priming of neutrophils by increased serum levels TNF-α, IL-6 and/or IL-8 

could have contributed to elevated expression TLR2 and TLR4 in neutrophils of older 

patients, a phenotype also observed in neutrophils and monocytes of patients with sepsis 

[374]. Overall, the pattern of neutrophil IL-8 production after 4-hour incubation with S. 

pneumoniae serotypes was the same as in healthy participants and older patients, i.e., TIGR4 

induced the highest IL-8 production by neutrophils, followed by 19A and 23F. However, 

while neutrophil TLR2 and TLR4 were not modulated and remained elevated in patients 

following stimulation with pneumococcal serotypes, IL-8 production had a trend toward 

lower intracellular levels in patients and was significantly reduced by 23F stimulation. To 

confirm whether this is an effect of the systemic inflammation observed in older patients or 

a consequence of age-related impairment in TLR signalling, as mentioned before, further 
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study is required. However, a study in mice supports this last hypothesis, having shown that 

alveolar macrophages of aged mice had reduced phosphorylation of p65, JNK and p38 MAPK 

following S. pneumoniae stimulation, whereas ERK phosphorylation increased, all which 

contributed to diminished TNF-α and IL-6 production by these cells [97]. No study to date 

has investigated if neutrophils from humans undergo the same decline in phosphorylation of 

these kinases following S. pneumoniae stimulation.  

The clinical outcome of pneumonia infection is not associated with pathogen clearance only 

but also with the right balance of pro- and anti-inflammatory cytokines [375,376]. Here, 

neutrophil cytokine production after 18-hour incubation with S. pneumoniae showed a trend 

toward reduced IL-1β, IL-6 and TNF-α in older patients, but no change in IL-10 levels, 

compared to healthy. This last cytokine was not detected in the serum either. It is possible 

that IL-10 could have been found in BAL fluid, as usually higher levels of cytokines are found 

in BAL than serum of patients with community-acquired pneumonia, such as that IL-1β, IL-6, 

IL-8 and IL-22. [376]. Still, our patients had elevated levels of IL-6 and IL-8 in serum; IL-6 

levels, for instance have been reported to be higher in older patients with CAP than in 

younger patients [377], and high levels of circulating IL-6 and TNF-α were associated with 

earlier mortality during CAP [378]. In this thesis cohort, older patients also had increased 

serum levels of IL-33. This cytokine has been associated with protection of the mucosal-

barrier [379], and epithelial lungs are the major source of this cytokine in COPD [380,381], so 

this site could also be the source of IL-33 in our patients. IL-33 has been detected during 

eosinophilic pneumonia [382], reported to recruit neutrophils during sepsis [383] and to the 

lungs during influenza A and MRSA infection [379]. The role of IL-33 on neutrophil 

recruitment will be further discussed in Chapter 5 (General Discussion). 
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In summary, data presented in this chapter indicate that neutrophils from healthy older 

donors show some altered bactericidal responses to pneumococcal serotypes, in particular 

to 23F. However, overall no major differences were found between young and old for a 

range of neutrophil and monocyte functions, indicating that our older adult cohort could be 

relatively healthy and not particularly susceptible to pneumonia. Here is also show for the 

first time the differences in neutrophil subpopulations with age and during pneumonia, and 

that not all neutrophil functions are reduced in older patients. These results still need 

further investigation in order to assess the influence of age-related changes on neutrophil 

responses during pneumonia. Thus, the next chapter addressed the presence of CD4+ T-

helper subsets during pneumococcal colonisation and pneumonia infection, as these subsets 

can control neutrophil activity, in particular Th17, CD4+ T cells that control neutrophil 

recruitment via IL-17. 
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Chapter 4  

The effect of age on CD4+ T lymphocyte polarisation during Experimental 
Human Pneumococcal Carriage (EHPC) and pneumonia infection 
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4.1 Introduction 

Nasopharyngeal colonisation by the pneumococcus is considered as a primary reservoir of 

transmission of this bacteria and also a precursor of disease [193]. However, frequency of 

commensal carriage is high in children, as it was detected in 50% of children aged 0-2 years 

and in 45% of children 3-4 years, while in adults, pneumococcal carriage is present in 1% to 

10% of individuals [195]. In contrast, older individuals have lower colonisation rates of 2.3% 

[197] but are the age group with a high disease incidence [5]. Whereas elevated 

pneumococcal density in the nasopharynx has been associated with a risk of developing 

pneumonia in an adult cohort [384], colonisation is virtually absent in hospitalized older 

adults with CAP, found in only 0.3% of patients [385]. These data suggest a role for the aged 

immune system in the high pneumonia incidence relative to bacterial colonisation in older 

adults. Interestingly, in aged mice colonisation was prolonged compared to young mice, due 

to delayed upregulation of proinflammatory mediators in the nasal-associated lymphoid 

tissue (NALT) [386]. 

In humans, the decrease in carriage rates with increasing age is associated with the 

development of specific immunity [194], represented by antigen-specific memory CD4+ T 

cells [228,261] and anti-protein and capsular antibodies [195,297]. Differentiation of cells to 

a Th17 phenotype is considered important to mediating the mucosal and systemic antigen-

specific response to S. pneumoniae [257,261,308], and their production of IL-17A is also 

central to immunity by regulating neutrophil infiltration in mucosal sites. In addition, in the 

NALT, dendritic cells can rapidly differentiate into professional antigen-presenting cells for 

activation of T and B lymphocytes [387].  
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The experimental human pneumococcal carriage methodology (EHPC) is a well-established 

model that consists of inoculation of S. pneumoniae in the nasal cavity of healthy volunteers 

[328]. It has proven to be a reproducible method for studying immune mechanisms involved 

during colonisation and in the development of protective immunity. Experimental 

colonisation of young volunteers leads to generation of CD4+IL-17A+ cells in BAL and 

peripheral blood [302] as well as serum anti-IgG PspA antibody [223,314], and mucosal and 

serum anti-capsular IgG [311,314], but no study to date has investigated whether these 

responses are changed with age. 

As the beneficial effect of carriage remains controversial in older adults, a study of its effect 

on immunogenicity in older adults is a novel approach for a better understanding of this 

phenomenon. Thus, the effect of age on dendritic cells as well as on CD4+ T cell polarisation 

during experimental carriage, and changes in CD4+ T subset frequency during pneumonia in 

older adults were addressed in this chapter. 

 

4.2 Aims 

The aims of this chapter were: 

 To analyse the effect of age on the frequency of peripheral blood dendritic cell 

subsets, their CD40 and HLA-DR expression; 

 To investigate the effect of age on peripheral blood CD4+ T lymphocyte subset 

differentiation during Experimental Human Pneumococcal Carriage (EHPC) in healthy 

volunteers; 
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 To analyse changes in the frequency of CD4+ T lymphocytes subsets following in vitro 

stimulation with S. pneumoniae serotypes with ageing, during healthy and 

pneumonia infection in older adults, using PBMCs; 

 To investigate changes in Treg activation, IL-10 and TGF-β1 production during 

pneumonia infection in older individuals. 

 

4.3. Results 

4.3.1 Experimental Human Pneumococcal Carriage (EHPC) study participants 

PBMCs from 15 healthy young (mean age 20.73 ± 3.7 years; range 18-29 years) and 15 

healthy older adults (59.8 ± 7.1 years; range 50-73 years) from the Experimental Human 

Pneumococcal Carriage (EHPC) study were used in this thesis. The EPHC older adult cohort 

was younger than the cohort from Chapter 3 which had a mean age of 72.43 ± 5, range 67-

83 years. Information on the participants age, gender and carriage are summarized in Table 

4.1. To determine the effect of carriage on CD4+ T cell polarisation, samples from pre-

inoculation         (-day 5) and post inoculation were assessed. Post inoculation samples were 

collected from the young cohort at day 14 and from the old cohort at day 29. Carriage length 

between carriage positive volunteers was similar between age groups (Table 4.1). Of the 

older cohort, only 2 participants had been vaccinated with the pneumonia vaccine. In this 

chapter healthy young volunteers will be referred to as HY and healthy old as HO. 
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Table 4.1. Demographics of healthy volunteers from the EHPC study 

 

 

 

 

 

4.3.2. Pneumonia patients  

Information about pneumonia patients recruited for this thesis is described in detail in 

Chapter 3 (section 3.3.2). Briefly, 24 older patients were also enrolled in this thesis and a 

summary of patients age, gender and vaccination status are shown in table 3.2. As 

mentioned in Chapter 3, only 3 young patients were enrolled during the recruitment period 

of this study and because recovery of viable PBMCs following -80°C storage was low in 

samples from several patients, not all stimulations and immunophenotyping were 

performed in all patients. Therefore, this chapter focus on data from CD4+T cell populations 

obtained from older patients. 

 
 

 

 

 

 

 

 Young (HY) Old (HO) 

Number of participants 15 15 

Mean age and range (years) 
20.73 ± 3.7 

(18-29) 
59.8 ± 7.1 

(50-73) 

Male (%) 8/15 (53%) 7/15 (46%) 

Carriage positive (%) 7/15 (46%) 7/15 (46%) 

Mean carriage length (days) 21.71 20.14 
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4.3.3 Changes in dendritic cell (DC) frequency and subsets with age  

To assess the changes in the frequency of DCs and their subsets with increasing age, thawed 

PBMCs (1x106) from pre-colonisation samples from young and old EHPC volunteers were 

stained and analysed by flow cytometry using the gating strategy shown in Figure 4.1. 

There were no age related changes in the frequency of total dendritic cells (Figure 4.2 A), 

however frequency of subsets was altered with age (Figure 4.2 B). Three subsets of dendritic 

cells can be identified in blood: the classical myeloid CD1c+ (BDCA-1, mDC1), the 

plasmacytoid CD303+ (BDCA-2, pDC), and the myeloid CD141+ (BDCA-3, mDC2). In blood and 

tissues, the frequency of mDC2 subset is 10% of the frequency of mDC1 [79]. Here, older 

donors had an increased frequency of mDC1 compared to young donors (p=0.014) (Figure 

4.3 A), while frequency of pDCs was lower (p=0.013) (Figure 4.3 B), and mDC2 frequency was 

not affected by age (Figure 4.3 C). The absolute number of these subsets showed that both 

subsets from the myeloid lineage were increased in the old (mDC1, p=0.002; mDC2, 

p=0.078), whereas numbers of pDCs were comparable between age groups (Figure 4.3 D, E 

and F). Surprisingly, these changes in dendritic cells were more pronounced in “younger” 

older adults, from 50 to 64 years old, as absolute numbers of mDC1 decreased with ageing 

(R2=0.29, p=0.037) (Figure 4.4 A). Although pDCs and mDC2 data also suggest a trend 

towards decrease in number of these populations with ageing, there was no statistical 

correlation, but a larger sample size could confirm this association (Figure 4.4 B and C). 
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Figure 4.1. Gating strategy for identification of dendritic cells and their subsets. 1x106 PBMCs were 
stained with viability dye followed by antibody mix containing lineage cocktail (anti-human CD3, 
CD14, CD19, CD20 and CD56), and anti-human CD1c, CD303, CD141, HLA-DR and CD40 ahead of flow 
cytometry acquisition. (A) Lymphocytes were initially identified by SSC-A and FSC-A, (B) Debris and 
doublets were excluded by gating on single cells using FSC-H and FSC-A. (C) Live lymphocytes were 
selected using a viability dye, (D) Live cells positive for HLA-DR and lacking lineage cocktail markers 
were considered dendritic cells. Lineage cocktail allowed exclusion of lymphocytes, monocytes, 
macrophages, B cells and NK cells. (E) Within this DCs population, mDC1 (BDCA-1, CD1c+) and pDCs 
(BDCA-2, CD303+) were identified. (F) Within CD1c-CD303- gate, cells positive for CD141 were 
identified as mDC2 (BDCA-3, CD141+). Surface density of CD40 and HLA-DR was assessed in all 
subsets by analysis of median fluorescence intensity (MFI). 
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Figure 4.2. Frequency of total dendritic cells and dendritic cell subsets in healthy young and old 
volunteers. PBMCS (1x106) from pre-colonisation samples of healthy young (n=15) and old (n=15) 
volunteers were stained for identification of dendritic cells by flow cytometry. (A) Frequency of total 
dendritic cells, data are expressed as mean ± SD (B) Frequency of dendritic cell subsets mDC1, pDC 
and mDC2 within total dendritic cells, data are expressed as mean ± SEM. Differences between age 
groups were analysed by unpaired T test. HY = healthy young. HO = healthy old. Ns = non-significant. 
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Figure 4.3. Frequency and absolute number of dendritic cell subsets in healthy young and old 
volunteers. PBMCS (1x106) from pre-colonisation samples of healthy young (n=15) and old (n=15) 
volunteers were stained for flow cytometry analysis for identification of dendritic cells. Frequency of 
subsets (A) mDC1 (CD1+) (B) pDC (CD303+) and (C) mDC2 (CD141+). Absolute number of subsets (D) 
mDC1 (E) pDC and (F) mDC2. Data are expressed as mean ± SD. Differences between age groups 
were analysed by unpaired T test. HY = healthy young. HO = healthy old. 
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Figure 4.4. Association between numbers of dendritic cell subsets and age. Correlation between 
absolute numbers of dendritic cell subsets and age in healthy old (n=15). (A) mDC1 (CD1+), (B) pDC 
(CD303+) and (C) mDC2 (CD141+).  
 
 

Next, surface density of activation markers CD40 and HLA-DR were analysed in the main DC 

subsets. Classical mDC1 dendritic cells showed no changes in CD40 expression with older age 

(Figure 4.4 A), but the expression of this co-receptor was increased in plasmacytoid DCs from 

older donors (p=0.016) (Figure 4.4 B). Therefore, ageing seems to cause an imbalance in 

CD40 expression between these subsets, as expression of CD40 was comparable between 

mDC1 and pDC from young donors (Figure 4.4 C) but was increased in pDCs from older 

volunteers (p=0.002) (Figure 4.4 D). Such changes were not observed in the expression of 

HLA-DR, which was unaltered with age in both subsets (Figure 4.5 A and B). Moreover, the 

difference in surface expression of this marker between mDC1 and pDC subsets was 

conserved with advancing age (HY, p=0.003; HO, p=0.005) in our cohort (Figure 4.5 C and D). 
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Figure 4.5. Surface CD40 expression in dendritic cell subsets of healthy young and old volunteers. 
PBMCS (1x106) from pre-colonisation samples of healthy young (n=15) and old (n=15) volunteers 
were stained for flow cytometry analysis for identification of dendritic cells. Surface density (MFI) of 
CD40 between age groups of subsets (A) mDC1 (CD1+) and (B) pDC (CD303+).  Comparison of surface 
density of CD40 between subsets in (C) young and (D) old. Data are expressed as mean ± SD. 
Differences between age groups were analysed by unpaired T test and differences between subsets 
were analysed by paired T test. HY = healthy young. HO = healthy old. 
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Figure 4.6. Surface HLA-DR expression in dendritic cell subsets of healthy young and old volunteers. 
PBMCS (1x106) from pre-colonisation samples of healthy young (n=15) and old (n=15) volunteers 
were stained for flow cytometry analysis for identification of dendritic cells. Surface density (MFI) of 
HLA-DR between age groups of subsets (A) mDC1 (CD1+) and (B) pDC (CD303+). Comparison of 
surface density of HLA-DR between subsets in (C) young and (D) old. Data are expressed as mean ± 
SD. Differences between age groups were analysed by Mann-Whitney test and differences between 
subsets were analysed by Wilcoxon test. HY = healthy young. HO = healthy old.  
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4.3.4 Effect of age on CD4+ T cell polarization during experimental human pneumococcal 

carriage 

In order to determine the best experimental condition for detection of Th17 cells 

(CD3+CD4+IL-17A+), PBMCs from HY were incubated in 96-flat-bottom cell plates under three 

different concentrations per well: 5x104, 1x105, 2x105 (Figure 4.7 A-F). The cells were 

stimulated with PMA (10 ng/ml) and ionomycin (50 ng/ml) for over 120 hours. 6 hours prior 

to the 24-hour time points, protein transport inhibitor Brefeldin A was added to cells to stop 

cytokine secretion. Every 24 hours, cells were collected, counted and immunostained for 

detection of CD3+CD4+IL-17A+ lymphocytes. Based on these pilot assays, a concentration of 

2x105 cells per well and 72h incubation were chosen, as at these conditions offered both 

better cell viability and frequency of Th17 (Figure 4.7 C and F).  

Next, to enhance detection of intracellular cytokines, incubation with different protein 

transport inhibitors was tested. Cells were stimulated with PMA (10 ng/ml) and ionomycin 

(50 ng/ml) at 48h and, 2 hours after, protein transport inhibitors GolgiPlug was added to 

cells, followed by 16-hour incubation; or stimulated with PMA/ionomycin together with 

Brefeldin A at 66h, for 6 hours. A viability dye was also incorporated in to the staining panel 

to exclude dead cells. Higher frequency of intracellular IFN-γ in CD3+CD4+T cells was 

detected following longer incubation with GolgiPlug than Brefeldin A (Figure 4.8). Thus, the 

final protocol incorporated the re-stimulation of cells at 48h of incubation, and addition of 

GolgiPlug 2 hours after re-stimulation for 16h (total of 66h hours of incubation). 
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Figure 4.7. Absolute number of PBMCs and CD3+CD4+IL-17A+ over time. PBMCS of healthy young 
donors (n=3) were stimulated with PMA (10 ng/ml) and ionomycin (50 ng/ml) over 120 hours at 
different cell concentrations per well. 6 hour-prior to 24-hour time points, Brefeldin A was added to 
cells to stop cytokine secretion, ahead of flow cytometry analysis. Absolute number of PBMCs 
overtime at (A) 5x104 cells/well (B) 1x105 cells/well (C) 2x105 cells/well and frequency of CD3+CD4+IL-
17A+ at (D) 5x104 cells/well (E) 1x105 cells/well (F) 2x105 cells/well. Data are expressed as mean ± SD.  

 
 
 

 

Figure 4.8. Frequency of CD3+CD4+IFN-γ+ cells following incubation with protein transport 
inhibitors. PBMCS healthy young (n=3) were stimulated with PMA (10 ng/ml) and ionomycin (50 
ng/ml) for 6 hours with Brefeldin A (B.A.) or 16 hours with GolgiPlug ahead of flow cytometry staining 
and analysis. Data are expressed as mean ± SD. Differences between PMA-treated groups were 
analysed by Mann-Whitney test. 
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Using this methodology, PBMCs from young and older adults experimentally colonised with 

S. pneumoniae serotype 6B in the nasal cavity were stimulated in vitro with a combination of 

PMA (10 ng/ml) and ionomycin (50 ng/ml) or S. pneumoniae 6B (5 µg/ml). Following in vitro 

66 hours of stimulation, samples were immunostained for flow cytometry analysis for 

identification of the main CD4+T cells subsets. PMA and ionomycin (referred to as PMA in the 

subsequent text) were not used to stimulate PBMCs ahead of Treg staining as the treatment 

significantly reduced CD25 expression, preventing identification of this subset by flow 

cytometry. 

As shown by the gating strategies in Figure 4.9, the CD4+T cell subsets identified in the EHPC 

samples were Th1 (CD3+CD4+IFN-γ+), Th2 (CD3+CD4+IL-4+), Th17 (CD3+CD4+IL-17A+) and Treg 

(CD3+CD4+CD127-CD25+Foxp3+) as well as CD4+ T naïve (CD45RA+CCR7+), central memory 

(CD45RA-CCR7+), effector memory (CD45RA-CCR7-) and effector memory cells re-expressing 

CD45RA (EMRA, CD45RA+CCR7+). For Th1, Th2 and Th17, their respective transcriptor factors 

T-bet, GATA3 and RORγt were used as markers of induction to these phenotypes, whereas 

membrane protein GARP (glycoprotein A repetitions predominant) was used as a marker of 

activation of Tregs [388].  
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Figure 4.9. Gating strategy for identification of CD3+CD4+ T cell subsets. PMBCs from pre and post 
colonisation samples were stained with viability dye followed by antibody mix containing antibodies 
for identification of CD3+CD4+ subsets. (A) Lymphocytes were initially identified by SSC-A and FSC-A, 
(B) Debris and doublets were excluded by gating on single cells using FSC-H and FSC-A. (C) Live 
lymphocytes were selected using a viability dye, (D) Lymphocytes were defined as live cells positive 
for CD3+CD4+. (E) Panel 1 used for identification of CD3+CD4+IFN-γ+T-bet+ and CD3+CD4+IL-4+GATA3+ 

cells. (F) Panel 2 used for identification of CD3+CD4+IL-17A+ RORγt+ and naïve and memory CD3+CD4+ 
T cells by expression of CD45RA and CCR7. (G) Panel 3 used for identification of CD3+CD4+CD127-

CD25+Foxp3+ (Tregs) and GARP+Tregs. 
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4.3.4.1 Age-related changes in CD4+ T cell polarisation pre and post EHPC  

Although there were age-related differences in both pre- and post-colonisation samples, 

frequency of CD4+ T cell subsets between time points in samples of young and old volunteers 

showed no statistical differences, with a couple of exceptions as described in the next 

paragraphs.  

There were age-related differences in the frequency CD4+ T cell subsets before and after 

nasal inoculation of 6B in volunteers. Older donors showed a higher frequency of both 

CD4+IFN-γ+ (Figure 4.10 B) and CD4+IFN-γ+T-bet+ cells (Figure 4.10 D) than young donors, 

following PMA stimulation in both pre (IFN-γ+, p=0.0002; IFN-γ+T-bet+, p=0.002) and post 

(IFN-γ+, p<0.0001; IFN-γ+T-bet+, p=0.024) colonisation samples. Neither unstimulated or 6B 

(Figure 4.10 A and C) in vitro stimulation altered the frequency of IFN-γ+ cells in both age 

groups and at both time points. The frequency of CD4+IL-4+ (Figure 4.11 A) and activated 

CD4+IL-4+GATA3+ (Figure 4.11 C) was unaltered with age in both time points analysed, and 

PMA (Figures 4.11 B and D) or 6B (Figures 4.11 A and C) stimulations did not change the 

frequency of this subset. 
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Figure 4.10. Frequency of IFN-γ+ and IFN-γ+T-bet+ following in vitro stimulation before and after 
experimental pneumococcal colonisation in young and old volunteers. PBMCs (4x105 cells) of young 
(n=15) and old (n=15) volunteers from pre- and post-colonisation were stained for flow cytometry 
analysis of (A) IFN-γ+ frequency and (C) IFN-γ+T-bet+ frequency in unstimulated and in S. pneumoniae 
6B (5 µg/ml) treated cells. (B) IFN-γ+ frequency and (D) IFN-γ+T-bet+ frequency in PMA (10 ng/ml) and 
ionomycin (50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences between age 
groups were analysed by Mann-Whitney test and differences between pre- and post-colonisation 
were analysed by Wilcoxon test. Differences between treatments were analysed by Kruskal-Wallis 
test with Dunn’s post hoc test and statistical differences with unstimulated control are shown on top 
of the bars. 
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Figure 4.11. Frequency of IL-4+ and IL-4+GATA3+ following in vitro stimulation before and after 
experimental pneumococcal colonisation in young and old volunteers. PBMCs (4x105 cells) of young 
(n=15) and old (n=15) volunteers from pre- and post-colonisation were stained for flow cytometry 
analysis of (A) IL-4+ frequency and (C) IL-4+GATA3+ frequency in unstimulated cells and in S. 
pneumoniae 6B (5 µg/ml) treated cells. (B) IL-4+ frequency and (D) IL-4+GATA3+ frequency in PMA (10 
ng/ml) and ionomycin (50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences 
between age groups were analysed by Mann-Whitney test and differences between pre- and post-
colonisation were analysed by Wilcoxon test. Differences between treatments were analysed by 
Kruskal-Wallis test with Dunn’s post hoc test. 
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Although the frequency of CD3+CD4+IL-17A+ cells in unstimulated pre-colonisation samples 

from older adults was slightly higher than in the young, the difference was not statistically 

significant (Pre, HY = 0.065±0.049 vs HO = 0.087±0.048, p=0.204) (Figure 4.12 A). PMA 

stimulation successfully increased the frequency of both IL-17A+ and L-17A+RORγt+ 

phenotypes in samples pre and post colonisation, compared to unstimulated controls of 

both age groups (IL-17A+: pre, HY, p=0.0007; HO, p=0.051. Post, HY, p=0.0001; HO, p=0.011. 

IL-17A+RORγt+: pre, HY, p=0.013; HO, p=0.001. Post, HY, p<0.0001; HO, p=0.002) (Figures 

4.12 B and D). PMA also increased the frequency of IL-17A+RORγt+ in post-colonisation 

samples from young donors but failed to do so in older adults (p=0.018) (Figure 4.12 D). As a 

consequence, young volunteers had a trend towards an increase in frequency of IL-

17A+RORγt+ cells post colonisation, a trend not observed in older participants (HY: pre = 

0.181±0.218 vs post = 0.306±0.24, p=0.064. HO: pre = 0.168±0.099 vs post = 0.15±0.114, 

p=0.534) (Figure 4.12 D). While 6B stimulation did not change the frequency of IL-17A+ or IL-

17A+RORγt+ cells (Figures 4.12 A and C), it significantly increased the frequency of activated 

Tregs (CD127-CD25+Foxp3+GARP+) in pre and post colonisation samples from both age 

groups, compared to unstimulated controls (pre, HY, p=0.0002; HO, p<0.0001. Post, HY, 

p<0.0001; HO, p<0.0001) (Figures 4.13 B), whereas the frequency of Tregs (CD127-

CD25+Foxp3+) remained unaltered in both age groups in unstimulated and 6B-stimulated 

samples (Figures 4.13 A).  
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Figure 4.12. Frequency of IL-17A+ and IL-17A+RORγt+ following in vitro stimulation before and after 
experimental pneumococcal colonisation in young and old volunteers. PBMCs (4x105 cells) of young 
(n=15) and old (n=15) volunteers from pre- and post-colonisation were stained for flow cytometry 
analysis of (A) IL-17A+ frequency and (C) IL-17A+RORγt+ frequency in unstimulated and in S. 
pneumoniae 6B (5 µg/ml) treated cells. (B) IL-17A+ frequency and (D) IL-17A+RORγt+ frequency in 
PMA (10 ng/ml) and ionomycin (50 ng/ml) treated cells. Differences between age groups were 
analysed by Mann-Whitney test and differences between pre- and post-colonisation were analysed 
by Wilcoxon test. Differences between treatments were analysed by Kruskal-Wallis test with Dunn’s 
post hoc test and statistical differences with unstimulated control are shown on top of the bars. 
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Figure 4.13. Frequency of Foxp3+ and Foxp3+GARP+ following in vitro stimulation before and after 
experimental pneumococcal colonisation in young and old volunteers. PBMCs (4x105 cells) of young 
(n=15) and old (n=15) volunteers from pre- and post-colonisation were stained for flow cytometry 
analysis of (A) Foxp3+ frequency and (B) Foxp3+GARP+ frequency in unstimulated cells and in S. 
pneumoniae 6B (5 µg/ml) treated cells. Data are expressed as mean ± SD. Differences between age 
groups were analysed by Unpaired T test and differences between pre- and post-colonisation were 
analysed by Paired T test. Differences between treatments were analysed by paired T test and 
statistical differences with unstimulated control are shown on top of the bars. 
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Age-related changes were also observed in the naïve and memory CD4+ T cell compartments. 

As expected, older volunteers showed lower frequency of naïve CD4+ T (CD45RA+CCR7+) cells 

in both unstimulated (Pre, p=0.037; post, p=0.0003), PMA (Pre, p<0.0001; post, p=0.0001) 

and 6B-stimulated samples (Pre, p=0.023; post, p=0.004) (Figures 4.14 A). PMA-treatment 

also significantly expanded the naïve subset in young participants, in samples from both time 

points, compared to unstimulated controls (Pre, p=0.021; post, p=0.030) (Figure 4.14 A). 

Conversely, older volunteers had an increased frequency of highly differentiated CD4+T 

memory cells. Frequency of CD4+ TCM cells (central memory, CD45RA-CCR7+) was increased in 

pre and post samples of older participants in unstimulated (Pre, p=0.004; post, p=0.009), 

PMA (Pre, p=0.0003; post, p=0.0005) and 6B-stimulated samples (Pre, p=0.018; post, 

p=0.018) (Figures 4.14 B). CD4+ TEM cells (effector memory, CD45RA-CCR7-) were only higher 

in older donors following PMA treatment (Pre, p=0.003; post, p=0.0004) (Figure 4.15 A). 

Also, young volunteers showed reduction of CD4+ TEM frequency at post colonisation 

(p=0.49), following 6B stimulation, whereas this change was not found in older donors (HY: 

pre = 18.36±10.2 vs post = 15.32±7.673, p=0.049. HO: pre = 19.95±13.65 vs post = 

19.78±13.33, p=0.625) (Figure 4.15 A). This could be associated with the increased frequency 

of naïve CD4+T found in young subjects (Figure 4.14 A). The frequency of CD4+ TEMRA cells 

(CD45RA+CCR7+), such as observed with CD4+ TCM, was elevated in older participants at both 

time points, compared to young subjects, in unstimulated (Pre, p=0.013; post, p=0.005), 

treatments with 6B (Pre, p=0.012; post, p=0.005) or PMA (Pre, p=0.005; post, p=0.0002) 

(Figures 4.16 B). PMA treatment also significantly increased frequency of CD4+ TEMRA cells 

compared to unstimulated controls (pre, HY, p=0.0001; HO, p=0.002. Post, HY, p<0.0001; 

HO, p=0.0003) (Figures 4.16 B).   
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Figure 4.14. Frequency of naïve and central memory CD4+ T cell following in vitro stimulation 
before and after experimental pneumococcal colonisation in young and old volunteers. PBMCs 
(4x105 cells) of young (n=15) and old (n=15) volunteers from pre- and post-colonisation were stained 
for flow cytometry analysis of (A) naïve cell frequency and (B) central memory cell frequency in 
unstimulated, S. pneumoniae 6B (5 µg/ml) treated cells or PMA (10 ng/ml) and ionomycin (50 ng/ml) 
treated cells. Data are expressed as mean ± SD. Differences between age groups were analysed by 
Unpaired T test and differences between pre- and post-colonisation were analysed by Paired T test. 
Differences between treatments were analysed by One-Way ANOVA test with Tuckey’s post hoc test 
and statistical differences with unstimulated control are shown on top of the bars. 
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Figure 4.15. Frequency of effector memory and EMRA CD4+ T cell following in vitro stimulation 
before and after experimental pneumococcal colonisation in young and old volunteers. PBMCs 
(4x105 cells) of young (n=15) and old (n=15) volunteers from pre- and post-colonisation were stained 
for flow cytometry analysis of (A) effector memory cell frequency and (B) EMRA cell frequency in 
unstimulated, S. pneumoniae 6B (5 µg/ml) treated cells or PMA (10 ng/ml) and ionomycin (50 ng/ml) 
treated cells. Data are expressed as mean ± SD. Data are expressed as mean ± SD. Differences 
between age groups were analysed by Unpaired T test and differences between pre- and post-
colonisation were analysed by paired T test. Differences between treatments were analysed by One-
Way ANOVA test with Tuckey’s post hoc test and statistical differences with unstimulated control are 
shown on top of the bars. 
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Overall, ageing promoted changes in pro-inflammatory subsets, with increased frequencies 

of IFN+ cells, but a decline in IL-17A+RORγt+ cells after experimental colonisation, while 

frequency of 6B-responding GARP+Tregs remained elevated with ageing. 

 

4.3.4.2 Effect of age on CD4+ T cell polarisation in carriage-positive and negative volunteers  

To further investigate the effect of ageing on CD4+ T cell polarisation following experimental 

pneumococcal carriage, data from donors was divided into carriage-positive and carriage-

negative, given by detection of 6B serotype in nasal samples collected at day 7 post 

inoculation.  

As described above, no statistical differences were found between pre and post colonisation 

samples in the majority of CD4+T cell subsets. Here are shown data from PMA and 6B-

stimulated PBMCs from post-colonisation samples. Figures 4.16 A and B show that the 

frequency of IFN-γ+ and IFN-γ+T-bet+ in PMA-treated PBMCs remained higher in older 

volunteers than in young subjects independent of carriage status (IFN-γ+: carriage-Neg, 

p=0.0006; carriage-Pos, p=0.001. IFN-γ+T-bet+: carriage-Pos, p=0.022). Possibly due to the 

smal sample size, no statistical differences in frequency of IFN-γ+ subsets were detected in 

6B-stimulated PBMCs (Figures 4.16 C and D). Cell frequency of IL-4+ and IL-4+GATA3+ 

populations were not altered by carriage status in our cohort following stimulation of cells 

with PMA or 6B (Figure 4.17). 
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Figure 4.16. Frequency of IFN-γ+ and IFN-γ+T-bet+ following in vitro stimulation in carriage-negative 
and carriage-positive volunteers after experimental pneumococcal colonisation. PBMCs (4x105 

cells) of young (n=15) and old (n=15) volunteers from post-colonisation were stimulated and 
analysed by flow cytometry. Data were divided based on carriage status of the volunteers (carriage-
NEG, n=8; carriage-POS, n=7). (A) IFN-γ+ frequency and (B) IFN-γ+T-bet+ frequency in PMA (10 ng/ml) 
and ionomycin (50 ng/ml) treated cells; (C) IFN-γ+ frequency and (D) IFN-γ+T-bet+ frequency in S. 
pneumoniae 6B (5 µg/ml) treated cells. Data are expressed as mean ± SD. Differences between age 
groups and carriage status were analysed by Mann-Whitney test. Neg = negative. Pos = positive. 
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Figure 4.17. Frequency of IL-4+ and IL-4+GATA3+ following in vitro stimulation in carriage-negative 
and carriage-positive volunteers after experimental pneumococcal colonisation. PBMCs (4x105 

cells) of young (n=15) and old (n=15) volunteers from post-colonisation were stimulated and 
analysed by flow cytometry. Data was divided based on carriage status of the volunteers (carriage-
NEG, n=8; carriage-POS, n=7). (A) IL-4+ frequency and (B) IL-4+GATA3+ frequency in PMA (10 ng/ml) 
and ionomycin (50 ng/ml) treated cells; (C) IL-4+ frequency and (D) IL-4+GATA3+ frequency in S. 
pneumoniae 6B (5 µg/ml) treated cells. Data are expressed as mean ± SD. Differences between age 
groups and carriage status were analysed by Mann-Whitney test. Neg = negative. Pos = positive. 
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Having found that young volunteers had higher frequency of IL-17A+RORγt+ post-

colonisation upon in vitro PMA stimulation and that this trend was not found in the old 

(Figure 4.12 D), data from both time points were divided according to carriage status of the 

volunteer. In young and old, presence of carriage was not associated with changes in the 

frequency of IL-17A+ cells following in vitro stimulation with PMA or 6B in our cohorts 

(Figures 4.18 A and C). However, in PMA-treated PBMCs IL-17A+RORγt+ frequency increased 

post-colonisation in carriage-negative young volunteers, compared to frequency at pre-

colonisation (p=0.001) (Figure 4.18 B), and upon 6B re-stimulation, these volunteers had 

higher IL-17A+RORγt+ frequency than carriage-positive young post-colonisation (p=0.009) 

(Figure 4.18 D). Comparing carriage-negative volunteers, IL-17A+RORγt+ frequency was 

higher in young than in old donors (p=0.009) in PMA-stimulated cells, where frequency of 

this subset was not altered at post-colonisation (Figure 4.18 B), suggesting age-related 

changes in induction of IL-17A+ cells during pneumococcal carriage.  

To find out if these higher frequency of IL-17A+RORγt+ cells in carriage-negative participants 

were newly differentiated cells or memory cells generated by the colonisation event, based 

on the gating shown in Figure 4.9, IL-17A+RORγt+ cells from post-colonisation were analysed 

based on their expression of CD45RA and CCR7. Figure 4.19A shows that in PMA-stimulated 

cells, most IL-17A+RORγt+ of young donors are central memory cells, while there was no 

difference between 6B-stimulated cells (Figure 4.19 B). Moreover, carriage-negative young 

donors presented more IL-17A+RORγt+ in memory subsets than carriage-positive (EMRA, 

p=0.030; EF, p=0.014), although this difference was not significant for central memory IL-

17A+RORγt+ cells (p=0.189). A larger experimental group could confirm this observation. In 

contrast, older individuals showed no such trends, as carriage-negative and positive older 
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donors showed no difference between frequency of IL-17A+RORγt+ cells in any subset. 

Furthermore, between carriage-negative individuals, the young had higher frequency of 

central memory IL-17A+RORγt+ cells than the old (p=0.0003), showing that experimental 

colonisation successfully generated immune memory in young individuals, and these cells 

could be associated with clearance of colonisation. Most importantly, in the old, this 

suggests that no induction of IL-17A+RORγt+ memory was promoted during experimental 

colonisation, which could indicate that another cell type is mediating clearance of carriage. 

Furthermore, presence of lower frequency of IL-17A+RORγt+ memory cells following 

colonisation in old adults contrasts with the higher frequency of total CD4+ T central, 

effector and EMRA memory cells found in both carriage-negative and positive older 

volunteers, compared to young (Figures 4.21 and 4.22). 
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Figure 4.18. Frequency of IL-17A+ and IL-17A+RORγt+ following in vitro stimulation in carriage-
negative and carriage-positive volunteers before and after experimental pneumococcal 
colonisation. PBMCs (4x105 cells) of young (n=15) and old (n=15) volunteers from pre- and post-
colonisation were stimulated and analysed by flow cytometry. Data was divided based on carriage 
status of the volunteers (carriage-NEG, n=8; carriage-POS, n=7). (A) IL-17A+ frequency and (B) IL-
17A+RORγt+ frequency in PMA (10 ng/ml) and ionomycin (50 ng/ml) treated cells; (C) L-17A+ 

frequency and (D) IL-17A+RORγt+ frequency in S. pneumoniae 6B (5 µg/ml) treated cells. Data are 
expressed as mean ± SD. Differences between age groups and carriage status were analysed by 
Mann-Whitney test. Differences between pre- and post-colonisation were analysed by Wilcoxon test. 
Neg = negative. Pos = positive 
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Figure 4.19. Frequency of naïve and memory IL-17A+RORγt+ cells following in vitro stimulation in 
carriage-negative and carriage-positive volunteers after experimental pneumococcal colonisation. 
Frequency of IL-17A+RORγt+ cells were divided based on the expression of CD45RA and CCR7, for 
identification of naïve and memory cells. Data was divided based on carriage status of the volunteers 
(carriage-NEG, n=8; carriage-POS, n=7). Frequency of IL-17A+RORγt+ stimulated with (A) PMA or (B) S. 
pneumoniae 6B. Data are expressed as mean ± SD. Differences between age groups and carriage 
status were analysed by Mann-Whitney test.  (–) = carriage-negative. (+) = carriage-positive, HY = 
healthy young. HO = healthy old. 
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When analysing the Treg population, there were no statistical differences between 

frequency of Tregs between carriage status in both age groups nor GARP+Tregs (Figure 4.20 

A and B). There was a trend that carriage-positive young donors had higher frequency of 

GARP+Tregs, while this was not observed in carriage-positive older adults. A larger sample 

size could confirm these observations.  

A study has reported that the ratio of Th17/Treg frequencies found in adenotonsillar tissue is  

increased with age [304] and ratios of Th17/Treg are reported to be lower in carriage-

positive children compared to carriage-negative [304]. Here, there was no correlation 

between advancing age and Th17 frequency (in unstimulated cells R2=0.002, p=0.80) or Treg 

frequency (R2=0.024, p=0.40) in post colonisation samples and also no effect of carriage in 

older donors on the Th17/Treg ratio (carriage-NEG, R2=0.23, p=0.21; carriage-POS R2=0.008, 

p=0.86). 
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Figure 4.20. Frequency of Foxp3+ and Foxp3+GARP+ following in vitro stimulation in carriage-
negative and carriage-positive volunteers after experimental pneumococcal colonisation. PBMCs 
(4x105 cells) of young (n=15) and old (n=15) volunteers from post-colonisation were stimulated and 
analysed by flow cytometry. Data was divided based on carriage status of the volunteers (carriage-
NEG, n=8; carriage-POS, n=7). (A) Foxp3+ frequency and (B) Foxp3+GARP+ frequency in S. pneumoniae 
6B (5 µg/ml) treated cells. Data are expressed as mean ± SD. Differences between age groups and 
carriage status were analysed by Mann-Whitney test. Neg = negative. Pos = positive 
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In the naïve and central memory CD4+ T cell compartments, independent of carriage status 

and stimulation, the frequency of naïve cells was reduced in old donors, compared to young, 

(PMA: carriage-NEG, p=0.002; carriage-POS, p=0.001. 6B: carriage-NEG, p=0.065; carriage-

POS, p=0.022) (Figure 4.21 A and C), while frequency of CD4+ central memory cell was 

increased in older donors, compared to young (PMA: carriage-NEG, p=0.015; carriage-POS, 

p=0.026. 6B: carriage-NEG, p=0.060) (Figure 4.21 B and D). 

The frequency of effector memory cells and EMRA were also elevated in the old, EMRA cells 

were reduced in carriage-positive young, compared to donors in which carriage was absent 

(PMA, p=0.040) (Figure 4.22 A and C, B and D). While the same trend was observed in the 

old, it was not statistically significant. This suggests that establishment of immune memory is 

present in carriage-negative older adults but may be reduced in carriage-positive.  
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Figure 4.21. Frequency of naïve and central memory CD4+ T cells following in vitro stimulation in 
carriage-negative and carriage-positive volunteers after experimental pneumococcal colonisation. 
PBMCs (4x105 cells) of young (n=15) and old (n=15) volunteers from post-colonisation were 
stimulated and analysed by flow cytometry. Data was divided based on carriage status of the 
volunteers (carriage-NEG, n=8; carriage-POS, n=7). (A) naïve cell frequency and (B) central memory 
cell frequency in PMA (10 ng/ml) and ionomycin (50 ng/ml) treated cells; (C) naïve cell frequency and 
(D) central memory cell frequency in S. pneumoniae 6B (5 µg/ml) treated cells. Data are expressed as 
mean ± SD. Differences between age groups and carriage status were analysed by Mann-Whitney 
test. Neg = negative. Pos = positive. 
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Figure 4.22. Frequency of effector memory and EMRA CD4+ T cells following in vitro stimulation in 
carriage-negative and carriage-positive volunteers after experimental pneumococcal colonisation. 
PBMCs (4x105 cells) of young (n=15) and old (n=15) volunteers from post-colonisation were 
stimulated and analysed by flow cytometry. Data was divided based on carriage status of the 
volunteers (carriage-NEG, n=8; carriage-POS, n=7). (A) effector memory cell frequency and (B) EMRA 
cell frequency in PMA (10 ng/ml) and ionomycin (50 ng/ml) treated cells; (C) effector memory cell 

frequency and (D) EMRA cell frequency in S. pneumoniae 6B (5 µg/ml) treated cells. Data are 
expressed as mean ± SD. Differences between age groups and carriage status were analysed by 
Mann-Whitney test. Neg = negative. Pos = positive. 
  



 181 

4.3.5 CD4+ T cell polarisation during pneumonia infection in older adults 

In order to determine if older subjects had changes in CD4+ T cell polarisation during 

pneumonia infection, PBMCs from patients were stimulated in vitro with PMA and 

ionomycin or with S. pneumoniae serotypes 4 (TIGR4) or 6B, aiming to induce serotype 

specific responses. Because no detailed investigation of the causative pathogen of 

pneumonia was performed in patients in this study, two pneumococcal serotypes were 

used. As controls, CD4+ T cell data from pre-colonisation samples of healthy young and old 

participants of the EHPC cohort were used for comparison with data from pneumonia 

patients, as PBMCs were stimulated under the same conditions. Data from healthy young 

are plotted together on the same graphs to show the age-related differences that were 

described in section 4.3.4.1. 

In contrast to the few age-related changes found in pre-colonisation PBMCS from healthy 

old donors (section 4.3.4.1), during pneumonia infection older patients had increased 

frequencies of Th1 and Th17 cells in the absence of in vitro stimulation. In older patients, 

frequency of IFN-γ+ or IFN-γ+T-bet+ cells did not change following in vitro stimulation with 

TIGR4 or 6B, compared to unstimulated controls (Figures 4.23 A and C), but frequency of 

both phenotypes was elevated following PMA stimulation (IFN-γ+, p<0.0001; IFN-γ+T-bet+, 

p=0.0002) (Figures 4.23 B and D). Moreover, following PMA stimulation, older patients had 

lower IFN-γ+ frequency than healthy (p=0.005) (Figure 4.23 B), and the frequency of T-bet-

expressing IFN-γ+ cells showed a trend towards being increased in patients, in unstimulated 

(p=0.096) or PMA-treated, cells (p=0.076) (Figure 4.23 D). These data suggest that during 

disease, activation of T-bet increases in IFN-γ+ cells and more CD4+T cells commit to the Th1 

subset.  
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Similar to these findings, during pneumonia IL-17A+ frequency was also elevated in young 

and older patients, in both unstimulated (HO vs OP, p=0.004; HY vs YP, p=0.036) and PMA-

stimulated PBMCs (HO vs OP, p=0.008; HY vs YP, p=0.003), compared to healthy controls 

(Figures 4.24 A and B). In young patients, IL-17A+ frequency was increased following in vitro 

incubation with TIGR4 (p=0.009), and possibly 6B, but the difference was not statistically 

significant (Figure 4.24 A). Although no statistical difference was found between young and 

older patients, both patient groups had elevated frequency of IL-17A+RORγt+ cells upon PMA 

stimulation, compared to their healthy counterparts (HO vs OP, p=0.019; HY vs YP, p=0.063) 

(Figure 4.24 D). However, this subset seems to be increased in older patients, even in the 

absence of stimulation and following S. pneumoniae stimulation (Figure 4.24 C). Possibly due 

to CD4+ T cell polarisation towards Th1 and Th17 subsets, during pneumonia in the old no 

changes were observed in the frequency of IL-4+ and IL-4+GATA3+ cells (Figure 4.25).  
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Figure 4.23. Frequency of IFN-γ+ and IFN-γ+T-bet+ following in vitro stimulation of PMBCs from older 
adults, during healthy and pneumonia. PBMCs (4x105 cells) of healthy young (n=15), old (n=15) 
volunteers and old with pneumonia (n=17) were stimulated and analysed by flow cytometry. (A) IFN-
γ+ frequency and (C) IFN-γ+T-bet+ frequency in unstimulated, S. pneumoniae 6B (5 µg/ml) or TIGR4 
(MOI 10) treated cells. (B) IFN-γ+ frequency and (D) IFN-γ+T-bet+ frequency in PMA (10 ng/ml) and 
ionomycin (50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences between age 
groups were analysed by Mann-Whitney test. Differences between treatments were analysed by 
Kruskal-Wallis test with Dunn’s post hoc test and statistical differences with unstimulated control are 
shown on top of the bars. HY = healthy young. HO = healthy old. OP = old with pneumonia.  
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Figure 4.24. Frequency of IL-17A+ and IL-17A+RORγt+ following in vitro stimulation in PBMCs from 
healthy volunteers and pneumonia patients. PBMCs (4x105 cells) of healthy young (n=15) and old 
(n=15) volunteers and young (n=3) and older adults (n=19) with pneumonia were stimulated and 
analysed by flow cytometry. (A) IL-17A+ frequency and (C) IL-17A+RORγt+ frequency in unstimulated, 
S. pneumoniae 6B (5 µg/ml) or TIGR4 (MOI 10) treated cells.  (B) IL-17A+ frequency and (D) IL-
17A+RORγt+ frequency in PMA (10 ng/ml) and ionomycin (50 ng/ml) treated cells. Data are expressed 
as mean ± SD. Differences between age groups were analysed by Mann-Whitney test. Differences 
between treatments were analysed by Kruskal-Wallis test with Dunn’s post hoc test and statistical 
differences with unstimulated control are shown on top of the bars. HY = healthy young, HO = 
healthy old. YP = young with pneumonia, OP = old with pneumonia. 
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Figure 4.25. Frequency of IL-4+ and IL-4+GATA3+ following in vitro stimulation of PMBCs from older 
adults, during healthy and pneumonia. PBMCs (4x105 cells) of healthy young (n=15), old (n=15) 
volunteers and old with pneumonia (n=17) were stimulated and analysed by flow cytometry. (A) IL-4+ 

frequency and (C) IL-4+GATA3+ frequency in unstimulated, S. pneumoniae 6B (5 µg/ml) or TIGR4 (MOI 
10) treated cells. (B) IL-4+ frequency and (D) IL-4+GATA3+ frequency in PMA (10 ng/ml) and ionomycin 
(50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences between age groups were 
analysed by Mann-Whitney test. Differences between treatments were analysed by Kruskal-Wallis 
test with Dunn’s post hoc test. HY = healthy young. HO = healthy old. OP = old with pneumonia.  
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There were also no changes in the frequency of Tregs in pneumonia patients in unstimulated 

and TIGR4-stimulated PBMCs, but older patients had a trend towards reduced Treg 

frequency following 6B stimulation (p=0.054) (Figure 4.26 A). Frequency of activated Tregs 

(GARP+) was increased in both patient cohorts at baseline, unstimulated cells (HO vs OP 

p=0.033; HY vs YP, p=0.002) (Figure 4.26 B). Stimulation with TIGR4 did not changes in 

frequency of activated Tregs from both healthy volunteers and patient, however, upon 6B 

stimulation, GARP+Tregs frequency was reduced in older patients (p=0.040) but increased in 

young (p=0.006), compared to their healthy counterparts (Figure 4.26 B). Moreover, young 

patients had a higher GARP+Tregs frequency than old (p=0.022) (Figure 4.26 B), suggesting 

that activation of Tregs could be altered in older individuals during pneumonia infection. 

Using data from the small sub-group of older patients that had IL-33 measured in serum, a 

correlation analysis showed a positive association between high levels of serum IL-33 

(section 3.3.6) and increased frequency of GARP+Tregs in old patients (R2=0.84, p=0.003) 

(Figure 4.26 C).  

 

The frequency of naïve CD4+ T cells remained unaltered in PBMCs from pneumonia patients 

following in in vitro stimulation (Figure 4.27 A). However, the frequency of CD4+TCM cells in 

older patients was increased compared to healthy subjects, in all conditions tested 

(unstimulated, p=0.030; PMA, p=0.027; TIGR4, p=0.041; 6B, p=0.025) (Figure 4.27 B). The 

same was observed in young patients, compared to healthy, but only for two conditions 

(unstimulated, p=0.045; PMA, p=0.011) (Figure 4.27 B). There were also no changes in the 

frequency of CD4+TEM cells during pneumonia infection, as frequencies remained 

comparable in the presence or absence of in vitro stimulation between the cohorts (Figure 
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4.28 A). The only exception was that young patients had higher frequency of CD4+TEM cells 

than healthy controls, following PMA treatment (p=0.048) (Figure 4.28 A). Also, during 

pneumonia, patients had a lower frequency of CD4+TEMRA cells compared to healthy 

individuals (HO vs OP, unstimulated: p=0.0008; TIGR4, p=0.010; 6B, p<0.0001. HY vs YP, 6B: 

p=0.026) (Figure 4.28 B), likely due to the expansion of the CD4+TCM subset, as observed in 

Figure 4.27 B. 

 

Having detected higher frequencies of CD4+IL-17A+ cells in patients, the distribution of these 

cells in the naïve and memory phenotypes was checked. Although there were no statistical 

differences between the subsets, Figure 4.29 shows that in the presence and absence of 

stimulations, most of the IL-17A+ cells were naïve cells. However, young patients showed a 

trend towards higher frequency of memory IL-17A+ cells following stimulation with both S. 

pneumoniae serotypes than older adults (Figure 4.29 C and D), suggesting that vaccination or 

previous carriage episodes in the old could have failed to generate immune memory in the 

older cohort. 
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Figure 4.26. Frequency of Foxp3+ and Foxp3+GARP+ following in vitro stimulation in PBMCs from 
healthy volunteers and pneumonia patients. PBMCs (4x105 cells) of healthy young (n=15) and old 
(n=15) volunteers and young (n=3) or older adults (n=19) with pneumonia were stimulated and 
analysed by flow cytometry. (A) Foxp3+ frequency and (B) Foxp3+GARP+ frequency in unstimulated, S. 
pneumoniae 6B (5 µg/ml) or TIGR4 (MOI 10) treated cells. (C) Correlation between GARP+Treg 
frequency and serum IL-33 in older patients (n=7). Data are expressed as mean ± SD. Differences 
between age groups were analysed by Mann-Whitney test. Differences between treatments were 
analysed by Kruskal-Wallis test with Dunn’s post hoc test. HY = healthy young, HO = healthy old. YP = 
young with pneumonia, OP = old with pneumonia, YP = young with pneumonia. 
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Figure 4.27. Frequency of naïve and central memory CD4+ T cells following in vitro stimulation in 
PBMCs from healthy volunteers and pneumonia patients. PBMCs (4x105 cells) of healthy young 
(n=15) and older (n=15) volunteers and young (n=3) or older adults (n=19) with pneumonia were 
stimulated and analysed by flow cytometry. (A) naïve cell frequency and (B) central memory cell 
frequency in unstimulated, S. pneumoniae 6B (5 µg/ml), TIGR4 (MOI 10) treated cells or PMA (10 
ng/ml) and ionomycin (50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences 
between age groups were analysed by Unpaired T test and differences between pre- and post-
colonisation were analysed by Paired T test. Differences between treatments were analysed by One-
Way ANOVA test with Tuckey’s post hoc test and statistical differences with unstimulated control are 
shown on top of the bars. HY = healthy young, HO = healthy old. YP = young with pneumonia, OP = 
old with pneumonia, YP = young with pneumonia. 
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Figure 4.28. Frequency of effector memory and EMRA CD4+ T cells following in vitro stimulation in 
PBMCs from healthy volunteers and pneumonia patients. PBMCs (4x105 cells) of healthy young 
(n=15) and old (n=15) volunteers and young (n=3) or older adults (n=19) with pneumonia were 
stimulated and analysed by flow cytometry. (A) effector memory cell frequency and (B) EMRA cell 
frequency in unstimulated, S. pneumoniae 6B (5 µg/ml), TIGR4 (MOI 10) treated cells or PMA (10 
ng/ml) and ionomycin (50 ng/ml) treated cells. Data are expressed as mean ± SD. Differences 
between age groups were analysed by Unpaired T test and differences between pre- and post-
colonisation were analysed by Paired T test. Differences between treatments were analysed by One-
Way ANOVA test with Tuckey’s post hoc test and statistical differences with unstimulated control are 
shown on top of the bars. HY = healthy young, HO = healthy old. YP = young with pneumonia, OP = 
old with pneumonia, YP = young with pneumonia.  



 191 

 
Figure 4.29. Frequency of CD4+IL-17A+ naïve and memory and cells following in vitro stimulation in 
PBMCs from pneumonia patients. PBMCs (4x105 cells) of young (n=3) or older adults (n=19) with 
pneumonia were stimulated and analysed by flow cytometry for identification of naïve, central 
memory, effector memory and EMRA CD4+IL-17A+ cells. (A) Unstimulated, (B) PMA (10 ng/ml) and 
ionomycin (50 ng/ml), (C) S. pneumoniae TIGR4 (MOI 10), (D) S. pneumoniae 6B (5 µg/ml) treated 
cells. Data are expressed as mean ± SD. Differences between age groups were analysed by Mann-
Whitney test. 
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4.3.6. Association between CD4+ T cell subsets with age and disease severity in pneumonia 

infection in older adults 

In the previous section it was demonstrated that during pneumonia in older adults, 

frequency of IFN-γ+ and IL-17A+ subsets, as well as of GARP+Tregs are elevated in the 

absence of in vitro stimulation. Thus, to verify if such changes were more pronounced in the 

very old, correlation analyses of CD4+ T cell frequencies were performed. 

While the frequency of Tregs (R2=0.02, p=0.530) and of GARP+Tregs (R2=0.02, p=0.561) 

remained unaltered with advancing age in older patients (Figures 4.30 A and B), frequency of 

pro-inflammatory subsets increased. There was a trend towards increased frequency of IL-

17A+ cells at baseline with increasing age, which reached significance in PMA-stimulated 

cells (unstimulated: R2=0.16, p=0.080; PMA: R2=0.31, p=0.018) Figures 4.30 C and D). The 

same association was found between increasing age and elevated frequency of IFN-γ+ cells 

(R2=0.34, p=0.013) (Figure 4.30 E). Moreover, there was no change on the ratio of Th17/Treg 

in older patients (R2=0.08, p=0.23). 

Next, variation in the frequency of these subsets according to the severity of pneumonia 

infection was checked, using the CURB-65 score (section 3.3.2). Due to small sample sizes in 

some scores, there was no statistical difference between groups. Still, data suggests that in 

severe pneumonia (higher scores), there may be an increase of IL-17A+ and IFN-γ+ subsets 

(Figures 4.31 A and B), whereas Treg frequency remains unaltered (Figure 4.31 C) and 

possibly activation of Tregs is impaired in severe pneumonia (Figure 4.31 D).  
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Figure 4.30. Association between frequency of CD4+ T-helper subsets and age. Correlation between 
frequency of CD4+ cell subsets and age in older adults with pneumonia (n=19) in unstimulated PBMCs 
or stimulated with PMA/ionomycin. (A) Tregs, (B) GARP+Tregs cells, (C) CD4+IL-17A+ cells, (D) CD4+IL-
17A+ cells in PMA/ionomycin treated PBMCs, (E) CD4+IFN-γ+ cells. 
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Figure 4.31. Frequency of CD4+ T-helper subsets and according to disease severity. Frequency of 
CD4+ T cells from patients with pneumonia (young, n=3; old, n=19) were grouped according to 
patient CURB-65 score. (A) CD4+IL-17A+ cells, (B) CD4+IFN-γ+ cells, (C) Tregs, (D) GARP+Tregs.  
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4.3.7 Treg activation and cytokine production during pneumonia infection in older adults 

Having found that the frequency of activated Tregs (GARP+) was increased in young and old 

healthy volunteers from the EHPC study, following in vitro stimulation with 6B in PBMCs 

from pre and post experimental colonisation with pneumococcus (Figure 4.13 B) and 

increased in pneumonia patients during pneumonia infection (Figure 4.26 B), Treg function 

was next examined by testing cytokine production.  

As GARP expression in Tregs is involved in TGF-β1 secretion (reviewed by [388]), the 

hypothesis was that elevated activation of Tregs during disease led to alterations in IL-10 

and TGF-β1 production in the old. Briefly, PBMCs from healthy old and older pneumonia 

patients were stimulated with anti-human CD3 and CD28 for 66 hours ahead of 

immunostaining for intracellular cytokines. CD3 and CD28 stimulation were chosen for this 

protocol as they induced a more physiological response. Moreover, the combination of PMA 

and ionomycin used for stimulations made it difficult to gate on Tregs, as mentioned earlier 

(section 4.3.4). Stimulation of samples from young patients was not performed because at 

the time these assays were done no young patients were recruited. Also, it was not possible 

to have unstimulated controls for every donor, as for some there were not enough cells. As 

shown in Figure 4.32, concentrations of anti-human CD3 and CD28 were tested to find the 

best condition for detecting intracellular IL-10 in Tregs. The concentration of 5 µg/ml was 

chosen, as this treatment resulted in less variation in the percentage of Tregs (Figure 4.32 A) 

and GARP+Tregs (Figure 4.32 B) between samples following treatment, compared to the 

concentration of 2 µg/ml. 
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Figure 4.32. Intracellular IL-10 production by Tregs. PBMCs (4x105 cells) of healthy old (n=3) were 
stimulated with or without (mock) different concentrations of anti-CD3 and anti-CD28 for 66h and 
stained for flow cytometry analysis. (A) Frequency of Tregs (B) Frequency of GARP+Tregs; (C) 
Frequency of IL-10-producing Tregs (D) Production of intracellular IL-10 in Tregs given by MFI. Data 
are expressed as mean ± SD. Differences between treatments were analysed by Kruskal-Wallis test 
with Dunn’s post hoc. 
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Stimulation with CD3 and CD28 antibodies lowered the frequency of total Tregs in older 

patients, compared to untreated (mock) controls (p=0.002) and healthy old (p=0.015) (Figure 

4.33 A), but significantly increased the frequency of activated Tregs in both groups (HO, 

p=0.04; OP, p=0.002) (Figure 4.33 B). Also, older patients had a higher frequency of 

GARP+Tregs following CD3 and CD28 stimulation than healthy (p=0.0003) (Figure 4.33 B). 

This high activation of Tregs was also accompanied by higher frequency of IL-10-producing 

Tregs in older patients (p=0.021) and a trend toward increase of intracellular IL-10 (p=0.061), 

compared to healthy donors (Figures 4.33 C and D). Frequency of TGF-β1-producing Tregs 

was unaltered between groups, but intracellular levels of TGF-β1 were higher in older 

individuals with pneumonia, compared to healthy (p=0.032) (Figures 4.33 E and F). These 

results indicate that upon in vitro stimulation, Tregs from older patients are highly activated 

and produce more cytokines than healthy older subjects. Whether these augmented 

functionality of Tregs is beneficial or detrimental to older patients, still remain to be tested. 
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Figure 4.33. Intracellular IL-10 and TGF-β1 production by Tregs of older adults, healthy and with 
pneumonia. PBMCs (4x105 cells) of healthy old (n=9) and older pneumonia patients (n=9) were 
stimulated with or without (mock) anti-CD3 (5 µg/ml) and anti-CD28 (5 µg/ml) for 66h and stained 
for flow cytometry analysis. (A) Frequency of Tregs (B) Frequency of GARP+Tregs; (C) Frequency of IL-
10-producing Tregs (D) Production of intracellular IL-10 in Tregs given by MFI; (E) Frequency of TGF-
β1-producing Tregs (F) Production of intracellular TGF-β1 in Tregs given by MFI. Data are expressed 
as mean ± SD. Differences between age groups and treatments status were analysed by Mann-
Whitney test. HO = healthy old. OP= old with pneumonia.  
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4.4. Summary of key findings 

This chapter aimed to analyse age-related changes in dendritic cell population as well in the 

frequency of CD4+ T cell subsets following experimental colonisation with the 

pneumococcus, and to determine the frequencies of CD4+ T cell subsets in older individuals 

during pneumonia infection. Thus, the main findings of this chapter were: 

 The frequency and absolute numbers of mDC1 were elevated in older individuals, but 

this subset showed expression of CD40 and HLA-DR comparable to those of young 

subjects, while pDC frequency decreased with ageing.  

 Following in vitro PMA stimulation of PBMCs, experimentally colonised older adults 

had high frequencies of IFN-γ+T-bet+ and IFN-γ+ CD4+ T cells, and reduced frequency 

of IL-17A+RORγt+ CD4+ T cells at post colonisation, compared to young subjects. 

 The frequency of central memory IL-17A+RORγt+ cells was reduced in older 

volunteers post-colonisation, while this subset was found in both carriage-negative 

and positive young participants.  

 Both young and older volunteers had a high frequency of 6B-responding GARP+Tregs 

before and after experimental colonisation, while the frequencies of 6B-responding 

CD4+ T-helper cells was low in the other subsets analysed.  

 Older adults with pneumonia had increased frequencies of IFN-γ+T-bet+, IL-17A+ CD4+ 

and GARP+Tregs in unstimulated PBMCs, compared to healthy older adults.  

 Tregs of elderly patients with pneumonia produced higher levels of IL-10 and TGF-β1 

following in vitro stimulation, compared to healthy older subjects. 
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4.5 Discussion  

Nasopharyngeal colonisation by S. pneumoniae is an immunising event that generates both 

humoral and cellular responses. Studies in mice have highlighted the protective effect of 

antibody-mediated clearance of pneumococcus and the role of Th17 cells in mediating 

mucosal and systemic protection [261,297]. In humans, the role of pneumococcal 

nasopharyngeal colonisation in inducing protective immunity in both sites is still 

understudied, in particular the effect of colonisation in promoting protective adaptive 

immunity against S. pneumoniae in older adults is poorly understood and was the focus of 

this chapter.  Previous studies using the experimental colonisation model have 

demonstrated the generation of anti-PspA antibody [223,314], mucosal and serum anti-

capsular IgG [311,314], increases in CD4+IL-17A+ frequency in BAL and peripheral blood [302] 

following carriage in healthy young subjects, but no study to date has investigated whether 

these responses are changed with age. 

In this chapter, the human model of pneumococcal colonisation was used to test the effect 

of experimental nasopharyngeal carriage in older adults on differentiation of CD4+ T-cell 

helper subsets. Immunophenotyping of dendritic cell subsets was also performed in samples 

from healthy volunteers from pre-colonisation, thus gathering more evidence of changes in 

the immune cell compartment that participates in the development of humoral and cellular 

adaptive immunity against S. pneumoniae. Lastly, identification of CD4+ T-helper cell subsets 

during pneumonia infection in older patients was performed, as our hypothesis was that 

CD4+ polarisation would be compromised in the old during pneumonia, most likely with 

reduced polarisation towards the CD4+IL-17+ subset and with impaired Tregs function. The 

combination of PMA and ionomycin was used to promote expansion of CD4+T cells 
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independently of receptor-depended antigen activation of these cells, which was achieved 

by stimulation of cells with S. pneumoniae serotypes 4 or 6B.  

 

4.5.1. Age-associated changes in dendritic cell subsets  

The overall frequency of dendritic cells in PBMCs from our volunteers was not affected by 

age, but the frequency of myeloid and plasmacytoid subset was. The findings in this chapter 

were obtained from adults aged between 50-73 years (mean age 59.8 ± 7.1 years), thus 

younger than several other published reports. Still, the decline in plasmacytoid DC frequency 

found in our cohort agrees with other studies  [64,65,70,71]. However, frequency of mDC1 

which was increased in our old adult cohort, has been reported as unaltered [68,69] or 

reduced [64–66] and further reduced in advanced-age, frail elderly (aged 81-100 years) [64]. 

A correlation analysis of mDC1 data showed association between decline in cell numbers of 

this subset with increasing age (Figure 4.4 A; R2=0.029, p=0.039), whereas this association 

was not statistically significant for the pDC subset. This suggests that the number of mDC1 

declines in more advanced age, whereas the population of pDCs may decline much earlier in 

the ageing process. Further analysis of these subsets showed that surface density of HLA-DR 

was not altered with age in both mDC1 and pDC, but CD40 expression was increased pDCs of 

older adults. Whether this increased CD40 expression in pDCs is associated with alterations 

in cell function is yet to be confirmed. Plasmacytoid DCs from aged adults are reported to 

secrete lower levels of IFN-I and IFN-III following in vitro stimulation with influenza virus and 

to induce lower subsequent proliferation of CD8+ and CD4+ T cells [82], but no difference in 

upregulation of co-stimulatory molecules CD40, CD80 and CD86 and cytokine production 
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following LPS/IFN-γ treatment [389]. This suggests that the poor response of pDCs to 

influenza virus could contribute to elderly susceptibility to influenza infection which is often 

associated with secondary pneumonia infection [390]. Still, immunophenotyping showed no 

age-related changes mDC1s, which is the major subset responsible for antigen presentation 

to and differentiation of CD4+ T cells into helper subsets [79], indicating that at the time of 

the experimental pneumococcal inoculation study, these DCs presented a normal 

phenotype. 

 

4.5.2. Age-related changes in CD4+ T subset polarisation during experimental human 

pneumococcal carriage 

Data from this chapter demonstrated that experimental nasopharyngeal colonisation with S. 

pneumoniae in older adults does not induce several significant changes in the frequency of 

specific CD4+ T-helper subsets in peripheral blood. Upon stimulation of cells with 

PMA/ionomycin older participants showed contrasting frequencies of IFN+ subsets and IL-

17+RORγt+ cells with young participants.  

With a few exceptions, there were no statistical differences in cell frequencies between pre 

and post-colonisation. This finding may be associated with the fact that the presence of 6B-

specific CD4+ T lymphocytes, expected to be generated by the colonisation event, were 

lower in peripheral blood, and that this frequency would have been higher if cells studied 

had been isolated from the nasal cavity. Also, the time of collection of the post-colonisation 

samples may also be involved, as post-colonisation samples compared in this thesis were 

from different time points, i.e day 29 for young volunteers, and day 14 for old volunteers. 
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Perhaps by using samples from young volunteers from an earlier time point (i.e. day 14) 

differences in cell frequency could have been more evident, whilst in older adults, absence 

of higher cell frequency at day 14 could be an effect of immunosenescence itself.  

Possibly due to an adaptive response skewed towards pro-inflammatory subsets, no changes 

were observed in the CD4+IL-4+ and IL-4+GATA3+ subsets in the older or young cohorts. In 

mice, IL-4 was detected following colonisation with S. pneumoniae [391] but had no 

significant effect in clearance of colonisation [230]. 

Here, the older cohort had increased frequencies of IFN-γ+ and IFN-γ+T-bet+, following 

stimulation with PMA, but not 6B. Increased IFN-γ-producing CD4+ T cells is known to occur 

with advancing age [156–158] and during infection, IFN-γ contributes to S. pneumoniae 

containment by promoting neutrophil influx to infected sites [256,392,393]. The increase in 

these subsets following PMA stimulation is not only associated with expansion of the 

CD4+IFN-γ+ subset, but because PMA treatment promotes downregulation of CD4+ in T cells, 

this subset was mixed with CD8+ T cells, that too produce high levels of IFN-γ with ageing 

[157,158], thus contributing to the elevated frequencies found in older adults.  

Due of the small sample sizes in this thesis, observed differences between carriage positive 

and negative participants failed to reach statistical significance. However, in older carriage-

negative individuals, there was a trend towards increased frequencies of IFN-γ+ and IFN-γ+T-

bet+ compared to carriage-positive, but no similar trend was observed in the young cohort. 

Indeed, in mice, the presence of IFN-γ has been associated with absence of pneumococcal 

carriage [230], but clearance of colonisation still occurs in mice lacking IFN-γ receptor [261], 

indicating that clearance is not exclusively dependent on CD4+IFN-γ+ T cells.  
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A previous study using the EHPC model showed that experimentally-colonised adult 

volunteers had higher frequencies of 6B-responding CD4+IL-17A+ in BAL and PBMCs than 

non-colonised, but not CD4+IFN-γ+ T-cells [302]. Here, while frequencies of CD4+IL-17A+ cells 

were not altered with ageing during experimental colonisation, young participants had an 

increase in IL-17A+RORγt+ frequency post EHPC following in vitro PMA stimulation, compared 

to old. Young individuals with high IL-17A+RORγt+ frequency were mostly carriage-negative 

and with 6B in vitro stimulation, had higher IL-17A+RORγt+ frequency than carriage-positive. 

This confirms that in young subjects, 6B-responding IL-17A+ cells remain detectable in the 

periphery at day 29 post-colonisation, supporting the finding of  Wright et al. (2013) in which 

CD4+IL-17A+ cells were detected at day 35 post-colonisation in young participants [302]. A 

higher frequency of CD4+IL-17A+ cells was also found in NALT of carriage-negative children, 

compared to carriage-positive [304]. Conversely, in older individuals studied in this thesis, 

frequency of IL-17A+RORγt+ cells were not increase following PMA treatment, and presence 

of carriage had no effect on IL-17A+RORγt+ frequency, which remained lower than in young, 

in carriage-negative participants. Previous studies of RORγt expression in CD4+IL-17A+ cells of 

older cohorts show conflicting results, being reported as increased [159,394] or unaltered 

[147]. Still, the lower frequency in IL-17A+RORγt+ cells found in older adults as demonstrated 

in this chapter raises the possibility that if RORγt induction in CD4+IL-17A+ is impaired in 

older adults, other CD4+-helper subset, possibly IFN-γ+, could be mediating clearance of 

colonisation in carriage-negative volunteers, as this cytokine can recruit neutrophils for 

clearance of S. pneumoniae [256,392,393].  

Furthermore, CD4+IL-17A+ are not the only source of IL-17 during colonisation, as alveolar 

macrophages were an alternative source of IL-17 in BAL of experimentally-colonised 
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volunteers and had opsonophagocytic killing enhanced by in vitro stimulation with 

recombinant human IL-17A [302]. The mucosal and epithelial-resident γδ T cells also 

produce IL-17 [395,396] and can aid pneumococcal clearance in the lungs of mice by 

contributing to regulation of alveolar macrophages and dendritic cells [397] and neutrophils 

[323,398], but whether they contribute to clearance of pneumococcal carriage in humans is 

unknown. Thus, the presence of IL-17 secreted by cell types other than CD4+ could still 

mediate neutrophil recruitment in sites where S. pneumoniae is present. 

Surprisingly, re-stimulation with S. pneumoniae 6B in vitro greatly increased the frequency of 

activated Tregs, identified by GARP surface expression. GARP is a transmembrane protein 

expressed on the surface of activated Tregs and is associated with TGF-β secretion and 

activation, thus contributing to maintenance of Treg homeostasis [388]. GARP is present at 

low levels in the surface of Tregs and increases following TCR stimulation [399,400]. In young 

individuals, presence of carriage seems to be accompanied by a trend towards increase 

frequency of activated Tregs, while in older donors, this trend was not observed. It is 

possible that these trends would be statistically significant in the young cohort if measured 

at an earlier time point, as it is known that high frequency of Tregs and elevated levels of 

TGF-β and contribute to prolong carriage, in mice and adults [401], as well in children 

[304,402]. Mubarak and colleagues (2016) showed that the ratio Th17/Treg frequencies 

found in adenotonsillar tissue increased with ageing, from children to adults, as well as the 

frequency of Th17. Furthermore, carriage-positive children had lower ratios of Th17/Treg 

than carriage-negative [304]. Here, these associations were absent in older adults, and as 

frequency of Th17 cells [147,159,160] and Tregs [167–169] increase in adults over 65 years, 
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data from this chapter could indicate that the ratio reaches a balance with increasing age 

and may progress to an imbalance in more advanced age.  

Pneumococcal carriage is also associated with generation of protective memory CD4+ T cells 

in mice [298] and humans [302,314]. A closer analysis of IL-17A+RORγt+ subset at post-

colonisation following PMA stimulation, revealed most cells were central memory cells in 

young donors, whereas older participants had low frequencies of this subset. This contrasts 

with the elevated frequency of total central memory CD4+ cells, in both carriage-positive and 

negative, present in older volunteers, compared to young, as accumulation of memory cells 

occurs with age [146,147]. Hence, absence of IL-17A+RORγt+ memory cells in older donors 

following colonisation suggests failure in induction of long-lasting protective immunity 

during carriage, which could contribute to the susceptibility of this age group to disease. 

Here, mDC1 from colonised volunteers had no age-related changes in CD40 and HLA-DR 

expression, suggesting that T-cell activation, rather than impaired antigen presenting cells, 

may be involved in absence of IL-17A+RORγt+ memory cells in the old. Also, memory CD4+ T 

cells from older adults were reported as producing lower levels of IL-17 than young, whereas 

IL-17 production by naïve cells was unaltered [147]. These data indicate that both induction 

of immune memory and its effector function may be impaired in the elderly. 

One of the limitations of the colonisation study presented in this thesis is that although 

volunteers selected were not colonised with pneumococcus at the time of the study, it is 

very likely that participants have had previous colonisation episodes thought life, which 

could have, potentially, generated protective immunity, which could explain the high 

frequency of GARP+Tregs following in vitro re-stimulation with 6B, in samples from pre and 

post colonisation. Furthermore, although PMA treatment increased the frequency of 
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CD4+IFN-γ+ and CD4+IL-17A+ the only strong 6B-specific response found in PBMCs were 

detected in Tregs, as seen by the elevated frequency of GARP+Tregs. It is possible that 

pneumococcal-specific CD4+ T memory cells could be found in the nasopharynx or BAL and 

at an earlier time point, as previously reported in young colonized volunteers [302]. 

Other elements from the nasopharynx microenvironment are potential contributors to 

generation of imbalanced CD4+ T-helper cell populations. For instance, elevated gene 

expression of TLR1, CCL2 and IL-1β genes, such as found in nasal mucosa-associated 

lymphoid tissue in aged mice [386], reduced nasal mucociliary clearance with ageing [53] or 

disruption of nasal epithelium homeostasis by influenza virus, which facilitates 

pneumococcal adherence [403,404]. 

Still, having detected IFN-γ+ and IL-17A+ CD4+ T cells in post colonisation samples, it is 

possible that in young subjects carriage clearance is mediated by mixed activation of Th1 

and Th17 cells and that in carriage positive donors, these subsets together with activation of 

Tregs contribute to control bacteria density in the nasopharynx [303]. With ageing, reduced 

frequency of IL-17A+RORγt+ could indicate that clearance is being mediated mostly by 

CD4+IFN-γ+ cells, and that unchanged proportion of Th17 and Tregs could cause an imbalance 

in the nasopharynx microenvironment, allowing prolonged pneumococcal carriage, which 

could eventually lead to disease. This hypothesis will be further discussed in chapter 5. 

 

4.5.3. CD4+ T-helper subset polarisation during pneumonia infection in older adults 

An investigation of the presence of pneumococcal carriage in patients with pneumonia was 

not conducted in this study, but it has been reported that in hospitalized unvaccinated older 
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individuals, S. pneumoniae colonisation was absent (found in 0.3% of participants using 

classical culture method) [385], very low in adults with lower respiratory tract infections (5% 

of participants, using culture method) [405] but detectable in 21% of older patients with 

confirmed influenza in the intensive care unit (using quantitative PCR) [406]. Whether 

clearance of nasopharyngeal carriage occurs before or during pneumonia infection remains 

to be further studied. 

Here, among older patients, 33% (7 out of 21) had been vaccinated with the pneumococcal 

vaccine. In comparison with healthy older volunteers, of which 13% (2 out of 15) had been 

vaccinated, patients had a higher frequency of central memory CD4+T cells but reduced 

frequency of CD4+ TEMRA. Whether this increased frequency in memory cells was promoted 

by previous vaccination or colonisation events it is not possible to confirm, although as 

discussed in the previous section, experimental colonisation of older volunteers did not 

enhance the frequency of memory CD4+ T cells subsets in the peripheral blood at day 14. As 

CD4+IL-17+ cells and naïve and memory CD4+ T cell were stained under the same colour 

panel (Figure 4.9 F), further analysis showed that older patients had central, EMRA and 

effector memory CD4+IL-17+ lymphocytes, and in young patients, frequency of CD4+IL-17+ 

EMRA cells increased following stimulation with S. pneumoniae serotypes. As young patients 

had not been vaccinated against pneumococcus, it is possible that immune memory was 

acquired by natural colonisation events throughout life, even though during experimental 

colonisation young participants did not show increase in the frequency of memory CD4+T 

subsets, at day 29. Although these frequencies of memory CD4+IL-17A+ T cells found in 

peripheral blood were low overall, it is possible that higher frequencies can be found it the 
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lung, as previously demonstrated for old COPD patients, who had higher frequencies of 

influenza-specific memory CD4+T cells in the lung than in the periphery [407].  

Also, the frequency of total CD4+IL-17A+ T cells was increased in both young and older 

patients. The role of the CD4+IL-17+ subset as a mediator of adaptive immunity against S. 

pneumoniae is well demonstrated in mice [257,261,308]. In humans, the frequency of 

CD4+IL-17A+ cells were reduced in patients with ventilator associated pneumonia [408], but 

patients with non-severe and severe CAP had higher frequency of CD4+IL-17A+ and CD4+IL-

22+ than healthy controls in PBMCs and even higher frequencies in BAL fluid at the time of 

admission [409]. Both cohorts of this last study were slightly younger (PBMCs = 55.6±18.5 

years, BAL = 60.6±19.0) than our older patients (77.7±9.8 years). Still, here older patients 

had elevated frequency of CD4+IL-17A+ T cells in pneumonia patients, and these patients also 

showed increased frequency of RORγt-expressing CD4+IL-17A+ T cells than healthy controls. 

Surprisingly, old patients had higher CD4+IL-17A+RORγt+ frequency in unstimulated PBMCs 

pool than young patients. As mentioned earlier, reports of expression of RORγt+ in CD4+IL-

17A+ T cells in healthy old adults are contradictory [147,394], but in COPD patients, RORγt+ 

expression was increased in lung tissues [410]. Considering the observed overall increase of 

CD4+IL-17A+ T-cell frequency during pneumonia, an elevated frequency of RORγt+-expressing 

CD4+IL-17A+ T cells was probable. It remains to be confirmed however, if the frequency of 

CD4+IL-17A+RORγt+ is different between young and old patients with pneumonia, as our 

young cohort consisted of only 3 patients.  

There are reports of CD4+ T cells producing both IFN-γ and IL-17A in mice during 

pneumococcal pneumonia [307], and in healthy old volunteers [147]. But in this thesis, these 

cytokines were stained for using different colour panels, and it was therefore not possible to 
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verify if double IFN-γ/IL-17A cells were present in our patients. In our older patients, 

frequency of CD4+IFN-γ+ and CD4+IFN-γ+T-bet+ T cells were also increased, reinforcing the 

hypothesis of a skew towards pro-inflammatory CD4+-helper subsets during pneumonia 

disease. CD4+IFN-γ+ cells have been detected in older patients with pneumonia, in lower 

frequencies at day 1, then increasing by day 7 [411]. In addition, in children with IPD, an 

elevated frequency of CD4+IFN-γ+ frequency was detected in the convalescent phase of 

disease [412]. Thus, these elevated frequencies of CD4+IFN-γ+ in the periphery during 

pneumonia infection could be a consequence of cellular migration towards the infected 

lungs.  

Our data also show that the frequency of CD4+ T cell subsets following TIGR4 and 6B 

sometimes differed. This could be due to the concentration of the antigen (multiplicity of 

infection of 10 for TIGR4 and protein concentration for 6B, 5 µg/ml), or that some cell 

subsets could be responding to specific antigens whereas other subsets could be activated 

by conserved antigens in both strains. It is also possible that some outliers found in our 

dataset could be evidence of pneumococcal-specific responses. However, because no 

identification of the causative pathogen of pneumonia was performed, nor nasal swabs 

taken to test if patients were carriers of pneumococcus in the nasopharynx during disease, 

these hypotheses could not be confirmed. 

Nevertheless, the polarisation of CD4+T cells in response to S. pneumoniae is still subject of 

study. In an in vitro system, monocyte induction of Th1 or Th17 responses to S. pneumoniae 

were associated with bacteria viability. Live pneumococcus induced monocytes to secrete IL-

12p40 following internalisation, and possibly TLR4 activation, thus triggering CD4+T cell 

differentiation into Th1, while heat-killed bacteria induced TLR2 activation, largely mediated 
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by peptidoglycan alone, leading to differentiation into Th17 subset. Internalization of 

bacteria by monocytes was poorly related to induction of a Th17 response [295]. Triggering 

of a Th1 response negatively regulates Th17 differentiation, in the presence of IFN-γ and IL-

12 [295,413,414]. However, older adults with pneumoniae showed elevated frequencies of 

both Th1 and Th17 subsets, and there was a positive correlation between increasing age and 

elevated frequencies of CD4+IFN-γ+ and CD4+IL-17A+. Although high IL-1β levels have been 

associated with increased Th17 cell frequency, which have elevated expression of IL-1R in 

aged mice [415], in the cohort of this thesis, serum IL-1β was only detected in 1 patient. 

However, serum cytokine levels are likely to vary with the day of sample collection.  

In contrast with the age-associated increase in T-helper-inflammatory subsets CD4+IFN-γ+ 

and CD4+IL-17A+ during pneumonia in the old, the frequency of Treg or GARP+Treg did not 

follow this trend. During pneumococcal infection in mice, expansion of the Treg population 

is required for control of bacterial dissemination from the lungs and resistance to infection, 

which are both impaired by inhibition of TGF-β1 [303]. Although the ratio of Th17/Treg 

frequencies has been reported to increase with age [304], in this thesis this ratio was 

unaltered in older adults during pneumonia. There has been a study reporting that Treg 

frequency was reduced in older patients, produced lower levels of IL-10 and TGF-β, which 

consequently led to impaired suppression of effector CD4 and CD8 T cells [416]. In contrast, 

here older patients had comparable frequencies of Tregs to healthy controls but showed a 

higher frequency of activated Tregs (GARP+) in patients of both age groups at baseline. 

These contrasting results could be associated with the mean age of the cohort studied (no 

information was given in the published paper), population origin, use of fresh instead of 

thawed PBMCs, stimulation length or other methodological differences.  
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In COPD patients, the frequency of GARP+Tregs was comparable with that of healthy 

controls, although patients had elevated GARP mRNA transcripts compared to controls 

[417], and in patients with lung cancer, tumor-infiltrating Tregs had elevated GARP 

expression [418]. Here, while older adults with pneumonia had a higher frequency 

GARP+Treg in the absence of stimulation than healthy controls, the frequencies of Tregs and 

GARP+Treg were reduced following stimulation with S. pneumoniae 6B. This was not 

observed in young patients that showed higher GARP+Treg frequency following TIGR4 or 6B 

stimulations or in the unstimulated condition. In contrast, CD3 and CD28 in vitro stimulation 

successfully activated Tregs of older patients, and production of IL-10 and TGF-β1 was higher 

than for healthy old individuals. This suggests that direct stimulation of co-receptors CD3 

and CD28 is still functional in Tregs of older patients, but antigen-dependent activation, as 

mediated by an APC, may be impaired. This potential overactivation of Tregs from old 

patients could have detrimental effects, such as reduction of co-stimulatory molecules CD80 

and CD86 in myeloid dendritic cells, as demonstrated in aged mice [419].  

Although these are data from only 7 patients, the frequency of GARP+Treg cells was 

positively associated with high levels of IL-33 in older patients. IL-33 is associated with 

protection of the mucosal-barrier [379] and is released by epithelial cells from the lung 

during COPD [380,381]. Using a mice model, Nascimento and colleagues (2017) 

demonstrated that IL-33 has been associated with sepsis-induced immunosuppression [420]. 

During sepsis, higher levels of IL-33 induced expansion of type 2 innate lymphoid cells that, 

by secretion of IL-4 and IL-13, drove macrophage differentiation into the alternative, IL-10-

secreting phenotype. These macrophages then drive expansion of Foxp3+Treg cells in sepsis-

surviving mice and this increase in the Treg population lead to susceptibility of secondary 
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pneumonia caused by Legionella pneumophila [420]. The extension of the replicability of 

these findings in humans are yet to be confirmed. However, the finding of high activation of 

Tregs in older patients presented in this chapter as well as the reported impaired recovery of 

neutrophil migratory function in older patients following clinical recovery of CAP [124] are 

comparable with this mechanism. Thus, this hypothesis and whether IL-33 present in older 

patients contributes to drive Treg activation during disease remains to be elucidated in 

future work and will be further discussed in chapter 5. 
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Chapter 5  

General Discussion 
  



 215 

5.1 General Discussion 

5.1.1 Innate immunity to S. pneumoniae in healthy older adults 

Immunosenescence is associated with high infection rates to a range of bacterial and viral 

pathogens [41,421,422] and reduced vaccination responses [65,172] in older adults. The 

well-established decline in neutrophil function in old age [122,126,127,129,141], was 

attributed as one of the causes of increased susceptibility to S. pneumoniae infections 

[36,109,124,254]. However, this hypothesis had not been tested in older individuals, either 

in patients with pneumonia or following exposure to the bacteria experimentally. Also, 

which aspects of age-related neutrophil functional decline might compromise immunity to S. 

pneumoniae were not known, and reports of neutrophil phagocytosis in older adults showed 

contrasting results for E. coli [122,129], S. aureus [129] and Group B Streptococcus [62].  

From the findings presented in Chapter 3, healthy older individuals maintained neutrophil 

ROS production in response to S. pneumoniae TIGR4, but ROS generation was reduced 

towards 19A and 23F. While pre-opsonisation of bacteria with pooled sera recovered this 

deficient oxidative burst to 19A, this remained low for serotype 23F. Despite reduced ROS 

production to these serotypes, NET generation was not affected, and in fact it was elevated 

in response to 23F in the older subjects. These data suggest that the reduced ROS was not 

physiologically relevant for NET generation. To better comprehend what mediates these 

different responses between serotypes in future studies, the use of mutant strains, i.e. 

TIGR4 strains expressing different capsules, will be a useful tool to determine the role of 

pneumococcal capsules on neutrophil activation in older adults. Furthermore, it has been 

proposed that NET generation in response to S. pneumoniae is mediated by  induction of 
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autophagy via PI3kinase class III and activation of the autophagy gene Atg5 [277]. 

Interestingly, impaired signalling of PI3K class I in neutrophils from old donors led to reduced 

chemotaxis [126], so an investigation of PI3K class III signalling in old individuals could clarify 

if the age-related increase of NET generation to 23F is caused by altered PI3K class III 

signalling (Figure 5.1 A). 

The data presented here also showed that neutrophil ROS production in response to PMA 

was not altered with age. This difference from the data for pneumococcal serotypes, could 

be associated with reduced activation of TLR2 and TLR4 in response to the pneumococcal 

PAMPs, whereas PMA activates PKC directly bypassing the TLR signalling step [423] (Figure 

5.1 A). However, the serotypes tested did not modulate neutrophil TLR2 expression in 

neutrophils from old donors, but showed a trend towards reduced TLR4 expression. 

Interestingly, resting neutrophils of old donors generated higher levels of IL-8, suggesting 

that while surface TLR2 and TLR4 expression were not significantly modulated by age, 

altered age-related signalling of these receptors [94,97] may be associated with IL-8 

production in the resting state and with age-associated altered ROS generation to S. 

pneumoniae serotypes. ‬‬‬‬‬‬‬‬‬‬‬‬Elevated serum IL-8 was also found in the aged cohort, in agreement 

with the well documented increase in systemic inflammation with age, termed inflammaging 

[41].‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 
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Figure 5.1. Proposed age-related changes in neutrophil and CD4+ T-helper cell responses to S. pneumoniae 
that lead to pneumonia infection. A) Impaired TLR2, TLR4 and Pi3K class III signalling in neutrophils promote 
reduced ROS generation and NET release to pneumococcal serotypes; inflammaging drives CD16

high
CD62L

dim
 

neutrophils to the bloodstream. B) During colonisation, carriage is cleared by Th1-mediated response, due to 
age-related shift towards this subset, without induction of Th17 immune memory. C) Lack of pneumococcal-
specific central memory Th17 cells allows S. pneumoniae to start infection in the lungs. Age-related skew 
towards pro-inflammatory Th1 and Th17 subsets promote high neutrophil activation and ROS production, 
which damages lung cells. IL-33 produced by epithelial lung cells activate Tregs to control inflammatory 
response, but Tregs are unable to control neutrophil activation, thus continuing inflammation. Red and black 
arrows indicate data described in this thesis. Grey arrows and boxes indicate hypotheses.  



 218 

A positive correlation was found for serum IL-8 and the frequency of CD16highCD62Ldim 

neutrophils in the blood. It is not known yet what drives the differentiation of this neutrophil 

subtype or when this subset appears in the bloodstream of healthy older adults, but as this 

subset was first described in an acute model of inflammation [118,119] their appearance 

may be associated with inflammaging. This neutrophil phenotype has several features which 

suggest reduced function, such as poor adhesion to endothelium [119], possible suppressive 

properties towards T-cell proliferation [118] and reduced phagocytosis and ROS generation 

[121], all of which could increase susceptibility to infections.  

Monocyte diversity and function were also examined. Non-classical monocytes showed 

increased surface CCR2 expression with age, which could lead to accelerated egress of these 

cells from the bone marrow [336]. However, the frequency of the different subsets was not 

altered with ageing, suggesting that elevated CCR2 expression on non-classical monocytes 

did not impact the overall proportion of peripheral monocytes subsets. Stimulation of 

monocytes with S. pneumoniae showed no age-related effects, as cells from old donors 

showed similar reductions in CD11b and CCR2 expression as well as production of TNF-α and 

IL-6 as young participants. Monocytes are most likely to encounter pneumococci in the 

tissue instead of blood, and loss of surface CCR2 and CD11b could be a strategy to retain 

these cells in infected tissue to mediate bacterial clearance or differentiate into 

macrophages. Unaltered monocyte TNF-α and IL-6 production in the older donors indicates 

that they can still mediate neutrophil recruitment to the infection site. This is supported by a 

report of elevated neutrophil influx to the lungs in older patients with pneumonia [109]. 

The lack of severe age-related impairment of neutrophil ROS and NET generation to S. 

pneumoniae shown here suggests that older adults in good health may not be the group 
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most susceptible to pneumococcal pneumonia, but older adults in a frail condition may be.  

Frail elders have more pro-inflammatory cytokines in serum [424], altered neutrophil 

phenotype [425] and reduced macrophage killing of S. pneumoniae [95]. Therefore, more 

studies comparing immune function between healthy and frail elders in response to S. 

pneumoniae are needed. Interestingly, a recent study from this institute has shown that 

after clinical recovery from pneumonia infection, neutrophil function remains reduced in 

older patients but not young patients [124]. What could not be proven in this study was 

whether the older patients had reduced neutrophil function before the infection, or whether 

the infection reduced immune function. 

 

5.1.2 Ageing and the immunising effect of pneumococcal colonisation in the nasopharynx 

Having performed neutrophil and monocyte functional assays in a cohort of healthy old and 

finding no consistent and major differences in vitro to three different serotypes of S. 

pneumoniae, it was necessary to determine the impact of age in a more physiologically 

relevant model, the experimental pneumococcal colonisation. Immune cell behaviour in the 

nasopharynx can be different to the blood, as the complex microenvironment of the former 

includes interactions with epithelial cells and the local microbiome. 

The lack of severe age-related impairments in neutrophil ROS production, NET generation 

and activation in response to S. pneumoniae indicated these cells could still potentially 

respond to S. pneumoniae in the nasopharynx. The very low carriage rates found in older 

adults [197] also suggests clearance is still being effective and potentially mediated by 

monocytes and neutrophils. However, it was not possible to examine neutrophils and 
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monocytes in the nasopharynx in this thesis, due to a conflict with planned studies at the 

LSTM. Neutrophil and monocyte function in the nasopharynx of old donors as well as the 

presence of CD16highCD62Ldim neutrophils should be addressed by future studies. 

This thesis examined specific aspects of the innate and adaptive immune response to S. 

pneumoniae in this model using serotype 6B. Immunostaining of dendritic cells showed 

increased mDC1 frequency and reduced pDC in older adults. Considering the role of pDCs in 

anti-viral host response [63], the decline in the frequency of this population with ageing 

could contribute to susceptibility to viral infections, such as influenza, which often precedes 

pneumonia in older adults [390]. As shown in chapter 4, the expression of CD40 and HLA-DR 

remained unaltered in mDC1 cells of older subjects, suggesting that at the time volunteers 

were experimentally colonised, these cells could have normal antigen-presenting function, 

as both molecules are required for successful activation of naïve and memory T 

lymphocytes. mDC1s are also more efficient in activating naïve T cells than pDCs [426], thus 

it was expected the mDC1 population would have contributed to the activation of CD4+ T 

cells involved in immunity against the pneumococcus. However, as described in chapter 4, 

older participants had lower frequencies of Th17 and of 6B-responding Th1, Th2 and Th17 

cells, indicating that mDC1 from older individuals, although expressing the same levels of 

CD40 and HLA-DR as young subjects, may be functionally impaired, contributing to reduced 

CD4+ T activation and differentiation in the elderly. Indeed, although previous studies have 

reported unaltered expression of co-stimulatory molecules CD80 and CD86 in mDC1 in older 

subjects [66,69,76,77], this subset induced low proliferation of T cells with ageing [65,73].  

In experimentally colonised older participants, higher frequencies of IFN-γ+T-bet+ and IFN-γ+ 

CD4+ T cells were found in the circulation, as well as a reduced frequency of IL-17A+RORγt+ 
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CD4+ T cells. When data were divided into carriage-positive and negative volunteers, young 

carriage-negative volunteers exhibited a higher frequency of IL-17+RORγ+ cells than both 

young carriage-positive and -negative older volunteers. Interestingly, a statistically 

significant increase of 6B-responding cells was found in GARP+Tregs. Pneumococcus-specific 

Th1 and Th17 responses have been found in tonsil tissue of children and young adults, and 

these responses were successfully supressed by Tregs via CTLA-4 and PDL-1 [227], inhibitory 

molecules required for these inhibitory functions [427]. These authors also showed the 

presence of PLY-specific Tregs in tonsil tissue [227]. This suggests that the population of 

pneumococcal-specific Tregs found in older volunteers of chapter 4, could potentially 

control IFN-γ+T-bet+ and IL-17A+RORγt+ responses to pneumococci, migrating alongside these 

inflammatory subsets towards the upper airway during colonisation. 

Whereas the ratio of Th17/Treg cells increases with age, being low in children and higher in 

carriage-negative children, compared to carriage-positive [304], this association was not 

found here in older adults. In mice [303,401] and humans [262], carriage increases the 

frequency of Tregs, leading to stable colonisation, but stable colonisation is rarely observed 

in the old [197]. One hypothesis is that as ageing is associated with an increase in systemic 

IFN-γ+CD4+ T cell frequency [156–158], the microenvironment in which CD4+T cells 

differentiate during experimental colonisation in older adults may favour differentiation into 

the IFN-γ-producing subset. As effector cells, IFN-γ+CD4+ T cells could then activate 

macrophages in the nasopharynx for clearance of colonising bacteria. Moreover, because 

induction of a Th1 response negatively regulates Th17 differentiation [295,413,414], the age-

related skew towards the IFN-γ-producing subset could interfere with the dynamic balance 
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between Th17/Tregs, not favouring stable colonisation and establishment of Th17 cellular 

memory (Figure 5.1 B). 

Indeed, as demonstrated in chapter 4, older volunteers had very low frequencies of central 

memory IL-17A+RORγt+ cells following experimental colonisation, whereas this subset was 

present in carriage-negative and positive young participants. Furthermore, during 

pneumonia infection, the majority of IL-17A+CD4+ T cells found in older patients were naïve, 

reinforcing the hypothesis that absence of memory IL-17A+CD4+ T cells may be involved in 

susceptibility to pneumonia. Interestingly, a study demonstrated that following stimulation 

of PBMCs with pneumococcal proteins PcsB, StkP and PsaA, both Th1 and Th17 responses 

were detected in young and middle-aged adults, while most of the responses of old donor 

cells were Th1 or Th17 [301]. Thus, as suggested by Ferreira and colleagues [428], absence 

colonisation episodes in the elderly, potentially mediated by increased Th1 frequency as 

demonstrated in chapter 4, would contribute to poor functionality and lower levels of anti-

pneumococcal antibody [62,301,318]. In the young, a balance between Th17 and Treg could 

promote clearance by Th17-mediated mechanisms or stable colonisation by Tregs. A second 

hypothesis is that the increased frequency of GARP+Tregs is actively supressing Th17 cell 

activity in the nasopharynx of older adults [227,429]. 

These hypotheses can be initially tested by immunophenotyping of immune cells and 

cytokine dosage in nasal washes from experimentally colonised volunteers and by 

stimulation of isolated subsets. But perhaps, a more basic question may be to confirm if 

inflammaging, which is determined by the presence of pro-inflammatory cytokines in serum, 

is also detected in the nasopharynx of older adults, as observed in aged mice, where NALT 

gene expression of pro-inflammatory mediators such as CCL2 and TLR1 was increased [386].  



 223 

5.1.3 Immunity to S. pneumoniae in older patients with pneumonia 

The initial hypothesis of this thesis was that an impaired ability of neutrophils to successfully 

generate ROS and NETs in response to S. pneumoniae would be aggravated during 

pneumonia disease in the aged, culminating in failure to eliminate the bacteria, leading to 

accumulation of functionally impaired neutrophils in the lung [109]. However, the findings 

presented in Chapter 3 showed that neutrophils from healthy older donors did not have 

significant impairment in response to S. pneumoniae and that, during disease, in fact, 

neutrophils generated higher levels of ROS in response to the S. pneumoniae serotypes 

tested, while NET generation was reduced. Neutrophil IL-8 production had a trend towards 

reduction in older patients and was significantly lower following 23F incubation. Thus, 

neutrophil-IL-8 production in response to S. pneumoniae is unlikely to explain elevated 

neutrophil influx to the lungs found in older patients [109]. Conversely, monocytes from old 

pneumonia patients showed higher IL-6 production in response to 23F, compared to 

monocytes from healthy old subjects. Interestingly, the trend observed in neutrophil IL-8 

production was opposite to monocyte IL-6 production, in which serotypes 4, 19A and 23F 

induced the highest to the lowest IL-8 production in neutrophils but showed the inverse 

trend in IL-6 production.  

Another key finding was that patients had a heterogenous neutrophil population. The 

presence of CD16highCD62Ldim neutrophils was also found in the healthy aged cohort, but 

older patients additionally had immature granulocytes as a third neutrophil phenotype in 

peripheral blood. The release of immature granulocytes may be related to increased G-CSF, 

which mediates this transit [111] and is increased in patients with bacterial infections [430]. 

The release of immature granulocytes could be a strategy to compensate for a population of 
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functionally impaired CD16highCD62Ldim neutrophils, but immature neutrophils also have 

reduced function, as demonstrated in patients with sepsis [115]. Thus, if immature 

granulocytes are also functionally impaired during pneumonia, there could be accumulation 

of non-functional neutrophils in the lungs, as reported previously [109]. The change in 

neutrophil population during infection may therefore be a key factor compromising 

immunity in older patients. 

Another relevant consideration is whether these neutrophil populations identified in 

peripheral blood in chapter 3 are also present in the lungs during pneumonia. A study of 

patients with acute lung inflammatory syndrome (ARDS) showed a high frequency of 

hypersegmented neutrophils in BAL [431], compared to blood, which were very similar to 

the phenotype described by Pillay et al. (2012) [118]. As the former study did not perform 

CD16 immunostaining, it is not possible to confirm whether these were CD16highCD62Ldim 

neutrophils, but cells did have the CD11bhighCD62Ldim phenotype previously described [118]. 

Thus, there is evidence that neutrophil populations are distinct in the blood and lungs in 

ARDS, suggesting this diversity of neutrophil population may also occur in the lung of older 

patients. Moreover, blood neutrophils from ARDS patients which exhibited elevated ROS 

production, had this function controlled by PI3k inhibition [431]. Nevertheless, the extent to 

which CD16highCD62Ldim and immature neutrophils contribute to disease outcome and if they 

are present in the lung of patients during pneumonia needs further research. 

Data from Chapter 3 showed that during pneumonia infection, neutrophils of older patients 

had elevated TLR2 expression. The literature suggests that TLR2 and CCR2 receptors may 

have a dynamic interaction. In mice, activation of neutrophil TLR2 by lipoteichoic acid (LTA), 

a polysaccharide present on the cell membrane and wall of the pneumococcus [232], was 
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shown to downregulate CCR2 expression in neutrophils, thus impairing their migration [432]. 

Conversely, it is reported that in older patients with pneumococcal pneumonia, neutrophil 

infiltration in the lungs is much higher than in young [109]. In this thesis neutrophil CCR2 

surface expression was not assessed. In other cohorts, of healthy older adults [141] and 

COPD patients [433], neutrophil CXCR2 expression was comparable to that of healthy 

controls. In chapter 3, CCR2 expression was only found increased in non-classical monocytes 

of older patients, similar to a report of elevated CCR2 expression in intermediate monocytes 

of old donors [89]. Therefore, CCR2 expression could actually be increased in the old during 

pneumonia infection, thus driving neutrophils to the lungs. There, overactivation of 

neutrophils in response to the pneumococcus, such as elevated ROS production as reported 

in chapter 3, could lead to damage of lung epithelial cells and production IL-33 [380,381]. IL-

33 can inhibit TLR2-mediated downregulation of CXCR2 in neutrophils [383], which could 

lead to continuous neutrophil migration to the lungs, leading to more tissue damage.  

High levels of IL-33 are of interest as these may be associated with activation of Tregs, as 

data from Chapter 4 suggests. CD4+ T cell polarisation during pneumonia in the aged was 

marked by elevated frequency of subsets IFN-γ+ and IL-17A+, as well as an elevated 

frequency of activated Tregs at baseline. It is yet to be confirmed if IL-33 is a factor driving 

GARP expression in Tregs, but in regard to this association, Tregs expressing the IL-33 

receptor ST2 are highly activated [434], suggesting that GARP and ST2 expression increase 

together and both correlate with increased function. Upon stimulation with anti-CD3 and 

anti-CD28, the frequency of GARP+Tregs of older patients increased as well as IL-10 and TGF-

β1 production, demonstrating that during pneumonia infection, these cells remain 

functional in older patients. However, while the frequency of pro-inflammatory CD4+ T cell 
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subsets IFN-γ+ and IL-17A+ increased with advancing age of patients, Treg frequency did not. 

IFN-γ can induce apoptosis in epithelial lung cells [435,436], and could be one factor causing 

IL-33 release from damaged lungs cells (Figure 5.1 C). 

In addition to IL-33-mediated neutrophil recruitment via TLR2 and CCR2 [383], recent 

findings have demonstrated this cytokine can mediate detrimental effects in mice, such as 

amplification of lung macrophage IL-12 and NK cell IFN-γ production, leading to an 

increased Th1-cell-like inflammatory response in a COPD model [380], to sepsis-induced 

immunosuppression by contributing to expansion of Treg population, leaving mice 

susceptible to secondary pneumonia [420] and promoting loss of immunologic tolerance in 

the lungs of mice, mediated by Tregs expressing GATA3 after IL-33 exposure [437]. 

Therefore, investigation of the role of IL-33 during pneumococcal pneumonia should add to 

the comprehension of disease mechanisms in the aged.  

 

5.1.2 Limitations of the thesis studies 

One limitation of the pneumonia disease study was that the causative pathogen of 

pneumonia infection in patients recruited was not established. Although it was expected 

that S. pneumoniae would be the main pathogen among patients, this could not be 

confirmed, as this was a pilot study and did not include detailed microbiological 

investigations by the hospital. Another issue was the difficulty of recruiting young 

pneumonia patients, as very few were admitted to the hospital during the recruitment 

periods. Most young people with pneumonia are not ill enough to be admitted to hospital. 

Presence of comorbidities is also an issue in older patients and thus it is hard to say with 

certainty which deficits seen were due purely to age rather than multimorbidity. It would 
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also have been interesting to verify if alteration in immune function and cell population 

frequencies at later time points such as 7 and 30 days later and 6 months, to determine if 

alterations found were transitory, as well as if pneumococcal carriage can be found post 

disease.  

The use of an experimental human carriage model in older volunteers is a novel and valuable 

approach to study pneumococcal colonisation. This was the first study to use samples from 

an older cohort for the study of CD4+ T cells. For safety reasons, recruitment of older 

volunteers started at age 50, and progressed towards older participants once volunteers did 

not become ill. As a result, not all participants were over 65 years. Also, as this work was 

done in collaboration, the samples from young participants available post-colonisation were 

from a later time point. These factors could explain the lack of significant differences 

between pre and post data as well as among age groups. 

Finally, this thesis proposed to assess age-related changes in neutrophil microbicidal 

functions by measuring ROS production and NET generation in response to S. pneumoniae. 

Although this objective was achieved, confirmation of bacterial killing still needs to be 

measured by a killing assay. Moreover, these functions and activation were assessed in 

blood neutrophils, and it is not possible to confirm that these may be fully replicated in the 

lungs, particularly during pneumonia infection. This requires further investigation, once 

previous studies showed that neutrophil with different phenotypes are found in BAL of ARDS 

patients, compared to blood [431], and that even in healthy individuals, transit of 

neutrophils to the lungs modify their phenotype towards a more activated one, marked by 

reduced CD62L expression and increased CD11b, CD54, CD32, CD88 and CD66 [438]. 
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5.1.3 Future directions 

This thesis provided information on neutrophil function in older adults during health and 

pneumonia, together with evidence of CD4+ T cell polarisation during experimental 

pneumococcal colonisation in the nasopharynx and during pneumonia in the aged. However, 

many studies are still required for a detailed understanding of the mechanisms driving 

increased susceptibility to S. pneumoniae infection in older adults, so that therapeutic 

targets can be identified. Some suggested research is: 

1. Perform neutrophil killing assays to determine if S. pneumoniae killing correlates with 

ROS generation; 

2. Test neutrophil assays using isogenic TIGR4 strains expressing different capsules, to 

determine the extent of the role of pneumococcal capsule in neutrophil activation in 

older adults; 

3. Examine monocyte and neutrophil viability after incubation with S. pneumoniae and 

PLY in a larger sample size to verify if viability of old donor cells is compromised upon 

contact with the pneumococcus or its toxin;  

4. Pre-incubation of isolated neutrophils from healthy older adults with serum (or 

plasma) from old patients, to determine if ROS production and NET generation are 

modulated by humoral inflammatory mediators; 



 229 

5. Investigation of PI3K class III signalling in NET generation in response to S. 

pneumoniae in older adults, to verify if activity of this class of PI3K is impaired with 

ageing;  

6. Test if treatment with IL-10 and TGF-β1 could normalise neutrophil ROS and NET 

generation in old patients with pneumonia, to examine if neutrophils are still 

sensitive to regulatory cytokines released by Tregs during disease; 

7. Measure expression of CCR2 and ST2 (IL-33) receptor in neutrophils of healthy old 

and pneumonia patients to verify if expression of these receptors is changed with 

ageing and disease; 

8. Analyse the immune cell populations in the nasopharynx of older adults, before and 

after experimental colonisation. (Currently ongoing study at Dr. Daniela Ferreira’s lab 

at LSTM). 

9. Analyse neutrophil populations (immature, CD16highCD62Ldim) and isolated neutrophil 

microbicidal functions in response to S. pneumoniae in frail older adults. 

10. Investigate the effect of age on mTOR signalling on NET release [439] and neutrophil 

hypersegmentation [440], in light of the beneficial effects of mTOR inhibitor therapy 

in older adults, which successfully enhanced their response to influenza vaccination 

[441]. 

 

5.1.4 Conclusions 

The work described in this thesis has shown for the first time age-related changes in 

neutrophil ROS production and NET in response to different serotypes of S. pneumoniae, and 



 230 

that these functions are changed during pneumonia in old individuals. Additionally, 

heterogeneity of the neutrophil population in blood was demonstrated in older adults 

during pneumonia. Using the experimental human pneumococcal colonisation model, it was 

demonstrated for the first time that older adults fail to generate memory IL-17+RORγ+CD4+T 

cells, have lower frequencies of this subset, together with age-related increase in the Th1 

subset, and 6B-responding Tregs. These populations were also detected during pneumonia 

infection, in which frequencies of pro-inflammatory CD4+ T cell subsets increased in the very 

old, whereas Treg population did not, although they retained the production of their 

regulatory cytokines. Overall, our data brings new information to the original hypothesis 

that impairment of neutrophil function was one of the underlying causes of susceptibility of 

older adults to pneumococcal pneumonia, showing that reduced function is not found in 

response to all serotypes and that not all functions are impaired. Moreover, despite the 

ongoing infection, older patients can produce a high pro-inflammatory CD4-mediated 

immunity, which can be detrimental to lung tissue.  
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Appendix II – Neutrophil and monocyte median fluorescence intensity (MFI) data and statistical analysis 
Table A.2. Age-related changes in neutrophil receptor expression and intracellular IL-8 production 

 
    Healthy young Healthy old Older patients 

CD11b 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  18460 ± 3267 0.0026  18355 ± 1294 0.0026  16023 ± 3139 0.0026 

  TIGR4  15489 ± 3503 0.0026  13319 ± 4011 0.0026  13269 ± 3260 0.0026 

Unstimulated 19A 4233 ±  12909 ± 3058 0.0026 4195 ±  11072 ± 4187 0.0026 7540 ±  11951 ± 3292 0.0026 

vs 23F 1066 11888 ± 2629 0.0026 1294 12306 ± 2328 0.0026 2259 10457 ± 2750 0.0026 

  HK TIGR4  8586 ± 2874 0.0416  5000 ± 1316 0.0416  8833 ± 2015 0.0208 

  ∆cps   4696 ± 1706 0.0364   4131 ± 1422 0.1562   7186 ± 2027 0.0364 

CD62L 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  305.9 ± 103.6 0.0026  325.1 ± 106 0.0026  721.6 ± 325.6 0.0026 

  TIGR4  2913 ± 3853 0.0026  4920 ± 4104 0.0026  8737 ± 3742 0.0026 

Unstimulated 19A 19214 ±  8585 ± 4049 0.0026 22377 ±  12411 ± 7410 0.0052 15807 ±  11166 ± 4064 0.0026 

vs 23F 6096 10222 ± 5237 0.0026 4023 9208 ± 6609 0.0026 3010 13505 ± 3547 0.0078 

  HK TIGR4  14287 ± 780.5 0.1666  21078 ± 2767 0.0416  21078 ± 2767 0.0625 

  ∆cps   19527 ± 5641 0.1562   22477 ± 4298 0.1666   16903 ± 3018 0.0026 

TLR2 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  1222 ± 437.6 0.0052  1021 ± 400.5 0.0026  1843 ± 611.1 0.0052 

  TIGR4  1705 ± 315.9 0.1145  1667 ± 348.5 0.1145  2714 ± 881.2 0.0026 

Unstimulated 19A 1651 ±  1585 ± 250.5 0.0963 1633 ±  1642 ± 235.9 0.1354 2317 ±  2590 ± 849.2 0.0026 

vs 23F 121.1 1793 ± 309.6 0.0364 295.7 1657 ± 299.4 0.08853 729.1 2443 ± 778.3 0.0182 

  HK TIGR4  1909 ± 148.1 0.0416  1401 ± 85.24 0.125  2233 ± 934.3 0.0416 

  ∆cps   1725 ± 229.7 0.0625   1676 ± 176.9 0.0833   2259 ± 836.5 0.0677 

TLR4 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  233.1 ± 31.09 0.0026  240.3 ± 24.7 0.0468  326.5 ± 88.84 0.0156 

  TIGR4  382.3 ± 54.28 0.0625  492.4 ± 200.4 0.026  503.8 ± 121.5 0.1145 

Unstimulated 19A 415.6 ±  483.7 ± 66.02 0.026 308 364.7 ± 87.95 0.0625 503.8 487.5 ± 79.26 0.1145 

vs 23F 120 490.6 ± 89.76 0.0052 118.7 344.9 ± 68.27 0.0625 121.8 546.7 ± 66.21 0.0937 

  HK TIGR4  431.7 ± 109.8 0.0833  291.3 ± 33.5 0.1666  385.7 ± 92.46 0.0416 

  ∆cps   410.7 ± 211.4 0.1354   279.3 ± 122.6 0.0625   338.8 0.0156 

IL-8 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  619.9 ± 244.1 0.0026  830.4 ± 388.4 0.0026  526.3 ± 269.4 0.0026 

  TIGR4  1772 ± 1218 0.0026  1376 ± 790.6 0.0026  826.7 ± 503.7 0.0026 

Unstimulated 19A 272.3 1298 ± 774.5 0.0026 401.9 ±  1193 ± 634.5 0.0078 239.9 ±  661.4 ± 427.4 0.0026 

vs 23F 23.45 822.4 ± 507.9 0.0026 112.6 897.9 ± 327.1 0.0078 98.16 403.4 ± 249.3 0.013 

  HK TIGR4  358 ± 173.4 0.0416  378 ± 33.45 0.125  173.8 ± 87.94 0.0416 

  ∆cps   268 ± 38.03 0.1145   343.4 ± 52.21 0.0468   192.7 ± 81.48 0.0078 

[Caption on the next page] 
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Expression of CD11b, CD62L, TLR2, TLR4 and intracellular IL-8 following incubation of neutrophils from healthy young (n=7), old (n=7) donors and older patients with 
pneumonia (n=7) following 4-hour stimulation with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40). Data are presented as median fluorescence intensity (MFI) 
and shown as mean ± SD. Differences between unstimulated control and stimulations were performed using Wilcoxon test. Significant differences (p < 0.0084) are 
indicated in bold font. 
 

 

Table A. 3. Age-related changes in monocyte receptor expression and intracellular TNF-α and IL-6 production 
      Healthy young Healthy old Older patients 

CD11b 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  44478 ± 21097 0.0208  24769 ± 7405 0.0026  22038 ± 3573 0.0911 

Unstimulated TIGR4 32270 ±  10109 ± 7249 0.0104 20763 ±  11283 ± 2872 0.0026 22132 ±  12321 ± 3997 0.0013 

vs 19A 19302 17499 ± 11673 0.0104 7380 14396 ± 5022 0.0052 5761 13532 ± 3617 0.0026 

  23F  25933 ± 21778 0.0208  14687 ± 4618 0.0052  18074 ± 4097 0.0013 

CCR2 
 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  28248 ± 1391 0.1041  31301 ± 6105 0.0260  35069 ± 8094 0.1406 

Unstimulated TIGR4 27549 ±  11206 ± 6759 0.0104 33130 ±  17729 ± 10924 0.0026 34691 ±  26973 ± 7606 0.0013 

vs 19A 5128 13437 ± 5986 0.0104 7888 19836 ± 7917 0.0052 6886 27230 ± 9324 0.0013 

  23F   17010 ± 7599 0.0104   21647 ± 5847 0.0026   33366 ± 7122 0.0182 

TNF-α 
 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  21658 ± 6798 0.0104  20244 ± 6240 0.0026  15500 ± 9881 0.0013 

Unstimulated TIGR4 4430 ±  8379 ± 6029 0.0104 3116 ±  5014 ± 1973 0.0026 3539 ±  5377 ± 3226 0.0247 

vs 19A 3066 4601 ± 1330 0.1041 517 5213 ± 3239 0.0260 1814 6546 ± 3452 0.0091 

  23F  6372 ± 1606 0.0729  6140 ± 1597 0.0026  9570 ± 7352 0.0130 

IL-6 
 

Control stimulations Control stimulations p value  Control stimulations p value  Control stimulations p value  

  LPS  1190 ± 414.6 0.0104  1361 ± 240.4 0.0026  1404 ± 1112 0.0013 

Unstimulated TIGR4 132.3 ±  177.6 ± 186.2 0.1354 94.74 ±  57.61 ± 13.51 0.0026 179.8 ±  44.94 ± 19.09 0.0208 

vs 19A 92.26 85.85 ± 48.89 0.0208 27.76 141.4 ± 123 0.1666 135.6 92.4 ± 58.4 0.0013 

  23F   153.4 ± 68.27 0.1666   157.1 ± 109.2 0.0494   257.7 ± 200.7 0.0325 

Expression of CD11b, CCR2 and intracellular TNF-α and IL-6 following incubation of monocytes from healthy young (n=7), old (n=7) donors and older patients with 
pneumonia (n=7) following 4-hour stimulation with LPS (50ng/ml) or S. pneumoniae serotypes (MOI 40). Data are presented as median fluorescence intensity (MFI) 
and shown as mean ± SD. Differences between unstimulated control and stimulations were performed using Wilcoxon test. Significant differences (p < 0.0084) are 
indicated in bold font. 

 




