DNA nanotechnology and supramolecular chemistry in biomedical therapy applications

Cail, Peter James (2018). DNA nanotechnology and supramolecular chemistry in biomedical therapy applications. University of Birmingham. Ph.D.

[img]
Preview
Cail18PhD.pdf
PDF - Accepted Version

Download (11MB)

Abstract

The overall aim of this thesis is to investigate the combination of supramolecular cylinders with DNA nanotechnology and assess any effects that can occur through binding and any applications this could have in biomedical therapy applications. From this base it is hoped that insight can be gained as to whether supramolecular chemistry can be used to create DNA nano-machines, capable of triggered release of cargo. The thesis begins with a review of DNA discovery, structure and binding by small molecules, followed by a review of the field of DNA nanotechnology. By expanding on the field of DNA nanotechnology recognition, chapters 2 and 3 will highlight the advantages of supramolecular chemistry when combined with DNA nanotechnology in both nano-machines and inside cell systems with a focus on DNA tetrahedral nanostructures. Chapter 4 researches the photocleavage capabilities of a ruthenium cylinder and the possibilities of selective release and photodynamic therapy using a DNA tetrahedron. Chapter 5 illustrates a new class of anti-viral agents capable of structure recognition regardless of RNA sequence. The chapter focuses on the inhibition of binding between the TAR RNA and ADP-1 peptide found in the HIV-1 virus.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Hannon, Michael J.UNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemistry
Funders: None/not applicable
Subjects: Q Science > QD Chemistry
Q Science > QR Microbiology
URI: http://etheses.bham.ac.uk/id/eprint/8424

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year