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Abstract

Following the pioneering work of A. Zewail the field of Femtochemistry was

opened up to experimental studies. However, the interpretation of the results of

these studies is often difficult and hence theoretical and computational methods

for the modelling of these processes have been developed. In these dynamical

systems highly quantum behaviours are exhibited and hence result in the break

down of the Born-Oppenheimer approximation. While classical and semi-classical

simulations can be used as approximations to the full quantum behaviours, the

Multi-Configurational Time-Dependent Hartree (MCTDH) method was developed

as a grid-based full solution to the Time-Dependent Schrödinger equation. A

major bottleneck in the use of grid-based methods is in the requirement for pre-

computed potential energy surfaces upon which the dynamics simulations can be

run. As an alternative formulation of the MCTDH ansatz equation, the variational

Multi-Configurational Gaussian (vMCG) method was developed whereby the basis

functions of MCTDH are replaced with Gaussian functions. A recent extension of

the vMCG method, the Direct-Dynamics-vMCG (DD-vMCG) method, has been

developed in which the Gaussian basis-functions, comprising the total wavepacket,

are propagated on surfaces that are calculated “on-the-fly,” or as required. In the

DD-vMCG method the relevant energies, gradients and Hessians are calculated

utilising an external quantum chemistry software package, the results of which are

stored in a database.

In this study two highly relevant systems have been used, formamide and 2-

pyridone, to test the limitations of the DD-vMCG method combining (relatively)

high-level quantum chemistry calculations with a large number of excited states,

and a challenging number of degrees of freedom . In addition, these systems have

not yet been studied using full quantum dynamics simulations.
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A more recent development in experimental photochemistry, attosecond laser

spectroscopy, utilises ultra-fast laser pulses in order to be able to study the electron

dynamics of systems. However, as the laser pulses are short, the band width

of the pulses is broad and hence complementary computational studies require

a large number of excited states to be represented. Outlined in this thesis is

the initial testing, development and implementation of a new Ehrenfest method,

whereby an averaged potential surface of a manifold of excited states is calculated,

with test dynamics run on the highly conjugated molecule allene. This Ehrenfest-

Multi-Configurational Gaussian (eMCG) method presents a potentially important

addition to the suite of computational methods with a focus on the reproduction

and interpretation of attosecond experimental results.
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“Everything is theoretically impossible, until it is done.”

Robert A. Heinlein

“Even if we could turn back, we’d probably never end up where we started.”

Haruki Murakami
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AMBER Assisted Model Building with Energy Refinement. It is a software,

originally developed by the group of Peter Kollman, used for running force

field based molecular dynamics simulations of biomolecules. [3] It is also the
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equations, known as the Kohn-Sham equations, which are used to construct

external and effective potentials, which act upon the electrons of a system.

Glossary xix



Glossary

In 1998, Walter Kohn was awarded the Nobel Prize in Chemistry for the

development of Density Functional Theory. xxiv, 23, 24, 49, 263

DOF Degree(s) of freedom. 67–70, 72, 74

DVR Discrete variable representation. xix, 68, 199

Elk Test An Elk Test in the automobile industry, also known as the Moose Test

or more formally the Evasive Maneuver test, is defined on wikipedia as a
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2.4 kiloparsecs from Earth [29]. 89

Glossary xxiv



Glossary

XSC (E)Xcited State Characterisation (section). 100, 101, 105, 106, 108, 109,

150, 152

Glossary xxv



Chapter 1

Introduction

In the study of fundamental Chemistry the calculation of ground state, static

molecules can yield useful information such as stable structures (energetic min-

ima), the location of transition states, and the calculation of vibrational frequen-

cies. However, in order to elucidate the experimentally observed behaviours of

a molecule, the dynamical behaviour also needs to be determined. In addition,

in some systems the excited states of the system should be considered. This is

especially important in the interpretation of photophysical experimental results,

when, in general, multiple competing pathways are available for the relaxation of

a molecule following a photoexcitation. A familiar summary of these relaxation

pathways is given by the Jablonski diagram, Figure 1.1.

This diagram depicts states and the pathways connecting transitions between

them. These transitions are classified as either radiative, if a photon of light is

emitted along with the transition, or non-radiative if it is not. Fluorescence and

phosphorescence are radiative transitions which occur between states of the same

spin, or different spins, respectively. Internal conversion and inter-system crossing

are the non-radiative transitions that occur between states of, again, states of the

same spin and different spin, respectively.

The Jablonski diagram is, however, an essentially static picture with no re-

lationship to nuclear motion. For this, chemistry requires the use of potential
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Fig. 1.1: The Jablonski Diagram. This shows the possible relaxation pathways following
an excitation to an S1 excited state, where A is absorption, ISC is intersystem crossing,
IC is internal conversion, F is fluorescence, P is phosphorescence and R1 to R4 are
non-radiative transitions between vibrational levels.

energy surfaces, such as those shown in Figure 1.2. In this, a wavepacket repre-

senting the molecular wavefunction is depicted moving over such surfaces, which

give the electronic energy as a function of molecular geometry.

Spectroscopic methods are the best way to study the dynamics of a photo-

excited molecule, giving direct information on the states accessible to excitation

and the timescales of processes. In the 1960s and 70s techniques were developed

for the observation of nanosecond (10−9) and picosecond (10−12) behaviours, such

as nonradiative decay, which represented a major leap forward from the previous

nonradiative pathways which had been inferred from radiative experiments. [30]

It was the work of A. H. Zewail, who pioneered the use of ultrafast laser pulses

to study femtosecond (10−15) timescale molecular processes [31,32], which enabled

research to access directly the timescales of molecular motion. This used a pair of

laser pulses in what is known as a pump-probe configuration to selectively excite

and examine a set of molecules at known times. For this he was awarded the 1999

Nobel Prize in Chemistry in the new field of experimental “femtochemistry”. [33]
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Fig. 1.2: Wavepacket Dynamics. Depicted is a photoexcitation process with a wavepacket
representing the nuclei moving over two potential energy surfaces related to the ground-
and first-excited electronic states.

Femtosecond spectroscopy has been applied in the study of a range of molecu-

lar behaviours. For example, in a classic set of experiments Zewail and co-workers

observed a bond vibrating in I2 [34], a bond breaking in I–CN [35] and the NaI

molecule undergoing dynamics in which both bond-breaking and vibration are tak-

ing place simultaneously [36]. The latter is particularly interesting as an example

of what is termed “non-adiabatic” photochemistry where more than one potential

energy surface is required to describe the dynamics correctly.

Femtochemistry has been used to great success particularly in the field of bio-

chemistry. Here, these pump-probe experiments have been used, for example, to

observe the excited state dynamics of DNA [37] and the cis-trans photoisomeriza-

tion of retinal [38], hence furthering the understanding of biological processes and

aiding in the prediction of behaviours. They have also lead to the deeper under-

standing of light harvesting processes, such as photosynthesis and the behaviour

of the Green Fluorescent Protein [39, 40], and hence lead to the development of

synthetic light harvesting processes used in research developing dye sensitised solar
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cells and imaging techniques. Due to the nature of femtosecond laser experiments,

techniques involving laser control of biological processes, essentially light induced

switches, have been developed. [30]

A more recent development, which develops from the femtochemistry tech-

niques, is the field of attosecond spectroscopy. [41, 42] In these state-of-the-art

experiments the dynamics of the electrons of a system can be observed allowing

not only for the study of charge transfer, as in the femtosecond experiments, but

also charge migrations whereby the nuclear dynamics of a system are induced by

the movement of electrons.

Although these spectroscopic techniques have led to a greater understanding

of these light/laser induced processes, the results of these experiments are often

difficult to interpret. It is the complementary role of computer simulations which

are necessary in the understanding of the fundamental reasons as to how and why

the processes occur.

In order to carry out these dynamical calculations it is hence necessary to solve

the time-dependent Schrödinger equation (TDSE). However, due to the inherent

complex nature of this wave equation, the exact solutions to the TDSE is only

possible for the simplest of molecules. Consequently a variety of methods exist

utilising varying degrees of approximation to the TDSE, ranging from classical to

semi-classical, through to “full” quantum methods. A brief summary of these clas-

sical and semi-classical methods is given in the introduction to nuclear dynamics

in Chapter 3.3.

In this thesis an overview of the underlying principles to all of the methods

is described in Chapter 2, including derivations of both the time-independent

Schrödinger equation (TISE) and the TDSE, manipulations of the Hamiltonian,

the Born-Oppenheimer approximation, which allows the definition of potential

energy surfaces, and the description of systems in which the Born-Oppenheimer
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approximation breaks down.

In Chapter 3.2 methods for solving the TISE are discussed, including a com-

prehensive overview of the ramifications of the Pauli exclusion principle in the

treatment of electrons in Hartree-Fock theory, the use of the linear combination of

atomic orbitals (LCAO) in the development of basis sets, and methods by which

electron correlation can be accounted. In Chapter 3.3, after a brief introduction

which discusses the existing methods by which the TDSE can be approximately

solved, the multi-configurational time-dependent Hartree (MCTDH) quantum dy-

namics method is introduced, accompanied by the ansatz equations which form the

fundamental framework for the method. This is followed by a detailed description

of the variational multi-configurational Gaussian (vMCG) method, which uses a

Gaussian Wavepacket (GWP) basis to describe the nuclear wavefunction and its

relation to the grid-based MCTDH ideology. This leads naturally on to the de-

scription of the direct dynamics vMCG DD-vMCG method. In this, the potential

surfaces are generated on-the-fly using quantum chemistry programs. Included is

a thorough description of the key features of the method: the use of a database to

store results, a Hessian updating scheme and the propagation diabatisation process

which allows the non-adiabatic coupling to be correctly included. This work has

been presented in a recent review “Quantum dynamics simulations using Gaussian

wavepackets” [43].

The DD-vMCG method is relatively new and its application, thus far, has

mainly been involving tests by comparison to existing systems available to the

MCTDH and vMCG methods, as well as some interesting studies into small molec-

ular systems such as ozone. The aim of this series of studies is essentially, what

the automobile industry and the MCTDH developers refer to as, an extreme form

of “Elk Test”, a test designed to see when a vehicle (or program) falls over when

swerving around a large animal (or molecule). In Chapter 4, a study of for-
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mamide, and its acid analogue formimidic acid, is presented exploring what is

required from external electronic structure calculations, such as basis set, level of

theory and number of excited states, in order to carry out a meaningful direct

dynamics calculation, as well as the results and discussion of a set of calcula-

tions using the DD-vMCG method. In Chapter 5, the system size is increased

from formamide’s 6 atoms to 12 atoms, in a study of 2-pyridone, and its acid

analogue 2-hydroxypyridine, which have the same active sites as formamide, in

the previous study. As with the previous chapter, a study of 2-pyridone, and its

acid analogue, is presented exploring the requirements from the external electronic

structure program, as well as the results and discussion of a set of calculations using

the DD-vMCG method.

In Chapter 6 a new method for the calculation of Ehrenfest trajectories is pre-

sented. The motivation of this method is to model and understand the results of

the burgeoning field of attosecond spectroscopy. Traditional quantum dynamics

studies, including the DD-vMCG method, require a set of potential surfaces and

couplings for all states of interest. This becomes a challenge when more than two

or three states are included. As a result of the bandwidth of attosecond lasers

many states are accessed and the existing methods are no longer applicable. In

Ehrenfest dynamics, the electronic information from all states is collapsed down

and represented as a single potential energy surface over which the electrons move,

potentially allowing a complete description of these experiments. The theoretical

details of this method are described followed by the results of model calculations

using the novel Ehrenfest multiconfigurational Gaussian (eMCG) method in com-

parison to equivalent calculations using the vMCG method. The results presented

here follow those published in the paper “Using quantum dynamics simulations

to follow the competition between charge migration and charge transfer in poly-

atomic systems.” [44] This is followed by results from direct dynamics calculations
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on electronic wavepackets using DD-vMCG and, as an outlook, the first results ob-

tained after linking DD-vMCG in the Quantics program [45] to Ehrenfest potential

surfaces provided by a development version of the Gaussian quantum chemistry

program [46].
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Chapter 2

Theory

2.1 Introduction

If one’s aim is to conduct computational or, more fundamentally, theoretical mod-

elling and hence study of a physical system one must first outline the key mathe-

matical principles that form the foundations of the work. This chapter will outline

these key principles. The methods by which these principles are followed and

approximated will be outlined in the Methodology section (Chapter 3).

In this chapter the Schrödinger equation, in various forms, will be presented

with an accompanying description of the construction of the Hamiltonian, depen-

dent on the system of interest. The principles of the Born-Oppenheimer approx-

imation will be discussed followed by demonstrations and implications of its use.

Finally, systems for which the Born-Oppenheimer approximation breaks down will

be introduced and the implications of the choice of potential representation of the

system will be briefly discussed.

Before continuing it should be stated that all theories described herein are

based in nonrelativistic quantum mechanics.

2.2 The Schrödinger Equation

In 1926, Erwin Schrödinger’s paper “The undulatory theory of the mechanics of

atoms and molecules” [47] formed the basis for his development of a wave equation,
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a type of linear partial differential equation, which mathematically describes the

changes of a system in which quantum effects are significant. His formula for the

description of a physical system in terms of a wavefunction, now known as the

Schrödinger equation, gives rise to both a time dependent and a time independent

form. The general form of the time independent Schrödinger equation (TISE)

Ĥψ = Eψ (2.1)

describes a system where the Hamiltonian operator Ĥ acts upon the wavefunc-

tion, ψ. This results in a wavefunction, ψ, which is proportional to the initial

wavefunction with a proportionality constant E.

The general form of the time dependent Schrödinger equation (TDSE)

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.2)

describes a quantum wavefunction, Ψ, evolving in time where i=
√
−1, ~ is the

reduced Planck constant (~= h
2π

), ∂
∂t

is the partial derivative with respect to time,

r and t are the position vector and time respectively, and Ĥ is the Hamiltonian.

In order to demonstrate the mathematical relationship between these two equa-

tions a standard separation of variables technique from the theory of differential

equations, may be used. [48] Assuming that the potential of the system depends

only on the spacial variables (r), Ψ(r, t) can be written as a product of functions

in spacial and temporal (t) variables.

Ψ(r, t) = ψ(r)T (t) (2.3)

If the partial derivative, with respect to time, is then taken

∂Ψ

∂t
= ψ

dT

dt
(2.4)

where T has the form
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T = exp(
−iE
~

t) (2.5)

Equation 2.3 can therefore be rewritten as

∂Ψ

∂t
=
−iE
~

exp(
−iE
~

t)ψ (2.6)

By substituting this back into the TDSE (Equation 2.2) gives

ĤΨ = Ĥ(ψT ) = i~
∂

∂t
(ψT ) = i~ψ(

−iE
~

T )

= EψT

(2.7)

Dividing by T hence gives the TISE (Equation 2.1). Consequently, it can be said

that the TISE is an eigenvalue equation which describes the stationary states of,

or definite energy solutions to, the TDSE. Contextually these may also be referred

to as energy eigenstates or, with certain caveats discussed later (Chapter 3), as

orbitals.

2.3 The Hamiltonian

The Hamiltonian, Ĥ, as used in quantum mechanics is based on Hamilton’s math-

ematical formalism of classical mechanics. In the most basic physical (classical)

representation of the Hamiltonian, a single particle in one dimension, H is written

H = T + V (2.8)

in which T is the kinetic energy of the system, expressed as

T =
p2

2m
(2.9)

where m is the mass of the particle and p is the momentum mν. The potential

energy of the system, V , is expressed as
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V = V (q) (2.10)

resulting in a Hamiltonian expressed as

H =
p2

2m
+ V (q) (2.11)

It can be seen here that T is a function of the momentum, p, alone, while V is

a function only of the spacial coordinate, q. Since T and V contain time as an

implicit variable their expressions are described as scleronomous.

When the Hamiltonian is used to describe a single particle in one dimension in

terms of the Schrödinger equation, i.e. Hamiltonian quantum mechanics, poten-

tial and kinetic energies are now operators. Given that the momentum now also

becomes an operator, p̂, defined as

p̂ = −i~ ∂
∂x

(2.12)

equations 2.8 and 2.11 can be rewritten as

Ĥ = T̂ + V̂

= − ~2

2m

∂2

∂x2
+ V (x, t)

(2.13)

In this case, the potential operator, V , has the time constraint explicitly defined

and should now be referred to as rheonomous.

Extending the Schrödinger Hamiltonian further into 3 dimensions, including

N non-interacting particles, by utilising the Laplacian operator,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.14)

and expanding the expression for T̂ and V̂ to

T̂ =
N∑
i=1

− ~2

2mi

∇2
i (2.15)
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V̂ =
N∑
i=1

V (ri, t) (2.16)

it can hence be written

Ĥ =
N∑
i=1

(
− ~2

2mi

∇2
i + Vi

)

=
N∑
i=1

ĥi

(2.17)

where the Hamiltonian is the sum of the Hamiltonians for each particle. The

reasons for explicitly defining this last step will become apparent in Chapter 3.2.1.

Although this is a special case, as there are usually forces interacting with and

between the particles, it can be seen here that the Schrödinger Hamiltonian can

be separated and reformulated depending on said conditions.

2.4 The Born-Oppenheimer Approximation

In order to solve the Schrödinger equation for a molecular system it is intuitive,

for a chemist, to first express the Hamiltonian in separate terms of T and V for

the electronic and nuclear parts,

Ĥ = T̂e + T̂N + V̂e + V̂N + V̂eN (2.18)

In this expression the subscript e denotes the electronic and N the nuclear parts,

and V̂eN is the potential coupling term between the electrons and nuclei. This can

be expanded for a full-molecular system, in mathematical notation, to

Ĥ = −
∑
i

~2

2me

∇2
i −

∑
k

~2

2mk

∇2
k +

∑
i<j

e2

rij
+
∑
k<l

e2ZkZl
rkl

−
∑
i,k

e2Zk
rik

(2.19)

where i and j denote the electrons, k and l denote the nuclei, me and mk, respec-

tively, are the mass of the electron and nucleus, e is the electronic charge, Z is an

atomic number, and rab is the distance between the particles a and b. In a purely
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qualitative inspection of this expression it can be seen that even for a simple di-

atomic system, the number of terms in the expansion becomes large. In fact, the

largest system for which a closed form analytic solution has been obtained is for

a hydrogenic atom. In this solution the Coulomb forces are used for the angular

momentum coupling between the charges and the reduced mass is used as a math-

ematical tool to reduce the system to two, one-body problems. A full derivation

of this can be found in Reference [49]. Consequently, in order to continue to use

the Schrödinger equation an approximation must be made.

The Born-Oppenheimer approximation (BOA) in its essence is relatively sim-

ple, though its proof as a principle is subtle and deceptively difficult. In a most

basic explanation in terms of its use, the BOA asserts that as the mass of an

electron is small in comparison to the mass of a nucleus, electrons can be seen to

instantaneously move with nuclear motion. As a consequence, the nuclei can be

considered to be stationary in comparison to the motion of the electrons. In order

to gain information such as the minimum energy conformation of a system, static

electric potentials are then calculated at stationary geometric arrangements of the

nuclei, and a potential energy surface (PES) is constructed.

Perhaps the simplest approach to defining the BOA in mathematical terms is

to first consider the hydrogen molecule ion (H+
2 ) in one dimension, here defined

as the y-axis. If the Hamiltonian presented in Equation 2.19 is considered in the

context of this system, it can easily be seen that the Laplacian will be reduced to

a single partial derivative in y and, by reducing the three terms of the potential

to one term, yields a Hamiltonian of the form

Ĥ = − ~2

2me

∂2

∂y2
−
∑
k=1,2

~2

2mk

∂2

∂Y 2
k

+ V (y, Y1, Y2) (2.20)

where Yk, with k=1,2, is the location of the nuclei, and y the location of the

electron. The Schrödinger equation can, hence, be written
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ĤΨ(y, Y1, Y2) = EΨ(y, Y1, Y2) (2.21)

In an attempt to gain a solution, the wavefunction can then be separated

Ψ(y, Y1, Y2) = ψ(y;Y1, Y2)χ(Y1, Y2) (2.22)

where χ is the nuclear wavefunction and ψ is the electronic wavefunction. The

expression for the electronic wavefunction here is dependent on the position of the

electron, which is itself parametrically dependent on the coordinates of the nuclei.

If this trial form of the wavefunction is then substituted into Equation 2.21, the

Schrödinger equation now has the form

Ĥψχ = χTeψ + ψTNχ+ V ψχ+W = Eψχ (2.23)

in which the parameter W is defined as

W = −
∑
k=1,2

~2

2mk

(
2
∂ψ

∂Yk

∂χ

∂Yk
+
∂2ψ

∂Y 2
k

χ

)
(2.24)

This “W” accounts for non-adiabatic effects, discussed later in Chapter 2.5. De-

spite the fact that the elements of ψ are dependent on the nuclear coordinates, and

hence the partial ∂ψ/∂Yk is non-zero, the (relatively large) nuclear masses (mk)

in the denominator render the full expression to be almost zero so are neglected.

Accordingly, Equation 2.23 can be rearranged and rewritten as

ψTNχ+ (Teψ + V ψ)χ = Eψχ (2.25)

In order to solve this equation the definition of this system must first be con-

sidered. If the electron is treated as existing in a potential dependent on the

coordinates of the nuclei, a Schrödinger equation for the electron can be written
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Teψ + V ψ = Ee (Y1, Y2)ψ

(= Eeψ)
(2.26)

In this expression for the electronic wavefunction, the eigenvalue Ee is dependent

on the sum of the electronic contribution to the total energy and the internuclear

repulsion potential at a given stationary coordinate for the nuclei. The implicit

relation of Ee to the nuclear coordinate is what allows the potential energy surfaces

to be constructed with a set of calculations for stationary nuclei.

Substituting Equation 2.26 into Equation 2.25 gives

ψTNχ+ Eeψχ = Eψχ (2.27)

As ψ is dependent on the electronic coordinate, and the system is normalised where∫
ψ∗ψdy = 1 (2.28)

ψ can be hence be integrated out (Scheme 2.29) and cancelled (Equation 2.30),

giving the Schrödinger equation for the nuclear wavefunction χ

ψ∗ψTNχ+ ψ∗Eeψχ = ψ∗Eψχ∫
ψ∗ψTNχdy +

∫
ψ∗Eeψχ =

∫
ψ∗Eψχ

TNχ

∫
ψ∗ψdy + Eeχ

∫
ψ∗ψdy = Eχ

∫
ψ∗ψdy


(2.29)

TNχ+ Eeχ = Eχ (2.30)

when the nuclear potential has the form of a potential energy curve. The neglect

of the coupling term, W , (Equation 2.24) and the definition of the electronic

Schrödinger equation, Eeψ, (Equation 2.26) is the BOA. It can hence be stated

that the eigenvalue E in Equation 2.30 is the total energy of the system, within

the Born-Oppenheimer approximation.
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2.5 Beyond the Born-Oppenheimer Approxima-

tion

Although the Born-Oppenheimer approximation is a key approximation to be used

when considering static molecules or, more specifically, systems in which the nu-

clear and electronic motion is not coupled, systems in which this coupled mo-

tion is significant presents a case where the Born-Oppenheimer approximation

breaks down. Before the nuances of so-called beyond Born-Oppenheimer systems

can be discussed it is helpful to first introduce some key concepts. The Born-

Oppenheimer approximation as written in Equation 2.30 can also be termed as

the time-independent adiabatic representation, the time-dependent form of which

is

(TN + V )χ = i~
∂χ

∂t
(2.31)

where TN is the kinetic energy of the nuclei and V is the potential as a result of

the electronic motion. The adiabatic representation uses the eigenfunctions of the

electronic Schrödinger equation at a particular nuclear geometry. Consequently

there is a set of surfaces, one for each eigenvalue, and the potential energy surfaces

are ordered in energy. An example of adiabatic surfaces for the lowest two energies

of butatriene cation along the C-C symmetric stretching and CH2 twisting modes

are given in Figure 2.1b).

An alternative representation of the energetic states of a system is the diabatic

representation. The adiabatic electronic wavefunctions of a system can be treated

by a unitary transformation at each point in space

ψ̃ = S(r)ψ (2.32)

where ψ̃ is the electronic wavefunction in the diabatic representation, ψ is the

electronic wavefunction in the adiabatic representation, and S(r) is the unitary
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Fig. 2.1: The adiabatic (b) and diabatic (c) surfaces of the butatriene molecule (a) along
the C-C symmetric stretching mode (14Ag) and the CH2 twisting (5Au) modes.

transformation matrix which is a function of the nuclear coordinates r. This results

in the form for the Schrödinger equation in the diabatic representation as

(TN1 +W )χ = i~
∂χ

∂t
(2.33)

It should be noted that the nuclear wavefunction χ is not the same as the wave-

function in the adiabatic representation (the difference defined in Equation 2.32).

In this representation the energetic states are ordered by the character of the

electronic state and consequently crossings between states can occur. It is this

representation that is most intuitive to chemists. An example of the diabatic sur-

faces of butatriene along the C-C symmetric stretching and CH2 twisting modes

are given in Figure 2.1c). Here it can be seen that a degree of coupling between

states is experienced by the systems as said electronic states may cross in energy.

This is not “true” coupling between states as these crossings are essentially as a

result of the matrix elements used in the unitary transformation.

However, although these two representations provide valuable information about

the energetics and contributions of the electronic structure of the system, it is the
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non-adiabatic coupling term (as in Equations 2.23 and 2.24) which contains the

behaviours where the BOA breaks down. Using the full Born representation for

the wavefunction

Ψ =
∑
i

χiψi (2.34)

which is a superposition of all of the eigenfunctions, ψi, of the electronic Hamilto-

nian operator, Ĥel, Equation 2.33 can be recast

(T̂N1 + V −Λ)χ = i~
∂χ

∂t
(2.35)

where Λ is the non-adiabatic coupling operator. If this equation is expanded to

an infinite set, it includes all adiabatic electronic states and all coupling between

these states. As coupling usually only occurs between neighbouring states in close

proximity, these non-adiabatic coupling terms can be truncated, resulting in a

finite set of decoupled (and coupled adiabatic) states, the term for which is the

group Born-Oppenheimer approximation. This results in the matrix Λ having

dimensions equal to the number of states in the sets. It can easily be seen that if

this coupling term is ignored completely, the adiabatic representation is returned.

It is these non-adiabatic coupling terms that allow the coupling between the nu-

clear and electronic motion, commonly referred to as vibronic coupling. Following

from Equation 2.24, the matrix elements of the non-adiabatic coupling operator,

Λ, are

Λ̂ij =
~2

2m

(
2 〈ψi|∇ψj〉∇+

〈
ψi|∇2ψj

〉)
=

~2

2m
(2F ij ·∇+Gij)

 (2.36)

where F ij are the derivative couplings and Gij are the scalar couplings [50, 51].

It can be seen that the diagonal terms of the derivative coupling matrix are
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Fii = 〈ψi|∇ψi〉 = 0 (2.37)

while the off-diagonal terms can be written

Fij = 〈ψi|∇ψj〉 =
〈ψi|∇Ĥ|ψj〉
Vj − V i

(2.38)

where the adiabatic energies for states i and j, Vi and Vj, are at nuclear geometry

r. If the adiabatic states are degenerate, i.e. Vj − Vi = 0, then it can easily be

seen that these off-diagonal terms in the derivative coupling matrix become infinite

(Fij →∞). It is at these points where conical intersections occur.

A conical intersection, also sometimes referred to as a photochemical funnel,

molecular funnel or diabolic point, is a feature particularly common in the photo-

chemistry of polyatomic molecules due to the high number of nuclear degrees of

freedom as well as a manifold of close-lying electronic states. Conical intersections

present a pathway for ultrafast, femtosecond timescale, interstate crossings allow-

ing for radiationless decay from excited states to lower energy states or the ground

state of a system. In the region of a conical intersection, the Born-Oppenheimer

approximation breaks down as the energies of the states become singular and the

off-diagonal coupling terms become infinite. A schematic of a conical intersection

is shown in Figure 2.2a) and a conical intersection can be seen in the butatriene

potential surfaces in Figure 2.1a).

As a conical intersection is a three-dimensional representation of two degrees of

freedom (dimensions) of a system and the associated energy, conical intersections

can only occur in systems where the number of degrees of freedom, N , is 2 or

greater, i.e. N > 2. This provides an explanation as to why only avoided crossings

can be present in a one-dimensional system, or in two dimensional (one degree of

freedom, and energy) representation of a N -dimensional system. In Figure 2.2a)

it can be seen that the conical intersection is point where the degeneracy of the
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Fig. 2.2: An example of a conical intersection (a) and a seam of intersection (b). a)
This conical intersection shows an example of where a wavepacket is excited at the
Franck-Condon point to a higher lying state, the wavepacket moves towards the conical
intersection (the red and white arrows), the wavepacket passes through the intersection
and either continues (white arrow) or bifurcates (blue arrows). b) This seam of inter-
section shows two possible relaxation pathways (red and blue arrows) through the seam,
after an UV excitation from the S0 to the S1 states. The branching space is labelled
orthogonal to the seam of intersection.

states is lifted in two directions, or vectors, which is commonly referred to as the

branching space. Figure 2.2b) is a representation of a seam of intersection, which

occurs when the number of degrees of freedom in a system is greater than 2, i.e.

N > 2. As a seam of intersection has an inherent greater dimensionality than

a conical intersection, any point along the seam of an intersection between two

states can be represented in the branching space as a conical intersection.

As stated previously, the mathematical description of points of intersection

between states, also known as singularities, is inherently difficult and a repre-

sentation is required with the aim to remove these singularities. In the diabatic

representation it has been found [50,52,53] that if the relationship

∇S = −FS (2.39)

is used, these singularities can be removed. In this case, however, the diabatic

representation can only be described globally as all configurations are dependent
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upon the neighbouring configuration. In addition, in order for the diabatic rep-

resentation to be completely defined, it is necessary to specify S at a particular

point where it can be chosen to make the diabatic and adiabatic representations

equivalent. This is dependent on the problem at hand but is typically chosen to

be the Franck-Condon point. It should also be noted that in order to avoid errors

in the truncation of the matrix F , Equation 2.39 requires a complete basis set,

the feasibility of which is highly system dependent and will be discussed later in

Chapter 3.
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Chapter 3

Methodology

3.1 Introduction

In order to apply the theories outlined in Chapter 2 attention must first be turned

towards the definition of the electronic and nuclear structure. The focus of Section

3.2 will be on the methods for the definition of electronic structure within the con-

fines of the BOA, known commonly as ab initio methods, and consequently solving

the TISE. In Section 3.3, methods for solving the TDSE, and hence situations in

which the BOA breaks down, will briefly be presented and the methods used in

this work will be presented in further detail.

3.2 Electronic Structure

Electronic structure, within the field of quantum chemistry, is a catch-all term

for the methods by which the state of motion of electrons in a electrostatic field,

created by the motionless nuclei, are described incorporating both the electronic

wavefunction and associated energies. To reiterate, calculations of this type utilise

the BOA and are hence used to solve the TISE. There are many methods for the

description and hence calculation of electronic structure, most of which fall into

three categories:

• Valence Bond Theory
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• Molecular-Orbital Theory

• Density Functional Theory

Valence bond (VB) theory, for a chemist, is perhaps the most intuitive of these

three categories as its foundation is directly analogous to the Lewis structure [54]

representation of chemical bonds. Based on Heitler-London theory [55], which

yielded the first quantum mechanical calculation of the bonding properties of the

H2 molecule, and further extended by Pauling to include the idea of Lewis pair

bonding to develop definition of resonance and orbital hybridisation [56] [57], VB

theory was the de rigueur method for the explanation and prediction of chemical

bonding in the late 1920s to the mid 1950s [58].

Molecular-orbital (MO) theory, originally known as Hund-Mulliken theory [59],

is the most familiar of the three categories due to its extensive development in com-

putational chemistry and its applications as a illustrative tool in organic chemistry.

Founded on Lennard-Jones’ interpretation of the bonding in triplet oxygen [60],

further extended by Hückel to include the ideas of the rotational hindrance and

conjugation of π systems [61,62] and the description of unsaturated bonds [63,64],

MO theory was refined in a theoretical setting by Robert Mulliken [65, 66] for

which he gained the Nobel Prize in 1966 [67].

Electronic band structure is a concept most familiar to solid-state physicists,

though its application as a model has been widely adopted within the field of com-

putational materials chemistry in the form of density functional theory (DFT).

DFT is a more generalised interpretation of physical systems essentially describ-

ing a mean free field of electrons acted upon by perturbations (for example nuclei)

to the field. It was constructed by building upon the two Hohenberg-Kohn theo-

rems [68] relating to the definition, within the confines of the Thomas-Fermi [69,70]

model, of electronic motion influenced by an external potential. It was further de-

veloped by Kohn and Sham [71] to reduce the problem to a simplified model
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describing non-stationary non-interacting electrons affected by an external poten-

tial.

Historically speaking, the acceptance of VB theory, 1928, only narrowly pre-

dates MO theory, 1931. The reasons for the eventual prevalence of MO theory,

or to be more accurate the decline of VB theory, are nicely outlined in Chapter 1

of Shaik and Hiberty’s “A Chemist’s Guide to Valence Bond Theory” [72]. The

conception of the Thomas-Fermi model, 1928, occurred in the same time period

as the development of VB and MO theory, though the development of DFT in its

own right occurred decades later, in the 1960s to 1970s.

Although interest in VB theory has had a resurgence in recent years [73, 74],

MO theory’s use in computational studies is more widely developed and electronic

structure calculations in this work are carried out using this method.

3.2.1 The Hartree-Fock Self-Consistent Field Method

After the publication of Schrödinger’s seminal paper [47], D. R. Hartree attempted

to bring the ideas of the “old” quantum theory of Bohr [75] into the new, wave

mechanical picture [76,77] based upon the central-field method. In the central-field

method an electron is acted upon by an average charge distribution described as

a spherically averaged sum of charge over the electrons which would then be seen

as spherically symmetric around an atom centre. [78]

Hartree used the idea of a spherically averaged potential acting upon each

electron, but instead trial electronic wavefunctions are selected, charge densities

and potentials calculated, and the Schrödinger equation solved. This process is

then repeated, using the result of the previous step as the trial wavefunction for

the next. This iterative approach, carried out over a number of cycles, results in

wavefunctions which are self consistent and hence can be described as converged.

Hartree called this process the “self-consistent field” method [76].

Before going into details of this iterative method it is first necessary to introduce
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some key concepts.

The Hartree Product and the Antisymmetry Problem

To apply this in the simplest terms, if the Hamiltonian is separable and considered

as a sum over all of the one-electron terms it can be written as

Ĥ =
N∑
i=1

ĥi (3.1)

where N is the number of electrons and ĥi is the operator describing the kinetic and

potential energy of electron i. This expression is the full electronic Hamiltonian,

if the electron-electron repulsion is ignored. The description here is analogous to,

but not the same as, the expression in Equation 2.17.

By defining an orbital as a wavefunction for a single particle, an electron, each

orbital can be expressed as either a spacial orbital, ψi(r), or, for reasons which will

become clear, as a spin orbital, χi(x). They are related by the definition

χ(x) =


ψ(r)α(ω)

or
ψ(r)β(ω)

(3.2)

where the spacial coordinates r are related to x by x = {r, ω}, ω is the spin variable

or coordinate, and α(ω) and β(ω) are the spin functions related, respectively, to up

and down spin. Consequently it can be seen that for every spacial orbital, two spin

orbitals can be written. If the spacial molecular orbitals are assumed to form an

orthonormal set (Equation 3.3) and the α and β spin functions are orthonormal,

it follows that the spin orbitals are also orthonormal (Equation 3.4).

∫
drψ∗i (r)ψj(r) = δij (3.3)∫

dxχ∗i (x)χj(x) = 〈χi|χj〉 = δij (3.4)

With Equation 3.1 in hand, it can then be stated that the operator ĥ has a set

of eigenfunctions that can be taken to be a set of spin orbitals {χn}
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ĥiχn(xi) = εnχn(xi) (3.5)

As the Hamiltonian operator is separable, the many-electron eigenfunction can be

constructed as a product of spin orbital wavefunctions for each electron. This can

be written as

ΨHP (x1,x2, · · · ,xN) = χi(x1)χj(x2) · · ·χn(xN) (3.6)

where ΨHP is the eigenfunction of Ĥ. If the eigenvalue E is also a sum of spin

orbital energies of the spin orbitals of ΨHP

E = εi + εj + · · ·+ εn (3.7)

the many-electron wavefunction may be written

ĤΨHP = EΨHP (3.8)

This form of a many-electron wavefunction is called a Hartree Product where elec-

tron one is described by spin orbital χi, electron two by χj, and so on. By appli-

cation of the variational principle, this can be iteratively solved.

It should be noted that the Hartree Product is an independent-electron, or

uncorrelated, wavefunction. This can be shown where if

|ΨHP (x1, · · · ,xN)|2dx1 · · · dxN (3.9)

defines the simultaneous probability of finding electron one in the volume element

dx1 centred at x1, electron two in dx2 centred at x2, and so forth, given Equation

3.6 it can therefore be written

|χi(x1)|2dx1|χj(x2)|2dx2 · · · |χn(xN)|2dxN (3.10)
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In this form it can be seen that the Hartree Product is a product of the probabilities

that electron one is in dx1, multiplied by the probability that electron two is in

dx2, etc.

However, in order for an exact wavefunction to be correct it not only must

satisfy the Schrödinger equation, but must also satisfy the Pauli exclusion princi-

ple, also called the antisymmetry principle. In general terms the Pauli exclusion

principle, initially applied as a new, two-valued quantum number [79] but later

extended to any fermion [80], states that no two identical fermions may simulta-

neously occupy the same quantum state in a quantum system. In addition, on

exchange of fermions the wavefunction must change sign. This can be expressed

mathematically as

Φ(x1, · · · ,xi, · · · ,xj, · · · ,xN) = −Φ(x1, · · · ,xj, · · · ,xi, · · · ,xN) (3.11)

where the many-electron wavefunction, Φ, is antisymmetric with respect to the

interchange of the spacial and spin coordinate, x, of any two electrons. What may

be immediately obvious here is that there is no explicit account of the indistin-

guishability of the electrons in the Hartree Product as written.

Slater Determinants

The Hartree product’s failure to satisfy the antisymmetry principle was pointed

out by J. C. Slater [81] and V. A. Fock [82] independently. Although Fock himself

reformulated the Hartree Product in terms of group theory, a more widely acces-

sible reformulation was published by Hartree [83] utilising Slater determinants.

If a two electron system in which the electrons occupy spin orbitals χi and χj

is first considered, the Hartree product can be written in two ways. If electron one

is put into χi and electron two into χj the Hartree product has the form
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ΨHP
12 (x1,x2) = χi(x1)χj(x2) (3.12)

If electron one is placed in χj and electron two in χi the Hartree product has the

form

ΨHP
21 (x1,x2) = χi(x2)χj(x1) (3.13)

These Hartree products clearly distinguish between the two electrons. However,

if the appropriate linear combinations of these two expressions are taken, it is

possible to obtain a wavefunction which does obey the antisymmetry principle.

Ψ(x1,x2) = 2−1/2(χi(x1)χj(x2)− χj(x1)χi(x2)) (3.14)

Here a normalisation factor, 2−1/2, is used, and the minus sign is to ensure the

wavefunction is antisymmetric with respect to the interchange of coordinates. Ex-

plicitly

Ψ(x1,x2) = −Ψ(x2,x1) (3.15)

which is a reduced form of Equation 3.11. It can also be very simply proven

that the normalisation factor is 2−1/2 by taking the integral of the normalised

wavefunction, squared

〈Ψ|Ψ〉 = N2〈χiχj − χjχi|χiχj − χjχi〉

= N2 (〈χiχj|χiχj〉+ 〈χjχi|χjχi〉 − 〈χiχj|χjχi〉 − 〈χjχi|χiχj〉)

= N2 (1 + 1 + 0 + 0)

= 2N2

∴ N =
1√
2

(3.16)
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In the form of a Slater determinant, the antisymmetric wavefunction of Equa-

tion 3.14 can be written

Ψ(x1,x2) = 2−1/2

∣∣∣∣χi(x1) χj(x1)
χi(x2) χj(x2)

∣∣∣∣ (3.17)

It is useful to use this notation when increasing to an N electron system as

Ψ(x1,x2, · · · ,xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) · · · χn(x1)
χi(x2) χj(x2) · · · χn(x2)

...
...

. . .
...

χi(xN) χj(xN) · · · χn(xN)

∣∣∣∣∣∣∣∣∣ (3.18)

Assuming the electron and spin orbital labels are in the same order, for convenience

this is often abbreviated to include the normalisation constant and to show only

the diagonal elements,

Ψ(x1,x2, · · · ,xN) = |χiχj · · ·χn〉 (3.19)

Using this shorthand notation, Equation 3.15 should be written

| · · ·χk · · ·χm · · · 〉 = −| · · ·χm · · ·χk · · · 〉 (3.20)

Constructing the Fock Operator

Having achieved a functional form for the wavefunction, the form of the Hamilto-

nian should next be considered. A one electron operator can be defined as

ĥ(i) = −1

2
∇2
i −

∑
k

Zk
rik

(3.21)

where i denotes the electron and k the nuclei, rik the electron nuclear distance,

and Zk the nuclear mass. A two electron operator can be defined as

v̂(i, j) =
1

rij
(3.22)
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where rij is the distance between electrons i and j. The electronic Hamiltonian

can hence be written

Ĥe =
∑
i

ĥ(i) +
∑
i<j

v̂(i, j) + Vkk (3.23)

where Vkk is considered as a constant (BOA) so in the context of electronic struc-

ture calculations is calculated as a classical term, added at the end of any calcu-

lations, and can be ignored at this point.

As a functional form of the Hamiltonian and wavefunction have been obtained,

by assuming the Slater determinant notation in Equation 3.19, it can then be

written

Ee = 〈Ψ|Ĥe|Ψ〉 (3.24)

Applying the variational principle, which states that the energy will always be

greater than or equal to the true energy, or

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

> E (3.25)

it can be seen that by varying the parameters of each trial wavefunction so as to

minimise the eigenvalue E the wavefunction will itself be a better approximation to

the total wavefunction within a given functional space. Consequently the minimum

energy configuration of orbitals is correct as it minimises the total electronic energy

Ee. This is commonly referred to as the Rayleigh ratio.

Assuming, as stated previously, that the Hamiltonian is separable, the expres-

sion in Equation 3.24 for a two electron system, using Equations 3.21 and 3.22 can

be written
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Ĥ =

(
−1

2
∇2

1 −
∑
k

Zk
r1k

)
+

(
−1

2
∇2

2 −
∑
k

Zk
r2k

)
+

1

r12

= ĥ(1) + ĥ(2) +
1

r12

= Ô1 + Ô2

(3.26)

where the Hamiltonian has been separated into the one and two electron parts as

Ô1 = ĥ(1) + ĥ(2)

Ô2 = r−1
12

(3.27)

In this expression, ĥ(1) and ĥ(2) are the core Hamiltonians for electron one and

two respectively, describing both the kinetic and potential energy experienced by

each (separately) in the field of the nuclei, or core.

If the one electron expression, Ô1, is evaluated in integral notation, using the

expression for the wavefunction in Equation 3.14, and assuming the orthonormality

of spin orbitals

〈
Ψ0

∣∣∣ĥ(1)
∣∣∣Ψ0

〉
=

∫
dx1dx2

[
2−1/2(χ1(x1)χ2(x2)− χ2(x1)χ1(x2))

]∗
× ĥ(r1)

[
2−1/2(χ1(x1)χ2(x2)− χ2(x1)χ1(x2))

]
=

1

2

∫
dx1dx2

{
χ∗1(x1)χ∗2(x2)ĥ(r1)χ1(x1)χ2(x2)

+ χ∗2(x1)χ∗1(x2)ĥ(r1)χ2(x1)χ1(x2)

− χ∗1(x1)χ∗2(x2)ĥ(r1)χ2(x1)χ1(x2)

− χ∗2(x1)χ∗1(x2)ĥ(r1)χ1(x1)χ2(x2)
}

=
1

2

∫
dx1

{
χ∗1(x1)ĥ(r1)χ1(x1) + χ∗2(x1)ĥ(r1)χ2(x1)

}

(3.28)

By the same process it can be shown that

〈
Ψ0

∣∣∣ĥ(1)
∣∣∣Ψ0

〉
=
〈

Ψ0

∣∣∣ĥ(2)
∣∣∣Ψ0

〉
(3.29)

so it can hence be written
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〈
Ψ0

∣∣∣Ô1

∣∣∣Ψ0

〉
=

∫
dx1χ

∗
1(x1)ĥ(r1)χ1(x1) +

∫
dx1χ

∗
2(x1)ĥ(r1)χ2(x1) (3.30)

Assuming the notation

〈
i
∣∣∣ĥ∣∣∣ i〉 =

〈
χi

∣∣∣ĥ∣∣∣χj〉 =

∫
dx1χ

∗
i (x1)ĥ(r1)χj(x1) (3.31)

the expression for the one electron operator for a two electron system, Ô1, can be

written as

〈
Ψ0

∣∣∣Ô1

∣∣∣Ψ0

〉
=
〈

1
∣∣∣ĥ∣∣∣ 1〉+

〈
2
∣∣∣ĥ∣∣∣ 2〉 (3.32)

In general terms, the one electron operator for a many electron system can be

written

〈
Ψ0

∣∣∣ĥ(i)
∣∣∣Ψ0

〉
=
∑
i

〈
i
∣∣∣ĥ∣∣∣ i〉 (3.33)

If the two electron operator is then evaluated in the same manner as in Scheme

3.28, the terms for ĥ(r1) exchanged for r−1
12 , and since r12 = r21, the integral for

the two electron operator can be written

〈
Ψ0

∣∣∣Ô2

∣∣∣Ψ0

〉
=

∫
dx1dx2χ

∗
1(x1)χ∗2(x2)r−1

12 χ1(x1)χ2(x2)

−
∫
dx1dx2χ1(x1)χ2(x2)r−1

12 χ2(x1)χ1(x2)

(3.34)

Assuming the notation

〈ij | lm〉 = 〈χiχj | χlχm〉 =

∫
dx1dx2χ

∗
i (x1)χ∗j(x2)r−1

12 χl(x1)χm(x2) (3.35)

the expression for the two electron operator for a two electron system, Ô2, can be

written as
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〈
Ψ0

∣∣∣Ô2

∣∣∣Ψ0

〉
= 〈12 | 12〉+ 〈12 | 21〉 (3.36)

In general terms, the two electron operator for a many electron system can be

written

〈
Ψ0

∣∣r−1
12

∣∣Ψ0

〉
=
∑
i

∑
j>i

〈ij | ij〉 − 〈ij | ji〉 (3.37)

With Equations 3.33 and 3.37 an expression for the Slater determinant energy

of a system can be given as

ESD =
∑
i

〈i|ĥ|i〉+
∑
i

∑
j>i

〈ij | ij〉 − 〈ij | ji〉 (3.38)

It is appropriate here, for completeness, to revisit the use of spin orbitals. If

spacial orbitals are used a more intuitive representation of an atomic orbital can be

presented. Revisiting the definition of the spin orbital, Equation 3.2, and revising

χ1(x) = ψ1(x) = ψ1(r)α(ω)

χ2(x) = ψ̄1(x) = ψ1(r)β(ω)
(3.39)

In this notation it can be seen that every spacial orbital ψi is occupied by electrons

of spin α and β, thus the Aufbau Principle is followed. Using this notation for an

N electron, closed-shell system the Slater determinant form of the wavefunction

can be written

|Ψ0 〉 = |χ1χ2χ3χ4 · · ·χN−1χN〉

= |ψ1ψ̄1ψ2ψ̄2 · · ·ψN/2ψ̄N/2〉
(3.40)

In order to recast Equation 3.38 in terms of spacial orbitals the definition of

the one and two electron terms must be considered. By inspection of the new

definition of the spacial orbital (Equation 3.39) it can easily be seen here

N∑
i

χi =

N/2∑
i

ψi +

N/2∑
i

ψ̄i (3.41)
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that the sum for the spin orbitals is over the number, N , of electrons. In the case

of spacial orbitals, however, the terms accounting for the spin up (α) and down

(β) are explicitly stated separately, and hence the number of electrons covered by

each is N/2. As a consequence, the one electron operator becomes

N∑
i

〈i|ĥ|i〉 =

N/2∑
i

〈i|ĥ|i〉+

N/2∑
i

〈̄i|ĥ|̄i〉 = 2

N/2∑
i

〈ψi|ĥ|ψi〉 (3.42)

and the two electron operator becomes

N∑
i

N∑
j>i

〈ij|ij〉 − 〈ij|ji〉 =

N/2∑
i

N/2∑
j>i

(〈ij|ij〉 − 〈ij|ji〉)

+

N/2∑
i

N/2∑
j>i

(〈ij̄|ij̄〉 − 〈ij̄|j̄i〉)

+

N/2∑
i

N/2∑
j>i

(〈̄ij |̄ij〉 − 〈̄ij|jī〉)

+

N/2∑
i

N/2∑
j>i

(〈̄ij̄ |̄ij̄〉 − 〈̄ij̄|j̄ ī〉)

=

N/2∑
i

N/2∑
j

2〈ψiψj|ψiψj〉 − 〈ψiψj|ψjψi〉

(3.43)

Using the abbreviated notation as used in Equation 3.38 results in the energy of

the closed shell ground state, using spacial orbitals, expressed as

E0 = 2

N/2∑
i

〈i|ĥ|i〉+

N/2∑
ij

2〈ij|ij〉 − 〈ij|ji〉 (3.44)

If the notation as in Equation 3.35 is used, the first term of the two electron

operator can presented as

〈ij|ij〉 =

∫
dr1dr2|ψi(r1)|2 r−1

12 |ψj(r2)|2

= Jij

(3.45)
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This two electron integral is a classical coulombic repulsion between the charge

clouds |ψi(r1)|2 and |ψj(r2|2. The expression Jij is hence called a Coulomb oper-

ator. If the second term of the two electron operator is considered in the same

way

〈ij|ji〉 =

∫
dr1dr2ψ

∗
i (r1)ψj(r1) r−1

12 ψ
∗
j (r2)ψi(r2)

= Kij

(3.46)

the resulting expression, Kij, is known as the exchange operator. This exchange

operator represents a modification of the Coulomb operator, taking into account

the effects of spin correlation.

Having defined the expressions for energy of the system for both spin and

spacial orbitals, the Fock operator can be written for closed shell spacial orbitals

f̂(r1) = ĥ(r1) +

N/2∑
j

2Jj −Kj (3.47)

and for spin orbitals

f̂(x1) = ĥ(x1) +
N∑
i

Ji −Ki (3.48)

where J and K are spin analogues for J and K. The change in subscript between

the spacial and spin expressions of the Fock operator are merely to emphasise

that these expressions are only approximately, not exactly, equivalent. The Fock

operator, in general terms, is an effective one electron operator which can be

expressed as

f̂(i) = −1

2
∇2
i −

M∑
k=1

Zk
rik

+ νHF (i) (3.49)

The term νHF (i) is called the Hartree-Fock potential. As asserted previously, this

potential describes the field of the other electrons acting upon the ith electron. As
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this field is dependent on the orbitals of the other electrons, the Fock operator is

dependent upon its eigenfunctions.

The Hartree Fock equation can similarly be defined for both spacial orbitals

f̂(r1)ψj(r1) = εjψj(r1) (3.50)

and for spin orbitals

f̂(x1)χi(x1) = εiχi(x1) (3.51)

where εj and εi are expressed as the singular values of Equations 3.44 and 3.38

respectively, the j and i subscripts used for clarity. As the Fock operator is de-

pendent on its eigenfunctions, the Hartree-Fock equation is hence non-linear and

must be solved iteratively. This iterative method is the process introduced at the

beginning of this Section (3.2.1), the self-consistent field (SCF) method.

3.2.2 Basis Sets

At this point, the Hartree-Fock equation can be solved numerically as it is relatively

straightforward to describe atoms given their spherical symmetry. However, the

application of the Hartree-Fock SCF method is highly numerically complex in the

calculation of the molecular orbitals described by Mulliken and Hund. In 1951 C.

C. J. Roothaan [84] and G. G. Hall [85] independently developed a procedure by

which the molecular orbitals of a system are constructed as a linear combination

of atomic orbitals, an approach now abbreviated to the LCAO.

Linear Combination of Atomic Orbitals

If the Hartree-Fock equation, in the terms of Equation 3.50, is considered, the

spacial orbitals, ψi, can be thought of as molecular orbitals each of which can be

expressed as a linear combination of No number of atomic orbitals, φo,
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ψi =
No∑
o=1

coiφo i = 1, 2, · · · , No (3.52)

where the coefficient, coi is, as yet, unknown. It can be stated that the atomic

orbitals, φo, are basis functions, the sum over which, as described above, is a (basis)

set for the description of the molecular orbital ψi. When the number of terms in

the expansion No −→ ∞, the definition of the molecular orbital is exact. As this

is not feasible, a set of the φo basis functions, must be chosen to give a reasonably

accurate expansion for the exact description of the LCAO basis set, and hence the

set of ψi molecular orbitals. The truncated expansion is exact only in the space

spanned by the basis functions.

The concept of a function, described by a set of basis functions, which is itself

described by a set of basis functions (and so on... until a final basis set of functions

is reached) is an important one, and is reiterated in various theoretical methods,

including those described later.

Using Equation 3.52, the ground state MO of the H2 molecule can be repre-

sented as a linear combination of the individual hydrogenic 1s atomic orbitals, and

hence from a set of No basis functions, No number of linearly dependent spacial

wavefunctions are obtained. Consequently the difficulty in the calculation of the

wavefunctions has been reduced to the calculation of the coefficients coi.

By substituting the linear expansion of Equation 3.52 into Equation 3.50, the

Hartree-Fock equation becomes a integro-differential equation

f̂(r1)
No∑
o=1

coiφo(r1) = εi

No∑
o=1

coiφo(r1) (3.53)

Multiplying on the left by φo′(r1) and integrating over all space

No∑
o=1

coi

∫
dr1φ

∗
o′(r1)f̂(r1)φo(r1) = εi

No∑
o=1

coi

∫
dr1φ

∗
o′(r1)φo(r1) (3.54)
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turns the integro-differential equation into a matrix equation. By defining the

overlap matrix, S, with the elements

So′o =

∫
dr1φ

∗
o′(r1)φo(r1) (3.55)

and the Fock matrix, F, with the elements

Fo′o =

∫
dr1φ

∗
o′(r1)f̂(r1)φo(r1) (3.56)

Equation 3.54 becomes

No∑
o=1

Fo′ocoi = εi

No∑
o=1

So′ocoi (3.57)

which is one set of No simultaneous equations, a set for each value of o′, known as

the Roothaan, or Roothaan-Hall, equations. Although it is assumed that the basis

functions, φo, are normalised and linearly independent, they are not necessarily

orthogonal to each other. As a result, the overlap matrix S with values of the

magnitude 0 6 |So′o| 6 1 is unity in the diagonal elements and the off-diagonal el-

ements are values less than 1. The Fock operator, f̂(r1), is a one electron operator,

hence any set of one electron functions defines the operator in a matrix represen-

tation. Both the Fock matrix and the overlap matrix are No × No Hermitian,

although often are real symmetric, matrices.

The full set of equations can, in compact notation, be written as a single matrix

equation

Fc = εSc (3.58)

where c is a No × No square matrix of the expansion coefficients, coi, and ε is a

diagonal matrix of the energies of the orbitals εi of the form
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ε =


ε1

ε2 0

0
. . .

εN0

 (3.59)

The Roothaan equations are a set of simultaneous equations for the coefficients

which only have non-trivial solutions if the secular equation

|F− εS| = 0 (3.60)

is satisfied. The solution to this equation cannot directly be found as the elements

of the Fock matrix involve integrals over the Coulomb and exchange operators,

which themselves are dependent upon the spacial wavefunction. If the elements of

the Fock matrix are evaluated, returning to Equation 3.47, expanding the Coulomb

and exchange terms using Equation 3.56, implementing the LCAO as Equation

3.52, and finally simplifying the notation as per Equation 3.35

Fo′o =

∫
dr1φ

∗
o′(r1)ĥ(r1)φo(r1)

+ 2
∑
j

∫
dr1dr2φ

∗
o′(r1)ψ∗j (r2)r−1

12 φo(r1)ψj(r2)

−
∑
j

∫
dr1dr2φ

∗
o′(r1)ψ∗j (r2)r−1

12 ψj(r1)φo(r2)

= ho′o + 2
∑
i,q,r

c∗qicri

∫
dr1dr2φ

∗
o′(r1)φ∗q(r2)r−1

12 φo(r1)φr(r2)

−
∑
i,q,r

c∗qicri

∫
dr1dr2φ

∗
o′(r1)φ∗q(r2)r−1

12 φr(r2)φo(r1)

= ho′o +
∑
i,q,r

c∗qicri (2〈o′q|or〉 − 〈o′q|ro 〉)



(3.61)

yields a form for the Fock matrix elements no longer expressed in terms of a spacial

wavefunction but upon the basis functions defined within confines of the LCAO.

It is useful at this point to introduce the matrix P to account for the expansion

coefficients, the matrix elements of which are given by
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Pqr =
∑
i

c∗qicri (3.62)

In the overlap region of φq and φr, as the matrix elements are a sum over all ψi

occupied molecular orbitals, the elements Pqr are interpreted as the total electron

density and are hence called the density matrix elements. In the case of q 6= r, the

density matrix element Pqr is the bond order between q and r whereas in the case

of q = r, the density matrix element Pqq is the electron density on the atom q.

Upon substitution of the expression for the density matrix elements into the

final term of Scheme 3.61, the Fock matrix elements can be written as

Fo′o = ho′o +
∑
q,r

Pqr (2〈o′q|or〉 − 〈o′q|ro〉) (3.63)

When this expression of the Fock matrix elements is used to carry out calcu-

lations it can be seen that the one electron matrix elements, ho′o, are unchanged

in each iteration of the calculation, meaning they only need to be calculated once.

However, as the number of two electron integrals to be evaluated scales as N4
o , and

as the density matrix elements, dependent on the expansion coefficients, must be

re-evaluated at each iteration of the calculation, it can easily be seen that there

is a significant challenge in carrying out a Hartree-Fock SCF calculation. Fortu-

nately, due to symmetry, some integrals may be identically zero, some non-zero

integrals may be equal and, in the case of widely spaced nuclei, some integrals may

be negligibly small, thus alleviating some of this challenge.

It should be noted that the Fock operator is limited in a chemical sense by

the fact that it is ostensibly one electron in nature and aside from the exchange

operator, which accounts for Fermi correlation or the correlation effect unique to

electrons of the same spin, all other correlation effects are as yet unaccounted. A

further discussion as to the nature of, and methods developed to account for, these

other correlation effects will be discussed in the following section (Section 3.2.3).
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Basis Sets

The development of the LCAO, and the Roothaan equations, enabled much larger

systems to be considered in calculations. However, the bottleneck with respect

to the size of the basis set, due to the quartic (N4
o ) scaling behaviour, presented

a major issue that needed to be overcome. Consequently two schools of thinking

developed in order to make further progress.

The ‘semiempirical ’ MO theories identify inherent chemical flaws in the Hartree-

Fock equations whilst recognising the power of the method. The philosophy of

these methods involve the introduction of approximations in order to simplify

the solutions to the Hartree-Fock equations with the aim of improving accuracy.

Typically this is carried out by the use of parameterizations, focusing on the repro-

duction of experimental properties, hence the name semiempirical. In the interest

of brevity, the details of the development of ‘semiempirical’ methods will not be

discussed further. More information on these methods can be found in standard

references such as Refs. [86,87].

The ‘ab initio’ Hartree-Fock theory focuses on the fact the limitation of the

accuracy of the Hartree-Fock method is in the number of terms used to form the

basis set. As stated previously, the LCAO is correct, except for the correlation en-

ergy, if the number of terms in the expansion No −→∞, in other words, an infinite

basis set. Consequently, anticipating the development of computational technol-

ogy, no further approximations are made, and the size, definition and complexity

of the basis set is increased, limited only by the computational capacity. The ab

initio method also uses experimental data, but only as a guide to the selection of

the computational model as opposed to direct parameterization. It is the focus of

this philosophy that will be discussed.

In the context of the aforementioned N4
o basis function scaling issue, ab ini-

tio methods attempt to make a balance between minimising the number of basis
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functions used, whilst choosing a functional form of the basis set such that the

Hartree-Fock equations can be evaluated in a computationally efficient manner.

The basis functions must also be chosen to a large amplitude in regions the elec-

tron probability density is large, and vice versa, in order to be useful in a chemical

sense.

As the theory presented thus far utilises one electron approximations, no defini-

tive analytical form can be given for atomic orbitals. Notwithstanding this primi-

tive definition, approximate atomic orbitals can be constructed to model the actual

wavefunction. One set of these orbitals, Slater type orbitals (STOs), are defined

by constructing an orbital with quantum numbers n, l, and ml, belonging to an

atomic nucleus in atom centred polar coordinates as

ϑζnlml(r, θ, ϕ) = Nrn−1e−ζrYlml(θ, ϕ) (3.64)

where N is a normalisation constant, ζ is the orbital exponent the size of which

is dependent on the atomic number and Ylml is a spherical harmonic which is

related to the angular momentum. The conventional physical spherical coordinate

notation is used here where r is the radial distance of the electron from the nucleus,

θ is the polar angle or the angle from the z-axis, and ϕ is the azimuthal angle or

the anticlockwise projected vector from the x-axis onto the xy plane.

STOs present a number of attractive features. In the STO representation the

orbitals present an exponential decay with increasing radial distance, the angular

component is hydrogenic, and the 1s-orbital has a cusp at the nucleus. From a

practical perspective the most attractive feature of the STO representation is that

overlap integrals between two STOs, as a function of interatomic distance, are

easily calculated.

However, difficulties arise in the use of STOs as orbitals with differing principal

quantum number values (n) but the same angular (l) and magnetic (ml) quantum

numbers are non-orthogonal. It should also be noted that n > 1 s-orbitals have

Methodology 42



Electronic Structure 3.2

zero amplitude at the nucleus. The most significant limitation of STOs is that there

is no known analytical solution to the general four electron index that appears in

the Fock matrix elements (Scheme 3.61 as in Equation 3.35).

In 1950 S. Francis Boys [88] presented a new method for the representation of

atomic orbitals, which proved to be a major step towards computationally feasible

calculations. In the simplest terms, this newer type of orbitals, Gaussian type

orbitals (GTOs), replaced the radial decay term, e−r, of the STO representation

with e−r
2

resulting in an analytical solution to the four index integral. In terms

of the same coordinate system as presented in the functional form of the STOs,

spherical polar coordinates, the GTOs have the form

ϑζnlml(r, θ, ϕ) = Nr2n−2−le−ζr
2

Ylm(θ, ϕ) (3.65)

More commonly, the functional form of GTOs are given in atom centred Carte-

sian coordinates as

ϑζlxlylz(r) = Nxlxylyzlze−ζr
2

(3.66)

where, as previously, N is a normalisation constant and the values of l determine

the angular component, hence the sum of the components lx, ly and lz determine

the type of orbital being represented. lx + ly + lz is equal to 0 for an s-orbital, 1

for a p-orbital, and 2 for a d-orbital.

However, the transition between spherical polar coordinates to Cartesian coor-

dinates is not as straightforward as it may appear. When a GTO defines a d-type

orbital, in spherical coordinates there are five components (Y22, Y21, Y20, Y2−1 and

Y2−2) while in Cartesian coordinates there appear to be six components (x2, y2, z2,

xy, xz and yz). Consequently the six Cartesian components are transformed into

the spherical d-functions, with one additional s-function of the form x2+y2+z2. In

the same way, the ten Cartesian f-functions are transformed into the seven spher-
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ical functions with one additional set of p-functions. From a practical perspective

this transformation yields a saving in computational effort when many d-functions

or functions with higher angular momentum are to be calculated. Additionally,

the problem of linear dependence in larger basis sets is reduced when only the

spherical components are used.

The major advantage of the use of GTOs lies in the mathematical behaviour

of Gaussian functions. The product of two Gaussians, the centres of which lie

a distance apart, is equivalent to a single Gaussian function centred at a point

between the two, ergo the two electron integrals for three or four atomic centres

can be reduced to integrals over two centres. This presents a significant reduction

in computational effort.

Nevertheless, the use of GTOs has two unfortunate drawbacks. As stated

previously, one of the advantages in the use of STOs is that the nuclear cusp is well

defined. The gradient of the Gaussian function is zero at the nucleus, resulting in

near nucleus behaviour being poorly defined. Additionally, the Gaussian function

falls off rapidly at distances far from the nucleus. Consequently the computational

advantage in the description of GTOs is almost lost as a much larger basis set of

GTOs is required to obtain comparable accuracy to the use of STOs.

The denouement of this issue is achieved by the use of several GTOs grouped

together to form what are known as contracted Gaussian functions given by

φo =
∑
i

doiϑi (3.67)

In this form, each contracted Gaussian, φo, is a linear combination of contraction

coefficients, doi, multiplied by so called primitive Gaussians, ϑ. The parameters of

ϑ and d are constants during the calculation. If this is then fed into the LCAO

equation (Equation 3.52) the molecular orbitals are now represented by a linear

combination of contracted Gaussians. When contracted Gaussians are used in
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place of primitive Gaussians the number of unknown expansion coefficients, com,

to be calculated in a Hartree-Fock calculation is reduced. If the choice of contracted

Gaussians is good, the decrease in the number of coefficients to be calculated is

not to the detriment of the accuracy of the calculation.

The simplest form of basis set uses n number of primitive Gaussians to con-

struct the contracted Gaussians, the exponents of which are fitted by a least

squares method so as to form an approximation to a set of STOs optimised in

an atomic SCF calculation. The basis sets constructed in this manner are hence

known as the STO-nG basis sets. It has been found that for n > 3 no signif-

icant improvement is gained in the resulting wavefunction and energies, in that

the result is far from the Hartree-Fock limit. Consequently the STO-3G basis set,

and due to its primitive representation of orbitals, is commonly referred to as a

minimal basis set.

In the early 1980’s Pople and coworkers [89] published a series of papers pre-

senting the construction of a more complex series of basis sets, in general terms

given as a k-nlmG basis set. These basis sets, commonly referred to as split-valence

basis sets, are constructed by representing orbitals that are involved in bonding, or

valence, differently to the way in which inner-shell or core orbitals are defined. The

justification for this is simply that the inner-shell orbitals are not directly involved

in the bonding in a molecule and consequently contribute only to the energetics of

the system. The k hence refers to the number of primitive Gaussians that are used

to form a contracted Gaussian representing the inner-shell orbitals. If the number

m is omitted, the valence orbitals are split into two parts, the inner part of the

valence orbitals given as a contraction of n number of primitive Gaussians and the

outer valence orbitals given as a contraction of l number of primitive Gaussians.

This is referred to as a (valence-)double-ζ basis set. If the number m is included,

the valence orbitals are split into three parts, referred to as triple split-valence,
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where the outermost valence orbitals are given as a contraction of m number of

primitive Gaussians. These basis sets are referred to as a (valence-)triple-ζ.

In addition these split-valence basis sets can be further extended to include

more diffuse functions (+ for heavy atoms, ++ for heavy atoms and hydrogen)

and polarisation functions (* for heavy atoms, ** for heavy atoms and hydrogen),

so the general form can be given as k-nlm++G**.

In the simplest terms, if the row or period of the atom in question is denoted as

γ, every γ − 1(> 0)s/p/d/...-orbital is each described by one contracted Gaussian

function comprising k primitives. All γ-orbitals are described by two, in the case

of nl, or three, in the case of nlm, contracted Gaussians, the first comprising n

primitive Gaussians, the second of l primitives, etc. The polarisation function, ∗,

includes six d-type primitive Gaussians for heavy atoms, and for ∗∗, in addition to

the six d-types, three p-type primitives for each hydrogen. The diffuse function,

+, adds a set of s- and p-type primitives for heavy atoms, and for ++, in addition

to the sp-primitives, a set of s-type primitives for each hydrogen.

Between 1965 and 1980 [89] a different contraction scheme for the construction

of basis sets was developed, generally named the Dunning basis sets. The Dunning,

correlation consistent basis sets, in general notation, are termed as cc-pVNZ. The

letters ‘cc-p’ stand for ‘correlation-consistent polarised’, while the VNZ stands for

‘valence N zeta’ where N can be D, for double(-ζ), T, for triple(-ζ), etc. up to 6.

As indicated by the ‘p’, this type of basis set inherently includes the polarization

functions depicted by the ‘∗∗’ notation for Pople basis sets. The N , as with the

Pople basis sets, indicates that there is a split valence contraction scheme. Unlike

the Pople basis sets, the contraction schemes are fixed where double-ζ has 6,1,1,1

for all s-type orbitals and 4,1 for p-type orbitals, and triple-ζ has 6,2,1,1,1 for

s-type orbitals and 4,1,1 for p-type orbitals. The prefix ‘aug’ can be added before

the basis set to indicate augmented, or diffuse, functions have been added. Due to
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the definition of the contraction scheme, Dunning basis sets have somewhat more

flexibility in the description of electronic structure than Pople basis sets, though

are understandably computationally more expensive.

There exists a variety of other types of basis sets, including Karlsruhe, plane-

wave, real-space, and many more. As only the Pople and Dunning basis sets are

used in this work, further discussion of these other basis set types can be found in

standard references [86] [87].

3.2.3 Beyond Hartree-Fock

In the case of an infinite basis-set, the Hartree-Fock calculated, minimum energy

of a system will always be a higher energy than the exact solution. The differ-

ence in energy between the Hartree-Fock minimum and the true minimum is the

correlation energy. The definition of the correlation energy is perhaps most easily

explained by looking at the construction of Hartree-Fock theory.

It is important to see that the Fock operator is not a single operator but is

a construction of a set of interdependent one electron operators, used to build

one electron molecular orbitals. These molecular orbitals are used to populate the

terms in the Slater determinant, and the Hartree-Fock wavefunction is formed. Due

to the application of the variation principle, the resultant Hartree-Fock energy is

the upper bound to the exact energy of the system. As the Hamiltonian operator

returns the electronic energy for a many electron system, it can be seen that the

difference between this and the Hartree-Fock energy must be due to behaviours

as yet unaccounted by the one electron approximations. It is the many electron

behaviours that are the correlation energy, the sign of which is negative when used

as a correction to the Hartree-Fock energy.

As Hartree-Fock is a reasonable starting point for the calculation of the exact

energy of a system, and by definition is a single determinant method, it is therefore

reasonable to assume that the total wavefunction of a system can be represented
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by a linear combination of multiple determinants

Ψ = coΨHF +
∑
i=1

ciΨi (3.68)

The coefficients, ci, determine the weight of the determinants, Ψi, and ensure nor-

malisation. It is the selection and manipulation of these determinants that allow

the correlation energy to be included. Consequently, electronic structure methods

including varying degrees of correlation energy, or numbers of determinants, are

termed post- or beyond-Hartree-Fock.

Electron correlation is somewhat difficult to define in general terms as it is

dependent on the frame of reference, or how the electronic structure is termed. It

is hence useful to describe electron correlation in terms of fundamental spin states,

and in terms of molecular orbitals to, in essence, paint a picture of the nature of

the problem. Due to the Pauli exclusion principle, it is not possible to have two

electrons of the same spin in the same orbital, and hence intraorbital correlation

is not possible. However, two electrons of the same spin in different orbitals (in-

terorbital) are correlated and this type of same spin correlation is termed Fermi

correlation. When electrons of differing spins are considered, it can be seen that

their behaviour is correlated in both the intra- and interorbital cases. This type

of, opposite spin, correlation is termed as Coulomb correlation. If these types of

correlation are considered in terms of electron density surrounding a particular

electron, the reduced probability of finding electron density in the immediately

surrounding region is termed the “Fermi hole” for same spin, and “Coulomb hole”

for opposite spin cases. The Fermi and Coulomb hole as terminology and concepts

are more commonly used in DFT methods.

As an alternative to this description, electron correlation can also be dis-

tinguished by consideration of the more chemically intuitive orbitals. If the H2

molecule is considered, at its dissociation limit the bonding and anti-bonding or-
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bitals become degenerate. In a Hartree-Fock calculation the Slater determinant

can only account for an electron configuration populating one of the orbitals, and

the calculation continues to an optimisation of occupied orbitals. However, it can

easily be seen that if the other orbital is populated, due to the degeneracy, the

calculation will achieve the same result. Consequently, if this is taken into account

by two determinants of the form of Equation 3.68, these determinants will have

roughly equal weight. It can also be seen that if two states are near degeneracy,

the weight of the higher state in a two determinant system will be significant in

comparison to that of the lower state. This type of correlation, where a single de-

terminant method is insufficient to describe degenerate or near degenerate states,

is commonly known as static or non-dynamical correlation.

The type of calculations considered in electronic structure methods are, by

definition, solving the time independent Schrödinger equation, so it can readily be

seen why the account of these degeneracies are termed static correlation. Dynamic

correlation can hence be described as the instantaneously correlated motion of an

electron with all other electrons. Consequently, when using an expression for the

many electron wavefunction as in Equation 3.68, though the contributions of the

correlation in each of the i > 1 determinants may be small in comparison to the

weight of the Hartree-Fock determinant, the linear combination of them may be

large and hence significant.

As with the treatment of electronic structure, and the construction of basis

sets, there are many ways by which electron correlation can be treated.

Full Configuration Interaction

Perhaps the most useful method for taking into account correlation effects, in terms

of the concepts presented, is the full configuration interaction, or full CI method.

Expanding the first few terms of the linear combination of Equation 3.68, and

recasting
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|Ψ〉 = c0|ΨHF 〉+
∑
ar

cra|Ψr
a〉+

∑
a<b
r<s

crsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc|Ψrst
abc〉+

∑
a<b<c<d
r<s<t<u

crstuabcd|Ψrstu
abcd〉+· · ·

(3.69)

where a, b, c, and d indicate occupied orbitals, r, s, t, and u indicate virtual

orbitals, Ψr
a is the singly excited determinant, Ψrs

ab the doubly excited, etc. gives

the form of the full CI wavefunction. This can be given in more simplified notation,

|Ψ〉 = c0|Ψ0〉+ cS|S〉+ cD|D〉+ cT |T 〉+ cQ|Q〉+ · · · (3.70)

where |S〉 represents the single excitation terms, |D〉 the double excitation terms,

etc. Presenting this in matrix form, called the full CI matrix, some interesting

properties can be seen.



|Ψ0〉 |S〉 |D〉 |T 〉 |Q〉 ···

|Ψ0〉 〈Ψ0|Ĥ|Ψ0〉 0 〈Ψ0|Ĥ|D〉 0 0 · · ·
|S〉 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 0 · · ·
|D〉 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 〈D|Ĥ|Q〉 · · ·
|T 〉 〈T |Ĥ|T 〉 〈T |Ĥ|Q〉 · · ·
|Q〉 〈Q|Ĥ|Q〉 · · ·
...

. . .


(3.71)

Here 〈S|Ĥ|T 〉 ↔ 〈Ψr
a|Ĥ|Ψtuv

cde〉, 〈D|Ĥ|D〉 ↔ 〈Ψrs
ab|Ĥ|Ψuv

de 〉 etc., and for simplicity

only the upper triangle is included. When full CI is presented in this form, the in-

teractions of all configurations of the ground to n-tuply excited state determinants

can be seen hence the name (full) configuration interaction.

The first significant feature of the full CI matrix is that there is zero coupling

between the Hartree-Fock ground state and the singly excited determinant. This

is as a consequence of Brillouin’s theorem which states that singly excited deter-

minants will not directly interact with a reference Hartree-Fock determinant. This

can be justified by a simple proof. If only the leading correction in Equation 3.69

is considered, a matrix eigenvalue problem can be presented as
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(
〈Ψ0|Ĥ|Ψ0〉 〈Ψ0|Ĥ|Ψr

a〉
〈Ψr

a|Ĥ|Ψ0〉 〈Ψr
a|Ĥ|Ψr

a〉

)(
c0

cra

)
= E0

(
c0

cra

)
(3.72)

It is clear, in this matrix, that the mixing of states occurs in the off-diagonal

elements hence evaluation of these terms should be carried out. As the matrix

elements of the Fock operator (Equation 3.63) can be written, with spin orbitals,

as

〈χi|f |χj〉 = 〈i|h|j〉+
∑
b

〈ib|jb〉 − 〈ib|bj〉 (3.73)

and the off-diagonal matrix elements of Equation 3.72 can also be written as

〈Ψ0|Ĥ|Ψr
a〉 = 〈a|h|r〉+

∑
b

〈ab|rb〉 − 〈ab|br〉 (3.74)

it is therefore possible to write

〈Ψ0|Ĥ|Ψr
a〉 = 〈χa|f |χr〉 (3.75)

A requirement of the off-diagonal elements of the Fock matrix is that they should

be zero except where the index values are equal, i.e. 〈χi|f |χj〉 = 0, (i 6= j).

Consequently, in the case of the mixing of Hartree-Fock and singly excited deter-

minants, as a is an occupied orbital and r is a virtual orbital, a can never equal r,

i.e. a ∈ {occ}, r ∈ {virt}: {occ}∩{virt} = 0 ∴ a 6= r, hence the mixing is always 0.

Having said this, the singly excited determinants can, however, indirectly interact

with the Hartree-Fock determinant through their mutual mixing with the doubly

excited determinant.

As the matrix elements of the Hamiltonian between any Slater determinants

that differ by more than 2 spin orbitals are zero, the Hartree-Fock determinant

does not mix with triply and quadruply excited determinants. Singly excited

determinants, similarly, do not mix with quadruply excited determinants. This

can be shown by a similar method to the proof of Brillouin’s theorem.
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It should also be noted that although, for example, doubly and quadruply

excited determinants mix, the number of terms with a non-zero value are relatively

small. In other words, the block diagonal matrix representing this interaction is

sparsely populated. This is due to the fact that in order for 〈Ψrs
ab|Ĥ|Ψtuvw

cdef 〉 to

have a non-zero value, a and b must be included in the set of c, d, e and f , and

at the same time r and s must also be included in the set of t, u, v and w, i.e.

〈Ψrs
ab|Ĥ|Ψtuvw

cdef 〉 6= 0 ⇐⇒ (a, b ∈ {c, d, e, f}) ∧ (r, s ∈ {t, u, v, w}).

In order to be able to obtain a value for the correlation energy in full CI a

technique called intermediate normalisation can be used. It is reasonable to assume

that for a ground state calculation, if the Hartree-Fock determinant is considered

an acceptable approximation to the exact wavefunction, the coefficient leading the

Hartree-Fock determinant will be larger in comparison to the coefficients of the

other determinants. Consequently, Equation 3.69 can be rewritten

|Ψ〉 = |ΨHF 〉+
∑
ct

ctc|Ψt
c〉+

∑
c<d
t<u

ctucd|Ψtu
cd〉+

∑
c<d<e
t<u<v

ctuvcde|Ψtuv
cde〉+

∑
c<d<e<f
t<u<v<w

ctuvwcdef |Ψtuvw
cdef 〉+· · ·

(3.76)

The wavefunction here is not normalised. In this case a property exists where

the overlap between the Hartree-Fock and exact wavefunction is equal to 1. This

allows Equation 3.69 to be normalised if each term in the expansion is multiplied

by a constant.

If the TISE is written in the Slater determinant form

Ĥ|Ψ〉 = E0|Ψ〉 (3.77)

and EHF |Ψ〉 is subtracted from both sides

(Ĥ − EHF )|Ψ〉 = (E0 − EHF )|Ψ〉 = Ecorr|Ψ〉 (3.78)
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where Ecorr is the correlation energy, then multiplied by 〈ΨHF |

〈ΨHF |Ĥ − EHF |Ψ〉 = Ecorr〈ΨHF |Ψ〉 = Ecorr (3.79)

the reason for the use of the intermediate normalisation becomes clear.

By combining Equation 3.76, the features as described in the full CI matrix,

and Equation 3.79

〈ΨHF |Ĥ − EHF |Ψ〉 = 〈ΨHF |Ĥ − EHF

|ΨHF 〉+
∑
ct

ctc|Ψt
c〉+

∑
c<d
t<u

ctucd|Ψtu
cd〉+ · · ·


=
∑
a<b
r<s

crsab〈ΨHF |Ĥ|Ψrs
ab〉 = Ecorr

(3.80)

obtains a value for the correlation energy dependent only on the coefficients of

the double excitations. If the same process (Equations 3.78 - 3.80) is then re-

peated, substituting the singly excited determinant in place of the Hartree-Fock

determinant

〈ΨHF |Ĥ − EHF |Ψ〉 =
∑
ct

ctc〈Ψr
a|Ĥ − EHF |Ψt

c +
∑
c<d
t<u

ctucd〈Ψr
a|Ψtu

cd〉+
∑
c<d
t<u

crtuacd〈Ψr
a|Ψrtu

acd〉

= Ecorrc
r
a

(3.81)

there is now a coupling between the singly, doubly and triply excited state deter-

minants. Repeating this process, substituting 〈Ψrs
ab|, 〈Ψrst

abc|, and so on, results in

a set of equations to be solved simultaneously in order to obtain the correlation

energy. In full CI, as all excited state determinants and mixing of determinants

are included, all correlation is included.

What is immediately obvious from both the construction of the full CI matrix

and the accompanying coupling equations is that the number of terms becomes

exorbitantly large even when applied to small molecules. As a consequence, full CI
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is highly impractical to apply directly. Despite this, full CI remains a pedagogically

valuable method, hence various methods have been developed to truncate full CI

expansion.

The simplest truncated full CI method involves ignoring the triply, and higher,

excited determinants, resulting in a significant reduction in the coupling terms.

This method is known as Configuration Interaction Singles and Doubles, or CISD.

The CISD method has been further extended by reducing the truncation to in-

clude the triply excited determinants (CISDT) and quadruply excited determi-

nants (CISDTQ), and to where the reference Hartree-Fock configuration is taken

to be in a high-spin state with Spin-Flips allowed in the excited state determi-

nants (SF-CISD). Further details of these methods can be found in standard ref-

erences [86] [87].

Multiconfiguration Self-Consistent Field Theory

When full CI calculations are performed, as with the truncated methods briefly

described, the Hartree-Fock determinant is used as a reference determinant about

which the excited determinants are constructed. This means that the coefficients,

coi, of the LCAO equation (Equation 3.52) after the Hartree-Fock SCF calculation

has converged, remain fixed when the CI part of the calculation is carried out.

However, when the linear combination of Equation 3.68 is written in a more

general form

Ψ =
∑
J

cJΨJ (3.82)

the Hartree-Fock determinant is no longer the leading term. By releasing the

constraint of using the Hartree-Fock determinant as a reference state, the require-

ment of fixing the coi coefficients is relaxed. The simultaneous optimisation of both

the expansion coefficients of the determinants (variationally) and the expansion

coefficients of the basis functions leads to multiconfiguration self-consistent field
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theory (MCSCF). In this way MCSCF methods are seen to be a combination of

CI and Hartree-Fock. MCSCF, as indicated by “SCF,” is similar to Hartree-Fock

in that optimisation is carried out iteratively, hence when there is only one multi

configuration, the result is the same as Hartree-Fock.

Although Hartree-Fock SCF optimisations usually find the minimum energy of

a system, the result of the calculation can be checked by calculating and diagonal-

ising the matrix of the second derivatives of coefficients, coi. This diagonalisation

of the second derivative matrix is, however, necessary in MCSCF calculations, as

it is much less certain that the MCSCF optimised energy is a minimum i.e. it may

be a transition state, or a minimum in some but not all coordinates. Consequently

the second derivatives return a negative or positive value and the nature of the

MCSCF calculated minimum may be ascertained, for example, only positive values

are a minimum.

It should also be noted that despite a certain degree of static and dynamic

correlation accounted for in MCSCF calculations, it is not possible to separate

their contributions to an energy lowering in comparison to the result of a Hartree-

Fock calculation. Accordingly, MCSCF methods are often used solely for the

purpose of generating a qualitatively correct wavefunction and it is assumed that

only static correlation is included.

A major difficulty in carrying out MCSCF calculations is deciding which config-

urations are necessary to be included for the investigation of a particular molecule

or property, especially when excited states are to be included in the calculation.

A common approach is the complete active space self-consistent field method

(CASSCF or just CAS). In this approach the orbitals of the system of interest

are divided into three groups, termed inactive, active and virtual orbitals. The in-

active or core orbitals are necessarily doubly occupied in all included determinants,

usually selected to be the lowest energy spacial orbitals. The virtual orbitals are
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necessarily unoccupied in all determinants and are high energy spacial orbitals.

The active orbitals, or CAS orbitals, are in an intermediate region between the

inactive and virtual orbitals. It is over the active orbitals only that a “full” CI

calculation is performed, allowing all possible excitations of the active orbitals,

hence the occupation numbers of the orbitals are no longer restricted to 0 and 2.

When a CASSCF calculation is carried out, the number of electrons in the

active space and the number of orbitals are specified by the user. The choice of

orbitals to be included in the active space presents a major consideration to the

successful calculation of the properties of a molecule. Consequently it is often

useful to have considered the bonding and hence the expected orbitals in addition

to the completion of some preliminary Hartree-Fock calculations to gain an idea

of the energetic ordering and the computational description of the shape of the

orbitals. Not only should the character of the active orbitals be considered (a

poor choice may insufficiently describe particular bonding properties) but also

the number of active orbitals (too large and the number of determinants in the

expansion can become unfeasibly large). As a result, this selection of the size and

composition of the active space requires experimentation often with the view of

gaining experience and intuition as well as achieving the desired result.

In the case of excited state calculations, in addition to the numbers of electrons

and orbitals, the number of excited states and their weights (coefficients) are spec-

ified by the user. Consequently, when carrying out excited state calculations, the

character and number of active orbitals may need to be reassessed in comparison

to an equivalent ground state calculation. Including too large a number of excited

states may also render the calculation unfeasible. In spite of these drawbacks,

CASSCF remains one of the most popular post Hartree-Fock methods.

A variation of CASSCF, called the restricted active space self-consistent field

method (RASSCF or just RAS), exists whereby the active space is further subdi-
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vided into three sections named RAS1, RAS2, and RAS3. As with the CASSCF

method, the total number of electrons to be included in the active space must be

specified, but in this case is a total number across the 3 RAS regions. The RAS1

region is populated by a specified minimum number of electrons, while the RAS3

is populated by a specified maximum number of electrons. The RAS2 region has

no restrictions to the number of electrons. It is this RAS2 region that is most

similar to the active space in CASSCF calculations. As a result of the specified

minimum and maximum occupation numbers in the RAS1 and RAS3 regions, the

number of excitations from RAS1 to RAS2, and from RAS2 to RAS3 is restricted.

Perturbation Theory

An alternative to including correlation effects in calculations, as opposed to treat-

ing the full CI expansion with some kind of approximation or truncation, is per-

turbation theory. The general idea of this class of methods is that when the

Hamiltonian is too complex, more simple, known Hamiltonians can be used with

the addition of extra terms, or additional simple Hamiltonians, which are seen as

perturbations to the original one chosen. The category of time-independent, as op-

posed to timedependent, perturbation theory is commonly referred to as Rayleigh-

Schrödinger (RS) perturbation theory as Schrödinger was the first to propose the

method [90], who in turn credited Rayleigh’s investigation into the effect of small

inhomogeneities (perturbations) to a harmonically vibrating string. If a Hamil-

tonian operator, to which a weak physical disturbance (a small perturbation) is

added, the total Hamiltonian can be expressed as

Ĥ = Ĥ0 + λV̂ (3.83)

where V̂ is the perturbation and λ is a parameter controlling the perturbation

size. Consequently the wavefunction and, hence, energy of the system are now

perturbed and can be expressed in terms of a power series, as
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Ψ = Ψ0 + λΨ1 + λ2Ψ2 + · · · (3.84)

and

E = E0 + λE1 + λ2E2 + · · · (3.85)

From these two equations, a general form for the energy and the wavefunction can

be written as

Ψk =
1

k!

dkΨ

dλk

∣∣∣∣
λ=0

Ek =
1

k!

dkE

dλk

∣∣∣∣
λ=0

(3.86)

where k → ∞ and the specific values of k represent the kth order perturbation.

In this expression it can be seen that when λ = 0 the first, unperturbed, term in

the series remains. As stated previously, the perturbation is weak or small so, as

the order increases, the terms become rapidly smaller.

Substituting Equations 3.83, 3.84 and 3.85 into the TISE yields the expression

(Ĥ0 +λV̂ )(Ψ0 +λΨ1 +λ2Ψ2 · · · ) = (E0 +λE1 +λ2E2 + · · · )(Ψ0 +λΨ1 +λ2Ψ2 · · · )

(3.87)

It can be seen that if this equation is expanded and the coefficients of each power

of λ are compared, an infinite series of simultaneous equations would be obtained.

It is also clear that the zero-order equation returns the unperturbed Schrödinger

equation. A full explanation of the details of the consequences of normalisation

etc. can be found in [86].

The most commonly used perturbation method is Møller-Plesset (MP) pertur-

bation, referred to, in general terms, as MPn, where n defines the order of the

perturbation to be included in the calculation. In this method the unperturbed

Hamiltonian is defined as a shifted Fock operator of the form
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Ĥ0 = f̂ + 〈Ψ0|Ĥ − f̂ |Ψ0〉 (3.88)

The perturbation operator can then be defined as

V̂ = Ĥ − Ĥ0 = Ĥ − (f̂ + 〈Ψ0|Ĥ − f̂ |Ψ0〉) (3.89)

which is the termed the correlation potential. As seen previously, the normalised

Slater determinant is the lowest eigenstate of the the Fock operator

f̂Ψ0 =
N∑
i=1

f̂(i)Ψ0

= 2

N/2∑
j=1

εjΨ0

(3.90)

where N is the number of electrons. This equation is written both in terms of

the one electron Fock operator, f̂(i), and in terms of the energy of the doubly

occupied spacial orbital. It can be seen here that the Hamiltonian becomes a

sum over N non-interacting, one electron Fock operators, or the sum of occupied

orbital energies. As the Slater determinant is an eigenstate of the Fock operator, it

implies that the zero order energy is the expectation value of the Hamiltonian with

respect to the normalised Slater determinant, or, more simply, the Hartree-Fock

energy.

f̂Ψ0 − 〈Ψ0|f̂ |Ψ0〉Ψ0 = 0 =⇒ Ĥ0Ψ0 = 〈Ψ0|Ĥ|Ψ0〉Ψ0 (3.91)

It is easily shown by Brillouin’s theorem that as the singly excited determinant

does not mix with the ground, or Hartree-Fock, determinant the MP1 energy is

zero. When considering a second order perturbation in this method, MP2, as

the singly excited determinant cancels, the doubly excited determinant must be

defined, the energy of which can be given as
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EMP2 =
∑
a<b
r<s

(〈ψaψb|ψrψs〉 − 〈ψaψb|ψsψr〉)2

εa + εb − εr − εs
(3.92)

where, as previously, the subscripts a and b are over occupied orbitals, and the

subscripts r and s are over occupied orbitals. Consequently, the energies at each

level of MPn perturbation must be added to the Hartree-Fock energy as

Etot = EHF + EMP2 + EMP3 + · · ·+ EMPn (3.93)

It should be noted that as this method is not variational, the addition of

the MP3 correction is not necessarily an improvement, or lower in energy, that

the MP2. Given rapidly increasing complexity of the calculation with increasing

numbers of n in MPn calculations, MP6 calculations are only possible for small

molecules, the usual limit being MP4. It should also be noted that standard

MP calculations cannot be used for the calculation of excited states, though one

method involving a combination of CASSCF and MP2 exists that is able to treat

excited states, called CASMP2, or more commonly CASPT2 (CAS with second

order perturbation theory) [91].

Coupled Cluster Theory

Another widely used post-Hartree-Fock method which, in a sense, uses both the

ideas of perturbation theory and the (full) CI, is coupled cluster theory (CC).

Developed as a perturbative variant of Sinanoğlu’s Many Electron Theory [92],

CC methods differ from usual perturbation methods in that rather than including

all corrections to a given order, they include all corrections of a given type to

infinite order [86]. In this method the full CI wavefunction can be defined as

Ψ = eTΨHF (3.94)

where T is the excitation operator, given as
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T = T1 + T2 + T3 + · · ·+ TN (3.95)

where N is the number of electrons. Consequently it is these Ti excitation opera-

tors, or cluster operators, that generate all of the i-tuply excited determinants from

a reference. The exponential operator can hence be written in a series expansion

as

eT = 1 + T +
1

2!
T2 +

1

3!
T3 + · · · (3.96)

and, for example, the T2 operator acting upon the Hartree-Fock wavefunction

would be given as

T2ΨHF =
∑
a<b
r<s

trsabΨ
rs
ab (3.97)

Here, as previously, the a and b refer to occupied orbitals, r and s refer to virtual

orbitals, and the expansion coefficients t are commonly referred to as the ampli-

tudes. These amplitudes are equivalent to the ci coefficients in Equation 3.68.

What may be immediately obvious is that there appears to be little advan-

tage to the use of this exponential function as opposed to the full CI equations.

The principal difference between the two methods is that the excitation opera-

tor is truncated in a different manner to the truncated CI methods. If only the

double excitation operator is considered, then T = T2, and the expansion of the

exponential function is given as

ΨCCD =

(
1 + T2 +

T2
2

2!
+

T3
2

3!
+ · · ·

)
ΨHF (3.98)

If only the double excitations were included in a CI calculation (CID) it would be

expressed as the first two terms in the parenthesis of this equation. As this CCD
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expansion includes the products of 2, 3, 4, etc. T2 terms, the quadruple, hextuple,

octuple, etc. excitations are also included.

Consequently, the major concern of the CC methods is the determination of the

amplitudes, t. This is carried out in a similar manner to the Hartree-Fock method,

where trial wavefunctions, expressed as Slater determinants, are calculated which

produces a set of non-linear, coupled equations in the amplitudes. These are then

usually solved by an iterative method. The CC energy can then be calculated as

〈ΨHF |Ĥ|eTΨHF 〉 = ECC (3.99)

The most commonly used CC method is CCSD, where the single and double

excitations are included. It should be noted that the inclusion of the single ex-

citations in this method does not present a major expense in calculation time or

memory, by comparison to CCD, as the increased accuracy is desirable.

As with all previously mentioned methods, there are various other CC methods,

the most common in usage are CCSD(T), where triple excitations are included per-

turbatively and equations-of-motion CCSD (EOM-CCSD), whereby the treatment

and study of electronically excited states can be included.

Consequently, it can be seen that there is a wide variety of electronic structure

methods, each holding differing starting principles and presenting different layers

of approximations. It is instructive to look into the details of a variety of electronic

structure methods not only with an aim toward carrying out calculations, but also

as a study of the mathematical techniques and principles used.

3.3 Nuclear Dynamics

The main focus of electronic structure methods is in solving the TISE, gener-

ally within the bounds of the Born-Oppenheimer approximation. However, as

informative as single point calculations are, molecules are very rarely completely
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stationary. Consequently, a variety of methods have been developed with a view

of solving the TDSE. These methods are with a focus on moving nuclei, hence the

term dynamics. Generally dynamics methods fall into three categories:

• Classical

• Semi-classical

• Quantum

Classical dynamics, usually referred to as molecular mechanics, methods are

methods by which the atoms, or in some cases groups of atoms, of a system are

treated as single classical particles defined with a radius, polarizability and net

charge. The bonding between these particles is described not by overlap of or-

bitals but by a precalculated or experimentally defined bond distance between two

particles with the bond itself being represented as a spring. The term force field in

this context refers to the functional form and set of parameters used to calculate

the potential energy, and hence potential energy surfaces of the system. As the

particles in the system are parametrically defined and the equations of motion are

based in classical dynamics, the system size is limited only by computational ca-

pacity available. There are many software packages offering molecular mechanics

simulations, some examples of commonly used softwares being CHARMM, AM-

BER, GROMACS.

Semi-classical methods approach the simulation of molecular dynamics by in-

corporating quantum mechanical behaviours into classical dynamics simulations.

These methods are generally used to include the presence and effects of excited

states, as opposed to classical dynamics methods which are generally restricted to

the ground state of a system. There are many different methods and approaches

to the inclusion of quantum mechanical behaviours resulting in perhaps the most

varied of these three categories. The Ehrenfest, or mean-field, method takes a
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linear combination of the adiabatic states of a system and the molecular dynamics

runs on an average potential energy surface. While in the BOA electronic mo-

tion is explicitly governed by the nuclear motion and is not time dependent, in

the Ehrenfest representation the electronic motion is implicitly related to the nu-

clear motion and is explicitly time dependent. More details of this method will be

discussed in Chapter 6.

Surface hopping methods are methods by which an ensemble, or swarm, of

trajectories are propagated on adiabatic surfaces of a system, supplied by an ex-

ternal electronic structure method or precomputed surfaces, and in regions where

the quantum amplitude is high, such as regions dominated by non-adiabatic ef-

fects, hopping can occur between surfaces. Consequently a variety of methods have

been developed with differing methods by which the trajectories are described and

propagated, the manner by which the hopping occurs, and the effect a successful

hop has on the ensemble. Examples of surface hopping codes currently in use are

AIMS, Newton-X and SHARC.

Another semi-classical treatment of molecular systems, based on Feynman path

integrals [93], is path-integral molecular dynamics (PIMD). In this approach the

BOA is used to separate the nuclear and electronic parts of the wavefunction. The

effective Hamiltonian, derived from Feynman’s path integral, is used to govern

a classical representation of a number of artificially constructed particles. Sets of

these particles, connected by harmonic potential springs, are used to represent each

of the nuclei resulting in classical, albeit complex, system. There are a number of

the path integral based methods including RPMD, CMD and FK-QCW.

A third method currently in development for the semiclassical treatment of

molecular systems is exact factorization. As in the Ehrenfest method, the exact

factorization method has time dependent electronic motion. In addition, this elec-

tronic motion is explicitly coupled to, but not governed by, the nuclear coordinate.
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This method, however, has only been applied to one-dimensional systems but could

prove to be a promising alternative semi-classical method. Recent developments

of this method can be found in References [94–97]

Quantum molecular dynamics methods attempt to describe the time dependent

evolution of a chemical system at the atomic level including all quantum effects.

This is achieved by attempting to directly solve the TDSE. In this category of

methods, instead of describing the nuclei as particles, they are described by a

wavefunction. At different points in time the energy of the system can be found,

which can be generalised for all molecular configurations by a potential energy

hypersurface. As the nuclei are described as a nonstationary superposition of

eigenstates, or wavepackets, they are hence able to interact and are subject to

interference effects. Regions on the surfaces where high density is found indicates

points where the molecule is likely to be.

3.3.1 Multi-Configuration Time-Dependent Hartree Method

Wavepacket dynamics requires powerful numerical methods to describe the time-

evolution of the system. While the pictorial representation of the evolving wavepack-

et can provide some interesting chemical insight, valuable information can be ex-

tracted from said wavepacket over the course of a calculation. However, these exact

methods suffer from exponential scaling with an increase in number of degrees of

freedom, thus limiting said methods to no more than 2 atoms in 3 dimensions, or

6 atoms in one dimension. Consequently it has been necessary to develop more

approximate methods.

Although time-dependent Hartree or self-consistent field methods have existed

as a concept since at least the 1960s [98], and even as early as the 1930s [99], the

multi-configuration time-dependent Hartree method, or MCTDH, achieved its first

published results in 1990. [100] By expanding the wavefunction in terms of a set

of time-dependent basis functions, and using variational equations of motion, the
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basis functions, known as single-particle functions (SPFs), thus follow the evolving

wavepacket. A desirable feature of the use of SPFs is that the result converges

towards the exact result with increasing basis size.

To simplify notation, if the TDSE is recast, using atomic units where ~ = 1, it

has the form

iΨ̇ = ĤΨ (3.100)

The aim of the MCTDH method is to represent the wavefunction and Hamiltonian

with a set of basis functions in order to be able to solve the TDSE. In the standard

method, representing each of a system’s degrees of freedom (DOFs), κ, by a one-

dimensional time-independent basis set and where the wavefunction is expanded

in a direct, Hartree product scheme, yields

Ψ(Q1, · · · , Qf , t) =

N1∑
j1=1

· · ·
Nf∑
jf=1

Cj1···jf (t)

f∏
κ=1

χ
(κ)
jκ

(Qκ) (3.101)

where the number of DOFs is specified by f , Q1, · · · , Qf define the nuclear coor-

dinates, Nκ denote the number of basis functions used to represent the κth DOF,

and Cj1···jκ are the timedependent expansion coefficients. This is the same as the

full CI representation. Using the Dirac-Frenkel variational principle [99, 101] the

equations of motion for the expansion coefficients can be derived as

〈δΨ|Ĥ − i ∂
∂t
|Ψ〉 = 0 (3.102)

which leads to

iĊJ =
∑
L

ĤJLCL (3.103)

Here, the multiindex J = j1 · · · jf has been established, as it is for L, and the

Hamiltonian is given in the matrix representation of the product basis set as
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ĤJL = 〈χ(1)
jf
· · ·χ(f)

jf
|Ĥ|χ(1)

jf
· · ·χ(f)

jf
〉. The basis functions are usually replaced with

a discrete variable representation (DVR) [102–104] so that the action of the Hamil-

tonian on the wavefunction can be evaluated both efficiently and accurately. As

the kinetic energy part of the Hamiltonian can be written in tensor form, using fact

that the potential energy on a DVR grid is diagonal, and assuming, for simplicity,

that the same number of grid points is needed for each DOF (N = N1 = · · · = Nf ),

the computational effort required to carry out an evaluation of the R.H.S of Equa-

tion 3.103 is proportional to fN f+1.

However, as a propagation algorithm also requires at least three wavefunctions

in memory, and complex words require 16bytes of memory, the scaling of the

memory requirement is 3×N f×16B. Consequently the standard method presented

here would have a memory requirement of 48GB in the case of N = 32 and f = 6,

and is therefore restricted to small system size.

The MCTDH method employs a time dependent, smaller basis of SPFs as an

intermediate, the anstaz for the MCTDH wavefunction [100,102,105–108] is given

as

Ψ(Q1, · · · , Qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1···jf (t)

f∏
κ=1

ϕ
(κ)
jκ

(Qκ)

=
∑
J

AJΦJ

(3.104)

where nκ < Nκ. Implicitly defined above, the f -dimensional Hartree product of

SPFs is given by ΦJ , and AJ = Aj1···jκ are the MCTDH expansion coefficients.

The SPFs, ϕ
(κ)
jκ

, are themselves represented by linear combinations of a primitive

basis

ϕ
(κ)
jκ

(Qκ, t) =
Nκ∑
iκ=1

c
(κ)
iκ jκ

(t)χ
(κ)
iκ

(Qκ) (3.105)

Although this representation of time dependent SPFs and coefficients is not
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unique, additional constraints placed on the SPFs allowing them to remain or-

thonormal throughout the propagation yielded unique equations of motion. This

is achieved by the constraint

〈ϕ(κ)
j (0)|ϕ(κ)

l (0)〉 = δjl (3.106)

By introducing the single-hole functions

Ψ
(κ)
l = 〈ϕ(κ)

l |Ψ〉 =
∑
J

κ
AJκl

∏
κ′ 6=κ

ϕ
(κ′)
jκ′

(3.107)

the equations of motion for both the coefficients and the SPFs can be written more

concisely. Here Jκl denotes that the κth entry of the composite index of J is set to

l, and the summation is over all DOFs excluding the κth. As a result of the single

hole functions, the total wavefunction for any DOF, κ, can be written as

Ψ =
∑
l

ϕ
(κ)
l Ψ

(κ)
l (3.108)

It is this expansion that is used in the derivation of the equations of motion for

the SPFs.

Defining the mean field as

〈H〉(κ)
jl = 〈Ψ(κ)

j |Ĥ|Ψ
(κ)
l 〉 (3.109)

where the matrix elements are operators on the κth DOF, and the density matrices

as

ρ
(κ)
jl = 〈Ψ(κ)

j |Ψ
(κ)
l 〉 =

∑
J

κ
A∗Jκj AJ

κ
l

(3.110)

the MCTDH projector can, finally, be defined as

P (κ) =
nκ∑
j=1

|ϕ(κ)
j 〉〈ϕ

(κ)
j | (3.111)
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Applying the Dirac-Frenkel variation principle, Equation 3.102, to the MCTDH

ansatz of Equation 3.104, and applying some algebra, [102,105–107] the equations

of motion can compactly be written as

iȦJ =
∑
L

〈ΦJ |Ĥ|ΦL〉AL (3.112)

iϕ̇(κ) =
(
1− P (κ)

) (
ρ(κ)
)−1 〈H〉(κ)ϕ(κ) (3.113)

where the vector notation for the SPFs

ϕ(κ) =
(
ϕ

(κ)
1 , · · · , ϕ(κ)

nκ

)T
(3.114)

has been adopted.

As a result, following directly from the variational principle [102,105], the nor-

malisation of the MCTDH equations and, in the case of time-independent Hamil-

tonians, the total energy is conserved. Following from this derivation it can be

seen that when nκ = 1, the MCTDH equations simplify to the time-dependent

Hartree method. By increasing the value of nκ, an increasing amount of correla-

tion is included until when nκ = Nκ, and the MCTDH method is equivalent to the

standard method.

The MCTDH equations provide a useful starting point for further approxi-

mations. One such approximation is to replace some of the MCTDH standard

flexible SPFs with Gaussian functions [43, 109] with a view of providing a more

efficient treatment of potentially larger molecular systems. The MCTDH ansatz

using Gaussian functions can hence be recast as

Ψ(Q1, · · · , Qf , t) =
∑
j1=1

· · ·
∑
jf=1

Aj1···jf (t)
d∏

κ=1

ϕ
(κ)
jκ

(Qκ, t)

f∏
κ=(d+1)

g
(κ)
jκ

(Qκ, t) (3.115)
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Using a combination of SPFs and Gaussian parameters has been found to be

suitable for the treatment of system-bath problems [110] as the system requires a

highly quantum mechanical description while the bath is a set of oscillators well

described by these Gaussian functions. The presence of the Gaussian functions in

this way leads to the term Gaussian wavepackets, or GWPs, and this version of

MCTDH is commonly referred to as G-MCTDH.

The Variational Multi-Configurational Gaussian Method

The natural progression from the G-MCTDH method is to replace all of the grid-

based SPFs with Gaussian functions, yielding a purely GWP method. As the fully

variational development of the MCTDH equations is used, the GWPs in what is

known as the variational multi-configurational Gaussian (vMCG) [43, 110–112]

method, do not follow classical trajectories, though the GWPs can be reduced to

follow classical trajectories.

The vMCG ansatz has the form

Ψ(x, t) =
n∑
j=1

Aj(t)gj(x, t) (3.116)

where the basis functions and coefficients of the system are both time-dependent,

and the coordinate has been simplified to the vector x. These multidimensional

Gaussian functions, with all DOFs combined, have the following form, in matrix

notation

gj(x, t) = exp(xT · ςj · x+ ξj · x+ ηj) (3.117)

the generally time-dependent, complex parameters of which are represented by a

square matrix, ς and a vector, ξ, the dimensions of which are given by the number

of DOFs, and a number, η. These numbers can all be collected together in a vector
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Λj =
{
ςj, ξj, ηj

}
(3.118)

The use of time-dependent GWPs was implemented by Heller and co-workers

[113,114] in semi-classical dynamics calculations, the terminology of which will be

followed here. The choice of the ςj matrix define the type of Gaussian function

used: thawed, separable, or frozen. When a thawed Gaussian is used, the matrix

ςj contains both diagonal and off-diagonal elements, meaning coupling between

DOFs is allowed. A separable Gaussian is where the matrix ςj is diagonal. A

frozen Gaussian refers to where the diagonal elements of the matrix ςj remain at

fixed values during the wavepacket propagation. Generally, in vMCG calculations,

frozen Gaussians are used, though the calculations appear to be sensitive to the

choice of the width of the Gaussian.

The form of the Gaussians can more easily be seen by rewriting Equation 3.117

in linear notation, for the separable case

gj(x, t) = exp

(∑
κ

ςjκx
2
κ + ξjκxκ + ηj

)
(3.119)

where, as previously, κ runs over the DOFs of the system. The use of a single

function in this notation, as opposed to writing in terms of a product of one

dimensional Gaussian functions, emphasises the coupling of the parameters in the

dynamics calculations. It then follows that by defining the relationships

ςjκ = −ajκ

ξjκ = 2ajκqjκ + ipjκ

ηj =
∑
κ

(−ajκq2
jκ − ipjκqjκ) + iγj


(3.120)

Equation 3.119 can then be written in the more intuitive Heller form

gj(x, t) = exp

(∑
κ

−ajκ(xκ − qjκ)2 + ipjκ(xκ − qjκ) + iγj

)
(3.121)
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In this form it can more easily be seen that the ς parameters represent the widths

of the Gaussian functions, ξ represents the momentum and coordinate of the centre

of the functions, and η represents the remaining parameters including the phase,

γ, of the functions. In simpler terms, the ς are the quadratic parameters, the ξ

are the linear parameters and the η are the scalar parameters.

As with the MCTDH method, if the Dirac-Frenkel variational principle is ap-

plied to the wavefunction where variations to one of the time-dependent coefficients

δΨ = δAjgj (3.122)

and to one of the Gaussian parameters, Λj,

δΨ = δλjαAj
∂gj
∂λjα

(3.123)

where λjα is a parameter of the jth Gaussian, gj, result in the equations of motion.

The equations of motion for the time-dependent coefficients has the form

iȦj =
∑
lm

[Sjl]
−1(Hlm − iτlm)Am (3.124)

where the overlap matrix, S, has the elements

Sjl = 〈gj|gl〉 (3.125)

and the Hamiltonian matrix, H , has the elements

Hjl = 〈gj|Ĥ|gl〉 (3.126)

In order to maintain the normalisation of the Gaussians during the propagation,

the diagonal of the overlap time-derivative matrix, τ , must be zero. By considering

the Gaussian parameters to be part of a single vector, Λj, using the chain rule,
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τ can explicitly be written as a function of the time derivative of the Gaussian

parameters

τjl = 〈gj|ġl〉 =
∑
α

〈
gj

∣∣∣∣ ∂gl∂λlα
λ̇lα

〉
(3.127)

If Nκ is the number of DOFs, the maximum values of the indices α define whether

the width of the Gaussian is thawed (max(α) = Nκ(Nκ+1)), separable (max(α) =

2Nκ + 1), or frozen (max(α) = Nκ + 1).

The equations of motion for the Gaussian parameters can be written in a

compact matrix form as

iΛ̇ = [C]−1Y (3.128)

where this apparently simple notation belies the underlying complexity. By ex-

panding the matrix C and the vector Y

Cjα,lβ = ρjl

(
S

(αβ)
jl − [S(α0)S−1S(0β)]jl

)
(3.129)

Yjα =
∑
l

ρjl

(
H

(α0)
jl − [S(α0)S−1H ]jl

)
(3.130)

where ρjl is an element of the density matrix

ρjl = A∗jAl (3.131)

the additional definitions of the elements of the S matrices and the Hamiltonian

matrix H

S
(αβ)
jl =

〈
∂gj
∂λjα

∣∣∣∣ ∂gl∂λlβ

〉
S

(α0)
jl =

〈
∂gj
∂λjα

∣∣∣∣ gl〉
H

(α0)
jl =

〈
∂gj
∂λjα

|H| gl
〉


(3.132)
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reveal some of the underlying complexity. Dependent on the α and β parameters,

the S matrices correspond to different orders of Gaussian moments e.g. Mκ
jl =

〈gj|xκ|gl〉, Mκµ
jl = 〈gj|xκxµ|gl〉. Of particular interest is the order up to which

the matrix S(0α) can represent the Gaussian moments. In the case of thawed

Gaussians, all moments can be represented up to second-order while for separable

Gaussians all zero-order, linear and second-order moments can be represented. In

the case of the use of frozen Gaussians, only the zero-order and linear moments

can be represented. It is the representation of the Gaussian moments by the S(0α)

matrix that proves to be important.

Progressing from the ideas of Chapter 2.3 it can be seen that the zeroth-order,

or separable, part of the Hamiltonian can be expanded as a power series in terms

of the Gaussian moments as

Hjl = M
(0)
jl X

(0)
l +

∑
κ

M
(κ)
jl X

(κ)
l +

∑
κµ

M
(κµ)
jl X

(κµ)
l + · · · (3.133)

If the local harmonic approximation (LHA) is used, the potential energy of a given

multi-dimensional Gaussian can be expanded, up to second order, with respect to

the time dependent centre coordinate, qj(t), as

Vj(r) = Vj0 +
∑
κ

V ′j,κ(xκ − qjκ) +
1

2

∑
κµ

V ′′j,κµ(xκ − qjκ)(xµ − qjµ) (3.134)

where the centre of gj(r, t) has been used for qj(t), and the derivatives of the

potential taken from this point. As the kinetic energy operator can be taken to

have a separable form, i.e. T̂ =
∑

j
1

2mj

∂2

∂x2j
the X coefficients of Equation 3.133

can be written as

X
(0)
j =

∑
κ

(
ςjκ
mκ

+
ξ2
jκ

2mκ

) + Vj0 −
∑
κ

V ′j,κqjκ +
1

2

∑
κµ

V ′′j,κµqjκqjµ (3.135)
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X
(κ)
j = − 2

mκ

ςjκξjκ + V ′j,κ −
∑
µ

V ′′j,κµqjµ (3.136)

X
(κµ)
j = − 2

mκ

ςjκςjµ +
1

2
V ′′j,κµ (3.137)

The Y -vector can also be separated, into two parts

Y = Y 0 + Y R (3.138)

The part of the Hamiltonian that can be expressed in terms of S(0α) is represented

by Y 0, with the remaining part of the Hamiltonian expressed by Y R, known as the

residual term. The residual term includes both the correlation terms, as well as the

higher order terms of the separable part of the Hamiltonian. Using the relationship

between the overlap matrix elements S(αβ) and the Gaussian moments, M , and

comparing Equations 3.129 and 3.130, Equation 3.138 can be rewritten as

Yjα =
∑
lβ

Cjα,lβX
(β)
l + YR,jα (3.139)

Consequently, the equation of motion for the Gaussian parameters can be further

simplified to

iΛ̇ = X +C−1Y R (3.140)

The significance of this, so-called “CX formalism” is realised when the practical

implications are considered. As the C-matrix is inverted during propagation, the

removal of part of the Hamiltonian from the C−1Y -term results in a reduction

of possible numerical errors and hence increases the stability of the propagation.

Another desirable feature is that the parameter equations of motion can be divided

into classical and non-classical parts.

The separation of classical and non-classical parts is achieved in the vMCG

method by putting only the classical Gaussian propagation terms into X with the

remaining (quantum) contributions kept in the Y R term. However the method for
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the separation of these terms is dependent on whether thawed, separable or frozen

width Gaussian are being treated. In the case of thawed width Gaussians it is

known that these Gaussians move classically in a harmonic potential and hence,

in the above notation, a complete solution is achieved using iΛ̇ = X. [109,112,115].

In the case of frozen width Gaussians, the separation is not as straightforward.

When frozen width Gaussian basis functions are used, only the linear param-

eters of κ are varied with time. Consequently, the zeroth-order Hamiltonian can

be written in terms of Equations 3.135 and 3.136 as

Hjl = S
(0)
jl X

(0)
l +

∑
κ

S
(0κ)
jl X

(κ)
l +

∑
κµ

M
(κµ)
jl X

(κµ)
l + ... (3.141)

In this form, the Hamiltonian is easily separable into the Y 0 and Y R terms.

This is not the case for the equations of motion as the linear parameter of the

zeroth-order part of the equations of motion have the form

iξ̇
(0)
jκ = −i2ςjκq̇jκ − ṗjκ = X

(κ)
j

= − 2

mκ

ςjκξjκ + V ′j,κ −
∑
µ

V ′′j,κµqjµ
(3.142)

whereas the classical equations of motion for the position and momentum deriva-

tives have the form

q̇jκ =
pjκ
mκ

ṗjκ = −V ′j,κ

 (3.143)

As a consequence, in order to obtain the zeroth-order linear parameter in terms of

the classical equations of motion (iξ̇
(0)
jκ = −i2ςjκ pjκmκ +V ′j,κ), the terms − 2

mκ
ςjκ(ξjκ−

ipjκ) and −
∑

µ V
′′
j,κµqjµ must go into Y R. In the vMCG method, ξ̄

(0)
jκ = qjκ+ipjκ is

propagated (as opposed to ξ
(0)
jκ = −2ςjκqjκ+ ipjκ) and when necessary, for example

when τjl is calculated, a constant width parameter, ςjκ, is used to reconstruct ξ
(0)
jκ .

All that remains is to obtain the remaining part of ξ̇jκ from Y R.
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iξ̇R,jκ =
∑
lµ

C−1
jκlµYR,lµ (3.144)

This results in an overall equation of the form

i ˙̄ξjκ = V ′j,κ − i
pjκ
mκ

+ <(iξ̇R,jκ)−
1

2ςjκ
i=(iξ̇R,jκ) (3.145)

If the last two terms are ignored, all GWPs will follow classical trajectories. It

should also be stated that for coherent states in an appropriate width harmonic

well, the last two terms of this expression cancel. Details on the performance and

application of this method can be found in reference [43] and references therein.

The Direct-Dynamics Variational Multi-Configurational Gaussian Method

One of the major drawbacks to grid-based methods is the requirement that the po-

tential energy surfaces must be computed or fitted before any calculations are per-

formed. This presents a major bottleneck to the completion of quantum-chemistry

calculations. A relatively recent development with a view of combating this bot-

tleneck is the direct-dynamics variational multi-configurational Gaussian method

(DD-vMCG) [43,116–118]. In this method the matrix elements of the Hamiltonian

must be evaluated in order to integrate the equations of motion for the time depen-

dent coefficients (Equation 3.124) and the Gaussian parameters (Equation 3.128).

If the dynamics is run using Cartesian coordinates or normal modes, the kinetic

energy operator has a simple analytical form, and by adopting the LHA (Equation

3.134) only the energies, gradients and Hessians at the centres of the Gaussians are

required at each time step. As a result these values are easily evaluated on-the-fly

via an interface with an external quantum chemistry software package.

Another advantage of the DD-vMCG method is in the form of the choice of

coordinates. In the usual grid-based methods a careful choice of the use of coordi-

nates is required when fitting the potential energy surfaces so as to avoid spurious
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correlated motions. This can often lead to complex expressions for the kinetic

energy operator. As the DD-vMCG method circumvents the requirement for sim-

plified precomputed surfaces, a coordinate system can be chosen such that the

kinetic energy operator is easily evaluated. Consequently studies have been per-

formed using the DD-vMCG method in atomic Cartesian coordinates, [117, 119]

Jacobi coordinates, [119] and in normal modes. [116, 120–124] The uses of these

different coordinate systems are not without their drawbacks. When Cartesian co-

ordinates are used, the translations and rotations of the total system are not easily

separated from the vibrational motions. When using Jacobi coordinates, although

the translations of the system can be separated, the initial representation of the

wavepacket as a superposition of GWPs is not easily defined. The use of normal

modes goes further by approximately removing rotational motion of the system,

though the selection of specific nuclear motion can be difficult to resolve. This

difficulty in the use of normal modes is, however, a relatively trivial issue.

As stated previously, the DD-vMCG method utilises external quantum chem-

istry software packages to calculate the potential energy surfaces. These electronic

structure methods are used to calculate the energy, gradient and Hessian, so even

relatively simple systems with a moderate basis-set and level of theory will take

a significant amount of time. Consequently it is undesirable to carry out these

time-consuming electronic structure calculations for every point reached by the

GWPs. The DD-vMCG method bypasses this issue by constructing PESs using

the LHA and creates a database of electronic energies and other calculated infor-

mation. [119] The idea of using a database in this way has been used before in

other classical trajectory [125,126] and quantum trajectory [127] methods.

As a DD-vMCG calculation is carried out, a linear combination of multi-

dimensional GWPs, each centred at a particular point in configuration space,

is used to construct the nuclear wavepacket. Instead of calling the external elec-
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tronic structure program at each time step, the database is then consulted. The

Euclidean norm of the difference vector between all points of the new molecu-

lar geometry and all existing geometries in the database is then calculated as a

method by which the distance between two structures can be measured. The pa-

rameter dbmin (database minimum), defined at the start of the calculation, is then

compared to the lowest value of the calculated norm.

If this lowest value is higher than the predefined value of dbmin then an elec-

tronic structure program is called in order to calculate the energy, gradient and

Hessian of the PES, and the information is stored in the relevant database. Ad-

ditional information such as the dipole moments, derivative couplings and MO

coefficients may also be stored. The PES is then expanded to the second order of

a Taylor series using the stored data as a reference

V (x) = V (x0) + g(x0).(x− x0) +
1

2
(x− x0).H(x0).(x− x0) (3.146)

where the gradient, g(x0), and the Hessian, H(x0), of the adiabatic PES are

evaluated at x0 and are relative to a change in nuclear geometry. This expansion

is then used as a basis for the LHA, which in turn is used to calculate the required

matrix elements in the equations of motion. The expansion up to and including

the second derivatives, however, is not only used in the construction of the PESs.

If the lowest value of the norm is lower than the predefined value of dbmin then

a modified Shepard interpolation [127] is carried out in order to obtain the energy,

gradient and Hessian for the LHA. This Shepard weighted interpolation has the

form

V (q) =
∑
i

ωi(q)Ti(q) (3.147)

where Ti is the ith database entry centred Taylor series expansion and ωi is defined

as
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ωi(q) =
νi(q)∑
j νj(q)

(3.148)

where

νi(q) =
1

|q − qi|2p
(3.149)

It has been found that setting p = 2 yields the best results. [43] This set of equa-

tions (Equation 3.147-3.149) is used to gain the interpolated energy, gradient and

Hessian. However, the Taylor series as used in Equation 3.147 must be truncated

to first order for the gradients and zeroth order for the Hessians. Using Equa-

tion 3.146 the PES is then formed using the second-order Taylor series for each

database point, xi, and the energy for the new geometry is evaluated.

The choice of the value of dbmin appears to be system dependent [43], though

running an exploratory set of calculations varying this value will yield informative

results. It should also be noted, from a practical perspective, that if an electronic

structure calculation fails to complete, this interpolation is also used.

Although the use of the database in this way can significantly reduce the

amount of real time required for a full propagation, there remains the issue of

the evaluation of the Hessian matrix, which is a computationally intensive process

even for Hartree-Fock methods. As the energy, gradient vector and Hessian matrix

are essential to the use of the LHA in the calculation of extrapolated points, as

well as for the calculation of matrix elements, a method was required by which the

explicit calculation of the Hessian at every database point could be avoided. As

this is a common issue, many methods for the approximation of the Hessian exist

requiring only a reference Hessian, and the current gradient information, known

as Hessian update algorithms. Consequently, the Powell update algorithm [128] is

used, where the updated Hessian is calculated using the following equation
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HNew = HOld +
1

δ.δ
(ε⊗ δ + δ ⊗ ε)− ε.δ

(δ.δ)2
HOld.δ ⊗ δ.HOld (3.150)

where H, with the appropriate label, is the Hessian, δ is the vector of the position

difference, and ε is the vector of the gradient difference between the “old” and

“new” geometries.

At the first point in a DD-vMCG calculation, when it is performed using an

empty database, an electronic structure calculation is carried out in order to obtain

the energy, gradient and full Hessian, and these data are used as the reference. In

the case where a populated database is used, the first entry in the database is used

as the reference. The propagation continues and when the calculation reaches a

point where a new electronic structure calculation is required, as opposed to an

extrapolated point, only the energy and gradient at this new point are calculated.

The DD-vMCG program then calculates the Euclidean norm distance between the

reference and the new point, as well as calculating the distances between the

reference and all other points in the database. The points in the database are then

divided into two subsets. The first, “internal” subset of points comprises points

which are closer to the reference than the new point. The second, “external”

subset of points comprises the points which are further away from the reference

than the new point. The gradient at the new point and the gradient and Hessian

of each of the points in the internal subset in turn is used to obtain a set of Powell

updated Hessians for the new point, Hi. As the distances between the new point

and of the internal points have been calculated, di, the Hessian at the new point

is given by the weighted sum

HNew =

∑
i∈Internal d

−4
i H

(i)
Old∑

i∈Internal d
−4
i

(3.151)

The new Hessian is then added to the database and each of the Hessians in the

external subset are updated in a similar manner, including the new Hessian as
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part of the internal subset. The performance of this Hessian update procedure

has been tested, details of which can be found in reference [43]. It was found

that although the use of the Hessian update procedure was dependent on the

system being studied, it may provide a crucial time saving if a high level electronic

structure method is being used to calculate new points.

A final important feature to note in the DD-vMCG method is the form of poten-

tial energy surface, specifically the representation of the states in the calculation.

Although the external electronic structure programs calculate points along adia-

batic surfaces, the wavepacket is propagated along the diabatic surfaces. Given the

prerequisites for the DD-vMCG method, a method by which the diabatic surfaces

can be calculated is required which can even-handedly account for on-the-fly cal-

culated surfaces with multiple states with an unknown number of state crossings.

The method by which this is carried out is known as propagation diabatisation and

is achieved by the following scheme. It should be noted that for ease of reading

some of the equations presented in Chapter 2.5 will be reiterated here.

As adiabatic states form an orthonormal set, the elements of the transformation

matrix, S, can be defined as

Sji = 〈ψj|ϕi〉 (3.152)

which is simply the overlap between the adiabatic, ψ, and diabatic, ϕ, states,

which is a scalar function of the position. Both the adiabatic and diabatic states

form a complete set, so a gradient of these matrix elements can be taken

∇Sji =
N∑
k=1

〈∇ψj|ψk〉〈ψk|ϕi〉+
N∑
k=1

〈ψj|ϕk〉〈ϕk|∇ϕi〉 (3.153)

the final term of which, in a strictly diabatic representation, is

〈ϕk|∇ϕi〉 = 0,∀ i, k (3.154)
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If it is assumed that the couplings between states in a diabatic representation

are sufficiently small, it can hence be written

∇Sji =
N∑
k=1

〈∇ψj|ψk〉Ski (3.155)

If the definition of the nonadiabatic coupling vector is recalled, the elements of

which are defined as

Fij = 〈ψi|∇ϕj〉 = −〈∇ψi|ψj〉 =
〈ψi|∇Ĥ|ψj〉
Vj − Vi

(3.156)

where Vi and Vj are the nonadiabatic energies of states i and j, the adiabatic states

are orthonormal and it can hence be written

∇Sij = −
N∑
k=1

F ikSkj (3.157)

assuming that a complete basis set is used. The key equation to this propagation

diabatisation is the matrix form of this equation

∇S = −FS (3.158)

where this S matrix is taken to be at a point where the adiabatic and diabatic

surfaces are the same, typically the Frank-Condon point. It is the solutions to this

differential equation that define the scheme of the diabatisation. Propagating over

a short time step, the formal solution to this equation is

S(q −∆q) = exp

(
−
∫ q−∆q

q

F · dq
)
S(q) (3.159)

However, in this form it can be seen that in order to solve this equation an expo-

nential of a matrix expression must be taken. It can also be seen that the integral

of a function with an unknown analytic form must be taken. The second of these

issues can be overcome using a simple numerical integration along the straight line
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between q and q + ∆q using the trapezium rule, resulting in a matrix of scalars

parameters. The first issue is not as straightforward to solve.

The equation for the propagation, Equation 3.159, does not guarantee that

a unitary matrix S(q) will return a unitary matrix for S(q − ∆q). Following

the Esry and Sadeghpour [129] method, which uses the Cayley-Hamilton form of

the propagator, the unitarity of the transformation matrix can be maintained,

resulting in

exp

(
1

2

∫
F · dq

)
S(q −∆q) = exp

(
−1

2

∫
F · dq

)
S(q) (3.160)

which is a rearranged form of Equation 3.159. By utilising a Taylor series expansion

of the exponentials, and the resultant matrix on the left-hand side is inverted, the

final transformation matrix in terms of S(q −∆q) is obtained. Full details of the

method by which this implemented in the DD-vMCG software can be found in

Reference [130].

As mentioned previously, this method is correct only for a complete basis set

of states. However, tests to date indicate that the performance of this propagation

diabatisation scheme is correct as smooth, diabatic potential energy surfaces are

calculated. [130]
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Formimidic Acid Proton Transfer

4.1 Introduction

Formamide (FAM), also known as methanamide, over the years since its first pub-

lished synthesis in 1863 [131] has been an important but, until relatively recently,

often disregarded compound. Though its initial synthesis was by a reaction of

ethyl formate with ammonia, advancements in technology enabled it to be formed

in direct synthesis from the carbonylation of ammonia with an alcohol-dissolved

alkoxide catalyst [132,133]

CO + NH3
NaOCH3−−−−−→ HCONH2 (4.1)

which requires a pressure of 0.8-1.7 MPa at 75-80 oC. Alternatively FAM can be

formed via a two-step indirect synthesis involving the treatment of liquid methyl-

formate with gaseous ammonia [134,135]

CO + CH3OH
NaOCH3−−−−−→ HCOOCH3

HCOOCH3 + NH3 −→ HCONH2 + CH3OH

(4.2)

an industrial example of which being the BASF Process [135,136], with a requisite

temperature 40-100 oC at 0.1-0.3 MPa.

A cursory investigation into the early history of research directly focused on

the properties and uses of FAM yields relatively little information within the field

of chemistry, the reasons for which are not immediately obvious. A more com-
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prehensive exploration, however, produces a wealth of information the detailed

description of which would be overly didactic within the context of this study.

Consequently, a few specific areas of interdisciplinary interest will be discussed

along with a short summary of current uses.

In the early attempts at the systematic classification of bacteria it was recog-

nised that the identification of bacterial polysaccharides was essential [137] (later

discovered to be specifically relevant to encapsulated bacteria such as Streptococ-

cus pneumoniae). Consequently an efficient method for the solvation of bacteria

without destroying the polysaccharide structures was required. Given the exper-

imental techniques available at the time, it was proposed that the use of neat

FAM at 150 oC dissolved the bacteria, leaving the polysaccharide macromolecules

affected neither by dissolution nor by cross-reactions. [138] After this initial series

of studies between 1923-1938 [139] relatively little work was carried out within the

field of bacterial taxonomy until the 1960s [140]. This 20 year gap in research is

noted in a now key review from 1980 [141] on the characteristics of Streptococcus

mutans.

The break in research involving FAM during this time occurs in a number

of fields and can superficially be explained by the outbreak of the World War

II. Consequently scientific research during this time was focused on contributing

to the war effort and in some cases can be difficult to trace, particularly if the

research was for nefarious purposes. One of the more familiar chemical weapons

used during World War II is the hydrogen cyanide (HCN) based pesticide Zyklon

B [142]. Although the patent for Zyklon B was accepted in 1926 [143], there was a

requirement for an efficient method by which HCN could be produced. Industrially,

the main process for the production of HCN is the Andrussow process [144, 145],

originally developed as a method of ammonia oxidation by Leonid Andrussow for

the company I.G. Farben [146,147]. In the paper “The Manufacture of Hydrocyanic
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Acid by the Andrussow Process” by J. M. Pirie [148] it is stated

A large plant for the production of hydrocyanic acid... was built in

Germany during the war, but was never put into production.

The chapter on formamides in Ullmann’s Encyclopedia of Industrial Chemistry

mentions a formamide vacuum synthesis of HCN [135], the reference for which is

given as “I. G. Farben, FR 906 114, 1944” [149]. Pulling these references together

reveals an interesting piece of history. During August and September 1944 the

Eighth Air Force of the USAAF carried out 8 bombing runs, committing a total of

1083 B-17s and 41 B-24s, destroying plants referred to as “chemical works” and “oil

refineries” in Oppau and Ludwigshafen [150,151]. It is reported in the “Classified

List of OTS Printed Reports” (1946) as listed under the Technical Reports Section

of the Science and Technology Division of the Library of Congress, that FAM was

being produced at a factory in Oppau [152], the details of which are unavailable.

In the same report it lists an I. G. Farben plant in Frankfurt under the category of

“Chemical Warfare”. It is a reasonable conclusion to draw that a method of HCN

production using FAM was never implemented as the Oppau facility providing the

FAM based chemical feedstock for the plant in Frankfurt (around 80 km away)

had been destroyed.

Due to its high degree of association (FAM is more highly hydrogen bonded

than water at temperatures below 80 oC) its unusually high specific heat [153],

its high dielectric constant and its bifunctionality, FAM has attracted commercial

interest for an eclectic range of applications [135, 154]. Its use as a formylating

agent [155], as a starting point for transamidation to form substituted formamides

(N,N -dimethylformamides) [156] and in the preparation of nitrogen-containing

heterocycles and formate esters [157] make it an ideal solvent or intermediate for

many synthetic processes including the production of polymers [158–160], phar-

maceuticals [161–163] and crop protecting agents [154]. FAM is the smallest,
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most stable compound containing the four most abundant elements in the uni-

verse. FAM itself has been generally detected in the interstellar medium [164],

in comets [165, 166], including Hale-Bopp, on icy grains around the protostellar

object W33A [167], and from sources SgrA and SgrB2 [168, 169]. In recent years,

support has been growing in the apperception of FAM as a key abiotic precursor

to the synthesis of pyrimidines and nucleobases in prebiotic Earth, supporting the

RNA World Hypothesis. A comprehensive review, “Formamide and the origin of

life” by Saladino et al. [170], details the diverse conditions under which FAM has

been used in the synthesis of nucleic bases and nucleosides, the phosphorylation of

nucleosides, as a catalyst for oligomer- and polymerization of nucleotides, and the

synthesis of pre-metabolic components. As Hadean Earth was not shielded from

solar radiation it is reasonable to consider not only the effects of temperature,

catalysis and concentration but the photoactivity of FAM in its viability as a pre-

cursor to prebiotic life. It is also, therefore, pertinent to consider how formamide

may be formed in the interstellar medium. The paper “Mechanistical studies on

the production of formamide (H2NCHO) within interstellar ice analogs” of B. M.

Jones et al. [171] provides a comprehensive review of studies to date pertaining to

the behaviour of FAM in the celestial environment. Also covered are the possible

pathways to formation, IR spectral identification within ice matrices, and analysis

by mass spectrometry.

Despite this plethora of information regarding the behaviour, uses and function

of FAM, to date there have been only a limited number of computational studies.

[172–176] As yet there are no published full quantum dynamics studies on the

behaviour of FAM.
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4.2 Electronic Structure Calculations

As stated in Chapter 3.3, external quantum chemistry programs are needed in

order to calculate the energy, gradient and Hessian required for the propagation

in a DD-vMCG calculation. The use of a large basis set and a high level of the-

ory would enable higher accuracy in the results; however, these computationally

intensive calculations would present a severe bottleneck to the propagations over

even relatively short timescales in terms of the memory and both the computa-

tional and real time for taken for the calculation. An important consideration,

particularly relevant in quantum chemistry calculations involving a large number

of excited states, is the stability of the quantum chemistry calculations to the

movement of atoms away from equilibrium geometries. A final consideration is

that the DD-vMCG method is relatively new and computational studies have, so

far, been carried out testing the ability of the code to handle high numbers of

degrees of freedom, but thus far no studies have been carried out examining the

ability of the code to handle large numbers of excited states. Consequently a

balance between accuracy, stability, computational expense, and time expense in

the calculations carried out by an external quantum chemistry software must be

considered from the outset of an investigation.

Due to the dearth of computational investigations into the excited states of

FAM and FIM it was unknown as to how many excited states would be needed

in the quantum chemistry calculations. Consequently an overall emphasis on ef-

ficiency in the quantum chemistry calculations was made, whilst maintaining the

intention of gaining as accurate a description of the excited states of the molecules

as possible within a reasonable time constraint.
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4.2.1 Ground State Calculations

Basis Set Investigation

An initial set of calculations were carried out performing a ground state optimi-

sation of formamide using increasing basis set size, and increasing level of theory.

For consistency, the same starting geometry was used as the starting point for

each of these calculations, as opposed to the usual method by which a previous

lower level (basis set or theory level) calculation is used as starting point for higher

level calculations. The energetic results of this initial set of calculations can be

seen in Table 4.1, while the time taken for these calculations can be seen in Table

4.2. It should be noted that while the fourth-order perturbation theory method,

MP4, is listed as being a lower theory level than CCSD, MP4 has been shown,

using a cc-pVDZ basis set, to capture approximately 99% of electron correlation,

whereas CCSD captures 98%. They are listed in this way as MP4 optimisations

are not possible using the standard quantum chemistry software packages, due to

the extensive coding required for these to be implemented. Consequently the MP4

energies and times are the calculated correction to the MP2 optimised geometry

and in addition to the time taken for the MP2 calculations, respectively, and are

listed this way as they are not optimisations.

In Table 4.1 it can be seen that there is a general trend that with increasing ba-

sis set size, across the Pople series and Dunning series, the energy at the optimised

geometry is lowered. The decrease in energy across the Pople series can be seen

to be stepwise, where the increase from 3- to 6-primitive Gaussians representing

the inner-shell orbitals presents a first significant improvement, and the increase

from double-ζ to triple-ζ presents a second significant improvement. Across the

Dunning series, where only an increase from double- to triple- to quadruple-ζ is

present, the same trend in decreasing energy is seen.

As expected, in Table 4.2 it can be seen that with increasing basis set size, the
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HF MP2 MP4 CCSD

3-21G -167.9849003 -168.3041414 -168.3291477 -168.3155118
3-21G∗ -167.9849003 -168.3041414 -168.3291477 -168.3155118
6-31G∗ -168.9307027 -169.3944734 -169.4280191 -169.4108379
6-31+G∗ -168.9385910 -169.4104353 -169.4446477 -169.4256122
6-311+G∗ -168.9800204 -169.4807448 -169.5170643 -169.4939978
cc-pVDZ -168.9491075 -169.4311602 -169.4676206 -169.4497254
cc-pVTZ -169.0032040 -169.6054492 -169.6467061 -169.6158302
cc-pVQZ -169.0167414 -169.6626997 -169.7013452 x

Table 4.1: A comparison of the energies (in Hartrees) of the optimised structures of
formamide showing the level of theory versus the basis set.

time taken for the optimisation also increased. The increase in calculation time

across the Dunning series is, however, far more pronounced than the increase in

calculation time across the Pople series.

Upon closer inspection it can also be seen that for the, almost, equivalent

double-ζ (6-31+G∗ and cc-pVDZ) and triple-ζ (6-311+G∗ and cc-pVTZ) basis

sets, the Dunning calculated energies are slightly lower. However, upon consid-

eration of the times taken for these calculations it can be seen that while the

calculation times for the double-ζ basis sets are comparable with increasing the-

ory level, for the triple-ζ basis sets, the calculation times of the Dunning basis sets

are significantly longer than that of the Pople basis sets. It should be noted that

while the construction of these basis sets differs, as described in Chapter 3.2.2, the

comparative time taken for the optimisation with increasing theory level, given

the relatively small improvement in the calculated energy, presents a good initial

indication that while the cc-pVDZ basis set may be suitable for the later Direct

Dynamics calculations, the cc-pVTZ will not be suitable.

In Table 4.1 it can also be seen that at the lowest basis set level, 3-21G and 3-

21G∗, the inclusion of the polarisation function on atoms other than the hydrogen

atoms afforded energetically equivalent results. However, upon inspection of the
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HF MP2 MP4 CCSD

3-21G 12.1 22.9 25.1 65.6
3-21G∗ 12.6 23.3 25.3 65.8
6-31G∗ 26.9 44.8 51.2 287.1
6-31+G∗ 31.0 60.0 71.2 575.8
6-311+G∗ 43.4 73.7 97.0 966.8
cc-pVDZ 31.9 65.3 73.8 418.1
cc-pVTZ 330.8 1483.2 1697.6 18771.3
cc-pVQZ 8439.0 22206.9 25639.3 x

Table 4.2: A comparison of the CPU times taken (in seconds) for each of the calculations
showing theory level versus basis set. Gaussian 09 [46] was used on a Xeon ES-2640 8-
core workstation.

time taken for these calculations it can be seen that the inclusion of the polarisation

functions resulted in an increase in calculation time, the effect of which reduced

with increasing theory level. Although these calculations were carried out only as

for comparison to the higher basis sets, this was a somewhat unexpected result.

An inspection of the calculated energies with increasing level of theory, Table

4.1, shows that there is a significant drop in energy from the Hartree-Fock to the

second-order perturbation correction method MP2. A smaller drop is energy is

seen when the perturbation level is increased from second-order to fourth-order,

MP4. Across all basis sets it can be seen that the energies calculated using the

coupled-cluster method, CCSD, are between the MP2 and MP4 energies, and are

in fact closer to the MP2 than the MP4. This is to be expected as the MP4 method

accounts for more electron correlation than the CCSD calculation. However, the

increase in calculation time from MP2 (and MP4) to CCSD is significant.

As a result of this exploration it can be seen that while the Dunning basis sets

offer a higher degree of accuracy, the calculation times for higher than a double-ζ

basis set would be undesirable. It can also be seen that the difference in calculation

time for the Pople double-ζ to triple-ζ basis set is small at lower levels of theory,

but at higher levels the difference becomes significant. Consequently it is clear
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that the choice of basis set from a timing perspective will be between these Pople

type basis sets, while the specific choice is dependent on the effect that the use

of the theory level has on the calculation time as a balance with the increase in

accuracy.

Planar vs Non-Planar Geometry

In order to carry out the Direct Dynamics calculations it is often more helpful

to separate the molecular motions, or characterise the normal modes, when the

molecule has symmetry. As can be seen in Table 4.3, the 6-311+G∗ CCSD op-

timisations (column “CCSD opt”) of FIM and the transition state between FIM

and FAM result in near-planar geometries, while the optimised geometry for FAM

is more significantly non-planar. By changing the dihedral angles of FAM, the

transition state and FIM to force the molecule to be planar, the molecules were

then re-optimised using the same basis set and level of theory, the geometries for

which are the columns titled “CCSD pl”.

Fig. 4.1: The 6-311+G∗ CCSD planar optimised geometries of a) formamide, b)
formimidic acid and c) the transition state. The labels H1, H2, H3 are for clarity in
the interpretation of the data in Table 4.3.

It can readily be seen that the bond lengths and angles of the re-optimised, pla-
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nar structure of FIM are the same as those of the optimised, non-planar molecule.

The bond lengths and angles of the re-optimised transition state, in comparison

to the non-planar structure show small adjustments of the order of 10−4Å and

10−2 degrees, respectively. As changing the dihedral angles of the FAM optimised

structure represented a more significant alteration of the system, understandably

the re-optimised, planar structure exhibited a more significant alteration across

the molecular framework. The most significant changes in the FAM structure

were seen in the positioning of the protons H1 and H2 (the protons bonded to the

nitrogen) as these were the protons that were out of plane.

Table 4.4 shows the difference in the calculated optimisation energy between

the “CCSD opt” to the “CCSD pl” structures. In this table it can be seen that

the enforced planarization of FIM resulted in a calculated energy indistinguishable

from that of the non-planar optimisation method. The change in energy from the

non-planar to the planar transition state geometry was also negligible. Despite

the more significant change in geometry of FAM, the resultant energy difference,

of the order of 10−2 eV, is also small enough to be considered negligible. It can

also be seen in Table 4.4 that the effect of the change from non-planar, to planar

geometries resulted in a reduction of the barrier height to transition, and the

energy difference between FAM and FIM was reduced, both of the order of 0.008

eV.

Consequently, as the effect of the use of planar geometries resulted in only small

alterations in the energetics of the system, calculations from this point progressed

using planar starting geometries.

4.2.2 Excited State Calculations

State-Averaged CAS Investigation

In order to be able to successfully carry out a Direct Dynamics calculation involving

multiple states it is necessary for the non-adiabatic couplings between all of the
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states to be calculated. This is particularly important when the system of interest

has a manifold of excited states in close proximity between which multiple crossings

and intersections may occur. Consequently the logical choice when considering

the excited state dynamics of a system from a chemical perspective is the use

of the multiconfigurational method of CASSCF, described in Chapter 3.2.3. All

electronic structure calculations in this chapter used the Molpro 2015 program [177]

which has a very efficient CASSCF procedure [178] and is able to provide all the

derivative couplings between states as required for the Direct Dynamics.

The use of the CASSCF is, however, by no means a “black-box” method. It is

known that a poor selection of active space size, occupancy and orbitals can lead to

poorly converged calculations and instabilities. This problem is often exacerbated

with the inclusion of excited states leading to even further instabilities in the

calculation. It is these issues that present a major difficulty in the use of the

DD-vMCG method. In addition, the inclusion of a nitrogen atom in the system is

known to increase the difficulty in the accurate selection of the orbitals within the

active space. As a result, as opposed to attempting to enforce a particular selection

of orbitals on a specified number of excited states, a new analytical procedure

for the systematic identification of the orbitals required alongside the number of

excited states was developed in order to minimise the difficulties in this CASSCF

selection process.

Before any active space orbitals and number of excited states can be chosen

the chemical features of the system in question must be considered. It was decided

that the initial selection of orbitals should have the capacity to describe a potential

proton transfer between the two isomers. It is known that π-π∗ transitions are

optically bright so in addition to the description of a proton transfer, a sufficient

description of the π-bonding network would be required. In addition, due to the

system size, it was also decided that, in the interest of efficiency, a relatively
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large active space could be chosen so as to maximise the number of configuration

interactions to be calculated with the caveat that a smaller basis set would be

required in order to minimise the time-scaling issue.

Consequently the orbital selection for FAM should include the description of

the N-H(1) σ-bond and σ∗-bond, the lone-pair acceptor on the oxygen. and a

description of the π bonding network containing at least one π-bonding molecular

orbital and one π∗-bonding molecular orbital. The selection of orbitals to be

included in the active apace for FIM should hence contain the complementary

O-H(1) σ- and σ∗ molecular orbitals, as well as the lone-pair acceptor on the

nitrogen and the relevant π- and π∗-bonding molecular orbitals. While the choice

of the 6-311+G∗ basis set would yield more accurate results, it is known that

with increasing basis-set size, the clear identification of the orbitals of a system is

severely hampered, in addition to the increase in calculation time. In the interest

of efficiency it was hence decided that given the choice of a large active space,

the as yet unknown number of excited states required for the calculation and the

limitations of the computer cluster on which the calculations would be performed,

a 6-31G∗ would be used as a compromise. A final decision made in this initial

process was that the active space for FAM and FIM should be the same size.

After an initial inspection of the molecular orbitals of both FAM and FIM

calculated in the initial Hartree-Fock level calculations it was decided that the

active space size required would be either a CAS(10,9) (10 electrons, 9 orbitals),

and CAS(10,8) (10 electrons, 8 orbitals) or a CAS(8,7) (8 electrons, 7 orbitals).

Following the decision to sacrifice the size of the basis set in order to include a larger

active space, it was decided that a study would be carried out using CAS(10,9)

and CAS(10,8) active spaces, for comparison. Given the size of these active spaces

and the limitations of the electronic structure calculation methods available, it

was decided that between 2 and 10 excited states would be studied, with equal
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weight on each state, at each of these levels of active space. The results of these

two studies on FAM can be seen in Figures 4.2 and 4.3, which are the 6-31G* state

averaged calculations using a CAS(10,9) and CAS(10,8) active space, respectively.

As the method by which this study is presented is novel, a detailed discussion of

how these data are interpreted will be described.

The column titles at the top of the page, SA3, SA4, SA5, and so-on refer to

the total number of states included in the calculation where, for example, “SA3”

means that this column represents a State Averaged calculation over a total of 3

states, including the ground state. These column titles refer to both the top and

bottom sections of the figure.

The top section of the figure contains the information pertaining to the char-

acterisation of the orbitals included in the active space and is hence called the

active space characterisation section or the ASC. In this section the text above

the dotted line lists a simplified characterisation of the occupied orbitals, whilst

the text below the dotted line refers to the virtual orbitals. This simplification has

been made so as to decrease the complexity of the data table.

The bottom section of this figure is called the excited state characterisation

section, or XSC, which summarises four key pieces of information. The first line

of the XSC is the calculated energy of the S0 state in the relevant state averaged

calculations. The numbers in the rows below are the excitation energies, in eV,

from the relevant S0 state to the excited state, hence the first row of numbers

below the S0 energy is the S1, the second row is the S2, and so on.

The coloured boxes below the excitation energies are the characterisations of

the principal transition(s) contributing to the excitation, where the box on the

left characterises the orbital from which the excitation occurs, and the box on the

right characterises the orbital into which the electron is excited. In some instances,

more than one type of excitation significantly contributes to the overall character
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of the state. In these cases the numerical values were considered and the two or

three most significant, listed in order, are included. It was considered that the

emphasis in this type of analysis should be in the characterisation so while the

numerical values are available, they have not been included. The explanation of

the colours of the transitions are listed in a key to the right of the ASC.

The final piece of information included in the XSC are where the numbers of

the excitation energies are written in red. These correspond to the states with

an oscillator strength greater than 0.01. As with the transitions, the numerical

values of these oscillator strengths are available though have not been included for

simplicity.

It should also be noted that “OLP” and “NLP” are an abbreviation for “oxygen

Lone Pair” and “nitrogen Lone Pair” respectively, and that in Figures 4.2 to 4.4 the

numbering of the protons, for example NH(1) and NH(2), refer to the numbering

used in the previous section as seen in Figure 4.1.

As an example, in Figure 4.2 the CAS(10,9) SA10 calculated transition from the

S0 to the S2 has an excitation energy of 7.978 eV which comprises a combination

of excitations from the OLP (yellow) to the NH2 σ
∗ (green) and from the π2 (red)

to the π∗ (blue). It can be seen that the oscillator strength of this transition is

significant, likely due to the significant π-π∗ character.

In Figure 4.2 the ASC for the SA7 calculation shows that the NH(1) σ- and σ∗-

bonds, the oxygen lone pair, two π- and one π∗-molecular orbitals are represented,

along with an additional molecular orbitals representing both the CN and NH2

bonding as well as the CH, CN and O antibonding character. It can readily be seen

in the ASC that while the active spaces for all of the state averaged calculations

contain the prerequisite orbitals representing the π and OLP character, the SA7

calculation represents the only one of the CAS(10,9) calculations which fulfills the

active space character criteria chosen.
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Fig. 4.2: Character of MO for formamide using a CAS(10,9) and different state-averaging. Each cell represents a state with excitation
energy (in eV) relative to the ground-state (energy in Hartree). The coloured boxes relate to the character of the main configurations
with an electron being promoted from the left to the right box. Key to colours on the right hand side. The list of orbitals above the cells
list those in the CAS space. Numbers in red are for states with significant oscillator strength (> 0.01).
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Fig. 4.3: Character of MO for formamide using a CAS(10,8) and different state-averaging. Each cell represents a state with excitation
energy (in eV) relative to the ground-state (energy in Hartree). The coloured boxes relate to the character of the main configurations
with an electron being promoted from the left to the right box. Key to colours on the right hand side. The list of orbitals above the cells
list those in the CAS space. Numbers in red are for states with significant oscillator strength (> 0.01).
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In the XSC of Figure 4.2 it can readily be seen that all of the state averaged

calculations define the character of the S1 state as being an OLP to π∗ transition.

Although the SA3 calculation defines the S2 as being a π to NH∗2 transition, the

rest of the state average calculations define this transition as being a combination

of π to π∗ and OLP to NH∗2 transitions. Upon analysis of the S3 states it can be

seen that this π to NH∗2 transition in the SA4-11 calculations more closely matches

the energy of the S2 in the SA3 calculation and hence is likely the same state.

Between the SA8-11 calculations it can be seen that the S6 and S7 states swap

in character between a π to π∗ transition and a CO+CH to π∗ transition. However,

although the energy difference between the S6 and S7 in the SA8 and 9 calculations

is approximately 0.6 eV, this energy difference in the SA10 and 11 calculations

reduces to approximately 0.035 eV and the character of the states swap in SA10.

Upon analysis of the XSC for the SA7 calculation it can be seen that although

the character of the S1, S2 and S3 states are the same as for the SA3-11, SA3-8

and SA6-11, respectively, the calculated energies of these states are significantly

lower than in the neighbouring state averaged calculations. It can also be seen

that the SA7 calculation is the only one that results in the character of the S3 and

S4 states, π to NH∗2 and π to (NH1+CH)∗, being almost the same. In addition, the

calculated energies of the higher lying excited states for the SA7 are significantly

lower in energy than in any of the excitations in the neighbouring state averaged

calculations. As a result of the ASC analysis the logical choice of the number of

excited states for a CAS(10,9) calculation would be the SA7 calculation, though

the analysis of the XSC would imply that this number of states may not be stable

and hence unsuitable for further study.

For the CAS(10,8) study of FAM state averaged calculations were carried out

using 2 to 10 excited states, the results of which can be seen in Figure 4.3. In the

ASC it can be seen that states contain definition of the OLP and the π-bonding
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molecular orbitals, while the SA4 is the only calculation which does not contain any

degree of definition of the NH(1)σ-bond. Although all of the state averaged active

spaces contain definition of a π∗ molecular orbital, the SA3 and SA4 calculations

do not contain definition of the NH(1)σ∗ molecular orbital.

In the XSC of Figure 4.3 it can readily be seen that as with the CAS(10,9)

calculations, all of the state averaged calculations define the character of the S1

state as being an OLP to π∗ transition. The SA5, SA8 and SA9 active spaces do

not contain an orbital explicitly for the NH(2)∗ but by observation of the trends

of the characterisation across the S2 and S3 states it can be seen that this NH(2)∗

character has been replaced by the NH∗2 character. Consequently it is reasonable

to assume that the (NH(1)+NH(2))∗ character seen in the S4 and S5 states of the

SA8 and SA9 calculations have been interchanged with the NH(1)∗ character.

Although, by comparison of the S2 states it can be seen that the SA4-7 and

SA9-11 calculations place the character of this transition as a combination of a π

to π∗ transition and an OLP to NH(2)∗(NH∗2) transition, the SA8 defines this state

as a π to NH∗2 transition. However, if the S3 states are also taken into account

it can be seen that the S2 and S3 states are close in energy and it appears in

the characterisation of SA8 that the S2 and S3 have swapped in comparison to

the other state averaged calculations. Upon inspection of the SA7 calculations

it can be seen that the presence of the CH-CH∗-bonding definition results in the

discontinuity of the π to NH(1)∗((NH(1)+NH(2))∗) transitional trend across the

S4 and the OLP to NH(1)∗((NH(1)+NH(2))∗) trend across the S5 state.

If the region of the XSC covering the S6 to S8 is examined it is clear that the

energy and characterisation of the SA8 S7 and SA9 S8 are concurrent. This leads

to the observation that an additional lower order state may be present in the SA9

calculation. By inspection it can be seen that the character of the SA8 S6 state

and the SA9 and SA10 S7 states are similar in energy and the same in character,
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Fig. 4.4: Character of MO for formimidic acid using a CAS(10,8) and different state-averaging. Each cell represents a state with excitation
energy (in eV) relative to the ground-state (energy in Hartree). The coloured boxes relate to the character of the main configurations
with an electron being promoted from the left to the right box. Key to colours on the right hand side. The list of orbitals above the cells
list those in the CAS space. Numbers in red are for states with significant oscillator strength (> 0.01).

F
o
rm

im
id

ic
A

cid
P

ro
to

n
T

ra
n
sfe

r
1
0
5



Electronic Structure Calculations 4.2

which resolves the lack of a clear trend across the S6 state. The presence of this

additional state in the SA9, but particularly in the SA10 calculation, is likely due

to the definition of the CO-bond in the active space.

As a result of the ASC and XSC analysis of the formamide CAS(10,8) state

averaged calculations it can be stated that the most suitable states for further study

are the SA5, SA6 and SA8 states. Due to the wider availability of states, and the

apparent increased stability of these states, it was decided that the logical next

step would be to carry out an investigation on the FIM using a CAS(10,8) active

space, before making a final decision as to the number of states to be included in

the Direct Dynamics study.

The results of the CAS(10,8) study of FIM can be seen in Figure 4.4 where

state averaged calculations have been performed including between 3 and 10 states

in total. In the ASC it can be seen that all of the active spaces contain the

prerequisite OH-OH∗ molecular orbitals, the nitrogen lone pair, two π molecular

orbitals and the single π∗ molecular orbital. In order to directly map onto the FAM

calculations it is required that there be additional significant character defining the

NH(2) bonding. Consequently the SA3 and SA4 calculations can be immediately

discounted as these states do not contain the additional bonding character defining

the NH-bond.

In the XSC it can be seen across all states that the S1 is characterised by an NLP

to π∗ transition. Upon inspection of the general trends across the characterisa-

tion it can be seen that the states with transitions to the OH(1)∗ molecular orbital

become states with transitions to the (OH(1)+NH(2))∗, while the states with tran-

sitions to the NH(2)∗ become the states with transitions to the (NH(2)+OH(1))∗

molecular orbital. Consequently it can be seen that aside from the SA3 calculated

S3 state and the SA6 calculated S4 and S5 states, the excited state characterisa-

tions are consistent with increasing numbers of excited states. This is particularly
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Energy Oscillator Main
(eV) Strength (au) configurations

S1 5.607 0.0008 0.69(OLP – Pi∗)
S2 8.015 0.0004 0.66(Pi – NH+NH)
S3 8.159 0.0225 0.54(OLP – NH+NH) + 0.34(Pi – Pi∗)
S4 9.118 0.0000 0.66(Pi – NH+NH)
S5 10.033 0.0710 0.63(OLP – NH+NH)
S6 10.574 0.7258 0.44(Pi – Pi∗) + 0.37 (OLP – NH+NH)
S7 11.450 0.0013 0.55(Pi1 – NH+NH) + 0.36(Pi – Pi∗)

Table 4.5: Formamide energies, oscillator strengths and coefficients of main configura-
tions (values > 0.15) from a SA8-CAS(10,8)/6-31G* calculation

Energy Oscillator Main
(eV) Strength (au) configurations

S1 6.935 0.0105 0.687(NLP – Pi∗)
S2 8.935 0.0009 0.56(Pi – (OH+NH)∗) + 0.35(Pi – (NH+OH)∗)
S3 9.117 0.1325 0.48(Pi – Pi∗) + 0.37(NLP – (OH+NH)∗)
S4 10.079 0.0045 0.56(Pi – (NH+OH)∗) + 0.36(Pi – (OH+NH)∗)
S5 10.137 0.1723 0.48(NLP – (NH+OH)∗) + 0.47(NLP – (OH+NH)∗)
S6 11.267 0.4634 0.41(NLP – (NH+OH)∗) + 0.39(Pi – Pi∗) +

0.30(NLP – (OH+NH)∗)
S7 11.831 0.0000 0.676(OH+OLP – Pi∗)

Table 4.6: Formimidic acid energies, oscillator strengths and coefficients of main config-
urations (values > 0.15) from a SA8-CAS(10,8)/6-31G* calculation

apparent in the SA8 to SA10 calculations where the calculated energies of the

ground state and the excitation energies for all transitions from the ground state

are concordant, indicating a high degree of stability in the calculations.

As a result of the ASC and XSC analysis of the formimidic acid CAS(10,8)

state averaged calculations it can be stated that the SA5 and SA7 to SA10 are the

most suitable states for further study.

If a comparison between the XSC of the FAM and FIM is carried out it can be

seen that the characterisation of the S1 and S2 are equivalent, though the excitation

energies differ by approximately 1.3 eV and 1.1 eV respectively.

From this analysis, in order to follow the prerequisite inclusion of the largest

number of excited states it follows that the Direct Dynamics calculations should be
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performed on both the FAM and FIM using a CAS(10,8) active space with state

averaging over 8 states in total. The final results of the excitation energies, oscilla-

tor strengths and characterisations from the SA8-CAS(10,8)/6-31G* calculations

of FAM and FIM are summarised in Tables 4.5 and 4.6 respectively. In Table 4.5

it can be seen that the S6 state, characterised as a π-π∗ transition, is the bright

state, while the S3 and S5 have small but significant oscillator strengths. In Table

4.6 it can be seen that the S6 is the bright state, and although this transition has

significant π-π∗ transition character, the principal component of this transition

is characterised as NLP-(NH(2)+OH(1)∗). It can also be seen that the oscillator

strengths of the S3 and S5 are greatly increased in comparison to the same states

in the FAM results. This comparative increase in the oscillator strength in the

S3 state is likely due to the dominant π-π∗ transition in the FIM, which is only a

secondary contribution to the equivalent state in FAM.

(a) π1 (b) π2 (c) π∗

(d) NH2

(e)
NH(1)+NH(2) (f) OLP (g) NH∗

2

(h)
(NH(1)+NH(2))∗

Fig. 4.5: CAS molecular orbitals of formamide as a result of the CAS(10,8) SA8 calcu-
lation.

As a result of these studies it can be seen that not only is the character of

the active space important to state averaged calculations, but also the number of

states included in the calculation. This representation of the results of the state

averaged CAS calculations serves both as a tool for the selection of the active space

size and the number of excited states, and as a demonstration that the analysis of
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(a) π1 (b) π2 (c) π∗

(d)
NH(2)+OH(1) (e) OH(1)+OLP (f) NLP

(g)
(NH(2)+OH(1))∗

(h)
(OH(1)+NH(2))∗

Fig. 4.6: CAS molecular orbitals of formimidic acid from the CAS(10,8) SA8 calculation.

the numerical and pictographic results of CAS calculations are intrinsically linked.

In Figures 4.5 and 4.6 the pictures of the CAS(10,8) SA8 active space orbitals

of FAM and FIM can be seen, with the accompanying labels as seen in the state

averaged CAS characterisations of Figures 4.3 and 4.4, respectively.

Vibrational Frequencies

As stated in Chapter 3.3.1, calculations using the DD-vMCG method require either

the Cartesian coordinates or the normal modes of a system to be explicitly defined.

A harmonic approximation is then taken using these coordinates or modes in order

to provide the ground state potential energy surface. Additionally, they are also

used to define the width of the total wavepacket, and by extension the width of

the fully populated Gaussian basis function when the calculation is initiated.

It was decided that the normal modes would be used in the study of FAM and

FIM, and hence a characterisation of the normal modes is required.

In Table 4.7 the normal modes of formamide, calculated at the 6-311+G∗

CCSD, the 6-31G∗ MP2 and the 6-31G∗ CAS(10,8) SA8, are characterised ac-

companied by the relevant frequencies. As the Direct Dynamics calculations are

to be carried out using CAS(10,8) SA8 externally calculated points, Table 4.9

contains a pictographic representation of each of these modes.
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Label Frequency (cm−1) Character
MP2 CCSD CAS(10,8)

6-31G* 6-311+G* 6-31G* SA8
ν1(A′′) 137.48i 350.35i 320.66i H1 H2 oop in-phase wagging
ν2(A′) 566.17 576.24 598.06 NH2(H1 H2) ip rocking
ν3(A′′) 652.79 619.77 601.74 H1 H2 oop rocking
ν4(A′′) 1055.40 1045.95 1014.98 H3 oop wagging
ν5(A′) 1072.42 1079.99 1108.68 H2 ip rocking
ν6(A′) 1309.13 1293.11 1356.26 H3 H1 ip out-of-phase rocking
ν7(A′) 1455.15 1443.86 1397.43 H3 ip wagging
ν8(A′) 1652.90 1680.88 1803.58 H1 H2 ip out-of-phase wagging
ν9(A′) 1837.98 1827.88 2031.85 C H1 ip in-phase wagging
ν10(A′) 3048.50 3008.20 2640.00 H3 ip stretching
ν11(A′) 3635.63 3636.12 3855.27 H1 H2 ip in-phase stretching
ν12(A′) 3777.92 3772.01 4029.16 H1 H2 ip out-of-phase stretching

Table 4.7: The normal mode frequencies of formamide calculated at different levels of
theory at the optimised Cs structure where the numbering of the hydrogen atoms is as
in Figure 4.1a), “ip” means in-plane and “oop” means out-of-plane.

In the first row of Table 4.7 it can be seen that the normal mode, ν1, is an

imaginary frequency. This is likely due to the fact that the starting structure, as

discussed in Ground State Calculations section (Chapter 4.2.1) is not the optimised

ground state minimum structure of FAM but the optimised ground state planar

minimum structure. Comparing the MP2 and CCSD frequencies it can be seen

that the CCSD imaginary frequency is significantly higher than the frequency

calculated at the MP2 level. Further to this it can be seen that the frequencies

calculated at these levels of theory are similar with the exceptions of ν3, ν8 and

ν11 where, respectively, the MP2 is higher by 33 cm−1, the CCSD is higher by

approximately 28 cm−1 and the MP2 is higher by approximately 40 cm−1.

Comparing the CAS(10,8) frequencies to the MP2 and CCSD calculated fre-

quencies shows that the only trend is that the CAS(10,8) frequencies are more

extreme than the other two sets of frequencies.

As the structure has Cs symmetry it can be seen that there exist two categories

of normal modes representing in-plane and out-of-plane motion where only three
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Label Frequency (cm−1)
MP2 CCSD CAS(10,8) Character

6-31G* 6-311+G* 6-31G* SA8
ν1(A′′) 590.72 596.58 630.43 H1 oop wagging
ν2(A′) 650.36 611.55 635.19 NH(2) OH(1) ip in-phase wagging
ν3(A′′) 850.84 846.36 911.91 H2 H3 oop in-phase wagging
ν4(A′′) 1060.57 1066.07 1062.53 H3 H2 oop out-of-phase wagging
ν5(A′) 1096.17 1097.61 1150.16 H2 ip wagging
ν6(A′) 1217.85 1232.28 1284.95 H1 H3 in-phase, H2 out-of-phase,

ip wagging
ν7(A′) 1406.83 1404.31 1447.58 H1 H2 in-phase ip wagging
ν8(A′) 1435.46 1437.46 1515.33 H3 ip wagging
ν9(A′) 1750.28 1750.26 1854.47 CH(3) ip rocking
ν10(A′) 3201.31 3155.30 3126.07 H2 stretching
ν11(A′) 3551.66 3554.58 3379.82 H1 (H3) stretching
ν12(A′) 3682.92 3776.70 3449.48 H3 (H1) stretching

Table 4.8: The normal mode frequencies of formimidic acid calculated at different levels
of theory at the optimised Cs structure where the numbering of the hydrogen atoms is
as in Figure 4.1b), “ip” means in-plane and “oop” means out-of-plane.

modes, ν1, ν3 and ν4, represent this out-of-plane motion. It should be noted

that despite the fact that motion of H(2) and H(3) appear to have their “own”

vibrational modes, the motion of H(1) is always coupled to the motion of other

atoms.

The pictographic representation of the CAS(10,8) calculations can be seen in

Table 4.9. It is useful to include this representation of the normal modes in order

to aid in the interpretation of the notation used in Table 4.7. It is also useful

to include this representation of the normal modes in order for the later Direct

Dynamics results to be more easily interpreted.

In Table 4.8 the normal modes of formimidic acid, calculated at the 6-311+G∗

CCSD, the 6-31G∗ MP2 and the 6-31G∗ CAS(10,8) SA8, are characterised ac-

companied by the relevant frequencies. In this table it can be seen that there are

no imaginary modes present as the optimised ground state and optimised planar

ground state of FIM are the same energy.
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Table 4.9: Normal modes of formamide calculated at the CAS(10,8)/6-31G* SA8 level of theory at the optimised Cs structure. It should
be noted that the arrow representing the CH stretching mode (ν10) has been reduced in scale by 40%.

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν1(A′′) 320.66i ν5(A′) 1108.68 ν9(A′) 2031.85

ν2(A′) 598.06 ν6(A′) 1356.26 ν10(A′) 2640.00

ν3(A′′) 601.74 ν7(A′) 1397.43 ν11(A′) 3855.27

ν4(A′′) 1014.98 ν8(A′) 1803.58 ν12(A′) 4029.16
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Table 4.10: Normal modes of formimidic acid calculated at the CAS(10,8)/6-31G* SA8 level of theory at the optimised Cs structure. It
should be noted that the arrow representing the OH stretching mode has been reduced in scale by 40%.

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν1(A′′) 630.43 ν5(A′) 1150.16 ν9(A′) 1854.47

ν2(A′) 635.19 ν6(A′) 1284.95 ν10(A′) 3126.07

ν3(A′′) 911.91 ν7(A′) 1447.58 ν11(A′) 3379.82

ν4(A′′) 1062.53 ν8(A′) 1515.33 ν12(A′) 3449.48
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With the exceptions of ν2, ν10 and ν12, the vibrational frequencies calculated

at the MP2 and CCSD levels of theory are much more similar than is seen in

the same comparison of FAM. The three large frequency differences in FIM are

comparatively much larger than those of FAM ν2, ν10 and ν12, where in ν2 the MP2

is higher by approximately 39 cm−1, in ν10 the MP2 is higher by approximately

46 cm−1 and in ν12 the CCSD is higher by approximately 94 cm−1.

Comparing the CAS(10,8) frequencies to the MP2 and CCSD calculated fre-

quencies shows that while the frequencies of ν2 and ν4 lie between the frequencies

of the MP2 and CCSD calculations, modes ν9 and ν13 are over 100 cm−1 higher

than the MP2 and CCSD calculated frequencies.

As with FAM, it can be seen that there exist two categories of normal modes

representing in-plane and out-of-plane motion where only three modes, ν1, ν3 and

ν4, represent this out-of-plane motion.

The pictographic representation of the CAS(10,8) calculations can be seen in

Table 4.10. It is useful to include this representation of the normal modes in order

for the later Direct Dynamics results to be more easily interpreted.

4.3 Direct-Dynamics

As the relevant analysis of the preliminary electronic structure calculations of for-

mamide and formimidic acid have been completed, it is now necessary to describe

the protocol by which the Direct Dynamics results were obtained.

4.3.1 The Direct-Dynamics Protocol

As a result of the exploration of the electronic structure of formamide and formimidic

acid the Direct Dynamics calculations were carried out with a CAS(10,8) active

space using equal weight on 8 states in total, which is the S0 to S7 states. A

preliminary set of Direct Dynamics calculations were performed, initiated on the
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S1, S2, S3 and S7 states. These calculations were propagated using the ground

state normal modes of the systems (Tables 4.7 and 4.9 for FAM, 4.8 and 4.10 for

FIM) from which the frequencies were used to define the widths of the Gaussian

wavepackets. The initial distribution of the Gaussians comprises a single fully

populated Gaussian at the Frank-Condon point around which the rest of the, zero

populated, Gaussians are distributed, with an overlap of 0.5 (exactly 50% over-

lap). In order to ensure the stability of the initial electronic structure calculation

the Gaussians were distributed in momentum space, as opposed to configuration

space. The use of the single fully populated Gaussian at this point ensures that

the initial wavepacket is the ground state vibrational wavefunction. As there were

8 states included in the preliminary electronic structure calculation, the initial cal-

culation included 8 Gaussian basis functions, with a predefined propagation time

of 150 fs.

An initial analysis of these results allowed the selection and placement of com-

plex absorbing potentials (CAP(s)). A CAP, as defined and implemented in the

MCTDH software package, is a negative, imaginary potential which is used to ab-

sorb a wavepacket. In grid based calculations, they are placed at the ends of grids

to ensure that the wavepacket is not reflected off the end of the grid, resulting in

the decoherence. In a Direct Dynamics calculation, if a rapid dissociation occurs,

the dissociating atom or fragment gains momentum as it gets further away from

the main molecule. This has a direct impact on the integrator in that rapidly

decreasing time step sizes must be taken in order to gain a valid description of the

system as a whole. Additional issues arise in that these rapidly changing geome-

tries result in a larger number of points requiring electronic structure calculations.

At these widely spaced geometries, the electronic structure calculations will take

longer to run, and may fail. Consequently, the use of CAPs in the DD-vMCG

method essentially provides a cut-off point to excessive motion along normal mode
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coordinates.

The CAPs are defined as −iW , where

W = ηΘ(k(x− x0))n (4.3)

Here, Θ is a Heaviside step function while the values of η, k, x0 and n are defined by

parameters in the input of the calculation. These parameters, ordered [x0, η, n, k],

define the order, n, and strength, η, of the CAP positioned in this case at x0 along

a normal mode where k = ±1 indicates whether it is in the positive or negative

direction. When the Gaussian reaches the CAP the motion continues classically

until the population of that Gaussian is zero, after which it stops.

As mentioned in Chapter 3.3.1 the DD-vMCG method builds a database of

geometries, energies and other information such as molecular orbitals along the

course of a propagation. Multiple runs of a calculation, using the database con-

structed from the previous calculation(s), will result in fewer electronic structure

calculations required, as well as the opportunity for further regions of configu-

ration space to be explored. Consequently, the databases from this first set of

calculations were used for subsequent calculations.

The related databases of the previous calculations, and with the relevantly

defined CAPs, were then used in a second set of calculations propagated on the

S1, S2, S3 and S7 states. Using the same CAPs and databases, in addition to the

re-running of the 8 Gaussian propagations, sets of 24 and 48 Gaussian calculations

were performed, each with a propagation time of 150 fs.

The databases constructed from the second set of propagations over the 4 states

were then merged into one database which was then used for each of the final prop-

agations on the four states, again using 8, 24 and 48 Gaussian wavepackets. As

a sense of scale, each of the second set of calculations, at the end of the propa-

gation, had databases comprising approximately 1500 points. The single, merged
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database from all of the second set of calculations comprised approximately 6000

database points. The databases at the end of the final set of calculations contained

approximately 6500 points.

It is the results of this third set of calculations that are used for the following

analysis.

4.3.2 State Population Analysis

In Figures 4.7 and 4.9 the state populations results of formamide and formimidic

acid, respectively, for each of the 8, 24 and 48 GWP propagations on the S1, S2,

S3 and S7 states are shown. In Figures 4.8 and 4.10 the details of the results of the

first 50 fs and 30 fs, respectively, of the 48 GWP propagations are shown, with a

comparison to the total density. The state populations give information as to how

the total wavepacket has been distributed, along the period of propagation, into

the various states included in the calculation, as well as an idea of the performance

of the calculation.

In Figure 4.7 it can be seen, most significantly in the S1 plots, that the in-

crease from 8 to 24 GWPs resulted in a more smooth representation of the decay

and redistributions of the density into the different states, while the improvement

from the 24 to 48 GWP is less significantly pronounced. This implies that the

calculations are reaching convergence. It can also be seen that in the S1 and S7

48 GWP propagations the calculations have not yet reached a full propagation

time. Although the increase in the number of GWPs presents a greater challenge

to the Direct Dynamics code, it also represents a larger amount of external quan-

tum chemistry calculations required, so it is not, as yet, possible to confirm with

complete certainty as to whether the Direct Dynamics code is failing or taking

a long time to read the database, or if the quantum chemistry calculations are

failing, or taking a long time. It can also be seen in Figure 4.7 that the timescale

for the decay from the S1 state is significantly longer, approximately 20% of the
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population is still in the S1 state after 60 fs, than the timescale for the decay

from the other states, approximately 80% decay has occurred within the first 10

fs. Upon inspection of the decay of the S7 state it can be seen that the increase

to 24 and 48 GWPs resulted in a slowing of the decay after 10 fs, a feature not

observed in the 8 GWP calculation. What is clear from this set of results is that

in all states at least a small amount of population is transferred to the other states

of the system, even when the calculation is propagated on the S1 state.

It should be noted, however, that the amount of the population absorbed by

the CAPs cannot directly be separated from the population transfer in the analysis

of this set of graphs. However, by also plotting the total density with the state

populations the features of population transfer can more easily be resolved from

the state population that is being absorbed by the CAP.

In Figure 4.8 the first 50 fs of the 48 GWP propagations are shown, with the

change in the total density with time, the thick black line, also plotted. It can

be seen that in the S1 and S7 states, density begins to flow into the CAPs after

around 20 fs, while in the S2 this begins to occur after 10 fs and in the S3 this

occurs after around 8 fs, indicating that the initial drop in the population at the

beginning of the propagation is due to population transfer.

In the S1 state, as mentioned previously, the rate of population transfer is

significantly slower than in the other excited states. It can also be seen that the

population transfer is relatively evenly distributed across all of the excited states

in the calculation.

In the S2 state it can be seen that after approximately 6 fs about 25% of the

population has been transferred to the S3 (orange) state, with around 18% of the

population being transferred to the S1 (green) state by 9 fs. The reverse of this fast

population transfer is also seen in the S3 plot, where about 32% of the population

is transferred to the S2 (light blue) state with the next most significant population
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transfer going into the S1 state. In the S2 state it can be seen that by about

11 fs the S0(purple), S5(dark blue), S6(red) and S7(black) states are equivalently

populated. It can also be seen that a greater amount of population transfer takes

place going from the S3 to S4 (yellow) state, a feature not apparent in the S2 result.

In the S7 state it can be seen that the population transfer initially populates

the S6, S5 and S4 states equivalently. At about 11 fs the population of the S7 to

S2 are approximately equivalent. It can also be seen that while the S0 state does

not experience any fast population transfer, the population transferring to the S0

state consistently increases across the full propagation.

In Figure 4.9 the “smoothing” effect of the increase in the number of GWPs

is clearly seen in the S1 and S2 states of formimidic acid. In this case not only

does the increase from 8 to 24 GWPs show an improvement, but the 24 to the

48 GWPs also shows an improvement, demonstrating that the inclusion of this

higher number of basis functions representing the system has resulted in a better

realisation of the results. Although the S7 48 GWP calculation has not reached

full propagation it can be seen in the 8 and 24 GWP results that the majority of

the dynamical behaviour occurs in the first 8 fs. This rapid decrease in dynamical

behaviour is also observed in the S2 and S3 states. As is seen in the state population

data for FAM the S1 state of FIM displays a much longer timescale for the decay of

population in comparison to the excited states of the system, though in comparison

to the decay of the S1 state of FAM the rate of decay is faster.

It should also be noted that the timescales for population of the other states

in the S1 propagation also changes with increasing number of GWPs. Between

15 and 25 fs in the 8 GWP calculation the majority of the other states in the

calculation become populated, while in the 24 GWP calculation the other states

become populated between 10 and 15 fs, with the principal population transfer

into the S2 state. In the 48 GWP calculation the most significant population
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(l) S7 48GWP

Fig. 4.7: Diabatic state populations from DD-vMCG simulations of formamide starting
with a vertical excitation to various states and using various numbers of GWPs.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; S7: black.

transfer is into the S0 state in two stages at about 12 and 15 fs with the increase

in the population of the other states occurring more gradually over the course of

the propagation.

In Figure 4.10 the first 30 fs of the 48 GWP propagations are shown with the

addition of the thick black line representing the total density of the system. It

Formimidic Acid Proton Transfer 120



Direct-Dynamics 4.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

P
op

ul
at

io
n

Time / fs

 

(a) S1 48GWP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

P
op

ul
at

io
n

Time / fs

 

(b) S2 48GWP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

P
op

ul
at

io
n

Time / fs

 

(c) S3 48GWP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

P
op

ul
at

io
n

Time / fs

 

(d) S7 48GWP

Fig. 4.8: Diabatic state populations from DD-vMCG simulations of formamide starting
with a vertical excitation to various states. Final Results.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; S7: black. Total density (norm2): Thick black.

can be seen that in the S1 state the decrease in total density follows the trend in

the decreasing population of the S1 state suggesting that the S1 state is displaying

some dissociative behaviour. In the S2 state the decrease in the total density occurs

rapidly between 4 and 10 fs with relatively little population transfer occurring.

This rapid decrease coincides with a decrease in population of the S3 and S4 and

an increase in population of the S1 state, though due to the small increase it

is not possible to state that it is the population of these states that led to the

rapid decrease in the density. In the S3 state it can be seen that there is a fast

population transfer mostly to the S2, but also to the S5, S6 and a small amount to
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(l) S7 48GWP

Fig. 4.9: Diabatic state populations from DD-vMCG simulations of formimidicacid start-
ing with a vertical excitation to various states and using various numbers of GWPs.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; S7: black.

the S4 states, and the total density does not decrease over this short timescale. It

appears that in this S3 calculation when the S1 and S7 states become populated,

the total density proceeds to decrease rapidly, supporting the suggestion that the

S1, and perhaps the S7, states are dissociative. Although the propagation on the

S7 state is curtailed at 10 fs it can be seen that there is also a rapid decrease in
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Fig. 4.10: Diabatic state populations from DD-vMCG simulations of formimidicacid
starting with a vertical excitation to various states. Final Results.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; S7: black. Total density (norm2): Thick black.

the total density starting at about 4 fs. At this point, however, the S2 to S6 states

have become populated and it is not possible to resolve the behaviour further.

As a result of this analysis it can be seen that while dissociative behaviour

can be seen in all sets of results, it is not possible from this analysis to state

conclusively that particular states exhibit dissociative behaviours. Consequently

further analysis is required in order to resolve these observed behaviours.

4.3.3 Gross Gaussian Populations

Following from the observation, in the previous section, of the density into the

manifold of states, a useful description can be obtained if the distribution of the
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products of the calculation are quantified. Consequently there is a requirement

for the definition of the importance, or weight, a GWP has in the description of a

total wavepacket. If an orthonormal basis is used,

Ψ(r, t) =
∑
i

Aiφi (4.4)

an expression for the density is given as

〈Ψ|Ψ〉 =
∑
ij

A∗i 〈φi|φj〉Aj (4.5)

=
∑
i

|Ai|2 (4.6)

so the “population” for each basis function can be defined as

popi = |Ai|2 (4.7)

If the basis functions are normalised but not orthogonal,

Ψ(r, t) =
∑
i

Aigi (4.8)

the overlaps of the basis functions now play a role

〈Ψ|Ψ〉 =
∑
ij

A∗i 〈gi|gj〉Aj (4.9)

=
∑
ij

A∗iSijAj (4.10)

=
∑
i

|Ai|2 +
∑
i<j

2ReSij (4.11)

When the overlaps between the functions are divided evenly, the Gross Gaussian

Population [122], or GGP, is hence defined where

GGPi = |Ai|2 +
∑
j 6=i

ReA∗iSijAj (4.12)

=
∑
j

ReA∗iSijAj (4.13)
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Fig. 4.11: The fraction of density going into different product channels from DD-vMCG
simulations of formamide with SA8-CAS(10,8)/6-31G∗ following the potential surfaces
starting in different states, where (a) S1 (b) S2 (c) S3. Each line, or series, represents
the different products defined either by the bond that breaks or by the products formed.
As in the characterisation of the vibrational frequencies, IP and OOP signify if the
dissociation occurs of in- or out-of-plane.
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In order to use these GGPs it is first necessary to perform a visual inspection of

the geometries defined by the trajectory of the centre of the GWPs. The fraction

of the density, defined by the GGP, along each of the product channels were

then categorised allowing analysis of the product distribution. The results of this

analysis of the trajectories of the GWPs for formamide and formimidic acid can

be seen in Figures 4.11 and 4.12 respectively. It was found that the product

distribution of the S7 state for both FAM and FIM displayed little behaviour of

interest, in part due to fast decay, so only the results of the S1, S2 and S3 are

included in this analysis. It should be noted that the > 1 population in the first

few femtoseconds of the propagation is likely due to numerical instabilities in the

method.

In Figure 4.11, representing the product distribution of FAM, upon cursory

inspection it can be seen that while the product distribution in the S2 and S3

states is dominated by one behaviour, the number of product channels, and hence

the product distribution in the S1 state, is more evenly distributed between the

possible pathways. In the S1 state, it can be seen that dissociation in the first 70

to 80 fs of the propagation occurs along a multitude of pathways, the principal

of which represent the N-H(1) and C-H oop motions, which correspond to the

ν1, ν2 and ν3 vibrational modes of the system. It is in the movement in these

channels that the density continues after 80 fs, until all of the Gaussians have

been absorbed by the CAPs. In both the S2 and the S3 states the principal

product channel is defined by the N-H(2) bond stretching. In the S2 state it can

be seen that a very small amount of proton transfer occurs. In this process, the

H(1) dissociates and the H(3) subsequently transfers to the oxygen. Although the

proton transfer involving the H(1) atom was expected, this mechanism of proton

transfer was somewhat unexpected. In the S3 state it can be seen that a secondary

product channel to the nuclear motion in the first 12 fs is observed along a N-H(1)
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Fig. 4.12: The fraction of density going into different product channels from DD-vMCG
simulations of formimidic acid with SA8-CAS(10,8)/6-31G* following the potential sur-
faces starting in different states, where (a) S1 (b) S2 (c) S3 Each line, or series, represents
the different products defined either by the bond that breaks or by the products formed.
As in the characterisation of the vibrational frequencies, IP and OOP signify if the
dissociation occurs of in- or out-of-plane.
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stretching mode. It should be noted that while the C-H out-of-plane motion is the

only motion observed in all three of these states, significant NH2 character is also

observed in all three states, both in the in-plane and out-of-plane motions.

In Figure 4.12, representing the product distribution of FIM, upon cursory in-

spection it can be seen that while the number of product channels for the S1 is

greater than in the S2 and S3 states, as was the case with FAM, only two prod-

uct channels are seen. In all three states the O-H(1) in-plane stretching motion,

characterised as the ν11 mode, to the point of dissociation is seen, while in the S1

the N-H(2) out-of-plane motion, characterised in a combination of the ν3 and ν4

modes, is also seen. In the S1 state it is the N-H(2) out-of-plane motion that is

dominant, though the timescale over which the O-H(1) stretching motion is seen

is comparable to the timescale in the S2 state.

As a result of this investigation it can be seen that a number of different product

channels are available in the dynamics of formamide, whereas the OH stretching

motion in formimidic acid is dominant.

4.3.4 Potential Energy Surfaces

During the course of a Direct Dynamics propagation the energies are calculated

and stored in the database. As a result 1- and 2-dimensional cuts of the potential

energy surfaces can be made along the coordinates of the input. As the LHA is

used the surfaces should be symmetrical around the central point of the mode. By

looking at the adiabatic and diabatic representation of the same mode, or modes,

regions displaying non-adiabatic features such as avoided crossings, or conical in-

tersections, can be determined. From a practical perspective these surfaces can

also be used to determine if the Direct Dynamics calculations have been propa-

gated for sufficient time periods, if the diabatisation scheme has been successful

and other technical faults which are displayed as discontinuities in the surfaces.

Using the observations of the GGPs the surface cuts were selected along the modes
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which were most clearly represented by the density of the system.

In Figure 4.13 the adiabatic and diabatic cuts of the potential energy surface

along the ν11(a) and b)) and ν12(c) and d)) modes of formamide, characterised

as the N-H2 symmetric and anti-symmetric stretching modes, are shown. In a

2-dimensional representation, or combination, the NH dissociations occur at 45o

to the plane of these modes. It is immediately clear that the potential energy sur-

faces are smooth, with the diabatic states correctly representing crossings between

states.

In Figures 4.13 a) and b) there appears to be a dissociative state in the negative

displacement direction shown as the green, S1 state in the adiabatic representation,

which in the diabatic representation becomes the orange, previously S3, state.

However, in both the diabatic and adiabatic representations it can be seen that

there exists a kink in the surfaces, approximately located at -2 displacement. From

the shape of the curves at this point it is likely that there is a higher order state

which cuts down through most of the states, and is not represented in this picture.

In Figures 4.13 c) and d) at the Frank-Condon point it can be seen that the

blue, S2, and orange, S3, states are very close in energy and crossing between these

states occur very close to the Franck-Condon point. It is this orange state, in the

diabatic picture, that represents the NH-stretching motion.

In Figure 4.14 the adiabatic and diabatic cuts of the potential energy surface

along the ν10(a) and b)) and ν11(c) and d)) modes of formimidic acid, characterised

as the N-H2 and the OH stretching modes, are shown. These modes represent the

equivalent modes to the ν11 and ν12 of FAM. In Figures 4.14 a) and b) there

appears to a major failure in the calculation in the negative direction along the

mode, at about -4. This has been identified as a failure in the electronic structure

calculations. Consequently the only comments that can be made about this repre-

sentation are that the dark blue (S5) and yellow (S4) states are very close in energy
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Fig. 4.13: Cuts through the SA8-CAS(10,8)/6-31G* potential energy surfaces of for-
mamide from DD-vMCG simulations . (a) ν11 (N-H2 symmetric stretch) adiabatic (b)
ν11 diabatic (c) ν12 (N-H2 antisymmetric stretch) adiabatic (d) ν12 diabatic.

along the positive direction of the mode and that the crossings between these and

the red (S6) and black (S7) states are well resolved. It appears as if there may be

a dissociative state in the negative direction along the mode though it is unclear

as to whether this state originates from a state within the precalculated manifold.

In Figures 4.14 c) and d) it can be seen that the surfaces are much more smooth

and they clearly show a dissociative state which is the green, S1, state in the

adiabatic representation, or the light blue, S2, state in the diabatic representation.

As the states are well resolved in this mode it is clear that the OH dissociative

pathway was open to the dynamics of the molecule. In the diabatic representation

there is a good representation of the crossings between the states, although a

region approximately located at 2, in the positive direction shows a significant

convergence of the yellow, blue, red and black, S4 to S7 , states and it is unclear if

this region has been correctly resolved.
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Fig. 4.14: Cuts through the SA8-CAS(10,8)/6-31G* potential energy surfaces of
formimidicacid from DD-vMCG simulations . (a) ν10 (N-H(2) stretch) adiabatic (b)
ν10 diabatic (c) ν11 (O-H(1) stretch) adiabatic (d) ν11 diabatic.

These potential energy surfaces provide useful information regarding the nature

of the global potential along particular coordinates. In the case of FAM a combina-

tion of modes provide a relaxation pathway to the dissociation of the NH(1) bond.

In the case of FIM it can be seen that a relaxation pathway to dissociation of the

OH-bond crosses all but the S0 state. Consequently this gives a direct example of

where the efficient relaxation, leading to a dissociation is simplified when only 1

mode, as opposed to a combination of modes, exists.

4.4 Summary and Conclusions

In this Chapter quantum chemistry and quantum dynamics calculations were per-

formed in order to study the excited-state dynamics of formamide and formimidic

acid. Initial considerations for the representation of these two systems focused on

testing the limitations of the DD-vMCG method, whilst maintaining a balance
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between computational and time expense with accuracy and stability.

An initial ground state quantum chemistry study was carried out investigating

the effect of the choice of basis set on the time taken for calculations in addition

to an analysis of the choice of a planar versus a non-planar starting geometry. As

expected, it was found that while an increase in accuracy of basis set (greater split

valence, inclusion of diffuse and polarisation functions) results in more accurate

results, the calculation times became significantly increased. In order to maintain

resonable calulation times in the dynamics a compromise would have to be made,

dependent upon the orbitals and excited states required. It was also found that

the ground state, optimised geometry of formimidic acid and the transition state

were energetically almost identical in the planar and non-planar geometries. While

the difference in energy between the planar and non-planar optimised geometries

of formamide was more significant it was still a negligible difference and it was

decided that the planar geometry would be used.

An extensive investigation was then carried out analysing the choice of CAS

size and composition, as well as the effect of the inclusion of varying numbers of

excited states. Utilising a compromise 6-31G* basis set, it was found that the use

of a CAS(10,8) over 8 averaged states yielded the best description of the system

and the greatest stability for both formamide and formimidic acid. It was also

found that at this level of theory, and basis set, optically bright π-π∗ transitions

were present in the main configurations of both formamide (S6 principle, S3 and

S7 secondary) and formimidic acid (S3 principle, S6 secondary). Additionally, a

lone-pair - π∗ transition is seen as the main configuration for the S1 state of both

systems.

As the DD-vMCG calculations were performed using the normal modes of

the systems, an analysis of the character and numerical values of the vibrational

frequencies of both systems was then carried out in order to identify significant
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modes (such as those leading to fragmentation or potential proton transfer) with

a comparison to higher and lower accuracy calculations. It was found that the

6-31G* SA8 CAS(10,8) calculations resulted in good agreement with the higher

order (6-311+G* CCSD) results, especially in the case of the imaginary mode of

formamide, ν1.

The Direct Dynamics protocol was then established, including the initial pop-

ulation and numbers of the GWPs, the application of CAPs on particular long-

range-motion modes, and the propagation time. Of particular importance is the

process whereby the Direct Dynamics propagations were carried out in multiple

iterations, each time constructing an increasing sized database of points for use in

the following calculations.

Three types of analysis were carried out on the results of the final sets of

Direct Dynamics calculations. An analysis of the state populations resulting from

calculations utilising 8, 24 and 48 GWPs propagated on the S1, S2, S3 and S7 states

over 150 fs for both formamide and formimidic acid was carried out. The results

for both systems showed that an increase in the number of GWPs propagated,

resulted in smoother curves and hence a better realisation of population transfer

processes. A more detailed representation of the 48 GWP results, showing the

total density as well as the state populations, were then analysed. The decrease

in population of the S1 state for propagations on the S1 state, in both systems,

exhibited much longer timescales than the propagations on the higher states. The

results of the formamide calculations show that fast population transfer occurs to

all states, particularly between the S2 and S3 states, though in the S7 propagation

the degree of population transfer to the S0 state occurs more slowly. The reduction

in the total density in the formamide results occurs after 15 fs in the S2 and S3,

while in the S1 and S7 occurs after 20 fs, indicating that dissociative processes are

less dominant in these simulations. The results of the formimidic acid calculations
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generally show that the degree of population transfer is significantly less than in

the formamide calculations. The propagations on the S2, S3and S7 states display

a significant degree of dissociation occurring between 5 and 10 fs. These results

indicate that formamide is significantly more photostable in the S2 and higher

states than formimidic acid.

As a result of the reduction of the total density observed in the state population

analysis, a visual inspection of the geometries defined by the trajectory at the

centre of each GWP was carried out showing the distribution of the total density

into differing product channels. The GWPs were then weighted according to their

importance to the description of the total wavepacket.

This gross Gaussian population analysis showed that in the S1 propagation of

formamide the reduction of the total density was distributed into seven product

channels representing a variety of fragmentations, the most significant of which

represented the breaking of the N-H bonds. While the N-H(2) dissociation was

dominant in both the S2 and S3 propagations, in the S2 propagation a small degree

of population went into a proton transfer of H(1) occurring from the nitrogen to

the oxygen via the carbon. The gross Gaussian population analysis for the S2 and

S3 propagations of formimidic acid shows only the breaking of the O-H bond, while

in the S1 state the dissociation of the N-H(2) dominates, with a lesser degree of

dissociation of the O-H.

During the course of the Direct Dynamics propagation, the energies of the

system in each of the states are stored and can hence be visualised by taking cuts

along the global potential in either the diabatic or adiabatic representation along

selected normal modes. The surfaces should be smooth, in that any discontinuities

(kinks) in the surface may represent the failure of the DD-vMCG code (e.g. failure

in the diabatisation), that other high lying states not included in the quantum

chemistry calculations are crossing calculated states or that the quantum chemistry

Formimidic Acid Proton Transfer 134



Summary and Conclusions 4.4

calculations are failing and extrapolation is occurring.

The results of the gross Gaussian population analysis of formamide showed

that the dominant motion was along the N-H stretching modes, ν11 and ν12. The

potential surfaces of ν12 (N-H2 antisymmetric stretch) are symmetric and show

that the S3 (diabatic, S1 adiabatic) state is dissociative. As expected, the surfaces

along ν11 (N-H2 symmetric stretch) are not symmetric around Q0. Additionally,

along ν11 mode, a discontinuity in the surface (around -2) indicates a higher lying,

uncalculated, state may be crossing with the calculated states and the quantum

chemistry calculations begin to fail. It should be noted that the channel for N-H

dissociation occurs at 45o to the 2-dimensional surface of these combined ν11 and

ν12 modes. The potential energy surfaces of formimidic acid along the ν10 (N-H(2)

stretch) and ν12 (O-H stretch) modes, are the only modes that exhibit the most

dynamical behaviour and represent the analogue to the ν11 and ν12 of formamide.

While neither of these cuts are symmetric, the surfaces along ν11 surfaces are

relatively smooth and a relaxation pathway to dissociation crosses all but the S0

state. The surfaces representing the ν10 mode are extremely discontinuous in the

negative region. This level of disorder implies that there was a severe breakdown

of the quantum chemistry calculations in this region, resulting in extrapolated

points.

It can clearly be seen in both the process by which the CAS composition, size

and number of states is chosen, as well as in the potential energy surfaces that

the excited state dynamics of formamide and formimidic acid is difficult to re-

solve due to the number of states required and the close proximity of multiple

states in large regions of the global potential. However, a variety of interesting

features can be resolved from these results. While formamide has a relatively high

degree of photostability in higher lying states, it also posseses a large number of

fragmentation pathways (particularly in the S1 propagation) including an indirect
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pathway for proton transfer, though higher level calculations are required in order

to be able elucidate the significance of this pathway. Formamidic acid, conversely,

demonstrates a high degree photoactivity above the ground state, predominantly

resulting in O-H dissociation due to efficient relaxation pathway into the dissocia-

tive state.
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Chapter 5

2-Pyridone/2-Hydroxypyridine
Proton Transfer

5.1 Introduction

The structural characteristics and photochemical behaviours of aromatic hetero-

cycles and hydrogen-bonded complexes have been the subject of extensive chem-

ical and biological research. One example, 2-pyridone, has been widely investi-

gated as it possesses the same hydrogen-bonding sites as cytosine, thymine and

uracil, [179–181] and exhibits a second stable tautomeric form, 2-hydroxypyridine,

(Figure 5.1) reached via an enol-keto tautomerisation. [182–184]

2-pyridone belongs to a series of cyclic amides commonly referred to as lactams,

the acid analogues of which are cyclic carboximidic acids commonly referred to as

lactims. The series is defined by increasing ring size where a 4 membered ring

(a) (b)

Fig. 5.1: The ground state optimised structures of a) 2-hydroxypyridine (TIM) and b)
2-pyridone (TAM).
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β γ δ ε

Fig. 5.2: The general structures of the lactam series ordered in increasing ring size, from
β-lactam (4 membered ring) to ε-lactam (7 membered ring). 2-pyridone is a δ-lactam
where the ring is conjugated.

is β-lactam, a 5 membered ring is γ-lactam, and so on, as seen in Figure 5.2.

Lactams are a relatively versatile series of compounds involved in a wide variety

of reaction processes in the form of catalysts, intermediates, and reactants. β-

lactams have been widely used in antibiotics, though a number of these products

have been phased out due to undesirable side effects and as many pathogens have

become resistant to these medicines. [185] ε-lactam, more commonly referred to a

caprolactam or naphtholactam, was used to produce the first spinnable polymer

achieved through a polycondensation reaction [186] and has also been used in the

development of dyes for cotton and wool, including lightfast violets and blues.

[187,188]

As only the δ-lactam, 6 membered ring, is to be investigated here, 2-pyridone

will be referred to as lactam, or TAM, and its acid analogue 2-hydroxypyridine

will be referred to as lactim, or TIM. The study of TIM/TAM and its analogous

behaviour to that of Watson-Crick base-pairs, may provide essential information

as to the causes of mutagenesis in DNA/RNA, whether as a result of mutagens,

such as UV radiation and reactive oxygen species (ROS), [189] or by spontaneous

occurrence. [179, 190, 191] The TIM/TAM tautomeric equilibrium at the ground

state in gas phase has been shown to favour the TIM form by approximately 3

kJ mol−1. [192, 193] Low level quantum chemistry calculations indicate that the

barrier to proton transfer from TIM to TAM is between 142-159 kJ mol−1 [183,194],

thus it can be stated that spontaneous proton transfer is unlikely at the ground
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state.

At the S1 electronic state TAM is reported to be more stable and the endother-

micity of TAM ( 78 kJ mol−1) [184, 194] suggests that after photoexcitation the

barrier height to the enol-keto tautomerisation is much lower than in the ground,

S0, state. Consequently, it is thought that an excited state intramolecular proton

transfer, ESIPT, may be possible in this state. [189] Although ESIPT processes

are observed in many other DNA/base-pair analogous systems, low level calcu-

lations at the S1 state suggest that the activation energy of the TAM to TIM

tautomerism is 215 kJ mol−1 [195] or 148 kJ mol−1 [194], consequently conflicting

reasoning and data make the previous statement inconclusive. It could be sug-

gested that the mechanism for the TIM to TAM conversion may follow a roaming

wavepacket dynamics schema similar to that of Poisson et al. [196].

In nature tautomeric equilibrium takes place in the presence of water molecules,

or in the from of hydrogen bonded dimers. It is reported that a water solvent results

in the S0 TAM being stabilised by a further 12 kJ mol−1 relative to TIM, likely due

to the polar solvent stabilising the zwitterion resonance structure of TAM, which

does not exist for TIM. [180] Two reaction schemes for the tautomerisation of

TIM/TAM in a water solvent have been proposed, either by a concerted mechanism

involving a neutral cyclic intermediate, or via a cyclic ionic intermediate involving

a proton transfer from TIM to the solvent which is subsequently transferred back.

[184] These effects have been modelled spectroscopically and theoretically in three

systems, monosolvated, disolvated and in solution. In the monosolvated system

it has been found that the S0 proton transfer barrier is reduced from the isolated

molecule barrier height by 95 kJ mol−1 and in the disolvated by 35 kJ mol−1.

However, excited state experiments involving the singly and doubly hydrated TAM

vary in the degree of stabilisation reported. Disolvated TAM is reported to be more

stable in the S1 state by between 78-82 kJ mol−1, whereas the monosolvated TAM
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is reported to be between 43-68 kJ mol−1 more stable than TIM. The barrier

heights to the proton transfer in these systems have been calculated to be 66.9

kJ mol−1 for the monosolvated system and 109 kJ mol−1 for disolvated system,

though the accuracy of these calculations is limited [184,194]. Conclusive data as

to the overall solvent effect of the water has yet to be obtained.

Although limited wavepacket dynamics calculations have been carried out in

the study of TIM and TAM [196, 197], to date no studies have investigated the

role of the S3 and higher states. Due to the inconclusive data available, there is

also a requirement for high level quantum chemical calculations to be carried out

investigating the excited states of TIM and TAM.

It is clear, at this point, that a quantum dynamical study of TIM and TAM

presents an ideal extension from the work of Chapter 4 not only due to the match-

ing active sites, and limited number of previous dynamical studies, but also, due

to the higher number of degrees of freedom, as these systems present a more de-

manding challenge for the DD-vMCG method

5.2 Electronic Structure Calculations

An excited state dynamics calculation of TAM and TIM presents a greater chal-

lenge to the limitations of both the DD-vMCG method and the external quantum

chemistry calculations in comparison to the study of FAM and FIM. In addition

to the difficulties presented due to the presence of the nitrogen atom, the large

number of degrees of freedom, and the unknown number of excited states required

in the calculations, a major limitation to the study of these systems is the amount

of time required for the external quantum chemistry calculations to run. As a

demonstration, in Table 5.1 the times taken for a selection of optimisations of

TAM, carried out using various levels of theory and basis set, are shown accom-

panied by the equivalent calculation times for the optimisations of FAM.
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HF MP2 CCSD
FAM TAM FAM TAM FAM TAM

3-21G∗ 12.6 24.4 23.3 65.8 1783.2
6-31G∗ 26.9 44.8 187.3 287.1
6-311+G∗ 43.4 73.7 966.8 53583.0
cc-pVDZ 31.9 65.3 418.1 9941.2
cc-pVTZ 330.8 1147.9 1483.2 18771.3

Table 5.1: A comparison of the CPU times taken (in seconds) for equivalent optimisations
of formamide and 2-pyridone showing selection from levels of theory and basis sets.
Gaussian 09 [46] was used on a Xeon ES-2640 8-core workstation.

It can easily be seen that the use of the Dunning basis sets and the Pople triple-

ζ basis set would be unsuitable as the Direct Dynamics calculation time would be

dominated by the time taken for the electronic structure calculations.

Consequently, it was decided that, as with the FAM calculations, a large active

space would be chosen for the CAS calculations while a compromise basis-set size,

6-31G∗, would be chosen.

5.2.1 Excited State Calculations

State-Averaged CAS Investigation

Following the philosophy behind the selection of requirements for the active space

as described in Chapter 4.2.2, it was decided that as with the study of FIM and

FAM, emphasis would be placed on the possible description of a proton transfer

between the isomers TIM and TAM. Accordingly, in order to adequately describe

this potential proton transfer the molecular orbitals involving the N-H σ- and σ∗-

bonding as well as the oxygen lone pair in TAM are required, while in TIM the

corresponding O-H σ- and σ∗-bonding character along with the nitrogen lone pair

must be described. Due to the conjugated ring in TAM and TIM it is even more

important for adequate description of the π-bonding network to be included in the

active space.
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Fig. 5.3: The 6-31G∗ MP2 optimised geometries of a) 2-pyridone, b) 2-hydroxypyridine
and c) The transition state. The labels for the carbon atoms and hydrogen atoms are
for clarity in the interpretation of the data in Tables 5.4 and 5.6.

It should be noted, at this point, that if too large an active space is chosen,

the quantum chemistry software would not be able to calculate higher lying ex-

cited sates. After an inspection of the molecular orbitals of both TAM and TIM

calculated at the Hartree-Fock level it was decided that either a CAS(12,10), a

CAS(10,9) or a CAS(10,8) would be required. However, when initial state aver-

aged calculations using a 12 electron, 10 orbital size active space were carried out it

was found that the calculations could not converge if the number of excited states

included in the calculation was higher than 3. As a result, the state averaged CAS

investigation was carried out using the 10 electron, 9 and 8 orbital active spaces,

the results of which can be seen in Figure 5.4 for 2-pyridone and Figure 5.5 for

2-hydroxypyridine. It should also be noted that in these Figures for simplicity the

NH(1) and OH(1) bonding labels have been abbreviated to NH and OH.
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CAS(10,8) CAS(10,9)
SA5 SA6 SA7 SA8 SA5 SA6

C1N NH NH NH C1C2 C1C2

Pi1 Pi1 Pi1 Pi1 PI1 PI1 Pi1

Pi2 Pi2 Pi2 Pi2 PI2 PI2 Pi2

OLP OLP OLP OLP OLP OLP OLP

Pi3 Pi3 Pi3 Pi3 PI3 PI3 Pi3

Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1

Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2

C1N* NH* NH* NH* Pi*3 Pi*3 NH*

C1C2* C1C2*

-321.59694 -321.59694 -321.59694 -321.59694 -321.64149 -321.64216

4.878 4.821 4.821 4.778 4.320 4.354

 

4.906 4.923 4.915 4.961 5.073 5.114

6.016 5.985 6.126 6.354 5.962 6.012
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7.625 7.759 7.844 7.898
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Fig. 5.4: The characterisation of the molecular orbitals and excited states for 2-pyridone using CAS(10,8) (left) and CAS(10,9) (right)
sized active spaces. Each cell represents a state with excitation energy (in eV) relative to the ground-state (energy in Hartree). The
coloured boxes relate to the character of the main configurations with an electron being promoted from the left to the right box. The key
to the colour scheme is on the right hand side. The list of orbitals above the cells list those in the CAS space. The numbers in red are
for states with significant oscillator strength (> 0.01).
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Electronic Structure Calculations 5.2

In Figure 5.4 it can be seen that while calculations for state averaging over a

total of 5 to 9 states were performed, only the SA5 and SA6 calculations utilising

the CAS(10,9) were successful, while at the CAS(10,8) level of theory the SA5 to

SA8 calculations were successful. This was seen as an indicator that the use of the

CAS(10,8) calculations was likely to result in increased stability in the calculations.

Upon inspection of the ASC for the CAS(10,9) calculations it is immediately clear

that while the two successful calculations contained the prerequisite oxygen lone

pair, π and π∗ molecular orbitals, neither the N-H(1)-bonding nor -antibonding

character is present in the active space. However, upon inspection of the ASC for

the CAS(10,8) calculations it can be seen that only the SA5 calculation failed to

include the prerequisite N-H(1) σ and σ∗ orbitals, while all states also include the

oxygen lone pair, π and π∗ bonding character.

The XSC of both the CAS(10,8) and CAS(10,9) calculations show that aside

from the SA5 calculation, all S1 and S3 states are characterised by an OLP to π∗

transition, while all S2 states are characterised by a π to π∗ transition. In fact it

can be seen that the XSC of the CAS(10,8) SA6 to SA8 calculations is consistent

across all states. Despite the dominance of the π to π∗ transitions, the S5 is

characterised as a π to NH∗ transition. It can also be seen that the calculated

excitation energies are less consistent than in the FAM and FIM calculations,

though with the limited amount of data it is difficult to draw any conclusions

from this. An additional observation to be made is that while the character of the

excited states is consistent, the SA8 calculation found the S3 state to be optically

bright as opposed to the S4 in the preceeding calculations.

From the analysis of this set of results it can be seen that for 2-pyridone the

CAS(10,8) sized calculation utilising between 5 and 7 excited states would be the

most suitable for the Direct Dynamics calculations.
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TIM cas

Page 1

CAS(10,8) CAS(10,9)
SA4 SA5 SA6 SA7 SA8 SA4 SA5 SA6 SA7

CO CO CO OH OH C45H+NLP CO CO OH

Pi1 Pi1 Pi1 Pi1 Pi1 Pi1 Pi1 Pi1 Pi1 Pi1

Pi2 Pi2 Pi2 Pi2 Pi2 Pi2 Pi2 Pi2 Pi2 Pi2

Pi3 Pi3 Pi3 Pi3 Pi3 Pi3 Pi3 Pi3 Pi3 NLP

NLP NLP NLP NLP NLP NLP NLP +CN NLP NLP Pi3

Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1 Pi*1

Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2 Pi*2

CO* CO* CO* OH* OH* Pi*3 Pi*3 Pi*3 Pi*3

NLP* CO* CO* OH*

-321.62445 -321.62332 -321.62160 -321.62522 -321.62467 -321.65228 -321.65353 -321.65232 -321.65355

5.969 6.182 6.028 6.094 6.060 5.175 5.077 5.109 5.08

 

6.383 6.405 6.185 6.332 6.377 6.074 7.936 6.092 6.073

7.887 7.377 7.840 7.784 7.721 7.044 8.482 7.217 7.219

7.891 7.866 7.810 7.867 8.73 8.009 8.002

8.929 9.157 9.064 8.543 8.507
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Fig. 5.5: The characterisation of the molecular orbitals and excited states for 2-hydroxypyridine using CAS(10,8) (left) and CAS(10,9)
(right) sized active spaces. Each cell represents a state with excitation energy (in eV) relative to the ground-state (energy in Hartree).
The coloured boxes relate to the character of the main configurations with an electron being promoted from the left to the right box. The
key to the colour scheme is on the right hand side. The list of orbitals above the cells list those in the CAS space. The numbers in red
are for states with significant oscillator strength (> 0.01).
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Electronic Structure Calculations 5.2

In Figure 5.5 it can be seen that while state averaged calculations were carried

out over a total of 4 to 9 states at the CAS(10,9) level of theory the SA8 and

SA9 calculations were unsuccessful while at the CAS(10,8) level of theory only the

SA9 calculation was unsuccessful. Upon inspection of the ASC for the CAS(10,9)

calculations it can be seen that while the prerequisite nitrogen lone pair, π and π∗

character is seen in the active space of the SA4 to SA7 calculations, only the SA7

includes the OH(1) σ- and σ∗- bonding orbitals. In the ASC of the CAS(10,8)

calculations it can also be seen that the nitrogen lone pair, π and π∗ character

molecular orbitals are present in the SA4 to SA8 calculations, the OH(1) σ- and

σ∗ orbitals are present only in the SA7 and SA8 calculations.

As with the results of the calculations for 2-pyridone, a consistent trend of

character in the XSC is seen for the S1 state, which is characterised as a π to

π∗ transition, and with the exception of the CAS(10,9) SA5 calculation the S2 is

characterised as a NLP to π∗ transition. This represents a reverse of the character

of the first two states in comparison to the 2-pyridone results. Unlike the TIM

results, the S3 state does not exhibit a clear trend of character. Upon closer

inspection of the S3 and S4 states in the CAS(10,8) calculations it can be seen that

the character of the states has swapped in the SA5 and SA7 by comparison to the

SA4, SA6 and SA8, which is likely due to the states being very close in energy.

This same “swap” is also observed in the identification of the states with significant

oscillator strengths. Although the character of the S5 state in the CAS(10,8)

calculations is not consistent, combinations of the same three principal transitions

are seen, all of which represent π to π∗ transitions, albeit from π molecular orbitals

of differing character. It can also be seen that with the exception of the SA6 S2

and the SA5 S3 the calculated excitation energies are relatively consistent across

all states in the CAS(10,8) calculations.

Consequently it can be seen that for 2-hydroxypyridine the CAS(10,8) sized
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calculations are more stable with the SA7 and SA8 being the most suitable for the

Direct Dynamics calculations.

Energy Oscillator Main
(eV) Strength (au) configurations

S1 4.821 0.0006 0.64(OLP – Pi∗1)
S2 4.914 0.1082 0.61(Pi3 – Pi∗1)
S3 6.126 0.0000 0.64(OLP – Pi∗2)
S4 7.610 0.1924 0.42(Pi3 – Pi∗2) + 0.38(OLP – NH∗)
S5 7.758 0.0000 0.64(Pi3 – NH∗)
S6 8.422 0.2273 0.52(Pi2 – Pi∗1)

Table 5.2: 2-pyridone energies, oscillator strengths and coefficients of main configurations
(values > 0.15) from a SA7-CAS(10,8)/6-31G* calculation

As a result of this investigation, following from the requirement that the max-

imum number of excited states should be included in the calculation, it is clear

that the CAS(10,8) including 7 excited states, the SA8 calculation, is the obvi-

ous choice. However, the initial point of the Direct Dynamics calculations require

a calculation of the energy, gradient and Hessian, along with the non-adiabatic

couplings between all of the states. This calculation is performed as a standalone

calculation providing both an estimate of the time required for the quantum chem-

istry calculations as well as presenting a final test to the stability of the calculation

before moving on to the Direct Dynamics. Although this step proved to be merely

a formality for the formamide and formimidic acid calculations, this calculation

for the TAM repeatedly failed to complete. Consequently, following the results of

the state average characterisations, the next largest CAS(10,8) calculation, state

averaged over a total of 7 states, was then tested and used in the Direct Dynamics

study.

It should be noted that while the 2-hydroxypyridine CAS(10,8) SA8 calcu-

lation was successful, the time taken for this calculation was 21615.69 seconds

whereas the CAS(10,8) SA7 calculation took 19656.85 seconds As this represents

an approximate 10% reduction in the calculation time, given the aforementioned

2-Pyridone/2-Hydroxypyridine Proton Transfer 147



Electronic Structure Calculations 5.2

requirements for efficiency in the calculations, the reduction of the number of ex-

cited states presented an improvement in the overall time-expense for the Direct

Dynamics calculation.

Energy Oscillator Main
(eV) Strength (au) configurations

S1 6.094 0.0514 0.45(Pi3 – Pi∗1) - 0.28 (Pi3 – Pi∗2)
+ 0.26(Pi2 – Pi∗2)

S2 6.331 0.0092 0.59(NLP – Pi∗1) +0.28(NLP – Pi∗2)
S3 7.783 0.0006 0.59(NLP – Pi∗2) -0.29(NLP – Pi∗1)
S4 7.810 0.0251 0.45(Pi3 – Pi∗2) + 0.29(Pi2 – Pi∗1)

+ 0.28(Pi2 – Pi∗2)
S5 9.157 0.6450 0.39(Pi2 – Pi∗2) + 0.39(Pi3 – Pi∗1)

+ 0.26(Pi1 – Pi∗1)
S6 9.715 0.7825 0.45(Pi1 – Pi∗1)

Table 5.3: 2-hydroxypyridine energies, oscillator strengths and coefficients of main con-
figurations (values > 0.15) from a SA7-CAS(10,8)/6-31G* calculation

The final results of the excitation energies, oscillator strengths and charac-

terisations from the SA7-CAS(10,8)/6-31G* calculations of TAM and TIM are

summarised in Tables 5.2 and 5.3 respectively. In Table 5.2 it can be seen that the

states principally characterised by a π to π∗ transition are optically bright where

the S6 π2 to π∗1 is the brightest, followed by the S4 π3 to π∗2 then the S2 π3

to π∗1. In Table 5.3 it can also be seen that the states principally characterised

by a π to π∗ transition are optically bright. In this case the S5 π1 to π∗1 and S6

π2 to π∗2/π3 to π∗1 states exhibit relatively high oscillator strengths whilst the

S1 π3 to π∗1 and S4 π3 to π∗2 are comparatively weaker in strength, though still

optically bright. The molecular orbitals of TAM and TIM can be seen in Figures

5.6 and 5.7, respectively, from which the full characterisations of the π orbitals

can be interpreted.
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(a) OLP (b) NH (c) NH∗

(d) π1 (e) π2 (f) π3 (g) π1∗ (h) π2∗

Fig. 5.6: CAS molecular orbitals of 2-pyridone from the CAS(10,8) SA7 calculation.

(a) NLP (b) OH (c) OH∗

(d) π1 (e) π2 (f) π3 (g) π1∗ (h) π2∗

Fig. 5.7: CAS molecular orbitals of 2-hydroxypyridine from the CAS(10,8) SA7 calcula-
tion.

Vibrational Frequencies

As stated in Chapters 3.3.1 and 4.2.2 the coordinates, defined either in Cartesian

coordinates or normal modes, are required so as to provide the ground state po-

tential surface and width of the total wavepacket. It was decided that the normal

modes of TIM and TAM would be used and hence the characterisation of the

normal modes is necessary in order to carry out analysis of the Direct Dynamics

results. The notation for characterisation of the modes follows the geometry labels

outlined in Figure 5.3. As both the TAM and TIM have Cs symmetry the modes

are defined only as A′ and A′′ indicating in-plane (ip) and out-of-plane (oop) mo-
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tion. Generally, in the characterisation of the modes the atoms grouped together

exhibit motion in-phase with each other, while the motions of atoms either side

of the hyphen are generally out-of-phase (oo-phase) or opposed to each other. An

example of this can be seen in Table 5.4, ν12 where the H(2) and H(3) are moving

in-phase with each other, as are the H(4) and H(5), while the combined motion of

the H(2) and H(3) is out-of-phase with the motion of the H(4) and H(5) combined

motion.

In Tables 5.4 and 5.5 the normal modes of the 6-31G∗ SA7 CAS(10,8) optimised

structure of 2-pyridone are characterised, alongside the frequencies calculated at

the 6-31G∗MP2 and 6-311+G∗ CCSD levels of theory. Comparing the frequencies

of the MP2 and CCSD calculations it can be seen that the majority of the lower

frequency modes, ν1 to ν13, are predominantly lower at the CCSD level of theory,

while the CCSD calculated frequencies in the mid-range frequency modes, ν14 to

ν25, are predominantly higher than those calculated at the MP2 level of theory.

It can also be seen that while the high-frequency C-H stretching modes are at

lower calculated frequencies in the CCSD calculations, the N-H stretching mode

is higher frequency, implying that at the CCSD level of theory the NH bond is

stronger than at the MP2 level of theory.

Comparing the calculated frequencies resulting from the CAS(10,8) SA7 cal-

culation, to the MP2 and CCSD calculated frequencies it can be seen that apart

from the ν1 mode, all of the CAS modes are at a higher frequency.
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Label Frequency (cm−1) Character
MP2 CCSD CAS(10,8)

6-31G* 6-311+G* 6-31G* SA7
ν1(A′′) 201.69 116.46 160.69 OC(4)-NC(2) oop rocking
ν2(A′′) 387.21 352.92 421.10 C(2)C(5)-NC(3) oop twisting
ν3(A′) 456.77 392.21 485.15 O ip wagging
ν4(A′′) 467.04 457.72 542.70 H(1)H(2)H(3)H(5)-C(1)C(4) oop

oo-phase wagging
ν5(A′) 539.84 550.05 575.12 C(1)-C(4) ip ring breathing
ν6(A′) 608.46 601.89 653.54 C(3)N-C(2)C(5) ip twisting
ν7(A′′) 654.12 618.26 754.47 H(1)H(2)H(4) oop in-phase wagging
ν8(A′′) 703.68 634.18 777.92 H(1) oop wagging
ν9(A′′) 758.14 736.45 806.24 H(1)H(2)H(3) oop in-phase wagging
ν10(A′) 800.94 807.79 880.85 C(1)-N C(1)-C(2) ip in-phase

stretching
ν11(A′′) 834.05 832.57 923.91 H(2)H(3) oop in-phase wagging
ν12(A′) 873.39 867.00 978.50 H(2)H(3) oop oo-phase wagging
ν13(A′′) 946.02 930.81 1027.32 C(3)-C(4) ip stretching
ν14(A′) 984.69 1003.07 1077.71 C(2)C(4)N-C(5)C(3) ip twisting
ν15(A′) 997.76 1018.40 1148.81 H(3)H(2) oop oo-phase wagging
ν16(A′′) 1101.20 1119.10 1182.00 H(4)H(2)-H(1) ip oo-phase wagging
ν17(A′) 1182.33 1181.62 1263.75 H(2)-H(3)-H(4) ip wagging
ν18(A′) 1240.68 1242.32 1315.91 H(1)-H(5)-H(4) ip wagging
ν19(A′) 1261.69 1292.87 1377.71 H(1)H(2)-C(1)H(4) ip in-phase

wagging
ν20(A′) 1402.76 1407.33 1519.07 H(1)-H(2)-H(3) ip wagging
ν21(A′) 1442.43 1474.93 1562.03 H(3)-H(1)-H(2) ip wagging
ν22(A′) 1485.58 1514.24 1642.36 H(5)-H(4)-H(2) ip wagging
ν23(A′) 1594.98 1619.40 1677.77 H(5)-H(3) ip oo-phase wagging
ν24(A′) 1682.41 1698.31 1765.59 H(5)-H(4) ip oo-phase wagging
ν25(A′) 1747.64 1792.54 2011.64 H(1) ip wagging C(1)O stretching
ν26(A′) 3210.96 3183.35 3367.16 C(3)-H(3) stretching
ν27(A′) 3238.29 3214.01 3409.18 C(2)-H(2) stretching
ν28(A′) 3254.06 3221.55 3417.53 C(4)-H(4) stretching
ν29(A′) 3263.03 3235.57 3449.89 C(5)-H(5) stretching
ν30(A′) 3590.05 3640.81 3706.24 NH(1) stretching

Table 5.4: The normal mode frequencies of lactam calculated at different levels of theory
at the optimised Cs structure where the numbering of the carbon atoms and hydrogen
atoms is as in Figure 5.3a).

2-Pyridone/2-Hydroxypyridine Proton Transfer 151



Table 5.5: Normal modes of lactam calculated at the CAS(10,8)/6-31G* SA7 level of theory at the optimised Cs

structure, where “Freq.” is an abbreviation of frequency.

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν1(A′′) 160.69 ν6(A′) 653.54 ν11(A′′) 923.91

ν2(A′′) 421.10 ν7(A′′) 754.47 ν12(A′) 978.50

ν3(A′) 485.15 ν8(A′′) 777.92 ν13(A′′) 1027.32

ν4(A′′) 542.70 ν9(A′′) 806.24 ν14(A′) 1077.71

ν5(A′) 575.12 ν10(A′) 880.85 ν15(A′) 1148.81
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Table 5.5: Continued

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν16(A′′) 1182.00 ν21(A′) 1562.03 ν26(A′) 3367.16

ν17(A′) 1263.75 ν22(A′) 1642.36 ν27(A′) 3409.18

ν18(A′) 1315.91 ν23(A′) 1677.77 ν28(A′) 3417.53

ν19(A′) 1377.71 ν24(A′) 1765.59 ν29(A′) 3449.89

ν20(A′) 1519.07 ν25(A′) 2011.64 ν30(A′) 3706.24
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5.2 Electronic Structure Calculations

In Tables 5.6 and 5.7 the normal modes of the 6-31G∗ SA7 CAS(10,8) opti-

mised structure of 2-hydroxypyridine are characterised, alongside the frequencies

calculated at the 6-31G∗ MP2 and 6-311+G∗ CCSD levels of theory. Comparing

the frequencies of the MP2 and CCSD calculations it can be seen that in the mid-

to high-frequency range, ν15 to ν30, the calculated frequencies at the CCSD are

predominantly lower than those of the MP2 calculations, with the exception of

the OH-stretching mode, ν30. As with the results of the TAM calculations, the

high-frequency TIM C-H stretching modes are at lower calculated frequencies in

the CCSD calculations than at the MP2 level of theory, while the O-H stretching

mode is higher frequency, implying that at the CCSD level of theory the OH bond

is calculated to be stronger than at the MP2 level of theory.

It can be seen that the 6-31G∗ SA7 CAS(10,8) calculated frequencies are lower

than the frequencies calculated at the other levels of theory only in the ν4 vibra-

tional mode.

The inclusion of the pictographic representations of the normal modes are par-

ticularly useful in a system of this size when later attempting to identify and

categorise the motion seen in the result of the Direct Dynamics calculations.
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Label Frequency (cm−1) Character
MP2 CCSD CAS(10,8)

6-31G* 6-311+G* 6-31G* SA7
ν1(A′′) 215.99 212.17 248.63 O(H(1))-C(4) oop bending
ν2(A′′) 407.42 400.82 439.12 OH(1) ip wagging
ν3(A′) 414.08 422.72 469.27 H(1)(-NC(3)) oop (in-phase) wagging
ν4(A′′) 488.70 441.61 483.99 H(1)(-C(2)C(5)) oop (in-phase)

wagging
ν5(A′) 544.17 516.21 596.80 H(1)(C(1)C(4))-H(2)H(3)H(5) oop

oo-phase wagging
ν6(A′) 566.78 570.76 606.56 C(1)-C(4) ring breathing
ν7(A′′) 639.41 641.22 680.32 C(2)-C(5) ring breathing
ν8(A′′) 672.51 686.41 731.12 C(1)-C(2) stretching
ν9(A′′) 772.17 765.88 813.91 H(2)H(4)N-C(1)C(5)C(3) oop rocking
ν10(A′) 859.85 844.66 865.19 H(2)H(3)H(4)H(5) oop in-phase

wagging
ν11(A′′) 865.87 865.48 980.16 C(3)-C(5) ring breathing
ν12(A′) 919.58 917.94 980.81 H(2)H(3)-H(4)H(5) oop oo-phase

wagging
ν13(A′′) 929.73 944.83 1039.87 H(5)-H(4)oop oo-phase wagging
ν14(A′) 1016.43 1017.02 1087.95 NC(4)C(2) ring breathing
ν15(A′) 1083.08 1069.61 1138.80 H(3)-H(2)H(4) oop oo-phase wagging
ν16(A′′) 1129.84 1121.54 1188.69 H(4)H(3)(H(1))-H(2) ip oo-phase

wagging
ν17(A′) 1199.55 1162.53 1241.55 H(4)H(2)H(1)-H(3) ip oo-phase

wagging
ν18(A′) 1231.47 1230.04 1279.11 H(1)H(5)H(3)-H(2)H(4) ip oo-phase

wagging
ν19(A′) 1347.60 1282.93 1383.34 H(2)-H(1) ip in-phase wagging
ν20(A′) 1379.52 1346.04 1438.46 H(3)-H(5) ip oo-phase wagging
ν21(A′) 1434.74 1387.06 1477.77 H(5)H(4)H(3)H(2)-H(1) ip oo-phase

wagging
ν22(A′) 1518.12 1505.52 1615.77 H(4) ip wagging
ν23(A′) 1541.15 1533.84 1617.87 H(3)H(2)H(1) ip in-phase wagging
ν24(A′) 1660.01 1660.16 1663.15 H(5)H(1) ip in-phase wagging
ν25(A′) 1688.38 1686.16 1841.11 H(2)H(5)-H(3) ip oo-phase wagging
ν26(A′) 3225.79 3184.02 3366.80 H(3) stretching
ν27(A′) 3236.92 3191.27 3372.75 H(5) stretching
ν28(A′) 3261.64 3215.44 3395.36 H(4) stretching
ν29(A′) 3268.68 3223.66 3406.89 H(2) stretching
ν30(A′) 3706.33 3806.50 3746.61 H(1) stretching

Table 5.6: The Normal mode frequencies of lactim calculated at different levels of theory
at the optimised Cs structure where the numbering of the carbons and hydrogens is as
in Figure 5.3b).
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Table 5.7: Normal modes of lactim calculated at the CAS(10,8)/6-31G* SA7 level of theory at the optimised Cs

structure, where “Freq.” is an abbreviation of frequency.

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν1(A′′) 248.63 ν6(A′) 606.56 ν11(A′) 980.16

ν2(A′) 439.12 ν7(A′) 680.32 ν12(A′′) 980.81

ν3(A′′) 469.27 ν8(A′) 731.12 ν13(A′′) 1039.87

ν4(A′′) 483.99 ν9(A′′) 813.91 ν14(A′) 1087.95

ν5(A′′) 596.80 ν10(A′′) 865.19 ν15(A′′) 1138.80
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Table 5.7: Continued

Label Freq. (cm−1) Label Freq. (cm−1) Label Freq. (cm−1)

ν16(A′′) 1188.69 ν21(A′) 1477.77 ν26(A′) 3366.80

ν17(A′) 1241.55 ν22(A′) 1615.77 ν27(A′) 3372.75

ν18(A′) 1279.11 ν23(A′) 1617.87 ν28(A′) 3395.36

ν19(A′) 1383.34 ν24(A′) 1663.15 ν29(A′) 3406.89

ν20(A′) 1438.46 ν25(A′) 1841.11 ν30(A′) 3746.61
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5.3 Direct Dynamics

5.3 Direct Dynamics

Following the same protocol for the building of the database and the placement

of the CAPs as described in Chapter 4.3.1 the Direct Dynamics Calculations for

2-pyridone and 2-hydroxypyridine were carried out and results obtained. It should

be noted that the same predefined parameters for the propagation time, 150 fs,

and dbmin, 0.25, were used in the Direct Dynamics calculations on 2-pyridone and

2-hydroxypyridine, as were used with the FAM and FIM propagations.

5.3.1 State Population Analysis

In Figures 5.8 and 5.10 the diabatic state population results of the 2-pyridone and

2-hydroxypyridine, respectively, for each of the 7, 21 and 42 GWP propagations

on the S1, S2, S3 and S6 states are shown. Figures 5.9 and 5.11 detail the results of

the first 80 fs of the 21 GWP propagations, with a comparison to the total density.

These state population calculations, along with the detail of the total density, give

vital information as to the behaviour of the system where the inclusion of the

total density allows the population transfer and the dissociative behaviours to be

resolved.

In Figure 5.8 it can be seen that the increase from 7 to 21 GWPs and from 21 to

42 GWPs result in a smoothing of the representation of the decay and population

transfer and this convergence can clearly be seen in all but the S6 state. The

increase in the number of GWPs, or basis functions, means that the basis set for

the dynamics has greater flexibility and can cover more of phase space. Following

from this observation it can be stated that while the plots for the state populations

on the S6 state do not become more smooth, it can clearly be seen that while in

the 7 GWP calculation the state populations appear to be dissipating, in the 21

and more so in the 42 GWP propagations it can be seen that the density appears

to be staying in the upper states and not decaying.
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(l) S6 42GWP

Fig. 5.8: Diabatic state populations from DD-vMCG simulations of 2-pyridone starting
with a vertical excitation to various states and using various numbers of GWPs.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red.

In the S1 calculations it can be seen that the timescale for the decay of pop-

ulation in the S1 state occurs initially over the first 20 fs where it can be seen

that population appears to be being transferred into all of the other states. This

decrease in the population appears to be increasingly long lived upon increase of

the number of basis functions included in the calculation.
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In the S2 calculations it can be seen that there is a very fast population transfer

from the S2 (light blue) to the S3 (orange) state, occurring within the first 10 fs.

With increasing number of GWPs the degree to which this population transfer

occurs is reduced, though still significant. The increased number of basis functions

representing the system allows for the resolution of the population transfer to the

other states to be increased and hence can be seen more clearly.

In the S3 7 GWP calculation it appears as if there are two points of significant

population transfer, the first at about 10 fs to the S2 state, and the second at 20

fs to the S6 (red) state. However, these features are diminished with increasing

number of basis functions to the point where there appears to be no particular

significance to the population transfer into the S5 state. One feature that has

remained constant across this set of calculations is the the slow increase in the

population of the S1 (green) state showing that a slow decay into this state is

occurring.

In the S6 calculations the rapid initial decay is also observed in the first 10

fs, the degree of which is greater in the 7 GWP calculation than the 21 GWP

calculation. The degree of this fast decay is apparently maintained between the 21

and 42 GWP calculations. However, despite this lower percentage of decay in the

21 and 42 GWP calculations, it can be seen that the initial population transfer to

the S4 state increases with increasing number of basis functions while the overall

population in each of the states appears to be averaging to between 10 and 20%.

In Figure 5.9 it can be seen that the total density has decreased by about 70%

during the first 20 fs of the S1 propagation whereas the total density in the in the

S6 calculation decreases only by 20% in the first 10 fs of the calculation and then is

maintained. While the total density in the S2 state exhibits a slight decrease at 40

fs the most significant calculation with respect to the total density is the S3 propa-

gation where none of the density is lost over the entire calculation. This minimal,
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or non-existent, change in the total density supports the previous statements that

the density is being efficiently distributed among the excited states. It should also

be noted that minimal population is being transferred into the S0 state in the S1

calculation, while the population is relaxing to the ground state to a much more

significant degree in the S2, S3 and S6 calculations. As stated previously, minimal

population is being transferred into the S1 state in the other propagations.
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(d) S6 21GWP

Fig. 5.9: Diabatic state populations from DD-vMCG simulations of 2-pyridone starting
with a vertical excitation to various states. Final Results.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; Total density (norm2): Thick black.

In the S2, S3 and S6 calculations is is difficult to resolve the behaviour of the

system any further as the population is being transferred to and between states

rapidly.
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In Figure 5.10 it can be seen that while the increase in the number of GWPs

reduced the overall noise in the state population transfer the improvement is not

as marked as in the previous state population analyses partly due to the limited 42

GWP results available. However, upon inspection it can be seen that the curves

going from the 7 GWPs to the 21 GWPs exhibit less chaotic population transfer,

the most significant being the large population transfer exhibited at approximately

55 fs in the S6 7GWP is not seen in the 21 GWP calculation.

In the S1 state the 7 GWP calculation exhibits and initial 60% population

decay over the first 20 fs, principally characterised as population transfer to the

S5 (dark blue) state. Between 40 and 60 fs the S5 state becomes the highest

populated state after which, at around 80 fs, the S6 (red state) becomes the most

highly populated. However, in the 21 GWP calculation the S0 (purple) state also

exhibits a large population increase and between 30 and 40 fs it appears as if the

population on the S0, S1 and S5 is equivalent, while the large population transfer

to the S6 at later propagation times is not exhibited. In the 42 GWP calculation

the S0, S4 (yellow) and S2 (light blue) exhibit concurrent behaviour for the first 20

fs, after which, at 40 fs, it can be seen that the S2 is competing with the S1 state

populations. In this set of calculations it is not conclusive as to the behaviour of

the system with increasing numbers of GWPs suggesting that the calculation may

not yet have converged.

In the S2 state it can be seen that the role of the S3 (orange) state is significant

in the the 7 GWP calculation while it does not particularly feature in the 21 GWP

calculation. A similar diminution in the prevalence of the S4 state is seen going

from the 7 GWP to the 21 GWP calculation, though to a lesser extent.

In the S3 state the decay in the population of the propagating state reduces

to 20% population in around 18 fs, the fastest decay of seen in this system, and

while the significant noise in the calculations reduces from the 7 GWP calculation
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to the 21 GWP calculation, the prevalence of the population transfer to particular

states is unchanged.
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Fig. 5.10: Diabatic state populations from DD-vMCG simulations of 2-hydroxypyridine
starting with a vertical excitation to various states and using various numbers of GWPs.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red.

The S6 set of calculations exhibits both the greatest improvement upon increase

of the number of GWPs and the slowest decay in population of the propagating

state, 20% population remaining past 60 fs in the 21 GWP calculation. In the
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7 GWP calculation the most significant population transfer, to the S3 state, at

20 fs is no longer seen in the 21 and 42 GWP results. In the 21 and 42 GWP

result it can be seen that a small amount of population transfer to the S5 state

occurs within the first 5 fs, with no appreciable decay for the remainder of the

propagation.

It should also be noted that every state in this set of calculations exhibits a

small but appreciable amount of population transfer to the S0 state.
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(d) S6 21GWP

Fig. 5.11: Diabatic state populations from DD-vMCG simulations of 2-hydroxypyridine
starting with a vertical excitation to various states. Final Results.
Key: S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6:
red; Total density (norm2): Thick black.

In Figure 5.11 the first 80 fs of the 21 GWP calculations are shown, with the

total density plotted for comparison. It can be seen that unlike in the previous
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sets of results none of the states exhibit a large decrease in the density, indicat-

ing that relatively little to, in the case of S6, no dissociation is occurring in these

calculations. Consequently it is reasonable to state that 2-hydroxypyridine is rela-

tively stable upon photoexcitation. The S1 calculation exhibits the highest amount

of population transfer to the S0 ground state. In the S2 and S3 calculations the

S1 state presents significant behaviour while in the S6 calculation relatively little

transfer to the S1 state occurs. It can also be seen that the S5 state plays a signif-

icant role in the dynamics of the S1 and S2 calculations while in the S6 calculation

the S5 state is significant only in the first 5 fs. It appears as if, in the S1 and

S3, the populations on each of the states are converging, or equilibrating, further

suggesting the photostability of the molecule.

As a result of this analysis it can be seen that aside from the TAM S1 state

2-pyridone and its isomer 2-hydroxypyridine are relatively photostable, exhibiting

a combination of short and long timescale behaviours, resulting in the distribution

of population across all of the states of the system. Following the observations

made in this section the further elucidation of the dissociation processes available

to the dynamics of these molecules is vital to the understanding of the cases and

modes which present molecular dynamical photoactivity.

5.3.2 Gross Gaussian Populations

Following a visual inspection of the geometries defined by the trajectory of the

centre of the GWPs, the fraction of the density, defined by the gross Gaussian

populations, along each of the product channels were then categorised to allow

analysis of the product distribution. The results of this analysis of the trajectories

of the GWPs for 2-pyridone and 2-hydroxypyridine can be seen in Figures 5.12

and 5.13 respectively. It was found, upon analysis of the S7 state, that although

the N-H dissociated in the dynamics of 2-pyridone, the motion did not make it as

far as the CAP and hence no data were available for the analysis.
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Fig. 5.12: The fraction of density going into different product channels from DD-vMCG
simulations of 2-pyridone with SA7-CAS(10,8)/6-31G* following the potential surfaces
starting in different states, where (a) S1 (b) S2 (c) S3. Each line, or series, represents
the different products defined either by the bond that breaks or by the products formed.
As in the characterisation of the vibrational frequencies OOP signifies out-of-plane ring
vibration.
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Fig. 5.13: The fraction of density going into different product channels from DD-vMCG
simulations of 2-hydroxypyridine with SA7-CAS(10,8)/6-31G* following the potential
surfaces starting in different states, where (a) S1 (b) S2 (c) S3 Each line, or series, rep-
resents the different products defined either by the bond that breaks or by the products
formed. As in the characterisation of the vibrational frequencies OOP signifies out-of-
plane ring vibration.
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In the S7 state of 2-hydroxypyridine as none of the trajectories made it to the

CAP, no data were available for the analysis of this state.

In Figure 5.12 the representation of N-H dissociation and out-of-plane ring

vibration can be seen in all states, while the ring breaking does not occur in the

S3 state. It should be noted that the out-of-plane ring vibration did not result

in dissociation, hence the separate classification of “ring breaking.” In the S1

state it can be seen that the ring breaking motion dominates for the duration

of the propagation while the fraction of the density representing the N-H stretch

and the out-of-plane vibration remains constant from around 2.5 fs until the end

of the propagation. In the S2 state the out-of-plane vibration dominates, with

almost 50% of the density going into this motion. From the shape of the curve

representing the N-H breaking motion it can be seen that this motion took 100 fs

before it reached the CAP. The observed timescale for this motion in the S2 may

explain why the N-H dissociation is not observed in the S1 state. In the S3 state

the out-of-plane vibration continued for around 125 fs before any observed loss of

density, while the N-H stretching behaviour continued, without loss of density for

the duration of the propagation. Consequently it may be that the NH dissociation

takes over 100 fs to occur, but only if this motion is coupled to a ring-breaking

mode, and hence the TAM is relatively stable to photoexcitation.

In Figure 5.13, representing the product distribution of TIM, the out-of-plane

ring vibration is observed and represents the dominant feature in all three states.

In the S2 state, this out-of-plane ring vibration is representative of 100% of the

density for around 60 fs, at which point it drops by 5%. In the S1 and S3 states in

addition to the out-of-plane ring vibration, an OH out-of plane wagging motion is

observed, as well as a ring breaking motion. Although this ring breaking motion

is relatively long lived, approximately 120 fs, in the S3 state, it represents a small

fraction of the total density. In the S2 state the ring breaking motion is represented
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by an even smaller fraction of the total density and appears only for the first 20 fs.

The OH out-of-plane motion represents between 30 and 40% of the total density in

the S1 state, while it represents less than 20% of the total density in the S3 state.

Consequently it can be said that while dissociation of TIM occurs in the excited

states, it represents a relatively small fraction of the behaviour of the system upon

photoexcitation.

As a result of this investigation it can be seen that 2-hydroxypyridine is rel-

atively limited in the nuclear motion exhibited upon photoexcitation and while

2-pyridone is also relatively stable, more significant dissociative behaviour is seen

around the 100 fs timescale.

5.3.3 Potential Energy Surfaces

Following from the behaviours seen in the Gross Gaussian populations it was de-

cided that the surface cuts were selected along the modes which were most clearly

represented by the density of the system. As the ring breaking and out-of-plane

motion is the result of relatively large number of modes only the significant NH

stretching, ν30, mode was selected for 2-pyridone, while the three modes represent-

ing the out-of-plane and in-plane OH motion, ν3 and ν4 for out-of-plane, ν30 for

the in-plane, were selected along which cuts of the potential energy surface were

taken.

In Figure 5.14 the adiabatic and diabatic surfaces for the 2-pyridone calcula-

tion are shown. These surfaces, while there are no obvious discontinuities, display

the expected behaviour in the 0 to +10 region. However, in the 0 to -10 region the

surfaces have an unexpected form, the interpretation of which is too difficult at

this time. It is possible to state that there appears to be at least one other signif-

icant state not included in the calculation (particularly at -2) and as the negative

direction corresponds to the N-H bond lengthening, at least one dissociative state,

though these comments are conjecture.
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Fig. 5.14: Cuts through the SA8-CAS(10,8)/6-31G* potential energy surfaces of 2-
pyridone from DD-vMCG simulations . (a) ν30 (N-H stretch) adiabatic (b) ν30 diabatic.

In Figure 5.15 the adiabatic (left) and diabatic (right) surfaces representing the

motion of the OH have been shown. In Figure 5.15 a) and b) the OH out-of-plane,

ν3, surfaces are shown. It is clear, in the diabatic surfaces, that the dark blue,

S5, state is strongly dissociative. It can also be seen that the energy difference

between the S1 and S2, and between the S3 and S4 at the Franck-Condon point is

very small in this mode.

In Figure 5.15 c) and d) the OH out-of-plane, ν4, surfaces are shown. Although

the S5 in this state exhibits similar behaviour to that of the ν3 calculation, this

state is not as clearly dissociative, as can be seen in the upturn in energy of the

state at around -7.5. However, as evidenced in the higher energy states at this

(-7.5) point there is some further unexpected behaviour which may indicate the

presence of another, previously uncalculated higher order state.

In Figure 5.15 e) and f) the adiabatic and diabatic cuts of the potential energy

surface along the OH stretching, ν30, mode are shown. With the exception of the

dark blue, S5, state, this mode exhibits behaviour similar to those of a harmonic

oscillator. This nicely bound state clearly demonstrates the convergence of the

DD-vMCG method in a multi-state problem.

In Figure 5.16 a 2-dimensional cut through the adiabatic potential energy sur-

faces of the S0 and S1 state along the OH out-of-plane, ν3, and OH stretching, ν30,
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Fig. 5.15: Cuts through the SA8-CAS(10,8)/6-31G* potential energy surfaces of 2-
hydroxypyridine from DD-vMCG simulations . (a) ν3 (O-H OOP1) adiabatic (b) ν3

diabatic (c) ν4 (O-H OOP2) adiabatic (d) ν4 diabatic (a) ν30 (O-H stretch) adiabatic
(b) ν30 diabatic.

modes can be seen. By inspection of the contours of this hypersurface a dissocia-

tion channel can be seen in the range of ν3 0 to +10 and ν30 0 to +5. This shows

that the dissociation of the OH is driven not only by the in-plane, but also the

out-of-plane motion.
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Fig. 5.16: Cut through the SA8-CAS(10,8)/6-31G* potential energy surfaces of 2-
hydroxypyridine from DD-vMCG simulations. The adiabatic S0 and S1 in the coor-
dinates ν3 (O-H OOP1) and ν30 (O-H stretch).

5.4 Summary and Conclusions

In this Chapter, quantum chemistry and quantum dynamics calculations were

performed in order to study the excited-state dynamics of 2-pyridone and 2-

hydroxypyridine. As with the previous Chapter, the considerations for the repre-

sentation of these two systems focussed on testing the limitations of the DD-vMCG

method whilst maintaining the balance between computational and time expense

with accuracy and stability. Due to the larger system size, and hence larger number

of degrees of freedom, this represented a significant challenge to both the quantum

chemistry calculations as well as the DD-vMCG method.

A brief study as to the timescales for the optimisations of the two sytems was

carried out culminating in the conclusion (as with the formamide study) that the

basis set size would be sacrificed in order to maintain feasible calculation times

with a larger CAS size. Following the philosophy behind the selection requirements

for the active orbitals of formamide (and formimidic acid), with the caveat that

there exists a limit to the number of calculable excited states, an investigation
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was carried out analysing the choice of CAS size and composition, as well as

the effect of the inclusion of varying numbers of excited states. It was found

that while a CAS(12,10) or CAS(10,9) captured the desired detail of the bonding

character of the both systems, due to instabilities with the inclusion of increasing

excited states a compromise would be made, in that a CAS(10,8) size would be

used. Due to the stability and saving in computational time, a 6-31G* basis set

with a CAS(10,8) over 7 averaged excited states was used for both 2-pyridone

and 2-hydroxypyridine. It was found that π-π∗ transitions were the dominant

configurations for 2-hydroxypyridine and (to a lesser extent) 2-pyridone, with the

S6 state, in both cases, as the brightest state.

As with the formamide study, the DD-vMCG calculations were performed using

the normal modes of the systems. An analysis of the character and numerical

values of the vibrational frequencies of both systems was then carried out in order

to identify significant modes (such as those leading to fragmentation or potential

proton transfer) with a comparison to higher and lower accuracy calculations.

Due to the planar equilibrium geometries of both molecules, unlike formamide,

no imaginary modes are observed. It was found that the calculated frequencies

of both molecules were higher than those calculated at a higher level of theory.

This due the size of the CAS being relatively small in comparison to the size of

the molecule and relative to the more complete description of formamide, hence

providing a more limited description of the system.

Following the Direct Dynamics protocol outlined in Chapter 4.3.1, final Dy-

namics calculations were propagated on the S1, S2, S3 and S6 states, using 7, 21

and 42 GWPs over 150 fs. Three types of analysis were carried out on the results

of the final sets of Direct Dynamics calculations.

The initial diabatic state population analysis of shows, in all but the 2-pyridone

S6 state, that the increase in GWPs results in a smoothing of the curves. It
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should be noted that while the smoothing effect with increased GWPs is not seen

in the 2-pyridone S6 calculation, the 21 and 42 GWP calculations show density

staying in the upper states, with little dissipation, whereas the 7 GWP result shows

significant dissipation. Due to the significant increase in the calculation time for

the quantum chemistry calculations, a number of the 21 and 42 GWP calculations,

however, did not propagate for the full 150 fs. As a result, more detailed analysis

(state populations, gross Gaussian populations and potential energy surfaces) is

performed on the results of the 21 GWP calculations.

A detailed analysis of the state populations show that the only significant loss

of total density is seen in the S1 propagation of 2-pyridone. The results of the

2-pyridone calculations show that while relatively little population transfer occurs

between states in the S1 propagations, a significant amount of population transfer

occurs in the other propagations, particularly between the S2 and S3 states in the

S2 propagation. In the S2 and S3 propagations that there is almost no population

transfer to the S1 state. It can also be seen that in the S1 propagation there

is little population transferred to to S0 state, in the S2 and S3 propagations a

steady increase of S0 population is seen while significant population transfer to

the S0 states occurs at around 7 fs in the S6 propagation. The results of the

2-hydroxypyridine calculations show that there is a large amount of population

transfer to the S0 state in the S1 calculation and to a significantly lesser degree in

the S2, S3 and S6 propagations. Additionally, the S1 state only plays a significant

role in the S2 and S3 calculations while the S5 state features significantly in only

the S1 and S2 propagations. The results of this state population analysis indicate

that 2-pyridone is photostable in the S2 and higher states while 2-hydroxypyridine

is photostable in all states.

The analysis of the gross Gaussian populations for 2-pyridone showed that in

the S1 propagation, the primary product channel (also accounting for the loss of
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total density) was ring breaking mechanisms while in the S2 and S3 the primary

product channel was out-of-plane motion with N-H bond breaking to a lesser ex-

tent. In the S2 propagation the N-H bond breaking was more significant than in

the S3. It also appears to account for loss of total density in the S2 state, while

the out-of-plane motion in the S3 accounts for the loss of total density. The gross

Gaussian populations curves of 2-hydroxypyridine show that in the S2 state, only

out-of-plane motion is seen, while in the S1 and S3 states it is the dominant be-

haviour. In the S1 state a significant amount of O-H out-of-plane is motion is

seen whereas in the S3 state this O-H out-of-plane motion is seen, but to a lesser

degree. It should also be noted that in the S2 and S3 states, the out-of-plane ring

vibration does not result in a loss of the total density which implies that the O-H

out-of-plane motion is a much longer range motion. The results of this state popu-

lation analysis further reinforce the observation that while 2-pyridone is relatively

photostable, 2-hydroxypyridine is significantly more photostable.

As a result of the gross Gaussian population analysis the potential energy sur-

faces along the ν30 (N-H stretching) mode for 2-pyridone and the ν3, ν4 and ν30 (O-

H out-of-plane (x 2) and O-H in-plane motion respectively) of 2-hydroxypyridine

were analysed. The adiabatic and diabatic surfaces of 2-pyridone in the positive

(0 to +10) direction are relatively smooth, whereas in the negative direction (0

to -10) there are a number discontinuities rendering further interpretation diffi-

cult. However the negative direction corresponds to the N-H bond lengthening

and while a number of significant discontinuities exist rendering further interpre-

tation difficult, it appears as if there may be a dissociative state. The adiabatic

and diabatic surfaces of 2-hydroxypyridine, particularly the ν30 mode, are much

smoother than the surface for 2-pyridone. The surfaces representing the ν30 mode

are nicely bound, with some minor features, demonstrating good convergence of

the DD-vMCG method. The surfaces representing the ν3 and ν4 modes appear to
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show dissociative behaviour (the former more clearly than the latter) though the

discontinuities in these surfaces again imply at least one other uncalculated state

plays a significant role. The 2-dimensional surface of the S0 and S1 states along

the ν30 and ν3 modes show that a dissociation channel appears when these two

motions are coupled. The potential energy surfaces of these two systems show that

in the immediate region of Q0, due to a number of close lying states, the quantum

chemistry calculations require a higher degree of accuracy or a larger number of

states to be able to resolve the features of the surface.

As a result of this study it can be seen that the excited state dynamics of 2-

pyridone and 2-hydroxypyridine is not straightforward to resolve due to the number

of states required and the close proximity of multiple states. These occurrences

appear to be in specific regions of the global potential, in contrast to the large

regions of difficulty in the formamide system. Nevertheless, as there is a limited

number of product channels available to the system, resolution of the surfaces is

simplified. It can also be stated that while 2-pyridone is relatively unstable in the

S1 state, the higher lying states of 2-pyridone and all states of 2-hydroxypyridine

are highly photostable. It can also be stated that, as a result of this study, the

N-H bond in 2-pyridone is more likely to experience long range (bond-breaking)

motion than the O-H in 2-hydroxypyridine. It is, however, important to take into

account the limiting factors of the size of the CAS, the significant amount of time

required for the quatum chemistry calculations at every point in the calculation,

and, more fundamentally, the limitations of the quantum chemistry programs with

accurate CAS routines available for systems of this size when a large number of

excited states are also required.
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Chapter 6

The Electronic Wavepacket

6.1 Introduction

As outlined in previous chapters, the DD-vMCG method circumvents the re-

quirement for pre-calculated potential energy surfaces, utilising coupled Gaussian

wavepackets in order to explore configuration space even in systems with strong

vibronic coupling. This is useful for the interpretation, and perhaps even predic-

tion, of femto- to pico-second laser induced processes. However, a problem in this

method arises when attempting to carry out quantum dynamics calculations mod-

elling attosecond laser spectroscopic experiments. At the attosecond timescale it

is crucial for there to be a description of the electron dynamics as it is the motions

of the electrons that can be seen to be driving reactive processes. [41, 42] The

movement of electrons across a molecule, driven by the nuclear motion, is called

charge transfer whereas this flow of electrons across a molecule, not driven by the

nuclear motion, is called charge migration. [198,199]

A feature of these attosecond studies is that in order for the laser pulse to,

for example, ionise a molecule, the band-width of the laser pulse must be wide -

of the order of a few eV. This represents a major challenge to the computational

simulation of these experiments as the inclusion of a large number of excited states,

with couplings between these states, is necessary for the calculation to be able to

describe the system to a sufficient degree of accuracy.
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In the Ehrenfest approach the non-adiabatic couplings along a nuclear tra-

jectory are calculated, resulting in a single mean-field potential energy surface.

Ehrenfest trajectories are then propagated on a single potential surface which is

constructed from a weighted average of the manifold of the electronic surfaces,

the weighting defined by the electronic population of the states. Trajectory cal-

culations have been carried out using this method in the study of charge migra-

tion in benzene, [200] glycine [201] and toluene. [202] However, the coupling of

the trajectories in this method is ignored, resulting in a loss of coherence in the

nuclear wavepacket. A method for combating this issue of decoherence, the Multi-

Configurational Ehrenfest (MCE) of Shalashilin, is to include this lost coupling by

the use of coupled coherent states [203,204], which can be shown to be related to

GWPs.

An alternative Ehrenfest method will be presented here, following and con-

tinuing from References [205] and [44]. Calculations testing this new Ehrenfest

approach in comparison to the DD-vMCG will be presented, as an extension to

the work of Reference [44]. The selected test system, allene (Figure 6.1), is a useful

benchmark for this new method as the twisting motion of the molecule acts as a

switch, allowing charge migration to occur, flowing from one end of the molecule

to the other. It is also a useful example as pre-computed potential energy surfaces

are available in the MCTDH software package, allowing grid-based benchmarking

calculations to be carried out.

Fig. 6.1: The allene molecule

It should be noted that the text and figures of Sections 6.2, 6.2.2 and 6.3.1

- 6.3.2 are taken in part directly from Reference [44]. With respect to the work
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taken from this paper (Reference [44]), I performed all of the calculations and was

involved in the theory development, in particular the construction of the hierarchy

of methods required to benchmark the new Ehrenfest approach.

6.2 Theoretical Framework of the Ehrenfest Ap-

proach

An extensive discussion of the Ehrenfest method has been published in the litera-

ture [206–211] However, in order to fully appreciate the theoretical implications of

the Ehrenfest approach its underlying approximations must first be explored. [205]

If the TDSE is written, explicitly expressing the nuclear, R, and electronic, r, co-

ordinates

i~
∂

∂t
Φ(r, R, t) = ĤΦ(r, R, t) (6.1)

the wavefunction ansatz for the Ehrenfest method can be written as

Φ(r, R, t) = Ψ(r, t) · χ(R, t) (6.2)

where the total wavefunction has been separated into the nuclear, χ(R, t), and

electronic, Ψ(r, t). In this form it can be seen that the total wavefunction is de-

fined where the populated electronic states share the same nuclear wavepacket.

Consequently the Ehrenfest wavefunction in this ansatz does not allow decoher-

ence, though when applied to attosecond timescales this does not prove to be an

issue as electronic decoherence occurs on a much longer timescale.

In order to proceed from this point it is useful to reformulate Equation 6.1

by inserting the ansatz Equation 6.2 where a phase factor in the total, nuclear

and electronic wavefunctions has been introduced. Multiplying on the left by

the complex conjugates of the nuclear and electronic wavefunctions (χ∗(R, t) and
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Ψ∗(r, t)) and integrating over the nuclear and electronic coordinates, respectively,

yields

i~
∂Ψ(r, t)

∂t
= −

∑
i

~
2me

∇2
i Ψ(r, t) + 〈χ(R, t)|V̂n−e(r, R)|Ψ(R, t)〉R ·Ψ(r, t) (6.3)

i~
∂χ(R, t)

∂t
= −

∑
I

~
2MI

∇2
I χ(R, t) + 〈Ψ(r, t)|Ĥ(r;R)|Ψ(r, t)〉r · χ(R, t) (6.4)

Here, the lower case indices, i and me, refer to the electrons and electronic mass

respectively, and the upper case indices, I and MI , refer respectively to the nuclei

and nuclear mass of I. The V̂n−e(r, R) term in Equation 6.3 allows the inclusion

of inter-particle interactions, while the Ĥ(r;R) in Equation 6.4 is the electronic

Hamiltonian where the nuclei are at fixed positions R. By inspection of the second

term on the right-hand-side of both equations it can be seen that for Equation 6.3,

the interaction between the electrons at r and nuclei at R is weighted by the

probability the nuclei are at point R while for Equation 6.4 the corresponding

interaction is weighted by the probability the electrons are at point r. These

coupled equations are the effective potentials experienced by one type of particle

due to the other and hence are described in a mean-field manner. Consequently

it can be stated that the appropriate expectation values of the electronic and

nuclear wavefunctions determine the time-dependent effective potentials in which

the nuclei and electrons can move.

The Ehrenfest approach is to take the classical limit of the coupled Equations

6.3 and 6.4. Writing the nuclear wavefunction in polar coordinates in terms of a

real and positive amplitude A and phase S has the exact form

χ(R, t) = A(R, t) · exp

(
i

~
S(R, t)

)
(6.5)
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where the inclusion of Planck‘s constant in the exponent ensures the exponential

is unitless. Inserting this into Equation 6.4, allowing the real parts on both sides

to be equal

∂S

∂t
+
∑
I

1

2MI

(∇IS)2 + 〈Ψ(r, t)|Ĥe(r;R)|Ψ(r, t)〉r = ~2
∑
I

1

2MI

∇2
IA

A
(6.6)

Taking the classical limit to be where ~→ 0 consequently reduces the right hand

side of this to zero, which explicitly is

∂S

∂t
+
∑
I

1

2MI

(∇IS)2 + 〈Ψ(r, t)|Ĥe(r;R)|Ψ(r, t)〉r = 0 (6.7)

where the Schrödinger equation, in this form, can be seen to be identical to a

variant of the Hamilton-Jacobi equation. Consequently Equation 6.7 is equivalent

to the Newtonian equations of motion where PI = ∇IS is the classically defined

momentum of the nucleus I

∂PI
∂t

= −∇I〈Ψ(r, t)|Ĥe(r;R)|Ψ(r, t)〉r (6.8)

As a result, the classical limit of Equation 6.3 can be taken by replacing χ(R, t)

with a delta function in the classical trajectory of R(t) as

i~
∂Ψ(r, t;R)

∂t
=

(
−
∑
i

~2

2me

∇2
i + V̂n−e(r, R(t))

)
(6.9)

which allows the electronic wavefunction to be written in the form

Ψ(r, t;R) = Ĥe(r;R(t)) ·Ψ(r, t;R) (6.10)

This results in an electronic wavefunction Ψ now parametrically dependent on the

nuclear geometry at time t through V̂n−e(r, R(t)) and consequently Ĥe(r;R(t)). As

the nuclear motion is treated classically, the spacial delocalisation of the nuclei is

lost and hence the nuclear motion is treated as a classical trajectory.
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The Ehrenfest method is hence defined by Equations 6.8 and 6.10. It should be

noted that nuclear motion is only successfully described if the energy and topology

of the potential energy surfaces of the electronic states included in the calculation

are similar. It should also be noted that when the electronic states are weakly

coupled the potential of a highly populated electronic state will dominate the

nuclear motion. This may result in regions of space that are left unexplored by

the trajectories as they are accessible only on the sparsely populated electronic

states. An advantageous feature of the Ehrenfest method is that if a complete set

of basis functions is used, its applications and results are not dependent on the

choice of basis functions. Consequently, in principle, the Ehrenfest method can

be applied without choosing basis functions by numerical integration of Equation

6.10. [205]

The electronic wavefunction can be expanded in a basis set of orthonormal

configurations {φl} or eigenstates {φ̃l} of the form

Ψ(R, t) =
∑
l

al(t)φl(r;R) =
∑
l

cl(t)φ̃l(r;R) (6.11)

It is convenient to use the eigenstate expansion in order to prove that non-adiabatic

couplings are present in the Ehrenfest method. By substituting the expansion of

Equation 6.11 into the expression of the electronic wavefunction in Equation 6.10,

multiplying by a complex conjugate of the eigenstates (φ̃∗k(r;R)) and integrating

out the electronic coordinate r gives

i~
∂ck(t)

∂t
= ck(t)Ek(R)− i~

∑
l

cl(t)

〈
φ̃k|

∂

∂t
φ̃l

〉
= ck(t)Ek(R)− i~

∑
l,J

cl(t)d
J
lk(R) · ṘJ

(6.12)

where Ek are the eigenvalues and dJlk(R) =
∫
φ̃∗k(r;R)∇RJ φ̃l(r;R)dr which are

the nonadiabatic couplings. This equation gives the time dependent variations of

the amplitudes along an Ehrenfest classical trajectory, if the electronic wavefunc-
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tion is expanded in the adiabatic basis. It is these equations that also define the

time-dependence of the amplitudes of the electronic basis in the surface hopping

methods introduced in Chapter 3.3. It should be noted that if the diabatic expan-

sion of the electronic wavefunction is used, a similar expression can be obtained.

6.2.1 The Ehrenfest Multi Configurational Gaussian Meth-
od

As discussed in Chapter 3.3.1, the vMCG method is a variant of the MCTDH

method, where all of the single particle functions of the MCTDH method have

been replaced with Gaussian functions. The vMCG method has been further ex-

tended from a grid-based method to the DD-vMCG method whereby potential

energy surfaces of a system are calculated on-the-fly utilising an external quan-

tum chemistry software to provide the relevant energies, gradients and couplings.

However, as shown in Chapters 4 and 5, systems which require a large number of

excited states in order to describe the behaviour of the system fully represent a

major limitation to the method. Consequently it can be seen that an Ehrenfest-

type approach to the description of a system would be desirable, especially in the

representation of ultrafast (attosecond) dynamics.

In order to incorporate the Ehrenfest approach into the vMCG method it is

necessary to reformulate the equations of motion for the coefficients and the Gaus-

sian basis functions of the vMCG ansatz. By introducing electronic functions of

the form

|ψj(xel, t)〉 =
∑
s

cjs(t)|s〉 (6.13)

the vMCG ansatz can be rewritten as

Ψ(R, t) =
∑
j

Bj(t)gj(R, t)|ψj(r, t)〉 (6.14)
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where the expansion coefficients, B, are related to the vMCG expansion coeffi-

cients, A, by

Ajs = Bjcjs (6.15)

Applying the Dirac-Frenkel variational principle (Equation 3.102) to the new

ansatz equation (Equation 6.14) by making variations of a coefficient,δBi, a lin-

ear parameter of a Gaussian basis function, δξiα, and an electronic function, δψi,

obtains the following set of coupled equations

∑
j

iSijḂj =
∑
j

(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (6.16)

∑
jβ

iρijS
el
ijS

(αβ)
ij ξ̇jβ =

∑
j

(
ρijH

(α0)
ij − iρijτ elijS

(α0)
ij − iB∗i SelijS

(α0)
ij Ḃj

)
(6.17)

∑
j

iρijS
g
ij|ψ̇j〉 =

∑
j

(
ρijH

g
ij − iρijτ

g
ij − iB∗i S

g
ijḂj

)
|ψj〉 (6.18)

where the notation for the matrix elements is defined as

Selij = 〈ψi|ψj〉; Sgij = 〈gi|gj〉; Sij = 〈ψigi|ψjgj〉
τ elij = 〈ψi|ψ̇j〉; τ gij = 〈gi|ġj〉; ρij = B∗jBj

Hel
ij = 〈ψi|H|ψj〉; Hg

ij = 〈gi|H|gj〉; Hij = 〈ψigi|H|ψjgj〉

 (6.19)

It should be noted, at this point, that both the electronic functions and the Gaus-

sian basis functions are normalised but are non-orthogonal

Selij = 〈ψi|ψj〉 = 1 i = j

=
∑
s

c∗iscjs i 6= j

 (6.20)

If the spirit of the vMCG method is followed, Equation 6.16 can thus define an

equation of motion for the expansion coefficient, B, as

iḂk =
∑
ij

S−1
ki

(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (6.21)
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Multiplying this expression by B∗j and substituting into Equation 6.17 provides an

equation of motion for the linear Gaussian basis function parameters

iξ̇kβ =
∑
ijα

C−1
kβ,iα

(
Yiα − iS(α0)

ij τ elij − i
∑
lm

Selil S
(α0)
il S−1

lmS
g
mjτ

el
mj

)
(6.22)

Here the C and Y tensor are altered from the standard vMCG as

Ciα,jβ = ρij

(
SelijS

(αβ)
ij −

∑
kl

SelikS
(β0)
ik S−1

kl S
(0α)
kj Selkj

)
(6.23)

Yiα =
∑
j

ρij

(
H

(α0)
ij −

∑
kl

SelikS
(α0)
ik S−1

kl Hlj

)
(6.24)

If Equation 6.21 is substituted into Equation 6.18

∑
j

iρijS
g
ij|ψ̇j〉 =

∑
j

(
ρijH

g
ij − iρijτ

g
ij

−
∑
kl

ρilS
g
ijS
−1
jk (Hkl − iSelklτ

g
kl − iS

g
klτ

el
kl)

)
|ψj〉

(6.25)

and then rearranged

i|ψ̇k〉 =
∑
ij

(ρkiS
g
ki)
−1

[
ρij

((
Hg
ij − iτ

g
ij

)
−
∑
lm

Sgil|ψl〉S
−1
lm 〈ψm|

(
Hg
mj − iτ

g
mj

))

+
∑
lm

iρimS
g
ijS
−1
jl S

g
lmτ

el
lm

]
|ψj〉

(6.26)

the result is an equation of motion for the electronic wavefunction. As the Equa-

tions 6.21, 6.22 and 6.26 are a reformulation of the vMCG equations of motion,

they are consequently exact solutions to the TDSE and allow the connection of

Ehrenfest dynamics to full quantum dynamics. [212]

In order to solve these Ehrenfest equations of motion directly would require the

substitution of τ g in Equation 6.26 by τ el in Equation 6.22, with an appropriate
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choice for expression of the matrix τ el. However, if the off-diagonal elements of the

matrices Sgij, τ
g
ij and Hg

ij are ignored, the electronic functions become decoupled,

leading to an expression for the equation of motion for the electronic wavefunction

in the form

i|ψ̇k〉 =
(
Hg
kk −Hkk + iτ elkk

)
|ψk〉 (6.27)

These off-diagonal terms can be ignored if the Gaussian basis functions are suffi-

ciently narrow, as in this case the off-diagonal terms will be small. The introduction

of this approximation results in equations of motion that are no longer variational.

However, if a sufficiently large basis set is used these equations of motion are still

a full solution to the TDSE.

By defining the centre of a Gaussian basis function gk as qk,

Hg
kk = 〈gk|H|gk〉 = 〈TN〉kk +Hel(qk) (6.28)

where 〈TN〉kk is the kinetic energy of the GWP and Hel(qk) is the electronic Hamil-

tonian at qk, the expression for energy of configuration k can be split into two parts

〈gkψk|H|gkψk〉 = 〈TN〉kk + 〈ψk|Hel(qk)|ψk〉 (6.29)

As the on-diagonal elements of the matrix τ can be defined by an real number, by

choosing

iτ elkk = 〈ψk|Hel(qk)|ψk〉 (6.30)

a simplified form of the equation of motion for the electronic functions can be

written

i|ψ̇k〉 = Hel(qk)|ψk〉 (6.31)
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As the Hamiltonian follows the centres of the Gaussian basis functions, the elec-

tronic function therefore follows the Gaussians. It can easily be seen that as

the equations of motion for the Gaussian basis functions are variational, the tra-

jectories of the nuclei are not classical. Although the electronic functions are not

variational, the expansion coefficients and the nuclear functions are, and hence this

defines the variational Ehrenfest multi-configurational Gaussian, veMCG, method.

In order to provide a more practical computational scheme, the electronic and

nuclear parts can be fully decoupled, resulting in the nuclear functions following

classical trajectories, the equations of motion for which are defined as

iḂk =
∑
ij

S−1
ki

(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (6.32)

ξ̇kα = −2ζkα
pkα
m
− i ∂V

∂xα
|R=q (6.33)

i|ψ̇k〉 = Hel(qk)|ψk〉 (6.34)

The use of these decoupled equations of motion defines the Ehrenfest multi-

configurational Gaussian, eMCG, method. Although the MCE method of Sha-

lashilin and co-workers [209] was developed and implemented using a different

approach, it can be shown that the eMCG and MCE equations of motion are

equivalent.

If the off-diagonal elements of the equation of motion for the expansion coeffi-

cients are also ignored, it can hence be rewritten as

iḂk =
(
Hkk − iτ gkk − iτ

el
kk

)
Bk (6.35)

In this form, the expansion coefficients can be considered to be an associated phase

to each classical trajectory and although the matrix elements of Ĥkk and τ elkk are

given, the matrix elements τ gkk can be chosen. The selection of differing values of

τ gkk defines whether the phase is propagated in the Gaussian basis functions or in
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the expansion coefficients. An example of this choice, as seen in Reference [212],

is

iτ gkk = Hkk (6.36)

while alternatively, the vMCG choice would be

iτ gkk = 0 (6.37)

which results in equations of motion for the B coefficients of

iḂk = 〈gk|TN |qk〉 (6.38)

In addition to the full vMCG equations, in Reference [44] a hierarchy of GWP

methods is proposed. The classical MCG (clMCG) method is defined by allow-

ing the GWP basis functions follow classical trajectories, ignoring the non-classical

terms of YR in Equation 3.140. In the independent MCG (iMCG) method, coupling

between the basis functions is ignored, which then follow independent trajectories.

Equation 6.38 is thus an equivalent formulation of the iMCG, method. The expan-

sion coefficients of the iMCG method. Aks, are the electronic function coefficients,

cks, where each trajectory has a time-dependent normalisation factor, Bks.

In order to test the eMCG method calculations were first run on a simple model

problem, charge transfer in allene after sudden ionisation.

6.2.2 The Model Hamiltonian

In Mahapatra et. al. [213], the allene radical cation was found to have five low

lying states, of which the Ã(2E)/B̃(2B2) manifold will be of particular interest here.

In this previous work, a vibronic-coupling model Hamiltonian was set up for this

molecule, incorporating the coupling between these states, in order to simulate the

photo-electron spectrum. The vibronic coupling model uses a diabatic electronic
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basis, i.e. the kinetic energy operator is diagonal and coupling between the states

appears as off-diagonal functions in the potential operator matrix (Equation 2.33).

A low-order Taylor series is then used to express the potential functions

Wij = 〈ψi|Hel|ψj〉 (6.39)

= C(0) +
∑
a

C(1)
a qa +

∑
ab

C
(2)
ab qaqb + . . . (6.40)

The expansion coefficients are thus derivatives of electronic Hamiltonian matrix

elements evaluated at a suitable molecular geometry, usually the Franck-Condon

point. For example, the linear terms are the first derivatives with respect to the

coordinates

C(1)
a =

∂

∂qa
〈ψi|Hel|ψj〉 (6.41)

For these terms, symmetry considerations can be used to show that they will be

zero unless the product of the symmetries of the electronic states and the nuclear

coordinate contain the symmetric representation

Γi ⊗ Γj ⊗ Γa ⊃ Ai (6.42)

For allene, the nuclear coordinates used are the neutral ground-state mass-

frequency scaled normal mode vibrations. Neutral allene at the ground-state

equilibrium geometry has D2d symmetry. Thus if the symmetry of the system

is considered, the product of the doubly degenerate irrep is E⊗E = A1⊕B1⊕B2,

and only modes of these three symmetries can have non-zero linear terms in the

Hamiltonian for a doubly degenerate state. In the Ã state the three A1 and three

B2 modes thus provide the linear on-diagonal coupling terms, and the one B2

vibration the off-diagonal. To first-order, the Hamiltonian matrix can hence be

written
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H =
15∑
i=1

ωi
2

(
− ∂2

∂Q2
i

+Q2
i

)
1 +

 EE 0 0
0 EE 0
0 0 EB2


+

 ∑3
i=1 κiQi 0 0

0
∑3

i=1 κiQi 0

0 0
∑3

i=1 κ
′
iQi


+

 ∑7
i=5 λiQi λ4Q4

∑11
i=8 λ

′
iQix

λ4Q4

∑7
i=5−λiQi

∑11
i=8 λ

′
iQiy∑11

i=8 λ
′
iQix

∑11
i=8 λ

′
iQix 0

 (6.43)

where the normal mode Qi corresponds to the vibration νi defined in Table 6.1. It

should be noted that the full model is expanded to second order, the details and

values of the parameters for which can be seen in Reference [213].

At the Franck-Condon point, Q = 0 (termed Q0), the Ã state is doubly-

degenerate and forms a Jahn-Teller conical intersection, with the degeneracy lifted

on the diagonal elements of the Hamiltonian matrix by the three B2 modes. The

degeneracy is lifted in the off-diagonal, coupling, Hamiltonian element by the B1

mode. This is the torsional mode, with the end H–C–H units rotating towards a

planar geometry, and the doubly degenerate Ã state is subject to the rare e ⊗ B

Jahn-Teller distortion, whereby the degeneracy is lifted by vibrations with B1 and

B2 symmetry. This state is also further pseudo-Jahn-Teller coupled to the B̃ state

via doubly-degenerate E vibrations.

The degenerate highest occupied molecular orbitals (HOMO) of the diabatic

electronic basis functions for the neutral allene at the conical intersection are shown

in the top panel of Figure 6.2. They are each localised on one H–C–H group. Ion-

isation of allene thus creates an electron “hole” in one end of the molecule. While

the character of the MO is retained moving along the Jahn-Teller active B2 modes,

movement along the B1 mode couples the two states and leads to population trans-

fer between the states. This corresponds to charge being transferred between the

ends of the molecule.
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Fig. 6.2: The (a) diabatic and (b) adiabatic potential energy surfaces for the allene
radical cation model Hamiltonian along the Q7(B2) vibrational coordinate with a torsion
angle kept at 45◦. The molecular orbitals shown in the top panel define the diabatic
surfaces, while those in the lower show the conjugation obtained at 45◦ due to the non-
adiabatic coupling.
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Charge migration takes place when the charge moves without nuclear motion.

If the molecule remains at Q0, this does not occur as the coupling is zero. How-

ever if the molecule is twisted away from the equilibrium geometry along the B1

torsion mode, the diabatic coupling means that the eigenfunctions of the ion are

a superposition of the states populated by ionisation from the neutral molecule.

Consequently, if the neutral degenerate states are labeled ψL and ψR, the ion state

can be written

ψ+ = cL(t)ψL + cR(t)ψR (6.44)

If the ionisation removes the electron from ψL then at t = 0 the coefficients are

cL(0) = 1 and cR(0) = 0. The coefficients evolve according to Rabi-like oscillations

due to the coupling, and charge migration occurs. The MOs of the cation at a

torsion angle of 45◦ are shown in the lower panel of Figure 6.2, along with the

adiabatic surfaces, showing how the coupling leads to conjugation along the chain

allowing the charge migration.

Label Frequency Description MCTDH Basis Set
(cm−1) N n

ν1(A1) 3015 HCH sym str 24
}

13
ν2(A1) 1443 HCH in-phase bend 32
ν3(A1) 1072 CCC sym str 32

}
14

ν4(B1) 865 HCCH torsion 32
ν5(B2) 3407 HCH oo-phase str 10 }

17ν6(B2) 1957 CCC anti-sym str 10
ν7(B2) 1398 HCH oo-phase bend 30
ν8(E) 3486 HCH anti-sym str 10  1
ν9(E) 999 HCH rock 18
ν10(E) 841 HCH wag 12
ν11(E) 355 CCC bend 8

Table 6.1: Definitions and descriptions of the 15 vibrational modes in the allene molecule.
Frequencies are for the ground-state calculated at the MP2/cc-pVTZ level. N are the
number of harmonic oscillator DVR functions used in the MCTDH calculations, and n
the number of multi-dimensional single particle functions with the combination of modes
included by the bracket.
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By comparing the system dynamics of static nuclei to that of moving nuclei,

the diabatic state populations of this simple model can thus be used to observe

the signature of charge migration in charge transfer.

6.3 Results

6.3.1 Charge Migration versus Charge Transfer

Using the model Hamiltonian of allene described above, two different sets of calcu-

lations were performed using full grid-based quantum dynamics and the MCTDH

method. At the equilibrium geometry the torsion angle between the H–C–H

groups is 90◦. By altering the torsion angle the initial wavepacket experiences

coupling between the degenerate orbitals thus allowing charge migration to oc-

cur. The first set of calculations were started with a torsion angle of 75◦, giv-

ing a small coupling between the degenerate orbitals, while the second set of

calculations were started with a torsion angle of 45◦, giving a larger coupling.

As the model is set up in normal mode coordinates, a change in torsion angle

requires changing not only the coupling mode but also the totally symmetric

modes to keep the bond lengths correct. In the mass-frequency scaled normal

mode coordinates of the model, an angle of 75◦ corresponds to a coordinate of

(Q1, Q2, Q3, Q4) = (−0.1308,−0.0556, 0.0100, 1.2543) and an angle of 45◦ corre-

sponds to a coordinate of (Q1, Q2, Q3, Q4) = (−1.1635,−0.4945, 0.0892, 3.6774)

with all other coordinates having a value of 0.

The initial wavepacket is centred at the starting geometry for each model, i.e.

displaced from the Franck-Condon point, Q0, with the width appropriate for the

neutral ground-state vibrational frequencies. The simulation is initiated by placing

this packet in the second diabatic state, corresponding to making a hole at the

right-hand end of the twisted molecule upon ionisation. The population dynamics

following this ionisation for both initial torsion angles are shown in Figure 6.3. It
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should be noted that the coupling to the B-state was ignored as this plays no role

in the charge migration.

Figure 6.3 (a) and (e) show the charge migration dynamics for the two angles

calculated using the gMCG method with a single time-independent GWP, i.e.

static nuclei. The state populations show a simple oscillation between the two ends

of the molecule, with a period related to the coupling strength. The populations

obtained from full quantum dynamics calculated using the MCTDH method, where

the basis functions are the SPF, allowing the nuclei to move are shown in Figure

6.3 (b) and (f). Although the charge migration oscillations are damped, the signal

is still visible in the first 10 fs, particularly in the Θ = 45◦ model.

Figure 6.3 (c) and (g) show the results of calculations using the vMCG method

with 50 GWPs, where the dotted line represents the MCTDH result. The widths

of the GWPs were taken as 1/
√

2 in each direction which, in the mass-frequency

scaled coordinate system of the Hamiltonian, corresponds to the width of the

neutral ground-state wavepacket. It can clearly be seen that the vMCG method is

able to describe the coupled nuclear and electronic dynamics of this system with

a very small number of functions.

The final plots, Figure 6.3 (d) and (h), show the result with a single GWP

following an Ehrenfest classical trajectory from the starting geometry. It is clear

that the nuclear dynamics is not correctly described: the charge migration signal

dominates and charge localisation occurs, with the dynamics ending at one end of

the molecule rather than spread over the whole molecule as seen in the quantum

dynamics. Interestingly the charge is at different ends depending on the initial

torsion angle.

As the charge migration is damped in the model starting with a torsion angle

of Θ = 45◦, in order to show the dynamics of the nuclei the expectation values

of the three most active vibrational modes are plotted in Figure 6.4. These three
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Fig. 6.3: Population dynamics of allene after ionisation on the right hand end of the
molecule. In (a) - (d) the molecule had a torsional twist of Θ = 75◦ and in (e) - (h) the
angle was Θ = 45◦. (a), (e) Charge migration with static nuclei. (b), (f) full quantum
dynamics of charge migration and charge transfer using the MCTDH method. (c), (g)
Full quantum dynamics using the vMCG method with 50 GWPs. The MCTDH result
is the black dotted line. (d), (h) Population dynamics with a single GWP, i.e. classical
nuclei.
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Fig. 6.4: Expectation Values of the main vibrational coordinates (a) Q3 (b) Q4 (c) Q7

from simulations starting with a torsion angle of Θ = 45◦. In green are the results
from the MCTDH calculation, in red the classical Ehrenfest trajectory from the Franck-
Condon point. (d) The reduced density along Q7 is shown as a function of time.

significant active modes are the B1 coupling torsional vibration, Q4, and the lowest

frequency modes in the A1 and B2 symmetries, Q3 and Q7 respectively. Results

from the full quantum dynamics simulations and the classical Ehrenfest trajectory

are shown. The motion followed by the wavepacket along the symmetric mode Q3

is classical, while the motion along the B2 Jahn-Teller active mode is clearly very

non-classical in nature. The reduced density along Q7 is shown in Figure 6.4 (d),

where a bifurcated waveform motion along this mode can be seen, something that

a single classical trajectory cannot follow.

This model thus presents a significant challenge for a method in the description

of coupled electronic-nuclear motion in a charge-transfer problem. The dynamics

can be divided into the short-time (< 10 fs) during which charge migration dom-

inates, and long-time (> 10 fs) when nuclear motion may lead to a permanent

charge transfer.
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6.3.2 Different Dynamics Models: Initial Conditions and
Convergence

In a further set of calculations, the different levels of theory outlined above were

used to see how well the coupled electronic-nuclear dynamics of the allene ioni-

sation could be followed. When the non-variational GWPs of the clMCG, iMCG

and eMCG methods are used, the initial positions of the functions play a key role

in the dynamics, and for good results it is important to cover phase space. To

enable easier convergence of the results, in the following only the three most im-

portant modes, Q3, Q4 and Q7, will be included in the dynamics with the initial

wavepacket kept stationary along the other modes. The initial wavepacket in all

cases is that with Θ = 45◦.

The state populations as a function of time, calculated with the different lev-

els of theory, are shown in Figure 6.5. In Figure 6.5(a) the vMCG result with

30 GWPs is compared to the full quantum dynamics result (dotted line). The

charge-migration and charge-transfer dynamics are very similar to those seen in

the 15-dimensional calculations above, showing the dominance of the three se-

lected modes in the nuclear dynamics. The charge migration can clearly be seen

at short timescales with a full oscillation in under 10 fs before the long-time damp-

ing and accompanying charge transfer. Again, the accuracy of the vMCG method

is demonstrated, as fewer functions are needed than in the 15-dimensional calcu-

lation, indicating the smaller phase space that must be covered.

The best result obtained using classical GWPs at the clMCG level is shown, in

Figure 6.5(b), where 150 functions were used. When the number of functions was

increased, the result did not noticeably improve while with fewer basis functions

the populations displayed stronger oscillations across the entire propagation. The

short-time charge migration dynamical behaviour was reproduced well in every

case. In these calculations the initial sampling of the GWPs were taken from a
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Fig. 6.5: Population dynamics of allene with a torsion angle of Θ = 45◦ after ionisation
on the right hand end of the molecule calculated using different levels of theory and
including only the main modes, Q3, Q4 and Q7 in the dynamics. (a) The vMCG method
with 30 variational GWPs with a width 1/

√
2. (b) The clMCG method with 150 classical

GWPs with a width 1/
√

2 (c) The clMCG method with 200 classical GWPs with a width
0.4. (d) The iMCG method with 200 independent classical GWPs with a width 0.4 (e)
The iMCG method with 200 independent classical GWPs with a width 0.4 and initial
equal weights (f) The eMCG method with 150 classical GWPs with a width 1/

√
2 In

the iMCG, clMCG and eMCG calculations the initial GWPs were taken from a Wigner
distribution. The full quantum result is shown in all plots as a black dotted line.
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Wigner distribution of the ground-state neutral wavepacket. This should lead to

faster convergence than simply taking random positions in configuration space,

and indeed it produced better results with fewer functions.

In the vMCG and previous clMCG calculation, the widths of the GWPs were

taken as 1/
√

2 in each direction. Although it may be advantageous to take narrower

GWPs in order to, for example minimise the error due to using a local harmonic

approximation in the calculation of the integrals, when narrower GWPs are used

a fit must be made of the initial wavepacket in the basis set. This was done by

projecting the initial wavepacket on to the basis set, i.e. the initial coefficients

were chosen by

Ajs =
∑
b

|gj〉S−1
jb 〈gb|ψ(0)〉 (6.45)

with the index s set to be the initial state. When these narrower GWPs are used,

more are required in order to cover phase space, and the quality of the result

drops. A calculation using the clMCG level with 200 GWPs with a width of

0.4 is shown in Figure 6.5(c), where the convergence on the full result is poorer

than the convergence displayed by the 150 wider GWPs. It should be noted that

even with 200 GWPs the initial wavepacket is not exactly represented as the

expectation values of the 3 modes are only approximately correct and the widths

along all modes are less than 1/
√

2 in coordinate space and greater than 1/
√

2 in

momentum space.

In Figure 6.5(d) the result from an iMCG calculation also with 200 GWPs is

shown. Given the simplified representation of the evolving wavepacket the result

is remarkably good, in that the shape of the population transfer is correct, and the

short-time dynamics is reproduced well, though the oscillations are slightly damped

compared to the full result. The long-time dynamics are not exactly reproduced

due to the lack of nuclear coherence, which allows crossings of population not seen
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in the full quantum result. The magnitude of the result is, however, reasonable.

In Figure 6.5(e) the result from an iMCG calculation is shown where 200 GWPs

starting with equal weights have been used, meaning that the initial wavepacket is

defined by the Wigner distribution rather than by fitting. This choice makes little

difference and shows that the representation of a wavepacket by many Ehrenfest

trajectories selected utilising the Wigner function is a reasonable way to treat the

system.

The final calculation, shown in Figure 6.5(f), is the result from an eMCG sim-

ulation with 150 GWPs using widths of 1/
√

2. For this simulation, 200 classical

trajectories, sampled using a Wigner distribution, were initially propagated and

the coordinates and momenta along with the Ehrenfest potentials and state pop-

ulations for each stored. The eMCG basis functions were then run along these

trajectories using spline fits of the data and the evolution of the expansion co-

efficients calculated. This is the procedure that could be used to run an eMCG

simulation along Ehrenfest trajectories calculated by a quantum chemistry pro-

gram, such as Gaussian, which have been generated and used in a number of

studies on charge migration [200–202].

It was hoped that this method would give a quality similar to the clMCG, but

while the initial decay and the period of the charge migration oscillations in the

short-time dynamics is reproduced, the oscillations are not correctly damped. This

is likely, however, to be due to the implementation as, for example, the integrals

used only the value of the potential at the centre rather than the full LHA.

6.3.3 Direct Dynamics Calculations

The allene Ã/B̃ manifold is unfortunately not suitable for direct dynamics calcu-

lations of charge migration, as in the model system used above the B̃-state was

simply ignored, which is something that cannot be done in quantum chemistry sim-

ulations. Furthermore, it was found upon investigation of the electronic structure
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of the allene cation, using CASSCF methods, that there is in fact another doubly

degenerate state between the Ã and B̃. This additional state is mostly charac-

terised by double excitations so was not seen by the single-determinant methods

used in the original study [213]. The inclusion of these additional states would

require a coupled set of seven states, and no clear connection to charge migration.

For this reason it was decided to instead study the doubly degenerate ground-state,

X̃(2E) which can be described by orthogonal π-orbitals localised at opposite ends

of the molecules. These are shown in Figure 6.6(c),(d). Figure 6.6(a),(b) show the

conjugated orbitals that have D2d symmetry and are formed from combinations of

the localised π orbitals.

(a) (b)

(c) (d)

Fig. 6.6: Allene doubly degenerate HOMO that are ionised to form the X̃ cation state.
(a),(b) Conjugated orbitals with D2d symmetry (c),(d) Localised π orbitals

All calculations were performed using a 6-31G∗ basis set at the CAS(4,3) level

of theory, including the HOMO and LUMO π orbitals. Following the philosophy

of the direct dynamics protocol in Chapter 4.3.1, in order to initially populate the

database, a direct dynamics simulation was started on the first excited state of the
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Mode Symmetry Frequency Character
(cm−1)

ν11 E 369.95 CCC bend
ν11 E 369.95 CCC bend
ν10 E 877.43 HCH wag
ν10 E 877.43 HCH wag
ν4 B1 908.85 HCCH torsion
ν9 E 1052.00 HCH rock
ν9 E 1052.00 HCH rock
ν3 A1 1113.63 CCC sym str
ν7 B2 1478.70 HCH oo-phase bend
ν2 A1 1526.86 HCH in-phase bend
ν6 B2 2064.70 CCC anti-sym str
ν1 A1 3206.49 HCH sym str
ν5 B2 3206.75 HCH oo-phase str
ν8 E 3292.17 HCH anti-sym str
ν8 E 3292.17 HCH anti-sym str

Table 6.2: Frequencies of the normal modes of the neutral allene molecule at the MP2/6-
31G* level of theory. The labels are the Wilson nomenclature used in the model Hamil-
tonian. The symmetry labels are for the D2d point group to which the molecule belongs.
Note the accidental degeneracy of modes ν2 and ν5

cation using the normal modes and frequencies of the neutral ground-state to define

the coordinates. These were calculated using a 6-31G∗ basis set at the MP2 level

of theory, the results of which are given in Table 6.2. The initial geometry was the

neutral ground-state equilibrium geometry with a torsion angle of 75◦. Due to the

occurrence of a conical intersection located at the Franck-Condon point (a torsion

angle of 90◦), it is not possible to start at this point as the quantum chemistry

cannot calculate the Hessian due to the cusp in the adiabatic surfaces. The initial

propagation was for 60 fs with 5 GWPs, with widths given by the neutral ground

state harmonic frequencies and displaced in momentum space around the initially

populated basis function. This database was then used for a second propagation

starting at 45◦ with 25 GWP in addition to a calculation starting at 75◦ also with

25 GWP.

Cuts through the potential surfaces are shown in Figure 6.7 and 6.8. In Figure
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6.7 the diabatic couplings are shown. The cuts are taken keeping all coordinates

not plotted at the equilibrium and the couplings should obey the same symmetry

rules as used for building the vibronic coupling model of the Ã/B̃ manifold. Thus

the coupling along the three totally symmetric modes ν1, ν2 and ν3 should be zero

as totally symmetric modes cannot couple different states. The plots in Figure

6.7(b), (d) and (f) show that the couplings are indeed small, but there is an

unexpected peak at the origin, maybe due to the quantum chemistry breaking

down at the conical intersection.

In the model, the B1 mode provided the coupling. However, the torsional

mode ν4(B1) shows no coupling (except for a spurious peak close to Q=0) and the

coupling is in the B2 modes, in particular ν6 which exhibits a fairly smooth linear

coupling. The different roles played by these modes is due to the properties of

degenerate eigenstates as it is possible to rotate the electronic basis so that the B1

and B2 modes swap character and modes with B2 symmetry provide the coupling

instead.

The potential energy surfaces, both adiabatic and diabatic, are shown in Figure

6.8, with cuts shown along the ν4(B1), and ν6(B2) modes, the modes responsible

for the Jahn-Teller coupling, as well as the low frequency symmetric mode ν3(A1).

The surfaces along ν6 show the correct behaviour - degenerate in the diabatic

representation, but splitting in the adiabatic representation due to the coupling.

Although degeneracy should also be represented in the ν4(B1), and ν3(A1) modes,

the surfaces for these modes do not show this behaviour. This is presumably due

to the spurious coupling at the Franck-Condon point. There is also a clear error in

the adiabatic surfaces along both of these modes. Despite these errors, the diabatic

surfaces on which the dynamics takes place are smooth due to the interpolation

procedure.

State populations from these DD-vMCG simulations with a torsional twist and
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(a) ν4(B1)

(c) ν7(B2)

(e) ν6(B2)

(g) ν5(B2)

(b) ν3(A1)

(d) ν2(A1)

(f) ν1(A1)

Fig. 6.7: Diabatic coupling from the SA2-CAS(4,3)/6-31G* potential energy surfaces of
allene from DD-vMCG simulations. Cuts along the non-degenerate vibrations with all
other coordinates kept at the equilibrium geometry.
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(a) ν4(B1) adiabatic (b) ν4(B1) diabatic

(c) ν1(A1) adiabatic (d) ν1(A1) diabatic

(e) ν6(B2) adiabatic (f) ν6(B2) diabatic

Fig. 6.8: Potential energy surface from the SA1-CAS(4,3)/6-31G* potential energy sur-
faces of allene from DD-vMCG simulations. Cuts along the key non-degenerate vibra-
tions with all other coordinates kept at the equilibrium geometry.

vertical excitation are shown in Figure 6.9. Transfer takes place at a faster rate

when starting at 45◦ rather than at 75◦ due to the increased coupling, and an

equilibrium is reached, with a 50:50 population in each state, by 60 fs in both

cases. An important point to note is that, unlike in the vibronic coupling model

these simulations are not related to charge migration. As shown above, the diabatic

coupling in the direct dynamics is not along the torsional mode. This is because
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Fig. 6.9: State populations from DD-vMCG simulations of the allene radical cation with
SA2-CAS(3,4)/6-31G* potential surfaces. All the population was on the first excited
state with the geometry displaced from the Franck-Condon to have a torsion angle of
(a) 45◦ and (b) 75◦.

the Quantum chemistry calculations produces CAS orbitals at the equilibrium

geometry, which are the diabatic basis, that are not the localised π-orbitals on the

different ends of the molecule, but the delocalised orbitals along the molecule.

In order to initiate a calculation localised at one-end, a wavepacket must be

created by taking a superposition of eigenstates, i.e.

Ψ(t = 0) =
1√
2

(ψ1 + ψ2) (6.46)

The population of the states at either end of the molecule are then given by the

projector of this initial wavefunction onto the evolving wavepacket. Populations

for the localised states using this initial superposition are shown in Figure 6.10.

Three calculations were made for each initial angle. In the first, full DD-vMCG

dynamics were run and the localised populations are shown in Figure 6.10(a) and

(b). The second set of calculations used a single, time-independent GWP in order

to represent the electron dynamics only and hence model the charge migration

process (Figure 6.10 (c), (d)). A fast oscillation is seen between the orbitals at the

two ends of the molecule in the 45◦ case, while a much slower transfer with the

smaller torsion angle of 75◦. The results are similar to the model calculations on

the Ã manifold, with the charge migration at 45◦ fast enough to leave a signal in
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Fig. 6.10: Localised orbital populations from DD-vMCG simulations of the allene rad-
ical cation with SA2-CAS(3,4)/6-31G* potential surfaces. The initial wavepacket was
localised at one end of the molecule with the geometry displaced from the Franck-Condon
to have a torsion angle of either (a),(c),(e) 45◦ or (b),(d),(e) 75◦. (a) and (b) are results
from full DD-vMCG calculations. (c) and (d) use a single time-independent wavepacket
to simulate charge migration. (e), (f) are DD-vMCG simulations with classical GWPs.
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the populations that is not seen at 75◦. The 45◦ population transfer is, however,

slower than in the Ã state pointing to a smaller coupling in the X̃ state. The final

calculations were DD-vMCG calculations, but instead using GWPs that follow

classical trajectories (Figure 6.10 (e), (f)). A qualitatively similar behaviour is

seen to the full DD-vMCG results, but the damping occurs at a slower rate likely

due to the fact that a basis of GWPs following classical trajectories cannot follow

the full quantum result.

6.3.4 Direct Ehrenfest Dynamics Calculations

In recent years the Robb group at Imperial College London have implemented

a classical Ehrenfest propagation method into the Gaussian quantum chemistry

program. This has been to great effect in the study of how nuclear motions damp

the natural charge migration in a range of molecules [200–202, 214]. However, as

has been shown above, classical trajectories may not be suitable for capturing ac-

curately the full quantum motion of the coupled nuclear-electron motion. For this

reason, an aim of this project was to couple the DD-vMCG algorithm in Quan-

tics with the Ehrenfest trajectory algorithm in Gaussian to provide a quantum

description of nuclei moving over a time-dependent Ehrenfest potential.

The first trial was to precompute a set of Ehrenfest trajectories using Gaussian

and then propagate clMCG GWPs along these trajectories to simulate the evolving

wavepacket. The performance of this method is shown in the model studies above,

where this procedure was used in the eMCG calculations of Section 6.3.2. The

quality of these results was, however, not good enough to warrant proceeding with

this approach.

The second trial was to use the Ehrenfest surfaces directly directly from Gaus-

sian. This approach, however, required the implementation of second derivatives in

the Ehrenfest method. This has recently been accomplished by M. Vacher and A.

Jenkins. [205] Figure 6.11 shows the first DD-vMCG results using the second-order
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Fig. 6.11: Charge transfer using DD-vMCG with Ehrenfest surfaces at a CAS (4,3)/6-
31G* level of theory and an initial electronic wavepacket equally populating the electronic
states. The initial geometry is with a 45◦ torsion angle. (a) Spin densities on the atoms
from a simulation with 1 GWP. Atoms 2,3 are the end carbons. Atom 1 is the central
carbon. (b) Spin densities on the atoms from a simulation with 12 GWP. (c) State
populations from a DD-vMCG calculation with an explicit 2-state representation and 1
GWP. (d) As (c) but showing only the first 12 fs.

Ehrenfest surfaces.

Figure 6.11(a) shows the results from a coupled DD-vMCG-Ehrenfest cal-

culation with a single nuclear wavepacket, starting as above with an electronic

wavepacket equally populating the two electronic states. Rather than state pop-

ulations, the spin density on the atoms in the allene chain are shown. Atoms 2

and 3 are the terminal carbon atoms, with atom 1 being the carbon in the centre.

A fast charge migration between the 2 ends is seen, with little damping by the

nuclear motion. A calculation with 12 GWPs is shown in Figure 6.11(b). The

spin densities from the trajectories at the centres of the GWPs are weighted by

the Gross Gaussian Populations. Unfortunately the integrator failed after only 3
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fs, but there is definite damping of the migration so that the charge has localised

on one end.

DD-vMCG state populations for a single wavepacket using the coupled 2-state

representation as before are shown for comparison in Figure 6.11(c). This GWP

follows a classical Ehrenfest trajectory. The dynamics is clearly different from that

shown in the 24 GWP calculation of Figure 6.10(a), showing the lack of damping in

a classical Ehrenfest simulation. Figure 6.11(d) repeats this plot, showing only the

first 12 fs. On comparison to the result from the DD-vMCG-Ehrenfest simulation

in Figure 6.11(a), the time period for the oscillation is very different. The reason

for this, which may be due to the time steps used in this latter simulation missing

the fast oscillations, or due to errors in the Ehrenfest calculation giving a spuriously

large coupling, are yet to be investigated.

6.4 Summary and Conclusions

In this Chapter a new method for the study of electronic wavepacket motion cou-

pled to nuclear dynamics was presented and tested. The Ehrenfest approach pro-

vides a alternative conceptual approach for Direct Dynamics requiring only a sin-

gle, time-dependent potential energy surface. The key concepts in the use of this

Ehrenfest method are that the calculations are intended to complement attosec-

ond timescale experiments in which the dynamics of the electrons of a system are

observed and hence the competition between charge migration (electronic motion

over a static framework) and charge transfer (electronic motion as a result of nu-

clear motion). Existing Ehrenfest methods utilise classical nuclei exist whereas the

new Ehrenfest method utilises quantum nuclei.

Test calculations on a model system, the allene cation, were used in comparison

of methods available within the Quantics software package in order to benchmark

the Ehrenfest method. The allene radical cation presented an ideal system for this
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initial testing as precalculated surfaces representing the Ã/B̃ (where B̃ couples the

doubly degenerate Ã states) manifold exist in the MCTDH code and it is known

that movement along the torsion angle of the terminal carbons essentially acts as

a switch allowing flow of charge to occur between the ends of the molecule. Angles

of 75o and 45o were used to represent weak and strong coupling, respectively.

An initial study using the full MCTDH method was carried out in order to show

the signal of charge migration on static nuclei, the full MCTDH quantum result

(quantum dynamic nuclei), the vMCG method (quantum dynamic nuclei) and

using a single GWP (classical dynamic nuclei), where the state populations show

the movement of charge from one end of the molecule to the other. As expected, the

result for the static nuclei showed that the period of oscillation for the charge across

the system at 75o took approximately 16 fs while at 45o the period of oscillation

was approximately 6 fs. Upon inspection of the full MCTDH result, the signal of

charge migration can clearly be seen in the first 10 fs of the propagation starting

at 45o with minor features at later times. At 75o, however, after only 2 fs the

charge migration signal is significantly damped. The vMCG method, using only

50 GWPs, replicates the result of the full MCTDH very closely, demonstrating

the validity of the vMCG. It is clear that when a single GWP is used the signal of

charge migration is damped to a significantly lesser degree and does not replicate

the full result well. A comparison between the existing Ehrenfest method (classical

trajectories) to the full quantum results shows that while the expectation values

along the symmetric stretching mode (Q3) and H-C-C-H torsional mode (Q4) are

well replicated, due to a bifurcation along the H-C-H out-of-phase bending mode

(Q7) a classical trajectory does not replicate the full result and hence presents a

challenge to the new Ehrenfest method.

A hierarchy of methods, representing layers of approximations based on the

vMCG method, were then presented detailing the performance of each in com-
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parison to the full MCTDH result. The allene test system at the 45o torsion

angle was used and only the Q3, Q4 and Q7 modes were active. As expected,

the vMCG method performed well using only 30 GWPs. The first set of approx-

imations made was in the use of classical GWPs (clMCG). These results showed

that using 150 standard (1/
√

2) width GWPs replicated the full result well, while

the use of 200 narrow (0.4) width GWPs resulted in an over damping of popula-

tion transfer after the first 6 fs (more significantly after 30 fs) though the signal

of charge migration is more significant. The second set of approximations made

was in the use of independent (uncoupled) classical GWPs (iMCG). These results

showed that using 200 narrow (0.4) width GWPs followed the full result well for

the first 6 fs and displayed less damping than the narrow width clMCG after 30 fs.

No overall improvement or deterioration with the use of 200 narrow width, equal

weighted GWPs was displayed compared to the result where a fitted distribution

was used. The final approximation made was in the use of the results of Ehrenfest

trajectories (eMCG). Although the results replicated the period of charge migra-

tion oscillations in the first 10 fs well, across the entire propagation the damping

of the oscillations was poor. It should be noted, however, that the eMCG result

may have failed to replicate the clMCG result due to limitations in the current

implementation.

The results of a DD-vMCG investigation of the allene cation were then pre-

sented. It was found that while the states included in the original allene study

were unsuitable for use, the ground (X̃(2E)) state was a suitable alternative. A

6-31G* CAS(4,3) level of theory for the quantum chemistry calculations was used

and, following the Direct Dynamics protocol outlined in Chapter 4.3.1, calcula-

tions were propagated using 25 GWPs over 60 fs. The resultant diabatic couplings

and potential energy surfaces along selected modes are shown which demonstrate

that coupling occurs in particularly in the ν6 (B2) mode and that the degenerate-
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diabatic/split-adibatic potential surfaces are correct also for the ν6 mode. Ad-

ditionally, in the diabatic representation (which is used for propagation in the

Dynamics), the surfaces are smooth. However, spurious peaks appear in the dia-

batic couplings, and the potential energy surfaces representing the ν3 and ν4 modes

fail to show the correct degenerate behaviour.

As the state population results from these DD-vMCG calculations do not rep-

resent the charge migration in the same manner as the earlier study (propagations

begin with equilibrium geometry), additional calculations were propagated with

the 45o and 75o torsion angle starting geometry. In this case it is shown that when

a single, time-independent wavepacket is used (analogous to the static nuclei of

the full MCTDH calculation) that the period of oscillation between the ends of

the molecule occurs over approximately 14 fs at 45o and takes longer than 60 fs

at 75o, indicating weaker coupling in the X̃ state than in the Ã state. The full

DD-vMCG result shows a similar signal to the earlier results in the first 10 fs of

the propagation at both angles after which the results diverge significantly from

the full MCTDH result. An additional DD-vMCG calculation was performed us-

ing classical GWPs, the performance of which was qualitatively similar to the full

DD-vMCG result. This demonstrated a limitation at present in the DD-vMCG

method for the representation of these electronic wavepacket calculations.

As a result of the poor performance of the initial Ehrenfest calculations with

classical GWPs, a new implementation of Ehrenfest in the Gaussian software pack-

age (including second derivatives) was used, the surfaces taken directly from these

calculations and the Direct Dynamics performed. The spin densities of coupled

DD-vMCG-Ehrenfest calculations using a single nuclear wavepacket and 12 GWPs

are shown. The first (single nuclear wavepacket) calculation resulted in the ex-

pected oscillation from one end of allene to the other (spin density on the central

carbon also shown). The second (12 GWP) calculation failed after 3 fs (due to an
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integrator failure) though damping of the charge migration is seen. A third calcu-

lation, using 1 GWP following the classical Ehrenfest trajectory, was performed,

the resultant state population results of which are shown. No observable damping

of the oscillations was achieved and the period of oscillations differed from the

single nuclear wavepacket result. It was not possible to definitely state the reason

for this, though too large time steps or errors in the Ehrenfest calculation may be

the cause and further research is required to further explore this failure.

With the advent of attosecond laser experiments, as well as the identification

of systems in which a large number of excited states are required for a complete

dynamical representation, the Ehrenfest method presents a potentially useful con-

ceptual alternative to the standard dynamical methods. As shown, the existing

Ehrenfest, with classical nuclei, methods under perform even in a relatively simple

test system. While the current implementation of the new Ehrenfest method does

not yet result in a significant improvement, the failures of the calculation appear

to be technical in nature and some potentially promising results are shown (partic-

ularly the spin density of the 12 GWP, DD-vMCG-Ehrenfest). The development

of this method is continuing.
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Chapter 7

Conclusions

In this thesis, new methods for simulating the dynamics of photo-excited molecules

including all quantum effects have been tested by applying them to challenging,

but realistic systems. The newly developed Direct Dynamics variational Multi-

configurational Gaussian method, implemented in the Quantics software package

has, thus far, been tested using relatively few active degrees of freedom with a

limited number of excited states. The overall aim of this study was essentially

to test the limits of this new method using systems of reasonable size, with a

larger number of excited states. The DD-vMCG method shows great promise.

As a direct dynamics method, it calculates the potential surfaces on-the-fly and

so saves the effort of pre-calculating these functions, as is needed in traditional

grid-based quantum dynamics methods. This allows complete flexibility for the

molecules to go where they want, rather than being restricted by a model potential

that can only describe what is in the model. Unlike other direct dynamics methods,

however, it includes all the nuclear quantum effects implicitly. These are key for

describing situations where the electronic and nuclear dynamics are coupled, such

as in non-adiabatic phenomena, and charge migration after the formation of an

electronic wavepacket.

Direct dynamics simulations require quantum chemistry calculations to evalu-

ate the potential surfaces and couplings. In order to ensure stability and efficiency

Conclusions 215



7.0 Conclusions

in the propagation a thorough investigation was carried out resulting in a novel

method being developed for the systematic characterisation of the active space

required in CAS calculations in conjunction with the characterisation of the ex-

cited states. This enabled the best selection of active space size, character and

number of excited states prior to the Direct Dynamics simulation. Key for future

development, the propagation diabatisation scheme, which allows DD-vMCG to

be run in the diabatic picture while the surfaces are calculated in the adiabatic

picture, is seen to be performing well. The diabatic surfaces are smooth and cross

each other, unlike the adiabatic surfaces that form conical intersections instead of

crossings. The method is also able to treat a number of states in a general way:

here up to eight excited states have been included.

The systems studied, however, show that the calculations take a significant

amount of time. The simulation of a 12 atom molecule (2-pyridone) with only

41 basis functions took a number of months to propagate a few femtoseconds. In

addition to the time for quantum chemistry calculations, the bulk of this time is

taken simply in reading the database of potential surface points. This is something

that must be made more efficient for the method to become competitive. The

integration of the basis functions also needs improvements. Simulations take small

time steps and occasionally fail for no obvious reason. The real limitation of the

method, however, is seen to be the accuracy of the electronic structure calculations.

Not only are these time-consuming to set up and check, but they may fail in regions

of configuration space away from the equilibrium geometry. This is seen strongly

in the applications where, for example, the CAS space chosen fails to describe the

breaking of the N–H bond.

The Ehrenfest method has been shown to be successful in modelling charge

movement after creating an electronic wavepacket when the nuclei are treated

classically, but the coupling to the quantum nuclei of the vMCG method still needs

Conclusions 216



7.0 Conclusions

to be completed. First attempts, however, do show that the method describes

damping of the charge migration due to the nuclear motion.

The simulations of formamide, formimidic acid, 2-pyridone and 2-hydroxy-

pyridine show some interesting properties. After photo-excitation to high lying

states, all relax quickly to lower states. Formimidic acid and formamide both

quickly lose a hydrogen atom to aid the loss of energy. All seem fairly photostable

to this high energy radiation. In all cases, the chemistry takes place in the S1

state. Formamide predominantly undergoes loss of N–H but also breaking of the

backbone. In contrast, formimidic acid does not fully dissociate, but mostly loses

the N–H atom. Interestingly, in formimidic acid, the higher states exclusively

lose the O–H atom. Proton transfer is clearly not an important channel for these

molecules. Once a hydrogen atom is lost, however, the molecules will be in a

position to accept a hydrogen atom from another source to isomerise.

2-pyridone and 2-hydroxypyridine are more photostable than the related for-

mamide and formimidic acid. After exciting to high lying states, fast relaxation

takes place with no loss of protons. For both molecules, the chemistry again takes

place on S1 and is predominantly ring breaking. In the case of 2-hydroxypyridine,

there is also O–H dissociation which takes place after initial out-of-plane twisting.

This is in contrast to formimidic acid in which the analogous O–H dissociation

takes place in plane.

In conclusion, the DD-vMCG shows promise of being a general method able

to follow excited state dynamics of medium sized molecules accurately. An impor-

tant feature of the method is that the full potential surfaces are contained in the

database, which will provide information on the energetics of regions of configura-

tion space accessible. The next steps with respect to the formamide and 2-pyridone

studies is to lift the timing restriction and use a larger, more accurate, basis set.

The next steps with respect to the development of the DD-vMCG method will be
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7.0 Conclusions

to improve the algorithm to allow the calculations to be more efficient. New tools

are also required to help analyse the large amount of data obtained. For example,

an automatic way of analysing product formation is required as visual inspection

is not practical for large basis set sizes and complex molecules.
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