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ABSTRACT 

CD4+ T cells play a pivotal role in orchestrating immune responses. It has now been 

shown that some cells display direct effector functioning in the elimination of viral 

infections and cancers. The T cell receptor (TCR) is thought to play a part in influencing 

these cytotoxic mechanisms and is being investigated for optimisation of TCR gene 

transfer therapies. However, with the diverse TCR repertoire available, selection of 

TCRs conferring the greatest therapeutic potential remains a challenge.    

To investigate TCRVβ usage and its effects on cellular function, in the context of the 

oncogenetic Epstein Barr Virus, we used MHC class II tetramers to isolate CD4+ T cell 

clones from healthy seropositive donor’s ex vivo, specific for the latency III EBNA2 

protein derived epitope; PRS. 

We have found that the epitope specific CD4+ T cells express TCRs with various Vβ 

usages. These T cells had a range of functional avidities for the same MHCII-epitope 

combination. We have further shown there is a direct relationship between functional 

avidity and the efficiency of a T cell clone to recognise unmanipulated LCL targets 

(EBV infected B cells).  

The results from these experiments highlight the importance of gaining further 

knowledge into the relationship between TCR usage and T cell function. This may 

provide steps towards future development of targeted MHC Class II restricted TCR 

gene transfer therapies for the treatment of EBV associated B cell malignancies. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 The Human Immune System and Cancer 

The human immune system is essential for life. Alongside its pivotal role in the 

detection and elimination of pathogenic species, the immune system is widely 

acknowledged to play a significant part in cancer prevention (Blair et al 2008). The first 

evidence of this was produced by Elie Metchnikoff and Paul Ehrlich in 1908, who 

established that the immune system could naturally recognise cancer cells as altered self 

and initiate their destruction (Tauber et al 1992).  Although these early findings were 

met with some scepticism, clinical research into cancer immunology subsequently 

developed throughout the 20th century. In the 1950s Burnet and Thomas expanded upon 

these initial findings, suggesting that the immune system was able to promote protection 

against cancer development by eliminating malignant cells before they had the 

opportunity to transform. This hypothesis later formed the concept known as cancer 

immune-surveillance (Ostrand Rosenberg et al 2008). It has now been recognized that 

in some cases, through immune-surveillance and anti-tumour responses, cancer can be 

effectively prevented and controlled. These historical research contributions have led to 

advances in the field of tumour immunology in the last 20 years, where the immune 

system has been utilised and enhanced to treat different types of cancer. Many 

successful immunotherapies exploiting both the humoral and acquired immune arms 

have now been tested in clinical trials and some are now approved for use in 

combination with traditional chemotherapeutic agents (Rothschild et al 2015).  
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However, to develop more effective novel therapeutic strategies it is fundamental to 

understand the mechanisms underlying interactions between immune cells and tumours. 

1.1.1 The Innate Immune System 

The innate immune system is the body’s initial protection against invading pathogenic 

organisms. This primary response is rapid and involves a variety of different defence 

mechanisms, complement proteins and innate cell subtypes. After a pathogen penetrates 

through primary epithelial and mucosal barriers, they are detected by innate cells 

including macrophages, dendritic cells, granulocytes and natural killer cells, circulating 

within the infected tissue. These immune cells recognise pathogen associated molecular 

patterns (PAMPs) on the surface of invading microorganisms and danger associated 

molecular patterns (DAMPs), via membrane bound pathogen recognition receptors 

(PRRs) (Iwasaki et al 2004). This triggers both phagocytosis of pathogens and a range 

of intracellular signalling pathways the innate cells, resulting in the release of various 

signalling molecules including chemokines and cytokines along with a systematic pro-

inflammatory response (Mogensen et al 2009). Consequentially, more innate cells 

migrate to the area of infection. Dendritic cells, in particular, are essential in the 

activation of the adaptive immune response (Section 1.1.2). This is achieved through the 

processing and presentation of antigenic material on their cell surface which coordinates 

the formation of long lasting memory T lymphocytes and protection against secondary 

infections (Banchereau et al 1998).  

 
The role of the innate immune system in targeting cancer cells remains poorly 

understood. Natural killer cells (NK), primary innate immune lymphocytes, have been 

shown to be responsible for elimination of non-MHC expressing cancer cells through 
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the activities of their stimulatory and inhibitory NK receptors (Liu et al 2013). 

Furthermore, the NK receptor NKG2D, which recognises the stress ligand MHC class-I-

chain-related protein A (MICA) expressed on the surface of cancer cells, stimulates the 

production of inflammatory cytokines, resulting in cancer cell apoptosis (Bauer et al 

1999). However innate immunity is not specific and is limited in tumour control. 

1.1.2 The Adaptive Immune System 

The adaptive immune system is essential for elimination and long-term protection 

against both pathogenic organisms and cancer cells. Humoral and cellular immunity are 

the two lines of adaptive defence. Adaptive immune cells also express receptors, 

however unlike the innate cells these receptors are somatically generated via gene re-

arrangements. This creates a diverse, clonally distributed receptor repertoire which is 

highly specific and enables adaptive immune cells to target specific antigens. 

Antibodies, synthesised from plasma B cells, can recognise extracellular antigens. In 

contrast, T lymphocytes discriminate foreign antigenic material from self, via T cell 

membrane bound receptors which interact with pathogen derived protein degradation 

products. Once activated adaptive immune cells initiate elimination of infected (or 

cancerous) cells and establish long lasting memory populations which are able to 

respond much more rapidly upon secondary encounter with a specific antigen. T cells 

can express either γδ and αβ T cell receptors (TCRs) (Allison et al 2002), this thesis will 

focus on the αβ TCR. 

1.1.3 T Lymphocyte Development  

To provide the most efficient cellular immune response, the T cell repertoire must be 

diverse enough to cover the wide range of antigens potentially encountered throughout 
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life. There are two types of T lymphocytes, CD8+ and CD4+ T cells, which originate 

from hematopoietic stem cells located within the bone marrow. Newly generated T cells 

migrate to the thymus, entering at the cortico-medullary junction where they initiate 

TCR rearrangements and undergo selection.  

1.1.4 TCR Generation  

To successfully produce a functional TCR and generate diversity within the TCR 

repertoire, each chain undergoes a process known as V(D)J recombination. This 

involves rearrangements of the gene segments, known as variable (V), diversity (D) and 

joining (J), to form a complete variable domain exon. V(D)J recombination is initiated 

by two proteins, RAG1 and RAG2, which together constitute the recombinase forming 

a complex which contain conserved recombination signal sequences (RSSs). These 

RSSs flank the coding sequences of individual gene segments and the formation of this 

complex allows for the joining of gene segments such as variable and joining. The 

endonuclease activity of the RAG1/2 recombinase introduces single stand DNA breaks 

within the 5’ ends of both RSSs (McBlane et al 1995). The exposed 3’ hydroxyl groups 

react with phosphodiester bonds located on the opposite DNA strand promoting the 

formation of a hairpin loop and double stand breaks within each RSS sequence (Figure 

1.1). Repair proteins Ku70:Ku80 bind to the hairpin. The nuclease enzyme; Artemis is 

recruited, phosphorylated by a DNA phosphatase kinase (DNA-PK) and opens up the 

hairpin loops (Mansilla-Soto et al 2003). The cut ends are then modified through 

random additions and deletions of non-template nucleotides, by terminal 

deoxynucleotidyl transferase (TdT), producing diversity and heterogeneity in the joint 

between the gene segments; a process known as junctional diversification. The RSSs 

contain spacer sequences consisting of either 12 base pairs or 23 base pairs. These are 
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essential for the re-joining steps as pairing only occurs between fragments with terminal 

12bp spacer sequences and terminal 23bp sequences (Van Gent et al 1996). DNA ligase 

IV is recruited to join the processed ends and this is followed by transcription, splicing 

of none coding segments and translation into a polypeptide sequence which constitutes 

each strand of the TCR. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 V(D)J Recombination. Both alpha and beta chain genes go through a 
process known as V(D)J recombination in which they rearrange gene segments to 
produce a large repertoire of TCRs for future immune responses.  (A) RAG1/2 bind to 
RSS sequences introducing single stranded DNA breaks and hairpin loop formation. (B) 
Recruitment and activation of Artemis nuclease opens hairpin loops. Followed by 
additions and deletions of nucleotides within the gene sequence (C) Recruitment of DNA 
ligase, joining of cut modified ends and transcription of newly formed gene segments 
(Murphy et al 2012).  
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Allelic exclusion is another essential process of thymocyte development. This prevents 

both alleles of the same TCR chain gene, be that beta, alpha, delta or gamma chain, 

being expressed together and restricts a TCR to a single specificity. Hence, if a 

productive V(D)J gene rearrangement occurs for one beta chain gene then this promotes 

the inhibition of the other allele of that gene, preventing more than one chain being 

synthesised (Dudley et al 1994).  

Once the TCR beta chain has successfully undergone somatic gene recombination and 

allelic exclusion it will associate with an invariant pre-TCR alpha chain forming a pre-

TCR complex. This initiates alpha chain gene rearrangement and the formation of a 

double positive (DP) population of thymocytes expressing both CD4 and CD8 co-

receptors (Van De Wiele et al 2004).  DP thymocytes undergo both positive and 

negative selection checkpoints, thus ensuring only the most efficient TCRs (in terms of 

affinity) are available to induce a strong immune response.  

The development and maturation of T cells is essential for determining both their own 

TCR specificity and affinity towards a range of Peptide/MHC complexes (pMHC), 

along with preventing autoimmune reactivity towards healthy cells within the body. 

This balance is vital in maintaining an immune system robust enough to target and 

eliminate infection and cancer while still preventing autoimmunity. 
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1.1.5 T Cell Receptors  

TCRs are crucial components of adaptive immune cells and a key area of interest when 

investigating the therapeutic application of T cell immune responses. Each T cell 

expresses thousands of copies of identical TCRs which target processed antigens in 

order to eliminate infection. They are further involved in cancer immunosurveillance 

strategies when interacting with tumour associated and tumour specific antigens (TAA, 

TSA) presented by malignant cancer cells. Despite the diversity of the human TCR 

repertoire remaining unknown, the gene set encoding the TCR repertoire has the 

potential to create over 1015 TCR T cell clonotypes (A population of T cells expressing 

identical TCRs) (Laydon et al 2015). 

X-Ray crystallography analysis of the αβ TCR has been paramount in furthering the 

study of its molecular structure and immune function in relation to affinity and avidity 

towards target antigens (Garcia et al 1996). The TCR is a transmembrane anchored 

heterodimer of glycoproteins consisting of distinct alpha and beta chains. These chains 

are composed of variable and constant regions bound to a hinge region, similar to that 

seen in immunoglobulins, within the humoral arm of the adaptive immune system 

(Figure 1.2). The variable domains of the TCR, which are folded into Beta sheet 

structures, contain hypervariable complementary determining regions; CDR1, CDR2, 

and CDR3. These are located on both alpha and beta chains of the TCR and 

characterised as 6 loop structures (Nielsen et al 2002).  The CDR1 and CDR2 are 

encoded within the variable gene segments of the germline. The CDR3, on the other 

hand, is predetermined by the region within both the spliced VJ Alpha and VDJ Beta 

gene segments as a result of somatic recombination events during thymocyte 

development.  This results in an increase in the diversity of the TCR repertoire (Wang et 
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al 2017).  It is the most variable and primary region of the TCRβ locus for determining 

antigen specificity.  
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Figure 1.2 Structure of αβ T cell receptor. The αβ TCR compromised of alpha and 
beta chains  both with variable and constant domains.  A stalk segment connects the 
constant region with the membrane of T cell (this contains cysteine residues forming 
disulphide bonds which stabilise each chain). CD3 complexes are located either side 
of the TCR and are essential for promoting downstream intracellular signalling after 
initial TCR-pMHC complex interaction (Murphy et al 2012). 
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1.1.6 Major Histocompatibility Complexes  

Major Histocompatibility Complex molecules are encoded by human leukocyte antigen 

genes, found on chromosome 6, within the region in closest proximity with the 

chromosomal centromere. These are broadly organised into 3 separate gene loci, HLA I, 

HLA II and HLA III, encoding 3 different MHC protein molecules (Figure 1.3). The 

HLA II genes (HLADR, HLADP, and HLADQ) have been found to encode the MHC II 

molecule presented to CD4+ T cells (Ting et al 2002). Individuals contain a number of 

different HLA genes and variations of these promote a polymorphic and polygenic state. 

The entire MHC is inherited as an HLA haplotype in a Mendelian fashion from each 

parent, meaning closely related individuals such as siblings have a higher probability of 

being genotypically HLA identical (Choo et al 2007). This thesis specifically focusses 

on CD4+ αβTCR interaction with define pMHC class II complexes, as such this process 

will be explained in greater detail. 

 

 

 

 

 

 

 

Figure 1.3 HLA genes. HLA genes encoding MHC class I, II and III molecules 
located within the short arm of chromosome 6. Class II genes encode MHC II, class 
III genes encode proteins in the serum complement system and class I encode the 
MHC I molecule (Thorsby et al 2005). 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjk-rHrms_cAhVESxoKHdhTB6gQjRx6BAgBEAU&url=https://www.sciencedirect.com/science/article/pii/S096632740500033X&psig=AOvVaw0ykoecIxgsoU3CjLlEBzYF&ust=1533327910331609


 

10 
 

1.1.7 MHC Class II 

The MHC II molecule, unlike the MHC I, is only expressed on the surface of antigen 

presenting cells. These include dendritic cells (DCs), B lymphocytes, monocytes, 

macrophages, and thymic epithelial cells. Notably, human T lymphocytes also express 

MHC class II molecules following activation.  The MHC II presents exogenous antigens 

to CD4+ T lymphocytes and is composed of non-covalently linked glycosylated alpha 

and beta chains, each containing 2 domains (for example, alpha 1 and alpha 2) (Figure 

1.4). The variable alpha 1 and beta 1 domains form an open-ended peptide binding 

groove which interacts with exogenous peptides, 10-15 amino acids in length.  

Hydrogen bonds form between amino acids within the binding groove and specific 

amino acids within the epitope of an antigen (Schmidt et al 2013). The exact amino acid 

and sequence the MHC molecule is composed of will determine what antigen peptides 

are able to bind. Thus, polymorphisms and altered amino acid sequences within its 

structure will modify the shape of the MHC II groove and consequentially its peptide-

binding specificity.  

1.1.8 Processing and Presentation of Exogenous Peptides by MHC Class II  

Antigenic peptides are processed and presented to naive mature CD4+ T Cells on MHC 

II molecules on the target cell via a process known as the exogenous pathway (Figure 

1.4). This involves the acquisition of antigenic peptides generated from proteolytic 

degradation in endosomal compartments from exogenous material endocytosed from the 

extracellular environment (Watts 2004).  

MHC II molecules assemble within the Endoplasmic Reticulum (ER) and associate with 

an invariant chain. This chain initially prevents the binding of self-peptide fragments 
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prior to MHC localization within the endo-lysosome (Cresswell et al 1996).  The 

invariable chain is released leaving behind a peptide, normally residing in its N-terminal 

region, known as the Class II associated invariant chain peptide (CLIP) that continues to 

occupy the binding groove of the MHC II. MHC-encoded heterodimeric glycoprotein 

HLA-DM then facilitates the dissociation of CLIP from the MHC II molecule. This 

promotes the formation and stabilization of exogenous pMHC class II complexes (Blum 

et al 2013) which are then transported to the cell membrane where they are presented to 

the immune system primed for TCR engagement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.9 CD4+ T cell Activation & Differentiation   

 

 

Figure 1.4 MHC II structure and the exogenous pathway. (A) Structure of 
the MHC Class II molecule (Murphy et al 2012). (B) Diagrammatic 
representation of the exogenous pathway deployed by MHC II in processing and 
presentation of antigens (Neefies et al 2011). 
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For a CD4+ T cell to display effector or helper functions, it must interact with these 

pMHC complexes. Along with direct TCR binding and appropriate co-stimulation, 

phosphorylation of signalling domains induces various intracellular activation pathways 

involving STAT proteins which mediate transcription of genes regulating their 

differentiation status (Vahedi et al 2012). A range of CD4+ T cells subsets can be 

produced (Figure 1.5). The type of subset a naive CD4+ T cell will differentiate into is 

determined by the cytokines and co-stimulatory molecules present at the time of 

activation. There are a number of CD4+ T cells that have been defined; Th1, Th2, Th17, 

Th22, T regulatory cells (Tregs), follicular helper T cells (Tfh) and CD4+ T cells with 

cytotoxic activity (CTLs). In particular, the cells of the Th1 subset expressing T-bet 

have shown to display direct anti-viral and anti-cancer cytotoxic properties through their 

capacity to synthesise effector cytokines such as IFNγ and TNFα (Swain et al 2006). 

Despite the majority of research focussing on IFNγ producing Th1 cells, there is now 

evidence to show polyfunctional CD4+ T cell populations which produce a range of 

different cytokines are essential in anti-viral immune responses (Makedonas et al 2006). 
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Figure 1.5 CD4+ T cell subsets and functions.  Summary of the terminally 
differentiated subsets of effector CD4+ T helper cells (Golubovskaya et al 
2016). 
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1.2 Epstein Barr Virus (EBV)  

The Epstein Barr Virus (EBV) is a 172Kb, double stranded linear DNA, gamma 

herpesvirus that is globally prevalent. It has been shown to establish persistent infection 

in more than 90% of the adult human population (Rowe et al 2010). Infection normally 

occurs in childhood as an asymptomatic infection, however it can be delayed until 

adolescence when it can result in acute Infectious Mononucleosis (IM). This disease is 

characterised by pharyngitis, cervical lymph node enlargement, and fever along with 

abnormally high numbers of CD8+ T cells (Dummire et al 2015). In immunocompetent 

individuals, the infection is brought under control by EBV specific T cell immune 

responses.  

1.2.1 EBV Life Cycle and Infection  

Transmission of EBV is via oral salivary exchange. As illustrated in figure 1.6, the virus 

enters the lymphoid tissue and crosses the epithelial barrier where it is directed towards 

both target squamous epithelial cells and naive B lymphocytes circulating within the 

oropharynx (Williams et al 2006).  Initial interaction occurs via two viral glycoproteins, 

gp350 and gp220, which bind to the complement B cell receptor; CD21. For successful 

cell entry the activity of another viral glycoprotein complex, gp25/28 follows, 

promoting the interaction between EBV and the B cells MHC class II molecule (Taylor 

et al 2015). This mediates the activation of intracellular signalling pathways resulting in 

viral replication and release of virions as part of the virus’s lytic cycle. The EBV 

genome does not integrate into the host cell’s DNA but instead forms circular episomes 

that occupy the nucleus and induce a persistent infection. 
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At the same time the virus instigates a cascade of intra-nuclear events leading to the 

expression of various latency genes from the EBV viral genome, which encode 10 

proteins including six Epstein barr nuclear antigens (EBNA1, EBNA2, and EBNA3A, 

3B, 3C, and -LP), three latent membrane proteins (LMP1, LMP2A, and LMP2B) and 

BHRF1 (Price et al 2015).  The expression of this latent growth transforming 

programme is known as latency III. 

The outgrowth of the EBV infected B cell population, expressing both lytic and latent 

immunogenic antigens, is brought under control by immune responses mediated by 

CD8+ and CD4+ lymphocytes and NK cells. However, the expression of viral genes by 

some cells, within this latently infected B cell population, is downregulated inducing a 

state known as latency 0. These cells become part of a differentiated genome positive, 

but antigen negative, pool of resting memory B cells, able to circulate between the 

nasopharyngeal lymphoid system and peripheral blood indefinitely. This allows a 

degree of immune evasion and escape by the virus. At certain sites within the 

oropharynx, some latently infected B cells become permissive for the lytic infection 

cycle, releasing EBV virions into the oropharynx, which go on to infect naive B 

lymphocytes and epithelial cells or enter the saliva to be orally transmitted to other 

susceptible individuals. In this way the virus is able to remain dormant and protected 

from EBV specific immune responses, establishing persistent latent infection in 

memory B cells with occasional replication and lytic cycle entry. (Lawson et al 2001, 

Ralf Kupper 2003).  
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Figure 1.6 EBV life cycle. EBV initially infects epithelial cells and B 
lymphocytes within the oropharynx. Following primary infection, the outgrowth 
of lytic and latently infected b cells is controlled by an EBV specific immune 
response. EBV infected B cells switch to latency 0 in response to NK, CD4+ and 
CD8+ T-cell pressure. At certain sites lytic infection can be established from 
these latently infected B cells. This results in the release of infectious EBV 
virions which can either infect other B or epithelial cells or enter the saliva to be 
orally transmitted to other individuals. In this way a persistent infection is 
established (Taylor et al 2015). 
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1.2.2 Immune Control of EBV  

The clinical identification of acute Infectious Mononucleosis (IM), has enabled 

researchers to investigate the EBV specific immune responses towards primary 

infection. EBV specific T cells have additionally been detected in long-term healthy 

seropositive carriers, making EBV a model system when studying the anti-viral immune 

responses occurring within humans (Rowe et al 2010). 

Adaptive immune responses towards EBV promote the latency 0 state, as infected B 

cells expressing immunogenic lytic and latent antigens are readily cleared (Taylor et al 

2015). In response to primary infection, plasma B cells are stimulated to secrete 

antibodies such as IgG. These immunoglobulins target virus capsid antigens (VCA), 

along with the EBV nuclear antigen proteins, EBNA1 and 2. Many of the antibodies 

secreted during primary infection, including IgG, are maintained throughout persistent 

infection. This has facilitated in identification of EBV seropositive carriers to be used as 

healthy donors when investigating EBV specific immune responses (Henle et al 1987). 

Along with these initial B cell responses, both CD4+ and CD8+ T lymphocytes 

proliferate, increasing in number during primary infection and IM. These cellular 

immune responses involve the interaction between the T cell receptor and pMHC 

complexes expressed by the infected B cell (Rickinson et al 2014). Most of the T cell 

expansions seen in IM patients, are CD8+ T cell driven, with large expansions occurring 

within the peripheral blood (Steven et al 1996). The majority of the immunodominant 

CD8+ T cell expansions recognise antigens associated with the lytic life cycle of the 

virus. Responses of up to 40% being specific for a single EBV epitope, derived from 

early lytic cycle proteins have been reported (Abbots et al 2013). Through analysis of T 
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cell clones, epitopes of immediate early (IE) and some early (E) lytic cycle proteins, 

including BMLF1 and BZLF1, have also been revealed to be key targets of these CD8 T 

cell responses (Steven et al 1997, Abbots et al 2013). These findings have been 

facilitated through the use of MHC class I tetramer reagents, allowing the phenotypic 

characterisation and quantification of epitope specific CD8+ T cells. (Rickinson et al 

1997, Callan et al 1998).  A lower frequency of up to 5% of the total peripheral CD8+ 

cell population have been shown to successfully recognise some of the latency III 

proteins. These include the Epstein Barr nuclear proteins; EBNA 3A, 3B, 3C and LMP1 

which induce a cytotoxic immune response and elimination of EBV infected B cells 

(Hislop et al 2007).  

As primary EBV infection is resolved, the number of cytotoxic CD8+ T cells within the 

peripheral blood decline to a level seen in long term healthy carriers, leaving behind a 

small proportion which form the EBV specific memory CD8+ T cell pool that go on to 

control persistent chronic infection.  Once this virus specific memory pool has been 

established, the phenotypic, functional and TCR repertoire composition is stabilised and 

maintained for several years (Klarenbeek et al 2012). 

Recent technological improvements in MHC class II tetramer usage has enabled 

efficient analysis of live EBV specific CD4+ T cells, on a single cell level. Furthermore, 

this has allowed for the determination of their epitope specificity and HLA restriction 

(Long et al 2011, Long et al 2013). Despite individual epitope frequencies being much 

lower than that of CD8+ T cell responses to the same antigenic proteins during primary 

infection and IM, CD4+ T cells recognise a broader range of lytic and latent EBV 

derived peptides, meaning the antigen epitope repertoire covered is much larger (Long 

et al 2011).  
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Along with their helper functions for other immune cells, research has begun to explore 

the immune responses of these less pronounced HLA class II restricted CD4+ T cells, to 

act independently of CD8+ T cells, in a direct cytotoxic manner against EBV infection. 

Effector functions are of key interest and importance to anti-viral immune responses, 

especially for viruses such as EBV that occur in cells expressing MHC II. Investigations 

into the primary differential process, along with proliferative capacity of CD4+ T cells, 

have demonstrated that these cells differentiate from naive cells into a Th1 subset of 

EBV specific CD4+ T cells, producing many common cytotoxic cytokines including 

IFNγ, TNFα and IL-2, and can induce the elimination of EBV-transformed 

lymphoblastic cell lines (LCLs) in vitro (Appay et al 2002).  However, further research 

is required to determine whether this cytotoxic function similarly occurs in vivo. 

 

 

 

 

 

 

 

 

 

 



 

20 
 

1.2.3 EBV Associated Lymphoproliferative Diseases 

EBV contains cellular growth transforming abilities through its expression of key 

latency III genes encoding proteins which drive cellular proliferation, inducing B cell 

transformation and tumorigenesis (Table 1.1) (Kang et al 2015, Kempkes et al 2015). 

Table 1.1 EBV latency III genes (Kang et al 2015, Kempkes et al 2015). 

 

 

 

 

 

EBV latency III genes Role in B cell transformation 
EBNA1 Replication and maintenance of the episomal 

EBV genome. 
EBNA2 Transcriptional activation of B cell antigens 

and LMP1/2. Transactivation of viral C 
promotor. 

EBNA3A, B, C Transcriptional regulators which bind the host 
RBP-Jκ transcription factor supressing binding 
to cognate Jκ sequence.   

EBNA-LP Required for efficient lymphoblastic cell 
outgrowth. 

LMP1 LMP-1 is a six-span transmembrane protein 
which induces the expression of cell surface 
adhesion molecules and activation antigens 
along with driving latently infected B cells to 
leave the germline centre and become memory 
cells. 

LMP2A/B Delivers a ligand independent BCR signal 
driving both survival of resting B cells along 
with differentiation, proliferation and 
development of plasma cells secreting 
immunoglobulins. 

BHRFI This is a homologue of the anti-apoptotic 
protein Bcl-2 and an inhibitor of cellular 
apoptosis. 

BART  Encode microRNAs which facilitate long term 
persistence of the virus in an infected host. 

EBERS (EBV-Encoded RNA) These noncoding RNAs not only induce 
growth but also provide resistance to protein 
kinase dependant apoptosis. 
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In healthy immunocompetent individuals, the development of malignancy is prevented 

by the previously described EBV specific T cell immune surveillance mechanisms. 

However, in immunosuppressed individuals, this can result in a loss of circulating virus 

specific T cells, which has been shown to increase the EBV viral load and increase the 

number of viral episomes generated within infected B cells (Thorley-Lawson et al 

2016). Consequentially, this can trigger the onset of various types of EBV associated B 

cell lymphomas including, Hodgkin’s lymphoma (HL), Burkitt’s lymphoma (BL), Post-

transplant lymphoproliferative disease (PTLD) and Diffuse Large B cell lymphoma 

(DLBCL) (Babcock et al 1999). 

The different forms of EBV associated lymphomas have different patterns of latency, 

involving the expression of differing viral genes.  Burkitt’s lymphoma is associated with 

latency type I, with EBNA-1 being highly expressed by these cancer cells. Latency type 

II has been linked to the development of HL and the epithelial derived cancer: 

nasopharyngeal carcinoma (NPC). They are characterized by the expression of latent 

genes EBNA-1, LMP-1 and LMP-2. EBVs Latency III gene profile involves the 

expression of all EBV antigens and is a key characteristic of PTLD. The action of these 

latency genes is essential for growth transformation and over proliferation of infected B 

lymphocytes (Grywalska et al 2015, Lowe et al 2017). 
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1.2.4 EBV Positive Post-Transplant Lymphoproliferative Disease  

Post-transplant lymphoproliferative disease (PTLD) is of key interest, with EBV 

infection being associated with 90% of all PTLD cases (Gottschalk et al 2005). Being a 

heterogonous disease, PTLD presents with a diverse set of clinical symptoms and 

morphologies. This can include IM type symptoms and the development of polyclonal 

lymphoproliferative lesions. It can be divided into three categories, early lesions, 

polymorphic PTLD and monomorphic lymphomatous PTLD, with the majority of the 

latter being diffuse large B cell lymphomas (Gottschalk et al 2005). The development of 

PTLD has been linked to a deficiency in EBV specific T cell immune responses. This is 

the result of immunosuppressive drug administration to prevent graft rejection in solid 

organ transplantation (SOT), and both high dosage chemotherapy and the use of 

immunosuppressive medication, to prevent graft-vs-host disease, in allogeneic 

haematopoietic stem cell transplant (HSCT) recipients (Mansour et al 2013). Due to 

immunosuppression and functional impairment in immune surveillance, the EBV 

infection is allowed to be reactivated in seropositive individuals and results in the 

outgrowth of genetically unstable lymphoblastic B cells and clinical symptoms to 

appear. The majority of PTLD cases in SOT and HSCT patients occur within the first-

year post-transplant. Early onset PTLD has been highly associated with EBV and in 

many cases, shows high expression levels of the latency III proteins. Whereas late onset 

monomorphic cases have additionally been linked to cellular mutations in tumour 

suppressors and oncogenes such as c-Myc (Mansour et al 2013).  

The expression of latency III proteins in early onset PTLD makes this 

lymphoproliferative disease an ideal candidate for adoptive immunotherapies, as they 
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can be directly recognised and eliminated by infused EBV specific cytotoxic T cells 

(Gottschalk et al 2005). 

1.3 Immunotherapy for EBV Associated Cancers 

EBV related B cell malignancies, such as PTLD, can be treated with a range of 

immunotherapies due to the expression of multiple EBV latency III antigenic proteins 

and their epitopes which can be targeted specifically.  

1.3.1 Standard Therapy 

Initially, monoclonal antibody (mAb) therapies in combination with chemotherapy were 

administered to SOT and HSCT patients suffering from PTLD.  Rituximab, a mAb 

against the B cell antigen CD20 has been used extensively in patients with a high viral 

load (Oertel et al 2005). However, a significant proportion of patients fail to respond to 

this treatment, showing relapse and an increased risk of mortality. Due to this and 

limitations in relation to rituximab’s bio-distribution, modest tumoricidal activity and 

significant B lymphocytic depletion this has led to research into more effective T cell 

based immunotherapies. 

1.3.2 Adoptive T Cell Immunotherapy 

To combat the issues of standard therapies, there has been an increased interest in the 

modulation of T cells which are able to directly recognise, target and destroy cancer 

cells. The main goal of cellular adoptive immunotherapy is to utilise the 

immunomodulatory capabilities of T cells in the elimination of viral infections and 

cancer, whilst, preventing any adverse effects such as graft vs host disease (GvHD). 
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1.3.3 Cytotoxic T Lymphocyte Infusions 

Harnessing the activity of EBV specific cytotoxic T lymphocytes (CTLs) has been 

shown to be clinically effective in treating both SOT and HSCT PTLD, even in patient’s 

refractory to monoclonal antibody-based therapies (Papaddopoulous et al 1994).  

CTLs are generated by in vitro stimulation of patient or donor PBMCs with autologous 

lymphoblastic cell lines (LCLs). LCLs are in vitro EBV transformed B cells, which 

express a full range of latent III proteins, and resemble the tumour cells that outgrow in 

PTLD. The antigen specific CTLs are then expanded and infused into patients. By 

isolating HLA matched epitope specific CTLs, this reduces the risk of GvHD.  Clinical 

success has been observed through trials utilising EBV-specific CD8+ CTLs to target 

various B cell lymphomas. EBNA3A, B, C and LMP2 specific CTL infusions have 

been used in the treatment of Hodgkin’s lymphoma, with results showing adoptively 

transferred CTLs induced complete tumour responses in some patients (Bollard et al 

2004). Furthermore, clinical trials on patients undergoing HSCT, with a high risk of 

developing B cell lymphoma, successfully showed prophylactic treatment with 

polyclonal EBV specific CTL lines and reconstituted immunity against EBV. This was 

displayed through a decrease in EBV-DNA and an expansion in viral specific immune 

activity leading to long term remission of patients (Heslop et al 2010).  

1.3.4 Therapeutic Importance of CD4+ CTLs 

CD4+ T cells are well known for their helper roles in enhancing the activity of cytotoxic 

CD8+ T cells along with their ability to be functional memory cells. There is also 

research investigating the direct effector function of cytotoxic CD4+ T cells (CD4+ 

CTLs), in responses to viral infection and cancer, and the therapeutic potential for these 
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immune cells to be used to control EBV induced B cell malignancies such as PTLD, 

where the tumour cells present antigens via MHC class II.   

CD4 CTLs have been shown to be most closely related to the Th1 subset in terms of 

transcription factor differentiation regulation and cytokine production (Takeuchi et al 

2017). The cytotoxic effects of these cells have been associated with various previously 

established CD8+ mechanisms including Fas-FasL interactions, the perforin/granzyme 

pathway, and granulysin release (Appay et al 2002). During differentiation and 

expansion, CD4+ CTLs are able to lose the expression of co-stimulatory molecules such 

as CD28 and CD27. In doing so, they gain the expression of various cytotoxic granular 

proteins including granzymes and perforin, along with memory markers such as 

CD45RO and the activation marker CD69, associated with cytotoxic functioning. These 

are seen similarly in antigen experienced CD8+ T cell development. Thus, CD4+ CTLs 

gain the cytotoxic phenotypic features used to target and eliminate virally infected 

cancer cells (Appay et al 2002, Vanhoutte et al 2009). 

In the context of EBV, in vitro studies have demonstrated the direct cytotoxic capacity 

of isolated and cultured EBV specific CD4+ T cells. These cells can directly lyse 

epitope loaded LCL targets and inhibit their outgrowth, in vitro (Münz et al 2000, Long 

et al 2005, Taylor et al 2006).  

The importance of EBV specific CD4+ T cells in adoptive immunotherapy has been 

exemplified in clinical trials, using 3rd party cytotoxic CTLs generated from HLA-

matched allogenic EBV-seropositive donors, to treat patients with SOT PTLD. All CTL 

infusions, contained populations of both CD8+ and CD4+ T cells. From 33 patients 

treated, the overall response rate was 64% at 5 weeks, showing a better response in 
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patients receiving CTL infusions, that comprised of a greater proportion of CD4+ T 

cells. This trend was successfully maintained at 6 months after the first infusion with a 

total response rate of 52% and no long term off target adverse effects observed (Haque 

et al 2007). This demonstrates the importance of CD4+ T cells in providing help to 

CD8+ cytotoxic T cells. Whether CD4+ cells within CTL infusions are helper or direct 

effector cells is still unknown, however it does provide a starting point for future 

alternative approaches for the treatment of various viral infections and cancers. 

There are now a growing number of third party donor derived EBV specific CTL cell 

banks that have been manufactured both within the UK and USA, showing to offer an 

effective curative strategy for the treatment of EBV associated lymphomas (Leen et al 

2013) (Vickers et al 2014). Although this adoptive immunotherapy has shown some 

success in EBV+ lymphoma patients, previously failing to respond to standard 

therapies, there are various constraints surrounding this therapeutic approach. Forth 

most, in vitro generation of donor derived EBV specific CTLs and target EBV 

transformed B cell lines takes 40-60 days to complete, and a further 28-35 days of 

expansion and elimination of alloreactive T cells (O’Reilly et al 2016). With CD4+ T 

cells being much lower in frequency within donor blood this can additionally result in a 

poor yield of virus specific CTLs being obtained. Furthermore, the final CTL 

population produced has to be patient specific with regards to screening for HLA allele 

matches. For this to be most therapeutically efficient, it requires the identification of an 

individual matched allele that also confers antiviral activity against the infecting virus in 

both donor and recipient. This has led to investigations into other novel methods, such 

as TCR gene transfer, in order to attempt to eliminate some of these issues.  
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1.3.5 TCR Based Therapies-TCR Gene Transfer  

The limitations surrounding adoptive transfer of EBV specific CTLs, has led to 

exploration of the T cell receptor molecule and its therapeutic relevance in adoptive T 

cell- based transfer applications.  

Research has begun investigating TCR gene transfer as a therapeutic approach to target 

many forms of cancers, this holds great therapeutic potential. Theoretically the T cells 

being subject to this gene transfer approach could be engineered to respond to virtually 

any tumour specific antigen. Currently the identification of candidate TCRs involves the 

isolation of tumour specific T cell clones. Genes encoding both the alpha and beta 

chains of the TCR can be identified and sequenced on a single cell basis. These are 

inserted into retroviral or lentiviral vectors and transferred into T cells, allowing for the 

rapid generation of antigen specific T cell populations. Currently, genetically transferred 

TCRs are being used to treat several forms of advance stage cancer directed against both 

tumour and viral antigens. Many of these have shown some degree of clinical success in 

terms of direct killing capacity by the genetically modified T cells (Rapoport et al 2015, 

Yao et al 2016). 

Identifying antigen targets which are shared amongst many patients, presented through 

the same HLA allele, expressed explicitly on tumour cells and are highly immunogenic 

is key to success. This forms the basis for the safety and efficiency of TCR based gene 

therapy, however it still remains a significant challenge. The majority of TCRs 

clinically tested previously have been directed against tumour associated antigens 

(TAAs) such as the melanoma associated antigens; MART1 and gp100, and the 

squamous cell carcinoma antigen NY-ESO1. Many of these antigens are normal, 
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nonmutated self-proteins selectively expressed or overexpressed on cancers cells 

(Johnson et al 2009). Unfortunately targeting TAAs has resulted in on-target toxicity 

with normal tissue expressing low levels of a target antigen (Bendle et al 2010).  

Exploration into virus specific antigens associated with cancer development has enabled 

some of these previous challenges to be overcome in a subset of cancers derived 

specifically from viral infections. Cancers associated with transforming viruses, express 

viral protein products which are attractive antigen targets for TCR gene therapies, as 

they are not expressed by normal healthy cells.  

With regard to TCR gene transfer therapy for EBV associated malignancies, this is a 

useful system as the antigens expressed on infected B lymphoblast’s are truly foreign 

meaning off-target adverse effects are less likely to occur. Work conducted by Jurgans 

and colleagues demonstrated the transferal of HLA-A2, A23, and A24 restricted TCRs, 

derived from human CD8+ CTL clones led to a strong immune response and cellular 

lysis of target LCLs presenting the latency III protein LMP2, in vitro (Jurgans et al 

2006). More recent studies have shown clinical success in the treatment of 

nasopharyngeal carcinoma, using LMP2 specific TCRs restricted though HLA A11, 

with robust antigen specific function being observed in transduced CD8+ CTLs (Zheng 

et al 2015). However, in the context CD4+ TCR gene transfer, little is known regarding 

therapeutic potential and to date there has been no development of an MHC class II 

restricted TCR gene transfer therapy targeting any EBV epitopes. 
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1.4 TCR Repertoire Analysis  

The adaptive immune system generates a significant diversity of unique antigen specific 

TCRs due to V-D-J gene segment recombination events which occur during T cell 

development (Section 1.1.4). Following thymic selection, this process results in the 

formation of a vast αβTCR repertoire, however the number of different clonotypes 

expressed by the estimated 1012 T cells within the human body is still unknown (Arstila 

et al 1999).  TCR selection for gene transfer therapies remains a challenge due to the 

broad TCR repertoire available. Recent in-depth analysis of the TCR repertoire of 

antigen specific T cell immune responses, however, has meant the most therapeutically 

relevant TCRs within an epitope specific population could be selected for in the future. 

Advances in high throughput DNA sequencing has led to the determination of hundreds 

of thousands of CDR3 sequences, defining phenotypes and subsets of T cell clonal 

populations, and their TCR repertoire usage responding most significantly to single 

peptide epitopes (Wang et al 2010, Warren et al 2011). This has allowed for the 

comparison of individual T cell clones and their frequency in a given population of 

antigen specific T cells. 

Recent studies have attempted to determine the immune TCR repertoire status under 

different disease statuses, including viral infection and cancers, selected for by specific 

peptide antigens. Work conducted by InYoung Song et al, investigating immune 

responses towards the influenza A M1 epitope in HLA-A2+ healthy individuals, 

demonstrated that epitope specific CD8 T cell populations express a broad repertoire of 

differing TCRs specific for the same pMHC complex. Most donors were found to have 

several hundred different TCRα and TCRβ sequences used by CD8+ T cells in resting 
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memory pools.  However, a single public TCR beta variable (TRBV) gene segment, 

TRBV19, associated with a few specific CDR3 motifs, did appear to dominate 65% of 

the overall CD8+ T cell response to the M1 epitope (InYoung Song et al 2017).  Point 

mutations within the TRBV19 gene, during early recombination events, will have 

promoted the production of these differing CDR3 motifs. This highlights the importance 

of structural similarities in peptide specific T cell populations responding to the same 

epitope. Further analysis of anti-viral T cell immune responses has utilised mass 

spectrometry, multiplex tetramer and antibody staining to quantify and phenotypically 

characterise multiple antigen specific CD8+ and CD4+ T cells at a single cell level 

within infected murine models (Fehlings et al 2018). The broad combination of 

phenotypic markers detected emphasises the diversity available during antigen specific 

immune responses.  

The combination of both conserved and diverse structural and phenotypic components 

of an antigen specific TCR repertoire could be influential in preventing individual 

clonotypic loss. This has been shown to contribute to the maintenance of repertoire 

diversity and overall memory effector T cell pool generation. 

With regards to CD4+ T cells although antigen specific CD4+ TCR repertoire usage is 

less well defined, it has been identified that antigen specific T cell populations can 

display differences in recognition of single peptides based on differences in their TCR 

contact residues located within the epitope peptide (Pu et al 2002).   

To date, the only work attempting to investigate the relationship between TCR sequence 

and function of T cells, at a single cell level, was conducted by Han and colleagues. 

This involved the sequencing of tumour infiltrating lymphocytes TCRα and TCRβ 
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genes along with in vitro phenotypic analysis of transcription factors conferring 

function, in relation to subset differentiation, within single antigen specific T cells (Han 

et al 2014). This provided some suggestion that different TCRs activate antigen specific 

T cells differently increasing the diversity of differentiated effector memory T cell 

pools. 

In the context of EBV infection and the TCRVβ usage during immune responses, early 

studies demonstrated that identical Vβ gene sequences were positively expressed by 

different CD8+ T cell clones in response to EBNA3 antigen epitopes, FLRGRAYGL 

(FLR) and QAKWRLQTL (QAK) (Burrows et al 1995). Thus, despite an enormous 

repertoire, it was shown that responses, could be conserved to a single TCRVβ sequence 

within the same healthy individual or separate HLA matched people.  

More recently, the availability of large panels of monoclonal antibodies to TCRs, 

mainly against Vβ epitopes, has enabled the analysis of the TCR repertoire of an epitope 

specific population via flow cytometry. Using this technology, it has been shown within 

our laboratory that in healthy EBV seropositive donors epitope-specific CD4+ T cell 

populations can comprise T cells expressing multiple TCRs, however, there is often an 

over-representation of single Vβ chain usage (Figure 1.7).   

These findings provide some indication that there is a form of precise TCRVβ repertoire 

usage in antigen specific immune responses, towards single EBV peptide epitopes, that 

may provide a structural/functional advantage for TCR recognition. However, in spite 

of this previous TCRVβ repertoire analysis, much less is known regarding the 

relationship between TCR sequence usage and the function of parent T cells. 
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Figure 1.7 Clonogram of TCRvβ repertoire usage in EBV antigen specific CD4+ T 
cell populations.  In tetramer positive T cell populations (red) there is an increased 
representation of 4.6% for Vβ12. (Unpublished data Benjamin Meckiff University of 
Birmingham).  
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1.5 The Relationship between TCR Usage and T cell function  

The use of immunodominant TCRs which promote optimal anti-viral and anti-tumour 

activity have been proposed to enhance the effectiveness of gene-modified T 

lymphocytes. Research investigating the different TCR properties that confer the most 

efficient immune responses is thus essential for further improvements in TCR gene 

transfer therapy.  

The parameters used to describe the ability of T cells to recognize and respond to target 

antigens include TCR affinity, and functional avidity. TCR affinity refers to the 

physical strength of monomeric interactions between TCRs and pMHC complexes 

(Vigano et al 2012).  In immune responses these interactions are generally of low 

affinity, which makes it difficult to determine relationships between initial binding 

parameters and T cell function. However, assessment of the strength of these 

interactions has shown a slower MHC dissociation rate during TCR binding leads to a 

better T cell immune response (Holler et al 2003). T cell activation remains critically 

dependent on this functional parameter. Through optimising structural components 

within an introduced TCR, it is thought this could lead to an increase in TCR surface 

expression and improve the efficiency of TCR gene transfer therapies. Enhancing the 

TCR affinity through in vitro maturation, has been associated with more efficient 

immune responses in transferred T cells (Thomas et al 2011). However, defining the 

optimal affinity threshold between anti-tumour and autoimmune activity is essential to 

prevent adverse cross-reactivity effects seen previously in many in vitro enhanced 

affinity TCRs.  
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Initial TCR binding interactions have been associated with influencing the functional 

avidity of a T cell. Functional avidity is defined as the biological measure of the ex vivo 

response produced by a T cell to a given concentration of target peptide and comprises 

the efficacy and sensitivity of recognition and the cellular response. 

Biological responses include proliferative capacity, cytokine production and cytotoxic 

activity of a responding cell. Antigen specific T cells producing the best responses to 

target cells presenting a lower density of peptide, are considered to be high avidity. In 

the context of the HIV virus, it has been shown in vitro that epitope specific CTLs 

exhibiting high functional avidity can mediate a robust immune response and superior 

control of viral replication (Almeida et al 2007).   

The relationship between the functional parameters of a T cell and its TCR usage has 

not been explored in depth, ex vivo. This is important to study, as the identification of 

those antigen specific T cell populations exhibiting the most efficient anti-viral and anti-

cancer immune responses is essential for the future optimisation and development of 

effective TCR gene transfer immunotherapies. For CD4+ T cells, this is especially true 

for malignancies expressing antigens through MHC class II, such as EBV associated 

PTLD. 

1.6 EBNA2 Model 

This project addressed these issues focusing on an epitope derived from the EBV 

latency III protein, EBNA2. This antigenic protein is one of the first to be expressed by 

infected cells and is important in B lymphocytic transformation, as it drives the 

expression of other crucial viral and cellular genes. It has been shown to directly 

transactivate the CP promotor involved in early B cell infection, and upregulate 
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oncogenes such C-Myc previously associated with unregulated cellular over-

proliferation (Young et al 2003, Kim et al 2016). 

Despite the evidence of its oncogenetic functioning, EBNA2 is still yet to be explored in 

depth as a therapeutic biomarker for immunological based treatments. Due to its high 

levels of immunogenicity in most people infected and presentation of epitopes on MHC 

class II molecules by infected lymphoblast’s, this makes it an ideal antigen target for 

cytotoxic CD4+ T cell immune responses and EBV specific TCR gene transfer 

immunotherapies (Khanna et al 1997). The previous determination of many epitopes 

within EBNA2 combined with development and optimisation of EBNA2 MHC II 

tetramer reagents, makes it a useful model when investigating epitope specific T cell 

populations, ex vivo.  

Therefore, we explored the EBNA2 epitope; PRS which has been shown to elicit strong 

cytotoxic CD4+ immune responses in the context of several different HLA class II 

alleles (Long et al 2005). PRS specific CD4+ T cell clones have now been successfully 

generated which have the capacity to directly recognise LCL target, along with the 

ability to eliminate their outgrowth, in vitro. (Long et al 2005). The EBNA2 epitope 

PRS, is thus an ideal epitope target for analysing the relationship between TCRVβ 

repertoire usage and T cell function in a therapeutically relevant setting.  

 

 

 

 



 

36 
 

 1.7 Aims of the Project  

We hypothesised that TCR usage may affect T cell function, making some TCRs of 

greater therapeutic benefit than others. 

The project aims were therefore: 

(i) To isolate a panel of PRS specific CD4+ T-cell clones from 2 healthy HLA 

matched EBV seropositive donor by, ex vivo MHCII tetramer selection.  

(ii) To analyse the TCRVβ repertoire usage of the epitope specific CD4 T cell 

clones, using flow cytometry. 

(iii) To investigate the function of the PRS-specific T cell clones with known Vβ 

usage, through assessing their functional avidity, and the ability of the clones 

to recognise physiological levels of epitope expressed by infected B cell 

targets (LCLs). 
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CHAPTER 2 

2. MATERIALS & METHODS 

 

2.1 Ethics Statement and Donors 

All blood samples used were obtained from healthy laboratory volunteers who provided 

written informed consent to participate in the project. Apheresis were provided by 

Birmingham NHS Blood transport. All experiments were in concordance with the 

University of Birmingham and South Birmingham LREC (14/WM/1245). 

2.2 Isolation of Peripheral Blood Mononuclear Cells 

Peripheral blood mononuclear cells (PBMCs) were obtained from heparinized venous 

blood of HLA-DR7+ seropositive healthy donors, and separated by Ficoll-Paque 

centrifugation. 30ml of Peripheral blood was combined with plain RPMI 1640 medium 

at a 1:1 ratio and layered on Ficoll-Paque; a density gradient media used to separate 

mononuclear cells from whole blood. Following centrifugation at 1800rpm for 30 

minutes (no brake) at room temperature, PBMCs were extracted from the 

mononuclear/lymphocyte cell layer at the plasma-Ficoll interface using a clean transfer 

pipette. PBMC were washed 3 times in RPMI 1640 medium and resuspended at 1x106 

cells/ml in standard media (Table 2.1).  
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2.3 Generation of EBV Specific T cell clones 

2.3.1 Isolation of PRS Specific CD4+ T Cells by MHC Class II Tetramer Staining 

and Fluorescent Activated Cell Sorting 

CD4+ T cells were negatively isolated from PBMCs (Section 2.2) utilising a Dynabeads 

isolation kit. The isolated cells were re-suspended in 1ml of Human serum, centrifuged 

(1600 rpm for 5 minutes) and incubated for 1 hour with 1μl of HLADR7/PRS tetramer 

complex conjugated to PE, to reactivate tetramer specific CD4+ T-cells. The cells were 

then washed with MACs buffer to remove any unbound HLA class II tetramer/peptide 

complex and stained for CD3+ and CD4+ surface markers for 20 minutes in darkness. 

Appropriate compensation tubes were prepared including anti-CD3 APC, anti-CD4 

ECD and anti-CD4 PE for tetramer positive cell populations. The cells were fluorescent 

activated cell sorted (FACS) in order to obtain frequencies of tetramer positive CD4+ T 

Cell populations from each healthy donor. 

2.3.2 Limiting Dilution Cloning 

Clones were established by seeding tetramer positive CD4+ T cells (Section 2.3.1) at 

0.3, 3 and 10 cells/well into round bottom wells of ninety-six well culture plates. This 

method increased the likelihood of obtaining a monoclonal daughter cell population 

derived from a single T cell, from this initial polyclonal mass of CD4+ cells. Irradiated 

autologous HLA-matched LCL cells (105/well) and feeder cells (106/well) were added 

to the tetramer positive CD4+ T cells along with Human Serum and RPMI 

supplemented with a Pen/Strep antibiotic mix (CD4+ Cloning mixture). The HLA–

matched LCLs were pulsed with cognate PRS peptide (Table 2.2) for 1 hour prior to co-

culturing with CD4+ T cells.  The feeder cells were mononuclear preparations derived 
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from 3 pooled fresh buffy coats, which had been previously exposed to 

phytohemagglutinin (PHA) at 10μg/ml for one hour, and then washed twice in standard 

media (Table 2.1). Both the PHA treated and peptide pulsed autologous HLA-matched 

LCLs were γ-irradiated at 4000 rads and washed twice before use. The seeded cells 

were left for 2 weeks and screened for peptide specificity as described below (2.6.2).  

Any epitope specific clonal populations were expanded further via transfer into 24 well 

plates, with 105 LCL cells/well and 106 feeder cells/well, kept in 5% CO2 and at 370C. 

2.3.3 Maintenance of T cell clones  

The T cell clones were maintained in  T Cell media (Table 2.1), fed twice weekly and 

split into new wells when proliferation confluence was apparent. If growth rate was 

poor, re-stimulation was performed which involved the addition of irradiated (4000 

rads) LCLs and PHA treated feeder cells. 

2.4 Generation and Culture of Lymphoblastic Cell Lines (LCL) 

 LCLs were generated in vitro from donor PBMC derived B lymphocytes with the use 

of the marmoset B59.8 producer. LCLs were obtained by centrifugation of 4mls of 

B59.8 supernatant which was filtered through a 0.45μm syringe and incubated overnight 

at 370C 5% CO2. The next day the PBMCs were centrifuged and resuspended in 2ml of 

standard culture media supplemented with 1μg/ml cyclosporine A for a period of two 

weeks in a 24 well plate. Cells were split once sufficient proliferation had occurred. All 

LCL lines were maintained in standard media.  The LCLs used in this project were 

either generated specifically for these experiments or previously had been made and 

stored in liquid nitrogen via cryopreservation (Section 2.5).  
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2.5 Cryopreservation and Restoration of Cells 

Cryopreservation involved centrifugation of cells (LCL and T cells) at 1600rpm for 5 

minutes. The cells were resuspended in freezing media (Table 2.1) and transferred to a 

sterile 1ml cryovials. These were then transferred to a Mr. frosty containers holding 

isopropanol which was placed into a -80°C freezer.  

Restoration of cells began with removal from of cryovials -800C freezers and transferal 

into a water bath heated to 37°C. Post thawing, the cells were resuspended in relevant 

culture media dropwise and washed twice via centrifugation at 1600rpm for 5 minutes 

in order to remove freezing media. Cells were then either used in experimental analysis 

or transferred to a 24 well plate and incubated at 37°C and 5% CO2. 

2.6 Functional Analysis of T cell clones 

2.6.1 IFNγ ELISA 

IFNγ ELISA was performed to measure many factors of functionality of the T cell 

clones. Ninety-six well ELISA plates were pre-coated with anti-IFNγ monoclonal 

antibody (MAb) and left overnight at 40C. The next day the plates were blocked for 1 

hour with blocking buffer (Table 2.1) to prevent any non-specific binding. Following 

washing the plates with PBS buffer (Table 2.1), 50μl of supernatant from the T cell 

clone/LCL mixtures being tested (Sections 2.6.2, 2.6.3 and 2.6.4) was added along with 

IFNγ standards into separate wells, and left for 3-4 hours at room temperature. 

Standards were made by double dilutions of IFNγ from 20,000 pg/ml to 0pg/ml in 

standard media. This incubation was followed by another PBS wash and the addition of 

50μl of biotinylated anti-IFN-γ MAb to each well which was incubated at room 

temperature for 1-2 hours. Any unbound secondary antibody was then removed through 
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washing, and replaced with 50μl of streptavidin horseradish peroxidase to each well, left 

to incubate for an additional 30 minutes. After a final wash, 100μl of TMB (3,3',5,5'-

tetramethylbenzidine) soluble substrate was added to each well and yielded a blue 

reaction product. The reaction was stopped after a period of 20 minutes with the 

addition of 100μl 1M Hydrochloric acid. The amount of IFNγ produced by each clone 

was analysed using a MPM6 exe plate reader and excel software package measuring 

A450. IFNγ release was calculated by comparing A450 from T cell clones against a 

standard curve.  

2.6.2 Screening Polyclonal T Cell Populations for Peptide Specificity  

50µl of each isolated CD4 T cell clonal culture was incubated overnight in V bottom 

micro test plate wells with HLA II matched LCL target cells (50,000 cell/well), media 

and PRS peptide (Table 2.2). The HLADR7 matched LCLs were either un-manipulated, 

or pre-exposed for 1h to 5μl of PRS epitope peptide. The clones were additionally tested 

with media alone and media combined with 10μg/ml peptide. After overnight 

incubation the test supernatant medium from the T cell and LCL co-cultures was 

assayed for IFNγ production by the previously described ELISA method (Section 

2.6.1). A positive result was higher IFNγ production from the LCL/peptide compared 

with LCL alone and media/peptide compared to media alone. 

2.6.3 Peptide Titration Assays  

The functional avidities of T cell clones were similarly tested in ELISA assays of IFNγ 

release, against titrated concentrations of individual defined PRS peptide epitope 

presented by autologous HLA-matched LCL targets. Equivalent volumes of LCL media 

and T cell clones were added to separate wells as negative and positive controls. T cell 
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clones (100μl/well) were added to triplicate wells at known cell numbers 

(2000cells/well) in the presence of 80μl HLA matched LCL targets (50,000cells/well) 

and 20μl PRS peptide epitope at dilution range of 1x10-5 to 1x10-11 M (including no 

peptide). The plates were incubated overnight at 37°C in 5% CO2. The supernatant 

medium from the T cell and LCL co-cultures was harvested after 12-16 hours and 

assayed for IFNγ by ELISA (Section 2.6.1). 

2.6.4 LCL Recognition Assays  

Individual T cell clones were incubated in v bottom micro test plate wells with 50,000 

autologous HLADR7 matched or HLA mismatched LCL (100μl/well). This was 

performed in triplicates. The LCLs were either un-manipulated or pre-pulsed with 5μl 

of exogenous PRS peptide epitope for 1 hour and then washed with standard media. 

These were co-cultured with 100, 500, 1000 or 5000 cells of a given T cell clone at 

370C 5% CO2. LCL and T cell controls were included in separate wells in which they 

were incubated with standard media alone.  The supernatant was harvested after 12-16h 

and an ELISA assay measuring IFNγ was performed (Section 2.6.1). 

2.7 TCRVβ Analysis of PRS Responsive T cell clones 

2.7.1 T cell TCRVβ Usage Analysis 

From each donor, PRS specific CD4+ T cell clones, were analysed in order to 

phenotypically characterise their TCRVβ expression and specificities.  A matrix of 

pools of T cell clones for each donor was constructed. Each pool within this matrix, 

contained 6 clones (Donor 1) or 5 clones (Donor 2) and each clone was present in 2 

different pools. This analysis was performed using an IOTest Beta Mark TCR 

Repertoire staining kit covering around 70% of the normal human TCRVβ repertoire 
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(Beckman Coulter).  The kit contained 8 vials of mixtures of conjugated TCRVβ 

antibody complexes; A to H, each composed of 3 separate TCRVβ antibodies labelled 

with fluorescein isothiocyanate (FITC), phycoerythrin (PE) or doubly labelled with 

FITC and PE (Table 2.3). These antibody complexes corresponded to 24 different Vβ 

subfamilies. 

T cell clones for a given pool were counted and a volume to obtain 700,000 cells 

(70,000cell/tube x 10 tubes) was extracted and dispensed into a 15ml tube. Once this 

was completed for all clones within a pool the volume within the 15ml tube was made 

up to 10ml with MACs buffer and distributed evenly between 10 FACS tubes; 1ml per 

tube. These were made up of an unstained sample, anti-CD3/CD4 gating antibodies 

only stained sample, along with the 8 TCRVβ antibody stained samples (A-H). An 

additional 1ml of MACs buffer was added to all tubes and each sample was centrifuged 

at 1600rpm for 5 minutes. Following centrifugation, 1μl of Viability Dye was added to 

relevant tubes and incubated at 40C for 30 minutes. The samples were washed and 

stained with 1μl of both APC conjugated anti-CD3 and ECD or PE-Cy7 conjugated 

anti-CD4 gating antibodies followed by 5μl of the relevant TCRVβ antibody complexes 

from the IOTest Beta Mark TCR Repertoire staining kit (Table 2.3). The cells were 

incubated at room temperature for 30 minutes followed by a final wash and 

resuspension in 250μl of MACs buffer prior to LSRII flow cytometer analysis.   

Along with the test samples, compensation samples were additionally set up to 

compensate for fluorochrome overlap. This included; 1μl of APC-Cy7 conjugated anti-

CD14, 1μl of APC conjugated anti-CD3, 1μl of ECD or PE-Cy7 conjugated anti-CD4, 

2μl of PE conjugated anti-CD4 and 2μl of FITC conjugated anti-CD4.  Compensation 

beads were distributed evenly between FACS tubes and the antibody conjugates were 
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added in relevant volumes. The samples were then analysed via flow cytometry using 

the LSRII; 20,000 events were recorded for each sample. The samples being tested and 

unstained control were gated on forward (FSC) and side scatter (SSC) after which any 

doublets and dead cells were excluded and CD3+ CD4+ T lymphocytes were gated on 

specifically. The data was then further analysed on Kaluza software. Confirmation of 

TCRVβ expression on individual clones was achieved through; the use of 7μl single 

conjugated TCRVβ antibodies (Table 2.4).  

2.8 TCR Profiling  

Certain T cell clones with known TCRVβ usage and displaying interesting results from 

functional analysis were further investigated via sequencing of both their alpha and beta 

chains. 

2.8.1 RNA Extraction and 5’-RACE-Ready cDNA Formation from T Cell Clones 

RNA was extracted from PRS specific T-cell clonal cell pellets of 5x105 cells following 

the RNeasy plus microkit protocol, as per the manufacturer’s instructions (Qiagen). 

RNA concentration was then measured using a Nanodrop microvolume 

spectrophotometer in ng/μl. Following RNA extraction, 5’ and 3’ RACE Ready cDNA 

was synthesised via reverse transcription of the eluted RNA utilising a SMARTer II A 

oligonucleotide primer and SMARTScribe reverse transcriptase, as per the 

manufacturer’s instructions (Qiagen). This provided a 5’ anchor for subsequent PCR 

procedures. Samples were stored at -200C. 
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2.8.2 Rapid Amplification of cDNA ends (RACE)  

PCR 5’-3’ RACE reactions were performed on the synthesised 5’ RACE Ready cDNA 

samples (Section 2.8.1) to generate 5’ and 3’ cDNA fragments.  This used gene specific 

primers for both the alpha and beta chains of the clones TCR. PCR cycling parameters 

included; 5 cycles at 94 degrees for 30 seconds, 72 degrees for 3 minutes. 5 cycles at 94 

degrees for 30 seconds, 70 degrees for 30 seconds, 72 degrees for 3 minutes. 20 cycles 

of 94 degrees for 30 seconds, 68 degrees for 30 seconds, and 72 degrees for 3 minutes. 

These cycles of denaturation, annealing and extension were performed utilising a PCR 

system.   

2.8.3 Characterisation of RACE Products  

Agarose gel electrophoresis was performed on the RACE PCR DNA products (Section 

2.8.2). This included negative controls for each TCR alpha and beta chain. Gel images 

were obtained using a UV-image analyser and bands of the correct size (200bp) were 

cut out. DNA of interest was recovered and purified using a gel extraction spin column 

method kit as per manufacturer instructions (Qiagen). DNA concentration was 

measured using a Nanodrop microvolume spectrophotometer in ng/μl. 

2.9.4 DNA Sequencing  

11μl of reaction mixture containing 4ng of the recovered and purified DNA (Section 

2.9.3) and relevant alpha or beta primers were sent to the University of Birmingham 

Biosciences Genomics Laboratory for sequencing of the extracted DNA. 
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2.9 Tables of Reagents  

Reagents and Medias Ingredients 
Standard Media RPMI 1640 media (Sigma) supplemented 

with 100 IU/ml penicillin (Gibco), 100 
μg/ml streptomycin (Gibco) and 10% Fetal 
bovine serum (FBS). 

T Cell Media RPMI 1640 media (Sigma) supplemented 
with 100 IU/ml penicillin (Gibco), 100 
μg/ml streptomycin (Gibco), 10% Fetal Calf 
Serum (BioSera), 1% Human serum (TCS 
Biosciences), 30% Monkey Leukocyte 
Antigen 144 (MLA 144) cell line and 
50ug/ml interleukin 2. 
 

CD4 T Cell Cloning Media Standard culture media supplemented with 
1% HuS, 50U/ml IL2 and 30% filtered 
supernatant harvested from the Monkey 
Leukocyte Antigen 144 (MLA 144) cell 
line. 
 

Cyclosporine A Media Standard culture media supplemented with 
cyclosporine A (1ug/ml). 

Freezing Media RPMI 1640 containing 2mM L-glutamine, 
20% FBS and 10% DMSO. 

Coating Buffer 10x stock solution was made of 1.36g 
Sodium Carbonate (Sigma), 7.35g 
Potassium Bicarbonate (Sigma) and 100ml 
sterile H2O. The buffer was adjusted to 
pH9.2 with 1M HCL (Sigma) or 1M NaOH 
(Sigma). 
 
 

Blocking Buffer 1 1xPBS tablet (Thermo Scientific) was 
added to 500ml of sterile H20. To this 5g of 
Bovine serum albumin (BSA) (Sigma) and 
250ul of tween (Sigma) was added. 

Phosphate Buffer Saline (PBS) Wash 
Buffer  

10 1x PBS tablets (Thermo Scientific) was 
added to 5Litres of sterile H20 and 2.5ml of 
tween (Sigma) was then added. 

MACs Buffer 0.5% Bovine Serum Albumin (BSA) and 
2.5mM Ethylenediaminetetraacetic acid 
(EDTA) was added to PBS. 
 

Table 2.1. Summary of reagents used 
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Latency III 
Protein 

Amino acid 
Coordinates 

Epitope HLA 
restriction 

EBNA2 276-295 (PRS)TVFYNIPPMPLPPSQL DRB1*07 
(DR7) 

Table 2.2. Summary of HLA-allele EBV epitope combination 

 

2.10 Tables of Antibodies  

Table 2.3. TCRVβ antibody complexes for TCR Vβ repertoire analysis 

 

 

 

Beckman Coulter TCRVβ 
antibody complexes: 

Vβ: Conjugated Fluorochrome: 

A Vβ 5.3 
Vβ 7.1  
Vβ 3 

PE 
PE+ FITC 
FITC 

B Vβ 9 
Vβ17 
Vβ16 

PE 
PE+ FITC 
FITC 

C Vβ18 
Vβ 5.1 
Vβ 20 

PE 
PE+ FITC 
FITC 

D Vβ 13.1 
Vβ 13.6 
Vβ8 

PE 
PE+ FITC 
FITC 

E Vβ 5.2 
Vβ 2 
Vβ 12 

PE 
PE+ FITC 
FITC 

F Vβ 23 
Vβ 1 
Vβ 21.3 

PE 
PE+ FITC 
FITC 

G Vβ 11 
Vβ 22 
Vβ 14 

PE 
PE+ FITC 
FITC 

H Vβ 13.2 
Vβ 4 
Vβ 7.2 

PE 
PE+ FITC 
FITC 
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Table 2.4.  Individual TCRVβ antibodies for staining of T cell clones 

 

Table 2.5. Summary of surface antibodies used 

 

 

 

 

 

 

 

 

 

 

TCRVβ antibody Source Clone Volume used 
per sample 

PE conjugated anti-vβ1 Beckman  Coulter BL37.2 7ul 

FITC conjugated anti-vβ2 Beckman  Coulter MPB2D5 7ul  

FITC conjugated anti-vβ5.1 Beckman  Coulter IMMU 157 7ul  

PE conjugated anti- vβ17 Beckman  Coulter E17.5F3.15.13 7ul  

FITC conjugated anti-
vβ21.3 

Beckman  Coulter IG125 7ul  

Antibody Source Clone Amount used 
APC conjugated anti-
human CD3 

Invitrogen  7D6 1µl 

PE Cy7 conjugated 
anti-human CD4 

BD Biosciences RPA-T4 1µl 

ECD conjugated anti-
CD4  

Beckman Coulter SFCI12T4D11 1µl 

PE conjugated anti-
human CD4 

BD Biosciences RPA-T4 2µl 

FITC conjugated anti- 
human CD4 

BD Biosciences RPA-T4 1µl 

APC Cy7 conjugated 
anti-human CD14 

BD Biosciences HCD14 2µl 
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CHAPTER 3 

3. RESULTS 

3.1 Isolation of Peptide Specific CD4+ T-cells from Healthy EBV Seropositive 

Donors 

In order to isolate PRS specific CD4+ T-cell clones, we used a peptide:MHC class II 

tetramer (pMHC) loaded with the EBV PRS peptide, derived from the latency III 

protein EBNA2 and presented through HLADR7 (DR7/PRS). Fluorescent activated cell 

sorting (FACS) and limiting dilution cloning was performed on PBMCs, ex vivo. To 

generate CD4 T cell clones representative of cells within the peripheral circulation 

without in vitro expansion, PBMCs were isolated from the peripheral blood of 2 healthy 

EBV seropositive, HLADR7+ donors. CD4+T cells were negatively isolated from these. 

The CD4+ T cells were then exposed to the PE-conjugated pMHC tetramer complex 

(DR7/PRS) and surface stained with APC conjugated anti-CD3 and ECD conjugated 

anti-CD4 antibodies. The gating strategy for FACS is shown in Figure 3.1A. We gated 

on singlets, followed by lymphocytes and CD3+ CD4+ T cells. The DR7/PRS tetramer 

positive CD4+ T cells within this gate were collected. 

The results, as indicated in Figure 3.1B and 3.1C, show the frequencies of DR7/PRS 

tetramer positive CD4+ T cell populations present within the peripheral blood of each 

healthy donor. The percentage frequencies were 0.1% of donor 1 and 0.025% of donor 

2’s total CD4+ T cell populations. 

In order to isolate CD4 T cell clones originating from single epitope specific 

populations, FACS sorted cells were plated out by limiting dilution cloning at 0.3, 3 and 

10 cells per/well into 96 well plates containing 100,000 peptide-loaded HLA matched 
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autologous LCLs and 1 million PHA-treated allogeneic buffy coat feeder cells per well 

(both previously irradiated with 4000 rads). The aim was to generate monoclonal 

populations of T cells originating from single circulating cells. 

FIGURE 3.1 
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Figure 3.1 Fluorescent activated cell sorting of DR7/PRS positive CD4+ T cell 
populations  

Analysis of CD4+ T cells populations from 2 EBV seropositive healthy donors stained 
with DR7/PRS tetramer conjugated to PE, followed by anti-CD3 and anti-CD4 
antibodies. (A) CD4+ T cell gating strategy. From left to right: singlets, lymphocytes, and 
CD3+ CD4+ T cells. (B) Donor 1 sorted CD4+ T cells. The sorting gate shows 0.1% of 
the total CD4+ T cell population. (C) Donor 2 sorted CD4+ T cells. The sorting gate 
shows 0.025% of the total CD4+ T cell population. 
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3.2 Characterisation of T Cell Clones. 

3.2.1 IFNγ Production in Response to Target PRS Peptide 

From each healthy donor, the growing CD4+ T cell clones were screened for their 

specificity against the PRS peptide epitope. After a period of 2 weeks of T cell 

expansion, 155 growing clones from donor 1 were screened. To increase the probability 

that the proliferating cells originated from single cells, we concentrated on the growing 

clones from the 0.3c/w and 3c/w micro-culture plates. T cells were co-cultured with 

50,000 HLADR7+ autologous LCL targets (per well) either un-manipulated or pre-

loaded with 5µg/ml of PRS peptide epitope. T cell clones were also co-cultured with 

media alone or containing 5µg/ml of PRS peptide epitope. Positive CD4 T cell clones 

were identified by an increased response to LCL target pre-loaded with PRS peptide 

epitope over un-manipulated LCL and standard media combined with peptide epitope 

over media alone. 

As illustrated in Figure 3.2, for the first 50 clones of the 155 T cell populations screened 

for donor 1, only a small proportion showed a greater response towards the LCL pre-

loaded with PRS epitope than without peptide and to media with peptide above media 

alone. This represented 25% of the total 155 screened clones (Table 3.1). This was a 

relatively low yield obtained, most likely as a result of the gating strategy used in the 

FACs cell sorting for this donor (Figure 3.1), which incorporated a higher proportion of 

none specific CD4+ T cells. 

After 2 weeks of T cell expansion 192 growing clones derived from donor 2 were 

similarly selected from the 0.3c/w and 3c/w micro-culture plates and screened for their 

specificity towards the PRS peptide. The results generated for this second donor are 
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displayed in Figure 3.3, which shows the first 50 clones screened. As illustrated out of 

the 192 clones screened 186 showed a response towards PRS which represented a yield 

of 97% (Table 3.1). This increased yield reflects the tighter gating applied during the 

FACS sorting (Figure 3.1). 

PRS specific clonal populations from each donor were re-stimulated with HLADR7 

matched LCL and Feeder cells and expanded further in vitro. The unresponsive non-

specific clones were discarded. A summary of the FACS sorting, limiting dilution 

cloning and specificity screening is shown in Table 3.1. As indicated in the table, 31 

PRS specific clones from donor 1 and 28 PRS specific clones from donor 2 were then 

analysed further for their TCRVβ usage.  
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FIGURE 3.2 
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Figure 3.2 IFNγ ELISA screening of T cell clones from Donor 1  

T cells from proliferating micro-cultures were co-cultured with autologous LCLs and 
LCLs pre-exposed to PRS epitope peptide. T cells were also co-cultured with standard 
media alone and standard media containing epitope peptide. Analysis of supernatant 
was conducted via IFNγ ELISA method. The first 50 clones of the 155 screened are 
represented. Error bars representative of the single experiment conducted. 
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FIGURE 3.3 

 

 

 

 

 

Figure 3.3 IFNγ ELISA screening of T cell clones from Donor 2 

T cells from proliferating micro-cultures were co-cultured with autologous LCLs 
and LCLs pre-exposed to PRS epitope peptide. T cells were also co-cultured with 
standard media alone and standard media containing epitope peptide. Analysis of 
supernatant was conducted via IFNγ ELISA method. The first 50 clones of the 192 
screened are represented. Error bars are representative of the single experiment 
conducted. 
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TABLE 3.1 

  Donor 1 Donor 2 

PBMCs extracted  20 million 50 million 

Isolated CD4+ T cells 6 million 40 million 

FACS sorted DR7/PRS 
positive CD4+ T cells 

8000 (0.1%) 10,000 (0.025%) 

Growing Clones screened 
for PRS specificity 

155 192 

Number & percentage of 
PRS specific clones 

39 (25%) 186 (97%) 

Number of PRS specific 
clones taken forward for 
vβ usage analysis  

31 28 

 

 

 

 

 

 

 

 

 

Table 3.1 Summary of peptide specific CD4 T cell clones isolated from whole 
blood, ex vivo 

This summarises the number of original PBMCs extracted from each HLADR7+ 
matched donor, the number of isolated CD4 T cells, FACs sorted populations, 
growing clones assessed for PRS specificity, number and percentage of PRS specific 
clones and those taken forward for TCRvβ repertoire analysis. 
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3.3 Determination of T Cell Clonal Vβ usage 

3.3.1 TCRVβ Repertoire Staining  

After confirming the clones retained their PRS specificity following expansion, we then 

went on to examine their TCRVβ usage. These experiments used the multi-parametric 

IOTest Beta Mark TCR Repertoire Kit (Beckman Coulter) in flow cytometry, which 

contains a panel of 24 monoclonal antibodies specific for different TCRVβ families. 

The kit provides approximately 70% coverage of the human TCRVβ repertoire, and the 

Abs (antibodies) are provided in mixes. This allows for the detection of 3 different 

TCRVβs within the same tube. To limit the analysis required, a matrix was constructed 

enabling analyses of multiple clones together. The matrix for donor 1 is displayed in 

Figure 3.4, and was constructed such that each clone was present in a unique 

combination of 2 pools. Pools of clones were stained using the repertoire kit. This meant 

that each T cell clone was stained twice with the antibody mixes, in two different pools 

of clones. 

As illustrated by Figure 3.5, pools of clones were gated on live CD3+ T lymphocytes. 

This gating strategy was used throughout all repertoire staining. As a control, an aliquot 

of each pool of clones was viability and surface stained with a CD3 surface antibody, 

but not stained with the IOTest Beta Mark Kit antibody mixes. There was no positive 

staining in the absence of these TCRVβ antibody mixes (Figure 3.5B). 

Figure 3.6 shows density plots for two pools of clones from donor 1; iv and x stained 

with the panel of TCR Vβ antibodies. As indicated by the density plots (A-H), each pool 

of clones was divided out among 8 separate tubes and stained with relevant TCRVβ 

antibody mixes. Within pool iv positive expression for Vβ12 was seen in tube E 
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(14.46%) and of Vβ1 was seen within tube F (29.21%) (Figure 3.6A). Within pool x 

positive expression for Vβ5.1 (1.89%) in tube C and Vβ1 within tube F (46.89%) are 

also shown (Figure 3.6B). Interestingly, these two pools both revealed Vβ1 usage 

indicating that one of the clones in each of these pools expressed a TCR with Vβ1 

usage. Similar analysis was performed for all pools of clones; i-xi. 

Figures 3.7 summarises the findings gained from TCRVβ repertoire staining of pools of 

clones from donor 1. To decipher which of the clones within the pools were expressing 

the TCRVβ detected, we cross matched any percentage expression of Vβ usage, within 

the matrix. For example, after cross matching the Vβ1 expression detected in pools iv 

and x, this was indicative of clone 99. Similar cross-matching of all the results in the 

pools i-x, allowed for the determination of specific clones to be taken forward for 

individual TCRVβ staining.  
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FIGURE 3.4 

Pool of 
Clones 

i ii iii iv v vi 

vii 2 4 18 19 21 26 

viii 28 33 41 49 53 57 

ix 64 74 78 79 83 91 

x 94 96 97 99 101 110 

Xi 122 127 131 149 153 154 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Matrix strategy for analysis of TCRVβ usage 

 A matrix was constructed to enable analysis of PRS specific CD4+ T cell clones in 
pools. Each individual T cell clone is present in 2 unique pools. Example of donor 1 
clonal matrix is shown. 
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FIGURE 3.5 
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Figure 3.5 TCRVβ repertoire analysis gating strategy 

(A) TCRVβ repertoire analysis gating strategy. From left to right: singlets and alive CD3+ 
lymphocytes. (B) Control; no Vβ. This gating strategy was used throughout all repertoire 
staining.  
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FIGURE 3.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Donor 1 TCRVβ repertoire analysis 

TCRVβ repertoire staining of clonal pools iv and x from donor 1. Pools of clones were made, 
divided among 8 tubes (A-H) and stained with relevant Vβ repertoire antibody mixes. Results 
are gated on live CD3 lymphocytes and any positive Vβ staining is presented as an increase 
in percentage of single/double staining. (A) Pool iv contained positive staining in tube E, 
indicating Vβ12 usage (14.46%) and tube F indicating Vβ1 usage (29.21%). (B) Pool x 
contained positive staining in tube C indicating Vβ5.1 usage (1.89%) and in tube F indicating 
Vβ1 usage (46.89%). 

Tube A Tube B Tube C Tube D 

Tube E Tube F Tube G Tube H PE
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(A)  Pool iv 

(B)  Pool x 
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FIGURE 3.7 

Clonal 
Pools  

i ii iii iv v vi Positive 
Vβ usage  

% 
vii 2 4 18 19 21 26 Vβ5.1 (5%) 

Vβ21.3 (12%) 
Vβ23 (11%) 

viii 28 33 41 49 53 57 Vβ1 (20%)  
Vβ22 (7%) 

ix 64 74 78 79 83 91 Vβ1 (25%) 
Vβ2 (11%) 

x 94 96 97 99 101 110 Vβ1 (47%) 
Vβ5.1 (3%) 

Xi 122 127 131 149 153 154 Vβ1 (18%) 
Vβ12 (16%) 

Positive 
Vβ usage  

% 
Vβ21.3 (10%) Vβ2 (4%) 

Vβ5.1 (8%) 
Vβ21.3(3%) 
Vβ22 (11%) 
  

Vβ1 (15%) 
Vβ2 (12%) Vβ1 (29%) 

Vβ12 (15%) Vβ1 (46%) 
Vβ21.3 (8%) Vβ1 (16%) 

Vβ2 (13%)   

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Donor 1 TCRVβ repertoire analysis summary 

Summary of TCRVβ repertoire staining on donor 1 clones. Any positive Vβ usage found 
in each clonal pool is presented as a percentage.  
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3.3.2 TCRVβ Individual Staining 

To confirm the Vβ usage of individual T cell clones, staining was performed using 

antibodies against individual TCRVβ. Live CD3+ CD4+ T lymphocytes were gated on 

(Figure 3.8A). This gating strategy was used throughout all individual Vβ staining. As a 

control, cells were viability and surface stained with anti CD3 and anti CD4 surface 

antibodies but not stained with Vβ antibodies. There was no positive staining in the 

absence of these individual Vβ antibodies (Figure 3.8b). Figure 3.8 displays the 

individual TCRVβ staining performed on clone 99, as previously indicated by the 

matrix strategy to express Vβ1 (Figure 3.7). The results show a shift in the staining in 

the presence of Vβ1 Abs, with 94.47% positive expression for Vβ1 usage, indicating 

that clone 99 used Vβ1. 

Similar experiments were repeated on all clones where positive staining was seen in the 

matrix (Figure 3.7). Figure 3.9 provides a summary of the positive results obtained for 

donor 1. Using this strategy, we successfully found the Vβ usages of 7 clones. Among 

these, 4 clones (clone 53, clone 83, clone 99 and clone 110) were positive for Vβ1 

usage, 2 clones (clone 2 and clone 21) were positive for Vβ21.3 usage and clone 91 was 

positive for Vβ2 usage. In each case over 90% of the T cell population was positive for 

the relevant Vβ.   

Similar analysis was performed on the T cell clones isolated from donor 2. Figure 3.10 

summarises the findings from TCRVβ repertoire analysis utilising a similar matrix 

strategy as used for on donor 1. Again, Abs staining was used to confirm the results 

obtained. Figure 3.11 displays Vβ usage of 5 individual clones where the TCRVβ usage 
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could be confirmed. Among these, 2 clones (clone 2 and clone 49) were positive for 

Vβ2 usage, 2 clones (clone 14 and clone 15) were positive for Vβ5.1 usage and clone 

46 was positive for Vβ17. Again, all of which showed a shift in staining above 90%.  

Table 3.2 summarising the findings gained from this individual TCRVβ staining for 

both healthy donors.   

Interestingly, from these results T cells specific for the same peptide epitope-MHCII 

combination but with different Vβ usages were isolated from each donor. Both donors 

had T cells utilising Vβ2 (Donor 1 clone 91) (Donor 2 clones 2 and 49) and within 

donor 1 there was also preferential usage of Vβ1 from 4 out of the 7 clones assessed.  
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FIGURE 3.8 
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Figure 3.8 Individual TCRVβ usage analysis 

 (A) Individual TCRVβ analysis gating strategy. From left to right: singlets, alive 
lymphocytes and CD3+ CD4+ T cells (B) Controls; no Vβ. This gating strategy was used 
throughout all individual staining. (C) Clone 99; positively stained with anti-Vβ1 
conjugated to PE as indicated by a shift in staining of 94.47%. 
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FIGURE 3.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Donor 1 summary of individual TCRVβ staining 

Histograms represent individual T cell clones (200,000 cells) stained with viability dye, 
anti-CD3 APC, anti-CD4 ECD and 7µl of individual TCRVβ monoclonal antibodies, 
conjugated to either PE or FITC. Percentages within each histogram represent frequencies 
of PRS specific CD4+ T cells in each clonal population stained positively for a specific Vβ. 
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FIGURE 3.10 

Clonal Pools  i ii iii iv v Positive 
Vβ usage  

% 
vi 1 2 

  3 5 7  Vβ5.1 (9%) 
Vβ2 (27%) 

vii 10 
  11 12 14 15  Vβ5.1 (43%) 

viii 17 27 28 30 35  
ix  38 39 40 41 42  Vβ8 (7%) 

 Vβ2 (28%) 
x 43 44 45 46 47  Vβ17 (26%) 

 Vβ5.1 (3%) 
 Vβ2 (11%) 

Xi  48 49        Vβ2 (44%) 

Positive 
Vβ usage  

% 
Vβ5.1 (12%) 
Vβ2 (6%) 

Vβ2 (44%) 
  

Vβ2 (13%) 
  

Vβ17 (10%) 
Vβ5.1 (21%) 

Vβ5.1 (32%)   

 

 

 

 

 

 

 

 

Figure 3.10 Donor 2 TCRVβ repertoire analysis 

Summary of donor 2 TCRVβ repertoire staining. Any positive expression for a particular 
Vβ usage within a given pool is displayed within the matrix and presented as a 
percentage.  
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FIGURE 3.11 
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Figure 3.11 Donor 2 individual TCRVβ usage analysis 

Histograms represent individual T cell clones (200,000 cells) stained with viability dye, 
anti-CD3 APC, anti-CD4 ECD and 7µl of individual TCRVβ monoclonal antibodies, 
conjugated to either PE or FITC. Percentages within each histogram represent frequencies 
of PRS specific CD4+ T cells in each clonal population stained positively for a specific Vβ. 
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TABLE 3.2 

Donor 1 Vβ Usage 

Vβ Positive Clones 

Vβ1 C53, C83, C99 & C110 

Vβ2 C91 

Vβ21.3 C2 &C21 

Donor 2 Vβ Usage 

Vβ Positive Clones 

Vβ2 C2 & C49 

Vβ5.1 C14 & C15 

Vβ17 C46 

 

 

 

 

 

 

 

 

 

Table 3.2 Summary of TCRVβ usage analysis. 

Summary tables of displaying known Vβ usage of clones in each healthy donor.  
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3.4 Determination of T-cell Functional Avidities 

Having isolated individual PRS specific T cell clones with different Vβ usages, we were 

now interested in whether TCR usage affects T cell function. We therefore measured the 

functional avidity of each clone with known Vβ usage in peptide titration assays. In 

these assays, the T cells were exposed to a series of peptide dilutions ranging from 

1x10-5 to 1x10-10 M, in the presence of autologous LCL as antigen presenting cells. As 

indicated by Figure 3.12, within these experiments, functional avidity was defined as 

the peptide concentration required to produce 50% of the maximum IFNγ release. The 

final functional avidities were converted from M to nM concentration. Figure 3.12 

demonstrates that the PRS specific clones from both healthy donors displayed a range of 

differing functional avidities. In donor 1 these ranged from 0.25nM to 30nM, whereas 

in donor 2 these were consistently much lower and ranged from 20nM to 40nM.  

Importantly, these experiments also showed that certain clones produced a IFNγ 

response towards autologous LCL in the absence of exogenously supplied PRS peptide 

as a response was seen at 0M. This suggested that these T cell clones could recognise 

naturally processed peptide epitope on the EBV infected LCL targets. This response 

appeared to differ between the two individuals, with all clones from donor 1 able to 

recognise the un-manipulated autologous LCL cells, whereas only 2 clones from donor 

2 (clones 2 and 49) were similarly able to produce a response. These results gave the 

first indication that certain clones within each healthy donor might function more 

effectively than others, as demonstrated by the higher levels of IFNγ release, seen in 

response to the un-manipulated LCL target.  
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FIGURE 3.12 
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Figure 3.12 Functional avidities of PRS specific clones 

CD4+ T cell Clones of known Vβ usage (2000 cells per well) were stimulated overnight with 
HLADR7+ autologous LCL (5×104 cells per well) pre-loaded with PRS peptide at 1x10

-5 
to 

1x10
-10

 M concentrations. Controls used included T cells co-cultured with culture media alone 
and HLADR7+ autologous LCL co-cultured with media alone. All conditions were performed 
in triplicates. Responses were assayed by IFNγ release in picograms per millilitre. Functional 
avidities were determined as the peptide concentration required to produce 50% maximal 
response (A) Donor 1 clonal functional avidities ranging from 0.25 to 30nM (B) Donor 2 
clonal functional avidities ranging from 20 to 40nM. Results are representative of 2 replicate 
experiments. 
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3.5 T Cell Clonal Recognition of Naturally Processed and Presented PRS Peptide 

Epitope 

The ability of a T cell to respond to peptide exposed LCL targets in vitro is important, 

as it indicates the specificity of a T cell and its functional avidity. However, for antigen 

specific T cells to have therapeutic relevance in vivo, as direct effectors, the T cell must 

also be able to recognise antigens presented by naturally infected B lymphocytes. 

Recognition of un-manipulated autologous LCL replicates how the CD4 T cells within 

the peripheral blood, may respond to virus infected cells, in vivo. Success of this would 

imply that such T cells may have direct effector functioning in the immune control of 

EBV infection and B cell lymphomas. Therefore, we further explored the capability of 

the PRS specific T cell clones to recognise autologous un-manipulated LCL target. 

The LCL recognition efficiency of each T cell clone was examined through co-culturing 

T cells with HLADR7 matched or mismatched LCL targets, with no prior exogenous 

PRS peptide treatment, compared to the same LCL targets pre-exposed to PRS peptide 

epitope. The efficiency with which each clone recognised the un-manipulated 

autologous LCL target, as displayed in Figure 3.13, was expressed as a percentage of 

the maximal response seen against the same HLADR7 matched LCL target pre-loaded 

with optimal PRS peptide. 

Figures 3.13 shows representative LCL recognition efficiencies for the clones derived 

from each healthy donor. To obtain accurate results and prevent anomalies, three 

replicate LCL recognition assays were performed and a mean was formulated from 

these. As expected, donor 1 derived clones showed strong recognition of matched LCL 

target pre-loaded with peptide epitope, and no recognition of mismatched LCL even 
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when pre-exposed to peptide. All clones from donor 1 also recognised the un-

manipulated autologous LCL at differing percentages ranging from 13% to 29%. In 

particular, clone 21, clone 53 and clone 99 all produced concentrations of IFNγ at high 

percentage efficiencies compared to peptide loaded LCL (clone 21; 29%, clone 53; 

24%, and clone 99; 29%), and in previous assays displayed similarities in functional 

avidity (Figure 3.13). Interestingly, clones 53 and 99, both showing high percentage 

LCL recognition efficiency, both expressed TCRs using Vβ1. However, two other 

clones with this same Vβ usage (clone 83 and clone 110) had lower efficiency of LCL 

recognition (Summarised in Table 3.3).  

Similar experiments were performed on the clones from donor 2. Figure 3.13 illustrates 

that these clones showed an overall weaker recognition of the matched LCL target pre-

loaded with PRS peptide epitope, compared to donor 1 clones, indicated by the lower 

IFNγ release. Again, there was no recognition of the control un-manipulated 

mismatched LCL. In donor 2, 4 out of the 5 clones analysed recognised the un-

manipulated autologous LCL target cells at percentage efficiencies ranging from 5%-

12%, however clone 46 was unable to do this. Interestingly, the percentage recognition 

efficiencies of donor 2 were all lower than the clones isolated from donor 1, matching 

with their lower functional avidities, as shown in Figure 3.13, in the peptide titration 

assays and thus their inability to see LCL targets. 

Table 3.3 and table 3.4 summarise the findings from both Vβ usage and functional 

analysis of the clones from each healthy donor. 
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FIGURE 3.13 
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Figure 3.13 T-cell efficiencies.  

T cell clones (100 to 5000 T cells per well) were co-cultured with HLADR7 matched 
LCL or mismatched LCL (5x104 cells per well), both previously exposed to PRS peptide 
epitope and compared to the same LCLs targets with no prior exogenous peptide 
treatment. Responses are shown as IFNγ release in picograms per millilitre. Boxes show 
percentage efficiency of responding cells. Percentage efficiency is the mean of replicate 
assays. (A) LCL recognition of donor 1 clones. (B) LCL recognition of donor 2 clones. 

12% 8% 
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TABLE 3.3  

Donor 1 HLA/DR7 restricted EBNA2/PRS clones  
Clones Vβ Usage Functional avidity 

(concn (nM)) 
% Recognition of 

LCL  
Clone 2 Vβ21.3 5  15 
Clone 21 Vβ21.3  0.25 29 
Clone 53 Vβ1  5 27 
Clone 83 Vβ1  30 18 
Clone 99 Vβ1 5 29 
Clone 110 Vβ1  10 21 
Clone 91 Vβ2  9 13 

 

TABLE 3.4 

Donor 2 HLA/DR7 restricted EBNA2/PRS clones  

Clones Vβ Usage Functional avidity  
(concn (nM) ) 

% Recognition of 
LCL  

Clone 2 Vβ2 20   8 
Clone 49 Vβ2 30  12 
Clone 14 Vβ5.1 30   5 
Clone 15 Vβ5.1 40  7 
Clone 46 Vβ17 30   0 

 

 

 

 

 

 

 

 Tables 3.3 & 3.4 Summary of EBNA2 PRS specific CD4+ T cell clones’ Vβ usage 
and functionality.   

Functional avidity is defined as the concentration of epitope peptide mediating 50% of 
the maximal IFNγ produced in peptide titration assays. Values shown are the means of 
the results of single assays for each clone using triplet replicates of each peptide 
concentration. Recognition of the un-manipulated autologous LCL, is expressed as a 
percentage of the IFNγ production seen in the same assay against the same matched 
LCL target but optimally loaded with PRS peptide epitope.  The percentage values for 
each clone are a mean obtained from several assay replicates. 
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3.6 TCR Profiling 

To further investigate the relationship between TCRVβ usage and T cell function, alpha 

and beta chains of TCRs from clones were sequenced to determine if there were 

similarities in nucleotide sequences within the beta variable domain CDR3 region.  

Donor 1 clones using Vβ1 and Vβ21.3 were selected for this TCRseq. These showed 

interesting results in relation to TCRVβ usage and function in terms of functional 

avidities and percentage LCL recognition efficiency. 

In order to isolate the alpha and beta genes from these clones, an RNAeasy plus 

microkit and a SMART RACE cDNA amplification kit were used. Cellular RNA was 

extracted using the RNAeasy plus microkit and converted via reverse transcription into 

cDNA. Both the alpha and beta TCR DNA was then amplified using rapid amplification 

of cDNA ends (RACE) PCR with primers specific for each alpha and beta chains, along 

with negative controls.  

As shown in Figure 3.14 gel electrophoresis was performed and from each clone we 

successfully amplified PCR products with the correct size from both alpha and beta 

chains of the T cell receptors (200bps in length). Alpha and beta chain DNA from each 

clone was then extracted and purified using a gel extraction spin column method and 

prepared for sequencing. Unfortunately, from the sequencing data obtained we were 

unsuccessful in generating any conclusive data, therefore further troubleshooting is 

required for future TCRseq replicates to be performed. 

 

 



 

77 
 

FIGURE 3.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Gel electrophoresis of clonal TCR alpha and beta chain cDNA 

Alpha and beta TCRs from the CD4+ T cell clones were amplified using alpha and beta gene 
specific primers and a universal primer mix, via RACE PCR. The size of RACE DNA 
products was confirmed on a 1% agarose gel, via gel electrophoresis. For all CD4+ T cell 
clones each α and β primer yielded a PCR product of expected size (200bp). Controls 
containing no DNA (-) did not produce any PCR product. (A) From left to right; positive DNA 
products of clone 2 alpha and beta chains (C2α+) (C2β+), clone 2 alpha and beta chain 
negative controls (C2α-) (C2β-) and positive DNA products of clone 21 alpha and beta chains 
(C21α+) (C21β+). (B) From left to right; clone 21 alpha and beta chains negative controls 
(C21α-) (C21β-), positive DNA products of clone 53 alpha and beta chains (C53α+) (C53β+), 
and clone 53 alpha and beta chain negative controls (C53α-) (C53β-). (C) From left to right; 
positive DNA products of clone 83 alpha and beta chains (C83α+) (C83β+), clone 83 alpha 
and beta chain negative controls (C83α-) (C83β-), and positive DNA products of clone 99 
alpha and beta chains (C99α+) (C99β+). (D) From left to right; clone 99 alpha and beta chains 
negative controls (C99α-) (C99β-), positive DNA products of clone 110 alpha and beta chains 
(C110α+) (C110β+), and clone 110 alpha and beta chain negative controls (C110α-) (C110β-). 
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CHAPTER 4 

4 DISCUSSION 

The αβTCR is essential for determining the antigen specificity of T lymphocytes of the 

adaptive immune system. Previous research into T cell-based therapies for viral diseases 

and cancers includes the development of novel methods, such as TCR gene transfer 

therapy, in which antigen specific TCRs, are genetically introduced into cytotoxic or 

helper T lymphocytic populations. However, currently TCR selection from the broad 

αβTCR repertoire remains a significant challenge. Epitope specific populations within 

this repertoire are known to be extremely diverse and contain a substantial proportion of 

cells expressing low affinity and avidity TCRs.  

Analysis of cytotoxic T cell responses towards single peptide epitopes, in HLA matched 

humans has revealed identical TCR sequence usage, in the context of various viral 

models (Crompton et al 2008, InYoung Song et al 2017).  However, the biological 

mechanisms by which clonal restriction occurs and how this distinct TCR usage 

influences effector mechanisms remain unclear. Further, assessment of which TCR Vβs 

and TRBV gene segments, induce the most effective antigen-specific immune 

responses, based on T cell function, is vital for optimisation of future gene transfer 

immunotherapies for various cancers.   

We sought to investigate these concepts, through analysis of the less well studied CD4+ 

T cell immune response, in the context of the globally prevalent gamma-herpes virus, 

Epstein Barr Virus. In spite of the robust innate and adaptive immune responses 

controlling the virus in the majority of people infected, EBV has been associated with 

various B cell malignancies. Importantly, infected malignant B cells retain expression of 
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the MHC class II molecule. This is essential for subsequent processing and presentation 

of EBV exogenous proteins, enabling successful CD4+ TCR recognition and 

subsequent anti-viral immune control. Despite previous belief that direct effector 

functioning was entirely related to CD8+ T cells, it has now been established that 

certain subtypes of CD4+ T cells can also directly target antigen-positive cells through 

MHCII. These helper type cells have been reported to express various phenotypic 

markers of known cytotoxicity including perforin and granzyme A linked to CD8+ 

functioning (Appay et al 2002) and thus are of significance importance during viral and 

cancer cell elimination. Unfortunately, within patients suffering from B cell 

malignancies such as post-transplant lymphoproliferative disease (PTLD), peripheral 

EBV specific CD4+ T cell populations are of low frequency due to immunosuppression. 

However, they have now been observed in healthy seropositive individuals to respond 

to a large array of EBV derived antigens, with cytotoxic effects (Long et al 2005, Long 

et al 2011).  

This project focussed on the EBV latency III protein, EBNA2 restricted through 

HLADR7. Many of the proteins’ epitopes have now been identified and have been 

further shown to be presented well by MHCII on infected B lymphocytes (Long et al 

2005). EBNA2 is expressed in latency III positive tumours, such as PTLD, therefore it 

is thought to have the potential to be an important immunotherapeutic target for the 

long-term treatment of this lymphoproliferative disease.   

Based on these considerations we aimed to investigate the relationship between TCR 

repertoire usage and effector functioning of epitope specific CD4+ T cells in healthy 

EBV carriers, utilising the EBNA2-derived PRS epitope as a model. Previous work in 

our laboratory has shown within healthy seropositive carriers that CD4+ T cell 
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populations specific for PRS, contain T cells with multiple different Vβ usages. 

However, further analysis of TCR sequence homology is yet to be performed. We 

hypothesised that the TCR usage may affect T cell function, with some TCRs therefore 

being of greater therapeutic benefit than others.  

 

4.1 Generation and Screening of PRS specific CD4+ T cell clones 

To address this hypothesis, we successfully isolated PRS specific CD4+ T cells from 

two healthy HLA DR7+ seropositive donors using MHC class II tetramer staining and 

FACS sorting, directly ex vivo. Previous generation of clonal populations, has focussed 

on isolation from peripheral blood mononuclear cells (PBMCs) with a period of antigen 

stimulation and culturing leading to higher enrichment but lower purity levels.  

The ex vivo generation implemented within this study was important to maintain the 

TCR repertoire diversity of the sorted CD4+ T cells to reflect that present in vivo. Prior 

in vitro stimulation may lead to skewing of the TCR repertoire as some subclonal 

populations may expand more than others affecting the phenotype and functioning, thus 

having negative implications on subsequent TCR usage analysis.  

The percentage frequencies of DR7/PRS tetramer positive CD4+ T cells detected in 

each healthy donor was low, 0.1% in donor 1 and only 0.025% in donor 2. This would 

imply that within the total EBV specific CD4+ T cell immune responses of HLADR7 

positive healthy carriers, PRS specific responses constitute a very low proportion. 

However, similar low frequencies of MHC class II tetramer positive CD4+ T cell 

populations (0.005 – 0.085% of the total CD4+ T cells) have been observed in previous 
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in vitro work on healthy long term EBV carriers (Long et al 2013). Generally, within 

EBV specific immune responses, the magnitude of CD4+ T cells within the peripheral 

blood is much lower compared to the immunodominant CD8+ populations  (Long et al 

2011).   

To obtain clonal populations, the T cells were FACS sorted and subjected to limiting 

dilution cloning. The growing clones were then screened for their specificity against the 

PRS epitope. The functional readout for peptide epitope specificity screening and 

upcoming assays was determined by IFNγ production. CD4+ T cells producing this 

particular cytokine have been observed to display both anti-viral and anti-tumour 

therapeutic effects, being Th1 in subtype (Swain et al 2012). Within each healthy donor, 

not all the growing clones made IFNγ in response to the PRS peptide epitope. Analysis 

of T cell responses during both chronic viral infection and cancer, has revealed that 

repeated cellular stimulations and expansions can render some specific T cells 

exhausted meaning proliferative capacity and cytokine production can consequentially 

be reduced (Wherry et al 2011). These fatigued memory effector cells have limited 

persistence, reducing their response rates and therapeutic effectiveness. This may have 

occurred within our limiting dilution cultures, which were cultured for 2-3 weeks prior 

to peptide specificity screening.  

However, more likely, the non-responsive wells contained non-specific T cells. We 

found differences in percentage yield of PRS-specific clones generated from donor 1, 

25%, compared to donor 2, 97%. These differences can be explained by the gating 

strategy used during FACS sorting of the DR7/PRS tetramer stained populations. The 

gate in donor 1 clearly incorporated a higher proportion of non-specific cells meaning a 
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lower percentage would be specific for the PRS epitope. This gating was corrected for 

donor 2.  

A further factor to consider is the potential outgrowth of polyclonal T cell populations 

due to more than one cell being plated into each well of the limiting dilution cloning. 

Although the clones were preferentially selected from the 0.3c/w plates reducing the 

probability of selecting polyclonal populations, some clones within these populations 

may have contained two or more T cells, with non-specific TCRs, outgrowing the PRS 

specific cells.  

Another potential reason for a lack of IFNγ production in some of the clones screened 

could have been the result of other subsets of PRS specific CD4+ T cells being present 

within the cultures screened, producing other types of cytokines not assayed for, such as 

IL-4 linked to the helper subtype; Th2. sRNA sequencing and cyTOF mass 

spectrometry has revealed that T cells within the same monoclonal population 

containing the same TCR, have the capacity to downregulate certain transcription 

factors for one differential status, and upregulate a different one to produce a new subset 

of cells (Hans et al 2014).  Within this study, MHC class II tetramer staining performed 

prior to dilution cloning and screening selected T cells based on specificity of their 

TCR, thus this had no influences on the activated cells subset lineage and effector 

function. 

There was the additional possibility of polyfunctional T cells growing within the 

cultures screened, producing multiple different cytokines not assayed for. Previous 

work conducted by Betts et al demonstrated this phenomenon in the context of HIV 

infection. It was found in a substantial proportion of viral specific CD8+ T cell immune 
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responses there was little or no production of IFNγ but in fact many other cytokines 

were secreted instead, highlighting the functional heterogeneity of anti-viral T cell 

immune responses (Betts et al 2006). Within our own laboratory it has been further 

shown in the context of EBV specific CD4+ T cells in healthy carriers, these cells can 

produce high levels of the cytokine TNFα along with IFNγ, and sometimes in its 

absence. (Benjamin Meckiff, unpublished data). In the context of CMV specific CD8+ 

T cell immune responses, work conducted by Sanberg and colleagues also reported 

within polyfunctional T cell populations, the type of cytokine being secreted determined 

functional differentiation of a T cell, with TNFα production representing an earlier stage 

of cellular development compared to IFNγ and IL-2 (Sanberg et al 2001).  Therefore, 

the use of ELISplots would be a beneficial form of future analysis to determine whether 

any of the unresponsive T cell populations within our growing cultures were in fact 

other subsets producing different cytokines, polyfunctional populations or at a differing 

stage of functional development. 

Interestingly, we noticed that some clones did additionally appear to produce IFNγ in 

response to the unmanipulated LCL target in these screening assays, which suggested 

they might have the ability to recognise naturally processed and presented exogenous 

cognate antigen epitope, from the resident EBV genome. This is extremely important 

from a clinical standpoint, as the ability to recognise naturally infected B cell targets 

would imply that such T cells may have direct effector functions in the long-term 

control of EBV driven lymphoproliferations, in vivo. 

 

 



 

84 
 

4.2 TCRVβ usage analysis of PRS specific CD4+ T cell clones 

We next explored the TCRVβ repertoire usage of the PRS-specific T cell clones, in 

order to assess the range of TCRs specific for the PRS epitope. This additionally 

enabled us to confirm the clonality of the T cells as all cells within a clonotypic 

population should express the same V/D/J segment and identical TCRVβ protein.  

Interestingly, we were only able to determine the Vβ usage of a small subset of the 

clones screened.   This conservation of TCR usage may have been due to the limitation 

of the IOTest Beta Mark Kit utilised, in which the monoclonal antibody panel, 

identifying 24 separate TCRVβ families, only covers up to 70% of the normal human 

αβTCR repertoire. Therefore, less common TCRVβs being used by clones not covered 

for by the kit, may have been consequentially missed. Previous assessment of TCRVβ 

repertoire diversity using the IOTest Beta Mark Repertoire kit, has similarly identified 

significant proportions of T cells within a population failing to react to any TCRVβ 

antibody tested (Tembhare et al 2011).  

Nevertheless, we successfully identified the Vβ usage of a number of clones from each 

healthy donor. From donor 1 out of the 31 clones assessed, 7 showed Vβ usage for 

Vβ21.3, Vβ1 or Vβ2; 22.5%. In comparison, within donor 2 only 5 clones from the 28 

clones analysed showed Vβ usage for Vβ2, Vβ5.3, or Vβ17; 17.9%. Most interestingly, 

similarities in Vβ2 usage between the donors was apparent. The distinct Vβ usage 

observed in both donors is indication that a particular mechanism is favouring their 

occurrence.  

During epitope specific CD8+ T cell immune responses against chronic EBV infection, 

TCR repertoire analysis has identified several recurrent Vβ subsets being used 
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including, Vβ2, Vβ4, and Vβ16. (Lim et al 2000).  In the context of other chronic viral 

infections, previous sequence analyses have similarly observed immunodominance of 

individual TCR gene segments associated with a defined sets of CDR3 motif sequences 

in both epitope-specific CD8+ T cell and CD4+ T cell populations, despite broad TCR 

repertoires available (Chrompton et al 2008, InYoung Song et al 2017). These findings 

highlight the importance of structural immunodominance within differing TCRs 

responding to the same MHC-peptide combination. In the context of CD4+ T cells, 

TCR repertoire analysis has demonstrated that restriction to particular subsets of Vβ 

subfamilies such as Vβ2 and Vβ17 does occur within populations of antigen 

experienced CTLs (Appay et al 2002).  Similarly, within our own laboratory 

investigations into the diversity of the TCR repertoire usage of CD4+ T cells in healthy 

EBV carriers has shown overrepresentation of single Vβ chains (Benjamin Meckiff, 

unpublished data).  

The biological basis for this TCRVβ repertoire focussing and clonal selection observed, 

remains subject to further in-depth characterisation and investigation. EBV is 

reactivated throughout the lifetime of an infected individual, thus it is likely that PRS 

specific CD4+ T cells have been chronically exposed to this particular latent antigen 

epitope, resulting in the continuous activation of specific clones with conserved TCR 

structural components. Subsequently this would result in antigen driven selection of a 

distinct subset of immunodominant TCRs arising within seropositive healthy 

individuals.  

It has been further speculated that the processing and presentation pathways  antigen 

presenting cells along with HLA allele restriction of epitope specific CD4+ T cell clonal 

populations may enhance their potential for clonal restriction and conservation of TCR 
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usage (Chrompton et al 2008). However further investigations are required to assess 

these possibilities. 

From our own results and others, this therefore suggests that, despite the initial diverse 

TCRVβ repertoire availability within CD4+ T cell immune responses, clonal selection 

along with immunodominance of individual TCR structural components does occur 

within epitope specific populations. Homogenous TCR responses to immunodominant 

epitopes such as PRS may be important for activation of T cells conferring the most 

robust immune responses. However, further analysis is required in order to determine 

the exact factors having greatest influence on this TCR immunodominance. 

 

4.3 Functional analysis of PRS specific CD4+ T cell clones with known Vβ usage   

Having established PRS specific CD4+ T cell clones and confirmed their Vβ usages, we 

were next interested in gaining a better understanding of their functional characteristics. 

The initial parameter investigated was functional avidity; the biological measure of the 

ex vivo response produced by a T cell to a given concentration of target peptide. The 

potency of cellular immune responses strongly depends on this functional characteristic. 

Within the context of various viruses, epitope specific T cells displaying high functional 

avidity have been associated with better viral clearance.  Analysis was achieved through 

measuring the IFNγ production in response to stimulation with an autologous LCL 

target pre-loaded with titrating amounts of PRS peptide.  

The clones displayed various avidities ranging from 0.25 to 40nM. Interestingly, the 

functional avidities of the clones isolated from donor 1 were generally higher than those 

from donor 2.  Previous work conducted by Long et al reported that EBV specific CD4+ 
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T cell clones against the same epitope-HLA allele combination appeared functionally 

alike to one another, with regards to peptide titration curves. However, these previous 

experiments investigated this functional characteristic on only a small number of clones 

for each epitope, and similarly to other studies, these cells were subject to repeated prior 

in vitro stimulations and expansion before cloning. This would have increased the 

likelihood of preferential expansion of certain clones inducing bias to the avidity 

measurements produced. Despite this, in the context of PRS-specific CD4+ T cell 

clones, restricted through different HLA alleles functional avidities were reported to 

range from 3-30nM (Long et al 2005). Similarly, peptide titration analysis has reported 

avidities of CMV epitope specific CD4+ T cell clones ranging from 10nM-100nM, in 

line with CD8+ cytotoxic cellular responses (Chrompton et al 2008).  In the context of 

other viruses such as HIV, work conducted by Billeskov et al found that low antigen 

dosage in adjuvant-based vaccination selectively induced CD4+ T helper cells with 

enhanced functional avidity, increasing cytokine production, along with improving the 

efficacy of CD8 T cell anti-viral activity (Billeskov et al 2017). This coincides with the 

results generated from these peptide titration assays, that certain clones with high 

functional avidity could respond with higher levels of IFNγ cytokine release to low 

levels of peptide. These results, therefore, infer that certain clones may be associated 

with more potent responses against infections and cancers and thus are of more 

therapeutic relevance than others of lower functional avidity.  

The differences observed in the functional avidities between clones of the same epitope 

specificity and HLA allele restriction could be related to variations in the levels of TCR 

expression. T cells with low surface TCR expression may not have been able to respond 

fully due to less binding interactions, resulting in lower activation thresholds.  
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Alternatively, it has been previously reported that T cells expressing enhanced affinity 

TCRs have a direct influence on the strength of an immune response and thus functional 

avidity of a T cell (Thomas et al 2011). This means T cells with high affinity TCRs 

would recognise much lower levels of the PRS peptide epitope presented through MHC 

class II on target cells and still induce a robust immune response. 

Other factors to be considered include the efficiency of exogenous peptide epitope 

processing and presentation within the target cell, along with interactions between TCR 

and pMHC as a result of specific binding anchor residues. This would subsequently lead 

to more efficient binding kinetics and functional outputs of specific clonal populations. 

X-ray crystallography analysis of epitope specific CD4 T cell immune responses has 

reported the effects of exogenous peptide processing and presentation by MHC II 

molecules resulting in enhanced flexibility. These present peptides able to adopt a 

variety of conformational states, displaying amino acid side chains which promote 

better recognition and TCR binding interactions associated with more efficient immune 

responses (Pu et al 2002).  

Structural analysis of TCR binding to pMHC has further revealed the T cell coreceptor 

has implications on the sensitivity of immune responses with regards to functional 

avidity. In the context of CD8 T cell responses, studies have highlighted the influences 

of the CD8 co-receptor on association and dissociation rates, enhancing antigen 

recognition and binding efficiency particularly in T cells expressing low affinity TCRs, 

along with increasing the rate of subsequent intracellular activation processes induced 

by the TCR/CD3 complex (Artyomov et al 2010). However, the exact mechanisms by 

which this is achieved have yet to be elucidated.  
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Importantly, within these peptide titration assays and the earlier screening assays, it was 

apparent that many of the CD4+ T cell clones could recognise the unmanipulated LCL 

target cell without the addition of cognate PRS epitope peptide. This is an important in 

vitro indication that such clones may be able to directly recognise EBV derived 

lymphoproliferations in vivo, and be of therapeutic benefit. Within the literature it is 

already apparent PRS specific CD4+ T cell clones are able to recognise and eliminate 

autologous LCL targets (Khanna et al 1997, Omiya et al 2002, Long et al 2005). We 

therefore investigated this further by assessing the efficiency of LCL recognition among 

these clones of known functional avidity and Vβ usage.  Previous work conducted by 

Omiya et al generated PRS specific clones, which similarly were able to recognise 

autologous unmanipulated LCL target, determined through IFNγ cytokine production. 

Though, these response levels were not compared to that of a maximal peptide-induced 

response (Omiya et al 2002). Further to this, work conducted by Long et al, 

investigating LCL recognition efficiency as a percentage of that seen in parallel against 

the same LCL target pre-loaded with optimal PRS epitope peptide, reported that PRS 

specific CD4+ T cell clones of varying MHCII restriction had percentage LCL 

recognition efficiencies ranging from 1-35%. In particular, HLA DR7 restricted clones 

had an efficiency of 15% (Long et al 2005). However, these earlier studies assessed a 

limited number of clones, with unknown TCRVβ usage. Therefore, we sought to expand 

on these previous findings by analysing the function of our T cell clones with known Vβ 

usage, in order to determine if there was an association between the two factors. 

Here, we found that the 7 PRS specific CD4+ T cell clones analysed from donor 1 all 

had an efficiency of LCL recognition above 10%, and 3 clones, in particular, had 

relatively high efficiencies ranging from 27 to 29%, in line with previous findings. 
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Surprisingly, the clones generated from donor 2 all had much lower percentage 

recognition efficiencies with only one showing an efficiency above 10%.  

Importantly, the differences in LCL recognition between clones within each donor were 

consistent with the pattern of functional avidities previously determined in the peptide 

titration assays. Predominantly, within donor 1, the PRS-specific clones with high 

functional avidity had increased ability to recognise physiological levels of PRS 

epitope, endogenously processed and presented by autologous LCLs, as observed 

through the higher LCL recognition efficiencies. Many investigators have similarly 

demonstrated this correlation between T cell avidity and target recognition of T cell 

populations that are able to recognise virally infected antigen presenting cells, murine 

models and human cancer cell targets (Dudeley et al 1999, Zeh et al 1999). 

However, these results cannot be solely explained by the correlation observed with T 

cell clonal functional avidities. Evidence of this has been reported through clinical trials, 

in which high avidity T cells, specific for the tumour associated antigen, Her-2/neu+ 

were unable to recognise tumour cells despite showing response towards peptide loaded 

targets (Zaks et al 1998, Knutson et al 2002). These conflicting results emphasise the 

complexity of the relationship between avidity and target cell recognition, with many 

other presently unknown underlying factors in need of investigation.  

The level of LCL recognition may in fact be influenced by the degree of PRS epitope 

presentation on the autologous unmanipulated LCL surface. This could therefore be 

again linked to efficiency of intracellular processing of the cognate PRS peptide by the 

target antigen presenting cell. However, further investigations would be required to 

assess this. 
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To prevent bias arising due to this, within this study we conducted the assays on all 

clones in parallel, and performed three replicates to generate a mean. Furthermore, all 

assays used the same number of autologous HLA matched LCL and T cells per well, 

and further equal numbers of control HLA mismatched LCLs. 

The observed ability to successfully recognise LCL targets, which represent EBV 

infected B cell blasts, provides support for the possibility that EBV epitope specific 

CD4+ T cells, circulating within the peripheral blood of seropositive carriers, may 

display comparable properties, in vivo and could be further investigated for other direct 

effector mechanisms and functional relationships.  The relative sensitivity of a T cell 

towards an antigen target, thus may influence its subsequent ability to recognise cancer 

cells, emphasising the importance of high avidity T cells in anti-tumour immunity and 

subsequent selection for adoptive immunotherapeutic applications.   

 

4.4 TCRVβ usage influences on T cell function  

Our main motivation for this work was to address the potential relationship between Vβ 

usage and the function of epitope specific CD4+ T cell clones. The ability to determine 

TCRs from defined clonal populations, conferring the greatest functional output with 

regards to activation, proliferation, and target cell lysis is of key importance for future 

therapeutic application to be successful. However, the biological impact of TCR 

repertoire usage within epitope specific T cell populations, is still yet to be investigated 

fully.  

From our analysis, when comparing clones of the same Vβ usage, for example clone 99 

and clone 53 derived from donor 1, using Vβ1, these displayed a high functional avidity 
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of 5nM and percentage LCL recognition efficiencies of 21% and 27%.  However, other 

clones from donor 1 also using Vβ1, had much lower functional avidities and 

percentage LCL recognition efficiencies. For example, clone 83 using Vβ1 had a 

functional avidity of 30nM and an LCL recognition efficiency of 18%. Furthermore, 

within donor 1 high avidities and LCL recognition efficiencies were apparent in clones 

using differing Vβs including clone 2 and 21 which both showed usage of Vβ21.3. 

These findings are interesting, as despite the differences in Vβ expression between 

clones from the same individual, structural conservation of defined TRBV genes and 

CDR3 motifs between clones of similar functional capacity may still have been 

apparent. TCR repertoire diversity is now known to contribute significantly towards 

immune defence mechanisms; providing a large initial pool of clonal populations, with 

differing TCRVβ from which the most efficient T cells can then be selected for (InYong 

Song et al 2017). Thus, this would imply that within epitope specific CD4+ T cell 

populations, the combination of overall diversity and finite structural similarities in 

specific clonal populations is of key importance in an efficient and robust immune 

response. 

To determine whether fine differences in the CDR3 binding region of the TCRs were 

responsible for the observed differing functional properties of the PRS-specific CD4+ T 

cell clones, we went on to sequence the alpha and beta chains of the TCRs from the 

clones isolated from donor 1 that used Vβ1 and Vβ21.3. Structural and sequence 

analysis has reported, in the context of chronic CMV infection in healthy individuals, 

extreme conservation of T cell receptor usage in both TCRα and TCRβ chains of 

epitope specific cytotoxic CD4+ T cell clones displaying high functional avidity, 

similarly to that seen in cytotoxic CD8+ responses (Chrompton et al 2008).  This 
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suggests that during chronic viral infections, clonal selection occurs upon initial epitope 

recognition. Subsequent repeated exposure of lymphocytes to the same antigen derived 

epitope may thus result in immunodominance of specific TCR gene sequences 

conferring cells of the greatest cytotoxic potential. 

From our own analysis performed, despite successful amplification of PCR products for 

both TCRα and TCRβ chains of all clones assessed, the sequencing data was 

inconclusive. This may have been due to the presence of other cells carrying none 

specific TCRs, for example if the T cell clones were not truly monoclonal or if feeder 

cells were still remaining within the cultures after re-stimulation. Unfortunately, due to 

the limited time availability and substantial cost of TCR isolation and sequencing, 

subsequent TCRseq replicates could not be performed and it was not possible to draw 

definite conclusions. A full analysis of whether there are similarities in the CDR3 

motifs of the TCRs of the clones with similar functional parameters and the 

same/different Vβ usage remains to be performed.  

There have been earlier attempts to characterise the function of epitope-specific CD4+ 

T cells with distinct TCR usage, however this analysis was based on the functional 

interactions of T cell receptors contacting different residues located within the target 

peptide, and thus binding interactions rather than differences in TCR sequence (Pu et al 

2002). Nevertheless, these investigations do open up the possibility to explore 

influences other than the TCR structural components, such as the conformational 

recognition of peptide by TCR contact residues.  Further detailed structural information 

is therefore required to determine if initial TCR-pMHC binding interactions, and the 

components within them, do in fact have any significant influence on the functioning of 

an activated T cell. 
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More recently, a study investigating influenza virus epitope specific CD8+ T cell 

immune responses has shown that a highly diverse repertoire, including both dominant 

public TCRs and a variety of private structural CDR3 components, may be key to 

successful antigen recognition and effective immune responses. These diverse TCR 

patterns have been suggested to be crucial to protect against individual clonal loss, 

thereby ensuring the maintenance of an antigen-specific effector memory T cell pool 

(InYoung Song et al 2017). Based on these findings it was proposed that differing 

sequences may consequentially activate downstream effector mechanisms differently, 

resulting in heterogenous functioning of different T cells (InYoung Song et al 2017).  

Recent work has attempted to build on these ideas integrating information about TCR 

sequence specificity with multiparametric phenotypic analysis of bulk T cells at a single 

cell level, in the context of cancers such as colorectal carcinoma (Han et al 2014). It was 

reported that similarities were apparent in cells displaying the same TCR sequence and 

transcription factor regulating cellular differential status. However, there was no 

indication of TCR structure influencing immune response efficiency, sensitivity, or 

target cell elimination. Further to this, it did not have the availability of MHC tetramer 

reagents and thus identification of epitope specificity and HLA restriction was not 

achieved.  

Gros and colleagues additionally reported within melanoma patients tumour-infiltrating 

PD-1 neoantigen specific CD8+ T cell populations proved a valuable source in 

identification of TCRs with therapeutic potential (Gros et al 2014). Despite these 

conclusions made, to what extent these TCRs represented T cells of the best avidity was 

not fully clarified.  
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To date no conclusive evidence has been made into the influences of TCRVβ usage on 

cytotoxic capacity of anti-viral and anti-tumour T cell immune responses. From our 

knowledge this is the first exploration of the TCRVβ usage of human CD4+ T cell 

clones of known epitope specificity and MHCII restriction isolated, ex vivo. The 

biological basis for this distinct TCR repertoire usage and its association with cellular 

functional output still remains unclear. Thus, deeper insights into the mechanisms 

regulating this, are required to improve understanding of T cell immunology and further 

help to identify optimal TCRs for future targeted immunotherapies.  

4.5 Future work 

To generate more in depth knowledge regarding the link between TCR usage and 

functioning of PRS specific CD4+ T cells further work is needed. Unfortunately, the 

TCR sequencing data produced from this study was inconclusive. With additional 

troubleshooting, both the alpha and beta chain gene sequences could be successfully 

identified meaning more structural comparisons between the PRS specific clones could 

be made. In the context of viral infection and cancer, TCR sequencing has recently 

provided useful insights into the T cell repertoire within both diseased and healthy 

individuals. Previous studies have reported homology of conserved TRAV, TRBV 

genes and amino acid CDR3 motifs, between HLA matched healthy viral carriers and 

cancer patients, targeting the same peptide epitope (Chrompton et al 2008). 

Identification of public T cell clonotypes, shared between HLA matched healthy and 

diseased individuals, is essential in the development of biomarkers and diagnostics for 

various infectious and neoplastic diseases. As a technique, antigen receptor profiling 

further provides the potential to develop immunotherapies utilised in the reconstitution 

of the immune responses within affected patients, without causing adverse effects such 
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as GvHD.  TCR gene sequences conferring the best functional properties, could thus be 

isolated and assessed for potential gene modification of subsequent transfused T cell 

populations.   

The initial monomeric engagement between the TCR and its pMHC complex plays a 

critical role in determining the activity of a T cell. The binding property of TCR 

affinity, associated with this interaction, has been correlated to more efficient cellular 

activation by lower concentrations of cognate peptide and an increase in T cell 

functional capacity (Holler et al 2003). This has been assessed through measuring the 

dissociation constant rate (Koff) of soluble TCRs through surface plasmon resonance 

(SPR).  SPR is an effective biosensor tool for quantitative characterisation and real-time 

information on the course of reversible interactions between biological macromolecules. 

In the context of viral infection, interactions with longer dissociation kinetics/slower 

koff rates have been previously reported to confer significantly better protection than T 

cell populations with fast koff rates (Nauerth et al 2013). However, this rate needs to be 

fast enough to prevent detrimental effects on subsequent serial triggering of multiple 

other TCRs to a single pMHC. Thus, being able to pinpoint optimal dissociation time 

for maximal T cell activation, is needed to decipher the exact relationship between the 

kinetics of TCR-pMHC binding interactions and functional output of a cell. 

There is some evidence achieved through thermodynamic analysis, to further suggest 

that conformational plasticity, during TCR-pMHC initial binding, may also be a factor 

determining the strength of this TCR binding parameter and overall T cell activity 

(Krogsgaard et al 2003)  



 

97 
 

What still remains unclear is why physiological TCR affinities have evolved to be 

relatively low. It has been proposed that the immune system sacrifices TCRs of high 

affinity, which could mediate greater functional activity in order to maintain a TCR 

repertoire diverse enough to combat a wide range of different potential antigens 

preventing clonal deletion of both epitope specific CD4+ and CD8+ T cells.  Ultimately, 

future work is required to underpin the exact causative agent promoting higher affinity 

TCRs from these complex binding interactions.  

Once the TCRs have been isolated from our PRS-specific T cell clones, similar 

evaluation of these TCR-pMHC binding kinetics, on a single cell level, could be 

achieved in order to provide further information regarding the influence of TCR binding 

affinity to the overall difference in function of CD4+ T cell clones with different 

TCRVβ usage and functional avidities.   

The direct effector mechanisms of epitope specific T cells are paramount for 

establishment of an effective immune response. Phenotypical characterisation of total 

CD4+ T cell populations has reported low frequencies of cells expressing many of the 

surface markers required for cytotoxic killing (Appay et al 2002). However, the 

presence of such molecules does not always result in the induction of killing 

mechanisms after cells are challenged with their cognate antigen.  The use of killing 

assays to evaluate this further, has shown promising results. In the context of EBV, 

previous studies have investigated the cytotoxic potential of EBV-specific CD4+ T cells 

and their ability to inhibit target cell outgrowth, in vitro (Munz et al 2000, Nikiforow et 

al 2003, Long et al 2005). It has been reported that the inhibition of LCL growth 

correlates with cytotoxic activity, and CD4+ T cell clones with high LCL recognition 

efficiency show the greatest cytotoxic killing. Thus, it would be interesting to assess the 
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cytotoxic capacity of our PRS-specific clones of known Vβ usage, to determine whether 

this also correlates with their functional avidity and LCL recognition efficiency. This 

would enable determination of individual clonotypes with the most therapeutic 

relevance based on direct elimination of EBV infected cells and inhibition of cancer cell 

outgrowth. These features within anti-viral and anti-tumour immune responses are 

paramount for subsequent adoptive immunotherapeutic strategies to be effective. 

 

4.6 Conclusions 

In summary, our results have demonstrated that HLADR7 restricted CD4 T cell clones 

specific for the immunodominant EBNA2, PRS epitope comprise TCRs with a number 

different TCR usages, including common use of distinct Vβs. We have further shown 

through functional analysis of clones with known Vβ usage, that a range of functional 

avidities are apparent among the clones of the same and different Vβ usages, within 

different healthy individuals. Those T cells exhibiting better functional avidity for their 

cognate peptide similarly display higher levels of percentage recognition efficiency of 

autologous EBV-infected LCL targets.  The finding thus indicate that distinct TCR 

usage may contribute to differences in T cell function, and that TCRs used 

therapeutically should be carefully selected based on their preferential properties. This 

study should enable similar analysis on other viral systems and lead to research in 

identifying immunodominant TCR sequences and motifs of epitope specific T cell 

clonotypic populations inducing the most robust immune responses. Similarly, 

identifying the mechanisms by which epitopes of interest access the MHC class II 

pathway in infected cells and are processed and presented to CD4 T cells, to allow 
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efficient recognition, binding and high avidity responses, represents a significant 

priority for ongoing future work.  

The work performed here provides a useful model for harnessing and amplifying 

epitope specific CD4+ T cell immune responses. From a clinical standpoint, this has 

important implications for the development of effective and viable TCR gene transfer 

immunotherapies, targeting a variety of cancers presenting antigens through MHC class 

II, such as the EBV associated malignancy; PTLD.  
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