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Abstract

The latest generation of space missions have performed large scale observations of stars
and this has been revolutionary in the field of asteroseismology. The ability to characterise
thousands of stars has been instrumental in understanding the interiors of stars and the
evolution of the Galaxy. This thesis focuses on studying red giant stars, both on an
individual basis and as a population, using a robust asteroseismic metric we define based
on the bandpass filtered estimate of the stellar variance. Here we present results of testing
asteroseismic scaling relations, and the assumptions needed to create realistic simulated
power spectra. The resulting synthetic datasets then inform three other investigations.
We present the results of an investigation into determining the binary population of Kepler
red giant branch stars using our variance metric. The inferred fraction of 57.4 ± 2.5%
is consistent with previous work on main sequence stars. Results of using our variance
metric as part of an analysis pipeline, designed to automate the detection of solar-like
oscillations and determine global asteroseismic parameters in K2 and CoRoT data are
presented. Finally, we present a discussion of using our variance metric to highlight
structural differences between red giant branch and red clump stars.
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Chapter 1

Introduction I: Stellar Evolution

1.1 Motivation

A new generation of space missions performing large scale surveys has been revolutionary

in the study of stars. In particular, the data we now have available to us have completely

opened up the field of asteroseismology. The study of the oscillations of many thousands

of stars is allowing us to better understand the previously hidden inner workings of stars

and has been instrumental in helping to characterize newly discovered exoplanet systems,

and in determining the structure and evolution of the Milky Way.

Red giant stars are particularly good targets for asteroseismic observation. Their

high luminosities means we can observe them up to large distances in the Galaxy, and

their high-amplitude, low frequency oscillations allow us to make many thousands of high

signal-to-noise observations which are used in a multitude of applications within astero-

seismology, from precise characterisation of the stellar interior, to determining stellar age

and the evolution of entire stellar populations.

In this thesis, using data from the NASA Kepler and K2 missions, the CNES CoRoT

mission and sophisticated Galactic simulations, red giant stars are studied both on an in-

dividual basis and as an ensemble. This thesis is structured as follows; two introductory

chapters covering the basics of stellar interior physics, stellar evolution and asteroseismol-
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ogy, followed by four chapters detailing the investigations undertaken. Chapter 3 describes

the assumptions and methods used in creating realistic simulated power spectra and in

defining a simple metric based on the bandpass filtered estimate of the stellar variance.

The resulting synthetic datasets underpin the rest of the work. Chapter 4 presents the

results of an investigation seeking to infer the population of binary stars present among

Kepler red giants, while Chapter 5 details the development and results obtained by a soft-

ware pipeline designed to determine the global asteroseismic properties of individual red

giants in the CoRoT and K2 datasets. Finally, Chapter 6 again uses the stellar variance

to investigate the behaviour of of red giants of different stages of evolution.

Before we can appreciate the application of asteroseismology to evolved stars, we must

first understand the life cycle of these stars. The behaviour of the oscillations we study are

intimately connected to the physical properties of the stars, their mass, temperature and

luminosity, along with their age and evolutionary stage. While there are many different

types of oscillations which have been observed, the red giant stars we are concerned

with exhibit oscillations driven by the turbulent convection in their outer layers. These

oscillations were first observed in the Sun, and we therefore refer to them as solar-like

oscillations.

In this chapter, we will follow the evolution of a solar-type star from its birth in a

collapsing cloud, through its main sequence lifetime to its red giant phase. In detail,

we will look at the internal structure changes, the fuel source, and the evolution of the

temperature and luminosity of the star. Only then can we understand the driving of the

solar-like oscillations and the inferences we can make from them.

1.2 The H-R diagram

The Hertzsprung-Russell (H-R) diagram is a scatter plot of luminosity or absolute magni-

tude against temperature or colour. Stars tend to fall into specific regions of the diagram

which correspond to stages of their evolution. Figure 1.1 is such a diagram showing these

2



parameters from the Hipparcos catalogue (van Leeuwen, 2007). The structures labelled

on this diagram are the stages which we will focus on; the main sequence, the red giant

branch and the red clump.

Figure 1.1: An H-R diagram created from the Hipparcos data catalog (van Leeuwen,
2007), with the main sequence, red giant branch and red clump phases labelled.

Stars move across this diagram as they evolve, and the course of the paths they take

and how quickly they evolve is governed by their mass. The following discussion largely

follows that of Kutner (2003), Chapters 6, 9 and 10, and my own undergraduate notes on

the course delivered by Taroyan (2010), entitled The Solar Interior.
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1.2.1 Formation and Pre-Main-Sequence Evolution

The Milky Way is made up of stars and diffuse gas and dust, primarily molecular hydrogen

and helium, along with some heavier elements released in the death of stars. This is

referred to as the interstellar medium. These clouds of interstellar medium vary in size,

temperature and density. These molecular clouds can be thousands of times the mass

of the Sun, and span tens of parsecs. They are very cool (a few tens of Kelvin) and

though they are dense compared to the rest of interstellar space, they still have densities

of around 10−20 times that of a star. They are held up against their own gravity by

internal pressure. If the cloud begins to collapse due to shock waves from supernovae, or

any other perturbation from a body passing close to the cloud, it begins to fragment, and

these fragments are what forms stars.

Gas from the cloud begins to fall onto the area of overdensity, increasing its gravity

and beginning the collapse. This forms a protostar and a disk of matter orbiting it,

called the protoplanetary disc. At this point, the protostar itself is still too cool to fuse

hydrogen. The energy source of the protostar is its gravitational potential energy, rather

than fusion. The end of the protostar phase comes when it stops accruing material,

and the cloud becomes opaque in the infrared. The new pre-main-sequence star, which

now has reached its final mass, continues to contract under it’s own gravity, until the

temperature at its core is high enough for hydrogen fusion to begin and the collapse of

the core has stopped due to the increased radiation pressure.

1.3 The Main Sequence

The band labelled in Figure 1.1 which runs diagonally across the the H-R diagram from

the cool and least luminous red stars to the hottest, most luminous blue stars is called the

main sequence. This is the phase in the star’s life when the main energy source for the

star is the fusion of hydrogen into helium in the core. The core is no longer contracting

and the star is stable.
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1.4 Equations of Stellar Structure

With a few simple assumptions, it is possible to describe the interior structure of our

stable star using four equations. These equations relate the density, temperature and

energy transport conditions of the interior, quantities which all evolve as the star ages,

expands and cools.

Two of these equations relate the mass and pressure to radius, and two govern the

relationship between temperature, energy transport and radius. All these equations de-

scribe the star in a steady state; they are constant in time, and assume that the star

is a perfect sphere. This is a very simple model of stellar structure, referred to as the

spherically symmetric quasi-static model.

1.4.1 Mass Conservation

Our first equation (Kutner, 2003) describes how the mass contained increases with radius.

Figure 1.2: A schematic of a shell at radius r and of thickness δr within a spherically
symmetric star. Adapted fromTaroyan (2010).

In the spherically symmetric star the increase in volume as we move outwards in the

star by some small amount δr can be described as

δV = 4πr2δr, (1.1)

5



then the change in mass contained over this region of the star is simply

δM = 4πr2δrρ(r) (1.2)

where ρ(r) is the radius dependent density profile. This leads to the equation of mass

conservation

dM(r)

dr
= 4πr2ρ(r). (1.3)

1.4.2 Hydrostatic Equilibrium

This equation (Kutner, 2003) states that the force due to the gradient of pressure within

the star is balanced by the inward force of gravity. If we consider a small element of

matter within the star, as a cube at radius r, as in Figure 1.3

Figure 1.3: A schematic of a small element within the star. Situated at r, with height δr
and area of each face A.

We simply need to balance the forces. Acting radially upwards is the pressure exerted

on the lower face, and acting radially downwards is the pressure exerted on the upper face

and the gravitational force due to the mass within radius r, or more simply, the weight
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of the element. In equilibrium, we equate these forces

P (r)A = P (r + dr)A+
GM(r)

r2
ρ(r)Adr (1.4)

and in rearranging

P (r + dr)A− P (r)A = −GM(r)

r2
ρ(r)Adr (1.5)

and considering dr tending to zero, we can write

P (r + dr)− P (r)

dr
= −dP (r)

dr
(1.6)

leading us to the equation of hydrostatic balance:

dP (r)

dr
= −GM(r)ρ(r)

r2
. (1.7)

1.4.3 Energy Conservation

This equation (e.g. Kutner, 2003) relates the rate of energy release and the rate of energy

transport. Figure 1.4 shows the same diagram of a thin shell within the star, and the

notation for the rate of energy flow across the two spheres of radius r and r + δr.

Figure 1.4: A schematic of the same shell as in Figure 1.2, with the rate of energy flow
across the two spheres bounding the shell. Adapted from Taroyan (2010).
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Following the same descriptions of the change in volume and mass across this shell

δV = 4πr2δr (1.8)

δM = 4πr2δrρ(r) (1.9)

We can define some value ε as the energy released per unit time per unit mass, and hence

the energy release in this shell is

δMε = 4πr2ρ(r)δrε (1.10)

Again, conservation of energy requires that the energy released and transported across the

shell must balance, and following the same process as the hydrostatic balance equation,

we arrive at the equation of conservation of energy:

dL(r)

dr
= 4πr2ρ(r)ε. (1.11)

1.4.4 Radiative Transport

We must also consider how energy is transported radially outwards in the star. The

temperature gradient in the interior of the star depends on the method of energy transport.

Energy is mainly transported by radiation and convection. Conduction is far less efficient

than radiation. In stars which support solar like oscillations, the outer regions of the star

are convective, while the deeper interior is radiative.

In radiation, the energy flux is directly proportional to the gradient of temperature

f(r) = −γ dT (r)

dr
(1.12)

where γ is a coefficient of conductivity. Across our sphere of radius r, the energy flow is
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simply described by

Lr = 4πr2f(r). (1.13)

In combining these two equations, we arrive at

dT (r)

dr
= − 1

4πr2γ
Lr (1.14)

the equation of radiative transport (eg. Mao (2003), valid in the non-convective region

of the interior. Note that the negative sign means that heat moves from regions of high

temperature to low temperature.

1.4.5 Convection

In the outer layers of our solar-like oscillating star, the interior is convective, and this is

the region where the oscillations are driven. Whether a region is convectively unstable

depends on the temperature gradient within the region. If we consider some element

in the convective zone at radius r, where it is in equilibrium with its surroundings, at

pressure P (r) and density ρ(r).

Figure 1.5: Cartoon showing the change in pressure and density of some convectively
unstable element as it rises a distance of δr, as well as these properties of its surroundings.
Adapted from Taroyan (2010).

It then rises to r+ δr, where its pressure and density become P + δP and ρ+ δρ, but
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depending on the temperature gradient, these may not be in equilibrium with the new

surroundings at r + δr, which we can define as P + ∆P and ρ+ ∆ρ. If ρ+ δρ > ρ+ ∆ρ

then the element will sink, if the opposite is true it will continue to rise. The condition

for convective instability is therefore

ρ+ δρ < ρ+ ∆ρ (1.15)

and whether this is satisfied depends on the rate of the element’s expansion due to the

decreasing pressure, and the rate at which the surrounding density decreases with radius.

If we assume that the element rises at a speed much less than the sound speed, then the

pressure changes with radius of the element and it’s surroundings are the same, or

δP = ∆P (1.16)

and we will also assume that the element rises adiabatically, requiring

PV γ = constant (1.17)

where γ is the adaibatic constant. As the material acts as an ideal gas, the volume of the

element is inversely proportional to it’s density and we can say

P

ργ
= constant (1.18)

and hence

P + δP

(ρ+ δρ)γ
=
P

ργ
(1.19)

assuming that δρ is small, the change in density of the element can be written as

δρ =
ρ

γP
δP. (1.20)
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Now considering the change in density of the surroundings, ∆ρ, over a small rise in radius,

δr

∆ρ =
dρ

dr
δr (1.21)

the condition for convective instability can be written a

ρ

γP
δP <

dρ

dr
δr (1.22)

and recalling equation 1.16, that the pressure of the element will be the same as it’s

surroundings, so over a small δr

δP

δr
=
dP

dr
(1.23)

or

ρ

γP

dP

dr
<
dρ

dr
(1.24)

and dividing by
dP

dr
and rearranging:

P

ρ

dρ

dP
<

1

γ
(1.25)

We can combine this with our assumption of an ideal gas:

dP

P
=
dρ

ρ
+
dT

T
(1.26)

and arrive at the condition for convection, in terms of the temperature gradient:

P

T

dT

dP
>
γ − 1

γ
. (1.27)

If this condition is satisfied, then large scale motions of plasma transport energy ra-

dially outwards within the star. This is essential for the driving of solar like oscillations,

and is present in the outer convective regions of all the solar like oscillators.
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1.4.6 Interior Structure

The interior of the star, as governed by the above equations has both radiative and

convective zones. The radiative zone of a sun-like star is in the deep interior, while the

outer regions of the star are convective. Figure 1.6 is a simple cartoon of the interior

structure of a main sequence star. Typical radii of these regions are given by modelling,

in a 1M� star, the core occupies the inner≈ 25% by radius, this is overlaid by the radiative

zone out to 70% of the radius, and the outer 30% is the convective zone (Christensen-

Dalsgaard et al., 1996).

Figure 1.6: A cartoon diagram of a main sequence star. The outer region of the star
is convective, the deeper interior is radiative, and the shaded region is the core, where
nuclear fusion takes place.

The definition of the main sequence is that the star produces it’s energy by hydrogen

fusion in the core of the star.

1.4.7 Nuclear Fusion

The hydrogen core of the star is the source of fuel for the entire main-sequence lifetime of

the star. Through nuclear fusion, hydrogen is converted into helium in a reaction called

the proton-proton chain. The below combination (e.g. Kutner, 2003) of two protons, or

hydrogen nuclei (1
1H);

1
1H +1

1 H→2
1 H + (e+) + ν (1.28)
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forms a deuterium nucleus, a positron and a neutrino. The deuterium nucleus then reacts

with another proton

2
1H +1

1 H→3
2 He + γ (1.29)

to form Helium-3 and a gamma ray. Two of these Helium-3 nuclei then combine to result

in

3
2He +3

2 He→4
2 He +1

1 H +1
1 H. (1.30)

The energy carried by the gamma ray and positron heat the surrounding gas which then

releases photons.

1.5 After the Main Sequence

The details of post-main-sequence evolution depends on the mass of the star. In stars with

a mass less than around 2.25M� (though this is dependent on metallicity, e.g. Girardi

(1999)), the temperature in the helium core of the star is too cool to undergo fusion itself

and it contracts under gravity until it’s density is so high that it is supported by electron

degeneracy pressure. The hydrogen above the core is compressed by the gravitational pull

of the core and therefore heated to the point that hydrogen fusion restarts in a “shell”

surrounding the core. This in turn heats the outer layers of the star, causing them to

expand, then cool. This leads to a cooler, larger star with a slightly increased luminosity,

referred to as a subgiant.

1.6 The Red Giant Branch

Due to the larger temperature gradient between the hydrogen burning shell and the surface

after this initial expansion, the rate of energy transport outwards increases (see above

discussion). The temperature of the surface stays approximately constant as it continues

to expand and consequently, the luminosity increases. At this stage, the star lies in the

red giant branch in the Hertzsprung-Russell diagram. This is labelled in Figure 1.1, note

13



that these stars occupy a much narrower range of temperature than the main sequence.

1.6.1 Interior Structure

The structure of these more evolved stars is slightly different than during the main se-

quence. Having exhausted the supply of hydrogen in the core, hydrogen fusion now takes

place in a shell surrounding an inert, helium core. There is still a radiative zone and a

convective zone, however now the outer envelope of the star has expanded dramatically,

causing the star to be much more luminous and have a much deeper convective zone than

during its main sequence lifetime. Figure 1.7 is a schematic drawing of the structure of a

red giant branch star.

Figure 1.7: A cartoon diagram of a red giant branch star. The outer region of the star
is convective and the star now has an inflated outer envelope, and fusion takes place in a
hydrogen shell surrounding an inert helium core.

Hydrogen fusion continues in a shell around the core. This process forms helium,

which accretes onto the inert core, causing it to become more massive, and to begin

contracting under its own gravity, and as the density increases, the core gets hotter. The

density eventually becomes so great that the electrons become degenerate, and therefore

incompressible, and the core stops contracting. The hydrogen burning shell continues

to deposit helium onto the degenerate core, which continues to increase in temperature

without increasing in pressure. When it reaches around 108 K, helium fusion begins.
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1.7 The Red Clump

These now core-helium-burning stars occupy a narrow range of luminosities due to them

having a common core mass (Bedding et al., 2011). These stars occupy the Red Clump

in the H-R diagram, as shown in Figure 1.1.

Figure 1.8: A cartoon diagram of a red clump star. The outer region of the star is
convective and the star now has an inflated outer envelope, and fusion takes place in a
hydrogen shell and in the helium core.

At 108 K, helium fuses into carbon and energy through the triple alpha process (e.g

Kutner (2003)).

4
2He +

4
2 He →8

4 Be + γ (1.31)

8
4Be +

4
2 He →12

6 C + γ (1.32)

This process continues to heat the core, and in its degenerate state, the core does not obey

the ideal gas laws and does not expand with the increase in pressure and temperature.

The extreme high density and temperature of the core causes a runaway nuclear reaction,

releasing a huge amount of energy in an event known as the helium flash. This lasts

minutes (Dearborn et al., 2006). Due to this release of energy, the temperature in the

core is raised sufficiently that thermal pressure lifts the degeneracy, the core can expand

and continues fusing helium at a stable rate.

In stars with a mass of > 2.25M�, the temperature needed for helium fusion is reached

before the core becomes degenerate and so the star does not go through the flash. Instead,

helium fusion occurs at a stable rate and the stars span a range of core masses, and hence,
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luminosities. These stars appear as a much more disperse grouping in the H-R diagram

and are referred to as the secondary clump. Red Clump stars and Red Giant Branch stars

can have very similar surface properties while having very different interior properties.

Asteroseismology can diagnose these different evolutionary states, even in these outwardly

very similar stars, and we will touch on this in Chapter 6.

1.8 Multiple Star Systems

While the above discusses the formation and evolution of a single star, this is certainly not

the case for many stars in our Galaxy. It is common for two stars to form from the same

collapsing gas cloud, and for these stars to remain gravitationally bound throughout their

lifetimes. We leave discussion of binary systems to Chapter 4. This contains discussion

of how it is possible to detect these binary pairs, and also the investigation based on

asteroseismology aiming to determine the overall fraction of red giants which exist in

these binary systems.

1.9 Up next...

Following is a discussion of the background physics and techniques of asteroseismology

necessary to understand the work undertaken, the differences in the oscillations between

red giant branch and red clump stars and how we can use asteroseismology to distinguish

between the two, and an introduction to the filtered variance metric used to diagnose

binarity and in automating the oscillation detection process.
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Chapter 2

Introduction II: Asteroseismology

The interior structures of stars discussed in Chapter 1 are not observable directly by

any telescope. Arthur Eddington opens his book The Internal Constitution of the Stars

(Eddington, 1926) with the now classic comment

At first sight it would seem that the deep interior of the Sun and stars is less
accessible to scientific investigation than any other region of the universe. Our
telescopes may probe farther and farther into the depths of space; but how can
we ever obtain certain knowledge of that which is hidden behind substantial
barriers? What appliance can pierce through the outer layers of a star and
test the conditions within?

This “appliance” turned out to be asteroseismology. Asteroseismology uses the natural

oscillations present in stars to study their otherwise invisible interiors. The term itself

comes from the Greek aster meaning star and seismos meaning tremor. It is closely

related to the older field of helioseismology, which provides important information about

the conditions in the solar interior which inform stellar models today.

It was not until 1960 that the first observations hinting at a way to observe the solar

interior were made. A scanning spectroheliographic technique detailed in Leighton et al.

(1961) measured the Doppler shift in a spectral line. The field of view was moved across

the disc of the Sun, capturing an image in a single wavelength of light. Slight blue shifts

from the spectral line were captured on one image and slight red shifts on the other, and

these were then superimposed. Two separate observations of this type were made, and
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subtracting these two images from each other shows the change in velocity on the surface.

Figure 2.1 below shows an example of a Doppler plate, taken from this seminal work.

Figure 2.1: A Doppler difference plate, where dark areas are receding and light areas
approaching. (Leighton et al., 1961)

The surprising result was that a structured velocity field with 5-minute periodicity was

evident, not only random convection patterns as was expected. This was the beginning

of what we now call helioseismology. However it was not until a paper by Ulrich (1970)

that these periodic velocity changes were attributed to trapped acoustic standing wave

modes oscillating within a spherical cavity within the Sun.

There are many different classes of pulsating star, as shown in the pulsation H-R

diagram in Figure 2.2. Their oscillations have various different driving mechanisms and

types of oscillation, and asteroseismology techniques can be used to study all of these

stars, however, the red giant stars we are studying reside in the solar-like regime. Solar-

like refers to the driving and damping of the oscillations in the same way as happens in

the Sun, in the outer convective region of the star.
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Figure 2.2: An H-R diagram showing the various classes of pulsating star which can be
studied using asteroseismology. (Christensen-Dalsgaard, 1998)

In this chapter, the physical processes behind these oscillations will be introduced,

as well as some of the notation used to describe the oscillations. We will go on to find

out what we can observe of these modes; how they appear at the stellar surface, and the

techniques we use to observe them. These observations are typically studied in the form

of power spectra. We will learn how power spectra are created, and the interpretation

of the parameters we can extract from them. We will also discuss the instruments and

simulation algorithms which provide the data we use.
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2.1 Basic Asteroseismology

2.1.1 Spherical Harmonics

Modes are described by spherical harmonics as solutions to the spherical wave equation

and can be described by three wavenumbers: the radial order n, describing the number

of nodes the mode has along the stellar radius; the spherical degree l, which describes

the number of nodes on the stellar surface; and the azimuthal order m, which describes

how many of the node planes bisect the equator. (Christensen-Dalsgaard, 2003). The fre-

quency of a mode is largely dependent on l and n, and is described to good approximation

by:

νnl = ∆ν

(
n+

l

2
+ ε

)
+ δνll+2(n). (2.1)

The terms above are defined as follows: ∆ν is the inverse of the sound travel time across

the star, and is the dominant frequency spacing in the spectrum. This is referred to as

the large frequency separation, and is the spacing between modes of consecutive order n

and the same l. ε is a small phase shift due to reflection at the upper turning point (Basu

and Chaplin, in the press), and it is dependent on the conditions near the surface of the

star. Following the first term in Equation 2.1, there is a degeneracy in the frequencies

such that νnl ≈ νn+1l−2. The second term is referred to as the small frequency separation

and lifts this degeneracy.

2.1.2 Mode Excitation and Damping

The outer layers of the solar-type and red giant stars are convective, and it is turbulent

motions of the plasma in these near surface layers which stochastically drive and damp

the oscillations. This leads to essentially random driving. A typical analogy to use is

to imagine a bell being continuously struck with sand. The random strikes of the sand

grains will eventually cause the bell to ring at it’s resonant frequency. The same is true

for our oscillating star, however it will have thousands of resonant frequencies.
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2.1.3 Modes at the Stellar Surface

In stars other than the Sun, only low-l modes can be observed due to the fact that the

stellar surfaces cannot be resolved, and the effect which the perturbations of the stellar

surface caused by high l-degree modes have on the light intensity average out across the

stellar surface for modes of greater than l = 2 in most stars, though l = 3 modes are

detectable in some stars. A representation of the appearance of these modes is shown by

Figure 2.3, though of course the true perturbations are a superposition of these and all

the other modes excited in the stars.

Figure 2.3: The displacement of the stellar surface at the extremes of pulsation cycles
for the individual modes which are detectable on most stars which display solar like
oscillations. Dark areas are expanding and light areas are contracting. Figure adapted
from Telting and Schrivers (1997).

It is the superposition of these and thousands more modes which were observed by

Leighton et al. (1961). The five-minute periodicity corresponds to the frequency at which

the Sun’s oscillations are strongest. The propagation of the oscillation modes cause mo-

tions of the stellar surface, and it is these motions which we are able to measure by the

Doppler shifts as in the spectroheliograph technique and the Birmingham Solar Oscilla-

tions Network (BiSON) (Chaplin et al., 1996), but also as fluctuations in the luminosity

of the star. As part of the stellar surface expands, it cools and becomes dimmer and when
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it contracts, it heats and becomes brighter. This causes tiny but detectable variations

in the light levels measured from that star, and it is these which we use to study the

oscillations of other stars with data from the Kepler and CoRoT space missions. This

technique involves measuring the brightness of the star to great precision for a long period

of time, in Kepler’s case for 4 years. This time series data can be studied in terms of the

frequencies by creating a power density spectrum.

2.1.4 The Fourier Transform

In basic terms, any time series signal (here, our lightcurve) can be described as a super-

position of a number of sinusoids. The Fourier transform is a tool used to recover these

sinusoids such that they can be studied in terms of their amplitude and frequency. It is

common to express these sinusoids as the sum of a series of complex exponentials, and so

the Fourier transform F(µ) of a time series signal f(t) may be defined as

F(ν) =

∫ ∞
−∞

f(t)e−i2πtνdt. (2.2)

Since our data are discretely sampled observations rather than a continuous functions, it

is correct to use the discrete Fourier transform, which assumes that the signal is composed

of N samples which have a regular sample length of ∆t, we would then instead of Equation

2.2 use

Fdiscrete(ν) = ∆t
n=N∑
n=1

e−i2πνtn . (2.3)

Since our oscillations are excited stochastically, meaning that they are driven by random

fluctuations in the turbulent convection zone, the phase information contained in the

complex part of the transform is not useful, we typically deal with the frequency spectrum

in terms of power spectral density (PSD), rather than amplitude, and this can be defined

as
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PSD(ν) = |Fdiscrete(ν)|2. (2.4)

There is an issue with using a true Fourier transform for this work. The discrete Fourier

transform assumes a regular sampling time ∆t. For Kepler data, this isn’t strictly true.

While the sampling time is regular at spacecraft time, since Kepler is moving, the sample

length is not truly regular, and this along with any gaps due to instrumental issues will

induce noise features into the transform.

To mitigate this problem, we instead employ a technique called the Lomb-Scargle

periodogram (Lomb, 1976), a technique similar to a Fourier transform which is a method

of estimating the power spectrum based on fitting sinusoids to the signal directly, using

a least squares fit.

The resulting transform is referred to as the power spectral density, or more commonly,

a power spectrum. The power spectrum of a time series shows how energy is distributed

among the frequency components which form the signal in time. Figure 2.4 shows a toy

example of the use of a power spectrum. Figure 2.4(c) is the power spectrum of this toy

light curve. The four components of different frequency and power are clearly appreciable.

23



(a) Four sinusoidal components of different
amplitudes and frequencies.

(b) The superposition of the four components.
This is our toy light curve.

(c) The Lomb-Scargle periodogram of the time
series, recovering the frequency of the four
components above.

Figure 2.4

The light curve in Figure 2.4(b) is the superposition of the four sinusoidal components

shown in Figure 2.4(a). For the real time series data that this thesis is concerned with,

the picture is of course more complicated than this noiseless toy example consisting of a

few simple components.

2.1.5 Components of a Solar-like Power Spectrum

The form of the power spectrum is common to all solar-like oscillators in that it con-

sists of a background signal, made up of signatures from stellar activity, granulation and

instrumental effects such as shot noise, along with a clear excess of power above the back-
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ground where the modes are found. Figure 2.5 shows an example power spectrum with

the noiseless version (or limit spectrum) of the granulation and white noise components

along with the smoothed mode region overplotted.

Figure 2.5: An example power spectrum of a Kepler solar-like oscillator. The three
components shown are the granulation background in blue, the smoothed mode envelope
in red, and the shot noise in green. Data courtesy Garćıa et al. (2011).

The exact forms of these components are discussed at length in Chapter 3. The white

noise component comes from photon noise on the light curve observations, the granulation

background is due to the presence of granules on the stellar surface. These granules are

the appearance of convective cells at the surface of the star. These granules increase and

decrease in brightness with a characteristic timescale and amplitude, appearing in the

power spectrum in a form that closely resembles a zero-centred Lorentzian profile.

It is perhaps useful to think of the individual oscillations temporal behaviour as

a damped harmonic oscillator, and therefore the individual modes take the form of a

Lorentzian centred on the frequency of the acoustic mode as defined in equation 2.1,

where their width reflects the lifetime of the mode. The Gaussian envelope shown in red
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in Figure 2.5 which modulates the heights of the mode profiles is a phenomenological

description, however it is intuitive given that the granulation responsible for driving the

modes has a characteristic frequency, that we might expect the power of the modes to be

centred on this frequency and have a gradual fall-off around this.

There are several important asteroseismic parameters we can extract from the power

spectrum which are related to the global properties of the star. Asteroseismic scaling

relations associate these seismic properties of a star with its intrinsic properties such as

mass, luminosity and temperature, and are used to determine quantities such as radius

and surface gravity of stars.

Our first asteroseismic parameter is νmax; the frequency where we observe the maxi-

mum oscillation power. This corresponds to the peak of the Gaussian envelope shown in

Figure 2.5, and is the frequency which contributes the most power to the light curve, and

hence the frequency of the mode of highest amplitude. The maximum frequency at which

acoustic modes are trapped within the star is called the acoustic cutoff frequency of the

atmosphere of the star (Brown et al., 1991). νmax is proportional to the acoustic cutoff

frequency νac, which scales as

νmax ∝ νac ∝ gT 0.5
eff (2.5)

where g is the stellar surface gravity and Teff is the effective temperature. In writing

g in terms of mass and radius g ∝ MR−2 and then radius in terms of luminosity and

temperature from L ∝ R2T 4
eff, we come to the relation

νmax = νmax,�

(
M/M�
L/L�

)
T 3.5 (2.6)

from e.g. Kjeldsen and Bedding (1995). This is scaled against the solar value of νmax,� =

3090 µHz. This can lead us to an estimate of stellar mass.

Another feature of the power spectrum is the large frequency separation, ∆ν. See

Figure 2.6 for an example power spectrum with ∆ν marked. ∆ν denotes the frequency
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spacing between modes of the same degree � and consecutive order n.

Figure 2.6: A mode oscillation spectrum of a Kepler solar-like star, showing the large
frequency separation ∆ν. Modes are numbered according to degree �.

This scales as

∆ν ∝ ρ0.5 (2.7)

following Christensen-Dalsgaard (2003). This spacing is also equivalent to the inverse of

the time it takes for the acoustic mode to cross the star. We can get this into the form of

observable values and mass by considering that the density ρ ∝ MR−3. Substituting in

luminosity and temperature for radius we recover

∆ν = ∆ν�
(M/M�)

0.5

(L/L�)0.75
T 3.0 (2.8)

where ∆ν� = 135µHz.

Another important parameter is the maximum amplitude of the oscillations. Amax

denotes the amplitude of an � = 0 mode at the frequency of maximum oscillation power,

νmax (Verner et al. (2011)). The more evolved the star, the larger its radius, the lower

the frequency of the oscillation envelope and the higher the amplitude of the oscillations.

This amplitude can be written in the same form

Amax = Amax,�
M

M�

a L

L�

b Teff

Teff,�

c

(2.9)

following Kjeldsen and Bedding (1995), for example. The exponents in Equation 2.9 de-
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pend on the assumptions adopted, and these are discussed at some length in Chapter 3, as

well as other asteroseismic parameters related to the power in the modes and granulation.

The above serves only as a brief introduction, in particular to νmax and ∆ν which we will

see again throughout this thesis.

2.1.6 ` = 1 Modes in Evolved Stars

In main-sequence stars, g-modes, which have gravity (buoyancy) as their restoring force

are confined to the inner radiative regions, due to them being evanescent in the convective

outer layers of the star. In more evolved stars, due to the contraction of the core region,

the frequencies of g-modes increase with the increase in the buoyancy frequency, which

is the frequency at which a region of the plasma will oscillate if it is displaced radially.

They are usually described by an asymptotic relation in period, rather than frequency, in

the form (e.g Basu and Chaplin (in the press), Christensen-Dalsgaard (2003));

Πnl = ν−1
nl ' ∆Πl(n+ εg). (2.10)

As the frequencies of the g-modes increase with the core’s contraction, they enter the

frequency range where we find the p-modes, and they can interact with modes of the

same degree l, causing the observed modes to display characteristics of both g- and p-

modes. The frequencies of the p-modes which the g-modes couple with are “bumped” due

to these interactions, and result in red giant oscillation spectra being far more complicated

than that of a main-sequence star, which only displays pure p-mode behaviour. Radial

(l = 0) p-modes are not affected by this as the buoyancy perturbations, which result in

g-modes, do not support radial oscillations, and so there is no l = 0 g-mode to couple

with the l = 0 p-mode. The coupling between the g- and p-modes shifts the p-mode

frequencies from those defined by Equation 2.1. This coupling is strongest for the l = 1

modes.

This is illustrated well by échelle diagrams, examples of which are shown in Figure
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2.7. These diagrams are produced by dividing the power spectrum into frequency moduli

the size of the large frequency separation ∆ν and stacking them in order of frequency.

This displays modes of the same degree n as near-vertical ridges (Bedding et al., 2010).

The first panel of Figure 2.7 shows such a diagram for 16 Cyg A, a solar analog star. The

ridges showing the regions of mode power are well defined because they are pure p-modes

and hence obey the relation in Equation 2.1. In the case of the more evolved stars, the

modes depart dramatically from that pattern, such as in the final panel of Figure 2.7, due

to the effect of the g-mode coupling on the oscillation frequencies.

In red giant stars, the signatures of this g-mode coupling can be used to discriminate

between the core helium burning red clump stars and the hydrogen shell burning red giant

branch stars. It has been shown (e.g by Bedding et al. (2011)) that the period spacing

of the g-modes is substantially different in these two stages, and so provides a way of

ascertaining which stage of evolution a star is at. RC and RGB stars have very similar

surface properties, so this property of the g-mode spacing can be a very valuable tool.
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Figure 2.7: Example of échelle diagrams for stars at different evolutionary stages; from
the top left, a main-sequence star 16 Cyg A, a subgiant, two RGB stars and an RC star.
KIC 3100193 and KC 7522297 have very similar surface properties but have very different
l = 1 mode structure. Image from Chaplin et al. (2013).

Elsworth et al. (2017) are currently using a method based on this principle to classify

red giants as either RGB or RC. Finding the period spacing of these mixed modes usually

relies on being able to isolate the individual modes and determining an accurate period

spacing; something which can be difficult in the often complicated spectra of these evolved

stars, while this method evaluates frequency and period differences between significant

features in the spectrum. The regions of frequency containing the modes of even and odd

degree l are separated by cross correlating the spectrum with the so-called “Universal

Pattern” (Mosser et al., 2011) of the modes expected for red giants. The number of

occurences of the different frequency differences between the features in both the regions

for the odd and even modes are represented in histograms. In the even l region, the

histogram is dominated by the large and small frequency spacings (∆ν and δνll+2(n), see

30



Equation 2.1.) In the odd l region, the coupling with the g-modes has an effect on the

shape of this histogram by bumping the frequencies. Because the periods of the g-mode

are very different in red clump stars and RGB stars, the shape of the histogram is used

to discriminate between these two evolutionary states. Results from their method to

separate the RGB and RC stars from each other is employed for the work presented in

Chapters 4 and 6.

2.2 Observations and Data

2.2.1 Kepler

The NASA Kepler spacecraft was launched in 2009 with the objective of discovering and

studying planetary systems other than our own, including determining the properties

of planet-hosting stars (Koch et al., 2010). It monitored the brightness of thousands of

stars to parts-per-million precision using a 0.95m aperture telescope and 21 CCD modules

continuously trained on a single field of stars covering over 100-square-degrees of sky as

shown in Figure 2.8. In order to keep the solar panels illuminated and the radiator which

keeps the optics cool pointing away from the Sun, it was rolled 90◦ about it’s line of sight

every 93 days. Each of these 93 day blocks are referred to as a “quarter.” Kepler had

two different sampling intervals, referred to as short and long cadence, which last 58.85

seconds (Gilliland et al., 2010) and 29.4 minutes (Jenkins et al., 2010) respectively. Long

cadence observations were performed on over 150,000 targets simultaneously, while the

much more frequent sampling of the short cadence were limited to 512 targets.
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Figure 2.8: The Kepler field of view, showing the 42 CCDs in 21 modules. Credit NASA.

Kepler searches for exoplanets using what is known as the transit method, observing

the extremely small periodic drops in brightness which occur when a planet passes across

the face of the star. This relies on the plane of the orbit being aligned sufficiently close

to the line of sight that the transit or eclipse which happens during the orbit of the

planet is visible to us. Only a small fraction of stars will be inclined this way, so Kepler

observes over 150,000 stars to increase the chance of detecting Earth-like planets. This

method among others is also used to detect binary stars. These high precision data are

excellent for studying the stars themselves in great detail, and are invaluable to the field

of asteroseismology.

We use Kepler data from quarters Q0-Q13 which have been corrected following Garćıa

et al. (2011) and Mathur et. al (in prep.). These corrections include removing outliers

thought to be caused by micrometeorite impact, jumps caused by attitude tweaks to the

spacecraft and drifts due to temperature changes after safe mode events. Then consider-

ation is given to merging the observations across each quarter, since when the spacecraft

rolls, the star is observed on a different CCD module with different characteristics. For the

red giants, the resulting corrected light curve is also filtered to remove very low frequency
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trends in the CCD performance, allowing the granulation signal to be investigated. An

example of these data are shown in Figure 2.9.

The power density spectra describe how the power of the light curve (a time series) is

distributed over the different frequencies, up to the Nyquist frequency of the Kepler long

cadence at 283µHz. In the example in Figure 2.9, these peaks are centred around 35µHz.

In what follows, we will build artificial power spectra intended to mimic in a realistic way

the real data shown here.

Figure 2.9: An example of a light curve used in this work. The top panel shows the
raw and uncorrected light curves, the centre panel shows the filtered light curves and the
bottom two are power density spectra.(Garćıa et al., 2011)

For all Kepler stars analysed in this work, we have taken values of the frequency of

maximum oscillation power νmax and the large frequency spacing ∆ν from work by Stello

et al. (2013) and values of the Kepler bandpass magnitude from the Kepler Input Catalog

(Brown et al. 2011.)
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2.2.2 K2

The K2 mission (Howell et al., 2014) is a continuation of the Kepler mission. After two of

the reaction wheels that the spacecraft uses to orient itself correctly failed, a new plan was

presented. Kepler orbits in what is termed an Earth trailing orbit, falling further behind

Earth over time. This means it cannot be repaired due to being simply too far away. It

was decided to instead stabilise the spacecraft using solar radiation pressure. This meant,

however, that it was no longer viable to observe the original Kepler field shown in Figure

2.8, since the new orientation of the spacecraft meant that it has to be turned every 83

days to prevent sunlight from contaminating the observations. These shorter observations

combined with lower precision have changed what can be expected from the data, but K2

has continued to be a successful asteroseismology and planet hunting mission.

Figure 2.10 shows the existing and future fields of observation for K2. Each ≈ 80 day

observing run is referred to as a campaign.

Figure 2.10: The fields of view of the K2 observing campaigns.
(https://keplerscience.arc.nasa.gov/k2-fields.html)

The results presented in Chapter 5 are for stars observed during Campaign 1.

2.2.3 CoRoT

The CoRoT mission (Baglin et al., 2006) was a French-led mission designed to search for

exoplanets and perform asteroseismology, and was the first mission dedicated to transit

detection. It was launched in 2006 and was operational until it suffered a computer failure
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in 2012. It had field of view of 2.7 by 3.05 degrees and consisted of a 0.27m defocused

telescope and an array of four CCD detectors.

CoRoT orbited in a low-Earth polar orbit, and to avoid the Sun entering the field

of view of the telescope, it had two main different fields of view, (see Figure 2.11), each

observed for 150 days at a time, and between these observing runs, shorter observations

were made and allowed for a large number of stars to be observed for asteroseismology.

Figure 2.11: The two main fields observed by CoRoT. The region circled in blue is towards
the galactic centre, and that shown in red is the anticentre. (http://sci.esa.int/corot/)

The data used in Chapter 5 are from the LRc01 observation, which was performed in

2007 and is a 150 day long run, observing in the direction of the galactic centre.

CoRoT, like Kepler has two cadences, and here we use the long-cadence. In the work

done in Chapter 5, the search for the seismic parameters is confined below 100µHz. The

reason for this is the South Atlantic Anomaly. This is a region above South America

where the Van Allen radiation belt is closest to the Earth, and therefore due to the orbit

of CoRoT, the spacecraft is exposed to high levels of radiation every time it passes through

this region. Though the CCDs are shielded, the higher energy particles still impact the

detectors. In practice, this appears as a very high peak in the power spectrum at around

110µHz, and this can bias the detection tests described in Chapter 5.
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TRILEGAL stage flag. Stellar evolutionary stage
0 Pre-Main-Sequence
1 Main-Sequence
2 Subgiant
3 Red Giant Branch
4 Core Helium Burning- Low Mass RC and Horizontal Branch

5 & 6 Core Helium Burning- Higher Mass RC
7 Early Asymptotic Giant Branch
8 Thermally Pulsing Asymptotic Giant Branch
9 Post Asymptotic Giant Branch
10 White Dwarf

Table 2.1: The stage flag variable output by TRILEGAL, and the corresponding evolu-
tionary state.

2.2.4 TRILEGAL

The TRILEGAL (TRI-dimensionaL modELs of the GALaxy) code (Girardi et al., 2005)

simulates the photometry and intrinsic properties of a field of stars in the Galaxy, simulat-

ing a stellar population containing stars at all stages of evolution from pre-main-sequence

to White Dwarf stars, and we will use it extensively in this thesis. It also simulates non-

interacting binary stars, and the desired fraction of binary stars may be varied by the

user. The initial mass ratio of the binaries lies in a flat distribution between 0.7 and 1,

by default. This code is described in full by Girardi et al. (2005). A useful feature for

our work is the binary probability (and hence the fraction in the population) is variable,

allowing for different binary fractions to be simulated and, for our purposes, tested against

real data with an unknown binary fraction. The stellar properties of interest are those

which the scaling relations described in Chapter 3 rely on, e.g. the stellar luminosity,

mass and temperature, along with the magnitude in the Kepler bandpass, the metallicity

and the TRILEGAL stage flag, which denotes the evolutionary stage of a given simulated

star as shown in Table 2.1.

Stage 3 stars are the hydrogen shell burning red giant branch stars and stages 4-6 are

core helium burning stars, commonly referred to as the red clump. Stage 4 core helium

burning stars are the low mass stars which undergo the helium flash. Stages 5 and 6 are
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the higher mass red clump stars.

Figure 2.12: A basic Hertzsprung-Russell diagram of the synthetic stellar population
considered in this work. Red Giant branch stars are shown in orange, and Core Helium
Burning stars are shown in red. Stars which would lie in the classical instability strip are
removed.

As the focus of this work is on red giant branch (RGB) and red clump (RC) stars, it is

only these which have the variance metric simulated. In the case of binaries, RGB and RC

stars which are the primary component are considered, along with their companions of

any evolutionary state. Almost all the stars of these evolutionary stages are the primary

component in their binary system. Of those which are the secondary component, almost

all of them have an RGB or RC primary, and so are not missed. Those very few RGB/RC

secondaries whose primary companions are further evolved stars are discounted from this

analysis, however the number of these is so small relative to the whole cohort of stars

that we choose to exclude them, as the scaling relations are not applicable to these more

evolved stars since they are not thought to support solar-like oscillations.

All the red giant and red clump stars considered are shown in Figure 2.12. When

applying the scaling relations, they were tested when treating the stars as all being single

stars, as well as including the binarity. In the simulated data, stars are flagged according
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to whether they are alone, the primary (more luminous) component in a binary or the

less luminous secondary component. The effect of the binarity of a star is accounted for

by applying so called washout factors to the synthetic power spectrum, as described in

Chapter 3.

For the simulated stars, a frequency spectrum is constructed using the ouputs from

TRILEGAL and scaling relations for the expected frequency region of the modes, their

amplitude and the profile of the granulation background. This forms a major part of the

work undertaken, and is explained fully in Chapter 3.

2.3 Binary Star Detection

Prospects for using asteroseismology to detect binary stars are discussed at length by

Miglio et al. (2014). The method described therein relies on detecting two regions of solar

like oscillations (see Section 2.2.1) in the same power spectrum, implying that there are in

fact two stars present in the single lightcurve observed by Kepler and the authors expect

that around 200 binaries should be detectable in this way in the long-cadence data, most

of these systems comprising two red clump stars.

The method presented in Chapter 4 uses the detection of the modes of at least one

star, and considers the total power present in the region of frequency which the modes

occupy. Because the changes in light intensity caused by the oscillations are measured

by Kepler in parts-per-million, and hence relative to the total light detected, it is clear

that the fact that the light from an otherwise undetected companion star would “dilute”

the changes in intensity caused by the modes of the main target star with detectable

oscillations. This translates into the frequency domain as lower power spectral density

than expected for the frequencies of the modes as shown by the star. Following scaling

relations, it is possible to make good predictions for what the power spectral density ought

to be for a given star.

All the work in this thesis relies on a metric for the filtered variance of the star, defined

38



as the total mean-squared power in the frequency range occupied by the modes. This is

preferable to taking a value for the total power across the entire frequency range which

the long cadence observations cover to avoid considering power in the spectrum at very

low frequency, such as that from stellar activity, and also allows for good simulated power

spectra to be created for the frequency range required.

Now we have taken a brief tour of stellar evolution and basic asteroseismology concepts,

the remaining chapters concern the results of a series of investigations into red giant stars.

First, I present the results and process of creating realistic simulated power spectra which

underpins much of the analysis undertaken in the rest of the thesis. Then, a study

aiming to infer the binary fraction of Kepler red giant stars using a simple metric, an

investigation into the differences between red clump and red giant branch stars, and finally,

the development of an analysis code, designed to automate the detection of oscillations

and parameter estimation for the K2 and CoRoT missions.

Work undertaken during the preparation of this thesis has been included in several

publications, including Lund et al. (2015) and Miglio et al. (2016). In particular, work in

Chapter 5 has contributed to the K2 Galactic Archeology Project by Stello et al. (2017),

and the CoRoT ExoGiants project by Montalban et al. (in prep). Chapter 4 will form

Jones et al. (in prep).
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Chapter 3

Power Spectrum and Variance

Simulation and Interpretation

3.1 Introduction

A basic property of the the power spectrum is that the variance in the time domain is

equal to the total integrated power across all frequencies in the frequency domain. The

variance arising from intrinsic stellar variability due to oscillations and granulation is

known to scale with the frequency of maximum oscillation power νmax (eg. Hekker et al.

2012) and it is this relationship that forms the basis of much of the work contained within

this thesis. In order to use this relationship to make inferences about stellar populations,

realistic simulated spectra are required for a synthetic population of stars with known

properties, as described in Chapter 2.

The metric used throughout this work is a bandpass filtered estimate of the variance,

integrating the region in frequency containing the asteroseismic modes of oscillation, and

removing photon noise. The reasons for this are twofold. In taking this filtered region, the

physical signal from the modes and the stellar granulation is preserved while any contribu-

tion from the stellar activity signal and high amplitude peaks from the spacecraft pointing

is not considered, as these are confined to very low frequencies. Also, the granulation,
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modes and photon noise can be described well by existing relations in terms of the stellar

properties, allowing predictions of the filtered variance for a synthetic population of stars

to be as realistic as is needed. A cartoon example of the frequency region integrated to

produce this metric is shown in Figure 3.1.

Figure 3.1: The frequency region integrated to produce the variance metric for a Kepler
red giant. The metric encompasses all power that lies within νmax ± δνenv, where δνenv is
the FWHM of the Gaussian envelope modulating the mode power, discussed later in this
chapter.

This metric also has the advantage that in real stars, we do not need to rely on model

dependent fits for the granulation background in order to study the mode region. It is

simply the total power present in the spectrum due to the modes (Pm) and granulation

(Pg), over the frequency range Nbins wide containing the modes. The metric can be

described as

Variance = Nbins

νmax+δνenv∑
νmax−δνenv

(Pm(ν) + Pg(ν)) (3.1)

This leaves us with our variance metric, a bandpass filtered estimate of the total mean-

squared power in the frequency range occupied by the modes. The variance-νmax relation-

ship for real stars is shown in Figure 3.2.

Here, I will first explain how the artificial spectrum is constructed. This chapter

focuses on the choices of descriptions for all the constituent parts of the synthetic spectra,
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and justifying the level of complexity of the simulations. For the purposes of most of the

work contained within this thesis, red giant branch stars only are simulated. A discussion

of the red clump stars follows in Chapter 6.

Figure 3.2: The variance metric - νmax relationship for the Kepler sample used in this
work. Blue points denote red giant branch stars, while orange and red denote the red
clump and secondary red clump respectively.

3.2 Asteroseismic mode power: Scaling relations

In creating the simulated data, asteroseismic scaling relations are used along with funda-

mental stellar properties from the TRILEGAL code to simulate the basic asteroseismic

parameters νmax, ∆ν and Amax.

The scaling relations used in this work describe three of the seismic parameters of

stars; the frequency of maximum oscillation power νmax, the large frequency separation

∆ν and Amax, the amplitude of an ` = 0 mode at νmax (Verner et al. (2011)). While

the relations for νmax and ∆ν are based on common assumptions and therefore largely

agreed upon, there are many relations for Amax with differing derivations and assumptions
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involved. For this work, it is necessary to test some existing Amax scaling relations in order

to determine which one is the most suitable to apply to the artificial data generated by

the TRILEGAL code so it can be compared in a meaningful way to the real Kepler data.

Solar values used are Teff,� = 5777K, νmax,� = 3090 µHz and ∆ν� = 135µHz (Huber et al.,

2010). Amax,� is taken as 3.6 ppm from Michel et al. (2009) unless otherwise stated.

The following are the eight scaling relations for Amax that have been tested in this

work, along with a brief explanation of their justification. Depending on the method and

the data used to fix the exponents in the relations, there can be need to apply a bolometric

correction of the form

Amax, in Kepler bandpass =
Amax, bolometric

ck
(3.2)

where

ck =

(
Teff

5934K

)0.8

. (3.3)

This allows amplitudes predicted by a given relation to be converted between the value

which they would take if being observed across all wavelengths (the bolometric measure-

ment) and that when being observed in the Kepler bandpass. This is applicable to the

relations derived theoretically, and those which have been obtained by fitting to already

corrected data. Applying this correction allows us to directly compare the simulated data

with the real data, which is observed in the Kepler bandpass.

The Kjeldsen and Bedding (1995) (KB95) relation.

Kjeldsen and Bedding (1995) informs many later studies on scaling relations. The ampli-

tude relation they define is referred to as KB95 from now on. There were no confirmed

observations of solar-like oscillations on other stars at this time, and as such it is based

on linear adiabatic theory. The central assumption is that the variation in the luminosity

due to the oscillation is entirely due to changes in temperature, which are in turn caused

by the expansion and contraction of the surface, though the change in radius itself is
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negligible by comparison. Assuming that the oscillations are adiabatic, the luminosity

amplitude Amax, bol scales as

Amax, bol = (δL/L) ∝ (δT/T) ∝ (δρ/ρ) = v/cs, (3.4)

where L, T, ρ, v and cs denote luminosity, temperature, density, fluid velocity and sound

speed. The velocity amplitudes of the oscillations scale as Avel ∝ v and estimating cs

using the ideal gas law leads to

Amax ∝
Avel√
Teff

. (3.5)

Further calibration, using the very few stars with detectable oscillations that were avail-

able at the time, recovers the velocity amplitude in terms of mass and luminosity which

scales as Avel ∝ L/M and also adjusts the temperature exponent, leading to the relation

referred to in Figures 3.3 and 3.4 as KB95;

Amax =
17.7 ppm Avel[ms−1]

ck(Teff/Teff,�)
=

17.7 ppm × 0.234(L/L�)

ck(Teff/Teff,�)(M/M�)
, (3.6)

to which the bolometric correction is applied to convert into the Kepler bandpass.

The Mosser et al. (2010) (M10) relation.

The next relation is adapted from Mosser et al. (2010) and is derived from CoRoT data.

CoRoT (Baglin et al., 2006) was a French-led satellite and was a predecessor to Kepler. It

was the first satellite dedicated to asteroseismology and exoplanet detection, and observed

in a different bandpass to Kepler, and so has a different response when observing the

variations in intensity. The relation

Amax =
Amax�

ck

(
L/L�
M/M�

)0.89(
Teff

Teff,�

)− 1
2

, (3.7)

referred to as M10 throughout this chapter, comes from fitting the amplitudes observed

on over 4600 CoRoT light curves to their L/M ratio and fixing the exponent of the power
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law relationship between them. This was included to test whether taking an amplitude

derived from CoRoT and converting it to the Kepler bandpass gives consistent results.

The first Huber et al. (2010) (H11-1) relation.

Huber et al. (2010) tested scaling relations by fitting models to around 1700 Kepler stars

ranging from the main-sequence, through red giant branch stars to the red clump. They

assume the form of the relation is the same as proposed by Kjeldsen and Bedding (1995)

and fit the relationship between amplitude and νmax to fix the L/M exponent and find it

to take the value 0.8, leading to what we refer to here as the H11-1 relation

Amax = Amax�

(
L/L�
M/M�

)0.8(
Teff

Teff,�

)−1.0

. (3.8)

The second Huber et al. (2010) (H11-2) relation, with additional mass depen-

dency.

However, in agreement with older studies, they also considered whether there may be

an additional mass dependency which is not necessarily accounted for in using a single

exponent for L/M . They fit the same data while accounting for the mass distribution

using masses and radii determined from the observed ∆ν and νmax. This leads to H11-2

Amax = Amax�
(L/L�)0.84

(M/M�)1.32

(
Teff

Teff,�

)−1.0

(3.9)

being the best fit, where they find model amplitudes matching the observations far more

closely, accounting for the spread in amplitudes in red giants while obeying the mass-

independent relationship that is present in main-sequence stars.

The Chaplin et al. (2011) (C11) relation.

The predictions made by Chaplin et al. (2011) are also based on those made by Kjeldsen

and Bedding (1995). As the work is directly considering the oscillation amplitudes in the
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Kepler bandpass the authors follow Kjeldsen and Bedding (1995) who, when correcting

for observations at a particular bandpass as opposed to bolometric, assume a quadratic

dependence on temperature leading to

Amax = Amax�β

(
L/L�
M/M�

)(
Teff

Teff,�

)−2.0

(3.10)

where

β = 1− exp

(
−(Tred − Teff)

1550

)
(3.11)

labelled as C11 here. The β correction accounts for an overestimate of the oscillation

amplitude of hot solar type stars. Models are compared to observed values, and the

exponent of L/M is fixed at 1.0.

The Kjeldsen and Bedding (2011) (KB11) relation.

Kjeldsen and Bedding (2011) revised their earlier work, taking into account the excitation

and damping mechanism of the modes. They consider that the amplitude in velocity has

an additional dependency on the mode lifetime and arrive at

Avel ∝
Lτ0.5

M1.5T 2.25
eff

(3.12)

as an expression for Avel. Here τ here refers to the lifetime of the modes. The scaling of

this quantity with the fundamental stellar parameters is uncertain, but we adopt

τ

τ�
=

(
Teff

Teff,�

)−4.0

(3.13)

from Chaplin et al. (2009). Combining these with the relationship between the velocity

and luminosity amplitudes used by Kjeldsen and Bedding (1995) leads us to

Amax ∝
Avel√
Teff

=⇒ Amax =
Amax�

ck

(L/L�)

(M/M�)1.5

(
Teff

Teff,�

)−4.75

(3.14)

as a description for Amax, which we refer to as KB11.
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The Stello et al. (2011) (S11) relation.

The relation derived by Stello et al. (2011) is the result of fitting model amplitudes to

observations with the assumption that a single exponent for L/M cannot describe the

observed amplitudes. This leads to the expression

Amax =
Amax�

ck

(L/L�)0.9

(M/M�)1.7

(
Teff

Teff,�

)−1.0

, (3.15)

which the authors state works well for main sequence and subgiant stars, as well as the

red giant branch.

Deriving a relation (MCon11)from Mosser et al. (2012a).

It is important to appreciate the distinction between amplitude and height. Height in

power spectral density is proportional to the power of that frequency component, which

is equivalent to the amplitude squared of the time domain signal in the light curve, which

corresponds to that frequency. The final relation studied is from Mosser et al. (2012a),

and is slightly different from the previous seven in that it is constructed from a power law

relationship such that Henv = ανβmax. Henv is the height of a mean Gaussian centred on

νmax which describes the power excess of of the oscillation power above the granulation

background. It relates to Amax as:

Henv =
3.1 A2

max

∆ν
= 2.03× 107ν−2.38

max . (3.16)

The factor 3.1 represents the total mode power present in the central ∆ν of the mode

envelope, in units of the power of the central ` = 0 mode (Amax
2), accounting for the

difference in visibility of the modes of different degree `. This intuitively shows that Henv

represents the maximum power spectral density of the mode envelope.

A power law relation for ∆ν

∆ν = 0.276 ν0.75
max (3.17)
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is introduced in Mosser et al. (2012a) and in substituting this into equation 3.16, we arrive

at a power law description of Amax

Amax = 1344.4 ν−0.815
max . (3.18)

though in order to have an Amax relation into the same format as the others which can

be applied to the synthetic data, recall that νmax scales as

νmax = νmax,�

(
M/M�
L/L�

)(
Teff

Teff,�

)3.5

(3.19)

and substituting this in, the testable scaling relation referred to as MCon11 is

Amax = 1.89

(
L/L�
M/M�

)0.815(
Teff

Teff,�

)−2.85

. (3.20)

3.2.1 Comparing scaling relations for Amax

In order to decide which of these relations to use, I make a qualitative comparison with

amplitude values for 1248 Kepler red giants for each of the eight relations.
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Figure 3.3: The νmax- Amax relationships for each of the above eight relations. The grey
points are the values for 1248 Kepler stars and the coloured points are the simulated
amplitudes given by the eight relations as labelled.

Unsurpisingly, most of the relations compare reasonably well to the measured ampli-

tudes since they are based on fits to observed amplitudes. When fitting a power law to

these relations, the only simulated data whose fit parameters agree with those of the real

data within a 95% confidence interval is the H11-2 data, shown above in red, however

a small but appreciable offset in both intercept and slope remains. The much greater
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scatter present in the real data is expected to be due to uncertainties in measurement,

however, as suggested in Huber et al. (2011), there is also a contribution from the mass

distribution of the stars, and as such an additional mass dependency in the relations is

favourable, and the H11-2 from this paper (Equation 3.9) and the S11 relation from Stello

et al. (2011) (Equation 3.15) both contain such an exponent in their fits.

As another constraint, the signal-to-noise ratio can also be calculated. Chaplin et al.

(2011) suggest that the value of the granulation background profile measured at νmax

adequately describes the average background profile in the mode region to first order,

allowing an estimate of the integrated background power across the frequency range con-

taining most of the mode power to be made in a trivial way. In Chaplin et al. (2011),

this region is νmax ± νmax/2, assuming that the full-width-half-maximum of the Gaussian

envelope that modulates the oscillations (as described in detail in section 3.4) is equal to

νmax/2 so

∫ 1.5νmax

0.5νmax

Pgran(ν) ≈ νmaxPgran(νmax). (3.21)

Following Mosser et al. (2010), the value of the background at νmax can be represented as

Pgran(νmax) = 6.37× 106ν−2.41
max . (3.22)

for red giant stars. For the total integrated mode power over the above selected range in

frequency, Ptot the Chaplin et al. (2011) form for the approximation is used

Ptot ≈ 1.55A2
max

νmax

∆ν
(3.23)

and the photon noise binstr as discussed in Chapter 2 is described by the relation from

Jenkins et al. (2010) (see Section 3.7). This leads to a formula for the signal-to-noise ratio

of
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SNR =
Ptot

νmaxbinstr + Pgran

(3.24)

Figure 3.4 shows this quantity for the eight relations.

Figure 3.4: Signal-to-noise ratios calculated for each of the 8 amplitude relations according
to the above description. Points in black are the long cadence signal-to-noise values from
Chaplin et al. (2013)

Due to the simulated signal-to-noise ratios being a very crude approximation, it is not

particularly informative to draw any statistical comparison between the signal-to noise
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ratios of the simulated and real data. The slope of the linear fits to the real and simulated

data agree within a 95% confidence interval for the H11-2 only. Again, we expect the real

data to have a far greater scatter than the simulations, due to observational uncertainty,

but the relations with an additional mass dependency (H11-2 and S11) do go some way

towards replicating the scatter we see in the real data for both amplitude and SNR.

The H11-2 relation from Huber et al. (2010) is used for the remaining work, as it

performs best for red giant stars. Moreover it is also correct for solar-type stars of a

higher νmax, which is a consideration for the work contained within this thesis where we

simulate binary stars, some with solar-type companions. Having chosen an amplitude

relation, this chapter goes on to describe other components needed to simulate a realistic

power spectrum.

3.3 Frequency spacings

As discussed in Chapter 2, the large frequency separation ∆ν measures the average spacing

between modes of the same degree ` in consecutive radial orders, n. In these simulations,

only modes of degree up to and including ` = 3 are considered, as degrees higher than this

are not readily detectable in Kepler data. Having generated a value for νmax, ` = 0 modes

are spaced at intervals of ∆ν centred on νmax, and ` = 1 modes are anchored halfway

between ` = 0 ridges. The frequencies of the ` = 2 and ` = 3 modes are described relative

to the position of the ` = 0 and ` = 1 frequencies respectively by

δν02 = 0.122∆ν + 0.047 (3.25)

δν13 = 0.282∆ν − 0.16 (3.26)

as determined by Huber et al. (2010) by taking the centroids of the mode ridges in an

ensemble collapsed échelle diagram for 470 red giant stars. The precise locations of the

oscillation modes make little to no difference to the variance itself, however this level
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Degree V`
` = 0 1.0
` = 1 1.5
` = 2 0.5
` = 3 0.1

Table 3.1: Mode visibilites assumed throughout.

of detail is necessary for other uses for the simulated spectrum, including testing the

detection pipeline described in Chapter 5. The frequencies of the simulated ` = 1 modes

are more complex, as they exhibit a dense spectrum of mixed modes.

3.4 Mode Profiles

We know that Amax denotes the amplitude of an ` = 0 mode at νmax. Modes at differ-

ent frequencies have their height modulated by the Gaussian envelope centred on this

frequency, and modes of oscillation of different degree ` also have different have differ-

ent relative visibilities due to geometrical cancellation as well as intrinsic properties of

their damping and excitation. Therefore, modes of different degree ` contribute different

fractions of power to the oscillations, and there are assumptions that can be made about

these contributions. Following Chaplin et al. (2011) and Ballot et al. (2011), the relative

visibilites in power of the modes used are given in Table 3.1.

There are of course departures from the values in Table 3.1, but in the absence of

simple relations for these values in giant stars, these reasonable approximations are chosen.

Recall from Chapter 2 that individual oscillations behave in time as a damped harmonic

oscillator, and therefore appear as a Lorentzian in frequency. Their amplitude in the time

domain is related to their height in the frequency domain by

Hmax =
V`A(ν0)2

πΓ(ν0)
, (3.27)

where Hmax is the maximum power spectral density of the mode at its central frequency
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ν0, with visibility V` dependent on its degree, and a linewidth Γ(ν0) which is related to

the lifetime of the mode. Also recall from Chapter 2 that the heights of the Lorentzian

profiles of the modes are modulated by a Gaussian envelope of the form

Pν = Hexp

(
−(ν − νmax)2

2σ2

)
. (3.28)

of height H, centre νmax and standard deviation σ. This Gaussian envelope which modu-

lates the heights of the mode profiles is a phenomenological description which reflects the

power distribution around the frequency of maximum power νmax.

An important quantity for the variance metric itself is the full-width-half-maximum

(FWHM) of this envelope, as it is this which denotes the limits of the integration, as

shown in Figure 3.1. The FWHM δνenv relates to σ as 2
√

2ln2σ and the value of

δνenv = 0.66ν0.88
max (3.29)

is adopted throughout this work, following Mosser et al. (2012a). As the power spectral

density of the modes is modulated by a Gaussian, hence, the amplitude A(ν0) of an

individual mode is calculated by interpolating the value of a square-root-Gaussian (also

a Gaussian, of different width) of height Amax centred on νmax at the frequencies given by

the relations in Section 3.3. The linewidth is related to the lifetime of the mode. In red

giant stars, work by Corsaro et al. (2012) provides a scaling relation for the linewidth of

radial modes related to the effective temperature of the star

Γ = exp

(
Teff − Teff,�

T0

)
(3.30)

where Teff,� = 5777K and T0 = 601K. This is also adopted as the linewidth for the non-

radial modes. In modelling the modes as a damped driven oscillator in the time domain,

the modes have a Lorentzian profile in the frequency domain, (e.g. Chaplin et al. (2013)),

and others, leading to a peak profile of the form
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P (ν) = H

(
1 +

(
ν − ν0

Γ/2

)2
)−1

(3.31)

for pure p-modes. For mixed modes, the situation is rather more complex, which we will

now explore.

3.5 Mixed Modes

In red giant stars, as discussed in Chapter 2, the frequencies of the p-mode oscillations

become low enough that they are in the same range as the g-mode pulsations. This

leads to coupling between p- and g-modes for the same degree ` , and this effect is most

pronounced for the ` = 1 modes. This can be incorporated into the synthetic spectrum to

add an additional level of realism to the simulation. The frequencies of the mixed ` = 1

modes in a given order n are a function of νnp , the frequency of the pure ` = 1 p-mode

and the asymptotic g-mode spacing ∆Π, expressed as

ν = νnp,`=1 +
∆ν

π
arctan

[
q tan

(
π

∆Π1ν
− εg

)]
, (3.32)

following Basu and Chaplin (in the press), and solved for ν by looking for changes of sign

in

π(ν − νnp,`=1)

∆ν
− arctan

[
q tan

(
π

∆Π1ν
− εg

)]
. (3.33)

Here q is a constant dictating the level of coupling between the p- and g-modes, assumed

to be q = 0.2 (e.g. Mosser et al. (2012b)), and εg provides an offset in ν, as does ε in

the asymptotic relation for pure p-modes. This does not impact on the results of the

tests carried out here, and is assumed to be zero, following Mosser et al. (2012b) and

Bedding et al. (2011). The asymptotic period spacing for ` = 1 g-modes ∆Π is taken by

performing a linear fit to the data from Mosser et al. (2014) as shown in Figure 3.5. ∆Π

relates to the ∆ν from scaling relations as
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∆Π = 54.16 + 2.0∆ν. (3.34)

Figure 3.5: ` = 1 Period spacing ∆Π and large frequency separation ∆ν data from Mosser
et al. (2014). Values for red giant branch stars are shown in red, red clump stars in blue
and secondary clump stars in green. The ∆Π values used in the simulations of the RGB
stars are taken from a linear fit to the values shown here.

Once the frequencies of the mixed modes have been determined by solving Equation

3.32 for all orders that fall within the range νmax ± δνenv, their heights must be modified

according to Q1, the inertia ratio of the ` = 1 mixed mode relative to that of an ` = 0

mode at the same frequency. The inertia of a mode is a measure of the fraction of the

star’s mass which is involved in the pulsations of that mode. g-modes, which have their

maximum amplitude in the core, where the density is highest, have large mode inertias.

So, mixed modes, with their mixed p-mode and g-mode characteristics must have their

height predicted according to

H1 =
V1TA0(ν)2

πTΓ0(ν) + 2Q1

(3.35)

following Basu and Chaplin (in the press), rather than the simplified case used for pure p-
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modes in Equation 3.27. Here T is the observation time (4 years for Kepler observations),

A0 is the amplitude a radial p-mode would have were it at the frequency of the mixed

mode, obtained by interpolation, Γ0 is the linewidth of this same hypothetical p-mode,

and Q1 is the inertia ratio. We may estimate the inertia ratio from the mode trapping

parameter ζ, which quantifies the ratio between the kinetic energy present in the g-mode

cavity and the total kinetic energy of the mode. The expression for ζ

ζ = 1 +
1

q

cos2

(
π

(
1

ν∆Π1

))
ν2∆Π1

∆ν

cos2

(
π(ν − νp)

∆ν

) (3.36)

is taken from Deheuvels et al. (2015), and a detailed explanation of the derivation and as-

sumptions made in this expression is present in their paper. There are simpler expressions

for this parameter, but it was found that they did not perform well at lower frequencies.

Q1 is related to ζ via;

Q1 =
1

1− ζ
. (3.37)

This is plotted for a number of simulated stars over a range of frequencies in Figure 3.6,

along with the number of modes per order generated by the solution of equation 3.32

and a test that the power is consistent with a pure p-mode simulation of the same stars.

Along with the mode heights, the mode widths are also modified by Q1 according to

Γ = Γ0Q
−1
1 . (3.38)
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Figure 3.6: Diagnostics for the simulation of � = 1 mixed modes. Top panel: the inertia
ratio Q1 for each mixed mode simulated. The values for modes of 16 different simulated
stars are shown in different colours. Middle panel: The number of mixed modes per
order, plotted against nominal � = 1 frequency. Bottom panel: A sanity check for power
levels. Coloured stars show the total power in units of � = 0 power for the mixed mode
simulations, black circles for the pure p-mode case. Coloured diamonds and black crosses
follow the same convention for the ratio of � = 1 power to � = 0 power.

These tests shown in Figure 3.6 assure us that the behaviour of mixed modes across

the full range of frequency is reasonable and consistent. The number of mixed modes per

order decreases steadily with frequency as predicted by theory, and the behaviour of Q1

ensures that the heights and linewidths are modified such that the power present in the

modes is consistent with that in the case of pure p-modes. The mode profiles are still

described by the Lorentzian form of Equation 3.31, but with the input quantities modified

as above. Figure 3.7 shows a typical simulated limit spectrum of the modes. The � = 1

mixed modes are shown in red.
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Figure 3.7: A typical simulated mode spectrum. ` = 0 modes are in black, ` = 2 modes
in blue, ` = 3 modes in green, and the ` = 1 mixed modes in red.

3.6 Granulation

The granulation signal present in a power spectrum is due to brightness fluctuations

associated with the evolution of convective granules at the surface of the convection zone.

The granules observed on the stellar surface are formed by the rising and falling plasma.

They have a characteristic timescale and brightness fluctuation associated with them

which may be shown to scale with νmax and hence the evolutionary state of the star.

In the power spectrum, the granulation signature appears as a continuum background

signal. It has long been described using a varying number of zero-centred-Lorentzian

profiles, eg. by Harvey (1985). Kallinger et al. (2014) studied multiple models for the
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granulation background using a large set of Kepler red giant stars, and following that

work, their “model F”, a two-component description for the granulation background of

the form

Pbg(ν) =
∑ ξia

2
i /bi

1 + (ν/bi)ci
=

ξa2/b1
1 + (ν/b1)c

+
ξa2/b2

1 + (ν/b2)c
(3.39)

where a = 3710 ν−0.613
max M−0.26, b1 = 0.317 ν0.970

max , b2 = 0.948 ν0.992
max , c = 4 and ξ = 2

√
2/π

is used in this study. Note the fixing of the exponent c = 4, so the two components are

in fact “super Lorentzian”, since a true Lorentzian profile has an exponent of 2. This is

justified by the behaviour of the granules in the time domain. In order for the signature in

the frequency domain to be a Lorentzian, the signal in the time domain would have to be

an instant brightening phase followed by an exponential decay. In reality, the brightness

fluctuation signature in the time domain is arguably better described by an exponential

increase phase, then exponential decay. Figure 3.8 shows a toy example of these two time

domain signatures and their frequency transforms. Note the more rapid decay of the

super-Lorentzian profile shown in red, owing to its 1/ν4 dependency.

Figure 3.8: A schematic of the behaviour of the granulation signature. The left hand
panel shows the time domain signature, black shows exponential decay only, and red
shows the more realistic exponential brightnening and decay. The right hand panel shows
their transformations into the frequency domain.
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3.7 Shot Noise

As discussed in Chapter 2, there are various contributions to the noise properties of

Kepler. The photon noise contributes a frequency independent background term to the

power spectrum, and this is a function of the brightness in the Kepler bandpass. Jenkins

et al. (2010) provide an estimate of this for the long cadence data. It is common to take

the mean value of the power spectrum close to the Nyquist frequency as an estimate

of the background shot noise. It was found that the value given by the Jenkins et al.

(2010) paper is lower than the median-estimated value for the Kepler stars used here

(see Figure 3.9) so in order to keep the simulations consistent with the observations, an

estimation of this noise made by fitting the upper and lower bounds of the noise values is

used instead. Figure 3.9 shows fits to the minimum and maximum white noise values at

each Kepler magnitude for the real stars, then for the simulated stars. The white noise

value is estimated by a uniform random value between these two limits. This does not

have an impact on the variance itself, as the shot noise background is removed, however

as described in the following section, the realisation noise affects the limit spectrum, so it

was thought that it suited the purpose of the simulation to increase the shot noise level

to make it more realistic.
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Figure 3.9: The green line shows the minimum term noise model from Jenkins et al.
(2010), and the black lines are fits to the upper and lower bounds of the distribution of
noise values. In blue is the mean value of the spectrum between 270-280 µHz for the real
stars, and in magenta is a simulation of the noise for the simulated spectra, randomly
distributed between the upper and lower limits.

3.8 The Limit Spectrum and Realisation Noise

Due to observations being finite in time, random fluctuations are introduced into the power

spectrum estimated from the techniques described in Chapter 2. All the components of

the power spectrum discussed in this chapter are effectively noise free “limit’ values of

the various properties, in the sense of what one would expect to see on average over an

infinite number of realisations. As described by Anderson et al. (1990), the observed values

are distributed according to χ2 2 degrees of freedom noise about some limit spectrum,

which the idealised descriptions here simulate. Following Anderson et al. (1990), the limit

spectrum is perturbed using

Ssim = −Slimitln(yi) (3.40)

where Ssim is the simulated spectrum, Slimit is the limit spectrum, and yi is a random

number uniformly distributed from 0 to 1. Figures 3.10 and 3.11 show the components of
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the limit spectrum and the final simulated spectrum with this realisation noise added for

a mid-frequency red giant.

Figure 3.10: The limit spectrum components, shot noise, granulation noise and modes are
shown in green, red and blue respectively, and the full spectrum with realisation noise in
black.

Figure 3.11: The limit spectrum in purple and the single realisation in black.

Additionally, the signal in the power spectrum is affected by apodisation due to the

sampling frequency of the observations. This effect is larger the closer the frequency is to

the Nyquist frequency, so the whole spectrum except the shot noise, is modified by the

factor
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η = sinc

(
π/2

(
νmax

283µHz

))
. (3.41)

3.9 Accounting for Binarity

The variance metric would seem to be an intrinsic stellar property, dependent on the

physical properties of the star, as is clear from the relations used for the granulation

background and solar-like oscillations. However, the presence of the light from a second

star in the light curve will reduce the observed variance of the star, in a phenomenon we

will refer to as “washout.” When we deal with the amplitude of the granulation or the

oscillation modes, they are measured in parts-per-million, or ppm, a measurement of the

fluctuation of the brightness of the star, relative to its mean level. When there is a second

star present in the light curve, these fluctuations in brightness due to the oscillations and

granulation are reduced, as the mean level is higher. The degree to which the amplitudes

are diluted can be described by

kwashout, 1 =
ck - bol, 1L1

ck - bol, 1L1 + ck - bol, 2L2

(3.42)

where ck - bol is a factor (Ballot et al., 2011) to convert the bolometric luminosity L to the

luminosity in the Kepler bandpass. The above formula is therefore is a simple ratio of

the luminosity in the Kepler bandpass of the oscillating star to that of the whole binary

system. Note that in the case of a single star, there is no dilution, L2 is zero and therefore

kwashout, 1 is unity. In a system where L2 is a significant fraction of L1, kwashout, 1 is small

and the amplitudes are significantly diluted, for example in a binary system composed of

two red giants. The diluted amplitude is related to the intrinsic amplitude Amax by

Amax, in binary = kwashout,1Amax. (3.43)

This washout effect of course applies to all the features in the light curve, not only the
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modes of oscillation. As the simulations described here are only in the power spectrum,

the effect of this washout as it affects light curve amplitudes must be squared in power,

and so and so we modify the power spectrum components or simply the estimate of the

variance by k2
washout. With this accounted for, the effect of a population of binaries on the

distribution of the variance-νmax relationship can be tested and studied, and this follows

in Chapter 4.

3.10 Results

Applying all of these assumptions and relations, we arrive at realistic power spectra for a

population of synthetic red giants. Figure 3.12 shows 6 synthetic spectra for stars across

the frequency range observed in the Kepler long cadence. It is very noticeable how the

bulk properties of the spectra change as stars evolve towards a lower νmax. The power

spectral density of the oscillations and granulation background increases, and the envelope

containing the oscillations gets narrower.

65



Figure 3.12: 6 simulated spectra of red giants of ≈ 1M�. The limit spectrum is in purple,
and the single noisy realisation is in black.

The complexity of the mode structure can begin to be appreciated in Figure 3.13. The

dominant spacing ∆ν is clearly visible, as is this quantities evolution with νmax, similarly

decreasing as the star evolves. The evolution of mixed mode behaviour is perhaps a little

hard to appreciate in this figure, however the general trend towards more mixed modes

at lower frequencies is visible.
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Figure 3.13: A zoomed in view of the modes of the same simulated stars as shown in
Figure 3.12.

The mixed mode evolution is evident in an échelle diagram, Figure 3.14 shows the

distinctive departure of ` = 1 modes from the pure p-mode values. The pure p-mode

` = 0, 2 and 3 modes appear as straight vertical ridges in this parameter space, while the

` = 1 modes have a far more complex structure.
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Figure 3.14: Échelle diagrams of the 6 simulated stars. Modes of degree ` = 0 − 3 are
shown, and are in black, red, blue and green respectively. ` = 1 modes are shown on a
colour scale where the most intense colour shows the more powerful modes.

It is these spectra that the variance metric is taken from, the power spectral density

within the frequency range shown in Figure 3.1 integrated to give our bandpass filtered

estimate of the light curve variance for the simulated stars. This metric informs the

binary fraction inference in Chapter 4 and automated detection of oscillations in Chapter

5. Figure 3.15 shows the scaling of this quantity with νmax for the simulated population
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and the Kepler stars, again showing the very good agreement between the simulations

and observations.

Figure 3.15: The variance for Kepler red giant branch stars is shown in blue, and the sim-
ulated values for the simulated TRILEGAL RGB stars is shown in red. The TRILEGAL
population here has a binary fraction of 50%.
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Chapter 4

Binary Fraction Inference From an

Ensemble Study

While Chapter 5 will discuss the usefulness of predicting and measuring the variance met-

ric for individual power spectra, this chapter will discuss the application of the variance

metric introduced in Chapter 3 to an ensemble study of Kepler red giant stars in order to

determine the fraction of the population which exist in binary systems. The inferred bi-

nary fraction is presented here, along with an explanation and justification of the methods

and assumptions employed, and the advantages and limitations of this ensemble study.

This will be proceeded by a brief review of binary star detection methods.

The washout effect induced by companion stars as introduced in Chapter 3 can allow

inferences to be made about the fraction of stars in the population which have a compan-

ion, subject to certain assumptions. An introduction to the data and simulations used

follows, along with an explanation of the methods and assumptions made in this study.

4.1 An Introduction to Binary Star Detection

A pair of gravitationally bound stars orbiting their common centre of mass are referred

to as a binary star system. It is thought that a large fraction of stars in our Galaxy reside

in these types of systems, and a significant amount of research has gone into devising
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methods of detecting them. Binary stars are classified depending on how the second star

is detected. Visual binary stars are those which have a large enough angular separation to

allow them to be resolved separately, and relative levels of brightness such that glare from

the primary does not make the secondary impossible to detect. These binary systems

usually have a fairly wide separation and consequently long (∼ years - centuries) period

orbits. These observations allow the orbits of these systems to be solved, that is the

semi-major axes of the orbital ellipses, the eccentricity and inclination of the orbits can

be determined, and through applying Kepler’s third law and by knowing the parallax of

and hence distance to the system, the masses of the stars can be determined.

Spectroscopic observations can reveal the presence of a secondary star. In the case

that only the spectral lines of one star are visible, they may oscillate periodically in

wavelength due to being Doppler shifted during the orbit around the centre of mass of

the binary system. If both sets of spectral lines are visible, then due to the Doppler shift,

the lines will appear as double or single depending on the motion of the stars relative to

the observer. As a star moves towards or away from the observer, the spectral line will

be blue or red shifted, and hence appear as a double line in the spectrum, while when

there is no motion relative to the observer the line will appear as a single. If the stars

are of two different spectral types, the presence of an additional star can be inferred from

the unusual shape and intensity of the spectral line, relative to that of a single star. The

Doppler shifting of the lines in spectroscopic binaries allows the product of the semi major

axis and the angle of inclination of the orbital plane of the system to be determined, but

information from another type of observation (such as an eclipse) is needed to fully solve

the orbit.

Astrometry is the precise measurement of the position of a star. A star with a com-

panion which is not visible will not follow a straight path as it moves across the sky,

instead the centre of mass of the system follows a straight path while the star will “wob-

ble” periodically back and forth across this trajectory. This method has historically been

applied to nearby stars with a high proper motion, however the Gaia mission (Gaia Col-
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laboration, 2016) performs astrometry to unprecedented levels of accuracy, and so at far

greater distances. It is expected that it could discover millions of binary systems in this

way (Eyer et al., 2012).

The transit method used by Kepler to detect exoplanets is pre-dated by eclipse obser-

vations of binaries, though the concerns of making these kinds of observations are similar.

As with exoplanets, the system must be oriented such that the orbital plane is inclined

edge on to the line-of-sight so it is possible to observe the secondary star eclipsing the pri-

mary. The secondary star of course emits it’s own light so the periodic drops in brightness

will have different depths depending on whether the secondary is in front of or behind

the primary, or whether both stars are fully visible, distinguishing it from a planetary

transit. This is only possible if the orbit of the system is inclined very close to 90◦ relative

to the plane of the sky. The large number of Kepler targets means that although this

alignment is rare, over 2500 eclipsing binaries have already been discovered by Kepler

(Slawson et al., 2011).

While all of these methods can provide sensitive information on the masses and orbits

of the stars, they are all limited in their detection of the binary by the location, orienta-

tion and particularly the orbital period of the stars or through requiring other information

such as parallax. In using asteroseismology to detect binary stars, these additional con-

straints are not necessary, and so the data from Kepler are sufficient in isolation for binary

detection. Kepler has detected solar-like oscillations in hundreds of main-sequence and

subgiant stars, and in over ten-thousand red giants (Miglio et al. (2014) and references).

Red giant oscillations are of a much lower frequency than those of less evolved stars and

so are detectable by the long cadence observations, for which data are available on many

stars, while the oscillations of main-sequence and subgiant stars require short cadence

observations, which can only be performed on a select number of targets. For individual

cases, the presence of two oscillation spectra in a single lightcurve is a clear signature

of binarity, referred to as a seismic binary. Figure 4.1 shows a seismic binary, clearly

showing the signatures of 2 oscillating stars. While this can also be due to a foreground
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and background star which are in close proximity as observed by Kepler while not be-

ing gravitationally bound, Miglio et al. (2014) find that the fraction of apparent seismic

binaries that suffer this contamination is extremely small.

Figure 4.1: A power spectrum showing the oscillations of two red giant stars observed by
Kepler in the same lightcurve.

Though stellar population modelling codes give consideration to the binary fraction,

and the formation and evolution of binary stars have implications for our understanding

of Galactic history, no consensus seems to exist on the fraction of stars in binary systems.

The large number of light curves we have at our disposal thanks to Kepler and the fact

that the asteroseismic variance is insensitive to the orientation of the binary system means

it has the potential to be a valuable tool in inferring the binary fraction of the population.

4.2 The Role of Variance in Binary Fraction Infer-

ence.

As shown in Chapter 3, the variance metric is ostensibly an intrinsic stellar property,

however the washout factor described by Equation 3.42 reduces the power present in the
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power spectrum, and hence the variance. Figure 4.2 shows an artificial asteroseismic

binary created by combining the light curves of two Kepler red giant stars and producing

a power spectrum where both sets of oscillation spectra can be seen.

Figure 4.2: The bottom panel shows the power spectrum of an artificial seismic binary
taken from Miglio et al. (2014) created from combining the light curves of the two red
giants whose power spectra are shown in the top two panels. Note the reduction in power
of the oscillations in the combined spectrum.

The power present in both sets of oscillations is appreciably reduced in the combined

power spectrum. For true binaries where the luminosities of both stellar components

are comparable, this effect is large, as in the case above, while in the situation that the

secondary star is much fainter, for example in the case of a red giant with a main sequence

companion, this effect is more subtle. It is therefore sensitive to the mass ratio of the
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components of the binary.

Figure 4.3 shows the scaling of the variance with νmax for a sample of Kepler red giants,

a relationship which approximates a power law. As the washout factor only depends on

the magnitude in the Kepler bandpass, we can expect stars with a companion to have

lower than expected variance for their νmax. Of course, there is scatter intrinsic to the

variance−νmax relationship regardless of the binary fraction. Since the relationship shown

in Figure 4.3 may not be an exact power law, a median fit is performed by taking the

logarithm of both the frequency and variance values and binning the data by log-frequency.

The median frequency and variance values for each bin are taken, then a cubic spline

interpolation gives a median value across the entire range of frequencies, shown in Figure

4.3 as a red line. The residuals in dex are then given by

log10FV− fit. (4.1)

Figure 4.3: Filtered variance - νmax relationship for 5283 Kepler red giant branch stars.
Median values of log-frequency bins are shown in red and a cubic spline interpolation fit
line in green.

A histogram of these residuals about this fit are shown in Figure 4.4. Notice that
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the distribution of residuals is decidedly asymmetrical, the “tail” of the distribution on

the left suggests a proportion of the stars have a lower variance than their νmax suggests

they should have. Under the hypothesis investigated in this work, the presence of this

asymmetry is due to contamination of the lightcurves by companion stars.

Figure 4.4: A histogram of the residuals of the data about the fit shown in Figure 4.3
obtained following Equation 4.1.

To assess the impact of the binary population on the distribution of residuals in real

stars, we need multiple simulated populations with known binary fraction. Chapter 3

describes the process of simulating power spectra in detail.

4.3 Using Simulated Populations

Following the procedure outlined in Chapter 3, the fundamental properties generated

by stellar population synthesis code TRILEGAL (see Chapter 2) are used as input to

construct a realisation of the artificial 4-year power spectrum for each star in the simulated

population, and the variance estimate is then extracted as per the real data, by integrating

the spectrum over the range of frequency occupied by the modes of oscillation, as defined
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by the width of the envelope modulating the modes of oscillation thus;

νmax ± δνenv ≈ νmax ± 0.66ν0.88
max. (4.2)

Cuts are made in various parameter spaces to most closely match the real data, as de-

scribed in Chapter 2. A simple false alarm detection test as described by Chaplin et al.

(2011) is applied to determine whether the simulated oscillations ought to be detectable

by Kepler, however in practice all of the simulated stars pass this test. Given the high

amplitude oscillations exhibited by red giant stars, this is not surprising. Hekker et al.

(2011) finds that oscillations were detected in 71% of red giants observed by Kepler. Of

the remaining stars, ≈ 90% have a predicted νmax which lies outside of the frequency

range which can be explored with the long cadence observations, the upper limit of which

is set by the Nyquist frequency of ≈ 283µHz. The lower limit of around 10µHz is due

to the high amplitude granulation signal at these frequencies, along with the frequency

resolution of the observations. Explanations for the few stars whose oscillations are pre-

dicted to lie within the explored frequency range but are not detected are given by Hekker

et al. (2011) to include instrumental effects and high shot noise. Since this number is so

small, we do not consider selection effects within the Kepler sample to pose a problem in

comparing them to our simulated populations.

We will here exclude stars with νmax less than 20µHz, as there is a significant excess

of these stars in the simulated populations as compared to the real stars, again due to the

difficulty of detecting these low frequency oscillations. This is a very conservative measure,

in case this has the potential to introduce bias into the binary fraction estimation.

A further consideration needed to match the observations as well as possible is the

uncertainty on the observed seismic parameters, ∆ν and νmax. Following empirical re-

lations, derived by Chaplin (private communication) and discussed in Miglio et al. (in

prep.), which provide an excellent match to the errors on the real data, we scatter the
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“true” values obtained from the scaling relations (see equations 2.6 and 2.8) using

error, νmax =
νmax

53.75
(10.01.2−0.71 log10 νmax+0.35x + 1.0) (4.3)

and

error,∆ν =
νmax

750.0
(10.01.7−0.99 log10 νmax+0.15x + 1.0). (4.4)

The variance and νmax relationship is simulated for binary fractions from 20% to 80%

at intervals of 10%, following exactly the same process to obtain the residuals as used

for the real stars. These fits are shown in Figure 4.5. We will only look at fractions

from 20% to 80% as current estimates suggest that 20% would seem to be too low for a

reasonable estimate, and above 80% would suggest that single stars are much more rare

than is reasonable for the mass range of stars we consider. Having realistic simulated

populations with a range of binary fractions will be our guide to the interpretation of the

real stars, and care is taken to make the same assumptions of both the real and simulated

data.
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Figure 4.5: Simulated νmax vs. Filtered Variance relationships with binary fractions from
20% to 80%.
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Figure 4.6: Distributions of residuals from fits to νmax vs. Filtered Variance relationships
for binary fractions from 20% to 80%.
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Figure 4.6 shows the distributions of residuals for the simulated fields for seven different

binary fractions. The subtle departure from symmetry is appreciable visually for all the

fractions, due to the varying proportion of binary stars experiencing washout and therefore

displaying a lower filtered variance and residual. We must consider the possibility that

other factors may have an effect on the shape of the distributions, and that in case of the

real stars, there may be yet more influences which are not included in the simulations.

4.4 Other Potential Contributors to Asymmetry

Due consideration must be given to other potential causes for the appearance of the lower

variance stars, and how other factors may affect the distributions, or there is a risk of

biasing the inferred fraction. These can be due to properties of the population as a whole,

or properties of individual stars. The phenomena considered, and what effect they may

have on the distributions are discussed below.

4.4.1 Binary Mass Ratio Distributions

Figure 4.7 shows the mass distribution and washout factors for 3 simulated sets of stars,

with the same cuts and error assumptions as described in the previous section and Chapter

2. The left panel shows the ratio of secondary to primary mass for three simulated

populations with uniform initial mass ratio distributions between [0.7-1.0], [0.8-1.0] and

[0.9-1.0] respectively, serving only to confirm the mass ratio distribution for red giants is

consistent with the distribution of the whole population.
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Figure 4.7: Left hand panel: The mass ratio distribution for three different populations.
Right hand panel: The distribution of washout factors associated with these mass ratios.
Blue, green and red show these for populations with uniform mass distributions on the
range [0.7-1.0], [0.8-1.0] and [0.9-1.0] respectively.

The right hand panel shows the washout factor kwashout for the same stars. It is clear

that for all three mass ratio distributions, the majority of the stars experience a very

modest level of washout. Recall that the washout factor is multiplicative, so a value close

to unity implies low dilution of the power spectrum (see explanation in section 3.9). The

average washout factor is lowest, and hence the levels of dilution greatest, for the mass

ratio distribution closest to unity.

Figure 4.8 shows the effect of the average level of washout on the distribution of the

residuals. The effect is subtle, but the separation of the two underlying distributions is

greater for the cases which have a larger average washout.
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Figure 4.8: Histograms of residuals for the three above mass ratio distributions.

The mass ratio distribution is not something we can know for sure for the real stars,

however earlier work (eg. Miglio et al. (2014)) suggests that a mass ratio near unity is

reasonable, and so a uniform mass ratio distribution between 0.9 and 1.0 is adopted for

the simulations used. As discussed in the results section of this chapter, this seems to be

a reasonable assumption for the real data.

4.4.2 Scaling Relation Dependencies on Mass

Chapter 3 discussed in some detail the approach used to simulate the power spectra we use

in this work. The seismic parameters which govern the amount of power in the frequency

region we are interested in for the filtered variance metric all have a dependency on mass,

and for the amplitude parameter, this can vary quite dramatically between relations. To

satisfy ourselves that this is not the cause of the deviation from a normal distribution, we

can look back at the scaling relations we tested in Chapter 3 and determine whether, in
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the simulated case of single stars only, the different dependence on mass can induce any

asymmetry.

Figure 4.9: Following the same labelling and colour coding as in Chapter 3, these his-
tograms show the distribution of residuals for the single-star-only case for the estimated
variance simulated using each of the eight amplitude scaling relations. The black curves
are a Gaussian fit to the histograms, serving as a guide to the eye.

For this simple sanity check, we use only the basic estimation for the variance, treating

the mode power as the smoothed Gaussian envelope only, and assuming the background

power at νmax adequately captures the background power across the frequency range of

interest. This leads to the distributions being generally narrower than those obtained for

those produced by simulating the power spectra with all the features, noise and uncer-

tainties they contain. This test does however show that the differing mass dependency

of the amplitude scaling relations does not induce any significant asymmetry into any

of the above distributions. Recall that in Chapter 3, the H11-2 relation (shown in red

above) was chosen for the simulations, and for the 0% binary case shown here, there is

no asymmetry, and hence no reason to suggest that the mass dependency is contributing
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to the non-Gaussian appearance of the distributions shown in Figure 4.6.

4.4.3 Metallicity

It has been suggested that the mode amplitudes are expected to change with metal abun-

dance (eg. Houdek et al. (1999), Samadi et al. (2010)). To assess whether this would have

an impact on the asymmetry of the distribution, it is helpful to look for a relationship

between the residuals about the fit and the metallicity. Figure 4.10 shows this for the real

stars for which APOGEE abundances (Pinsonneault et al., 2014) are available.

Figure 4.10: APOKASC metallicities and residuals for Kepler red giants.

Attempting to fit these data shows no relationship, the above data having a Pearson

correlation coefficient of only 0.002, implying no correlation between metallicity and resid-

uals. In attempting to duplicate the asymmetry by including a metallicity dependence

in the scaling relations for amplitude, it was found that in order to produce a significant

asymmetry, the effect of abundances on the amplitudes would have to be so large such

that it would have been readily obvious from the work of the APOKASC (Pinsonneault

et al., 2014) collaboration.
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(a) A distribution of single-only simulated
stars with an asymmetry induced by metal-
licity.

(b) The metallicity-residual relationship for
the single star only case shown in the left hand
panel.

Figure 4.11: The effect of a strong metallicity dependence on the residual distribution of
a synthetic population with no binary stars.

Figure 4.11 shows a simulation of purely single stars with a strong dependence on

metallicity introduced into the residuals. Notice that the asymmetry in the histogram of

residuals appears similar to that for real stars (see Figure 4.4), however it is appreciable

in the scatter plot that such a strong metallicity dependence would induce an obvious

correlation between these parameters, which is simply not present in the real sample. It

is therefore unrealistic for metallicity effects to be the cause of the asymmetry we see in

the real stars. In this work, we hence choose to include no such dependence on metallicity,

and therefore assume that it does not contribute the shape of the distribution.

4.4.4 ` = 1 suppression

In recent years, the appearance of missing or suppressed ` = 1 modes in intermediate

mass red giant stars has been attributed to strong interior magnetic fields (eg. Mosser

et al. (2012a), Garćıa et al. (2014) & Stello et al. (2016)). Clearly, if there is reduced

mode power due to this phenomenon, the variance will be reduced. However, since the

red giant branch stars used for this work are distinguished from the red clump by the

method described in Elsworth et al. (2017), stars that have very highly suppressed or

entirely missing ` = 1 modes are removed from the sample as the method relies on the
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detection of enough significant peaks in the power. Hence, the remaining stars that are

classifiable by this method do not a significant amount of ` = 1 suppression.

4.5 Beyond Asymmetry

Various measures were used to try and capture the asymmetry of the distribution. These

include Pearson’s moment coefficient of skewness, derived from the normalised third-

moment of the data, defined as

γ =
1

nxσ3

i=nx∑
i=0

(xi − x̄)3 (4.5)

(e.g Barlow (1989)), where we have nx data with standard deviation σ. An alternative

measure is based on finding the narrowest interval of the distribution which contains 68%

of the data, and comparing this to what we would expect for a normal distribution. In the

case of a symmetrical, normal distribution, we would expect 68% of the data to lie between

±1σ, with the same number of data lying above zero as lies below. Theoretically, assessing

the range over which 68% of the data lie in our asymmetric distribution and whether

there are more data above or below zero ought to allow some measure of asymmetry to be

made. In practice however, these tended to be degenerate, have no clear trend with binary

fraction or, due to the reliance on the standard deviation σ, were extremely sensitive to

outliers.

An alternative solution considered is fitting the distributions with a skew normal

distribution, defined by

f(x) =

[
1 + erf

(
αx√

2

)]
1√
2π
e−

x2

2 . (4.6)

This is a generalisation of the Gaussian case, with the additional shape parameter α

to account for the skew. As can be appreciated from Figure 4.12, an increase in binary

fraction does increase weight in the tail of the distribution, which on its own would
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increase the skewness, but it also causes the peak to become broader, hence leading to

the overall “shape” to appear less skewed, also excluding this as a useful way of measuring

asymmetry as a function of binary fraction.

It was decided that, rather than thinking of the distribution as a single skewed distri-

bution, it is helpful to view it as the sum of two distributions which are described by two

sets of parameters; one consisting of single, non-diluted stars, and the other of the stars

with a companion, all experiencing some level of dilution. This is hinted at in Figure 4.7.

In modelling our distributions in this way, we can now fit the overall distribution of real

stars with an appropriate model and determine the binary fraction with uncertainties in

a much more robust way. What follows is the method and results from this approach.

4.6 Bayesian Approach

It is helpful to think of the distribution of the residuals, as shown in Figure 4.4, not

as a single asymmetric distribution, but a mixture of two distributions with different

properties, one for the single stars, and one for binaries. As we have at our disposal

simulations of which we understand and can control all of the underlying properties, it

is possible to place constraints on what form those distributions are likely to take in the

real data. This idea of having prior knowledge about the data lends itself well to the

application of techniques based on conditional probability; measuring the likelihood of

an event, here a model with parameters m of a certain form fitting some observed data

(sometimes termed evidence) D, given some prior information I about the model, here

constraints on the values of model parameters based on our realistic simulations. Bayesian

inference computes the probability of the model being reasonable given all the information

we have. This can be represented in terms of other probabilities using Bayes’ Theorem,

following the convention from Basu and Chaplin (in the press):

p(m | D, I) =
p(m | I)p(D |m, I)

p(D | I)
(4.7)
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p(m | D, I) is the posterior probability, meaning the probability of the model with pa-

rameters m being appropriate for our observed data, D. This is the what we seek to

determine.

p(m | I) is the prior probability. This contains information on what we believe about

the parameters of the model, before considering the evidence. This can be used to place

common sense constraints on parameters, eg. disallowing negative heights when fitting

Gaussians to our distribution, and can also contain information on what values of param-

eters are sensible, here taken from our simulated populations. The exact priors used are

discussed below.

p(D |m, I) is the likelihood function. This essentially is the probability of observing the

evidence given the model is correct. The form of this is dependent on the statistics we

assume the observations to be distributed about the model values with. This is also com-

monly written as L(m).

p(D | I) is the global likelihood. As it is not a function of the model parameters m it does

not impact on assessing one set of model parameters against another and therefore we do

not consider this term.

Without the global likelihood, we take a Maximum A Posteriori approach, seeking to

find the set of parameters which will maximise

p(m | I)L(m) (4.8)

Using the simulations, we decide on a sensible form for a model, and place priors

on the parameters of the model. Using the emcee algorithm (Foreman-Mackey et al.,

2013) to implement a Markov Chain Monte Carlo method, we are able to sample the

various parameter spaces and estimate the posterior distribution of these and maximise

the likelihood function, subject to the priors we adopt. The form of the model, likelihood

and priors are discussed below.
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4.6.1 The Model

The model we fit to the real stars will be directly informed by those that fit the simulated

data. Figure 4.12 shows histograms of the residuals for the simulated data, with the two

underlying distributions for the single and binary stars shown, both of which approximate

Gaussian distributions reasonably well. The fit to the νmax-variance relationship and

calculating the residuals is performed in exactly in the same way described for the real

stars in Section 4.2. Then the residuals are separated according to whether they are singles

or binaries and made into two histograms. Gaussians are then fitted to them separately.

This suggests that a good model form for the distribution of the overall distribution of

these data could be described simply as

a =
Hb

σb
√

2π
e−(x−µb)2/2σ2

b +
Hs

σs
√

2π
e−(x−µs)2/2σ2

s . (4.9)

In this model, the binary fraction is then simply given by

Hbσb
Hsσs

. (4.10)
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Figure 4.12: Histograms of residuals for the simulated populations showing the two un-
derlying distributions corresponding to the single and binary stars and Gaussian fits to
them.
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This model form means we have six parameters to sample using the MCMC algorithm.

We now adopt priors that place constraints on the values these parameters can take, based

on the simulated data.

4.6.2 Priors

Assuming as we must that the simulations are a realistic representation of realistic popu-

lations of the given binary fractions, we can place constraints on the values the parameters

of the model can take, and include these in the Bayesian formulation as the prior prob-

ability. These priors can take any form, but for this problem, it is sufficient to use flat

priors, purely setting limits on the values that the parameters can take, and rejecting any

model that requires any parameter to fall outside of these limits. Some of these are purely

intuitive: not allowing the height or width of either Gaussian to be negative, for example,

and some come directly from the simple fits to each Gaussian shown in red and blue in

Figure 4.12. Figure 4.13 shows the values of the parameters of the fits to the simulated

distributions, and it is these we use to set our priors.
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Figure 4.13: Values of the six model parameters, ratios and differences as labelled. Red
denotes quantities for the distribution of single stars, blue that of binary stars and purple
are quantities which relate properties of the single and binary distributions.
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Parameter(s) Limits

Hs
>0
<80

Hb
>0
<60

σs
>0.065
<0.085

σb
>0.1
<0.11

µs
>0.0
<0.1

µb
>-0.1
<0.0

Hs

Hb

<3.0

σs + σb
>0.172
<0.182

µs − µb
>0.094
<0.106

µs
µb

>-3.0

Table 4.1: Priors for simulated stars with mass ratio distribution [0.9-1.0]

Limits are placed on the values of the six individual parameters, as well as the ratio

of the heights, preventing either the singles or binaries from dominating, the ratio of the

centres and the ratio and sum of the standard deviations, ensuring that the calculated

overlap of the distributions and their relative widths are consistent with the actual values.

These priors do not favour any particular binary fraction.

In the MCMC algorithm, as we do not impose a certain form on the priors (that is

the say that any allowed value is as likely as any other), we simply say that any model

which requires values of parameters outside of these does not fit the data. Some tests

were carried out with relaxed priors; the ranges allowed for the height and width of of

the two Gaussians that we fit can be allowed to be a little wider than those we show in

Table 4.1 and still produce acceptable results, however the results are very sensitive to

the ratios and differences between them. In these tests we therefore choose to restrict

the priors to those in Table 4.1. The last component of our Bayesian formulation is the

likelihood function.
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4.6.3 The Likelihood Function

We choose to maximise the likelihood using a least squares likelihood. Our histogram data

take a set of (x,y) values; the bin centres and the number of data in each bin, with some

uncertainty. The model, for the same y values is some function of x, and our six model

parameters m. The number of data in the bins are large enough that we can invoke the

central limit theorem and assume that our measured values xi are distributed about the

ideal model value f(xi,m) with Gaussian statistics. The uncertainty σi on the number of

data per bin is taken as the standard Poisson error
√
yi.

Taking all of this, the probability of measuring a particular number of values yi in a

bin centred on xi given model parameters m is

P (yi|m) =
1

σi
√

2π
e−[yi−f(xi,m)]2/2σ2

i (4.11)

We work with the logarithm of the likelihood for convenience

−1

2

∑[
yi − f(xi,m)

σi

]2

−
∑

ln σi
√

2π (4.12)

so to maximise the likelihood, we use the emcee algorithm to maximise

−1

2

∑[
yi − f(xi,m)

σi

]2

. (4.13)

This is a simple least squares likelihood (e.g Barlow (1989)), where we seek the set of

parameters m which minimises the weighted sum of the squared differences between the

model f(xi,m) and the data.

The emcee algorithm (Foreman-Mackey et al., 2013) implements a Markov Chain

Monte Carlo method. The algorithm samples the parameter space and provides estimates

of the posterior distributions of the various parameters. This is used to quickly test many

sets of model parameters and allows us to fully sample the allowed parameter space and

derive both the most likely values for the parameters as well as their uncertainties. What
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follows are the results of using this method to estimate the binary fraction for both our

simulated and real data.

4.7 Results

The results of this investigation naturally fall into two broad categories. In creating our

simulated fields, we must be able to trust that they are an accurate representation of a

real field, were it to have the same binary fraction, so we test the method described in

above on the simulated fields, and ensure that the algorithm recovers their binary fraction.

Only then do we implement the same method on the real stars to infer its binary fraction.
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4.7.1 Recovering the Binary Fraction of Simulated Distribu-

tions.

Figure 4.14: Optimum model for distributions of the simulated residuals of the binary
fractions from 20%− 80% determined by emcee.
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Figure 4.14 shows the optimum model determined by emcee for the distributions of the

simulated data according to the model form and priors described in the above section.

The data fitted by emcee are the same histograms as in Figure 4.6 with the
√
N error

bars shown on the count in each bin.

Since emcee samples the parameter spaces of the model, we obtain estimates of the

posterior distribution of each parameter, including the binary fraction, as described by

Hbσb
Hsσs

(4.14)

and the posterior distributions of the binary fraction for each input simulation are shown

in Figure 4.15. To ensure the parameter spaces are well sampled, emcee uses 500 ran-

dom walkers taking 750 steps to sample each parameter space. Ideally, these posterior

distributions are normally distributed.
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(a) 20% (b) 30%

(c) 40% (d) 50%

(e) 60% (f) 70%

(g) 80%

Figure 4.15: Posterior distributions for the binary fraction of simulated populations with
binary fractions from 20%− 80%
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The posteriors shown in Figures 4.15f and 4.15g are not as convincing as the distri-

butions for the other simulated fractions. The posterior distribution of the 70% binary

fraction simulation is truncated at the high tail of the distribution. This implies that the

priors are imposing a boundary on the sampling which is disallowing models which would

in fact be realistic for the data, however the result of the sampling still produces a clear

result on the fraction. The distribution for 80% is less convincing, however, being quite

degenerate across a wide range of possible fractions. Despite this, the median recovered

fractions do match the input values reasonably well, as we see below.

Table 4.2 shows the recovered binary fraction for each of the above simulated fields,

and their agreement with the actual input fraction. The recovered fraction is the median

value of the posterior distribution in Figure 4.15, and the uncertainty is the 68% confidence

interval.

Actual fraction Recovered Fraction Uncertainty Agreement
20 19.99 1.68 < 1σ
30 34.87 2.33 2.1σ
40 41.12 2.75 < 1σ
50 47.10 4.38 < 1σ
60 58.31 6.12 < 1σ
70 65.76 8.18 < 1σ
80 74.78 12.99 < 1σ

Table 4.2: Summarised results for simulated stars.

The agreement between the input and recovered binary fraction is generally good, all

bar one lie within 1σ of the actual value. Figure 4.16 shows the comparison of these

quantities more readily.
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Figure 4.16: Input binary fraction vs emcee determined binary fraction for the simulated
data. Error bars are the uncertainties for the 68% confidence interval and the dashed line
shows 1− 1 agreement.

Now that we are convinced that the algorithm can recover the correct binary fraction

reasonably well for the simulations, we can move on to applying the same method to the

real stars.

4.7.2 Inferred Binary Fraction for Kepler Stars

Having used the simulated fractions to inform the model, priors and to ensure that the

emcee routine recovers the true underlying fraction from the simulations reasonably re-

liably, it is then a case of running the routine with the same priors and assumptions on

the real stars. Figures 4.18 and 4.18 show the most probable model for the distribution

of the data, and the posterior distribution of the binary fraction.
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Figure 4.17: Optimum model distribution for residuals of Kepler stars.

Figure 4.18: Binary fraction posterior distribution for Kepler stars.

The inferred binary fraction for this sample of Kepler red giants is 57.4%±2.5%. This

assumes a uniform binary mass ratio distribution between 0.9 and 1.0, and no contami-

nation from suppressed � = 1 modes or background stars.
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νmax Dependence

We can also determine whether there is any significant effect on the inferred fraction as

the population evolves. νmax can act as a rough evolutionary proxy, since we know that

more evolved stars will tend to have a lower νmax. Here we split the sample in half about

the median νmax, Figure 4.19 shows the variance and sample residuals color coded for each

cohort. The distributions are different shapes, the higher νmax cohort is generally broader

and the lower νmax cohort is more peaked.

(a) Cut in νmax about median. (b) Residuals for two cohorts from panel a.

Figure 4.19: The Variance-νmax relationship and residuals colour coded according to νmax.
Blue points denote stars with a νmax less than the median, and magenta points denote
those with νmax greater than the median.

In repeating the same procedure used for the whole sample; obtaining priors from the

simulated fields with the same cut in νmax in place and running the MCMC sampler, the

binary fraction for each subset of stars is calculated, allowing us to test whether there

is any change in the binary fraction as stars evolve up the red giant branch. Figure

4.20 shows the fitted distributions for the low and high νmax groups, and the posterior

distributions of the binary fraction for each.
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(a) Model distribution, νmax > Median νmax (b) Model distribution, νmax < Median νmax

(c) Binary fraction posterior distribution,
νmax > Median νmax

(d) Binary fraction posterior distribution,
νmax < Median νmax

Figure 4.20: Results for the sub-cohorts with the cut about the median νmax.

The results for the two sub-populations dividing into lower and higher νmax are in

broad agreement with each other and the fraction for the whole population, as shown in

Figure 4.21.
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Figure 4.21: Binary fractions determined for real stars, for the whole sample and the
lower and higher νmax sub-cohorts.

A Note on The Binary Mass Ratio Distribution

As discussed in section 4.4.1 above, the mass ratio distribution of the binary population

has its own impact on the distribution, namely on the average amount of washout ex-

perienced by a given star and hence the average offset between the two components of

the distribution. This is a quantity that is outside of the scope of this work to seek to

determine, however it may be possible to place some level of constraint on it. In obtaining

priors from simulations with a binary mass ratio distribution uniform between [0.7− 1.0],

we can apply these to the real stars to determine if this has any effect on the binary

fraction we can infer, as the distribution from [0.9− 1.0] is an assumption we cannot be

sure of.
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(a) Model distribution. (b) Binary mass ratio posterior.

Figure 4.22: .
]Model distribution and posterior distribution recovered binary fraction for real stars,

assuming a binary mass ratio distribution uniform between [0.7-1.0].

Figure 4.22 shows the resulting model and binary fraction posterior distribution for

the real stars using this assumption for the mass ratio distribution. Focusing first on

the posterior distribution in Figure 4.22b, it is clear that the distribution is extremely

truncated, the priors disallowing models which may actually be good fits to the data. This

is also clear from the most likely model for the data as determined by emcee, shown in

Figure 4.22a. While this is a subtle effect,notice that the best model allowed by the priors

assuming a mass ratio between [0.7-1.0] does not capture the low tail of the distribution

at all well. This may be interpreted to mean that to model this distribution, priors which

allow for a wider separation between the single and binary distribution are needed, and

hence suggesting that the [0.7-1.0] uniform mass ratio distribution is perhaps unrealistic

for these stars, and that the mass ratio distribution must be closer to unity.

4.7.3 Conclusion

It has been suggested that a majority of main sequence stars are in multiple systems, while

late type stars are far more likely to be in single star systems (eg. Lada (2006)). Most

estimates of binary fraction come from spectroscopic surveys. These surveys tend to focus

on finding the single star fraction, as they can detect triple and quadruple systems, which

is outside of the scope of the simulations we use. In the study by Duquennoy and Mayor
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(1991), a spectroscopic survey of F7-G9 main-sequence stars in the solar neighbourhood,

once their various detection biases are accounted for, they find that 57% of systems have at

least one stellar companion; in excellent agreement with our figure for red giants, though

the assumptions about the binary mass ratios do differ.

Lada (2006) provides a discussion of the dependence on spectral type, concluding that

across all spectral types, most stars are likely single, however this is due to M dwarfs

being extremely common. Obtaining an estimated binary fraction that is broadly in line

with estimates from other methods is encouraging, though it is important to keep in mind

the limitations and assumptions of this study.

Having an estimate of the underlying binary fraction of the population is helpful in

large scale surveys such as Kepler. Population models are routinely used in predicting

and modelling the evolutionary, chemical and spatial properties of the Galaxy, and bi-

nary stars are excellent tests of physics, having formed at the same time and having the

same chemical composition, so being able to estimate how many of these systems may

be detectable with these surveys may guide the development of future research plans.

Similarly for the exoplanet detection community, knowing the fraction of the population

expected to be in binary systems may effect the predicted haul of exoplanets; while there

are examples of circumbinary planets, the dynamical effect of a binary star system on

an orbiting planet must be a consideration. Few detections of transiting exoplanets have

yet been made around giant planets, and work is ongoing into the thresholds of detection

for planets around giants (eg. North et al. (2017)). This is sensitive to the stellar noise,

which is impacted by the presence of a companion star. Any predicted number of possible

detections ought to include consideration of the underlying binary population, and the

method described in this chapter is effective and not reliant on any other observation than

the data used for transit detection.
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Chapter 5

Detection of Oscillations and

Determination of Seismic Parameters

The CoRoT, Kepler and K2 missions have yielded asteroseismic detections in thousands of

stars, and extracting the seismic information quickly, accurately and with minimal manual

input has become a neccessity. In this chapter, an oscillation detection method relying

on the now familiar variance metric is outlined, along with several methods of estimating

νmax and ∆ν and their uncertainties. Results for red giant stars will be presented on

data obtained by K2 and CoRoT as well as simulated power spectra created following the

method in Chapter 3.

5.1 Oscillation Detection

Recall from Chapter 3 that predictions of the oscillation power present in a star of a

given νmax are relatively trivial to make. In combination with a good estimate of the

background signal from the median filter described later in this chapter to estimate the

global signal-to-noise, it is possible to implement robust statistical tests to search for the

signatures of oscillations.
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5.1.1 Odds Ratio Test

We begin with a basic false alarm test. The frequency range in which most of the mode

power is contained is defined by νmax±δνenv as discussed in Chapter 3. The global signal-

to-noise SNRtot is the ratio of the total mode power to the total background power in

the mode envelope range. This SNRtot can be tested against χ2 2Ns - d.o.f statistics,

meaning we assume that the observed spectrum is distributed about the limit spectrum

(discussed in Chapter 3) with negative exponential statistics. There are Ns bins across

the frequency range which contributes to SNRtot. The false-alarm probability, or H0, is

computed, following Basu and Chaplin (in the press) according to:

P(SNR(νs),Ns | H0) =

∫ ∞
x

exp(x′)

γ(Ns)
x′(Ns−1)dx′ (5.1)

where x′ = 1 + SNR(νs). A low H0 value implies a implies a low probability that any

potential signal is a statistical fluctuation, and is therefore more likely to be an actual

power excess rather than a noise fluctuation. However, oscillations are not the only possi-

ble source of power excess, artefacts due to transits or instrumental effects can have very

high power spectral density above the background and thus suggest a detection according

to the H0 hypothesis. We can however improve on this. Since we can make a good pre-

diction of the signal-to-noise expected from a solar-like oscillator, knowing its apparent

magnitude (and hence expected shot noise power) as well as the other components of the

power spectrum, we can compare this to the SNR we observe in our power spectrum. The

H1 probability decides whether the observed SNR is consistent with the expected SNR:

P(SNR(νs), SNRpred,Ns | H1) =

∫ ∞
x

exp(x′)

γ(Ns)
x′(Ns−1)dx′ (5.2)

where x′ = (1 + SNR(νs))/(1 + SNRpred). Combining this with the H0 test, we can com-

pute the posterior probability of any power excess being due to modes, including our prior

knowledge of the expected variance and SNR, thus:
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P(H1 | SNR(νs), SNRpred,Ns) =

[
1 +

P(SNR(νs),Ns | H0)

P(SNR(νs), SNRpred,Ns | H1)

]−1

. (5.3)

Providing that the estimate of the background power is good, this is a robust test for

oscillation power. In testing for oscillations, it is helpful to think of running a window

through the power spectrum. For each frequency νs, we have an associated width of the

window δνenv; this is the FWHM of the mode envelope centred on νs

δνenv = 0.66ν0.88
s , (5.4)

and the observed SNR for this range is described by

SNRobs =

νmax−δνenv∑
νmax−δνenv

P (ν)

Nbins

− 1.0 (5.5)

where P(ν) is the median-normalised spectrum and Nbins is the number of bins in the

frequency window. Our predicted SNR comes from expressions given in Chapter 3 for

the smoothed Gaussian we can use to represent the mode power, an expression for the

granulation background, and the white noise measure near the Nyquist frequency. The

predicted SNR is simply the ratio of integrated predicted mode power

Pmodes =
νmax−δνenv∑
νmax−δνenv

2× 107νse

−(ν − νs)2

2σ2 (5.6)

to the that of the background, made up of the granulation:

Pgranulation =
νmax−δνenv∑
νmax−δνenv

2.475× (3090.0/νs
2)

(1 + (2πτν)2)
(5.7)

110



and the white noise component, taken as the mean value of the power between 270µHz

and 280µHz. Then

SNRpred =
Pmodes

Pgranulation +NbinsPnoise

(5.8)

where νs is the centre of the window being searched for oscillations. We can compute the

predicted and observed SNR for each frequency step we increase νs by. In repeating this

for the whole frequency range, the probability computed in equation 5.3 can be visualised

as shown in the lower panels of Figure 5.1.

Where this test statistic has a value close to unity is a clear indicator of the region of

oscillations. This automated test provides a quick and robust way to determine whether

oscillations are present, and also provides constraints on the regions of frequency in which

the pipeline will search for the values of νmax and ∆ν. Since this relies on an accurate

determination of the observed signal to noise ratio, we must be sure that our background

estimation is good in order to preserve the mode signal and hence an accurate signal to

noise.
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Figure 5.1: Upper panels show the power spectra of our six K2 stars with the background
profiles in black. The lower panels show the detection statistic which very clearly shows
the region where the oscillations lie.

5.2 Background Estimation

While the obvious approach may be to fit the power spectrum in order to extract the

background, for this quick automated test we would prefer a quicker, less computationally

expensive option. It is crucial that the method chosen successfully separates the modes

from the background.
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5.2.1 Moving-Median Filter

An inexpensive way to estimate the background signal is using a moving median filter of

a width such that the mode signal is essentially removed, allowing for the mode power

and background signal to be separated, and estimates of the global signal-to-noise ratio

that are required for the above detection test to be made simply. The moving-median

method to find the mean background power is preferable to a moving-mean filter, so

it is relatively unaffected by the high peaks in the power spectrum over the region of

frequency containing the oscillation power. The mean power can be estimated from the

moving median with the simple normalisation

Bmean =
Bmedian

ln2
(5.9)

assuming that the data are distributed with χ2 2-degrees of freedom. This filter is applied

in log-log space, and interpolated back to the linear. Figure 5.2 shows the background

obtained from this moving median filter for 6 K2 stars with oscillations across the Kepler

long cadence frequency range.
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Figure 5.2: Upper panels show the power spectra of the same six K2 stars as in Figure 5.1,
with the background profiles obtained by the fixed-width moving median filter, shown in
blue. Lower panels are the median-normalised power spectra for these same stars. The
power excesses due to the oscillation modes are clearly visible, however note the spurious
excess at high frequency for the fixed-width filter, shown in blue.

This particular filter has a width of 0.4 dex, and suffers from an issue at high frequency

when it runs out of bins to perform the moving-median. This is problematic for the

detection step described above, since the incorrect background leaves a region of high

signal-to-noise close to the Nyquist frequency, and this in turn impacts the test statistic,

and gives an incorrect estimate for where we ought to search for νmax and ∆ν. Figure 5.3
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shows the test statistic for the background profile as determined using the fixed width

filter. While the oscillations of this star are in reality centred at around 30 µHz, there

also appears another region where the statistic is unity, close to the Nyquist frequency.

This is a false detection due to the poor background approximation made using the fixed

width filter.

Figure 5.3: The same statistic as shown in the lower panels of Figure 5.1 using the fixed
width moving-median filter. The region of high frequency where this statistic is unity is
due to a poor background approximation, as shown in Figure 5.2

Clearly, this causes false-positive detections, and incorrect identification of the fre-

quency of the oscillations. This can be avoided however.

5.2.2 Variable Width Filter

An improvement to this filter is to decrease the filter width with increasing frequency.

This minimises any rise in filtered power due to the presence of the modes, as well as

succeeding in obtaining a good background estimate at high frequency. The form of this

filter width with frequency is fairly arbitrary, by testing different fixed filter widths on

power spectra of stars with a range of frequencies and requiring there to be a smooth

change with frequency, we arrive at the form shown in orange in Figure 5.4, which proves

to work well.
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Figure 5.4: Filter widths in dex across the K2 frequency range. The blue profile shows
the fixed-width filter, and the orange the variable-width filter. The form of this is fairly
arbitrary, but performs well for stars exhibiting oscillations across the entire range.

Figure 5.5 shows the resulting background profile for our six K2 stars using the vari-

able width moving median filter. The lower panels show the median-normalised power

spectrum for both of these filters. Now, this residual power spectrum contains the oscilla-

tion power excess above the background with minimal reduction of the power due to the

filter, and the remaining background power consists of only the random noise component

(Anderson et al. (1990), see Chapter 3) outside of frequency region of the oscillations. The

excess at high frequency resulting from the fixed-width filter is now removed, in contrast

to the fixed width filter case shown in Figure 5.2.
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Figure 5.5: Upper panels show the same six K2 stars as in Figure 5.1, with the background
profiles obtained by the variable-width moving median filter, shown in orange. Lower
panels are the median-normalised power spectra for these same stars. The power excesses
due to the oscillation modes are clearly visible.

With an identified region of frequency we now trust to contain the oscillations, we can

go on to determine some global seismic parameters.
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5.3 ∆ν Estimation

One of the basic asteroseismic quantities we are now familiar with is the average large

separation ∆ν, and extracting this from observations is essential in determining the mass

and radius of the star. This section will describe two methods implemented in this pipeline

for determining ∆ν with uncertainties.

5.3.1 PSPS

We are accustomed to the power spectrum showing how power is distributed across fre-

quencies, and we can take the power spectrum of the power spectrum (referred to as PSPS

here) to find the frequency spacings between repeated features in the power spectrum. As

we know, ∆ν is the average spacing between modes of the same degree ` and consecutive

order n. The dominant spacing in the power spectrum of solar-like oscillators is in fact

∆ν/2, since ` = 1 modes lie approximately halfway between the frequencies of the ` = 0

modes.

Since our detection test statistic not only determines whether or not there is a signature

of oscillations present, but also tells us where in frequency we expect the oscillations to

lie, we can use this to constrain the frequency range we search for ∆ν. We define some

frequency νcen, as the frequency at the median bin where the test statistic is greater than

0.95. This νcen acts as our rough estimate for νmax, and we then compute the PSPS over

the frequency range centred on νcen, which is defined as

νcen ± δνenv (5.10)

where

δνenv = 0.66ν0.88
cen . (5.11)

following Mosser et al. (2012a). For this portion of the power spectrum, we compute an

oversampled PSPS and choose a small region over which to search for the peak at 2/∆ν

118



based on the expected ∆ν for the centre of the region of frequency, following the Mosser

et al. (2012a) definition

∆νguess = 0.276ν0.751
mid . (5.12)

Searching within the range of 0.8-1.2 ×2/∆νguess, the frequency at which the PSPS is

greatest is marked and we can then estimate ∆ν. Figure 5.6 shows the result of applying

this method to the same six K2 stars as previous plots. It is clear that there are other

peaks within the PSPS, owing to the presence of other repeating features in the power

spectrum, for example the ∆ν spacing between consecutive modes of the same degree

`, the spacings between higher order modes and to a lesser extent, any mixed mode

signatures. However, the 2/∆ν spacing dominates.

Figure 5.6: The PSPS of the six example stars. The dashed lines show the range over
which we search for the maximum PSPS.

In obtaining the uncertainties on this value, the error on calculating the centroid of
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the peak is used. This is essentially the standard error on the mean;

SE∆ν =

√
1

N

∑(
ν −

∑
νiPSDi∑

Ii

)2

(5.13)

Another option for using the PSPS to provide our determination of ∆ν is to fit the above

peak as a Gaussian and take the centre of this to be the estimate of ∆ν/2. In practice

this agrees extremely well with the estimate given by the maximum PSPS.

5.3.2 The “Red or Blue” Mask Method

Aside from methods based on using the PSPS to search for the frequency intervals of

repeated features, we can search for peaks due to indivdual modes directly in the residual

power spectrum based on some prediction of where we expect them to be. Familiar as

we now are with the structure of a solar-like oscillation spectrum, we know that ` = 0

modes, centred on νmax are separated by ∆ν, and halfway between each of these modes

lies a region of ` = 1 modes. We can use this to identify frequencies of peaks that lie close

to where we expect.

Relying again on the identification of νcen from the detection test, we can define a

range of frequency in which to search for peaks. It is reasonable to search over the same

range over which we define our variance metric and signal to noise measures, defined by a

central frequency, and the expected full width at half maximum of the Gaussian envelope

modulating the modes

νcen ± δνenv (5.14)

Over this range, we identify the highest peak, and assume that it is an oscillation mode.

We then anchor our priors; our predictions for where the modes ought to be, to the

location of this peak. We would expect to find further modes at every 0.5∆ν around the

location of the maximum, corresponding to the locations of the ` = 0 and ` = 1 modes.

We will in fact consider two separate sets of priors, one for the ` = 0 regions and another

for the ` = 1 regions, both within ±4∆ν of the maximum.
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The first set of priors are centred on the frequencies n-times-∆ν away from the highest

peak, and the second set are offset by 0.5∆ν. Which one corresponds to modes of ` = 0

of ` = 1 is not important at this point. These priors inform where we expect to detect

the modes, and take a Gaussian form with a width of a small fraction (here 0.2) of ∆ν

Pprior,i = e

−(νi∆ν − ν)2

0.4∆ν2 (5.15)

and these are capped at unity. The false alarm probability depends on the number of

bins being considered. Here we follow Basu and Chaplin (in the press) and decide it is

reasonable to search for modes in ∆ν-sized ranges of frequency, since we expect to be

able to detect several modes in a range this size. Therefore we consider the false alarm

probability given we are searchingN = ∆νT bins, where T is the length of the observation.

The false alarm probability is, as in Equation 5.1, tested against χ2 2-degrees-of-freedom

statistics, that is to say that for a spike with power P (ν) relative to a mean background

level 〈P (ν)〉,the probability of detecting that spike by chance is

p(sν) = e−sν (5.16)

where

sν =
P (ν)

〈P (ν)〉
. (5.17)

The probability we do not detect a spike in any one bin is 1 − p(sν), and, as we are

searching N bins, the probability we do not detect any such spike in any of our N bins

is simply [1− p(sν)]N , and therefore our chance of observing any such spike in any of our

N bins, and our false alarm probability is given by

Pfalse = 1− [1− p(sν)]N . (5.18)
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Putting all of this together, the criterion for detecting a mode is simply

PpriorPfalse ≥ Pthresh (5.19)

that the product of the prior and the false alarm probabilities meet some threshold, here

we choose 0.8. This threshold was chosen to allow the detection of marginal cases, which

are more common in the lower signal-to-noise datasets of K2 and CoRoT as compared to

Kepler, while not producing an unacceptable number of unreliable detections.

For ease of reference, the two sets of priors are treated separately and referred to as the

“red” and “blue” masks. Figures 5.7 and 5.8 show, for the same six stars, the locations

of the centres of the two sets of priors, and the modes identified by this method.

Figure 5.7: The first set of priors, centred on frequencies ±i∆ν relative to the maximum
peak. The black lines show these frequencies, and the priors themselves are shown in red.
Peaks which pass the false alarm test are marked by red dots.
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Figure 5.8: As in Figure 5.7, but with priors centred on the dashed lines lying at ±i∆ν+
0.5∆ν relative to the maximum peak.

To get our estimate of ∆ν from this, we first need to mark the relative order n of these

frequencies. Following Kallinger et al. (2012), we recall the asymptotic relation for the

p-modes

νnl = ∆ν

(
n+

l

2
+ ε

)
+ δνll+2(n). (5.20)

and that for radial modes we have

νn0 = ∆ν(n+ ε) (5.21)

i.e., modes are at frequencies modulo the large separation ∆ν, with exact locations fixed

by the constant ε. It therefore follows that we may estimate ε using

ε =
νnl

∆ν
mod 1 (5.22)

In practice, for consistency with solar-type stars we need to add an extra factor of unity

to get the correct match to the order n if ∆ν > 3µHz and ε < 0.5. Having an estimated

123



epsilon we can derive a relative order n

n =
νnl − ε∆ν

∆ν
. (5.23)

This is not the actual order n, here it is unimportant, we only need the order of modes

relative to each other. Then our new estimate of ∆ν comes from a simple linear fit between

the relative order and frequency, where the gradient of this line is ∆ν. Figure 5.9 shows

the result of this for our six K2 stars.

Figure 5.9: The result of the linear fit to the frequencies and relative order for the two
sets of priors.

The uncertainty on the value of ∆ν simply comes from the uncertainty on the fit.

5.4 νmax Estimation

We are by now familiar with the modes of oscillation being modulated by a Gaussian

envelope, so it is fairly intuitive, when attempting to find the frequency that the modes

are at their maximum power, to fit a Gaussian to the power excess in the relevant frequency

range. We fit to the median-normalised power spectrum here, as, given our background
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approximation is good, it represents the power excess due to the modes well, and simplifies

the fitting process owing to not having to consider a frequency dependent background

component. We fit a function of the form

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

+ koffset (5.24)

allowing for some flat background koffset. The median-normalised power spectrum data

are binned according to a few overlapping averages per ∆ν. This reduces the random

noise while retaining the form of the peak we are trying to fit. The error bars on the

fitted points shown in Figure 5.10 are simply the uncertainties derived from the binned

data, and are included as weights for the fit.

Figure 5.10: νmax determined using the PSPS method for the six stars.

The location of the peak of the best fit Gaussian provides our estimate of νmax. Figure

5.10 shows the result of this for our six representative K2 stars.
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5.5 Results

Here, results on simulated spectra and data from CoRoT and K2 are presented. The

CoRoT and K2 results are compared to values obtained by other pipelines, while for the

simulations the correct values exist. Discussion of the uncertainties and the success in

recovering the parameters accurately follow.

5.5.1 CoRoT

The CoRoT data used here are from the long cadence observations of the LRc01 exofield.

All are red giants, and this list contains 345 stars. In the case of CoRoT, only the

frequency range < 100µHz is tested for signatures of oscillation, due to the presence of

strong instrumental artefacts at higher frequencies due to the spacecraft passing through

the South Atlantic Anomaly (see Chapter 2.) The results are are compared to values

obtained by Mosser (private communication), see Mosser and Appourchaux (2009) for

discussion of this pipeline.

(a) νmax (b) ∆ν

Figure 5.11: Results on 319 CoRoT LRc01 stars returned to the CoRoT ExoGiants col-
laboration. These are shown compared to results obtained by Mosser. The black line
shows the 1-1 relation,and serves to guide the eye.

The pipeline returns results for 319 of the 345 stars. The ∆ν results shown in Figure

5.11 are taken from the PSPS method, and agree well with the values from the other

pipeline. The νmax values are generally high relative to the other pipeline, but did not fall
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outside of the range of values obtained by other pipelines in the collaboration that also

returned results on these stars (Montalban, private communication).

(a) Normalised difference νmax. (b) Normalised difference ∆ν.

Figure 5.12: The error-bar normalised difference between the νmax and ∆ν values obtained
by this pipeline and that of Mosser and Appourchaux (2009).

In determining whether the errors obtained by the pipeline are representative of the

true uncertainty, it is helpful to look at the difference between the “true” value and the

computed value normalised by the error bar;

νmax, pipeline − νmax, true

σνmax, pipeline

(5.25)

The standard deviation of this quantity ought to be close to unity if the error bar is

representative of the scatter in the data. Unlike the simulated stars, the real stars do not

have a true (error free) value to compare to, and so we would expect the width of this in

the real stars to be somewhat wider. Figure 5.12 shows this for both νmax and ∆ν and

this is indeed what we see. Figure 5.13 shows a direct comparison of the 1-σ uncertainties

of the two pipelines and they are broadly consistent.
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(a) Uncertainties on νmax. Green bars are the
values from this pipeline, grey are those from
the work by Mosser.

(b) Uncertainties on ∆ν. Purple bars are the
values from this pipeline, grey are those from
the work by Mosser.

Figure 5.13: Uncertainties on νmax and ∆ν.

The results (shown in Figure 5.14) of the red-blue mask method also show good agree-

ment with values from the Mosser pipeline, albeit with fewer stars returning results.

(a) 233 ∆ν values returned by the red mask. (b) 149 ∆ν values returned by the blue mask.

Figure 5.14: ∆ν values returned by the linear fits to frequencies and relative order.

A useful visual for the results is to plot the relationship between νmax and ∆ν. The

theoretical relation is given by

∆ν = 0.276ν0.751
max . (5.26)

Figure 5.15 shows this relation for the pipeline described in this chapter, alongside that

of the Mosser et al. pipeline. They both visually are very similar, and the χ2 values of

the fits are comparable.
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(a) νmax−∆ν relationship for the pipeline de-
scribed here. χ2 = 11.23

(b) νmax − ∆ν relationship for the Mosser et
al. pipeline. χ2 = 9.73

Figure 5.15: νmax −∆ν relationship for our pipeline, and that of Mosser et al. The solid
line shows the theoretical relationship given by Equation 5.26.

5.5.2 K2

The following are part of the work towards results contributed to the K2 Galactic Arche-

ology project, and published in Stello et al. (2016). Similarly to the CoRoT results, they

are compared to results from another pipeline described in Kallinger et al. (2016) and

Stello et al. (2017) (private communication).

(a) νmax (b) A zoomed in version of panel a, showing
only values with the best agreement.

Figure 5.16: numax results on 1051 K2 C1 stars. The y-axes show the differences between
the results obtained by our pipeline and those reported by Kallinger et al.

The agreement between the results for the two pipelines for the K2 data (as shown

in Figures 5.16 amd 5.17) is again generally good. For the relatively few stars where the

pipelines disagree dramatically, the pipeline, despite accurately identifying the region of
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(a) ∆ν (b) A zoomed in version of panel c, showing
only values with the best agreement.

Figure 5.17: ∆ν results on 1051 K2 C1 stars. The y-axes show the differences between
the results obtained by the PSPS method in our pipeline and those reported by Kallinger
et al.

frequency of the oscillations failed to fit one or other of the parameters correctly in cases

of low SNR. In practice these results would be removed from any sample returned to a

collaboration. Figures 5.18 and 5.19 show the results for the red-blue mask method. As

expected, this method returns fewer values but has in general a good agreement with the

Kallinger pipeline. Since the ∆νguess used to lay down the priors on the red and blue

masks is based on the PSPS value, it is not surprising that similar incorrect values are

returned by this method.

(a) 374 ∆ν values returned by the red mask. (b) A zoom of panel a, excluding the values
which depart the most.

Figure 5.18: The difference between ∆ν values returned by the linear fits to frequencies
and relative order using the red mask, and those returned by Kallinger et al.

Figure 5.20 shows the relationship between νmax and ∆ν output by both pipelines
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(a) 241 ∆ν values returned by the blue mask. (b) A zoom of panel c, excluding the values
which depart the most.

Figure 5.19: As Figure 5.18, but using the blue mask.

depart in a very similar fashion from the theoretical relationship, as is expected for stars

observed by K2. This is due to the underlying population of stars being slightly different

to the Kepler field, on which this relation is based.

(a) νmax −∆ν relationship for our pipeline. (b) The same, for the Kallinger pipeline.

Figure 5.20: νmax−∆ν relationship for our pipeline, and that of Kallinger et al. The solid
line shows the theoretical relationship given by Equation 5.26.

5.5.3 Simulated Spectra

Below are results for 420 simulated spectra at the frequency resolution of K2. The results

for νmax shown in Figure 5.21 do seem to display a slight overestimate of the parameter at

low frequency and an underestimate at higher frequencies. For the very largest departures

this discrepancy is of the order of 15%. This was reported when returning results to

collaborations, and it did not seem that this systematic error caused the pipeline to
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underperform relative to others, however, the reason for this is a cause for some concern

and would benefit from further work in the future.

Figure 5.21: The difference between input νmax output νmax for simulated K2 stars.

The picture for ∆ν is much better, however. As well as displaying good agreement

with other pipelines for real data, the recovery of the correct simulated ∆ν is excellent

for all methods, as shown in Figure 5.22.

(a) ∆ν from PSPS for simulated K2 stars.

(b) ∆ν from red mask for simulated K2 stars. (c) ∆ν from blue mask for simulated K2 stars.

Figure 5.22: The difference between input ∆ν and output ∆ν for simulated K2 stars.
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For these ∆ν values, we of course do have the correct result. This provides a good

test of the uncertainties. The normalised difference

∆νpipeline −∆νactual
σ∆νactual

(5.27)

is informative on how well the output uncertainties represent the true underlying scatter.

Figure 5.23 shows histograms of this quantity for the PSPS and red/blue mask results.

This lends confidence to the obtained uncertainties, since the standard deviation of this

quantity is indeed close to unity for all methods.

Figure 5.23: The normalised difference for simulated K2 stars. Recall that if the error
bars output by the pipeline are representative of the uncertainty on the measurement, we
would expect the standard deviation of the normalised difference, and hence the width of
these histograms to be unity.
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Chapter 6

Variance in the Red Clump

In Chapter 3 we see that the variance of red giant branch stars has a different relationship

to νmax than red clump stars. This chapter describes attempts to simulate these stars in

the same way as the RGB stars, and a discussion of what properties of the star lead to

this.

Recall the discussion of stellar evolution in Chapter 1. Red giant stars are in a late

phase of their evolution, having exhausted the supply of hydrogen in their cores, and

begun fusing hydrogen in a shell around their core. Low mass red giants go through the

helium flash due to runaway nuclear fusion in their degenerate cores becoming hot enough

to begin fusing helium. Slightly higher mass stars have core masses large enough to begin

helium fusion without the core having to become degenerate. Core helium burning stars

are classified into two “clumps”, depending on which of these regimes they fall into, the

lower mass population forming what is generally referred to as the red clump, and the

higher mass, the secondary clump.

The different internal structure of these outwardly very similar stars obviously impacts

on the oscillations observed, as their propagation through the interior is effected. The

échelle diagram Figure 6.1 shows this in a visual way. This very clear difference in the

structure of the dipole modes is induced by the period spacing of the g-modes and hence

the coupling with the ` = 1 p-modes. The physical reason for this is that during the first
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core helium burning phase (generally referred to as “the red clump”), the core expands

and the outer envelope expands, increasing both ∆ν and ∆Π.

Figure 6.1: Example of échelle diagrams for stars at different evolutionary stages; from
the top left, a main-sequence star 16 Cyg A, a subgiant, two RGB stars and an RC star.
KIC 3100193 and KC 7522297 have very similar surface properties but have very different
` = 1 mode structure. Image from Chaplin et al. (2013).

Chapter 3 described in detail how the frequencies and heights of these mixed modes

are dependent on the coupling between the p- and g-modes in the star, and it is the

considerably higher period spacing for the core helium burning stars that induces the

differences in the ` = 1 structure that we observe. Simulating modes with these different

properties is key to attempting to reproduce the different relationship between variance

and νmax we see for red giant branch and red clump stars, and understanding what process

it arises from, since the granulation and mode power both contribute.
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6.1 Simulating modes in the Red Clump

Chapter 3 described in detail how the mixed modes present in red giant branch stars are

simulated, including their frequencies, degree of coupling between the p- and g-modes

and how the heights and linewidths are modified. All of these are dependent on their

g-mode period spacing ∆Π. Recall that the red giant branch period spacings are assumed

to follow a linear relationship with ∆ν, described by Equation 3.34. The situation for

red clump and secondary clump stars is very different, as shown in Figure 6.2, displaying

period spacing data from Mosser et al. (2014). Red Clump stars have much higher period

spacings than RGB stars for a given νmax.

Figure 6.2: ∆Π vs ∆ν data for Kepler red giants from Mosser et al. (2014). Red Giant
Branch stars are shown in red, red clump stars in blue and secondary clump stars in
green. Solid black lines show best linear fits for each evolutionary state, and the dotted
lines show the upper and lower limits used in generating synthetic ∆Π values, as described
by Equations 6.1 - 6.4.

To reproduce this observed behaviour in the artificial data, a linear fit is performed for

each evolutionary state separately, then the ∆Π value is distributed uniformly between
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an upper and lower limit defined by this fit line, described by the equations;

RClow = 10.8∆ν + 250.7− 70 (6.1)

RChigh = 10.8∆ν + 250.7 + 45 (6.2)

2RClow = −31.5∆ν + 474.8− 50 (6.3)

2RChigh = −31.5∆ν + 474.8 + 40 (6.4)

The result of calculating red clump period spacings by randomly distributing them be-

tween these limits using the observed ∆ν values of the real stars from Mosser et al. (2014)

is shown in Figure fig. 6.3a. Given the small number of stars, this approximates the real

values reasonably well. Figure fig. 6.3b shows the same plot for a population of simulated

stars from TRILEGAL (see Chapter 2) which acts as our synthetic Kepler field. The

higher density of points here is entirely due to the TRILEGAL field having more stars

than the Mosser et al. (2014) data. The distribution for both panels of Figure 6.3 is the

same.

(a) Period spacing calculated from observed
∆ν for the same real stars.

(b) The same plot for simulated stars from
TRILEGAL.

Figure 6.3: Simulated period spacings following Equations 6.1 to 6.4.

We go on to simulate power spectra for the TRILEGAL stars using the values of

∆Π obtained from these relations, and the formulation as described in Chapter 3. The
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properties of the � = 1 mixed modes are governed by the period spacing, and as such

we expect the simulated power spectra to be appreciably different for outwardly similar

stars, as for the real stars in the échelle diagram in Figure 6.1. It is helpful at this point

to look at the diagnostic plot of the bulk properties of the mixed mode parameters as

we did in Chapter 3. Figure 6.4 shows the coupling parameter Q1, the number of � = 1

mixed modes per order, and the total power present in both the � = 1 modes and modes

from � = 0, 3 in units of total � = 0 power, ensuring that the power levels are consistent

with a mixed mode free realisation.

Figure 6.4: � = 1 mixed mode diagnostics for red clump and secondary clump stars.
The grey plot shows these same quantities for RGB stars of the same νmax. Top panel:
the inertia ratio Q1 for each mixed mode simulated. The values for modes of 16 different
simulated stars are shown in different colours. Middle panel: The number of mixed modes
per order, plotted against nominal � = 1 frequency. Bottom panel: A sanity check for
power levels. Coloured stars show the total power in units of � = 0 power for the mixed
mode simulations, black circles for the pure p-mode case. Coloured diamonds and black
crosses follow the same convention for the ratio of � = 1 power to � = 0 power.

Notice that Q1 in the red clump regime, while displaying similar behaviour to the

that of an RGB star, is appreciably lower. This in turn results in a lower number of

modes per order for stars of the same frequency. Q1 also dictates the frequencies, heights

and linewidths of the mixed modes. Figure 6.5 shows the oscillation spectra and échelle

diagrams of 2 simulated stars with the same νmax but one has a typical RGB period

spacing, while the other has a red clump period spacing.
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(a) Simulated mode spectrum of an RGB star. (b) Simulated mode spectrum of an RC star.

(c) Échelle diagram of an RGB star. (d) Échelle diagram of an RGB star.

Figure 6.5: The appearance of mixed modes in the spectra and Échelle diagrams of two
simulated red giants of the same νmax but different evolutionary states.

Again, it is the échelle diagram which illustrates most clearly the difference in the ` = 1

modes under the two different period spacing regimes. There are far fewer modes in the

red clump star, and they are much less densely distributed in frequency. Besides the period

spacing governing the properties of the ` = 1 mixed modes, all other mode parameters

(such as p-mode visibilites, nominal frequencies, linewidths) remain the same between

RGB and red clump stars. Since RGB and clump stars do have different distributions

of luminosity, temperature and mass, all parameters that are in the scaling relations for

Amax, ∆ν, and νmax, there ought to be slightly different distributions for these values, but

the dependencies are not changed in these simulations. In any case, it is an interesting

exercise to study the effect of only changing the period spacing on the relationship between

variance and νmax. Of course, both modes and the granulation background contribute to
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the variance metric we have worked with throughout this thesis.

6.2 The Granulation Background Contribution

The granulation parameters of red giant branch stars are spread over a much larger range

than those of red clump stars. This is intuitive, since, as discussed in Mathur et al. (2011),

red clump stars occupy a much more narrow range of temperature, luminosity and hence,

νmax. The granulation model used for our simulations is “model H” from Kallinger et al.

(2014), and does include a mass dependency, and so we would expect the granulation

contribution to the variance for the red clump stars to be impacted accordingly. Kallinger

et al. (2014) does show a deviation from the power law relationship for an amplitude

parameter in their model which approximately falls in the νmax range occupied by the

clump and secondary clump.

In the absence of separate relations for the granulation parameters of clump stars, we

leave any differences in the model parameters down to the dependencies on the physical

parameters of the star. Figure 6.6 shows the mass distributions for the simulated TRILE-

GAL stars used, colour coded for evolutionary stage. This clearly shows the higher mass

regime of the secondary clump: recall these are the evolved red giants who have a core

mass high enough to ignite helium burning without the core becoming degenerate.
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Figure 6.6: Histogram of masses of simulated stars. Purple shows RGB stars, cyan shows
the first red clump and green, the secondary clump.

The most clear feature in this is the generally higher mass for the secondary clump

stars, while the clump and RGB stars have reasonably similar mass distributions. Since

the granulation background model does have a mass dependent term, the evolutionary

stage will have an effect on the contribution of the granulation to the variance, particularly

for secondary clump stars. We now go on to look at the results of simulating the variance,

mode power and granulation power for these three evolutionary states, and comparisons

with those for real stars.

6.3 Results

The relationship between a bandpass filtered estimate of the stellar variance and νmax has

been a recurring theme in the work contained in this thesis. We noted in Chapter 3 that

the slope of the approximate power law relationship between these quantities is different

for the hydrogen shell burning red giant branch stars and the core helium burning red

clump and secondary clump stars. Exactly the same method for measuring the filtered

variance used in all previous chapters was also used here; integrating the power density

spectrum over the frequency region centred on νmax which contains the oscillation power,
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including the contribution from the granulation background. Figure 6.7 shows variance

against νmax coloured by evolutionary state from the power spectra of both real and

simulated stars, and comparison of power law fits to these.

(a) Variance vs νmax for real Kepler giants.
Blue denotes RGB, red, clump stars and or-
ange, the secondary clump.

(b) Variance vs νmax for simulated giants.
Purple denotes RGB, cyan, clump stars and
green, the secondary clump.

(c) Power law fits to the colour coded data
above.

Figure 6.7: Variance-νmax relationship for real and simulated populations.

Recall that the only different formulation in the simulations is the period spacing in

the clump stars. The slopes of the relationship for clump stars and RGB stars in the

simulation are noticeably different, in fitting the relationships with power laws, we find

that the the variance of RGB stars goes as ν−1.59
max while for the clump, this relation is

ν−2.18
max . The secondary clump relation goes as ν−1.77

max , closer to the value for the RGB than

the secondary clump, as is the case for the real stars, though the real secondary clump

variance falls off more quickly with νmax, and the real secondary clump stars have a lower
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coefficient, as is clear in the plot, these stars sit firmly below the RGB relation, where

this is not the case for the simulations.

The parameters of all the power law fits in this section are contained in Table 6.1,

and also power laws drawn of the fits for the real and simulated quantities are shown,

allowing for more clarity in visually comparing the slopes than simply showing the data

on the same plot. The exponents of the simulated and real red giant branch stars are

broadly consistent with each other for the variance, as well as the modes and background

contribution, lending confidence to the assumption that any discrepancies between the

exponents of the simulated and real clump stars are the result of departures from the RGB

scaling that are not accounted for in the simulations. We may conclude that the different

behaviour observed in the variance can be at least partly explained by the different period

spacings observed at the same νmax.

It is helpful, alongside the variance scaling, to also quantify the slopes of the integrated

background and mode contributions separately, as the only change we have made is in

the simulation of the modes. The background profile is of course known for the simulated

stars, while for the real stars, we rely on a median filter as described in Chapter 5. This

can sometimes remove a small amount of power from the modes, but as Figures 6.7c, 6.8c,

6.9c and Table 6.1 show that the simulated and real RGB profiles are all consistent with

one another, and there is no reason for any issue with the background filter to effect the

clump stars differently, we can assume that the background estimation is not responsible

for any difference in the slopes.
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(a) Mode power vs νmax for Kepler giants.
Colours as in Figure 6.7.

(b) Mode power vs νmax for TRILEGAL gi-
ants. Colours as in Figure 6.7.

(c) Power law fits to the colour coded data
above.

Figure 6.8: Integrated mode power-νmax relationship for real and simulated populations.

The fits to the mode power for the secondary clump and the RGB in the real stars

have the same exponent of ν−1.70
max , though the red clump stars have a considerably lower

coefficient against the branch stars. This is not replicated in the simulations, however the

first clump exponents for the real and simulated stars are comparable, going as ν−2.22
max and

ν−2.53
max respectively. This suggests that there are properties of the power spectrum of the

secondary clump stars which are different from both the RGB and the first clump. Figure

6.8b shows the slopes of all the quantities are reasonably consistent between the real and

simulated stars, suggesting it is the different coefficients which are the main contributor

to the mismatch between the real and simulated data.
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(a) Background power vs νmax for Kepler gi-
ants. Colours as in Figure 6.7.

(b) Background power vs νmax for TRILEGAL
giants. Colours as in Figure 6.7.

(c) Power law fits to the colour coded data
above.

Figure 6.9: Integrated granulation power-νmax relationship for real and simulated popu-
lations.

The slopes of the background contribution to the variance are consistent between the

real and simulated stars for the RGB and secondary clump, though the simulation seems

to overestimate the absolute value of the integrated power at a given frequency. The red

clump relationship, however, is not captured well by the simulations. This suggests that

the mass dependency of the granulation amplitude (M−0.26) described in the Kallinger

et al. (2014) model does not necessarily capture the difference between RGB and clump

stars adequately purely based on their different mass distributions. A measure of the

background value at νmax by Mosser et al. (2012a) has a much stronger mass dependency

of M−3.0, though this is not something we can translate into the background profile across

145



10aν−bmax

Variance Modes Background
Real RGB 7.51;1.54 7.52;1.70 7.01;1.44
Simulated RGB 7.58;1.59 7.35;1.61 7.07;1.48
Real Clump 8.73;2.35 8.22;2.22 8.62;2.47
Simulated Clump 8.56;2.18 8.58;2.35 7.85;1.96
Real Second Clump 7.50;1.65 7.27;1.70 7.16;1.63
Simulated Second Clump 7.87;1.77 7.74;1.86 7.29;1.63

Table 6.1: Parameters of power law fits to the listed properties of real and simulated stars.
Values are shown as log10 coefficient;exponent.

the whole frequency range.

While this different relationship between variance and νmax for red giants has been

noted in previous work (Hekker et al. (2012), among others) and is often attributed to

the mass distribution of the giants, it is likely that simple power law relationships for

many quantities used in the simulations here (envelope height and width, for example)

do not adequately capture the properties of the power spectrum where red clump stars

are concerned. Mosser et al. (2011) frequently makes mention of subtle departures from

these power laws for red clump stars. It is however interesting that in the absence of any

such changes in the dependency, the differing g-mode period spacing and therefore ` = 1

profiles alone do induce a different scaling for the mode power of clump giants.

In summary, in this short investigation, we can see that making one subtle alteration

to the input physics we use in simulations has an impact on the resulting power spectrum

outside of simply altering the appearance of the ` = 1 region. The only parameter

we change here is the ` = 1 g-mode period spacing, which reflects the difference in

structure in the deep interiors of red giant branch and red clump stars. The fact that

in simulations, the distribution of power among the modes is sufficiently impacted such

that our filtered variance metric has a measurably different relationship to νmax for the

three evolutionary states is interesting. This shows that the physics of the deep interior

makes a significant contribution to the relationship of mode power to variance, something

which has hitherto only been discussed in terms of clump and branch stars having subtly

different amplitude scaling and granulation profiles, for example. While these reflect the
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physics of the convective region, the g-mode spacing is a signature of the deep interior.

The fact that the slopes of the relationship to numax of both mode power and variance

are also broadly consistent between the simulations and the real data, suggest in fact that

the physics of the deep interior is a candidate for the dominant reason the variance-νmax

relationships are so markedly different for these three evolutionary stages, since they are

reproduced to a good extent without including any subtle differences in the physics of the

outer regions. This result certainly merits further, more detailed work, and represents an

opportunity to update current understanding of red giant evolution.
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Chapter 7

Conclusion and the Future.

The common theme throughout this thesis has been the use of a simple but powerful

global asteroseismic metric of filtered stellar variance to study red giant stars both on a

star-by-star basis and as a ensemble population which reflects the formation and evolution

of the Galaxy as we know it today.

Chapter 3 described the considerations and testing of relations and assumptions in

creating realistic red giant power spectra. The power spectra components due to gran-

ulation, oscillations and shot noise are included. Extensive testing of amplitude scaling

relations and the inclusion of mode spacings and mixed mode properties informed by

theory and observation led to the creation of simulated power spectra that not only were

consistent with real stars in terms of the variance metric, but realistic enough to test

methods of asteroseismic parameter estimation.

Chapter 4 detailed work into inferring the fraction of stars in binary systems among

Kepler red giant branch stars. The presence of an unseen companion star “washes out”

the oscillation and granulation signal that makes up the variance metric, causing it to be

lower than would be predicted by theory and observations of single stars. As such the dis-

tribution of the residuals of the variance metric about some relation with νmax reflects the

number of stars which suffer from this “washout”. To probe the underlying distribution of

residuals, a Bayesian inference technique was used, allowing the most probable model of
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the distribution as a combination of binary and single stars to be determined by choosing

a suitable model and constraining the parameters of the fit informed by the simulated

populations. A strength of this technique is the ability to update the prior assumptions

included in response to any future constraints placed on parameters of the stellar pop-

ulation. The result of this investigation is an inferred binary fraction of 57.4 ± 2.5%,

consistent with older studies of main sequence stars. Future possibilities for this work

include using the method on stars of other evolutionary states, further investigating the

effect of the mass ratio distribution on the inferred fraction, and extending the analysis

to different populations in the Galaxy, for example stars observed by K2, and in the near

future, TESS. TESS will provide all-sky observations of the brightest stars, allowing for

investigation of stars in the local solar neighbourhood.

Chapter 5 describes the use of predicted and observed signal-to-noise and variance to

automate the detection of oscillating stars in some of the newest K2 data as well as in the

older CoRoT data, covering different regions in space and across the red giant lifetime of

these stars. The detection test successfully constrains the frequency region containing the

oscillation modes well. νmax is found by fitting the Gaussian peak modulating the modes,

and ∆ν is estimated using a fit to the second power spectrum, as well as a method based

on searching for modes directly in the power spectrum. Results from this pipeline were

submitted to two studies, and were in generally good agreement with results obtained by

other pipelines. Future work ought to focus on correcting a systematic error in the νmax

determination.

Chapter 6 shows how the variance metric captures to some degree the changing prop-

erties of the oscillations as red giants begin fusing helium during the red clump phase.

In the attempt to replicate the relationship between variance and νmax for the red clump

stars, we found that a subtle change in the mixed mode properties is enough to produce

a measurable differences in this metric as the star evolves, suggesting that the different

mass distribution of red clump and red giant branch stars is not the only contributor to

the different variance - νmax relationship, as has been suggested. There is evidence to
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suggest that the granulation signal of red clump stars differs from red giant branch stars,

however in the absence of an empirical relation for these stars it was not possible to create

these simulations at this time.

The binary star fraction inference study has the scope to be extended. More investi-

gation of the effect of the binary mass ratio distribution is needed since the result as it

stands is based on priors and simulations which assume a binary mass close to unity. More

simulation and testing of the precise effects of the mass ratio distribution would lend more

weight to the conclusion of this investigation by allowing some relaxation of the reason-

able (but not necessarily correct) assumption we make here on the mass ratio distribution.

There is also nothing to stop the method in future being applied to other populations of

other solar-like oscillators. It would be interesting to determine binary fractions for each

of the many different K2 fields to see if there are any significant dependence of binary

fraction on Galactic location.

The main future work on the pipeline ought to focus on finding the cause of the

systematic error on νmax. I believe that the shape of the background used to fit for νmax

may be the cause of the bias that we see. Even when fitting to the residual power spectrum,

there will always be some residual background power remaining, since the variable width

moving median filter provides a good estimate of the background but does not attempt

to fit the actual form of the granulation. This is of course for the sake of efficiency and

time, and works very well for the detection test, but it may be the case that the form of

the function we fit to the residual power may need more care when determining accurate

parameters. While the red-blue mask method works very effectively in it’s current form,

there is also the possibility of improving it by including tests for multiple spikes over a

given window, as described by Basu and Chaplin (in the press). Initial tests done on this

were promising, however more careful tuning of search window sizes and spike widths are

needed.

The short study of the effect of different mixed mode properties on red giant branch

and red clump stars described by Chapter 6 was not expected to show such intriguing
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results. This was largely included for completeness, since when we introduced the variance

metric we mentioned that it’s relationship to νmax differs between these three evolutionary

stages, and it seemed odd to not revisit it. However what we found; that the properties

of the ` = 1 mixed modes, and therefore the deep interior of the star have a profound

influence on the distribution of oscillation power, and therefore the variance metric. In

my view, more advanced simulation of red clump power spectra is warranted, since the

idea that the deep interior has such an effect is in opposition to some current thinking.

Detailed thought on the avenue further work should take is a responsibility I will leave

for others, however deriving robust scaling laws for the granulation background power of

these stars, as well as the relationship between ∆ν and ∆Π would be an excellent starting

point. Once this is combined with our new understanding of the impact that the very

subtle change in the ` = 1 mixed mode profiles has, it may be possible to determine what

the dominant physical reason for the departure of red clump stars from the red giant

branch relation is.

The work contained within this thesis of course represents a very small corner of what

is possible to investigate by studying global asteroseismic properties of evolved solar-like

oscillators. With the continuing operation of the K2 mission (at the time of writing!),

and with much more data to come from the TESS and PLATO missions, the future of

asteroseismology certainly looks bright and busy. I will watch it from the outside with

keen interest, and fond memories of my time in the field.
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