Alowadi, Nahed (2018). Population based spatio-temporal probabilistic modelling of fMRI data. University of Birmingham. Ph.D.
|
Alowadi2018PhD.pdf
PDF - Redacted Version Download (1MB) |
Abstract
High-dimensional functional magnetic resonance imaging (fMRI) data is characterized by complex spatial and temporal patterns related to neural activation. Mixture based Bayesian spatio-temporal modelling is able to extract spatiotemporal components representing distinct haemodyamic response and activation patterns. A recent development of such approach to fMRI data analysis is so-called spatially regularized mixture model of hidden process models (SMM-HPM). SMM-HPM can be used to reduce the four-dimensional fMRI data of a pre-determined region of interest (ROI) to a small number of spatio-temporal prototypes, sufficiently representing the spatio-temporal features of the underlying neural activation. Summary statistics derived from these features can be interpreted as quantification of (1) the spatial extent of sub-ROI activation patterns, (2) how fast the brain respond to external stimuli; and (3) the heterogeneity in single ROIs. This thesis aims to extend the single-subject SMM-HPM to a multi-subject SMM-HPM so that such features can be extracted at group-level, which would enable more robust conclusion to be drawn.
Type of Work: | Thesis (Doctorates > Ph.D.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | |||||||||
Supervisor(s): |
|
|||||||||
Licence: | ||||||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | |||||||||
School or Department: | School of Computer Science | |||||||||
Funders: | Other | |||||||||
Other Funders: | King Abdulaziz University, Saudi Arabia | |||||||||
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science | |||||||||
URI: | http://etheses.bham.ac.uk/id/eprint/8210 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year