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Abstract

In the present work, we are concerned with the relation between the Lipschitz and co-

Lipschitz constants of a mapping f : R2 → R2 and the cardinality of the inverse image of

a point under the mapping f , depending on the norm on R2.

In the paper Lipschitz quotient mappings with good ratio of constants (Mathematika,

2002), Maleva proves that there is a scale of real numbers 0 < . . . < ρn < . . . < ρ1 < 1 such

that for any Lipschitz quotient mapping from the plane equipped with the Euclidean norm

to itself, if the ratio between the co-Lipschitz and the Lipschitz constants of f is bigger

than ρn, then the cardinality of any fibre of f is less than or equal to n. Furthermore,

it is proven that for the Euclidean case the values of this scale are ρn = 1/(n+ 1) for each

n ∈ N and that these are sharp.

A natural question is: given a normed space (R2, ‖ · ‖) whether it is possible to find

the values of the scale 0 < . . . < ρ‖·‖n < . . . < ρ
‖·‖
1 < 1 such that for any Lipschitz quotient

mapping from (R2, ‖ · ‖) to itself, with Lipschitz and co-Lipschitz constants equal to L

and c respectively, the relation c/L > ρ‖·‖n implies #f−1(x) ≤ n for all x ∈ R2.

We prove in Chapter 2 that the same “Euclidean scale”, ρn = 1/(n+ 1), works for

any norm on the plane. Here we follow the general idea in Point preimages under ball

non-collapsing mappings (GAFA, Lecture Notes in Math., 2003) by Maleva but verify

details carefully. On the other hand, the question whether this scale is sharp leads to

different conclusions. We show in Chapters 3 and 4 that for some non-Euclidean norms

the “Euclidean scale” is not sharp, but there are also non-Euclidean norms for which a

Lipschitz quotient exists satisfying max #f−1(x) = 2 and c/L = 1/2.
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Chapter 1
Introduction

We start this chapter in Section 1.1 with the introduction of the main subject of our study,

Lipschitz quotient mappings. We give a brief survey of general properties of Lipschitz

quotient mappings between normed spaces and state some open questions. We continue

this section by explaining the question to which our research in this thesis is devoted and

we describe the general structure of this work.

Section 1.2 will be devoted to the study of the Lipschitz and co-Lipschitz mappings

between finite-dimensional and infinite-dimensional spaces. We will include the proof of

some basic properties of these mappings there.

Once the problem has been explained and our main object of study has been presented,

in the last section of this chapter we will be working on the development of the tools

that we will be using to study the Lipschitz quotients on the plane in more depth. In

particular, we will be concerned with measuring the length of a curve on the plane using

non-Euclidean norms. In this section we include all the definitions and we state and prove

all the general properties of the length that we will be using.

1.1 Motivation of the problem

The Lipschitz property has been widely used in different areas of mathematics and it has

been of particular importance in geometric measure theory, nonlinear analysis and partial

differential equations. The strengthening of the Lipschitz condition to reach stronger con-
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clusions has led, in various contexts, to different notions of “well behaved Lipschitz map-

pings”. Perhaps the better known of them is the bi-Lipschitz condition, but some other in-

teresting weaker conditions —that do not require the mapping to be a homeomorphism—

have been considered and studied. For instance, bounded length distortion mappings

which are studied in [22], Lipschitz regular mappings studied in [9], Lipschitz ball non-

collapsing mappings in [20] and Lipschitz quotient mappings which are the main object

of study in this work. Lipschitz quotients are defined in the following way.

Definition 1.1.1. A map f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) between two normed spaces, is

called a Lipschitz mapping if there exists a positive constant L such that

‖f(x)− f(y)‖Y ≤ L‖x− y‖X for all x, y ∈ X.

In other words, we require that there is a constant L > 0 such that for all x ∈ X and all

r > 0, we have f(BX
r (x)) ⊆ BY

Lr(f(x)), where BW
r (x) denotes the open ball in (W, ‖ · ‖W )

with radius r centred at x. The infimum of all such constants L is called the Lipschitz

constant at the point x.

In a similar way, we say that f is a co-Lipschitz mapping if there exists a positive

constant c such that

BY
cr(f(x)) ⊆ f(BX

r (x)) for all x ∈ X and r > 0.

The co-Lipschitz constant of f is the supremum over all possible constants c.

Finally, if f : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y ) is a Lipschitz and co-Lipschitz mapping, we say

that f is a Lipschitz quotient mapping. We also say that Y is a Lipschitz quotient of X

if there exists a Lipschitz quotient mapping from X to Y .

The definition of the co-Lipschitz condition appeared in [13] in the context of dif-
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ferential geometry right before the publication of the paper [1] in which Bates, John-

son, Lindenstrauss, Preiss and Schechtman reached very significant results concerning the

structure of such mappings in the finite-dimensional case. In particular, they prove in [1]

that for Lipschitz quotient mappings from the plane to itself the inverse image of any

point under such mapping is finite. Furthermore, in a subsequent paper [15] they show

that every Lipschitz quotient mapping f : R2 → R2 can be viewed as a re-parametrization

of a complex polynomial. In other words, there is a homeomorphism h on the plane and

a polynomial P of one complex variable such that f = P ◦ h.

Remark 1.1.2. The above implies that if f : R2 → R2 is a Lipschitz quotient mapping,

then for any x ∈ R2, f−1(x) is a finite set and #f−1(x) ≤ deg(P ), where deg(P ) denotes

the degree of the polynomial P . Moreover, for all but finitely many points x ∈ R2 we

have #f−1(x) = deg(P ).

There is some resemblance between Lipschitz quotient mappings and the so-called

quasiregular mappings, which are defined in the context of topological manifolds. (See [26]

for a survey on quasiregular mapping theory). There is a result due to Reshetnyak (see [24]

and [25]) that shows that the inverse image of a point under a quasiregular mapping is

always discrete. This could suggest that the inverse image of a point of a Lipschitz

quotient mapping from Rn to Rn is discrete. However, at this moment, this question has

not yet been answered for n > 2.

It is easy to see that in the finite-dimensional case, the property of being Lipschitz

quotient does not depend on a particular choice of norms (Proposition 1.2.3). Also, it is

easy to see that every linear non degenerate transformation of Rn is a Lipschitz quotient

mapping under any norm. However, the mapping f : R2 → R2 given by f(x1, x2) =

(x1, |x2|) is not a Lipschitz quotient mapping. In a sense, Lipschitz quotients can be

thought of as a generalisation of linear quotient mappings (i.e.surjective linear mappings).

Recall that linear quotients are “more than just open” in the sense that given such a
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mapping g, we can find a constant c such that g(BX
r (x)) ⊇ BY

cr(g(x)) for all r > 0

and x ∈ X. It is then natural to ask for a Lipschitz mapping to have a similar openness

property (e.g. the co-Lipschitz property) and to ask whether the existence of such mapping

between Banach spaces yields some structure relations between these spaces.

A central question related to Lipschitz quotient mappings is: Given a Banach space

X and a Lipschitz quotient f : X → Y , under which conditions can we guarantee that Y

is a linear quotient of X? In the case of linear quotients it is known that given a pair of

Banach spaces X and Y , if there is a linear quotient mapping T from X onto Y , then there

are relations between the structure of these two spaces (isomorphism theorems of Banach

spaces). Regarding Lipschitz quotients there are some positive results in this direction.

For instance, in [1] it is proven that if a Banach space Y is a Lipschitz quotient of Lp with

1 < p <∞ then Y is isomorphic to a linear quotient of Lp. However, although Lipschitz

mappings carry strong continuity properties, there are examples of pairs of Banach spaces

such that there is a Lipschitz quotient mapping between them but no linear quotient map

exists between them. The first example of such a pair of Banach spaces was presented

in [16].

Recently Lipschitz quotient mappings appear to have an interesting role in a more

general setting, namely in a particular class of metric measure spaces with a form of

differentiable structure where most of the major properties of these mappings, proved

in [1], can be translated. See [10], and [4] for a more general reference on the structure of

such metric measure spaces.

As we have mentioned there are strong results for Lipschitz mappings defined from

the plane to itself, and we know that the fibers of points under Lipschitz quotients on the

plane must be finite. However for the general case, Rn → Rm, we have spread results.

For instance, on the one hand, the inverse image of a point under a Lipschitz mapping

could contain a set of co-dimension more than m − n. In [7] the author constructs an
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example of a Lipschitz quotient mapping f : R3 → R2 such that f−1(0) is a set containing

a plane. On the other hand, in the particular case when n = 2 and m = 1, good

progress has been made describing the structure of level sets of such mappings. In [23]

it is proven that, for Lipschitz quotient mappings f : R2 → R1, the inverse image of any

point has a finite number of components and each component separates the plane. There

is also a precise topological description of these sets, for instance, it is shown that they

are hereditarily locally connected, locally compact and closed. Furthermore, in [21], the

author gives an upper bound for the number of components of the level sets of a Lipschitz

mapping from R2 to R. This bound is given in terms of the Lipschitz and co-Lipschitz

constants of the mapping. However the case n = m > 2 remains wide open and we do

not even know if the inverse image of a point could be infinite. It is natural to think that

adding assumptions on the difference between the Lipschitz and co-Lipschitz constants of

a Lipschitz quotient mapping, could bring some positive results in that direction. See, for

instance, [19, Theorem 1].

It is clear that much stronger results are known for the Lipschitz quotient mappings

in the planar case, n = m = 2. Moreover, in this case we can say even more about the

cardinality of the inverse image of a point under a Lipschitz quotient mapping. In [19]

two questions were presented and answered for Lipschitz quotients from the plane to itself

equipped with the Euclidean norm | · |: Let f : (R2, | · |) → (R2, | · |), be an L-Lipschitz

and c-co-Lipschitz mapping.

Question 1. Is it true that if the ratio between the Lipschitz and co-Lipschitz constants

satisfies c/L > 1/2, then f is a homeomorphism?

Question 2. Is there a scale 0 < . . . < ρn < . . . < ρ1 < 1 such that c/L > ρn implies

#f−1(x) ≤ n for any x ∈ R2?

The author solved both questions in the positive, by proving that in the Euclidean

case the assumption c/L > 1/(n+ 1) implies #f−1(x) ≤ n for any x ∈ R2. Clearly, from
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the fact that any two norms on the plane are equivalent, the existence of such a scale ρn

for the Euclidean case implies the existence of a scale for any norm on the plane, and

we verify in Chapter 2 that the given scale ρn = 1/(n+ 1) is in fact universal, in the sense

that it does not depend on the norm. This also implies that for any norm on the plane, if

c/L > 1/2 then f is a homeomorphism. The proof of this result (Theorem 2.7) is the main

goal of Chapter 2. This is an expansion of the material presented in [20, Theorem 1].

However, as we shall first see in Chapter 3, when considering non-Euclidean norms

the scale ρn = 1/(n+ 1) works not in the same way as it does for the Euclidean norm. This

shows that in fact the remark in Section 3 of [20] about the supremum norm, ‖ · ‖∞ is not

correct. More precisely, for the Euclidean case we have examples of Lipschitz quotients

with ratio of constants c/L = 1/n and max #f−1(x) = n. This means that the scale

(ρn) is sharp for the Euclidean case. However, in Theorem 3.2.5 we prove that for the

supremum norm on the plane, there does not exist a Lipschitz quotient with c/L = 1/2 and

max #f−1(x) = 2. This leads to three questions:

Question i. Is the Euclidean norm the only norm on the plane for which there exist

Lipschitz quotients with c/L = 1/n and max #f−1(x) = n?

Question ii. Find a sharp scale for the supremum norm 0 < . . . < ρ∞n < . . . < ρ∞1 < 1

such that given any L-Lipschitz and c-co-Lipschitz mapping f : (R2, ‖·‖∞)→ (R2, ‖·‖∞),

the condition c/L > ρ∞n implies #f−1(x) ≤ n for any x ∈ R2.

Question iii. For any norm on the plane, ‖ ·‖, find a sharp scale 0 < . . . < ρ‖·‖n < . . . <

ρ
‖·‖
1 < 1 such that given any L-Lipschitz and c-co-Lipschitz mapping f : (R2, ‖ · ‖) →

(R2, ‖ · ‖), the condition c/L > ρ‖·‖n implies #f−1(x) ≤ n for any x ∈ R2.

In Chapter 4 we partially answer Question i. We give examples of non-Euclidean norms

on the plane for which certain Lipschitz quotients do satisfy c/L = 1/2 and max #f−1(x) =

2. We also include more examples of norms on the plane for which, as for the supremum

norm, every Lipschitz quotient mapping with max #f−1(x) = n satisfies c/L < 1/2. Finally,
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in Chapter 5 we give partial results that indicate that for the supremum norm the second

value of the scale ρ∞n is equal to 1/3, which leads to the conjecture ρ∞n = ρn+1, where ρk

denotes the sharp scale for the Euclidean norm.

1.2 Basic properties of Lipschitz quotient mappings

Our main object of study, Lipschitz quotients, has been defined in Definition 1.1.1 and

now we are going to have a closer look at it. In this section we introduce some basic

results regarding Lipschitz quotient mappings in general metric spaces. We will compare

the Lipschitz quotients with the so called bi-Lipschitz mappings and we will study the

local versions of these properties. We will show for example that, locally, the co-Lipschitz

property, in the same way as the global Lipschitz condition, can be written directly

in terms of the norm (see Corollary 1.2.12). However, it is worth noticing that even

when, locally, this conditions seem to be of the very same kind, in order to achieve the

global condition from the local one, these two properties do not behave exactly in the

same way. For the Lipschitz condition the proof works for infinite-dimensional spaces

(Proposition 1.2.6), whereas for the co-Lipschitz condition it does not work for infinite-

dimensional spaces, see Proposition 1.2.7.

The following very basic statement establishes that the Lipschitz and co-Lipschitz

constants of a mapping do satisfy the Lipschitz and co-Lipschitz conditions respectively.

Lemma 1.2.1. Let f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) be a Lipschitz quotient mapping, with

Lipschitz and co-Lipschitz constants equal to L∗ and c∗ respectively. Then for all r > 0

we have:

BY
c∗r(f(x)) ⊆ f(BX

r (x)) ⊆ BY
L∗r(f(x)).

Proof. First we deal with the Lipschitz constant. Let f be as in the hypothesis and take
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ε > 0. Pick any two distinct points x1, x2 ∈ X. Since L∗ is the infimum of the set

L = {L > 0 : ‖f(x)− f(y)‖Y ≤ L‖x− y‖X for all x, y ∈ X},

there is some L ∈ L such that L− L∗ < ε′ = ε
‖x1−x2‖X

. Hence:

‖f(x1)− f(x2)‖Y ≤ L‖x1 − x2‖X < (ε′ + L∗)‖x1 − x2‖X

= L∗‖x1 − x2‖X + ε.

Consequently, as the above estimate is satisfied for all ε > 0:

‖f(x1)− f(x2)‖Y ≤ L∗‖x1 − x2‖X .

This means that f(BX
r (x)) ⊆ BY

L∗r(f(x)) for all x ∈ X, r > 0.

Now, for the co-Lipschitz constant define the non-empty set

C = {c > 0 : BY
cr(f(x)) ⊆ f(BX

r (x)) for all r > 0}.

Let r > 0 and x0 ∈ X. Pick a point y ∈ Bc∗r(f(x0)). Our aim is to prove that y ∈

f(Br(x0)). Since ‖y−f(x0)‖Y < c∗r, we have 1
r
‖y−f(x0)‖Y < c∗ = sup C, so there must be

some c ∈ C such that ‖y− f(x0)‖Y < cr ≤ c∗r. This implies y ∈ Bcr(f(x0)) ⊆ f(Br(x0)).

Thus Bc∗r(f(x0)) ⊆ f(Br(x0)). �

As the following lemma shows, for the finite-dimensional case, we can replace the open

balls in the definition of the co-Lipschitz condition with closed balls, which is sometimes

more convenient.

Lemma 1.2.2. Let f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) be a continuous mapping with X finite-

dimensional and let c > 0. The following conditions are equivalent:
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1. For all x ∈ X and for all r > 0,

BY
cr(f(x)) ⊆ f(BX

r (x)).

2. For all x ∈ X and for all r > 0,

BY
cr(f(x)) ⊆ f(BX

r (x)).

Proof. Assume first that c satisfies the condition 1. Let r > 0 and x0 ∈ X. Pick a point

y ∈ BY
cr(f(x0)). We need to show that y ∈ f(BX

r(x0)). Take a sequence (yn) contained

in BY
cr(f(x0)) such that yn → y. Since f is a c-co-Lipschitz mapping, for every n ∈ N

there is a point xn ∈ BX
r (x0) such that f(xn) = yn. By the finite-dimensionality of X we

can assure that there is a convergent subsequence of xn, say xnj → x ∈ BX
r(x0). Hence,

using the continuity of f , we have:

f(x) = f( lim
j→∞

xnj) = lim
j→∞

f(xnj) = lim
j→∞

ynj = y.

Thus y ∈ f(BX
r(x0)). This shows that the first condition implies the second.

Now assume that the second condition is satisfied. Let r > 0 and x0 ∈ X. Pick a

point y ∈ BY
cr(f(x0)), we need to show that y ∈ f(BX

r (x0)). Let δ := ‖y − f(x0)‖Y , from

condition 2, we have:

y ∈ BY
δ (f(x0)) ⊆ f(BX

δ/c(x0)).

hence y = f(x) for some x ∈ BX
δ/c(x0). Now, since

‖x0 − x‖X ≤ 1
c
δ < 1

c
cr = r,

we know that x ∈ BX
r (x0), therefore y ∈ f(BX

r (x)).
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Thus BY
cr(f(x0)) ⊆ f(BX

r (x0)) and we conclude that conditions 1 and 2 are equivalent.

�

We already mentioned some examples of Lipschitz quotient mappings: linear map-

pings, which clearly satisfy the Lipschitz quotient condition, and the mappings on the

Euclidean plane fk : (R2, | · |) → (R2, | · |), with k ∈ N, defined as fk(reiθ) = reikθ. To

see that the latter are in mappings are in fact Lipschitz quotients with Lipschitz constant

equal to k and co-Lipschitz constant 1, notice that each point x is being mapped to the

point that has k times the argument of x and the same norm as x. Hence fk can separate

points by at most a factor of k and at the same time fk cannot shrink. Perhaps the best

way to convince yourself about this fact is to look at the following picture, Figure 1.1,

made for the case k = 2. In the picture we illustrate a ball centred at a point x with

radius r and its image under the mapping fk, both in yellow.

Figure 1.1

Notice that for each point x ∈ R2 \ {0} we have #f−1
k (x) = k. As we shall see later

in Theorem 2.6 this kind of examples are archetypal. So we now have more interesting

examples of Lipschitz quotient mappings for the Euclidean plane, and hence for the plane
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in general. Indeed, as the next proposition shows, being a Lipschitz or co-Lipschitz

mapping does not depend on the particular norm.

Proposition 1.2.3. Let f : (X, ‖ · ‖1
X) → (Y, ‖ · ‖1

Y ) be a Lipschitz quotient mapping.

If ‖ · ‖2
X and ‖ · ‖2

Y are norms on X and Y equivalent to the norms ‖ · ‖1
X and ‖ · ‖1

X

respectively, then the mapping f , considered as a map from (X, ‖ · ‖2
X) to (Y, ‖ · ‖2

Y ), is a

Lipschitz quotient mapping.

In particular, if X and Y are finite-dimensional, the present lemma holds for any pair

of norms defined on X and any pair of norms defined on Y .

Proof. Let L and c be the Lipschitz and co-Lipschitz constants of f : (X, ‖ · ‖1
X) →

(Y, ‖ · ‖1
Y ). Since X and Y are finite-dimensional, there exist constants k, k∗, s and s∗

such that for all x ∈ X and y ∈ Y :

k‖x‖1
X ≤ ‖x‖2

X ≤ k∗‖x‖1
X ; (1.1)

s‖y‖1
Y ≤ ‖y‖2

Y ≤ s∗‖y‖1
Y .

Therefore, for any x1, x2 ∈ X we have:

‖f(x1)− f(x2)‖2
Y ≤ s∗‖f(x1)− f(x2)‖1

Y ≤ Ls∗‖x1 − x2‖1
X ≤ 1

k
Ls∗‖x1 − x2‖2

X .

Hence, f is a Lipschitz mapping as a map from (X, ‖ · ‖2
X) to (Y, ‖ · ‖2

Y ) with Lipschitz

constant L2 ≤ Ls∗

k
.

Now for the co-Lipschitz constant we work in a similar way. For i = 1, 2, let us denote

by Bi
X(x, r) the ball of radius r centred at x under the norm ‖ · ‖iX and by Bi

Y (y, r) the

ball of radius r centred at y under the norm ‖ · ‖iY . Take x ∈ X and r > 0, from (1.1)

and the fact that f is a co-Lipschitz mapping as a map from (X, ‖ · ‖1
X) to (Y, ‖ · ‖1

Y ), we
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see that:

f(B2
X(x, r)) ⊇ f(B1

X(x, r
k∗

)) ⊇ B1
Y (f(x), c r

k∗
) ⊇ B2

Y (f(x), sc r
k∗

(x).

Since this holds for all r > 0, we conclude that f : (X, ‖·‖2
X)→ (Y, ‖·‖2

Y ) is a co-Lipschitz

mapping with co-Lipschitz constant c2 ≥ sc
k∗

.

Thus, f is a Lipschitz quotient mapping as a map from (X, ‖ · ‖2
X) to (Y, ‖ · ‖2

Y ) and

its Lipschitz and co-Lipschitz constants, L2 and c2 respectively, satisfy:

L2 ≤ ( s∗
k

)L and c2 ≥ ( s
k∗

)c. (1.2)

�

The Lipschitz quotient condition does not depend on the norm, but clearly the Lip-

schitz and co-Lipschitz constants do depend on the norm (see (1.2)). However, we can

prove that if two norms on the plane are similar, in the sense that one can be obtained by

scaling and rotating the other, then, given a Lipschitz quotient mapping f with certain

constants under one of the norms, its appropriately scaled and rotated version will be a

Lipschitz quotient mapping in the other norm and the constants will be preserved. This

result will be useful later on in Chapter 4.

Proposition 1.2.4. Let ‖ · ‖ and ‖ · ‖∗ be two norms on R2 and denote by Br(x) and

B∗r (x) the ball of radius r centred at x under the norm ‖ · ‖ and ‖ · ‖∗ respectively. Assume

there exist a rotation R and a constant k > 0 such that k(R(B1(0))) = B∗1(0). If f :

(R2, ‖ · ‖) → (R2, ‖ · ‖) is a Lipschitz quotient mapping with maxx∈R2 #f−1(x) = n, then

the mapping g : (R2, ‖ · ‖∗)→ (R2, ‖ · ‖∗) defined as g = R ◦ f ◦R−1 is a Lipschitz quotient

with the same Lipschitz and co-Lipschitz constants as f and maxx∈R2 #g−1(x) = n.

Proof. Let f : (R2, ‖ · ‖)→ (R2, ‖ · ‖) be an L-Lipschitz and c-co-Lipschitz mapping. Let
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R, k and g be as in the hypothesis.

It is clear that maxx∈R2 #g−1(x) = n, so we only need to show that L and c are the

Lipschitz and co-Lipschitz constants of g.

Since k(R(B1(0))) = B∗1(0) it is clear that for all x ∈ R2 we have

‖x‖ = k‖R(x)‖∗ and ‖x‖∗ = 1
k
‖R−1(x)‖. (1.3)

For the Lipschitz constant, take x, y ∈ R2. From (1.3) we have

‖g(x)− g(y)‖∗ = ‖R(f(R−1(x)))−R(f(R−1(y)))‖∗ = 1
k
‖f(R−1(x))− f(R−1(y))‖

≤ 1
k

(
L‖R−1(x)−R−1(y)‖

)
= L‖x− y‖∗.

Therefore g is a Lipschitz mapping with Lipschitz constant Lg ≤ L.

Now, for the co-Lipschitz constant take x0 ∈ R2 and r > 0. We are going to show that

B∗cr(g(x0)) ⊆ g(B∗r (x0)). Take y ∈ B∗cr(g(x0)) so that:

cr > ‖y − g(x0)‖∗ = ‖y −R(f(R−1(x0))‖∗ = 1
k
‖R−1(y)− f(R−1(x0))‖.

Therefore, R−1(y) ∈ Bckr(f(R−1(x0))). Since c is the co-Lipschitz constant of f we know

that Bckr(f(R−1(x0))) ⊆ f(Bkr(R−1(x0))), hence there exists x ∈ Bkr(R−1(x0)) such that

f(x) = R−1(y), so we have:

kr > ‖x−R−1(x0)‖ = k‖R(x)− x0‖∗ and R(f(x)) = y.

Therefore R(x) ∈ B∗r (x0) and y = R(f(x)) = R(f(R−1(R(x)))) = g(R(x)). Hence

y ∈ g(B∗r (x0)) as we wanted to show. We conclude that g is a co-Lipschitz mapping with

constant cg ≥ c.
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So far, we proved that given an L-Lipschitz and c-co-Lipschitz mapping f : (R2, ‖·‖)→

(R2, ‖ · ‖), if g = R ◦ f ◦ R−1, where R is as in the hypothesis, then g is an Lg-Lipschitz

and cg-co-Lipschitz mapping with Lg ≤ L and cg ≥ c. Since f = R−1 ◦ g ◦ R and R−1

also satisfy the hypothesis of the present lemma, this result also shows that f is an L-

Lipschitz and c-co-Lipschitz mapping with L ≤ Lg and c ≥ cg. Thus g is a Lipschitz

quotient mapping with same Lipschitz and co-Lipschitz constants as f . �

We will also consider local versions of Lipschitz, co-Lipschitz and Lipschitz quotient

mappings which we define presently.

Definition 1.2.5. We say that a map f : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y ) is locally Lipschitz at

the point x ∈ X if there exist positive constants L and R such that, if ‖x − y‖X < R,

then ‖f(x) − f(y)‖Y ≤ L‖x − y‖X , i.e. if for all r ≤ R we have f(BX
r (x)) ⊆ BY

Lr(f(x)).

The infimum of all such constants L, say Lx, is called the local Lipschitz constant of f at

x. This is

Lx = inf{L > 0 : ∃R > 0 such that ∀r < R, f(Br(x)) ⊆ BX
Lr(f(x))}.

In a similar way, we say that a mapping f is locally co-Lipschitz at a point x if there

exist positive constants R and c such that for all r ≤ R we have BY
cr(f(x)) ⊆ f(BX

r (x)).

The local co-Lipschitz constant of f at the point x is the supremum over all such possible

constants c.

As the following results show, if for some map f the local Lipschitz condition, or the

local co-Lipschitz condition, is satisfied at all points x ∈ X with the same constant, then

the map f satisfies the global Lipschitz, respectively co-Lipschitz, condition with the same

constant. Here we, of course, assume that f is defined on the whole space X. The proof

of the following two propositions are done following [7].
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Proposition 1.2.6. Let f : (X, ‖·‖X)→ (Y, ‖·‖Y ) be a map, where X and Y are normed

vector spaces. If there is a constant L∗ such that for all x0 ∈ X there exists Rx0 > 0 such

that ‖f(x0) − f(x)‖Y ≤ L∗‖x0 − x‖X , whenever ‖x0 − x‖ < Rx0, then f is a Lipschitz

mapping with Lipschitz constant less than or equal to L∗.

Proof. Fix a point x0 ∈ X, we shall prove that for all x1 ∈ X we have ‖f(x0)−f(x1)‖Y ≤

L∗‖x0 − x1‖X . Pick a point x1 ∈ X and consider the line segment L joining x0 with x1,

i.e. L = (x0, x1]. Define the set:

A = {z ∈ L : ‖f(x0)− f(x)‖Y ≤ L∗‖x0 − x‖X ∀x ∈ (x0, z]}.

It is easy to see that the set A is a closed subset of L. Indeed, take a point z ∈ Ā ∩ L

and a sequence zn ⊆ A ∩ L such that zn → z. Let ε > 0. Take N1 ∈ N such that

‖z − zn‖X < ε
L∗+1 for all n ≥ N1.

Since f is continuous, we can also find N2 ∈ N such that

‖f(z)− f(zn)‖Y < ε
L∗+1 for all n ≥ N2.

Then, for any fixed n ≥ max{N1, N2} we have:

‖f(x0)− f(z)‖Y ≤ ‖f(x0)− f(zn)‖Y + ‖f(zn)− f(z)‖Y ≤ L∗‖x0 − zn‖X + ε
L∗+1

≤ L∗(‖x0 − z‖X + ‖z − zn‖X) + ε
L∗+1

< L∗‖x0 − z‖X + (L∗ + 1) ε
L∗+1 < L∗‖x0 − z‖X + ε.

Note that the left hand side and the right hand side values of the above estimate do not

depend on n. As ε > 0 is arbitrary, we conclude that ‖f(x0) − f(z)‖Y ≤ L∗‖x0 − z‖.
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This shows the Lipschitz condition at z. We now show that z ∈ A. Indeed, if x is a point

lying in the segment (x0, z) then, since z ∈ A ∩ L we can take a point z′ ∈ A such that

(x0, x) ⊆ (x0, z
′), which means, by definition of A, that ‖f(x0)− f(x)‖Y ≤ L∗‖x0 − x‖X .

Thus, for all x ∈ (x0, z] we have ‖f(x0)− f(x)‖Y ≤ L∗‖x0 − x‖X , i.e. z ∈ A. This proves

that A is closed in L.

Now we will prove that A is an open subset of L. Pick a point z ∈ A, by the local

Lipschitz property at the point z, there exists Rz > 0 such that ‖f(z) − f(x)‖Y ≤

L∗‖z − x‖X whenever ‖z − x‖X < Rz. As we shall see this is enough to show that

BRz(z) ∩ L ⊆ A. Take x ∈ BRz(z) ∩ L and pick a point x′ on the line segment (x0, x]. If

x′ ∈ (x0, z] then, since z ∈ A, it is clear that x′ satisfies ‖f(x0)− f(x′)‖Y ≤ L∗‖x0−x′‖X .

Assume x′ ∈ (z, x], then ‖z−x′‖X < Rz, and since x0, z and x′ are collinear, we also have

‖x0 − z‖X + ‖z − x′‖X = ‖x0 − x′‖X , therefore:

‖f(x0)− f(x′)‖Y ≤ ‖f(x0)− f(z)‖Y + ‖f(z)− f(x′)‖Y

≤ L∗‖x0 − z‖X + L∗‖z − x′‖X = L∗‖x0 − x′‖X .

Hence we get ‖f(x0) − f(x′)‖Y ≤ L∗‖x0 − x′‖X , whenever x′ ∈ (x0, x]. This means that

x ∈ A, thus, we have shown that BRz(z) ∩ L ⊆ A and we conclude that A is open in L.

Therefore A is a closed and open subset of L. Since L is connected we must have

A = ∅ or A = L, but it is clear that A , ∅. Indeed, using the local Lipschitz property

of f at the point x0 we may consider R0 > 0 such that ‖f(x0)− f(x)‖Y ≤ L∗‖x0 − x‖X ,

whenever ‖x0 − x‖X < R0 and take x ∈ BR0(x0) ∩ L. Then for all x′ ∈ (x0, x] we have

‖x′−x0‖X < R0, so that ‖f(x0)−f(x′)‖Y ≤ L∗‖x0−x′‖X . This means that BR0(x0)∩L ⊆

A. We conclude that A = L, in particular x1 ∈ A and ‖f(x0)− f(x1)‖Y ≤ L∗‖x0− x1‖X .

Thus f is a Lipschitz mapping, and the Lipschitz constant of f is less than or equal

to L∗. �
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In a similar way, we prove in the next proposition that the co-Lipschitz condition

satisfies the analogous property.

Proposition 1.2.7. Let f : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y ) be a continuous map, where X and

Y are normed vector spaces, with X finite-dimensional. If there is a constant c∗ > 0 such

that for all x ∈ X there exists a positive number Rx such that BY
c∗r(f(x)) ⊆ f(BX

r (x)) for

all r ≤ Rx, then f is a co-Lipschitz mapping with co-Lipschitz constant greater than or

equal to c∗.

Proof. First fix x ∈ X and let R be the radius of the ball centred at x in which the local

co-Lipschitz property is satisfied. Pick a point y ∈ BY
c∗R(f(x)) and notice that this implies

y ∈ f(BX
ry(x)), where ry = 1

c∗
‖f(x)− y‖Y . To see this, observe that if y < f(BX

ry(x)), then

f−1(y) and B
X
ry(x) are disjoint closed subsets of X, and, since X is a finite-dimensional

space, BX

ry(x) is compact, therefore the distance between f−1(y) and B
X

ry(x) is a positive

number; hence there exists r ∈ (ry, R) such that BX
r (x) ∩ f−1(y) = ∅. This is impossible

because y ∈ BY
c∗r(f(x)) ⊆ f(BX

r (x)) whenever r ≤ R. Thus

BY
c∗R(f(x)) ⊆ f(BX

ry(x)). (1.4)

Now, let r > 0, x0 ∈ X and y0 ∈ BY
c∗r(f(x0)) be fixed. We need to show that there exists

some x′ ∈ BX
r (x0) such that f(x′) = y0. Consider the line segment L contained in Y

joining f(x0) with y0, this is L = (f(x0), y0], and define the set:

A = {z ∈ L : y ∈ f(BX
ry(x0)) ∀ y ∈ (f(x0), z]}, where ry = 1

c∗
‖f(x0)− y‖Y .

Let R0 > 0 be such that BY
c∗r(f(x0)) ⊆ f(BX

r (x0)), for all r ≤ R0; from (1.4), it is clear

that BY
c∗R0(f(x0)) ∩ L ⊆ A, thus A , ∅.

Now we show that A is an open subset of L. Consider a point z ∈ A, and let
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x′ ∈ BX
rz(x0) be such that f(x′) = z. Again, from the local co-Lipschitz property, there

exists Rx′ > 0 such that BY
c∗r(f(x′)) ⊆ f(BX

r (x′)), whenever r ≤ Rx′ . Pick any point

y ∈ BY
c∗Rx′

(f(x′)) ∩ L. If y ∈ (f(x0), z] then from the definition of A we know that

y ∈ A. Assume that y ∈ [z, y0]. From (1.4) we gather that y ∈ f(BX

δy(x′)), where

δy = 1
c∗
‖f(x′)− y‖Y . Hence, there is a point x′′ ∈ BY

δy(x′) ∩ f−1(y), this leads to:

‖x′′ − x0‖X ≤ ‖x′′ − x′‖X + ‖x′ − x0‖X ≤ δy + rz

= 1
c∗
‖f(x′)− y‖Y + 1

c∗
‖f(x0)− z‖Y

= 1
c∗

(‖z − y‖Y + ‖f(x0)− z‖Y ) = 1
c∗
‖f(x0)− y‖Y .

Therefore, x′′ ∈ BX
ry(x0), i.e. y ∈ f(BX

ry(x0)). So all points y belonging to BY
cRx′

(z) ∩ L

satisfy y ∈ f(BX
ry(x0)), hence the line segment (f(x0), z] ∪ (BY

c∗Rx′
(z) ∩ L) is contained in

A. Thus A is an open subset of L.

Finally, pick y ∈ A∩L, and consider a sequence yn in A∩L such that yn → y. Then,

for every n ∈ N there is a point xn ∈ B
X

ryn
(x0) such that f(xn) = yn. It is clear that,

if for some yn we have ‖f(x0) − yn‖Y ≥ ‖f(x0) − y‖Y then z ∈ A. Let us assume that

‖f(x0) − yn‖Y < ‖f(x0) − y‖Y for all n ∈ N. In this case, we have (f(x0), y) ⊆ A, and

since X is finite-dimensional, and {xn} ⊆ B
X
ry(x0), we can take a convergent subsequence

of xn, say xnj → x∗. Therefore, x∗ ∈ B
X

ry(x0) and, by continuity we have:

f(x∗) = lim
j→∞

f(xnj) = lim
j→∞

ynj = y

Thus y ∈ f(BX
ry(x0)), i.e. y ∈ A. This shows that A is also closed in L.

By the connectedness of L, we must have A = L. Thus y0 ∈ A, but this means that

there is a point x′ ∈ BX
r (x0) such that f(x′) = y0, because, since y0 ∈ A, we can pick a
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point x′ ∈ f−1(y0) ∩BX
ry0

(x0), and then:

‖x′ − x0‖X ≤ 1
c∗
‖f(x)0)− y0‖Y < 1

c∗
(c∗r) = r.

Thus x′ ∈ BX
r (x0), and this finishes the proof.

We conclude that f is a co-Lipschitz mapping with co-Lipschitz constant less than or

equal to c∗. �

From the above results we gather that, for a function f : (X, ‖·‖X)→ (Y, ‖·‖Y ), where

X and Y are finite-dimensional normed vector spaces, it is enough for f to satisfy the

Lipschitz and co-Lipschitz conditions locally —with the same constants for all x ∈ X—

in order to achieve the “global” Lipschitz and co-Lipschitz conditions.

Another local property that would be useful to study is the local injectivity.

Definition 1.2.8. A function f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is locally injective at a point

x ∈ X if there exists ε > 0 such that f restricted to Bε(x) is an injective function.

Notice that if a Lipschitz quotient mapping f : X → Y is locally injective at a point

x, then f is a local homeomorphism at x, i.e. there is an ε > 0 such that f̃ : Bε(x) →

f(Bε(x)) is a homeomorphism.

It is known that for a continuous discrete open mapping f between n-dimensional

topological manifolds the set in which f fails to be a local homeomorphism cannot be very

big (it has dimension at most n− 2).1 This result was first proved in [5], [6] and a more

accessible proof is given in [28]. From [1], we know that Lipschitz quotient mappings from

the plane to itself are continuous, discrete and open, hence, from the above result it follows

that every Lipschitz quotient mapping from the plane to itself is a local homeomorphism

outside a discrete subset of R2.
1Here a mapping is said to be discrete if the inverse image of each point consists of isolated points

and the dimension means the topological dimension as in [14].
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The next proposition, similar to [20, Lemma 5], shows using the polynomial home-

omorphism decomposition for Lipschitz quotient mappings on the plane that Lipschitz

quotients are locally injective in all but at most a finite number of points, and thus a local

homeomorphism at all but a finite number of points. Furthermore, in Corollary 1.2.12 we

will show that this is also true if we ask for the local homeomorphism to be Lipschitz, see

Remark 1.2.13.

Later on, in Proposition 2.4 and Corollary 2.5 we will prove stronger versions of these

results for a particular type of Lipschitz quotients on the plane.

Proposition 1.2.9. Let f : (R2, ‖ · ‖1) → (R2, ‖ · ‖2) be a Lipschitz quotient mapping.

There exists a finite set F ⊆ R2 such that f is locally injective at x for all x ∈ R2 \ F .

Proof. We assume without loss of generality that ‖ · ‖1 = ‖ · ‖2 is the Euclidean norm.

Let f : R2 → R2 be a Lipschitz quotient mapping, by [15] we know that there is a non-

constant polynomial P (z) = anz
n + an−1z

n−1 + . . .+ a1z + b with an , 0 of one complex

variable and a homeomorphism h : R2 → R2, such that f = P ◦ h.

If the degree of P is equal to 1, there is nothing to prove. Assume n > 1 and let

R(P ′) = {z ∈ R2 : P ′(z) = 0}. Take x0 ∈ R2 such that h(x0) < R(P ′) and let y0 := h(x0).

Since y0 < R(P ′), there exists r1 > 0 such that Br1(y0)∩R(P ′) = ∅. Now, h−1(Br1(y0)) is

an open set containing x0, so there exists r2 > 0 such that Br2(x0) ⊆ h−1(Br1(y0)).

We now show that f is injective on Br2(x0). Take x1, x2 ∈ Br2(x0) such that x1 , x2

and let yi := h(xi). We know that P (y2) − P (y1) = P ′(ξ)(y2 − y1) for some ξ ∈ [y1, y2].

Since y1, y2 ∈ h(Br2(x0)) ⊆ Br1(y0), we have ξ ∈ Br1(y0) ⊆ R2 \R(P ′). Hence:

|f(x2)− f(x1)| = |P (h(x2))− P (h(x1))| = |P (y2)− P (y1)| = |P ′(ξ)||y2 − y1| > 0.

Thus f(x2) , f(x1) for all x1, x2 ∈ Br2(x0), x1 , x2.

Let F = h−1(R(P ′)), we have just shown that f is locally injective at every point
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x ∈ R2 \ F . Since h is a homeomorphism, we know that #F ≤ n − 1, thus f is locally

injective at all but at most n− 1 points. �

The next proposition will be very useful to study the behaviour of Lipschitz quotients

along boundaries of balls centred at the origin and some useful local properties of Lipschitz

quotient mappings, see for instance Lemma 5.1.2, and Corollary 1.2.12. For this we will

be using the “lifting of a curve” property of co-Lipschitz mappings, stated in [15]. The

following is a restatement of [15, Lemma 2.2] and [1, Lemma 4.5].

Lemma 1.2.10. Let X be a metric space and suppose that f : Rn → X is a continuous

cf -co-Lipschitz mapping with f(x) = y. Suppose also that ξ : [0,∞) → X is an Lξ-

Lipschitz curve with ξ(0) = y and Lξ ≤ cf . Then there is a curve φ : [0,∞) → Rn with

Lipschitz constant 1 such that φ(0) = x and f(φ(t)) = ξ(t) for all t > 0.

We first show that Lipschitz quotient mappings are “well-behaved” with respect to

boundaries of balls in the following sense.

Proposition 1.2.11. Let f : (R2, ‖ · ‖) → (R2, ‖ · ‖) be a Lipschitz quotient mapping

and assume that for some x0 ∈ R2 and some r > 0 we have f(∂Br(x0)) = ϕ where ϕ

is a simple closed curve with index one around f(x0). Then ϕ is in fact the boundary of

f(Br(x0)), i.e. ∂(f(Br(x0))) = f(∂Br(x0)).

Proof. Let us denote by E(ϕ) the exterior region of the curve ϕ i.e. the unbounded

component of R2 \ ϕ. We will assume, without loss of generality that the co-Lipschitz

constant of f , cf , is equal to 1.

Let x0 and r be as in the hypothesis and take y0 ∈ ∂(f(Br(x0)). Consider an open

neighbourhood, U , of y0, then we have:

U ∩ f(Br(x0)) , ∅ , U ∩ (R2 \ f(Br(x0)).
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This means that there is a y′ ∈ U such that, for some x′ ∈ Br(x0), we have f(x′) = y′,

and that there is a y′′ ∈ U such that y′′ , f(x) for all x in Br(x0). Let ξ : [0, 1] → R2

be a 1-Lipschitz curve contained in U , joining y′ and y′′. Using Lemma 1.2.10, consider

the 1-Lipschitz lifting φ of ξ under f with starting point at x′, so that φ(0) = x′ and

f(φ(t)) = ξ(t) for all t ∈ [0, 1]. Then, φ(0) = x′ ∈ Br(x0) and, since f(φ(1)) = ξ(1) =

y′′ < f(Br(x0)), we have φ(1) ∈ R2 \ Br(x0). Thus, φ goes from inside to outside Br(x0),

so it must intersect the curve ∂Br(x0). Let φ(t0) be a point in this intersection, then:

f(φ(t0)) = ξ(t0) ∈ U and f(φ(t0)) ∈ f(∂Br(x0)).

Thus ξ(t0) ∈ U ∩ f(∂Br(x0)). We have shown that for all basic neighbourhoods U of

y0 we have U ∩ f(∂Br(x0)) , ∅. Since f(∂Br(x0)) is a closed set, we conclude that

y0 ∈ f(∂Br(x0)). This shows that ∂(f(Br(x0)) ⊆ f(∂Br(x0)).

We now prove the other inclusion. Let y0 ∈ f(∂Br(x0)) =: ϕ. Since f is continuous

we know that any neighbourhood of y0 intersects f(Br(x0)), so it only remains to show

that any neighbourhood of y0 also intersects R2 \ f(Br(x0)). Assume, for a contradiction,

that there exists a basic neighbourhood U of y0 such that U ⊆ f(Br(x0)). Since y0 ∈

f(∂Br(x0)), we can pick a point y′ ∈ E(ϕ) ∩ U ⊆ f(Br(x0)) and consider a point x′ ∈

Br(x0) such that f(x′) = y′. Now, y′ belongs to the unbounded component of R2 \ ϕ so

we can consider an unbounded 1-Lipschitz curve ξ : [0,∞)→ R2 contained in E(ϕ), and

its 1-Lipschitz lifting φ : [0,∞)→ R2 with starting point at x′ ∈ Br(x0). By the Lipschitz

property of f and φ, since ξ is unbounded so is φ, otherwise, if φ were bounded we can find

a ≥ 0, such that ‖φ(t)‖ ≤ a for all t ∈ [0,∞), and we would have ‖f(φ(t))− f(0)‖ ≤ La

t ∈ [0,∞), but f(φ(t)) = ξ(t) is unbounded. Therefore φ is unbounded and hence it

must intersect ∂Br(x0). Again, let φ(t0) be a point belonging to this intersection. Then,

ξ(t0) = f(φ(t0)) ∈ f(∂Br(x0)) = ϕ, which is impossible since φ ⊆ E(ϕ). Thus any
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neighbourhood of y0 intersects R2 \ f(Br(x0)). We conclude that y0 ∈ ∂(f(Br(x0)) and

this finishes the proof. �

Corollary 1.2.12. Let f : (R2, ‖ · ‖)→ (R2, ‖ · ‖) be a Lipschitz quotient mapping. There

exists a finite set F with such that for all x ∈ R2 \ F there exists εx > 0 such that

∂(f(Br(x))) = f(∂Br(x)) for all r ≤ εx.

Moreover, if c denotes the co-Lipschitz constant of f , then

‖f(x1)− f(x2)‖ ≥ c‖x1 − x2‖,

whenever x1, x2 ∈ Bδ(x), where δ = 1
4εx.

Proof. Let x ∈ R2 \ F , where F is as in Proposition 1.2.9. We know that F is finite

and the same proposition allows us to consider εx > 0 such that f in injective in Bεx(x).

Take r ∈ (0, εx), then the mapping f is injective along ∂Br(x), therefore f(∂Br(x)) is a

simple closed curve with index one around f(x). Hence, the first part of the statement

follows from Proposition 1.2.11. To prove the second part, notice that if x1, x2 ∈ Bδ(x)

with δ = 1
4εx, then x2 ∈ ∂Br(x1) with r = ‖x1 − x2‖ < 1

2εx, therefore ∂Br(x1) ⊆ Bεx(x).

Hence f is injective along ∂Br(x1), so from the first part of the statement of the present

corollary we get:

f(x2) ∈ f(∂Br(x1)) = ∂(f(Br(x1))).

By the co-Lipschitz property we know that f(Br(x1)) ⊇ Bcr(f(x1)), consequently

‖f(x1)− f(x2)‖ ≥ cr = c‖x1 − x2‖.
�

Remark 1.2.13. Recall that a bi-Lipschitz mapping f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is a

bijective Lipschitz mapping whose inverse is also Lipschitz. In other words, we say that
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f is bi-Lipschitz if there exist constants c, L > 0 such that for all x1, x2 ∈ X we have

c‖x1 − x2‖X ≤ ‖f(x1)− f(x2)‖Y ≤ L‖x1 − x2‖X .

Notice that the Lipschitz constant of f−1 is equal to 1/c. We can restate this property as

a local property: We say that f is locally bi-Lipschitz at the point x ∈ X if there exist

rx > 0 and constants cx, Lx > 0 such that f is injective on Brx(x) and

cx‖x− x1‖X ≤ ‖f(x)− f(x1)‖Y ≤ Lx‖x− x1‖X ,

whenever ‖x−x1‖ < rx. From Corollary 1.2.12 it follows that if f : (R2, ‖ ·‖)→ (R2, ‖ ·‖)

is a Lipschitz quotient, then f is locally bi-Lipschitz at all but at most a finite number of

points. Even more, if f is injective we can easily prove the following statement:

Corollary 1.2.14. Let f : (R2, ‖ · ‖)→ (R2, ‖ · ‖) be an injective mapping. Then f is an

L-Lipschitz and c-co-Lipschitz mapping if and only if f is a bi-Lipschitz mapping and the

Lipschitz constants of f and f−1 are equal to L and 1/c, respectively.

Proof. Assume f is a Lipschitz quotient mapping with Lipschitz and co-Lipschitz con-

stants equal to L and c respectively. Since we are already assuming that f is injective

on all of R2 (and hence bijective, since f is co-Lipschitz), we can follow the same ar-

gument used in the proof of Corollary 1.2.12 to show that for all x1, x2 ∈ R2 we have

‖f(x1)− f(x2)‖ ≥ c‖f(x1)− f(x2)‖. Therefore for all x1, x2 ∈ R2, we have:

c‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖. (1.5)

Taking yi = f(xi), this gives ‖f−1(y1) − f−1(y2)‖ ≤ 1
c
‖y1 − y2‖. Thus f−1 is a Lipschitz

mapping with Lipschitz constant L∗ ≤ 1/c.

The other implication is clear since, from the bi-Lipschitz condition, it follows that if
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L∗, L > 0 denote the Lipschitz constants of f and f−1, respectively, then

1
L∗
‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖.

Since f is bijective, for y ∈ Br/L∗(f(x1)) we can consider x2 = f−1(y), and we get

1
L∗
‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖ = ‖f(x1)− y‖ < r

L∗
,

therefore ‖x1 − x2‖ < r and we conclude that y = f(x2) and x2 ∈ Br(x1). Thus

Br/L∗(f(x1)) ⊆ f(Br(x1)) and hence f is a co-Lipschitz mapping with co-Lipschitz con-

stant c ≥ 1/L∗.

We conclude that given an injective mapping f , f is a Lipschitz quotient mapping if

and only if f is bi-Lipschitz and that the Lispchitz constant of f−1 is equal to the inverse

of the co-Lipschitz constant of f . �

All these previous results are the main basic background of Lipschitz quotients that

we will be using throughout this work. However, when studying Lipschitz quotients

on the plane the use of curves turns out to be very useful, as we have already seen in

Proposition 1.2.11. Hence, before starting the study of the relation between the Lipschitz

and co-Lipschitz constants of a Lipschitz quotient mapping and the cardinality of the

fibers of that mapping, we devote the next section to the study of some properties of

curves on the plane.

1.3 Basic properties of the length of a curve on the plane

The lifting of curves (see Lemma 1.2.10) to study Lipschitz quotients on the plane is very

useful. In fact, in [15], the proof that every Lipschitz quotient mapping on the plane can

be written as a composition of a homeomorphism on the plane and a polynomial of one
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complex variable, is based on the lifting of a curve property mentioned in Lemma 1.2.10.

So we will amply consider curves and their images under Lipschitz and co-Lipschitz map-

pings on the plane. Since we are concerned with the ratio between the Lipschitz and

co-Lipschitz constants we will need to measure the length of a curve and compare it with

the length of its image under a Lipschitz quotient. Hence, we will need to be able to mea-

sure the length of a curve under non-Euclidean norms. In this section we will first define

the length of a curve using the Hausdorff measure and we will prove basic properties of

this length, including the very basic: “the straight line is a shortest path between two

points”. This is stated and proved in Lemma 1.3.10 and Corollary 1.3.11.

To avoid any confusion, let us first clarify what we mean by a “curve”.

Definition 1.3.1. Given a normed vector space X, we say that a set Φ ⊆ X is a curve if

it is an image of a continuous function ϕ : [a, b] ⊆ R→ X, where a < b are real numbers.

In this case we say that ϕ is a parametrization of Φ.

For instance, given a set of n points, p0, . . . , pn of X, we can consider the set Φ defined

as the union of all the line segments [pi, pi−1], 1 ≤ i ≤ n. Clearly Φ is a curve. In this

case we say that Φ is a polygonal curve and that the points pi are the vertices of Φ.

Given a curve Φ, if there exists a parametrization ϕ : [a, b]→ X of Φ which is injective

on (a, b), then we say that Φ is a simple curve and ϕ is an injective parametrization.

Finally, we say that Φ is a simple closed curve if it is a simple curve with ϕ(a) = ϕ(b).

It is easy to see that a curve can always be parametrized by a continuous function

whose domain is the interval [0, 1].

Notice that, since the continuous image of a compact set is compact, a curve is always

a compact set.

When the parametrization ϕ of a curve Φ is fixed we may use the same notation ϕ to

refer to both, the parametrization and the set Φ.

As we shall see in Lemma 1.3.3, the boundary of a ball in any normed space (R2, ‖·‖) is
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a curve. It is worth mentioning the well known correspondence between finite-dimensional

Banach spaces and the symmetric convex bodies in Rn, this is: If E ⊆ Rn is a symmetric

convex body centred at the origin, then E is a closed unit ball of some Banach space

(Rn, ‖ · ‖). Conversely, the closed unit ball of any Banach space (Rn, ‖ · ‖) is a symmetric

convex body in Rn. Recall that a convex body is defined in the following way.

Definition 1.3.2. Given any normed vector space X a set E ⊆ X is a convex body if it

is a compact, convex set with nonempty interior. Given a convex body E ⊆ X, we will

say that a set Φ ⊆ X is contained outside E if Φ ∩ Int(E) = ∅.

Recall that by Jordan’s Theorem any simple closed curve in R2 divides the plane into

two connected regions, one bounded and the other unbounded. We say that a set P ⊆ X

is a polygon if P is the bounded component of a simple closed polygonal curve, according

to Definition 1.3.1.

Now we can prove the following statement.

Lemma 1.3.3. Given any convex body E ⊆ R2 there is an injective continuous parametriza-

tion of the boundary of E. In other words, ∂E is a simple closed curve according to

Definition 1.3.1.

Proof. Let E be a convex body in a normed space (R2, ‖ · ‖). Let us assume that the

origin is an interior point of E. Notice that for every θ ∈ (−π, π] there is a unique point

xθ that belongs to ∂E and has argument equal to θ. More precisely, let `θ be the ray with

starting point at the origin that forms an angle θ with the positive x-axis. Since `θ is not

bounded, it must intersect ∂E at some point xθ. Indeed, if ` : R+ ∪ {0} → `θ is given by

`(t) = mt then the set

A = {t ∈ R+ ∪ {0} : `(t) ∈ IntE}

is not empty because the origin is an interior point of E, furthermore since E is bounded,

the set A is bounded as well, therefore we can consider β = supA. It is easy to see that
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`(β) belongs to ∂E. Hence `(β) ∈ `θ ∩ ∂E.

Finally, we can show that this point is unique, for if x′ ∈ `θ ∩ ∂E, then xθ and x′ have

the same argument. Without loss of generality assume that ‖x′‖ < ‖xθ‖ and let θ1, θ2

be such that θ ∈ (θ1, θ2). Now, for i = 1, 2 take xθi ∈ `θi ∩ E such that xθi , 0. So that

xθ, xθ1 , xθ2 and the origin belong to E, therefore the quadrilateral Q whose vertices are

these four points is contained in E. Since x′ is an interior point of Q, it is also an interior

point of E and this is a contradiction. Therefore x′ = xθ.

Given that uniqueness, we can define the function ϕ : [−π, π]→ ∂E as ϕ(θ) = xθ for

θ ∈ (−π, π] and ϕ(−π) = xπ.

Clearly ϕ is onto, ϕ(−π) = ϕ(π) and ϕ is injective along (−π, π); so we only need to

show that ϕ is continuous.

Fix some θ ∈ [−π, π] and consider a sequence tn in [−π, π] such that tn → θ. Consider

the sequence ϕ(tn) and any convergent subsequence ϕ(tnm) of ϕ(tn). Since ∂E is compact,

the subsequence ϕ(tnm) converges to some point x0 ∈ ∂E.

For z ∈ R2 let arg(z) denote the argument of z taking values in (−π, π]. Now, using

that arg(ϕ(tnm)) = tnm we get:

arg(x0) = arg( lim
m→∞

ϕ(tnm)) = lim
m→∞

arg(ϕ(tnm)) = lim
m→∞

tnm = θ.

This implies that x0 = ϕ(θ).

Therefore, every convergent subsequence of ϕ(tn) converges to ϕ(θ). Hence, ϕ(tn)

converges to ϕ(θ).

We conclude that ϕ is continuous so ∂E is a curve. �

Remark 1.3.4. Note that from the proof of Lemma 1.3.3 it follows that the parametriza-

tion may be chosen in such a way that as the parameter increases, the point on the bound-

ary “travels” in a counterclockwise direction with respect to the point in the interior of
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E. We will return to this later, in Corollary 1.3.18.

Now that the concept of curve is clear, we define the length of a curve. First, let us

recall the definition of the n-dimensional Hausdorff measure.

Definition 1.3.5. For a subset A ⊆ Rk, we will use the notation H‖·‖n (A) for the n-

dimensional Hausdorff measure of the set A, under the norm ‖ ·‖, defined in the following

way:

Given a subset A ⊆ Rk, define for each fixed δ > 0:

H‖·‖n,δ(A) = inf


∞∑
j=1

(diamCj)n : A ⊆
∞⋃
j=1

Cj, diamCj ≤ δ

 , (1.6)

where diamCj is the diameter of the set Cj with respect to the norm ‖ · ‖.

It is clear that H‖·‖n,δ(A) ≤ H‖·‖n,ε(A), whenever ε ≤ δ. We define the n-dimensional

Hausdorff measure as

H‖·‖n (A) = sup
δ>0
H‖·‖n,δ(A) = lim

δ→0
H‖·‖n,δ(A).

Whenever the norm we are using is clear we may only write Hn(A).

Remark 1.3.6. Equivalently, it is not hard to prove that in (1.6) we might ask for the

Cj’s to be all open, or all closed. For a proof of this result see [29, Theorem 27.13]. For

other general properties of the Hausdorff measures and dimensions see [18] and [2].

Given a curve Φ ⊆ Rk and a parametrization ϕ : [a, b] → Φ of Φ the 1-dimensional

Hausdorff measure of Φ, relative to the norm ‖ · ‖ can be written in terms of the

parametrization as:

H‖·‖1 (Φ) = H‖·‖1 ({ϕ(t) : t ∈ [a, b]}).

Notice that this measure does not depend on the parametrization ϕ of Φ. This is the way

we define the length of a curve when we think about it as a subset of Rk. However, in this
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work we will also be concerned with the length of curves understood as parametrizations

rather than as sets contained in Rk. We will define the length of a locally injective curve

—as a parametrization— using the 1-dimensional Hausdorff measure in the following way.

Definition 1.3.7. Let γ be a locally injective curve γ : [a, b] → Rk, and consider the

points a = t0 ≤ t1 ≤ · · · ≤ tn = b in [a, b] such that γ is injective along the interval

(ti, ti+1), then the length of γ is defined as:

length‖·‖ γ =
n∑
i=1
H‖·‖1 (γi), (1.7)

where γi = γ|[ti−1,ti]. Again, whenever the norm we are working with is clear we may just

write length(γ).

Remark 1.3.8. Notice that once the parametrization γ is fixed the length of the curve γ

that we have just defined does not depend on the partition {a = t0, . . . , tn = b} in which

γ is injective along each interval (ti, ti+1). Indeed, let Q = {a = t0, . . . , tn = b} be any

such partition of [a, b] and let Q∗ = {a = λ0, . . . , λm = b} be any refinement of Q. For

j ∈ {0, . . . , n} let kj be such that λkj = tj. We show that for all j ∈ {1, . . . , n} we have

kj∑
i=1
H1(γ|[λi−1,λi]) =

j∑
i=1
H1(γ|[ti−1,ti]). (1.8)

We do this by induction over j. For j = 1 there are two options; if k1 = 1 then there is

nothing to do. If k1 > 1 then since γ is injective along

[t0, t1) =
k1⋃
i=i

[λi−1, λi)

we have

γ([λi−1, λi)) ∩ γ([λj−1, λj)) = ∅ for all i , j ; 1 ≤ i, j ≤ k1.
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Therefore,

H1(γ|[a,t1]) =
k1∑
i=1
H1(γ|[λi−1,λi]).

Assume that (1.8) is true for some j < n. Again, for j + 1 we have two options, if

kj+1 = kj + 1 there is nothing to do. If kj+1 > kj + 1 then we can repeat the reasoning

that we have just done to get:

H1(γ|[tj ,tj+1]) =
kj+1∑
i=kj
H1(γ|[λi−1,λi]).

This, together with the fact that (1.8) is true for j, implies that (1.8) is true for j + 1.

Thus the statement is true for all j ∈ {1, . . . , n}. In particular, for j = n this is:

m∑
i=1
H1(γ|[λi−1,λi]) =

n∑
i=1
H1(γ|[ti−1,ti]).

Finally, if Q = {a = t0, . . . , tn = b} and Q′ = {a = t′0, . . . , t
′
m = b} are two partitions

of [a, b] such that γ is injective along each of the intervals (ti−1, ti), (t′i−1, t
′
i), then the

partition Q∗ = Q∪Q′ = {a = λ0, . . . , λk = b} is a refinement of Q and Q′, hence we have:

n∑
i=1
H1(γ|[ti−1,ti]) =

k∑
i=1
H1(γ|[λi−1,λi]) =

m∑
i=1
H1(γ|[t′i−1,t

′
i]).

This is what we wanted to show.

Notice also that whenever we consider injective parametrizations γ1 and γ2 of a curve

Γ ⊆ R2 then

H‖·‖1 (Γ) = length‖·‖(γ1) = length‖·‖(γ2).

Remark 1.3.9. If f : (Rm, ‖ · ‖1) → (Rk, ‖ · ‖2) is an L-Lipschitz mapping, then it is

clear that for E ⊆ Rm we have diam‖·‖2(f(E)) ≤ L diam‖·‖1(E). Therefore, in view of the
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definition of the Hausdorff measure, we get:

H‖·‖2
n (f(E)) ≤ LnH‖·‖1

n (E) for all n ∈ N. (1.9)

It follows that, if γ : [a, b]→ Rm is a locally injective L′-Lipschitz curve, and f : Rm → Rk

is a locally injective L- Lipschitz mapping, then the length of the curve f ◦ γ is defined

and length‖·‖2 f ◦ γ ≤ (LL′)(b − a). Moreover, in the particular case of the plane, say

f : (R2, ‖ · ‖1) → (R2, ‖ · ‖2), from Proposition 1.2.9 we know that if f is a Lipschitz

quotient mapping there exists a finite set F such that f is locally injective at every point

x ∈ R2 \ F . Hence, if we choose RI > sup{‖x‖1 : x ∈ F}, then for any curve γ contained

outside BRI (0) the length of the curve f ◦ γ is defined. Furthermore,

length‖·‖2(f ◦ γ) ≤ L length‖·‖1(γ). (1.10)

Figure 1.2

Now that we have defined the length of a curve and we have

understood how to measure it, we will state and prove some basic

properties of curve length. Some of these properties sound quite

obvious and intuitive. But let us just bear in mind that when

working with non-Euclidean norms things are not that intuitive.

For example in Figure 1.2 we show a square and an octagon

contained outside the interior of the square. Let us denote by γ

the curve that describes the boundary of the octagon. If we agree

that the side of the square is equal to 2, then the square is the

unit ball under the supremum norm, ‖ · ‖∞, and we have: length∞(∂B∞1 ) = 8. On the

other hand, since all the sides of the octagon are just a translation of some radii of the

square ∂B∞1 we also have length∞(γ) = 8.

We start this survey of the basic properties of the length of a curve by showing that
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one of the shortest paths between two points is the straight line, which follows from the

next Lemma 1.3.10 and Corollary 1.3.11.

Lemma 1.3.10. Let ‖ · ‖ be a norm on Rm. Given any two points x0, y0 ∈ Rm the length

of any locally injective curve joining these two points is at least ‖x0 − y0‖.

Proof. Let γ : [0, 1] → Rm be locally injective curve joining x0 and y0. Without loss of

generality assume γ is injective. Consider any countable open cover C of γ, say

γ ⊆
∞⋃
i=1

Bi.

Let C ′ = {B1, . . . , Bn} be a finite subcover of C. We will pick some elements of C ′

and reorder them in the following way. Pick some Bi1 ∈ C ′ such that x0 ∈ Bi1 . Let

t1 := sup{t ∈ [0, 1] : γ(t) ∈ Bi1}. Clearly t1 > 0. If t1 = 1 then we set C∗ = {Bi1}.

If not, then since C ′ covers γ and γ(t1) < Bi1 there must be some Bi2 ∈ C ′ \ {Bi1} such

that γ(t1) ∈ Bi2 . Now define t2 := sup{t ∈ [0, 1] : γ(t) ∈ Bi2}, so t1 < t2. If t2 = 1 we

define C∗ as C∗ = {Bi1 , Bi2}; if t2 < 1 then, again since γ(t2) < (Bi1 ∪ Bi2) we can find

Bi3 ∈ C ′ \ {Bi1 , Bi2} such that γ(t2) ∈ Bi3 .

We continue this process till tk = 1 for some k. This will certainly happen since

γ(1) = y0 belongs to some element of C ′ and C ′ has a finite number of elements.

So we have defined a subset C∗ = {Bi1 , . . . , Bik} of C ′ ⊆ C (and C∗ is not necessarily

a cover of γ) and a sequence of points 0 = t0 < t1 < . . . tk−1 < tk = 1 such that for all

j ∈ {1, . . . , k − 1}:

γ(tj) ∈ Bij+1 and γ(tj) <
j⋃
l=1

Bil .

This implies that the sets Bij , j ∈ {1, . . . , k} are all distinct. On the other hand, given j ∈

{1, . . . , k} we have γ(tj−1) ∈ Bij and γ(tj) ∈ Bij therefore, diam(Bij) ≥ ‖γ(tj−1)− γ(tj)‖
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for all j ∈ {1, . . . , k}, and using the triangle inequality we have:

∞∑
i=1

diam(Bi) ≥
∑
B∈C∗

diam(B) ≥
k∑
i=1
‖γ(ti−1)− γ(ti)‖ ≥ ‖

k∑
i=1

γ(ti−1)− γ(ti)‖ = ‖x0 − y0‖.

This shows that given any open cover of the curve γ the sum of the diameters of the

elements of the cover is at least ‖x0−y0‖. Therefore, recalling Remark 1.3.6, we conclude

that H1(γ) ≥ ‖x0 − y0‖. �

Corollary 1.3.11. Let ‖ · ‖ be a norm on Rm. Given any two points x0, y0 ∈ Rm the

‖ · ‖-length of the straight line segment joining them is equal to ‖x0 − y0‖.

Proof. Let x0, y0 ∈ Rm and consider the line segment L joining them. Clearly, the

parametrization of this line segment is injective whenever x0 , y0. We may assume

for simplicity that x0 = 0. From Lemma 1.3.10 we have H1(L) ≥ ‖y0‖.

Now, to get the opposite inequality it is enough to show that given any δ > 0 there

is some countable cover C of L such that for all C ∈ C we have diamC ≤ δ and∑
C∈C diam(C) ≤ ‖y0‖.

Take n ∈ N such that ‖y0‖/n ≤ δ and for i ∈ {0, . . . , n − 1} let zi := 2i+1
2n y0. Then,

letting rδ := ‖y0‖/2n, the family {Brδ(zi−1) : 0 ≤ i ≤ n− 1} is clearly a cover of L and

n−1∑
i=0

diam(Brδ(zi)) = n(2rδ) = ‖y0‖.

Hence, for all δ > 0 we have:

inf
{ ∞∑
i=1

diam(Cj) : L ⊆ ∪∞i=1Cj, diam(Cj) ≤ δ
}
≤

n−1∑
i=0

diam(Brδ(zi)) = ‖y0‖.

Therefore H1(L) ≤ ‖y0‖ and we conclude that H1(L) = ‖y0‖. �

Proposition 1.3.12. Let ϕ be a locally injective curve on R2. Then the length of ϕ can

be approximated by the lengths of polygonal curves. More precisely, there exists a family
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Ψ of polygonal curves with all their vertices in ϕ such that:

length(ϕ) = sup{length(ψ) : ψ ∈ Ψ}.

Proof. Let ϕ : [a, b]→ R2 be a continuous parametrization of the given curve.

For every partition Q = {a = t0, t1, . . . , tn = b} of the interval [a, b] define the curve

ψQ as the polygonal curve whose vertices are the points ϕ(ti), i ∈ {1, . . . , n} and let

Ψ := {ψQ : Q is a partition of [a, b]}, (1.11)

β := sup{length(ψQ)) : ψQ ∈ Ψ}.

We show that β = length(ϕ). From Lemma 1.3.10, it follows easily that length(ϕ) ≥

length(ψQ) for each partition Q. Therefore

length(ϕ) ≥ β. (1.12)

So we are left to prove the opposite inequality. Let us assume first that ϕ is injective, so

that length(ϕ) = H1(ϕ([a, b])). Notice that given any partition Q = {a = t0, t1, . . . , tn =

b} of [a, b], if we denote by Ci the set ϕ([ti−1, ti]), then the family CQ := {Ci : 1 ≤ i ≤

n, ti ∈ Q} is a cover of ϕ. Furthermore, any cover constructed in this way must satisfy∑n
i=1 diam(Ci) ≤ β. Otherwise, if ∑n

i=1 diam(Ci) > β, we can define, as we will see now, a

partition Q′ of [a, b] such that length(ψQ′) > β, which contradicts β being the supremum.

For this, we pick δ > 0 such that ∑n
i=1 diam(Ci) > β + δ. Now for each i ∈ {1, . . . , n}

choose t′i, t′′i ∈ (ti−1, ti) such that t′i < t′′i and ‖ϕ(t′i)− ϕ(t′′i )‖ > diam(Ci)− δ/n. Let

Q′ = {a = t0, t
′
1, t
′′
1, . . . , tn−1, t

′
n−1, t

′′
n−1, tn = b}
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and consider the polygonal curve ψQ′ generated by Q′, i.e. ψQ′ is the polygonal curve

whose vertices are the points {ϕ(ti−1), ϕ(t′i), ϕ(t′′i ), ϕ(ti) : i = 1, . . . , n}. Hence,

β ≥ length(ψQ′) =
n∑
i=1
‖ϕ(ti−1)− ϕ(t′i)‖+ ‖ϕ(t′i)− ϕ(t′′i )‖+ ‖ϕ(t′′i )− ϕ(ti)‖

≥
n∑
i=1
‖ϕ(t′i)− ϕ(t′′i )‖ >

n∑
i=1

(diam(Ci)− δ/n) > β + δ − δ = β.

This is a contradiction. We conclude that for each cover CQ of ϕ generated by a partition

Q of [a, b] we have: ∑
C∈CQ

diam(C) ≤ β. (1.13)

In fact, it is clear that given any δ > 0 we can find a partition Q = {a = t0, . . . , tn = b}

of [a, b] such that the relevant cover CQ = {ϕ([ti−1, ti]) : ti ∈ Q} satisfies diam(C) ≤ δ

for all C ∈ CQ. Indeed, this follows easily from the uniform continuity of ϕ since we can

find ε > 0 such that for all t, t′ ∈ [a, b] we have ‖ϕ(t) − ϕ(t′)‖ < δ whenever |t − t′| < ε.

Now we can take N ∈ N such that (b − a)/N < ε and consider the partition Qδ = {a =

t0, . . . , tN = b} of [a, b], where t0 = a and ti = ti−1 + (b− a)/N for all i = {1, . . . , N}. In

this way it is clear that that the cover CQδ := {ϕ([ti−1, ti]) : ti ∈ Q} satisfies diam(C) ≤ δ

for all C ∈ CQδ .

Hence, from (1.13) it follows that for any δ > 0:

H1,δ(ϕ) := inf
{ ∞∑
i=1

diam(Ci) : ϕ ⊆ ∪∞i=1Ci, diam(Ci) < δ

}
≤

∑
C∈CQδ

diam(C) ≤ β.

Therefore,

length(ϕ) = H1(ϕ([a, b])) = sup
δ>0
Hδ

1(ϕ) ≤ β.

Now, if ϕ is not injective, let ε > 0 and consider the points a = λ0 ≤ λ1 ≤ · · · ≤ λn = b

such that ϕ is injective along [λi−1, λi] and for i ∈ {1, . . . n} let ϕi := ϕ|[λi−1,λi]. Now, for
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each ϕi let Qi be a partition of [λi−1, λi] such that the corresponding polygonal curve ψi

satisfies H1(ϕi) < length(ψi) + ε/n. Let Q = ∪ni=1Qi and let ψ be the polygonal curve

relative to the partition Q. In this way, we have:

length(ϕ) =
n∑
i=1
H1(ϕi) ≤

n∑
i=1

length(ψi) + ε = length(ψ) + ε.

Therefore, in this case we also have that for every ε there is a partition Q = {ti : 0 ≤

i ≤ n} of [a, b] such that the polygonal curve whose vertices are the points ϕ(ti) satisfies

length(ϕ) < length(ψ) + ε. Thus, also in this case we have

length(ϕ) ≤ β.

Together with (1.12) this gives length(ϕ) = β. �

Lemma 1.3.13. Let (R2, ‖ · ‖) be a normed vector space. If γ is a locally injective closed

curve contained outside a convex simple polygon P and Indp γ = 1, with p ∈ IntP then

length(γ) is at least length(∂P).

Proof. Let γ be as in the hypothesis and denote by A0, . . . , An the vertices of the simple

convex polygon P , placing the indices counterclockwise. Let L1 be the straight line that

passes through A0 and A1. See Figure 1.3 for an illustration.

By Jordan’s Theorem we can take P0, P1 ∈ γ such that:

P0 ∈ γ∩{λ
−−−→
A1A0 : λ ≥ 0}, (1.14)

P1 ∈ γ∩{λ
−−−→
A0A1 : λ ≥ 0};

Let us agree that the curve γ is parametrized by a continuous function γ0 : [0, 1]→ R2

such that γ0(0) = P0 and goes along the curve counterclockwise. Pick a point t1 ∈ γ−1
0 (P1)
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Figure 1.3

and define the curve γ1 as

γ1(t) =


(1− t

t1
)P0 + t

t1
(P1) if 0 ≤ t ≤ t1

γ0(t) if t1 ≤ t ≤ 1

Denote by ϕ and ϕ′ the restrictions of γ to the intervals [0, t1] and [t1, 1] respectively. It

follows from Lemma 1.3.10 and Corollary 1.3.11 that:

length‖·‖(γ) = length‖·‖(ϕ) + length‖·‖(ϕ′) ≥ ‖P0 − P1‖+ length‖·‖(ϕ′)

= length‖·‖([P0, P1]) + length‖·‖(ϕ′) = length‖·‖(γ1).

Now, since γ1 is a curve contained outside P we can repeat the same construction as

before taking γ1 instead of γ and A1, A2 instead of A0, A1. So now, in a similar way as

we did in (1.14), we can consider two intersection points of the curve γ1 with the line L2
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that passes through A1 and A2, say

P2 ∈ γ1∩{λ
−−−→
A1A2 : λ ≥ 0},

P ′2 ∈ γ1∩{λ
−−−→
A2A1 : λ ≥ 0}.

Notice that in this case, we can choose P ′2 to be precisely A1. Take t′2, t2 ∈ (0, 1) such

that t′2 ∈ γ−1
1 (A1) = γ−1

1 (P ′2) and t2 ∈ γ−1
1 (P2) and define the curve:

γ2(t) =


γ1(t) if 0 ≤ t ≤ t′2(
1− t−t′2

t2−t′2

)
A1 +

(
t−t′2
t2−t′2

)
P2 if t′2 ≤ t ≤ t2

γ1(t) if t2 ≤ t ≤ 1

After repeating this process n times we will end up with a sequence, {γ, γ1, . . . , γn},

of curves contained outside P , a sequence of points of the curve γ, {P0, . . . , Pn} ⊆ γ, and

inverse image points {ti ∈ γ−1
i−1(Pi) : i = 1, . . . , n} and {t′i ∈ γ−1

i−1(Ai−1) : i = 1, . . . , n}

such that for i ∈ {1, . . . , n− 1} the curve γi+1 is defined as:

γi+1(t) =


γi(t) if 0 ≤ t ≤ t′i+1(
1− t−t′i

ti−t′i

)
Ai +

(
t−t′i
ti−t′i

)
Pi if t′i ≤ t ≤ ti

γi(t) if ti ≤ t ≤ 1

Again, by Lemma 1.3.10 and Corollary 1.3.11 it follows that for each i ∈ {1, . . . , n} we

have:

length‖·‖(γ) ≥ length‖·‖(γi) ≥ length‖·‖(γi+1).

In particular for i = n, the curve γn is the curve defined as follows (writing down the
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definition of all the γi’s that have been defined recursively):

γn(t) =



(1− t
t1

)P0 + t
t1
A1 if 0 ≤ t ≤ t1(

1− t−t′2
t2−t′2

)
A1 +

(
t−t′2
t2−t′2

)
A2 if t′2 ≤ t ≤ t2(

1− t−t′2
t2−t′2

)
A2 +

(
t−t′2
t2−t′2

)
A3 if t′2 ≤ t ≤ t2

...
...(

1− t−t′n
tn−t′n

)
An +

(
t−t′n
tn−t′n

)
Pn if t′n ≤ t ≤ tn

γ(t) if tn ≤ t ≤ 1

Repeating this construction once more we define the curve γn+1. In this case the line

Ln+1 that passes through An and A0 intersects the curve γn at A0 and An, since A0 = γn(t)

for some t ∈ [0, t1] and An = γn(t′n). Therefore γn+1 = ∂P .

Once again, from Lemma 1.3.10 and Corollary 1.3.11 it follows that length‖·‖(γn) ≥

length‖·‖(γn+1) = H1(∂E) Hence:

length(γ) ≥ length(γn+1) = length(∂P) =
n∑
j=1
‖Aj−1 − Aj‖+ ‖An − A0‖.

Thus the length of the curve γ is greater than or equal to the perimeter of the convex

polygon P . �

The next Corollary is a generalisation of [20, Lemma 3] in the case of polygonal norms

(see Definition 4.1). However, together with Corollary 1.3.15, it will allow us to prove a

full generalisation of [20, Lemma 3], see Corollary 1.3.16.

Lemma 1.3.14. Given a norm ‖ · ‖ on R2, if γ : [0, 1] :→ R2 is a locally injective closed

curve contained outside a convex simple polygon P and Indp γ = k ≥ 1, with p ∈ IntP

then length‖·‖(γ) is at least k length‖·‖(∂P).

Proof. For k = 1 this is just Lemma 1.3.13. Let k > 1 and assume the statement is true

for k−1. Let us denote the length of the curve γ under the norm ‖·‖ simply by length(γ).
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Since there exists p ∈ IntP such that Indp γ = k, we can find x1, x2 ∈ [0, 1] with x1 < x2

such that:

Indp γ|[x1,x2] = 1; γ(x1) = γ(x2); Indp γ|[0,x1]∪[x2,1] = k − 1.

Given this partition of the curve γ, the statement follows easily from Lemma 1.3.13 as

the curve γ|[x1,x2] is a closed curve contained outside the convex simple polygon P and

Indp γ|[x1,x2] = 1. Therefore:

length(γ) = length(γ|[x1,x2]) + length(γ|[0,x1]∪[x2,1])

≥ length(∂P) + (k − 1) length(∂P) = k length(∂P).

Thus, the statement holds for all k ∈ N. �

Corollary 1.3.15. Let ϕ be a simple closed curve in (R2, ‖ · ‖). If ϕ is a boundary of

a convex body E, then the length of ϕ can be approximated by the perimeters of polygons

inscribed in E. More precisely, there exists a family P of convex polygons whose vertices

belong to ∂E such that:

length(ϕ) = H‖·‖1 (∂E) = sup{H‖·‖1 (∂P ) : P ∈ P}.

Consequently,

H‖·‖1 (∂E) <∞.

Proof. Let E be a convex body and let ϕ : [−π, π] → R2 be the parametrization of

∂E constructed in Lemma 1.3.3. For each partition Q of [−π, π], define ψQ to be

the polygonal curve whose vertices are the points ϕ(ti), with ti ∈ Q. From Proposi-

tion 1.3.12 we know that length(ϕ) = sup{length(ψQ) : ψQ ∈ Ψ} where Ψ = {ψQ :
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Q is a partition of [−π, π]}. Hence, to show that the first equality of the statement is

satisfied we need to show that each closed curve ψQ ∈ Ψ is indeed the boundary of a

convex polygon inscribed in ∂(E).

For ψQ ∈ Ψ, let PQ denote the bounded component of R2 \ ψQ. First notice that,

given a partition Q of [−π, π], the polygon PQ is inscribed in E. Indeed, since E is convex

all the straight lines [ϕ(ti−1), ϕ(ti)], with i ∈ {1, . . . , n} are contained in E. Hence, the

simple and closed polygonal curve

ψQ = ∪ni=1[ϕ(ti−1), ϕ(ti)]

is contained in E —recall that E being a convex body is closed. Hence the bounded

component of R2 \ ψQ is contained in E. By definition this bounded component is the

polygon PQ, thus PQ ⊆ E.

Now we show that given a partition Q = {−π = t0, . . . , tn = π} of [−π, π] the polygon

PQ is convex. We know that for any partition of the interval [−π, π] with 2 or 3 elements

the polygon PQ is convex. So let us assume that n ≥ 3. It is enough to show that all

the internal angles of PQ measure less than or equal to π radians. For, choose an internal

angle of PQ, say the angle at the vertex ψ(tk). See Figure 1.4 for an illustration.

Consider the triangle T whose vertices —modulo n— are ψ(tk−1), ψ(tk+1), ψ(tk+2).

Since E is convex and ψ(ti) ∈ ∂E ⊆ E for all i ∈ {0, . . . , n}, T ⊆ E and we also have

Int(T ) ⊆ Int(E). Since ψ(tk) ∈ ∂E, we must have ψ(tk) < Int(T ). This means that the

quadrilateral with vertices ψ(tk−1), ψ(tk), ψ(tk+1), ψ(tk+2) is convex, so that the internal

angle of this quadrilateral at ψ(tk), which is the internal angle at the vertex ψ(tk) of the

polygon PQ, is less than or equal to π radians, which is what we wanted. Thus PQ is

convex for any partition Q of [−π, π].

Finally, it is clear that H1(∂E) < ∞. Indeed, since E is bounded there exist points
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Figure 1.4

p0, p1, p2 such that E is contained in the triangle T whose vertices are the points pi,

i = 0, 1, 2. Since the polygon PQ is convex and the index of the curve ∂T is equal to 1 for

any point in the interior of PQ, from Lemma 1.3.13 it follows that:

H1(∂PQ) ≤ H1(∂T ) =
3∑
i=1
‖pi − pi−1‖,

for any partition Q of [−π, π]. Hence, H1(∂E) ≤ ∑3
i=1 ‖pi − pi−1‖ <∞. �

The next result generalises [20, Lemma 3] if we take E equal to a ball of radius r.

Corollary 1.3.16. Consider a normed space (R2, ‖ · ‖), a convex body E ⊆ R2 and a

point p ∈ IntE. The ‖ · ‖-length of a curve ϕ contained outside E with Indp ϕ = k is at

least kH‖·‖1 (∂E).

In particular, if ϕ ⊆ R2 \B‖·‖r (0) for some r > 0, then

length‖·‖(ϕ) ≥ k length‖·‖(∂B‖·‖r (0)).

Proof. Let ϕ be a curve contained outside a convex body E with Indp ϕ = k for p ∈ IntE
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and take ε > 0. From Corollary 1.3.15 we can find a polygon PQ inscribed in E such that

H1(∂E) < H1(∂PQ) + ε/k.

Since PQ ⊆ E, the curve ϕ is a curve contained outside PQ, and clearly Indp ϕ = k for

p ∈ IntP . Therefore, from Lemma 1.3.14, we know that H1(ϕ) ≥ kH1(∂PQ) so that:

H1(ϕ) > kH1(∂E)− ε.

Since this is true for any ε > 0 we conclude that H1(ϕ) ≥ kH1(∂E). �

The result in Corollary 1.3.16 will be of particular importance to prove Theorem 2.7,

which is one of the main results in this work. In a sense, it could be understood that Corol-

lary 1.3.16 was the motivation to develop this complete section. However, the importance

of these results concerning lengths of curves “winding around other curves” its not limited

to the proof of Theorem 2.7. We will also be concerned with Lipschitz parametrizations

of curves. We finish this section showing that, further to Lemma 1.3.3, we can always

define a 1-Lipschitz parametrization of the boundary of any convex body on the plane.

As we shall see this result together with Corollary 1.3.16 will be present troughout the

rest of this work. We first prove the following lemma.

Lemma 1.3.17. Let γ : [a, b] → Rm be a parametrization of a locally injective curve.

Then the function Lγ : [a, b]→ R defined as

Lγ(t) = length(γ([a, t]))

is continuous.

Proof. Let ε > 0 and take t∗ ∈ [a, b). We show that the function Lγ is continuous at t∗.
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By Lemma 1.3.12, we know that

length(γ[a, b]) = sup{length(ϕQ) : Q is a partition of [a, b]},

where ϕQ is the polygonal curve whose vertices are the points γ(ti), ti ∈ Q. Therefore,

we can consider a partition Q0 ⊃ {a, t∗, b} of [a, b] such that

0 ≤ length(γ[a, b])− length(ϕQ0) < ε
3 . (1.15)

Now, take δ ∈ (0, b− t∗) such that Q0∩ (t∗, t∗+δ) = ∅ and such that ‖γ(t)−γ(t∗)‖ ≤ ε/3,

whenever |t − t∗| ≤ δ. Define the following partitions of [a, t∗], [a, t∗ + δ] and [a, b]

respectively:

Q∗ = Q0 ∩ [a, t∗] , Q′∗ = Q∗ ∪ {t∗ + δ} , Q′0 = Q0 ∪ {t∗ + δ} .

Since Q′0 ⊇ Q0 we have length(ϕQ′0) ≥ length(ϕQ0), so from (1.15) we know that

0 ≤ length(γ[a, b])− length(ϕQ′0) < ε
3 .

This implies that 0 ≤ length(γ([a, t∗ + δ]))− length(ϕQ′∗) < ε
3 , or equivalently,

0 ≤
(

length(γ([a, t∗]))− length(ϕQ∗)
)

+
(

length(γ([t∗, t∗+ δ]))−‖γ(t∗)−γ(t∗+ δ)‖
)
< ε

3 .

Since both terms of the sum in the left hand side of the inequality above are non-negative,
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we know that each term is smaller than ε/3. Using this fact we see that for t ∈ (t∗, t∗+δ):

length(γ([a, t]))− length(ϕQ′∗)

= length(γ([a, t∗])) + length(γ([t∗, t]))−
(

length(ϕQ∗) + ‖γ(t∗)− γ(t∗ + δ)‖
)

< ε
3 + length(γ[t∗, t])− ‖γ(t∗)− γ(t∗ + δ)‖

≤ ε
3 + length(γ[t∗, t∗ + δ])− ‖γ(t∗)− γ(t∗ + δ)‖ < 2ε

3 .

From this and recalling our choice of δ, we gather that:

0 ≤ Lγ(t)−Lγ(t∗) = length(γ([a, t]))− length(γ([a, t∗]))

= length(γ([a, t]))− length(ϕQ′∗) + length(ϕQ′∗)− length(γ([a, t∗]))

< 2ε
3 + length(ϕQ∗) + ‖γ(t∗)− γ(t∗ + δ)‖ − length(γ([a, t∗]))

≤ 2ε
3 −

(
length(γ([a, t∗]))− length(ϕQ∗)

)
+ ε

3 ≤ ε,

the last inequality holds since length(γ([a, t∗]))− length(ϕQ∗) is non-negative. Therefore,

we have shown that for any locally injective curve γ defined on an interval [a, b], the

function Lγ is continuous from the right on [a, b).

Now we show that this implies that it is also continuous from the left for any t∗ ∈

(a, b]. For, consider the curve γ1 : [a, b] → R defined as γ1(t) = γ(b − t + a) and let

t′∗ = a + b − t∗. From what we have just shown, we know that there exists δ′ > 0 such

that 0 ≤ Lγ1(t′)−Lγ1(t′∗) < ε, whenever t′ ∈ (t′∗, t′∗ + δ′).

Take t ∈ (t∗ − δ′, t∗) and let t′ = a+ b− t. Notice that t′ ∈ (t′∗, t′∗ + δ′) and:

γ1[t′∗, t′] = {γ(b− u+ a) : u ∈ [t′∗, t′]} = {γ(u) : u ∈ [b− t′ + a, b− t′∗ + a]}

= {γ(u) : u ∈ [t, t∗]} = γ([t, t∗]).
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Therefore,

0 ≤ Lγ(t∗)−Lγ(t) = length(γ([t, t∗])) = length(γ1([t′∗, t′]))

= length(γ1([a, t′]))− length(γ1([a, t′∗])) = Lγ1(t′)−Lγ1(t′∗) < ε,

using t′ ∈ (t′∗, t′∗ + δ′).

Thus γ is continuous at a and b and for t∗ ∈ (a, b), choosing δ0 = min{δ, δ′, t∗−a, b−t∗},

we have |Lγ(t)−Lγ(t∗)| < ε for all t ∈ (t∗ − δ0, t∗ + δ0).

We conclude that Lγ is a continuous function on [a, b]. �

We are now able to show that it is always possible to parametrize the boundary of any

convex body in such a way that the parametrization is an injective 1-Lipschitz mapping.

In particular, the boundary of any ball in a normed space (R2, ‖ · ‖) can be parametrized

in this way.

Corollary 1.3.18. Let ‖ · ‖ be a norm in R2 and consider a convex body E ⊆ R2 and a

point x ∈ ∂E. There exists a bijective 1-Lipschitz mapping ϕ∗ : [0,H‖·‖1 (∂E)]→ ∂E with

starting point x and oriented counterclockwise.

Proof. We will denote the 1-dimensional Hausdorff measure relative to the norm ‖ · ‖

simply by H1. Let E be a convex body on (R2, ‖ · ‖). From Lemma 1.3.3 we know that

there exists an injective continuous parametrization ϕ : [a, b] → ∂E of the boundary of

E. Notice that we can assume that ϕ(a) = x and that, by Remark 1.3.4, ϕ is oriented

counterclockwise. Let HE := H‖·‖1 (∂E) and define ϕ∗ : [0,HE]→ ∂E as:

ϕ∗(t) = ϕ(λ) iff H1(ϕ|[a,λ]) = t. (1.16)

First we show that this function is well defined, i.e. we show that for all t ∈ [0,HE] there

exists a unique λ ∈ [a, b] such that H1(ϕ|[a,λ]) = t. This is equivalent to saying that the
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function L : [a, b] → [0,HE] defined as L(λ) = H1(ϕ|[0,λ]) is a bijection on-to [0,HE].

From Lemma 1.3.17 we know that L is a continuous function. Moreover, it is strictly

increasing, for if t1 < t2, then:

L(t2) = H1(γ[a, t2]) = H1(γ[a, t1]) +H1(γ[t1, t2])

≥ H1(γ[a, t1]) + ‖γ(t1)− γ(t2)‖ > H1(γ[a, t1]) = L(t1).

Since L(a) = 0 and L(b) = HE, we conclude that L is a bijection. Hence, ϕ∗ is an

injective parametrization of ∂E. Notice also that ϕ∗(0) = ϕ(λ) where H1(ϕ([a, λ]) = 0,

hence λ = a and ϕ∗(0) = ϕ(a) = x. Thus, ϕ∗ has starting point x, and it is clear that it

is oriented in the same direction as ϕ.

It is easy to see that ϕ∗ is an L-Lipschitz mapping with L ≤ 1. Indeed, let t1, t2 ∈

[0,HE] such that t1 < t2, and take λ1, λ2 ∈ [a, b] such that ϕ∗(ti) = ϕ(λi) for i = 1, 2.

This means that H1(ϕ|[a,λi]) = ti, therefore:

‖ϕ∗(t2)− ϕ∗(t1)‖ = ‖ϕ(λ2)− ϕ(λ1)‖ ≤ H1(ϕ([λ1, λ2]))

= H1(ϕ([a, λ2])−H1(ϕ([a, λ1]) = |t2 − t1|,

where the inequality uses Lemma 1.3.10. Thus ϕ∗ is an L-Lipschitz mapping with L ≤ 1.

We are now left to show that L = 1.

Assume on the contrary that L < 1 and take 0 < ε < HE(1 − L). From Proposi-

tion 1.3.12, we know that there exists a partition Q = {0 = t0, . . . , tn = HE} of [0,HE]

and a polygonal curve ψQ with vertices {ϕ∗(ti) : 0 ≤ i ≤ n} such that:

length‖·‖(ϕ∗) < length‖·‖(ψQ) + ε.

48



Hence, since ϕ∗ is an injective parametrization of ∂E, we have:

H1(∂E) = length(ϕ∗) < length(ψQ) + ε =
n∑
i=1
‖ϕ∗(ti)− ϕ∗(ti−1)‖+ ε

≤ L
n∑
i=1
|ti − ti−1|+ ε = L(tn − t0) + ε = LHE + ε

< LHE +HE(1− L) = HE = H1(∂E)

This is a contradiction, therefore L = 1. �
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Chapter 2
Bounds for the ratio of constants of an n-fold

Lipschitz quotient on the plane

In this chapter we will study in more depth the behaviour of Lipschitz quotients from the

plane to itself. As we have mentioned before, a remarkable property of Lipschitz quotient

mappings f : (X, ‖ · ‖1)→ (Y, ‖ · ‖2) with X = Y = R2 is that the preimage of each point

is finite. Moreover, every such mapping can be written as a composition P ◦ h, where

P is a complex polynomial and h is a homeomorphism [15]. In this chapter we will see

how the degree of P influences the ratio of the Lipschitz and co-Lipschitz constants of the

mapping f , with respect to the norms ‖ · ‖1 and ‖ · ‖2.

It is proven in [19] that, for a Lipschitz quotient mapping from R2 to itself with the

Euclidean norm, if the inverse image of every point consists of no more than n points,

then c/L ≤ ρn := 1/n, where c and L are the co-Lipschitz and Lipschitz constants of

the mapping. Our aim is to generalise this result to any norm on the plane. Since every

norm on the plane is equivalent to the Euclidean norm, we may use the tools developed

in Section 1.3 and [19, Theorem 2] —which concerns the Euclidean case— to prove the

more general statement Theorem 2.7. A generalisation of [19, Theorem 2] is also stated

an proved in [20, Theorem 1].

First, we introduce some notation. In what follows, the ball of radius r under the

norm ‖ · ‖, centred at the point p ∈ R2 will be denoted by B‖·‖r (p), or simply by Br(p)

when it is clear with which norm we are working. The symbol |z| will mean the modulus

of z, if z ∈ C, so | · | is the Euclidean norm when C ≡ R. Finally, recall that given a point
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z of the plane, we use the symbol arg(z) to denote the argument of the complex number

z taking values in (−π, π].

For each norm ‖ · ‖ on R2 we will denote by L‖·‖ the constant

L‖·‖ = H‖·‖1 (∂B1(0)). (2.1)

We introduce also the notion of an n-fold mapping:

Definition 2.1. We say that a mapping f : R2 → R2 is an n-fold mapping if

max
x∈R2

#f−1(x) = n.

Now that we have clarified the notation that we will be using, we can start the proof

of the main result of this chapter. In order to do this we state and prove the following

lemmas.

Lemma 2.2. Assume f : (R2, ‖ · ‖1) → (R2, ‖ · ‖2) is a c-co-Lipschitz mapping, and

#f−1(0) is finite. Then there exists M > 0, defined by equation (2.2), such that

‖f(p)‖2 ≥ c(‖p‖1 −M) for all p ∈ R2.

Consequently, for any ε ∈ (0, 1) there exists an Rε > 0 such that for any p with

‖p‖1 ≥ Rε we have ‖f(p)‖2 > c(1− ε)‖p‖1.

Proof. For i = 1, 2, denote by Bi
r(x) the ball of radius r centred at x under the norm

‖ · ‖i. Let p ∈ R2 and set

M := max{‖p‖1 : p ∈ f−1(0)}. (2.2)

By Lemma 1.2.2 we have B2‖f(p)‖2(f(p)) ⊆ f(B1 1
c
‖f(p)‖2(p)), so there must exist a point
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p0 ∈ B1 1
c
‖f(p)‖2(p) such that f(p0) = 0. Hence:

‖f(p)‖2 ≥ c‖p− p0‖1 ≥ c(‖p‖1 − ‖p0‖1) ≥ c(‖p‖1 −M).

The first inequality follows from ‖p− p0‖1 ≤ 1
c
‖f(p)‖2.

To prove the second part of the statement, let ε ∈ (0, 1) and Rε > M/ε. Consider a

point p ∈ R2 such that ‖p‖1 ≥ Rε. Now, using the above inequality we have:

‖f(p)‖2 ≥ c(‖p‖1 −M) > c(‖p‖1 − ε‖p‖1) = c(1− ε)‖p‖1.
�

Lemma 2.3. Let f : (R2, ‖ · ‖1)→ (R2, ‖ · ‖2) be a Lipschitz quotient mapping. Then the

mapping f1 = f − f(0) can be written as the composition P1 ◦h1 where P1 is a polynomial

of one complex variable with the leading coefficient equal to one, h1 is a homeomorphism

and f1(0) = P1(0) = h1(0) = 0.

Moreover for any r > 0 there exists an r′ > r such that

‖h1(p)‖1 > r whenever ‖p‖1 ≥ r′. (2.3)

Proof. Let f1 := f − f(0), it is clear that f1 is a Lipschitz quotient mapping with the

same Lipschitz and co-Lipschitz constants as f and f1(0) = 0. By [15] we know that

there is a non-zero polynomial P (z) = anz
n + an−1z

n−1 + . . . + a1z + a0 (with an , 0)

of one complex variable and a homeomorphism h : R2 → R2, such that f1 = P ◦ h. Let

h1(z) := a1/n
n (h(z)− h(0)) and P1(z) = P (a−1/n

n z + h(0)), then it is clear that h1(0) = 0,

the leading coefficient of P1 equals 1, and we also have:

P1(h1(z)) = P1
(
a1/n
n (h(z)− h(0))

)
= P

(
a−1/n
n

(
a1/n
n (h(z)− h(0)

)
+ h(0)

)
= P (h(z)) = f1(z).
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Hence P1 ◦ h1 = f1. Finally notice that,

P1(0) = P (h(0)) = f1(0) = 0.

This finishes the first part of the statement, now we prove the second one. Take β > 0

and α ≥ 1 such that

β‖p‖2 ≤ |p| ≤ α‖p‖1 for all p ∈ R2,

where |p| is the Euclidean norm of p.

Let us denote by bk, k = 1, . . . , n, the coefficients of the polynomial P1, so that

P1(z) = bnz
n + bn−1z

n−1 . . . + b1z, with bn = 1. Let r > 0, and M be as in Lemma 2.2

and pick any

r′ > max
{
r,
αn

cβ

n∑
k=1
|bk|rk +M

}
. (2.4)

Assume ‖p‖1 ≥ r′, then we must have ‖h1(p)‖1 > r. Indeed, if ‖h1(p)‖1 ≤ r then

|h1(p)| ≤ αr, hence:

‖f1(p)‖2 = ‖P1(h1(p))‖2 ≤
n∑
k=1
‖bk(h1(p))k‖2 ≤ 1

β

n∑
k=1
|bk||h1(p))k|

= 1
β

n∑
k=1
|bk||h1(p)|k ≤ 1

β

n∑
k=1
|bk|(αr)k ≤ αn

β

n∑
k=1
|bk|rk

< c(r′ −M) ≤ c(‖p‖1 −M).

The latter is impossible since, by Lemma 2.2, we have ‖f1(p)‖2 ≥ c(‖p‖1 −M). Thus,

‖h1(p)‖1 > r whenever ‖p‖1 ≥ r′. �

Actually, it will be convenient to revisit the local injectivity properties of Lipschitz

quotients already mentioned in Section 1.2. As we will show now, Lemma 2.3 can be used

to prove a somewhat stronger version of Proposition 1.2.9. As we will see in the next

proposition, we can show that there exists a fixed constant ε > 0 such that f is injective
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in every neighbourhood of radius smaller than ε centred far enough from the origin. We

prove this in the case of a 2-fold Lipschitz quotient mapping.

Proposition 2.4. Let f : (R2, ‖ ·‖1)→ (R2, ‖ ·‖2) be a 2-fold Lipschitz quotient mapping.

There exist N > 0 and ε > 0 such that for every x ∈ R2 with ‖x‖1 > N the mapping f is

injective on B‖·‖1
ε (x).

Proof. We may work out the proof in the Euclidean case since any other norm on the

plane is equivalent to the Euclidean norm.

Let L and c be the Lipschitz and co-Lipschitz constants of f with respect to the

Euclidean norm. Replacing f with

f1(z) = f(z)− f(0)
c

we get that f1(0) = 0, the Lipschitz constant of f1 is equal to L/c and the co-Lipschitz

constant is equal to 1. So assume that f(0) = 0 and that c = 1.

As in Lemma 2.3, we may consider the homeomorphism h with h(0) = 0 and the

polynomial P (z) with no constant term and leading coefficient equal to 1, such that

f = P ◦ h. Hence, from Remark 1.1.2, we see that in this case, since f is a 2-fold, we

must have P (z) = z2 + az; so that f(p) = (h(p))2 + ah(p). We will be using Lemma 2.2,

so recall that the constant M was defined by (2.2) as M = max{|p| : p ∈ f−1(0)}, so in

this case M = |a|. Also, from Proposition 1.2.9 we can consider a constant M ′ > 0 such

that f is locally injective at x for all x ∈ R2 \BM ′(0).

Take R > 0 such that

for all z ∈ C with |z| > R we have | arg(z)− arg(z + a)| < π
4 . (2.5)
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From Lemma 2.3, we know that there is an R′ > R such that

|h(p)| > R whenever |p| > R′. (2.6)

Set the constants:

N ′ := π

2 |a|
2; ε := N ′

L
and N > max{|a|(2|a|+ 1) +N ′, R′,M ′}.

Assume that f(p1) = f(p2) for two different points p1, p2 ∈ R2 \BN(0). We show that

|p1 − p2| ≥ ε, so f is injective on B ε
2
(x) for |x| > N + ε

2 .

Let γ be the curve describing the straight line joining p1 and p2. Let us denote by γ∗

the image of γ under h, so that f(γ) = P (γ∗). Notice that γ ⊆ R2 \ BM ′(0), so that f is

locally injective at x, for all x ∈ γ.

First assume that there exists w0 ∈ γ∗ such that |w0| ≤ |a|. In this case the

curve f(γ) = P (γ∗) contains the points P (w0) and f(p1). Recalling Lemma 2.2 and

Lemma 1.3.10, we have:

length(f(γ)) ≥ |f(p1)| − |P (w0)| ≥ c(|p1| − |a|)− |w2
0 + aw0|

> 1 (|a|(2|a|+ 1) +N ′ − |a|)− (2|a|2) = N ′.

Here length(γ) refers to the Euclidean length of the curve γ.

We will show that length(f(γ)) ≥ N ′ also in the case when there does not exist w0 ∈ γ∗

such that |w0| ≤ |a|, i.e. when for all w ∈ γ∗ we have |w| > |a|. Indeed, let z1 := h(p1) and

z2 := h(p2). Since f(p1) = f(p2), z2
1 +az1 = z2

2 +az2. Therefore, (z1−z2)(z1 +z2 +a) = 0.

Also, since p1 , p2, then z1 = h(p1) , h(p2) = z2, so we must have z2 = −z1 − a.
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Furthermore, by (2.6), since |pi| > N > R′, i = 1, 2, we have |zi| > R, so by (2.5):

| arg(z2)− arg(z1)| = | arg(−(z1 + a))− arg(z1)| > π − π
4 . (2.7)

In order for a continuous curve γ∗ to join the points z1 and z2 it must cover all the

angles between arg(z1) and arg(z2), or between arg(z2) and arg(z1). In any case, from (2.7)

we know that the argument range of γ∗ between z1 and z2 is greater than π/2 and all

points of γ∗ are contained outside the circle of radius |a|. Hence,

length(γ∗) ≥ |a|π2 . (2.8)

Now we will show that length(f(γ)) ≥ |a| length(γ∗). Since ∂B|a|(0) is a compact set and

it does not intersect γ∗ we can pick δ such that 0 < δ ≤ dist(γ∗, ∂B|a|(0)). Consider γ∗

as a parametrization say γ∗ : [0, 1] → R2. Choose N∗ ∈ N such that |γ∗(t) − γ∗(t′)| < δ

whenever |t− t′| ≤ 1/N∗.

Now consider any ε′ > 0. From Proposition 1.3.12 we can take a partition of [a, b], say

Q = {a = t0, . . . , tn = b}, such that the length of the polygonal curve ψQ, whose vertices

are the points γ∗(ti) with 0 ≤ i ≤ n, satisfies

length(γ∗) < length(ψQ) + ε′

|a| . (2.9)

We may assume also that the partition Q satisfies |ti− ti−1| < 1/N∗ for all i ∈ {1, . . . , n},

so that

|γ∗(ti)− γ∗(ti−1)| < δ for all i ∈ {1, . . . n}. (2.10)

Now we show that |P (z)−P (w)| > |a||z−w| whenever z, w ∈ γ∗ and 0 < |z−w| < δ.

Let z, w ∈ C such that |z − w| < δ and assume that z , w. Let ξ be the middle point
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between z and w, i.e. ξ = z+w
2 . Notice that

P ′(ξ)(z−w) = (2ξ+a)(z−w) = (z+w+a)(z−w) = z2−az− (w2 +az) = P (z)−P (w).

Therefore,

(2ξ + a)(z − w) = P (z)− P (w). (2.11)

We can see that |ξ| > |a|. Indeed, since ξ is the middle point between z and w and

|z−w| < δ, we get |z− ξ| < δ/2 Hence, as |z| > |a|+ δ, we conclude that |ξ| > |a|. This,

together with (2.11), implies:

|P (z)− P (w)| = |2ξ + a||z − w| ≥ (2|ξ| − |a|)|z − w| > |a||z − w|

whenever |z − w| < δ. Hence, in view of (2.10), we have:

|P (γ∗(ti))− P (γ∗(ti−1))| > |a||γ∗(ti)− γ∗(ti−1)|,

for all i ∈ {1, . . . , n}.

Therefore, using Lemma 1.3.10 and recalling the inequality in (2.9) we have:

length(f(γ)) ≥
n∑
i=1
|P (γ∗(ti))− P (γ∗(ti−1))| >

n∑
i=1
|a||γ∗(ti)− γ∗(ti−1)|

= |a| length(ψQ) > |a|
(
length(γ∗)− ε′

|a|

)
= |a| length(γ∗)− ε′.

Since this is true for all ε′ > 0, in view of (2.8), we gather that:

length(f(γ)) ≥ |a| length(γ∗) ≥
π

2 |a|
2 =: N ′.

Thus, in both cases we have length(f(γ)) ≥ π
2 |a|

2 = N ′. By the Lipschitz property of
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f , following Remark 1.3.9, we conclude that:

|p1 − p2| = length(γ) ≥ 1
L

length(f(γ)) ≥ N ′

L
= ε.

Thus |p1 − p2| ≥ ε, which is what we wanted to show. �

This new version of Proposition 1.2.9 leads to the following new version of Corol-

lary 1.2.12 that we will be using later on. Notice that the key difference between Propo-

sition 1.2.9 and Proposition 2.4, as well as the difference between Corollary 1.2.12 and

Corollary 2.5 is that in the second versions ε is independent of x.

Corollary 2.5. Let f : (R2, ‖ · ‖) → (R2, ‖ · ‖) be a 2-fold Lipschitz quotient mapping.

There exist N > 0 and ε > 0 such that for every x ∈ R2 with ‖x‖ > N we have

∂(f(Br(x))) = f(∂Br(x)) for all r ≤ ε.

Moreover, if c denotes the co-Lipschitz constant of f , then

‖f(x1)− f(x2)‖ ≥ c‖x1 − x2‖,

whenever ‖x1‖, ‖x2‖ > N and ‖x1 − x2‖ < ε.

Proof. The proof can be worked out in the same way as in Corollary 1.2.12 but using

Proposition 2.4 instead of Proposition 1.2.9. �

In connection with Corollary 1.2.12 and Remark 1.2.13, we would like to point out that

Corollary 2.5 shows that there exist N > 0 and ε > 0 such that for all x ∈ R2 \ BN(0)

the mapping f |Bε(x) is bi-Lipschitz, considered as a map onto f(Bε(x)). This sort of

bi-Lipschitz behaviour can also be found under other conditions different from the co-

Lipschitz condition. For instance in [11] it is proved that, in the Euclidean setting,

the so-called Lipschitz regular mappings can be “nicely” decomposed into bi-Lipschitz

mappings. Moreover, in [3] the same conclusion is obtained under weaker assumptions.
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A similar result for bounded length distortion mappings is proved in [24] and [25]. For

further reference in this topic see [8, Chapter 7].

After this interlude about injectivity, we go back to pave the way for the proof of The-

orem 2.7. The next theorem, Theorem 2.6, which generalises [20, Lemma 2], is probably

the theorem that we use the most for our geometric intuition in the rest of this work. This

theorem is somehow the geometric version of the statement “every Lipschitz quotient on

the plane can be written as a homeomorphism followed by a polynomial of one complex

variable”. Basically it states that far away from the origin, the behaviour of Lipschitz

quotients is close to that of a polynomial zn.

Theorem 2.6. If f : (R2, ‖ ·‖1 → (R2, ‖ ·‖2) is an n-fold Lipschitz quotient mapping with

co-Lipschitz constant equal to c, then:

(1) There exist M > 0 and R′ > 0 such that for all ρ > R′ we have:

Ind0 f(∂B1
ρ(0)) = n and f(∂B1

ρ(0)) ⊆ (R2 \B2
c(ρ−M)(0)).

(2) For any ε ∈ (0, 1) there exists an R′ε > 0 such that for all ρ ≥ R′ε we have:

Ind0 f(∂B1
ρ(0)) = n and f(∂B1

ρ(0)) ⊆ (R2 \B2
cερ(0)), where cε = c(1− ε).

Here B1
r (x) denotes the ball centred at x of radius r under the norm ‖ · ‖1.

Proof. We may assume that f(0) = 0, this would change M by at most ‖f(0)‖2 which is a

constant. From Lemma 2.3, we know that f = P ◦h where P (z) = zn+an−1z
n−1+. . .+a1z

and h is a homeomorphism with h(0) = 0. Take R1 > 0 such that

n−1∑
k=1
|ak|/rn−k < 1

2 for all r ≥ R1. (2.12)
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As ‖ · ‖1 is equivalent to | · |, there is a β > 0 such that β‖p‖1 ≤ |p| for all p ∈ R2. Set

R := R1/β, from Lemma 2.3 we know that there is an R′ > R, which may be calculated

using (2.4), such that ‖h(p)‖1 > R, whenever ‖p‖1 ≥ R′.

For ρ > R consider the boundary of the ball B1
ρ(0) with respect to the norm ‖·‖1. Let γ

denote the curve γ := h(∂B1
ρ(0)). Then, for any w ∈ γ we have |w| ≥ β‖w‖1 > βR = R1,

hence:

|P (w)− wn| = |
n−1∑
k=1

akw
k| ≤ |w|n

n−1∑
k=1

|ak|
|w|n−k

≤ |w|n
n−1∑
k=1

|ak|
R1

n−k <
1
2 |w|

n.

This implies that Ind0 P (γ) = Ind0{wn : w ∈ γ} = n.

Thus for any ρ > R′ we have Ind0 f(∂B1
ρ(0)) = n and, by Lemma 2.2, we know that

there exists M > 0 (given by (2.2)) such that ‖f(p)‖2 ≥ c(‖p‖1 −M) for all p ∈ ∂B1
ρ(0),

therefore f(∂B1
ρ(0)) ⊆ (R2 \B2

c(ρ−M)(0)).

Now the statement (2) of this Lemma follows easily. Let ε ∈ (0, 1) and take the relevant

Rε as in Lemma 2.2. If we take R and R′ as before and we define R′ε := max{R′, Rε}

then from Lemma 2.2 we have:

f(∂B1
ρ(0)) ⊆ (R2 \B2

cερ(0)) for all ρ > R′ε.

Also, since R′ε > R′, from statement (1) we know that Ind0 f(∂B1
ρ(0)) = n whenever

ρ > R′ε. �

Now the proof of the main result of this chapter follows easily from the above lemmas

and some results from Chapter 1.

Theorem 2.7. Let ‖ · ‖1, ‖ · ‖2 be two norms on R2 and let L1 and L2 denote the length

of the boundary of the unit ball Bi
1(0), under the norm ‖ · ‖i, i = 1, 2, defined as in

Theorem 2.6.
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If f : (R2, ‖ · ‖1) → (R2, ‖ · ‖2) is an L-Lipschitz and c-co-Lipschitz n-fold mapping

then,
c

L
≤ L1

nL2
.

In particular, if ‖ · ‖1 = ‖ · ‖2, then c/L ≤ 1/n.

Proof. First notice that if we multiply the function f by a constant number, the ratio c/L

stays, so we can assume that L = 1. Suppose now that, on the contrary, c
L

= c > L1
nL2

and take ε > 0 such that ε < (1− L1
ncL2

).

From Theorem 2.6 we know that there is some positive number R′ε > 0 such that, for

all ρ > R′ε we have: Ind0 f(∂B1
ρ(0)) = n and f(∂B1

ρ(0)) ⊆ (R2 \B2
c(1−ε)ρ(0)).

Recall further that from Proposition 1.2.9 we can consider a constant RI > 0 such

that f is locally injective at x for all x ∈ R2 \B1
RI

(0). Hence, the length of a curve f(γ),

where γ is contained outside B1
RI

(0), is defined. See also Remark 1.3.9.

Take ρ > {R′ε, RI}, from Lemma 1.3.3, we can consider an injective parametrization,

γ : [a, b]→ ∂B1
ρ(0), of the boundary of B1

ρ(0). Since ρ > R′ε, we know that Ind0 f(γ) = n

and f(γ) is contained outside the ball B2
c(1−ε)ρ(0). Therefore, from Corollary 1.3.16, we

gather that:

length‖·‖2(f ◦ γ) ≥ n
(
length‖·‖2(∂B2

cερ(0))
)

= n (cερL2) = nc(1− ε)ρL2

> nc
L1

ncL2
ρL2 = ρL1.

On the other hand, since f is a Lipschitz mapping with Lipschitz constant equal to one,

then f cannot increase the length of γ —see for instance (1.10) in Remark 1.3.9— so we

have length‖·‖2(f ◦ γ) ≤ length‖·‖1(γ) = ρL1. This is a contradiction, thus we must have

c/L ≤ L1/nL2. �

Along the rest of this work we will use Theorem 2.7 only in the case when ‖·‖1 = ‖·‖2.
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We would like to point out that this theorem might not give further information about

the ratio c/L for the case ‖ · ‖1 , ‖ · ‖2, namely when L1 > nL2. However, we can find

norms ‖ · ‖1, ‖ · ‖2 on the plane such that ‖ · ‖1 , ‖ · ‖2 and L1 = L2, so Theorem 2.7

does give an effective bound for the ratio of constants c/L in those cases. We include more

detailed comments in this regard in Chapter 6.

Sometimes it will be convenient to think about the result in Theorem 2.7, for the case

‖ · ‖1 = ‖ · ‖2, in the following way.

Corollary 2.8. Let f be a Lipschitz quotient mapping from the plane to itself. If L and c

are the Lipschitz and co-Lipschitz constants of f under any given norm ‖ · ‖ on R2, then:

c
L
> 1

n+1 implies #f−1(x) ≤ n for all x ∈ R2.

Proof. This is the contrapositive version of Theorem 2.7 for the case ‖ · ‖1 = ‖ · ‖2. �

Corollary 2.8 shows that the Euclidean scale ρn = 1/(n+ 1) from [19, Theorem 2] is

in fact a universal scale, in the sense that it works for any Lipschitz quotient mapping

f : (R2, ‖ · ‖)→ (R2, ‖ · ‖), where ‖ · ‖ is an arbitrary norm. Now we would like to know if

the scale ρn is sharp in all cases (recall that we already know that for the Euclidean case

this scale is sharp). The next chapter deals with this problem for the particular case of

the supremum norm.
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Chapter 3
Lipschitz quotient mappings on R2 with the

supremum norm

In this section we will focus on the relation between the cardinality of the inverse image of

a point under a Lipschitz quotient and the ratio of Lipschitz and co-Lipschitz constants of

this mapping in the particular case when the Lipschitz quotient mapping is defined from

the plane endowed with the supremum norm to itself. As we shall see, these relations do

not work in the same way for the supremum norm as they do for the Euclidean norm.

The main result of this section, Theorem 3.2.5, shows that, unlike the Euclidean case,

there does not exist a two-fold Lipschitz quotient mapping f on R2 endowed with the

supremum norm and ratio of constants equal to 1/2.

3.1 An example of a two-fold Lipschitz quotient mapping

In the Euclidean case we have examples of n-fold Lipschitz quotient mappings from the

plane to itself, such that the ratio between the co-Lipschitz and Lipschitz constants is equal

to 1/n; the standard examples are given by fn(reiθ) = reinθ. In particular f2(reiθ) = re2iθ

is a 2-fold Lipschitz quotient mapping with ratio of constants 1/2. However, if we define a

function on R2 endowed with the supremum norm, that behaves in an “analogous” fashion

(i.e a map such that each curve describing the boundary of a ball centred at the origin is

mapped onto a curve that goes two times around the same ball) we get a different ratio

of constants. We shall see this in Example 3.1.1.
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Example 3.1.1. Define a Lipschitz quotient mapping f to fix any square centred at the

origin and to “double” the length of any piece of the curve ∂Br(0), r > 0, starting at the

bottom right corner of the square. Formally, the function is defined as follows: Divide

the plane into the eight regions Ri, i = 1, ..., 8 given by:

R1 = {(x, y) ∈ R2 : x > |y|, y ≤ 0} ∪ {(0, 0)},

R2 = {(x, y) ∈ R2 : x ≥ |y|, y > 0},

R3 = {(x, y) ∈ R2 : y > |x|, x ≥ 0},

R4 = {(x, y) ∈ R2 : y ≥ |x|, x < 0},

and so on. See Figure 3.1 for an illustration. Then the function is defined as:

f(x, y) =



(x, x+ 2y) if (x, y) ∈ R1

(x− 2y, x) if (x, y) ∈ R2

(−y, 2x− y) if (x, y) ∈ R3

(−2x− y,−y) if (x, y) ∈ R4

(−x,−x− 2y) if (x, y) ∈ R5

(−x+ 2y,−x) if (x, y) ∈ R6

(y,−2x+ y) if (x, y) ∈ R7

(2x+ y, y) if (x, y) ∈ R8

(3.1)

We prove that at every point x , 0 the local Lipschitz and local co-Lipschitz constants

of this mapping are equal to 3 and 1, respectively. The following lemma is very useful.

Lemma 3.1.2. Let f : (R2, ‖·‖∞)→ (R2, ‖·‖∞) be defined by f(x1, x2) = (ax1+bx2, cx1+

dx2), with a, b, c, d ∈ R and assume that {(a, b), (a, c), (c, d), (b, d)} ∩ {(0, 0)} = ∅ (so that

f is bijective). Then f is a Lipschitz quotient mapping under the supremum norm with
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Figure 3.1: Lipschitz quotient mapping which “fixes” the squares

Lipschitz constant equal to max{|a| + |b|, |c| + |d|} and co-Lipschitz constant equal to

min
{
|bc−ad|
|a|+|c| ,

|bc−ad|
|d|+|b|

}
.

Proof. Let f be as in the hypothesis. First notice that since f is linear, for any r, L > 0

we have:

f(Br(x)) ⊆ BLr(f(x)) if and only if f(B1(0)) ⊆ BL(0). (3.2)

For, assume that f(B1(0)) ⊆ BL(0) and take y ∈ Br(x), then 1
r
(y − x) ∈ B1(0), and

so 1
r
(f(y) − f(x)) = f(1

r
(y − x)) ∈ BL(0). We conclude that f(y) ∈ BLr(f(x)), so

f(Br(x)) ⊆ BLr(f(x)).
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Let L denote the Lipschitz constant of f , from (3.2) it follows that

L = inf{L′ > 0 : f(Br(x)) ⊆ BL′r(f(x))∀x ∈ R2, r > 0}

= inf{L′ > 0 : f(B1(0)) ⊆ BL′(0)}

= inf{L′ > 0 : f(B1(0)) ⊆ L′B1(0)} = ‖f‖op,

where ‖ · ‖op denotes the operator norm on linear maps from (R2, ‖ · ‖∞) to itself.

Now, f is bijective and the inverse of f , being linear, is L∗-Lipschitz for some L∗ > 0.

Therefore, from the argument above and Corollary 1.2.14 it follows that f is co-Lipschitz

and that the co-Lipschitz constant of f , c, is given by c = 1/L∗ = 1/‖f−1‖op.

Finally notice that in this case the operator norm of f is the ∞-norm of the matrix

determined by f , hence ‖f‖op = max{|a| + |b|, |c| + |d|}. Similarly, we can see that

‖f−1‖op = max
{
|a|+|c|
|bc−ad| ,

|d|+|b|
|bc−ad|

}
= min

{
|bc−ad|
|a|+|c|

|d|+|b|
|d|+|b|

}
. Which is what we wanted to prove.

�

Proposition 3.1.3. The function f : (R2, ‖·‖∞)→ (R2, ‖·‖∞) defined in Example 3.1.1 is

a Lipschitz quotient mapping with Lipschitz constant equal to 3 and co-Lipschitz constant

equal to 1.

Proof. Denote by Li the different rays that define the boundary of each region Ri by

Li = Ri ∩ Ri+1 for i ∈ {1, · · · , 7} and L8 = R8 ∩ R1 (see Figure 3.1 for the picture of

Ri). Let us agree that the function f is defined by f(x1, x2) = (aix1 + bix2, cix1 + dix2)

if x = (x1, x2) ∈ Ri, so ai, bi, ci, di denote the relevant coefficients in (3.1) that define the

function f on the region Ri.

Notice that from Lemma 3.1.2 it follows that f is locally Lipschitz and locally co-

Lipschitz at any point in the interior of the region Ri, for any i = 1, . . . , 8. Furthermore,

for x ∈ Int(Ri) the local Lipschitz constant, Lx, and the local co-Lipschitz constant, cx,
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at the point x, satisfy:

Lx ≤ sup{|ai|+ |bi|, |ci|+ |di|} = 3 (3.3)

cx ≥ min
{
|bici − aidi|
|ai|+ |ci|

,
|bici − aidi|
|di|+ |bi|

}
= 1 (3.4)

We can easily see that inequality (3.3) remains true for all x ∈ R2. Indeed, consider a

point x = (x1, x2) ∈ Li and assume first that x , 0. From the definition of f and Li, we

can see that:

f(x) = (aix1 + bix2, cix1 + dix2) = (ai+1x1 + bi+1x2, ci+1x1 + di+1x2),

so that, if y ∈ R2 is such that ‖y−x‖∞ < 1
2‖x‖∞, it does not matter if the point y belongs

to Ri or to Ri+1, we will always have ‖f(x)− f(y)‖∞ ≤ 3‖x− y‖∞. We conclude that for

all x ∈ R2 \ {0} the local Lipschitz constant satisfies Lx ≤ 3. However, it is clear that for

x = 0 this inequality is satisfied as well; in fact since ‖f(y)‖∞ = ‖y‖∞ for all y ∈ R2 we

see that the local Lipschitz constant of f at zero is equal to 1. Hence, from Lemma 3.1.2,

it follows that f is a Lipschitz mapping with Lipschitz constant less than or equal to 3.

We are now left to show that f is 1-co-Lipschitz at the points belonging to Li for

i ∈ {1, · · · , 8}. For x = 0 this is clear since for all r > 0, f maps balls of radius r centred

at zero, to balls of radius r centred at zero. Therefore f is locally co-Lipschitz at x = 0

and the co-Lipschitz constant at zero is equal to 1. Now, to prove this for x , 0 we divide

the proof into eight cases depending on the ray Li which the point x belongs to. We will

only deal here with one case, i = 6, all other cases can be carried out in a similar fashion.

Case 1: x ∈ L6 = {(t, t) : t ≤ 0}. We need to show that there exists a constant

rx such that for all r < rx we have Br(x) ⊆ f(Br(x)). For this, divide the plane (the

co-domain of f) in 4 regions Rj defined as Rj := (R2j−1 ∪R2j) for j ∈ {1, 2, 3, 4}. Notice

that R2 = ∪4
j=1Rj, so if we prove that there is a positive constant rx such that for all
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r < rx we have

Br(f(x)) ∩ Rj ⊆ f(Br(x)), for all j ∈ {1, 2, 3, 4}. (3.5)

then f is locally co-Lipschitz at x with co-Lipschitz constant less than or equal to 1. As

we will show now, this is true if we set rx := 1
2‖x‖∞.

First we prove (3.5) for j = 2. Let r ≤ rx = 1
2‖x‖∞. Take w ∈ Br(f(x)) ∩ Rj and

consider the point y = (y1, y2) defined by y1 = −w2, y2 = 1
2(w1 − w2). We will see that

w ∈ f(Br(x)) by showing that ‖y − x‖∞ < r and that w = f(y).

Since x = (x1, x2) ∈ L6, we have x1 = x2 and f(x) = (x1,−x1), so that:

‖y − x‖∞ = sup{|w2 + x1|, |12(w1 − w2)− x1|},

and we have:

|w2 + x1| ≤ sup{|w1 − x1|, |w2 + x1|} = ‖w − f(x)‖∞ < r.

|12(w1 − w2)− x1| ≤ 1
2(|w1 − x1|+ | − w2 − x1|)

≤ sup{|w1 − x1|, |w2 + x1|} = ‖w − f(x)‖∞ < r.

Thus y ∈ Br(x).

Now, to show that f(y) = w, notice that the hypothesis w ∈ R2 leads to −w2 ≤ w1 <

w2, hence:

y2 = 1
2(w1 − w2) < 0

−y1 = w2 ≥ |12(w1 − w2)| = |y2|

Thus, y ∈ R6, therefore, recalling (3.1): f(y) = (−y1 + 2y2,−y1) = (w1, w2). We conclude

that y ∈ f−1(w) ∩Br(x). Therefore (3.5) is true for j = 2.
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Now, for j = 3, take w ∈ R3 = R5 ∪ R6 and consider the point y = (y1, y2) given by

y2 = w1, y1 = 1
2(w1 − w2). Then:

‖y − x‖∞ = sup{|12(w1 − w2)− x1, |w1 − x1||}.

Since f(x1, x2) = (x1,−x1) we have:

|w1 − x1| ≤ sup{|w1 − x1|, |w2 + x1|} = ‖w − f(x)‖∞ < r.

|12(w1 − w2)− x1| ≤ 1
2(|w1 − x1|+ |w2 + x1|)

≤ sup{|w1 − x1|, |w2 + x1|} = ‖w − f(x)‖∞ < r.

Thus ‖y − x‖∞ < r, i.e. y ∈ Br(x).

To show that f(y) = w notice that the hypothesis w ∈ R3 implies w1 ≤ w2 < −w1,

then:

y2 − y1 = 1
2(w1 + w2) < 0 and

y1 = 1
2(w1 − w2) and y2 = w1 < 0

Thus, y ∈ R7, therefore f(y) = (y2,−2y1 + y2) = (w1, w2), and so (3.5) is satisfied for

j = 3.

Finally, for j ∈ {1, 4}, notice that since x ∈ L6, we have x1 = x2 = −‖x‖∞ and

f(x) = (x1,−x1). This, together with the fact that ‖w − f(x)‖∞ < r ≤ 1
2‖x‖∞ for any

w ∈ Br(f(x)) leads to:

|w1 − x1| ≤ ‖w − f(x)‖∞< −1
2x1 ⇒ w1 <

1
2x1 < 0;

|w2 + x1| ≤ ‖w − f(x)‖∞< −1
2x1 ⇒ w2 >−1

2x1 > 0.
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On the other hand we have:

R1 = R1 ∪R2 ⊆ {(z1, z2) ∈ R2 : z1 > 0};

R4 = R7 ∪R8 ⊆ {(z1, z2) ∈ R2 : z2 < 0}.

This means that, for r < Rx, Br(f(x)) ∩ Rj = ∅, for j ∈ {1, 4}, therefore (3.5) is true for

j = 1, 4.

We conclude that for all r < 1
2‖x‖∞, Br(f(x)) ∩Rj ⊆ f(Br(x)), for all j ∈ {1, 2, 3, 4};

thus f is locally co-Lipschitz at every point x ∈ L6 and the co-Lipschitz constant, cx, at

the point x, satisfies cx ≥ 1.

The proof of the remaining cases, x ∈ Ri, i , 6 can be carried out in the same way.

So we conclude that f is locally co-Lipschitz at every point x ∈ R2 and that the local

co-Lipschitz constant, cx, of f at x satisfies cx ≥ 1.

Summing up, we have shown that the mapping f is a locally Lipschitz quotient map-

ping on the plane, and thus, by Propositions 1.2.6 and 1.2.7, a Lipschitz quotient mapping.

We have also shown that for every x in the plane the local Lipschitz and co-Lipschitz con-

stants at the point x satisfy Lx ≤ 3 and cx ≥ 1, so, if L and c denote the Lipschitz and

co-Lipschitz constants of the map f , we must have L ≤ 3 and c ≥ 1.

Since f fixes the norm of each point on the plane, it is easy to see that the co-Lipschitz

constant of f is also less than or equal to 1. Indeed, since f(Br(0)) = Br(0) for all r > 0,

then f(Br(0)) does not contain any ball centred at f(0) = 0 with radius bigger that r.

Hence c ≤ 1 and we conclude that c = 1.

On the other hand, it is also easy to see that L = 3, because for each x ∈ R2\{0} there

exists y ∈ R2 such that ‖f(x)− f(y)‖∞ = 3‖x− y‖∞; for example, in R1 if x = (x1, x2),
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y = (y1, y2), with x , y and we take x1 − y1 = x2 − y2 then:

‖f(x)− f(y)‖∞ = ‖x1 − y1, x1 − y1 + 2(x2 − y2)‖∞

= sup{|x1 − y1|, 3|x1 − y1|}

= 3‖x− y‖∞.

Thus f is a Lipschitz quotient mapping with ratio of constants equal to 1
3 .

Notice that in each region Ri there is always a direction (±1,±1) in which the Lipschitz

constant is equal to 3. More precisely, given x ∈ R2 \ {0} we can always find a direction

v ∈ (±1,±1) such that for all y in the same region as x with y = (λvx) for some λ ∈ R,

we have ‖f(x)− f(y)‖∞ = 3‖x− y‖∞. Furthermore, in each region, one of the coordinate

functions that define f is given by (x1, x2) 7→ ±xi with i ∈ {1, 2}, and it is clear that the

co-Lipschitz constant of f must be smaller than or equal to the co-Lipschitz constant of

each of its coordinate functions, thus c = 1. So, indeed, we have shown that the local

Lipschitz and co-Lipschitz constants of f at any non-zero point x ∈ R2 are equal to 3 and

1 respectively. �

3.2 Two-fold Lipschitz quotient mappings cannot have ratio of constants

equal to 1/2

In the second part of this chapter we will show that it is not possible for a Lipschitz

quotient mapping from the plane endowed with the supremum norm, to itself, to have

max #f−1(p) = 2 and ratio of constants equal to 1/2.

First, we are going to prove that a Lipschitz quotient mapping satisfying these two

properties cannot send the corners of the squares centred at the origin far from the lines

y = x and y = −x. Later on, we will generalise this property for the case of norms whose

unit ball is a regular polygon consisting of 4m sides, and prove a similar statement in
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Proposition 4.2.9 for m > 1.

Throughout this section for any pair of subsets A,B ⊆ R2 the notation dist(A,B) will

mean the distance between the sets A and B under the supremum norm, this is:

dist(A,B) = dist∞(A,B) = inf{‖a− b‖∞ : a ∈ A, b ∈ B}.

Proposition 3.2.1. Let g : R2 → R2 be a 2-fold L-Lipschitz and c-co-Lipschitz mapping

with respect to the supremum norm ‖ · ‖∞.

If c/L = 1
2 then there exist constants κ and R′ such that for all ρ ≥ R′ if p ∈ Dρ then

dist(g(p),Dcρ) < κ, where Dρ is defined as

Dρ = {(x, y) ∈ R2 : |x| = |y| > ρ}. (3.6)

Proof. Assume first that g is a Lipschitz quotient mapping with Lipschitz constant L = 1

and co-Lipschitz constant c = 1/2 that maps zero to zero.

Take M and R′ as in statement (1) of Theorem 2.6. Let p0 = (x0, y0) ∈ Dρ, where

ρ > R′, we set r := ‖p0‖∞ > ρ and a := dist∞(g(p0),Dcρ); assume a > 0. Take the

points p1 = (x0 − ax, y0) and p2 = (x0, y0 − ay), where |ax| = |ay| = a and ax, ay have the

same sign as x0 and y0, respectively. Notice that p1, p2 ∈ ∂Br(0), indeed, by the Lipschitz

property, we have ‖g(p0)‖∞ = ‖g(p0) − g(0)‖∞ ≤ ‖p0‖∞ = r, thus the distance between

g(p0) and some corner of the square ∂Bcr(0) is less than or equal to r − cr, therefore

a ≤ r − cr = r/2. Consequently ‖p1‖∞ = ‖p0‖∞ = ‖p2‖∞ = r.

Consider the set D0 = {(x, y) ∈ R2 : |x| = |y| > 0} and let R1, . . . , R4 be the closure of

each of the connected components of R2 \(D0∪{(0, 0)}. Let us agree that R1 is the region

that contains the point (0, 1) and that the remaining indices are placed counterclockwise.
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Note that:

‖g(p0)− g(pi)‖∞ ≤ ‖p0 − pi‖∞ = a = dist(g(p0),Dr/2), for i ∈ {1, 2},

so all the three points g(pi), i ∈ {0, 1, 2}, are in one of the four regions, say in Rξ. It

follows from Corollary 1.3.11 that H1(∂Br(0)) = 8r, so we can let γ : [0, 8r] → ∂Br(0)

be the 1-Lipschitz parametrization of ∂Br(0) given by Corollary 1.3.18, starting at p1 so

that γ(ti) = pi where t1 = 0, t0 = a and t2 = 2a. Then, by Theorem 2.6, the curve g ◦ γ

is a curve contained outside Bc(r−M)(0) with Ind0 g ◦ γ = 2.

Now, let q1 := g(γ(t1)) = g(p1) and q2 := g(γ(t2)) = g(p2). From Lemma 1.3.14 we

infer that:

‖q1 − q2‖∞ + length∞(g ◦ γ|[t2,8r]) ≥ (2)(8)(1
2(r −M)) = 8r − 8M.

In addition, since g is 1-Lipschitz we have:

‖q1 − q2‖∞ = ‖g(γ(t1))− g(γ(t2))‖∞ ≤ ‖γ(t1)− γ(t2)‖∞ = a.

Hence, length∞(g ◦ γ|[t2,8r]) ≥ 8r − 8M − a.

On the other hand, since g and γ are 1-Lipschitz, the argument from Remark 1.3.9

leads to:

length∞(g ◦ γ|[t2,8r]) ≤ 8r − 2a.

So we conclude that 8r − 2a ≥ 8r − 8M − a, i.e. a ≤ 8M .

Thus, the conclusion of the present lemma is satisfied if we set κ > 8M .

Finally, consider any L-Lipschitz and c-co-Lipschitz mapping g such that c/L = 1/2

and assume max #g−1(p) = 2. We know that for the mapping g1 := 1
L

(g − g(0)) there

are constants R′1 and κ1 such that dist(g1(p),D(c/L)r) < κ1, for all p ∈ Dr with r > R′.
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Then it is clear that the constants R′ := R′1 and κ := Lκ1 + ‖g(0)‖∞, would work for the

mapping g. �

Now that we know that a 2-fold Lipschitz quotient f , with ratio of constants c/L = 1/2

must map corners of squares “close to corners”, we can actually say something more about

the behaviour of a function f satisfying the conditions of Proposition 3.2.1. As the next

corollary shows, such a mapping f should also map the corners of squares close to corners

of squares in a “certain order”. In this sense, the behaviour of such a function is very

similar to the one of the 2-fold mapping defined in Example 3.1.1. Before stating this

result, we introduce new notation.

Definition 3.2.2. For ρ > 0 and i ∈ {0, 1, 2, 3}, we define the following sets.

We will denote by Lρi , the different components of the set Dρ defined by (3.6), in the

following way:

Lρ0 = {(x1, x2) ∈ R2 : x1 = −x2 ≥ ρ} Lρ1 = {(x1, x2) ∈ R2 : x1 = x2 ≥ ρ}

Lρ2 = {(x1, x2) ∈ R2 : −x1 = x2 ≥ ρ} Lρ3 = {(x1, x2) ∈ R2 : −x1 = −x2 ≥ ρ}.

We will also denote by P ρ
i , the corners of the square of radius ρ centred at the origin (in

the supremum norm sense), starting with the bottom right corner and placing the indices

counterclockwise and starting with the bottom right corner.

Finally, for any given ε > 0 we define the region Rρ
i (ε) ⊆ R2 as:

Rρ
i (ε) = {x ∈ R2 : dist(x,Lρi ) < ε}, i = 0, 1, 2, 3. (3.7)

The following statement, proved for the supremum norm, is later proved for the case

of polygonal n-norm with n = 4m, in Lemma 4.2.10.
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Lemma 3.2.3. Let f : R2 → R2 be a 2-fold L-Lipschitz and c-co-Lipschitz mapping with

respect to the supremum norm.

If c/L = 1
2 , then there exist j0 ∈ {0, . . . , 3} and constants κ and R′ such that for all

ρ ≥ R′ we have that dist(f(P ρ
i ),Lcρj(i)) < κ, where j(i) = (2i+ j0) mod 4; in other words:

f(P ρ
i ) ∈ Rcρ

j(i)(κ) where j(i) = 2i+ j0 mod 4.

Proof. Let κ and R′ be as is Proposition 3.2.1, and set the constants:

ε ∈ (0, 1
7) and R > max

{
R′, R′ε,

κ
cε

}
,

where R′ε is as in Theorem 2.6.

Let ρ > R, ρ′ = (1 − ε)ρ and consider the regions Rcρ
i (κ) defined by (3.7). Notice

that, since ρ > R > κ/cε, we have cρ′ = c(1− ε)ρ < cρ− κ, therefore, for all i, the region

Rcρ
i (κ) is contained outside the square Bcρ′(0), see Figure 3.2. Hence:

dist∞(Rcρ
i (κ),Rcρ

i+1(κ)) > dist∞(Rcρ
i (κ),Lρ

′

i+1) > dist∞(Lcρ
′

i (κ),Lρ
′

i+1) = 2cρ′. (3.8)

We have shown in Proposition 3.2.1 that for i ∈ {0, 1, 2, 3} we have f(P ρ
i ) ∈ Rcρ

j (κ)

for some j ∈ {0, . . . , 3}. Let j0 be the index of the region that contains f(P ρ
0 ), i.e

f(P ρ
0 ) ∈ Rcρ

j0 (κ). For simplicity of notation let us assume that j0 = 0, we will show that

in this case we actually have f(P ρ
i ) ∈ Rcρ

(2i) mod 4(κ) for all i ∈ {0, 1, 2, 3}. Assume on the

contrary that f(P ρ
1 ) ∈ Rcρ

1 , for example.

From Corollary 1.3.18, we can consider the 1-Lipschitz parametrization of ∂Bρ(0)

with starting point at P0, say γ : [0, 8ρ]→ ∂Bρ(0), given by (1.16). It is easy to see that

γ(2ρ) = P ρ
1 , therefore f(γ(2ρ)) = f(P ρ

1 ) ∈ Rcρ
1 (κ). We will consider the two pieces γ1
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Figure 3.2

and γ2 of γ given by

γ1 = γ|[0,2ρ] and γ2 = γ|[2ρ,8ρ].

From Theorem 2.6, we know that f(γ) ⊆ R2 \Bcρ′(0) and Ind0 γ = 2. Therefore either

γ1 or γ2 has index at least 1 around the origin.

Assume first that the curve f ◦ γ is oriented counterclockwise.

If γ2 has index at least 1 around the origin, then since we are assuming that f(γ(2ρ)) ∈

Rcρ
1 (κ), and f(γ(0)) ∈ Rcρ

0 (κ), the curve f ◦ γ2 must go from Rcρ
1 (κ) to Rcρ

0 (κ) in the

counterclockwise direction outside the square ∂Bρ′(0), plus one complete turn around

∂Bρ′(0) hence, recalling (3.8):

length∞(f ◦ γ2) ≥ dist∞(Rcρ
1 (κ),Lcρ

′

2 ) + dist∞(Lcρ
′

2 ,Lcρ
′

3 ) + dist∞(Lcρ
′

3 ,Rcρ
0 (κ))

+ length∞(∂Bcρ′(0) > 6cρ′ + 8cρ′ = 14cρ′. (3.9)

On the other hand, since f is L-Lipschitz and γ2 is 1-Lipschitz, by Remark 1.3.9, we
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have:

length∞ f ◦ γ2 ≤ L(8ρ− 2ρ) = L6ρ. (3.10)

From (3.9) and (3.10) we have 14c(1− ε)ρ < L6ρ, therefore:

c

L
≤ 6

14(1− ε) <
6

14(1− 1
7) = 1

2 .

But we are assuming c/L = 1/2, thus in this case f(P ρ
1 ) < Rcρ

1 (κ).

Now, if γ1 has index at least 1 around the origin, following the same idea we get:

length∞(f ◦ γ1) ≥ length∞(∂Bcρ′(0)) + dist∞(Rcρ
0 (κ),Rcρ

1 (κ)

>8cρ′ + 2cρ′ = 10cρ′. (3.11)

From the Lipschitz condition we have:

length∞ f ◦ γ1 ≤ L(2ρ− 0) = L2ρ. (3.12)

So now from equations (3.11) and (3.12) we get

c

L
≤ 1

5(1− ε) <
1

5(1− 1
7) <

1
2 .

This is again a contradiction, so we conclude that in any case f(P ρ
1 ) < Rcρ

1 .

Now, following similar ideas, we prove that f(P ρ
1 ) < Rcρ

i (κ), for i ∈ {0, 3}. Indeed,

notice that if f ◦ γ1 goes from f(γ1(0)) to f(γ1(2ρ)) in the counterclockwise direction

around ∂Bcρ′(0), then the same idea of the previous case would lead to:

6cρ′ < length∞(f ◦ γ1) ≤ 2Lρ
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and we get again:
c

L
<

2
6(1− ε) <

1
3(1− 1

7) <
1
2 ,

which is a contradiction. The other option is that f ◦ γ1 goes from f(γ1(0)) to f(γ1(2ρ))

in the clockwise direction first and then —since we are assuming that f ◦ γ is oriented in

the counterclockwise direction— from Lcρ
′

0 complete two entire turns around ∂Bcρ′(0). In

this case we would have:

16cρ′ < length∞(f ◦ γ2) ≤ L6ρ.

c

L
<

6
16(1− ε) <

3
8(1− 1

7) <
1
2 .

Since this is impossible we conclude that f(P ρ
1 ) ∈ Rcρ

2 , whenever f ◦ γ is oriented in the

counterclockwise direction. However, if f ◦ γ is oriented clockwise, and we assume that

f(P ρ
1 ) ∈ Rcρ

i (κ) with i , 2 then we will get the same contradictory inequalities that we

found for the case f ◦γ oriented counterclockwise and f(P ρ
i ) ∈ Rcρ

4−i(κ). Thus in any case

we have f(P ρ
1 ) ∈ Rcρ

2 (κ).

We can follow the same argument for i = 2 and i = 3, to get f(P ρ
2 ) ∈ Rcρ

0 (κ) and

f(P ρ
3 ) ∈ Rcρ

2 (κ). So we conclude that whenever j0 = 0 we have:

f(P ρ
i ) ∈ Rcρ

(2i) mod 4(κ) for all i ∈ {0, 1, 2, 3, 4}.

Furthermore, by continuity, we can assure that this remains true for all ρ > R′. So this

finishes the proof for j0 = 0.

It is clear that for j0 > 0 we only need to perform a rotation of −j0π/4 and then

back, so this last rotation will add j0 to the index of the region Rcρ
j (κ), therefore f(P ρ

i ) ∈

Rcρ
(2i)+j0 mod 4(κ) for all ρ > R′. �

Proposition 3.2.4. Let g : R2 → R2 be a 2-fold L-Lipschitz and c-co-Lipschitz mapping
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with respect to the supremum norm. Assume further that for all ε > 0 and for all M > 0

there is a ρ > M such that:

i) |arg(g(P ρ
i )) + π/4| < ε, i ∈ {0, 2}.

ii) | arg(g(P ρ
i ))− 3π/4| < ε, i ∈ {1, 3}.

Then c/L ≤ 1/3. (Here, P ρ
i is as in Definition 3.2.2.)

Proof. As before assume that L = 1 and g(0) = 0. We must show that c ≤ 1/3. Let

ε > 0 and take the relevant R′ε as in Theorem 2.6. By hypothesis we can pick some

ρ > R′ε which satisfies the conditions (i) and (ii) of the present proposition. Notice that

Theorem 2.6 implies that for i ∈ {0, 1, 2, 3} we have ‖g(P ρ
i )‖∞ ≥ c(1− ε)ρ.

Let ρ′ = (1− ε)ρ and consider the square ∂B2ρ′(0). By the co-Lipschitz property of g,

we know that g(B2ρ′(0)) ⊇ B2cρ′(0). Since P 2cρ′
1 ∈ B2cρ′(0), there is a point x0 ∈ B2ρ′(0)

such that g(x0) = P 2cρ′
1 . Notice that, since x0 ∈ B2ρ′(0) ⊆ B2ρ(0), there is a corner P ρ

k

of the square ∂Bρ(0) such that ‖x0 − P ρ
k ‖∞ ≤ ρ, see Figure 3.3. Hence, by the Lipschitz

property, we have:

‖P 2cρ′
1 − g(P ρ

k )‖∞ = ‖g(x0)− g(P ρ
k )‖∞ ≤ ‖x0 − P ρ

k ‖∞ ≤ ρ. (3.13)

Let Q0 and Q1 be the intersections between the square ∂Bcρ′(0) and the rays y =

tan(−π/4 + ε)x, y′ = tan(3π/4− ε)x with x ≥ 0 (see the right hand side of Figure 3.3).

Since g(P ρ
k ) satisfies either i) or ii) of the hypothesis, we know that ‖P 2cρ′

1 − g(P ρ
k )‖∞ ≥

‖P 2cρ′
1 −Q0‖∞ = ‖P 2cρ′

1 −Q1‖∞. Then we have:

‖P 2cρ′
1 − g(P ρ

k )‖∞ ≥ ‖P 2cρ′
1 −Q0‖∞

≥ ‖P 2cρ′
1 − P cρ′

0 ‖∞ − ‖P
cρ′

0 −Q0‖∞ = 3cρ′ − ‖P cρ′

0 −Q0‖∞

= 3cρ′ − cρ′(1− tan(π/4− ε)) = cρ′(2 + tan(π/4− ε)).
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Figure 3.3

Hence, from (3.13), and recalling that ρ′ = (1− ε)ρ, we gather that:

ρ ≥ c(1− ε)ρ(2 + tan(π/4− ε))

Thus the co-Lipschitz constant of g satisfies:

c ≤ 1
1− ε ×

1
2 + tan(π/4− ε) . (3.14)

Therefore, since this inequality holds for every ε, and

lim
ε→0

(1− ε)(2 + tan(π/4− ε)) = 3,

we conclude that c ≤ 1/3. �

We finish this chapter by proving that every 2-fold Lipschitz quotient mapping with

Lipschitz and co-Lipschitz constants equal to L and c under the supremum norm, has

ratio of constants c/L < 1/2 (strictly less than 1/2).
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This shows that, even when the bounds —from Corollary 2.8— for the ratio of con-

stants of an n-fold Lipschitz quotient work for any norm on the plane, there are norms

for which some of the bounds are not achieved by any n-fold Lipschitz quotient mapping.

Theorem 3.2.5. If g : (R2, ‖·‖∞)→ (R2, ‖·‖∞), is a 2-fold L-Lipschitz and c-co-Lipschitz

mapping then c/L < 1/2.

Proof. Let g be a 2-fold Lipschitz quotient mapping under the supremum norm with

Lipschitz and co-Lipschitz constants equal to L and c, respectively. From Theorem 2.7,

we know that c/L ≤ 1/2. Let us assume, for a contradiction, that c/L = 1/2. In this

case from Lemma 3.2.3 there exist R′ > 0, κ > 0 and j0 ∈ {0, 1, 2, 3} such that

g(P ρ
i ) ∈ Rρ

j(i)(κ) whenever ρ > R′, and j(i) = 2i+ j0 mod 4. (3.15)

Recall that Rρ
i (κ) is defined by (3.7). It is not hard to see that condition (3.15) implies

that g satisfies the conditions of Proposition 3.2.4. Indeed, given ε ∈ (0, π/2) and M > 0,

take

ρ > max{R′,
√

2cκ
δ
,M},

where δ = tan(ε). Let us assume for simplicity that j0 = 0, so that g(P ρ
i ) ∈ Rcρ

2i (κ).

Then, for i ∈ {0, 2} we have g(P ρ
i ) ∈ Rcρ

0 (κ), so we know that there is a point p with

arg(p) = −π/4 such that g(P ρ
i ) ∈ Bκ(p), therefore:

∣∣∣tan
(

arg(g(P ρ
i )) + π

4

)∣∣∣ =
∣∣∣tan

(
arg(g(P ρ

i ))− arg(p)
)∣∣∣ < √

2κ
cρ

< δ.

The same argument shows that for i ∈ {1, 3} we have:

∣∣∣tan
(

arg(g(P ρ
i ))− 3π

4

)∣∣∣ < δ.
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Thus, we conclude that for ρ > M we have:

|arg(g(P ρ
i )) + π/4| < ε, i ∈ {0, 2} and | arg(g(P ρ

i ))− 3π
4 | < ε, i ∈ {1, 3}.

By Proposition 3.2.4 this implies c/L ≤ 1/3, which is impossible. �

We have shown then, that for the supremum norm there is no 2-fold Lipschitz quotient

that achieves the bound 1/2 of Corollary 2.8. This fact opens new questions.

First, can we find a sharp value ρ∞1 such that for any L- Lipschitz and c-co-Lipschitz

mapping f : (R2, ‖ · ‖∞)→ (R2, ‖ · ‖∞), the assumption c/L > ρ∞1 implies #f−1(x) ≤ 2?

Another natural question is whether the Euclidean norm is the only norm on the plane

that achieves the bound of Corollary 2.8; or similarly, whether the supremum norm is the

only norm that does not always achieve the bounds.

Later on, in Chapter 5, we will work on the first question where we state and prove

some results that indicate that ρ∞1 should be equal to 1/3. But first, we devote the next

chapter to the research that we have done on the second question.

82



Chapter 4
Polygonal norms

In the previous chapter, in Theorem 3.2.5, we proved that with respect to the supremum

norm ‖ · ‖∞ on the plane, unlike in the Euclidean case, every 2-fold Lipschitz quotient

mapping defined on the plane will have ratio of constants strictly less than 1/2. A natural

question is: Is the supremum norm the only norm on the plane with this property? Or, in

the opposite direction, is the Euclidean norm the only norm on the plane such that there

is a 2-fold Lipschitz quotient mapping with ratio of constants equal to 1/2? As we shall

prove in this chapter, the answer to both questions is negative. We will find examples of

such norms by considering “polygonal norms”, i.e. norms whose unit ball is a polygon.

Definition 4.1. For n ∈ N, n even, let the n-norm, denoted by ‖ · ‖n, be the norm in R2

whose unit ball centred at the origin, ∂Bn
1 (0), is the regular n-gon with a vertex at (0, 1).

In this way the `1 norm —also known as the rectilinear norm, or the taxicab norm— will

be denoted by ‖ · ‖4, for example.

Given a curve γ on R2 we will use the notation lengthn(γ) instead of length‖·‖n(γ) as

defined in Definition 1.3.7.

In a similar way as we did for the supremum norm in Example 3.1.1, we define, for

any even n ∈ N, the doubling mapping for the n-norm, which is a two-fold mapping that

behaves in an analogous way to the exponential mapping f(reiθ)→ rei2θ, but relative to

the n-norm. We define this mapping in the following way.

83



Definition 4.2. Let Ln := lengthn(∂Bn
1 (0)), and for each constant r > 0 consider the

curve γr : [0, 2rLn]→ ∂Bn
r (0) such that:

1. Ind γr(0) = 2;

2. γr is a 1-Lipschitz mapping;

3. γr(0) = γr(rLn) = γr(2rLn) = (r, 0).

Now consider the doubling mapping fn : (R2, ‖ · ‖n)→ (R2, ‖ · ‖n) defined in the following

way: given x ∈ R2 with ‖x‖n = r, take tx ∈ [0, rLn) such that γr(tx) = x. Notice that tx

is uniquely defined since γr is injective along [0, rLn) and γr([0, rLn)) = ∂Bn
r (0). We set

fn(x) := γr(2tx).

In what follows, when working under an n-norm and whenever we consider a polygon

∂Bn
r (0) we will denote its vertices by

V r
0 , V

r
1 , . . . , V

r
n−1, (4.1)

starting with the vertex that lies on the positive side of the x-axis and going counterclock-

wise; sometimes, when the radius r is fixed we will simply denote them by V0, V1, . . . , Vn−1.

In the same way, when we consider polygons ∂Bn
r (x) that are not centred at the origin we

will enumerate their vertices starting with the vertex that, when the centre of the polygon

is translated to the origin, lies in the positive side of the x-axis and placing the remaining

indices counterclockwise. Also, let us agree that whenever we are considering vertices of

balls under the n-norm the subindices are understood to be modulous n.

Sometimes we refer to Bn
r (x) and sometimes to ∂Bn

r (x) as polygons. When the norm

that we are working with is fixed we may write Br(0) instead of Bn
r (0) to simplify the

notation. Finally, before we start working with the polygonal norms, it will be useful to

recall some very basic properties of regular polygons:
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∗ The Euclidean length of a side of a regular polygon with n sides and radius r is

given by 2r sin(π/n).

∗ An apothem of a regular polygon is a segment joining the centre with the middle

point of a side and it has Euclidean length equal to r cos(π/n).

4.1 Polygonal norms with 4m+ 2 sides

We will show now that there are non-Euclidean norms on the plane for which, as in

the Euclidean case, there exists a 2-fold Lipschitz quotient mapping f satisfying c/L =

1/2. Indeed, for all the n-norms with n = 4m + 2 the doubling mapping fn defined by

Definition 4.2 satisfies c/L = 1/2. This section is devoted to the proof of this result. We

first prove a technical lemma.

Lemma 4.1.1. For any given x ∈ R2 and r > 0 let W r
i be the vertices of the polygon

∂Br(x) centred at x, placing the indices counterclockwise. If Lri denotes the line through

the vertex W r
i with slope − cos(π/n)

sin(π/n) (i.e. parallel to the side [W r
0 ,W

r
1 ] of ∂Br(x)). Then,

for all k ∈ {1, . . . ,m− 1} the line Lrk is to the left of the line L2r
k+1.

Proof. For simplicity of notation we denote the coordinates of points relative to x as if x

were the origin, so for k ∈ {0, . . .m}, we have W r
k = r

(
cos(2kπ

n
), sin(2kπ

n
)
)
.

Notice that the intersections of the x-axis (relative to the point x) with the lines Lrk

and L2r
k+1, say xk and zk+1 respectively, are given by:

xk = r
(
cos(2kπ

n
) + sin(2kπ

n
) tan(π

n
)
)
, (4.2)

zk+1 = 2r
(
cos(2(k+1)π

n
) + sin(2(k+1)π

n
) tan(π

n
)
)
,

so we need to show that xk < zk+1 = 2xk+1 for all k ∈ {1, . . . ,m− 1}. See Figure 4.1.
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Figure 4.1

For k = m− 1 we have:

xk = xm−1 = r
(
cos

(
2(m−1)π

4m+2

)
+ sin

(
2(m−1)π

4m+2

)
tan

(
π

4m+2

))
= r

(
sin(3π

n
) + cos(3π

n
) tan(π

n
)
)

zk+1 = 2xm = 2r
(
cos

(
2mπ

4m+2

)
+ sin

(
2mπ

4m+2

)
tan

(
π

4m+2

))
= 4r sin(π

n
),

so in this case, the inequality xk < zk+1 is equivalent to

sin(3π
n

) + cos(3π
n

) tan(π
n
) < 4 sin(π

n
),

which is satisfied since sin(π
n
) > 0 and:

sin(3π
n

) + cos(3π
n

) tan(π
n
) = 3 sin(π

n
)− 4 sin3(π

n
) +

(
4 cos3(π

n
)− 3 cos(π

n
)
)

tan(π
n
)

= 4 sin(π
n
)
(
cos2(π

n
)− sin2(π

n
)
)

= 4 sin(π
n
) cos(2π

n
) < 4 sin(π

n
).

Now, to show that xk < zk+1 for k ∈ {1, . . . ,m−2}, we show that cos(2kπ
n

) < 2 cos(2(k+1)π
n

).
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Indeed, if k ≤ m− 2 then, using 2(m−2)
n

= 2m−4
4m+2 = 1

2 −
5
n
:

2 cos(2(k+1)π
n

)− cos(2kπ
n

) = 2
(
cos(2kπ

n
) cos(2π

n
)− sin(2kπ

n
) sin(2π

n
)
)
− cos(2kπ

n
)

= cos(2kπ
n

)
(
2 cos(2π

n
)− 1

)
− 2 sin(2kπ

n
) sin(2π

n
)

≥ cos(2(m−2)π
n

)
(
2 cos(2π

n
)− 1

)
− 2 sin(2(m−2)

π
) sin(2π

n
)

= sin(5π
n

)
(
2 cos(2π

n
)− 1

)
− 2 cos(5π

n
) sin(2π

n
)

≥ sin(4π
n

)
(
2 cos(2π

n
)− 1

)
− 2 cos(4π

n
) sin(2π

n
)

= 2
(
sin(2π

n
)(2 cos2(2π

n
)− cos(2π

n
))− cos2(2π

n
) sin(2π

n
) + sin3(2π

n
)
)

= 2 sin(2π
n

)
(
cos2(2π

n
)− cos(2π

n
) + sin2(2π

n
)
)

= 2 sin(2π
n

)
(
1− cos(2π

n
)
)

> 0.

In the penultimate inequality we used that for n ≥ 10 we have sin(5π
n

) ≥ sin(4π
n

) and

2 cos(2π
n

) > 1. For n = 6, we used 2 cos(2π
n

) = 1.

Hence, cos(2kπ
n

) ≤ 2 cos(2(k+1)π
n

) and clearly sin(2kπ
n

) ≤ 2 sin(2(k+1)π
n

) holds for all

k ∈ {1, . . . ,m−2}. Therefore, from (4.2), we see that xk < zk+1 for all k ∈ {1, . . . ,m−2}

and so the line Lrk is to the left of the line L2r
k+1. �

Now we introduce some notation that we will be using in the proof of the next theorem.

Definition 4.1.2. For each k ∈ {0, . . . , n − 1} and r > 0 let vrk (or simply vk when the

radius r is fixed) denote the midpoint of the side [V r
k , V

r
k+1] of ∂Br(0) and let Tk denote

the line through the origin and the point vk. Finally denote by Dk be the ray through

the origin and the vertex Vk of ∂Br(0).

We will also consider, for each k ∈ {0, . . . , n− 1} the open region Rk enclosed by the

lines Dk and Tk and the open region R′k region enclosed by the lines Tk and Dk+1.

See Figure 4.2 for an illustration of all this new notation.
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Figure 4.2

Now we can prove that for any n = 4m + 2 the doubling mapping fn under the n-

norm is a 2-Lipschitz and 1-co-Lipschitz mapping. The proof of this result is long because

we need to consider many cases. We divided the proof in two main parts, one for the

Lipschitz constant and the other for the co-Lipschitz constant. In each of these parts we

will deal with the corresponding local constants of the mapping fn at a point p. We will

divide each main part into cases depending on the region of the plane —in terms of the

regions described in Definition 4.1.2— the point p belongs to.

Theorem 4.1.3. For n = 4m + 2,m ∈ N \ {0}, the Lipschitz constant of the doubling

mapping fn under the n-norm is equal to 2 and the co-Lipschitz constant is equal to 1.

Proof. Consider a point p ∈ R2 such that ‖p‖n = ρ > 0. Let V0, . . . , Vn−1 be the vertices

of ∂Bρ(0) numbered as usual and for k ∈ {0, . . . n− 1}, let vk denote the midpoint of the

side [Vk, Vk+1].

I. Lipschitz constant of fn.

We will show that the local Lipschitz constant of fn at the point p is 2. We divide

the proof into the following cases: p ∈ R0, p ∈ R′0, p ∈ T0, p ∈ D0 and finally p ∈
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(Dk,∪Rk ∪ Tk ∪R′k, ), for k ∈ {1, . . . , n− 1}.

Case I.1. The local Lipschitz constant of fn at p is equal to 2 for p ∈ R0.

In this case we have p ∈ (V0, v0). Let Rp > 0 be such that for all 0 < r ≤ Rp, the

polygon Br(p) is contained in the region R0. Notice that, by choosing Rp in this way, we

can assure that any q ∈ BRp(p) belongs to the first half of the first side of the polygon

∂B‖q‖n(0).

To prove that fn is 2-Lipschitz at p, we show that for 0 < r < 1
2Rp the image of Br(p)

is a subset of B2r(fn(p)). We will denote the vertices of the polygon ∂Br(p) of radius r

centred at p by U r
i , i = 0, . . . , n − 1 and the vertices of the polygon ∂Br(fn(p)) centred

at fn(p) by W r
i , i = 0, . . . , n− 1. See Figure 4.3. Notice that the lines Lri = (U r

i ,W
r
i ) are

parallel to the first side [V0, V1] of ∂Bρ(0), as [p, fn(p)] is a subset of [V0, V1].

As a first step, we show that the image of the polygon

P = p, U r
0 , U

r
1 , . . . , U

r
m+1 (4.3)

(shown in green in Figure 4.3), which is roughly the first quarter of ∂Br(p), is a subset of

B2r(fn(p)).

Let q ∈ P and denote by Lq the line parallel to [V0, V1] —and so to all the lines Lri—

that goes through q, and let q1, q2 be the intersection points between Lq and ∂B2r(fn(p)):

q1, q2 ∈ Lq ∩ ∂B2r(fn(p)) such that y(q1) > y(fn(p)) > y(q2).

We will also denote by M, N and O the horizontal lines through p, fn(p) and the origin

respectively. See Figure 4.3. Finally, once r is fixed, for each line Lri , define the intersection

points:

89



Figure 4.3

xi := Lri ∩ O xMi := Lri ∩M xNi := Lri ∩N

zi := L2r
i ∩ O zMi := L2r

i ∩M zNi := L2r
i ∩N

q0 := Lq ∩ O qM0 := Lq ∩M qN0 := Lq ∩N

(4.4)

Hence, in c this notation, we have

xm+1 = V0; xMm+1 = p; xNm+1 = fn(p)
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Since p ∈ [V0, v0] and r < Rp, we know that the point q ∈ Br(p) is on the first half of the

first side of the polygon ∂B‖q‖n(0), see Figure 4.3 for an illustration. Therefore, fn(q) is

still on the first side of ∂B‖q‖n(0).

Notice that in order to prove that fn(q) ∈ B2r(fn(p)) it is enough to show that

‖q0 − q1‖n ≥ ‖q0 − fn(q)‖n ≥ ‖q0 − q2‖n. (4.5)

Recall that by definition of the doubling mapping fn, since r < Rp, the point fn(q) is on

the first side of ∂B‖q‖(0) on the line Lq and satisfies ‖q0 − fn(q)‖n = 2‖q0 − q‖n.

We now prove the first inequality of (4.5). Recall also that q ∈ P , where P is the

polygon defined in (4.3). Take k ∈ {1, . . . ,m} such that the line Lq is between the lines

Lrk+1 and Lrk. Assume first that k ∈ {1, . . . ,m − 1}. In this case Lq is to the left of the

line Lrk and we know by Lemma 4.1.1 that Lrk is to the left of L2r
k+1. So the points of

intersection of ∂B2r(fn(p)) with Lq, which are the points q1 and q2, are to the left of the

intersection between ∂B2r(fn(p)) and L2r
k+1 which are the points W 2r

k+1 and W 2r
4m+2−k. We

can see that

‖qN0 − q1‖n ≥ ‖zNk+1 −W 2r
k+1‖n, (4.6)

indeed, observe first that the y-coordinate of the points W 2r
k increases for k ∈ {0, . . . ,m},

so that the y-coordinate of q1 is greater than or equal to the y-coordinate of W 2r
k+1 . Hence,

if we consider the intersection point, say Q, between L2r
k+1 and the horizontal line through

q1, we have W 2r
k+1 ∈ [zNk+1, Q]. On the other hand, by the translation invariance of the

norm, ‖qN0 − q1‖n = ‖zNk+1 −Q‖n, so we gather that:

‖qN0 − q1 − q1‖n = ‖zNk+1 −W 2r
k+1‖n + ‖W 2r

k+1 −Q‖n ≥ ‖zNk+1 −W 2r
k+1‖n.

Therefore we have (4.6). Now, in the same way, we can see that ‖xMk+1 − U r
k+1‖n ≥
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‖qM0 − q‖n, because Lrk+1 is to the left of Lq. Hence,

‖qN0 − q1‖n ≥ ‖zNk+1 −W 2r
k+1‖n = 2‖xNk+1 −W r

k+1‖n

= 2‖xMk+1 − U r
k+1‖n ≥ 2‖qM0 − q‖n.

Therefore,

‖q0 − q1‖n = ‖q0 − qN0 ‖n + ‖qN0 − q1‖n

= 2‖q0 − qM0 ‖n + ‖qN0 − q1‖n

≥ 2‖q0 − qM0 ‖n + 2‖qM0 − q‖n

= 2‖q0 − q‖n = ‖q0 − fn(q)‖n.

We conclude that the first inequality in (4.5) is satisfied for all q ∈ P such that q is in

between the lines Lrk+1 and Lrk with k ∈ {1, . . . ,m − 1}. The remaining case, q between

Lrm and Lrm+1, is easy. Simply notice that in this case, q belongs to the parallelogram

p, xMm , U
r
m, U

r
m+1 and that the intersection between Lrm and ∂B2r(f(p)), q1, certainly occurs

on the side W 2r
m ,W

2r
m+1 of ∂B2r(fn(p)). Therefore,

‖q0 − q1‖n = ‖q0 − qN0 ‖n + ‖qN0 − q1‖n

= 2‖q0 − qM0 ‖n + ‖fn(p)−W 2r
m+1‖n

= 2
(
‖xm+1 − p‖n + ‖p− U r

m+1‖n
)

= 2
(
‖xm+1 − U r

m+1‖n
)
≥ 2‖q0 − q‖n

= ‖q0 − fn(q)‖n.
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We are now left to show the second inequality in (4.5), this follows from:

‖q0 − fn(q)‖n = 2‖q0 − q‖n = 2
(
‖q0 − qM0 ‖n + ‖qM0 − q‖n

)
≥ 2‖q0 − qM0 ‖n = 2‖xm+1 − p‖n

= ‖V0 − fn(p)‖n ≥ ‖q0 − q2‖n.

We conclude that for all q ∈ P (defined in (4.3)) both inequalities in (4.5) are satisfied,

thus fn(P) ⊆ B2r(fn(p)).

Now, we are going to show that the image the fourth quarter of Br(p) is a subset of

B2r(fn(p)). For this it will be convenient to denote the vertices of the polygons ∂Br(p),

∂Br(fn(p)) and ∂B2r(fn(p)) with negative indices, so that, for k ∈ {0, . . . , 2m + 1} the

vertices with index 4m+ 2− k will be denoted with the index −k. Let P ′ ⊆ Br(p) be the

polygon whose vertices are U r
0 , U

r
−1, . . . , U

r
−m, p. We will show that for all q ∈ P ′, we have

fn(q) ∈ B2r(fn(p)). As before, let Lq be the line parallel to the first side of the polygon

∂Br(p), and recall the notation in (4.4). Again, it is enough to show the inequalities

in (4.5). Take k ∈ {0, . . . ,m} such that Lq is between the lines Lrk+1 and Lrk. Notice that

Lrk+1 goes through the vertex U r
k+1 and also through the vertex U r

−k of ∂Br(p) and the

same for the lines L2r
k and the vertices of B2r(fn(p)). Now, since Lq is to the left of Lrk,

and the latter is to the left of L2r
k+1, we get:

‖q2 − qN0 ‖n ≥ ‖W 2r
−k − zNk+1‖n;

this is because the y-coordinate of the vertices W 2r
−k decreases for k ∈ {0, . . . ,m}. For the
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same reason ‖U r
−k − xMk+1‖n ≥ ‖q − qM0 ‖n, so we gather:

‖q2 − qN0 ‖n ≥ ‖W 2r
−k − zNk+1‖n = 2‖W r

−k − xNk+1‖n

= 2‖U r
−k − xMk+1‖n ≥ 2‖q − qM0 ‖n.

So altogether, we have:

‖q0 − q2‖n = ‖q0 − qN0 ‖n − ‖q2 − qN0 ‖n ≤ ‖q0 − qN0 ‖n − 2‖q − qM0 ‖n (4.7)

= 2
(
‖q0 − qM0 ‖n − ‖q − qM0 ‖n

)
= 2‖q0 − q‖n = ‖q0 − fn(q)‖.

Hence, the second inequality in (4.5) is satisfied. To show the first inequality, notice that:

‖q0 − fn(q)‖n = 2‖q0 − q‖n ≤ 2‖q0 − qM0 ‖n (4.8)

= ‖q0 − qN0 ‖n ≤ ‖q0 − q1‖n.

Thus, for all q ∈ P ′, we have ‖q0 − q1‖n ≥ ‖q0 − fn(q)‖ ≥ ‖q0 − q2‖n. We conclude that

fn(P ∪ P ′) ⊆ B2r(fn(p)).

Finally, we are going to show that the local Lipschitz constant Lp of fn at p is equal

to 2. First we show that for all 0 < r0 <
1
2Rp, we have fn(Br0(p)) ⊆ B2r0(f(p)).

Fix r0 <
1
2Rp and pick q ∈ Br0(p). Notice that as Br0(q) ⊂ BRp(p), we certainly have

r0 < Rq. If ‖q‖n ≥ ‖p‖n, then q belongs either to the fourth or to the first “quarter” of

the polygon Br0(p) (i.e. q belongs to one of the polygons P or P ′ that we have considered

before). Hence, as we have just shown, fn(q) ∈ B2r0(fn(p)) and we are done.

On the other hand, if ‖q‖n ≤ ‖p‖n, pick r ∈ (‖p − q‖n, r0) and consider the ball

Br(q). Now p belongs to the fourth or to the first “quarter” of the polygon Br(q) and,

since r < r0 <
1
2Rp, we have r < Rq. Therefore, swapping the role of p and q, we get

fn(p) ∈ B2r(fn(q)), so that ‖fn(p) − fn(q)‖n < 2r < 2r0, hence fn(q) ∈ B2r0(fn(p)).
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Hence, for all r0 <
1
2Rp, we have fn(q) ∈ B2r0(fn(p)), whenever q ∈ Br0(p). Thus we

proved that fn(Br0(p)) ⊆ B2r0(fn(p)) for all r0 <
1
2Rp, and this shows that Lp ≤ 2. To

show that Lp is in fact 2, notice that the vertex U r0
m+1 of ∂Br0(p) is mapped to the point

fn(U r0
m+1) on Lm+1 such that ‖V0 − fn(U r0

m+1‖n = 2‖V0 − U r0
m+1‖n, hence:

‖V0 − fn(U r0
m+1)‖n = 2‖V0 − U r0

m+1‖n = 2 (‖V0 − p‖n + r0) = ‖V0 − fn(p)‖n + 2r0.

Therefore fn(U r0
m+1) = W 2r0

m+1, and we have:

‖fn(p)− fn(U r0
m+1)‖n = 2‖p− U r0

m+1‖n. (4.9)

We conclude that Lp = 2 for all p ∈ R0. This finishes the proof for this case.

Case I.2. The local Lipschitz constant of fn at p is equal to 2 for p ∈ R′0.

For this we will consider the functions:

SymT , which will denote the symmetric reflection about the line T (4.10)

Rotk, which will denote the rotation by 2kπ
n

radians around the origin.

Notice that Rotk and SymT are linear isometric isomorphisms, in particular for all x ∈ R2

we have ‖Rotk(x)‖n = ‖x‖n = ‖ SymL(x)‖n for all integer k, and for all line L = Tk or

L = Dk.

Define the function:

f ∗n(x) = SymT1

(
Rot1

(
fn
(
SymT0(x)

)))
.

As we will see now,

for all p ∈ R′0 we have f ∗n(p) = fn(p). (4.11)
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Recall that ρ = ‖p‖n and that for p ∈ R′0, the point fn(p) is the point on the side [V1, V2]

of ∂Bρ(0) such that

‖V0 − V1‖n + ‖V1 − fn(p)‖n = 2‖V0 − p‖n.

Notice that

SymT1(Rot1(fn([V0, v0])) = SymT1(Rot1([V0, V1])) = SymT1([V1, V2]) = [V1, V2].

Since SymT0(p) ∈ [V0, v0], we gather that:

f ∗n(p) = SymT1

(
Rot1

(
fn
(
SymT0(p)

)))
∈ [V1, V2].

Also, since v0 is the midpoint between V0 and V1,

‖V0 − V1‖n + ‖V1 − f ∗n(p)‖n = 2‖V0 − v0‖n + ‖V1 − f ∗n(p)‖n. (4.12)

It is clear that

f ∗n(v0) = SymT1(Rot1(fn(v0))) = SymT1(Rot1(V1)) = V1.

On the other hand,

‖V0 − fn(SymT0(p))‖n = 2‖V0 − SymT0(p)‖n (4.13)

= 2
(
‖V0 − v0‖n − ‖v0 − SymT0(p)‖n

)
= 2

(
‖V0 − v0‖n − ‖v0 − p‖n

)
.
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Now, since Sym and Rot1 are linear isometries, from (4.13), it follows that:

‖V1 − f ∗n(p)‖n = ‖f ∗n(v0)− f ∗n(p)‖n = ‖fn(SymT0(v0))− fn(SymT0(p))‖n

= ‖fn(v0)− fn(SymT0(p))‖n = ‖V1 − fn(SymT0(p))‖n

= ‖V0 − V1‖n − ‖V0 − fn(SymT0(p))‖n (4.14)

= ‖V0 − V1‖n − 2 (‖V0 − v0‖n − ‖v0 − p‖n)

= 2‖v0 − p‖n.

Substituting this in (4.12) we conclude that:

‖V0 − V1‖n + ‖V1 − f ∗n(p)‖n = 2 (‖V0 − v0‖n + ‖v0 − p‖n)

= 2‖V0 − p‖n.

Hence, for p ∈ R′0, we have f ∗n(p) ∈ [V1, V2] and ‖V0− V1‖n + ‖V1− f ∗n(p)‖n = 2‖V0− p‖n.

Thus, f ∗n(p) = fn(p) for all p ∈ R′0.

This implies that for all p ∈ R′0 the local Lipschitz constant of fn at p is less than

or equal to 2. For, given p ∈ R′0 let Rp > 0 be such that BRp(p) ⊆ R′0. Then, if

‖p− q‖n < 1
2Rp, we have:

‖fn(p)− fn(q)‖n = ‖f ∗n(p)− f ∗n(q)‖n (4.15)

= ‖ SymT1

(
Rot1

(
fn
(
SymT0(p)

)))
− SymT1

(
Rot1

(
fn
(
SymT0(q)

)))
‖n

= ‖fn
(
SymT0(p)

)
− fn

(
SymT0(q)

)
‖n ≤ 2‖ SymT0(p)− SymT0(q)‖n

= 2‖p− q‖n,

the last inequality here uses that SymT0(p) ∈ R0, which follows from Case I.1.

Case I.3. The local Lipschitz constant of fn at p is equal to 2 for p ∈ T0.
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Now we deal with the points p on the line T0. Let Rp > 0 be such that BRp(p) ⊆

(R0 ∪ R′0 ∪ T0), and consider q ∈ Br(p) with 0 < r < 1
4Rp. Notice that the image under

fn of Br(p)∩R0 is a subset of R0 ∪R′0 ∪T0; in other words if q ∈ R0, then fn(q) belongs

to the first side of the polygon ∂B‖q‖n(0). Hence, to show that fn(q) ∈ B2r(f(p)) it is

enough to show that (4.5) is satisfied —were q0, q1 and q2 are defined by (4.4). Therefore,

we can repeat the same geometric argument that we used in Case I.1 to show the Lipschitz

condition for points p ∈ P ′, to conclude that ‖fn(p)− fn(q)‖n ≤ 2‖p− q‖n. See (4.7) and

(4.8). Now for q ∈ R′0 we again use the function f ∗n to argue that ‖fn(p) − fn(q)‖n ≤

2‖p− q‖n. Finally, if q ∈ T0 we simply observe that p and q are collinear with the origin,

so that ‖p − q‖n = |‖p‖n − ‖q‖n|. Also notice that, by definition of the mapping fn, we

know that fn(p), fn(q) ∈ D1 so we also have ‖fn(p) − fn(q)‖n = |‖fn(p)‖ − ‖fn(q)‖n|.

Now, since the mapping fn fixes the norm of each point, we gather that:

‖fn(p)− fn(q)‖n =
∣∣∣ ‖fn(p)‖n − ‖fn(q)‖n

∣∣∣ =
∣∣∣ ‖p‖n − ‖q‖n ∣∣∣ = ‖p− q‖n < r.

This shows that for all p ∈ T0, f(Br(p)) ⊆ B2r(f(p)), whenever r < 1
4Rp.

Case I.4. The local Lipschitz constant of fn at p is equal to 2 for p ∈ D0 = O.

Consider a point p ∈ O = D0, which is the positive side of the x-axis (so that, in

this case we have p = V0 = fn(p). Let Rp > 0 be such that BRp(p) ⊆ (R′n−1 ∪ O ∪ R0).

Take q ∈ Br(p), with 0 < r < 1
4Rp. We first consider the points q ∈ Br(p) such that

‖q‖n ≥ ‖p‖n. If we assume further that q ∈ R0 then q ∈ R0 ∩ P (were P is, as before,

defined by (4.3)). Hence we can repeat the whole argument used for the case p ∈ R0

and q ∈ P to show that ‖fn(p) − fn(q)‖n ≤ 2‖p − q‖n. Now, if q ∈ R′n−1, recall the

functions defined in(4.10) and observe that fn(q) = SymO(fn(SymO(q))), and clearly

98



SymO(q) ∈ R0, therefore:

‖fn(p)− fn(q)‖n = ‖p− SymO(fn(SymO(q))‖n = ‖p− fn(SymO(q))‖n

= 2‖p− SymO(q)‖n = 2‖p− q‖n.

Finally, if q ∈ O, since the ray O is fixed under fn we have ‖fn(p)− fn(q)‖n = ‖p− q‖n

for all q ∈ O. Therefore, we have fn(q) ∈ B2r(fn(p)) for all q ∈ Br(p), with ‖q‖n ≥ ‖p‖n,

(i.e. for all q ∈ P ∪ P ′, using previous notation).

It is clear that we can extend this to the points q ∈ Br(p) with ‖q‖n < ‖p‖n, in the

same way as we did for the case p ∈ R0. This shows that the local Lipschitz constant of

fn at any point p ∈ O is less than or equal to 2.

So far, we have shown that the local Lipschitz constant Lp of fn at any point p ∈

(O ∪ R0 ∪ T0 ∪ R′0) satisfies Lp ≤ 2. As we will see, this is enough to cover all cases of

p ∈ R2.

Case I.5. The local Lipschitz constant of fn at p is equal to 2 for p ∈ (Dk ∪ Rk ∪ Tk ∪

R′k), k ∈ {1, . . . , n− 1}.

Let k ∈ {1, . . . , n− 1} and consider the function

gn(p) = Rot2k(fn(Rot−k(p))),

where Rot−k is defined by (4.10). It is not hard to see that for p ∈ (Dk∪Rk∪Tk∪R′k) we

have gn(p) = fn(p). Indeed, if p ∈ Dk ∪ Rk then Rot−k(p) ∈ [V0, v0] ⊆ (D0 ∪ R0), hence

fn(Rot−k(p)) ∈ [V0, V1] and

gn(p) ∈ Rot2k([V0, V1]) = [V2k, V2k+1].

Here all the indices are taken modulo n. It remains to show that the length of the curve
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that goes along ∂Bρ(0) with starting point V0 and end point gn(p) is equal to twice the

length of the curve along ∂Bρ(0) with starting point V0 and end point p; this is:

2k−1∑
i=0
‖Vi − Vi+1‖n + ‖V2k − gn(p)‖n = 2

(
k−1∑
i=0
‖Vi − Vi+1‖n + ‖Vk − p‖n

)
,

which follows from:

‖V2k − gn(p)‖n = ‖V2k − Rot2k
(
fn(Rot−k(p))

)
‖n = ‖V0 − fn(Rot−k(p))‖n

= 2‖V0 − Rot−k(p)‖n = 2‖Vk − p‖n,

and the fact that

2k−1∑
i=0
‖Vi − Vi+1‖n = 2k‖V0 − V1‖n =

k−1∑
i=0
‖Vi − Vi+1‖n. (4.16)

Similarly, if p ∈ Tk ∪R′k we get fn(Rot−k(p)) ∈ fn([v0, V1]) ⊆ [V1, V2] so

gn(p) ∈ Rot2k([V1, V2]) = [V2k+1, V2k+2],

and we also have

‖V0 − V1‖n + ‖V1 − fn(Rot−k(p))‖n = 2‖V0 − Rot−k(p)‖n. (4.17)

Notice that in this case in order to prove that gn(p) = fn(p) we need to show that

2k∑
i=0
‖Vi − Vi+1‖n + ‖V2k+1 − gn(p)‖n = 2

(
k−1∑
i=0
‖Vi − Vi+1‖n + ‖Vk − p‖n

)
,
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which follows now from (4.17), since:

‖V2k+1 − gn(p)‖n = ‖V2k+1 − Rot2k
(
fn(Rot−k(p))

)
‖n = ‖V1 − fn(Rot−k(p))‖n

= 2‖V0 − Rot−k(p)‖n − ‖V0 − V1‖n

so we gather that

2k∑
i=0
‖Vi − Vi+1‖n + ‖V2k+1 − gn(p)‖n| = 2k‖V0 − V1‖n + 2‖V0 − Rot−k(p)‖n − ‖V0 − V1‖n

= (2k − 1)‖V0 − V1‖n + 2‖V0 − Rot−k(p)‖n

= 2
(
k−1∑
i=0
‖Vi − Vi+1‖n + ‖Vk − p‖n

)
,

as we wanted.

Thus gn(p) = fn(p) for all p ∈ (Dk ∪Rk ∪ Tk ∪R′k).

Now take p ∈ (Dk∪Rk∪Tk∪R′k) and R′p > 0 such that BR′p(p) ⊆ (Dk∪Rk∪Tk∪R′k).

Let p∗ := Rot−k(p), hence p∗ ∈ (O ∪ R0 ∪ T0 ∪ R′0). From the previous cases it follows

that there exists Rp∗ ∈ (0, R′p) such that

fn(Br(p∗)) ⊆ B2r(fn(p∗)), whenever r < Rp∗ . (4.18)

We now notice that

Rot2k(fn(Br(p∗))) = Rot2k(fn(Br(Rot−k(p)))) = Rot2k(fn(Rot−k(Br(p))))

= gn(Br(p)) = fn(Br(p))
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and that

Rot2k(B2r(fn(p∗))) = Rot2k(B2r(fn(Rot−k(p))))B2r(Rot2k(fn(Rot−k(p))))

= B2r(gn(p)) = B2r(fn(p)).

From this two equations above and (4.18) we conclude that fn(Br(p) ⊆ B2r(fn(p)) and

this finishes the proof for this case.

Finally, it is clear that the local Lipschitz constant of fn at the origin is equal to 1,

so it follows that for any p ∈ R2 the local Lipschitz constant of the mapping fn at p

satisfies Lp ≤ 2. From Proposition 1.2.6 it follows that the global Lipschitz constant L of

fn satisfies the same inequality. Since we have shown in (4.9) that there are points such

that ‖fn(p)− fn(q)‖n = 2‖p− q‖n we conclude that L = 2.

II. Co-Lipschitz constant of fn.

Now we show that for all p ∈ R2 the local co-Lipschitz constant, cp, of the mapping

fn at the point p satisfies cp ≥ 1. This is obvious for p = 0, so we show it for p ∈ R2 \{0}.

We consider the same 5 cases as we did for the Lipschitz constant.

Case II.1. The local co-Lipschitz constant of fn at p is less than or equal to 1 for all

p ∈ R0.

Let p ∈ R0 and, as before, let 0 < Rp be such that BRp(p) ⊆ R0. We show that for

r < Rp, if q′ ∈ Br(fn(p)) then there exists a q ∈ Br(p) such that fn(q) = q′.

Let s = ‖q′‖n and consider the polygon ∂Bs(0), whose vertices are q0 = V s
0 , . . . , V

s
n−1.

Denote by Lq the line through the vertices V s
0 and V s

1 and recall the notation in (4.4)

and Figure 4.3. Of course we somewhat abuse the notation here but we are going to find

q ∈ Lq so this will justify our choice for naming this line. We also define the points q∗1, q∗2

as the intersection points between Lq and ∂Br(p), where q∗2 is above the line M and q∗1

below it. In the same way let q∗3, q∗4 be the points that belong to Lq ∩ ∂Br(fn(p)), where
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q∗4 is above the line N and q∗3 below it.

Take q ∈ Lq such that ‖q0− q‖n = 1
2‖q0− q′‖n. By definition of the doubling mapping

fn we know that fn(q) = q′. We need to show that q ∈ Br(p); we do this by showing that

‖q0 − q∗1‖n ≤ ‖q0 − q‖n ≤ ‖q0 − q∗2‖n. (4.19)

Notice that from our choice of q, we have ‖q0 − q‖n = 1
2‖q0 − q′‖n, also by symmetry we

have ‖qN0 − q∗4‖n = ‖qM0 − q∗2‖n, therefore:

‖q0 − q‖n = 1
2‖q0 − q′‖n ≤ 1

2

(
‖q0 − qN0 ‖n + ‖qN0 − q∗4‖

)
= ‖q0 − qM0 ‖n + 1

2‖q
M
0 − q∗2‖n ≤ ‖q0 − qM0 ‖n + ‖qM0 − q∗2‖n = ‖q0 − q∗2‖n.

On the other hand, using now that ‖qN0 − q∗3‖n = ‖qM0 − q∗1‖n, we get:

‖q0 − q‖n = 1
2‖q0 − q′‖n ≥ 1

2

(
‖q0 − qN0 ‖n − ‖qN0 − q∗3‖n

)
= ‖q0 − qM0 ‖n − 1

2‖q
M
0 − q∗1‖n ≥ ‖q0 − qM0 ‖m − ‖qM0 − q∗1‖n = ‖q0 − q∗1‖n.

We conclude that (4.19) is satisfied, thus Br(fn(p)) ⊆ fn(Br(p)). This shows that for all

p ∈ R0, we have cp ≥ 1.

Case II.2. The local co-Lipschitz constant of fn at p is less than or equal to 1 for all

p ∈ R′0.

Now for p ∈ R′0, take Rp > 0 such that BRp(p) ⊆ R′0. Recall that for all p ∈ R′0 we

have fn(p) = f ∗n(p) (see (4.11)), therefore, since SymT0(p) ∈ R0, we know:

Br

(
fn(SymT0(p))

)
⊆ fn

(
Br(SymT0(p)

)
,
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hence,

SymT1

(
Rot1

(
Br

(
fn(SymT0(p)

)))
⊆ SymT1

(
Rot1

(
fn
(
Br(SymT0(p))

)))
.

It follows, using again the isometric properties, that

Br

(
SymT1

(
Rot1

(
fn(SymT0(p))

)))
⊆ SymT1

(
Rot1

(
fn
(
SymT0(Br(p))

)))
,

and we conclude that

Br(fn(p)) = Br(f ∗n(p)) ⊆ f ∗n(Br(p)) = fn(Br(p)).

which is what we wanted. Hence, cp ≥ 1 for all p ∈ R′0.

Case II.3. The local co-Lipschitz constant of fn at p is less than or equal to 1 for all

p ∈ T0.

This case can be worked out in a similar way as the case p ∈ R0. We now let

Rp > 0 be such that BRp(p) ⊆ R0 ∪ T0 ∪ R′0 and take 0 < r < 1
4Rp. We will show that

fn(Br(p)) ⊇ Br(fn(p)). Take q′ ∈ Br(fn(p)) and notice that fn(p) = V1, therefore the line

D1 divides the ball Br(fn(p)) into two polygons, say P1 and P2, where P1 is the half of

Br(fn(p)) below D1 and P2 is the half above, so that Br(fn(p)) = P1 ∪P2. We divide the

proof of this case into two subcases (see Figure 4.4 for an illustration of the second case):

If q′ belongs to P1, we just define q as we did in the case p ∈ R0 and repeat the proof

to show (4.19), which implies q ∈ Br(p).

The case q′ ∈ P2 is somehow similar, but now we define q to be the point in Lq such

that:

‖q0 − q‖n = 1
2 [‖q0 − V s

1 ‖n + ‖V s
1 − q′‖n] .

We also keep the definition of the points q∗1, q∗2 and q∗3 exactly as before, but now we define
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Figure 4.4

the point q∗4 as the intersection between ∂Br(fn(p)) and the segment line [V s
1 , V

s
2 ]. In this

way fn(q) = q′, and to show that q ∈ Br(p) we must show again that (4.19) is satisfied.

Indeed, notice that in this case, since the ball ∂Br(fn(p)) is symmetric with respect to

D1 and ∂Br(p) is symmetric with respect to T0. Also notice that ∂Br(p) = ∂Br(v0) is a

translation of ∂Br(fn(p)) = ∂Br(V1), so we have:

1
2‖q

N
0 − q′‖n = 1

2

(
‖qN0 − V s

1 ‖n + ‖V s
1 − q′‖n

)
(4.20)

= 1
2

(
‖qN0 − V s

1 ‖n + ‖V s
1 − q′‖n

)
≤ 1

2

(
‖qN0 − V s

1 ‖n + ‖V s
1 − q∗4‖n

)
= 1

2

(
‖qN0 − V s

1 ‖n + ‖V s
1 − q∗3‖n

)
= 1

2

(
‖qN0 − V s

1 ‖n + ‖V s
1 − qN0 ‖n + ‖qN0 − q∗3‖n

)
= 2‖qM0 − vs0‖n + 1

2‖q
N
0 − q∗3‖n ≤ 2‖qM0 − vs0‖n + ‖qN0 − q∗3‖n

= ‖qM0 − vs0‖n) + (‖qM0 − vs0‖n + ‖qM0 − q∗1‖n) = ‖qM0 − vs0‖n + (‖vs0 − q∗1‖n)

= ‖qM0 − vs0‖n + (‖vs0 − q∗2‖n)
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Therefore:

‖q0 − q‖n = 1
2

(
‖q0 − qN0 ‖n + ‖qN0 − V s

1 ‖n + ‖V s
1 − q′‖n

)
≤ ‖q0 − qM0 ‖n + ‖qM0 − vs0‖n + (‖vs0 − q∗2‖n) = ‖q0 − q∗2‖n

On the other hand, it is clear that

‖q0 − q‖n = 1
2

(
‖q0 − qN0 ‖n + ‖qN0 − V s

1 ‖n + ‖V s
1 − q′‖n

)
≥ ‖q0 − qM0 ‖n + ‖qM0 − vs0‖n ≥ ‖q0 − vs0‖n ≥ ‖q0 − q∗1‖n

Therefore fn(Br(p)) ⊇ Br(fn(p)) for all p ∈ T0, as we wanted.

Case II.4. The local co-Lipschitz constant of fn at p is less than or equal to 1 for all

p ∈ D0.

Let p ∈ D0 = O; in this case we take Rp > 0 such that BRp(p) ⊆ (R′n−1∪D0∪R0). Let

r < 1
4Rp and q ∈ Br(p). Now we have fn(p) = p, so we must show that Br(p) ⊆ fn(Br(p)).

Take q′ ∈ Br(p), since r < 1
4Rp, then q′ belongs to the first or to the last side of the polygon

∂B‖q′‖n(0). Define q to be the point on the same side of the polygon ∂B‖q′‖n(0) as q′ such

that

‖q − V ‖q
′‖n

0 ‖n = 1
2‖q

′ − V ‖q
′‖n

0 ‖n.

In this way it is clear that q ∈ Br(p) and fn(q) = q′, hence Br(p) ⊆ fn(Br(p)).

Case II.5. The local co-Lipschitz constant of fn at p is less than or equal to 1 for all

p ∈ (Dk ∪Rk ∪ Tk ∪R′k), k ∈ {1, . . . , n− 1}.

Notice that in this case we can follow the same argument as in the case p ∈ R′0 using

the function

fn(p) = gn(p) := Rot2k (fn (Rot−k(p))) ,
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which we have already shown satisfies fn = gn for all p ∈ (Dk ∪Rk ∪ Tk ∪R′k), k > 1.

This finishes the proof for all cases.

We conclude that the local co-Lipschitz constant cp of fn at any point p ∈ R2 satisfies

cp ≥ 1. In particular, the local co-Lipschitz constant of fn at the origin is equal to 1,

so from Proposition 1.2.6, it follows that the global co-Lipschitz constant of the doubling

mapping fn is equal to 1, for all n = 4m+ 2 with m ∈ N \ {0}. �

4.2 Polygonal norms with 4m sides

We have shown that for any polygonal norm with 4m + 2 sides there exists a 2-fold

Lipschitz quotient mapping with ratio of constants equal to 1/2. Now, we are going to

show in Theorem 4.2.12, that for all remaining n-norms on the plane and, moreover, for

all regular polygonal norms in the plane with 4m sides (i.e. for all norms whose unit ball

is a regular n-gon with n divisible by 4) every two-fold Lipschitz quotient has ratio of

constants strictly less than 1/2. We first show in Theorem 4.2.11 that for n = 4m there

is no 2-fold Lipschitz quotient mapping, under the n-norm, that achieves the 1/2 ratio of

constants bound of Theorem 2.7.

It will be clear that in order to prove this result, we had in mind Theorem 3.2.5, and

moreover, the whole structure of the results in Chapter 3. However, since we do not derive

a formula for the 4m-norm of a given point in terms of its coordinates —unlike the case of

the supremum norm where such a formula is very easy to write down— we will calculate

only those distances under the 4m-norm which we will subsequently need in the proof of

statements leading to Theorem 4.2.11. In the first part of this section we will learn how

to measure some distances under a 4m-norm.

Lemma 4.2.1. For n = 4m, m ∈ N, consider the plane under the n-norm (R2, ‖ ·‖n) and

for r > 0 let Br(0) denote the ball of radius r > 0 under the n-norm. Denote the vertices
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of ∂Br(0) by V0, V1 . . . , Vn−1, as in (4.1).

Given a ∈ (0, ‖V0−V1‖n), let P1 and P2 be the points on the sides [Vn−1, V0] and [V0, V1]

of ∂Br(0), respectively, such that ‖V0 − Pi‖n = a. Then ‖P1 − P2‖n = 2a cos2(π/n).

Proof. Since the segment [P1, P2] is parallel to the diameter D of the polygon ∂Br(0)

formed by the vertices Vn/4, V3n/4 we have:

‖P1 − P2‖n
‖D‖n

= |P1 − P2|
|D|

,

where | · | denotes the Euclidean norm. Therefore, ‖P1−P2‖n = |P1−P2|, as ‖D‖n = |D|.

On the other hand, since the segment [V0, P2] is parallel to the apothem A of the

polygon ∂Br(0) through the middle point of the side [Vn/4, Vn/4+1], we have:

‖V0 − P2‖n
‖A‖n

= |V0 − P2|
|A|

;

recalling that |A| = r cos(π/n), this is:

|V0 − P2| =
‖V0 − P2‖n|A|
‖A‖n

(4.21)

= a(r cos(π/n))
r

= a cos(π/n). (4.22)

This also shows that |V0 − P1| = a cos(π/n).

Now let U be the intersection point between the x-axis and the perpendicular through

P2. Looking at the triangle P2, U, V0, we see that |P2 − U | = |P2 − V0| sin( (n−2)π
2n ) =

sin(π2 −
π
n
). This, together with (4.21), gives

|P2 − U | = |P2 − V0| = |V0 − P2| cos(π
n
) = a cos2(π/n).

Since the triangles P2, U, V0 and P1, U, V0 are congruent we gather that: ‖P1 − P2‖n =
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|P1 − P2| = 2a cos2(π/n). �

In the rest of this section we are going to use a similar notation to the one in Defini-

tion 4.1.2:

Definition 4.2.2. Fix n ∈ N. For k ∈ {0, . . . , n − 1} let Dk denote, as before, the line

through the origin that forms an angle of 2kπ/n with the x-axis, i.e. Dk is the ray through

the origin and the vertex V r
k of the polygon ∂Bn

r (0). In the same way, denote by Tk the

ray through the origin and the middle point vrk of the k-th side of the polygon ∂Bn
r (0).

For ρ > 0 we define the sets Dρk and Dρ as:

Dρk = {x ∈ R2 : x ∈ Dk and ‖x‖n ≥ ρ}; Dρ =
n−1⋃
k=0
Dρk. (4.23)

Finally, for k ∈ {0, . . . , n}, let Rk be the unbounded open region enclosed by the lines

Dk and Tk. Similarly, let R′k denote the unbounded open region enclosed by the lines Tk

and Dk+1 (with Dn := D0). See Figure 4.2 for an illustration of this notation in the case

n = 4m+ 2.

Sometimes it will be convenient to extend all the previous notation to any index k ∈ N

considering the k mod 4 indexed item, so for example, for all k ∈ N we define Dρk := Dρj ,

where j ∈ {0, . . . , n− 1} and j ≡ k mod n.

For the following lemma and the next proposition we will be using the following

construction.

Construction 4.2.3. Given r > 0 consider a regular n-gon centred at the origin with

radius r and a vertex in the x-axis. As usual, denote its vertices by V r
0 , V

r
1 , . . . , V

r
n−1,

we shall also denote the midpoint of the side [V r
i , V

r
i+1] by vri . Using the notation in

Definition 4.2.2, consider the intersection point between the line Tk and the vertical line

through V r
0 . Since this intersection point belongs to Tk, it is the midpoint vs0 of the first

side of a polygon ∂Bs(0) for some s > r. See Figure 4.5.
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Lemma 4.2.4. Given the notation in Construction 4.2.3, if n = 4m for some m ∈ N

then s = r(1+tan2(π/n)), ‖V r
0 −vs0‖n = r tan(π

n
) and ‖V r

0 −V s
1 ‖n = r tan(π

n
)(2+tan2(π

n
)).

Proof. Throughout the proof we will be working with the n-norm denoted by ‖ · ‖n, and

with the Euclidean norm denoted by | · |, as usual. Given the Construction 4.2.3, since vs0

belongs to the vertical line through V r
0 , it is easy to see that

‖V r
0 − vs0‖n = |V r

0 − vs0| = r tan(π/n).

Now let d := ‖V r
0 − V s

1 ‖n, consider the polygon Bd(V r
0 ) and and denote by Q its n

4 -th

vertex, see Figure 4.5. Let H be the intersection point between the horizontal line through

V s
1 and the vertical line through V r

0 . Finally, let V ∗ denote the intersection between the

x-axis and the vertical line through V s
1 .

Figure 4.5

Now to find the value of s, consider the triangle whose vertices are V r
0 , vs0 and V s

0 .

From the construction we have,

∠V r
0 V

s
0 v

s
0 = π

2 −
π
n
; ∠vs0V r

0 V
s

0 = π
2 ; ∠V r

0 v
s
0V

s
0 = π

n
.
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Now looking at the triangle vr0, V r
0 , v

s
0, we see that we also have:

∠vr0v
s
0V

r
0 = π

2 −
π
n
; ∠V r

0 v
r
0v

s
0 = π

2 ; ∠vr0V r
0 v

s
0 = π

n
.

Therefore, these triangles are similar, and we have:

|V s
0 − V r

0 | =
|vs0 − V r

0 ||vs0 − vr0|
|V r

0 − vr0|
. (4.24)

Since vr0 is the middle point of the side [V r
0 , V

r
1 ], we know that the Euclidean distance

|V r
0 − vr0| is equal to r sin(π/n). Hence, looking at the triangle vr0, V r

0 , v
s
0 we gather that:

|vs0 − vr0| =
sin(π/n)(r sin(π/n))

cos(π/n) = r sin2(π/n)
cos(π/n) .

Substituting these values in (4.24), we get:

s− r = |V s
0 − V r

0 | =
r tan(π/n)

(
r sin2(π/n)
cos(π/n)

)
r sin(π/n) = r tan2(π/n).

Therefore s = r + |V s
0 − V r

0 | = r(1 + tan2(π/n)) = r sec2(π/n).

Finally, to find the n-distance between V r
0 and V s

1 , notice first that the triangles

V r
0 , V

s
0 , v

s
0 and H, V s

1 , v
s
0 are congruent, so |H − V s

1 | = s− r = r tan2(π/n). Now, looking

at the triangle H,V s
1 , Q we get:

|H −Q| = (s− r) tan(π/n) = r tan3(π/n)

In the same way, from the triangle O, V s
1 , V

∗, we get

|V s
1 − V ∗| = s sin(2π/n) = r sec2(π/n) sin(2π/n) = 2r tan(π/n).
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So the n-distance between V r
0 and V s

1 is given by:

‖V r
0 − V s

1 ‖n = ‖Q− V r
0 ‖n = |Q− V r

0 | = |Q−H|+ |H − V 0
r |

= |Q−H|+ |V s
1 − V ∗|

= r
(
tan3(π/n) + 2 tan(π/n)

)
= r tan(π/n)(2 + tan2(π/n)).

This is what we wanted. �

Lemma 4.2.5. Let n = 4m for some m ∈ N and u > 0. Define

w0 := u cos(2π/n) and w1 := u sec(2π/n) (4.25)

and let w ∈ [w0, w1]. If q ∈ D1, then:

1. ‖V u
0 − q‖n ≥ ‖V u

0 − V w
1 ‖n, whenever ‖q‖n ≥ w.

2. for p ∈ D0 with ‖p‖n ≥ u we have ‖p−q‖n ≥ ‖V u
0 −V w

1 ‖n, whenever w1 ≥ ‖q‖n ≥ w.

Proof. We denote the origin by the letter O. Again notice that we will be using both the

Euclidean norm | · | and the n-norm ‖ · ‖n throughout the proof. Before starting the proof

it is worth making the following observation.

Remark 4.2.6. The constants w0, w1 are defined by (4.25) in such a way

that if we consider the points V w0
1 , V w1

1 on D1, then the angle O, V u
0 , V

w1
1 is a

right angle and the angle V w0
1 , V u

0 , V
w1

1 is equal to 2π
n

radians, see Figure 4.6.

Therefore, whenever we consider a polygon centred at V u
0 , say Br(V u

0 ) with

r ≥ ‖V u
0 − V w0

1 ‖n, the intersection between the boundary of this polygon

and the line segment [V w0
1 , V w1

1 ] (green segment in Figure 4.6), will occur

on the (n4 + 1)-th side of the polygon Br(V u
0 ). This is because, if we define

d := ‖V u
0 − V

w0
1 ‖n, then the polygon Bd(V u

0 ) has V w0
1 as its (n4 + 1)-th vertex.
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Figure 4.6

First we are going to show the first inequality of the statement, i.e. that for any point

q that belongs to D1 such that ‖q‖n ≥ w we have:

d∗ = ‖q − V u
0 ‖n ≥ ‖V u

0 − V w
1 ‖n =: d. (4.26)

We may suppose ‖q‖n > w, otherwise q = V w
1 and we are done. See Figure 4.7.

Figure 4.7

Consider the polygon ∂Bd(V u
0 ), denote its (n4 )-th vertex by Q and let H denote the

113



intersection point between the horizontal line through V w
1 and the vertical line through

V u
0 . Also denote by M the line containing the segment [V w

1 , Q].

Since V w
1 belongs to the line segment [V w0

1 , V w1
1 ], by the observation made at the

beginning of this proof, we know that V w
1 belongs to the (n4 + 1)-th side of the polygon

∂Bd(V u
0 ), therefore the angle ∠HV w

1 Q = π/n.

On the other hand, since q ∈ D1 and ‖q‖n ≥ w, we have

∠HV w
1 q = ∠V u

0 Oq = 2π
n
> π

n
.

Thus, q < Bd(V u
0 ), since q belongs to the closed half plane above the line M, and the

polygon Bd(V u
0 ) belongs to the half plane below M, which means that d∗ ≥ d, as stated

in (4.26).

Our next step is to show that for any point p ∈ D0 with ‖p‖n ≥ u we have:

d′ := ‖p− V w
1 ‖n ≥ ‖V u

0 − V w
1 ‖n =: d. (4.27)

Let H and Q be as before and, in the same way, let H ′ denote the intersection point

between the horizontal line through V w
1 and the vertical line through p. See Figure 4.8(a).

Also denote by Q′ the n/4-th vertex of the polygon ∂Bd′(p) and finally, let p∗ be the

intersection point between the x-axis and the vertical line through V w
1 .

Notice that if 0 ≤ ∠Q′pV w
1 ≤ 2π/n, then V w

1 belongs to the (n4 + 1)-th side of the

polygon ∂Bd′(p). In this case we have (see Figure 4.8(a)):

∠pOV w
1 = 2π

n
; ∠V w

1 QH = ∠V w
1 Q

′H ′ = π
2 −

π
n

and ∠H ′V w
1 Q

′ = ∠HV w
1 Q = π

n
(4.28)

It is also clear that if ∠Q′pV w
1 > 2π/n, then V w

1 is no longer on the (n4 + 1)-th side, so
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(a) (b)

Figure 4.8

instead of the last two equations in (4.28), we have:

∠H ′V w
1 Q

′ ≥ ∠HV w
1 Q = π

n
,

see Figure 4.8(b).

In both cases we have:

d′ = ‖p− V w
1 ‖n = |p−Q′| ≥ |V u

0 −Q| = d,

as p and V u
0 belong to the x-axis and Q′ is higher than Q. Thus, (4.27) is satisfied in

any case.

Summarising, (4.26) proves the first statement of the present Lemma. To prove the

second statement, fix u > 0 and let w ∈ [w0, w1] and q ∈ D0 be given and assume that

w ≤ ‖q‖n ≤ w1. Now rewrite (4.27) replacing w by ‖q‖n:

‖p− V ‖q‖n1 ‖n ≥ ‖V u
0 − V

‖q‖n
1 ‖n,

and notice that V ‖q‖n1 = q, so that we in fact have the following inequality: ‖p − q‖n ≥

‖V u
0 − q‖n, and by the first part of the present lemma we have ‖p− q‖n ≥ ‖V u

0 − q‖n ≤

‖V u
0 − V w

1 ‖n. �
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Before the next result it is worth recalling the notation given in Definition 4.2, where we

defined for each even n, the constant Ln so that lengthn ∂Bn
r (0) = rLn. In Corollary 4.2.8

we will show that the shortest path joining the rays Drk and Drk+1 is precisely the side of

the polygon ∂Bn
r (0). In other words, that the n-distance between the rays Drk and Drk+1

is equal to the n-length of a side of the polygon ∂Bn
r (0). We first calculate, in the next

lemma, the n-length of a side of a polygon ∂Bn
r (x).

Lemma 4.2.7. If n ∈ N is divisible by 4, then for any r > 0, the n-length of a side of

the polygon ∂Bn
r (0), is given by:

1
n
rLn = 2r tan(π/n). (4.29)

Proof. Let n = 4m for some m ∈ N and let r > 0. Notice that in order to measure the

n-length of a side of the polygon ∂Bn
r (0) under the n-norm, we can repeat the argument

used in Lemma 4.2.1. So, denoting the Euclidean norm by | · |, we have:

‖V r
0 − V r

1 ‖n
‖Ar‖n

= |V
r

0 − V r
1 |

|Ar|
,

where Ar is an apothem of Br(0) parallel to the side [V r
0 , V

r
1 ] of ∂Bn

r (0). Hence, ‖Ar‖n = r

and we have:

‖V r
0 − V r

1 ‖n = r|V r
0 − V r

1 |
|Ar|

= r(2r sin(π/n))
r cos(π/n) = 2r tan(π/n). (4.30)

Thus, the n-length of a side of a regular n-gon is given by 1
n
rLn = 2r tan(π/n). �

Corollary 4.2.8. Let n = 4m and let r > 0. If for some k, p ∈ Dk and q ∈ Dk+1, are

such that ‖p‖n ≥ r and ‖q‖n ≥ r, then ‖p− q‖n ≥ 1
n
rLn = 2r tan(π/n).

Hence,

distn(Drk,Drk+1) = 2r tan(π
n
) = 1

n
rLn.
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Proof. For n = 4, m = 1 we know that ‖ · ‖4 is the `1-norm, so we can easily calculate

distances, indeed, for any k we have:

distn(Drk,Drk+1) = dist4(Dr0,Dr1) = inf{|x1 − y1|+ |x2 − y2| : x2 = 0 = y1, x1, y2 ≥ r}

= 2r = 2r tan(π/n).

Assume now that n > 4, m > 1 and let p ∈ Dk and q ∈ Dk+1. Take r′ =

min{‖q‖n, ‖p‖n}; we know that r′ ≥ r. It is clear that by symmetry we only need to

show the statement for k = 0. We divide the proof into cases.

Case 1. r′ = ‖p‖n. In this case we can apply the first statement of Lemma 4.2.5,

using u = w = r′ so that p = V r′
0 = V u

0 , w ≥ w0 = u cos(2π
n

), w ≤ w1 = u

cos( 2π
n

)
and

‖q‖n ≥ r′ = w. We get:

‖p− q‖n = ‖V r′

0 − q‖n ≥ ‖V r′

0 − V r′

1 ‖n = 2r′ tan(π/n) ≥ 2r tan(π/n),

where the second equality comes from (4.29).

Figure 4.9

Case 2. r′ = ‖q‖n. Let d := ‖V r
0 − V r

1 ‖n = 2r tan(π/n) (see (4.29)) and consider again

the notation as in the hypothesis of Lemma 4.2.5, but now set w = u = r. We know
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that ‖p‖n ≥ r = u and ‖q‖n ≥ r = w ∈ [w0, w1] = [u cos(2π
n

), u sec(2π
n

)]. If in addition,

‖q‖n ≤ w1 then ‖q‖n ∈ [w,w1] = [r, r sec(2π/n)], and we can apply the second statement

in Lemma 4.2.5 to get:

‖p− q‖n ≥ ‖V r
0 − V r

1 ‖n = 2r tan(π/n).

Finally, assume that ‖q‖n > w1. See Figure 4.9 for an illustration of this situation.

Recall that according to Lemma 4.2.5, V w1
1 is, in this case, the intersection between the

perpendicular line through V r
0 and the ray D1, which exists since we are assuming n > 4

(and hence 2π/n < π/2). See Figure 4.9. Hence, if ‖q‖n > w1 then the y-coordinate of q,

y(q), is greater than the y-coordinate of V w1
1 , y(V w1

1 ), in fact:

y(q) > y(V w1
1 ) = r tan(2π

n
) =

2r tan(π
n
)

1− tan2(π
n
) > 2r tan(π

n
) = d.

The last inequality holds since we are assuming that n > 4, therefore tan(π
n
) ∈ (0, 1).

Hence, q < B̄d(p), since the highest point of a polygon ∂Bd(p) will have y-coordinate

equal to d. Therefore, ‖p− q‖n > d = 2r tan(π/n).

Thus, in any case we have ‖p − q‖n ≥ ‖V r
0 − V r

1 ‖n = 2r tan(π
n
). Since V r

i ∈ Dri ,

i ∈ {1, 2} we conclude that distn(Dr0,Dr1) = 2r tan(π
n
) and this finishes the proof. �

After this brief survey about how to measure distances with respect to 4m-norms we

can finally go back to the study of the constants of Lipschitz quotient mappings under

4m-norms. The next proposition is an analogous version of Proposition 3.2.1 for general

4m-norms instead of the supremum norm.

Proposition 4.2.9. Let n = 4m for some m ∈ N and let g : R2 → R2 be an L-Lipschitz

and c-co-Lipschitz two-fold mapping with respect to the norm ‖ · ‖n. If c/L = 1
2 then there

exist positive constants κ (defined by (4.32)) and R′ such that for all ρ ≥ R′ if p ∈ Dρ we
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have:

dist(g(p),Dρ′) < κ,

where ρ′ = c(ρ−M) and M = max{‖p‖n : g(p) = g(0)}.

Proof. First assume that g is a Lipschitz quotient mapping with Lipschitz constant L = 1,

co-Lipschitz constant c = 1/2 and g(0) = 0.

Recall that the constant M given by Theorem 2.6 is given by M = max{‖p‖n : g(p) =

g(0)}. Hence, we can assume that M and R′ are as in the conclusion (1) of Theorem 2.6.

Let ρ > R′ and take a point p ∈ Dρ, therefore p is a vertex of ∂Br(0) for some r ≥ ρ.

Since we may perform a rotation of any integer multiple of 2π/n radians without affecting

the Lipschitz and co-Lipschitz constants of g, we may assume without loss of generality

that p is the vertex V r
0 of ∂Br(0).

Set a := distn(g(V r
0 ),Dρ′), where ρ′ = c(ρ −M). If a = 0, there is nothing to prove.

Assume a > 0. We will define κ in (4.31), but first we show that a < ‖V r
0 − V r

1 ‖n.

By Lemma 4.2.7 we know that ‖V r
0 − V r

1 ‖n = 2r tan(π/n). On the other hand, since

g(V r
0 ) is not in Dρ′ , then g(V r

0 ) lies between two of the lines Dk, say g(V r
0 ) lies in the region

enclosed by Dk and Dk+1 (where k and k + 1 are taken modulo n). Let r′ := ‖g(V r
0 )‖n

and consider the polygon ∂Br′(0), whose vertices are V r′
i , i = 0, . . . , n − 1. Notice that,

from Theorem 2.6, we know that r′ ≥ c(r −M) = ρ′, therefore both vertices of ∂Br′(0),

V r′
k and V r′

k+1, belong to the set Dρ′ , hence:

0 < a ≤ ‖g(V r
0 )− V r′

k ‖n < ‖V r′

k+1 − V r′

k ‖n = 2r′ tan(π/n).

Since g is a 1-Lipschitz mapping, we have r′ = ‖g(V r
0 )‖n ≤ ‖V r

0 ‖n = r, therefore:

a < 2r′ tan(π/n) ≤ 2r tan(π/n) = ‖V r
0 − V r

1 ‖n.
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Thus a is strictly less than the length of a side of the polygon ∂Br(0) under the n-norm.

Once this has been proven, we can take the points P1 and P2 (as in Lemma 4.2.1) on the

sides [V r
n−1, V

r
0 ] and [V r

0 , V
r

1 ] of ∂Br(0), respectively, such that ‖Pi − V r
0 ‖n = a.

Let γ : [0, ρLn] → ∂Bρ(0) be the 1-Lipschitz parametrization of the boundary of the

polygon Bρ(0) with starting point at P1 given by Corollary 1.3.18 so that γ(0) = P1,

γ(a) = V r
0 and γ(2a) = P2. Then, by Theorem 2.6, the curve g ◦ γ is contained outside of

Bρ′(0) with Ind0 g ◦ γ = 2.

Now, let q1 := g(γ(0)) = g(P1) and q2 := g(γ(2a)) = g(P2), hence ‖q1‖n, ‖q2‖n > ρ′.

Denote by U the closure of the unbounded region enclosed between the rays Dk, Dk+1

and the side [V ρ′

k , V
ρ′

k+1] of the polygon ∂Bρ′(0). We know that g(V r
0 ) ∈ U . Since g is

1-Lipschitz, for i = 1, 2 we have

‖qi − g(V r
0 )‖n ≤ ‖Pi − V r

0 ‖n = a = distn(g(V r
0 ),Dρ′)

so we conclude that q1, q2 ∈ U . Even more, since the region U is convex we know that

[q1, q2] ⊆ U . This means that both g ◦ γ and the segment [q1, q2] are contained outside

Bρ′(0). Hence if we replace the part of the curve g ◦ γ(t) that is the image of the points

t ∈ [0, 2a] with the line segment [q1, q2] we get a curve of index 2 around the origin which

is contained outside Bρ′(0), so from Lemma 1.3.14 we infer that:

‖q1 − q2‖n + lengthn(g ◦ γ|[2a,ρLn]) ≥ 2(ρ′Ln).

Using Lemma 4.2.1 and the Lipschitz condition we have:

‖q1 − q2‖n = ‖g(P1)− g(P2)‖n ≤ ‖P1 − P2‖n = 2a cos2(π/n).
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Hence,

lengthn(g ◦ γ|[2a,Lnρ]) ≥ 2Ln(c(ρ−M))− 2a cos2(π/n).

Also notice that, since g and γ are 1-Lipschitz, we have:

lengthn(g ◦ γ|[2a,ρLn]) ≤ ρLn − 2a.

So we conclude that

ρLn − 2a ≥ 2Ln(c(ρ−M))− 2a cos2(π/n).

Since we are assuming that c = 1/2, the last inequality can be written as: a ≤ LnM
2(1−cos2(π/n)) .

Thus, for the mapping g the conclusion of the present lemma is satisfied if we take

κ1 ∈ (0, 1
2LnM(sin(π/n))−2). Notice that from (4.29) we know that Ln = 2n tan(π/n),

therefore in case g(0) = 0 and L = 1:

κ1 = 2nM
sin(π/n) cos(π/n) . (4.31)

Now, consider any L-Lipschitz and c-co-Lipschitz two-fold mapping g such that c/L =

1/2. Define the Lipschitz quotient mapping g1 := 1
L

(g − g(0)), which is a 1-Lipschitz,

1/2-co-Lipschitz mapping that maps zero to zero. We have shown that for this mapping,

if M = max{‖p‖n : g1(p) = 0} then there exist constants R′ > 0 and κ1 > 0 such that

dist(g1(p),D
1
2 (ρ−M)) < κ1, for all p ∈ Dρ with ρ > R′. Now define the constant

κ := L
2nM

sin(π/n) cos(π/n) + ‖g(0)‖n, (4.32)

and take p ∈ Dρ with ρ > R′. As we have just shown for the mapping g1, we can find

p′ ∈ D
1
2 (ρ−M) such that ‖g1(p)− p′‖n < κ1. Now Lp′ ∈ DS, where S = L1

2(ρ−M). Since
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we assume c/L = 1/2, we have L1
2(ρ−M) = c(ρ−M), so Lp′ ∈ Dρ′ and

‖g(p)−Lp′‖n = ‖Lg1(p) + g(0)−Lp′‖n ≤ L‖g1(p)− p′‖n + ‖g(0)‖n < Lκ1 + ‖g(0)‖n = κ.

Hence dist(g(p),Dρ′) < κ. �

As we mentioned before, the previous proposition is an analogous version of Proposi-

tion 3.2.1 for 4m-norms and, as in Chapter 3, this will allow us to prove now an analogous

result to Lemma 3.2.3 for 4m-norms. Notice that in Lemma 3.2.3, unlike in Lemma 4.2.10,

we have only one possibility for the location of the point f(V ρ
i ) because in the case n = 4

we have that 4− 2i is congruent to 2i mod 4.

Lemma 4.2.10. Let n = 4m for some m ∈ N \ {1}, let f : (R2, ‖ · ‖n → (R2, ‖ · ‖n) be a

2-Lipschitz and 1-co-Lipschitz two-fold mapping with f(0) = 0 and let M = max{‖p‖n :

f(p) = 0}. There exist positive constants R0, κ and κ2 such that for all ρ ≥ R0, if

distn(f(V ρ
0 ),Dρ−M0 )) < κ, then one of the following is satisfied:

1. distn(f(V ρ
i ),Dρ−M2i )) < κ and distn(f(vρi ),D

ρ−M
(2i+1)) < κ2 ∀i ∈ N

2. distn(f(V ρ
i ),Dρ−Mn−2i )) < κ and distn(f(vρi ),D

ρ−M
n−(2i+1)) < κ2 ∀i ∈ N.

Here V ρ
i and vρi are the i-th vertex and middle point of the i-th side of the polygon

∂Bρ(0), respectively.

Proof. Take κ and R′ from Proposition 4.2.9 and let

R0 > max
{
R′, 10M,

8nκ
Ln

, 2Mn+ 2nκ
Ln

}
.

Pick ρ > R0 and consider the vertex V ρ
0 of ∂Bρ(0). Assume, as in the hypothesis of the

present Lemma, that distn(f(V ρ
0 ),Dρ−M0 )) < κ. We first show that either for all i ∈ N,

we have distn(f(V ρ
i ),Dρ−M2i )) < κ, or that for all i ∈ N we have distn(f(V ρ

i ),Dρ−Mn−2i )) < κ.
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We will prove that this is true for i = 1 and, as we shall see, this will be enough since we

will be able to repeat the argument inductively “in one direction”.

From Proposition 4.2.9 we know that distn(f(V ρ
1 ),Dρ−M)) < κ. As Dρ−M is the union

of the rays Dρ−Mk we know that there exists i ∈ N such that distn(f(V ρ
1 ),Dρ−Mi )) < κ.

Hence, we need to show that i ∈ {2, n− 2}.

Let γ : [0, ρLn]→ ∂Bρ(0) be a 1-Lipschitz curve that goes once around ∂Bρ(0), with

starting point γ(0) = V ρ
0 , hence γ(ρLn/n) = V ρ

1 . Let us define the curves γ1 = γ|[0,ρLn/n]

and γ2 = γ|[ρLn/n,ρLn].

From Theorem 2.6 we know that f ◦ γ is a closed curve contained outside Bρ−M(0)

with Ind0 f ◦ γ = 2. Notice that ρ > R0 >
2nκ
Ln

, hence by Corollary 4.2.8, we get:

κ < Lnρ
2n = 1

2 distn(Dρk,D
ρ
k+1); k = 0, 1, . . . , n− 1. (4.33)

Now, the curve f ◦ γ has index 2 around the origin and the points f(γ(0)) = f(V ρ
0 )

and f(γ(ρLn/n)) = f(V ρ
1 ) are at most κ far from the rays Dρ−M0 and Dρ−Mi , respectively.

Therefore —depending on the direction the curve f◦γ is oriented in— the curve f◦γ1 must

intersect either all the rays Dρ−Mk with 0 < k < i, or all the rays Dρ−Mk with n > k > i.

Assume first that f ◦ γ1 intersects all the rays Dρ−Mk with 0 < k < i. Using again

Corollary 4.2.8 and assuming i , 0, we gather that:

lengthn(f ◦ γ1) ≥
i−1∑
k=0

distn(Dρ−Mk ,Dρ−Mk+1 )− 2κ (4.34)

= i (ρ−M)Ln
n

− 2κ.

On the other hand, since f is 2-Lipschitz and γ1 is 1-Lipschitz, we have:

lengthn(f ◦ γ1) ≤ 2 lengthn(γ1) ≤ 2ρLn

n
. (4.35)
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From (4.34) and (4.35) we infer that:

2 ≥
i(ρ−M)Ln

n
− 2κ

ρLn
n

= i
ρ−M
ρ
− 2κ
ρLn
n

(4.36)

≥ i(1− M
10M )− 2κ

(8nκ
Ln

)Ln
n

= i(1− 1
10)− 1

4 . (4.37)

Hence i ≤ 2+1/4
1−1/10 = 2 + 1

2 . Therefore, in this case, i ∈ {0, 1, 2}.

Now the curve f ◦ γ2 is a curve with starting point f(V ρ
1 ), and this point is at most

κ-far from Dρi . Also, the end point of f ◦ γ1 is f(V ρ
0 ), which is at most κ-far from Dρ0.

Since we are assuming that f ◦ γ is oriented counterclockwise, the curve γ2 goes from

somewhere close to Dρi , intersects all the rays Dk with i < k < n, then pass again through

Dρ0 and complete another turn around Bρ−M(0). In this case, using the same argument

as before, we get:

lengthn(f ◦ γ2) ≥
2n−1∑
k=i

distn(Dρ−Mk ,Dρ−Mk+1 )− 2κ (4.38)

= (2n− i) (ρ−M)Ln
n

− 2κ.

On the other hand, using the Lipschitz condition we get

lengthn(f ◦ γ2) ≤ 2 lengthn(γ2) ≤ 2(n− 1)ρLn

n
. (4.39)

So now, if we assume that i , 2, we find from the above equations, (4.38) and (4.39),

that:

2(n− 1)ρLn
n
≥ (2n− i)(ρ−M)Ln

n
− 2κ.

And this, since we are assuming i ∈ {0, 1}, implies:

2κn
Ln

+M(2n− i) ≥ ρ(2n− i− 2(n− 1)) = ρ(2− i) ≥ ρ.
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Thus ρ ≤ 2κn
Ln

+ 2nM < R0. This is a contradiction since we chose ρ > R0, hence in this

case i = 2.

Assume now that the curve f ◦ γ is oriented in the opposite direction. Notice that if

we let j := n− i, following the same idea, we see that (4.34) becomes:

lengthn(f ◦ γ1) ≥
j−1∑
k=0

distn(Dρ−Mn−k ,D
ρ−M
n−k−1)− 2κ (4.40)

= j (ρ−M)Ln
n

− 2κ.

In the same way (4.38) becomes:

lengthn(f ◦ γ2) ≥
2n−1∑
k=j

distn(Dρ−Mn−k ,D
ρ−M
n−k−1)− 2κ (4.41)

= (2n− j) (ρ−M)Ln
n

− 2κ.

Since the inequalities (4.35) and (4.39) stay unchanged, from the above argument we

know that j = 2, hence i = n− 2.

We conclude that f(V ρ
1 ) is either κ-close to the ray Dρ−M2 or κ-close to the ray Dρ−Mn−2

depending on the orientation of f ◦ γ (which is fixed). Hence, we can follow inductively

this argument to show that either for all i ∈ N we have distn(f(V ρ
i ),Dρ−M(2i) ) < κ or for all

i ∈ N we have distn(f(vρi ),D
ρ−M
n−2i ) < κ.

Now, using what we have just proved, we will show that the middle point vρi of each

side of the polygon ∂Br(0) satisfies the conclusion of the present lemma. Actually we will

show that, setting κ2 according to (4.42), we will have that if f(V ρ
i ) is κ-close to the ray

Dρ−M2i then the point f(vρi ) is κ2-close to Dρ−M2i+1 for all i ∈ N, and by symmetry it will

be clear that in the other case, when f(V ρ
i ) is κ-close to the ray Dρ−Mn−2i , we have f(vρi ),

κ2-close to the ray Dρ−Mn−(2i+1).
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Define the constant

κ2 := M Ln
n

+ κ+ 1 = 2M tan(π
n
) + κ+ 1. (4.42)

Again, it will be enough to show that f(vρi ) is κ2-close to D(ρ−M)
2i+1 for i = 0 only.

Assume for a contradiction that for some ρ > R0 we have

distn(f(vρ0),Dρ−M1 ) ≥ κ2. (4.43)

From Theorem 2.6, we know that f([V ρ
0 , V

ρ
1 ]) is contained outside Bρ−M(0) and from the

first part of the present lemma, we know that the points f(V ρ
0 ) and f(V ρ

1 ) are at most

κ-far from the rays Dρ−M0 and Dρ−M2 , respectively.

Let W0 and W2 be the points on the rays D0 and D2, respectively, such that

‖W0 − f(V ρ
0 )‖n < κ; ‖W2 − f(V ρ

1 )‖n < κ and ‖Wi‖n ≥ ρ−M, for i = 0, 2. (4.44)

Recall that we chose ρ > R0 so that the points f(V ρ
0 ) and f(V ρ

1 ) are on different sides of

D1 (see (4.33)). Hence the curve f([V ρ
0 , V

ρ
1 ]) must intersect the ray Dρ−M1 , so there must

be a point v∗ ∈ [V ρ
0 , V

ρ
1 ] such that f(v∗) ∈ Dρ−M1 .

Assume first that v∗ belongs to the first half of the segment [V ρ
0 , V

ρ
1 ]. Note that

‖f(v∗)‖n, ‖W0‖n ≥ ρ−M and that, by (4.43), we have ‖f(vρ0)− f(v∗)‖n ≥ κ2. Using now

Lemma 1.3.10 and Corollary 4.2.8, and (4.43) we get:

lengthn(f([V ρ
0 , v

ρ
0 ])) = lengthn(f([V ρ

0 , v
∗])) + lengthn(f([v∗, vρ0 ]))

≥ ‖W0 − f(v∗)‖n − ‖W0 − f(V ρ
0 )‖n + ‖f(vρ0)− f(v∗)‖n

≥ (ρ−M)Ln
n
− κ+ κ2 > (ρ−M)Ln

n
+M Ln

n
= ρLn

n
.
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Therefore,

lengthn(f([V ρ
0 , v

ρ
0 ])) > ρLn

n
= ‖V ρ

0 − V
ρ

1 ‖n = 2‖V ρ
0 − v

ρ
0‖n.

This is not possible, since f is a 2-Lipschitz mapping. It is clear that if we now assume that

v∗ belongs to the second half of the segment [V ρ
0 , V

ρ
1 ] we can follow the same argument,

considering the point W2 instead of W0, to reach a contradiction. Thus f(vρ0) is κ close

to Dρ−M1 Thus, if for all i ∈ N f(V ρ
i ) is κ-close to the ray Dρ−M2i , then

distn(f(vρi ),D
ρ−M
2i+1 ) < κ2,

for all ρ > R0 and i ∈ N.

This finishes the proof because if we now assume that distn(f(V ρ
i ),Dρ−Mn−2i ) < κ, i.e. if

f ◦ γ is oriented in the opposite direction, then the same argument follows for Vn−1 and

vρn−1 instead of V ρ
1 and vρ0 , so we get:

distn(f(vρi ),D
ρ−M
n−(2i+1)) < κ2, for all ρ > R0 and i ∈ N.

�

With the last two results in hand we are now able to show that the ratio of constants of

any Lipschitz quotient mapping under a 4m-norm is strictly less than 1/2. For the proof of

this result we will use a construction that is valid only for 4m-norms with m > 1. However,

we can use Proposition 1.2.4 to derive the same result for the 4-norm (or `1-norm) from

Theorem 3.2.5. See, further, Theorem 4.2.12.

Theorem 4.2.11. Let n = 4m for some m ∈ N \ {1}, and let ‖ · ‖n denote the n-norm

on R2.

If f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) is an L-Lipschitz and c-co-Lipschitz 2-fold mapping

then c/L < 1/2.

Proof. By Theorem 2.7 we know that c/L ≤ 1/2. Assume on the contrary that c/L = 1/2.
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Without loss of generality we can assume further that f(0) = 0, c = 1 and L = 2.

From Theorem 2.6, we know that there exists R > 0 such that f(∂Bλ(0)) ⊆ R2 \

Bλ−M(0) for all λ > R, with M := max{‖p‖n : p ∈ f−1(0)}.

By Proposition 4.2.9 we know that there exists R′ > 0 and a constant κ such that

for some k ∈ {0, . . . , n − 1} we have distn(f(V λ
0 ),Dλ−Mk ) < κ. Since we may perform a

rotation of 2kπ
n

radians without changing the Lipschitz and co-Lipschitz constants of f ,

we can assume without loss of generality that k = 0, so that distn(f(V λ
0 ),Dλ−M0 ) < κ.

Now, from Lemma 4.2.10, there exists R0 > R′ such that for λ > R0 and k ∈ N we have

distn(f(V λ
k ),Dλ−M2k ) < κ and distn(f(vλk ),Dλ−M2k+1 ) < κ2, or distn(f(V λ

k ),Dλ−Mn−2k) < κ

and distn(f(vλk ),Dλ−Mn−(2k+1)) < κ2; for the definition of these constants see (4.31) and (4.42).

Now we set the new constants

κ1 := κ

cos(π/n) ; κ′ = max{κ, κ1, κ2} ; δ := 2κ′
tan(π/n) +M + 1 ; (4.45)

R∗ := max
{
δ, 4δ

tan3(π/n) ,
M+δ cos(2π/n)

1−cos(2π/n) ,
M

tan2(2π/n)

}
.

Of course, κ1 > κ and 4δ
tan3(π/n) > δ for n ≥ 4 but we add these constants in the definitions

of κ′ and R∗ respectively, in order to simplify the proofs of subsequent inequalities.

Pick r > max{R,R0, R
∗} and consider the polygon ∂Br(0). Since r > R′ we know

that either 1 or 2 of the statement of Lemma 4.2.10 is satisfied for all the vertices V r
i ,

vri of ∂Br(0). For simplicity, we will work out this proof under the assumption that 1

is satisfied but it will be clear that by symmetry the same proof will work under the

assumption 2 of Lemma 4.2.10. So assume 1 of Lemma 4.2.10, hence, in particular, the

first vertex V r
0 and the middle point vr0 of the first side of the polygon ∂Br(0) satisfy:

distn(f(V r
0 ),Dr−M1 ) < κ and distn(f(vr0),Dr−M1 ) < κ2. (4.46)

See Figure 4.10 for an illustration.
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Now, as we shall see, it is not possible that both points, f(V r
0 ) and f(vr0), are outside

Br+δ(0). For, if f(V r
0 ), f(vr0) ∈ R2\Br+δ(0), then, let W0 ∈ Dρ−M0 be as in (4.44)), so that

‖W0−f(V r
0 )‖n < κ, similarly let W1 be the point on Dρ−M1 such that ‖f(vr0)−W1‖n < κ2.

Then using the second part of the statement of Lemma 4.2.5 for u = w = r + δ, p = W0

and q = W1, we get:

‖f(V r
0 )− f(vr0)‖n > ‖W0 −W1‖n − (κ+ κ2) ≥ ‖V r+δ

0 − V r+δ
1 ‖n − 2κ′

= 2(r + δ) tan(π
n
)− 2κ′ ≥ 2r tan(π

n
) + 2

(
2κ′

tan(π
n
)

)
tan(π

n
)− 2κ′

> 2r tan(π
n
) = 2‖V r

0 − vr0‖n.

This is impossible since f is a 2-Lipschitz mapping. Therefore f(V r
0 ) ∈ Br+δ(0) or

f(vr0) ∈ Br+δ(0).

Figure 4.10

Case 1. Assume that f(V r
0 ) ∈ Br+δ(0).

In this case f(V r
0 ) is at most κ-far from the ray Dr−M0 , and we also have r −M ≤

‖f(V r
0 )‖n ≤ r + δ, therefore |‖f(V0)‖n − ‖V r

0 ‖n| = |‖f(V0)‖n − r ≤ max{δ,M}. This

implies that the point f(V0) lays in a region which is a subset of Bκ(V r−M
0 ) ∪ E , where
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E is the rectangle determined by the horizontal lines that are at distance κ from the

x-axis and the vertical line through V r+δ
0 and V r−M

0 . It is easy to see that in both cases,

f(V0) ∈ E or f(V0) ∈ Bκ(V r−M
0 ), we have:

‖f(V r
0 )− V r

0 ‖n ≤ max{M + κ, δ + κ} = δ + κ (4.47)

Now (going back to the domain of f), let vs0 be the intersection point between T0 and

the vertical line through V r
0 . By Lemma 4.2.4, we know that s = r(1 + tan2(π/n)), and

‖V r
0 −vs0‖n = r tan(π/n). On the other hand, from Lemma 4.2.10 we also know that f(vs0)

is at most κ2-far from the ray Ds−M1 and that this point, f(vs0), belongs to the complement

of Bs−M(0), by Theorem 2.6. Hence, by (4.46) there exists s′ > 0 such that the vertex

V s′
1 satisfies:

‖f(vs0)− V s′

1 ‖n < κ2 and ‖V s′

1 ‖n = s′ ≥ s−M. (4.48)

From (4.48) and (4.47) we have:

‖f(V r
0 )− f(vs0)‖n ≥ ‖f(V r

0 )− V s′

1 ‖n − ‖f(vs0)− V s′

1 ‖n ≥ ‖f(V r
0 )− V s′

1 ‖n − κ2 (4.49)

≥ ‖V r
0 − V s′

1 ‖n − ‖f(V r
0 )− V r

0 ‖n − κ2

≥ ‖V r
0 − V s′

1 ‖n − (δ + κ)− κ2.

Now we will use the first statement of Lemma 4.2.5 with u = r, q = V s′
1 and w = s−M .

In order to use this Lemma, we first need to check that the inequalities

s′ ≥ s−M and cos(2π
n

) ≤ 1 + tan2(π
n
)−M/r ≤ sec(2π

n
) (4.50)

are satisfied. The first of these follows from (4.48). To prove the remaining inequalities,
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the notice that, since we chose

r > R∗ ≥ M + δ cos(2π/n)
1− cos(2π/n) >

M

1− cos(2π/n) ,

we have M
r
< 1 − cos(2π/n), hence cos(2π/n) < 1 − M

r
< 1 + tan2(π

n
) − M/r. The

last inequality in (4.50) follows from the fact that cos(2π/n) = cos2(π/n) − sin2(π/n) ≤

cos2(π/n). Therefore,

sec(2π/n) = 1
cos(2π/n) ≥

1
cos2(π/n) = sec2(π/n) = 1 + tan2(π/n).

which proves the second inequality. This allows us to use Lemma 4.2.5 to conclude that

‖V r
0 − V s′

1 ‖n ≥ ‖V r
0 − V s−M

1 ‖n. This last inequality together with (4.49), gives us:

‖f(V r
0 )− f(vs0)‖n ≥ ‖V r

0 − V s′

1 ‖n − (δ + κ)− κ2 ≥ ‖V r
0 − V s−M

1 ‖n − (δ + κ)− κ2

≥ ‖V r
0 − V s

1 ‖n − ‖V s
1 − V s−M

1 ‖n − (δ + κ+ κ2)

= ‖V r
0 − V s

1 ‖n −M − (δ + κ+ κ2).

Now, recalling the definition of the constants in (4.45) we can see that κ, κ2 < κ′ < δ and

M < δ. Also, from Lemma 4.2.4 we know that ‖V r
0 − V s

1 ‖n = r tan(π/n)(2 + tan2(π/n)).

Finally, since we chose r > R∗, we have, r tan3(π/n) > 4δ. From these observations,

following the last inequality, we get:

‖f(V r
0 )− f(vs0)‖n ≥ ‖V r

0 − V s
1 ‖n − 4δ ≥ r tan(π/n)(2 + tan2(π/n))− 4δ

= 2r tan(π/n) + r tan3(π/n)− 4δ > 2r tan(π/n).

Again from Lemma 4.2.4, we know that ‖V r
0 − vs0‖n = r tan(π/n), hence, from the last

inequality we conclude that ‖f(V r
0 )− f(vs0)‖n > 2‖V r

0 − vs0‖n, which is not possible since
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we are assuming that f is a 2-Lipschitz mapping.

Case 2. Assume that f(V r
0 ) � Br+δ(0) and, therefore, f(vr0) ∈ Br+δ(0).

First we are going to show that

‖V r−M
1 − V r+δ

0 ‖n > ‖V r
1 − V r

0 ‖n + 2κ′. (4.51)

As we did in Lemma 4.2.5, let d = ‖V r−M
1 −V r+δ

0 ‖n and consider the polygon ∂Bd(V r+δ
0 ).

Consider the vertical line through V r+δ
0 and let Q denote the vertex of ∂Bd(V r+δ

0 ) that

belongs to this vertical line (see Figure 4.11).

Figure 4.11

Now, consider the horizontal line through V r−M
1 and let H be the intersection between

this line and the segment [V r+δ
0 , Q]. Finally let V ∗ be the intersection between the x-axis

and the vertical line through V r−M
1 .

Recall that we chose r > R∗, so that r > M+δ cos(2π/n)
1−cos(2π/n) , therefore:

(r + δ) cos(2π/n) ≤ r −M < r ≤ (r + δ) sec(2π/n). (4.52)
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If we let u = r+ δ and w = r−M , these last inequalities would mean, using the notation

of Lemma 4.2.5, that w ∈ [w0, w1]. Therefore, following Remark 4.2.6 we conclude that

the point V r−M
1 is on the (n4 + 1)-th side of the polygon Bd(V r−δ

0 )

Notice that given this construction, we have:

∠V r−M
1 QH = π

2 −
π

n
; ∠HV r−M

1 Q = π

n
; ∠V r−M

1 OV ∗ = 2π
n

; ∠OV r−M
1 V ∗ = π

2 −
2π
n
.

Therefore:

‖Q−H‖n = |Q−H| = |V r+δ
0 − V ∗| tan(π/n) (4.53)

‖H − V r+δ
0 ‖n = |V ∗ − V r−M

1 | = (r −M) sin(2π/n). (4.54)

Now, to find the value of |V ∗ − V r+δ
0 |, we look at the triangle V ∗, O, V r−M

1 and we find

out that |V ∗ −O| = (r −M) cos(2π
n

). Therefore,

|V r+δ
0 − V ∗| = r + δ − (r −M) cos(2π

n
).

Substituting this value in (4.53), we get:

|Q−H| =
[
r
(
1− cos(2π

n
)
)

+M cos(2π
n

) + δ
]

tan(π
n
)

=
[
r
(
2 sin2(π

n
)
)

+M
(
cos2(π

n
)− sin2(π

n
)
)

+ δ
]

tan(π
n
).
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Hence, using this last equality and (4.54):

d = ‖V r−M
1 − V r+δ

0 ‖n = |Q−H|+ |H − V r+δ
0 |

=
[
r
(
2 sin2(π

n
)
)

+M
(
cos2(π

n
)− sin2(π

n
)
)

+ δ
]

tan(π
n
) + (r −M)2 sin(π

n
) cos(π

n
)

= 2r
[sin3(π

n
) + sin(π

n
) cos2(π

n
)

cos(π
n
)

]
−M

[cos2(π
n
) sin(π

n
) + sin3(π

n
)

cos(π
n
)

]
+ δ tan(π

n
)

= (2r −M + δ) tan(π
n
).

Recalling the definition of δ and that the n-length of a side of a polygon of radius r is

equal to 2r tan(π/n), we gather that:

‖V r−M
1 − V r+δ

0 ‖n − ‖V r
1 − V r

0 ‖n = (δ −M) tan(π/n)

>
[(

2κ′
tan(π/n) +M

)
−M

]
tan(π/n) = 2κ′.

This gives (4.51), as we wanted.

Now, from Proposition 4.2.9, we know that f(V r
0 ) is at most κ-far from the ray D0

and, in this case, we have ‖f(V r
0 )‖n > r + δ, so that we can find a point V0 ∈ D0,

with ‖V0‖n ≥ r + δ such that ‖f(V r
0 ) − V0‖n < κ. In the same way, given that in this

case f(vr0) ∈ Br+δ(0), we can find a point V1 ∈ D1 such that ‖f(vr0) − V1‖n < κ2 and

r −M ≤ ‖V1‖n < r + δ. Recall that in (4.52) we already checked the conditions to use

Lemma 4.2.5 for u = r + δ and w = r −M , and we can take p = V0 and q = V1. This

gives:

‖V0 − V1‖n ≥ ‖V r+δ
0 − V r−M

1 ‖n.
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Combining this inequality with (4.51) we obtain:

‖f(V r
0 )− f(vr0)‖n ≥ ‖V0 − V1‖n − (κ+ κ2) ≥ ‖V r+δ

0 − V r−M
1 ‖n − (κ+ κ2)

> ‖V r
0 − V r

1 ‖n + 2κ′ − (κ+ κ2) ≥ ‖V r
0 − V r

1 ‖n = 2‖V r
0 − vr0‖n.

This is not possible since f is a 2-Lipschitz mapping.

In any case we arrive at a contradiction, so we conclude that c/L < 1/2. �

We can easily derive now the more general result.

Theorem 4.2.12. Let n = 4m for some m ∈ N and let ‖ · ‖ be a norm on R2 whose unit

ball is a (possibly rotated) regular polygon with n sides. Every 2-fold Lipschitz quotient

mapping f : (R2, ‖ · ‖)→ (R2, ‖ · ‖) has ratio of constants strictly less than 1/2.

In particular, this includes the cases of the `1 and `∞ norms.

Proof. This follows from Theorem 3.2.5, Theorem 4.2.11 and Proposition 1.2.4. �

We have shown then that for every norm whose unit ball is a regular polygon with 4m

sides, every Lipschitz quotient mapping with maxx∈R2 #g−1(x) = 2 will satisfy c/L < 1/2.

In the previous chapter we were able to calculate the exact value of the Lipschitz and co-

Lipschitz constants of the doubling mapping for the supremum norm, getting c = 1, L = 3,

see Proposition 3.1.3. In the next proposition we find sharper bounds for the constants

of the doubling mapping fn under the n-norm, for any n = 4m.

Proposition 4.2.13. If n = 4m for some m ∈ N, then the Lipschitz and co-Lipschitz

constants, Ln and cn, of the doubling mapping fn satisfy Ln ≥ 2 + tan2(π
n
) and cn ≤ 1.

Hence,
cn
Ln
≤ 1

2 + tan2(π
n
) .

Proof. First notice that the inequality cn ≤ 1 is obvious since for all r > 0, fn(∂Br(0)) =

∂Br(0), so Bcr(0) is not contained in fn(Br(0)) for any c > 1.
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To prove that Ln ≥ 2 + tan2(π
n
), take a point p0 = (ρ, 0) = V ρ

0 with ρ > 0. By the

definition of the doubling mapping we know that fn(p0) = p0. Recall the notation given

in Definition 4.2.2 and let R > 0 be sufficiently small so that BR(p0) does not intersect

the rays T0 and Tn−1. Take r < R and consider the polygon ∂Br(p0). Let us denote the

vertices of the polygon ∂Br(p0) by U0, . . . , Un−1 placing the indices as usual. Since r < R

we know that, if p denotes the vertex Un/4 of ∂Br(p0), then p belongs to the region R0.

Hence if ρ′ := ‖p‖n = ‖Un/4‖n, then p ∈ [V ρ′

0 , vρ
′

0 ]. Therefore fn(p) is the point on the

segment [V ρ′

0 , V ρ′

1 ] such that ‖V ρ′

0 − fn(p)‖n = 2‖V ρ′

0 − p‖n. So we have the three points

V ρ′

0 , p and fn(p) on the same line segment [V ρ′

0 , V ρ′

1 ] and ‖p− V ρ′

0 ‖n = ‖p− fn(p)‖n. See

Figure 4.12 for an illustration.

Figure 4.12

Now denote byM and N the lines parallel to the x-axis that pass through the points

p and fn(p), respectively. Also let K be the line perpendicular to M and N through the

point p0 and denote by q′ the intersection between K and N . Finally, consider the line

A that contains the points p0 and un/4, where un/4 denotes the middle point of the side

[Un/4, Un/4+1] of the polygon Br(p0).

Notice that A is parallel to the line segment [V ρ′

0 , V ρ′

1 ] that contains fn(p) and that K
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intersects the line segment [V ρ′

0 , V ρ′

1 ] at the point p, to the right of un/4 and below fn(p).

Therefore fn(p) lies between the lines A and K, hence: the left angle between M and

the segment [p, fn(p)] is equal to the angle ∠p V ρ′

0 p0 = π
2 −

π
n
, so looking at the triangle

fn(p), p, p0, we get:

∠fn(p) p0 q
′ < ∠q V ρ

0 p = π
2 − (π2 −

π
n
) = π

n
;

so we have ∠fn(p) p0 q
′ < π/n < 2π/n. Hence if we define d := ‖p0 − fn(p)‖n, the last

inequality means that the point fn(p) belongs to the (n4 +1)-th side of the polygon ∂Bd(p0).

In other words, if we denote by W0, . . . ,Wn−1 the vertices of the polygon ∂Bd(p0), then

fn(p) ∈ [Wn/4,W(n/4)+1]. Recalling that fn(p0) = p0, we now have:

d := ‖fn(p0)− fn(p)‖n = |p0 −Wn/4| = |p0 − p|+ |p− q′|+ |q′ −Wn/4|,

where | · | denotes the Euclidean norm. So now we need to compute each of the values on

the right hand side. We already know that |p0− p| = r, and since the triangles fn(p), q′, p

and p, V ρ′

0 , p0 are congruent, we get |p− q′| = |p0− p| = r, so the previous equation turns

into:

‖fn(p0)− fn(p)‖n = 2r + |q′ −Wn/4| (4.55)

To find |q′ −Wn/4|n, consider again the line A and let q ∈ A ∩M. Notice that

∠p p0 q = ∠p V ρ
0 un/4 = 1

2∠p p0 U(n/4)+1 = π/n,

∠un/4 p p0 = π
2 −

π
n

and ∠p un/4 p0 = π
2 = ∠p un/4 q.

In particular A is parallel to the line segment [V ρ′

0 , p], so that the quadrilateral p0, q, p, V
ρ′

0

is a parallelogram and |p− q| = |p0− V ρ′

0 |. Also notice that since the triangles fn(p), q′, p

and V ρ′

0 , p0, p are congruent we have |p− q| = |fn(p)− q′|. On the other hand looking at
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the triangles q, un/4, p and Wn/4, q
′, fn(p) we see:

∠q un/4 p = π
2 = ∠Wn/4 q

′ fn(p)

∠q p un/4 = π
2 − (π2 −

π
n
) = π

n
= ∠Wn/4 fn(p) q′

∠un/4 q p = π
2 −

π
n

= ∠fn(p)Wn/4 q
′

We calculate first the side |un/4 − q| of the triangle q, un/4, p: Since |un/4 − p| = r sin(π
n
)

(recall that the side of the polygon ∂Br(0) has Euclidean length 2r sin(π
n
)), we get:

|p− q| = |un/4 − p|
cos(π

n
) =

r sin(π
n
)

cos(π
n
) tan(π

n
).

Now since |p − q| = |fn(p) − q′|, we can calculate the side |q′ − Wn/4| of the triangle

Wn/4, q
′, fn(p) and we get

|q′ −Wn/4| = tan(π
n
)|fn(p)− q′| = r tan2(π

n
).

Finally, substituting this value in equation (4.55) we conclude that:

‖fn(p0)− f(p)‖n = 2r + r tan2(π
n
) =

(
2 + tan2(π

n
)
)
‖p0 − p‖n.

Thus, the Lipschitz constant, Ln, of the doubling mapping fn must satisfy Ln ≥

2 + tan( π
n
) and therefore cn/Ln ≤ 1/(2 + tan2(π

n
)). �

The following conjecture is a generalisation of Theorem 4.2.12 and Proposition 4.2.13:

Conjecture 4.2.14. Let n = 4m for some m ∈ N, and let ‖ · ‖n denote the n-norm on

R2.

If f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) is an L-Lipschitz and c-co-Lipschitz 2-fold mapping
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then
c

L
≤ 1

2 + tan2(π
n
) .

The equality is achieved for f = fn, where fn is the doubling mapping defined by Defini-

tion 4.2.

Remark 4.2.15. In Proposition 4.2.13 we only showed that for n = 4m, we have cn ≤ 1

and Ln ≥ 2 + tan2(π
n
), where Ln and cn are the Lipschitz and co-Lipschitz constants

of the doubling mapping. A detailed analysis of various points p ∈ R2 shows that the

co-Lipschitz constant c and the Lipschitz constant L of fn do satisfy:

c = 1 and L = 2 + tan2(π
n
). (4.56)

However, we decided not to include the proof of (4.56) since it would only be relevant

if we had a way to prove that for any L-Lipschitz and c-co-Lipschitz 2-fold mapping we

have c/L ≤ cn/Ln, where cn and Ln are the constants of the doubling mapping fn. The

next chapter shows some positive results in this direction for the case n = 4.
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Chapter 5
Is 1⁄3 an upper bound for the ratios of constants

of 2-fold Lipschitz quotient mappings on (R2, ‖ · ‖∞)?

In view of Proposition 3.2.4, the Example 3.1.1 defined in Section 3.1 and other examples

we have considered, our conjecture is that for any 2-fold Lipschitz quotient mapping f

from the plane to itself, endowed with the supremum norm, the ratio between the co-

Lipschitz and Lipschitz constants of f is less than or equal to 1/3. In this chapter we

present some partial results in this direction.

We show that, if we assume that the mapping f maps squares centred at the origin into

squares centred at the origin (but not necessarily fixing them), then c/L ≤ 1/3. On the

other hand we get the same inequality for the ratio between co-Lipschitz and Lipschitz

constants if we make some differentiability assumptions. We divided this chapter into

two sections, in the first one we will work under assumptions slightly weaker than in

Proposition 3.2.4. In the second we will work with differentiability assumptions.

5.1 Results mapping squares to squares

As we have just mentioned, in this section we will see, in Proposition 5.1.3, that we can

relax the hypothesis of Proposition 3.2.4 and derive the same result. For this we will need

a couple of lemmas regarding the behaviour of Lipschitz quotients along boundaries of

balls. As we shall see in the next Lemma, a Lipschitz quotient mapping that maps balls

centred at the origin into balls centred at the origin must do it in an “increasing” fashion,
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in the following sense.

Lemma 5.1.1. Let f : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) be a Lipschitz quotient mapping with

f(0) = 0. Assume there is a function ω : R+ → R+ such that for all r > 0 we have

f(∂Br(0)) = ∂Bω(r)(0). Then ω is strictly increasing.

Proof. First notice that for all r > 0, f(Br(0)) = Br∗(0) for some r∗ > 0. Indeed,

f(Br(0)) = f

( ⋃
0<s<r

∂Bs(0)
)
∪{0} =

( ⋃
0<s<r

f(∂Bs(0))
)
∪{0} =

( ⋃
0<s<r

∂Bω(s)(0)
)
∪{0}.

Since f is a continuous open mapping, f(Br(0)) must be a connected open set containing

0. We conclude that f(Br(0)) is an open ball around the origin, say Br∗(0).

Hence, for r > 0 we have:

f(Br(0)) = f(Br(0)) ∪ f(∂Br(0)) = Br∗(0) ∪ ∂Bω(r)(0).

Since f(Br(0)) is a connected set, we infer that ω(r) ≤ r∗. On the other hand, since

f(Br(0)) is closed, the same equation above implies that ω(r) ≥ r∗ (otherwise, we get

f(Br(0)) = Br∗(0), and the latter is not a closed set). Thus ω(r) = r∗ and we conclude

that f(Br(0)) = Bω(r)(0) for all r > 0.

Now, if we assume that 0 < r1 < r2, then

∂Bω(r1)(0) = f(∂Br1(0)) ⊆ f(Br2(0)) = Bω(r2)(0) ⊆ Bω(r1)(0).

so that ω(r1) < ω(r2). Thus ω is an increasing function. �

Furthermore, using Proposition 1.2.11 we can prove the following generalization of

Lemma 5.1.1.
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Lemma 5.1.2. Let f : (R2, ‖ · ‖) → (R2, ‖ · ‖) be a Lipschitz quotient mapping with

f(0) = 0, such that for all r > 0 we have f(∂Br(0)) = ϕr where ϕr is a simple closed

curve with index one around the origin. If 0 < r < s, then ϕr ⊆ I(ϕs). Here I(ϕ)

denotes the interior of the bounded component of R2 \ ϕ. In other words, I(ϕ) is the

bounded component of R2 \ ϕ as a subset of the space R2 \ ϕ.

Proof. First we are going to show that, given the conditions of the statement, if 0 < r < s,

then ϕr ∩ ϕs = ∅. Assume on the contrary that there exists a point y ∈ ϕr ∩ ϕs.

On the one hand, since y ∈ ϕs, from Proposition 1.2.11 we get:

y ∈ ϕs = f(∂Bs(0)) = ∂(f(Bs(0))).

On the other hand, since y ∈ ϕr, we have:

y ∈ ϕr = f(∂Br(0)) ⊆ f(Bs(0)).

Thus, y ∈ (∂f(Bs(0))) ∩ f(Bs(0)), which is impossible since f is an open mapping.

Now we show that f(Br(0)) ⊆ I(ϕr) for all r > 0. Let r > 0 and take x ∈ Br(0).

Assume for a contradiction that f(x) < I(ϕr). Since Br(0) is convex, the line segment

[0, x] is contained in Br(0). On the other hand, since 0 ∈ I(ϕr) and f(x) < I(ϕr), there

exists a point x′ ∈ [0, x] such that f(x′) ∈ ϕr. Therefore, if m = ‖x′‖,

x′ ∈ ∂Bm(0) and f(x′) ∈ f(∂Bm(0)) = ϕm.

Since ϕr ∩ ϕs = ∅ for r , s, we have m = r. Hence, x′ ∈ ∂Br(0) and x′ ∈ [0, x] ⊆ Br(0).

This is impossible, thus f(Br(0)) ⊆ I(ϕr). Finally, if we now assume that 0 < r < s, we

have:

ϕr = f(∂Br(0)) ⊆ f(Bs(0)) ⊆ I(ϕs),
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as we wanted. �

We are now able to show that the ratio of constants of a two fold Lipschitz quotient

mapping under the supremum norm, that maps squares centred at the origin to squares

centred at the origin cannot be bigger than 1/3.

Proposition 5.1.3. Let f : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) be a 2-fold Lipschitz quotient

mapping. Assume there is a function ω : R → R such that for all r > 0 we have

f(∂Br(0)) = ∂Bω(r)(0). Then the Lipschitz constant L and the co-Lipschitz constant c of

f satisfy c/L ≤ 1/3.

Proof. As before we may assume that f(0) = 0 and c = 1, we need to show that L ≥ 3.

Assume indirectly that L < 3, then by Proposition 3.2.4 we know that there exists ρ > 0

such that some corner of the square ∂Bρ(0), say P = P ρ
j , is not mapped to a corner, i.e.

dist(f(P ), A0) > 0 where A0 = {(x, y) ∈ R2 : |x| = |y|}.

Since we may perform a rotation through integer multiples of π/2 without changing the

Lipschitz and co-Lipschitz constants of f , we will assume that P = ρV , where V := (1,−1)

and that f(P ) ∈ {(x, y) ∈ R2 : y < 0, |x| < |y|}, i.e. f(P ) belongs to a horizontal side of

∂Bω(ρ)(0). Let 0 < κ < dist(f(P ), A0), consider the square Bκ(P ) and denote its corners

by P0, . . . , P3, starting at the bottom right corner and placing the indices counterclockwise.

By the co-Lipschitz property we know that Bκ(f(P )) ⊆ f(Bκ(P )). Denote the corners of

the square ∂Bκ(f(P )) by Q0, . . . , Q3 placing the indices as before. Note that [Q1, Q2] is a

horizontal line segment. Finally, for i ∈ {0, . . . , 3} pick qi ∈ Bκ(P ) such that f(qi) = Qi,

see Figure 5.1.

From the Lipschitz property we get:

3‖q1 − q2‖∞ > L‖q1 − q2‖∞ ≥ ‖f(q1)− f(q2)‖∞ = ‖Q1 −Q2‖∞ = 2κ,
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therefore,

Figure 5.1

‖q1 − q2‖∞ >
2
3κ. (5.1)

Observe that we have ‖Q1‖∞ = ‖Q2‖∞, and so ‖q1‖∞ = ‖q2‖∞ (because from

Lemma 5.1.1 we know that ω is injective). We show now that this observation together

with (5.1), implies that ρ′ := ‖qi‖∞ ≥ ρ − 1
3κ, i = 1, 2. Indeed, if we assume that

ρ′ < ρ− 1
3κ, then both points q1, q2 belong to (Bρ− 1

3κ
(0)∩Bκ(P )) —this is, in Figure 5.1

the green square on the left. Therefore, for i = 1, 2, we would get:

qi ∈ B 1
3κ

(P̃r) where r := ρ− 2
3κ, and P̃r := r

ρ
P = rV. (5.2)

The latter implies ‖q1− q2‖∞ ≤ 2
3κ, which we have just shown in (5.1) is impossible. This

establishes

ρ′ = ‖q1‖∞ = ‖q2‖∞ ≥ ρ− 1
3κ.

Now consider the square ∂B 1
3κ

(P̃r), where r is as in (5.2), and denote its corners by
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P ′0, . . . , P
′
3 in the same way as before. Since

‖P ′0‖∞ = r + 1
3κ = ρ− 1

3κ ≤ ρ′,

from Lemma 5.1.1, we get:

ω(‖P ′0‖∞) ≤ ω(ρ′) = ‖Q1‖∞ = ‖f(P )‖∞ − κ,

(see Figure 5.1.1 for an illustration). This means that ‖f(P ′0)‖∞ ≤ ‖f(P )‖∞ − κ. Hence:

‖f(P )− f(P ′0)‖∞ ≥ ‖f(P )‖∞ − ‖f(P ′0)‖∞ ≥ κ.

On the other hand, by the Lipschitz property of f we have:

‖f(P )− f(P ′0)‖∞ ≤ L‖P − P ′0‖∞ < 3‖P − P ′0‖∞ = 3(1
3κ) = κ.

Thus κ ≤ ‖f(P )− f(P ′0)‖∞ < κ, a contradiction. Therefore we must have L ≥ 3. �

5.2 Results using differentiability assumptions

In this section we will be assuming some differentiability properties of the Lipschitz quo-

tient mapping f . More precisely, we will assume the existence of some differentiability

points when f is restricted to some curve γ. Hence, whenever γ is a fixed parametrized

curve, and p is a point belonging to the image of γ, say p = γ(t0), it will be convenient

to say that f ◦ γ is differentiable at p, meaning that f ◦ γ is differentiable at t0.

These sort of differentiability assumptions come from the observation that the corners

of big enough squares centred at the origin might play a particular role regarding the

behaviour of such mappings. For instance, see Propositions 3.2.1, 3.2.4 and 4.2.9. In the
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general case we do not have much information about the behaviour of these mappings

around corners of centred squares. However, we might be able to say something about the

ratio of the Lipschitz and co-Lipschitz constants of the Lipschitz quotient f , if we could

find a linear approximation of the restriction of f to ∂Br(0) at some corner of the square

∂Br(0). We will see, in Propositions 5.2.1 and 5.2.2, that this is the case if we assume

that the relevant derivative has some specific directions. Notice that even if we can not

guarantee the existence of such differentiability points, since the mapping f◦γ : [0, 1]→ R2

is Lipschitz, in the sense that for every t1, t2 ∈ [0, 1] we have ‖f ◦ γ(t1) − f ◦ γ(t2)‖ ≤

αL|t1− t2|, where α is the Lipschitz constant of γ, we have that, f ◦ γ is differentiable at

almost all t ∈ [0, 1].

The following proposition is a generalization of Proposition 5.1.3 in the case when the

images of corners are not on the main diagonals (see Proposition 3.2.4).

Proposition 5.2.1. For every ρ > 0 let γρ be the curve describing the square ∂Bρ(0).

Let f : (R2, ‖ · ‖∞)→ (R2, ‖ · ‖∞) be a 2-fold Lipschitz quotient mapping and let N be as

in Corollary 2.5. Assume that for some ρ > N the curve f ◦ γρ is differentiable at some

corner P of the square ∂Bρ(0) and that the tangent at this point is parallel to one of the

sides of ∂B‖f(P )‖∞(0). Then, c/L ≤ 1/3.

Proof. As before we will assume that f(0) = 0 and c = 1, and we will then see that the

assumption L < 3 leads to a contradiction. Let L = 3− α < 3. Let N and ε > 0 be as in

Corollary 2.5, therefore f is injective in every neighbourhood Bε(x) with ‖x‖∞ > N . By

hypothesis we can find a point P with ‖P‖∞ := ρ > N such that f ◦ γρ is differentiable

at P . Consider a 1-Lipschitz parametrization ϕ : [−4ρ, 4ρ]→ ∂Bρ(0) of ∂Bρ(0) such that

ϕ(0) = P oriented counterclockwise, so that the tangent to the curve f ◦ ϕ at this point

f(P ) is parallel to a side of the square ∂Bρ(0).

Assume that the derivative of the curve f ◦ ϕ at the point P is parallel to the x-

axis, so the tangent vector to the curve f ◦ ϕ at the point P has the form (k, 0) for
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some k ∈ R. Therefore, if we denote by x(f) and y(f) the coordinate functions of f ,

f(z) = (x(f(z)), y(f(z))), then we can find δ ∈ (0, ε) such that:

x(f(ϕ(t))) = x(f(ϕ(0))) + kt+ o1(t) = x(f(P )) + kt+ o1(t), (5.3)

y(f(ϕ(t))) = y(f(ϕ(0))) + o2(t) = y(f(P )) + o2(t), (5.4)

with |o1(t)| < |kt|
2 and |o2(t)| < α

2 |t|, whenever 0 < |t| < δ.

Figure 5.2

Let 0 < δ′ < min{2
3δ,

δ
8 |k|} and take the corner P1 of the square ∂Bρ+δ′/3(0) that is in

the same direction as P , i.e. P1 = (1 + δ′/3ρ)P , see Figure 5.2. Now, consider the image

of P1 under f and the square ∂Bδ′(f(P1)) centred at f(P1) with radius δ′. Let γ := f(ϕ)

and define :

ϕ1 := (∂Bρ(0) ∩Bδ′(P1))

γ1 := f(ϕ1).
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First notice that the curve γ intersects the boundary of the square Bδ′(f(P1)) in at least

two points. Indeed, it is clear that f(P ) belongs to the square Bδ′(f(P1)), because:

‖f(P )− f(P1)‖∞ ≤ L‖P − P1‖∞ = (3− α)1
3δ
′ = δ′ − αδ′

3 < δ′ (5.5)

and from (5.3), we know that for every t ∈ (−δ, δ) we have:

|x(f(ϕ(t)))− x(f(ϕ(0)))| = |kt+ o1(t)| ≥ |kt| − |o1(t)| > 1
2 |kt|.

In particular, for t∗1 = −δ/2 and t∗2 = δ/2 we have:

|x(f(ϕ(t∗i )))− x(f(ϕ(0)))| > 1
2 |kt

∗
i | = δ

4 |k| = 2 δ8 |k| > 2δ′,

so that both points f(ϕ(t∗1)) and f(ϕ(t∗2)) lie outside Bδ′(f(P1)).

This means that both pieces, f(ϕ((−δ, 0))) and f(ϕ((0, δ))), of the curve γ go from

the outside to the inside of the square Bδ′(f(P1)), and the other way around respectively,

so both curves must intersect the boundary of the square Bδ′(f(P1)) by the Jordan Curve

Theorem.

We have shown then that there exist t1 ∈ (−δ, 0) and t2 ∈ (0, δ) such that f(ϕ(ti)) ∈

∂Bδ′(f(P1)). As we will see, using the local injectivity of f we can actually assure that

these points satisfy t1 ∈ [−2δ′
3 , 0) and t2 ∈ (0, 2δ′

3 ]. Notice that the images of ϕ(ti),

i ∈ {1, 2} under f belong to the square Bδ′(f(P1)), and from the co-Lipschitz property

we have Bδ′(f(P1)) ⊆ f(Bδ′(P1)) so the inverse images under f of the points f(ϕ(ti)),

i = 1, 2 must intersect Bδ′(P1). This is enough to conclude that t1 ∈ [−2δ′
3 , 0) and

t2 ∈ (0, 2δ′
3 ]. Indeed, notice that since ϕ is 1-Lipschitz and t1 ∈ (−δ, 0), t2 ∈ (0, δ), then

for i = 1, 2 we have ‖ϕ(ti) − ϕ(P )‖∞ ≤ |ti| < δ, so ϕ(ti) ∈ Bδ(P ). On the other hand,

since δ < ε, then f is injective in Bδ(P ). Hence, for i = 1, 2 the only point in Bδ(P ) that
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is mapped to f(ϕ(ti)) is in fact ϕ(ti) and it should belong to Bδ′(P1). Since

ϕ ∩Bδ′(P1) = {ϕ(t) : t ∈ [−2δ′
3 ,

2δ′
3 ]},

we conclude that t1 ∈ (−δ, 0) ∩ [−2δ′
3 ,

2δ′
3 ] and t2 ∈ (0, δ) ∩ [−2δ′

3 ,
2δ′
3 ]. See Figure 5.2.

Now, let xi := ϕ(ti) and notice that the images of x1, x2 under f cannot belong both

to the left vertical side of the square ∂Bδ′(f(P1)). See Figure 5.2. For, if f(xi), i = 1, 2

belong to the left vertical side of the square ∂Bδ′(f(P1)) and P ∈ Bδ′(f(P1)), using (5.3)

we get:

0 < x(f(P ))− x(f(x1)) = x(f(P ))− x(f(ϕ(t1))) = −kt1 − o1(t′1) < −kt1 + 1
2 |k|(−t1)

0 < x(f(P ))− x(f(x2)) = x(f((P ))− x(f(ϕ(t2))) = −kt2 − o1(t′2) < −kt2 + 1
2 |k|(t2).

Since t1 < 0 < t2, these inequalities yield:

0 < −t1(1
2 |k|+ k) ⇒ −k < 1

2 |k|

0 < t2(1
2 |k| − k) ⇒ k < 1

2 |k|

and we get |k| < 1
2 |k|, a contradiction. A similar argument shows that both points cannot

belong to the right hand side of the square ∂Bδ′(f(P1)).

Furthermore, it is easy to see that it is also not possible that the points f(x1), f(x2)

belong to two opposite sides of the square ∂Bδ′(f(P1)). Indeed, since for any two points,

x1, x2 ∈ ϕ1 we have ‖x1 − x2‖∞ ≤ 2
3δ
′, by the Lipschitz property we have:

‖f(x1)− f(x2)‖∞ ≤ L‖x1 − x2‖∞ < 3(2
3δ
′) = 2δ′.

Thus the distance between the images of any two points of the curve ϕ1 is strictly less than
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2δ′, so the points f(x1), f(x2) cannot lie on two opposite sides of the square ∂Bδ′(f(P1)).

Therefore the only option remaining is that at least one of these two points, f(x1) or

f(x2) belongs to the top side or the bottom side of the square ∂Bδ′(f(P1)).

Since |ti| ≤ 2δ′
3 < δ we can apply (5.4) for t = ti, j ∈ {1, 2}, and get:

|y(f(xi))− y(f(P ))| = |o2(ti)| < α
2 (2

3δ
′) = αδ′

3 . (5.6)

On the other hand the inequality (5.5) implies:

|y(f(P ))− y(f(P1))| ≤ ‖f(P )− f(P1)‖∞ ≤ δ′ − αδ′

3 . (5.7)

Therefore, from the inequalities (5.6) and (5.7) we gather that |y(f(xi)) − y(f(P1))| <

δ′, which means that f(xi) cannot be a point of the top or bottom side of the square

∂Bδ′(f(P1)), as we have |b − y(f(P1))| = δ′ for all points (a, b) belonging to the top or

bottom side of the square ∂Bδ′(f(P1)).

We conclude that if the derivative of the curve f ◦γ at P is parallel to the x-axis, then

L could not be smaller than 3. Since we can preform a rotation of π
2 without affecting

the LIpschitz and co-Lipschitz constants of f . We conclude that L > 3 also in the case

where the derivative of f ◦ γ at P is parallel to the y-axis. �

The next proposition shows that if we now assume that the tangent at some corner

P is π/4 —instead of π or π/2 as in Proposition 5.2.1— we can derive the same colclusion

that c/L ≤ 1/3.

Proposition 5.2.2. For every ρ > 0 let γρ be the curve describing the square ∂Bρ(0).

Let f : (R2, ‖ · ‖∞)→ (R2, ‖ · ‖∞) be a 2-fold Lipschitz quotient mapping. Let N be as in

Proposition 2.4 and assume that for some ρ > N the curve f ◦γρ is differentiable at some

corner P of the square ∂Bρ(0) and that the tangent at this point has slope equal to π/4.
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Then, c/L ≤ 1/3.

Proof. We assume again that f(0) = 0 and c = 1, and we carry out the proof by contra-

diction repeating a similar construction to the one on Proposition 5.2.1. Let L = 3−α < 3

and N as in Corollary 2.5, so we know that there exists ε > 0 such that f is injective in

every neighbourhood Bε(x), whenever ‖x‖∞ > N . By hypothesis we can find a corner

point P with ‖P‖∞ := ρ > N such that f ◦ γρ is differentiable at P and that the tan-

gent at this point has slope equal to π/4. Let γ : [−4ρ, 4ρ] → ∂Bρ(0) be a 1-Lipschitz

parametrization of the curve ∂Bρ(0) with γ(0) = P oriented counterclockwise, so that the

tangent vector to the curve f ◦ γ at this point P is equal to (k, k) for some k ∈ R.

First we will assume that k > 0, therefore, if we denote by x(f) and y(f) the coordinate

functions of f , f(z) = (x(f(z)), x(f(z))), then we can find δ ∈ (0, ε) such that:

x(f(γ(t))) = x(f(γ(0))) + kt+ o1(t) = x(f(P )) + kt+ o1(t) (5.8)

y(f(γ(t))) = y(f(γ(0))) + kt+ o2(t) = y(f(P )) + kt+ o2(t) (5.9)

with |o1(t)|, |o2(t)| < min{k|t|, α8 |t|}, whenever |t| < δ.

As in Proposition 5.2.1, let δ′ < 2
3 min{δ, ε} and consider the square ∂Bδ′(f(P )) centred

at f(P ) with radius δ′. See Figure 5.3. Denote the corners of this square by A,B,C,D

starting from the bottom right corner and going counterclockwise. Now, (back to the

domain of f) consider the square ∂Bρ−δ′/3(0) and take the corner P1 of ∂Bρ−δ′/3(0) that

is in the same direction as P , i.e. P1 = (1− δ′/3ρ)P .

It is clear that the point f(P1) belongs to the square Bδ′(f(P )) = ABCD. Indeed,

since L < 3, we have:

‖f(P )− f(P1)‖∞ < 3‖P − P1‖∞ = δ′.
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Figure 5.3

We may assume that f(P1) belongs to the upper triangle B,C,D; otherwise we can

perform a π radians rotation without changing the Lipschitz and co-Lipschitz constants

of f . (Notice that here, differently to Proposition 5.2.1, we do not have any further

assumptions about the position of the corner P ).

Now, assume that f(P1) belongs to the triangle T whose vertices are f(P ), B and C

and consider the point P2 := (x(P ) − 2
3δ
′, y(P )), where x(P ), y(P ) are the x-coordinate

and the y-coordinate of the point P respectively. Hence ‖P − P2‖∞ = 2
3δ
′, by definition

of the curve γ this means that γ(t2) = P2, where t2 := −2
3δ
′.

Now, since P2 lies inside the neighbourhood Bδ(P ), from (5.8) and (5.9) we have:

‖f(P )− f(P2)‖∞ = max{|kt2 + oi(t2)| : i = 1, 2}.
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Therefore:

‖f(P )− f(P2)‖∞ − |y(f(P ))− y(f(P2))| ≤
∣∣∣∣|x(f(P ))− x(f(P2))| − |y(f(P ))− y(f(P2))|

∣∣∣∣
=
∣∣∣∣|kt2 + o1(t2)| − |kt2 + o2(t2)|

∣∣∣∣
≤|kt2 + o1(t2)− (kt2 + o2(t2))|

≤|o1(t2)|+ |o2(t2)| < α
4 |t2|.

Hence,

|y(f(P ))− y(f(P2))| > ‖f(P )− f(P2)‖∞ − α
4 |t2|. (5.10)

On the other hand, since we are assuming that f(P1) lies inside the triangle T then

0 < ‖f(P1)− f(P )‖∞ = |y(f(P1))− y(f(P ))| = y(f(P1))− y(f(P )). (5.11)

Also, from (5.9), and the fact that −δ < −2
3δ
′ = t2 < 0 it follows that

y(f(P2)) = y(f(P )) + kt2 + o2(t2) ≤ y(f(P )) + kt2 + |o2(t2)|

< y(f(P )) + kt2 + k|t2| = y(f(P )),

using k > 0. Hence, since we are assuming that f(P1) ∈ T we have:

y(f(P2)) < y(f(P )) < y(f(P1)). (5.12)

Finally, notice that from Corollary 2.5, since δ′ < ε, we know that for every pair

of points, say x1, x2, belonging to Bδ′(P ) we have ‖f(x1) − f(x2)‖∞ ≥ ‖x1 − x2‖∞, in
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particular:

‖f(P2)− f(P )‖∞ ≥ ‖P2 − P‖∞ = 2
3δ
′, (5.13)

‖f(P1)− f(P )‖∞ ≥ ‖P1 − P‖∞ = 1
3δ
′.

From (5.12), (5.11), (5.10) and (5.13) it follows that:

‖f(P2)− f(P1)‖∞ ≥ |y(f(P2))− y(f(P1))| = y(f(P1))− y(f(P2))

= (y(f(P1))− y(f(P ))) + (y(f(P ))− y(f(P2)))

= ‖f(P1)− f(P )‖∞ + (y(f(P ))− y(f(P2)))

> ‖f(P1)− f(P )‖∞ + ‖f(P )− f(P2)‖∞ − α
4 |t2|

≥ 1
3δ
′ + 2

3δ
′ − α

4 (2
3δ
′) > δ′(1− 1

3α) = (3− α)1
3δ
′.

This is a contradiction since by the Lipschitz condition we have:

‖f(P2)− f(P1)‖∞ ≤ (3− α)‖P2 − P1‖∞ = (3− α)1
3δ
′.

In a similar way, we reach a contradiction assuming that f(P1) lies inside the triangle

T ′ whose vertices are C, f(P ) and D. Indeed, instead of the point P2 consider now the

point P ′2 defined as P ′2 := (x(P ), y(P )+ 2
3δ
′). Then P ′2 = γ(t′2) where t′2 := 2

3δ
′. Then (5.10)

can be changed to:

‖f(P )− f(P ′2)‖∞ − |x(f(P ))− x(f(P ′2))| (5.14)

≤
∣∣∣∣|y(f(P ))− y(f(P ′2))| − |x(f(P ))− x(f(P ′2))|

∣∣∣∣
=
∣∣∣∣|kt′2 + o2(t′2)| − |kt′2 + o1(t′2)|

∣∣∣∣
≤|o1(t′2)|+ |o2(t′2)| < α

4 |t
′
2|.
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Also in this case, since f(P1) ∈ T ′, the estimate (5.11) becomes:

‖f(P1)− f(P )‖∞ = |x(f(P1))− x(f(P ))| = x(f(P ))− x(f(P1)), (5.15)

and (5.12) would be changed into:

x(f(P1)) < x(f(P )) < x(f(P ′2)), (5.16)

this is because, given that k > 0, we have:

x(f(P ′2)) = x(f(P )) + kt′2 + o1(t′2) ≥ x(f(P )) + kt′2 − |o1(t′2)|

> x(f(P )) + kt′2 − k|t′2| = x(f(P )),

again using k > 0. Thus, using (5.15), (5.16), (5.14) and then (5.13), we have:

‖f(P ′2)− f(P1)‖∞ ≥ |x(f(P ′2))− x(f(P1))| = x(f(P ′2))− x(f(P1))

= (x(f(P ′2))− x(f(P ))) + (x(f(P ))− x(f(P1)))

> ‖f(P ′2)− f(P )‖∞ − α
4 |t
′
2|+ ‖f(P )− f(P1)‖∞

≥ 2
3δ
′ − α

4 |t
′
2|+ 1

3δ
′ > δ′(1− 1

3α) = (3− α)1
3δ
′.

Again, this is a contradiction since

‖f(P ′2)− f(P1)‖∞ ≤ (3− α)1
3δ
′.

Thus we have proved that the statement is true for k > 0. It is clear that if we assume

k < 0 then we only need to repeat the argument above but choosing the point P2, when

P1 belongs to the triangle T ′ and the point P ′2 when P1 belongs to the triangle T . �
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After the last two propositions, the idea would be to generalise these results to the

case when the tangent at the image of some corner P of ∂Br(0) has an arbitrary slope.

The next result points in that direction, still, we will use stronger assumptions than in

the previous results. We assume further that there is a neighbourhood of a corner P such

that any other corner inside that neighbourhood is mapped to a point with x-coordinate

equal to the x-coordinate of f(P ).

Proposition 5.2.3. For every ρ > 0 let γρ be the curve describing the square ∂Bρ(0).

Let f : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) be a 2-fold Lipschitz quotient mapping. Assume that

for a sufficiently large ρ ∈ R+, there is a corner P of the square γρ and a neighbourhood

Bδ(P ) of P such that:

1. For all λ ∈ (ρ− δ, ρ+ δ) the image under f of the path γλ ∩Bδ(P ) is a straight line

with gradient m ∈ (0, 1).

2. For each λ ∈ (ρ−δ, ρ+δ) there is a real number ξ(λ) such that f(P+(λ−ρ, λ−ρ)) =

f(P ) + (0, ξ(λ)).

Then the Lipschitz constant, L, and the co-Lipschitz constant, c, of f satisfy c/L ≤ 1/3.

Proof. Assume that f(0) = 0 and c = 1. We carry out the proof by contradiction, so

assume L < 3. Let N and ε be given by Corollary 2.5. By hypothesis we can find a

corner point P with ‖P‖∞ := ρ > N + 1 and a neighbourhood Bδ(P ) such that the

conditions 1 and 2 of the proposition are satisfied. Without loss of generality we may

assume that δ < ε < 1 and we also can assume that P = (ρ, ρ), since the mapping defined

as the composition of a rotation by any integer multiple of π
2 followed by f has the same

Lipschitz and co-Lipschitz constants as f .

Fix any r ∈ (0, 3
2δ) and consider the square whose upper right corner is the point P

and has radius 1
3r, i.e. the square B 1

3 r
(Q) where Q := P − (1

3r,
1
3r). Denote by C the
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bottom right corner of the square B 1
3 r
Q and by B and D upper and bottom left corners,

respectively. See Figure 5.4.

For a point p, let x(p) and y(p) be the x-coordinate and the y-coordinate of p, respec-

tively. Let k1 = 1
3(m+ 1) and k2 = 1

3(1−m). For i ∈ {1, 2}. We will consider the square

Si whose bottom left corner is D and has side (2
3 + ki)r. Finally, denote by Ai the upper

right corner of the square Si. Notice that f(P ) and f(Ai) have the same x-coordinate.

Indeed, since

Ai = D + (2
3 + ki)r(1, 1) = P + kir(1, 1),

from the hypothesis 2 of the present lemma, we only need to check that |kir| ≤ δ. However,

since m ∈ (0, 1), we have

|ki| = |13(1±m)| < 2
3 and r < 2

3δ.

Therefore, x(P ) = x(Ai). On the other hand, we may assume without loss of generality

that y(f(A1)) > y(f(P )), since now the mapping defined as the composition of f followed

by a rotation of π radians has the same Lipschitz and co-Lipschitz constants as f . See

Figure 5.4 for an illustration.

Notice that once we have assumed that the y-coordinate of f(A1) is greater then the

y-coordinate of f(P ) then the same must happen with the y-coordinate of f(A2). Indeed,

suppose that y(f(A2)) ≤ y(f(P )), and let ϕ be a parametrization of the line segment

that joins P with A1 (passing through A2). Then, by the hypothesis 2, f(ϕ) would be

mapped into a curve describing a straight vertical line segment with starting point f(P ),

then going down through f(A2) and then up to f(A1). Therefore, there is another point

in between A1 and A2 which is mapped to f(P ). This is impossible since f is injective

in S1. We conclude that y(f(A2)) > y(f(P )). A very similar argument shows that the

points f(B) and f(C) are on different sides of f(P ). Indeed, assume that f(C) and (f(B)
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are on the same side of f(P ) and let γ′ρ be the path contained in γρ that goes from B to

C. Then, by hypothesis 1, f(γ′ρ is contained in a straight line with gradient m and since

we are assuming that f(P ) is not in between f(B) and f(C), the curve f(γ′ρ must pass

through f(B), then f(P ), and then back to f(C), so all the points on the line segment

[f(P ), f(C)] have two preimages, which is not possible since f is injective on S〉.

Figure 5.4

Once this is clear, we first consider the square S1; we are going show that

|x(f(P ))− x(f(C))| = |x(f(A1))− x(f(C))| ≥ (1 + 1
3m)r. (5.17)

The first equality is obvious since we are assuming that f(P ) and f(A1) have the same

x-coordinate. Notice that since f is injective in Bδ(P ), by Corollary 2.5 we know that

‖f(A1)− f(C)‖∞ ≥ c‖A1 − C‖∞ = (2
3 + k1)r = (1 + 1

3m)r. (5.18)

To prove the inequality in (5.17) we consider two cases.

Case A1. y(f(C)) > y(f(A1)).
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In this case, using hypothesis 1 of the present Lemma, we have

y(f(C))−y(f(A1)) < y(f(C)−y(f(P )) = m (x(f(C))− x(f(P ))) < |x(f(A1))−x(f(C))|.

Therefore ‖f(A1)− f(C)‖∞ = |x(f(A1))−x(f(C))| and from (5.18) we conclude that

(5.17) is satisfied.

Case A2. y(f(C)) ≤ y(f(A1)).

Notice that in this case we have:

y(f(A1))− y(f(C)) = y(f(A1))− y(f(P ))−m|x(f(P ))− x(f(C))|, (5.19)

see Figure5.4 for an illustration. We know that (y(f(A1))− y(f(P ))) ≤ L‖A1 − P‖∞ <

3k1r. On the other hand, using again Corollary 2.5, we have

|x(f(P ))− x(f(C))| = ‖f(P )− f(C)‖∞ ≥ c‖P − C‖∞ = 2
3r.

The first equality is satisfied since f(P ) and f(C) lie, by hypothesis, on a line with

gradient 0 < m < 1. Therefore

|y(f(A1))− y(f(P ))| −m|x(f(P ))− x(f(C))| < (3k1 −m2
3)r = (1 + 1

3m)r.

Using (5.19), this proves |y(f(A1))−y(f(C))| < (1+ 1
3m)r. On the other hand, from (5.18)

we have ‖f(A1)− f(C)‖∞ ≥ (1 + 1
3m)r. Therefore, we must have

(1 + 1
3m)r ≤ ‖f(A1)− f(C)‖∞ = |x(f(A1))− x(f(C))|,

and this finishes the proof of (5.17).
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Our next goal is to consider the square S2, and to show that

|x(f(P ))− x(f(B))| = |x(f(A2))− x(f(B))| ≥ (1− 1
3m)r. (5.20)

Again the first equality is clear. Notice that:

|y(f(A2))− y(f(B))| = |y(f(A2))− y(f(P ))|+ |y(f(P ))− y(f(B))|,

see Figure 5.4. Now, since f(P ) and f(B) have the same x-coordinate, we have ‖f((P ))−

f(B))‖∞ = |y(f(P ))−y(f(B))| and, since P and B belong to γρ∩Bδ(P ), from hypothesis

1 we get |y(f(P ))− y(f(B))| = m|x(f(P ))− x(f(B))| = m|x(f(A2))− x(f(B))|, the last

equality here uses x(f(P )) = x(f(A2)). Therefore,

|y(f(A2))− y(f(B))| = m|x(f(A2))− x(f(B))|+ ‖f(P )− f(A2)‖∞. (5.21)

Using Corollary 2.5 we have:

‖f(A2)− f(B)‖∞ = max{|x(f(A2))− x(f(B))|, |y(f(A2))− y(f(B))|}

≥ c‖A2 −B‖∞ = (2
3 + k2)r = (1− 1

3m)r. (5.22)

Again we have two cases in which we establish (5.20).

Case B1. |x(f(A2))− x(f(B))| > |y(f(A2))− y(f(B))|.

In this case we have ‖f(A2)− f(B)‖∞ = |x(f(A2))−x(f(B))|. Hence, from (5.22) we

conclude |x(f(A2))− x(f(B))| ≥ (1− 1
3m)r, which proves (5.20).

Case B2. |x(f(A2))− x(f(B))| ≤ |y(f(A2))− y(f(B))|.

Now, using (5.21) and (5.22) we have:

m|x(f(A2))− x(f(B))|+ ‖f(P )− f(A2)‖∞ = |y(f(A2))− y(f(B))| ≥ (1− 1
3m)r.
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This implies

|x(f(A2))− x(f(B))| ≥ 1
m

(
(1− 1

3m)r − ‖f(P )− f(A2)‖∞
)
. (5.23)

Furthermore, we can show that ‖f(P )−f(A2)‖∞ < (3−2m)‖P−A2‖∞ = (3−2m)k2r.

Indeed, if we now consider the squareBk2r(P ) and we denote by E2 the bottom right corner

of the square (see Figure 5.4) then

‖f(P )− f(E2)‖∞ ≤ L‖P − E2‖∞ < 3k2r. (5.24)

However, if we assume that ‖f(P ) − f(A2)‖∞ ≥ (3 − 2m)‖P − A2‖∞ then, since γρ+k2r

is also mapped to a straight line with gradient m and the x-coordinates of both points,

f(P ) and f(A2), are the same, we have the following:

‖f(E2)− f(P )‖∞ ≥|y(f(E2))− y(f(P ))| = |y(f(A2))− y(f(E2))|+ ‖f(A2)− f(P )‖∞

=m‖f(A2)− f(E2)‖∞ + ‖f(A2)− f(P )‖∞

≥m(c‖A2 − E2‖∞) + (3− 2m)‖P − A2‖∞ (5.25)

=m(2k2r) + (3− 2m)k2r = 3k2r.

This is not possible, as (5.25) contradicts (5.24). Hence,

‖f(P )− f(A2)‖∞ <(3− 2m)‖P − A2‖∞ = (3− 2m)k2r = (3− 2m)(1
3(1−m))r

=(2
3m

2 − 5
3m+ 1)r.
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Using (5.23) and the latter inequality we get:

|x(f(A2))− x(f(B))| ≥ r
m

(1− 1
3m− (2

3m
2 − 5

3m+ 1))

= r
m

(4
3m−

2
3m

2) = 2
3(2−m)r

= ((1− 1
3m) + 1

3(1−m))r > (1− 1
3m)r,

which proves (5.20).

Finally, from the inequalities (5.17) and (5.20) we gather that:

‖f(C)− f(B)‖∞ ≥ |x(f(C))− x(f(B))| = |x(f(C))− x(f(P ))|+ |x(f(P ))− x(f(B))|

≥ (1 + 1
3m)r + (1− 1

3m)r = 2r.

On the other hand, since L < 3, we have

‖f(C)− f(B)‖∞ ≤ L‖C −B‖∞ < 3(2
3r) = 2r.

This is a contradiction, therefore we negated the initial assumption L < 3. This finishes

the proof of Proposition 5.2.3. �

We believe that Proposition 5.2.3 can be generalised so that, using linear approxima-

tions of f ◦ γ, we can prove that:

Conjecture 5.2.4. For every ρ > 0 let γρ be the curve describing the square ∂Bρ(0). Let

f : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) be a 2-fold Lipschitz quotient mapping. Let N be as in

Proposition 2.4 and assume that for some ρ > N the curve f ◦γρ is differentiable at some

corner P of the square ∂Bρ(0) and that the tangent at this point has gradient equal to m

with m ∈ (0, 1). Then, c/L ≤ 1/3.

With this conjecture proved we would cover, using rotations, all possible directions of

162



the tangent’s slope at f(P ). This is work in progress.

We would like to point out that even though we have not been able to prove that

every 2-fold Lipschitz quotient mapping f : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) with constants L

and c, satisfies c/L ≤ 1/3, the results in this chapter show that it would be difficult to find

a 2-fold Lipschitz quotient mapping with c/L > 1/3.

Even more, if we look at the general picture, putting together the results in this

chapter with the result in Proposition 3.2.4, we see that if f maps corners “close to the

main diagonals”, then c/L ≤ 1/3. On the other hand, if Conjecture 5.2.4 is true and f does

not map a corner to a corner then —assuming that f ◦ γ is differentiable at that point—

we again have c/L ≤ 1/3. Recall that we can always find a differentiability point of f ◦ γ

as close to a corner as we want, so the differentiability assumption is always satisfied at

points arbitrarily close to a corner.
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Chapter 6
Final comments and further work

From the main results of this work, Theorems 2.7, 4.1.3 and 4.2.12, we can state the

following general conclusion:

There is a universal scale of real numbers 0 < . . . < ρk < . . . < ρ1 < 1 such that,

given any norm ‖ · ‖ on the plane, if f : (R2, ‖ · ‖) →: (R2, ‖ · ‖) is an L-Lipschitz and

c-co-Lipschitz mapping with c/L > ρk then #f−1(x) ≤ k for all x ∈ R2. The values

of this scale are given by ρk = 1/(k + 1). Even more, this scale is sharp not only for the

Euclidean norm but also, in the case k = 2, the scale is sharp for any norm whose unit ball

is a regular (4m + 2)-gon. However, there exist norms on the plane for which the ratio

of constants c/L of any 2-fold Lipschitz quotient mapping does not achieve the bound

ρ1 = 1/2. For instance, any polygonal norm whose unit ball is a regular 4m-gon satisfies

this property.

This conclusion gives place to some questions that the present work could also help

to answer. One question is: Can we find sharp scales ρ4m
k for the 4m-polygonal norms?

As we have seen in Chapter 5, there are positive results that indicate that the second

value of such a scale for the supremum norm should be ρ4
1 = 1/3. This fact would

also support Conjecture 4.2.14, stated in Chapter 4. That conjecture comes from the

observation, in Theorem 2.6, that far from the origin, a k-fold Lipschitz quotient mapping

behaves as a complex polynomial of degree k. So the image of the boundary of a big enough

ball ∂Br(0) must wind k times around the origin and must do it going “almost outside”
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the ball Bcr(0), where c is the co-Lipschitz constant of the mapping. It sounds plausible

to think that the best way (i.e. “without stretching more than needed”) to wind around

∂Bcr(0) would be to go along ∂Bcr(0) with constant speed k.

In the same way as we did in Definition 4.2, we can define for any k ∈ N and any

norm ‖ · ‖ a “k-fold winding mapping”, that we shall denote by f‖·‖,k, in the following

way: Recall that given a norm ‖ · ‖ on R2, we defined L‖·‖ := H‖·‖1 (∂B‖·‖1 (0)). For a fixed

k ∈ N and for each constant r > 0 consider the curve γr : [0, krL‖·‖] → ∂B‖·‖r (0) such

that:

1. Ind γr(0) = k;

2. γr is a 1-Lipschitz mapping;

3. γr(irL‖·‖) = (r, 0) for all i ∈ {0, . . . , k}.

We define the k-fold winding mapping f‖·‖,k : (R2, ‖ · ‖)→ (R2, ‖ · ‖) in the following way:

given x ∈ R2 with ‖x‖n = r, take tx ∈ [0, rL‖·‖) such that γr(tx) = x. Notice that tx is

uniquely defined since γr is injective along [0, rL‖·‖) and γr([0, rL‖·‖)) = ∂B‖·‖r (0). We

set f‖·‖,k(x) := γr(ktx).

Notice that in this definition (condition 3.) we are fixing the “starting point” (1, 0)

from where the k-fold winding mapping starts increasing the length by a factor of k. It

might well happen that changing the starting point in this definition affects the Lipschitz

and co-Lipschitz constants of the mapping. For the case of the polygonal norms we

believe that the Lipschitz constant, L′k, and the co-Lipschitz constant, c′k, of a k-fold

winding mapping with a different starting point satisfy L′k ≥ Lk and c′k ≤ ck, where ck

and Lk are the co-Lipschitz and Lipschitz constants of the k-fold winding mapping f‖·‖,k,

although we have not formally verified this. However, for the case of the supremum norm,

it follows from Proposition 5.1.3, that every 2-fold winding mapping (previously called

doubling mapping) has ratio of constants less than or equal to 1/3.
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In this context, Conjecture 4.2.14 could be stated in a more general way:

Conjecture 6.1. Let ‖ · ‖ be a norm on R2 and let f‖·‖,k be the k-fold winding mapping

in the norm ‖ · ‖.

If f : (R2, ‖ · ‖)→ (R2, ‖ · ‖) is an L-Lipschitz and c-co-Lipschitz k-fold mapping then

c

L
≤ ck
Lk
,

where Lk and ck denote the Lipschitz and co-Lipschitz constants of the k-fold winding

mapping f‖·‖,k.

Even more, by doing the relevant changes in the proof of Proposition 4.2.13, it would

not be hard to derive the more general statement:

Proposition 6.2. If n = 4m for some m ∈ N, then the Lipschitz and co-Lipschitz

constants, Ln,k and cn,k, of the k-fold winding mapping fn,k satisfy Ln ≥ k+(k−1) tan2(π
n
)

and cn ≤ 1. Hence,
cn,k
Ln,k

≤ 1
k + (k − 1) tan2(π

n
) .

This proposition, together with Conjecture 6.1, would imply the following:

Conjecture 6.3. Let n = 4m for some m ∈ N. If f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) in an

L-Lipschitz and c-co-Lipschitz k-fold mapping with respect to the n-norm ‖ · ‖n, then

c

L
≤ 1
k + (k − 1) tan2(π

n
) .

For example, for the supremum norm the sharp scale of values, ρ4
k, k ∈ N, such that

c/L > ρk implies #f−1(x) ≤ k for all x ∈ R2, would be given by:

0 < . . . < ρ4
k = 1

2k+1 < . . . < 1/5 < 1/3 < 1.
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Figure 6.1 shows how the sharp scale for the supremum norm would be shifted. The

coloured dots on the right hand side of each subinterval — (1/k + 1, 1/k], for the Euclidean

norm, and (1/2k + 1, 1/2k − 1] for the supremum norm— show the place where the ratio c/L

of the k-fold winding mappings are.

Figure 6.1

However, we need to be careful with Conjecture 6.1 because even though the general

idea is very intuitive, we need to bear in mind that with non-Euclidean norms the results

are not quite intuitive, see Remark 1.3.9.

Another question that arose from this work already in Chapter 2, is what can we

say if we now consider Lipschitz quotient mappings f : (R2, ‖ · ‖1) → (R2, ‖ · ‖2), where

‖ · ‖1 � ‖ · ‖2?

In this case it is more complicated to calculate the exact Lipschitz and co-Lipschitz

constants of a given Lipschitz quotient mapping. However, since length∞(∂B∞1 (0)) = 8,

recalling the notation used in Theorem 2.7, we see that LE/L∞ = π/4 < 1, where LE

stands for the Euclidean length of ∂BEucl
1 (0). Hence, from Theorem 2.7 it follows that:

For every k-fold Lipschitz quotient mapping f : (R2, | · |)→ (R2, ‖ · ‖∞) the ratio between
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the Lipschitz and co-Lipschitz constants of f is less than or equal to π/4k < 1/k. Moreover,

for any n-norm with n = 4m+2 we can easily see that we also have = lengthn(∂Bn
1 (0)) =

lengthE(∂Bn
1 (0)) = 2n sin(π

n
), this follows from the fact that the sides of an 4m+ 2 sided

polygon are parallel to a radius of the polygon and a remark after Definition 4.2. Hence

we have the following Corollary from Theorem 2.7.

Corollary 6.4. Let ‖ · ‖n denote the n-polygonal norm with 4m + 2. For every k-fold

Lipschitz quotient mapping f : (R2, ‖ · ‖n) → (R2, | · |) the ratio between the co-Lipschitz

constant c and the Lipschitz constant L of f satisfies:

c

L
≤ 2n sin(π/n)

k(2π) <
1
k
.

As we mentioned in Chapter 2 (see comment before Corollary 2.8, if L1 > kL2, then

Theorem 2.7 does not give any useful information about the ratio of constants. It will

be interesting to study the general behaviour of these constants,L1 and L2 and see if

this result leads to further results about the ratio between the Lipschitz and co-Lipschitz

constants of a k-fold mapping.

A more conceptual question related to this work is: what are the underlying properties

of a norm that determine the relevant sharp bounds ρ‖·‖k for the ratio of constants of a

k-fold Lipschitz quotient mapping? We have not found a clear answer to this question

but there are few remarks that we would like to make.

First of all, it is clear that these bounds are not related to the way the norm ‖ · ‖

measures the distance between points, but more to the “particular geometric shape” the

unit ball, B‖·‖1 (0), has. For instance the supremum norm, `∞, and the `1-norm are very

different in the way they measure distances but, since these norms have the same unit ball

shape, they achieve the same bounds for the ratio of Lipschitz and co-Lipschitz constants

(see Proposition 1.2.4). So we need to distinguish between norms paying attention to the
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shape and the geometry more than to the distance between points. In this direction, the

Banach-Mazur distance between Banach spaces could be useful. In the particular case of

R2, the Banach Mazur distance, d, between the spaces X := (R2, ‖·‖) and Y := (R2, ‖·‖∗)

can be defined as:

d(X, Y ) := inf{ab : 1
b
B
‖·‖
1 (0) ⊆ TB

‖·‖∗
1 (0) ⊆ aB

‖·‖
1 (0);T ∈ GL(X, Y ); a, b > 0},

where GL(X, Y ) denotes the set of linear operators between X and Y .

In this way d measures how different is (in shape) the unit ball B‖·‖1 (0) to the unit

ball B‖·‖∗1 (0). Even more, d(X, Y ) ≥ 1 for any pair of two-dimensional Banach spaces and

d(`2
1, `

2
∞) = 1, see [17]. In addition, in [27, Corollary] it is shown that, in a sense, the

farthest norms on the plane are the hexagonal and quadrangular norms. More precisely,

it is shown that:

For any pair of symmetric convex bodies in the plane C and D there are linear images

of them, say C ′ and D′ such that d(C ′, D′) ≤ 3/2 with equality only if C ′ is a linear image

of a regular hexagon and D′ a linear image of a square.

This result could also link up well with our estimates for the sharp bounds of the

hexagon and the square, which are in a sense the farthest. On the other hand, the fact

that ρ4m+2 = ρ4n+2 for all n,m ∈ N does not seem to be clearly justified from this point

of view.

Furthermore, if the shape of the unit ball B‖·‖1 (0) determines the sharp bounds ρ‖·‖k ,

one would expect that, for big enough n, the sharp bounds ρn1 of the polygonal norm with

n sides are closer to the Euclidean bound ρ1 = 1/2, than the bounds of a polygonal norm

with few sides, say ρ6
1. In other words, at the beginning of this research, we expected

the bounds ρn1 of the polygonal norms with n sides to increase as n increases, so that

ρn+1
1 > ρn1 for all n ∈ N and ρn1 → ρ1 = 1/2 as n → ∞. Therefore, we found it somehow
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surprising that polygonal norms with 4m sides behave differently than the polygons with

4m+ 2 sides, and that, for instance, ρ6
1 = ρ1 = 1/2. On the other hand, if we assume that

Conjecture 6.3 we can approximate ρk with the values ρnk with n = 4m, this is:

lim
m→∞

ρ4m
k = lim

m→∞

1
k + 1 + k tan2( π

4m) = 1
k + 1 = ρk.

In conclusion, the estimates of the values of the sharp scale ρ‖·‖n seem to be related

to the particular geometric properties of the unit ball B‖·‖1 (0), for example —in the case

of polygonal norms— having all sides parallel to a radius, or all sides parallel to an

apothem. This possible conclusion makes it more difficult to have reliable conjectures for

general convex bodies in the plane. However it seems that in order to achieve the 1/2

ratio of Lipschitz and co-Lipschitz constants, a norm should satisfy very strict regularity

properties, so we expect that in most cases the 1/2 ratio —and in general, the 1/n ratio—

will not be achieved. In this direction, it will be interesting to study “perturbed” polygons.

In the case of the 4m+ 2 sided polygons, taking into account the previous comment, we

would hope for a small perturbation of the regular polygon to prevent any 2 fold Lipschitz

quotient to achieve the 1/2 ratio.
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