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ABSTRACT

In the present work, we are concerned with the relation between the Lipschitz and co-
Lipschitz constants of a mapping f : R? — R? and the cardinality of the inverse image of
a point under the mapping f, depending on the norm on R2.

In the paper Lipschitz quotient mappings with good ratio of constants (Mathematika,
2002), Maleva proves that there is a scale of real numbers 0 < ... < p, < ... < p; < 1 such
that for any Lipschitz quotient mapping from the plane equipped with the Euclidean norm
to itself, if the ratio between the co-Lipschitz and the Lipschitz constants of f is bigger
than p,, then the cardinality of any fibre of f is less than or equal to n. Furthermore,
it is proven that for the Euclidean case the values of this scale are p, = 1/(n+1) for each
n € N and that these are sharp.

A natural question is: given a normed space (R?, | - ||) whether it is possible to find

the values of the scale 0 < ... < pll < .. < pw

< 1 such that for any Lipschitz quotient
mapping from (R? || - ||) to itself, with Lipschitz and co-Lipschitz constants equal to L
and c respectively, the relation ¢/z > plll implies #f~!(z) < n for all x € R2.

We prove in Chapter 2 that the same “Euclidean scale”, p, = 1/(n+1), works for
any norm on the plane. Here we follow the general idea in Point preimages under ball
non-collapsing mappings (GAFA, Lecture Notes in Math., 2003) by Maleva but verify
details carefully. On the other hand, the question whether this scale is sharp leads to
different conclusions. We show in Chapters 3 and 4 that for some non-Euclidean norms

the “Euclidean scale” is not sharp, but there are also non-Euclidean norms for which a

Lipschitz quotient exists satisfying max #f~!(z) = 2 and ¢/L = 1/2.
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CHAPTER 1
INTRODUCTION

We start this chapter in Section 1.1 with the introduction of the main subject of our study,
Lipschitz quotient mappings. We give a brief survey of general properties of Lipschitz
quotient mappings between normed spaces and state some open questions. We continue
this section by explaining the question to which our research in this thesis is devoted and
we describe the general structure of this work.

Section 1.2 will be devoted to the study of the Lipschitz and co-Lipschitz mappings
between finite-dimensional and infinite-dimensional spaces. We will include the proof of
some basic properties of these mappings there.

Once the problem has been explained and our main object of study has been presented,
in the last section of this chapter we will be working on the development of the tools
that we will be using to study the Lipschitz quotients on the plane in more depth. In
particular, we will be concerned with measuring the length of a curve on the plane using
non-Euclidean norms. In this section we include all the definitions and we state and prove

all the general properties of the length that we will be using.

1.1 Motivation of the problem

The Lipschitz property has been widely used in different areas of mathematics and it has
been of particular importance in geometric measure theory, nonlinear analysis and partial

differential equations. The strengthening of the Lipschitz condition to reach stronger con-



clusions has led, in various contexts, to different notions of “well behaved Lipschitz map-
pings”. Perhaps the better known of them is the bi-Lipschitz condition, but some other in-
teresting weaker conditions —that do not require the mapping to be a homeomorphism—
have been considered and studied. For instance, bounded length distortion mappings
which are studied in [22], Lipschitz regular mappings studied in [9], Lipschitz ball non-
collapsing mappings in [20] and Lipschitz quotient mappings which are the main object

of study in this work. Lipschitz quotients are defined in the following way.

Definition 1.1.1. A map f : (X,|| - |lx) = (Y, ]| - |ly) between two normed spaces, is

called a Lipschitz mapping if there exists a positive constant L such that

1f(x) = FW)lly < Lllz —ylx forall z,y e X.

In other words, we require that there is a constant L > 0 such that for all x € X and all
r > 0, we have f(BX(z)) C B}, (f(x)), where B}V (z) denotes the open ball in (W, || - ||w)
with radius r centred at . The infimum of all such constants L is called the Lipschitz
constant at the point x.

In a similar way, we say that f is a co-Lipschitz mapping if there exists a positive

constant ¢ such that

BY (f(z)) C f(BX(x)) forall x € X and r > 0.

The co-Lipschitz constant of f is the supremum over all possible constants c.
Finally, if f: (X, |- |lx) = (Y, - |ly) is a Lipschitz and co-Lipschitz mapping, we say
that f is a Lipschitz quotient mapping. We also say that Y is a Lipschitz quotient of X

if there exists a Lipschitz quotient mapping from X to Y.

The definition of the co-Lipschitz condition appeared in [13] in the context of dif-



ferential geometry right before the publication of the paper [1] in which Bates, John-
son, Lindenstrauss, Preiss and Schechtman reached very significant results concerning the
structure of such mappings in the finite-dimensional case. In particular, they prove in [1]
that for Lipschitz quotient mappings from the plane to itself the inverse image of any
point under such mapping is finite. Furthermore, in a subsequent paper [15] they show
that every Lipschitz quotient mapping f : R?> — R? can be viewed as a re-parametrization
of a complex polynomial. In other words, there is a homeomorphism A on the plane and

a polynomial P of one complex variable such that f = P o h.

Remark 1.1.2. The above implies that if f : R? — R? is a Lipschitz quotient mapping,
then for any z € R?, f~!(z) is a finite set and # f~1(x) < deg(P), where deg(P) denotes
the degree of the polynomial P. Moreover, for all but finitely many points z € R? we

have # f~(z) = deg(P).

There is some resemblance between Lipschitz quotient mappings and the so-called
quasiregular mappings, which are defined in the context of topological manifolds. (See [20]
for a survey on quasiregular mapping theory). There is a result due to Reshetnyak (see [24]
and [25]) that shows that the inverse image of a point under a quasiregular mapping is
always discrete. This could suggest that the inverse image of a point of a Lipschitz
quotient mapping from R" to R" is discrete. However, at this moment, this question has
not yet been answered for n > 2.

It is easy to see that in the finite-dimensional case, the property of being Lipschitz
quotient does not depend on a particular choice of norms (Proposition 1.2.3). Also, it is
easy to see that every linear non degenerate transformation of R™ is a Lipschitz quotient
mapping under any norm. However, the mapping f : R? — R? given by f(z1,z2) =
(21, |x2|) is not a Lipschitz quotient mapping. In a sense, Lipschitz quotients can be
thought of as a generalisation of linear quotient mappings (i.e.surjective linear mappings).

Recall that linear quotients are “more than just open” in the sense that given such a
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mapping g, we can find a constant ¢ such that g(BX(x)) 2 B} (g(x)) for all r > 0
and x € X. It is then natural to ask for a Lipschitz mapping to have a similar openness
property (e.g. the co-Lipschitz property) and to ask whether the existence of such mapping
between Banach spaces yields some structure relations between these spaces.

A central question related to Lipschitz quotient mappings is: Given a Banach space
X and a Lipschitz quotient f : X — Y, under which conditions can we guarantee that Y
is a linear quotient of X7 In the case of linear quotients it is known that given a pair of
Banach spaces X and Y, if there is a linear quotient mapping 7" from X onto Y, then there
are relations between the structure of these two spaces (isomorphism theorems of Banach
spaces). Regarding Lipschitz quotients there are some positive results in this direction.
For instance, in [1] it is proven that if a Banach space Y is a Lipschitz quotient of L, with
1 < p < oo then Y is isomorphic to a linear quotient of L,. However, although Lipschitz
mappings carry strong continuity properties, there are examples of pairs of Banach spaces
such that there is a Lipschitz quotient mapping between them but no linear quotient map
exists between them. The first example of such a pair of Banach spaces was presented
in [16].

Recently Lipschitz quotient mappings appear to have an interesting role in a more
general setting, namely in a particular class of metric measure spaces with a form of
differentiable structure where most of the major properties of these mappings, proved
in [1], can be translated. See [10], and [4] for a more general reference on the structure of
such metric measure spaces.

As we have mentioned there are strong results for Lipschitz mappings defined from
the plane to itself, and we know that the fibers of points under Lipschitz quotients on the
plane must be finite. However for the general case, R” — R™, we have spread results.
For instance, on the one hand, the inverse image of a point under a Lipschitz mapping

could contain a set of co-dimension more than m — n. In [7] the author constructs an



example of a Lipschitz quotient mapping f : R* — R? such that f~!(0) is a set containing
a plane. On the other hand, in the particular case when n = 2 and m = 1, good
progress has been made describing the structure of level sets of such mappings. In [23]
it is proven that, for Lipschitz quotient mappings f : R? — R!, the inverse image of any
point has a finite number of components and each component separates the plane. There
is also a precise topological description of these sets, for instance, it is shown that they
are hereditarily locally connected, locally compact and closed. Furthermore, in [21], the
author gives an upper bound for the number of components of the level sets of a Lipschitz
mapping from R? to R. This bound is given in terms of the Lipschitz and co-Lipschitz
constants of the mapping. However the case n = m > 2 remains wide open and we do
not even know if the inverse image of a point could be infinite. It is natural to think that
adding assumptions on the difference between the Lipschitz and co-Lipschitz constants of
a Lipschitz quotient mapping, could bring some positive results in that direction. See, for
instance, [19, Theorem 1].

It is clear that much stronger results are known for the Lipschitz quotient mappings
in the planar case, n = m = 2. Moreover, in this case we can say even more about the
cardinality of the inverse image of a point under a Lipschitz quotient mapping. In [19]
two questions were presented and answered for Lipschitz quotients from the plane to itself
equipped with the Euclidean norm |- |: Let f: (R%|-|) — (R? |- |), be an L-Lipschitz
and c-co-Lipschitz mapping.

Question 1. Is it true that if the ratio between the Lipschitz and co-Lipschitz constants
satisfies ¢/L > 1/2, then f is a homeomorphism?

Question 2. Is there a scale 0 < ... < p, < ... < p; < 1 such that ¢/L > p,, implies
#f~Yz) <n for any x € R??

The author solved both questions in the positive, by proving that in the Euclidean

case the assumption ¢/L > 1/(n+1) implies #f *(z) < n for any z € R Clearly, from



the fact that any two norms on the plane are equivalent, the existence of such a scale p,
for the Euclidean case implies the existence of a scale for any norm on the plane, and
we verify in Chapter 2 that the given scale p, = 1/(n+1) is in fact universal, in the sense
that it does not depend on the norm. This also implies that for any norm on the plane, if
¢/t > 1/2 then f is a homeomorphism. The proof of this result (Theorem 2.7) is the main
goal of Chapter 2. This is an expansion of the material presented in [20, Theorem 1].

However, as we shall first see in Chapter 3, when considering non-Euclidean norms
the scale p, = 1/(n+ 1) works not in the same way as it does for the Euclidean norm. This
shows that in fact the remark in Section 3 of [20] about the supremum norm, || - ||~ is not
correct. More precisely, for the Euclidean case we have examples of Lipschitz quotients
with ratio of constants ¢/L = 1/n and max#f~'(z) = n. This means that the scale
(pn) is sharp for the Euclidean case. However, in Theorem 3.2.5 we prove that for the
supremum norm on the plane, there does not exist a Lipschitz quotient with ¢/L = 1/2 and
max # f~!(z) = 2. This leads to three questions:

Question i. Is the Euclidean norm the only norm on the plane for which there exist
Lipschitz quotients with ¢/z = 1/n and max #f~'(x) = n?

Question 72. Find a sharp scale for the supremum norm 0 < ... < pi°* < ... < p® <1
such that given any L-Lipschitz and c-co-Lipschitz mapping f : (R?, || -]ls) — (R?, ]| *]|o0),
the condition ¢/L > p2 implies # f~*(z) < n for any z € R

Question 7ii. For any norm on the plane, |||, find a sharp scale 0 < ... < pl'l < ... <
pl < 1 such that given any L-Lipschitz and c-co-Lipschitz mapping f : RE |- 1) —
(R2,|| - 1), the condition ¢/z > pllll implies # f~'(z) < n for any = € R2.

In Chapter 4 we partially answer Question 7. We give examples of non-Euclidean norms
on the plane for which certain Lipschitz quotients do satisfy ¢/z = 1/2 and max #f~!(x) =
2. We also include more examples of norms on the plane for which, as for the supremum

norm, ever 1pscnitz quotient ma 1ng wi max “(x) = nsatisnes ¢/L < 2. ma
, every Lipschitz quotient mapping with max #f~'(x) tisfies ¢/L < 1/2. Finally,



in Chapter 5 we give partial results that indicate that for the supremum norm the second
value of the scale p° is equal to 1/3, which leads to the conjecture p2° = p,,11, where py

denotes the sharp scale for the Euclidean norm.

1.2 Basic properties of Lipschitz quotient mappings

Our main object of study, Lipschitz quotients, has been defined in Definition 1.1.1 and
now we are going to have a closer look at it. In this section we introduce some basic
results regarding Lipschitz quotient mappings in general metric spaces. We will compare
the Lipschitz quotients with the so called bi-Lipschitz mappings and we will study the
local versions of these properties. We will show for example that, locally, the co-Lipschitz
property, in the same way as the global Lipschitz condition, can be written directly
in terms of the norm (see Corollary 1.2.12). However, it is worth noticing that even
when, locally, this conditions seem to be of the very same kind, in order to achieve the
global condition from the local one, these two properties do not behave exactly in the
same way. For the Lipschitz condition the proof works for infinite-dimensional spaces
(Proposition 1.2.6), whereas for the co-Lipschitz condition it does not work for infinite-
dimensional spaces, see Proposition 1.2.7.

The following very basic statement establishes that the Lipschitz and co-Lipschitz

constants of a mapping do satisfy the Lipschitz and co-Lipschitz conditions respectively.

Lemma 1.2.1. Let f : (X,|| - ||x) = (Y,|| - |lv) be a Lipschitz quotient mapping, with
Lipschitz and co-Lipschitz constants equal to L, and c, respectively. Then for all r > 0

we have:

B (f(x)) € f(B (z)) € B, (f(2)).

Proof. First we deal with the Lipschitz constant. Let f be as in the hypothesis and take



e > 0. Pick any two distinct points x1, 25 € X. Since L, is the infimum of the set

L={L>0:[f(z) = fWlly < Llz —yllx forall z,ye X},

there is some L € £ such that L — L, < ¢ = ——~——. Hence:

T lm—w2llx

1f (1) = fz2)lly < Lllwr — z2llx < (&' + Lo)llzr — 22l x

= L,||x1 — xo]|x + €.

Consequently, as the above estimate is satisfied for all € > 0:

[f(x1) = f(@2)|ly < Lillz1 — 22 x-

This means that f(BX(z)) C BY_,(f(z)) forallz € X, r > 0.

Now, for the co-Lipschitz constant define the non-empty set

C={c>0:B(f(x)) C f(BX(x)) forall r>0}.

Let » > 0 and xy € X. Pick a point y € B..,(f(x)). Our aim is to prove that y €

f(B(0)). Since ||y—f(xo)|ly < cur, we have L{|y— f(x0)|ly < ¢, = supC, so there must be

some ¢ € C such that ||y — f(zo)|ly < er < cor. This implies y € B..(f(x0)) C f(B,(x)).

Thus Be,(f(x0)) € f(B(20))-

As the following lemma shows, for the finite-dimensional case, we can replace the open

balls in the definition of the co-Lipschitz condition with closed balls, which is sometimes

more convenient.

Lemma 1.2.2. Let f: (X, |- |lx) = (Y;|| - |ly) be a continuous mapping with X finite-

dimensional and let ¢ > 0. The following conditions are equivalent:
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1. Forallz € X and for all v > 0,

BY(f(x)) C f(B¥(x)).
2. Forallz € X and for all v > 0,

BY.(f(x)) C f(BX(x)).

Proof. Assume first that c satisfies the condition 1. Let r > 0 and xy € X. Pick a point
y € BY ..(f(20)). We need to show that y € f(BX,(z¢)). Take a sequence (y,) contained
in BY (f(xo)) such that y, — y. Since f is a c-co-Lipschitz mapping, for every n € N
there is a point x,, € B (z¢) such that f(x,) = y,. By the finite-dimensionality of X we
can assure that there is a convergent subsequence of x,,, say z,, — = € BX (). Hence,

using the continuity of f, we have:

flz) = f(lim z,;) = lim f(zn,) = lim ya, =y.

j—oo Y j—roo

Thus y € f(BX,(x)). This shows that the first condition implies the second.
Now assume that the second condition is satisfied. Let » > 0 and z7 € X. Pick a
point y € BY (f(xo)), we need to show that y € f(BX(xg)). Let 6 := ||y — f(xo)|y, from

condition 2, we have:

y € BY (f(w0)) C f(BY(x0)).

hence y = f(z) for some z € l?)jc(:ro). Now, since
w0 —z||x <20 < ler=r,

we know that x € BX (), therefore y € f(BX(x)).

9



Thus BY (f(z0)) C f(BX(x)) and we conclude that conditions 7 and 2 are equivalent.

O

We already mentioned some examples of Lipschitz quotient mappings: linear map-
pings, which clearly satisfy the Lipschitz quotient condition, and the mappings on the
Euclidean plane f; : (R%|-|) — (R?,|-]), with & € N, defined as fi.(re??) = rei*®. To
see that the latter are in mappings are in fact Lipschitz quotients with Lipschitz constant
equal to k and co-Lipschitz constant 1, notice that each point x is being mapped to the
point that has k£ times the argument of x and the same norm as x. Hence f; can separate
points by at most a factor of £ and at the same time f; cannot shrink. Perhaps the best
way to convince yourself about this fact is to look at the following picture, Figure 1.1,
made for the case k = 2. In the picture we illustrate a ball centred at a point z with

radius r and its image under the mapping fx, both in yellow.

Figure 1.1

Notice that for each point x € R?\ {0} we have #f, '(z) = k. As we shall see later
in Theorem 2.6 this kind of examples are archetypal. So we now have more interesting

examples of Lipschitz quotient mappings for the Euclidean plane, and hence for the plane
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in general. Indeed, as the next proposition shows, being a Lipschitz or co-Lipschitz

mapping does not depend on the particular norm.

Proposition 1.2.3. Let f : (X, | - ||%) — (V5| - |3) be a Lipschitz quotient mapping.
If || - % and || - |3 are norms on X and Y equivalent to the norms || - ||k and || - ||k
respectively, then the mapping f, considered as a map from (X, |- |%) to (Y, |- ||¥), is a
Lipschitz quotient mapping.

In particular, if X andY are finite-dimensional, the present lemma holds for any pair

of norms defined on X and any pair of norms defined on Y .

Proof. Let L and ¢ be the Lipschitz and co-Lipschitz constants of f : (X,| - [|%) —
(Y,]| - |Ii-). Since X and Y are finite-dimensional, there exist constants k, k., s and s,

such that for all x € X and y € ¥

klelx < 2% < k] (1.1)

sllylly < llylly < sllylly-

Therefore, for any x1,zo € X we have:

1f(z1) = f(@)]I} < sullf(@1) = flz2)lly < Lsillzy — 22|k < $Ls |1 — 32|k

Hence, f is a Lipschitz mapping as a map from (X, || - ||%) to (Y,|| - ||¥) with Lipschitz
constant Ly < LTS

Now for the co-Lipschitz constant we work in a similar way. For ¢ = 1, 2, let us denote
by B (z,r) the ball of radius r centred at z under the norm || - ||% and by B (y,r) the
ball of radius r centred at y under the norm || - ||};. Take x € X and r > 0, from (1.1)

and the fact that f is a co-Lipschitz mapping as a map from (X, || - [|%) to (Y| - ||3-), we

11



see that:

f(BX(z,1) 2 f(Bx(z, ) 2 By (f(2), ) 2 By(f(x), sei ().

Since this holds for all r > 0, we conclude that f: (X,]-[|%) — (Y, ||-|/?) is a co-Lipschitz
mapping with co-Lipschitz constant ¢, > 7.
Thus, f is a Lipschitz quotient mapping as a map from (X, || - ||%) to (Y, - ||?) and

its Lipschitz and co-Lipschitz constants, Ly and ¢y respectively, satisfy:

Ly < ()L and ¢ > (e (1.2)

The Lipschitz quotient condition does not depend on the norm, but clearly the Lip-
schitz and co-Lipschitz constants do depend on the norm (see (1.2)). However, we can
prove that if two norms on the plane are similar, in the sense that one can be obtained by
scaling and rotating the other, then, given a Lipschitz quotient mapping f with certain
constants under one of the norms, its appropriately scaled and rotated version will be a
Lipschitz quotient mapping in the other norm and the constants will be preserved. This

result will be useful later on in Chapter 4.

Proposition 1.2.4. Let || - || and || - ||« be two norms on R?* and denote by B,.(x) and
B¥(x) the ball of radius r centred at x under the norm || -|| and ||- ||« respectively. Assume
there exist a rotation R and a constant k > 0 such that k(R(B1(0))) = Bf(0). If f :
(R || - 1)) — (R2,]| - ||) s a Lipschitz quotient mapping with max,cg2 #f~'(x) = n, then
the mapping g : (R%, || - |l.) — (R%,||- ||+) defined as g = Ro fo R is a Lipschitz quotient

with the same Lipschitz and co-Lipschitz constants as f and max,cg2 #9(z) = n.

Proof. Let f: (R?,]-|) — (R? || -||) be an L-Lipschitz and c-co-Lipschitz mapping. Let

12



R, k and g be as in the hypothesis.
It is clear that max,ecge #¢9 *(x) = n, so we only need to show that L and c are the
Lipschitz and co-Lipschitz constants of g.

Since k(R(B1(0))) = B;(0) it is clear that for all z € R? we have
2]l = k[ R(2)]l. and ||z[l. = z[R7 ()]l (1.3)
For the Lipschitz constant, take z,y € R?. From (1.3) we have

lg(z) = 9@l = [R(fF (R (2))) = RUF (R @)l = £ F (B () = fF(R ()]
< ¢ (LIR (@) = R w)l) = Lllx = yll..

Therefore g is a Lipschitz mapping with Lipschitz constant L, < L.
Now, for the co-Lipschitz constant take zo € R? and r > 0. We are going to show that

B, (9(x0)) € g(B;(x0)). Take y € B;,(g(xo)) so that:

er > |ly = g(@o)llx = lly — R(F(R™(zo))ll« = IR (y) — F(R™ (o))l

Therefore, R™!(y) € Be(f(R™'(x0))). Since ¢ is the co-Lipschitz constant of f we know
that Be, (f(R™'(10))) C f(Br.(R7'(x0))), hence there exists x € By, (R™!(x¢)) such that
f(x) = R~(y), so we have:

kr > o — R™ (xo) || = k|| R(z) — 2ol and R(f(z)) = y.

Therefore R(z) € Bi(xg) and y = R(f(z)) = R(f(R™'(R(x)))) = g(R(z)). Hence
y € g(Bf(xy)) as we wanted to show. We conclude that g is a co-Lipschitz mapping with

constant ¢, > c.
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So far, we proved that given an L-Lipschitz and c-co-Lipschitz mapping f : (R?,||-||) —
(R%]| - ]1), if g = Ro fo R, where R is as in the hypothesis, then g is an L,-Lipschitz
and ¢,-co-Lipschitz mapping with L, < L and ¢, > ¢. Since f = R ogo R and R™*
also satisfy the hypothesis of the present lemma, this result also shows that f is an L-
Lipschitz and c-co-Lipschitz mapping with L < L, and ¢ > ¢4,. Thus g is a Lipschitz

quotient mapping with same Lipschitz and co-Lipschitz constants as f. O

We will also consider local versions of Lipschitz, co-Lipschitz and Lipschitz quotient

mappings which we define presently.

Definition 1.2.5. We say that a map f: (X, - ||x) = (Y, - [|y) is locally Lipschitz at
the point x € X if there exist positive constants L and R such that, if ||z — y||x < R,
then || f(z) — f(y)|ly < L|jz — y|x, i.e. if for all < R we have f(BX(z)) C BY.(f(z)).
The infimum of all such constants L, say L., is called the local Lipschitz constant of f at

. This is

L, =1inf{L > 0:3R > 0 such that Vr < R, f(B.(z)) C Bf (f(z))}.

In a similar way, we say that a mapping f is locally co-Lipschitz at a point x if there
exist positive constants R and ¢ such that for all » < R we have BY (f(x)) C f(BX(x)).
The local co-Lipschitz constant of f at the point x is the supremum over all such possible

constants c.

As the following results show, if for some map f the local Lipschitz condition, or the
local co-Lipschitz condition, is satisfied at all points x € X with the same constant, then
the map f satisfies the global Lipschitz, respectively co-Lipschitz, condition with the same
constant. Here we, of course, assume that f is defined on the whole space X. The proof

of the following two propositions are done following [7].
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Proposition 1.2.6. Let f : (X, || ||x) = (Y, || |ly) be a map, where X andY are normed
vector spaces. If there is a constant L, such that for all xy € X there exists R,, > 0 such
that ||f(zo) — f(2)|ly < Li||lzo — z||x, whenever ||xg — x| < Ry,, then f is a Lipschitz

mapping with Lipschitz constant less than or equal to L.

Proof. Fix a point 2y € X, we shall prove that for all z; € X we have || f(zo) — f(z1)]ly <
L.||zo — z1]|x. Pick a point z; € X and consider the line segment £ joining z with x,

i.e. £ = (x,x1]. Define the set:

A={ze L:||f(z0) = f(@)lly < Lullwo — zllx V& € (20, 2]}

It is easy to see that the set A is a closed subset of £. Indeed, take a point z € AN L

and a sequence z, C AN L such that z, — z. Let ¢ > 0. Take N; € N such that

|z = 2ullx < 55 forall n> Ni.

Since f is continuous, we can also find Ny € N such that

1f(2) = f(za)lly < £55 forall n> Ns.

Then, for any fixed n > max{ Ny, Ny} we have:

1/ (z0) = F(2)ly < |[f(x0) = F(zn)lly + [1F(20) = FR)ly < Lullzo = zallx + 755
< Lu(llwo = 2llx + 112 = zallx) + 257

< Lillwo — 2|l x + (Lu + 1) 155 < Lullzo — 2[|x + &

Note that the left hand side and the right hand side values of the above estimate do not

depend on n. As e > 0 is arbitrary, we conclude that ||f(xo) — f(2)|ly < Lil|lzo — 2|
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This shows the Lipschitz condition at z. We now show that z € A. Indeed, if x is a point
lying in the segment (z, z) then, since z € AN L we can take a point 2’ € A such that
(20, 2) C (o, 2'), which means, by definition of A, that ||f(xo) — f(2)|ly < L||zo — 2] x.
Thus, for all x € (zg, z] we have || f(x¢) — f(z)|ly < Li||zo — z||x, i.e. 2z € A. This proves
that A is closed in L.

Now we will prove that A is an open subset of £. Pick a point z € A, by the local
Lipschitz property at the point z, there exists R, > 0 such that ||f(z) — f(z)|ly <
L.||z — z||x whenever |z — z||x < R.. As we shall see this is enough to show that
Br.(z) N L C A. Take x € Bg_(2) N L and pick a point 2’ on the line segment (¢, x]. If
x' € (xg, 2] then, since z € A, it is clear that z’ satisfies || f(zo) — f(2/)|ly < La||lwo — 2’| x-
Assume 2’ € (z, ], then ||z —2'||x < R., and since z, z and 2’ are collinear, we also have

|lzo — z||x + ||z — 2'||x = ||xo — 2'||x, therefore:

1f (x0) = f(2)ly < [1f (x0) = f()ly + 1f(2) = f(2)lly

< Lullzo = 2llx + Lallz = 2'llx = Luflwo — 2'l|x-

Hence we get ||f(zo) — f(2')|ly < Li||lxo — 2'||x, whenever 2’ € (xg, z]. This means that
x € A, thus, we have shown that Bg_(2) N L C A and we conclude that A is open in L.
Therefore A is a closed and open subset of £. Since £ is connected we must have
A=0or A= L, butitis clear that A # (). Indeed, using the local Lipschitz property
of f at the point zy we may consider Ry > 0 such that || f(zo) — f(2)|ly < Li||zo — 2| x,
whenever ||zg — z||x < Rp and take © € Bg,(z9) N L. Then for all 2’ € (xg, 2| we have
|2’ —z0l|x < Ry, so that || f(xo)— f(2')]ly < Li||zo—2'||x. This means that Bg,(zo)NL C
A. We conclude that A = £, in particular z; € A and || f(xo) — f(z1)||y < Li||wo — 21| x-
Thus f is a Lipschitz mapping, and the Lipschitz constant of f is less than or equal

to L,. O

16



In a similar way, we prove in the next proposition that the co-Lipschitz condition

satisfies the analogous property.

Proposition 1.2.7. Let f: (X, - [|x) = (Y,| - |lv) be a continuous map, where X and
Y are normed vector spaces, with X finite-dimensional. If there is a constant c, > 0 such
that for all x € X there exists a positive number R, such that BY .(f(z)) C f(BX(x)) for
all r < R, then f is a co-Lipschitz mapping with co-Lipschiltz constant greater than or

equal to c,.

Proof. First fix x € X and let R be the radius of the ball centred at = in which the local
co-Lipschitz property is satisfied. Pick a point y € BY p(f(z)) and notice that this implies
RS f(Eii (x)), where r, = Ci||f(x) —ylly. To see this, observe that if y ¢ f(Eii (x)), then
f~Yy) and Efy(m) are disjoint closed subsets of X, and, since X is a finite-dimensional
space, Efy(:n) is compact, therefore the distance between f~!(y) and Eﬁi (x) is a positive
number; hence there exists r € (r,, R) such that B (z) N f~!(y) = 0. This is impossible

because y € BY .(f(x)) C f(B;*(x)) whenever r < R. Thus

BY a(f(x)) C £(B, (x)). (1.4)

Now, let > 0, 7o € X and yo € BY . (f(x0)) be fixed. We need to show that there exists
some ¥’ € BX(xy) such that f(2') = y,. Consider the line segment £ contained in Y

joining f(xg) with yo, this is £ = (f(zo), yo], and define the set:

A={zeL:ye€ f(Efy(xo)) Yy e (f(z0), 2]}, where r, = || f(z0) — ylly-

Let Ry > 0 be such that BY (f(zo)) C f(B:X(x0)), for all r < Rp; from (1.4), it is clear
that BY , (f(z0)) N L C A, thus A # (.

Now we show that A is an open subset of £. Consider a point z € A, and let
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e Ei (o) be such that f(z') = z. Again, from the local co-Lipschitz property, there
exists R,s > 0 such that BY (f(z')) C f(B;(z')), whenever r < R,.. Pick any point
y € BCY*Rw, (f@)ynL. Ify € (f(zo), 2] then from the definition of A we know that
y € A. Assume that y € [z,y0]. From (1.4) we gather that y € f(l?gi(x’)), where

6, = || f(z') — y|ly. Hence, there is a point 2” € E?y (") N f~1(y), this leads to:

_c*

2" = zollx < [|2" — 2| x + [|2" — 20||x < 0y + 7
f(zo) — 2|ly

=L (lz—yly + £ (xo) — zlly) = 211 f(x0) — ylly-

= Zlf @) —yly + &

Therefore, 2" € Eii (mg), ie. y € f(Eii(xo)). So all points y belonging to Bg;{z,(z) NnL
satisfy y € f(Eii(mo)), hence the line segment (f(x), z] U (BXRI,(Z) N L) is contained in
A. Thus A is an open subset of L.

Finally, pick y € AN L, and consider a sequence y,, in AN £ such that 3, — y. Then,
for every n € N there is a point z,, € Ein (x0) such that f(z,) = yn. It is clear that,
if for some y,, we have ||f(xo) — ynlly > || f(z0) — y||y then z € A. Let us assume that
I f(z0) — ynlly < ||f(z0) — ylly for all n € N. In this case, we have (f(zo),y) C A, and
since X is finite-dimensional, and {z,} C Efy (x0), we can take a convergent subsequence
of xy, say o,; — x.. Therefore, z, € Ei{y (zo) and, by continuity we have:

f(z.) = lim f(2,,) = lim y,, =y
j—o0

J—00

Thus y € f(Ei(y (20)), i.e. y € A. This shows that A is also closed in L.
By the connectedness of £, we must have A = £. Thus yy € A, but this means that

there is a point 2’ € BX(x() such that f(z') = yo, because, since 3y € A, we can pick a
r Y
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point @’ € f~(yo) N Efyo (zo), and then:

I = zollx < 2

— Cx

f(@)o) = wolly < =lewr) =1

Thus 2’ € BX (), and this finishes the proof.
We conclude that f is a co-Lipschitz mapping with co-Lipschitz constant less than or

equal to c,. O

From the above results we gather that, for a function f : (X, ||-[|x) = (Y, ||-|ly), where
X and Y are finite-dimensional normed vector spaces, it is enough for f to satisfy the
Lipschitz and co-Lipschitz conditions locally —with the same constants for all x € X—
in order to achieve the “global” Lipschitz and co-Lipschitz conditions.

Another local property that would be useful to study is the local injectivity.

Definition 1.2.8. A function f : (X, | - |lx) = (Y. || - |ly) is locally injective at a point

x € X if there exists € > 0 such that f restricted to B.(x) is an injective function.

Notice that if a Lipschitz quotient mapping f : X — Y is locally injective at a point
z, then f is a local homeomorphism at z, i.e. there is an ¢ > 0 such that f : B.(z) —
f(B:(x)) is a homeomorphism.

It is known that for a continuous discrete open mapping f between n-dimensional
topological manifolds the set in which f fails to be a local homeomorphism cannot be very
big (it has dimension at most n — 2).! This result was first proved in [5], [6] and a more
accessible proof is given in [28]. From [1], we know that Lipschitz quotient mappings from
the plane to itself are continuous, discrete and open, hence, from the above result it follows
that every Lipschitz quotient mapping from the plane to itself is a local homeomorphism

outside a discrete subset of R2.

'Here a mapping is said to be discrete if the inverse image of each point consists of isolated points
and the dimension means the topological dimension as in [14].
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The next proposition, similar to [20, Lemma 5], shows using the polynomial home-
omorphism decomposition for Lipschitz quotient mappings on the plane that Lipschitz
quotients are locally injective in all but at most a finite number of points, and thus a local
homeomorphism at all but a finite number of points. Furthermore, in Corollary 1.2.12 we
will show that this is also true if we ask for the local homeomorphism to be Lipschitz, see
Remark 1.2.13.

Later on, in Proposition 2.4 and Corollary 2.5 we will prove stronger versions of these

results for a particular type of Lipschitz quotients on the plane.

Proposition 1.2.9. Let f : (R%,] - |l1) = (R? || - ||2) be a Lipschitz quotient mapping.

There exists a finite set F C R? such that f is locally injective at x for all x € R?\ F.

Proof. We assume without loss of generality that || - ||; = || - ||2 is the Euclidean norm.
Let f: R? — R? be a Lipschitz quotient mapping, by [15] we know that there is a non-
constant polynomial P(2) = a,2" + a,_12""' + ... + a1z + b with a,, # 0 of one complex
variable and a homeomorphism h : R? — R?, such that f = P o h.

If the degree of P is equal to 1, there is nothing to prove. Assume n > 1 and let
R(P') ={z € R?*: P'(z) = 0}. Take xq € R? such that h(zg) ¢ R(P’) and let yo := h(zo).
Since yo ¢ R(P'), there exists r; > 0 such that B, (yo) N R(P") = 0. Now, h™'(B,, (o)) is
an open set containing xo, so there exists ro > 0 such that B,,(x¢) C h™ (B, (o))

We now show that f is injective on B,,(xy). Take x1, 29 € B,,(xo) such that z; # x5
and let y; := h(z;). We know that P(y2) — P(y1) = P'(§)(y2 — y1) for some & € [y1, ya].

Since y1,y2 € h(B,,(x0)) C By, (o), we have £ € B, (yo) C R?\ R(P’). Hence:

|f(z2) = f(1)] = [P(h(x2)) — P(h(z1))] = [P(y2) — P(y1)| = [P"()lly2 — 3n| > 0.

Thus f(xz3) # f(x1) for all x1, 29 € B, (o), 21 # 2.

Let F = h=Y(R(P’)), we have just shown that f is locally injective at every point
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r € R?*\ F. Since h is a homeomorphism, we know that #F < n — 1, thus f is locally

injective at all but at most n — 1 points. O

The next proposition will be very useful to study the behaviour of Lipschitz quotients
along boundaries of balls centred at the origin and some useful local properties of Lipschitz
quotient mappings, see for instance Lemma 5.1.2, and Corollary 1.2.12. For this we will
be using the “lifting of a curve” property of co-Lipschitz mappings, stated in [15]. The

following is a restatement of [15, Lemma 2.2] and [1, Lemma 4.5].

Lemma 1.2.10. Let X be a metric space and suppose that f : R" — X is a continuous
cp-co-Lipschitz mapping with f(x) = y. Suppose also that £ : [0,00) — X is an Lg-
Lipschitz curve with £(0) =y and Le < ¢g. Then there is a curve ¢ : [0,00) — R™ with

Lipschitz constant 1 such that ¢(0) = x and f(¢p(t)) = &(t) for allt > 0.

We first show that Lipschitz quotient mappings are “well-behaved” with respect to

boundaries of balls in the following sense.

Proposition 1.2.11. Let f : (R%] - ||) — (R% || - ||) be a Lipschitz quotient mapping
and assume that for some xy € R?* and some r > 0 we have f(OB,(xy)) = ¢ where ¢

is a simple closed curve with index one around f(xo). Then @ is in fact the boundary of

f(Br(20)), i.e. O(f(Br(20))) = f(OB(20))-

Proof. Let us denote by E(p) the exterior region of the curve ¢ i.e. the unbounded
component of R? \ ¢. We will assume, without loss of generality that the co-Lipschitz
constant of f, ¢y, is equal to 1.

Let xy and r be as in the hypothesis and take yo € O(f(B(zo)). Consider an open

neighbourhood, U, of gy, then we have:

U f(By(x)) #0# UnN(R*\ f(B(x0))-
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This means that there is a ' € U such that, for some 2’ € B,(z¢), we have f(z') = ¢/,
and that there is a y” € U such that y” # f(z) for all z in B,(z). Let £ : [0,1] — R?
be a 1-Lipschitz curve contained in U, joining " and y”. Using Lemma 1.2.10, consider
the 1-Lipschitz lifting ¢ of £ under f with starting point at z’, so that ¢(0) = 2’ and
f(o(t)) = &(t) for all t € [0,1]. Then, ¢(0) = o’ € B,(z9) and, since f(¢(1)) = £(1) =
y" & f(B.(z0)), we have ¢(1) € R?\ B,(xg). Thus, ¢ goes from inside to outside B, (),

so it must intersect the curve 0B, (zg). Let ¢(tg) be a point in this intersection, then:

f(¢(to)) = &(to) € U and f(¢(to)) € f(OBr(x0)).

Thus £(tg) € U N f(0B,(z9)). We have shown that for all basic neighbourhoods U of
yo we have U N f(0B,(xg)) # 0. Since f(9B,(x0)) is a closed set, we conclude that
yo € f(OB,(xg)). This shows that d(f(B,(x0)) C f(OB,(xg))-

We now prove the other inclusion. Let yg € f(0B,(zg)) =: ¢. Since f is continuous
we know that any neighbourhood of yq intersects f(B,(z)), so it only remains to show
that any neighbourhood of yg also intersects R?\ f(B,(x¢)). Assume, for a contradiction,
that there exists a basic neighbourhood U of yo such that U C f(B,.(zg)). Since yy €
f(0B,(z0)), we can pick a point ' € E(p) N U C f(B,(z0)) and consider a point z’ €
B, () such that f(z') = 3'. Now, 3/ belongs to the unbounded component of R? \ ¢ so
we can consider an unbounded 1-Lipschitz curve ¢ : [0,00) — R? contained in E(p), and
its 1-Lipschitz lifting ¢ : [0, 00) — R? with starting point at 2’ € B,.(zo). By the Lipschitz
property of f and ¢, since £ is unbounded so is ¢, otherwise, if ¢ were bounded we can find
a > 0, such that ||¢(t)|| < a for all t € [0,00), and we would have || f(¢(t)) — f(0)|| < La
t € [0,00), but f(4(t)) = £(t) is unbounded. Therefore ¢ is unbounded and hence it
must intersect 0B, (o). Again, let ¢(ty) be a point belonging to this intersection. Then,
E(to) = f(o(to)) € f(OB.(x9)) = ¢, which is impossible since ¢ C E(y). Thus any
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neighbourhood of y, intersects R? \ f(B,(xp)). We conclude that yo € 9(f(B,(z0)) and

this finishes the proof. O

Corollary 1.2.12. Let f: (R% ||-]|) — (R%,||-||) be a Lipschitz quotient mapping. There

exists a finite set F with such that for all v € R* \ F there exists ¢, > 0 such that

I(f(By(x))) = f(OB.(x)) for all r < e,.

Moreover, if ¢ denotes the co-Lipschitz constant of f, then

1 (1) = fla2)ll = eflzr — 2],

whenever x1, Ty € Bs(x), where § = %@:,

Proof. Let x € R? \ F, where F' is as in Proposition 1.2.9. We know that F is finite
and the same proposition allows us to consider £, > 0 such that f in injective in B, (z).
Take r € (0,¢,), then the mapping f is injective along 0B, (x), therefore f(0B,(x)) is a
simple closed curve with index one around f(x). Hence, the first part of the statement
follows from Proposition 1.2.11. To prove the second part, notice that if z1, o € Bs(x)
with 0 = e, then x5 € 9B, (21) with 7 = ||z; — 23| < 3&,, therefore 0B, (z1) C B, ().
Hence f is injective along 0B,.(z1), so from the first part of the statement of the present

corollary we get:

f(x2) € f(0B:(21)) = O(f(Br(11)))-

By the co-Lipschitz property we know that f(B,(z1)) 2 Be.(f(z1)), consequently

1f (1) = f(@2)]| 2 er = cllay — | -

Remark 1.2.13. Recall that a bi-Lipschitz mapping f : (X, || - [|x) — (Y] - |ly) is a

bijective Lipschitz mapping whose inverse is also Lipschitz. In other words, we say that
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f is bi-Lipschitz if there exist constants ¢, L > 0 such that for all x1, 25 € X we have

clzy — xo|lx < || f(21) = f(22)|ly < L2y — 22| x-

Notice that the Lipschitz constant of f~! is equal to 1/c. We can restate this property as
a local property: We say that f is locally bi-Lipschitz at the point x € X if there exist

r, > 0 and constants c,, L, > 0 such that f is injective on B, (x) and

Callz —zlx < [f(2) = flz)lly < Laollz —a]lx,

whenever ||z — x1|| < r,. From Corollary 1.2.12 it follows that if f : (R? ||-]|) — (R? |- )
is a Lipschitz quotient, then f is locally bi-Lipschitz at all but at most a finite number of

points. Even more, if f is injective we can easily prove the following statement:

Corollary 1.2.14. Let f: (R%||-||) — (R2, || - ||) be an injective mapping. Then f is an
L-Lipschitz and c-co-Lipschitz mapping if and only if f is a bi-Lipschitz mapping and the

Lipschitz constants of f and f~' are equal to L and 1/c, respectively.

Proof. Assume f is a Lipschitz quotient mapping with Lipschitz and co-Lipschitz con-
stants equal to L and c respectively. Since we are already assuming that f is injective
on all of R? (and hence bijective, since f is co-Lipschitz), we can follow the same ar-
gument used in the proof of Corollary 1.2.12 to show that for all z;, 7, € R? we have

| f(x1) — f(z2)]| > |l f(x1) — f(2)]. Therefore for all 1,z € R? we have:

cllor — x| < |[f(21) — flz2)|| < Llzy — 22 (1.5)

Taking y; = f(2:), this gives |[f~"(y1) — f~'(y2)| < tllyr — 2| Thus f~! is a Lipschitz
mapping with Lipschitz constant L, < 1/c.

The other implication is clear since, from the bi-Lipschitz condition, it follows that if
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L., L > 0 denote the Lipschitz constants of f and f~!, respectively, then

Ellar — @l < If (1) = f@2)]| < Lllzy — 2]

Since f is bijective, for y € B,/ (f(x1)) we can consider x5 = f~*(y), and we get

Ll = sl < 1 f (@) = fleo)ll = £ (@) = yll < £,

therefore ||z; — x3]] < 7 and we conclude that y = f(z3) and 2o € B,(z1). Thus
By, (f(z1)) € f(By(x1)) and hence f is a co-Lipschitz mapping with co-Lipschitz con-
stant ¢ > 1/L,.

We conclude that given an injective mapping f, f is a Lipschitz quotient mapping if
and only if f is bi-Lipschitz and that the Lispchitz constant of f~! is equal to the inverse

of the co-Lipschitz constant of f. O

All these previous results are the main basic background of Lipschitz quotients that
we will be using throughout this work. However, when studying Lipschitz quotients
on the plane the use of curves turns out to be very useful, as we have already seen in
Proposition 1.2.11. Hence, before starting the study of the relation between the Lipschitz
and co-Lipschitz constants of a Lipschitz quotient mapping and the cardinality of the
fibers of that mapping, we devote the next section to the study of some properties of

curves on the plane.

1.8 Basic properties of the length of a curve on the plane

The lifting of curves (see Lemma 1.2.10) to study Lipschitz quotients on the plane is very
useful. In fact, in [15], the proof that every Lipschitz quotient mapping on the plane can

be written as a composition of a homeomorphism on the plane and a polynomial of one
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complex variable, is based on the lifting of a curve property mentioned in Lemma 1.2.10.
So we will amply consider curves and their images under Lipschitz and co-Lipschitz map-
pings on the plane. Since we are concerned with the ratio between the Lipschitz and
co-Lipschitz constants we will need to measure the length of a curve and compare it with
the length of its image under a Lipschitz quotient. Hence, we will need to be able to mea-
sure the length of a curve under non-Euclidean norms. In this section we will first define
the length of a curve using the Hausdorff measure and we will prove basic properties of
this length, including the very basic: “the straight line is a shortest path between two
points”. This is stated and proved in Lemma 1.3.10 and Corollary 1.3.11.

To avoid any confusion, let us first clarify what we mean by a “curve”.

Definition 1.3.1. Given a normed vector space X, we say that a set & C X is a curve if
it is an image of a continuous function ¢ : [a,b] C R — X, where a < b are real numbers.
In this case we say that ¢ is a parametrization of ®.

For instance, given a set of n points, pg, ..., p, of X, we can consider the set ® defined
as the union of all the line segments [p;, p;—1], 1 < i < n. Clearly ® is a curve. In this
case we say that ® is a polygonal curve and that the points p; are the vertices of ®.

Given a curve @, if there exists a parametrization ¢ : [a,b] — X of ® which is injective
on (a,b), then we say that ® is a simple curve and ¢ is an injective parametrization.
Finally, we say that ® is a simple closed curve if it is a simple curve with ¢(a) = p(b).

It is easy to see that a curve can always be parametrized by a continuous function
whose domain is the interval [0, 1].

Notice that, since the continuous image of a compact set is compact, a curve is always
a compact set.

When the parametrization ¢ of a curve ® is fixed we may use the same notation ¢ to

refer to both, the parametrization and the set ®.

As we shall see in Lemma 1.3.3, the boundary of a ball in any normed space (R?, ||-]|) is

26



a curve. It is worth mentioning the well known correspondence between finite-dimensional
Banach spaces and the symmetric convex bodies in R”, this is: If E C R" is a symmetric
convex body centred at the origin, then E is a closed unit ball of some Banach space
(R™, || -||). Conversely, the closed unit ball of any Banach space (R", |- ||) is a symmetric

convez body in R™. Recall that a convex body is defined in the following way.

Definition 1.3.2. Given any normed vector space X a set £ C X is a convex body if it
is a compact, convex set with nonempty interior. Given a convex body £ C X, we will
say that a set ® C X is contained outside E if ® NInt(E) = (.

Recall that by Jordan’s Theorem any simple closed curve in R? divides the plane into
two connected regions, one bounded and the other unbounded. We say that a set P C X
is a polygon if P is the bounded component of a simple closed polygonal curve, according

to Definition 1.3.1.
Now we can prove the following statement.

Lemma 1.3.3. Given any convez body E C R? there is an injective continuous parametriza-
tion of the boundary of E. In other words, OF is a simple closed curve according to

Definition 1.5.1.

Proof. Let E be a convex body in a normed space (R? || - ||). Let us assume that the
origin is an interior point of E. Notice that for every § € (—m, 7| there is a unique point
xg that belongs to OF and has argument equal to 6. More precisely, let £y be the ray with
starting point at the origin that forms an angle # with the positive z-axis. Since £y is not
bounded, it must intersect OF at some point xy. Indeed, if £: RT U {0} — ¢4 is given by
¢(t) = mt then the set

A={t e RT"U{0}:((t) € Int £}

is not empty because the origin is an interior point of F, furthermore since E is bounded,

the set A is bounded as well, therefore we can consider § = sup A. It is easy to see that
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¢(B) belongs to OE. Hence ((5) € £y N OE.

Finally, we can show that this point is unique, for if 2’ € ¢y, NOFE, then x4 and 2’ have
the same argument. Without loss of generality assume that ||2'|] < ||zg|| and let 0y, 6y
be such that 6 € (0,6,). Now, for i = 1,2 take xy, € ly, N E such that xy, # 0. So that
X9, Ty, Ty, and the origin belong to £, therefore the quadrilateral () whose vertices are
these four points is contained in E. Since 2’ is an interior point of @, it is also an interior
point of F and this is a contradiction. Therefore x’ = x4.

Given that uniqueness, we can define the function ¢ : [—7, 7] — OF as ¢(0) = zy for
0 € (—m, 7| and p(—7) = x,.

Clearly ¢ is onto, ¢(—m) = ¢(7) and ¢ is injective along (—m, 7); so we only need to
show that ¢ is continuous.

Fix some 0 € [—7, 7] and consider a sequence t,, in [—m, 7] such that ¢,, — . Consider
the sequence ¢(t,,) and any convergent subsequence ¢(t,,,) of ¢(t,). Since OF is compact,
the subsequence ¢(t,, ) converges to some point xy € OF.

For z € R? let arg(z) denote the argument of z taking values in (—m, w]. Now, using
that arg(o(t,,,)) = t,,, we get:

m— 00

This implies that xo = ¢(0).
Therefore, every convergent subsequence of (t,) converges to ¢(#). Hence, ¢(t,)
converges to ¢(6).

We conclude that ¢ is continuous so JF is a curve. O

Remark 1.3.4. Note that from the proof of Lemma 1.3.3 it follows that the parametriza-
tion may be chosen in such a way that as the parameter increases, the point on the bound-

ary “travels” in a counterclockwise direction with respect to the point in the interior of
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E. We will return to this later, in Corollary 1.3.18.

Now that the concept of curve is clear, we define the length of a curve. First, let us

recall the definition of the n-dimensional Hausdorfl measure.

Definition 1.3.5. For a subset A C R*, we will use the notation HI'l(A) for the n-
dimensional Hausdorff measure of the set A, under the norm || - ||, defined in the following
way:

Given a subset A C R¥, define for each fixed § > 0:

j=1

’H” l(A) = inf {Z (diam C})" : A C | Cj, diam C; < (5} : (1.6)

where diam C; is the diameter of the set C; with respect to the norm || - ||.
It is clear that HM(A) < HII(A), whenever ¢ < 6. We define the n-dimensional
Hausdorff measure as

HLI(A) = sup HI(4) = im 1l (4).

6>0

Whenever the norm we are using is clear we may only write H,,(A).

Remark 1.3.6. Equivalently, it is not hard to prove that in (1.6) we might ask for the
C;’s to be all open, or all closed. For a proof of this result see [29, Theorem 27.13]. For

other general properties of the Hausdorff measures and dimensions see [18] and [2].

Given a curve ® C R* and a parametrization ¢ : [a,b] — ® of ® the 1-dimensional
Hausdorff measure of ®, relative to the norm || - || can be written in terms of the

parametrization as:

HY (@) = 1 ({p(t) - t € [a,0]}).

Notice that this measure does not depend on the parametrization ¢ of ®. This is the way

we define the length of a curve when we think about it as a subset of R*. However, in this
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work we will also be concerned with the length of curves understood as parametrizations
rather than as sets contained in R¥. We will define the length of a locally injective curve

—as a parametrization— using the 1-dimensional Hausdorff measure in the following way.

Definition 1.3.7. Let v be a locally injective curve « : [a,b] — R¥, and consider the
points a = tg < t; < .-+ < t, = bin [a,b] such that v is injective along the interval

(t;,tiy1), then the length of «y is defined as:

length v = ZH!”(%‘% (1.7)
i=1

where v; = 7|[,_, +,]- Again, whenever the norm we are working with is clear we may just

write length(~).

Remark 1.3.8. Notice that once the parametrization ~ is fixed the length of the curve ~
that we have just defined does not depend on the partition {a = to, ..., ¢, = b} in which
7 is injective along each interval (¢;,¢;11). Indeed, let Q = {a = to,...,t, = b} be any
such partition of [a,b] and let Q* = {a = Ao, ..., A, = b} be any refinement of Q). For

j €1{0,...,n} let k; be such that A, =t;. We show that for all j € {1,...,n} we have

k; J
ZH1<’Y|[M—17/\¢}) = ZH1(7|[U—17M)' (18>
=1 =1

We do this by induction over j. For j = 1 there are two options; if k; = 1 then there is

nothing to do. If k; > 1 then since 7 is injective along

tot1) = UDos A)

=1

we have

Y([Aie1, M) N[N, Ay)) =0 forall d#5; 1 <4d,5 < ki
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Therefore,

Hi(Yja,t)) ZH1

'L 1)\]

Assume that (1.8) is true for some j < n. Again, for j + 1 we have two options, if
k;j+1 = kj + 1 there is nothing to do. If k;1; > k; + 1 then we can repeat the reasoning

that we have just done to get:

kj+1

7'[1<7|[tj,tj+1]) = Z Hl(’)/h)\i—l,)\i])‘

i=k,

This, together with the fact that (1.8) is true for j, implies that (1.8) is true for j + 1.

Thus the statement is true for all j € {1,...,n}. In particular, for j = n this is:

[/\1'71,)\1‘]) = Z Hy (’7

[tiflyti])'

Finally, if Q = {a =t¢,...,t, = b} and Q' = {a =t{,...,t, = b} are two partitions

of [a,b] such that 7 is injective along each of the intervals (t;_1,t;), (t;_;,t), then the

1—1 "4

partition Q* = QU = {a = Ao, ..., Ay, = b} is a refinement of @ and ', hence we have:

o) = 2 MV a) = 22 Ha (g

This is what we wanted to show.

Notice also that whenever we consider injective parametrizations v, and 7, of a curve
' C R? then

HyI(T) = lengthy  (71) = lengthy | (72).

Remark 1.3.9. If f : (R™,|| - |l1) — (R¥,|| - ||2) is an L-Lipschitz mapping, then it is

clear that for £ C R™ we have diamy.,(f(£)) < Ldiam.|, (E). Therefore, in view of the

31



definition of the Hausdorff measure, we get:

2l (F(B)) < "M (E) for all n € N. (1.9)

It follows that, if v : [a, b] — R™ is a locally injective L/-Lipschitz curve, and f : R™ — R¥
is a locally injective L- Lipschitz mapping, then the length of the curve f o~ is defined
and length, f oy < (LL')(b — a). Moreover, in the particular case of the plane, say
f o @®E - l) = (R%|| - |l2), from Proposition 1.2.9 we know that if f is a Lipschitz
quotient mapping there exists a finite set F' such that f is locally injective at every point
r € R?\ F. Hence, if we choose R; > sup{||z||; : € F'}, then for any curve v contained

outside Bg,(0) the length of the curve f o+ is defined. Furthermore,

length,(f o7) < Llength, (7). (1.10)

Now that we have defined the length of a curve and we have
understood how to measure it, we will state and prove some basic
properties of curve length. Some of these properties sound quite
obvious and intuitive. But let us just bear in mind that when
working with non-Euclidean norms things are not that intuitive.

For example in Figure 1.2 we show a square and an octagon
contained outside the interior of the square. Let us denote by ~ R =
the curve that describes the boundary of the octagon. If we agree Figure 1.2
that the side of the square is equal to 2, then the square is the
unit ball under the supremum norm, || - ||, and we have: length  (9B°) = 8. On the
other hand, since all the sides of the octagon are just a translation of some radii of the

square 0B$° we also have length  (v) = 8.

We start this survey of the basic properties of the length of a curve by showing that
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one of the shortest paths between two points is the straight line, which follows from the

next Lemma 1.3.10 and Corollary 1.3.11.

Lemma 1.3.10. Let || - || be a norm on R™. Given any two points xo,yy € R™ the length

of any locally injective curve joining these two points is at least ||zo — yol|.

Proof. Let v : [0,1] — R™ be locally injective curve joining xy and yo. Without loss of

generality assume v is injective. Consider any countable open cover C of v, say

s UBz‘-

=1

Let ' = {By,...,B,} be a finite subcover of C. We will pick some elements of C’
and reorder them in the following way. Pick some B;, € C’ such that xy € B;,. Let
ty = sup{t € [0,1] : v(t) € B;,}. Clearly t; > 0. If t; = 1 then we set C* = {B;, }.
If not, then since C' covers v and (t;) ¢ B;, there must be some B;, € C"'\ {B;,} such
that v(t1) € B;,. Now define t := sup{t € [0,1] : v(t) € B;,}, so t; < ty. If t5 =1 we
define C* as C* = {B;,, B, }; if to < 1 then, again since y(t2) ¢ (B;, U B;,) we can find
B;, € C'\ {B,, B, } such that y(t3) € B;,.

We continue this process till £, = 1 for some k. This will certainly happen since
(1) = yo belongs to some element of C" and C’ has a finite number of elements.

So we have defined a subset C* = {B,,,...,B;,} of C' C C (and C* is not necessarily
a cover of ) and a sequence of points 0 = tg < t; < ...tx_1 < t; = 1 such that for all
jed{l,...;k—1} ‘

v(t;) € Bi,,, and ~(t;) ¢ 101 B;,.

This implies that the sets B;, j € {1,...,k} are all distinct. On the other hand, given j €

{1,...,k} we have y(t;_1) € B;, and y(t;) € B;, therefore, diam(B;,) > ||v(t;-1) —v(t;) ||

J
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for all j € {1,...,k}, and using the triangle inequality we have:

idiam(&) > > diam(B) > ; [y (tioa) = (@) = |l ;V(tm) =& = [lzo = woll-

BeC*

This shows that given any open cover of the curve v the sum of the diameters of the
elements of the cover is at least ||xo —yo||. Therefore, recalling Remark 1.3.6, we conclude

that Hq(y) > ||zo — yol|- .

Corollary 1.3.11. Let || - || be a norm on R™. Given any two points xo,yo € R™ the

| - [|-length of the straight line segment joining them is equal to ||xo — yol|-

Proof. Let xg,yo € R™ and consider the line segment £ joining them. Clearly, the
parametrization of this line segment is injective whenever xy # y,. We may assume
for simplicity that xy = 0. From Lemma 1.3.10 we have H;(L) > ||lyo]|-

Now, to get the opposite inequality it is enough to show that given any § > 0 there
is some countable cover C of £ such that for all C € C we have diamC < § and
Yoee diam(C) < [|yoll-

Take n € N such that ||[yo||/n < & and for i € {0,...,n — 1} let z; := 2y, Then,

letting 75 := ||yo||/2n, the family {B,;(zi_1) : 0 <i < n — 1} is clearly a cover of £ and

3 diam (B, () = n(2r) = |

Hence, for all o > 0 we have:

o0 n—1
in { S diam(Cy) : £ C UR,C;, diam(C)) < 5} < 3 diam(B,, (%)) = o]l
i=1 =0
Therefore H; (L) < |lyo|| and we conclude that Hi(L) = ||yo||- i

Proposition 1.3.12. Let ¢ be a locally injective curve on R?. Then the length of ¢ can

be approximated by the lengths of polygonal curves. More precisely, there exists a family
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U of polygonal curves with all their vertices in @ such that:

length(¢) = sup{length() : ¢ € U}.

Proof. Let ¢ : [a,b] — R? be a continuous parametrization of the given curve.
For every partition @ = {a = to,t1,...,t, = b} of the interval [a, b] define the curve

¢ as the polygonal curve whose vertices are the points p(t;), ¢ € {1,...,n} and let

U = {¢g : Q is a partition of [a, D]}, (1.11)

B = sup{length(¢yq)) : g € V}.

We show that 8 = length(y). From Lemma 1.3.10, it follows easily that length(y) >

length(vg) for each partition (). Therefore

length(p) > f. (1.12)

So we are left to prove the opposite inequality. Let us assume first that ¢ is injective, so
that length(¢) = Hi(¢([a,b])). Notice that given any partition @ = {a = tg,t1,...,t, =
b} of [a,b], if we denote by C; the set ([t;—1,t;]), then the family Co = {C; : 1 < i <
n,t; € Q} is a cover of p. Furthermore, any cover constructed in this way must satisfy
», diam(C;) < 3. Otherwise, if > | diam(C;) > /3, we can define, as we will see now, a
partition @’ of [a, b] such that length(¢)g/) > 3, which contradicts /5 being the supremum.
For this, we pick § > 0 such that > ; diam(C;) > 5+ 0. Now for each i € {1,...,n}
choose t;,t7 € (t;—1,t;) such that t; <t and ||¢(t)) — ¢(t!)|| > diam(C;) — d/n. Let

1) 71

Q/ - {Cl = t())t/l)t,l/a s 7tn—17tfn—17t;;—17tn = b}
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and consider the polygonal curve g generated by @', i.e. ¢ is the polygonal curve

whose vertices are the points {¢(ti—1), ©(t)), p(t!),p(t;) i =1,...,n}. Hence,

8 > length(vo) §:|m9 1) — o)+ ot — o] + le(t?) — ot
>§]w )H>§¥mm()—WM>B+6 5= 5.

This is a contradiction. We conclude that for each cover Cq of ¢ generated by a partition
Q of [a,b] we have:
> diam(C) < . (1.13)

CeCo

In fact, it is clear that given any § > 0 we can find a partition @ = {a = to,...,t, = b}
of [a, b] such that the relevant cover Co = {p([ti—1,%:]) : t; € Q} satisfies diam(C) < §
for all C' € Cg. Indeed, this follows easily from the uniform continuity of ¢ since we can
find € > 0 such that for all £,¢" € [a,b] we have ||p(t) — p(t')|| < 0 whenever |t — | < e.
Now we can take N € N such that (b — a)/N < ¢ and consider the partition Qs = {a =
to,...,tn = b} of [a,b], where tg =aand t; =t;_; + (b—a)/N foralli ={1,...,N}. In
this way it is clear that that the cover Cg, := {¢([ti-1,t:]) : t; € Q} satisfies diam(C) < o
for all C' € Cqg;.

Hence, from (1.13) it follows that for any ¢ > 0:

H15(p) = inf {Z diam(C;) : ¢ C U2, C;, diam(C;) < (5} < Z diam(C') < B.

=1 CECQ&

Therefore,

length(p) = H(¢([a, b)) = sup Hi(p) < B.

5>0
Now, if ¢ is not injective, let ¢ > 0 and consider the pointsa = \g < A\ < --- <\, =D

such that ¢ is injective along [\;_1,\;] and for i € {1,...n} let p; := ¢

NioA]- Now, for
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each ¢; let Q; be a partition of [\;_1, A\;] such that the corresponding polygonal curve 1;
satisfies H1(gp;) < length(e;) + ¢/n. Let Q@ = U, Q; and let ¢ be the polygonal curve

relative to the partition ). In this way, we have:
length(yp) = Z’Hl(goi) < Zlength(wi) + & = length(¢)) + «.

i=1 =1

Therefore, in this case we also have that for every e there is a partition @ = {¢; : 0 <
i <n} of [a,b] such that the polygonal curve whose vertices are the points ¢(t;) satisfies

length(p) < length(¢)) + . Thus, also in this case we have

length(p) < .

Together with (1.12) this gives length(y) = . o

Lemma 1.3.13. Let (R% || - ||) be a normed vector space. If 7y is a locally injective closed
curve contained outside a convex simple polygon P and Ind,y = 1, with p € Int'P then

length(y) is at least length(OP).

Proof. Let v be as in the hypothesis and denote by Ay, ..., A, the vertices of the simple
convex polygon P, placing the indices counterclockwise. Let £ be the straight line that
passes through Ay and A;. See Figure 1.3 for an illustration.

By Jordan’s Theorem we can take Fy, P; € 7 such that:

P() S ’yﬂ{)\Ale TA> O}, (114)

Pl c ’)/m{)\A(]Al A > O},

Let us agree that the curve v is parametrized by a continuous function g : [0, 1] — R?

such that v0(0) = P, and goes along the curve counterclockwise. Pick a point t; € v5 ' (P;)
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Figure 1.3

and define the curve ~; as

(I-HP+5(P) if0<t<t
7 (t) =
Yo(t) if 4 <t<1

Denote by ¢ and ¢’ the restrictions of v to the intervals [0,%;] and [¢, 1] respectively. It

follows from Lemma 1.3.10 and Corollary 1.3.11 that:

Now, since 7, is a curve contained outside P we can repeat the same construction as
before taking 7, instead of v and A;, Ay instead of Ay, A;. So now, in a similar way as

we did in (1.14), we can consider two intersection points of the curve 7, with the line £,

38



that passes through A; and A,, say

P2 S ’ylﬂ{)\AlAQ S > 0},

P2/ S ’Ylﬂ{)\AgAl S A Z 0}

Notice that in this case, we can choose Pj to be precisely A;. Take t},ts € (0,1) such

that ), € 77 '(A4;)) = v *(P}) and t, € 77 *(P) and define the curve:

71 (t) it 0<t<t,
_ t—t! t—t/ .
P(t) =1 (1- trt%z) A+ (tH%Q) Py ifty<t<ty
7 (t) if t,<t<1
After repeating this process n times we will end up with a sequence, {v,71,..., 7},
of curves contained outside P, a sequence of points of the curve v, {Fy,..., P,} C~, and

inverse image points {t; € v, 4 (P) : i = 1,...,n} and {t, € v, 1 (A;i_1) 1 i =1,...,n}

such that for i € {1,...,n — 1} the curve 7,41 is defined as:

7i(t) if 0 <t <t
Yin(t) =4 (1-EZ5) A+ (E5) P ity <t<t
7(t) ift; <t <1

Again, by Lemma 1.3.10 and Corollary 1.3.11 it follows that for each i € {1,...,n} we
have:

length () > lengthy(vi) > lengthy.;(vi+1).

In particular for ¢ = n, the curve =, is the curve defined as follows (writing down the
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definition of all the 7;’s that have been defined recursively):

(1—7})130+i141 if0<t<t

(1-5) A+ (%) 4 ity <t<tb

(1—5) A+ () 45 ity <t <t

(1= =) An+ () Py ift, <t <ty

(1) ift, <t<1

Repeating this construction once more we define the curve v,;. In this case the line
L,+1 that passes through A, and Ay intersects the curve v, at Ag and A,,, since Ay = 7, ()
for some ¢ € [0,¢1] and A,, = v,(t},). Therefore v, = OP.

Once again, from Lemma 1.3.10 and Corollary 1.3.11 it follows that length (v,) >
length, . (Yn41) = Hi(OF) Hence:

length(vy) > length(v,11) = length(0P) = Z |A;—1 — Ajll + | A, — Aol

Thus the length of the curve v is greater than or equal to the perimeter of the convex

polygon P. O

The next Corollary is a generalisation of [20, Lemma 3] in the case of polygonal norms
(see Definition 4.1). However, together with Corollary 1.3.15, it will allow us to prove a

full generalisation of [20, Lemma 3|, see Corollary 1.3.16.

Lemma 1.3.14. Given a norm || || on R?, if v : [0,1] :— R? is a locally injective closed
curve contained outside a convexr simple polygon P and Ind,y = k > 1, with p € Int’P

then length  (7) is at least klength . (9P).

Proof. For k =1 this is just Lemma 1.3.13. Let k£ > 1 and assume the statement is true

for k—1. Let us denote the length of the curve v under the norm ||- || simply by length(~).
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Since there exists p € Int P such that Ind, v = k, we can find x1, 22 € [0, 1] with z; < x4

such that:

Indp 7|[x1,z2] = 1; 7('7"1) = 7(1‘2); Indp 7|[0,$1}U[x2,1] =k—1

Given this partition of the curve v, the statement follows easily from Lemma 1.3.13 as
the curve |3, 4, is a closed curve contained outside the convex simple polygon P and

Indy, ¥|(z,,25) = 1. Therefore:

length(y) = length (|, 2,]) + length(y[jo.e1)ufze,1))

> length(9P) + (k — 1) length(0P) = klength(9P).

Thus, the statement holds for all £ € N. O

Corollary 1.3.15. Let ¢ be a simple closed curve in (R% || - ||). If ¢ is a boundary of
a convex body E, then the length of ¢ can be approximated by the perimeters of polygons
inscribed in E. More precisely, there exists a family P of convex polygons whose vertices

belong to OF such that:
length(y) = HI1(0E) = sup{#!(oP) : P € P}.

Consequently,
1! oE) < «.

Proof. Let E be a convex body and let ¢ : [—7, 7] — R? be the parametrization of
OFE constructed in Lemma 1.3.3. For each partition @) of [—m, 7|, define ¢y to be
the polygonal curve whose vertices are the points ¢(t;), with ¢; € Q. From Proposi-

tion 1.3.12 we know that length(p) = sup{length(vg) : Yo € ¥} where U = {¢g :
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@ is a partition of [—m,7]}. Hence, to show that the first equality of the statement is
satisfied we need to show that each closed curve ¥g € ¥ is indeed the boundary of a
convex polygon inscribed in O(E).

For 1g € U, let Py denote the bounded component of R? \ 1. First notice that,
given a partition @) of [—m, 7], the polygon P is inscribed in E. Indeed, since E is convex
all the straight lines [¢(t;_1), ¢(t;)], with ¢ € {1,...,n} are contained in FE. Hence, the

simple and closed polygonal curve

Yo = UiLle(ti-1), o(t:)]

is contained in £ —recall that F being a convex body is closed. Hence the bounded
component of R? \ ¢q is contained in E. By definition this bounded component is the
polygon Py, thus Py C E.

Now we show that given a partition @ = {—m =t,,...,t, = 7} of [—m, 7| the polygon
Py is convex. We know that for any partition of the interval [—m, 7] with 2 or 3 elements
the polygon Fg is convex. So let us assume that n > 3. It is enough to show that all
the internal angles of Py measure less than or equal to 7 radians. For, choose an internal
angle of Py, say the angle at the vertex ¢ (tx). See Figure 1.4 for an illustration.

Consider the triangle 7 whose vertices —modulo n— are ¥ (tx_1), ¥ (tks1), Y (ter2).
Since E is convex and ¢(t;) € OF C E for all i € {0,...,n}, T C E and we also have
Int(7) C Int(E). Since ¢ (t;) € OF, we must have ¢ (t) ¢ Int(7). This means that the
quadrilateral with vertices 1(tx_1), ¥ (tx), ¥ (tk+1), ¥ (trro) is convex, so that the internal
angle of this quadrilateral at 1 (t;), which is the internal angle at the vertex (i) of the
polygon Fp, is less than or equal to 7 radians, which is what we wanted. Thus Py is
convex for any partition @ of [—m,7].

Finally, it is clear that H;(0F) < oco. Indeed, since E is bounded there exist points
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Figure 1.4

Do, P1, P2 such that E is contained in the triangle T whose vertices are the points p;,
i =0,1,2. Since the polygon Py is convex and the index of the curve 9T is equal to 1 for

any point in the interior of Pp, from Lemma 1.3.13 it follows that:

3
7—[1(8]3@) < H,(9T) = Z Ilpi = pi-all,
i=1

for any partition @ of [~m,n]. Hence, H1(0F) < 3% | ||lps — pi_1]] < . i
The next result generalises [20, Lemma 3] if we take E equal to a ball of radius 7.

Corollary 1.3.16. Consider a normed space (R?,|| - ||), a convex body E C R? and a

point p € Int E. The || - ||-length of a curve ¢ contained outside E with Ind, ¢ = k is at
least kM (OF).

In particular, if o C R?\ BII(0) for some r > 0, then
length (¢) > k:lengthH,”((?Bﬂ'”(O)).

Proof. Let ¢ be a curve contained outside a convex body F with Ind, p =k for p € Int &
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and take € > 0. From Corollary 1.3.15 we can find a polygon Py inscribed in E such that

M1 (0E) < H1(0Pg) + & /k.

Since Pg C E, the curve ¢ is a curve contained outside Py, and clearly Ind, ¢ = k for

p € Int P. Therefore, from Lemma 1.3.14, we know that H;(p) > kH1(0Pg) so that:

Hl(@) > k?—ll(ﬁE) — €.

Since this is true for any € > 0 we conclude that H;(p) > kH,(OF). i

The result in Corollary 1.3.16 will be of particular importance to prove Theorem 2.7,
which is one of the main results in this work. In a sense, it could be understood that Corol-
lary 1.3.16 was the motivation to develop this complete section. However, the importance
of these results concerning lengths of curves “winding around other curves” its not limited
to the proof of Theorem 2.7. We will also be concerned with Lipschitz parametrizations
of curves. We finish this section showing that, further to Lemma 1.3.3, we can always
define a 1-Lipschitz parametrization of the boundary of any convex body on the plane.
As we shall see this result together with Corollary 1.3.16 will be present troughout the

rest of this work. We first prove the following lemma.

Lemma 1.3.17. Let 7y : [a,b] — R™ be a parametrization of a locally injective curve.

Then the function £., : [a,b] — R defined as

£,(t) = length(y([a, 1]))

15 continuous.

Proof. Let € > 0 and take ¢, € [a,b). We show that the function £, is continuous at t,.
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By Lemma 1.3.12, we know that
length(v[a, b]) = sup{length(pg) : Q is a partition of [a, b]},

where g is the polygonal curve whose vertices are the points v(¢;), t; € Q). Therefore,

we can consider a partition Qo D {a,t.,b} of [a,b] such that
0 < length(v[a,b]) — length(pg,) < 3. (1.15)

Now, take § € (0,b—t,) such that Qo N (L, t.+0) = 0 and such that ||y(¢) — ()| < &/3,
whenever |t — t,| < 0. Define the following partitions of [a,t.], [a,t. + d] and [a,b]

respectively:

Qu=QN[at], Q. =Q.U{t.+d}, Qy=QoU{t.+d}.
Since Qy 2 Qo we have length(pg, ) > length(pq,), so from (1.15) we know that
0 < length(v[a,b]) — length(pq,) < 3.
This implies that 0 < length(v([a,t. + 6])) — length(pg,) < 5, or equivalently,
0 < (length(y([a, t.]) —length(pq.) ) + (length(Y([t., t.+0])) = (L) =1t +0)]) <

£
3

Since both terms of the sum in the left hand side of the inequality above are non-negative,
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we know that each term is smaller than €/3. Using this fact we see that for ¢ € (¢,,t,+9):

length(v([a,?])) — length(pq,)
= length(y([a, £.])) + length(y([t., 1)) — (length(pq.) + [|7(t.) — (t. + 3)||)
< £ +length(v[t,, t]) — [[v(t.) — v(ts + 6)|

< § + length(y[ts, tu +8]) — [[y(ts) = vt + )| < 5.
From this and recalling our choice of §, we gather that:

0 < %,(t) — £,(t) = length(v([a, t])) — length(v([a, t.]))
= length(y([a, t])) — length(pq,) + length(pq,) — length(v([a, t.]))
< % +length(pg,) + [[7(t.) — y(t. + 9)|| — length(y([a, t.]))

< 2 — (length(y([a, .])) — length(pg.)) + § < e

the last inequality holds since length(([a, t.])) — length(yg,) is non-negative. Therefore,
we have shown that for any locally injective curve 7 defined on an interval [a,b], the
function £., is continuous from the right on [a, b).

Now we show that this implies that it is also continuous from the left for any ¢, €
(a,b]. For, consider the curve v; : [a,b] — R defined as v;(t) = v(b —t + a) and let
t. = a+b—t,. From what we have just shown, we know that there exists ¢’ > 0 such
that 0 < £,,(t') — £, (t.) < e, whenever t' € (t,,t, 4+ 0").

Take t € (t. — ¢',t.) and let ' = a4+ b — t. Notice that t' € (t,,t, +¢') and:

it t) = {3 —uta) iu € [t} = (10w € b=+ ab— .+ af}

= {7(u) s uw et t.]} = ([t 1.]).

46



Therefore,

0 < £, (t) — £,(t) = length(y([t, £.])) = length( ([}, ')

= length(y1([a, ) — length(([a, £}])) = £, (t') — £,,(2)) <e,

using ¢’ € (t.,t, + ).
Thus 7 is continuous at a and b and for , € (a,b), choosing 6y = min{d, ', t,—a, b—t.},
we have |£.,(t) — £, (t.)| < e forall t € (t. — o, t. + o).

We conclude that £, is a continuous function on [a, b]. m]

We are now able to show that it is always possible to parametrize the boundary of any

convex body in such a way that the parametrization is an injective 1-Lipschitz mapping.

In particular, the boundary of any ball in a normed space (R?, || - ||) can be parametrized
in this way.
Corollary 1.3.18. Let || - || be a norm in R? and consider a convez body E C R? and a

point x € OF. There exists a bijective 1-Lipschitz mapping o, : [0,7—[!'”(3E)] — OF with

starting point x and oriented counterclockwise.

Proof. We will denote the 1-dimensional Hausdorff measure relative to the norm || - ||
simply by H;. Let E be a convex body on (R?,] - ||). From Lemma 1.3.3 we know that
there exists an injective continuous parametrization ¢ : [a,b] — OF of the boundary of
E. Notice that we can assume that p(a) = x and that, by Remark 1.3.4, ¢ is oriented
counterclockwise. Let Hp := ’H!'”(@E) and define ¢, : [0, Hg] — OF as:

90*(t) = 90<)‘) iff Hl(gpy[a,)\]) =t. (1'16>

First we show that this function is well defined, i.e. we show that for all ¢ € [0, Hg]| there

exists a unique A € [a, b] such that H,(p|j,y) = t. This is equivalent to saying that the

47



function £ : [a,b] — [0, Hg] defined as £L(X) = Hi(pljp,n) is a bijection on-to [0, Hg].
From Lemma 1.3.17 we know that £ is a continuous function. Moreover, it is strictly

increasing, for if ¢; < tq, then:

L(ta) = Hi(v]a, ta]) = Hi(v[a, ta]) + Hi(v[t1, t2])

> Hi(v[a, t]) + |y (t1) — v(E) || > Halvla, t1]) = L ().

Since £(a) = 0 and £(b) = Hp, we conclude that £ is a bijection. Hence, ¢, is an
injective parametrization of E. Notice also that ¢.(0) = ¢(\) where Hi(p([a, \]) = 0,
hence A = a and ¢.(0) = ¢(a) = z. Thus, @, has starting point z, and it is clear that it
is oriented in the same direction as .

It is easy to see that ¢, is an L-Lipschitz mapping with L < 1. Indeed, let ¢;,%5 €
[0, Hg] such that t; < t5, and take A\, Ay € [a, b] such that ¢.(t;) = ¢(N\;) for i = 1,2.

This means that H;(p|{,x]) = ti, therefore:

[« (t2) = @u(t)ll = lle(A2) — @A)l < Halp([Ar, A2]))

= Hi(w([a, A2]) — Halp([a, M]) = [t2 — ta],

where the inequality uses Lemma 1.3.10. Thus ¢, is an L-Lipschitz mapping with L < 1.
We are now left to show that L = 1.

Assume on the contrary that L < 1 and take 0 < ¢ < Hg(1l — L). From Proposi-
tion 1.3.12, we know that there exists a partition Q = {0 = to,...,t, = Hg} of [0, Hg]

and a polygonal curve g with vertices {¢.(#;) : 0 < i < n} such that:

length (.) < lengthy (1) + €.
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Hence, since ¢, is an injective parametrization of OF, we have:

H1(OF) = length(e,) <length(tg) + =3 [lou(t:) — ¢ulti-n)ll +¢

i=1

SLY |ti—tioa|+e=L(t, —to) +e=LHp+e¢
=1

This is a contradiction, therefore L = 1.
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CHAPTER 2
BOUNDS FOR THE RATIO OF CONSTANTS OF AN 71-FOLD
LIPSCHITZ QUOTIENT ON THE PLANE

In this chapter we will study in more depth the behaviour of Lipschitz quotients from the
plane to itself. As we have mentioned before, a remarkable property of Lipschitz quotient
mappings f: (X, |- 1) = (Y| |]2) with X =Y = R? is that the preimage of each point
is finite. Moreover, every such mapping can be written as a composition P o h, where
P is a complex polynomial and % is a homeomorphism [15]. In this chapter we will see
how the degree of P influences the ratio of the Lipschitz and co-Lipschitz constants of the
mapping f, with respect to the norms || - ||; and || - [|2.

It is proven in [19] that, for a Lipschitz quotient mapping from R? to itself with the
Euclidean norm, if the inverse image of every point consists of no more than n points,
then ¢/L < p, := 1/n, where ¢ and L are the co-Lipschitz and Lipschitz constants of
the mapping. Our aim is to generalise this result to any norm on the plane. Since every
norm on the plane is equivalent to the Euclidean norm, we may use the tools developed
in Section 1.3 and [19, Theorem 2| —which concerns the Euclidean case— to prove the
more general statement Theorem 2.7. A generalisation of [19, Theorem 2] is also stated
an proved in [20, Theorem 1].

First, we introduce some notation. In what follows, the ball of radius r under the
norm || - ||, centred at the point p € R? will be denoted by Bl'l(p), or simply by B, (p)
when it is clear with which norm we are working. The symbol |z| will mean the modulus

of z,if z € C, so || is the Euclidean norm when C = R. Finally, recall that given a point
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z of the plane, we use the symbol arg(z) to denote the argument of the complex number
z taking values in (—m, 7).

For each norm || - || on R? we will denote by £, the constant
Ly =H(0B1(0)). (2.1)

We introduce also the notion of an n-fold mapping:

Definition 2.1. We say that a mapping f : R? — R? is an n-fold mapping if

max #f ! (x) = n.

z€eR?2

Now that we have clarified the notation that we will be using, we can start the proof
of the main result of this chapter. In order to do this we state and prove the following

lemmas.

Lemma 2.2. Assume f : (R% || - |l1) — (R?| - ||2) is a c-co-Lipschitz mapping, and
#1710) is finite. Then there exists M > 0, defined by equation (2.2), such that

1f®)l2 = c(llplly — M) for all p € R

Consequently, for any ¢ € (0,1) there exists an R. > 0 such that for any p with

Iplly = Re we have || f(p)]l2 > ¢(1 = &)llpl-

Proof. For i = 1,2, denote by B'(x) the ball of radius r centred at z under the norm

| - ]]i- Let p € R? and set

M = max{|pl: : p € F7(0)}. (2.2)

By Lemma 1.2.2 we have B2, (f(p)) C f(ﬁillf(p)\b(p))’ so there must exist a point
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Do € ?;”Jc( (p) such that f(pg) = 0. Hence:

p)ll2
1F ()2 = ellp = polls = e(llplly = llpolly) = e(llplly — M).

The first inequality follows from [|p — polly < L[| f(p)]l-
To prove the second part of the statement, let € € (0,1) and R. > M/e. Consider a

point p € R? such that [|p||; > R.. Now, using the above inequality we have:

1F(P)l2 = ellpll = M) > e(llpll = ellpll) = (1 = )lpls- _

Lemma 2.3. Let f: (R ||-|[1) — (R?, || - ||2) be a Lipschitz quotient mapping. Then the
mapping f1 = [ — f(0) can be written as the composition Py ohy where Py is a polynomial
of one complex variable with the leading coefficient equal to one, hy is a homeomorphism
and f1(0) = P1(0) = hy1(0) = 0.

Moreover for any r > 0 there exists an r’" > r such that
|h1(p)|l1 > r whenever ||p|l; > 1" (2.3)

Proof. Let f; := f — f(0), it is clear that f; is a Lipschitz quotient mapping with the
same Lipschitz and co-Lipschitz constants as f and f;(0) = 0. By [15] we know that
there is a non-zero polynomial P(z) = a,2" + a,_12"" ' + ... + a1z + a¢ (with a, # 0)
of one complex variable and a homeomorphism A : R? — R2?, such that f; = Po h. Let
hi(2) := aX/™ (h(z) — h(0)) and Py(z) = P(a;*/"z + h(0)), then it is clear that h;(0) = 0,

the leading coefficient of P, equals 1, and we also have:

Py(hy(2)) = Pi (ay/™ (h(2) = h(0))) = P(a,"/" (ay/"(h(2) — h(0)) + h(0))

— P(h(2)) = fi(2).
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Hence P o hy = f;. Finally notice that,

£1(0) = P(h(0)) = f1(0) = 0

This finishes the first part of the statement, now we prove the second one. Take 8 > 0
and o > 1 such that

Blpll2 < |p| < allplli for all p € R?,

where |p| is the Euclidean norm of p.

Let us denote by by, k = 1,...,n, the coefficients of the polynomial P;, so that
Pi(z) = bp2" + by 12" ...+ byz, with b, = 1. Let r > 0, and M be as in Lemma 2.2
and pick any

r! >max{ @ Z]bk]r -|-]\/[} (2.4)
c

Assume ||p||y > 7/, then we must have [|hi(p)|1 > r. Indeed, if ||hi(p)]1 < r then

|h1(p)| < ar, hence:

Al = 17 ) < 3 el ) < 5 3 el 2
= 3 Il < 3 () < 5 3

The latter is impossible since, by Lemma 2.2, we have || fi(p)|l2 > ¢(||p|i — M). Thus,

|h1(p)||l1 > r whenever ||p|ly > r'. i

Actually, it will be convenient to revisit the local injectivity properties of Lipschitz
quotients already mentioned in Section 1.2. As we will show now, Lemma 2.3 can be used
to prove a somewhat stronger version of Proposition 1.2.9. As we will see in the next

proposition, we can show that there exists a fixed constant € > 0 such that f is injective
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in every neighbourhood of radius smaller than e centred far enough from the origin. We

prove this in the case of a 2-fold Lipschitz quotient mapping.

Proposition 2.4. Let f: (R?,]|-]|1) — (R?, ||+ |]2) be a 2-fold Lipschitz quotient mapping.
There exist N > 0 and € > 0 such that for every x € R? with ||z||; > N the mapping f is

injective on Bl (z).

Proof. We may work out the proof in the Euclidean case since any other norm on the
plane is equivalent to the Euclidean norm.

Let L and ¢ be the Lipschitz and co-Lipschitz constants of f with respect to the
Euclidean norm. Replacing f with

f(z) = f(0)

C

fi(z) =

we get that f1(0) = 0, the Lipschitz constant of f; is equal to L/c and the co-Lipschitz
constant is equal to 1. So assume that f(0) = 0 and that ¢ = 1.

As in Lemma 2.3, we may consider the homeomorphism A with h(0) = 0 and the
polynomial P(z) with no constant term and leading coefficient equal to 1, such that
f = Poh. Hence, from Remark 1.1.2, we see that in this case, since f is a 2-fold, we
must have P(z) = 2% + az; so that f(p) = (h(p))? + ah(p). We will be using Lemma 2.2,
so recall that the constant M was defined by (2.2) as M = max{|p| : p € f71(0)}, so in
this case M = |a|. Also, from Proposition 1.2.9 we can consider a constant M’ > 0 such
that f is locally injective at z for all z € R?\ Byy(0).

Take R > 0 such that

for all z € C with [z| > R we have |arg(z) — arg(z + a)| < 7. (2.5)
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From Lemma 2.3, we know that there is an R’ > R such that
|h(p)| > R whenever |p| > R'. (2.6)

Set the constants:

!

N
N = gw; e:=— and N> max{la|(2la] + 1) + N', R, M'}.

Assume that f(p;) = f(p2) for two different points p;, ps € R?\ By(0). We show that
|p1 — po| > €, so f is injective on B%(ac) for |z| > N + 5.

Let v be the curve describing the straight line joining p; and ps. Let us denote by .
the image of v under h, so that f(v) = P(v.). Notice that v C R?\ By(0), so that f is
locally injective at z, for all x € ~.

First assume that there exists wy € 7. such that |wy| < |a|. In this case the
curve f(y) = P(7.) contains the points P(wy) and f(p;). Recalling Lemma 2.2 and

Lemma 1.3.10, we have:

length(f(7)) = [f(p1)| — |P(wo)| = e(|p1| — lal) — [wg + aw|

> 1(|al(2la] + 1) + N' — |a]) — (2|a]*) = N

Here length(+y) refers to the Euclidean length of the curve ~.

We will show that length(f(y)) > N’ also in the case when there does not exist wy € .
such that |wg| < |al, i.e. when for all w € v, we have |w| > |a|. Indeed, let z; := h(p;) and
29 := h(ps). Since f(p1) = f(p2), 23 +az; = 25 +azy. Therefore, (21— 22)(21+ 22+ a) = 0.

Also, since p; # po, then z; = h(p1) # h(pa) = 22, so we must have zo = —z; — a.

95



Furthermore, by (2.6), since |p;| > N > R, i = 1,2, we have |z;| > R, so by (2.5):

|arg(z2) —arg(z1)| = |arg(—(z1 + a)) —arg(z1)| > 7 — 7. (2.7)

In order for a continuous curve 7, to join the points z; and z5 it must cover all the
angles between arg(z;) and arg(zs), or between arg(z;) and arg(z1). In any case, from (2.7)
we know that the argument range of +, between z; and z, is greater than 7/2 and all

points of 7, are contained outside the circle of radius |a|. Hence,
length(v.) > |al3. (2.8)

Now we will show that length(f(v)) > |a|length(v.). Since 0B),(0) is a compact set and
it does not intersect v, we can pick ¢ such that 0 < § < dist(7.,0Bjq(0)). Consider v,
as a parametrization say 7. : [0,1] — R% Choose N, € N such that |y.(t) — 7.(t)] < 9
whenever [t —t'| < 1/N,.

Now consider any ¢ > 0. From Proposition 1.3.12 we can take a partition of [a, b], say
Q ={a=+tp,...,t, = b}, such that the length of the polygonal curve 1g, whose vertices

are the points v.(t;) with 0 < ¢ < n, satisfies
length(v.) < length(vg) + % (2.9)

We may assume also that the partition @ satisfies |t; —t;_1| < 1/N, for all i € {1,...,n},
so that

Vs (t:) — Yu(tiz1)| < 0 forall i € {1,...n}. (2.10)

Now we show that |P(z) — P(w)| > |a||z — w| whenever z,w € 7, and 0 < |z —w]| < 4.

Let z,w € C such that |z — w| < ¢ and assume that z # w. Let £ be the middle point
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between z and w, i.e. £ = ”Tw Notice that

P (&)(z—w) = (2 +a)(z—w) = (z+w+a)(z—w) = 2* —az— (w* +az) = P(z) — P(w).

Therefore,

(2¢ +a)(z —w) = P(z) — P(w). (2.11)

We can see that |£] > |a|. Indeed, since ¢ is the middle point between z and w and
|z —w| < 9, we get |z — €| < /2 Hence, as |z| > |a| + §, we conclude that |£] > |a|. This,

together with (2.11), implies:
|P(2) = P(w)| = [2€ + al|z — w| > (2[¢] = [a])|z = w]| > [a]|z = w|
whenever |z — w| < §. Hence, in view of (2.10), we have:

|P(:(ti)) = P(va(tica))| > laf|7.(t:) — 7 (tiza)l,

for all i € {1,...,n}.

Therefore, using Lemma 1.3.10 and recalling the inequality in (2.9) we have:

length(f(7)) = z IPO(8)) = POt > 3 lal 7t = 7.(t)]

i=1

/

= |allength(yg) > |al (length(y*) — %') = |a| length(v.) — &'.
Since this is true for all & > 0, in view of (2.8), we gather that:
length(f (7)) > |a] length(:) = 7 af* = N

Thus, in both cases we have length(f(v)) > %|a|* = N'. By the Lipschitz property of
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f, following Remark 1.3.9, we conclude that:

= E&.

N/
[pr = po| = length() > 7 length(f (7)) = —

Thus |p; — p2| > €, which is what we wanted to show. ]

This new version of Proposition 1.2.9 leads to the following new version of Corol-
lary 1.2.12 that we will be using later on. Notice that the key difference between Propo-
sition 1.2.9 and Proposition 2.4, as well as the difference between Corollary 1.2.12 and

Corollary 2.5 is that in the second versions ¢ is independent of z.

Corollary 2.5. Let f : (R%| -|) = (R% || - ||) be a 2-fold Lipschitz quotient mapping.
There exist N > 0 and ¢ > 0 such that for every x € R* with ||z|| > N we have
O(f(By(x))) = f(OB,(x)) for allr < e.

Moreover, if ¢ denotes the co-Lipschitz constant of f, then

1 (1) = fla2)ll = eflzr — 2],

whenever ||z1]], ||x2|| > N and ||x; — 22| < €.

Proof. The proof can be worked out in the same way as in Corollary 1.2.12 but using

Proposition 2.4 instead of Proposition 1.2.9. O

In connection with Corollary 1.2.12 and Remark 1.2.13, we would like to point out that
Corollary 2.5 shows that there exist N > 0 and £ > 0 such that for all z € R? \ By(0)
the mapping f|p.(;) is bi-Lipschitz, considered as a map onto f(B.(x)). This sort of
bi-Lipschitz behaviour can also be found under other conditions different from the co-
Lipschitz condition. For instance in [11] it is proved that, in the Euclidean setting,
the so-called Lipschitz regular mappings can be “nicely” decomposed into bi-Lipschitz

mappings. Moreover, in [3] the same conclusion is obtained under weaker assumptions.
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A similar result for bounded length distortion mappings is proved in [24] and [25]. For
further reference in this topic see [8, Chapter 7).

After this interlude about injectivity, we go back to pave the way for the proof of The-
orem 2.7. The next theorem, Theorem 2.6, which generalises [20, Lemma 2], is probably
the theorem that we use the most for our geometric intuition in the rest of this work. This
theorem is somehow the geometric version of the statement “every Lipschitz quotient on
the plane can be written as a homeomorphism followed by a polynomial of one complex
variable”. Basically it states that far away from the origin, the behaviour of Lipschitz

quotients is close to that of a polynomial z".

Theorem 2.6. If f: (R? |||y — (R?,]|-||2) is an n-fold Lipschitz quotient mapping with

co-Lipschitz constant equal to c, then:

(1) There exist M > 0 and R' > 0 such that for all p > R we have:

Indg f(OBL0) = n and f(DBL(0)) € (R*\ BZ,_4)(0)).

(2) For any e € (0,1) there ezists an R. > 0 such that for all p > R. we have:

Indg f(@B;;(O)) =n and f(@B;(O)) C (R*\ B2.,(0)), where c. = c(1 —¢).

Here B}(x) denotes the ball centred at x of radius r under the norm || - ||;.

Proof. We may assume that f(0) = 0, this would change M by at most || f(0)||2 which is a
constant. From Lemma 2.3, we know that f = Poh where P(2) = 2"+a, 12" '+.. . +a;12

and h is a homeomorphism with h(0) = 0. Take R; > 0 such that

n—1

> lagl/r"F < 1 for all v > Ry. (2.12)
k=1
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As || - ||l1 is equivalent to |- |, there is a 3 > 0 such that B||p|; < |p| for all p € R?. Set
R := Ry/p, from Lemma 2.3 we know that there is an R’ > R, which may be calculated
using (2.4), such that ||h(p)||1 > R, whenever ||p[l, > R'.

For p > R consider the boundary of the ball B}(0) with respect to the norm ||-||1. Let v
denote the curve vy := h(9B}(0)). Then, for any w € v we have |w| > S|lw|, > SR = Ry,

hence:

n—1

N n k] S n
|[P(w) —w"| = | Y apw”| < |w] o < " Y = < glwl™.
k=1 i =1 1t
This implies that Indg P(y) = Indg{w™ : w € v} = n.

Thus for any p > R’ we have Indg f(0B}(0)) = n and, by Lemma 2.2, we know that
there exists M > 0 (given by (2.2)) such that ||f(p)|l2 > c(||pll — M) for all p € 9B,(0),
therefore f(0B)(0)) C (R*\ B, ,(0)).

Now the statement (2) of this Lemma follows easily. Let ¢ € (0, 1) and take the relevant
R. as in Lemma 2.2. If we take R and R’ as before and we define R. := max{R’, R.}

then from Lemma 2.2 we have:
f(0B}(0)) € (R*\ B2,,(0)) for all p> R..
Also, since R. > R/, from statement (1) we know that Indy f(9B}(0)) = n whenever

p> R.. o

Now the proof of the main result of this chapter follows easily from the above lemmas

and some results from Chapter 1.

Theorem 2.7. Let || - ||1,] - |l2 be two norms on R? and let £, and £y denote the length
of the boundary of the unit ball Bi(0), under the norm || - ||l;, i = 1,2, defined as in
Theorem 2.6.
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If f - (R% ]| - ||1) — (R%|| - ||2) is an L-Lipschitz and c-co-Lipschitz n-fold mapping

then,
& ‘%1
L~ n.fg
In particular, if || - [l = || - ||2, then ¢/L < 1/n.

Proof. First notice that if we multiply the function f by a constant number, the ratio ¢/L

stays, so we can assume that L = 1. Suppose now that, on the contrary, + = ¢ > %

and take £ > 0 such that ¢ < (1 — -£L-).

ncéo

From Theorem 2.6 we know that there is some positive number R, > 0 such that, for
all p > R we have: Ind f(0B}(0)) = n and f(9B}(0)) C (R?* \ B%1_2),(0)).

Recall further that from Proposition 1.2.9 we can consider a constant R; > 0 such
that f is locally injective at z for all z € R*\ Bp (0). Hence, the length of a curve f(7),
where 7 is contained outside B, (0), is defined. See also Remark 1.3.9.

Take p > {R., R}, from Lemma 1.3.3, we can consider an injective parametrization,
7 : [a,b] = dB}(0), of the boundary of B}(0). Since p > R., we know that Indg f(y) = n
and f(v) is contained outside the ball B2._.,(0). Therefore, from Corollary 1.3.16, we

gather that:

length,(fov) >n <1ength”,”2(8Bc26p(O))) =n(c.pLs) = nc(l —e)pLy

£
> ncnc;B2,0§£2 = p‘%l

On the other hand, since f is a Lipschitz mapping with Lipschitz constant equal to one,
then f cannot increase the length of v —see for instance (1.10) in Remark 1.3.9— so we
have length,,(f o v) < length)  (v) = p£;. This is a contradiction, thus we must have
c¢/L <% /n%s. O

Along the rest of this work we will use Theorem 2.7 only in the case when |- ||y = || - [|2.
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We would like to point out that this theorem might not give further information about
the ratio ¢/L for the case || - ||1 # || - ||2, namely when £, > n%,. However, we can find
norms || - [|1, ]| - |l on the plane such that || - ||y # || - [|2 and £, = £, so Theorem 2.7
does give an effective bound for the ratio of constants ¢/r in those cases. We include more
detailed comments in this regard in Chapter 6.

Sometimes it will be convenient to think about the result in Theorem 2.7, for the case

|- lli =l - |l2, in the following way.
Corollary 2.8. Let f be a Lipschitz quotient mapping from the plane to itself. If L and c

are the Lipschitz and co-Lipschitz constants of f under any given norm || - || on R?, then:

> n%rl implies #f (x) <n for all x € R?.

=lo

Proof. This is the contrapositive version of Theorem 2.7 for the case || - ||y = || - . O

Corollary 2.8 shows that the Euclidean scale p, = 1/(n+1) from [19, Theorem 2] is
in fact a universal scale, in the sense that it works for any Lipschitz quotient mapping
[ @®RE]-1) = (R%,]|-1]), where || - || is an arbitrary norm. Now we would like to know if
the scale p,, is sharp in all cases (recall that we already know that for the Euclidean case
this scale is sharp). The next chapter deals with this problem for the particular case of

the supremum norm.
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CHAPTER 3
LIPSCHITZ QUOTIENT MAPPINGS ON R? WITH THE
SUPREMUM NORM

In this section we will focus on the relation between the cardinality of the inverse image of
a point under a Lipschitz quotient and the ratio of Lipschitz and co-Lipschitz constants of
this mapping in the particular case when the Lipschitz quotient mapping is defined from
the plane endowed with the supremum norm to itself. As we shall see, these relations do
not work in the same way for the supremum norm as they do for the Euclidean norm.
The main result of this section, Theorem 3.2.5, shows that, unlike the Euclidean case,
there does not exist a two-fold Lipschitz quotient mapping f on R? endowed with the

supremum norm and ratio of constants equal to 1/2.

3.1 An example of a two-fold Lipschitz quotient mapping

In the Euclidean case we have examples of n-fold Lipschitz quotient mappings from the
plane to itself, such that the ratio between the co-Lipschitz and Lipschitz constants is equal
to 1/n; the standard examples are given by f,(re?) = re™?. In particular fo(re?) = re??
is a 2-fold Lipschitz quotient mapping with ratio of constants /2. However, if we define a
function on R? endowed with the supremum norm, that behaves in an “analogous” fashion
(i.e a map such that each curve describing the boundary of a ball centred at the origin is

mapped onto a curve that goes two times around the same ball) we get a different ratio

of constants. We shall see this in Example 3.1.1.
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Example 3.1.1. Define a Lipschitz quotient mapping f to fix any square centred at the
origin and to “double” the length of any piece of the curve 0B,.(0), r > 0, starting at the
bottom right corner of the square. Formally, the function is defined as follows: Divide

the plane into the eight regions R;, 1 = 1, ..., 8 given by:

Ry ={(x,y) eR?: x> lyl,y <0} U{(0,0)},
Ry = {(z,y) e R*: x> [y|,y > 0},
Ry ={(z,y) e R? : y > |z|,2 > 0},

Ry = {(z,y) e R? 1y > |2,z < 0},

and so on. See Figure 3.1 for an illustration. Then the function is defined as:

f(x,y) = (31>

We prove that at every point x # 0 the local Lipschitz and local co-Lipschitz constants

of this mapping are equal to 3 and 1, respectively. The following lemma is very useful.

Lemma 3.1.2. Let f: (R?,||“]|ec) = (R%, || ||lo) be defined by f(x1,x2) = (axy+bxo, cxi+
dxs), with a,b,c,d € R and assume that {(a,b), (a,c), (¢,d), (b,d)} N{(0,0)} =0 (so that

f is bijective). Then f is a Lipschitz quotient mapping under the supremum norm with
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J_e- (3‘-?; y)_ = (2$+ y, y}

Figure 3.1: Lipschitz quotient mapping which “fixes” the squares

Lipschitz constant equal to max{|a| + ||, |c| + |d|} and co-Lipschitz constant equal to

|bc—ad)| |bc—ad|}
lal+[el > |dl+[o]

min {
Proof. Let f be as in the hypothesis. First notice that since f is linear, for any r, L > 0

we have:

F(By(x)) € By, (f(x)) if and only if f(B1(0)) € By (0). (3.2)

For, assume that f(B;(0)) € Br(0) and take y € B,(x), then 1(y — z) € B;(0), and

r

so Hf(y) — f(x)) = f(%(y —x)) € Br(0). We conclude that f(y) € Br.(f(x)), so

r
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Let L denote the Lipschitz constant of f, from (3.2) it follows that

L=inf{L' >0: f(B,(z)) € Bp,(f(x))Vz € R* r > 0}
—inf{L' > 0: f(B(0)) C Bu(0)}

=inf{L' > 0: f(B1(0)) C L'B1(0)} = ||fops

where || - ||, denotes the operator norm on linear maps from (R? || - ||o) to itself.

Now, f is bijective and the inverse of f, being linear, is L,-Lipschitz for some L, > 0.
Therefore, from the argument above and Corollary 1.2.14 it follows that f is co-Lipschitz
and that the co-Lipschitz constant of f, ¢, is given by ¢ = 1/L, = 1/||f | op-

Finally notice that in this case the operator norm of f is the co-norm of the matrix

determined by f, hence ||f|l,, = max{|a|] + |b|,|c| + |d|}. Similarly, we can see that

-1 _ lal+lel ldl+[bl 1\ _ s [ lbe—ad] |d[+]b] SR
| f~op = max { be—adl” The—ad] | = M0\ TG 1dmm S Which is what we wanted to prove.

O

Proposition 3.1.3. The function [ : (R?,||-||oc) = (R%, ||||c) defined in Example 3.1.1 is
a Lipschitz quotient mapping with Lipschitz constant equal to 3 and co-Lipschitz constant

equal to 1.

Proof. Denote by L; the different rays that define the boundary of each region R; by
L;i=R;NR;y forie {1,---,7} and Ly = Rg N Ry (see Figure 3.1 for the picture of
R;). Let us agree that the function f is defined by f(z1,x2) = (a;z1 + biza, c;x1 + dixs)
if x = (z1,29) € Ry, s0 a;,b;,¢;, d; denote the relevant coefficients in (3.1) that define the
function f on the region R;.

Notice that from Lemma 3.1.2 it follows that f is locally Lipschitz and locally co-
Lipschitz at any point in the interior of the region R;, for any ¢ = 1,...,8. Furthermore,

for x € Int(R;) the local Lipschitz constant, L,, and the local co-Lipschitz constant, c,,
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at the point x, satisfy:

. |bi0i - aidi| |bici - aidi| }
¢; > min : =1 (3.4)
{ |as| + leil 7 [dil + b

We can easily see that inequality (3.3) remains true for all z € R?. Indeed, consider a
point = (x1,22) € L; and assume first that  # 0. From the definition of f and £;, we

can see that:

f(x) = (@ix1 + biwa, ¢y + dixa) = (@iy121 + bip12, i1 + dip122),

so that, if y € R? is such that ||y — 2|/ < 3[|#(|w, it does not matter if the point y belongs
to R; or to R;11, we will always have || f(2) — f(¥)|lco < 3|z — y||oo. We conclude that for
all z € R?\ {0} the local Lipschitz constant satisfies L, < 3. However, it is clear that for
x = 0 this inequality is satisfied as well; in fact since || f(y)]|eo = ||y]|oo for all y € R? we
see that the local Lipschitz constant of f at zero is equal to 1. Hence, from Lemma 3.1.2,
it follows that f is a Lipschitz mapping with Lipschitz constant less than or equal to 3.
We are now left to show that f is 1-co-Lipschitz at the points belonging to £, for
i€ {l,---,8}. For x = 0 this is clear since for all » > 0, f maps balls of radius r centred
at zero, to balls of radius r centred at zero. Therefore f is locally co-Lipschitz at x = 0
and the co-Lipschitz constant at zero is equal to 1. Now, to prove this for  # 0 we divide
the proof into eight cases depending on the ray £; which the point x belongs to. We will
only deal here with one case, i = 6, all other cases can be carried out in a similar fashion.
Case 1: © € Lg = {(t,t) : t < 0}. We need to show that there exists a constant
r, such that for all » < r, we have B,(x) C f(B,(x)). For this, divide the plane (the
co-domain of f) in 4 regions R; defined as R; := (Ryj_1 U Ry;) for j € {1,2,3,4}. Notice

that R? = U?zl‘ﬁj, so if we prove that there is a positive constant r, such that for all
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r < r; we have

B, (f(x))NR; C f(By(x)), forall je {1,234} (3.5)

then f is locally co-Lipschitz at x with co-Lipschitz constant less than or equal to 1. As
we will show now, this is true if we set r, := 1 ||2/c.
First we prove (3.5) for j = 2. Let r < 7, = §|z[|. Take w € B,(f(z)) N R; and

consider the point y = (y1,y2) defined by y; = —ws, yo = %(wl — wy). We will see that

w € f(B,(x)) by showing that ||y — || <7 and that w = f(y).

Since x = (x1,z2) € Lg, we have 1 = x5 and f(z) = (z1, —z1), so that:

ly — lloo = sup{|wy + 21, [5 (w1 — wy) — 21]},
and we have:

\we + 21| < sup{|wy — x|, |wa + 1|} = Jw — f(2)]|ec < 7.
|3(wi —ws) — 21| < G(Jwi — 21| + | — wy — 21])

<sup{lwy — 1], Jwe + [} = flw = f(@)[loo <7

Thus y € B,(z).
Now, to show that f(y) = w, notice that the hypothesis w € Ry leads to —ws < w; <
wy, hence:
Yo = 3(wy — wy) <0

—y1 = wy > |5 (w1 — wa)| = |ys]

Thus, y € Rg, therefore, recalling (3.1): f(y) = (—y1 + 2y, —y1) = (w1, ws). We conclude

that y € f~'(w) N B,.(x). Therefore (3.5) is true for j = 2.
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Now, for j = 3, take w € M3 = R5 U Rg and consider the point y = (y;,y2) given by

Yo = w1, Y1 = %(wl — wy). Then:

ly = #lloe = sup{|5 (w1 — ws) — x4, [wr — x1[[}.

Since f(x1,x9) = (z1, —x1) we have:

wi — 21| < sup{lwy — 2], Jwa + 1]} = [lw = f(2)]lo <7
|5(wi —wa) — 21| < G(lwi — 21| + Jwz + 1)

< sup{|wy — x1|, |[wy + 21|} = [Jw — f(2)||c < 7

Thus ||y — z||e < 7, i.e. y € B,(x).
To show that f(y) = w notice that the hypothesis w € R implies w; < wy < —wy,

then:

Yo — y1 = 3(w1 +w) < 0 and

y1 = 3(w1 — wy) and yo = wy < 0

Thus, y € Ry, therefore f(y) = (y2, —2y1 + y2) = (w1, ws), and so (3.5) is satisfied for
j=3.

Finally, for j € {1,4}, notice that since x € Lg, we have 21 = x5 = —||z|| and
f(x) = (z1,—z1). This, together with the fact that |w — f(2)]|e < 7 < 3||2|ls for any

w € B.(f(z)) leads to:

lwy — x1] < Jw = f(2)]|e< =321 = w1 < 321 < O0;

lwa + 1] < [Jw — f(2)]|e< =321 = Wy >—31271 > 0.
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On the other hand we have:

R =R URy; C {(21722) S R?: 21 > O},

R, =R, URg C {(21,2’2) € R?: 2o < O}

This means that, for r < R,, B.(f(z)) NR; =0, for j € {1,4}, therefore (3.5) is true for
j=14.

We conclude that for all 7 < 1||zs, B,(f(z)) NR; C f(B,(x)), for all j € {1,2,3,4};
thus f is locally co-Lipschitz at every point x € Lg and the co-Lipschitz constant, c,, at
the point x, satisfies ¢, > 1.

The proof of the remaining cases, x € R;, ¢ # 6 can be carried out in the same way.
So we conclude that f is locally co-Lipschitz at every point € R? and that the local
co-Lipschitz constant, c,, of f at x satisfies ¢, > 1.

Summing up, we have shown that the mapping f is a locally Lipschitz quotient map-
ping on the plane, and thus, by Propositions 1.2.6 and 1.2.7, a Lipschitz quotient mapping.
We have also shown that for every z in the plane the local Lipschitz and co-Lipschitz con-
stants at the point x satisfy L, < 3 and ¢, > 1, so, if L and ¢ denote the Lipschitz and
co-Lipschitz constants of the map f, we must have L < 3 and ¢ > 1.

Since f fixes the norm of each point on the plane, it is easy to see that the co-Lipschitz
constant of f is also less than or equal to 1. Indeed, since f(B,(0)) = B,(0) for all » > 0,
then f(B,(0)) does not contain any ball centred at f(0) = 0 with radius bigger that r.
Hence ¢ < 1 and we conclude that ¢ = 1.

On the other hand, it is also easy to see that L = 3, because for each x € R?\ {0} there

exists y € R? such that || f(z) — f(¥)]leo = 3||T — yl|oo; for example, in Ry if z = (21, x),
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y = (y1,y2), with z # y and we take 1 — y; = 23 — yo then:

1f(@) = fWlleo = o1 =y, 21 — 31 +2(22 — 12) ||
= sup{|z; — 1|, 3]z — w1}

= 3|z =yl

Thus f is a Lipschitz quotient mapping with ratio of constants equal to %

Notice that in each region R; there is always a direction (£1, +1) in which the Lipschitz
constant is equal to 3. More precisely, given z € R? \ {0} we can always find a direction
v € (£1,+1) such that for all y in the same region as x with y = (\vz) for some A\ € R,
we have || f(2) — f(¥)]loo = 3||Z — y||oo. Furthermore, in each region, one of the coordinate
functions that define f is given by (21, x2) — £a; with i € {1,2}, and it is clear that the
co-Lipschitz constant of f must be smaller than or equal to the co-Lipschitz constant of
each of its coordinate functions, thus ¢ = 1. So, indeed, we have shown that the local
Lipschitz and co-Lipschitz constants of f at any non-zero point € R? are equal to 3 and

1 respectively. O

3.2 Two-fold Lipschitz quotient mappings cannot have ratio of constants

equal to 1/2

In the second part of this chapter we will show that it is not possible for a Lipschitz
quotient mapping from the plane endowed with the supremum norm, to itself, to have
max # f ~1(p) = 2 and ratio of constants equal to 1/2.

First, we are going to prove that a Lipschitz quotient mapping satisfying these two
properties cannot send the corners of the squares centred at the origin far from the lines
y =x and y = —x. Later on, we will generalise this property for the case of norms whose

unit ball is a regular polygon consisting of 4m sides, and prove a similar statement in
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Proposition 4.2.9 for m > 1.
Throughout this section for any pair of subsets A, B C R? the notation dist(A, B) will

mean the distance between the sets A and B under the supremum norm, this is:

dist(A, B) = diste (A, B) = inf{|la — b||c : @ € A,b € B}.

Proposition 3.2.1. Let g : R? — R? be a 2-fold L-Lipschitz and c-co-Lipschitz mapping
with respect to the supremum norm || - ||o-
Ifc/L = % then there exist constants k and R' such that for all p > R' if p € D, then

dist(g(p), Dep) < k, where D, is defined as

D, ={(z,y) €R*: |z = [y| > p}. (3.6)

Proof. Assume first that g is a Lipschitz quotient mapping with Lipschitz constant L = 1
and co-Lipschitz constant ¢ = 1/2 that maps zero to zero.

Take M and R’ as in statement (1) of Theorem 2.6. Let py = (20, y0) € D,, where
p > R, weset 1= ||po]loc > p and a := diste(g(po), Dep); assume a > 0. Take the
points p; = (¢ — ay, Yo) and ps = (2o, yo — @), where |a,| = |a,| = @ and a,, a, have the
same sign as xg and 7, respectively. Notice that p;, py € 0B,(0), indeed, by the Lipschitz
property, we have ||g(po)|lec = |lg(P0) — 9(0)]|oc < ||Polloc = 7, thus the distance between
g(po) and some corner of the square 0B,..(0) is less than or equal to r — cr, therefore
a <r—cr=r/2. Consequently ||p1]loc = [|Polloc = [|P2]locc = 7

Consider the set Dy = {(z,y) € R? : |x| = |y| > 0} and let Ry, ..., R4 be the closure of
each of the connected components of R?\ (DyU{(0,0)}. Let us agree that R; is the region

that contains the point (0, 1) and that the remaining indices are placed counterclockwise.
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Note that:

l9(po) = 9(Pi)llec < llpo = Pilloo = a = dist(g(po), Dry2), for i€ {1,2},

so all the three points g(p;), ¢ € {0,1,2}, are in one of the four regions, say in Re. It
follows from Corollary 1.3.11 that H;(0B,.(0)) = 8r, so we can let v : [0,8r] — 0B,(0)
be the 1-Lipschitz parametrization of dB,.(0) given by Corollary 1.3.18, starting at p; so
that v(¢;) = p; where t; = 0, tg = a and t3 = 2a. Then, by Theorem 2.6, the curve g o~y
is a curve contained outside B.g_)(0) with Indggoy = 2.

Now, let ¢1 := g(v(t1)) = g(p1) and ¢z := g(y(t2)) = g(p2). From Lemma 1.3.14 we

infer that:

lgr = @2llo0 + lengthoo (g © Ve, 5n) > (2)(8)(3(r — M) = 8r — 8M.

In addition, since g is 1-Lipschitz we have:

g1 = galloe = lg(v(t1)) = g(v (L))o < [I7(E1) = V(E2)lloo = @

Hence, length_ (g 0 |j,,8r) > 8 —8M —a.
On the other hand, since g and v are 1-Lipschitz, the argument from Remark 1.3.9
leads to:

length (g 0 V|jt,8r) < 87 — 2a.

So we conclude that 8 — 2a > 8 — 8M — a, i.e. a < 8M.

Thus, the conclusion of the present lemma is satisfied if we set k > 8M.

Finally, consider any L-Lipschitz and c-co-Lipschitz mapping ¢ such that ¢/L = 1/2
and assume max #¢g ' (p) = 2. We know that for the mapping g, := (g9 — ¢(0)) there

are constants R and r; such that dist(gi(p), D(c/r)r) < k1, for all p € D, with r > R’

73



Then it is clear that the constants R’ := R} and k := Lkj + ||g(0)||s0, would work for the

mapping g. |

Now that we know that a 2-fold Lipschitz quotient f, with ratio of constants ¢/L = 1/2
must map corners of squares “close to corners”, we can actually say something more about
the behaviour of a function f satisfying the conditions of Proposition 3.2.1. As the next
corollary shows, such a mapping f should also map the corners of squares close to corners
of squares in a “certain order”. In this sense, the behaviour of such a function is very
similar to the one of the 2-fold mapping defined in Example 3.1.1. Before stating this

result, we introduce new notation.

Definition 3.2.2. For p > 0 and i € {0, 1,2,3}, we define the following sets.
We will denote by £f, the different components of the set D, defined by (3.6), in the

following way:

‘CS = {(Ilij) € R : Ty =—Ty > P} »le B {(1‘1,332) € R? : T, = X9 > p}

L5 ={(z1,20) ER?*: —; = 33 > p} L5 ={(z1,20) €ER*: —xy = —25 > p}.

We will also denote by Pf, the corners of the square of radius p centred at the origin (in
the supremum norm sense), starting with the bottom right corner and placing the indices
counterclockwise and starting with the bottom right corner.

Finally, for any given € > 0 we define the region R?(¢) C R? as:

Ri(e) = {x € R? : dist(x, L) <&}, i=0,1,2,3. (3.7)

The following statement, proved for the supremum norm, is later proved for the case

of polygonal n-norm with n = 4m, in Lemma 4.2.10.
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Lemma 3.2.3. Let f : R? — R? be a 2-fold L-Lipschitz and c-co-Lipschitz mapping with
respect to the supremum norm.
If ¢/L = %, then there ezist jo € {0,...,3} and constants  and R' such that for all

p = R we have that dist(f(F), L)) < k, where j(i) = (2i+jo) mod 4; in other words:
f(PF) € Ry (k) where j(i) = 2i+ jo mod 4.
Proof. Let k and R’ be as is Proposition 3.2.1, and set the constants:

e€(0,4) and R>max{R',R’ }

7 €7 ce

where R. is as in Theorem 2.6.
Let p > R, p' = (1 — ¢)p and consider the regions R;”(k) defined by (3.7). Notice
that, since p > R > k/ce, we have cp’ = ¢(1 —¢)p < cp — k, therefore, for all i, the region

R;*(k) is contained outside the square B, (0), see Figure 3.2. Hence:
distos (R (K), RS, (k) > disteg(R(K), L)) > distoo (L (), L2,1) = 2¢p/. (3.8

We have shown in Proposition 3.2.1 that for ¢ € {0,1,2,3} we have f(P/) € R} ()
for some j € {0,...,3}. Let jo, be the index of the region that contains f(FPy), i.e
f(PY) € R} (k). For simplicity of notation let us assume that j, = 0, we will show that
in this case we actually have f(Pf) € R moa 4(%) for all i € {0,1,2,3}. Assume on the
contrary that f(Pf) € RY’, for example.

From Corollary 1.3.18, we can consider the 1-Lipschitz parametrization of 0B,(0)
with starting point at P, say 7 : [0,8p] = 0B,(0), given by (1.16). It is easy to see that

v(2p) = P{, therefore f(v(2p)) = f(Pf) € RY’(k). We will consider the two pieces v
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R;h(h__) / ) b -R,I-p(h_)
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Ry (""'f_) Ry (k)
Figure 3.2

and v, of v given by

"= 7’[0,2@ and v = ’V|[2p,8p]-

From Theorem 2.6, we know that f(7) C R?\ B.y(0) and Indy~y = 2. Therefore either
1 or 72 has index at least 1 around the origin.

Assume first that the curve f o+ is oriented counterclockwise.

If 75 has index at least 1 around the origin, then since we are assuming that f(v(2p)) €
RY(k), and f(7(0)) € R (k), the curve f oy must go from R (k) to Ry (k) in the
counterclockwise direction outside the square 0B, (0), plus one complete turn around

0B,/(0) hence, recalling (3.8):

length . (f 0 v2) > distoo (R (), L) + disteo (L5, LF) + disteo (LY, RE (1))

+ length (0B, (0) > 6¢p’ + 8cp’ = 14cp'. (3.9)

On the other hand, since f is L-Lipschitz and v, is 1-Lipschitz, by Remark 1.3.9, we
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have:

length f o~y < L(8p —2p) = L6p. (3.10)
From (3.9) and (3.10) we have 14¢(1 — €)p < L6p, therefore:

L~ 14(1—¢) 141-13) 2

But we are assuming ¢/L = 1/2, thus in this case f(Pf) ¢ Ry’ (k).

Now, if 7; has index at least 1 around the origin, following the same idea we get:

length (f o v1) >length_ (0B, (0)) + disteo (Ry (k) R (k)

>8cp’ + 2¢p’ = 10¢p’. (3.11)
From the Lipschitz condition we have:
length foy < L(2p—0) = L2p. (3.12)
So now from equations (3.11) and (3.12) we get
1 1

S51-9 “51-1)

N | —

< <
L

This is again a contradiction, so we conclude that in any case f(P/) ¢ Ry".
Now, following similar ideas, we prove that f(P}) ¢ R;”(k), for i € {0,3}. Indeed,
notice that if f o, goes from f(71(0)) to f(71(2p)) in the counterclockwise direction

around 0B,y (0), then the same idea of the previous case would lead to:

6cp’ < length  (f o) <2Lp
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and we get again:

c< 2 - 1
L " 6(1—¢) 3(1—1)

<

b

DN | —

which is a contradiction. The other option is that f o7, goes from f(71(0)) to f(71(2p))
in the clockwise direction first and then —since we are assuming that f oy is oriented in
the counterclockwise direction— from £’ / complete two entire turns around 0B, (0). In

this case we would have:

16¢p" < length (f o 72) < L6p.

£< 6 < 3
L ~16(1—¢) 8(1-1)

<

DN | —

Since this is impossible we conclude that f(P/) € RS, whenever f o~ is oriented in the
counterclockwise direction. However, if f o~ is oriented clockwise, and we assume that
f(P) € Ri?(k) with i # 2 then we will get the same contradictory inequalities that we
found for the case f o~ oriented counterclockwise and f(P/) € Ry (k). Thus in any case
we have f(P}) € RS (k).

We can follow the same argument for ¢ = 2 and i = 3, to get f(PY) € Ry’ (k) and

f(PY) € RY (k). So we conclude that whenever j, = 0 we have:
f(Pzp) € ,R’?gz) mod 4(’%) for all i € {07 17 27 374}

Furthermore, by continuity, we can assure that this remains true for all p > R’. So this
finishes the proof for jo = 0.

It is clear that for jo > 0 we only need to perform a rotation of —jom/4 and then
back, so this last rotation will add jy to the index of the region R}’(x), therefore f(Pf) €

RiGiytjo moa 4(k) for all p> R, i

Proposition 3.2.4. Let g : R? — R? be a 2-fold L-Lipschitz and c-co-Lipschitz mapping
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with respect to the supremum norm. Assume further that for all € > 0 and for all M >0

there is a p > M such that:
i) larg(g(F))) +m/4] <&, i€{0,2}.
it) larg(g(Pf)) —3w/4] <e, i€ {l,3}.

Then ¢/L < 1/3. (Here, P’ is as in Definition 3.2.2.)

2

Proof. As before assume that L = 1 and ¢g(0) = 0. We must show that ¢ < 1/3. Let
e > 0 and take the relevant R. as in Theorem 2.6. By hypothesis we can pick some
p > R. which satisfies the conditions (i) and (i7) of the present proposition. Notice that
Theorem 2.6 implies that for ¢ € {0,1,2,3} we have ||g(P/)]|c > ¢(1 —€)p.

Let p' = (1 —¢)p and consider the square 0By, (0). By the co-Lipschitz property of g,
we know that g(Bay(0)) D Baey(0). Since p¥r ¢ Boey (0), there is a point zg € By (0)
such that g(zo) = P>*". Notice that, since z, € Bs,y(0) C By,(0), there is a corner Pf
of the square dB,(0) such that ||zo — P{||c < p, see Figure 3.3. Hence, by the Lipschitz

property, we have:
1P = g(P)lloe = ll9(0) = g(P)lloo < [0 = Pfllow < p. (3.13)

Let Qo and @; be the intersections between the square 0B, (0) and the rays y =
tan(—mn/4 4 €)z, ¥ = tan(37/4 — €)x with x > 0 (see the right hand side of Figure 3.3).
Since g(P!) satisfies either i) or i) of the hypothesis, we know that || P> — g(P")||e >

P2 — Qolloo = || P*”" — Q1. Then we have:

2cp’ 2cp’
1PF = g(PY)llo = [[PT = Qolls
> |PE?" = Ps” oo — |1 P5” = Qollo = 3cp’ — | " = Qolle

=3cp’ — cp(1 — tan(n/4 — €)) = ¢p'(2 + tan(n /4 — €)).

79



P o P I
: !'_” c g..|(Pl-_’f.‘,-} \\\ \\ P;’ ra
P.i‘ : : T \\_\: h = h]'lr-,r;
' o 2%
l o
i ,r ] T 2p / / . (‘;-;' ; 2;-;;’
: '//_, ‘\: \Q”
: ///P:?'r ‘Dl(? \.\\'\ P3r'h’
P | P AL
! P NN
| ; b 9(R0).9(Pf) — N>
2p ‘D“—f’ NP
Py *
Figure 3.3
Hence, from (3.13), and recalling that p' = (1 — ¢)p, we gather that:
p>c(l—e)p(2+tan(m/4 —¢))
Thus the co-Lipschitz constant of g satisfies:
1 1
c < X . 3.14
~1l—e¢ 2+tan(n/4—¢) (3:14)
Therefore, since this inequality holds for every ¢, and
lim(1 —¢)(2 + tan(n/4 — ¢)) = 3,
e—0
we conclude that ¢ < 1/3. o

We finish this chapter by proving that every 2-fold Lipschitz quotient mapping with
Lipschitz and co-Lipschitz constants equal to L and ¢ under the supremum norm, has

ratio of constants ¢/1 < 1/2 (strictly less than 1/2).
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This shows that, even when the bounds —from Corollary 2.8— for the ratio of con-
stants of an n-fold Lipschitz quotient work for any norm on the plane, there are norms

for which some of the bounds are not achieved by any n-fold Lipschitz quotient mapping.

Theorem 3.2.5. If g : (R?,||-|lc) = (R?, ||||c0), is a 2-fold L-Lipschitz and c-co-Lipschitz

mapping then ¢/L < 1/2.

Proof. Let g be a 2-fold Lipschitz quotient mapping under the supremum norm with
Lipschitz and co-Lipschitz constants equal to L and ¢, respectively. From Theorem 2.7,
we know that ¢/L < 1/2. Let us assume, for a contradiction, that ¢/L = 1/2. In this

case from Lemma 3.2.3 there exist R’ > 0, k > 0 and j, € {0, 1,2,3} such that
9(P!) € R, (k) whenever p > R/, and j(i) = 2i + jo mod 4. (3.15)

Recall that R?(k) is defined by (3.7). It is not hard to see that condition (3.15) implies
that g satisfies the conditions of Proposition 3.2.4. Indeed, given € € (0,7/2) and M > 0,

take

p > max{ R */?C“, M},

where § = tan(e). Let us assume for simplicity that jo = 0, so that g(P/) € R5(k).
Then, for ¢ € {0,2} we have g(P’) € R (k), so we know that there is a point p with

arg(p) = —n /4 such that g(P’) € B,(p), therefore:

tan (arg(g(P?) + %)| = [tan (arg(g(P?)) — arg(p) )| < ~2= < 4.

The same argument shows that for ¢ € {1,3} we have:

’tan (arg(g(Pip)) - %’r)‘ < 0.
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Thus, we conclude that for p > M we have:

larg(g(Pf)) +n/4] <e, i €{0,2} and |arg(g(P/)) — | <e, i € {1,3}.

By Proposition 3.2.4 this implies ¢/L < 1/3, which is impossible. ]

We have shown then, that for the supremum norm there is no 2-fold Lipschitz quotient
that achieves the bound 1/2 of Corollary 2.8. This fact opens new questions.

First, can we find a sharp value pi® such that for any L- Lipschitz and c-co-Lipschitz
mapping [ : (R% || [|oc) = (R% || - |lso), the assumption ¢/L > p$° implies # f~!(z) < 27

Another natural question is whether the Euclidean norm is the only norm on the plane
that achieves the bound of Corollary 2.8; or similarly, whether the supremum norm is the
only norm that does not always achieve the bounds.

Later on, in Chapter 5, we will work on the first question where we state and prove
some results that indicate that p3* should be equal to 1/3. But first, we devote the next

chapter to the research that we have done on the second question.
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CHAPTER 4
POLYGONAL NORMS

In the previous chapter, in Theorem 3.2.5, we proved that with respect to the supremum
norm || - [|o on the plane, unlike in the Euclidean case, every 2-fold Lipschitz quotient
mapping defined on the plane will have ratio of constants strictly less than 1/2. A natural
question is: Is the supremum norm the only norm on the plane with this property? Or, in
the opposite direction, is the Euclidean norm the only norm on the plane such that there
is a 2-fold Lipschitz quotient mapping with ratio of constants equal to 1/27 As we shall
prove in this chapter, the answer to both questions is negative. We will find examples of

such norms by considering “polygonal norms”, i.e. norms whose unit ball is a polygon.

Definition 4.1. For n € N, n even, let the n-norm, denoted by || - ||, be the norm in R?
whose unit ball centred at the origin, dB}(0), is the regular n-gon with a vertex at (0,1).
In this way the /1 norm —also known as the rectilinear norm, or the taxicab norm— will
be denoted by || - ||4, for example.

Given a curve 7 on R* we will use the notation length,,(v) instead of length () as

defined in Definition 1.3.7.

In a similar way as we did for the supremum norm in Example 3.1.1, we define, for
any even n € N, the doubling mapping for the n-norm, which is a two-fold mapping that
behaves in an analogous way to the exponential mapping f(re®) — re®??, but relative to

the n-norm. We define this mapping in the following way.
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Definition 4.2. Let £, := length, (0B} (0)), and for each constant r > 0 consider the

curve v, : [0,2r%,] — 0B}'(0) such that:
1. Ind~,(0) = 2;
2. 7, is a 1-Lipschitz mapping;

3. %(0) = v (ry,) = v (2rL,,) = (1,0).

Now consider the doubling mapping f, : (R?||-]|,) = (R?, |- ||») defined in the following
way: given z € R? with ||z||,, = r, take ¢, € [0,7%,,) such that ~,(¢,) = z. Notice that ¢,
is uniquely defined since v, is injective along [0,7%£,,) and +,.([0,r%£,,)) = 0B} (0). We set

fn(x) == 7-(2t,).

In what follows, when working under an n-norm and whenever we consider a polygon

0B(0) we will denote its vertices by

| /40 N VA (4.1)

starting with the vertex that lies on the positive side of the z-axis and going counterclock-
wise; sometimes, when the radius r is fixed we will simply denote them by Vj, Vi, ..., V,_1.
In the same way, when we consider polygons 0B]'(z) that are not centred at the origin we
will enumerate their vertices starting with the vertex that, when the centre of the polygon
is translated to the origin, lies in the positive side of the z-axis and placing the remaining
indices counterclockwise. Also, let us agree that whenever we are considering vertices of
balls under the n-norm the subindices are understood to be modulous n.

Sometimes we refer to B)'(z) and sometimes to 0BJ'(x) as polygons. When the norm
that we are working with is fixed we may write B,.(0) instead of B!(0) to simplify the
notation. Finally, before we start working with the polygonal norms, it will be useful to

recall some very basic properties of regular polygons:
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*x The Euclidean length of a side of a regular polygon with n sides and radius r is

given by 2rsin(mw/n).

x An apothem of a regular polygon is a segment joining the centre with the middle

point of a side and it has Euclidean length equal to r cos(7/n).

4.1 Polygonal norms with 4m + 2 sides

We will show now that there are non-Euclidean norms on the plane for which, as in
the Euclidean case, there exists a 2-fold Lipschitz quotient mapping f satisfying ¢/L =
1/2. Indeed, for all the n-norms with n = 4m + 2 the doubling mapping f,, defined by
Definition 4.2 satisfies ¢/L = 1/2. This section is devoted to the proof of this result. We

first prove a technical lemma.

Lemma 4.1.1. For any given x € R? and r > 0 let W be the vertices of the polygon

OB, (x) centred at x, placing the indices counterclockwise. If LT denotes the line through

the vertex W with slope —<T" (i e parallel to the side [WI,WT] of 0B,(x)). Then,

i sin(m/n)

forall k € {1,...,m — 1} the line Lj, is to the left of the line L}, .

Proof. For simplicity of notation we denote the coordinates of points relative to x as if
were the origin, so for k € {0,...m}, we have W] =r (cos(%”) sin (Qi”))
Notice that the intersections of the z-axis (relative to the point z) with the lines £,

and L7, say xj and zj11 respectively, are given by:

Tp =T (Cos(%”) + sin(Z7) tan(Z )) : (4.2)

Zhp1 = 21 (cos(2<k:1)ﬂ) + sin(@) tan(%)) ,

so we need to show that z < zpy1 = 2z44 for all k € {1,...,m — 1}. See Figure 4.1.
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Figure 4.1

For k = m — 1 we have:

T = Tyl =T (cos (2(4777;12)”) + sin (2(47?7;12)”) tan <4T§+2)> =r (sin(%”) + COS(?’%) tan(%))

Zpi1l = 2@y = 21 (cos (ﬁ:@) + sin <427:f2> tan (477f+2)> = 4rsin(7),

so in this case, the inequality zp < zp11 is equivalent to

sin(2%) + cos(2F) tan(Z) < 4sin(Z),

which is satisfied since sin(Z) > 0 and:
sin(2%) + cos(2F) tan(Z) = 3sin(Z) — 4sin’®(T) + (4 cos (%) — 3005(%)) tan(”)

= 4sin(7) (cos2(%) — sin2(%)) = 4sin(Z) cos(#) < 4sin(%).

2%kx 2(k+1)7r)
n n '

Now, to show that x; < zxi; for k € {1,...,m—2}, we show that cos(£Z) < 2 cos(
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Indeed, if k& < m — 2 then, using (m 2 — =t =i

S |on

2 005(@) — cos(%T) =2 (cos(%”) cos(2%) — sin(%1) sm(%’r)) — cos(2km)

n

= cos( %) (2 cos(3T) — 1) — 2sin(27) sin(2X)

N

> cos( 22Ty (2 cos(2) — 1) — 2sin(2=2) sin(2)

= sin(2") oy — 1) — 2 cos(2F) sin(2F)

(2¢0
> sin(4") (2 cos(2r) — 1) — 2 cos(4F) sin(2)

N

=2 (sin(%)(? cos*(Z) — cos(2X)) — cos*(2) sin(2X) + sin3(2“))

= 2sin(2) (0052(27") — cos(%) + SinZ(%”))

= 2sin(=") (1 - COS(%”))

> 0.

N

In the penultimate inequality we used that for n > 10 we have sin(>%) > sin(**) and
2cos(2) > 1. For n = 6, we used 2cos(*X) = 1.
Hence, cos(%%) < 2COS(W) and clearly sin(%%) < 231n(2(k+1 ) holds for all

ke {l,...,m—2}. Therefore, from (4.2), we see that z;, < z,41 forall k € {1,...,m—2}

and so the line £} is to the left of the line L7, . m]
Now we introduce some notation that we will be using in the proof of the next theorem.

Definition 4.1.2. For each k € {0,...,n — 1} and r > 0 let v}, (or simply v when the
radius r is fixed) denote the midpoint of the side [V, V/,,] of 0B,(0) and let T, denote
the line through the origin and the point v;. Finally denote by Dy be the ray through
the origin and the vertex Vj, of 0B,.(0).

We will also consider, for each k € {0,...,n — 1} the open region Ry, enclosed by the
lines Dy, and T and the open region R, region enclosed by the lines 7 and Dy.

See Figure 4.2 for an illustration of all this new notation.
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Figure 4.2

Now we can prove that for any n = 4m + 2 the doubling mapping f, under the n-
norm is a 2-Lipschitz and 1-co-Lipschitz mapping. The proof of this result is long because
we need to consider many cases. We divided the proof in two main parts, one for the
Lipschitz constant and the other for the co-Lipschitz constant. In each of these parts we
will deal with the corresponding local constants of the mapping f, at a point p. We will
divide each main part into cases depending on the region of the plane —in terms of the

regions described in Definition 4.1.2— the point p belongs to.

Theorem 4.1.3. For n = 4m + 2,m € N\ {0}, the Lipschitz constant of the doubling

mapping f, under the n-norm is equal to 2 and the co-Lipschitz constant is equal to 1.

Proof. Consider a point p € R? such that ||p||, = p > 0. Let Vg, ..., V,_1 be the vertices
of 0B,(0) numbered as usual and for k£ € {0,...n — 1}, let v; denote the midpoint of the
side [Vi, Viya].
I Lipschitz constant of f,.

We will show that the local Lipschitz constant of f,, at the point p is 2. We divide

the proof into the following cases: p € Ro,p € R{, p € To, p € Dy and finally p €
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(Dy,, URLU T, URy, ), for ke {1,...,n—1}.
Case 1.1. The local Lipschitz constant of f, at p is equal to 2 for p € R,.

In this case we have p € (Vp,v9). Let R, > 0 be such that for all 0 < r < R, the
polygon B, (p) is contained in the region Ry. Notice that, by choosing R, in this way, we
can assure that any ¢ € Bg,(p) belongs to the first half of the first side of the polygon
0Bjq),, (0)-

To prove that f,, is 2-Lipschitz at p, we show that for 0 < r < %Rp the image of B,.(p)
is a subset of By, (fn(p)). We will denote the vertices of the polygon 0B, (p) of radius r
centred at p by U/, ¢ = 0,...,n — 1 and the vertices of the polygon dB,(f,(p)) centred
at f,(p) by W', i=0,...,n—1. See Figure 4.3. Notice that the lines L] = (U], W) are
parallel to the first side [V{, V4] of 0B,(0), as [p, fo(p)] is a subset of [V;, V4].

As a first step, we show that the image of the polygon

P:p7U57U{7”'7UT7;L+1 (4?))

(shown in green in Figure 4.3), which is roughly the first quarter of 9B, (p), is a subset of

BZr(fn<p)>
Let ¢ € P and denote by L, the line parallel to [Vp, V4] —and so to all the lines £]—

that goes through ¢, and let ¢1, g2 be the intersection points between £, and 0Ba,(f,.(p)):

q1,q2 € L, N 0By (fn(p)) such that y(g1) > y(fn(p)) > y(ga).

We will also denote by M, A" and O the horizontal lines through p, f,(p) and the origin
respectively. See Figure 4.3. Finally, once r is fixed, for each line L], define the intersection

points:
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x,=LrNO aMi= LN M N =LrNN

i =LYN0O  M=rrnM N=LrnN

q:=L,NO @t =L,NM @ =L,NN

Hence, in ¢ this notation, we have

. M . N
Tm+1 = V0; Tor1 =D Thpy1 = fn(p)
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Since p € [Vh, vo] and r < R, we know that the point ¢ € B,(p) is on the first half of the
first side of the polygon 0Bjq,(0), see Figure 4.3 for an illustration. Therefore, f,(q) is
still on the first side of 9B, (0).

Notice that in order to prove that f,(q) € Ba,(f.(p)) it is enough to show that

o — ailln = llgo = Fa(Dln > 1190 — @2[ln- (4.5)

Recall that by definition of the doubling mapping f,, since r < R, the point f,(g) is on
the first side of 9B)4(0) on the line £, and satisfies ||go — fn(q)|ln = 2/lq0 — ¢l/n-

We now prove the first inequality of (4.5). Recall also that ¢ € P, where P is the
polygon defined in (4.3). Take k € {1,...,m} such that the line £, is between the lines
L., and Lj. Assume first that & € {1,...,m — 1}. In this case £, is to the left of the
line £} and we know by Lemma 4.1.1 that £} is to the left of £’ ;. So the points of
intersection of 0By, (f,(p)) with £,, which are the points ¢; and g¢o, are to the left of the
intersection between 9Bs,(f,(p)) and L3, which are the points W2, and Wir ., ,. We

can see that

6" = arlln = N850 = Wikalln, (4.6)

indeed, observe first that the y-coordinate of the points W7 increases for k € {0,...,m},
so that the y-coordinate of ¢ is greater than or equal to the y-coordinate of Wi, . Hence,
if we consider the intersection point, say @, between £7',, and the horizontal line through
¢1, we have W2, € [2{%;,Q]. On the other hand, by the translation invariance of the

norm, ||@ — q1lln = |28 — Q||n, s0 we gather that:
" = a1 = aalln = s = Wikl + IWEy = Qlln 2 1221 — Wikl

Therefore we have (4.6). Now, in the same way, we can see that ||z31; — Ul 4], >
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lgg" = ql|n, because Lj,, is to the left of £,. Hence,

qu)v — q1lln > ”Z/k\jrl - szjrlHn = 2”%&1 - WI:JrlHn

= 2llzts — Ukpalln > 2llgg" = alln-

Therefore,

lgo = @illn = llao — @ 1l + 1" — a1lln
=2/lgo — @Ml + %" — a1 ln
> 2/lg0 — @ ||n + 211" — 4l

=2[|q0 — qlln = llgo — fn(@)]]n-

We conclude that the first inequality in (4.5) is satisfied for all ¢ € P such that ¢ is in
between the lines £}, and £}, with & € {1,...,m — 1}. The remaining case, ¢ between

L, and L], ,, is easy. Simply notice that in this case, ¢ belongs to the parallelogram

p, M Ur Ur ; and that the intersection between L7, and 0B, (f(p)), 1, certainly occurs
on the side W2, W2, of By, (f.(p)). Therefore,

lao = @1lln = llao = @ ln + l@" — a1l
= 2[lgo = @l + I fu(p) = Wkislln
=2 ([|l#ms1 = plln + P = Uppsalln)
=2 (Izms1 = Upaln) = 2lla0 = alln

= llao = fu(@) -
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We are now left to show the second inequality in (4.5), this follows from:

lgo = fa(@)lln = 2llg0 — alln =2 (a0 — &l + 5" = alln)
> 2llgo — @3 ln = 2| Tms1 — Dlln

=[Vo = fu(@)lln > g0 — @2||n-

We conclude that for all ¢ € P (defined in (4.3)) both inequalities in (4.5) are satisfied,
thus £,(P) € Bay(fulp)).

Now, we are going to show that the image the fourth quarter of B,(p) is a subset of
Ba.(fn(p)). For this it will be convenient to denote the vertices of the polygons 0B, (p),
OB, (fn(p)) and 0By, (f,(p)) with negative indices, so that, for k € {0,...,2m + 1} the
vertices with index 4m + 2 — k will be denoted with the index —k. Let P’ C B,.(p) be the
polygon whose vertices are U5, U",...,U", ., p. We will show that for all ¢ € P’, we have
fn(q) € Ba(fn(p)). As before, let £, be the line parallel to the first side of the polygon
O0B,(p), and recall the notation in (4.4). Again, it is enough to show the inequalities
in (4.5). Take k € {0,...,m} such that £, is between the lines £}, and Lj,. Notice that
L}, goes through the vertex U], and also through the vertex U”, of 0B,(p) and the
same for the lines £3" and the vertices of Ba.(fn(p)). Now, since L, is to the left of L,

and the latter is to the left of £, we get:
g2 = @' I = W25, = 22kt [l

this is because the y-coordinate of the vertices W2 decreases for k € {0,...,m}. For the
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same reason ||U”, — xnt|ln > |lg — ¢"||n, so we gather:

laz = @'l > 1W25 = 21l = 20V — 2l [l

=2/|U7, — wifalln > 2llg — g5 ln.

So altogether, we have:

g0 — @2lln = llao — @ |In — llez — @ lln < llao — @ lln — 2lla — @ |1 (4.7)

=2 (llgo = il — llg = a"lla) = 2llg0 — alln = lao — fu(a)]l-

Hence, the second inequality in (4.5) is satisfied. To show the first inequality, notice that:

g0 — ful@)lln = 2ll50 — qlln < 2[l90 — @I (4.8)

= llgo = @ lln < llg0 — q1]ln-

Thus, for all ¢ € P’, we have ||go — q1lln > ||90 — fu(0)|| = |l90 — @2||n- We conclude that
fa(PUP') C Bo(fu(p))-

Finally, we are going to show that the local Lipschitz constant L, of f,, at p is equal
to 2. First we show that for all 0 < ro < 1R, we have f,,(B,,(p)) € Bay,(f(p))-

Fix ro < R, and pick ¢ € B,,(p). Notice that as B,,(¢) C Bg,(p), we certainly have
ro < Ry. If ||¢]ln > ||p|ln, then g belongs either to the fourth or to the first “quarter” of
the polygon B,,(p) (i-e. ¢ belongs to one of the polygons P or P’ that we have considered
before). Hence, as we have just shown, f,,(¢) € Bay,(fn(p)) and we are done.

On the other hand, if ||g|l, < ||plln, pick » € (|[p — ¢lln,70) and consider the ball
B,(q). Now p belongs to the fourth or to the first “quarter” of the polygon B,(q) and,

since r < 1y < %Rp, we have r < R,. Therefore, swapping the role of p and ¢, we get

fa(p) € Bar(fu(q)), so that || fu(p) — fu(g)lln < 27 < 29, hence f,.(q) € Bary(fu(p))-
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Hence, for all 7y < 1R, we have f,(q) € Bay,(fu(p)), whenever ¢ € B,y (p). Thus we
proved that f,,(B,,(p)) C Bay(fn(p)) for all 7o < $R,, and this shows that L, < 2. To
show that L, is in fact 2, notice that the vertex U,?,, of dB,,(p) is mapped to the point
(U 1) on Ly, 41 such that ||Vo — f,(Up2|ln = 2||Vo — Uyt ||n, hence:

Vo = Fu(Ui)lln = 2[Vo = Ui lln = 2 (IVo = plla +70) = Vo = fa(0)lln + 270

Therefore f,(Ur2,,) = W29, and we have:
1fn(P) = FuUis)lln = 2[lp = Ul lln- (4.9)

We conclude that L, = 2 for all p € Ry. This finishes the proof for this case.

Case 1.2. The local Lipschitz constant of f, at p is equal to 2 for p € Ry,.

For this we will consider the functions:

Sym, which will denote the symmetric reflection about the line 7 (4.10)

Rotg, which will denote the rotation by 2’“7” radians around the origin.

Notice that Roty and Sym are linear isometric isomorphisms, in particular for all z € R?
we have || Rotg(z)||, = ||z|l, = || Sym, ()], for all integer k, and for all line £ = T or
L = Dy.

Define the function:

fn(x) = Symy, (ROtl (fn (Sym%(x))» .

As we will see now,

for all p € Ry we have fi(p) = f.(p). (4.11)
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Recall that p = ||p||, and that for p € R}, the point f,(p) is the point on the side [V}, V53]
of 0B,(0) such that

Vo = Villa + IV = fu(D)lln = 2[[Vo — plln-
Notice that
Symy; (Rot: (f([Vo, o)) = Sym; (Roti ([Vo, Vi])) = Symy ([Vi, Va]) = [V1, Val.
Since Symy (p) € [Vo, vo, we gather that:
f2() = Symz, (Roty (fu (Symz; (p)))) € Vi, Val.
Also, since vy is the midpoint between V and Vi,
Vo = Villn + V2 = £2(0)lln = 2[Vo = wolln + IV = 2 (P)ln- (4.12)
It is clear that
£ (v) = Symy (Rota (£ (v0))) = Symy: (Roty (V1)) = Vi.

On the other hand,

Vo = fu(Symz, (9)lln = 2IIVo — Symz (9)]l (4.13)
=2 (Vo = volln = oo = Symz (p)l1n)

=216 = vollu = oo = ).
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Now, since Sym and Rot; are linear isometries, from (4.13), it follows that:

Vi = £ @)l = 11£5(vo) = fa(P)lln = [fn(Symeg; (vo)) — fn(Syme; (p)) [l
= [[fn(v0) = fu(Symp, (p))lln = [IV2 = fu(Symy, ()]
= [IVo = Villa = Vo = fu(Symg ()l (4.14)
= [IVo = Villa — 2 (Vo — volln — llvo — plln)

= 2[lvo = plin-

Substituting this in (4.12) we conclude that:

Vo = Villn + Vi = fa(@)lln = 2 (IVo = volln + llvo — plln)

=2[[Vo = plln.

Hence, for p € Rg, we have f7(p) € [V1, Vo] and [[Vo = Vi|ln + Vi = £ () [[n = 2[[Vo — plln-
Thus, f¥(p) = fu(p) for all p € Ry,

This implies that for all p € R{ the local Lipschitz constant of f,, at p is less than
or equal to 2. For, given p € Ry let R, > 0 be such that Bg (p) € R;. Then, if

P — qlln < 3Ry, we have:

17n(P) = (D ln = [112(p) = Fa (@)l (4.15)
= || Symy, (Roty (£ (Symr (p)))) — Symy; (Rot (£ (Symz(0)))) lln
= [ fu (Symz (9) = fo (Syma (@) [ln < 2[| Sym (p) — Sym (@)l

=2[lp — qlln,

the last inequality here uses that Symy. (p) € Ro, which follows from Case L.1.

Case 1.3. The local Lipschitz constant of f, at p is equal to 2 for p € T,.
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Now we deal with the points p on the line 7. Let R, > 0 be such that By, (p) C
(Ro URH U Tp), and consider ¢ € B,(p) with 0 < r < 1R,. Notice that the image under
fn of B.(p) NRy is a subset of Ry U R U Tp; in other words if ¢ € Ro, then f,,(q) belongs
to the first side of the polygon 0B, (0). Hence, to show that f,(q) € Bar(f(p)) it is
enough to show that (4.5) is satisfied —were qg, ¢; and ¢, are defined by (4.4). Therefore,
we can repeat the same geometric argument that we used in Case 1.1 to show the Lipschitz
condition for points p € P’, to conclude that || f,.(p) — fu(q)|ln < 2||p — ql|n. See (4.7) and
(4.8). Now for ¢ € R{, we again use the function f' to argue that ||f.(p) — fu(@)|ln <
2|lp — q||. Finally, if ¢ € Ty we simply observe that p and ¢ are collinear with the origin,
so that ||p — q|l» = |l|pll» — l|¢||»]- Also notice that, by definition of the mapping f,, we
know that fu(p), fu(g) € D 50 we also have [|fu(®) — ful@lln = @ — [ fa(a)ll-

Now, since the mapping f, fixes the norm of each point, we gather that:

1Fa (@) = Fa(@lln = |1 £a@)lln = [ £a(@)lln | =] Pl = llglla | = Ilp = gl < 7.

This shows that for all p € Ty, f(B,(p)) € Bar(f(p)), whenever r < R,

Case 1.4. The local Lipschitz constant of f, at p is equal to 2 for p € Dy = O.
Consider a point p € O = Dy, which is the positive side of the z-axis (so that, in
this case we have p = Vj = f,(p). Let R, > 0 be such that Bg,(p) C (R;,_, UO URy).
Take ¢ € B,.(p), with 0 < r < iRp. We first consider the points ¢ € B,(p) such that
lglln > |Iplln- If we assume further that ¢ € Ry then ¢ € Ry NP (were P is, as before,
defined by (4.3)). Hence we can repeat the whole argument used for the case p € Ry
and ¢ € P to show that || f.(p) — fu(@)|ln < 2|lp — q|ln. Now, if ¢ € R],_;, recall the

functions defined in(4.10) and observe that f,(q) = Syme(f.(Symy(q))), and clearly
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Symy(q) € Ry, therefore:

1fn(p) = Fa(@lln = [lp = Symo (fu(Symo(@)lln = [P = fu(Symo(@))ln

= 2[lp = Symo(g)lln = 2[lp = glln-

Finally, if ¢ € O, since the ray O is fixed under f,, we have ||f.(p) — fu(O)|ln = llp — ¢lln
for all ¢ € O. Therefore, we have f,,(q) € Ba-(fn(p)) for all ¢ € B,.(p), with ||q|l. > ||p||n,
(i.e. for all ¢ € P UP’, using previous notation).

It is clear that we can extend this to the points ¢ € B,.(p) with ||¢||, < |[p||», in the

same way as we did for the case p € Ry. This shows that the local Lipschitz constant of

fn at any point p € O is less than or equal to 2.

So far, we have shown that the local Lipschitz constant L, of f, at any point p €
(OURyUToUTRY) satisties L, < 2. As we will see, this is enough to cover all cases of
p € R2
Case 1.5. The local Lipschitz constant of f, at p is equal to 2 for p € (D U Ry U T U
Ry), ke{l,...,n—1}.

Let k € {1,...,n— 1} and consider the function

9n(p) = Rotar(fn(Rotx(p))),

where Rot_y, is defined by (4.10). It is not hard to see that for p € (Dy UR,UT, UR},) we
have ¢,,(p) = fu(p). Indeed, if p € Dy U Ry, then Rot_x(p) € [Vo, vo] € (Dy U Ry), hence
fn(Rot_x(p)) € [Vo, V1] and

gn(p) € Rotor([Vo, Vi]) = [Vak, Vors1].

Here all the indices are taken modulo n. It remains to show that the length of the curve
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that goes along 0B,(0) with starting point V; and end point g,(p) is equal to twice the

length of the curve along 0B,(0) with starting point V; and end point p; this is:

2k—1

k—1
S Vi = Viaa o+ Vot — g0}l = 2 (z Vi = Vel + Vi —pun) |
1=0 1=0

which follows from:

1Vak = g2 ()l = [[Vax = Rotax (fu(Rot_x(p)))lln = Vo = fa(Rot_«(p))lln

= 2[|Vo — Rot—x(p)ln = 2[|Vk — plln,

and the fact that

2%k—1 k—1
DoV = Viglln = 2KIVe = Villn = D~ [IVi = Vigalln- (4.16)
i=0 i=0
Similarly, if p € T, U R}, we get fn(Rot_x(p)) € fu([vo, V1]) C [V4, V2] so

gn(p) € Rotar([V1, Va]) = [Vakt1, Vartal,

and we also have

Vo = Villn + (V2 = fu(Rot 4 (p))[ln = 2[[Vo — Rot_x(p) |- (4.17)

Notice that in this case in order to prove that g,(p) = f.(p) we need to show that

2k k—1
S IVi = Vil + [ Vaest = ga(®)lln = 2 (Z Vi = Vil + Vi pnn) ,
1=0 1=0
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which follows now from (4.17), since:

Vaks1 = ga(®)lln = [[Vars1 — Rotay, (fu(Rot x(p)))lln = [[Vi = fu(Rot ()

=2|Vo = Rot—x(p)[ln — IVo = Villn
so we gather that

2k
> Vi = Visalln + [IVars1 = ga(0)llnl = 2k(Vo = Villn + 2[IVo — Rot—r(p)lln — Vo — Villn
=0
= (2k = D[IVo = Villn + 2[[Vo — Rot_(p)]|n
k—1
=2 (S IV~ Vil + Vi = ).
i=0
as we wanted.
Thus ¢,(p) = fu(p) for all p € (D URL U T UR).
Now take p € (D UR,UTyUR}) and R), > 0 such that Bg (p) C (DrUR,UTL,URY).

Let p, := Rot_x(p), hence p, € (O URyU Ty URY). From the previous cases it follows

that there exists R, € (0, It,) such that
fn(Br(ps)) € Bor(fn(ps)), whenever r < R,,. (4.18)
We now notice that

Rotar(fn(Br(px))) = Rotor(fu(Br(Rot—i(p)))) = Rotar(fn(Rot—(B:(p))))
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and that

Rotox (Bar (fu(p+))) = Rotok (Bar (fn(Rot—1(p)))) Bar (Rotak (fn(Rot «(p))))

= By, (9n(p)) = Bar(fn(p)).

From this two equations above and (4.18) we conclude that f,(B.(p) € B, (f.(p)) and

this finishes the proof for this case.

Finally, it is clear that the local Lipschitz constant of f, at the origin is equal to 1,
so it follows that for any p € R? the local Lipschitz constant of the mapping f, at p
satisfies L,, < 2. From Proposition 1.2.6 it follows that the global Lipschitz constant L of
fn satisfies the same inequality. Since we have shown in (4.9) that there are points such

that || f.(p) — fu(@)|ln = 2||p — ¢||» we conclude that L = 2.

I1. Co-Lipschitz constant of f,.
Now we show that for all p € R? the local co-Lipschitz constant, c,, of the mapping
fn at the point p satisfies ¢, > 1. This is obvious for p = 0, so we show it for p € R?\ {0}.

We consider the same 5 cases as we did for the Lipschitz constant.

Case II.1. The local co-Lipschitz constant of f, at p is less than or equal to 1 for all
p € Ry.

Let p € Ry and, as before, let 0 < R, be such that Bg (p) € Ro. We show that for
r < Ry, if ¢ € B.(f.(p)) then there exists a ¢ € B,(p) such that f,(¢) = ¢

Let s = ||¢||» and consider the polygon 0B;(0), whose vertices are go = Vi, ..., V> ;.
Denote by £, the line through the vertices Vi and V{® and recall the notation in (4.4)
and Figure 4.3. Of course we somewhat abuse the notation here but we are going to find
q € L, so this will justify our choice for naming this line. We also define the points ¢, ¢5

as the intersection points between £, and 0B, (p), where ¢; is above the line M and ¢;

below it. In the same way let g3, ¢; be the points that belong to £, N 9B, (f.(p)), where
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q; is above the line N and ¢ below it.
Take ¢ € L, such that ||go — g|l» = 3|/a0 — ¢'||». By definition of the doubling mapping

fn we know that f,(¢) = ¢’. We need to show that ¢ € B,(p); we do this by showing that

lgo — @illn < llgo — qlln < llgo — @3 |- (4.19)

Notice that from our choice of ¢, we have ||go — gl|» = 3[/g0 — ¢'||n, also by symmetry we

have || — ¢illn = ¢} — @||n, therefore:

lgo = dlln = 3llg0 = ¢'lln < 2 (llgo — @' lln + 80" — gill)

= llgo — @M ln + 21" = &l < llao — @M ln + | = @1l = ll20 — @]l

On the other hand, using now that ||} — ¢;|l. = |lg}* — ¢}|n, We get:

lao = alln = 3lla0 = ¢'lln = 3 (lao = @ lln — " — 311

= llao = a3 lln = 5lla0" = @illn = llgo = @™ lw = lag" = @i lln = llgo — & ln.

We conclude that (4.19) is satisfied, thus B,.(fn.(p)) C fu(B.(p)). This shows that for all

p € Ro, we have ¢, > 1.

Case 11.2. The local co-Lipschitz constant of f, at p is less than or equal to 1 for all
p € Ry.
Now for p € Ry, take R, > 0 such that Bg (p) C R{. Recall that for all p € Rf, we

have f,(p) = f(p) (see (4.11)), therefore, since Symy. (p) € Ry, we know:

B, (f2(Symyp(9))) € fu (B (Symy () .
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hence,

Symy; (Roty (B, (fa(Symy(p)))) € Symy; (Roty (£ (Br(Symy (p)))) -

It follows, using again the isometric properties, that

B, (SymT1 (Rot1 (fn(Sym% (p))))) C Sym, (ROtl (fn (Sym%(BT(p))))) ;

and we conclude that

B,(fu(p)) = B:(fa(p)) € fr(Br(p)) = fu(B(p))-

which is what we wanted. Hence, ¢, > 1 for all p € R,

Case I1.3. The local co-Lipschitz constant of f, at p is less than or equal to 1 for all
p € To.

This case can be worked out in a similar way as the case p € Ry. We now let
R, > 0 be such that Bg,(p) € RoU Ty U Ry and take 0 < r < iRp. We will show that
fn(Br(p)) 2 By(fu(p)). Take ¢ € B,(f.(p)) and notice that f,(p) = Vi, therefore the line
D, divides the ball B,(f,(p)) into two polygons, say P; and P, where P; is the half of
B, (fn(p)) below D; and P is the half above, so that B,(f.(p)) = P1UP,. We divide the
proof of this case into two subcases (see Figure 4.4 for an illustration of the second case):

If ¢’ belongs to Pi, we just define ¢ as we did in the case p € R and repeat the proof
to show (4.19), which implies ¢ € B,(p).

The case ¢’ € P, is somehow similar, but now we define ¢ to be the point in £, such

that:

lgo = alln = 3 [llgo = Vi*lln + 1Vi" = ¢/l -

We also keep the definition of the points g7, ¢; and g¢; exactly as before, but now we define
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the point gj as the intersection between 0B, (f,(p)) and the segment line [V}*, V], In this
way fn(q) = ¢/, and to show that ¢ € B,(p) we must show again that (4.19) is satisfied.
Indeed, notice that in this case, since the ball 9B, (f,(p)) is symmetric with respect to
D, and 0B, (p) is symmetric with respect to 7o. Also notice that dB,(p) = 0B, (vp) is a

translation of 0B, (f.(p)) = 0B,.(V1), so we have:

ey = dlln = %(Hqév—VanJr HVf—Q'Hn) (4.20)
= %(Hqév = Villn + VP = Q'lln) < %(HQQ/ = Villn + VP = QZHn)
= Ll = Vel + V2 = gl
=201 = Viillo + V5 = @1l + 12" — 31n)
=2||gg" = v§lln + 3@ — @l < 205" = vl + 1% — &lln
=" = villa) + (" = villn + llag" = ailln) = la0" = villn + ([lvg — gilln)

= llag" = v3lln + (lvg — g3ll)
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Therefore:

lao = alln = 3 (a0 = @ lln + 18" = Vi¥lln + V" — ¢'lln)

< llgo = " lln + llgo" = v3lln + (15 — g31l) = llao — a1l

On the other hand, it is clear that

lao = alln = 3 (o = @ lln + 6" = Vi*lla + IV2* = ¢'lln)

> [lgo — a5l + g6 = v5lln > llgo — w3l > llao — a1l

Therefore f,(B,(p)) 2 B, (f.(p)) for all p € Ty, as we wanted.

Case I1.4. The local co-Lipschitz constant of f, at p is less than or equal to 1 for all
p € Dy.

Let p € Dy = O; in this case we take R, > 0 such that Bg,(p) C (R;,_;UDyURy). Let
r < 3R, and g € B,(p). Now we have f,(p) = p, so we must show that B,(p) C f,.(B,(p)).
Take ¢’ € B,(p), since r < R, then ¢’ belongs to the first or to the last side of the polygon
0Bj¢|..(0). Define ¢ to be the point on the same side of the polygon 0B, (0) as ¢’ such
that

/ /
o = VPl = 314’ =

In this way it is clear that ¢ € B,.(p) and f,(q) = ¢, hence B,(p) C f.(B.(p))-
Case 11.5. The local co-Lipschitz constant of f,, at p is less than or equal to 1 for all
pE€(DrURLUTLURY), ke{l,....,n—1}.

Notice that in this case we can follow the same argument as in the case p € Ry, using

the function

fa(P) = gn(p) := Rotoy (fn (Rot_x(p))),
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which we have already shown satisfies f,, = g, for all p € (D, UR, U T UR}), k > 1.

This finishes the proof for all cases.

We conclude that the local co-Lipschitz constant ¢, of f,, at any point p € R? satisfies
¢, > 1. In particular, the local co-Lipschitz constant of f, at the origin is equal to 1,
so from Proposition 1.2.6, it follows that the global co-Lipschitz constant of the doubling

mapping f, is equal to 1, for all n = 4m + 2 with m € N\ {0}. i

4.2 Polygonal norms with 4m sides

We have shown that for any polygonal norm with 4m + 2 sides there exists a 2-fold
Lipschitz quotient mapping with ratio of constants equal to 1/2. Now, we are going to
show in Theorem 4.2.12, that for all remaining n-norms on the plane and, moreover, for
all regular polygonal norms in the plane with 4m sides (i.e. for all norms whose unit ball
is a regular n-gon with n divisible by 4) every two-fold Lipschitz quotient has ratio of
constants strictly less than /2. We first show in Theorem 4.2.11 that for n = 4m there
is no 2-fold Lipschitz quotient mapping, under the n-norm, that achieves the 1/2 ratio of
constants bound of Theorem 2.7.

It will be clear that in order to prove this result, we had in mind Theorem 3.2.5, and
moreover, the whole structure of the results in Chapter 3. However, since we do not derive
a formula for the 4m-norm of a given point in terms of its coordinates —unlike the case of
the supremum norm where such a formula is very easy to write down— we will calculate
only those distances under the 4m-norm which we will subsequently need in the proof of
statements leading to Theorem 4.2.11. In the first part of this section we will learn how

to measure some distances under a 4m-norm.

Lemma 4.2.1. Forn = 4m, m € N, consider the plane under the n-norm (R% || ||,.) and

forr >0 let B,(0) denote the ball of radius r > 0 under the n-norm. Denote the vertices
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of 0B.(0) by Vo,Vi...,Vu_q, asin (4.1).
Given a € (0, ||Vo—Vil|n), let Py and Py be the points on the sides [V,,_1, Vo] and [Vj, V1]
of 9B,(0), respectively, such that ||[Vo — P||, = a. Then |P1 — Psl|,, = 2a cos*(w/n).

Proof. Since the segment [Py, P, is parallel to the diameter D of the polygon 0B, (0)

formed by the vertices V}, 4, V3,4 we have:

1P = Pofln _ [P = Py
Dl Dl

where |-| denotes the Euclidean norm. Therefore, ||Py — By||, = |P1 — P2|, as || D||, = |D|.
On the other hand, since the segment [Vj, P is parallel to the apothem A of the
polygon 0B, (0) through the middle point of the side [V}, 4, V;,/441], we have:

Vo — Pofln _ Vo — P3|
Al Al

recalling that |A| = r cos(m/n), this is:

Vo — Psl|n] A

Al
= CL(TCOSTWR)) = acos(m/n). (4.22)

This also shows that |V — Pi| = acos(m/n).
Now let U be the intersection point between the z-axis and the perpendicular through
P,. Looking at the triangle P, U,V;, we see that |P, — U| = |Py — V0|sin(%) =

— 7). This, together with (4.21), gives
|Py —U| = |Py — Vg = [Vo — P2|cos(T) = acosz(w/n).

Since the triangles Py, U,V and Py, U, V, are congruent we gather that: [P, — B, =
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|Py — P| = 2a cos®(m/n). O

In the rest of this section we are going to use a similar notation to the one in Defini-

tion 4.1.2:

Definition 4.2.2. Fix n € N. For k € {0,...,n — 1} let Dy denote, as before, the line
through the origin that forms an angle of 2k7/n with the z-axis, i.e. Dy, is the ray through
the origin and the vertex V)" of the polygon dB(0). In the same way, denote by Ty the
ray through the origin and the middle point v}, of the k-th side of the polygon 0B (0).

For p > 0 we define the sets D} and D” as:

n—1
D) ={z € R*:z € Dy and ||z, > p}; D’ = |J DJ. (4.23)
k=0

Finally, for k£ € {0,...,n}, let Ry be the unbounded open region enclosed by the lines
Dy and Ti. Similarly, let R denote the unbounded open region enclosed by the lines 7y
and Dy (with D, := D). See Figure 4.2 for an illustration of this notation in the case
n =4m + 2.

Sometimes it will be convenient to extend all the previous notation to any index k € N
considering the & mod 4 indexed item, so for example, for all k¥ € N we define Dy, := D7,

where j € {0,...,n—1} and j =k mod n.

For the following lemma and the next proposition we will be using the following

construction.

Construction 4.2.3. Given r > 0 consider a regular n-gon centred at the origin with
radius 7 and a vertex in the z-axis. As usual, denote its vertices by V;, V|, ..., V.,
we shall also denote the midpoint of the side [V;", V] by v]. Using the notation in
Definition 4.2.2, consider the intersection point between the line 7, and the vertical line

through V. Since this intersection point belongs to 7y, it is the midpoint v of the first

side of a polygon 0B;(0) for some s > r. See Figure 4.5.
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Lemma 4.2.4. Given the notation in Construction 4.2.3, if n = 4m for some m € N

then s = r(1+tan2(x/n)), [Vif —villn = rtan(Z) and | Vg =Vl = r tan(Z)(2+tan?(%)).

Proof. Throughout the proof we will be working with the n-norm denoted by || - ||,,, and

with the Euclidean norm denoted by |- |, as usual. Given the Construction 4.2.3, since v

belongs to the vertical line through V{, it is easy to see that

VG = villn = V5" — 05| = rtan(m/n).
Now let d := ||V§ — V||, consider the polygon By(V{) and and denote by @ its j-th
vertex, see Figure 4.5. Let H be the intersection point between the horizontal line through

V;® and the vertical line through V. Finally, let VV* denote the intersection between the

x-axis and the vertical line through V}°.
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Figure 4.5

Now to find the value of s, consider the triangle whose vertices are V', v and V.

From the construction we have,

T S, 8 __ T . S T S __ T, r,.S s __ T
LVogVgug =5 — 55 LogVo Vo = 55 LVo gV = 7.
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Now looking at the triangle v{, V', v5, we see that we also have:
r,,S T __ T . r,,r,8 __ T. ry;r,Ss _ T
LugugVy = 5 — 3 LVo vty = 53 LugVovg = 7
Therefore, these triangles are similar, and we have:

|06 = Villvg — vol
Vo — Vo | = . 4.24

Since vf is the middle point of the side [V{, V]], we know that the Euclidean distance

|Vy — vp| is equal to rsin(7/n). Hence, looking at the triangle vf, V', v§ we gather that:

0 — of| = sin(m/n)(rsin(r/n)) _ rsin2(7r/n).
00 cos(m/n) cos(m/n)

Substituting these values in (4.24), we get:

rtan(w/n) <7r SmQ(”/"))

cos(m/n)

s—r=IW=Vil= rsin(m/n)

= rtan®(7/n).

Therefore s = r + |Vi — Vi| = r(1 + tan®(7/n)) = rsec?(7/n).
Finally, to find the n-distance between V[ and V}’, notice first that the triangles

VI, Ve, vg and H, VE, v are congruent, so |H — V| = s —r = rtan*(r/n). Now, looking

at the triangle H,V?, Q we get:

|H — Q| = (s —7) tan(n/n) = rtan®(7/n)
In the same way, from the triangle O, V*, V* we get

|V — V*| = ssin(27/n) = rsec?(n/n) sin(27/n) = 2r tan(w/n).
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So the n-distance between Vj and V;® is given by:

Ve = Vel =1Q = Villa=1Q - VJ| =1Q — H| + |H — V|
=1Q - H[+ |V} - V7|

=r (tan3(7r/n) + 2tan(7r/n)) = rtan(m/n)(2 + tan®*(7/n)).

This is what we wanted. O

Lemma 4.2.5. Let n = 4m for some m € N and u > 0. Define
wo = ucos(2r/n) and w; := usec(2w/n) (4.25)

and let w € [wo,wy|. If ¢ € Dy, then:

L VE =gl > [V = Vi||n, whenever ||q|, > w.
2. forp € Dy with ||p||, > u we have ||p—q||n > ||Vg"'—V{"||n, wheneverwy > ||q||, > w.

Proof. We denote the origin by the letter O. Again notice that we will be using both the
Euclidean norm |- | and the n-norm || - ||,, throughout the proof. Before starting the proof

it is worth making the following observation.

Remark 4.2.6. The constants wy,w; are defined by (4.25) in such a way
that if we consider the points V;°, Vi** on Dy, then the angle O, Vj*, Vi** is a

X

right angle and the angle Vi*°, V*, V** is equal to % radians, see Figure 4.6.
Therefore, whenever we consider a polygon centred at Vi, say B,(Vy") with
r > [|[Vgt — V", the intersection between the boundary of this polygon
and the line segment [V, V]!] (green segment in Figure 4.6), will occur

on the (§ -+ 1)-th side of the polygon B,(V*). This is because, if we define

d = ||V5* = Vi*°||n, then the polygon By(V4') has Vi as its (§ + 1)-th vertex.
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Lo

Figure 4.6

First we are going to show the first inequality of the statement, i.e. that for any point

q that belongs to D; such that ||¢||, > w we have:

A" = llg = V'lln = V5" = Vi¥lln =: d. (4.26)

We may suppose ||¢||, > w, otherwise ¢ = V] and we are done. See Figure 4.7.

E]

0 n : 'Vﬁ - )Cn

Figure 4.7

Consider the polygon 0B4(Vy'), denote its ()-th vertex by @ and let H denote the
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intersection point between the horizontal line through V| and the vertical line through
V. Also denote by M the line containing the segment [V}, Q).

Since V}¥ belongs to the line segment [V;“°, V'], by the observation made at the
beginning of this proof, we know that V}* belongs to the (% 4 1)-th side of the polygon

0B4(Vy"), therefore the angle ZHVYQ = 7 /n.

On the other hand, since ¢ € D; and ||¢||,, > w, we have

(HV"q = [V'Oq = 2 > .

Thus, ¢ ¢ Ba(Vj'), since ¢ belongs to the closed half plane above the line M, and the
polygon By(V") belongs to the half plane below M, which means that d* > d, as stated
in (4.26).

Our next step is to show that for any point p € Dy with ||p||, > u we have:

d' = [lp =Vl 2 [V = Vi°[ln =2 d. (4.27)

Let H and ) be as before and, in the same way, let H' denote the intersection point
between the horizontal line through V}* and the vertical line through p. See Figure 4.8(a).
Also denote by @' the n/4-th vertex of the polygon 0By (p) and finally, let p* be the
intersection point between the x-axis and the vertical line through V.

Notice that if 0 < 2Q'pV” < 27 /n, then V¥ belongs to the (G 4 1)-th side of the

polygon 0By (p). In this case we have (see Figure 4.8(a)):

pOVY =250 JVPQH = /VPQ'H' =T — T and (H'VPQ = tHV"Q =T (4.28)

s
2

It is also clear that if ZQ'pV"” > 27 /n, then V¥ is no longer on the (% 4 1)-th side, so
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q, -.5;.(; ._. 7 g

7% 721 G|~

L d dl |d

Figure 4.8
instead of the last two equations in (4.28), we have:
(H'VPQ > tHV'Q = I,

see Figure 4.8(b).

In both cases we have:
d=p=Vln=Ip-Q1 >V —Ql=d,

as p and V" belong to the z-axis and @' is higher than Q. Thus, (4.27) is satisfied in
any case.

Summarising, (4.26) proves the first statement of the present Lemma. To prove the
second statement, fix v > 0 and let w € [wg, w;] and ¢ € Dy be given and assume that

w < ||q|ln < wy. Now rewrite (4.27) replacing w by [|q||,:

lp = V|, > (g = vl

v

and notice that VlHq”" = ¢, so that we in fact have the following inequality: ||p — q||»

IVg" — ql|n, and by the first part of the present lemma we have ||p — ¢, > ||V5* — ¢l|» <

O

VG = Vil
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Before the next result it is worth recalling the notation given in Definition 4.2, where we
defined for each even n, the constant £,, so that length, 0B"(0) = r£,,. In Corollary 4.2.8
we will show that the shortest path joining the rays Dj and Dj_, is precisely the side of
the polygon 0B} (0). In other words, that the n-distance between the rays D}, and Dj_,
is equal to the n-length of a side of the polygon 0B(0). We first calculate, in the next

lemma, the n-length of a side of a polygon 0B (z).
Lemma 4.2.7. If n € N is divisible by 4, then for any r > 0, the n-length of a side of
the polygon OBJ*(0), is given by:

Lr%, = 2rtan(r/n). (4.29)

Proof. Let n = 4m for some m € N and let » > 0. Notice that in order to measure the
n-length of a side of the polygon 0B (0) under the n-norm, we can repeat the argument

used in Lemma 4.2.1. So, denoting the Euclidean norm by | - |, we have:

IV = Vil _ Vg — W]
1AL AT

where A, is an apothem of B,.(0) parallel to the side [V, V]] of 9B}*(0). Hence, || A,||, =r

and we have:

r|Ve = Vil _ r(2rsin(m/n))
| A, | rcos(m/n)

Ve =Wlln = = 2r tan(m/n). (4.30)

Thus, the n-length of a side of a regular n-gon is given by *r%, = 2r tan(m/n). m|

Corollary 4.2.8. Let n = 4m and let r > 0. If for some k, p € Dy and q € Dy,1, are
such that ||pll, > r and ||q||l, > 7, then ||p — q|ln > tr&, = 2rtan(w/n).

Hence,

dist, (D}, Dj) = 2rtan(Z) = 1r%,,.
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Proof. For n = 4, m = 1 we know that || - |4 is the {;-norm, so we can easily calculate

distances, indeed, for any k£ we have:

dist,, (D}, Djyq) = disty(Dg, DY) = inf{|xy — 31| + |22 — 92| 22 =0 =y1, 21,92 > 1}

= 2r = 2rtan(m/n).

Assume now that n > 4, m > 1 and let p € D, and ¢ € Dyyq. Take ' =
min{||q||», [|p||»}; we know that ' > r. Tt is clear that by symmetry we only need to
show the statement for £ = 0. We divide the proof into cases.

Case 1. 7" = ||p||n. In this case we can apply the first statement of Lemma 4.2.5

using u = w = 1’ so that p = VJ' = V', w > wy = ucos(%”), w < w; = and

COS(%)

lg|ln = 1" = w. We get:
lp = all = 1V5" = alla 2 IIV5" = Vi llo = 20" tan(m/n) > 2r tan(r/n),

where the second equality comes from (4.29).

+

™NW

Figure 4.9

Case 2. ' = ||q||n. Let d := ||V§ — V||, = 2rtan(m/n) (see (4.29)) and consider again

the notation as in the hypothesis of Lemma 4.2.5, but now set w = u = r. We know
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that [|pll, > r = wand ||qll, > r = w € [wy,w1] = [ucos(*X), usec(2)]. If in addition,

lg|ln < wy then ||q|, € [w,w;] = [r,rsec(2m/n)], and we can apply the second statement

in Lemma 4.2.5 to get:

2 = alln = V5" = Vi'lln = 2r tan(x/n).

Finally, assume that ||g|, > w;. See Figure 4.9 for an illustration of this situation.
Recall that according to Lemma 4.2.5, V{* is, in this case, the intersection between the
perpendicular line through V| and the ray D;, which exists since we are assuming n > 4
(and hence 27/n < 7/2). See Figure 4.9. Hence, if ||g||, > w; then the y-coordinate of g,

y(q), is greater than the y-coordinate of Vi**, y(V{**), in fact:

y(q) > y(*') = rtan(3) =

The last inequality holds since we are assuming that n > 4, therefore tan(?) € (0,1).
Hence, ¢ ¢ Bgy(p), since the highest point of a polygon dBy(p) will have y-coordinate
equal to d. Therefore, ||p — ¢, > d = 2rtan(7/n).

Thus, in any case we have [|p — qll, > (Vi — V||, = 2rtan(). Since V] € Dy,

i € {1,2} we conclude that dist,,(Dj, D}) = 2r tan(Z) and this finishes the proof. i

"
After this brief survey about how to measure distances with respect to 4m-norms we
can finally go back to the study of the constants of Lipschitz quotient mappings under

4m-norms. The next proposition is an analogous version of Proposition 3.2.1 for general

4m-norms instead of the supremum norm.

Proposition 4.2.9. Let n = 4m for some m € N and let g : R? — R? be an L-Lipschitz
and c-co-Lipschitz two-fold mapping with respect to the norm ||« ||,. If ¢/L = % then there

exist positive constants k (defined by (4.32)) and R’ such that for all p > R' if p € D? we
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have:

dist(g(p), ") < &,
where p' = c(p — M) and M = max{||p||. : g(p) = ¢(0)}.

Proof. First assume that g is a Lipschitz quotient mapping with Lipschitz constant L = 1,
co-Lipschitz constant ¢ = 1/2 and ¢(0) = 0.

Recall that the constant M given by Theorem 2.6 is given by M = max{||p||. : g(p) =
g(0)}. Hence, we can assume that M and R’ are as in the conclusion (1) of Theorem 2.6.

Let p > R’ and take a point p € D, therefore p is a vertex of 0B,.(0) for some r > p.
Since we may perform a rotation of any integer multiple of 27 /n radians without affecting
the Lipschitz and co-Lipschitz constants of g, we may assume without loss of generality
that p is the vertex V{ of 0B,(0).

Set a := dist, (g(V{),D?), where p = c¢(p — M). If a = 0, there is nothing to prove.
Assume a > 0. We will define  in (4.31), but first we show that a < ||V] — V|-

By Lemma 4.2.7 we know that ||V — V]|, = 2rtan(m/n). On the other hand, since
g(V) is not in D, then g(V{') lies between two of the lines Dy, say g(V{) lies in the region
enclosed by Dy and Dyyq (where k and k + 1 are taken modulo n). Let ' := |g(Vy)||n
and consider the polygon 0B,/(0), whose vertices are V;’“', 1 =0,...,n— 1. Notice that,
from Theorem 2.6, we know that ' > ¢(r — M) = p/, therefore both vertices of 0B,.(0),

V7' and Vkﬁlrl, belong to the set D, hence:
0<a<lg(Vg) = Vi lln < Vs = Vi lln = 2" tan(x/n).
Since ¢ is a 1-Lipschitz mapping, we have " = ||g(V{)|l. < ||Vi ||l = r, therefore:

a < 2r'tan(m/n) < 2rtan(m/n) = ||Vy — V||
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Thus a is strictly less than the length of a side of the polygon 0B,(0) under the n-norm.
Once this has been proven, we can take the points P, and P, (as in Lemma 4.2.1) on the
sides [V,7_,, Vy] and [V, V]'] of 0B,(0), respectively, such that || P, — Vi, = a.

Let v : [0, p£,] = 0B,(0) be the 1-Lipschitz parametrization of the boundary of the
polygon B,(0) with starting point at P, given by Corollary 1.3.18 so that v(0) = P,
v(a) = V§ and «y(2a) = P;. Then, by Theorem 2.6, the curve g oy is contained outside of
B, (0) with Indgg oy = 2.

Now, let 1 := g(7(0)) = g(F1) and gz := g(7(2a)) = g(F%), hence |[q1]|n, lg2[ln > ¢
Denote by U the closure of the unbounded region enclosed between the rays Dy, Dyiq
and the side [V}, Vkpil] of the polygon 0B,(0). We know that g(Vj) € U. Since g is
1-Lipschitz, for i = 1,2 we have

g = (V) I < 1P = Vg lln = a = dista (9(Vy), D)

so we conclude that ¢;,q2 € U. Even more, since the region U is convex we know that
[q1,q2] € U. This means that both g oy and the segment [q;, ¢2] are contained outside
B,(0). Hence if we replace the part of the curve g o y(¢) that is the image of the points
t € [0, 2a] with the line segment [qq, ¢2] we get a curve of index 2 around the origin which

is contained outside B,/(0), so from Lemma 1.3.14 we infer that:

HQ1 - QZHn + lengthn(g © 7|[2a’p§£n]) 2 2(p/£n)

Using Lemma 4.2.1 and the Lipschitz condition we have:

lgr = a2lln = llg(P1) = g(P)lln < | Py = Pafln = 2a cos™(x/n).
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Hence,

length, (g o ’7|[2a7§£np]) >2%,.(c(p—M)) —2a COSQ(T['/’I”L).

Also notice that, since g and « are 1-Lipschitz, we have:
length,, (g 0 ¥|j2a,p2.]) < p£Lyn — 2a.
So we conclude that
pLn —2a > 2%, (c(p — M)) — 2a cos*(w/n).

Since we are assuming that ¢ = 1/2, the last inequality can be written as: a < 5 ( "%"2]\(4#

1—cos

/m)’
Thus, for the mapping g the conclusion of the present lemma is satisfied if we take

k1 € (0, 3%, M (sin(r/n))~2). Notice that from (4.29) we know that £, = 2ntan(w/n),

therefore in case g(0) =0 and L = 1:

2nM
R1 =

= sin(n/n) cos(x /n)’ (4:31)

Now, consider any L-Lipschitz and c-co-Lipschitz two-fold mapping ¢ such that ¢/L =
1/2. Define the Lipschitz quotient mapping ¢; := %(g — ¢(0)), which is a 1-Lipschitz,
1/2-co-Lipschitz mapping that maps zero to zero. We have shown that for this mapping,
if M = max{||p||» : g1(p) = 0} then there exist constants R’ > 0 and x; > 0 such that

1
dist(gy (p), D2"M)) < gy, for all p € D? with p > R'. Now define the constant
2nM

A Lsin(w/n) cos(m/n) + lg(0)ll- (4.32)

and take p € D? with p > R'. As we have just shown for the mapping ¢;, we can find

1
p € D2 guch that ||gi(p) — p|ln < k1. Now Lp/ € DS, where S = Li(p— M). Since
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we assume ¢/L = 1/2, we have Li(p — M) = c(p — M), so Lp' € D*" and

lg(p) = L' lln = 1 Lg1(p) + 9(0) — L' |ln < Lllg1(p) = P'lln + 19(0)lln < Ltia + [lg(0) [ = &.

Hence dist(g(p), D) < k. i

As we mentioned before, the previous proposition is an analogous version of Proposi-
tion 3.2.1 for 4m-norms and, as in Chapter 3, this will allow us to prove now an analogous
result to Lemma 3.2.3 for 4m-norms. Notice that in Lemma 3.2.3, unlike in Lemma 4.2.10,
we have only one possibility for the location of the point f(V;”) because in the case n = 4

we have that 4 — 2¢ is congruent to 2¢ mod 4.

Lemma 4.2.10. Let n = 4m for some m € N\ {1}, let f: (R || - ||, = (R% || - ||l.) be a
2-Lipschitz and 1-co-Lipschitz two-fold mapping with f(0) = 0 and let M = max{||p||, :
f(p) = 0}. There exist positive constants Ry, k and ko such that for all p > Ry, if

dist,, (f(V¥), D5™)) < &k, then one of the following is satisfied:

1. dist, (f(VF), D5 ™)) <k and dist,(f(vf), Dlyyy) < k2 Vi €N

2. dist, (f(V¥),D2°5)) < k and dist,(f(v?),D’~M ) < ky Vi e N.

n—2i n—(2i+1)

Here V! and vf are the i-th vertex and middle point of the i-th side of the polygon

]

0B,(0), respectively.

Proof. Take k and R’ from Proposition 4.2.9 and let

8 2
Ry > max{R’,lOM,é}:,QMn—i- ;:}

Pick p > Ry and consider the vertex Vi of 9B,(0). Assume, as in the hypothesis of the
present Lemma, that dist, (f(V{), D5™)) < k. We first show that either for all i € N,

we have dist,, (f(V?), D5 ™)) < &, or that for all i € N we have dist, (f(V/), D’"5)) < k.

n—2i
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We will prove that this is true for ¢ = 1 and, as we shall see, this will be enough since we
will be able to repeat the argument inductively “in one direction”.

From Proposition 4.2.9 we know that dist, (f(V{),D*~M)) < k. As DM is the union
of the rays D" we know that there exists i € N such that dist,(f(V{), D’ ™)) < k.
Hence, we need to show that ¢ € {2,n — 2}.

Let v : [0, p%£,] — 0B,(0) be a 1-Lipschitz curve that goes once around 0B,(0), with
starting point v(0) = V', hence y(p£,/n) = V. Let us define the curves v1 = v 5, /n]
and Y2 = V|, /n,ptn)-

From Theorem 2.6 we know that f o~ is a closed curve contained outside B,_(0)

with Indy f oy = 2. Notice that p > Ry > Z‘—:, hence by Corollary 4.2.8, we get:

K< L2l = %distn(Dﬁ,Dﬁﬂ); k=0,1,...,n—1. (4.33)

2n

Now, the curve f o~ has index 2 around the origin and the points f(v(0)) = f(V{)
and f(v(p%Ln/n)) = f(VF) are at most « far from the rays D§ " and D?™" | respectively.
Therefore —depending on the direction the curve fo~ is oriented in— the curve fo~; must
intersect either all the rays D" with 0 < k < 4, or all the rays Dy with n > k > i.

Assume first that f o 7y intersects all the rays D,’C’*M with 0 < k£ < 7. Using again

Corollary 4.2.8 and assuming ¢ # 0, we gather that:

i—1
length, (f o) > > dist,,(Dy ™, Dy ) — 2k (4.34)
k=0

= e=MEn 9y,

On the other hand, since f is 2-Lipschitz and 7, is 1-Lipschitz, we have:

length, (f o) < 2length,,(71) < 2p$". (4.35)
n
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From (4.34) and (4.35) we infer that:

2> In Ty - = 4.36
pEe p pEe (4.36)
) 2K
i1 - )~ s = i1 = ) - § (137
Ln’ n

Hence 7 < 12:1/% = 2+ 3. Therefore, in this case, i € {0,1,2}.

Now the curve f o5 is a curve with starting point f(V7”), and this point is at most
k-far from Df. Also, the end point of f o~ is f(V{), which is at most s-far from Dj.
Since we are assuming that f o~ is oriented counterclockwise, the curve vy goes from
somewhere close to DY, intersects all the rays Dy with i < k < n, then pass again through
D{ and complete another turn around B, ,/(0). In this case, using the same argument

as before, we get:

2n—1
length, (f oy2) > Y dist,(Dy ™, DY) — 2k (4.38)
k=i

= (2n — )= 9y

On the other hand, using the Lipschitz condition we get

(n'_]Jﬁien'

length,,(f o v2) < 2length,,(72) < 2
n

(4.39)

So now, if we assume that ¢ # 2, we find from the above equations, (4.38) and (4.39),
that:
2(n — 1)pZ2 > (2n —i)(p — M) %2 — 2k.

n

And this, since we are assuming i € {0, 1}, implies:

%+M(2n—i)2p(2n—i—2(n—1)):,0(2_i)2/)'
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2KN
Thus p < %,

. This is a contradiction since we chose p > Ry, hence in this
case 1 = 2.
Assume now that the curve f o+ is oriented in the opposite direction. Notice that if

we let j :=n — i, following the same idea, we see that (4.34) becomes:

length,,(f o) Z dist, (D2-), D2 ) — 25 (4.40)
— j(P_]Z)-%n _ 2’1.

In the same way (4.38) becomes:

2n—1
length, (f 0 72) > Z dist, (D22, DP~V ) — 2k (4.41)
= (2n — j)MDEn 9y,

Since the inequalities (4.35) and (4.39) stay unchanged, from the above argument we
know that 7 = 2, hence : = n — 2.

We conclude that f(V/) is either s-close to the ray D5 or k-close to the ray D’}
depending on the orientation of f o~ (which is fixed). Hence, we can follow inductively
this argument to show that either for all i € N we have dist,,(f(V}"), D{y; My < k or for all
i € N we have dist, (f(v°), D23 < k.

Now, using what we have just proved, we will show that the middle point v/ of each
side of the polygon 0B,(0) satisfies the conclusion of the present lemma. Actually we will
show that, setting ko according to (4.42), we will have that if f(V;”) is s-close to the ray
Do M then the point f(vf) is ky-close to DS;LAI/[ for all 7 € N, and by symmetry it will

be clear that in the other case, when f(V/”) is k-close to the ray D! _5;, we have f(vf),

n— 227

Kko-close to the ray D?~ (21+1)
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Define the constant
Ko =M% 4k +1=2Mtan(T) + x + 1. (4.42)

Again, it will be enough to show that f(v?) is ka-close to Déf;fw ) for i = 0 only.

Assume for a contradiction that for some p > Ry we have
dist,, (f(v8), DY) > k. (4.43)

From Theorem 2.6, we know that f([V{, V{’]) is contained outside B,_p(0) and from the
first part of the present lemma, we know that the points f(V{) and f(V{) are at most
k-far from the rays D5 and D5 respectively.

Let Wy and W5 be the points on the rays Dy and D,, respectively, such that
IWo = f(VE)ln < 3 W2 = f(VI)|ln < % and Wil > p— M, for i =0,2. (4.44)

Recall that we chose p > Ry so that the points f(V{) and f(V}") are on different sides of
Dy (see (4.33)). Hence the curve f([V{, V{]) must intersect the ray Dy ™ so there must
be a point v* € [V, V] such that f(v*) € Dy M.

Assume first that v* belongs to the first half of the segment [V{,V/]. Note that
If () ||, [Wolln > p— M and that, by (4.43), we have || f(v§) — f(v*)|ln > k2. Using now

Lemma 1.3.10 and Corollary 4.2.8, and (4.43) we get:

length,, (f([V", vg])) = length, (f ([V{’, v"])) + length, (f([v", v5]))
> [[Wo = f(0")lln = Wo = fF(VO)ln + [1f(06) — f(0")|n

>(p—M)Er — k4 k> (p— M)En 4 MEn = pZn,

=n
n
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Therefore,

length,, (f (VY. vf]) > p%= = 1V = VW lla = 2|V = vf ]l

This is not possible, since f is a 2-Lipschitz mapping. It is clear that if we now assume that
v* belongs to the second half of the segment [V{, V] we can follow the same argument,
considering the point W5 instead of Wy, to reach a contradiction. Thus f(vf) is x close

to Dy~ Thus, if for all i € N f(V?) is k-close to the ray D5, ™ then
disty (f (vf), D5y ) < Ko,

for all p > Ry and 7 € N.

p—M
n—2i

This finishes the proof because if we now assume that dist,,(f(V/”), D _5;) < k, i.e. if

f o~y is oriented in the opposite direction, then the same argument follows for V,,_; and

p

vP_ instead of V{ and vfj, so we get:

distn (f(0f), Do (3i41)) < k2, forall p> Ry and i € N,

With the last two results in hand we are now able to show that the ratio of constants of
any Lipschitz quotient mapping under a 4m-norm is strictly less than 1/2. For the proof of
this result we will use a construction that is valid only for 4m-norms with m > 1. However,
we can use Proposition 1.2.4 to derive the same result for the 4-norm (or ¢;-norm) from

Theorem 3.2.5. See, further, Theorem 4.2.12.

Theorem 4.2.11. Let n = 4m for some m € N\ {1}, and let || - ||, denote the n-norm
on R2.
If f: (R% ] - |ln) = (R%|| - ||n) is an L-Lipschitz and c-co-Lipschitz 2-fold mapping

then ¢/L < 1/2.

Proof. By Theorem 2.7 we know that ¢/L < 1/2. Assume on the contrary that ¢/L = 1/2.
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Without loss of generality we can assume further that f(0) =0, c=1and L = 2.

From Theorem 2.6, we know that there exists R > 0 such that f(9B,(0)) C R?\
By_um(0) for all A > R, with M := max{||p||, : p € f*(0)}.

By Proposition 4.2.9 we know that there exists R > 0 and a constant x such that
for some k € {0,...,n — 1} we have dist,(f(Vy}), Dp~™) < k. Since we may perform a
rotation of % radians without changing the Lipschitz and co-Lipschitz constants of f,
we can assume without loss of generality that & = 0, so that dist, (f(Vy)), Dy™™) < &.

Now, from Lemma 4.2.10, there exists Ry > R’ such that for A > Ry and k € N we have
dist,, (f(Vi)), D ™) < K and dist, (f(v7), Do) < ko, or dist, (f(VR), DA — My _o) < &
and dist,, (f(v}), Df{:f‘gkﬂ)) < Kg; for the definition of these constants see (4.31) and (4.42).

Now we set the new constants

!/

K ’
= K = ;0= ——0n—+ M+ 1; 4.45
i cos(m/n)’ w = max{s, K, Ko} tan(m/n) ML (4.49)
* L 48 M+46 cos(27/n) M
R = max {5’ tan3(w/n)? 1—cos(2w/n) 7 tan2(27w/n) }

Of course, k1 > k and 10 ;> 0 for n > 4 but we add these constants in the definitions

tan®(r/n)
of k" and R* respectively, in order to simplify the proofs of subsequent inequalities.

Pick » > max{R, Ry, R*} and consider the polygon 0B,.(0). Since r > R’ we know
that either I or 2 of the statement of Lemma 4.2.10 is satisfied for all the vertices V",
vl of 0B,(0). For simplicity, we will work out this proof under the assumption that 1
is satisfied but it will be clear that by symmetry the same proof will work under the

assumption 2 of Lemma 4.2.10. So assume I of Lemma 4.2.10, hence, in particular, the

first vertex V; and the middle point v of the first side of the polygon 0B, (0) satisfy:

dist,(f(Vy), D} ™) <k and  dist,(f(v]), D] ™) < ky. (4.46)
See Figure 4.10 for an illustration.
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Now, as we shall see, it is not possible that both points, f(V) and f(vg), are outside
B,.5(0). For, if f(VI), f(uv;) € R?\ B,.5(0), then, let Wy € D~ be as in (4.44)), so that
|[Wo — f(Vi)|ln < &, similarly let Wi be the point on D" such that || f(v) — Wi|l. < k2.
Then using the second part of the statement of Lemma 4.2.5 foru =w =7r+9, p =W,

and ¢ = Wy, we get:

1F(V5) = F@)lln > 1Wo = Willa = (5 + k) = Vg™ = Vi * |l — 24"

) tan(Z) — 2+’

!/

_ T 9k > z
2(r +0) tan(%) — 2k" > 2rtan(7) + 2 <tan(2)

> 2rtan(T) = 2[|Vy — vglln.

This is impossible since f is a 2-Lipschitz mapping. Therefore f(VJ) € B,4s(0) or

f(v5) € Byss(0).

™~

o

Figure 4.10

Case 1. Assume that f(V]) € B,.5(0).
In this case f(V{) is at most s-far from the ray D5 and we also have r — M <
1F V)l < 7+ 6, therefore [|[f(Vo)lln — [VEllal = HF(Vo)lln —r < max{é, M}. This

implies that the point f(1;) lays in a region which is a subset of B,(Vy ™) U &, where
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£ is the rectangle determined by the horizontal lines that are at distance k from the

z-axis and the vertical line through Vg™ and Vg . It is easy to see that in both cases,

fOVo) € Eor f(Vp) € B.(Vy™™), we have:

Nlf(Vy) = Vylln <max{M + k, 0+ K} = +k (4.47)

Now (going back to the domain of f), let v§ be the intersection point between 7o and
the vertical line through Vy. By Lemma 4.2.4, we know that s = (1 + tan?®(7/n)), and
Vg —v§lln = rtan(m/n). On the other hand, from Lemma 4.2.10 we also know that f(v§)
is at most ko-far from the ray D; ™ and that this point, f(v3), belongs to the complement
of Bs_p(0), by Theorem 2.6. Hence, by (4.46) there exists ' > 0 such that the vertex
V' satisfies:

1F(08) = Vi lln < w2 and ||Vl = 8" > s — M. (4.48)

From (4.48) and (4.47) we have:

IFOVE) = F@lln = 1FOVE) = Vil = I (0) = Vil = LF(VE) = Vil — K2 (4.49)
> VG = VNl = IF (V) = Vi |l — 52

> IVE = Vil — (8 + k) — ko,

Now we will use the first statement of Lemma 4.2.5 with u =7, ¢ = V;* and w = s — M.

In order to use this Lemma, we first need to check that the inequalities

s'>s—M and cos(%) <1+ tan*(Z) — M/r < sec(%) (4.50)

are satisfied. The first of these follows from (4.48). To prove the remaining inequalities,

130



the notice that, since we chose

M + §cos(2m/n) M

R* >
el =T cos(27/n) . cos(2m/n)’

we have & < 1 — cos(2m/n), hence cos(2r/n) < 1 — 2 < 1+ tan*(Z) — M/r. The
last inequality in (4.50) follows from the fact that cos(27/n) = cos?(7/n) — sin?(7/n) <
cos?(m/n). Therefore,

1 1
cos(2m/n) — cos*(m/n)

sec(2m/n) = = sec?(7/n) = 1 + tan®(7/n).

which proves the second inequality. This allows us to use Lemma 4.2.5 to conclude that

Ve = V&l > IVe — Vi ||,.. This last inequality together with (4.49), gives us:

IFOVE) = F@)ln = IV = Vi Nln = (6 + K) — ki > [V = VM|, = (0 + &) — Ky
2 H‘/OT - ‘/18Hn - H‘/ls - %S—M"n - (5 + K+ lig)

= VG = Vlln = M = (5 + K + ra).

Now, recalling the definition of the constants in (4.45) we can see that k, ke < k' < ¢ and
M < §. Also, from Lemma 4.2.4 we know that |V — V||, = rtan(m/n)(2 + tan?(7/n)).
Finally, since we chose r > R*, we have, rtan®(m/n) > 46. From these observations,

following the last inequality, we get:

1FVE) = F@)lln 2 IV = Vi'lln — 46 = rtan(m/n)(2 + tan®(7/n)) — 40

= 2rtan(r/n) + rtan®(7/n) — 46 > 2rtan(w/n).

Again from Lemma 4.2.4, we know that ||V] — v/, = rtan(w/n), hence, from the last

inequality we conclude that || f(Vy) — f(v)|ln > 2||Vy — v§l|», which is not possible since
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we are assuming that f is a 2-Lipschitz mapping.
Case 2. Assume that f(V]) ¢ B,.s(0) and, therefore, f(vj) € B,.5(0).

First we are going to show that

VI = Vo™l > IVE = Vg Il + 2. (4.51)

As we did in Lemma 4.2.5, let d = ||V~ — V{°||,, and consider the polygon 9By(Vy ™).
Consider the vertical line through Vg and let @ denote the vertex of 9Bq(Vy ™) that

belongs to this vertical line (see Figure 4.11).

D,
d

N, =T : TE sr—M r E rr+0
O ‘-,I n |1’ .I'[l 1‘[; |L[| D“

Figure 4.11

Now, consider the horizontal line through V; ™ and let H be the intersection between

this line and the segment [V, Q]. Finally let V* be the intersection between the 2-axis

and the vertical line through V.

M+0 cos(2m/n

Recall that we chose r > R*, so that r > T—cos(2n /) ), therefore:

(r+46)cos(2r/n) <r—M <r < (r+9)sec(2m/n). (4.52)
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If we let w =r+ 6 and w = r — M, these last inequalities would mean, using the notation
of Lemma 4.2.5, that w € [wg, w;]. Therefore, following Remark 4.2.6 we conclude that
the point V7" is on the (2 + 1)-th side of the polygon By(Vy~°)

Notice that given this construction, we have:

WMo =T T gy = T yroys = 2T oMy 2 T 2T
2 n n n 2 n
Therefore:
1Q — Hll,, = |Q — H| = [Vg ™ — V*| tan(m/n) (4.53)
|H — VO”‘;Hn =|V*— Vf"*M| = (r — M)sin(27/n). (4.54)

Now, to find the value of [V* — V7|, we look at the triangle V*, O, V™ and we find
out that |[V* — O| = (r — M) cos(%). Therefore,

2
VI — Vi =r+6—(r— M) cos(%).

Substituting this value in (4.53), we get:

Q — H| = {r (1 — COS(%”)) + M cos(38) + (5} tan(Z)

= [ (2si0()) + M (cos®(3) = sin(3)) + 0] tan(?).
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Hence, using this last equality and (4.54):

d= Vi = Vi¥ll, =1Q — H| + [H — Vg™’
= [r (2 sinz(%)) + M (COS (%) — sinz(ﬁ)) + 6} tan(Z) + ( — M)2sin(Z) cos(Z)
{sin?’(Z) + sin(X) cos2(g)] B M{COS 2(Z)sin(Z) + sin®(Z)

=2 cos(T) cos(T)

+ 8 tan(T)

= (2r — M +0) tan(%).

Recalling the definition of § and that the n-length of a side of a polygon of radius r is

equal to 2rtan(m/n), we gather that:

Vr= = Vel = VY = Vg lln = (6 — M) tan(r/n)

> [(tan(ﬂ/n + M) M} tan(r/n) = 2.

This gives (4.51), as we wanted.

Now, from Proposition 4.2.9, we know that f(V{') is at most s-far from the ray Dy
and, in this case, we have || f(V{)|l. > r + 0, so that we can find a point Vj € Dy,
with ||Vo|ln > 7+ d such that [|f(V]) — Volln < k. In the same way, given that in this
case f(v)) € B,4s(0), we can find a point Vi € Dy such that ||f(v) — Villn < k2 and
r—M < |Vi|]ln < 7+ 6. Recall that in (4.52) we already checked the conditions to use
Lemma 4.2.5 for u = r 4+ 6 and w = r — M, and we can take p = Vj and ¢ = V4. This
gives:

Vo = Villa > V5™ = V7=,
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Combining this inequality with (4.51) we obtain:

1FVS) = flwp)lln = Vo = Villn = (5 + m2) > V5 = V7™Ml — (5 + i2)

> V§ = Villn + 26" = (5 + 62) 2 [IV5 = W lln = 21IV5" = w5 ln-

This is not possible since f is a 2-Lipschitz mapping.

In any case we arrive at a contradiction, so we conclude that ¢/L < 1/2. O

We can easily derive now the more general result.

Theorem 4.2.12. Let n = 4m for some m € N and let || - || be a norm on R? whose unit
ball is a (possibly rotated) reqular polygon with n sides. Every 2-fold Lipschitz quotient
mapping f: (R% || -|) = (R%,]| - ||) has ratio of constants strictly less than 1/2.

In particular, this includes the cases of the {1 and l,, norms.

Proof. This follows from Theorem 3.2.5, Theorem 4.2.11 and Proposition 1.2.4. O

We have shown then that for every norm whose unit ball is a regular polygon with 4m
sides, every Lipschitz quotient mapping with max,cgz #¢~ ' (z) = 2 will satisfy ¢/L < 1/2.
In the previous chapter we were able to calculate the exact value of the Lipschitz and co-
Lipschitz constants of the doubling mapping for the supremum norm, gettingc =1, L = 3,
see Proposition 3.1.3. In the next proposition we find sharper bounds for the constants

of the doubling mapping f,, under the n-norm, for any n = 4m.

Proposition 4.2.13. If n = 4m for some m € N, then the Lipschitz and co-Lipschitz
constants, L, and c,, of the doubling mapping f, satisfy L, > 2 + tanQ(%) and ¢, < 1.
Hence,
Cn, 1

<

L, = 2+ tan’(%)’
Proof. First notice that the inequality ¢, < 1 is obvious since for all r > 0, f,,(9B,(0)) =

0B,(0), so B.-(0) is not contained in f,,(B,(0)) for any ¢ > 1.
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To prove that L, > 2+ tan?(Z), take a point py = (p,0) = V{ with p > 0. By the
definition of the doubling mapping we know that f,(py) = po. Recall the notation given
in Definition 4.2.2 and let R > 0 be sufficiently small so that Br(py) does not intersect
the rays Ty and 7,_;. Take r < R and consider the polygon 0B, (py). Let us denote the
vertices of the polygon 0B, (py) by Uy, ..., U,_1 placing the indices as usual. Since r < R
we know that, if p denotes the vertex U, 4 of 0B, (py), then p belongs to the region Ry.
Hence if p' := ||p|ln = [|Unsal/n, then p € [Vopl,vgl]. Therefore f,(p) is the point on the
segment [V, V'] such that [V — fu(p)|ln = 2V — plln. So we have the three points
V¥, p and f,(p) on the same line segment [V, VY] and ||p — V' ||n = |lp — fa(@)|ln. See
Figure 4.12 for an illustration.

\\‘ il {'J_\M W B

=

i
d" 4

14

Figure 4.12

Now denote by M and N the lines parallel to the xz-axis that pass through the points
p and f,(p), respectively. Also let K be the line perpendicular to M and N through the
point py and denote by ¢’ the intersection between K and A. Finally, consider the line
A that contains the points py and wu,/4, where u, /4 denotes the middle point of the side
[Unyas Unjasa] of the polygon B, (p).

Notice that A is parallel to the line segment [V, V] that contains f,(p) and that K
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intersects the line segment [V /, 1% /] at the point p, to the right of w, 4 and below f,(p).
Therefore f,(p) lies between the lines A and IC, hence: the left angle between M and

s

=, 80 looking at the triangle

the segment [p, f.(p)] is equal to the angle /p Vopl po=72
fn(p)7p,p0, we get:

an(p)poq/ < Zq‘/opp:g_(g_%) _ %;

so we have Zf,(p)poqd < m/n < 27/n. Hence if we define d := ||py — fn(p)||n, the last
inequality means that the point f,(p) belongs to the (% 4-1)-th side of the polygon 0B(po).
In other words, if we denote by Wy, ..., W,,_; the vertices of the polygon dBy(po), then

fn(P) € Whya, Winjay41]. Recalling that f,,(po) = po, we now have:

d = || fa(po) = fa(®)lln = [P0 = Whyal = |po — | + |0 — | + |¢" = Whayal,

where | - | denotes the Euclidean norm. So now we need to compute each of the values on
the right hand side. We already know that |pg — p| = r, and since the triangles f,(p), ¢, p
and p, V l, po are congruent, we get |p — ¢'| = |po — p| = r, so the previous equation turns
into:

an(po) - fn(p)Hn =2r + |q/ - Wn/4| (455)

To find |¢' — W, 4ln, consider again the line A and let ¢ € AN M. Notice that

ppoq = LpV§ tnja = 5ppo Unjay41 = 7/m,

LUnjappo =745 — 7 and Zpup/apo = 5 = LpUpn/sq.

In particular A is parallel to the line segment [V g pl, so that the quadrilateral pg, ¢, p, Vi’ l
is a parallelogram and |p — q| = |po — V' |. Also notice that since the triangles f,(p), ', p

and V”/, po, p are congruent we have |p — ¢q| = |f,.(p) — ¢/|. On the other hand looking at
0 g
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the triangles ¢, uy, 4, p and Wy, /4, ¢, fr(p) we see:

Lqunap =5 = (Wyhadq fu(p)
Lqpuns =5 —(5=3) =5 = Wanfulp) ¢

LUp/aqp = g - % = an(p) Wn/4 q/

We calculate first the side |u,/4 — ¢| of the triangle g, w4, p: Since |uy, 4 — p| = rsin(X)
(recall that the side of the polygon 05, (0) has Euclidean length 2rsin(Z)), we get:
’un/4 - p| _ TSin(E)

—q| = = n/ tan(T).
p—dl cos(%) cos(%) an(n)

Now since |p — ¢q| = |fu(p) — ¢|, we can calculate the side |¢ — W, 4| of the triangle

Wn/47 q/7 fn(p) and we get
| = Waya| = tan(Z)[ fu(p) — ¢| = rtan®(F).
Finally, substituting this value in equation (4.55) we conclude that:

| fa(po) = f®)ln = 2r + 7 tan*(%) = (2 + tan*(%)) o = plln.
Thus, the Lipschitz constant, L,, of the doubling mapping f,, must satisfy L, >
2+ tan T) and therefore ¢, /L, < 1/(2+ tan?(%)). o
The following conjecture is a generalisation of Theorem 4.2.12 and Proposition 4.2.13:

Conjecture 4.2.14. Let n = 4m for some m € N, and let || - ||,, denote the n-norm on
R2.
If f: (R% ] - |ln) = (R%|| - |ln) is an L-Lipschitz and c-co-Lipschitz 2-fold mapping
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then
1

< — .
~ 2+ tan?(%)

1o

The equality is achieved for f = f,, where f, is the doubling mapping defined by Defini-

tion 4.2.

Remark 4.2.15. In Proposition 4.2.13 we only showed that for n = 4m, we have ¢, <1
and L, > 2+ tan*(Z), where L, and ¢, are the Lipschitz and co-Lipschitz constants
of the doubling mapping. A detailed analysis of various points p € R? shows that the

co-Lipschitz constant ¢ and the Lipschitz constant L of f,, do satisfy:

c=1 and L =2+ tan*(%). (4.56)

However, we decided not to include the proof of (4.56) since it would only be relevant
if we had a way to prove that for any L-Lipschitz and c-co-Lipschitz 2-fold mapping we
have ¢/L < ¢,/L,, where ¢, and L, are the constants of the doubling mapping f,,. The

next chapter shows some positive results in this direction for the case n = 4.
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CHAPTER 5
Is Y3 AN UPPER BOUND FOR THE RATIOS OF CONSTANTS
OF 2-FOLD LIPSCHITZ QUOTIENT MAPPINGS ON (R || - [ls)?

In view of Proposition 3.2.4, the Example 3.1.1 defined in Section 3.1 and other examples
we have considered, our conjecture is that for any 2-fold Lipschitz quotient mapping f
from the plane to itself, endowed with the supremum norm, the ratio between the co-
Lipschitz and Lipschitz constants of f is less than or equal to /3. In this chapter we
present some partial results in this direction.

We show that, if we assume that the mapping f maps squares centred at the origin into
squares centred at the origin (but not necessarily fixing them), then ¢/L < 1/3. On the
other hand we get the same inequality for the ratio between co-Lipschitz and Lipschitz
constants if we make some differentiability assumptions. We divided this chapter into
two sections, in the first one we will work under assumptions slightly weaker than in

Proposition 3.2.4. In the second we will work with differentiability assumptions.

5.1 Results mapping squares to squares

As we have just mentioned, in this section we will see, in Proposition 5.1.3, that we can
relax the hypothesis of Proposition 3.2.4 and derive the same result. For this we will need
a couple of lemmas regarding the behaviour of Lipschitz quotients along boundaries of
balls. As we shall see in the next Lemma, a Lipschitz quotient mapping that maps balls

centred at the origin into balls centred at the origin must do it in an “increasing” fashion,
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in the following sense.

Lemma 5.1.1. Let f: (R || |loo) = (R% || - ||oo) be a Lipschitz quotient mapping with
f(0) = 0. Assume there is a function w : Rt — R such that for all r > 0 we have

f(0B,(0)) = 0By (0). Then w is strictly increasing.

Proof. First notice that for all » > 0, f(B,(0)) = B,,(0) for some r, > 0. Indeed,

50y =1 U om0)uior= (U r@8.0)) oo = ( U 9500 uio)

0<s<r 0<s<r 0<s<r

Since f is a continuous open mapping, f(B,(0)) must be a connected open set containing
0. We conclude that f(B,(0)) is an open ball around the origin, say B,,(0).

Hence, for r > 0 we have:

f(B:(0)) = f(B(0)) U f(0B,(0)) = B,.(0) UdB.(0).

Since f(B,(0)) is a connected set, we infer that w(r) < r.. On the other hand, since
f(B,.(0)) is closed, the same equation above implies that w(r) > r, (otherwise, we get
f(B.(0)) = B,,(0), and the latter is not a closed set). Thus w(r) = r, and we conclude
that f(5,(0)) = Bu)(0) for all r > 0.

Now, if we assume that 0 < r; < ry, then

6Bw(r1)<0) = f(aBm (O)) g f(Bm (0)) = Bw(rz)(()) g BW(Tl)(O)

so that w(r) < w(re). Thus w is an increasing function. o

Furthermore, using Proposition 1.2.11 we can prove the following generalization of

Lemma 5.1.1.
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Lemma 5.1.2. Let f : (R% || -|) — (R?%,]| - ||) be a Lipschitz quotient mapping with
f(0) = 0, such that for all r > 0 we have f(0B.(0)) = ¢, where @, is a simple closed
curve with index one around the origin. If 0 < r < s, then ¢, C I(ps). Here I1(p)
denotes the interior of the bounded component of R? \ . In other words, I(yp) is the

bounded component of R? \ ¢ as a subset of the space R? \ .

Proof. First we are going to show that, given the conditions of the statement, if 0 < r < s,
then ¢, N, = (. Assume on the contrary that there exists a point y € ¢, N .

On the one hand, since y € p,, from Proposition 1.2.11 we get:

y € ¢s = [(0B(0)) = 9(f(B:(0))).

On the other hand, since y € ¢,, we have:

y € or = f(9B,(0)) € f(Bs(0)).

Thus, y € (0f(Bs(0))) N f(Bs(0)), which is impossible since f is an open mapping.

Now we show that f(B,(0)) C I(p,) for all r > 0. Let r > 0 and take z € B,(0).
Assume for a contradiction that f(x) ¢ I(y,). Since B,.(0) is convex, the line segment
[0, 2] is contained in B,(0). On the other hand, since 0 € I(y,) and f(z) ¢ I(¢,), there

exists a point ' € [0, z] such that f(z') € ¢,. Therefore, if m = ||2/||,

¥’ € 0B,,(0) and f(2') € f(0B,(0)) = ppm.

Since p, Nps = 0 for r # s, we have m = r. Hence, 2’ € 9B,(0) and 2’ € [0, 2] C B,.(0).
This is impossible, thus f(B,(0)) C I(¢,). Finally, if we now assume that 0 < r < s, we

have:
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as we wanted. O

We are now able to show that the ratio of constants of a two fold Lipschitz quotient
mapping under the supremum norm, that maps squares centred at the origin to squares

centred at the origin cannot be bigger than 1/3.

Proposition 5.1.3. Let f : (R% || - ||oo) = (R2, || - |loo) be a 2-fold Lipschitz quotient
mapping. Assume there is a function w : R — R such that for all r > 0 we have
f(0B,(0)) = 0By((0). Then the Lipschitz constant L and the co-Lipschitz constant c of
f satisfy ¢/L < 1/3.

Proof. As before we may assume that f(0) = 0 and ¢ = 1, we need to show that L > 3.
Assume indirectly that L < 3, then by Proposition 3.2.4 we know that there exists p > 0

such that some corner of the square 0B,(0), say P = PJ’-O , is not mapped to a corner, i.e.

dist(f(P), Ag) >0 where Ay = {(z,y) € R*:|z| = |y|}.

Since we may perform a rotation through integer multiples of 7/2 without changing the
Lipschitz and co-Lipschitz constants of f, we will assume that P = pV', where V := (1, —1)
and that f(P) € {(z,y) e R? : y < 0, |z| < |y}, i.e. f(P) belongs to a horizontal side of
0B, (0). Let 0 < k < dist(f(P), Ap), consider the square B,(P) and denote its corners
by P, ..., P, starting at the bottom right corner and placing the indices counterclockwise.
By the co-Lipschitz property we know that B,.(f(P)) C f(B.(P)). Denote the corners of
the square 0B, (f(P)) by Qo, - .., Qs placing the indices as before. Note that [Q1, Q2] is a
horizontal line segment. Finally, for i € {0,...,3} pick ¢; € B.(P) such that f(q;) = Q;,
see Figure 5.1.

From the Lipschitz property we get:

a1 — @2lle > Lllgt — @2ll0 = [[f(q1) = f(@2)]loe = [|Q1 — Q2]loc = 2k,
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therefore,
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Figure 5.1
2
a1 — @2llc > 3 (5.1)
Observe that we have ||Q1]l = [|Q2]lc; and so [|¢illec = [|92]|cc (because from

Lemma 5.1.1 we know that w is injective). We show now that this observation together
with (5.1), implies that p' := |¢llc > p — 3, @ = 1,2. Indeed, if we assume that
p' < p— 5k, then both points g1, g2 belong to (Bpfé,{(O) N B.(P)) —this is, in Figure 5.1

the green square on the left. Therefore, for i = 1,2, we would get:
qi € B%H(pr) where r:=p—2k, and P, := P=rV. (5.2)

The latter implies ||¢1 — @200 < %H, which we have just shown in (5.1) is impossible. This

establishes

P =l = el > p— 35

Now consider the square dB1 .(P.), where r is as in (5.2), and denote its corners by
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Pj,..., P} in the same way as before. Since

|Pilloe =7+ 5= p— b <

from Lemma 5.1.1, we get:

w([[Follo) < w(p) = Q1 lloc = 1 (P)loc — 5,

(see Figure 5.1.1 for an illustration). This means that || f(B))||ec < ||f(P)|lcc — k. Hence:

LF(P) = F(Bo)lloe 2 [1F (P)lloc = 1f (F))lloe = -

On the other hand, by the Lipschitz property of f we have:

1 (P) = f(P)llso < LIP = Felloo < 3I1P = Felloo = 3(55) = .

Thus k < ||f(P) — f(P})||ec < K, a contradiction. Therefore we must have L > 3. O

5.2 Results using differentiability assumptions

In this section we will be assuming some differentiability properties of the Lipschitz quo-
tient mapping f. More precisely, we will assume the existence of some differentiability
points when f is restricted to some curve v. Hence, whenever v is a fixed parametrized
curve, and p is a point belonging to the image of v, say p = v(y), it will be convenient
to say that f o~ is differentiable at p, meaning that f o is differentiable at t,.

These sort of differentiability assumptions come from the observation that the corners
of big enough squares centred at the origin might play a particular role regarding the

behaviour of such mappings. For instance, see Propositions 3.2.1, 3.2.4 and 4.2.9. In the
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general case we do not have much information about the behaviour of these mappings
around corners of centred squares. However, we might be able to say something about the
ratio of the Lipschitz and co-Lipschitz constants of the Lipschitz quotient f, if we could
find a linear approximation of the restriction of f to 0B, (0) at some corner of the square
0B, (0). We will see, in Propositions 5.2.1 and 5.2.2, that this is the case if we assume
that the relevant derivative has some specific directions. Notice that even if we can not
guarantee the existence of such differentiability points, since the mapping foy : [0,1] — R?
is Lipschitz, in the sense that for every ¢1,t € [0, 1] we have ||f o v(t1) — f o vy(t2)|| <
aL|t; —ty], where « is the Lipschitz constant of , we have that, f o~ is differentiable at
almost all ¢ € [0, 1].

The following proposition is a generalization of Proposition 5.1.3 in the case when the

images of corners are not on the main diagonals (see Proposition 3.2.4).

Proposition 5.2.1. For every p > 0 let vy, be the curve describing the square 0B,(0).
Let f: (R% ||+ |loo) = (R2, || - |oo) be a 2-fold Lipschitz quotient mapping and let N be as
in Corollary 2.5. Assume that for some p > N the curve f oy, is differentiable at some
corner P of the square 0B,(0) and that the tangent at this point is parallel to one of the
sides of OBjfp)|..(0). Then, ¢/L < 1/3.

Proof. As before we will assume that f(0) = 0 and ¢ = 1, and we will then see that the
assumption L < 3 leads to a contradiction. Let L =3 —a < 3. Let N and € > 0 be as in
Corollary 2.5, therefore f is injective in every neighbourhood B.(x) with ||z|. > N. By
hypothesis we can find a point P with ||P|« := p > N such that f o, is differentiable
at P. Consider a 1-Lipschitz parametrization ¢ : [—4p, 4p] — 0B,(0) of 0B,(0) such that
©(0) = P oriented counterclockwise, so that the tangent to the curve f o ¢ at this point
f(P) is parallel to a side of the square 0B,(0).

Assume that the derivative of the curve f o ¢ at the point P is parallel to the z-

axis, so the tangent vector to the curve f o ¢ at the point P has the form (k,0) for
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some k € R. Therefore, if we denote by z(f) and y(f) the coordinate functions of f,
f(z) = (z(f(2)),y(f(2))), then we can find § € (0,¢) such that:

z(f(e(t)) = x(f(0(0))) + kt + 01(t) = x(f(P)) + kt + 01(2), (5-3)

y(f (1)) = y(f((0))) + 02(t) = y(f(P)) + 02(2), (5-4)

with o, (t)] < %1 and |oy(t)| < 2|¢|, whenever 0 < [t| < 4.

2 G

Figure 5.2

Let 0 < ¢ < min{20, 2|k|} and take the corner Py of the square 9B,y 3(0) that is in
the same direction as P, i.e. Py = (1 +0'/3p)P, see Figure 5.2. Now, consider the image
of P, under f and the square 0B (f(Py)) centred at f(P;) with radius §'. Let v := f(p)
and define :

p1 = (0B,(0) N By (1))

T = f(¢1).
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First notice that the curve 7 intersects the boundary of the square By (f(P;)) in at least

two points. Indeed, it is clear that f(P) belongs to the square By (f(Py)), because:
1F(P) = f(P)llow S LIP = Pifloc = (3 = a)30' =0 — o < &' (5.5)
and from (5.3), we know that for every t € (—4,d) we have:

2 (f (1)) = 2(f((O))] = [kt + 01 ()] = |kt| — [or ()| > 5]kt].

In particular, for ¢t} = —§/2 and t5 = §/2 we have:

(£ (p(£))) = 2(f(L(O))] > 3lkt]] = §lk| = 2§|k| > 20,

so that both points f(p(t})) and f(p(¢3)) lie outside By (f(Py)).

This means that both pieces, f(¢((—9,0))) and f(¢((0,9))), of the curve v go from
the outside to the inside of the square By (f(P)), and the other way around respectively,
so both curves must intersect the boundary of the square Bg (f(Fy)) by the Jordan Curve
Theorem.

We have shown then that there exist t; € (—0,0) and t5 € (0,0) such that f(p(t;)) €
OBy (f(P1)). As we will see, using the local injectivity of f we can actually assure that
these points satisfy ¢; € [—%‘V,O) and ty € (0, %&] Notice that the images of ¢(t;),
i € {1,2} under f belong to the square By (f(P;)), and from the co-Lipschitz property
we have Bs/(f(Py)) C f(Bg(Py)) so the inverse images under f of the points f(p(t;)),
i = 1,2 must intersect By(P;). This is enough to conclude that t; € [~%",0) and
ty € (0, 27‘5/] Indeed, notice that since ¢ is 1-Lipschitz and t; € (—0,0),t2 € (0,4), then
for i = 1,2 we have ||p(t;) — @(P)]le < |ti] < 0, so ¢(t;) € Bs(P). On the other hand,

since ¢ < ¢, then f is injective in Bs(P). Hence, for i = 1,2 the only point in Bs;(P) that
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is mapped to f(p(t;)) is in fact ©(t;) and it should belong to Bs(P;). Since
©N By(P) ={p(t) : t e [-5 5]},

we conclude that t; € (=5,0) N [—2, 2] and ¢, € (0,5) N [-Z", 2], See Figure 5.2.

Now, let z; := ¢(t;) and notice that the images of x1, x5 under f cannot belong both
to the left vertical side of the square Bs (f(Fy)). See Figure 5.2. For, if f(x;), i = 1,2
belong to the left vertical side of the square dBg (f(Py)) and P € By (f(P;)), using (5.3)

we get:

0 <x(f(P)) —a(f(21)) = 2(f(P)) — 2(f(p(t1))) = —kts — o1 (t)) < —kt1 + 3]k[(—t1)

0 <z(f(P)) —2(f(z2)) = 2(f((P)) — 2(f(p(t2))) = —kta — 01(th) < —kts + 3|k[(L2).
Since t; < 0 < ty, these inequalities yield:

0< —ti(i|k|+k) = —k < i|k|

0 < tao(5lk| — k) = k< i|k|

and we get |k| < 3|k, a contradiction. A similar argument shows that both points cannot
belong to the right hand side of the square 0B (f(Fy)).

Furthermore, it is easy to see that it is also not possible that the points f(z1), f(z2)
belong to two opposite sides of the square 0Bs (f(P;)). Indeed, since for any two points,

x1, T € 1 we have ||x; — 23]/ < %5’, by the Lipschitz property we have:
1 (x1) = f22)]loo < L1 — 2alloo < 3(36") = 20"

Thus the distance between the images of any two points of the curve ¢, is strictly less than
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20, so the points f(x1), f(x2) cannot lie on two opposite sides of the square OBy (f(P)).
Therefore the only option remaining is that at least one of these two points, f(z;) or
f(z2) belongs to the top side or the bottom side of the square 0By (f(Fy)).

Since |t;] < 275, < 0 we can apply (5.4) for t =¢;, j € {1,2}, and get:

!

ly(f (@) —y(f(P)] = loa(t:)] < §(30) = o (5.6)

On the other hand the inequality (5.5) implies:

ly(F(P) = y(f(P)) < IF(P) = f(P)]loo < 8" — 25 (5.7)

Therefore, from the inequalities (5.6) and (5.7) we gather that |y(f(x;)) — y(f(P1))] <
o', which means that f(z;) cannot be a point of the top or bottom side of the square
OBs/(f(P1)), as we have |b — y(f(Py))] = ¢ for all points (a,b) belonging to the top or
bottom side of the square 0By (f(F1)).

We conclude that if the derivative of the curve f o~ at P is parallel to the x-axis, then
L could not be smaller than 3. Since we can preform a rotation of 3 without affecting
the LIpschitz and co-Lipschitz constants of f. We conclude that L > 3 also in the case

where the derivative of f oy at P is parallel to the y-axis. O

The next proposition shows that if we now assume that the tangent at some corner
P is 7/s+ —instead of m or 7/2 as in Proposition 5.2.1— we can derive the same colclusion

that ¢/ < 1/3.

Proposition 5.2.2. For every p > 0 let vy, be the curve describing the square 0B,(0).
Let f: (R%| - |loo) = (R || - |loc) e a 2-fold Lipschitz quotient mapping. Let N be as in
Proposition 2.4 and assume that for some p > N the curve f o, is differentiable at some

corner P of the square 0B,(0) and that the tangent at this point has slope equal to w/4.
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Then, ¢/L < 1/3.

Proof. We assume again that f(0) = 0 and ¢ = 1, and we carry out the proof by contra-
diction repeating a similar construction to the one on Proposition 5.2.1. Let L =3—a < 3
and N as in Corollary 2.5, so we know that there exists € > 0 such that f is injective in
every neighbourhood Bc(z), whenever |z|l« > N. By hypothesis we can find a corner
point P with ||P|s := p > N such that f o~, is differentiable at P and that the tan-
gent at this point has slope equal to m/4. Let v : [=4p,4p] — 0B,(0) be a 1-Lipschitz
parametrization of the curve 0B,(0) with v(0) = P oriented counterclockwise, so that the
tangent vector to the curve f o~ at this point P is equal to (k, k) for some k € R.

First we will assume that k£ > 0, therefore, if we denote by z(f) and y(f) the coordinate
functions of f, f(z) = (z(f(2)),z(f(z))), then we can find § € (0,¢) such that:

=

=

5

=
I

2(f(7(0))) + kt + 01(t) = 2(f(P)) + kt + o1 (1) (5-8)

y(f(v (@) = y(f(1(0))) + kt + 02(t) = y(f(P)) + kt + 02(t) (5.9)

with |o1(t)], |o2(t)| < min{k|t|, {|t|}, whenever [t] < 4.

As in Proposition 5.2.1, let ¢’ < 2 min{4, ¢} and consider the square d By (f(P)) centred
at f(P) with radius ¢’. See Figure 5.3. Denote the corners of this square by A, B,C, D
starting from the bottom right corner and going counterclockwise. Now, (back to the
domain of f) consider the square 9B, _5/3(0) and take the corner P, of B,_s/3(0) that
is in the same direction as P, i.e. P, = (1 —¢'/3p)P.

It is clear that the point f(P;) belongs to the square By (f(P)) = ABCD. Indeed,

since L < 3, we have:

1F(P) = f(P)llos < 3[IP = Pilloc = 0",

151



=
P 3

J‘_) &

Figure 5.3

We may assume that f(P;) belongs to the upper triangle B,C, D; otherwise we can
perform a 7 radians rotation without changing the Lipschitz and co-Lipschitz constants
of f. (Notice that here, differently to Proposition 5.2.1, we do not have any further
assumptions about the position of the corner P).

Now, assume that f(P;) belongs to the triangle 7 whose vertices are f(P), B and C
and consider the point P := (x(P) — 36',y(P)), where z(P),y(P) are the z-coordinate
and the y-coordinate of the point P respectively. Hence |[P — Pl = 26', by definition
of the curve + this means that v(t;) = P, where t, := —24'.

Now, since P, lies inside the neighbourhood Bj(P), from (5.8) and (5.9) we have:

1F(P) = [(P2)llee = max{[ktz + 0i(t2)] : i = 1,2}
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Therefore:

|2(f(P)) = x(f ()] = [y(f(P)) = y(f(F2))]

:‘Wz + ou(ts)] — [kts + 0a(ts)|

1F(P) = f(Po)llee = [y(F(P)) = y(f(P2))| <

<|kty + 01(t2) — (kta + 02(t2))]

<loi(t2)| + |oa(t2)| < Fltal.

Hence,

y(f(P) = y(f(P))] > [[F(P) = [(Po)llec — It (5.10)

On the other hand, since we are assuming that f(P;) lies inside the triangle 7 then

0 <[lf(P1) = f(P)lleo = ly(f(P1)) = y(f(P)] = y(f(P)) = y(f(P)). (5.11)

Also, from (5.9), and the fact that —§ < —20" = ¢, < 0 it follows that

y(f(P2)) = y(f(P)) + Ktz + 0a(t2) < y(f(P)) + ka2 + |oa(t2)]

<y(f(P)) + ktz + kltz| = y(f(P)),

using k£ > 0. Hence, since we are assuming that f(P;) € 7 we have:

y(f(P2)) <y(f(P)) <y(f(P)). (5.12)

Finally, notice that from Corollary 2.5, since 0’ < &, we know that for every pair

of points, say x1, s, belonging to By (P) we have ||f(z1) — f(22)]|eo > |71 — 22|00, in
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particular:

1£(P2) = f(P)llso = [ P2 = Plloc = 36", (5.13)

1) = F(P)lloe = 1P = Plloc = 36"
From (5.12), (5.11), (5.10) and (5.13) it follows that:

1f(P2) = f(P)llse = [y(f(P2) = y(f(P))] = y(f(P1)) = y(f(12))
= ((f () —y(f(P)) + (y(f(P)) — y(f(F2)))
= [I/(P) = F(P)llse + ((f(P)) — y(f(F2)))
> (If(P) = F(P)lloo + [1F(P) = f(P2)llso — Gt

> %5' + %5' — %(%5') > 0'(1 — %oz) =(3— a)%é'.
This is a contradiction since by the Lipschitz condition we have:
1f(P2) = f(Pi)]loo < (3= a)||Py — Pilloc = (3 — )36

In a similar way, we reach a contradiction assuming that f(P;) lies inside the triangle
T' whose vertices are C', f(P) and D. Indeed, instead of the point P, consider now the
point Pj defined as P} := (x(P),y(P)+320"). Then Pj = ~(t}) where ¢y := 2¢’. Then (5.10)

can be changed to:

I7(P) = F(P)) e = [2(F(P)) = a(F(P}) (5.14)
<l (P) = w(F(P)] = [a(F(P)) = 2 F(P)
|t + a(t)] = [t + 01 (1)

<loa(t)] + loa(f5)] < §lt5]-
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Also in this case, since f(P;) € T', the estimate (5.11) becomes:

1F(P) = F(P)]lee = [2(f(P1)) = 2(f(P))] = =(f(P)) = =(f (1)), (5.15)
and (5.12) would be changed into:

z(f(P) <z(f(P)) < =(f(F)), (5.16)

this is because, given that k£ > 0, we have:

2(f(Py) = x(f(P)) + kty + 01(ty) > =(f(P)) + kt — |ox(t5)]

> x(f(P)) + kty — k[ts] = =(f(P)),
again using k£ > 0. Thus, using (5.15), (5.16), (5.14) and then (5.13), we have:

1/ (Py) = F(P)lloo 2 [2(f(Fy) — (f(P)] = 2(f(Py)) — =(f(P1))
= (2(f(R) = x(f(P))) + (=(f(P)) — =(f(P1)))
> £ (Po) = f(P)lloo = §ltal + £ (P) = £ (Pl

> 26 — 4ty 4+ 30" > 6'(1 — 2a) = (3 — )30

Again, this is a contradiction since

1£(Py) = F(P) ]l < (3~ )26

Thus we have proved that the statement is true for £ > 0. It is clear that if we assume
k < 0 then we only need to repeat the argument above but choosing the point P, when

Py belongs to the triangle 7" and the point P, when P, belongs to the triangle 7. ]
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After the last two propositions, the idea would be to generalise these results to the
case when the tangent at the image of some corner P of 0B,(0) has an arbitrary slope.
The next result points in that direction, still, we will use stronger assumptions than in
the previous results. We assume further that there is a neighbourhood of a corner P such
that any other corner inside that neighbourhood is mapped to a point with z-coordinate

equal to the z-coordinate of f(P).

Proposition 5.2.3. For every p > 0 let y, be the curve describing the square 0B,(0).
Let f: (R% || - |lo) = (R%|| - |loo) be a 2-fold Lipschitz quotient mapping. Assume that
for a sufficiently large p € RT, there is a corner P of the square vy, and a neighbourhood

Bs(P) of P such that:

1. Forall\ € (p—9,p+0) the image under f of the path v, N Bs(P) is a straight line

with gradient m € (0,1).

2. For each \ € (p—9, p+9) there is a real number £(N) such that f(P+(A—p, A\—p)) =
f(P) =+ (0,6(N).

Then the Lipschitz constant, L, and the co-Lipschitz constant, c, of f satisfy ¢/L < 1/3.

Proof. Assume that f(0) = 0 and ¢ = 1. We carry out the proof by contradiction, so
assume L < 3. Let N and ¢ be given by Corollary 2.5. By hypothesis we can find a
corner point P with ||P|le := p > N + 1 and a neighbourhood Bs;(P) such that the
conditions 7 and 2 of the proposition are satisfied. Without loss of generality we may
assume that § < ¢ < 1 and we also can assume that P = (p, p), since the mapping defined
as the composition of a rotation by any integer multiple of 7 followed by f has the same
Lipschitz and co-Lipschitz constants as f.

Fix any r € (0, %5) and consider the square whose upper right corner is the point P

and has radius 37, i.e. the square B%T(Q) where @ := P — (37, 47). Denote by C' the
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bottom right corner of the square B%TQ and by B and D upper and bottom left corners,
respectively. See Figure 5.4.

For a point p, let z(p) and y(p) be the x-coordinate and the y-coordinate of p, respec-
tively. Let ky = 3(m+1) and ky = £(1 —m). For ¢ € {1,2}. We will consider the square
S; whose bottom left corner is D and has side (% + k;)r. Finally, denote by A; the upper
right corner of the square S;. Notice that f(P) and f(A;) have the same z-coordinate.
Indeed, since

Ai=D+ (34 k)r(1,1) = P+ kir(1,1),

from the hypothesis 2 of the present lemma, we only need to check that |k;r| < §. However,

since m € (0, 1), we have
kil =131£m)| <2 and r < 34.

Therefore, z(P) = x(A;). On the other hand, we may assume without loss of generality
that y(f(A1)) > y(f(P)), since now the mapping defined as the composition of f followed
by a rotation of 7 radians has the same Lipschitz and co-Lipschitz constants as f. See
Figure 5.4 for an illustration.

Notice that once we have assumed that the y-coordinate of f(A;) is greater then the
y-coordinate of f(P) then the same must happen with the y-coordinate of f(A;). Indeed,
suppose that y(f(A42)) < y(f(P)), and let ¢ be a parametrization of the line segment
that joins P with A; (passing through A,). Then, by the hypothesis 2, f(y) would be
mapped into a curve describing a straight vertical line segment with starting point f(P),
then going down through f(As) and then up to f(A;). Therefore, there is another point
in between A; and A, which is mapped to f(P). This is impossible since f is injective
in S;. We conclude that y(f(A4z2)) > y(f(P)). A very similar argument shows that the
points f(B) and f(C) are on different sides of f(P). Indeed, assume that f(C) and (f(B)
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are on the same side of f(P) and let 7, be the path contained in 7, that goes from B to
C'. Then, by hypothesis 1, f ('y; is contained in a straight line with gradient m and since
we are assuming that f(P) is not in between f(B) and f(C), the curve f(y, must pass
through f(B), then f(P), and then back to f(C), so all the points on the line segment

[f(P), f(C)] have two preimages, which is not possible since f is injective on S;.

7(B)

10)

Figure 5.4

Once this is clear, we first consider the square S;; we are going show that

2(f(P)) = 2(f(C)] = |2(f (A1) — 2(f(C))| = (1 + zm)r. (5.17)

The first equality is obvious since we are assuming that f(P) and f(A;) have the same

a-coordinate. Notice that since f is injective in Bs(P), by Corollary 2.5 we know that

1£ (A1) = f(C)llse = el A1 = Clloe = (5 + ka)r = (L + gm)r. (5.18)

To prove the inequality in (5.17) we consider two cases.

Case Al. y(f(C)) > y(f(A1)).
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In this case, using hypothesis I of the present Lemma, we have

y(F(C)=y(f(A) <y(f(C)=y(F(P)) = m (x(f(C)) = z(f(P))) < |z(f (A1) =z(f(C))]

Therefore || f(A1) — f(C)||oo = |2(f(A41)) —2(f(C))| and from (5.18) we conclude that
(5.17) is satisfied.

Case A2. y(f(C)) < y(f(Ar)).

Notice that in this case we have:

y(f(A1) —y(F(O) = y(f (A1) — y(F(P)) — m|z(f(P)) — z(f(C))], (5.19)

see Figureb.4 for an illustration. We know that (y(f(A1)) —y(f(P))) < L||A; — Plle <

3kyr. On the other hand, using again Corollary 2.5, we have

z(f(P)) = 2(f(ON = [f(P) = F(O)lle = e[| P = Cllo = 3

The first equality is satisfied since f(P) and f(C) lie, by hypothesis, on a line with

gradient 0 < m < 1. Therefore

ly(f (A1) = y(f(P)| = mlz(f(P)) = 2(f(C))] < (Bks —mZ)r = (1 + gm)r.

Using (5.19), this proves |y(f(A1))—y(f(C))| < (1+%m)r. On the other hand, from (5.18)

we have || f(41) — f(C)|lso = (1 + gm)r. Therefore, we must have

L+ zm)r < [If(A) = f(O)lle = |2(f(A1)) — 2(F(O))],

and this finishes the proof of (5.17).
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Our next goal is to consider the square Sy, and to show that

[2(f(P)) = =(f(B))] = [2(f(A2)) — x(f(B))] = (1 — gm)r. (5.20)

W=

Again the first equality is clear. Notice that:

y(f(A2)) = y(F(B))] = [y(f(A2)) — y(F(P)] + [y(f(P)) — y(f(B))],

see Figure 5.4. Now, since f(P) and f(B) have the same z-coordinate, we have || f((P)) —
f(B)|le = ly(f(P))—y(f(B))| and, since P and B belong to v,N B;s(P), from hypothesis

1we get [y(f(P)) —y(f(B))| = mlz(f(P)) = x(f(B))| = m|x(f(A2)) —z(f(B))], the last
equality here uses z(f(P)) = z(f(Asz)). Therefore,

y(f(A2)) —y(f(B))| = m|z(f(A2)) — 2(f(B)| + [[f(P) = f(A2)]lse- (5.21)

Using Corollary 2.5 we have:

1/ (A2) = f(B)llec = max{lx(f(A2)) = z(f(B))], ly(f(A2)) — y(f(B)]}

> c|Ay = Blloo = (5 + ko)r = (1 — gm)r- (5.22)

1
3

Again we have two cases in which we establish (5.20).

Case B1. [x(f(As)) —2(f(B))| > ly(f(A2)) = y(f(B))]
In this case we have ||f(As) — f(B)|lo = |2(f(A2)) —2(f(B))|. Hence, from (5.22) we

conclude |z(f(A2)) — z(f(B))| = (1 — 2m)r, which proves (5.20).

Case B2. |z(f(A2)) —z(f(B))| < ly(f(A2)) —y(f(B))].
Now, using (5.21) and (5.22) we have:

mlz(f(Az)) = 2(f(B)| + If (P) = f(A2)llee = [y(f(A2)) — y(f(B))] = (1 = gm)r.
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This implies

[2(f(A2)) = 2(f(B)] = % (1= gm)r = [ £(P) = f(A2)]) - (5.23)

Furthermore, we can show that || f(P)— f(A2)|lec < (3—2m)||P—Az|lec = (3—2m)kor.
Indeed, if we now consider the square By, (P) and we denote by Es the bottom right corner

of the square (see Figure 5.4) then
1f(P) = f(E)llooc < LIP — Eslloo < 3kar. (5.24)

However, if we assume that || f(P) — f(A2)|le > (3 —2m)||P — As|l« then, since 7, -
is also mapped to a straight line with gradient m and the z-coordinates of both points,

f(P) and f(A3), are the same, we have the following:

1F(E2) = [(P)lloo 2|y(f(E2)) = y(F(P))] = ly(f(A2)) = y(f(E))] + [|f(A2) = F(P)llo
=m||f(Az) = f(E2)lloo + [/ (A2) = F(P)]lo
>m(cl[Ay = Eslleo) + (3 = 2m)[|P = As[o0 (5.25)

=m(2kqr) + (3 — 2m)kar = 3kar.
This is not possible, as (5.25) contradicts (5.24). Hence,

1(P) = f(A2)llo <(8 = 2m)||P — Azl = (3 — 2m)kar = (3 — 2m)(5(1 — m))r

=(2m? = 3m+ )r-.
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Using (5.23) and the latter inequality we get:

2(f(A2) = 2(f(B)] = £(1 = gm — (Gm* — §m + 1))

which proves (5.20).

Finally, from the inequalities (5.17) and (5.20) we gather that:

IF(C) = F(B)lloo = |2(f(C)) = 2(f(B))| = [2(f(C)) = z(f(P)]| + |2(f(P)) — =(f(B))|

> (1+ %m)r + (1 - %m)r = 2r.
On the other hand, since L < 3, we have
1£(C) = f(B)llss < L|C = Blloe < 3(37) = 2.

This is a contradiction, therefore we negated the initial assumption L < 3. This finishes

the proof of Proposition 5.2.3. O

We believe that Proposition 5.2.3 can be generalised so that, using linear approxima-

tions of f o~y, we can prove that:

Conjecture 5.2.4. For every p > 0 let vy, be the curve describing the square 0B,(0). Let
f:RE o) = (RE || - |loo) be a 2-fold Lipschitz quotient mapping. Let N be as in
Proposition 2.4 and assume that for some p > N the curve f o, is differentiable at some
corner P of the square 0B,(0) and that the tangent at this point has gradient equal to m
with m € (0,1). Then, ¢/L <1/3.

With this conjecture proved we would cover, using rotations, all possible directions of
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the tangent’s slope at f(P). This is work in progress.

We would like to point out that even though we have not been able to prove that
every 2-fold Lipschitz quotient mapping f : (R? || - [[c) = (R?, | - ||s) With constants L
and c, satisfies ¢/1 < 1/3, the results in this chapter show that it would be difficult to find
a 2-fold Lipschitz quotient mapping with ¢/ > 1/3.

Even more, if we look at the general picture, putting together the results in this
chapter with the result in Proposition 3.2.4, we see that if f maps corners “close to the
main diagonals”, then ¢/z < 1/3. On the other hand, if Conjecture 5.2.4 is true and f does
not map a corner to a corner then —assuming that f o~ is differentiable at that point—
we again have ¢/L < 1/3. Recall that we can always find a differentiability point of f o~y
as close to a corner as we want, so the differentiability assumption is always satisfied at

points arbitrarily close to a corner.
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CHAPTER 6
FINAL COMMENTS AND FURTHER WORK

From the main results of this work, Theorems 2.7, 4.1.3 and 4.2.12, we can state the
following general conclusion:

There is a universal scale of real numbers 0 < ... < pp < ... < p; < 1 such that,
given any norm || - || on the plane, if f : (R? || - ||) —: (R?,]| - ||) is an L-Lipschitz and
c-co-Lipschitz mapping with ¢/L > pp then #f71(x) < k for all x € R% The values
of this scale are given by pr = 1/(k+1). Even more, this scale is sharp not only for the
Euclidean norm but also, in the case k = 2, the scale is sharp for any norm whose unit ball
is a regular (4m + 2)-gon. However, there exist norms on the plane for which the ratio
of constants ¢/L of any 2-fold Lipschitz quotient mapping does not achieve the bound
p1 = /2. For instance, any polygonal norm whose unit ball is a regular 4m-gon satisfies

this property.

This conclusion gives place to some questions that the present work could also help
to answer. One question is: Can we find sharp scales pi™ for the 4m-polygonal norms?

As we have seen in Chapter 5, there are positive results that indicate that the second
value of such a scale for the supremum norm should be pi = 1/3. This fact would
also support Conjecture 4.2.14, stated in Chapter 4. That conjecture comes from the
observation, in Theorem 2.6, that far from the origin, a k-fold Lipschitz quotient mapping
behaves as a complex polynomial of degree k. So the image of the boundary of a big enough

ball B,.(0) must wind k times around the origin and must do it going “almost outside”
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the ball B..(0), where ¢ is the co-Lipschitz constant of the mapping. It sounds plausible
to think that the best way (i.e. “without stretching more than needed”) to wind around
0B..(0) would be to go along 0B,,(0) with constant speed k.

In the same way as we did in Definition 4.2, we can define for any k£ € N and any
norm || - || a “k-fold winding mapping”, that we shall denote by fj.|k, in the following
way: Recall that given a norm || - || on R?, we defined £ := H!"‘(@B'ﬁ’“(O)). For a fixed
k € N and for each constant » > 0 consider the curve =, : [0, kr%) ] — 0B (0) such

that:
1. Ind~,(0) = k;
2. 7, is a 1-Lipschitz mapping;
3. w(irdy) = (r,0) for all ¢ € {0,...,k}.

We define the k-fold winding mapping fi.x : (R?, ||+ |]) = (R?, ]| ]|) in the following way:
given z € R? with ||z, = r, take ¢, € [0,7£),)) such that ~,(t,) = z. Notice that ¢, is
uniquely defined since 7, is injective along [0,7%.|) and v.([0,7<L))) = BI1(0). We
set fi.x(x) = (ki)

Notice that in this definition (condition 3.) we are fixing the “starting point” (1,0)
from where the k-fold winding mapping starts increasing the length by a factor of k. It
might well happen that changing the starting point in this definition affects the Lipschitz
and co-Lipschitz constants of the mapping. For the case of the polygonal norms we
believe that the Lipschitz constant, L), and the co-Lipschitz constant, ¢, of a k-fold
winding mapping with a different starting point satisfy L; > Lj and ¢}, < ¢, where ¢
and Ly, are the co-Lipschitz and Lipschitz constants of the k-fold winding mapping f. .,
although we have not formally verified this. However, for the case of the supremum norm,
it follows from Proposition 5.1.3; that every 2-fold winding mapping (previously called

doubling mapping) has ratio of constants less than or equal to 1/3.
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In this context, Conjecture 4.2.14 could be stated in a more general way:

Conjecture 6.1. Let || - || be a norm on R? and let f ., be the k-fold winding mapping
in the norm || - ||.

If f: (R%||-]) = (R% || - ||) s an L-Lipschitz and c-co-Lipschitz k-fold mapping then

<

o

Ck
Ly’
where Ly and ¢, denote the Lipschitz and co-Lipschitz constants of the k-fold winding

mapping fi. k-

Even more, by doing the relevant changes in the proof of Proposition 4.2.13, it would

not be hard to derive the more general statement:

Proposition 6.2. If n = 4m for some m € N, then the Lipschitz and co-Lipschitz
constants, Ly j, and ¢, i, of the k-fold winding mapping fu . satisfy L, > k+(k—1)tan*(Z)

and ¢, < 1. Hence,
Cn,k 1
Lnp = k4 (k- 1)tan2(§)'

This proposition, together with Conjecture 6.1, would imply the following:

Conjecture 6.3. Let n = 4m for some m € N. If f : (R%|| - |l.) — R%] - ||.) in an

L-Lipschitz and c-co-Lipschitz k-fold mapping with respect to the n-norm || - ||, then

1

= k+ (k—1)tan*(Z)’

c
L
For example, for the supremum norm the sharp scale of values, p}, k& € N, such that

c/L > py, implies #f~1(z) < k for all x € R?, would be given by:

0<...<pr=gog <...<1/5<1/3<1
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Figure 6.1 shows how the sharp scale for the supremum norm would be shifted. The
coloured dots on the right hand side of each subinterval — (1/k +1, 1/k], for the Euclidean
norm, and (1/2k+1,1/2k — 1] for the supremum norm— show the place where the ratio ¢/r

of the k-fold winding mappings are.

For the Euclidean norm, }— E—
\

For the supremum norm, ¥

=
m
|

Figure 6.1

However, we need to be careful with Conjecture 6.1 because even though the general
idea is very intuitive, we need to bear in mind that with non-Euclidean norms the results

are not quite intuitive, see Remark 1.3.9.

Another question that arose from this work already in Chapter 2, is what can we
say if we now consider Lipschitz quotient mappings f : (R? || - [l1) — (R?,] - ||2), where
-l # [ 1127

In this case it is more complicated to calculate the exact Lipschitz and co-Lipschitz
constants of a given Lipschitz quotient mapping. However, since length_ (0B°(0)) = 8,
recalling the notation used in Theorem 2.7, we see that Lp/%. = 7/4 < 1, where L
stands for the Euclidean length of BF*¢(0). Hence, from Theorem 2.7 it follows that:

For every k-fold Lipschitz quotient mapping f : (R? |-|) = (R?,]| - ||«) the ratio between
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the Lipschitz and co-Lipschitz constants of f is less than or equal to 7/ak < 1/k. Moreover,
for any n-norm with n = 4m+ 2 we can easily see that we also have = length,, (0B} (0)) =
length (0BT (0)) = 2nsin(Z), this follows from the fact that the sides of an 4m + 2 sided
polygon are parallel to a radius of the polygon and a remark after Definition 4.2. Hence

we have the following Corollary from Theorem 2.7.

Corollary 6.4. Let || - ||, denote the n-polygonal norm with 4m + 2. For every k-fold
Lipschitz quotient mapping f : (R% || - ||,) — (R%,|-|) the ratio between the co-Lipschitz

constant ¢ and the Lipschitz constant L of f satisfies:

< 2n sin(7/n) -

c 1
L k(2m) k’

As we mentioned in Chapter 2 (see comment before Corollary 2.8, if £; > k%,, then
Theorem 2.7 does not give any useful information about the ratio of constants. It will
be interesting to study the general behaviour of these constants,%; and £, and see if
this result leads to further results about the ratio between the Lipschitz and co-Lipschitz

constants of a k-fold mapping.

A more conceptual question related to this work is: what are the underlying properties
of a norm that determine the relevant sharp bounds p‘,l'” for the ratio of constants of a
k-fold Lipschitz quotient mapping? We have not found a clear answer to this question
but there are few remarks that we would like to make.

First of all, it is clear that these bounds are not related to the way the norm || - ||
measures the distance between points, but more to the “particular geometric shape” the
unit ball, BM(O), has. For instance the supremum norm, /., and the ¢;-norm are very
different in the way they measure distances but, since these norms have the same unit ball

shape, they achieve the same bounds for the ratio of Lipschitz and co-Lipschitz constants

(see Proposition 1.2.4). So we need to distinguish between norms paying attention to the
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shape and the geometry more than to the distance between points. In this direction, the
Banach-Mazur distance between Banach spaces could be useful. In the particular case of
R? the Banach Mazur distance, d, between the spaces X := (R? [|-]|) and Y := (R, ||-||.)

can be defined as:
d(X,Y) :=inf{ab: 1B]1(0) c 7B (0) C aB(0); T € GL(X,Y);a,b > 0},

where GL(X,Y) denotes the set of linear operators between X and Y.

In this way d measures how different is (in shape) the unit ball Blll'H(O) to the unit
ball B] - (0). Even more, d(X,Y) > 1 for any pair of two-dimensional Banach spaces and
d(02,0%) = 1, see [17]. In addition, in [27, Corollary] it is shown that, in a sense, the
farthest norms on the plane are the hexagonal and quadrangular norms. More precisely,
it is shown that:

For any pair of symmetric convex bodies in the plane C' and D there are linear images
of them, say C” and D’ such that d(C’, D") < 3/2 with equality only if C" is a linear image
of a regular hexagon and D’ a linear image of a square.

This result could also link up well with our estimates for the sharp bounds of the
hexagon and the square, which are in a sense the farthest. On the other hand, the fact
that p?™*2 = pi*2 for all n,m € N does not seem to be clearly justified from this point
of view.

Furthermore, if the shape of the unit ball Bﬂ'”(()) determines the sharp bounds p,‘,l'”,
one would expect that, for big enough n, the sharp bounds p} of the polygonal norm with
n sides are closer to the Euclidean bound p; = 1/2, than the bounds of a polygonal norm
with few sides, say p$. In other words, at the beginning of this research, we expected
the bounds p} of the polygonal norms with n sides to increase as n increases, so that

Pttt > pr for all m € N and p? — p; = 1/2 as n — co. Therefore, we found it somehow
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surprising that polygonal norms with 4m sides behave differently than the polygons with
4m + 2 sides, and that, for instance, p¢ = p; = 1/2. On the other hand, if we assume that

Conjecture 6.3 we can approximate p; with the values pj with n = 4m, this is:

1 1
lim pp™ = 1

m—00 m%k%—l—kktanQ(ﬁ) :/{?—f—lzpk'

In conclusion, the estimates of the values of the sharp scale pl'l seem to be related
to the particular geometric properties of the unit ball B‘l"”(O), for example —in the case
of polygonal norms— having all sides parallel to a radius, or all sides parallel to an
apothem. This possible conclusion makes it more difficult to have reliable conjectures for
general convex bodies in the plane. However it seems that in order to achieve the 1/2
ratio of Lipschitz and co-Lipschitz constants, a norm should satisfy very strict regularity
properties, so we expect that in most cases the 1/2 ratio —and in general, the 1/n ratio—
will not be achieved. In this direction, it will be interesting to study “perturbed” polygons.
In the case of the 4m + 2 sided polygons, taking into account the previous comment, we
would hope for a small perturbation of the regular polygon to prevent any 2 fold Lipschitz

quotient to achieve the 1/2 ratio.
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