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Abstract

Let p be a rational odd prime number, G be a finite group such that |G| = pam, with

p - m. Let B be a p-block of G with a defect group E which is an extra-special p-group of

order p3 and exponent p. Consider a fixed maximal (G,B)-subpair (E, bE). Let b be the

Brauer correspondent of B for NG(E, bE). For a non-negative integer d, let kd(B) denote

the number of irreducible characters χ in B which have χ(1)p = pa−d and let kd(b) be

the corresponding number of b. Various generalizations of Alperin’s Weight Conjecture

and McKay’s Conjecture are due to Reinhard Knörr, Geoffrey R. Robinson and Everett

C. Dade. We follow Geoffrey R. Robinson’s approach to consider the Ordinary Weight

Conjecture, and Dade’s Projective Conjecture. The general question is whether it follows

from either of the latter two conjectures that kd(B) = kd(b) for all d for the p-block B.

The objective of this thesis is to show that these conjectures predict that kd(B) = kd(b),

for all non-negative integers d. It is well known that NG(E, bE)/ECG(E) is a p
′
-subgroup

of the automorphism group of E. Hence, we have considered some special cases of the

above question. The unique largest normal p-subgroup of G, Op(G) is the central focus

of our attention. We consider the case that Op(G) is a central p-subgroup of G, as well

as the case that Op(G) is not central. In both cases, the common factor is that Op(G) is

strictly contained in the defect group of B.
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Chapter 1

INTRODUCTION AND THE

MAIN RESULTS

Let p be a rational prime number and (K, R, F ) be a p-modular system. Let G be a finite

group. The p-local subgroups of G are the normalizers of the non-identity p-subgroups

of G. It is well-known that there is a bijection between certain p-blocks of G and certain

p-blocks of a fixed p-local subgroup of G. It is natural to seek the properties which

are shared and other connections between the p-blocks which are preserved under this

bijection.

However, the notion of (G,B)-subpairs in p-block theory is a generalization of p-

subgroups in group theory. Therefore, we still have a bijection between certain p-blocks

of G and certain p-blocks of a fixed (G,B)-local subgroup of G, the normalizer of a certain

(G,B)-subpair.

For each irreducible character χ of G, the defect of χ is the non-negative integer, say

d(χ), which satisfies χ(1)p· pd(χ) = |G|p. Let B be a p-block of G and write d(B) for

the maximum of the defect of irreducible characters of B. We call d(B) the defect of
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the p-block B. Then χ(1)p· pd(B) = |G|p· ph(χ), where h(χ) = d(B) − d(χ) is called the

height of χ. It is well-known that p-blocks of defect zero of the finite group G are in a

one to one correspondence with irreducible ordinary characters χ of G in such a way that

χ(1)p = |G|p = [G : 1G]p. The simple G-modules which afford such irreducible characters

are the projective simple G-modules.

Alperin’s Weight Conjecture (AWC) is concerned with the equality of the number of

simple FG-modules of a p-block B of G with the totality of the number of projective

simple modules in certain Brauer correspondents of B.

At the same time, the Alperin-McKay Conjecture predicts an equality between the

number of irreducible ordinary characters of B of height zero and the corresponding

number of the single Brauer correspondent b of B.

Nowadays, the generalizations of these conjectures, which are due to Reinhard Knörr,

Geoffrey R. Robinson [45], [61] and Everett C. Dade [22], have various types. However,

the idea behind these conjectures is to get p-global information for certain invariant of G

and its p-block B from the p-local information of p-local subgroups of G.

Contributions to the development of this theory have been made using different ap-

proaches. We shall deal with Geoffrey R. Robinson’s approach, which culminates in the

Ordinary Weight Conjecture (OWC). This conjecture expresses the number of ordinary

irreducible characters of defect d in a p-block B in terms of an alternating sum whose

terms can all be calculated p-locally.

The ultimate aim of our project is to be able to say that the OWC holds for p-blocks

of finite groups with a defect group which is an extra special p-group, say E, of order p3

and exponent p for an odd prime number p. However, we have in this thesis investigated

whether the OWC is equivalent to attaining a bijection which preserves the defect between

the ordinary irreducible characters of the p-block B and the ordinary irreducible characters

of the associated Brauer correspondent of a p-local subgroup of G.

To reach this aim, we use character theoretic methods. Clifford theory, which exploits
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the action of a finite group on irreducible characters of a normal subgroup of G, is an

essential tool in our work. Cancellation processes using chains of (G,B)-subpairs form

another important tool in the present work.

This thesis is divided into six chapters. The first chapter contains the introduction

and the main results. Chapter Two contains background materials and conjectures. After

specifying an appropriate p-modular system, we start with the notion of the defect of a

character and the defect of a p-block. The concept of a p-block of a finite group can be

defined in many ways. We look at a p-block of the finite group G as a collection of ordinary

irreducible characters of G, as well as a two sided ideal in the group algebras RG or FG.

Then, we study the methods of the cancellation processes. Since (G,B)-subpairs are

refinements of p-subgroups, we may use (G,B)-chains which consist of (G,B)-subpairs.

The idea behind these methods is to reduce the number of terms in the alternating sums

which we are dealing with.

In Section 2.4, Clifford theory is introduced. There are two levels on which to apply

Clifford theory. The first one is that the inertial subgroup of the relevant irreducible

character is a proper subgroup. The second is that the irreducible character in ques-

tion is invariant, which leads to the existence of a central extension and a projective

representation.

In Section 2.5, we survey the conjectures which we shall deal with. Although we

start by considering Dade’s Projective Conjecture (DPC), the main work will be for the

Ordinary Weight Conjecture (OWC). This is because these two conjectures are equivalent

at least, in the case that Op(G) ≤ Z(G) and under our assumption about the defect group

of B. Since the defect group of any p-block of G which we consider is E where E is an

extra-special p-group of order p3 and exponent p (as above), Section 2.6 in Chapter Two

contains the characters of E and some properties of its automorphism group.

Chapter Three is concerned with the fusion patterns and the orbit structure of char-

acters. The notion of a nilpotent p-block is introduced. Then the action of the inertial
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quotient on the Frattini quotient is studied. We discuss the natural action of SL(2, p)

on a maximal subgroup of the defect group of B. The final section in Chapter Three

contains a discussion of the fusion patterns. We define the notion of control fusion of

(G,B)-subpairs and we find that NG(E, bE) controls the fusion of (G,B)-subpairs under

the condition that SL(2, p) 6/ NG(M, bM)/CG(M), where M is a maximal subgroup of E,

which is a radical p-subgroup of G.

In Chapter Four , we calculate the inertial subgroups of the irreducible characters

of the initial p-subgroup of a (G,B)-chain in its stabilizer. We start with the inertial

group of an irreducible linear character of E in NG(E, bE), where (E, bE) is a maximal

(G,B)-subpair. Then we study the inertial group of an irreducible non-linear character

of E in NG(E, bE). For M , a maximal subgroup of E, which is a radical p-subgroup of

G, we calculate the inertial subgroup of an irreducible character of M in NG(M, bM). It

turns out that if SL(2, p) / NG(M, bM)/CG(M) then, NG(M, bM) acts transitively on the

set of non-trivial irreducible characters of M .

Chapter Five is devoted to the predictions of the conjectures for p-blocks with an

extra-special defect group of order p3 and exponent p for an odd prime number p. The

main idea is to exploit the fact that for each maximal subgroup M of E, the associated

p-block of B in CG(M), say bM , is a nilpotent p-block with abelian defect group M .

Thus, it contains exactly p2 irreducible ordinary characters, each of which corresponds

to a unique irreducible ordinary character of M . Furthermore, bM has a unique modular

simple FCG(M)-module. It turns out that there is a unique irreducible ordinary character

of bM which lies over a given irreducible character of M . This enables us to examine the

irreducible characters of NG(σ) which are M -projective, where σ is a chain of (G,B)-

subpairs.

It is well known that the inertial quotient NG(E, bE)/ECG(E) is a p
′
-subgroup of the

automorphism group of E. On the one hand, this inertial quotient might contain no

copy of the automorphism group of the centre of E. The situation in this case is that

4



no (G,B)-subpair (M, bM) is an Alperin-Goldschmidt (G,B)-subpair for each maximal

subgroup M of E, which is a radical p-subgroup of G. Thus, (E, bE) is the unique Alperin-

Goldschmidt (G,B)-subpair. On the other hand, if this inertial quotient has a copy of the

automorphism group of the centre of E, then using the fact that for large p, the special

linear group of dimension two over a field of p elements has a trivial Schur multiplier

together with Clifford theory can be used to attain the desired result.

However, the largest normal p-subgroup of G, Op(G) plays a central part in our con-

sideration. We should emphasise that Dade’s Projective Conjecture is formulated only

in the case that Op(G) is a central p-subgroup of G and the defect group of the p-block

B is greater than Op(G). Nevertheless, the Ordinary Weight Conjecture (OWC) can be

formulated without assuming that Op(G) is a central p-subgroup of G.

In Section 5.2, we study the character correspondence for a nilpotent p-block. In

Section 5.3, we discuss the case that Op(G) is trivial and NG(E, bE)/ECG(E) has no

element of order p−1. The conclusion in this section is that the contribution from chains

starting with the (G,B)-subpair (M, bM), where M is a radical p-subgroup of G which is

a maximal subgroup of E, is zero.

Section 5.4 is concerned with the case that Op(G) is a central p-subgroup of G and

equal to the centre of E. The conclusion in this section is that SL(2, p) cannot be a section

of NG(M, bM)/CG(M), and, hence, NG(E, bE) controls the fusion of (G,B)-subpairs.

The case that Op(G) is not a central p-subgroup of G is introduced in Section 5.5.

It turns out that either Op(G) is the unique maximal subgroup of E, which is a radical

p-subgroup of G or Op(G) is isomorphic to the centre of E. We deal only with the OWC

in this case and we use Clifford theory to obtain the desired result. In Section 5.6, we

study the case that Op(G) is trivial and NG(E, bE)/ECG(E) is isomorphic to C2 × Cp−1.

The final chapter is devoted to the conclusion and suggestion for further research.

Our notation is standard. However, Tables 1 and 2 contain the main symbols which

we have used.
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THE MAIN RESULTS

The main results in this thesis are the following:

Theorem A. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Consider

(E, bE) as a maximal (G,B)-subpair. Let (M, bM) be an arbitrary (G,B)-subpair which is

contained in (E, bE), where M is a maximal subgroup of E which is a radical p-subgroup

of G. Assume that the OWC holds for the p-block B. If SL(2, p) 6. NG(M, bM)/CG(M),

then, for each non-negative integer d, kd(B) = kd(b), where b is the unique p-block of

NG(E, bE) such that bG = B.

Theorem B. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Consider

(E, bE) as a maximal (G,B)-subpair. Let (M, bM) be an arbitrary (G,B)-subpair which is

contained in (E, bE), where M is a maximal subgroup of E, which is a radical p-subgroup

of G. Write R(G|(M, bM)) for radical chains which start with (M, bM). Then, whenever

SL(2, p) / NG(M, bM)/CG(M),

∑
σ∈R(G|(M,bM ))

(−1)|σ|+1
∑

µ∈Irr(M)/NG(σ)

f
(B)
0 (ING(σ)(µ)/M) = 0.

Theorem C. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Consider

(E, bE) as a maximal (G,B)-subpair. Then the OWC holds if, and only if, for each non-

negative integer d, kd(B) = kd(b), where b is the unique p-block of NG(E, bE) such that

bG = B.

Theorem D. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Consider

(E, bE) as a maximal (G,B)-subpair. Assume that Op(G) ≤ Z(G). Then the DPC holds

6



if, and only if, for each positive integer d, kd(B) = kd(b), where b is the unique p-block of

NG(E, bE) such that bG = B.

Theorem E. Let G be a finite group, B be a p-block of G with defect group E which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Assume

that Op(G) = 1 and the section NG(E, bE)/ECG(E) ∼= C2 × Cp−1. If B satisfies OWC

then k(B)− k(E) = p.

7



Chapter 2

BASIC FACTS AND THE

CONJECTURES

2.1 Introduction

In this chapter, we shall discuss some basic facts. In Section 2.2, the defect of an

ordinary irreducible character and the defect of a p-block are discussed. The main tools

in this thesis are the cancellation processes and Clifford theory which are introduced in

Section 2.3 and Section 2.4 respectively. In Section 2.5, we outline the conjectures which

we shall deal with. Section 2.6 in this chapter contains the characters of an extra-special

p-group of order p3 and exponent p for an odd prime number p and some properties of its

automorphism group.

8



2.2 The defect of a character and of a p-block

In this section, we state some background concepts which are related to the concept

of the defect of an irreducible ordinary character, as well as the defect of a p-block.

We shall use a p-modular system. This system enables us to move between ordinary

representation and p-modular representation. It consists of the following:

• A complete discrete valuation ring R of characteristic 0 and a unique maximal ideal

J(R); its Jacobson radical. We assume that R contains enough p-power roots of

unity. For our purposes, this means that for each group H under consideration, R

contains a primitive |H|p-th root of unity.

• The field, say K, of fractions of R. We assume that K contains a primitive |H|p-th

root of unity for any finite group H we consider.

• An algebraically closed field F := R/J(R) of prime characteristic p.

Note that the hypotheses of F and R imply that K contains p
′
-roots of unity of all

orders. One can assume that K has the field of rational numbers Q as its prime subfield.

Hence, we may suppose that every root of unity in K is contained in the complex field

C. These processes enable us to identify the complex characters of any finite group under

consideration with the K-valued characters of that group. For more details, we refer to

[69, Part One] and [57]. However, for our purposes, we state the following definition:

Definition 2.2.1. With the notation as above, the triple (K, R, F ) is called a p-modular

system.

There are many ways to deal with the concept of a p-block of a finite group G. We

refer to the following [5, Chapter IV], [20, Chapter 7], [32, Chapter III & IV] and [53,

Chapter 5] to see the approaches of this concept and related matters. However, we state

here some definitions which can be used as notation.
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Definition 2.2.2. Let G be a finite group and B be a p-block of RG. We write

k(B) = |Irr(B)| = |{χ ∈ Irr(G) : χ ∈ B}|, and l(B) = |IBr(B)|,

where IBr(B) means the set of irreducible Brauer characters (for the definition of Brauer

characters see [54, Chapter 2]).

Definition 2.2.3. Let G be a finite group and d be an arbitrary non-negative integer.

Then χ ∈ Irr(B) is said to be of defect d if pdχ(1)p = |G|p. We write d = d(χ).

Now if χ is an irreducible character of G and η is an irreducible character of a normal

subgroup H of G, then we have the following definition:

Definition 2.2.4. Let B be a p-block of RG and let d be an arbitrary non-negative integer.

We write

kd(B, η) = |Irrd(B, η)| = |{χ ∈ Irr(G) : χ ∈ B, 0 6= 〈ResGH(χ), η〉H & χ(1)pp
d = |G|p}|.

We say that kd(B, η) is the number of irreducible characters of B with defect d which lie

over η.

Now we assign to each p-block B of G a unique non-negative integer, also called the

defect of the p-block B.

Definition 2.2.5. Let B be a p-block of the finite group G. The defect of the p-block B

is d(B), where d(B) = Max{d(χ) : χ ∈ Irr(B)}.

Definition 2.2.6. Let B be a p-block of the finite group G, and χ be an irreducible

character of B. The height of χ, say h(χ), is the difference d(B)− d(χ).

Let us characterize the p-blocks of G which contain a character of defect zero.
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Lemma 2.2.7. Irr(B) contains an irreducible character of defect zero if, and only if,

B ∼= Mat(n,R), for some positive integer n. This happens if, and only if, k(B) = 1 =

l(B).

Proof: See [53, Chapter 3, Theorem 6.29]. �

Now let Q be an arbitrary p-subgroup of G. Probably the most important map in

modular representation theory is the Brauer map, BrQ : RGQ → FCG(Q). For more

details about this map, see [71, Chapter 2, §11] or [14]. Let us use the Brauer map to

assign for each p-block B of G a certain p-subgroup of G which is a unique p-subgroup

up to G-conjugacy.

Definition 2.2.8. A defect group of the p-block B is a p-subgroup D of G which is

maximal subject to BrD(1B) 6= 0.

Note that we regard B as a two sided ideal in the group algebra FG and 1B is the

central primitive idempotent in FG for which 1B·FG = B. It turns out that |D| = pd(B).

James A. Green has shown that the defect group of an arbitrary p-block of G is always

an intersection of at most 2 Sylow p-subgroups. In particular, the defect group of any

p-block contains the unique largest normal p-subgroup of G (see [5, Chapter IV, Theorem

6]). As a result, if the finite group G has a non-trivial normal p-subgroup, then it has no

p-block of defect zero. We will use this fact without further reference.

Let us now state the Brauer First Main Theorem on p-Blocks:

Theorem 2.2.9. [Brauer First Main Theorem on p-Blocks]

For a p-subgroup Q of G, BrQ gives a bijection between p-blocks of G with defect group

Q and p-blocks of NG(Q) with defect group Q.

Proof: The proof can be found in [32, Chapter III, Theorem 9.7]. �
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It is then natural to seek the invariants of the corresponding p-blocks and the condi-

tions for which they are preserved under this bijection.

2.3 Some cancellation methods

In this section, we study some cancellation processes. In [45], [61] and [63], these

methods are used as tools for formulating Alperin’s Weight Conjecture and the companion

conjectures. We discuss the types of chains of p-subgroups, as well as the chains of (G,B)-

subpairs. We begin by defining the chain in G and its stabilizer under the conjugation

action of G.

Definition 2.3.1. A chain σ for G is a strictly increasing chain σ := Q0 < Q1 < · · · < Qn

of p-subgroups of G. We define the stabilizer of σ under the conjugation action of G to

be NG(σ) = ∩ni=0NG(Qi), the length of σ to be the number of nontrivial p-subgroups which

are involved in σ. We denote this length, the initial subgroup and the final subgroup of σ

by |σ|, Qσ and Qσ respectively.

Definition 2.3.2. Let G be a finite group and let σ : Qσ < · · · < Qn = Qσ be a chain for

G. We define the i-th initial subchain of σ to be σi := Qσ < · · · < Qi and the i-th final

subchain of σ to be σi := Qi < · · · < Qσ.

Since we have various types of p-subgroups of G, we have also various types of chain.

1. The set P(G) = {σ|σ := Q0 < Q1 < · · · < Qn}, where the inclusion is strict and

Qi is a p-group for each i ∈ {0, 1, 2, · · · , n}. This set contains all possible chains of

p-subgroups that we can obtain for a finite group G.

2. The set E (G) = {σ|σ := Q0 < Q1 < · · · < Qn}, where the inclusion is strict and

Qi is an elementary abelian p-group for each i ∈ {0, 1, 2, · · · , n}. Note that a finite

p-group Q is said to be an elementary abelian p-group if gp = 1 for every g ∈ Q.
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3. The set N (G) = {σ|σ := Q0 < Q1 < · · · < Qn}, where the inclusion is strict and

Qi is a normal p-subgroup of Qn for each i ∈ {0, 1, 2, · · · , n}.

4. The set R(G) = {σ|σ := Q0 < Q1 < · · · < Qn}, where the inclusion is strict and

Qi = Op(∩ij=1NG(Qi)) = Op(NG(σi)) for each i ∈ {0, 1, 2, · · · , n}.

5. The set U (G) = {σ|σ := Q0 < Q1 < · · · < Qn}, where the inclusion is strict and

Qi = Op(NG(Qi)) for each i ∈ {0, 1, 2, · · · , n}.

Definition 2.3.3. A radical p-subgroup of the finite group G is a p-subgroup Q of G which

satisfies Q = Op(NG(Q)).

It is clear that Op(G) and a Sylow p-subgroup of G are examples of radical p-subgroups.

In fact, any defect group is a radical p-subgroup. Furthermore, if Q is a radical p-subgroup

of G, then Q ∩H is a radical p-subgroup of H for each normal subgroup H of G.

Lemma 2.3.4. Let G be a finite group, and let U be a radical p-subgroup of G. Then

whenever NG(U) ≤ NG(Q) for a p-subgroup Q of G, we have Q ≤ U.

Proof: The proof is standard and we omit the details. �

Let us now discuss some cancellation procedures. As in [63], we consider an abelian

group A and a G-stable function f : P(G) → A. We assume that the function depends

only on the chain stabilizer NG(σ) and the initial subgroup Qσ of the chain σ := Qσ <

Q1 < · · · < Qσ. The most remarkable observation for dealing with chains of p-subgroups

is the following lemma:

Lemma 2.3.5. Let G be a finite group. Write P(G)/G for the set of the representatives

of the orbits of the action of G on P(G). With the notation above,

∑
σ∈P(G)/G

(−1)|σ|f(σ) =
∑

σ∈U (G)/G

(−1)|σ|f(σ) =
∑

σ∈N (G)/G

(−1)|σ|f(σ) =
∑

σ∈R(G)/G

(−1)|σ|f(σ).
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Proof: This is [63, Lemma 1.1]. �

We use the following lemma for the cancellation processes in many places.

Lemma 2.3.6. Let G be a finite group, A be an abelian group, f : P(G) → A be a G-

stable function such that f(σ) depends only on the chain stabilizer NG(σ) and the initial

subgroup of the chain σ. Let U be a non-trivial p-subgroup of G which is not radical. Then

chains which begin with (conjugates of ) U make zero contribution to the alternating sum∑
σ∈P(G)/G(−1)|σ|f(σ).

Proof: This is [63, Corollary 1.2]. �

In the following lemma, we can eliminate chains from E (G) in the same manner, but

we may affect the initial subgroup in the chain σ. Therefore, we assume that the function

f does not depend on the initial p-subgroup of the chain σ.

Lemma 2.3.7. With the notation above,
∑

σ∈P(G)/G(−1)|σ|f(σ) =
∑

σ∈E (G)/G(−1)|σ|f(σ).

Proof: The proof can be found in [45], [61] and [63]. �

We begin, as in [45], by considering a p-block of NG(σ), where σ is a chain in P(G).

We call this p-block the stabilizer p-block of σ.

Definition 2.3.8. Let σ ∈P(G) and let B be a p-block of RG. The stabilizer p-block of

NG(σ) is B(σ) := BrQσ(1B)·RNG(σ).

The following lemma is one of the main discoveries in [45], which guarantees the link

between the irreducible characters of G and those in the Brauer correspondents in NG(σ).

For more details about how Brauer correspondence is defined, the reader can see [53,

Chapter 5, Lemma 3.1] or [32, Chapter III, Section 9].

Lemma 2.3.9. Let σ : Qσ < Q1 < · · · < Qσ be a chain in P(G). Then

14



1. All central idempotents of RNG(σ) lie in RCG(Qσ).

2. NG(σ) and NG(σ)Qσ have the same central idempotents. In addition, the stabilizer

p-block B(σ) depends only on the subgroup NG(σ).

3. Whenever b is a p-block of NG(σ), bG is defined. Furthermore, b is a summand of

B(σ) if, and only if, bG = B.

Proof: For the proof, see [45, Lemma 3.1 & Lemma 3.2]. �

The notion of (G,B)-subpairs was introduced in p-block theory by J. Alperin and M.

Broué in [7]. It is a generalization of the concept of p-groups. For our purposes, (G,B)-

subpairs can be used for the cancellation processes especially when we are dealing with a

non-principal p-block. Let us define the (G,B)-subpair.

Definition 2.3.10. A (G,B)-subpair is a pair (Q, bQ), where Q is a p-subgroup of G and

bQ is a p-block of CG(Q) such that bGQ is defined and B = bGQ.

We observe that if g ∈ G, then (Q, bQ)g := (Qg, bgQ) is a (G,B)g = (G,B)-subpair.

This means that G acts by conjugation on the set of all (G,B)-subpairs.

Definition 2.3.11. Let (Q, bQ) and (P, bP ) be two (G,B)-subpairs. We say that (Q, bQ) is

normal (G,B)-subpair of (P, bP ) if Q is a normal subgroup of P , the p-block bQ of CG(Q)

is stable under P -conjugation and the p-block bP of CG(P ) appears in the decomposition

of the image of bQ under the Brauer map BrP . We shall write (Q, bQ)/ (P, bP ) to indicate

that (Q, bQ) is a normal (G,B)-subpair of (P, bP )

Now we define the inclusion of (G,B)-subpairs.

Definition 2.3.12. Let (Q, bQ) and (P, bP ) be two (G,B)-subpairs. We say that (Q, bQ)

is contained in (P, bP ) if there is an integer n ≥ 1 and a series of (G,B)-subpairs

(R0, bR0), · · · , (Rn, bRn) such that (Q, bQ) = (R0, bR0), (Rn, bRn) = (P, bP ) and (Ri, bRi
)
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is a normal (G,B)-subpair of (Ri, bRi+1
), for each i ∈ {0, 1, · · · , n}. As a notation, we

shall write (Q, bQ) ≤ (P, bP ) to indicate the containment between (G,B)-subpairs.

It is clear that the action of G on the set of (G,B)-subpairs respects the above inclu-

sion. As usual, the stabilizer of a (G,B)-subpair (Q, bQ) is NG(Q)∩ IG(bQ) := NG(Q, bQ).

Note that in the case that Q is a defect group of the p-block B in G, we say that the

(G,B)-subpair (Q, bQ) is a maximal (G,B)-subpair. If Z(Q) is a defect group of the

p-block bQ in CG(Q), we say that (Q, bQ) is a centric (G,B)-subpair. We mention the

following facts, analogous to Sylow’s theorems for p-subgroups.

Lemma 2.3.13.

1. All maximal (G,B)-subpairs are G-conjugate.

2. Let (Q, bQ) be an arbitrary (G,B)-subpair. Then there is a maximal (G,B)-subpair

(D, bD) such that (Q, bQ) ≤ (D, bD).

3. If (P, bP ) is a (G,B)-subpair and Q is a subgroup of P then there exists one, and

only one, p-block bQ of CG(Q) such that (Q, bQ) ≤ (P, bP ).

Proof: These are [7, Theorem 3.4 and Theorem 3.10]. �

Because of Lemma 2.3.13, we can define the (G,B)-chain σ to be the strict inclusion

(Qσ, bQσ) < (Q2, bQ2) < · · · < (Qσ, bQσ), where {(Qi, bQi
)}i=ni=1 are (G,B)-subpairs which

are uniquely determined by the defect group of the p-block B. It turns out that the

stabilizer of such σ is ING(σ)(bQσ), which is the inertial subgroup of the p-block bQσ in the

stabilizer of σ.

The following result shows that when B is the principal p-block of G, (G,B)-subpairs

correspond canonically to p-subgroups of G.

Lemma 2.3.14. Let P and Q be p-subgroups of G.

1. P < Q if, and only if, (P,B0(CG(P ))) < (Q,B0(CG(Q))).
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2. P is a normal subgroup of Q if, and only if, (P,B0(CG(P ))) is a normal (G,B)-

subpair of (Q,B0(CG(Q))).

3. If x ∈ G, then P = Qx if, and only if, (P,B0(CG(P ))) = (Q,B0(CG(Q)))x. Further-

more, the normalizer of the (G,B)-subpair (Q,B0(CG(Q))) is NG(Q).

Proof: This is [7, Corollary 3.14]. �

2.4 Clifford theory

Clifford theory can be used to obtain a bijection between the set of irreducible char-

acters of a finite group which lie over an irreducible character of a normal subgroup and

the set of irreducible characters of the inertial subgroup of this character lying over it.

Theorem 2.4.1. [A. H. Clifford 1937]

Let H be a normal subgroup of the finite group G. Let µ be an irreducible character of

H. Choose χ ∈ Irr(G, µ). For each g ∈ G, define the the conjugate character of µ to be

µg such that µg(h) = µ(ghg−1) for each h ∈ H. Write IG(µ) for the inertial subgroup of

µ in G. Then

1. There is a non-negative integer e such that ResGH(χ) = e(
∑

t∈[G/IG(µ)] µ
t).

2. There exists a unique η ∈ Irr(IG(µ), µ) such that χ = IndGIG(µ)(η) and Res
IG(µ)
H (η) =

eµ.

3. If IG(µ) ≤ T ≤ G, then the map IndGT : Irr(T, µ) → Irr(G, µ) (η 7→ IndGT (η))

is a bijection. In particular, H = IG(µ) if, and only if, IndGH(µ) is an irreducible

character of G.
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Proof: The proof can be found in many text-books, such as [53, Chapter 3, Theorem

3.8], [37, Theorem 3.5], [42, Theorem 6.11] and [40, Theorem 19.6]. �

It is clear that the bijection in Theorem 2.4.1 preserves the defect of the irreducible

characters.

Now what is the situation if that character is stable under the action of the finite group

under consideration? This case is more subtle. It leads to new methods for investigating

the relationships between the irreducible characters of a finite group and the irreducible

characters of a normal subgroup of this group.

The first observation for the stable case is the following lemma which is originally due

to Gallagher, see [36].

Lemma 2.4.2. Let G be a finite group with normal subgroup N . Write the full set of

irreducible characters of the quotient group G/N as the set {Ψ1,Ψ2, · · · ,Ψt}. Let χ be an

irreducible character of G which lies over an irreducible character µ of N . Assume that

ResGN(χ) = µ. Then, IndGN(µ) = Ψ1(1)(χ⊗Ψ1) + Ψ2(1)(χ⊗Ψ2) + · · ·+ Ψt(1)(χ⊗Ψt).

Proof: The proof can be found in [40, Theorem 19.5]. �

However, the existence of a finite group which is a central extension of G and a

projective representation of G which arises from such µ above was discussed earlier, (see

[18, Definition 53.6, p. 361]).

Lemma 2.4.3. Let G be a finite group with a normal subgroup N . Let µ be an irreducible

character of N such that µ is G-invariant. Then there is a finite group G̃ with a normal

subgroup Z̃ such that G̃/Z̃ ∼= G/N such that there is a bijection between Irr(G, µ) and

Irr(G̃, λ̃) for some linear character λ̃ of Z̃.

Proof: The proof of this result is standard and we omit the details. �

The compatibility of the bijection in Lemma 2.4.3 with p-block theory is investigated

in [29] and [28]. The reader can see also, [58], [48] and [35].
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From now on, we assume that N to be Vσ, where σ is the radical chain (Vσ, bVσ) <

(V2, bV2) < · · · < (V σ, bV σ). Then N is a normal p-subgroup of NG(σ). Let B(σ) be the

sum of Brauer correspondents of B in RNG(σ). Recall that B(σ) = BrV σ(1B)·RNG(σ).

Let kd(B(σ)) be the number of irreducible characters in NG(σ), which belong to B(σ)

and have p-parts of their degrees equal to pa−d, where pa is the order of a Sylow p-subgroup

of NG(σ).

Our target is to compute the alternating sum
∑

σ∈R(G,N)/G(−1)|σ|kd(B(σ)).

Now if µ is an irreducible character of N , then any irreducible character of NG(σ)

which lies over µ lies also over a unique NG(σ)-conjugacy class of irreducible characters

of N (namely the NG(σ)-conjugates of µ). Theorem 2.4.1 ensures that we can write the

above alternating sum as

∑
σ∈R(G,N)/G

(−1)|σ|kd(B(σ)) =
∑

σ∈R(G,N)/G

(−1)|σ|
∑

µ∈Irrd(N)/NG(σ)

kd(B(σ), µ), (2.4.1)

where kd(B(σ), µ) is the number of irreducible characters of B(σ) which lie over NG(σ)-

conjugates of µ and have defect d.

The order of the summation may be changed to write 2.4.1 into

∑
σ∈R(G,N)/G

(−1)|σ|kd(B(σ)) =
∑

µ∈Irrd(N)/G

∑
σ∈R(IG(µ),N)/IG(µ)

(−1)|σ|kd(B(σ), µ). (2.4.2)

We see that the bijection between irreducible characters of NG(σ) which lie over µ

and those of ING(σ)(µ) which also lie over µ gives us the opportunity to deduce that there

is a set of p-blocks, say b(σ), of ING(σ)(µ) such that b(σ)NG(σ) = B(σ). Hence, using the

transitivity of induction of p-blocks (see [32, Chapter III, Lemma 9.2]), we have b(σ)G = B.

Therefore, we denote the collection of such p-blocks of ING(σ)(µ) by B((σ, µ), µ).
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Consequently, the alternating sum under consideration can be written as follows

∑
σ∈R(G,N)/G

(−1)|σ|kd(B(σ)) =
∑

µ∈Irrd(N)/G

∑
σ∈R(IG(µ),N)/IG(µ)

(−1)|σ|kd(B(σ, µ), µ),

where B((σ, µ), µ) is the set of p-blocks b(σ) of ING(σ)(µ) such that b(σ)G = B. Note that

b(σ)G = B is defined by [45, Lemma 3.2].

On the other hand, the stabilizer of (Vσ, bVσ) < (V2, bV2) < · · · < (V σ, bV σ) is

ING(σ)(bV σ) := NG(σ, bV σ).

Then we denote the p-block 1bV σ ·RNG(σ, bV σ) by B(σ, bV σ). Now if µ is an irreducible

character of Vσ then ING(σ)(bV σ , µ) := NG(σ, bV σ , µ) is the inertial subgroup of µ and we

define the p-block B(σ, bV σ , µ) in a similar way. Therefore, we consider the number of

irreducible characters in B(σ, bV σ , µ) which contain Vσ in their kernels and lie in p-blocks

of defect zero of NG(σ, bV σ , µ)/Vσ.

However, before we proceed to discuss the conjectures we are dealing with, we state

the following lemma:

Lemma 2.4.4. Dade’s Projective Conjecture is equivalent to the following:

kd(B) =
∑

σ∈R(G)/G

(−1)|σ|+1
∑

µ∈Irrd(Vσ)/NG(σ)

f
(B)
0 (ING(σ)(µ)/Vσ), (2.4.3)

where f
(B)
0 (−) means the number of p-blocks of defect zero of (−) which are in Brauer’s

correspondent with B.

Proof: For the proof of this lemma see, [28], [61, Conjecture 4.1], [65, p. 216] and

[22, 17.10]. �
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2.5 Survey of conjectures in p-block theory

For our purpose, we shall start from 1986. In this year, J. L. Alperin announced the

following conjecture [6] which is called Alperin’s Weight Conjecture (AWC).

Conjecture 2.5.1. Let G be a finite group and fix p to be a prime number. Denote the

normalizer of each p-subgroup P of G by NG(P ). Consider the group algebra FG, where F

is a field of characteristic p. Write the number of simple FG-modules as l(FG). Then we

should have l(FG) =
∑

(P ) f0(FNG(P )/P ), where the sum is taken over all representatives

(up to G-conjugacy) of p-subgroups of the finite group G and f0(FNG(P )/P ) denotes the

number of p-blocks of defect zero of FNG(P )/P .

We see immediately that Conjecture 2.5.1 predicts p-global information from p-local

information. The strategy for attaining p-global information from p-local information

underlies most of the work following what was done by R. Brauer and James A. Green.

Alperin suggested in [6] that to get an affirmative answer for his conjecture, two

approaches have to be followed. The first one is the filtration of the endomorphism ring

of modules and the other is to use Geoffrey R. Robinson’s simplicial methods approach.

It is worth saying that the present author, following L. Barker in [10] in his attempt to

generalize Alperin’s Weight Conjecture, studied the p-blocks of the endomorphism ring of

a module in his Master’s dissertation. See [2] and [1].

We observe that there is no mention of defect groups in Conjecture 2.5.1. This is

because Alperin’s Weight Conjecture has a non-block-wise form. One can consider the

following definition:

Definition 2.5.2. Let G be a finite group, B be a p-block of G. A weight of B is a pair

(Q,S), where Q is a p-subgroup of G and S is a projective simple F [NG(Q, bQ)/Q]-module

which lies in a Brauer correspondence with B.

Now we state block-wise form of Alperin’s Weight Conjecture.
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Conjecture 2.5.3. Let B be a p-block of G. Then

l(B) =
∑

(Q,bQ)

f
(B)
0 (F [NG(Q, bQ)/Q]),

where f
(B)
0 (F [NG(Q, bQ)/Q]) means the number of isomorphism types of projective simple

F [NG(Q, bQ)/Q]-modules which are not annihilated by bQ and (Q, bQ) runs over a set of

representatives for the conjugacy classes of (G,B)-subpairs.

Alperin’s Weight Conjecture is known to hold for the following kind of groups:

• Symmetric groups and general linear groups, see [4].

• Finite groups of Lie type in natural characteristics, see [16].

• p-solvable groups, see [59].

• For nilpotent p-blocks, see [45].

The concept of simplicial complexes is purely topological. The subtle idea for dealing

with Alperin’s Weight Conjecture is the work of Reinhard Knörr and Geoffrey R. Robinson

[45]. They used some properties of the partial ordered set of the nontrivial p-subgroups

of the finite group G to convert this conjecture to a new environment which enables both

group theorists and representation theorists, as well as people working in the homotopy

and simplicial complexes, to study the applications and consequences of this conjecture.

Perhaps the most important reason for using p-subgroup complexes is that they give

precision to p-local theory. This is because chain stabilizers in the action of G on this

complex are intersections of p-local subgroups. Note that we mean by p-local subgroups

of G, the normalizer of non-identity p-subgroups of G.

In 1990, Geoffrey R. Robinson and R. Staszewski [59] generalized this conjecture to

a situation which gave the opportunity to deal with a group G which has a non-identity

normal subgroup. This places the problem in the environment of Clifford theory.
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On the other hand, McKay’s Conjecture is concerned with counting the number of

irreducible ordinary characters of G whose degrees are not divisible by p.

Recall that for a p-subgroup Q of G, BrQ gives a bijection between p-blocks of G with

defect group Q and p-blocks of NG(Q) with defect group Q. Furthermore, if Q is the

defect group of B and b is the unique p-block of NG(Q) such that bG = B then b is called

the Brauer correspondent of B in NG(Q). Thus, a refinement of McKay’s Conjecture

in the form of (G,B)-subpairs is the following conjecture which is the Alperin-McKay

Conjecture.

Conjecture 2.5.4. Let B be a p-block of G, with defect group Q, and let b be the Brauer

correspondent of B in NG(Q, bQ). Then B and b contain the same number of irreducible

characters of height zero.

It is clear that the Alperin-McKay Conjecture implies the McKay’s Conjecture. How-

ever, the converse is not always true. For more details, the reader can see [50, Section 4,

p. 21] and [52, Chapter IV, §15]

Now, a natural generalization of both Alperin-McKay conjecture and Alperin’s Con-

jecture is Dade’s conjectures (see [62, 22, 21, 23, 24] for more details).

The simplest of Dade’s Conjectures is Dade’s Ordinary Conjecture, which can be

stated as follows:

Conjecture 2.5.5. Let G be a finite group, B be a p-block of G with nontrivial defect

group. Assume that the unique largest normal p-subgroup of G is trivial. Then for each

positive integer d, we have
∑

σ∈P(G)/G(−1)|σ|kd(B(σ)) = 0.

Dade’s Ordinary Conjecture holds for the following kind of groups:

• Unipotent p-blocks with an abelian defect group, according to the work of Broué,

Malle, and Michel (see [12]).

• Principal 2-block with abelian defect group, according to the work of Fong and

Harris (see [33]).
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• Symmetric groups by the work of Olsson, Uno, and An (see [56] and [8]).

• Blocks of alternating groups with abelian defect groups by the work of Fong and

Harris (see [34]).

• The principal p-block with an abelian defect group of sporadic groups, by the work

of Rouquier (see [68]).

• Some finite Chevalley groups.

• p-Blocks with cyclic defect groups by the work of Dade (see [23]).

• Some of sporadic simple groups.

In 1996, the paper ”Local structure, vertices and Alperin’s conjecture” by Geoffrey

R. Robinson [61], contains, among other things, new variants and interpretations of these

conjectures. In fact, this paper reveals the main difference between Geoffrey R. Robinson’s

approach and Everett C. Dade’s approach. The former relies on the theory of characters

of relatively projective modules, while the latter depends on the classification of finite

simple groups and blocks of twisted group algebras. We have seen also in this paper the

professional use of radical chains, computing the number of irreducible characters in a

p-block in terms of the fusion of p-subgroups and p-elements, and the subtle idea is the

consideration of the case that the unique largest normal p-subgroup of G is non-central.

Although Robinson’s conjectures in this paper and Dade’s conjectures are related, we

have to distinguish between the strategies which are involved in each approach. In the

following we state Dade’s Projective Conjecture (DPC):

Conjecture 2.5.6. Let G be a finite group, B be a p-block of G with nontrivial defect

group which is not central in G. Assume that Op(G) ≤ Z(G) and the defect group of B

contains Op(G) strictly. Then for each positive integer d, and for each linear character λ

of Op(G), we have
∑

σ∈P(G)/G(−1)|σ|+1kd(B(σ), λ) = 0.
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Now, in attempting to consider a conjecture, many ways are possible. One is to try

to apply the conjecture to a specific type of groups. A second way is to determine a p-

block with a certain defect group and attempt to satisfy the conjecture directly. A third

way is to assume that the conjecture holds for certain p-blocks and, accordingly, try to

obtain some theoretical consequences. A fourth approach is to convert the conjecture into

another environment to perform some sort of reduction theorem.

Using the theory of (G,B)-subpairs, Geoffrey R. Robinson has formulated this type

of conjecture in the sense that the stabilizers of the (G,B)-chains under consideration

are the inertial subgroups of the (G,B)-subpairs which are involved in such chains (see

[63]). It turns out that the stabilizer is the inertial group of a p-block of the centralizer of

a maximal p-group (usually, the defect group of the p-block B) in the original stabilizer

NG(σ).

Dade’s Projective Conjecture holds for the following kind of groups:

• p-solvable groups, according to the work of Geoffrey R. Robinson, (see [64]).

• In the case that the unique largest normal p-subgroup is cyclic and the correspond-

ing quotient has a trivial intersection Sylow p-subgroups, according to the work of

Charles Eaton, (see [30]).

• p-blocks with cyclic defect group, by the work of Everett C. Dade, see [22].

• Some sporadic simple groups.

In our case, we shall use the (G,B)-subpairs formulation of Dade’s Projective Conjec-

ture which was explicitly mentioned in [63].

Conjecture 2.5.7. Let G be a finite group, B be a p-block of G with non-trivial de-

fect group D and let (D, bD) be a maximal (G,B)-subpair. Let P(G,B) be a full set

of representatives for the distinct G-conjugacy classes of chains σ of (G,B)-subpairs

(Vσ, bσ) < (V1, b1) < · · · < (V σ, bσ), with (V σ, bσ) ≤ (D, bD), CD(Vσ) = Z(Vσ) and
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(D, bD) contains a maximal (NG(σ), B(σ)) − subpair. Assume that Op(G) ≤ Z(G) and

that D contains Op(G) strictly. Then, whenever d is a positive integer and λ is a linear

character of Op(G), we should have kd(B, λ) =
∑

σ∈P(G,B)(−1)|σ|+1kd(B(σ), λ).

However, we shall deal with the Ordinary Weight Conjecture (OWC) which can be

formulated for any finite group and without the assumption that the unique largest normal

p-subgroup is central (see [67] for more details).

Conjecture 2.5.8. Let G be a finite group, B be a p-block of G with non-trivial de-

fect group D and let (D, bD) be a maximal (G,B)-subpair. Let N (G,B) be a full set

of representatives for the distinct G-conjugacy classes of chains σ of (G,B)-subpairs

(Vσ, bσ) < (V1, b1) < · · · < (V σ, bσ) with (V σ, bσ) ≤ (D, bD), CD(Vσ) = Z(Vσ) and

(D, bD) contains a maximal (NG(σ), B(σ))− subpair. Then, whenever d is a non-negative

integer, we should have

kd(B) =
∑

σ∈N (G,B)

(−1)|σ|+1
∑

µ∈Irrd(Vσ)/NG(σ)

f
(B)
0 (ING(σ)(µ)/Vσ),

where f
(B)
0 (ING(σ)(µ)/Vσ) denotes the number of p-blocks of defect zero of ING(σ)(µ)/Vσ.

In this thesis, we shall choose that D, in Conjecture 2.5.7 and Conjecture 2.5.8, be an

extra-special p-group of order p3 and exponent p for an odd prime number p. We prefer

to use the letter E instead of D.

Lemma 2.5.9. Let G be a finite group, B be a p-block of G with a defect group which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Assume

that Op(G) ≤ Z(G). Then the OWC and the DPC are equivalent.

Proof: This is an especial case of the results in [31]. �

We shall study the predictions of both the DPC and the OWC. Hence, this choice of

the defect group justifies the following section.
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2.6 The characters of extra-special p-groups of order

p3

In this section, we are concerned with some properties of an extra-special p-group, say

E, of order p3 and exponent p, where p is an odd prime number. To determine the orbit

structure of characters, we have studied some properties of the automorphism group of E

and its maximal subgroups.

It is well known that, up to isomorphism, there are two types of non-abelian groups of

the order p3, (see [9, 23.13 & 23.14]). Now E is a non-abelian p-group since by definition,

Z(E) = [E,E] = Φ(E) ∼= Cp. If E has an exponent p, then E can be represented as

E = 〈x, y, z, |xp = yp = zp = [x, z] = [y, z] = 1 & [x, y] = z〉. (2.6.1)

While if E has an exponent p2 then

E = 〈x, y, z, |xp2 = yp = zp = [x, z] = [y, z] = 1 & [x, y] = z〉. (2.6.2)

Through-out this thesis, we fix that E to be an extra-special p-group of order p3 and

exponent p for an odd prime number p. Hence, the presentation of E will be that in 2.6.1.

We fix that Z(E) = 〈z〉. For the character table of E, we have the following:

Lemma 2.6.1. E has p2 + p − 1 ordinary irreducible characters, where p2 of them are

linear irreducible characters and the remaining p−1 are non-linear irreducible characters,

each of which is of degree p and each of which vanishes off Z(E).

Proof: The number of linear irreducible characters of E is the index of the commutator

subgroup of E. Hence, this number is p2. Also, since the degree of every irreducible

character of E must be 1 or p (p2 is already too large) and the number of linear irreducible
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characters of E is p2, we have p2+p2r = p3, where r is the number of non-linear irreducible

characters of E. It follows that r is p− 1.

Now if e ∈ E−Z(E), we see that |CE(e)| = p2. Therefore, the orthogonality relations

give us that each of non-linear irreducible characters of E vanishes off Z(E). �

Now we shall establish a number of properties of the automorphism group of E.

Lemma 2.6.2. The automorphism group of E is (Cp × Cp) oGL(2, p).

Proof: The proof of this fact can be found in [25, Theorem 8.20]. �

Suppose that E occurs as a defect group of a p-block B of some finite group G,

and that (E, bE) is a maximal (G,B)-subpair. Since NG(E, bE)/CG(E) is a subgroup

of the automorphism group of E, the inertial subgroup of each irreducible character of

E in NG(E, bE) is a homomorphic image of a subgroup of Aut(E). According to [49,

Chapter 13, Lemma 13.1] or [53, Chapter 5, Theorem 5.16 (b)], ING(E,bE)(η)/ECG(E)

is a p
′
-subgroup of Aut(E) for each irreducible character η of E. On the other hand,

each maximal subgroup of E can be regarded as a vector space over GF (p). Let M be a

maximal subgroup of E. Then M = 〈e, z | ep = zp = [x, z] = 1〉, where e ∈ E − Z(E).

It is well-known that GL(2, p) is the automorphism group of M , (see for instance, [3,

Chapter 2, Section 4, Proposition 1]).

It is clear that SL(2, p) is a normal subgroup of the automorphism groups of both E

and its maximal subgroup M . Now let η be an element of GL(2, p), we can then represent

η as the following matrix:

η =

a11 a12

a21 a22

 , where, aij ∈ GF (p), i, j ∈ {1, 2} and det(η) 6= 0. (2.6.3)
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We can define the action of η on E as follows:

xη = xa11ya12 . (2.6.4)

yη = xa21ya22 . (2.6.5)

Now it is clear that if g1, g2 and g3 are arbitrary elements of a group G, then

[g1, g2g3] = [g1, g3][g1, g2]
g3 .

Similarly

[g1g2, g3] = [g1, g3]
g2 [g2, g3].

Now in our group E, [g1, g2] ∈ Z(E) for all g1 and g2 in E. Then the above identities

reduce to

[g1, g2g3] = [g1, g3][g1, g2] = [g1, g2][g1, g3]

and

[g1g2, g3] = [g1, g3][g2, g3].

Therefore, using 2.6.4 and 2.6.5 and repeating the arguments above for a suitable number

of times, we obtain

zη = [x, y]η = [xη, yη] = [xa11ya12 , xa21ya22 ] = [x, y]a11a22−a12a21 = zdet(η). (2.6.6)

Lemma 2.6.3. SL(2, p) acts trivially on the centre of E. Furthermore, no larger subgroup

of GL(2, p) than SL(2, p) acts trivially on the centre of E.

Proof: Since Z(E) = 〈z〉 and every element in SL(2, p) has the determinant 1, the

result follows from 2.6.6. �
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Consider now the group C2×C2 as a subgroup of the automorphism group of E. Then

we can represent this group as follows:

〈a, b : a2 = b2 = (ab)2 = c2 = 1〉 (2.6.7)

where

1 =

1 0

0 1

 , a =

1 0

0 −1

 , b =

−1 0

0 1

 , and c =

−1 0

0 −1

 . (2.6.8)

Then, we see the action of C2 × C2 on E as follows:

xa = x, ya = y−1, za = [x, y]a = [xa, ya] = [x, y−1]. (2.6.9)

It is clear that

za = z−1, (2.6.10)

as det(a) = −1. This means that a inverts the centre of E. Similarly, b inverts Z(E) and

c centralizes Z(E).

The following lemma is useful for counting the number of extensions of the characters.

Lemma 2.6.4. We have, 1 = ECG(E) ∩ 〈a〉 = ECG(E) ∩ 〈b〉 = ECG(E) ∩ 〈c〉.

Proof: This is clear from the relations above. �

Now let us fix P to be an arbitrary Sylow p-subgroup of SL(2, p). It is well-known

that SL(2, p) has p + 1 Sylow p-subgroups. One can see that NSL(2,p)(P )/P ∼= Cp−1.

Furthermore CSL(2,p)(P )/P ∼= Z(SL(2, p)) ∼= C2. Let us record the following lemma:

Lemma 2.6.5. With the notation above, NSL(2,p)(P )/CSL(2,p)(P ) ∼= C p−1
2
.
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Proof: This is clear from the relations above. �

Lemma 2.6.6. SL(2, p) is generated by its p-elements and has a trivial Schur multiplier

for p ≥ 5.

Proof: The proof for the first statement can be found in [38, Chapter 2, Theorem

8.4], while the other half can be found in [43, Section 7.1, Theorem 7.1.1 (i)] or [70]. �

The following theorem is very useful for us in certain places in this thesis.

Theorem 2.6.7. Every proper subgroup of SL(2, p) of order divisible by p has a unique

Sylow p-subgroup. This means that the largest normal p-subgroup of such a group is non-

trivial.

Proof: Since, on the one hand, SL(2, p) has order (p− 1)p(p+ 1), it has p+ 1 Sylow

p-subgroups, each of which is a cyclic p-subgroup of order p. Now let H be a proper

subgroup of SL(2, p) with order divisible by p. Thus, H has at most p + 1 Sylow p-

subgroups. On the other hand, the number of Sylow p-subgroups of H is congruent to

1 mod (p) and divides p + 1. Therefore, H has a unique Sylow p-subgroup which is a

necessarily normal p-subgroup of H or it has p+1 Sylow p-subgroups. However, if H has

p+ 1 Sylow p-subgroups then H contains all Sylow p-subgroups of SL(2, p). In this case,

the first part of Lemma 2.6.6 implies that H = SL(2, p), which is not the case, as H is a

proper subgroup of SL(2, p). �
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Chapter 3

FUSION PATTERNS AND THE

ORBIT STRUCTURE ON

CHARACTERS

3.1 Introduction

In this chapter, our main concerns are fusion patterns and the orbit structure of irreducible

characters. Thus, we start in Section 3.2 to discuss the notion of nilpotent p-blocks. Next,

we study the action of the inertial quotient on a certain Frattini quotient in Section 3.3.

The action of SL(2, p) on a maximal subgroup of the defect group E is introduced in

Section 3.4. Section 3.5 is devoted to the fusion patterns and cancellation theorems.
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3.2 Nilpotent p-blocks and p-nilpotent groups

In this section, we shall discuss the notions of nilpotent p-blocks and p-nilpotent

groups. We shall follow [13] and [46] for the definition of nilpotent p-blocks.

Definition 3.2.1. Let G be a finite group, B be a p-block of G with a defect group D. Let

(D, bD) be a maximal (G,B)-subpair. We say that B is a nilpotent p-block if the quotient

group NG(Q, bQ)/CG(Q) is a p-group, whenever (Q, bQ) ≤ (D, bD).

It is clear that p-blocks of defect zero and p-blocks with central defect groups are

examples of nilpotent p-blocks.

Recall that the subgroup of G which is generated by all p-regular elements is a normal

subgroup, which we denoted by Op(G). Note that Op(G) is the minimal normal subgroup

of G such that G/Op(G) is a p-group. Therefore, Definition 3.2.1 says that B is a nilpo-

tent p-block when Op(NG(Q, bQ)) ≤ CG(Q), for each (G,B)-subpair (Q, bQ) ≤ (D, bD).

However, in general, Op(G) need not be a p
′
-group.

The following definition appears in [67].

Definition 3.2.2. Let B be a p-block of G with defect group D. Fix a maximal (G,B)-

subpair (D, bD). A (G,B)-subpair (Q, bQ) which is contained in (D, bD) is called a p-

radical (G,B)-subpair if, Op(NG(Q, bQ)/QCG(Q)) = 1.

A p-nilpotent group is one which has a normal p-complement. Let us record the

definition of a p-nilpotent group.

Definition 3.2.3. Let X be a finite group. We say that X is a p-nilpotent group if

X = Op′ (X) o P, where P is a Sylow p-subgroup of X and Op′ (X) is the unique largest

normal p
′
-subgroup of X.

We are in the situation that Op′ (X) = Op(X). Hence, p does not divide the order of

the group Op(X) in this case.
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Let us now state the following theorem which links nilpotent p-blocks with p-nilpotent

groups. In fact, Theorem 3.2.4 below is the criterion for p-nilpotency which is due to

Frobenius, see [49, Chapter 14] and [71, Chapter 7, §49] for more details.

Theorem 3.2.4. Let G be a finite group and denote its principal p-block by B0(G). Then

G is a p-nilpotent group if, and only if, B0(G) is a nilpotent p-block.

Proof: Let P be a Sylow p-subgroup of G. Then P is a defect group of the principal

p-block B0(G). Now if G is a p-nilpotent group then NG(Q)/CG(Q) is a p-group for each

Q ≤ P . Hence, B0(G) is a nilpotent p-block.

Conversely, assume that B0(G) is a nilpotent p-block. Then NG(Q)/CG(Q) is a p-

group, for each Q ≤ P . This is equivalent to saying that G is a p-nilpotent group. �

Lemma 3.2.5. Assume that E is a Sylow p-subgroup of the finite group G. Then, the

centralizer CG(M) is a p-nilpotent group. In particular, CG(M) = M ×Op′ (NG(M, bM)).

Proof: It is clear that M and Op′ (NG(M, bM)) are normal subgroups of CG(M)

and M ∩ Op′ (NG(M, bM)) = 1. Moreover, CG(M) = M ·Op′ (NG(M, bM)). However,

([CG(M) : M ], |M |) = 1. Thus, the Schur-Zassenhaus Theorem (see [9, 18.1, p. 70])

completes the proof of Lemma 3.2.5. �

Corollary 3.2.6. For the principal p-block B0(G) with defect group E which is an extra-

special p-group of order p3 and exponent p, we have CG(E) = Z(E)×Op′ (NG(E, bE)).

Proof: It is clear that Z(E) is an abelian normal Sylow p-subgroup of CG(E). There-

fore, the result follows from the Schur-Zassenhaus Theorem (see [9, 18.1, p. 70]). �

Lemma 3.2.7. Let B be a nilpotent p-block of the finite group G with defect group D.

Then, B has a unique irreducible Brauer character. Furthermore, if D is abelian then B

has |D| irreducible ordinary characters.
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Proof: The proof can be found in [13]. See also [11]. �

Lemma 3.2.8. Let H be a normal subgroup of the finite group G such that G/H is a

p-group. Let b be a G-stable nilpotent p-block of H. Then b is nilpotent as a p-block of G.

Proof: This is [15, Theroem 2] �

Let us now try to exploit these facts about M , E and their centralizers.

Corollary 3.2.9. Let G be a finite group with a Sylow p-subgroup E, which is an extra-

special p-group of order p3 and exponent p for an odd prime p. Let M be an arbitrary

maximal subgroup of E. Then, each p-block of CG(M) and of CG(E) is nilpotent.

Proof: This is clear because M and Z(E) are central p-subgroups of CG(M) and of

CG(E), respectively. �

3.3 The faithful action of the inertial quotient on the

Frattini quotient

In this section, we shall be concerned with the action of the inertial quotient of an

arbitrary (G,B)-subpair on a certain elementary abelian p-group.

Let U be an arbitrary p-subgroup of G. Consider a p-block idempotent bU in CG(U)

such that bGU = B. Then (U, bU) is a (G,B)-subpair. The normalizer subgroup of (U, bU)

is NG(U, bU) = {g ∈ G | U g = U & bgU = bU}.

The Frattini subgroup of U which is denoted by Φ(U) is the intersection of all maximal

subgroups of U . Since U is a p-group, each maximal subgroup of U is a normal subgroup

of index p. It follows that, if N is a maximal subgroup of U , then U/N ∼= Cp. On
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the one hand, U/N is an abelian group for each maximal subgroup N of U implies that

U
′
= [U,U ] ≤ Φ(U), where U

′
= [U,U ] is the commutator subgroup of U . Consequently,

U/Φ(U) is an abelian group, as it is a subgroup of the abelian group U/U
′
.

On the other hand, if u ∈ U , then N = (uN)p = upN. So, for each u ∈ U , up ∈ N .

This situation recurs for each maximal subgroup of U . Hence, up ∈ Φ(U) for each u ∈ U .

This means that the Frattini quotient Ū := U/Φ(U) is an elementary abelian p-group.

From now on, ū will be written instead of uΦ(U) for any element of Ū .

Now if g ∈ NG(U, bU), then ug ∈ U for each u ∈ U . Thus, NG(U, bU) acts on Ū by the

rule ūg = ug.

Lemma 3.3.1. Let G be a finite group, let B be a p-block of G, let (U, bU) be a (G,B)-

subpair. Then the inertial subgroup NG(U, bU) acts on the Frattini quotient Ū .

Proof: This is clear from the discussion above. �

Now U is a normal subgroup of NG(U, bU). Then, we consider the restriction of the

action which has been defined above to U . We claim that U acts trivially on Ū . To show

this, let x̄ ∈ Ū and u ∈ U . Then

x̄u = xu. (3.3.1)

We observe that

xu = 1G·u−1xu = x(x−1u−1xu) = x· [x, u]. (3.3.2)

However, [U,U ] ≤ Φ(U), and hence, [x, u] ∈ Φ(U). So, we conclude that

x̄u = xu = x̄[x, u] = x̄. (3.3.3)

This means that U acts trivially on the Frattini quotient Ū . Similarly, we can consider
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the restriction of the action above from NG(U, bU) to its normal subgroup CG(U). Again,

we claim that CG(U) acts trivially on Ū . To see this, observe that if g ∈ CG(U) then

ug = u for each u ∈ U . Thus, obviously, ūg = ug = ū. As a result, the normal subgroup

UCG(U) of NG(U, bU) acts trivially on the Frattini quotient Ū .

Lemma 3.3.2. With the notation as above, UCG(U) acts trivially on Ū .

Proof: The proof is clear from the discussion above. �

Now let us consider NG(U, bU)/UCG(U). It is a subgroup of the automorphism group

of U . We define the action of this group on Ū as follows:

Definition 3.3.3. We define the action of the inertial quotient NG(U, bU)/UCG(U) on

the Frattini quotient by the rule: for each ḡ ∈ NG(U, bU)/UCG(U), and for each ū ∈ Ū ,

ūḡ := ug. (3.3.4)

Note that Definition 3.3.3 makes sense because UCG(U) acts trivially on Ū . Accord-

ingly, there is a group homomorphism

ρ : NG(U, bU)/UCG(U)→ Aut(Ū);

such that for all ḡ ∈ NG(U, bU)/UCG(U),

ρ(ḡ) = ρḡ : Ū → Ū ; (3.3.5)

where

ρḡ(x̄) = xg, (3.3.6)

for each x̄ ∈ Ū .
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What is the kernel of this action? It is the kernel of the homomorphism ρ. Thus, it is

a normal subgroup of NG(U, bU)/UCG(U).

The following proposition guarantees that this normal subgroup of the inertial quotient

NG(U, bU)/UCG(U) is a p-group. Note that if ψ is an automorphism of a group and g

is an element in this group, then the commutator element [g, ψ] is the element g−1· gψ,

where gψ is the image of g under ψ.

Proposition 3.3.4. The kernel of the action of the inertial quotient NG(U, bU)/UCG(U)

on Ū is a p-group.

Proof: Let ḡ be an arbitrary p-regular element in this kernel. Then ḡ = g·UCG(U)

for some p-regular element g ∈ NG(U, bU) and

ρḡ(x̄) = idŪ(x̄) = x̄, (3.3.7)

for each x̄ ∈ Ū .

Consequently,

xg = x̄, (3.3.8)

for each x̄ ∈ Ū . So,

x̄−1·xg = 1̄, (3.3.9)

for each x̄ ∈ Ū . Therefore,

x̄−1·xg = x̄−1·xḡ = [x̄, ḡ] = 1̄, (3.3.10)

for each x̄ ∈ Ū . Hence, [Ū , ḡ] = 1̄.

Now ḡ is a p-regular element of the automorphism group of U , which induces the
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identity automorphism of Ū . Hence, by a theorem of W. Burnside (see [38, Chapter 5,

Theorem 1.4]), we deduce that

[x, g] = 1, (3.3.11)

for each x ∈ U . We can read 3.3.11 as that g ∈ CG(U). Consequently, g ∈ UCG(U).

Therefore, ḡ = 1̄.

Now we are in the situation that each p-regular element of NG(U, bU) which acts triv-

ially on the Frattini quotient Ū is a member of UCG(U). As a result, the kernel of this

action is a normal p-subgroup in the inertial quotient NG(U, bU)/UCG(U). This completes

the proof. �

The first benefit from Proposition 3.3.4, is the following corollary:

Corollary 3.3.5. Let G be a finite group, B be a p-block of G with a defect group D.

Then, for each maximal (G,B)-subpair (D, bD), NG(D, bD)/DCG(D) acts faithfully on

the Frattini quotient D/Φ(D).

Proof: By Proposition 3.3.4, the kernel of the action of NG(D, bD)/DCG(D) on the

Frattini quotient D/Φ(D) is a normal p-subgroup of NG(D, bD)/DCG(D). But, according

to [49, Chapter 13, Lemma 13.1] or [53, Chapter 5, Theorem 5.16 (b)], NG(D, bD)/DCG(D)

is a p
′
-group. Hence, NG(D, bD)/DCG(D) acts faithfully on the Frattini quotientD/Φ(D).

�

Another consequence of Proposition 3.3.4 is the following corollary:

Corollary 3.3.6. Let G be a finite group, B be a p-block of G. Then for each max-

imal (G,B)-subpair (D, bD), NG(D, bD)/DCG(D) is isomorphic to a p
′
-subgroup of the

automorphism group of D/Φ(D).
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Proof: This is clear from Proposition 3.3.4. �

Note that Corollary 3.3.5 and Corollary 3.3.6 are true for each maximal (G,B)-subpair

(D, bD) without any further assumption on D. However, if D is an elementary abelian

p-group, then Φ(D) = 1. Hence, we are in the old situation.

Now let us return back to the case that D is an extra-special p-group of order p3 and

exponent p for an odd prime number p, which we prefer to denote by E. Assume that

E is generated by x, y and z, where z is the generator of the centre of E. Let M be a

maximal subgroup of E. It is clear that M = 〈g, z〉, where g is a non-central element of

E. Let us assume that g = x.

According to Corollary 3.3.6, NG(E, bE)/ECG(E) is isomorphic to a p
′
-subgroup of

the automorphism group of E/Φ(E). On the one hand, E/Φ(E) ∼= Inner(E), where

Inner(E) is the inner automorphism group of E. But, we know thatAut(E) = Inner(E)o

GL(2, p). On the other hand, E/Φ(E) = 〈xΦ(E), yΦ(E)〉 ∼= Cp × Cp. Write Ē for

E/Φ(E). So, Aut(Ē) ∼= GL(2, p). Also Aut(M) ∼= GL(2, p). Therefore, in any case,

we have to work in GL(2, p). Note that 〈x, y〉 is not a maximal subgroup of E. In

fact, E/Φ(E) = 〈xΦ(E), yΦ(E)〉 = [〈x, y〉Φ(E)]/Φ(E). So, E = 〈x, y〉Φ(E) and, hence,

E = 〈x, y〉. Now NG(M, bM)/CG(M) is a subgroup of GL(2, p). Then, there are three

cases which should be distinguished:

1. NG(M, bM)/CG(M) is a p
′
-group. But this case does not occur, because it would

lead us to the situation that E ≤ CG(M), which is not the case.

2. NG(M, bM)/CG(M) has a unique Sylow p-subgroup, which is necessarily a nor-

mal p-subgroup. According to Proposition 3.3.4, it is the kernel of the action of

NG(M, bM)/CG(M) on M . Thus, its inverse image ECG(M) will be a normal sub-

group of NG(M, bM).

3. NG(M, bM)/CG(M) has p + 1 Sylow p-subgroups, and, hence contains SL(2, p).
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Hence, Op(NG(M, bM)/CG(M) = 1. It follows that each such (G,B)-subpair is a

p-radical.

Now the set of maximal subgroups of E can be regarded as an NG(E)-set. This is

because, if M is a maximal subgroup of E, then M g is also a maximal subgroup of E

for each g ∈ NG(E). Therefore, under this action, this set is partitioned into NG(E)-

conjugacy classes. It is important to know exactly what the G-conjugacy classes are of

the maximal subgroups of E which are radical p-subgroups of G. Note that the stabilizer

of M under this action is NG(M) ∩ NG(E). Similarly, the set of (G,B)-subpairs which

are contained in the maximal (G,B)-subpair (E, bE) is an NG(E, bE)-set. In this case,

the stabilizer of (M, bM) is the subgroup NG(M, bM) ∩NG(E, bE) of G.

Lemma 3.3.7. There is a one to one correspondence between maximal subgroups of E

and the maximal subgroups of E/Z(E).

Proof: This is clear because Φ(E) = Z(E). �

Now Lemma 3.3.7, gives us the opportunity to deal with maximal subgroups of

E/Z(E). We shall consider the action of NG(E, bE)/ECG(E) on the maximal subgroups

of E/Z(E).

Lemma 3.3.8. E has p+ 1 maximal subgroups, each of which contains the centre of E.

Proof: Let M be a maximal subgroup of E/Z(E). Then, M has order p, and hence,

M has p− 1 nontrivial elements. Since E/Z(E) has order p2, we must have p2−1
p−1

= p+ 1

maximal subgroups of E/Z(E). Hence, Lemma 3.3.7 completes the first part of the

lemma. Now, if there is a maximal subgroup of E which does not contain Z(E), then

this is a contradiction with the definition of the Frattini subgroup of E. Therefore, each

maximal subgroup of E contains the centre of E. �
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Corollary 3.3.9. Let G be a finite group with an extra-special p-subgroup E of order p3

and exponent p, for an odd prime number p. Assume that NG(E, bE)/ECG(E) ∼= C2×C2.

Then, the action of NG(E, bE) on the maximal subgroups of E, has p+3
2

orbits.

Proof: According to Lemma 3.3.7, it is enough to study the action on the correspond-

ing maximal subgroups of Ē := E/Z(E). Since ECG(E) acts trivially on the maximal

subgroups of Ē, we have to consider the action of NG(E, bE)/ECG(E) on this set. Now,

counting fixed points, by a familiar counting argument which is attributed to Burnside

[55, Theorem 9.1, p. 100], we have the number of orbits under this action. Note that we

are seeking for a set-wise fixed point, as we are dealing with maximal subspaces. Conse-

quently, using the notation in Section 2.6, the automorphisms a and b fix only 2 maximal

subspaces, while the automorphisms 1 and c fix all maximal subspaces. As a result, the

number of orbits is p+3
2

. �

3.4 The natural action of SL(2, p) on a maximal sub-

group of E.

Let p be an odd prime number. Let M be an arbitrary maximal subgroup of E. Regarding

M = 〈x, z〉 as a vector space over GF (p), SL(2, p) acts on M in a natural way. We shall

discuss this action of SL(2, p) on M . Consider H ∼= M o SL(2, p). Now H is a finite

group of order (p − 1)p3(p + 1). This group has a Sylow p-subgroup, say S, of the form

M o 〈η〉 where η is the linear map η : M → M, such that η(x) = x + z and η(z) = z.

We observe that η is of order p. Consequently, S is an extra-special p-group of order p3

and exponent p. We claim that H has a unique p-block, namely the principal p-block

B0(H). To show this, it is enough (see [32, Corollary 3.11, Chapter V, p. 200]), to find a

normal p-subgroup of H which is self-centralizing in H. On the basis of the construction

above, M is a normal p-subgroup of H. So, we have to prove that CH(M) ∼= M. However,
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CH(M) = M o CSL(2,p)(M). The following proposition completes the claim that M is

self-centralizing in H.

Proposition 3.4.1. Regarding M as a vector space over GF (p),

CSL(2,p)(M) = {s ∈ SL(2, p) : s·m = m, ∀ m ∈M} = 1. (3.4.1)

Proof: Let us write M = 〈x, z〉, where x :=

1

0

 and z :=

0

1

. One can identify

maximal subgroups of M with maximal subspaces of M . Then M has p + 1 maximal

subspaces, namely,

M (M) := {H∞, H0, Hλ : λ ∈ GF (p)− {0}}, (3.4.2)

where,

H∞ := {

i
0

 : i ∈ GF (p)}, (3.4.3)

H0 := {

0

i

 : i ∈ GF (p)} (3.4.4)

and

Hλ := {

 i

iλ

 : i ∈ GF (p) & λ ∈ GF (p)− {0}}. (3.4.5)
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Now an easy matrix computation shows that

CSL(2,p)(H∞) = {

1 b

0 1

 : b ∈ GF (p) } ∼= Cp,

CSL(2,p)(H0) = {

1 0

b 1

 : b ∈ GF (p) } ∼= Cp,

and

CSL(2,p)(Hλ) = {

1− λb b

−λ2b 1 + λb

 : b ∈ GF (p) } ∼= Cp.

Therefore,

1 0

0 1

 is the unique element of SL(2, p), which fixes each element of M .

This completes the proof of the proposition. �

Corollary 3.4.2. There is a one to one correspondence between the maximal subspaces

of M and Sylow p-subgroups of SL(2, p).

Proof: By the proof of Proposition 3.4.1, we have seen that each maximal subspace

of M has a Sylow p-subgroup as a stabilizer group. Then the map sending a maximal

subspace to its stabilizer is a one to one map between two sets with the same cardinality.

Thus each Sylow p-subgroup of SL(2, p) is the stabilizer of a unique maximal subspace of

M . This establishes the required correspondence. �

Now by Proposition 3.4.1, CSL(2,p)(M) = 1, and, hence, CH(M) ∼= M. Thus, it is

implied [32, Corollary 3.11, Chapter V, p. 200] that H has a unique p-block.

With the same argument, one can show also that the normalizer of the Sylow p-

subgroup S in H has only one p-block. Therefore, they correspond to each other by

Brauer’s Third Main Theorem on p-blocks [20, Theorem 61.16, Chapter 7, §61 C ].
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On the one hand, NH(M) = H, because M is a normal subgroup of H. Thus,

NH(M)/CH(M) = H/M ∼= SL(2, p).On the other hand, it is clear thatNH(S)/SCH(S) ∼=

Cp−1.

Lemma 3.4.3. With the notation above, Op(H) = M 6≤ Z(H).

Proof: This is clear from the construction above. �

Now let X denote the set of non-zero vectors of M . Then the cardinality of X is p2−1.

Consequently, SL(2, p) acts on X. We claim that this action is transitive. To see this, let

a and b be arbitrary distinct elements in X. Then there are i , j, k, l ∈ {0, 1, 2, · · · , p−1}

such that

a =

i
j

 6=
k
l

 = b.

Now if i = 0 = k, then 0 6= j 6= l 6= 0, and we have,

l−1j 0

0 j−1l

 ·
0

j

 =

0

l

 .
Hence, we may assume that i 6= 0 6= k. Then the matrix

s :=

 i−1(k − jb) b

i−1(l − jk−1(i+ lb)) k−1(i+ lb)


satisfies

s· a =

 i−1(k − jb) b

i−1(l − jk−1(i+ lb)) k−1(i+ lb)

 ·
i
j

 =

k
l

 = b.

The above calculations enable us to exploit the isomorphism as an SL(2, p)-set between

the set of non-trivial irreducible ordinary characters of M and the set of non-zero vectors

of M to deduce Theorem 3.4.4 below. This gives us the opportunity to reduce some
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alternating sums under consideration.

Theorem 3.4.4. If SL(2, p) / NG(M, bM)/CG(M) then, NG(M, bM) acts transitively on

the set of non-trivial irreducible characters of M .

Proof: This is clear from the discussion above and the fact that CG(M) acts trivially

on the set of irreducible characters of M . �

Corollary 3.4.5. With the assumption on Theorem 3.4.4, NG(M, bM) has two orbits

when it acts on the set of irreducible characters of M , namely, the trivial character and

the other p2 − 1 non-trivial irreducible characters of M .

Proof: This is clear from the discussion above. �

Let us consider the restriction of this action to an arbitrary Sylow p-subgroup, say P ,

of SL(2, p). In this situation, we have a non-trivial p-group acting on a set of cardinality

p2− 1. So, the set of fixed points of X under this action is non-empty because 0 6≡ |X| ≡

|FixX(P )| (mod p), where FixX(P ) refers to the set of fixed points of X under the action

by P . So, if x ∈ FixX(P ), then x generates a maximal subspace of M , which is invariant

under the action by P . However, by Corollary 3.4.2, P fixes a unique maximal subspace

of M . The conclusion from this discussion is the following theorem.

Theorem 3.4.6. With the above notation, a Sylow p-subgroup of SL(2, p) fixes p − 1

non-zero vectors of M .

Proof: The result follows from Corollary 3.4.2. �

Now let us consider the Sylow normalizer group, NSL(2,p)(P ), where P is an arbitrary

Sylow p-subgroup of SL(2, p). It acts on the set of non-zero vectors of M . According to

Corollary 3.4.2, its unique Sylow p-subgroup fixes p− 1 non-zero vectors. As a result, we

have the following theorem:
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Theorem 3.4.7. The Sylow normalizer NSL(2,p)(P ) has two orbits when it acts on the

set of non-zero vectors of M . Furthermore, one of these orbits has a stabilizer subgroup

which is isomorphic to the unique cyclic p-group of order p and the other has the trivial

subgroup as a stabilizer group.

Proof: The typical element inNSL(2,p)(P ) has the form

α β

0 α−1

, where α ∈ GF (p)−

{0} and β ∈ GF (p). It has p2 − p elements, the identity element, p− 1 p-elements and a

further p2−2p elements. Obviously, the action is not transitive as x cannot be transformed

into z, otherwise, α would be zero, which is not the case. Hence, by Burnside’s Counting

Theorem [27, Chapter XIII, Section 52]) we deduce that

# Orbits =
(p2 − 1) + (p− 1)(p− 1)

p2 − p
= 2. (3.4.6)

Now, it is clear that the representatives for these two orbits are x and z. Further matrix

calculation shows that |[x]| = p−1 and |[z]| = p2−p. Thus, the Orbit-Stabilizer Theorem

yields that each element of [x] has a stabilizer subgroup which is a cyclic p-subgroup of

order p, namely, the Sylow p-subgroup and each element of [z] has the trivial subgroup

as a stabilizer group. �

3.5 An attempt to understand the fusion patterns

Let G be a finite group, H be a subgroup of G. Assume that G acts on a non-empty set

X. In our case, X may be a collection of p-subgroups or a collection of (G,B)-subpairs.

One can consider the restriction of this action to the subgroup H of G. But many of the

properties of the former action cannot be inherited to this restriction. In the following,

we shall investigate under which condition we might find an action with an element of
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G which could be performed by an element from H. This kind of phenomenon is called

fusion. Since G acts on the collection of all (G,B)-subpairs, we shall consider that X

above is a collection of (G,B)-subpairs which are contained in a maximal (G,B)-subpair.

We start with the definition of fusion.

Definition 3.5.1. Let G be a finite group, H be a subgroup of G, and let X be a collection

of (G,B)-subpairs. We say that H controls the fusion of X if, whenever (Q, bQ) and

(P, bP ) are two arbitrary elements in X with (Q, bQ)g = (P, bP ) for some g ∈ G then

g = ch for some c ∈ CG(Q) and h ∈ H.

Let us go back to considering E as an extra-special p-group of order p3 and exponent p,

for an odd prime number p. In the following, we discuss the possibilities of chains within

E. Note that Mi refers to a maximal normal subgroup of E of order p2 and exponent p.

1. σ1 : 1G.

2. σ2 : 〈e〉, e 6∈ Z(E)

3. σ3 : 〈e〉 < Mi, e 6∈ Z(E), where i = 1, · · · , p+ 1.

4. σ4 : 〈e〉 < Mi < E, e 6∈ Z(E), where i = 1, · · · , p+ 1.

5. σ5 : Mi, i = 1, · · · , p+ 1.

6. σ6 : Z(E).

7. σ7 : Z(E) < Mi, i = 1, · · · , p+ 1.

8. σ8 : Mi < E, i = 1, · · · , p+ 1.

9. σ9 : Z(E) < Mi < E, i = 1, · · · , p+ 1.

10. σ10 : E.
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Lemma 3.5.2. Let E be an extra-special p-group of order p3 and exponent p for an odd

prime number p in a finite group G. Let M be a maximal subgroup of E which is a radical

p-subgroup of G. Then, NG(M) 6≤ NG(E).

Proof: Suppose that NG(M) ≤ NG(E). Then, Lemma 2.3.4 implies that E ≤ M ,

which is not the case. �

The contribution from chains which start with a non-radical p-subgroups is zero (see

[63, Corollary 1.2]).

Recall that an indecomposable G-module, say N , is called an H-projective G-module

if there exists an H-module L such that N is a direct summand of the induced G-module

IndGH(L). For more details for this account see [19, Chapter 2, §19]. There is an analogous

character theory. So, we give the following definition:

Definition 3.5.3. Let G be a finite group with normal p-subgroup U . Let χ be an ir-

reducible character of G which is afforded by a U-projective RG-module. Then, we say

that χ is a U-projective irreducible character of G with respect to the p-modular system

(K, R, F ).

For more details of this direction, see [47] or [60]. However, in the following, we state

the theorems which are the main tools for counting the numbers of p-blocks of defect zero

lying over certain irreducible characters of a normal p-subgroup of the finite group G.

It is well-known that p-blocks of defect zero of the finite group G are in a one to one

correspondence with irreducible ordinary characters χ of G in such a way that χ(1)p =

|G|p = [G : 1G]p, (see [51, Chapter I, Proposition 16.1]). A generalization of this fact for

U -projective characters where U is a normal p-subgroup of the finite group G is due to

Burkhard Külshammer and Geoffrey R. Robinson, see [47] or [61].

Lemma 3.5.4. Let U be a normal p-subgroup of the finite group G. Then, there is a one

to one correspondence between U-projective irreducible characters of G which lie over an
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irreducible character η of U and the p-blocks of defect zero of IG(η)/U .

Proof: This is [47, Proposition 3.2 (ii) & (iii)]. �

Lemma 3.5.5. Let U be a normal p-subgroup of the finite group G and let χ be an

irreducible ordinary character of G, which belongs to a p-block with a defect group D.

Assume that CD(U) = Z(U). Then, χ is U-projective if, and only if, (χ(1)
η(1)

)p = |G/U |p,

for each irreducible character η of U which appears in ResGU (χ).

Proof: This is [61, Lemma 4.4]. �

It is clear that if χ is a U -projective irreducible character of the finite group G, then

χ is also UCG(U)-projective. However, the converse holds for normal p-subgroups U of G

which are self-centralizing in the defect group of the p-block which contains χ.

Lemma 3.5.6. Let U be a normal p-subgroup of the finite group G and let χ be an

irreducible ordinary character of G. Assume that CD(U) = Z(U), where D is a defect

group for a p-block of G which contains χ. Then, χ is U-projective if, and only if, χ is

UCG(U)-projective.

Proof: The proof can be found in [67]. �

Lemma 3.5.7. [Reinhard Knörr] Let G be a finite group with normal p-subgroup U . Let

B be a p-block of G with defect group D. If B has an irreducible U-projective RG-module,

then CD(U) = Z(U).

Proof: The proof can be found in [61, Proposition 3.2]. �

We return now to discuss a general setup for dealing with the cancellation problem.

Let us consider an arbitrary p-subgroup of G, say Q. Let σ be the chain Vσ < · · · < V σ.
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Then either Q =G Vσ or not and Q =G V
σ or not. In the following, we see that, for any

σ which has a proper contribution, Vσ is self-centralizing in the defect group of B and V σ

must be a subgroup of the defect group of the p-block B of the finite group G.

Lemma 3.5.8. Let B be a p-block of the finite group G with defect group D. If kd(B(σ)) 6=

0, then, V σ ≤G D, where d is any non-negative integer.

Proof: This is clear because 1B(σ) = BrV σ(1B) and D is a maximal p-subgroup (up

to G-conjugacy) of G such that BrD(1B) 6= 0. �

The following theorem which is due Geoffrey R. Robinson will be very useful for us.

Theorem 3.5.9. [61, Geoffrey R. Robinson, Theorem 5.1] Let G be a finite group,

B be a p-block of G with defect group D. Then, if there is an irreducible character µ of

Vσ such that f
(B)
0 (ING(σ)(µ)/Vσ) 6= 0 then, CD(Vσ) = Z(Vσ).

The benefits from Theorem 3.5.9 are the following corollaries.

Corollary 3.5.10. Let G be a finite group, B be a p-block of G with defect group D.

Then the only chains (up to G-conjugacy) which contribute to any alternating sum of the

OWC and a minimal counter-example to DPC are those whose initial subgroup Vσ satisfies

CD(Vσ) ⊆ Vσ.

Proof: The result follows from Theorem 3.5.9. �

Corollary 3.5.11. Let G be a finite group, B be a p-block of G with a defect group E

which is an extra-special p-group of order p3 and an exponent p for an odd prime number

p. Then, chains which have nontrivial contribution to the alternating sum of the OWC or

the DPC satisfy Z(E) < Vσ.

Proof: Assume that Vσ = Z(E). Then by Theorem 3.5.9, CE(Z(E)) ⊆ Z(E). How-

ever, we observe that if e ∈ E then ez = ze for all z ∈ Z(E), so e ∈ CE(Z(E)). Thus,
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e ∈ Z(E). Hence, E ≤ Z(E). This contradicts with the fact that E is an extra-special

p-group of order p3. �

As usual, E is an extra-special p-group of order p3 and exponent p, for an odd prime p

which can be written as E = 〈x, y, z〉 where z is the generator of the centre of E. Each

element of E is of order p as E has exponent p. The following corollary indicates that we

have to consider and deal only with the maximal normal subgroups of E with order p2.

Lemma 3.5.12. Let H be any cyclic subgroup of E with order p. Then H 6= Vσ, where

σ is an arbitrary chain which has a proper contribution to the alternating sum under

consideration.

Proof: If H = Z(E), then the result is the same as in Corollary 3.5.11. Thus, we may

assume that H = 〈x〉, where x is one of the non central generators of E. If H = Vσ, then

by Theorem 3.5.9, we face the following situation 〈x, z〉 = CE(x) = CE(〈x〉) ⊆ H = 〈x〉.

But this is not the case, because 〈x, z〉 is an elementary abelian p-subgroup of E with

order p2. �

Consequently, and in the language of (G,B)-subpair, we are left with the empty chain

and the following (G,B)-subpairs: (Mi, bMi
), (Mi, bMi

) < (E, bE), i = 1, 2, · · · , n, with

n ≤ p + 1, and (E, bE). Note that bMi
is a p-block of CG(Mi) and (E, bE) satisfies the

definition of maximal (G,B)-subpairs because E is the defect group of the p-block B.

The following definition appears in [67].

Definition 3.5.13. Let (U, bU) be an arbitrary (G,B)-subpair. We say that (U, bU) is an

Alperin-Goldschmidt (G,B)-subpair if it is centric and a p-radical (G,B)-subpair.

Lemma 3.5.14. Let (U, bU) be an arbitrary (G,B)-subpair which is not an Alperin-

Goldschmidt (G,B)-subpair. Then the chains starting with (U, bU) has zero contribution

to the alternating sum under consideration.

Proof: This is [44, Theorem 1.10]. �

The following lemma of W. Burnside is the starting point for studying the fusion patterns
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of the above chains.

Lemma 3.5.15. Let G be a finite group, S be a Sylp(G). Suppose that X and Y are

normal subgroups of S, then X and Y are G-conjugate if, and only if, they are NG(S)-

conjugate.

Proof: The proof can be found in [42, Lemma 12.30]. �

Let us now give a generalization of Burnside’s Theorem in the case of a maximal (G,B)-

subpair (D, bD).

Lemma 3.5.16. Let G be a finite group, B be a p-block of G with defect group D, and let

(X, bX), (Y, bY ) be normal (G,B)-subpairs of the maximal (G,B)-subpair (D, bD). Then

(X, bX) =G (Y, bY ) if, and only if, (X, bX) =NG(D,bD) (Y, bY ).

Proof: Since DCG(D) ≤ NG(X, bX) ≤ G, for a p-block of NG(X, bX), say b, bG is

defined and bG = B. Now D is a defect group of b in NG(X, bX). Hence, (D, bD) is a

maximal (NG(X, bX), b)-subpair. So, the result follows from a similar way as in Lemma

3.5.15. �

Let us return to the defect group E of a p-block B of G, where E is an extra-special

p-group of order p3 and exponent p for an odd prime number p. Then E acts trivially

on the maximal subgroups of E/Φ(E) and CG(E) also acts trivially on the maximal

subgroups of E/Φ(E). So, ECG(E) acts trivially on the maximal subgroups of E/Φ(E).

Therefore, if one studies the action of NG(E, bE)/ECG(E) on the maximal subgroups

of E/Φ(E) and determines the orbits under this action, then by Lemma 3.5.16, these

orbits are precisely the distinct conjugacy classes of the maximal subgroups of E/Φ(E)

under the G-conjugation. But by Lemma 3.3.7, we know that there is a one to one

correspondence between the maximal subgroups of E and the maximal subgroups of

E/Φ(E), so to determine the G-conjugacy classes of maximal subgroups of E, we shall

study the action of NG(E, bE)/ECG(E) on the maximal subgroups of the elementary

abelian p-group E/Φ(E).
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Proposition 3.5.17. Write N̄ = NG(M, bM)/CG(M) and Ē := ECG(M)/CG(M) ∼=

E/M. Then, we have NN̄(Ē) ∼= NG(M, bM) ∩NG(E, bE)/CG(M) ∩NG(E, bE).

Proof: On the one hand,

NG(M, bM) ∩NG(E, bE)/CG(M) ∩NG(E, bE)

∼= NG(M, bM) ∩NG(E, bE)/(CG(M) ∩ [NG(M, bM ∩NG(E, bE)])

∼= (NG(M, bM) ∩NG(E, bE))CG(M)/CG(M) ≤ N̄ .

Also, if gCG(M) = ḡ ∈ N̄ with g ∈ (NG(E, bE)∩NG(M, bM))CG(M). Then (ECG(M))g =

EgCG(M g) = ECG(M). This is true because both NG(M, bM) ∩ NG(E, bE) and CG(M)

are subgroups of NG(ECG(M)). Hence, ḡ ∈ NN̄(Ē). We conclude that

NG(E, bE) ∩NG(M, bM)/NG(E, bE) ∩ CG(M) ≤ NN̄(Ē).

On the other hand, ḡ ∈ NN̄(Ē) if, and only if, Ē ḡ = Ē, which happens if, and only if,

ḡ = gCG(M), with g ∈ NG(M, bM) ∩NG(E, bE). This completes the proof of the propo-

sition. �

The following corollary is useful for counting the number of p-blocks of defect zero.

Corollary 3.5.18. If the section, NG(M, bM)/CG(M) ∼= SL(2, p), then the number of

orbits of NG(M, bM) ∩ NG(E, bE) on the set of irreducible ordinary characters of M is

three. Moreover, if 1M , µ and λ are the representatives of such orbits, then we have

ING(M,bM )∩NG(E,bE)(1M) = NG(M, bM) ∩NG(E, bE),

ING(M,bM )∩NG(E,bE)(µ) = (CG(M) ∩NG(E, bE))· Ē,
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and

ING(M,bM )∩NG(E,bE)(λ) = CG(M) ∩NG(E, bE).

Proof: We have seen that CG(M) acts trivially on the set of non-trivial characters of

M . As a result, one can exploit the action of SL(2, p) on the set of non-zero vectors of

M . Then Theorem 3.4.7 implies that we have three such orbits after adding the trivial

character. The rest of the result also follows from Theorem 3.4.7. �

Theorem 3.5.19. With the notation as in Proposition 3.5.17, Ē ∈ Sylp(N̄) if, and only

if, ECG(M) contains a Sylow p-subgroup of NG(M, bM).

Proof: If Ē ∈ Sylp(N̄), then the index [N̄ : Ē] is co-prime to p. However, [N̄ : Ē] =

[NG(M, bM) : ECG(M)]. So, ECG(M) contains a Sylow p-subgroup of NG(M, bM). The

converse is clear, since the argument is reversible. �

Proposition 3.5.20. Let G be a finite group, let B be a p-block of G with a defect group

E which is an extra-special p-group of order p3 and exponent p for an odd prime number

p. Then, if the section NG(E, bE)/ECG(E) has no subgroup which is isomorphic to Cp−1,

then Op(NG(M, bM)/CG(M)) 6= 1.

Proof: Let us assume that Op(N̄) = Op(NG(M, bM)/CG(M)) = 1. Then SL(2, p) ≤

N̄ ≤ GL(2, p). Regarding Ē as a Sylow p-subgroup of SL(2, p), N̄ and GL(2, p), we

know that NSL(2,p)(Ē) ≤ NN̄(Ē) ≤ NGL(2,p)(Ē). However, the Sylow p-normalizer of

SL(2, p) has the form NSL(2,p)(Ē) = {

λ b

0 λ−1

 : 0 6= λ ∈ GF (p) & b ∈ GF (p)}. So,

this normalizer has order p(p − 1). Therefore, p(p − 1) = |NSL(2,p)(Ē)| ≤ |NN̄(Ē)| ≤

|NGL(2,p)(Ē)| = p(p − 1)2. The centralizers of Ē in these groups satisfy the following

inclusion up to isomorphism CSL(2,p)(Ē) ≤ CN̄(Ē) ≤ CGL(2,p)(Ē). Consequently,

1 6= C p−1
2

∼= NSL(2,p)(Ē)/CSL(2,p)(Ē) ≤ NN̄(Ē)/CN̄(Ē) ≤ NGL(2,p)(Ē)/CGL(2,p)(Ē) / Cp−1.
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But on the one hand, CSL(2,p)(Ē) contains Ē. Hence, p divides the order of CSL(2,p)(Ē).

Hence, either,

C p−1
2

∼= NSL(2,p)(Ē)/CSL(2,p)(Ē) ∼= NN̄(Ē)/CN̄(Ē)

or

NN̄(Ē)/CN̄(Ē) ∼= NGL(2,p)(Ē)/CGL(2,p)(Ē) ∼= Cp−1.

On the other hand,

NG(E, bE) ∩NG(M, bM)

NG(E, bE) ∩ CG(M)
∼=

(NG(E, bE) ∩NG(M, bM))/CG(E)

(NG(E, bE) ∩ CG(M))/CG(E)
.

Using Proposition 3.5.17, it follows that

NN̄(Ē)/CN̄(Ē) /
(NG(E, bE) ∩NG(M, bM))/CG(E)

(NG(E, bE) ∩ CG(M))/CG(E)
.

However, (NG(E,bE)∩NG(M,bM ))/CG(E)
(NG(E,bE)∩CG(M))/CG(E)

is a section of the quotient groupNG(E, bE)/ECG(E).

Hence, we conclude that Cp−1 ≤ NG(E, bE)/ECG(E). �

Remark 3.5.21. Assume that p = 3. Then NG(E, bE)/ECG(E) is isomorphic to a

subgroup of GL(2, 3) with order is not divisible by 3. Therefore, in the case that p = 3

and NG(E, bE)/ECG(E) has no subgroup of order 2, we have NG(E, bE) = ECG(E).

It follows that for each maximal subgroup M of E, which is a radical 3-subgroup of G,

NG(E, bE) ≤ NG(M, bM). Hence, the contribution from chains starting with the (G,B)-

subpair (M, bM) is zero.

As a consequence of Proposition 3.5.20, we have the following corollary:

Corollary 3.5.22. Let G be a finite group, let B be a p-block of G with defect group E

which is an extra-special p-group of order p3 and exponent p for an odd prime number p. If

NG(E, bE)/ECG(E) has no subgroup which is isomorphic to Cp−1, then NG(M, bM)/CG(M)

has no p-block of defect zero.

56



Proof: Suppose that NG(E, bE)/ECG(E) has no subgroup which is isomorphic to

Cp−1. Then Proposition 3.5.20 implies that Op(NG(M, bM)/CG(M)) 6= 1. Therefore,

NG(M, bM)/CG(M) has no p-block of defect zero. �

Remark 3.5.23. Assume that p = 3. Then NG(M, bM)/CG(M) is isomorphic to a sub-

group of GL(2, 3) with order which is divisible by 3. Therefore, in the case that p = 3 and

NG(M, bM)/CG(M) is a proper subgroup of SL(2, 3), we have NG(M, bM)/CG(M) ∼= C3×

C2. It follows that C3
∼= O3(NG(M, bM)/CG(M)) 6= 1, and, hence, NG(M, bM)/CG(M)

has no 3-block of defect zero. However, in the case that SL(2, 3) / NG(M, bM)/CG(M) /

GL(2, 3), we see that either SL(2, 3) ∼= NG(M, bM)/CG(M), and, hence, it has a unique

3-block of defect zero or NG(M, bM)/CG(M) ∼= GL(2, 3) which contains two 3-blocks of

defect zero.
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Chapter 4

THE INERTIAL GROUPS OF

IRREDUCIBLE CHARACTERS OF

THE INITIAL p-SUBGROUP OF A

(G,B)-CHAIN IN ITS STABILIZER

4.1 Introduction

Let G, B, E, M and p be as before. In this chapter, we shall compute the inertial groups

of certain irreducible characters of the initial p-subgroup of a (G,B)-chain in its stabilizer.

Using Lemma 3.5.12, we have only a few cases to consider. The first one is the inertial

subgroups of the irreducible characters of E, which will be investigated in Section 4.2.

Then the inertial subgroup of an irreducible character of M is calculated in Section 4.3.
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4.2 The inertial group of an irreducible character of

E in NG(E, bE).

Although the objective is to compute the inertial subgroup of an irreducible character

of E in NG(E, bE) without any restriction, we will first restrict ourselves to the case that

NG(E, bE)/ECG(E) ∼= C2 × C2. (4.2.1)

As usual, E is an extra-special p-group of order p3 and exponent p for an odd prime p.

Write E = 〈x, y, z〉, where 〈z〉 = Z(E). Now E is a normal p-subgroup of NG(E, bE). It

is clear that NG(E, bE) acts on the set of irreducible characters of E. Using Lemma 2.6.1,

we have to distinguish between two cases, first, the case that NG(E, bE) acts on the set

of linear irreducible ordinary characters of E and second, the case that NG(E, bE) acts

on the set of non-linear irreducible ordinary characters of E. In both cases, the common

factor is the assumption made in 4.2.1.

Since part of the alternating sum under consideration is over the conjugacy classes of

irreducible characters of E under the action of NG(E, bE), we will start with the following

lemma.

Lemma 4.2.1. With the notation and the assumption above, the number of orbits of the

set of ordinary irreducible linear characters of E under the action by NG(E, bE) is (p+1
2

)2.

Proof: Let η be an irreducible linear character of E. Then 〈z〉 ≤ ker(η), because

η is linear character and E is an extra-special p-group. Hence, we can regard η as an

irreducible character of E/Φ(E) = 〈xΦ(E), yΦ(E)〉 ∼= 〈x〉 × 〈y〉. It is clear that ECG(E)

acts trivially on the set under consideration. Hence, the action of NG(E, bE)/ECG(E) on

the set of non-zero vectors of the Frattini quotient E/Φ(E) := Ē can be used to deduce

the result for the non-trivial irreducible linear characters of E.
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However, using the assumption in 4.2.1, we can compute the fixed points of the set of

non-zero vectors by the relations 2.6.9, 2.6.10, and all the others in Section 2.6. Therefore,

the identity element has p2 − 1 fixed points, a has p− 1 fixed points and b also has p− 1

fixed points, but ab has no fixed points. Accordingly, the Burnside’s Counting argument

implies that

#Orbits =
1

4
(p2 − 1 + p− 1 + p− 1 + 0) =

1

4
(p2 + 2p− 3) =

(p− 1)(p+ 3)

4
.

Since the trivial character of E forms an orbit under the action of NG(E, bE), the number

of orbits of the set of irreducible ordinary linear characters of E under the action by

NG(E, bE) is 1 + 1
4
(p2 + 2p− 3) = (p+1

2
)2. This completes the proof. �

Similarly, we have to count the number of orbits of the action of NG(E, bE) on the set

of irreducible ordinary non-linear characters of E.

Lemma 4.2.2. With the notation and the assumption above, the number of orbits of the

set of ordinary irreducible non-linear characters of E under the action by NG(E, bE) is

p−1
2
.

Proof: By Lemma 2.6.1, E has p− 1 ordinary irreducible non-linear characters, each

of which vanishes outside Z(E). Therefore, it is enough to study the action of NG(E, bE)

on Z(E). However, ECG(E) acts trivially on Z(E), and hence we can exploit the action

of NG(E, bE)/ECG(E) on Z(E). Using the assumption in 4.2.1, the relations in Section

2.6 and the Burnside’s Counting Theorem, we deduce the result. �
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4.2.1 The inertial group of an irreducible linear character of E

in NG(E, bE).

Let η be an irreducible linear character of E. Then η has one of the following forms:

1. η1 = 1〈x〉 ⊗ 1〈y〉. Only one irreducible character of E has this form. Obviously, E is

the kernel of η1.

2. η2 = 1〈x〉⊗β, for some nontrivial irreducible character β of 〈y〉. Since 〈y〉 is a cyclic

group of order p, it has p− 1 nontrivial irreducible characters. Hence, we have p− 1

linear irreducible characters in E, each of which has the form of η2. It is clear that

〈x, z〉 is the kernel of η2.

3. η3 = α ⊗ 1〈y〉, for some nontrivial irreducible character α of 〈x〉. We observe that

〈y, z〉 is the kernel of η3. We have p − 1 linear irreducible characters of E of this

type.

4. η4 = α⊗ β, where both α and β are nontrivial irreducible characters of 〈x〉 and 〈y〉

respectively. Note that we have p2− 2p+ 1 irreducible characters of this form. The

kernel of η4 is Z(E).

The inertial subgroup of η in NG(E, bE) is ING(E,bE)(η) = {g ∈ NG(E, bE)| ηg =

η}. Hence, E and CG(E) are certainly contained in this group. We write ECG(E) ≤

ING(E,bE)(η) ≤ NG(E, bE). So, 1̄ ≤ ING(E,bE)(η)/ECG(E) ≤ NG(E, bE)/ECG(E).

However, the assumption in 4.2.1 enables us to write ING(E,bE)(η)/ECG(E) / C2×C2.

Hence, if g is an element in NG(E, bE) − ECG(E) then gECG(E) := ḡ is a nontrivial

element in the group NG(E, bE)/ECG(E). Therefore, ḡ ∈ {a, b, c}, using the notation

in Section 2.6. Thus, for the inertial group in this case, we have the possibilities that

ING(E,bE)(η) = ECG(E)〈ḡ〉, where ḡ ∈ {1, a, b, c}.
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From the discussion above, for η1, the inertial subgroup is NG(E, bE). For η2, we have

ING(E,bE)(η2) = ECG(E)〈b〉. This is because, for each e ∈ E, and for ḡ = b, then

ηg2(e) = ηḡ2(e) = η2(e
ḡ) = η2(e

b) = 1〈x〉(e
b
1)⊗ β(eb2) = 1〈x〉(e

−1
1 )⊗ β(e2) =

1〈x〉(e1)⊗ β(e2) = η2(e).

Note that we have identified e ∈ E by (e1, e2) ∈ 〈x〉 × 〈y〉 as Z(E) ≤ ker(η), and

E/Z(E) ∼= 〈x〉 × 〈y〉. Similarly, if η has the form η3, then, for each e ∈ E, we have

ηg3(e) = ηḡ3(e) = η3(e
ḡ) = η3(e

a) = α(ea1)⊗ 1〈y〉(e
a
2) = α(e1)⊗ 1〈y〉(e

−1
2 ) =

α(e1)⊗ 1〈y〉(e2) = η3(e).

Hence, in this case, we have ING(E,bE)(η3) = ECG(E)〈a〉.

Now if η = η4, then ING(E,bE)(η) = ECG(E). This is because at least one of 〈x〉 or 〈y〉

is inverted by a, b or c.

By Lemma 4.2.1, NG(E, bE) has (p+1
2

)2 orbits when it acts on the set of linear irre-

ducible ordinary characters of E. So, there are p2 irreducible linear characters of E which

distribute to (p+1
2

)2 orbits of different sizes. Obviously, the first orbit is O1 = {1〈x〉⊗1〈y〉}.

An easy computation shows that there are p−1
2

orbits, each of which contains two irre-

ducible characters of the form α ⊗ 1〈y〉 and ᾱ ⊗ 1〈y〉, where ᾱ is the conjugate charac-

ter of α and α is a non-trivial irreducible character of 〈x〉. Let 1 ≤ i ≤ p − 1, then

Oi = {αi ⊗ 1〈y〉, ᾱ
i ⊗ 1〈y〉}. Therefore, the inertial subgroup of each orbit in this form is

ECG(E)〈a〉.

Similarly, on the one hand, there are p−1
2

orbits each of which contains two irreducible

linear characters of E of the form 1〈x〉⊗β and 1〈x〉⊗ β̄, where β is a non-trivial irreducible

character of 〈y〉. Using the argument above, one can write Oj = {1〈x〉 ⊗ βj, 1〈x〉 ⊗ β̄j}

where 1 ≤ j ≤ p−1
2
. Thus, the inertial subgroup of each orbit in this form is ECG(E)〈b〉.
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On the other hand, there are (p−1
2

)2 orbits, each of which contains 4 irreducible linear

ordinary characters of E of the form {α ⊗ β, α ⊗ β̄, ᾱ ⊗ β, ᾱ ⊗ β̄}, where α and β are

both non-trivial irreducible characters of 〈x〉 and 〈y〉 respectively. We label these orbits

as follows: Oi, j = {αi⊗βj, αi⊗ β̄j, ᾱi⊗βj, ᾱi⊗ β̄j}, where {1 ≤ i, j ≤ p−1
2
}. The inertial

subgroup of any representative of Oi, j in NG(E, bE) is ECG(E).

Therefore, we have the following tables which summarise the above discussion:

η ∈ Irr3(E) #(η) ING(E,bE)(η) [ING(E,bE)(η) : ECG(E)]

1〈x〉 ⊗ 1〈y〉 1 NG(E, bE) 1

1〈x〉 ⊗ βj p−1
2 ECG(E)〈b〉 2

αi ⊗ 1〈y〉
p−1
2 ECG(E)〈a〉 2

αi ⊗ βj (p−1
2 )2 ECG(E) 4

Table 4.1: The inertial subgroups and the orbit structures of Irr3(E)

η ∈ Irr3(E) #(η) IC2×C2
(η) [C2 × C2 : IC2×C2

(η))]

1〈x〉 ⊗ 1〈y〉 1 C2 × C2 1

1〈x〉 ⊗ βj p−1
2 〈b〉 2

αi ⊗ 1〈y〉
p−1
2 〈a〉 2

αi ⊗ βj (p−1
2 )2 1 4

Table 4.2: The action of C2 × C2 and the orbit structures of Irr3(E)

Note that by Lemma 2.6.4, ECG(E) ∩ 〈a〉 = ECG(E) ∩ 〈b〉 = ECG(E) ∩ 〈c〉 = 1.

4.2.2 The inertial group of an irreducible non-linear character

of E in NG(E, bE).

Now let η be a nonlinear irreducible character of E. We have p − 1 such character,

each of which has degree p. η has the form η = IndEM(µ) for a character µ of a maximal
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subgroup M of E.

By Lemma 4.2.2, the action of NG(E, bE) on the set of ordinary irreducible non-

linear characters of E has p−1
2

orbits. It follows that each orbit contains two irreducible

characters. So, [η] = {η, η̄}, where η̄ is the conjugate character of η. The commutator

subgroup of E is not contained in the kernel of η, since η is nonlinear. Hence, the centre

of E is not contained in this kernel, because [E,E] = Z(E). It turns out that η(e) = 0,

whenever e ∈ E − Z(E). In particular, η(x) = 0 = η(y).

Let us try to compute the inertial subgroup of η in NG(E, bE). Since η vanishes outside

the centre of E, we tackle only the elements in the centre of E. In particular, we consider

the action on the generator of Z(E), namely, the element z, because Z(E) is a cyclic

group of order p. Now let g ∈ NG(E, bE) be a nontrivial element in which gECG(E) = ḡ

is a nontrivial element of the group NG(E, bE)/ECG(E). Consequently, ḡ ∈ {a, b, c}. We

have to use the notation and the relations shown in Section 2.6. Then, in the case that

ḡ = a, we see that ηg(z) = ηḡ(z) = η(zḡ) = η(za) = η(z−1) 6= η(z). Thus, g 6∈ ING(E,bE)(η).

Similarly, for the case that ḡ = b, we observe that ηg(z) = ηḡ(z) = η(zḡ) = η(zb) =

η(z−1) 6= η(z). Thus, g 6∈ ING(E,bE)(η). However, in the case where ḡ = ab = c, we

obtain ηg(z) = ηḡ(z) = η(zḡ) = η(zc) = η(z). Thus, g ∈ ING(E,bE)(η). We conclude that

ING(E,bE)(η) = ECG(E)〈c〉.

Now the observation that ING(E,bE)(η)/ECG(E) is a p
′
-group for each irreducible linear

character of E yields the following theorem:

Theorem 4.2.3. With the notation above, and denoting the number of p-blocks of defect

zero for each section H/K which lie in Brauer correspondent with B by f
(B)
0 (H/K), we

have

f
(B)
0 (ING(E,bE)(η)/ECG(E)) = f

(B)
0 (ING(E,bE)(η)/E) = k(B)(ING(E,bE)(η)/ECG(E)),

for all irreducible characters, η of E.
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Proof: The first equality follows from Lemma 3.5.4 and Lemma 3.5.5. Since (E, bE)

is a maximal (G,B)-subpair, ING(E,bE)(η)/ECG(E) is a p
′
-group. Then each Sylow p-

subgroup of ING(E,bE)(η) is contained in ECG(E). As a result, each irreducible ordinary

character of ING(E,bE)(η)/ECG(E) has defect zero. �

Using the Clifford correspondence, we have the following theorem:

Theorem 4.2.4. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p, for an odd prime number p. Consider

that (E, bE) as a maximal (G,B)-subpair. Let b be the unique p-block of NG(E, bE) which

covers bE and satisfies bG = B. Then, k(b, η) = f
(B)
0 (ING(E,bE)(η)/E).

Proof: Clifford Theorem 2.4.1, yields a bijection between Irr(ING(E,bE)(η), η) and

Irr(NG(E, bE), η), for each ordinary irreducible character of E. Furthermore, this bijec-

tion preserves the defect. Now, using Theorem 4.2.3 and the assumption that b is the

unique p-block of NG(E, bE) which covers bE and satisfies bG = B allows us to conclude

that k(b, η) = f
(B)
0 (ING(E,bE)(η)/E). �

4.2.3 NG(E, bE)/ECG(E) with an element of order p− 1

Let us consider the case that NG(E, bE)/ECG(E) has an element of order p − 1, for

an odd prime number p. We know that NG(E, bE)/ECG(E) is a p
′
-subgroup of the

automorphism group of E. Fix λ to be the generator of GF (p) − {0}. Let us for the

moment assume that

NG(E, bE)/ECG(E) ∼= 〈

−1 0

0 −1

 ,
λ 0

0 1

〉. (4.2.2)
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Then, NG(E, bE)/ECG(E) ∼= C2 × Cp−1. Now, on the one hand, NG(E, bE) acts on the

set of irreducible characters of E. Let us consider the action of NG(E, bE) on the set

of linear irreducible characters of E. On the other hand, using the observation that

ECG(E) acts trivially on the set of irreducible characters of E, we exploit the action of

NG(E, bE)/ECG(E) on the Frattini quotient E/Φ(E) = 〈xΦ(E), yΦ(E)〉 := Ē = 〈x̄, ȳ〉 to

study the action of NG(E, bE) on Irr3(E). We use such correspondence interchangeably.

We see that Ē has p2 − 1 non-zero vectors. Let us write x̄ :=

1

0

 and ȳ :=

0

1

 .
It is clear that the element

−1 0

0 −1

 does not fix any non-zero vector of Ē. However,

λ 0

0 1

 fixes ȳ, and, hence, it has p − 1 fixed points in the set of non-zero vectors of Ē.

Accordingly, we have the following lemma:

Lemma 4.2.5. Assume 4.2.2. Then, under the action of NG(E, bE), Irr3(E) is parti-

tioned into p+ 1 orbits.

Proof: There is no new idea in the proof. It is a straightforward proof, using the

Burnside’s Counting Theorem and the correspondence mentioned above. Thus,

#Orbits =
1

2(p− 1)
(p2 − 1 + (p− 1)(p− 1)) = p.

Adding the trivial character, we conclude that NG(E, bE) has p+1 orbits when it acts on

the set of linear irreducible characters of E. �

Similarly, one can compute the orbits structure of Irr2(E) under the action ofNG(E, bE),

with the assumption that NG(E, bE)/ECG(E) ∼= C2 × Cp−1.

Lemma 4.2.6. With the assumption in 4.2.2, NG(E, bE) acts transitively on the set of

irreducible non-linear ordinary characters of E.
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Proof: The action of NG(E, bE)/ECG(E) on Z(E) has a unique orbit. This is because

an irreducible non-linear ordinary character of E is zero outside Z(E) and only the iden-

tity element and the unique element of order 2 have fixed points. However, ECG(E) acts

trivially. Hence, NG(E, bE) acts transitively on the set of irreducible non-linear ordinary

characters of E. �

Now, in general, and with the assumption that NG(E, bE)/ECG(E) contains a sub-

group which is isomorphic to Cp−1, non-identity elements of SL(2, p)∩(NG(E, bE)/ECG(E))

have determinant 1, and, hence, act trivially on the centre of E. Also, these elements act

as fixed points freely on the nontrivial irreducible linear characters of E. This means that

for all 1 6= x ∈ SL(2, p) ∩ NG(E, bE)/ECG(E), and for all η ∈ Irr3(E), ηx 6= η, while,

for η ∈ Irr2(E), ηx = η. However, only elements from GL(2, p) fixing a linear irreducible

character of E are conjugate to

λ 0

0 1

 and such elements fix no irreducible characters

of Irr2(E).

4.3 The inertial group of an irreducible character of

M in NG(M, bM).

Let M be a maximal subgroup of E which is a radical p-subgroup of G. Our main

concern is to establish a bijection which preserves the defect between the unique p-block

b of NG(M, bM) which covers bM and the unique p-block B(σ) of NG(σ) which satis-

fies B(σ)G = B. Here, σ is the chain (M, bM) < (E, bE). This means that, for each

non-negative integer d, we are seeking to prove k
(B)
d (NG(M, bM)) = k

(B)
d (NG(M, bM) ∩

NG(E, bE)).

Let us take an arbitrary irreducible character µ of M . We may write M = 〈x, z〉 =
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〈x〉 × 〈z〉 where z is the generator of the centre of E and x is the other generator of E

which is not central in E. Since M is the direct product of 2 cyclic groups, namely 〈x〉

and 〈z〉, each of which is of order p. Then Aut(M) ∼= GL(2, p).

Now M has p2 such µ, each of which is a linear irreducible character. Furthermore,

since the character of the direct product is the product of the characters, we have the

following possibilities:

1. µ := µ1 = 1〈x〉 ⊗ 1〈z〉. Note that we have only one irreducible character of this form

and the kernel of µ is M .

2. µ := µ2 = 1〈x〉 ⊗ β, where β is a nontrivial irreducible character of 〈z〉. There are

p− 1 irreducible characters of this form, each of which has a kernel which coincides

with 〈x〉.

3. µ := µ3 = α ⊗ 1〈z〉, where α is a nontrivial irreducible character of 〈x〉. We have

p− 1 irreducible characters of this form and the kernel of such µ is 〈z〉.

4. µ := µ4 = α ⊗ β, where both α and β are nontrivial irreducible characters of 〈x〉

and 〈z〉 respectively. There are (p− 1)2 = p2 − 2p+ 1 irreducible characters of this

form and the kernel of µ is a cyclic group of order p.

Now our task is to compute the inertial subgroup of µ in the normalizer of the (G,B)-

subpair (M, bM). For an arbitrary element g ∈ G, µg = µ if, and only if, µg(x) = µ(x)

and µg(z) = µ(z), which means that µ(gxg−1) = µ(x) and µ(gzg−1) = µ(z).

Consider the quotient group NG(M, bM)/CG(M). It is a section of the automorphism

group of M . Therefore, we study the relationship with the normal subgroup SL(2, p)

of Aut(M). It follows that either NG(M, bM)/CG(M) < SL(2, p), NG(M, bM)/CG(M) ∼=

SL(2, p), SL(2, p) < NG(M, bM)/CG(M) < GL(2, p) or NG(M, bM)/CG(M) ∼= GL(2, p).
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4.3.1 The section NG(M, bM)/CG(M) of G with a non-identity nor-

mal p-subgroup

Let us assume that the section NG(M, bM)/CG(M) of G is a proper subgroup of the

special linear group SL(2, p). Then Ē := ECG(M)/CG(M) is a cyclic p-subgroup of

NG(M, bM)/CG(M) because ECG(M)/CG(M) ∼= E/E ∩ CG(M) ∼= 〈y〉.

The first observation is that Ē is a Sylow p-subgroup of NG(M, bM)/CG(M), and,

hence, NG(M, bM)/CG(M) cannot be a p
′
-group. According to this observation, we have

the following corollary:

Corollary 4.3.1. ECG(M) has p − 1 fixed points when it acts on the set of ordinary

irreducible non-trivial characters of M .

Proof: The result follows because CG(M) acts trivially on the set of ordinary irre-

ducible characters of M , Theorem 3.4.6 and the observation above. �

The second observation is that Op(NG(M, bM)/CG(M)) 6= 1. This is because nontrivial

proper subgroups of SL(2, p) with order divisible by p have a unique Sylow p-subgroup,

as we have already seen in Theorem 2.6.7. In this case, we may exploit the fact that

chains which start with such (M, bM) make no contribution to the alternating sum under

consideration, see [65] and [66].

Corollary 4.3.2. In this case, no (G,B)-subpair (M, bM) is an Alperin-Goldschmidt

(G,B)-subpair.

Proof: This is clear, because Op(NG(M, bM)/CG(M)) 6= 1. �

However, finite groups with non-identity normal p-subgroup have no p-blocks of defect

zero. So, the corollary below follows:
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Corollary 4.3.3. In this case, the section NG(M, bM)/CG(M) has no p-blocks of defect

zero.

Proof: This is clear from Corollary 4.3.2. �

Theorem 4.3.4. In this case, there is no CG(M)-projective irreducible character in

NG(M, bM) in a Brauer correspondent with B which lies over an NG(M, bM)-stable ir-

reducible character µ of CG(M).

Proof: In this case, Op(NG(M, bM)/CG(M) > 1. Then f
(B)
0 (NG(M, bM)/CG(M)) = 0.

Therefore, using the correspondence between p-blocks of defect zero ofNG(M, bM)/CG(M)

and CG(M)-projective irreducible characters in NG(M, bM) which are NG(M, bM)-stable,

the result follows. �

The following lemma summarises the situation in this case.

Theorem 4.3.5. Let G be a finite group, B be a p-block of G with defect group E which

is an extra-special p-group of order p3 and exponent p, for an odd prime number p. If

NG(E, bE))/ECG(E) has no element of order p− 1, then NG(M, bM)/CG(M) < SL(2, p).

Proof: We conclude from Proposition 3.5.20 and the condition thatNG(E, bE)/ECG(E)

has no element of order p − 1, that Op(NG(M, bM)/CG(M)) 6= 1. Thus, in this case, we

must have NG(M, bM)/CG(M) < SL(2, p), using Theorem 2.6.7. �

The following theorem holds in this case:

Theorem 4.3.6. Let G be a finite group, B be a p-block of G with defect group E,

which is an extra-special p-group of order p3 and exponent p, for an odd prime number

p. Assume that the OWC holds for the p-block B. If for each maximal subgroup M of

E, NG(M, bM)/CG(M) < SL(2, p). Then, for each non-negative integer d, kd(B) = kd(b),

where b is the unique p-block of NG(E, bE) such that bG = B.
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Proof: Since ECG(M) is a normal subgroup of NG(M, bM),

NG(M, bM) = NNG(M,bM )(ECG(M)) = (NG(M, bM) ∩NG(E, bE))CG(M).

Thus, the action of NG(M, bM) on the set of irreducible characters of M is the same as

the action of NG(M, bM) ∩ NG(E, bE) on the same set. Thus, the contribution from the

chains {(M, bM)} cancels the contribution from the chains {(M, bM) < (E, bE)}. �

Now to complete that case that SL(2, p) 6/ NG(M, bM)/CG)(M), we assume that

NG(M, bM)/CG(M) is a cyclic p-group of order p. Therefore, NG(M, bM)/CG(M) ∼=

ECG(M)/CG(M), which holds if, and only if, NG(M, bM) = ECG(M).

In this case, we consider the subgroup (NG(E, bE) ∩ NG(M, bM))CG(M). Using the

observation above and the modular Law, we have

(NG(E, bE) ∩NG(M, bM))CG(M) = NG(E, bE)(ECG(M)) ∩ ECG(M) = NG(M, bM).

Therefore, NG(E, bE) controls the fusion of (G,B)-subpairs in this case. Let us record

the main result in this section.

Theorem 4.3.7. Let G be a finite group, B be a p-block of G with defect group E, which is

an extra-special p-group of order p3 and exponent p, for an odd prime number p. Assume

that the OWC holds for the p-block B. If for each maximal subgroup M of E which

is radical p-subgroup of G, SL(2, p) 6/ NG(M, bM)/CG(M). Then, for each non-negative

integer d, kd(B) = kd(b), where b is the unique p-block of NG(E, bE) such that bG = B.
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4.3.2 The section NG(M, bM)/CG(M) of G containing the special

linear group SL(2, p).

In this subsection, we consider the case that the quotient group NG(M, bM)/CG(M) con-

tains SL(2, p). Let us start by investigating the case that SL(2, p) ∼= NG(M, bM)/CG(M).

Since our aim is to count the p-blocks of defect zero in certain sections, we state the

following lemma:

Lemma 4.3.8. The special linear group SL(2, p) has a unique p-block of defect zero.

Proof: The proof can be found in [26, Theorem 71.3]. �

Write Ē for ECG(M)/CG(M). By Lemma 2.6.5, [NSL(2,p)(Ē) : CSL(2,p)(Ē)] = p−1
2
. Write

M = 〈x, z〉, where x :=

1

0

 and z :=

0

1

. Note that SL(2, p) is generated by its

p-elements.

Since

1 1

0 1

 ·
1

0

 =

1

0

 and

1 0

1 1

 ·
0

1

 =

0

1

 , CSL(2,p)(x) = 〈

1 1

0 1

〉 and

CSL(2,p)(z) = 〈

1 0

1 1

〉 respectively.

In this case, NG(M, bM)/CG(M) has p+1 Sylow p-subgroups, each of which is isomor-

phic to the image of E under the natural map. Therefore, we can identify ECG(M)/CG(M)

with a Sylow p-subgroup of SL(2, p). For instance, this Sylow p-subgroup can be gener-

ated by the automorphism η : M → M, such that η(x) = x + z and η(z) = z. Indeed, η

has order p and can be represented in the matrix form, as follows: η =

1 1

0 1

 .
Now let us write NG(M, bM) = CG(M)·SL(2, p). Recall that there is a one to one

correspondence between the irreducible characters of M and the set of vectors of M , when

we regard M as a vector space over GF (p). Then ING(M,bM )(µ) = CG(M)CSL(2,p)(xµ),

because CG(M) acts trivially on each irreducible character of M , where xµ is the vector

of M which corresponds to µ.
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Our goal is to know the inertial subgroup of the irreducible characters of M in

NG(M, bM). Of course, µ = µ1 = 1〈x〉 ⊗ 1〈z〉 has NG(M, bM) as an inertial subgroup. For

µ = µ2, we see that ING(M,bM )(µ2) = ING(M,bM )(1〈x〉⊗β) = ING(M,bM )(β) = CG(M)〈

1 0

1 1

〉.
For the irreducible characters of the forms µ3 = α ⊗ 1〈z〉, similarly, ING(M,bM )(µ3) =

ING(M,bM )(α⊗1〈z〉) = ING(M,bM )(α) = CG(M)〈

1 1

0 1

〉. However, if m is an arbitrary non-

trivial element of M , then there are i ∈ {0, 1, · · · , p − 1} and j ∈ {0, 1, · · · , p − 1} (not

both equalling zero) such that m = xizj :=

i
j

 . Now M has p + 1 maximal subspaces,

namely, H∞, H0 & Hλ; λ ∈ GF (p)− {0}. We have observed in Section 3.4 that

CSL(2,p)(H∞) = {

1 b

0 1

 : b ∈ GF (p) } ∼= Cp,

CSL(2,p)(H0) = {

1 0

b 1

 : b ∈ GF (p) } ∼= Cp

and

CSL(2,p)(Hλ) = {

1− λb b

−λ2b 1 + λb

 : b ∈ GF (p) } ∼= Cp.

For µ 6= 1M , ING(M,bM )(µ)/CG(M) is a cyclic p-subgroup of SL(2, p) of order p. There-

fore, there is no p-block of defect zero in these sections in the Brauer correspondence

with B. So, f
(B)
0 (ING(M,bM )(µ)/M) = 0, for each non-trivial irreducible character in M .

Therefore, the conclusion in this case is that there is a unique irreducible character of

NG(M, bM) which is M -projective. Hence,
∑

µ∈Irr(M)/NG(M,bM ) f
(B)
0 (ING(M,bM )(µ)/M) = 1.

Let us write sλ for the matrix

1− λb b

−λ2b 1 + λb

, noting that NG(M, bM) acts tran-

sitively on the set of non-trivial irreducible characters of M . We summarize the above
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discussion in Table 4.3.

µ ∈ Irr(M) #(µ) ING(M,bM )(µ) [ING(M,bM )(µ) : CG(M)]

1M 1 NG(M, bM) (p− 1)p(p+ 1)

µ p2 − 1 CG(M)〈sλ〉 p

Table 4.3: The action of SL(2, p) and the orbit structure of Irr(M).

Consider now the case that SL(2, p) < NG(M, bM)/CG(M) < GL(2, p). We know

that GL(2, p)/SL(2, p) ∼= Cp−1, where Cp−1 is the cyclic group of order p − 1. Conse-

quently, in this case, NG(M, bM)/CG(M) ∼= SL(2, p) o A, where A is a cyclic p
′
-group

of the form {

α 0

0 1

 : α ∈ GF (p) − {0}} where α is of order r and 1 < r < p − 1.

Note that a cyclic group has a unique subgroup for each divisor of its order which is

again a cyclic subgroup. Then there is a cyclic p
′
-subgroup, say A, of Cp−1 such that

NG(M, bM)/CG(M) ∼= SL(2, p) o A. Let |A| = r. Therefore, each irreducible character

of M has an inertial subgroup of NG(M, bM) equal to CG(M) o ISL(2,p)(µ) o IA(µ). Con-

sequently, mod CG(M), we are seeking for certain subgroups of GL(2, p) which coincide

with ISL(2,p)(µ) o IA(µ). It turns out that we have to study the relationship between a

subgroup of the automorphism group of M , namely A, which is a p
′
-group, and M in this

case.

We see that any (G,B)-subpair (M, bM) is p-radical. Let us record this result here.

Theorem 4.3.9. In this case, each (G,B)-subpair, (M, bM) is a p-radical (G,B)-subpair.

Proof: NG(M, bM)/CG(M) has p + 1 Sylow p-subgroups, each of which has order p.

The conclusion is that NG(M, bM)/CG(M) has no non-trivial normal p-subgroup. This

completes the proof, since (M, bM) is an arbitrary (G,B)-subpair. �
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We have seen that NG(M, bM) acts transitively on the set of non-trivial ordinary

irreducible characters of M . We represent such an action in Table 4.4.

µ ∈ Irr(M) #(µ) ING(M,bM )(µ) [ING(M,bM )(µ) : CG(M)]

1M 1 NG(M, bM) (p− 1)p(p+ 1)

µ p2 − 1 CG(M)〈sλ〉 · A pr

Table 4.4: The action of SL(2, p) o Cr and the orbit structure of Irr(M).

Note that sλ =

1− λb b

−λ2b 1 + λb

 , λ ∈ GF (p) − {0} and ING(M,bM )(µ)/CG(M) ∼=

〈sλ〉 × A is a cyclic group of order pr. Since we are interested in counting the number

of p-blocks of defect zero in the section ING(M,bM )(µ)/M , we have to consider the section

ING(M,bM )(µ)/CG(M).

Now assume that NG(M, bM)/CG(M) ∼= GL(2, p). It follows that NG(M, bM) =

NG(M). Considering the action of GL(2, p) on M and using the matrix form, we can

compute the centralizer of x and z in GL(2, p). Thus,

CGL(2,p)(x) = {

1 b

0 d

 : b ∈ GF (p) & d ∈ GF (p)− {0}} ∼= Cp(p−1)

and

CSL(2,p)(z) = {

a 0

c 1

 : c ∈ GF (p) & a ∈ GF (p)− {0}} ∼= Cp(p−1).

We observe that GL(2, p) acts transitively on the set of non-zero vectors, because the

linear transformation

0 b

1 d

 , for b 6= 0, carries x to z. As a result, we can deduce that

the action of NG(M, bM) on the set of non-trivial characters of M is transitive. Let us

denote the representative of the unique orbit under this action by µ. It is clear that the

inertial subgroup of such µ in NG(M, bM) is the subgroup CG(M)· 〈sλ〉 where 〈sλ〉 is a
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cyclic subgroup of GL(2, p). It turns out that 〈sλ〉 is the stabilizer subgroup of a non-

zero vector of M . The conclusion from the discussion above is that for each nontrivial

irreducible character of M , ING(M,bM )(µ)/CG(M) ∼= Cp(p−1).
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Chapter 5

THE PREDICTIONS OF THE

CONJECTURES FOR p-BLOCK

WITH AN EXTRA-SPECIAL

DEFECT GROUP

5.1 Introduction

Let G be a finite group and B be a p-block of G with defect group E, which is an extra-

special p-group of order p3 and exponent p, for an odd prime number p. Our main concern

is to show that Conjecture 2.5.6 and Conjecture 2.5.8 for B predict an equality between

the number of irreducible characters of B with defect d, for each d, and the corresponding

number in the unique Brauer correspondent with B in NG(E, bE), say b, where (E, bE) is

the maximal (G,B)-subpair which is associated with B.
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After the discussion of the general set up, we study several cases which depend upon

certain conditions for both Op(G) and the inertial quotientNG(E, bE)/ECG(E). In Section

5.3, we discuss the case that Op(G) is trivial and NG(E, bE)/ECG(E) has no element of

order p − 1. Section 5.4 concerns the case that Op(G) is a central p-subgroup of G and

equal to centre E. In Section 5.5, we study the case that Op(G) is not a central p-subgroup

of G. Section 5.6 is devoted to the case that Op(G) is trivial and NG(E, bE)/ECG(E) is

isomorphic to C2 × Cp−1.

5.2 Correspondence with characters in nilpotent p-

blocks

Let G be a finite group and B a p-block of G with defect group E which is an extra-

special p-group of order p3 and exponent p for an odd prime number p. For each subgroup

H of G denote the number of irreducible characters of H with defect d which lie in the

Brauer correspondent with B by k
(B)
d (H). Of course, k

(B)
d (G) is the number of irreducible

characters of G with defect d and belong to B.

We have to show that k
(B)
d (G) = k

(B)
d (NG(E, bE)) = k

(B)
d (NG(M, bM)), where M is an

arbitrary maximal subgroup of E, which is a radical p-subgroup of G. This happens if, and

only if, we have established the following bijection: Irr
(B)
d (G)←→ Irr

(B)
d (NG(E, bE))←→

Irr
(B)
d (NG(M, bM)), which happens if and only if Irr(B)(G) ←→ Irr(B)(NG(E, bE)) ←→

Irr(B)(NG(M, bM)). We claim that there is a one to one correspondence between the

set of (G,B)-subpairs {(E, bE)|bE ∈ block CG(E)} and the set of irreducible characters

of Op′ (CG(E)), namely, the set {µ|µ ∈ Irr(Op′ (CG(E)))}, in the case of the principal p-

block. We see that the element eµ = m
∑

g∈O
p
′ (CG(E)) µ(g−1)g, where m = |Op′ (CG(E))|−1,

µ is an irreducible character of Op′ (CG(E)) and eµ is a central primitive idempotent

of CG(E). Conversely, if bE is a p-block of CG(E), then certainly bE comes from an
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irreducible character of Op′ (CG(E)). Let us write Irrd(CG(E)| bE) to indicate the set of

irreducible characters in the p-block bE as a character of CG(E) with defect d. Likewise,

Irrd(CG(M)| bM) is the set of irreducible characters in the p-block bM view as a character

of CG(M) which has the defect d.

Lemma 5.2.1. Let G be a finite group. Let B be a p-block of G with defect group E,

where E is an extra-special p-group of order p3, exponent p, for an odd prime number p.

Let (E, bE) be a maximal (G,B)-subpair. Then (E, bE) is a maximal (NG(M, bM), B∗)-

subpair, where M is a maximal subgroup of E, bM is the unique p-block of CG(M) in

which (M, bM) ≤ (E, bE) and B∗ is the Brauer correspondent of B in NG(M, bM).

Proof: Let us write δ(B∗) for the defect group of B∗. Then it is clear that E is a

p-subgroup of NG(M, bM), bE is a p-block of CNG(M,bM )(E) and BrE(1B∗)bE = bE. In

addition, δ(B∗) =NG(M,bM ) E. This is clear because E is a p-subgroup of NG(M, bM)

since M is a normal subgroup of E and bM is an E-invariant p-block of CG(M). Also,

CG(E) ⊆ CG(M) ⊆ NG(M, bM), which is equivalent to the equality NG(M, bM)∩CG(E) =

CNG(M,bM )(E) = CG(E). Since ECG(E) ⊆ ECG(M) ⊆ NG(M, bM), B∗ := b
NG(M,bM )
E

is defined, and hence, it is a p-block of NG(M, bM) with the defect group E. Since

bGE = B, B = (b
NG(M,bM )
E )G = B∗G. Consequently B∗ is the Brauer correspondent of B

in NG(M, bM). Working with the Brauer map BrE : RNG(M, bM)E → FCNG(M,bM )(E)

and using the observation that (M, bM) is a normal (NG(M, bM), B∗)-subpair of (E, bE),

we conclude that BrE(1B∗)bE = bE. Finally, δ(B∗) =NG(M,bM ) E, as B∗ is the Brauer

correspondent of B in NG(M, bM). �

If P is an arbitrary Sylow p-subgroup of G and D is an arbitrary subgroup of P , then

there exists another subgroup Q of P such that Q =G D and NP (Q) is a Sylow p-subgroup

of NG(Q). The generalization of this fact, for the (G,B)-subpair and the extra-special

case, is the following lemma:

Lemma 5.2.2. Let E be an extra-special p-group of order p3 and exponent p for an
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odd prime number p, M be a maximal subgroup of E which is a radical p-subgroup of

G and (E, bE) be a maximal (G,B)-subpair. Then (E, bE) is a maximal (NG(M, bM) ∩

NG(E, bE), b)-subpair, where b is the Brauer correspondent of B in NG(M, bM)∩NG(E, bE).

Proof: It is clear that NE(M) = E and bM is E-invariant. Hence, (M, bM) is a

normal (G,B)-subpair of (E, bE). Now (E, bE) is a maximal (NG(E, bE), b1)-subpair,

where b1 is the Brauer correspondent of B in NG(E, bE). It follows that there is an el-

ement g ∈ NG(E, bE) such that (M, bM)g /(E, bE) and (E, bE) is a maximal (NG(M, bM)∩

NG(E, bE), b)-subpair, using the observation thatNG((M, bM)g)∩NG(E, bE) = NG(M, bM)∩

NG(E, bE). �

Lemma 5.2.3. M is a defect group of bM as a p-block of CG(M).

Proof: Let b be the p-block of NG(M, bM) which covers bM . Then bbM = bM . Thus, b

can be decomposed into primitive central idempotents in CG(M). Since CG(M) is a nor-

mal subgroup of NG(M, bM) which is the inertial subgroup of bM , b is the unique p-block

of NG(M, bM) which covers bM . Hence, we identify b with bM . It follows that bM has a

defect group in CG(M) which is the intersection of the defect group of b in NG(M, bM) and

CG(M). Since ECG(E) ⊆ ECG(M) ⊆ NG(M, bM), E is a defect group of b in NG(M, bM).

Therefore, δ(bM) = E∩CG(M) = CE(M) = M. This completes the proof of the lemma. �

Corollary 5.2.4. For the maximal (G,B)-subpair (E, bE), bE has a defect group, as a

p-block of CG(E). Moreover, this defect group coincides with Z(E).

Proof: The result follows by a similar argument to that in Lemma 5.2.3. �

Corollary 5.2.5. The p-blocks bE and bM are nilpotent p-blocks in CG(E) and CG(M)

respectively.
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Proof: This is clear because bM and bE have central defect groups in CG(M) and in

CG(E) respectively. �

Corollary 5.2.6. The sets Irr2(CG(M) |bM) and Irr2(CG(E) |bE) contain p2 and p

irreducible characters of CG(M) and of CG(E) respectively.

Proof: By Corollary 5.2.5, bE and bM are nilpotent p-blocks in CG(E) and CG(M)

with abelian defect groups Z(E) and M respectively. Then the result follows from the

fact that the number of ordinary irreducible characters of a nilpotent p-block is the same

as the order of the defect group of that p-block. See Lemma 3.2.7. �

Lemma 5.2.7. The section NG(E, bE)/CG(E) has a Sylow p-subgroup which is isomor-

phic to Cp × Cp.

Proof: Since NG(E, bE)/ECG(E) is a p
′
-group, NG(E,bE)/CG(E)

ECG(E)/CG(E)
is a p

′
-group. Then

[NG(E, bE)/CG(E) : ECG(E)/CG(E)] is co-prime to p. However, ECG(E)/CG(E) ∼=

E/E ∩ CG(E) = E/Z(E) ∼= Cp × Cp. This completes the proof of the lemma. �

Now let M be an arbitrary maximal subgroup of E. Suppose that M is not a radical

p-subgroup of G. Then E = Op(NG(M, bM)). This means that E is a normal subgroup

of NG(M, bM). Hence, NG(M, bM) ≤ NG(E, bE). Thus, the contributions from chains

starting with (M, bM) cancel each other.

Let us assume that M is a radical p-subgroup of G. We consider NG(M, bM) ∩

NG(E, bE). It is not a non-identity group, because it contains ECG(E). Note that

NG(E, bE) ∩ NG(M, bM) is an important group because it is the stabilizer of the chain

σ : (M, bM) < (E, bE) of the (G,B)-subpairs. We can denote this group by NG(σ). It is

clear that ECG(E) and CG(M) ∩ NG(E, bE) are normal subgroups of NG(σ). Note that

ECG(M) need not be a subgroup of NG(σ). But the stabilizer NG(σ) normalizes ECG(M)

as (ECG(M))g = ECG(M), whenever g ∈ NG(σ).
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Remark 5.2.8. We define Op′ ,p(NG(M, bM)) to be the subgroup, say H, of NG(M, bM)

for which H/Op′ (NG(M, bM)) = Op(NG(M, bM)/Op′ (NG(M, bM))). If M is a Sylow p-

subgroup of Op′ ,p(NG(M, bM)), then Op′ ,p(NG(M, bM)) = M ×Op′ (NG(M, bM)). Yet,

Op′ (NG(M, bM)) ≤ CG(M).

So,

1̄ 6= H/CG(M) ≤ H/Op′ (NG(M, bM)) ≤ NG(M, bM)/Op′ (NG(M, bM)).

We conclude that H/CG(M) is a normal p-subgroup of NG(M, bM)/CG(M), and, hence,

H/CG(M) = E/M = ECG(M)/CG(M). Therefore, H = ECG(M).

Lemma 5.2.9. With the notation above, NG(E, bE) ∩ CG(M) = MCG(E).

Proof: This is a special case of [44, Lemma 2.6]. �

Theorem 5.2.10. There is a bijection between the irreducible characters of Z(E) and the

set of irreducible characters Irr2(CG(E)| bE) which cover them.

Proof: We observe that ResGH(1G) = 1H , for each subgroup H of G. Now choose η ∈

Irr(E) and θ ∈ Irr(ECG(E)) such that ResEZ(E)(η) = 1Z(E) and 〈ResECG(E)
E (θ), η〉 6= 0.

Then θ = η ⊗ β where β is an irreducible character of CG(E) such that Res
CG(E)
Z(E) (β) =

ResEZ(E)(η) = 1Z(E), which is equivalent to writing 〈ResCG(E)
Z(E) (β), 1Z(E)〉 6= 0. Let us for the

moment assume that ECG(E)〈ḡ〉 = ING(E,bE)(η), where 〈ḡ〉 is a cyclic p
′
-group of order r

and 1 ≤ r < p. We need to compute the inertial subgroup of η ⊗ β in X := ING(E,bE)(η).

Since η is X-stable, IX(η ⊗ β) = IX(β).

Now ECG(E) acts trivially on β. Consequently, IX(β) = ECG(E)I〈ḡ〉(β). This means

that we have to know the inertial subgroup of the irreducible character β of CG(E) in

〈ḡ〉. Obviously, this is Cn where n ≤ r. Now we see that IX(η ⊗ β)/ECG(E) = Cn or

IX(η⊗β)/ECG(E) = 1. In the first case, η⊗β extends to X, as this factor group is cyclic
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(see [42, 11.22]). This means that there are irreducible characters ξ1, ξ2, · · · , ξn of X such

that ResXECG(E)(ξi) = η ⊗ β, 1 ≤ i ≤ n. In the second case, we see immediately that

IndXECG(E)(µ⊗ β), is an irreducible character of X. By Clifford’s Theorem 2.4.1, we pass

to NG(E, bE) by induction, which gives us a bijection between the irreducible characters

of NG(E, bE) which lie over η and the irreducible characters of ECG(E) which lie over η.

The result follows as p-blocks of ECG(E) and of CG(E) are in one to one correspondence,

since the central primitive idempotents of both ECG(E) and of CG(E) have the same

support of p-regular elements. �

Recall that if H/K is a section of the finite group G and B is a p-block of G, then

f
(B)
0 (H/K) refers to the number of p-blocks of defect zero in the Brauer correspondent

with B.

Corollary 5.2.11. With the notation above, f
(B)
0 ((CG(M) ∩NG(E, bE))/M) = 1.

Proof: Using Lemma 5.2.9, we see that

f
(B)
0 ((CG(M) ∩NG(E, bE))/M) = f

(B)
0 (MCG(E)/M) = f

(B)
0 (CG(E)/Z(E)) = 1.

�

Now, the set of irreducible characters of Irr2(CG(M) |bM) can be related to the irre-

ducible characters of M .

Theorem 5.2.12. There is a bijection between the irreducible characters of M and the

irreducible characters in Irr2(CG(M)| bM) which lie over them.

Proof: The idea is that bM is a nilpotent p-block of CG(M) with the defect group M

which is an abelian p-group of order p2. Thus, bM has p2 irreducible characters in CG(M).

At the same time, M has p2 irreducible characters too. As a result, the induction process
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which sends µ of Irr(M) to an irreducible character of Irr2(CG(M)) which lies over µ

and belongs to bM is a one to one map and thus a surjective map. Therefore, we have

established a one to one correspondence between the irreducible characters of M and the

irreducible characters in the p-block bM of CG(M) with defect 2. This completes the proof

of the theorem. �

An immediate result of the bijection mentioned above is the following corollary:

Corollary 5.2.13. With the notation above, an irreducible character χ of NG(M, bM) is

M-projective if, and only if, χ is CG(M)-projective.

Proof: Let χ be an irreducible character of NG(M, bM) lying over an irreducible

character µ of M . It is clear that if χ is M -projective, then χ is CG(M)-projective. Con-

versely, if χ is CG(M)-projective, then there is an irreducible character η of CG(M) such

that χ = Ind
NG(M,bM )
CG(M) (η). By the bijection in Theorem 5.2.12, we may choose η to be

the unique extension of µ. Thus, η is an M -projective irreducible character of CG(M)

because M is the defect group of bM . We conclude that χ is an M -projective too. �

Now E stabilises the nilpotent p-block bM of CG(M). Then bM is ECG(M)-stable

nilpotent p-block. Since ECG(M)/CG(M) is a p-group, Lemma 3.2.8 implies that bM

extends to a unique nilpotent p-block, say ˜bM , of ECG(M). Note that all p-regular

elements of ECG(M) lie in CG(M), and, hence, 1bM ∈ RCG(M). It follows that ˜bM is the

unique p-block of ECG(M) which covers the nilpotent p-block bM of CG(M). Then 1 ˜bM

is a central idempotent of RCG(M) and

1 ˜bM
· 1bM 6= 0.

But bM is E-stable, so it lies in Z(RECG(M)). Therefore, 1bM is a primitive idempotent

in Z(RECG(M)) and ˜bM has defect group E in ECG(M).

Lemma 5.2.14. With the notation above, (E, bE) is a maximal (ECG(M), ˜bM)-subpair.
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Recall that (M, bM) is a (G,B)-subpair, means that bM is a p-block of CG(M) with

bGM = B. Hence, Theorem 5.2.12 implies that B has p2 irreducible characters, each of

which has the same defect as those of M . This means that B also has p2 irreducible

characters each of which has defect 2. So, k2(B |bM) = p2, where kd(B |bM) refers to the

number of irreducible ordinary characters of B which lie over the characters of bM with

the defect d. Similarly, k3(B |bE) = p.

Under these circumstances, and for d = 2, we have reduced the conjectures with which

we are dealing to show that p2 =
∑

σ∈R(G)#/G(−1)|σ|+1
∑

µ∈Irr2(Vσ)/NG(σ) f
(B)
0 (ING(σ)(µ)/Vσ).

In the principal p-block case, we can replace NG(E, bE) by the inertial subgroup of the

irreducible character of Op′ (CG(E)) which corresponds to bE. So, the bijection that we

seek to satisfy is Irr(B)(G) ←→ Irr(B)(ING(E,bE)(β)) ←→ Irr(B)(ING(M,bM )(µ)), where β

and µ are irreducible characters of Op′ (CG(E)) and Op′ (CG(M)), respectively.

Now let us consider the case that NG(M, bM)/CG(M) ∼= SL(2, p). By Theorem 5.2.12,

each irreducible character of M extends uniquely to an irreducible character of bM as a

character of CG(M). It follows that the action of NG(M, bM) on Irr(M) extends to an

action on the unique extension of bM , because CG(M) acts trivially. By Theorem 3.4.4,

NG(M, bM) acts transitively on the set of non-trivial irreducible characters of M . Hence,

NG(M, bM) transitively permutes p2 − 1 irreducible characters in Irr2(CG(M)|bM). Let

µ be an irreducible character of M which is non-trivial. We have already computed the

inertial subgroup of such µ in NG(M, bM). It follows that ING(M,bM )(µ)/CG(M) ∼= Cp.

According to the bijection mentioned in Theorem 5.2.12, let µ∗ be the corresponding ir-

reducible character of Irr2(CG(M)|bM) to µ. It is clear that ING(M,bM )(µ) ≤ ING(M,bM )(µ
∗).

Using the bijection Irr2(ING(M,bM )(µ
∗), µ∗) ←→ Irr2(NG(M, bM), µ∗) and Lemma 2.4.2,

for each irreducible character θ ∈ Irr(NG(M, bM), µ∗), there is an irreducible character

β ∈ ING(M,bM )(µ)/CG(M), such that θ = µ∗ ⊗ β. As a result, θ(1) = µ∗(1)β(1). But β is

a linear character, since it is a character of the cyclic group ING(M,bM )(µ)/CG(M) ∼= Cp.

Therefore, θ(1) = µ∗(1). On the other hand, Res
CG(M)
M (µ∗) = Res

CG(M)
M (Ind

CG(M)
M (µ)) =
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[CG(M) : M ]µ. Therefore, µ∗(1) = [CG(M) : M ]µ(1) = [CG(M) : M ], because µ is an

irreducible character of the abelian group M . Hence,

θ(1) = [CG(M) : M ]. (5.2.1)

Now, by Lemma 3.5.5, θ is M -projective if, and only if, θ(1)p = [NG(M, bM) : M ]p.

Hence, using 5.2.1, θ is M -projective if, and only if, [NG(M, bM) : M ]p = [CG(M) : M ]p,

which happens if, and only if, [NG(M, bM) : CG(M)]p = 1. However, this cannot oc-

cur under the assumption that NG(M, bM)/CG(M) ∼= SL(2, p). Hence, there are no

M -projective irreducible characters of NG(M, bM) which lie over the non-trivial irre-

ducible character of M . So, by Lemma 3.5.4, there is no p-block of defect zero of

the section ING(M,bM )(µ)/M in the Brauer correspondence with B, for any irreducible

non-trivial character of M . Hence, only the trivial character of M yields a proper

contribution. Therefore, using the assumption and Theorem 4.3.8, we conclude that∑
µ∈Irr(M)/NG(M,bM ) f

(B)
0 (ING(M,bM )(µ)/M) = 1. Let us record the above discussion as a

proposition:

Proposition 5.2.15. Assume that NG(M, bM)/CG(M) ∼= SL(2, p), for each (G,B)-

subpair (M, bM). Then, we have
∑

µ∈Irr(M)/NG(M,bM ) f
(B)
0 (ING(M,bM )(µ)/M) = 1.

Now, we have to compute the contribution from the chain (M, bM) < (E, bE). It has

NG(M, bM) ∩NG(E, bE) as a stabilizer group.

Theorem 5.2.16. Assume that NG(M, bM)/CG(M) ∼= SL(2, p), for each (G,B)-subpair

(M, bM). Then,
∑

µ∈Irr(M)/NG(M,bM )∩NG(E,bE) f
(B)
0 (ING(M,bM )∩NG(E,bE)(µ)/M) = 1.

Proof: By Corollary 3.5.18, NG(M, bM) ∩NG(E, bE) has three orbits when it acts on

the set of ordinary irreducible characters of M . Let 1M , µ and λ be the representatives

of these three orbits. The bijection in Theorem 5.2.12 gives rise to a bijection between

Irr(M) and Irr2(CG(M) ∩ NG(E, bE)|bM). We can write 1M ←→ 1∗M ∈ Irr2(CG(M) ∩
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NG(E, bE)|bM), µ←→ µ∗ ∈ Irr2(CG(M)∩NG(E, bE)|bM), and λ←→ λ∗ ∈ Irr2(CG(M)∩

NG(E, bE)|bM). We have seen the inertial groups of µ and of λ in Corollary 3.5.18. Then

the alternating sum under consideration becomes

∑
µ∈Irr(M)/NG(M,bM )∩NG(E,bE)

f
(B)
0 (ING(M,bM )∩NG(E,bE)(µ)/M) = I1 + I2 + I3,

where

I1 = f
(B)
0 (ING(M,bM )∩NG(E,bE)(1M)/M) = f

(B)
0 (NG(M, bM) ∩NG(E, bE)/M),

I2 = f
(B)
0 (ING(M,bM )∩NG(E,bE)(µ)/M) = f

(B)
0 (CG(M) ∩NG(E, bE))· Ē)/M),

I3 = f
(B)
0 (ING(M,bM )∩NG(E,bE)(λ)/M) = f

(B)
0 (CG(M) ∩NG(E, bE))/M).

We claim that I1 = 0 = I2, and I3 = 1.

Let us start by showing that I3 = 1. We observe that λ∗ is an irreducible character of

CG(M) ∩NG(E, bE) with ING(M,bM )∩NG(E,bE))(λ
∗) = CG(M) ∩NG(E, bE). Then

Ind
NG(M,bM )∩NG(E,bE)
CG(M)∩NG(E,bE)) (λ∗)

is an irreducible character ofNG(M, bM)∩NG(E, bE). However, λ∗ = Ind
CG(M)∩NG(E,bE)
M (λ).

Hence,

Ind
NG(M,bM )∩NG(E,bE)
CG(M)∩NG(E,bE)) (λ∗) = Ind

NG(M,bM )∩NG(E,bE)
CG(M)∩NG(E,bE)) (Ind

CG(M)∩NG(E,bE)
M (λ)).

Using the transitivity of the induction processes, θ := Ind
NG(M,bM )∩NG(E,bE)
M (λ) is an ir-

reducible character of NG(M, bM) ∩ NG(E, bE). Therefore, each member of the orbit [λ]

induces to the irreducible character θ of NG(M, bM) ∩ NG(E, bE) which is M -projective.

Furthermore, θ belongs to the unique p-block b of NG(M, bM) ∩ NG(E, bE) which covers

bM . Therefore, I3 = f
(B)
0 ((CG(M) ∩NG(E, bE))/M) = 1.
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For I2, a similar argument to the proof of Proposition 5.2.15 can be used to show

that I2 = 0. Now for I1, using Lemma 3.5.6, it is enough to compute f
(B)
0 (NG(M, bM) ∩

NG(E, bE))/CG(M) ∩NG(E, bE)). But, by Proposition 3.5.17,

NG(M, bM) ∩NG(E, bE))/CG(M) ∩NG(E, bE) ∼= NSL(2,p)(Ē).

Thus, I3 = f
(B)
0 (NG(M, bM) ∩ NG(E, bE)/CG(M) ∩ NG(E, bE)) = 0, because it has a

non-trivial normal p-subgroup. The result is that

∑
µ∈Irr(M)/NG(M,bM )∩NG(E,bE)

f
(B)
0 (ING(M,bM )∩NG(E,bE)(µ)/M) = 1.

�

Now we have to gather Proposition 5.2.15 and Theorem 5.2.16 into the following corollary:

Corollary 5.2.17. Let G be a finite group, B be a p-block of G with a defect group

which is an extra-special p-group of order p3 and exponent p for an odd prime number p.

Consider (E, bE) as a maximal (G,B)-subpair. Let (M, bM) be an arbitrary subpair which

is contained in (E, bE). Write R(G|(M, bM)) for radical chains which start with (M, bM).

Then if NG(M, bM)/CG(M) ∼= SL(2, p),

∑
σ∈R(G|(M,bM ))

(−1)|σ|+1
∑

µ∈Irr(M)/NG(σ)

f
(B)
0 (ING(σ)(µ)/Vσ) = 0.

Proof: The result follows from Proposition 5.2.15, Theorem 5.2.16 and the observa-

tion of the dimension of σ. �

However, the conclusion of the Corollary 5.2.17 can be attained with the assumption

that SL(2, p) / NG(M, bM)/CG(M). To see this, we first have the following theorem:

Theorem 5.2.18. With the notation above, ING(M,bM )(µ
∗)/CG(M) ∼= SL(2, p).
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Proof: Let us assume that SL(2, p) < NG(M, bM)/CG(M) < GL(2, p). Let µ be

a non-trivial irreducible character of M . By Theorem 5.2.12, µ extends uniquely to an

irreducible character µ∗ of (CG(M)|bM). One can consider the inertial subgroup of µ∗

in NG(M, bM), namely X := ING(M,bM )(µ
∗). Thus, µ∗ is an irreducible character of the

normal subgroup CG(M), which is X-stable. Then, using Lemma 2.4.3, there is a finite

central extension group X̃ with normal subgroup C̃ such that X̃/C̃ ∼= X/CG(M). How-

ever, if p is large, SL(2, p) is a perfect group with no central extension (see [43, Section

7.1, Theorem 7.1.1 (i)] or [70]) and this forces us to conclude that X/CG(M) ∼= SL(2, p).

This proves Theorem 5.2.18. �

Corollary 5.2.19. In the case that SL(2, p) / NG(M, bM)/CG(M), with the notation

above, NG(M, bM)/ING(M,bM )(µ
∗) ∼= Cr.

Proof: Using Theorem 5.2.18, the second isomorphism theorem, and the assumption

NG(M, bM)/ING(M,bM )(µ
∗) ∼= [NG(M, bM)/CG(M)]/[ING(M,bM )(µ

∗)/CG(M)]

∼= [NG(M, bM)/CG(M)]/SL(2, p) ∼= Cr.

�

Now, if θ is an irreducible character of (X,µ∗) which isNG(M, bM)-stable, then we have

to count the number of irreducible characters of NG(M, bM) which are extensions of such θ,

and hence, we compute the number of M -projective irreducible characters of NG(M, bM)

which belong to the unique p-block of NG(M, bM) which covers bM . To reach this aim, we

exploit Corollary 5.2.19. Therefore, NG(M, bM)/X ∼= Cr, where r is determined by the

assumption that NG(M, bM)/CG(M) ∼= SL(2, p) o Cr, with 1 ≤ r ≤ p − 1. As a result,

θ, and hence, µ have r distinct extensions, each of which is an irreducible character of

NG(M, bM) and each of which is an M -projective.
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On the other hand, the proof that NG(M, bM) ∩ NG(E, bE) has r distinct irreducible

characters, each of which is M -projective, can be made in a similar manner. To see this,

we observe that each irreducible character µ of M extends uniquely to an irreducible

character, say µ∗ of (CG(M) ∩NG(E, bE)|bM). One can consider the inertial subgroup of

µ∗, say Y , in NG(M, bM) ∩NG(E, bE). Clifford’s Theorem 2.4.1 gives us the opportunity

to say that there is a bijection between the irreducible characters of Y which lie over µ∗

and the irreducible characters of NG(M, bM)∩NG(E, bE) which lie over µ. Now CG(M)∩

NG(E, bE) is a normal subgroup of the finite group NG(M, bM) ∩ NG(E, bE) and µ∗ is

an NG(M, bM) ∩ NG(E, bE)-stable irreducible character of CG(M) ∩ NG(E, bE). Then

there is a central extension of NG(M,bM )∩NG(E,bE)
CG(M)∩NG(E,bE)

. But the section NG(M,bM )∩NG(E,bE)
CG(M)∩NG(E,bE)

is

isomorphic to NN̄(Ē), where N̄ = NG(M, bM)/CG(M) and Ē = ECG(M)/CG(M). Using

the observation that

NG(M, bM) ∩NG(E, bE)/Y ∼=
NG(M, bM) ∩NG(E, bE)

CG(M) ∩NG(E, bE)
/

Y

CG(M) ∩NG(E, bE)
∼= Cr,

we conclude that each NG(M, bM) ∩ NG(E, bE) has r irreducible characters which are

M -projective. Therefore, for d = 2, the contribution from the chain which start with

(M, bM) cancels that which comes from (M, bM) < (E, bE). Hence, whenever, SL(2, p) /

NG(M, bM)/CG(M), the OWC is equivalent to the equality between kd(B) and kd(b), for

each d, where b is the unique p-block of NG(E, bE) which is in Brauer correspondence

with B.

5.3 The case that Op(G) is trivial and NG(E, bE)/ECG(E)

has no element of order p− 1.

We shall start this section with the following lemma which is a generalization of the
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Frattini argument in the (G,B)-subpairs:

Lemma 5.3.1. Let H be a normal subgroup of the finite group G and b be a p-block of H

which is G-stable with defect group Q. Then for each maximal (H, b)-subpair (Q, bQ), we

have G = HNG(Q, bQ).

It seems to us that ECG(M) will play the central part of our discussion, in this section.

This is because if Op(G) is trivial and NG(E, bE)/ECG(E) has no element of order p− 1

then, by Proposition 3.5.20, Op(NG(M, bM)/CG(M)) 6= 1. Therefore, the inverse image of

this group is a normal subgroup of NG(M, bM). However, ECG(M) is the inverse image

of Op(NG(M, bM)/CG(M)) 6= 1. The first observation is to make the following corollary

of Lemma 5.3.1.

Corollary 5.3.2. Let B be a p-block of G with defect group E which is an extra-special

p-group of order p3 and exponent p for an odd prime number p. With the assumption in

this section, we have NG(M, bM) = (NG(M, bM) ∩ NG(E, bE))CG(M), for each p-radical

(G,B)-subpair (M, bM) which is contained in (E, bE).

Theorem 5.3.3. If B is the principal p-block with an extra-special defect group, E, which

is of order p3 and exponent p, for an odd prime number p, then [NG(M, bM) : ECG(M)] 6≡

0 mod (p), for each maximal subgroup M of E.

Proof: We see that E ≤ ECG(M) ≤ NG(M, bM). Consequently, we have

[NG(M, bM) : E] = [NG(M, bM) : ECG(M)][ECG(M) : E].

However, E is a Sylow p-subgroup of NG(M, bM) and

[ECG(M) : E] =
|ECG(M)|
|E|

=
|CG(M)|
|CE(M)|

=
|CG(M)|
|M |

= |Op
′ (NG(M, bM))|,
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as the assumption in this result that we are dealing with the principal p-block,

CG(M) = M ×Op′ (NG(M, bM)).

Hence, p does not divide the index [NG(M, bM) : ECG(M)]. �

The following result is a kind of generalization of the Frattini argument see [9, 6.2, &

6.3 p. 20].

Proposition 5.3.4. With the above notation, NG(M, bM) = (NG(M, bM)∩NG(E, bE)CG(M)

if, and only if, {Eg | g ∈ NG(M, bM)} = {Ec | c ∈ CG(M)}.

Proof: Assume that NG(M, bM) = (NG(M, bM) ∩ NG(E, bE))CG(M). Then for each

g ∈ NG(M, bM), we have g = nc for some n ∈ NG(E, bE) ∩ NG(M, bM) and c ∈ CG(M).

Thus, Eg = Enc = Ec.

Conversely, suppose that {Eg | g ∈ NG(M, bM)} = {Ec | c ∈ CG(M)}. Clearly,

NG(M, bM) ⊇ (NG(M, bM) ∩ NG(E, bE))CG(M). Now the Dedekind Modular Law (

see [9, 1.14, p. 6] implies that NG(M, bM) ⊇ NG(M, bM) ∩ NG(E, bE)·CG(M) Now,

let g ∈ NG(M, bM). Then either g ∈ CG(M) or g 6∈ CG(M). So, if g ∈ CG(M) then

clearly g ∈ NG(M, bM)·CG(M) and hence, g ∈ (NG(M, bM) ∩ NG(E, bE))CG(M). Thus,

we have to consider the case that g ∈ NG(M, bM)− CG(M). This means that gCG(M) is

a non-trivial element of NG(M, bM)/CG(M). �

Proposition 5.3.5. With the assumption in this section, for each maximal subgroup M

of E which is a radical p-subgroup of G, we have NG(ECG(M)) = NG(E, bE)CG(M).

Proof: Let g ∈ NG(E, bE)CG(M). Then g = nc for some n ∈ NG(E, bE) and some

c ∈ CG(M). The idea here is that Sylow p-subgroups of G form a single G-conjugacy

class of maximal p-subgroups and that M runs through maximal subgroups of E which
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are radical p-subgroups of G. Also, we know that NG(E, bE) acts on such Ms. Hence,

ECG(M)g = EgCG(M g) = EcCG(Mnc). However, Ec is still a Sylow p-subgroup of G and

also Mn is a maximal subgroup of E. It follows from this categorical perspective that we

may assume that g ∈ NG(ECG(M)).

Conversely, let g be an element of g for which ECG(M)g = ECG(M). Then EgCG(M g) =

ECG(M). Again since this holds for each Sylow p-subgroup ofG and for each maximal sub-

group of E which is radical p-subgroup of G, we can conclude that g ∈ NG(E, bE)CG(M).

�

Corollary 5.3.6. NG(E, bE) controls the fusion of (G,B)-subpairs G if, and only if,

NG(M, bM) normalizes ECG(M) for each maximal subgroup M of E which is a radical

p-subgroup of G. In particular, the assumption in this section implies that NG(E, bE)

controls the fusion of (G,B)-subpairs.

Proof: Assume that NG(M, bM) normalizes ECG(M). However, ECG(M) is a sub-

group of NG(M, bM), since M is a normal subgroup of E. Hence, ECG(M) is a nor-

mal subgroup of NG(M, bM). Now we are in the situation that (E, bE) is a maximal

(ECG(M), b1)-subpair where b1 is the unique nilpotent p-block of ECG(M) which cov-

ers bM and NG(M, bM)-stable. Thus the Frattini argument gives us that NG(M, bM) =

NNG(M,bM )(E)·ECG(M). But E is contained in NG(M, bM) because M is a normal sub-

group of E. Hence, E is contained in NNG(M,bM )(E). Thus,

NG(M, bM) = NNG(M,bM )(E)·CG(M) = (NG(E, bE) ∩NG(M, bM))CG(M).

This means that NG(E, bE) controls the fusion of (G,B)-subpairs.

Conversely, suppose that NG(E, bE) controls the fusion of (G,B)-subpairs. This means

thatNG(M, bM) = (NG(E, bE)∩NG(M, bM))CG(M), for all maximal subgroups of E which

are radical p-subgroups of G. However, CG(M) is contained in NG(M, bM). Thus, using
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the Dedekind Modular Law (see [9, 1.14, p. 6]), we have NG(M, bM) = NG(E, bE)CG(M)∩

NG(M, bM). Now, using Proposition 5.3.5, NG(M, bM) = NG(ECG(M))∩NG(M, bM). So,

NG(M, bM) = NNG(M,bM )(ECG(M)). This completes the proof that ECG(M) is a normal

subgroup of NG(M, bM). �

As usual, let M be a maximal subgroup of E which is a radical p-subgroup of E.

Again, we shall consider the automorphism group of M , namely GL(2, p), because M is

an elementary abelian group of order p2. We assume that E is an extra-special group of

order p3 and exponent p for an odd prime number p. The following proposition and the

assumption in this section show that NG(E, bE) controls the fusion of G,B)-subpairs.

Proposition 5.3.7. If NG(M, bM)/CG(M) has a unique Sylow p-subgroup, then we have

NG(M, bM) ≤ NG(E, bE)CG(M).

Proof: If NG(M, bM)/CG(M) has a unique Sylow p-subgroup then it is a normal p-

subgroup, and, hence, Op(NG(M, bM)/CG(M) 6= 1. It follows that ECG(M) is a normal

subgroup of NG(M, bM). Hence,

NG(M, bM) = (NG(E, bE) ∩NG(M, bM))CG(M) = NG(E, bE)CG(M) ∩NG(M, bM).

Hence, NG(M, bM) ≤ NG(E, bE)CG(M), which is the required conclusion. �

Now we summarize the above discussion into the following proposition. Note that

NG(M, bM)/CG(M) has a unique Sylow p-subgroup, which means that the quotient group

is a proper subgroup of SL(2, p).

Corollary 5.3.8. Let G be a finite group, let B be a p-block of G with a defect group E

which is an extra-special p-group of order p3, and exponent p, for an odd prime number p.

Let M be an arbitrary maximal subgroup of E which is a radical p-subgroup of G. Then

we have, if NG(M, bM)/CG(M) < SL(2, p), we infer that NG(E, bE) controls the fusion
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of (G,B)-subpairs.

Proof: Suppose that NG(M, bM)/CG(M) < SL(2, p). Then, Theorem 2.6.7 implies

that Op(NG(M, bM)/CG(M)) 6= 1. Hence, Proposition 5.3.7 implies that NG(M, bM) ≤

NG(E, bE)CG(M). Therefore, NG(M, bM) = NG(E, bE))CG(M) ∩ NG(M, bM). Using the

Dedekind Modular Law, (see [9, 1.14, p. 6]), NG(M, bM) = (NG(E, bE)∩NG(M, bM))CG(M).

This means that NG(E, bE)) controls the fusion of (G,B)-subpairs. Since M was an ar-

bitrary maximal subgroup of E which is a radical p-subgroup of G, we conclude that the

situation above holds for all Ms. �

Theorem 5.3.9. Let G be a finite group with E, a p-subgroup which is an extra-special

group of order p3, with exponent p, for an odd prime number p. Let B be a p-block of G

with the defect group E. Then we have, if Dade’s Projective Conjecture (DPC) holds for

B, then kd(B) = kd(b), for all non-negative integer d, where b is the unique p-block of

NG(E, bE) such that bG = B.

Proof: By Corollary 5.3.8, NG(E, bE) controls the fusion of (G,B)-subpairs. Then

the action of the stabilizer of (M, bM) and of the stabilizer of (M, bM) < (E, bE) is the

same and the contributions cancel each other. We are left only with the contribution from

the trivial chain and the chain (E, bE). �

Finally, in this section we have the following corollary:

Corollary 5.3.10. Let G be a finite group and let B be a p-block of G with defect group

E, which is isomorphic to an extra-special group of order p3 and exponent p. Then the

DPC projective conjecture holds for B if, and only, if, for all non-negative integer d,

kd(B) = kd(b), where b is the unique p-block of NG(E, bE) such that bG = B.
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5.4 The case where Op(G) is a central p-subgroup of

G and equals Z(E).

In this section, we shall study the case that Op(G) is a central p-subgroup of G.

Since E is a defect group of B, Op(G) ≤ E. Hence, Op(G) ≤ E ∩ Z(G) ≤ Z(E). Thus

Op(G) ∈ {1, Z(E)}. Furthermore, in this case, we can deal with both the OWC and the

DPC.

Let us consider that Op(G) = Z(E). Now, on the one hand, Op(G) is a cyclic normal

p-subgroup of G of order p. On the other hand, for each maximal subgroup M = 〈x, z〉

of E = 〈x, y, z〉, we have E/Op(G) = 〈xOp(G), yOp(G)〉 and M/Op(G) = 〈xOp(G)〉 ∼= Cp.

We record the following observation in this case:

Theorem 5.4.1. In this case, Op(G) cannot be Vσ for any chain σ in the alternating sum

under consideration.

Proof: Since Op(G) = Z(E), and E is a non-abelian defect group of the p-block B,

Theorem 3.5.9 implies that the only chains (up to G-conjugacy) which contribute properly

to the alternating sum under consideration are those whose initial subgroups Vσ satisfy

CE(Vσ) ⊆ Vσ. So, the result follows because Z(E) < E. �

Let M be an arbitrary maximal subgroup of E which is a radical p-subgroup of G.

Theorem 5.4.2. In this case, SL(2, p) cannot be a section in NG(M, bM)/CG(M).

Proof: Assume that SL(2, p) / NG(M, bM)/CG(M). Then NG(M, bM)/CG(M) has

p+1 Sylow p-subgroups, each of which is cyclic of order p. To prove the theorem, we shall

construct a non-trivial normal p-subgroup of NG(M, bM)/CG(M). Note that E = 〈x, y, z〉,

M = 〈x, z〉 and 〈z〉 = Z(E) = Op(G) ≤ Z(G). So, M/Op(G) ∼= 〈x〉.
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Consider

CG(M/Op(G)) := {g ∈ G | [M, 〈g〉] ≤ Op(G)}. (5.4.1)

The first observation is that CG(M) is a proper subgroup of CG(M/Op(G)). This is

because y 6∈ CG(M), but y ∈ CG(M/Op(G)) as [M, y] 3 [x, y] = z ∈ Op(G) = Z(E).

We claim that CG(M/Op(G)) is a normal subgroup of NG(M, bM), since we see that if

g ∈ NG(M, bM) then (CG(M/Op(G)))g = CG(M g/Op(G)g) = CG(M/Op(G)).

Now CG(M/Op(G)) contains CG(M) properly. So, CG(M/Op(G))/CG(M) is a non-

trivial normal subgroup ofNG(M, bM)/CG(M). We must show that CG(M/Op(G))/CG(M)

is a p-group. Let g be a p-regular element in CG(M/Op(G)). Then, by 5.4.1, [M, 〈g〉] ≤

Op(G). Note that 〈g〉 is the cyclic p
′
-group generated by g. Since Op(G) is a cyclic p-

subgroup of order p, we have either that [M, 〈g〉] = 1 or [M, 〈g〉] = Op(G). However, if

[M, 〈g〉] = Op(G), we observe that [M, 〈g〉, 〈g〉] = [ [M, 〈g〉] , 〈g〉] = [Op(G), 〈g〉] = 1, be-

cause Op(G) is central. Now the co-prime action [9, 24.5, p. 113] implies that [M, 〈g〉] = 1.

Thus, g ∈ CG(M). Since g is an arbitrary p-regular element in CG(M/Op(G)), we conclude

that each p-regular element in CG(M/Op(G)) belongs to CG(M). This suffices to show that

CG(M/Op(G))/CG(M) is a non-trivial normal p-subgroup of NG(M, bM)/CG(M) which

is a contradiction with the assumption that SL(2, p) / NG(M, bM)/CG(M). Hence, in

this case, SL(2, p) cannot be a section in the quotient group NG(M, bM)/CG(M). This

completes the proof. �

Now we are in the situation that NG(M, bM)/CG(M) is not a p
′
-group in GL(2, p) ∼=

SL(2, p) o Cp−1 and SL(2, p) 6/ NG(M, bM)/CG(M). Therefore, we are left with the

following corollary:

Corollary 5.4.3. In this case, NG(M, bM)/CG(M) < SL(2, p).

Proof: SL(2, p) 6/ NG(M, bM)/CG(M) and NG(M, bM)/CG(M) is not a p
′
-group,
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yielding that NG(M, bM)/CG(M) < SL(2, p). In addition, the map η : M → M, such

that η(x) = x + z and η(z) = z gives us the required inclusion. Indeed, η is an auto-

morphism of M of order p, which does not centralise M . Hence, η can be regarded as an

element of NG(M, bM)/CG(M). On the other hand, η can be represented in the matrix

form as follows: η =

1 1

0 1

 . We see that η is an element in SL(2, p), as it has the

determinant 1. So, in fact, NG(M, bM)/CG(M) < SL(2, p). �

Now Theorem 2.6.7 implies the following important result:

Corollary 5.4.4. In this case, Op(NG(M, bM)/CG(M)) 6= 1.

Proof: This is clear from Theorem 2.6.7 and Corollary 5.4.3. �

The main result of this section is the following theorem.

Theorem 5.4.5. In this case, NG(E, bE) controls the fusion of (G,B)-subpairs.

Proof: In this case, ECG(M) is a normal subgroup of NG(M, bM). Hence, the result

follows from Theorem 5.3.6. �

The main result in this section is the following theorem:

Theorem 5.4.6. Let G be a finite group. Let B be a p-block of G with a defect group

which is isomorphic to an extra-special p-group, say E, of order p3 and exponent p for an

odd prime number p. Let b be the unique p-block of NG(E, bE) such that bG = B. Assume

that Z(E) = Op(G) ≤ Z(G). Then the DPC or the OWC hold for B if, and only if,

kd(B) = kd(b), for all non-negative integers d.

Proof: It is clear that if d = 3 then DPC is equivalent to k3(B) = k3(b). As-

sume that d = 2. Let M be a maximal subgroup of E which is a radical p-subgroup

of G. The assumption and Theorem 5.4.5 enable us to conclude that the action of

NG(E, bE) ∩NG(M, bM) on Irr(M) is the same action as that of NG(M, bM) on Irr(M).
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Thus,
∑

σ∈R(G,B)(−1)|σ|+1
∑

µ∈Irr2(Vσ)/NG(σ) f
(B)
0 (ING(σ)(µ)/Vσ) = k2(B)− k2(b). It follows

that the conjecture under consideration holds for B if, and only if, kd(B) = kd(b), for all

non-negative integers d. �

5.5 The situation that Op(G) is not a central p-subgroup

of G.

We devote this section to the OWC. The assumption that Op(G) is not a central p-

subgroup of G does not allow us to deal with the DPC. So, we have to tackle the OWC.

Now, Op(G) is contained in E. Thus, we have two options in this case. The first one is

that Op(G) is a maximal subgroup of E. The second is that Op(G) is the centre of E.

Observe that, in this case, Op(G) 6= 1, as 1G is a central p-subgroup of G. As a result, G

has no p-blocks of defect zero in this case.

5.5.1 The case that Op(G) is a maximal subgroup of E

Now let us discuss the case that Op(G) = M, for a maximal subgroup M of E. Of course,

E cannot be a normal p-subgroup in this case.

First of all, we claim that M is the unique radical p-subgroup of G of order p2 which

is contained in E. Let us record this observation as a lemma.

Lemma 5.5.1. Let M be an arbitrary radical p-subgroup of G which is a maximal subgroup

of E. Then if M = Op(G) then M is the unique radical p-subgroup of G of order p2 which

is contained in E.

Proof: If N is a radical p-subgroup of G which is contained in E, then Op(G) ≤ N.

However, p2 = |Op(G)| = |N | implies that N = Op(G) = M. �
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We observe that Op(G) ≤ CG(Op(G)), as Op(G) is abelian. Now CG(Op(G)) is a

normal subgroup of G. Consequently, G/CG(Op(G)) / Aut(Op(G)) ∼= GL(2, p).

Lemma 5.5.2. In this case, either Op(G) = CG(Op(G)), or Op(G) < CG(Op(G)).

Proof. This is clear, because Op(G) is an abelian subgroup of G.

Now let us discuss the case that Op(G) is self-centralizing in G. We mean that in the

following we shall assume that Op(G) = CG(Op(G)). Hence, using [32, Corollary 3.11,

Chapter V, p. 200], G has a unique p-block, namely, the principal p-block.

Corollary 5.5.3. In this case, G/Op(G) / GL(2, p).

Now, three cases have to be distinguished; that G/Op(G) is a p
′
-group, that G/Op(G)

has a unique Sylow p-subgroup and that G/Op(G) has p+1 Sylow p-subgroups. However,

the following lemmas exclude two of these cases.

Lemma 5.5.4. In this case, G/Op(G) cannot be a p
′
-group.

Proof: We observe that Op(G) < E < G. Consequently, [G : Op(G)] = [G : E][E :

Op(G)]. Hence, [G : Op(G)]p = p, which means that G/Op(G) cannot be a p
′
-group. �

Lemma 5.5.5. In this case, G/Op(G) has more than one Sylow p-subgroup.

Proof: If G/Op(G) has a unique Sylow p-subgroup then it is a normal p-subgroup.

However, a Sylow p-subgroup of G/Op(G) has the form P/Op(G), for some Sylow p-

subgroup of G. This implies that P is a normal p-subgroup of G, which is not the case,

using Lemma 5.5.4. Thus, in this case, G/Op(G) has p+ 1 Sylow p-subgroups. �

Again, three cases have to be distinguished:

• G/Op(G) ∼= SL(2, p), and G ∼= Op(G) o SL(2, p).
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• G/Op(G) ∼= X, where SL(2, p) < X < GL(2, p). Hence, G ∼= Op(G) oX.

• G/Op(G) ∼= GL(2, p), and hence, G ∼= Op(G) oGL(2, p).

Now let us assume that Op(G) < CG(Op(G)). Consequently, we have the following

corollary:

Corollary 5.5.6. In this case, Op′ (G) 6= 1.

Proof: This is true, because CG(Op(G)) = Op(G)×Op′ (G). �

Using Corollary 5.2.17, we obtain the following result.

Theorem 5.5.7. Consider the notation and the assumption in this subsection. Then

∑
σ∈R(G|(M,bM ))

(−1)|σ|+1
∑

µ∈Irr(M)/NG(σ)

f
(B)
0 (ING(σ)(µ)/M) = 0.

Proof: This is a special case of Corollary 5.2.17. �

Corollary 5.5.8. Let B be a p-block of G with defect group E. Let b be the unique p-

block of NG(E, bE) such that bG = B . Consider the notation and the assumption in this

subsection. Then the OWC holds if, and only if kd(B) = kd(b) for all non-negative integer

d.

Proof: This is clear, in the light of Theorem 5.5.7. �

5.5.2 The case that Z(E) = Op(G)

Now let us continue to deal with the OWC and the case that Op(G) = Z(E). The

first observation in this case is that Op(G) cannot be the initial p-subgroup of any chain
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under consideration. This is because E is a non-abelian defect group of the p-block B and

we know from Theorem 3.5.9 that the only chains (up to G-conjugacy) which contribute

properly to the alternating sum under consideration are those whose initial subgroup Vσ

satisfies CE(Vσ) ⊆ Vσ. Let us record this observation as a lemma.

Lemma 5.5.9. In this case, Op(G) 6= Vσ, for any chain σ under consideration.

The second observation is that G has no p-block of defect zero as 1 6= Op(G).

Theorem 5.5.10. In this case, G has no p-block of defect zero.

We see that E is contained in CG(Op(G)) because Op(G) = Z(E). However, the

following lemma tells us that Op(G) cannot be self-centralising.

Lemma 5.5.11. In this case, Op(G) 6= CG(Op(G)).

Theorem 5.5.12. We have Op(G) = Op(CG(Op(G))).

Proof: Since Op(G) is a normal p-subgroup of CG(Op(G)), Op(G) ≤ Op(CG(Op(G))).

Conversely, thatOp(CG(Op(G))) is a characteristic p-subgroup of CG(Op(G)) and CG(Op(G))

is a normal subgroup of G enable us to conclude that Op(CG(Op(G))) is a normal p-

subgroup of G. Hence, Op(CG(Op(G))) ≤ Op(G). This completes the theorem. �

Now, the assumption that Op(G) is not central in G means that the normal subgroup

CG(Op(G)) is a proper subgroup of G. In fact, we have the following chain: 1 < Op(G) <

CG(Op(G)) < G. Consequently, we have G/CG(Op(G)) / Aut(Op(G)). However, Op(G)

is the centre of E, so Aut(Op(G)) ∼= Cp−1. This justifies the following theorem:

Theorem 5.5.13. In this case, G/CG(Op(G)) / Cp−1.

Let b be the unique p-block of CG(Op(G)) which is the Brauer correspondent with B.

Now, since CG(Op(G)) is a normal subgroup ofG, and (E, bE) is a maximal (CG(Op(G)), b)-

subpair, G = NG(E, bE)CG(Op(G)). Note that elements of G which centralise Z(E) need
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not normalize E. In fact, NG(E, bE) 6= CG(Op(G)). Let us record this observation as a

theorem.

Theorem 5.5.14. In this case, we have G = NG(E, bE)CG(Op(G)).

Now, Theorem 5.5.13 implies that G/CG(Op(G)) is a cyclic p
′
-group. Consequently,

we have the following corollary:

Corollary 5.5.15. In this case, each irreducible character of CG(Op(G)) which is G-stable

extends to an irreducible character of G.

Proof: This is true, since we have this fact in the general case, the proof of which can

be found in [42, 11.22]. �

It is well-known that ifM is an indecomposable G-module thenM is a direct summand

of the induced G-module of the restriction of M to a Sylow p-subgroup of G. As a result,

M is an H-projective G-module for each subgroup H of G which contains a Sylow p-

subgroup of G.

Now, G/CG(Op(G)) / Cp−1 means that each Sylow p-subgroup of G is contained in

CG(Op(G)), and, hence, each indecomposable G-module, as well as each irreducible G-

module, is CG(Op(G))-projective. Therefore, we conclude in this case that each irreducible

character of G is a CG(Op(G))-projective. However, if M is a maximal subgroup of E,

which is a radical p-subgroup of G, then this M is contained in CG(Op(G)). So, we

conclude that each irreducible character of G which lies over an irreducible character of

M is M -projective.

On the other hand, the isomorphism G/CG(Op(G)) / Cp−1 gives us the opportunity

to deduce that each Sylow q-subgroup of G/CG(Op(G)) for each prime number q which

divides p− 1 is cyclic. Thus, for each irreducible character µ of M , IG(µ)/CG(Op(G)) has

no non-trivial central extension. This is because all its Sylow q-subgroups are cyclic, and,

hence, have trivial Schur Multipliers, (see [43, Section 7.1] or [70]).
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In this case, we have to resort to Clifford theory. This means we have to fix ζ ∈

Irr(Op(G)) and try to compute: kd(B, ζ) = I1 − I2 + I3, where

I1 =
∑

µ∈Irrd(M,ζ)/NG(M,bM )

f
(B)
0 (ING(M,bM )(µ)/M),

I2 =
∑

µ∈Irrd(M,ζ)/NG(M,bM )∩NG(E,bE)

f
(B)
0 (ING(M,bM )∩NG(E,bE)(µ)/M)

and

I3 =
∑

η∈Irrd(E,ζ)/NG(E,bE)

f
(B)
0 (ING(E,bE)(η)/E).

If d = 3, then Irr3(M) is the empty set and hence, I1 = I2 = 0. So, k3(B, ζ) = I3, in

this case. Note that this is true for each ζ ∈ Irr(Op(G)). In the case that d = 2, Corollary

5.2.17, with its assumption, implies that the contributions from the chain starting with

(M, bM) cancel each other. So, we are left in this case also with the conclusion that

k2(B, ζ) = I3. Therefore, for each positive integer d,

kd(B) =
∑

η∈Irr(Op(G)

kd(B, η) = kd(b),

where b is the unique p-block of NG(E, bE) such that bG = B.

5.6 The case that Op(G) = 1 and the inertial quotient

is C2 × Cp−1

In this section, we shall consider the case thatOp(G) is trivial andNG(E, bE)/ECG(E) ∼=

C2×Cp−1. We have already computed the orbit structure for this case in Subsection 4.2.3.

The DPC and the OWC can be discussed under the hypothesis in this section. We

shall continue to assume that the p-block B with defect group E satisfies OWC.
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Of course, there is no problem in the cases where 0 = d and 1 = d, either. Let us

examine the case that d = 3. So, Irr3(M) is the empty set and by Lemma 4.2.5, the set

Irr3(E) is partitioned into p + 1 orbits. Clearly 1E forms an orbit and the second orbit

has a representative of the form 1〈x〉 ⊗ β where β is a non-trivial irreducible character of

〈y〉. The other p2 − p linear irreducible characters of E distribute to p− 1 orbits, each of

which contains p irreducible linear characters of the form α⊗ βi where α is a non-trivial

irreducible character of 〈x〉 and 0 ≤ i ≤ p. For the inertial subgroups in NG(E, bE),

1〈x〉 ⊗ β has C2, while α⊗ βi has Cp−1 as an inertial subgroup.

Now the alternating sum under consideration for d = 3 reduces to the following sum

k3(B) =
∑

η∈Irr3(E)/NG(E,bE)

f
(B)
0 (ING(E,bE)(η)/E).

Using the orbits structure above and Theorem 4.2.3, we have to show that

k3(B) = I1 + I2 + I3,

where

I1 = f
(B)
0 (NG(E, bE)/ECG(E)) = 2p− 2,

I2 = f
(B)
0 (ECG(E)C2/ECG(E)) = 2

I3 = (p− 1)f
(B)
0 (ECG(E)Cp−1/ECG(E)) = p2 − 2p+ 1.

Hence, k3(B) = p2 + 1. Now for d = 2, we want to compute the sum

∑
µ∈Irr2(Vσ)/NG(σ)

f
(B)
0 (ING(σ)(µ)/Vσ).

In this case, M cannot be a normal p-subgroup of G. However, NG(M, bM) acts transi-

tively on the set of non-trivial irreducible characters of M and NG(E, bE) acts transitively

on the set of non-linear irreducible characters of E. Using Corollary 5.2.17 and its hypoth-
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esis, for chains starting with a radical (G,B)-subpair (M, bM), has no proper contribution

to the sum above. As a result, k2(B) = f
(B)
0 (NG(E, bE)/ECG(E)) = 2p−2 = k2(b), where

b is the unique p-block of NG(E, bE) such that bG = B. Hence, k(B) = p2 + 1 + 2p− 2 =

p2 + 2p− 1. Therefore, k(B)− k(E) = p.

Now, we summarize the above into the following theorem.

Theorem 5.6.1. Let G be a finite group, B be a p-block of G with defect group E which is

an extra-special p-group of order p3 and exponent p for an odd prime number p. Assume

that Op(G) = 1 and the section NG(E, bE)/ECG(E) ∼= C2 × Cp−1. If B satisfies OWC

then k(B)− k(E) = p.
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Chapter 6

CONCLUSION AND

SUGGESTIONS FOR FURTHER

RESEARCH

We fix an odd rational prime number p. We have studied the Ordinary Weight Conjecture

and Dade’s Projective Conjecture for a p-block of a finite group which has a defect group

isomorphic to an extra-special p-group of order p3 and exponent p. The idea behind these

conjectures is to satisfy the p-local theory. We have employed the subpair formulation of

these conjectures. Hence, we are in a position to deal with both the approach of characters

and the p-block theory approach, as well as the module approach.

The methods which we have used are the cancellation process, which originated in the

work of Geoffrey R. Robinson. This kind of technique enables us to reduce the calculation

under consideration to consider chains which start with an Alperin-Goldschmidt subpair.

After fixing a suitable p-modular system, the theory of a relative projective is trans-

lated for irreducible ordinary characters. Thus, we exploit Geoffrey R. Robinson’s con-

tribution towards this theory to count and compare the number of irreducible characters

which are projective relative to a certain normal p-subgroup.
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The inertial quotient of a certain subpair is used to measure the fusion. The case that

this inertial group is trivial gives us the opportunity to say that each associated p-block

is nilpotent. On the other hand, using the fact that this inertial quotient is a p
′
-group

for the maximal subpairs, we study the action of this p
′
-group on a certain elementary

abelian p-group which is called the Frattini quotient.

We have exploited the fact that the outer automorphism group of the defect group

under consideration and also the automorphism group of an arbitrary maximal subgroup

of this defect group is the general linear group of dimension two over a field of p elements.

Thus, we are working in the general linear group and its subgroups. This situation enables

us to study the action of the inertial quotient to determine the orbit structure of the irre-

ducible characters of the initial subgroups of the chain of the alternating sum. However,

using the cancellation theorems, we have to consider only the irreducible characters of the

defect group and the characters of the maximal subgroups of such a defect p-group which

are the radical p-groups.

The main dichotomy is that the inertial quotient of a maximal subpair either has or

has not an element of order p − 1. It follows that we are dealing with the case that the

inertial quotient of a certain subpair has a non-trivial normal p-subgroup, and, hence, has

no p-block of defect zero. However, in the other case, the situation is that, for large p, the

special linear group of dimension two over a field of p elements has a trivial Schur multiplier

together with Clifford theory ensure that the alternating sums under consideration cancel

each other, except for those from the empty chain and the associated maximal subpair.

Therefore, the conjectures predict a bijection between the irreducible characters of a p-

block of a finite group and the irreducible characters of the Brauer correspondent of the

stabilizer of the associated maximal subpair.

Special attention is drawn to the case that the unique largest normal p-subgroup is

non-trivial. Thus, according to the set-up of the conjectures which we are tackling, two

cases have to be distinguished. The first one is that this normal p-subgroup is central.
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In this case, it follows that the special linear group of dimension two over a field of p

elements does not involve the inertial quotient of non-maximal subpairs. As a result, the

maximal subpair is the unique Alperin-Goldschmidt subpair and the desired conclusion

follows.

However, we are concerned with the case that the unique largest normal p-subgroup

is not central. In this case, Clifford theory is the main tool to obtain the result. Now,

according to our choice of the defect group, we have two cases. The first one is that

this normal p-subgroup is an elementary abelian p-group of order p2 and the second is

a cyclic p-group of order p. In the former case, it follows that we have a unique radical

p-subgroup, while in the latter case, we see that each irreducible character of the finite

group under consideration is projective relative to the initial subgroup of the required

term of the alternating sum. In both cases, we see that the contribution from the chain

which starts with a non-maximal subpair cancel each other, and we are left only with the

contributions from the empty chain and the singleton chain of the maximal subpair. We

have been concerned with the case that the unique largest normal p-subgroup is trivial

and the inertial quotient of the associated maximal subpair has an element of order p−1.

This result is proved in a similar fashion by exploiting the fact that each p-block of the

centralizers of both the defect group and its maximal subgroups are nilpotent p-blocks.

Then, we use the covering of nilpotent p-blocks and the extension of a certain action to

count and equate the number of irreducible characters which are projective relative to the

initial subgroup of the chain which we are considering.

SUGGESTIONS FOR FURTHER RESEARCH

Here, we shall draw attention to questions which have arisen in the course of the

present research.

• The general case needs to be made whether it true that the OWC holds for p-blocks

with an extra-special defect p-group.
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• We ask under which conditions the results of this thesis hold in a case where E has

order p2n+1, as well as the generalised extra-special p-groups.

• We consider these results from the point of view of the Külshammer-Puig result and

the Morita type which uses the Harris Knörr correspondence.

• It seems that there is a connection with some other conjectures and this connection

merits further study. See [39].

• We might use the classification of finite simple groups to tackle this problem. We

know that the principal 13-block of the Monster group has a defect group which is

isomorphic to an extra-special 13-group of order 133 and exponent 13. The same is

true for p = 11 in the Janko group J4. The defect group of the principal 7-block of

the Held group is an extra-special 7-group of order 73. However, for p = 3, 5 there

are many simple groups having Sylow p-subgroups which are extra-special p-groups

of order p3 and exponent p. See[17].

• We might generalise these conjectures for arbitrary finite dimensional algebras, using

the notion of pointed groups and source algebras.
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111
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