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Abstract 

Jinan is one of the most industrialised mega-cities in North China Plain. Like Beijing, Jinan 

has suffered from heavy haze pollution, particularly in the winter. This is primarily due to 

the high levels of PM2.5 in the ambient air. A quantitative understanding on the sources of 

PM2.5 is a prerequisite to develop effective measures to control the severe PM2.5 pollution. 

However, this is poorly known in Jinan. In this project, 103 PM2.5 samples were collected 

in central Jinan and their chemical composition, including water-soluble ions, trace metals, 

organice carbon, elemental carbon and organic molecular markers (i.e., n-alkanes, hopanes, 

polyromantic hydrocarbons and sterols), were measured. Mass closure analysis reveals 

that Organic Matter (OM) (29%), sulphate (18%), nitrate (10%), ammonium (9%) and 

geological material (9%) are the major chemical components in PM2.5 in Jinan. The data 

were fed to both PMF and CMB models for source apportionment and uncertainty analysis. 

PMF and CMB have identified secondary inorganic aerosol (41%; 31%), coal burning 

(10%; 16%), biomass burning (20%; 17%), vehicle emission (16%; 14%) and mineral dust 

(10%; 6%) as the major PM2.5 sources in Jinan, respectively. CMB also identified the 

metallurgic plant (11%) production as a potentially important source of Jinan’s PM2.5. The 

results were also compared with those reported in Beijing, which is also located in the 

North China Plain. Furtherwork needs to be done including using other source 

identifications such as back trajectory, chemical transport model and remote sensing to 

help identify the source even more accurately. Longer sampling periods is also 

recommended and establishing the local source profile is vital for the source apportionment 

in Jinan in the near future. 
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1 Chapter One – Introduction and 

Literature Review 

 

1.1 Background  

 

Chinese megacities have suffered from poor air quality for more than two decades (Chan , 

2008; Ma et al. 2012; Yao et al. 2009). The expansion of population and industrialization 

have resulted in large increase in energy consumption,  leading to more air pollutant 

emission (Chan, 2008). The huge increase in the number of vehicles on roads in the last 20 

years also contributes to the serve air pollution in China (Zhang et al. 2014). PM10, PM2.5, 

NOx, CO, O3 and SO2 are the major pollutants in the ambient air in China today (Ma et al. 

2012). Meanwhile, four major haze regions have been found in in China, which is North 

China Plain (NCP), Yangtze River Delta (YRD), Sichuan Basin and Pearl River Delta 

(PRD) (Pui et al. 2014; Li et al. 2017). NCP is, however, the most polluted region in terms 

of PM2.5 in China (Li et al. 2017). In 2008, only 19 of 113 major cities in China met the 

requirements of WHO Interim target-1 (IT-1), which is 35 µg·m-3 for annual mean 

concentration for PM2.5 (WHO, 2005; Zheng, Mei et al. 2014). Moreover, only six cites 

met the IT-2 and none of them meets the IT-3 and Air Quality Guideline (AQG), where 

the annual mean PM2.5 concentration is 25 and 15 µg·m-3, respectively  (WHO, 2005; Zheng, 

Mei et al. 2014). Furthermore, compared to London smog and Los Angeles smog, Chinese 

smog seems more complex, formed by emission of coal combustion, vehicle exhaust, 

domestic biomass burning as well as other secondary pathways, e.g. photochemical 
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pollution and secondary aerosol formations (He et al., 2011). The Chinese smog has 

resulted in a far-reaching impact on public health service and economy sector (Ma et al., 

2012). Li et al. (2016) estimated that the health-related economic loss caused by PM10 and 

SO2 accounted for 1.6 and 2.3% of the GDP based on the data from 74 cities in 2015. To 

combat air pollution, it is essential to accurately quantify the sources of these pollutants.  

 

Source apportionment is a technique to identify  and quantify the emission contribution 

from different sources at receptor site, which is the base of air pollution control and an 

increasing importantly component in air quality planning and management (Hopke 2016). 

In general, there are three major ways to find the sources of ambient pollutants, Emission 

Inventory (EI), Receptor Modelling (RM) and Chemical Transport Modelling (CTM) 

(Hopke 2003; Cao et al. 2011; Hopke 2016). EI and CTM are bottom-up methods. The 

CTM can conclude or deduce the pollution from many point sources by simulating the 

meteorology, source emission rate and chemical reactions during the transport (Hopke 

2016). While emission inventory investigates and summarizes the emission factor and 

emission rate of each source and find their contribution (Cao et al. 2011). On the other 

hand, receptor modelling is a top-down method which focused on how the sources in the 

study region contribute the pollution level at the receptor site (Hopke 2016). This method 

is based on mass conservation and statistics. There following major and popular receptor 

models in use today, including Chemical Mass Balance (CMB), Principle Component 

Analysis (PCA), Positive Matrix Factorisation (PMF), Multiple Engine 2 (ME-2) and 

Unmix etc. (Belis et al., 2014). Normally, both methods, that is, receptor models and CTM, 

are recommended to be applied together in order to offset the weakness of each approach 

(USEPA, https://www3.epa.gov/scram001/models/receptor/EPA-CMB82Manual.pdf, 

https://www3.epa.gov/scram001/models/receptor/EPA-CMB82Manual.pdf
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no date). Some other researchers also evaluate the pollution by the routine monitoring data, 

for example, the correlation between wind direction with local measured components 

concentration, back trajectory analysis and correlation of gaseous pollutants with 

particular matter components to identify the associated sources etc. (Zhang et al. 2014). 

All of these methods have been applied in some certain source apportionment study in 

China. 

Anyhow, a proper and detailed source apportionment can be vital for policymakers to 

refine the current mitigation methods as well as monitoring the air quality improvement 

and evaluate the previous efforts. Until today, there have been hundreds of publications 

related to source apportionment about Chinese urban ambient pollutants since the late 

1990s. However, the methodology between different authors and research group can be 

largely different, for example, the length of sampling, the sampler type, the place of interest, 

how the pollutants have been characterized by the analytical method and the choice of 

models and its execution. Meanwhile, it is also lack of enough parallel comparisons 

between the different studies too. Since there is still a strong need for air quality data, 

especially more source apportionment works across the country, it is vital to extract more 

potential valuable information from the previous works, which is helpful for the future 

study of experimental design, comparability analysis, policy and public health assessment 

etc.  

1.2 Fundamentals of receptor models 

This project is mainly focused on receptor models such as CMB and PMF. The details of 

theory on these methods can be found in the other reviews and it will be presented in 

chapter two (Hopke 2003; Viana et al. 2008; Pant & Harrison 2013; Hopke 2016). There 

are a couple of review papers describing the sampling and chemical analysis instruments 
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and techniques for particular matter used in China elsewhere, which is also not repeated 

in this Chapter (Pui et al. 2014; Zheng et al. 2014; Liang et al. 2016) 

 

In brief, no matter which kind of receptor models, they are all based on the principle of 

mass balance, which is assumed that the mass of pollutants is in conservation between the 

emission and receptor site. In this case, the following mass equation can be written to 

account for all m species in the n samples contributed from p independent sources (Hopke 

2016):  

 

xij =∑ 𝑔𝑖𝑗𝑓𝑘𝑗
𝑝
𝑘=1  (1.1) 

 

where xij is the jth chemical species concentration measured in the ith sample, fkj is the 

concentration of the jth species in emission from the kth source contributing to the ith sample. 

This conceptual model and equation can be fitted to the varies of available data and solved 

differently in the real model such as CMB and PMF (Hopke 2016). Usually, the PM 

samples are collected in a daily basis so that the daily mean concentration can be measured. 

The samples will also be analysed by analytical chemical instruments so that different 

chemical species can be identified and quantified so that the data input can be prepared. In 

some cases, the source profile is also compulsory for the model run so that it should be also 

prepared prior to the modelling, for example, CMB.   
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1.3 Current related study in China 

It is always helpful to understand the current research status of source apportionment in 

China before the new project so that the lessons can be learnt from the previous experiences 

in order to achieve the improvements. The data mining of source apportionment related 

papers from 2004 to 2016 has been preceded on the Web of Sciences. Overall, there has 

been increasing research intensity on source apportionment of PM in China. According to 

the database on Web of Science, there are 154 papers containing the detailed information 

on source apportionment in total have been found between this decade (See Figure 1-1). 

According to figure 2.1, there is a limited number of publications in the first five years on 

source apportionment of air pollutants. However, there has been a significant increase in 

publication since 2009. In addition, it is found that most of the studies only employed one 

source apportionment approach for one type of pollutants before 2009, for example, by 

using one type of models to apportion sources’ contribution to PM2.5 in Hong Kong (Ho 

et al. 2006). There is an increasing number of source apportionment on air pollutants by 

different methods after 2009.  Moreover, there is a clear increasing trend that studying the 

sources of both PM10 and PM2.5 by different methodologies have become the hot-spot in 

China. However, it has to be noted that only about half of these publications are mainly 

based on receptor models.  
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Figure 1-1 number of publications on PM source apportionments using receptor models in the 

last decade in China (Web of Science) from 2004 to 2016. NB: 1) A topic search of ((“source 

apportionment” and “China” and “PM” or “particular matter” or “PMF” or “positive 

matrix factorization” or “CMB” or “chemical mass balance”) and (“particle*” or 

“particulate*” or “particulate matter*” or “aerosol*” or “PM”) and (“China” or 

“Chinese”)), refined by categories of (“meteorology atmospheric sciences” or 

“environmental sciences” or “geosciences multidisciplinary” or “engineering environmental” 

or “geochemistry geophysics”) b) the papers on source apportionment of VOCs or source 

apportionment of PM by other means are also included.  

 

Therefore, 50 papers which use receptor models (including CMB, PMF, ME-2, UNMIX 

and PCA) have been selected from the data mining and their details are summarized in 

Table 1-1 below. The location of study, the choice of receptor model, the choice of 

pollutants, the average concentration of pollutants and source apportionment results are 

presented. 
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Table 1-1The source apportionment study by receptor models for PM2.5 and/or PM10 in China from 2004 to 2014 

Ref Location Method Pollutants Annual 

PM2.5 and/or 

PM10 

Concentratio

n (µg/m3) 

 PM2.5 or PM10 Source Contribution (%) 
Coal 

Burning 

Marine  Vehicle  Secondary 

Aerosols 

Mineral 

Dust 

Industry Biomass 

Burning 

SOC Other  

Lei et al. (2004) Beijing PMF PM2.5 - - - - - - - - - - 

Sun et al. (2004) Beijing Factor 
Analysis 

PM2.5 & 
PM10 

77.3 3.6 - 5.7 53.7 13.3 4.9 - - 12.6 

Okuda et al. (2004) Beijing CMB PM10 171.0 25.0 - 22.0 16.0 37.0 0.0 - - - 

Zhang et al. (2005) Beijing CMB PM2.5 101.0 14.0 - 7.0 33.0 20.0 26.0 25.0 - - 

Wang et al. (2006) Guangzho
u 

CMB PM10 90.9 26.0 4.0 38.4 20.0 10.0 - - - - 

Querol et al. (2006) Wuhan PCA  PM10 156.0 31.0 - 16.0 - - 28.0 - - - 

Song. et al. (2006a) Beijing PCA  PM2.5 96.1 26.7 - 6.0 23.3 7.2 6.6 - - 26.4 

Song, Y. et al. (2006b) Beijing PMF PM2.5 96.1 19.0 - 6.0 31.0 9.0 6.0 - - 12.0 

Lu et al. (2007) Beijing Factor 
Analysis 

PM10 71---319- 11.2 - - - 52.4 25.6 - - - 

Bi et al. (2007) Jinan etc.  CMB PM10 115.0 19.0 - 9.0 9.0 55.0 - - - - 

Zhang, et al. (2007) Beijing CMB/PM

F 

PM2.5 & 

PM10 

141.9 20;1

4 

- 26;2

8 

15;19 19;2

0 

6;5 15;2

0 

- 0;2 

Feng, et al. (2007) Jiaozuo CMB  PM10 326.0 13.9 - 6.1 - 76.4 0.5 - - 3.2 

Wang, et al. (2008) Beijing PMF PM2.5 - 28.5 - 5.9 17.4 15.9 - 8.8 - 13.7 

Guo et al. (2009) Hong 

Kong 
PCA PM2.5 - - 7.0 23.0 28.0 10.0 - - - 13.0 

Wang, et al.(2009) Beijing PMF PM2.5 & 
PM10 

102.0 25.0 - 4.0 45.0 2.0 9.0 15.0 - - 
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Ref Location Method Pollutants Annual 

PM2.5 and/or 

PM10 

Concentratio

n (µg/m3) 

 PM2.5 or PM10 Source Contribution (%) 
Coal 

Burning 

Marine  Vehicle  Secondary 

Aerosols 

Mineral 

Dust 

Industry Biomass 

Burning 

SOC Other  

Wu, et al. (2009) Kaifeng CMB PM10 116.0 17.0 26.2 10.5 19.0 12.0 - - 5.8 4.8 

Li et al. (2010) Changsha PCA PM10 101.0 7.0 - 14.7 13.3 33.0 6.7 11.0 - - 

Kong et al. (2010) Tianjin CMB PM2.5 & 
PM10 

70.9 16.0 7.0 34.0 - 10.0 - - - 33.0 

Gao et al. (2011) Jinan etc.  PCA PM2.5  - - 13.0 45.0 15.0 - - - - - 

Huang et al. (2011) Harbin CMB PM10 63.6---

306.1 

16.3 - 11.0 17.7 14.4 12.0 - 7.2 14.9 

Han et al. (2011) Wuxi CMB PM10 106.5 14.6 - 9.4 9.0 57.0 2.0 - 5.0 3.0 

Wang et al. (2012) Ordos PCA-
MLR 

PM2.5 & 
PM10 

51.8 4.6 - 22.7 32.4 35.8 - - - - 

Qiu et al.et al. (2012) Longyang CMB PM10 100.0 6.4 7.4 15.4 20.8 8.7 5.4 - - - 

Kong et al. (2012) Fushun PCA PM10 130.2 27.7 - 20.7 - 21.5 18.2 5.8 - - 

Ni et al. (2012) Shenyang 
etc. in 
Liaoling 

Province 

CMB PM10 188.1 35.6 - 14.1 - 37.4 16.9 - - 3.9 

Cheng, S.Y. et al. 

(2013) 

Beijing PCA PM2.5 - 17.7 4.9 15.4 - 27.4 14.2 13.4 - - 

Wu. G. et al. (2013) Shenzhen PCA PM10 108.4 54.5 - 8.0 - - 11.4 - - - 

Zhang, et al. (2013) Beijing PMF PM2.5 135.0 14.0 - 3.0 26.0 16.0 28.0 13.0 - - 

Li, et al. (2013) Kinmen 

and 
Xiamen 

PCA PM10 75.0 14.0 16.5 - - 42.8 7.0 - - - 
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Ref Location Method Pollutants Annual 

PM2.5 and/or 

PM10 

Concentratio

n (µg/m3) 

 PM2.5 or PM10 Source Contribution (%) 
Coal 

Burning 

Marine  Vehicle  Secondary 

Aerosols 

Mineral 

Dust 

Industry Biomass 

Burning 

SOC Other  

Hu et al. (2013) Nanjing PCA  PM2.5 & 
TSP 

76.4 26.3 15.2 13.7 - 25.7 - - - - 

Yu et al. (2013) Beijing PMF PM2.5 55.4 16.0 - 17.1 26.5 23.1 6.0 11.2 - - 

Wang (2013) Northern 

Yellow 
Sea 

PMF TSP 123.2 10.0 9.3 - 42.1 - 2.6 11.5 - - 

Geng et al. (2013) Zhengzho

u 

PMF PM2.5 175.0 44.0 - 16.0 41.0 46.0 8.0 23.0 - - 

Yang. et al. (2013) Jinan PMF PM2.5 148.7 21.0 - 6.1 51.2 9.3 2.9 4.6 - 1.1 

Huang et al. (2013) Qingyuan PMF PM2.5 111.2 12.6 - 7.6 39.1 8.2 13.3 3.2 - - 

Dai. et al. (2013) Shen 
Zhen 

PMF-
OMM 

PM2.5 101.6 - - - - - - - - - 

Li et al. (2014) Suixi PMF PM2.5 110.7 6.1 - 5.4 28.4 10.4 0.7 44.9 - 8.5 

Huang, X.F. (2014) Shenzhen PMF PM2.5 42.2 - - 26.9 39.3 - - 9.8 17.
6 

- 

Liu et al. (2014) Beijing PMF PM10 - - - 25.5 34.7 20.3 19.5 - - - 

Huang et al. (2014) Beijing 
etc.  

CMB and 
PMF 

PM2.5 159.0 26.1 - 5.6 25.3 10.0 - 5.6 25.
8 

26.9 

Tao  et al. (2014) Chengdu PMF PM2.5 119.0 22.0 - - 46.0 10.0 25.0 15.0 - - 

Wei  et al. (2014) Southern Hebei 
Province  

PMF PM2.5 160.1 25.9 - 7.7 21.8 10.9 16.2 - - - 

Liu et al. (2015) Hangzhou PMF PM2.5 108.2 12.8  17.2 27.9  10.1    

Hua et al. (2015) Nanjing CMB PM2.5  5  15 55 4 5 19   

 Suzhou CMB PM2.5  7  6 50 7 4 26   
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Ref Location Method Pollutants Annual 

PM2.5 and/or 

PM10 

Concentratio

n (µg/m3) 

 PM2.5 or PM10 Source Contribution (%) 
Coal 

Burning 

Marine  Vehicle  Secondary 

Aerosols 

Mineral 

Dust 

Industry Biomass 

Burning 

SOC Other  

 Ningbo CMB PM2.5  5  22 43 2 2 21   

 Shanghai CMB PM2.5  11  8 58 2 1 16   

Yao et al. (2016) North China 
Plain 

PMF PM2.5 80.9   5.2 54.3 8.3 15.6 15.8   

Li et al. (2016) Nanjing PMF PM2.5 142 12.4 4.5  64.1 10.6 8.45    

Wang et al. (2016) Guangzhou CMB PM2.5 138 24.6  14.1    5.6 15.9  

Liu et al. (2016) Taian PMF PM2.5 70.8 17.9  16.7 27.47 9.4 19.6    

Tao et al. (2017) PDR PMF PM2.5 47 15  10 50 7     

NB: It has to notice that only the works based on PMF, CMB and related methods including PCA etc. for particular matter only are shown 

above. If there is more than one method or particular matter size has been studied, PMF and CMB are preferable in terms of method and 

PM2.5 is preferable in this table.  
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1.4 Geographic distribution of study locations and their PM concentration level 

Except the research activity on this topic in the last a couple of years, there are following 

main features worth addressing based on table one: 1) the latest PM2.5 and PM10 

concentration level; 2) the geographic distribution of study locations; 2) the methods 

applied in Chinese source apportionment of PM and the major sources that have been 

identified by these research.  

 

Based on the data summarized in table one, it can be found that most of the case study on 

source apportionment  of PM is in north China, accounting for 60% over a total number 

of case study (See Figure 1-2 ). Among these 60% northern Chinese cities, 16 out of 27 case 

studies were in Beijing so that Beijing has become the most studied city on PM source 

apportionment in China.  

 

Figure 1-2 the location distribution statistics of source apportionment of PM across China 

 

Moreover, according to Table 1-1, all the mean concentration of PM2.5 or PM10 during the 

sampling campaign is more than 35 and 75 µg·m-3, respectively, which is greater than the 

North China
60%

Central China
26%

South 
China
14%

Geographic distribution for the locations of source 
apportionment study 
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second tier concentration of PM2.5 and PM10 in the latest national ambient air quality 

standards of China (MEP, 2012). It is also much higher than the WHO guidelines on 

ambient PM2.5 and PM10 level that can be suggested have very low risk to human health as 

mentioned earlier. Therefore the PM pollution is still a very common issue not only in 

major big cities such as Beijing but in from moderate size to mega-city across the country. 

As suggested in the other publications, it has become a regional pollution issue (Huang et 

al. 2014).  

 

1.5 Main sources identified in China and their markers used in receptor model 

In the majority of published papers on source apportionment of Chinese megacities, there 

are five major sources including 1) coal combustion; 2) vehicle exhaust and road dust; 3) 

secondary inorganic aerosols; 4) industrial emission and 5) biomass burning as shown in 

Table 1-1. Meanwhile, waste incineration and marine salt are also occasionally identified 

depending on the location and the use of technique (Zhang et al. 2013). In this section, the 

major sources found in China and which tracers that have been used for apportioning the 

sources will be discussed.  

1.5.1 Tracers and organic molecular markers  

The chemical signatures of measured chemical species from the sample are vital to the 

receptor models to apportion the sources of these particular matters (Lin et al. 2010). The 

receptor models use theses signatures from both sources emissions (or source profiles) and 

ambient samples to identify the specific sources and then it helps to quantity its 

contribution (Bullock et al. 2008). The ideal tracer (or called organic molecular markers) 

is regard as the chemicals that: 
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“Must be characteristic of some sources but not others and must react slowly enough in the 

atmosphere that they will survive transport from their source to receptor air monitoring stations.” 

(Cass, 1998) 

They are also should not be formed by atmospheric chemical reactions or can be 

evaporated to gas phase from liquid or solid phase during the transport to the receptor site 

(Cass, 1988). In this case, if the source profile is provided, as the sample is regarded as a 

linear combination of these tracers compounds distributions present in the effluent  from 

the contributing sources based on mass balance principle, these tracers amount in the 

samples can be used to estimate the relative contribution from the corresponding sources 

(Cass, 1988), for example, CMB. Alternatively, they can also be helpful when it is used for 

determining the type of source in a qualitative way in other models such as PMF. It is 

crucial to choose a distinctive compound in a source as a tracer and have a good knowledge 

of the ratio between the total particle mass emission rate and tracer mass emission rate in 

order to make this approach work correctly (Cass 1998). 

1.5.2 Coal combustion  

Coal combustion is the major combustion of PM sources in China (Yao et al. 2009). In 

China, coal is particularly widely used for domestic heating in local combustion appliances 

from mid-November to late March in the majority of Northern China as well as one of the 

major resources for power plants (Zíková et al. 2016). Another study suggests that 3.81 

million tonnes of coal are burnt per year in total by the coal-fired power plants in mainland 

China that may contribute 44.6% of the total PM emission by mass (Yao et al. 2009). Coal 

combustion can be also related to the industrial boilers as it is a very important energy 

supply in the China’s heavy industry as well as local small workshops (Hao et al., 2008). 

Coal combustion is one the most frequently apportioned and quantified source according 
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to Table 1-1 where 82% of studies found that the coal combustion is one of the major 

sources of PM in the local region. The average of coal combustion contribution is around 

19% in these 42 case studies. As the most studied cities, the contribution of coal 

combustion to PM2.5 is between 15-25% according to Table 1-1, which is fairly consistent 

to the estimation suggested by Yao et al. (2009) with the value between 15 to 20%. 

 

While apportioning the coal combustion source in China, Cl, As and Se are the most 

commonly used as inorganic tracers  (Song et al. 2006; Zhang et al. 2007; Wang et al. 2009; 

Zhang et al. 2013; Yu et al. 2013). Cl- is particularly regarded as an important inorganic 

tracer is because due to direct emission as HCl from coal burning (Huang et al. 2014).  

 

1.5.3 Marine salt 

Only a few study apportioned a considerable amount of marine salt in PM10 rather than 

any PM2.5 source apportionment in China. This is not only due to the locations where the 

cities such as Beijing is far away from the coast but also due to the size fraction of sea spray 

of which its coarse mode accounting for more than 90% of the total mass (Fitzgerald 1991). 

Ni et al. (2012) found the sea salt accounts for 4% of total PM10 mass in Huludao in North-

eastern China. Li et al. (2013) discussed the sea salt contribution to PM10 in Xiamen where 

at the southeast coast and there is not distinctive seasonal variation and it accounts about 

3.6% on average all year around. The data are comparable with other case study in the 

other places (Amato et al. 2016). Normally Na and Mg are used as tracers for sea salt as 

they are predominant chemicals (Huang et al. 2014). 
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1.5.4 Road Traffic 

Road traffic is another important PM2.5 sources in China and it generally makes a great 

contribution to total PM in urban areas.  Road traffic normally consists of two major parts, 

the exhaust emissions from the tailpipe and the non-exhaust emission to wear and tear of 

automobile components such as brake-wear, tyre-wear and re-suspension of road dust etc. 

(Pant & Harrison 2013). Unfortunately, due to a lack of understanding of this source and 

unclear definition on “road traffic”, it shows great uncertainty presented across all the 

literature. Some common elemental tracers such as Zn, Cu, Ba, Sb, Fe and organic 

molecular makers including some particular PAHs and n-alkanes (Amato et al. 2012; 

Fabretti et al. 2009; Harrison et al. 2012) are also used in China, but the choice of tracers 

also varies in different study. Among them, Zn and Cu are the most frequently used tracer 

for vehicle exhaust is due to its existence in lubricant oil while Zn can be also found in 

brake ware and tyre ware (Yu et al. 2013). The ratio of OC and EC is also a popular choice 

for vehicle emission as they have a very high amount of its emission. Zhang et al. (2007) 

also deployed CH3CHOO- and HCOO- for identifying automobile.  

 

On the other hand, it is common that the source of “road traffic” is not generally all split 

into exhaust emission and non-exhaust emission in some studies in China. However, it is 

a better practice to separate the vehicle exhaust and road dust as they may have some 

distinctly different chemical profiles, which road dust is mainly minerals though it is related 

to the traffic (Yu et al. 2013).  
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1.5.5 Secondary Inorganic Aerosols 

Secondary inorganic aerosols is another major source of PM in China, especially playing 

a very important role in PM2.5 (Li et al. 2013b). Ammonium, nitrate and sulphate are the 

dominant species in secondary inorganic aerosol which they commonly in the form of 

(NH4)2SO4 and NH4NO3 (Long et al. 2014). In general, nitrate is formed by its precursor 

NOx, which comes from some primary sources such as fossil fuels combustion, reacting 

with OH· while ammonium is participated in the reactions so that the equilibrium between 

the gas phase to the solid phase may form. While the sulphate come from the oxidation of 

SO2 and then neutralized by the ammonium in the ambient air. Secondary nitrate and 

sulphate are relatively easier to identify in receptor models, especially PMF, as the 

modelling factor profile will show distinctive high concentration of nitrate, sulphate and 

ammonium loading. For example, there is a good agreement in sulphate proportion in 

Beijing’s PM2.5, which is around 17% according to table 1.1. However, the uncertainty for 

nitrate is larger ranging from 8% to 27% with average of 14% accounting the total mass of 

PM2.5. This may due to the formation of nitrate is more sensitive to temperature because 

of its saturation vapour pressure property.   

 

1.5.6 Mineral Dust 

Mineral dust is also a common sources of both PM2.5 and PM10 in Chin’s urban area and 

normally they are the mixes of desert and loess dust, local fugitive dust, construction and 

re-suspended road dust (Zhang et al. 2013). Dust storm is generally seasonal and it is most 

severe in spring in northern China while the construction dust without controlling 

measures in many cities in China is the issue all year around (Chan  Yao, X. 2008). 

Therefore, Ca and other elemental tracers including Al, Mg, Fe, Ti and Si are usually used 
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in the receptor models(Song et al. 2007).  In some cases, it is also regarded as “road dust” 

in some circumstances (Wang et al. 2009). Perhaps, mineral dust is the factor that has 

highest agreement in the source apportion in Beijing as an example, which accounts for 

about 19% on average.  

 

1.5.7 Industrial sources 

The emission from industrial sites has complicated compositions including trace metals, 

OC, EC and PAHs and they are the important contributions to both PM2.5 and PM10 

(Taiwo et al. 2014). In China, industrial emission is also widely apportioned in receptor 

modelling. For example, Zhang et al. (2013) used OC, EC, Zn, Mn and Cr as tracers and 

found “industry” accounting for 25% of total annual mass of PM2.5 in Beijing as the high 

content of Zn and Cr may imply the emission from smelters and metallurgical industries. 

Yang et al. (2013) used Ni and Cr for typical indicator for residual fuel oil combustion, oil-

fired power plants and steam boilers. The high loading of Ni, Cr, Co and Sc mixing with 

other trace species such as Zn, Pb and Fe could also be suggested the industrial emission 

(Yang et al. 2013). Moreover, Huang et al. (2014) used Zn for metallurgical industry and 

V for oil combustion sources. Wang et al. (2009), however, thought Al and Fe may not 

only come from the soil dust but also implies the emission from welding and cutting of 

metal working from local workshop.  

 

However, it is worth pointing out that the so called ‘industrial emission’ is normally not 

specific or even misleading as it is the source which is very difficult to apportion since the 

source profile from different industrial sites can be massive due to difference manufacturing 

processes. And this has been suggested by the difference choice on tracer species for 
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industrial emission source in the different studies mentioned above. Taiwo et al. (2014) 

proposed that “a general classification of the source ‘industry’ is rarely appropriate for PM source 

apportionment.” And different industrial processes should be classified in more details by 

putting any single efforts to achieve their source profile and use multiple models to 

minimize the modelling uncertainties (Taiwo et al. 2014).  

1.5.8 Biomass Burning  

Biomass burning emission study is a hot topic in the recent years in China. Chen et al. 

(2016) recently reviewed the impact of biomass burning to the local and regional air quality, 

public health and climate. Chen et al. (2016) addressed that the rice, wheat and corn straws 

burning is the major source of biomass burning in China. Though they are temporal and 

spatially dependent, it can deteriorate the air quality in a relatively very short time and the 

its contribution to SOA in mass during the biomass burning related pollution episode can 

account for up to 60% (Chen et al. 2016). There are usually three major biomass burning 

periods throughout the year in China, namely the ‘summer harvest season’ from late May 

to the end of June; 2) crop burning in October; and 3) Winter heating (Chen et al. 2016).  

 

Though there are fewer studies reported biomass burning than other sources, more than 

half of papers in the table 1.1 identified the biomass burning in their modelling. The 

average contribution of biomass burning in mass from these studies is around 14%.  

 

In general, like other source apportionment elsewhere, K+ or K is the major tracer for 

biomass burning due to its large amount of emission from the biogenic residuals burning 

(Chen et al. 2016; Song et al. 2007; Wang et al. 2009; Zhang et al. 2013). Cl- and Sr are 

used as the inorganic tracer for biomass burning in China too (Zhang et al. 2007; Yang et 
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al. 2013). Pb may also coexisted with biomass burning in China as they are burnt with 

some local waste together (Huang et al. 2014). Except for these inorganic tracers, 

levoglucosan and mannosan are also widely used for biomass burning organic molecular 

markers (Fu et al. 2008;Cheng et al. 2013). However, there are also some studies use 

levoglucosan for cooking emission in China as it can be also released when the vegetable 

is heated (Jiang et al. 2009). 

1.5.9 Secondary Organic Aerosols and Organic Molecular Markers 

The secondary organic aerosols (SOA) is formed via photochemical reaction processes 

after the primary organic matter is emitted to the atmosphere (Huang et al. 2014). Due to 

its high degree of complexity on chemical characteristics, there is currently no direct 

method to measures its contribution  (Huang et al. 2014). Therefore it is normally difficult 

for CMB model to estimate the SOA contribution due to lack of source profile (Pant & 

Harrison 2013; Pant et al. 2014; Pant 2014;Lee et al. 2008). In PMF model, however, SOA 

normally will get involved with other factors together such as SIA and vehicle emission 

due to the high loading of OC (Huang et al. 2014). Normally, the OC/EC ratio method is 

introduced to estimate the SOA concentration in the ambient air indirectly in the Chinese 

literature like elsewhere. The secondary organic carbon is estimated based on the OC and 

EC data by using the following equation (1.2): 

SOC = OC – (OC/EC)primary × EC  (1.2) 

Where: (OC/EC)primary is equivalent to the minimum OC/EC ratio during the sampling 

campaign. This method uses EC as a tracer to estimate the secondary organic carbon 

formation indirectly ( Zhang et al. 2012; Han et al. 2011).  
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Some researchers have started discovering the appropriate organic molecular marker for 

SOA in receptor model. For example, Wang et al. (2012) used 2-methylerythritol for the 

SOA formation from isoprene and applied in the PMF in Rochester, NY. Wang et al. 

(2012) also found that n-heptacosanoic acid and n-octacosanoic acid are also associated 

with SOA in PMF. Zhang et al. (2009) deployed some organic molecules such as 2-

methylglyceric acid, pinic acid, 3-Acetyl pentanedioic etc. together with other fatty acids, 

hopanes, PAHs and n-alkanes to apportion the isoprene SOA, α-pinene SOA and β-

caryophyllene SOA in the PMF in the mid-western region in U.S.A. However, it is lack of 

similar study applying organic molecular markers for SOA in receptor models in China.  

 

But Zheng et al. (2005) are one of the very first authors reported using a set of organic 

molecular markers rather than inorganic tracers only in receptor model (CMB in her 

research) to apportion the PM2.5 in Beijing. By using GC-MS, Zheng et al. (2005) detected 

and quantified the n-alkanes, PAHs, n-alkanoic acids, n-alkenoic acids, resin acids, 

aliphatic and aromatic dicarboxylic acids and levoglucosan etc. in the PM2.5 samples. 

Unfortunately, the similar source apportionment is not the majority before by 2014. More 

source apportionment by using organic molecular markers should be encouraged in China.  

 

1.6 The source profiles availability in China  

Local source profile is crucial for receptor models, particularly CMB and result verification 

for PMF etc., which can directly determine how robust the results of receptor models could 

be. Or using the profiles from literature may result in substantial bias in CMB for example 

as the profiles for the same type of source in the literature may not completely reflect the 

chemical characteristics at the local study area (Kong et al. 2011). Unfortunately, there is 
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not a comprehensive database for PM10 and PM2.5 in China as same as SPECIATE in 

U.S.A. or SPECIEUROPE in EU. Some reprehensive source profiles measured in China’s 

literature are summarised below.  

Table 1-2listed the recent publications on PM source profiles, covering fugitive dust, 

vehicle exhaust, industrial fly ash, cooking, straw burning and biomass burning. 

Fortunately, the currently available reports cover a broad range of sources and both 

inorganic and organic compounds have been addressed and measured. 

Table 1-1 the study of source profile in China 

Author  Year Size of PM Source Main markers or analyzed 

chemicals 

He et al 2006 PM2.5 Vehicle 
exhaust 

n-alkanes, PAHs, Hopanes, n-
fatty acids 

Zhang. et al 2007 PM2.5 Cereal straw 
burning 

OC, EC, levoglucosan, 
Methyloxylated phenol, guiacyl, 

syringyl  

Cao et al. 2008 TSP, PM10 

and PM2.5  
Fugitive dust Al, Si, K, Ca, Fe, Cl, Ammonium, 

K 

Hou et al.  2008   Charcoal 

Broiling 

Linoleic acids (more); stearic acid 

(less) 

Wang et al 2008 PM2.5/PM10  Rural biomass 
burning 

ACY, ACE, FLU, PHE, ANT, 
FTH, PYR, BaA, CHRY, BbF, 
BkF, BaP, IcdP, DahA, BghiP 

Shen et al 2010 PM10 Road Dust OC, EC, BaP, Ca, Sulphate, 
Nitrate, IP, BghiP 

Kong et al 2011 PM10 Soil Dust Si, Ca  

Chen  et al 2013 PAHs in 
PM10 

Vehicle 
exhaust in Fu 
Gui-shan 

Tunnel 

BghiP , BkF, BaA, BaP 

Han et al. 2014 PM10 Geological 

Sources 
(including soil 
dust, road 

Si, Al, Ca, Fe, Pb, OC, Sulphate, 

Cr, Ni, Cu, Zn, Cd, Sn, Sb, OC, 
EC 
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Author  Year Size of PM Source Main markers or analyzed 

chemicals 

dust and 

construction 
derived dust) 

Han et al. 2014 PAHs in 
PM10 

Road Dust 4-6 rings PAHs including PHE, 
ANT, FLU, PYR, CHR, PER, 
B[k]F, B[a]P, D[bah]A, B[ghi]P, 
IND 

Kong et al 2014 PM2.5/PM10

/TSP 
Fugitive dust Ca, Si, OC, Al, Fe, Sulphate 

Zhang et al 2014 <100 
micron 

Fugitive dust Al, Si, Ca, Fe 

Zhang et al 2015 PM2.5 Diesel Lorry OC,EC,Sc, Sulphate, Ca, Ni, Cr, 
Mo, Ti, Cu, Mn, Se, Zn, Ba and 

Pb 

Zhao et al 2015 PM2.5 Chinese 

residential 
cooking 

Fatty acids, sterols, 

monosachharide anhydride, 
polyols.  

Pei et al.  2016 PM2.5 coal-fired 
boiler 

High abundances of sulfate, Ca, 
Al, Fe, S, OC and geological 
materials  

Wu et al 2016 PM2.5 Diesel Lorry Sulphate, Cl, Na, Ti, V, Cr, Mn, 
Co, Ni, Cu, Ga, As, Sr, Pb and 

U,OC,EC 

      Industrial Fly 

Ash 

Si, Ca, Al, Fe, Na, SO4,  

      Vehicle 
exhaust 

Sulphate, OC, EC, Cd, Nitrate 

      Coal 
combustion  

OC, EC, Sulphate, Ca, Si, Fe, Al 

      Road Dust Si, Al, Ca, Mg, Na, Fe, OC, EC, 
Cr, Sulphate 

      Construction 
derived dust 

Ca, Si, Al 

      Coal 
combustion  

Si, Ca, Al, Pb, Cr, OC, EC 

      Iron Smelt 

plant 

Si, Ca, Al, Mg, OC, EC 

      Industrial raw 

material and 
production 

pile 

Si, Ca, Al 
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Author  Year Size of PM Source Main markers or analyzed 

chemicals 

      Coal Storage 

pile 

Si, Al, Ca, Fe, Na, Zn, Cr, OC  

Sources : (He et al. 2006; Zhang et al. 2007; Cao et al. 2008; Hou et al. 2008;Wang et al. 

2008; Shen et al. 2010; Kong et al. 2011Chen et al. 2013; Han et al. 2014; Kong et al. 2014; 

Zhang et al. 2014;Zhang et al. 2015; Zhao et al. 2015; Pei et al. 2016; Wu et al. 2016) 

1.6.1 Fugitive dust 

 

The fugitive dust is the re-suspended mineral that may consist of road dust, construction 

derived dust and soil dust etc. It is the most studied source profile in China in both PM10 

and PM2.5 size range (Cao et al. 2008, Kong et al., 2011 and 2014, Han et al., 2014, Zhang 

et al., 2014) and they show a high degree of agreements. Cao et al. (2008) used the samples 

from the Loess Plateau where is one of the major sources of mineral dust in Eastern Asia 

and North Pacific Ocean while the major trace metal, water-soluble ions and EC, OC were 

measure. It turns out that Al, Si, K Ca and Fe were found the most abundant trace metals 

in all size range from TSP to PM1.0, which matches the composition of mineral 

compositions (clay and feldspar) in Loss Plateau (Cao et al., 2008; Liu, 1985). Other 

studies also found Al, Si, Ca and Fe are the most abundant elements in the soil dust while 

Ca is also abundant in road dust, construction derived dust and cement plant (Kong et al., 

2011 and 2014, Han et al., 2014, Zhang et al., 2014). Therefore, these five elements can be 

used as markers for this type of sources in receptor model in the China’s source 

apportionment with confidence. And since this fugitive dust is common in Northern China, 

therefore it could be a good source profile input data in many northern Chinese cities, 

especially for the short-term dust storm pollution episode source apportionment. 
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On the other hand, it should not be ignored that these geological sources may have also 

been affected by the anthropogenic chemical. For example, some unexpected high 

concentration for some specific water-soluble ions and carbon fraction including K+ and 

NH4
+ were also found (Cao et al., 2008), showing the contamination from biomass burning 

and possible fertilization. And regarding road dust, there is also a considerable amount of 

sulphate, nitrate and OC appeared (Shen et al., 2010, Han et al., 2014). This implies the 

complexity of source profile and different sources may be interlinked and the deposition of 

other anthropogenic pollutants should be considered while discussing the simulated source 

profile by the PMF.  

 

1.6.2 On-road sources 

Both vehicle exhaust and road dust can be regarded as on-road sources. Several source 

profiles regarding the vehicles exhaust and/or road dust and tire and brake abrasion have 

been assessed. Most of them were undertaken within tunnels as it provides a decent 

condition to show a more real-world traffic emission with low dispersion rate, less input 

from other sources and no affect from sunlight (Pant et al., 2014; Keyte et al., 2016). For 

instance, He et al. (2006) measured the PM2.5 in Wutong tunnel, Shenzhen, which is the 

longest tunnel in China. The PM2.5 in the tunnel has distinctive difference with the ambient 

PM2.5 that EC, OC, and nitrate accounts for 63.7%, 34.2% and 0.9% to the total PM2.5 and 

alkanes, PAHs, hopanes, fatty acids and dicarboxylic acids are the major identified OC 

(He et al. 2006). Furthermore, n-alkanes are the most abundant and the carbon number is 

from 15 to 31 while n-Tricosane is at the peak level among the n-Alkanes (He et al., 2006). 

Hopane was  also proved to be a very good tracer in receptor modelling in this study not 

only it constitute 5.3% of the total OC in the PM2.5 but also its characteristics are consistent 
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with those in the petrol and diesel vehicles emissions (He et al., 2006). Meanwhile, Chen 

et al (2012) focused on the PAHs in the Fu Gui-shan Tunnel in Nanjing, China. 

Benzo[ghi]perylene (B[ghi]P), benzo[k]fluoranthene (B[k]F), benz[a]anthracene (B[a]A) 

and benzo[a]pyrene (B[a]P) are the four most abundant particular phase PAHs in PM10. 

This is quite different from the previous study in the Wutong tunnel where pyrene, 

fluoranthene and phenanthrene are the three major PAHs. This could be caused by the 

percentage of diesel powered heavy-duty vehicles and petrol cars.  

On the other hand, other researchers move the interest on the road dust. Shen et al. (2010) 

collects the PM10 at the roadside during the heavy traffic period in Xi’an. Chemical 

compositions including OC, EC, water-soluble ions and PAHs have been conducted (Shen 

et al. 2010). The dominant inorganic species are Ca2+, SO4
2-, NO3

- while B[ghi]P has the 

highest level in this study as the measured organic molecule and B[a]A, B[b]F, Chr, B[k]F, 

B[a]P, IP, dB[ah]A also have significant contribution in OC and turns out a reliable 

fingerprint for the source apportionment (Shen et al. 2010).  Han et al. (2014) put more 

efforts on the trace elements on road dust. Except finding a big amount of contributions 

from Si, Ca, Al, Fe, Ca2+ and SO4
2-, trace elements including Cr, Ni, Cu, Zn, Cd, Sn, Sb 

are also enriched compared to the soil dust, indicating the depositions from industrial and 

vehicle emissions, especially the tyrewear and brakewear. However, since road dust is a 

non-exhaust particulate emission greatly depend on site and particle size and it is closely 

related to fugitive dust, the use of profile will be really careful (Chen et al. 2013).  
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1.6.3 Biomass burning  

 

As mentioned earlier, the biomass combustion from straw burning plays a significant role 

in the PM emission. Some efforts also have been made recently on this source. For example, 

Wang et al. (2008) measured the PAHs emission from biomass burnt for domestic cooking 

in the Chinese rural area. 16 USEPA priority PAHs have been measured in PM10. It is 

found that there is high emission rate during the cooking while this biomass is burnt and 

five- and six-ring PAHs dominates the emission (Wang et al. 2008).  

 

Zhang et al. (2007) focused on the cereal straw burning and the carbonaceous compounds 

were measured in both smouldering and flaming phase which was simulated in a burning 

chamber. Gas Chromatography–Mass Spectrometry (GC-MS) were employed for the 

organic species analysis, including n-alkanes, n-alkanols, organic acids, PAHs, sugars, 

sterosl, Methyloxylated phenols etc. and OC and EC were measured by Sunset thermal-

Optical analyser (Zhang et al., 2007). Apart from the common tracers mentioned in the 

previous studies such as levoglucosan and mannosan (Simoneit, 1999; Simoneit et al., 

2002), methyloxylated phenols is also discovered as one of the primary particulate organic 

matters (POMs) from the straw burning in China, which accounts for 8.7% of mass of the 

fine particles (Zhang et al., 2007), which can be good indicator for the Chinese cereal straw 

burning too. Other organics such as sugars, Methyloxylated phenols, Sterols, n-Alkanes, 

PAHs, n-Fatty acids, dicarboxylic acids. n-Alkanes and PAHs show a good similarity with 

the previous study (Simoneit, 2002; Simoneit et al., 1999) while the author claims that 

levoglucosan in cereal burning has a very similar mass proportion in its fine particles which 

is not helpful enough to distinguish the source of wood burning or cereal burning. Overall 

141 organic molecular have been measured provided a detailed profile for the users of 
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CMB, which provided a detailed profile for the users of CMB.  More study on source 

profile of at least other types of biomass burning such as wood burning is still required.  

 

1.6.4 Cooking 

The cooking can be really variable and the emissions will be consequently different with 

each cuisine (He et al. 2004). A couple of publications show the source profile for Chinese 

cooking and how it differs from the American cooking, which suggests it is essential to 

establish the local cooking source profile in China. For example, He et al. (2004) took the 

sample from the cooking fume at the exhaust exit on the roof of a Hunan cuisine and 

Cantonese cuisine restaurants, which both are very popular cooking method in China. All 

the major organics including n-alkanes, fatty acids, dicarboxylic acids, PAHs, steroids etc. 

have been measured by GC-MS. It has been found that the majority of chemicals are 

organics with minor constituents of EC and water-soluble ions. Overall, the components 

of fatty acids, PAHs and steroids are quite different with western cooking and the linoleic 

acid and pyrene are predominate and C27-C29 sterols were detected in Chinese cooking 

due to different ingredients (He et al., 2009). Even the Hunan and Cantonese foods are 

also a bit different in organics emission amount while Hunan cuisine release 81.6 % of 

organics but the Cantonese food only emits 52.6%, which again shows how crucial the 

local source profile is if they will be used in the receptor models.   

 

Meanwhile, Hou et al. (2008) completed a simulation of charcoal broiling, aiming to work 

out the contribution from the street food in China, which is becoming more and more 

popular and could be distinctive to normal Chinese cooking and may make a significant 

contribution to the winter night. He mainly focused on PAHs, fatty acids, levoglucosan 
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and cholesterol. The profile of PAHs shows the differences with the cooking by natural gas, 

where fluoranthene and pyrene have the highest emission rate (Hou et al., 2008). In 

addition, fatty acids dominate the organic compounds during the cooking process 

particularly oleic acid and palmitic acid which are the products of hydrolysis and thermal 

oxidation, showing the agreement with the previous study (Hou et al., 2008; Rogge et al., 

1991; Schauer et al., 1999). The author claimed that fatty acids were more important 

emission rather than PAHs after comparing his charcoal cooking profile and the 

corresponding ambient source profile that was sampled at the meantime, due to Benzo[b, 

k]fluoranthene and other HMW 5- and 6-ring PAHs dominates within the ambient aerosol 

rather  than fluoranthene,Pyrene and other LMW 4-ring PAHs (Hou et al., 2008). On the 

other hand, fatty acids characterisation shows more consistency between charcoal cooking 

source profile and ambient source profile. Moreover, it should be addressed that both 

cholesterol and levoglucosan were both detected. This is mainly because the vegetables are 

also fried with oil in China. As mentioned earlier, levoglucosan is generally regarded as 

the organic marker for biomass combustion and but this reminds the researcher again to 

be cautious while using this marker. Nevertheless, these source profiles can be very helpful 

and more reliable rather using the other country’s cooking profile. 

1.6.5 Other sources 

Last but not the least, Han et al. (2014) finished a comprehensive study on the source 

profile on some other sources including cement plant, coal combustion, construction dust 

and industrial fly ash. It has been noticed that Al, K, Fe, Ca2+ are relatively abundant in 

the emission from both of construction and cement plant while construction site contains 

more Si while the cement plant emits more Ca (Han et al., 2014). The construction process 

will also produce some particles with a relatively high amount of Mg while SO4
2- is more 
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dominant in cement plant emissions (Han et al., 2014).  The coal combustion source profile 

is dominant by OC, EC, SO4
2-, Ca, Si, Fe and Al (Han et al., 2014). However, there are 

more varieties on the chemical characterisation on industrial fly ash as the compositions 

differ due to production processes, combustion processes and pollution control device 

(Han et al., 2014) and it is difficult to produce a general source profile for “industrial 

emission”.  

Zheng et al. (2013) also established the industrial emission in Shanghai. They found the 

chemical composition from coal combustion and mixed fuels power plant emit the similar 

pollutants except for the differences in Ca, Al, Fe and SO4
2- percentage (Zheng et al., 2013). 

Much more significant difference between sintering plant and metallurgic plant were found 

due to more different industrial process.  

In summary, it is found that though many emissions inventories have been developed 

within the last decade, for example, the Multi-resolution Emission Inventory for China 

(MEIC, 2016), far few studies reported chemical profiles of PM sources in China. It could 

be partially because that obtaining PM source profiles is technically difficult and time-

consuming (Hao et al., 2009). Nevertheless, it should be addressed that lacking enough 

source profile data in China could be a big obstacle for a more accurate source 

apportionment and this might be another reason why the uncertainty of modelling in the 

same city can be still significant. Many more other source categories should be studied and 

reported for the future receptor modelling requirements.  
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1.7 The choice and the use of receptor models 

1.7.1 Overview  

Based on the literature research and Figure 1-3, a clear pattern of the choice of receptor 

models and its trend can be revealed. Both PMF and CMB play almost equally important 

roles in the past decade while Principle Component Analysis (PCA) also has contributed 

massively to the source apportionment study in China at the earlier stage.  Furthermore, 

there is a clear trend that PMF has become more popular in the recent years. This is 

probably due to that PMF model does not require the source profile for the analysis and 

there is no limitation on sources numbers in theory (Hopke 2003; Zhang et al. 2013). 

Secondly, the efforts on verifying one source profile can be huge and may not be realistic 

to all the research groups (Song et al. 2006). On the other hand, for the most CMB 

modelling case study, since there is not enough source profile data, some assumptions and 

estimations have to be made prior to the CMB modelling or other source profiles which 

were not similar to the local source profile were employed so that bigger errors may be 

made (Okuda et al. 2004). Therefore, PMF has gradually become the mainstream of 

receptor modelling in China which can perform the source apportionment analysis in a 

reasonable time and cost (Song et al. 2006). However, what should not be overlooked that 

CMB could apportion some sources which are very difficult to PMB by using some certain 

source profiles and organic molecular markers. For example, Zheng et al. (2005) combined 

the local dust, coal combustion etc. and vehicle emission profile form North America and 

successfully quantified the contribution from vegetative detritus, cigarette smoke etc. 

which have not been reported from PMF modelling results. If possible, much more efforts 

should be put to establish comprehensive local source profiles so that more detailed 

apportionment is much more likely to be achieved.   
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Last but not the least, AMS has become another means to analysing the source 

contribution in China in the recent years. Ge et al. (2017) and Ye et al. (2017) have found 

that traffic, cooking and biomass burning have played the key role in water soluble organic 

matter in PM2.5. Thanks to its advantage in real-time high resolution sampling, AMS will 

play an even greater role in the future to understand the complex aerosol source in the 

urban area.   
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a) 

 

b) 

 

 

Figure 1-3 a) the use of different receptor models in China; b) the frequency of use of different 

receptor models in China. 
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1.7.2 Source categories and outcomes comparison 

According to Table 1-1, the following source categories have been summarized from the 

literatures on China’s source apportionment, which are coal, sea salt, vehicle emissions, 

including exhaust and non-exhaust, secondary inorganic aerosols, which are mainly 

secondary nitrate and sulphate, crustal matter, industrial emission, biomass burning and 

SOA. These eight source categories are the most frequently reported sources in China, 

especially the fossil fuel combustion, vehicles, secondary inorganic aerosols, mineral dust 

and industrial emission and biomass burning.   

 

However the uncertainty for some sources contribution remains high. Beijing, where is the 

most studied city, is chosen as an example for discussion so that the comparison could be 

as comparable as possible.  

 

  



34 

 

 

Figure 1-4 Summary of median source contributions to PM2.5 in Beijing from 2005-2014 and 

their uncertainties, based on the reviewed literatures. Sources: ( Okuda et al. 2004;  Zheng et 

al. 2005; Zhang et al. 2007; Wang et al. 2009; Zhang et al. 2013; Huang et al. 2014;. Liu et al. 

2014; Huang et al. 2014;; Song et al. 2006a; Song et al. 2006b; Wang et al. 2008; ) 

 

Figure 1-4 shows the average source contribution to the PM2.5 in Beijing from 2004 to 2014. 

According to this graph, crustal matter, biomass burning and road dust have relatively 

small uncertainty where the rest of apportioned sources have big uncertainties. Many 

factors may result in the big uncertainties such as the time of sampling, meteorological 

conditions, the chemical analysis methods and the model execution. Despite the objective 

reasons, one common issue about the source apportionment in China and elsewhere is that 

the definition of each source and the standards or reference on identifying the same source 

might be different.  For example, there are more agreements on the choice of inorganic and 

organic markers for and mineral dust, road dust and biomass burning while executing the 

models. For instance, all the researchers from the reviewed literatures used K+ or K and 
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levoglucosan as markers and the mineral dust are also mainly defined by some elemental 

markers including Si, Ca, Al, Fe etc. (Zhang et al. 2013; Song et al. 2006; W. Zhang et al. 

2007; Zíková et al. 2016).  However, the choice of markers industrial sources and vehicles 

emission is far more different and diverse (See Table 1-2).  

Table 1-2 the markers which were used for the PM2.5 source apportionment in Beijing 

Ref Method PM Factors 

      Coal 

Burning 

Biomass 

Burning 

Vehicle 

Exhaust 

Road 

Dust 

Secondary 

Nitrate 

Secondary 

Sulphate 

Industry Soil 

Song, Y. et 
al. (2007) 

PMF PM2.5 OC, Cl, 
K 

 
Pb, Zn Al, 

Si, 
Ca, 
Ti, 
Fe, 

Mg 

Nitrate, 
Ammonium 

Sulphate, 
Ammonium 

Ni 
 

Liu,Q.Y.et 
al. (2014) 

PMF PM10 
  

EC, OC and 
nitrate 

 
Nitrate, 

Ammonium 

Sulphate, 

Ammonium 
Cu, Fe, 
Pb, V 

Al, 
Ca, 

Fe 

Sun, Y.L. 
et al. 
(2004) 

FA PM2.5 
  

Ni, Cu 
 

Nitrate, 
Ammonium 

Sulphate, 
Ammonium 

Fe, 
Mn, 
As, Zn, 
Pb, Cd 

Mg, 
Ca, 
Ti, 
Al 

Zhang, W. 
et al. 

(2007) 

PMF&CMB PM2.5 As, Pb, 
Cd, Sb, 

Se 

K, Cl CH3CHOO-, 
HCOO- 

 
Nitrate, 

Ammonium 

Sulphate, 

Ammonium 
Cu, Ni, 
Zn 

Al, 
Fe, 

Se, 
Ti, 
Ca, 

Sr 

Zhang, 
R.J. et al. 
(2013) 

PMF PM2.5 Cl, Na, 
OC, EC 

K Nitrate, EC, 
Cu, Zn, Cd, 
Pb, Mo, Sb, 
Sn 

   
OC, 
EC, 
Zn, 
Mn, Cr 

Al, 
Ca, 
Fe, 
Mg, 

K, 
Ti 

Wang, 

H.L. et al. 
(2009) 

PMF PM2.5 As, Cl, 

sulphate 

K Zn, Pb, Cu, 

Zn 

Ni, 

Cr, 
Na, 

Mg 

Nitrate, 

Ammonium 

Sulphate, 

Ammonium 
Al, Fe Mn, 

Mg, 
Ca, 

Ti 

 

Sources: (Zhang et al. 2007; Wang et al. 2009; Zhang et al. 2013; Liu et al. 2014; Song et 

al. 2007; Sun et al. 2004)  
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Therefore, more efforts should be put in rediscover some certain source profiles including  

all the major sources such as coal burning, vehicles emission, different type of industries 

etc. where possible. In addition, a careful selection of markers during running models 

should be taken.  

 

1.7.3 Certain PM fraction source apportionment 

Some efforts also have been put on source apportionments from the different chemical 

fraction. The most popular study in this area is about discussing the sources of 

carbonaceous aerosol, PAHs and/or VOCs’s sources and apportion the sources by PCA 

(Yuan et al. 2009; Cao et al. 2005; Dameng et al. 2008; Hu et al. 2012; Wang et al. 2015).  

For instance, Cao et al. (2005) measured the OC, EC, and TC in Xi’an and the relationship 

between the OC and EC in autumn and winter have discussed. Four major sources 

including petrol vehicle, diesel vehicle, residential coal burning and biomass burning have 

been found and petrol engine exhaust accounts for the major OC emission in Xi’an (Cao 

et al. 2005). Based on Cao et al. (2005)’s method, Wang et al. (2015) have also taken into 

account of SOC estimation, gases phases pollutants including NOX, O3 and SO2. Wang et 

al. (2015) found that coal combustion and diesel vehicle exhaust contribute much more 

than Xi’an. Liu et al. (2010) and Hu et al. (2012) collected the total suspended particles 

(TSP) in Shenzhen and Guiyang. They have measured the PAHs by High-performance 

liquid chromatography (HPLC) and PCA was applied to apportion the sources of PAHs 

from the TSP. Vehicles, coal combustion and waste incineration were the major sources of 

PAHs in these two cities (Liu et al. 2010; Hu et al. 2012). In order to avoid the complexity 

of PAHs phases partitioning, the measured gas and particulate phase of PAHs were 

combined (Liu et al. 2010). Furthermore, Wang et al. (2014) applied PMF to find out the 
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sources of PAHs from PM2.5. Five major sources were found including petrol and diesel 

engine emission, coal combustion, biomass burning and air-surface exchange. Newer 

method such as 14C which has been mentioned and Aerosol Mass Spectrometer (AMS) 

were also started to be used in source apportionment. He et al. (2011) used the high time 

resolution obtained from AMS in PMF to apportion the sources of organic aerosol (OA) 

in PM1 , hydrocarbon-like (HOA), biomass burning and two oxygenated OA (LV- and SV-

OOA) are the major apportioned compounds from the model, implying the potential 

significant contribution of fossil fuel burning, biomass burning and SOA (Xiao et al. 2011). 

The advantage of AMS is that the efficiency on data collection and high time resolution 

can be achieved rather than the traditional daily average data, which may more helpful for 

some short pollution episode study, for example, the diurnal variations. 

 

1.8 Highlight points and issues  

Based on the reviewed papers, the latest features of receptor modelling in China in terms 

of sampling site, relevant chemical analysis and the execution of models are discussed 

below.  

1.8.1 Sampling sites – urban, suburban and background  

The choice of sampling site is important as it is not only representing the contribution of 

the source at the receptor (citywide, for example) but also depends on what is the purpose 

of the project. Most of the sampling sites in China are allocated in the urbanised region. 

The benefit is that it aims at the maximum population exposure possible (Viana et al. 2008) 

and it provides the convenience to the sampling management as the sites are normally 

established within the research institutes. However, it should not be overlooked that other 

places may also play important roles, for example, the rural and/or suburban area and an 
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even particular site such as industrial park if the aim is to evaluate the impact from 

industrial emission (Taiwo et al. 2014). Since some locations, such as rural area, represent 

the background pollution compared to the urban area, it could be extremely useful to 

explain the origins of some pollution sources and quantify the long-range transported PM 

(Viana et al. 2008), which is fairly unclear in many case study in China.  

 

Some works, however, did make efforts to this particular point. For instance,  Liu et al. 

(2014) collected the PM10 sample during the non-dust and dust storm days in Beijing in 

both urban and background site where is 30 km north-west of city centre. It has been 

turning out that this measure is not only help to distinguish the different impacts of different 

sources at each site and highlight which source is originated within the urban area, but also 

helps to assess the impact of dust storm which is common in spring in Beijing. Yuan et al. 

(2009) also used two sampling site in both urban and rural environment and tell the 

difference on petrol car emissions. Song et al. (2007) synthesize six sampling site with half 

of them within the urban environment where the other located at three different directions 

in the suburban area of Beijing and the differences between urban and suburban areas turn 

out very useful for determining the origin of biomass burning and industrial orientated 

source contributions from nearby region (Song et al. 2007).    

 

1.8.2 Analytical Chemistry – latest techniques 

Variety of analytical techniques have been applied for the determination of water-soluble 

ions, trace metals, OC/EC and organic molecular markers and even radioactive element 

(e.g. 14C). Both offline and online methods are popular in China, particularly the attempts 

of aerosol mass spectrometry (AMS), Single Particle Aerosol Mass Spectrometry (SPAMS) 
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and Carbon-14. The use of these methods has been summarized and discussed in great 

detail in another review by Zheng et al. (2014), which is not repeated here. However, what 

should be addressed is that, though researchers have already been able to achieve numbers 

of datasets on all these species by Ion Chromatography (IC), X-ray fluorescence 

spectrometer (XRF), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-

MS), Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), Thermal-Optical 

Analyser and Gas Chromatography-Mass Spectrometry (GC-MS) etc., the number of 

study which have full spectrum of all major species measurements are still limited. 

Majority of published papers in China focuses on either inorganic species or carbonaceous 

aerosols (Wang et al. 2006; Song et al. 2006; Yang et al. 2013; Han et al. 2011; Geng et al. 

2013; Bi et al. 2007; Q. Wang et al. 2009; Zíková et al. 2016). Since there is extensive 

studies to use inorganic compounds data as input for the receptor models, the addition of 

organic compounds should be encouraged. Lin et al. (2010) reviewed the development of 

organic markers in PM2.5 and their use for source apportionment. The organic molecular 

marker plays more and more important roles in using receptor models as it can differentiate 

various carbon related sources better, for example, distinguish the diesel and petrol vehicles 

emission, the contribution from meat cooking, cigarette smoke, vegetative detritus, natural 

gas heating (Lin et al. 2010).  

 

Fortunately, some efforts have been made in both PMF and CMB models in China with 

combinations of both inorganic and organic dataset to apportion more sources in the PM. 

For instance, Li et al. (2013) measured the fatty acids and PAHs in the PM2.5 and PM10 in 

Beijing and used to identify the combustion sources. And Wang et al. (2009) measured the 
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n-alkanes, hopanes and sterols, which found that the Chinese cooking contribute 

significantly in the total OC in Beijing.  

 

In addition, as 14C measurement is able to distinguish the fossil and non-fossil fuels in the 

PM samples, this technique has also applied in a couple of study in China. Liu et al. (2013) 

discussed the fossil and non-fossil sources of OC and EC in PM2.5 in a background site in 

East China by both radiocarbon measurement and levoglucosan. It was found that 59% of 

water-insoluble OC came from biomass burning and biogenic sources where fossil fuel is 

the dominant contributor to the EC, which accounts for 78%. Zhang et al. (2014) used the 

same method in another background site on Hainan Island, South China where the fossil 

sources contribute 51% to EC and biogenic and biomass burning contribute 56% and 44%, 

respectively, which is similar to Liu et al. (2013)’s research. On the other hand, Zhang et 

al. (2015) also measured the 14C in fine carbonaceous aerosols in four urban areas in China 

during the haze episode, including Beijing, Xi’an, Shanghai and Guangzhou. Again, the 

contribution of non-fossil fuel to OC is significant, accounting 55% and the primary 

biomass burning account for 48%, 40%, 53% and 65% in these four cities respectively. EC 

is also dominated by the fossil fuel with mean contribution of 75% for the four cities (Zhang 

et al. 2015). By using K+ and levoglucosan, it was turn out that the major source of biomass 

burning is mainly from the combustion of crops residues and there is a big fraction of OC 

is secondary rather than primary (Zhang et al. 2015). These studies do help to extract 

further useful information from the carbonaceous aerosols and help the judgement on 

receptor modelling. However, more measurements on radiocarbon are required since these 

studies in China are still scarce.  

 



41 

 

1.8.3 Quality Control on the modelling results: the uncertainty analysis 

For the most popular receptor models that have been used in China, namely, PCA, CMB 

and PMF, PMF is one of the model which is able to provide reliable uncertainty analysis 

for the modelling results by “bootstrapping”, which is an method that randomly replaces 

n samples from the dataset to create new dataset and a new execution of model will be 

based on this new dataset (Reff, 2012). Similar multivariable models such as ME-2 and 

UNMIX also contain this function. This is vital for the modelling results, especially for 

QA/QC purpose. However, few publications have detailed discussion on modelling results 

uncertainty and even how to treat the data including the missing data; the data below 

detection limit etc., even the change of Q value are not clearly mentioned. These measure 

should be encouraged to be applied and presented in the publication to show the robustness 

of the results (Viana, et al. 2008). Fortunately, Wang et al. (2015) made some outstanding 

efforts on modelling results evaluation by discussing the sensitivity of the results to 

imposition of some constraints, which are the a priori source characteristics knowledge. 

The utility of organic markers in the PMF is also discussed by the different choice of 

markers in the input data. These attempts are the very helpful experience for the future 

work on how to use the constraints more properly and how to choose the markers in some 

certain study area so that the modelling results can be more robust.  
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1.9 Other methods coupled with receptor modelling – New trend 

1.9.1Receptor models coupled with back trajectory 

Back trajectory is a method that can trace back the position of the sampled air in time from 

the receptor point from various starting time throughout the sampling interval (Hopke 

2003). A few methods have been developed for relating the collected PM with trajectory at 

receptor site including residence time analysis (RTA), conditional probability function 

(CPF), Potential Source Contribution Function (PSCF) and Simplified Quantitative 

Trajectory Bias Analysis (SQTBA) (Hopke 2003; Hopke 2016). The benefit of 

incorporating back trajectories with these methods is that not only where the major air 

parcel at certain period will be known but also the transport pathway of certain 

composition can be also identified (Zhang et al. 2013) This analysis is helpful to understand 

the locations of the sources through long range transport, which is also useful to interpret 

the factors in the receptor models. In China, PSCF has been popularly involved with the 

receptor model and some efforts have been made. For instance, Zhang et al. (2013) used 

PSCF based on the back trajectories clusters and found the secondary inorganic aerosols 

from the PM2.5 in Beijing normally come from East to South direction while OC and EC 

may also come from northwest as well as mineral dust etc. Zíková et al. (2016) achieve 

similar results to Zhang et al. (2013)’s research by using PSCF and CPF together. In 

addition, they also found traffic source is mainly local in Beijing but biomass burning was 

coming from ENE to ESE, particularly in summer and there is also significant signal that 

long-term transport may also play the role in coal combustion from the southeast of China. 

Zhao et al. (2015a) used the PSCF and found that the PM2.5 contribution was more likely 

from the local emission in Shanghai while the long-term transport plays greater role in the 

rest of the year.  
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1.9.2 The use of organic markers in PMF 

Applying more organic molecular markers in the PMF instead of using CMB when there 

is not enough robust source profile is also another trend. The most common examples are 

using levoglucosan and mannosan in the PMF for apportioning the biomass burning more 

accurately. For example, Cheng et al. (2013) examined the biomass burning contribution 

in Beijing by using K+, levoglucosan and mannosan and found the biomass burning 

contribution was significant throughout the year and almost 50% of OC was associated 

with biomass burning in Beijing. Similarly, Qiao et al. (2016) also used levoglucosan and 

mannosan as markers and found about 16% of PM2.5 contribution may from biomass 

burning and coal combustion. Wang et al. (2015), however, examined much more organic 

molecular markers including n-alkanes (C27-C33), PAHs and biomass burning markers 

levoglucosan and mannosan were used in PMF for OC and EC source apportionment in 

Dongguan, PRD, to see the their feasibility. The utility of organic markers turn out 

massively in PMF and levoglucosan and mannosan were important input to distinguish 

biomass burning from coal burning.  Hopanes and 1,3,5-triphenylbenzene was found 

useful for vehicle exhaust and plastic burning and C27-C33 n-alkanes and other PAHs can 

also influence the source profile markedly (Wang et al. 2015). By using these organic 

molecular markers, it helps to identify that biomass and coal combustion are the two major 

contributions to the OC and EC in PDR while industrial and shipping emission and 

secondary OC are also important  (Wang et al. 2015).  
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1.9.3 Inter-comparison of between different receptor models 

The inter-comparison between the different receptor model’s performances in China has 

been attempted in a few studies. Song et al. (2006) was one of the earliest research group 

compared the modelling results on PM2.5 sampling data in 2000 in Beijing by PCA, CMB, 

PMF and UNMIX comprehensively. CMB and PMF apportion more sources than PCA 

and UNMIX. All the models have relatively high agreement on coal combustion and 

motor vehicles. However, CMB underestimate the contribution from coal burning, which 

may be due to the source profile. While UNMIX overestimate the motor vehicles, this 

could be the reason that the secondary sulphate may mix with motor vehicles in the 

UNIMIX. Overall, the results between CMB and PMF are similar while PCA and 

UNMIX are more comparable.  Zhang et al.(2007) also accessed the results between CMB 

and PMF based on the source apportionment of PM2.5 in Beijing. The results from CMB 

and PMF have very high agreements on most of apportioned sources including coal 

combustion, vehicle, soil dust and biomass burning on annual average level. Qiu et al. 

(2012) measured the trace metal composition in PM10 in Longyan in Fujian Province and 

apportion the sources by both CMB and PCA. The results are, however, not that matches 

each other properly. Unfortunately, we lacksome recent discussion on the inter-

comparison between different receptor models. It should be addressed that it is very 

valuable to compare the results between different approaches, not only because it may test 

the accuracy of modelling but also different receptor models have its own advantages and 

drawbacks. It is even worth rediscovering the old data and analysing them by using another 

receptor model and test whether any similar outcomes can be obtained. It is always ideal 

to maximize their strength while minimize their limit at the same receptor site source 

apportionment.     
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1.9.4 Enlightenment based on previous studies and other research experiences in other counties – 

U.S.A. and EU  

 

Both air quality communities in the United States of America and the European Union 

have accumulated much experience on source apportionment of particulate matter. Some 

measures they have taken is worth considering to China and helpful to establish a long-

term plan and strategy on air pollution mitigation since the air quality is so pool in China. 

First of all, establish an updated source profile database is crucial for receptor modelling, 

especially for CMB modelling. The USEPA has created their own source profile database 

suitable for majority of North America called “SPECIATE” for decades and the database 

is updated every two or three years. The latest version is SPEVIATE 4.5 released in 

September 2016. It contains both PM and VOCs source profiles which is very helpful for 

creating speciated emissions inventories for regional air quality modelling, estimating the 

air pollutant emissions from the primary source, providing CMB data input and also for 

verifying the derived profiles from PMF modelling (USEPA, 2016, 

https://www.epa.gov/sites/production/files/2016-09/documents/speciate_4.5.pdf).  

 

Similarly, the Forum for air quality modelling in Europe (FAIRMODE) under the 

European Union developed a brand new PM emission source profile database appropriate 

for Europe, SPECIEUROPE, in 2016 (Pernigotti et al. 2016). Like SPECIATE, it also 

cover large variety of sources including fuel oil burning, ship emissions, coke burning, 

wood burning etc. (Pernigotti et al. 2016). It also involves some composite profiles, 

calculated and derived profiles based on stoichiometric composition and modelling, which 

might be helpful for sensitivity test. More sources categories and area coverage are 

https://www.epa.gov/sites/production/files/2016-09/documents/speciate_4.5.pdf
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expected to be added in. Both databases are free and opened to the public which are very 

beneficial to the relevant researchers all over the world.    

 

On the other hand, FAIRMODE also organised an exercises of source apportionment 

models inter-comparison and they established a new method to evaluate the performance 

and uncertainty based on different modelling results from different executions (Belis et al. 

2015).The evaluation framework that they have designed set a very good example on how 

the source apportionment communities may make full use of their all advantages at 

national and even regional scale to produce the modelling results as robust and accurate as 

possible and assess the modelling uncertainty in another solid way. The exercises itself also 

benefits from the FAIRMODE framework so that the research resources can be massively 

networked and certain bigger group works can be executed efficiently, which is also very 

enlightening.  

 

Last but not the least, the education for the new generation and driving force from the 

society should not be overlooked. For example, it is really intriguing that the Joint Air 

Quality Initiative put some efforts even after the Joaquin Project ended. They created an 

online game that younger generation can learn what the air pollution is about and what 

their impact to the environment and health during the game. This is a very good example 

about how scientific community linked their work to the society. 
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1.10 Source apportionment in Jinan and objectives of this project 

1.10.1 Current research status and motivation 

Jinan, the capital of Shandong Province in NCP where the hub of coal-fired power plant 

in China, is a highly urbanised and industrial city with more than eight million population 

is located in a semi-enclosed region by Mount Tai and Mount Lu range. Based on the 

review of previous literature on source apportionment in China, NCP is the most polluted 

region in terms of many kinds of air pollutants including PM2.5 and PM10.  However, 

majority of study in northern China has focused on Beijing but no other surrounding places 

including Jinan, another typical polluted megacity in this region. Some study has shown 

that Jinan might be even more polluted than Beijing and it is one of the most polluted city 

on average in China  (Yang et al. 2013). There is some research has been taken in this city 

to evaluate its PM pollution and the sources of these PM. The earliest study is done by Bi 

et al. (2007b) who have investigated the sources of PM10
 in six northern cities, including 

Jinan, in China by CMB. This is the first receptor model that conducted and reported for 

Jinan. Later, the sources identification for PM has also been attempted by other means 

such as trajectory statistical methods (Cheng et al. 2011; Yang et al. 2012).  Gao et al. 

(2011) also applied PCA with semi-continuous measurement of water-soluble ions in PM2.5. 

Yang et al. (2012) first applied PMF model in Jinan to apportion the sources of PM2.5. 

These studies reveal that the major source of PM10 is mineral dust but coal combustion, 

SIA and traffic contribute to the PM2.5 significantly too. However, there is no other research 

available and there is lack of source apportionment with multiple modelling in Jinan. And 

there is lack of research on source apportionment with detailed uncertainties analysis or 

applying organic molecular markers in the receptor model.  
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Under this background, this project aims to compare the results of receptor modelling for 

apportioning PM2.5 by both CMB and PMF. It is aimed to find out how different or similar 

the results could be by two methods and try to understand the causes. It is also aimed to 

understand what the advantage and disadvantage of both methods are for apportioning the 

PM2.5. Water-soluble ions, trace metal, OC and EC and some selected organic molecular 

markers will be measured after the sampling of PM2.5 in urban Jinan. The author believes 

this will be helpful to have a source apportionment result with more confidence and will 

be not only helpful to control the emission of PM2.5 in this city itself but also help to 

understand the regional PM2.5 pollution in NCP better.  

1.10.2 The structure of this thesis  

The thesis chapters are organized as follows:  

Chapter 2 describes the general methods of sampling, analytical chemical experiments 

and modelling in this project   

Chapter 3 describes results of the raw data obtained from the sampling campaign and 

experiments  

Chapter 4 describes results of PMF modelling based on the experimental data input  

Chapter 5 describes results of CMB modelling based on the experimental data input 

Chapter 6 compares the results from the two different models and discusses the causes of 

similarity and differences  

Chapter 7 describes the conclusions from the current study and provides 

recommendation for future work.
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2 Chapter Two Methodology 

Abstract 

In this chapter, the sampling methods and the analytical chemical analyses are introduced, 

including describing the offline sampling instruments used in Jinan for PM2.5 sampling, the 

usage of filters and treatments for the deposited filters. Medium volume sampler and a 

parallel four-channel sampler are the major samplers during the campaign. 

In addition, analytical chemical analysis plays an important role in the data preparation as 

model input after sampling and different analytical chemistry techniques have been 

deployed to discover the physical and chemical characterisation of sampled PM2.5. In brief, 

the mass concentration of PM2.5 were achieved by weighing the pre and post-sampling 

filters; Si, Fe, Al and other trace elements abundances were measured by using X-ray 

Florescence (XRF); Organic carbon (OC) and elemental carbon (EC) were detected by 

Sunset thermal and optical analyser and the organic molecular markers were found by Gas 

Chromatography–Mass Spectrometry (GC-MS). 

2.1 Offline Sampling campaign in Jinan  

Jinan (36°40′ N; 117°00′ S) is an industrial megacity located at the heart of North China Plain. 

Jinan has humid continental climate (Dwa) where it is hot and wet in the summer but cold and 

dry in the winter. The city is surrounded by the mountain range in the south, east and west, 

which has an adverse topography for dispersing the air pollutants. Unlike Beijing, Jinan is also 

surrounded by other industrial cities nearby. The location of samplers and weather station was 

chosen to be on the roof of teaching building at the Shandong University Central Campus, 
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which is at the central area of Jinan. The teaching building is about 30 metres high and there 

are urban main road networks and commercial areas nearby and industrial hub in the north west 

of the campus (See Figure 2.1). 

 

 

Figure 2-1 Map showing the location of Jinan City and sampling site within Jinan 

【Adapated from Yang et al., (2013)】 

 

The PM2.5 sampling was conducted by TH-16A four-channel sampler with Whatman® PTFE 

membrane filters (47 mm Dia., 1.0 µm pore size, WTP type) and TH-150F Medium Volume 

Sampler with Whatman® QM-A quartz filters. A Kestrel 4500 Applied Ballistics Meter was 

attached with the TH-16A sampler so that the wind speed and direction, temperature, relative 

humidity (RH) and atmospheric pressure (a.t.m.) were recorded simultaneously. Due to the 

schedule of instrument bookings, maintenance and time availability of collaborators, five 

periods of sampling was decided and performed, including from January to early February 

(Winter-1, also abbreviated as P1), mid-May to mid-June (Early Summer, abbreviated as P2), 

early July to early August (Late Summer, abbreviated as P3) and late November to early 
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December (Late autumn, called “Autumn” in the rest of thesis, abbreviated as P4) in 2015 and 

mid to the end of January in 2016 (Winter -2, abbreviated as P5). In total, 103 valid PM2.5 

samples have been achieved. The following sections elaborate the two sampling instruments 

in details.   

2.1.1 TH-16A PM Sampler (Wuhan Tianhong Instruments Co.Ltd) 

The TH-16A PM sampler is an classic cyclone sampler using the filtration method with 

four channels which can conduct the sampling simultaneous with same or different 

configurations (Wuhan Tianhong Instruments Co.Ltd., 

http://en.thyb.cn/products_detail/productId=54.html , no date). There is a holder for one 

cassette magazine which can be placed with 47 mm Ø filter at each channel in this sampler. 

At work, the constant flow rate is 16.7 L·min-1 and each sampling stint is 23 hours and a 

half per day. In Jinan’s PM2.5 campaign, two channels out of four have been used and two 

PM2.5 sampling head have been equipped (See Figure 2-2). The filters in the first channel 

will be used for water soluble ions determination while the other filter in the second 

channel will be used for trace metal element determination. 

 

Figure 2-2 a picture and schematic diagram of TH-16A Ambient Particulate Sampler (Wuhan 

Tianhong Instruments Co.Ltd., http://en.thyb.cn/products_detail/productId=54.html , no 

date) 
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2.1.2 TH-150F Automatic Medium Volume Sampler 

The other sampler used in this campaign is TH-150F automatic medium volume sampler 

by using the principle of filtration too. There is a filter cassette magazine for 90 mm Ø filter 

and the flow rate of TH-150F has been maintained at 100 L·min-1 at work. Each sampling 

stint is also 23 hours and a half per day (Figure 2-3).  

 

Figure 2-3 a picture and schematic diagram of TH-150F Ambient Particulate Sampler (Wuhan 

Tianhong Instruments Co.Ltd., http://en.thyb.cn/products_detail/productId=74.html, no 

date) 

2.1.3 Weather station  

A Kestrel 4500 Ballistics Meter was attached with the TH-16A sampler so that the wind 

speed and direction, temperature, RH and a.t.m. pressure were recorded simultaneously. 

The meteorological data is automatically saved as .csv file and then downloaded to the PC 

from the instrument.  The details of Kestrel 4500 Applied Ballistics Meter can be found at: 

https://kestrelmeters.com/products/kestrel-4500nv-applied-ballistics-meter. 

Due to the schedule of instrument bookings, maintenance and time availability of 

collaborators, five periods of sampling was decided and performed, including from January 

to early February (P-1), mid-May to mid-June, early July to early August (P-3) and late 

https://kestrelmeters.com/products/kestrel-4500nv-applied-ballistics-meter
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November to early December (P-4) in 2015 and mid to the end of January in 2016 (P-5). 

For the convenience of data analysis, P-1 and P-5 are combined together to represent 

winter.  

2.2 Physical and Chemical Analysis of Deposited PM2.5 Filters in the Laboratory  

2.2.1 Filters and its processing  

Two different types of filters have been used in Jinan’s PM2.5 sampling campaign. The 

filters used in the TH-16A sampler are the Whatman® PTFE membrane filters (47 mm 

Dia., 1.0 µm pore size, WTP type) while the other filters are the Whatman® QM-A quartz 

filters (90 mm Dia., 2.2 µm pore size), which have been placed in the TH-150F sampler. 

The Whatman® PTFE membrane filters are used for PM2.5 mass concentration 

determination, water-soluble ions and trace metal analysis. The Whatman® QM-A quartz 

filters are used for organic carbon (OC), elemental carbon (EC) and organic molecular 

markers analysis. Each type of filter were conditioned for more accurate measurements in 

the later analysis prior to the sampling. The Whatman® PTFE membrane filters are firstly 

pre-conditioned for 24 hours at 25 ± 5℃ and 40 ± 10 % R.H. in the clean weighing room 

and then remove the surface static by the ionizing blower and weighted by Sartorius 

microbalance (MC-5) and the mass before the sampling m1(i) can be found. The Same 

process is conducted again after sampling so that the mass afterwards m2 (i) are found. The 

difference mass ΔmPM2.5 (i) of m1 and m2 for each PTFE filter are the PM2.5 mass 

accumulated during the daily sampling, namely: 

    ΔmPM2.5 (i) = m2 (i) - m1(i)   (2.1) 

Moreover, each filter is stored in the 47 mm Dia. size plastic petri dish and sealed in a 

small plastic bag for storage and logistics before and after sampling. 
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Regarding Whatman® QM-A quartz filters, they are baked in the furnace at 500 ℃ for six 

hours to remove any carbonaceous residual left during the manufacturing operations. Then 

they are packed with aluminium foil and stored in the clean sealing plastic bags for storage 

and logistics before and after sampling. Before any analysis, they are stored in the freezer 

at -20 ℃. 

2.2.2 Water soluble ions analysis by Ion Chromatography (IC) 

Since two channels of TH-16A samplers are used during the sampling campaign in Jinan. 

Two portions of simultaneously deposited PTFE filters are obtained. One portion is used 

for analysing the major water-soluble ions within Jinan’s PM2.5 including Na+, NH4
+, K+, 

Mg2+, Ca2+, Cl-, NO3
-, SO4

2-, PO4
3- and C2O4

2- by Dionex ICS 500 and Dionex ICS 2000, 

which are the IC instruments for cations and anions, respectively. Before the sample 

injection, the PTFE filters are firstly placed in the graded plastic finger test tube and rinsed 

by 0.3 ml 2-Propanol and then added with 10 ml distilled deionized water (DDW). The 

capped test tube with filter soaked in the mixture solution is then shaken by the mechanical 

shaking machine at 240 r/min for half an hour. Afterwards, the leachate is transferred to 

the IC sample vials and placed on the IC autosampler, which is ready for injection and 

analysis. Each ions calibration is established by known concentration standards solutions 

in the range of 0.5 to 20.0 ppm before the sample’s analysis and six blank filters are also 

run in the sequence to minimize the impact of background components concentration.  

 

2.2.3 Trace metal analysis by XRF 

The other portion of PTFE filters were posted to the University of Massachusetts, Amherst 

in U.S.A. for X-ray fluorescence analysis by Pallavi Pant from Department of 
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Environmental Health Sciences, School of Public Health Amherst Centre. XRF is a non-

destructive analytical technique for determining the elemental compositions by measuring 

the fluorescent or secondary X-ray emitted from the trace element after it has been excited 

by the primary X-ray (Thermo-Fisher Scientific, 2016). Several quality controls have been 

taken measures to secure the accuracy and precision of the results, including: 1) Annual 

single element calibration- Standards are run for each element, and calibration curves are 

updated; 2) Energy calibration- performed every week to ensure that the energy levels being 

used for the analysis are correct; 3) Multi-element standard- A multi-element (5 elements- 

Si, Mg, Cd, Pb, Fe) standard is run with each batch (9 samples + 1 standard); and 4) Blank 

filters are also run to keep a check on the measurements. During the analysis Amherst, Ag, 

Cd, In, Sn, Sb, Te, I, Rh, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, La, Ce, Sm, Eu, Tb, Hf, Ba, Pr, 

Nd, Gd, , Er, Tm, Yb, Lu, Ge, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, W, Ir, Au, Hg, 

Pb, Pd, Pt, Tl, U, Cs, Bi, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc have been measured by the 

Thermo Scientific ARLTM QUANT’X EDXRF Spectrometer.  

2.2.4 Organic Carbon (OC) and Elemental Carbon (EC) analysis 

OC and EC are analysed by using the Sunset Laboratory Thermo-Optical Carbon Aerosol 

Analyser. One 1 cm2 piece of quartz filter is punched and placed into the instrument. The 

EUSAAR2 (European Supersites for Atmospheric Aerosol Research) protocol is applied. 

During the analysis, the OC is thermally desorbed from the quartz filter under inert helium 

gas followed by oxidation in the oven by the catalyst MnO2 to CO2 (Sunset Laboratory 

Inc., 2000). Finally, the CO2 is converted to CH4 under hydrogen gas with heated nickel 

catalyst so that the equipped Flame Ionization Detector (FID) can be measured and 

quantified by its internal standard CH4 gas flow (Yin et al. 2010; Pant, P 2014). And EC is 

determined by its optically absorbing property while laser transmits through the filter. A 
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calibration curve of OC is achieved by analysing known concentration sucrose water 

solution for quality control purposes. Six blank filters are measured to minimize the 

background impurity effect.      

2.2.5 Organic Molecular Markers Analysis by GC-MS 

n-Alkanes, hopanes, PAHs, levoglucosan and cholesterol have been chosen for the organic 

molecular makers for fossil fuel combustion sources, biomass burning, vegetation and 

cooking (Zhao et al. 2015; Cheng et al. 2013; Li et al. 2010; Zheng et al. 2014; Lin et al. 

2010; Yanlin Zhang et al. 2015; He et al. 2006; Ke, Liu, Wang, Russell, et al. 2008; Yin et 

al. 2015; Cass 1998; Wang et al. 2012; Simoneit 2002; Simoneit et al. 1991; Zhang et al. 

2009b; Pant et al. 2014; Bullock et al. 2008).  

The name, abbreviation and their basic physical property and molecular structures are 

listed in the following table here.  

Table 2-1the measured OMM and their basic physical properties 

Name Abbreviation  Formula/Molecular 

Weight (1) 

Structure 

n-Tetracosane C24 C24H50; 338  

n-Pentacosane C25 C25H52; 352  

n-Hexacosane C26 C26H54; 366  

n-Heptacosane C27 C27H56; 377  

n-Octacosane C28 C28H58; 395  
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Name Abbreviation  Formula/Molecular 

Weight (1) 

Structure 

n-Nonacosane C29 C29H60; 408  

n-Triacontane C30 C30H62; 423  

n-Hentriacontane C31 C31H64; 437  

n-Dotriacontane C32 C32H66; 451  

n-Tritriacontane C33 C33H68; 465  

n-Tetratriacontane C34 C34H70;   

Retene - C18H18; 234.34 

 

Benz[a]anthracene  BaAnt C18H12; 228.29 

 

Chrysene   Chr C18H12; 228.29 

 

Benzo[b]fluoranthene  BbF C20H12; 252.31 
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Name Abbreviation  Formula/Molecular 

Weight (1) 

Structure 

Benzo[a]pyrene  BaPyr C20H12; 252.31 

 

Indeno[1,2,3-cd]pyrene  Ipyre C22H12; 276.33 

 

Dibenzo[a,h]anthracene  DBahAnt C22H14; 278.35 

 

Benzo[g,h,i]perylene BghiPer C22H12; 276.34 

 

Coronene  COR C24H12; 300.35 

 

17(H)-

22,29,30-

Trisnorhopane 

C27α C27H46; 371 
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Name Abbreviation  Formula/Molecular 

Weight (1) 

Structure 

 

17(H),21(H)-

30-norhopane 

 

C29αβ C29H50; 399 

 

17(H),21(H)-

Hopane 

 

C30αβ C30H52; 413 

 

22S-

17(H),21(H)-

30-

Homohopane 

C31αβS C31H54; 427  

 

 
22R-17(H),21(H)-

30-Homohopane 

C31αβR C31H54; 427 

Levoglucosan Levo C6H10O5 
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Name Abbreviation  Formula/Molecular 

Weight (1) 

Structure 

Cholesterol Chol C27H46O 

 

 

These analytes from the samples are pre-processed by extraction, concentration and 

derivation before the sample injection to the GC-MS. For analyte mass quantification, 

internal calibration is used in this experiment and internal standard (IS) is added while 

extraction is being taken place.  

Extraction: Firstly, ¼ of quartz filter is placed in a cleaned 250 ml glass bottle and spiked 

with 50 µl of 10 ppm internal standard mix-all (ISALL, including octacosane-d58 and 

hexatriacontane-d74 for n-alkanes; aaa-20R-cholestane-d4 for hopanes; chrysene-d12 and 

dibenzo(ah)anthracene-d14 for PAHs; Methyl-beta-D-xylopyranoside for levoglucosan 

and cholesterol-2,2,3,4,4,6-d6 for cholesterol). Then it is left in the fume hood for about 30 

minutes for evaporation. Afterwards, it is ready for extraction by adding 30 ml mixture 

solvent of 2:1 Dichloromethane (DCM) and methanol and place in the ultrasonic water 

bath for 15 minutes sonication. The extracted solution is then transferred to a turbo 

evaporator tube for further concentration under nitrogen gas blow and heating by warm 

water in the instrument. This step is repeated one more time and the 250 ml glass bottle is 

rinsed three pipettes of 2:1 DCM and methanol mixture solvent so that more than 60 ml 

of total volume of extracted solvent are obtained before the concentration.  
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Concentration: more than 60 ml of total volume of extracted solvent are concentrated to 

500 µl by two stage of concentration for the convenience of internal calibrations. The first 

stage is using turbo evaporator to blow down to 5 ml. Then the extracts were then filtered 

through pre-cleaned glass wool and sodium sulphate (Na2SO4) columns and collected in 

pre-cleaned 15 ml glass finger vial. The samples were then concentrated to 500 μl under a 

gentle stream of oxygen-free nitrogen and transferred to three pre-cleaned GC vials 

equipped with insert with about 160 µl each. The samples are stored in the freezer at -20 ℃ 

until analysis. The first two vials are used directly for n-alkanes & hopanes and PAHs 

analysis, respectively while the third vial is required derivation before its levoglucosan and 

cholesterol analysis.  

Derivation: Cholesterol and levoglucosan are polar component. Therefore, a reagent N,O-

Bis(trimethylsilyl)trifluoroacetamide plus 1% trimethylchlorosilane (BSTFA-TMCS) is 

chosen for the silylation. First of all the 166 µl of final extract is blown down to near dryness 

under gentle nitrogen gas stream again and Add 166 µl of BSTFA-TMCS to the vials 

containing samples until mark line. Heat the vial on a dry heater block at 80°C for 1 hour. 

Allow the vial to cool in a desiccator for 1 hour and then they are immediately subjected 

to GC-MS analysis. 

GC-MS sample injection and programming is shown as follows: These three programmes 

(SIM methods) are used for n-alkanes, hopanes, PAHs, levoglucosan and cholesterol 

analysis by Agilent GC- 6890N plus MSD-5973N fitted with an HP-5MS (30 m, 0.25 mm 

diameter, 0.25 μm thickness) column. 

 

 



62 

 

The settings of GC-MS is shown below while the whole process of chemical species 

measurement is summarized in figure 2.3.  

Table 2-2 GC-MS sample injection programming for n-alkanes & hopanes 

GC and MS conditions Column Type: HP-5MS Column (30 m, 
0.25 mm Diameter, 

0.25 m film thickness) 

GC Conditions   

   Injector Temperature (oC) 300 

   GC/MS Interface Temperature (oC) 300 

   Initial Oven Temperature (oC) 65 

   Initial Oven Hold Time (min) 5 

   Oven Temperature Ramp Rate 1 (oC/min) 10 

   Oven Temperature end 1 (oC) 250 

   Oven Hold Time 1 (min) 0 

   Oven Temperature Ramp Rate 2 (oC/min) 5 

   Final Oven Temperature (oC) 300 

   Final Oven Temperature Hold Time (min)  26.5 

   Carrier Gas  Helium 

   Carrier Gas Flow rate (ml/min) 1.0 

   Injection Mode Splitless 

MS Conditions  

   Solvent Delay (min) 22 

   Data Collection Mode  SIM (ions: 57, 71, 85, 66, 82, 98; 191, 221) 

   Dwell Time (ms) 50 
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Table 2-3 GC-MS sample injection programming for PAHs 

GC and MS conditions Column type: HP-5MS Column, (30 m, 
0.25 mm Diameter, 

0.25 m film thickness) 

GC Conditions  

   Injector Temperature (oC) 300 

   GC/MS Interface Temperature (oC) 300 

   Initial Oven Temperature (oC) 65  

   Initial Oven Hold Time (min) 2 

   Oven Temperature Ramp Rate 1 (oC/min) 5 

   Oven Temperature end 1 (oC) 100 

   Oven Hold Time 1 (min) 0 

   Oven Temperature Ramp Rate 2 (oC/min) 10 

   Final Oven Temperature (oC) 300 

   Final Oven Temperature Hold Time (min)  28 

   Carrier Gas  Helium 

   Carrier Gas Flow rate (ml/min) 1.0 

   Injection Mode Splitless 

MS Conditions  

   Solvent Delay (min) 5 

   Data Collection Mode  Scan 

   Scan Range (amu) 50-650 

   Solvent Delay (min) 10  

   Data Collection Mode  SIM(Ions Group 

One:59,100,114,115,129,143,157; Group 
Two: 129,171,163,194,152,185; Group 
Three: 221, 241,239) 

   Dwell Time (ms) 50,50,100 
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Table 2-4 GC-MS sample injection programming for Levoglucosan & Cholesterol 

GC and MS Conditions Column type: HP-5MS Column, (30 m, 0.25 
mm Diameter, 

0.25 m film thickness) 

GC Conditions  

   Injector Temperature (oC) 300 

   GC/MS Interface Temperature (oC) 300 

   Initial Oven Temperature (oC) 65 

   Initial Oven Hold Time (min) 10 

   Oven Temperature Ramp Rate (oC/min) 10 

   Final Oven Temperature (oC) 300 

   Final Oven Temperature Hold Time (min)  26.5 

   Carrier Gas  Helium 

   Carrier Gas Flowrate (ml/min) 1.0 

   Injection Mode Splitless 

MS Conditions  

   Solvent Delay (min) 15 

   Data Collection Mode  SIM(ions:204,217,333,368,374,458,464) 

   Dwell time (ms) 50h 
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The LoD is calculated as three times of concentration level measured via travel blanks from 

all the samples. 

Table 2-5 Limit of detections (LoD) for all chemical species 

Instrument Limits of Detection (LoD) 

Species  LoD 

Water Soluble Ions (µg/m) 

Cloride 0.063830 

Nitrate 0.063830 

Sulphate 0.063830 

Phosphate 0.024830 

Carbonate 0.027064 

Sodium 0.010021 

Ammonium 0.000000 

Potassium 0.006383 

Maganesium 0.023936 

Calcium 0.026106 

Trace Metals  (µg/cm3) 

Cd 0.003955 

Sn 0.070283 

Sb 0.039925 

Ti 0.014591 

V 0.002672 

Cr 0.020577 

Mn 0.013950 

Fe 0.009995 

Co 0.000000 

Ni 0.004115 

Cu 0.007269 

Ba 1.625692 

Pr 0.061410 

Zn 0.008231 

As 0.005665 

Se 0.002031 

Br 0.004703 

Sr 0.003795 

Mo 0.008177 

Pb 0.003848 

Na 0.134739 

Mg 0.040139 
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Instrument Limits of Detection (LoD) 

Species  LoD 

Al 0.122286 

Si 0.000000 

Cl 0.003367 

K 0.002352 

Ca 0.001122 

Sc 0.018813 

Carbon  (µgC/cm2) 

OC  0.059566 

EC 0.002489 

Organic Molecular Markers (µg/ml) 

Levoglucosan 0.257362 

Cholesterol 0.051472 

n-Tetracosane (C24) 0.000766 

n-Pentacosane (C25) 0.000766 

n-Hexacosane (C26) 0.000766 

n-Octacosane (C28) 0.000255 

n-Nonacosane (C29)  0.000766 

n-Triacontane (C30) 0.001021 

n-Hentriacontane (C31) 0.001021 

n-Dotriacontane (C32) 0.001021 

n-Tritriacontane (C33) 0.000766 

n-Tetratriacontane (C34) 0.000766 

n-Pentatriacontane (C35) 0.000766 

17a(H)-22,29,30-Trisnorhopane 0.001021 

17a(H),21b(H)-30-norhopane 0.001021 

17a(H),21b(H)-Hopane 0.001021 

22S-17a(H),21b(H)-30-Homohopane 0.001021 

22R-17a(H),21b(H)-30-Homohopane 0.001021 

22S-17a(H),21b(H)-30-Bishomohopane 0.001021 

22R-17a(H),21b(H)-30-Bishomohopane 0.001021 

22S-17a(H),21b(H)-30,31,32-trishomohopane 0.001021 

22R-17a(H),21b(H)-30,31,32-trishomohopane 0.001021 

Retene 0.001532 

Benzo[a]Anthracene 0.000766 

Chrysene 0.000511 

Benzo[b]Fluoreathene 0.000511 

Benzo[k]Fluorathene 0.000255 

Benzo[a]Pyrene 0.001021 
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Instrument Limits of Detection (LoD) 

Species  LoD 

Indeno[1,2,3-cd]Pyrene 0.000511 

Dibenzo[a,h]Anthracence 0.001021 

Benzo[g,h,i]Perylene 0.000511 

Coronene 0.000766 

 

 

Figure 2-4 Summary of the whole chemical analysis processes. 

Finally, the internal standard recovery rates were determined after the GC-MS analysis. 

The average recovery rate of IS for all analyzed species are all lied in the range from 30% 

to 150%, which is acceptable (See Figure 2-5). The recovery rate is calculated by the 

following equation: 

 

Where (AIS/ARDS)S = ratio of internal standard peak area to recovery determination 

standard peak area in the sample; (ARDS/AIS)STD = ratio of recovery determination standard 
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peak area to internal standard peak area in the calibration standard (the average of values 

obtained for both calibration standards run for a batch of samples is used); (CIS/CRDS)STD = 

ratio of concentration of internal standard to concentration of recovery determination 

standard in the calibration standard; and (CRDS/CIS)S = ratio of concentration of recovery 

determination standard to concentration of internal standard in the sample (assuming 

100% recovery). 

 

Figure 2-5 Recovery rate for all internal standards 
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2.3 Fundamentals of Source apportionment and Receptor modellings 

2.3.1 Scientific basis 

In this project, the two receptor models, Positive Matrix Factorization (PMF) and 

Chemical Mass Balance (CMB) have been employed. The method based on mass 

conservation and statistics and they are aimed to evaluate the contribution of different 

sources to ambient PM (Pant 2014). The details are as follows.  

 

In general, the purposes of receptor models (RMs) includes the following three major 

components: 1) to interpret the physical and chemical ambient particles at the sampling 

site (receptor); 2) to interpret the precursors of these particles and therefore deduce the 

possible sources; 3) and finally conclude the contribution of all sources in a quantitative 

way. To achieve these goals, a critical assumption is made, which the mass of the bulk 

ambient particles are conserved during the transport in the air and the principle of mass 

conservation has been applied, as mentioned earlier in the Chapter one  (Hopke, P., 1991).  

 

Again, mathematically,  

xij =∑ 𝑔𝑖𝑗𝑓𝑘𝑗
𝑝
𝑘=1  (2.1) 

where xij is the jth chemical species concentration measured in the ith sample, fkj is the 

concentration of the jth species in emission from the kth source contributing to the ith sample. 

 

For instance, for the elemental carbon (EC) from an ambient air samples with pollutant P 

coming from different sources 1, 2, 3 etc., the total amount of EC in pollutant P on the 

deposited filter or at the receptor will be P total EC = P1 EC + P2 EC + P3 EC + …+ Pk EC (2) where 

k is the kth of sources. Furthermore, since P is a complex mixture and if f is defined as the 
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mass fraction of EC for one part of pollutant P from a specific source and g is defined as 

the mass concentration of the part of pollutant P from this specific source within the 

ambient air samples. Equation (1) can be rewritten as P total EC =   (3). Finally, if equation 

(3) is applied to j chemical species from i samples, xij = ∑ 𝑔𝑖𝑗𝑓𝑘𝑗
𝑝
𝑘=1  (4). In this terms, the 

receptor model will identify the factors (or sources) by solving the equation (4) and a large 

amount of dataset matrix of which consisting of chemical constituents collected from a 

number of samples are required and preferred (Belis et al. 2013). Based on this principle, a 

few quantitative methods including, Chemical Mass Balance (CMB), Positive Matrix 

Factorization (PMF), Multilinear Engine (ME) have been developed since then.  

 

However, the solution of mass conversion equation of CMB and PMF are solved in a 

slightly different way so that the data requirements and preparation are different in the later 

project. Based on the conceptual framework that presented as equation (1). Miller et al. 

(1972) proposed the following mass balance equation that used in the CMB and PMF 

models later: 

 

xj = ∑ 𝛼𝑔𝑖𝑗𝑓𝑘𝑗
𝑝
𝑘=1 + 𝑒𝑖𝑗              (2.2) 

where xj is the concentration of chemical species j measured in the sample of interest, fkj is 

the concentration of the chemical species j from the source k, gk is the mass contribution of 

source k to the sample of interest, eij is the un-modelled portion of the variation and αj is the 

coefficient of fractionation for species j that indicates the amount of that species remaining 

in the particulate matter after transport to the sampling site while it is usually assumed to 

be unity due to the difficulty in estimating the differential reactivity of the various species 

in a given profile (Miller et al. 1972; Hopke 2016). 
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Hopke (1991) discussed the assumptions to CMB model and how the solution to the mass 

balance equation is solved. One of the biggest features of CMB is that it requires the source 

profile, which is the term fkj in the equation (4) for the model run. In 1990s, Paatero & 

Tappert (1993; 1994) proposed the concept of PMF model which an explicit least-squares 

formulation of the mass balance is utilised so that it solves the equation by minimizing a 

weighted objective function given by the following Q value equation: 

          (2.3) 

Where sij is an estimate of the uncertainty for the jth species in the ith sample. The advantage 

of PMF’s algorithm is that it does not require the source profiles as the data input. These 

methods have been successfully applied in many cases study where CMB and PMF are 

one of the most popular used methodology in nowadays (Belis et al. 2013). In this project, 

the USEPA CMB v8.2 and PMF v5.0 is used for the modelling processes. However, PCA 

has not used in this thesis as it has not been widely accepted as a receptor model today 

(Hopke, 2004). In addition, the latest version of PMF is also considered more advanced 

than UNMIX so that this model is also not applied in this thesis (Hopke, 2016). On the 

other hand, ME-2 algorithm is more suitable for large dataset obtained by continuous real-

time high-resolution sampler but it is an option in the further study (Crippa et al. 2014).    
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2.4 The modelling criteria of CMB and PMF 

2.4.1 CMB criteria  

In CMB, the following performance measures have been established to assess the how well 

the model has performed, which is consist of the following parameters: 1) R-square value 

(r2); 2) chi-square value (χ2); 3) t-stat value and 4) Calculated/Measured Ratio (C/M) 

(USEPA, 2004). 

Briefly, r2 and χ2 the parameter for the least squares calculation where r2 is the fraction of 

the variance in the measured concentration that is explained by the variance in the 

calculated species concentrations and χ2 is the weighted sum of the squares of the 

differences between the calculated and measured fitting species concentrations (USEPA, 

2004). If r2 is between 0.8 and 1 while χ2 is less than 4, the results are acceptable (USEPA, 

2004)  

T-statistic (Tstat) is the ratio of the source contribution estimate to the standard error 

(USEPA, 2004). If Tstat value is less than two, which implies that the source contribution 

estimate is at or below the detection limit that likely due to collinearities between sources 

profiles (UESEPA, 2004). 

Additional performance measures include C/M and R/U. If C/M is between 0.75 and 1.5 

while R/U value is between -2 and 2, the results are acceptable (USEPA, 2004).  

2.4.2 PMF criteria  

Based on the PMF v5.0 manual and beyond, the best standards and practice on how to 

evaluate the model performance and assessing the physical significance of the 

mathematical solution by the PMF model have also been in-depth reviewed (Reff et al. 

2007; Belis et al., 2014; Belis et al., 2015; Brown et al., 2015; Hopke, 2016). Based on these 
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recommendations, the best solution of PMF model run in this study is judged by the 

following criteria: 1) the solutions between 3 to 7 factors will be investigated; 2) by 

assessing the stability and minimization of Q value and Q expected value over multiple 

run; 3) by assessing the G-space plot and scaled residuals; 4) by evaluating the modelling 

uncertainties by Bootstrap(BS) and Displacement (DISP); 5) by assessing whether the 

modelled total variable perdition is matched with measurement data (R2 > 0.9 and gradient 

≈ 1.0) etc. (Masiol et al. 2017). 

2.5 Models Performance and Outcomes Evaluations  

A framework of modelling results evaluations is introduced as follows.  

 

Figure 2.5 The framework of data analysis, modelling results comparison and source 

apportionment. 



74 

 

The core results and data analysis are the outcomes comparison between PMF and CMB 

analysis. While interpreting the results, other analysis including the mass closure analysis, 

enrichment factor and meteorological data analysis are also applied. Microsoft Excel 2010, 

R (with OpenAir Package, USEPA PMF5.0 and CMB 8.2 are used for the entrie numerical 

analysis.  
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3 Chapter Three Mass Concentration of 

PM2.5  and its constituents n Jinan, China 

Abstract 

This chapter reports the chemical composition of PM2.5 in an urban area of Jinan city, 

northern China from early 2015 to early 2016. PM2.5 samples were collected on the roof of 

teaching building on the central campus of Shandong University. Meteorological 

parameters were monitored by a simple met station. The PM2.5 concentration was highest 

in winter. Autumn was another season when it was heavily polluted while early summer 

and late summer were less polluted in Jinan with respect to PM2.5. PM2.5 samples were 

analysed by using IC, XRF, Thermal-Optical analyser and GC-SM. Ion balance analysis 

showed that the ambient air in Jinan was almost neutral, which implies the influence of 

ammonium in the ambient air and also reflects the reliability of the dataset. Mass closure 

analysis indicated that secondary inorganic aerosols (SIA), mineral dust, OC and EC were 

the major chemical components of PM2.5   

3.1 Introduction 

Jinan has suffered by the severe air pollution for a couple of decades and today’s PM2.5 

concentration level remains high (Cheng et al. 2011; Gu et al. 2014). The annual mean 

PM2.5 concentration was around 150 µg·m-3 in 2010 (Gu et al. 2014), which was 10 times 

greater than the WHO PM2.5 annual mean guideline (WHO, 2006). In terms of chemical 

composition, secondary sulphate, nitrate, ammonium, OC and EC were found as the 

major substance in the ambient air, which is very similar to the other mega city’s pollution 

in China (Gao et al. 2011; Huang et al. 2014). In order to execute a comprehensive source 
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apportionment study for the latest pollution status in the urban area of Jinan with limited 

budget, it is vital to collect a sufficient number of samples which can be used to not only 

quantify the current PM2.5 concentration but also characterize both inorganic and organic 

compounds of PM2.5 by the available instruments within a limited time. Therefore, both 

quartz and Teflon filters were used for the PM2.5 sampling in Jinan to meet the requirements 

of chemical analysis. A simple weather station was also employed to record the wind speed 

(ws), wind direction (wd), temperature (T), relative humidity (RH) and atmospheric 

pressure (P) so that the impact on PM2.5 from meteorological condition could be assessed. 

This section aims to discuss the PM2.5 concentration, the concentration of analysed 

chemical compositions, the relationship between the weather and PM2.5 and also the 

relationships between the different chemical species during this sampling period.   

3.3 Results and Discussion  

3.3.1 PM2.5 concentration  

The daily PM2.5 concentration and seasonal mean PM2.5 concentration are shown below in 

Figure 3-1 and Figure 3-2, respectively. Jinan has a humid subtropical (Cwa) climate. The 

city is dry and nearly rainless in spring from March to May and hot and rainy in summer 

from June to August, dry and cold with little snow in autumn (September to November) 

and winter from December to February. According to these two figures, the PM2.5 

concentration in spring and summer were the lowest, and there were a few days with fairly 

good air quality. However, the PM2.5 pollution was much worse in late autumn (P4) and 

both winter sampling periods (P1 & P5). Both the mean concentration and frequency of 

pollution episodes were greater than the other two seasons (P2 & P3).   
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Figure 3-1 Daily PM2.5 concentration in Jinan during the whole sampling campaign.  

 

 

Figure 3-2 Seasonal mean PM2.5 concentration in Jinan 
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Overall, the mean PM2.5 concentration in winter (P1 & P5), early summer (P2), late 

summer (P3) and autumn (P4) were 108.8 µg·m-3, 57.4 µg·m-3, 53.4 µg·m-3 and 97.7 µg·m-3, 

respectively, while the mean concentration in P1 is 122.1 µg·m-3 and P5 is 82.1 µg·m-3. The 

variation of PM2.5 concentration is probably because of two main reasons. The weather in 

North China Plain is usually influenced by the anticyclone in winter while inversion layer 

will be formed so that inhibiting the PM2.5 diffusion. On the other hand, the monsoon in 

summer and precipitation helps the wet deposition and helps to scavenge (Cheng et al. 

2011). Meanwhile, the heating period for domestic use normally takes place from late 

November to late March in Jinan so that coal burning will be an important source of 

ambient particulate matter (Ni et al. 2012).  

According to COMEAP (UK) recommendations of PM2.5 index, it will be considered as 

“very high” level of PM2.5 pollution if its 24-hour mean concentration is above or equal to 

71 µg·m3, which is considered as having acute health effects for all general population 

(Ayres et al., 2011). Under this circumstance, 73%, 21%, 19% and 65% days of winter, 

early summer, late summer and autumn, respectively had severe air pollution in Jinan. The 

mean PM2.5 based on this sampling campaign was 79.3 µg·m3, which is more than five 

times higher than the WHO annual guidance. It is even still much higher than the slightly 

less strict tier 2 limit of PM2.5 in the ambient air quality standards of China (MEP, 2012). 

Hence, although the PM2.5 concentration was significantly lower than another case study 

about five years ago, Jinan is still a very heavily polluted city in terms of fine particles.   
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3.3.2 Chemical species concentration  

The following tables and figures in this section summarise the mean concentration of each 

measured species of PM2.5. Overall, the mean concentration in each sampling periods and 

total concentration is summarised in Table 3-1 below.  

Table 3-1 the seasonal and periods mean concentration of all measured chemical species (OC, 

EC and water soluble ions are in unit of µg/m3 while the rest is in ng/m3) 

 
P1 P2 P3 P4 P5 Mean  

OC 16.9 12.3 12.3 21.0 20.7 15.1 

EC 3.5 2.5 2.7 3.7 4.4 3.1 

Na+ 0.45 0.30 0.27 0.55 0.38 0.37 

NH4
+ 5.64 7.72 8.06 7.07 4.49 7.14 

K+ 1.03 2.21 1.82 2.05 1.83 1.81 

Mg2+ 0.07 0.10 0.10 0.28 0.09 0.12 

Ca2+ 1.05 0.49 0.43 0.84 0.52 0.65 

Cl- 1.78 0.34 0.79 3.38 3.10 1.41 

NO3
- 6.97 4.74 7.39 14.65 11.04 7.94 

SO4
2- 8.83 17.51 17.21 11.84 9.66 14.32 

C2O4
2- 0.22 0.47 0.35 0.24 0.19 0.33 

Al 0.78 0.43 0.24 0.57 0.75 0.48 
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P1 P2 P3 P4 P5 Mean  

Si 1.61 1.01 0.27 0.91 1.21 0.92 

Ti 0.07 0.04 0.02 0.04 0.03 0.04 

V 0.01 0.01 0.00 0.01 0.00 0.01 

Cr 0.03 0.02 0.01 0.03 0.08 0.02 

Mn 0.06 0.04 0.02 0.07 0.12 0.05 

Fe 1.28 0.69 0.37 1.11 1.35 0.82 

Ni 0.03 0.02 0.02 0.04 0.05 0.02 

Cu 0.07 0.05 0.06 0.09 0.11 0.06 

Zn 0.22 0.16 0.16 0.37 0.53 0.22 

As 0.01 0.01 0.01 0.02 0.03 0.01 

Se 0.01 0.01 0.00 0.02 0.03 0.01 

Pb 0.09 0.06 0.05 0.14 0.19 0.09 

Sr 0.01 0.00 0.00 0.00 0.00 0.00 

Mo 0.01 0.00 0.00 0.01 0.01 0.00 

Cd 0.01 0.01 0.01 0.01 0.03 0.01 

Sb 0.04 0.04 0.04 0.06 0.04 0.04 
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P1 P2 P3 P4 P5 Mean  

Ba 0.40 0.26 0.51 0.63 0.43 0.43 

Na 1.39 1.26 1.57 2.26 2.67 1.59 

Mg 0.27 0.24 0.24 0.34 0.35 0.27 

K 1.24 1.51 1.94 2.19 2.58 1.73 

Ca 2.03 1.00 0.40 1.27 1.66 1.11 

Sc 0.18 0.10 0.05 0.13 0.16 0.11 

Sn 0.03 0.04 0.04 0.06 0.03 0.04 

Levoglucosan 0.38 0.12 0.23 0.65 0.65 0.31 

Cholesterol 0.02 0.01 0.00 0.01 0.02 0.01 

Retene 0.005 0.002 0.003 0.006 0.008 0.004 

Benzo[a]Anthracene 0.011 0.007 0.008 0.014 0.017 0.009 

Chrysene 0.014 0.002 0.006 0.019 0.019 0.009 

Benzo[b]Fluoreathene 0.021 0.008 0.012 0.026 0.023 0.015 

Benzo[k]Fluorathene 0.012 0.003 0.007 0.021 0.018 0.010 

Benzo[a]Pyrene 0.016 0.008 0.009 0.017 0.019 0.012 

Indeno[1,2,3-cd]Pyrene 0.004 0.003 0.003 0.009 0.004 0.004 
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P1 P2 P3 P4 P5 Mean  

Dibenzo[a,h]Anthracence 0.001 0.000 0.000 0.002 0.001 0.001 

Benzo[g,h,i]Perylene 0.003 0.001 0.002 0.019 0.005 0.005 

Coronene 0.000 0.000 0.000 0.002 0.001 0.001 

C24 0.067 0.023 0.042 0.118 0.071 0.056 

C25 0.059 0.026 0.045 0.128 0.078 0.058 

C26 0.048 0.028 0.042 0.099 0.062 0.050 

C27 0.057 0.059 0.050 0.114 0.067 0.066 

C28 0.039 0.036 0.039 0.071 0.047 0.044 

C29 0.074 0.114 0.059 0.113 0.068 0.089 

C30 0.041 0.038 0.040 0.054 0.042 0.042 

C31 0.055 0.080 0.050 0.065 0.050 0.063 

C32 0.029 0.028 0.036 0.091 0.055 0.043 

C33 0.036 0.041 0.042 0.106 0.069 0.053 

C34 0.032 0.033 0.033 0.079 0.043 0.041 

r17aTNohop 0.008 0.012 0.028 0.033 0.030 0.020 

17aNohop 0.029 0.024 0.017 0.020 0.017 0.022 
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P1 P2 P3 P4 P5 Mean  

17ahop 0.018 0.018 0.027 0.028 0.027 0.023 

22SabHH 0.025 0.025 0.022 0.023 0.023 0.024 

22RabHH 0.022 0.027 0.045 0.045 0.044 0.035 

 

3.3.2.1 OC and EC 

Table 3-2 the mean OC, EC and PM2.5 concentration for all periods in Jinan  

  P1 P2 P3 P4 P5 

OC (µg·m-3) 24.1 11.8 13.4 22.8 23.6 

EC (µg·m-3) 4.9 2.5 3.1 3.4 5.9 

OC/EC 4.9 4.3 4.3 6.7 4.0 

 

Table 3-2 summarises the mean concentration of OC and EC in each season. The 

concentration of OC and EC follows the trend of PM2.5 concentration where winter and 

autumn had the highest concentration of OC and EC and spring and summer experienced 

the lowest concentration in both OC and EC. Overall, the OC and EC account for about 

20% and 4% of PM2.5 total mass annually.  

The secondary organic carbon (SOC) is normally the low-volatility products formed by the 

oxidation of gas-phase precursors which have low vapour pressure to condense upon 

volatile organics on existing aerosol particles (Castro et al. 1999; Seguel A. et al. 2009). 
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SOC is difficult to measure directly due to its complex compositions and formation 

mechanism (Zhou et al. 2012), it is estimated based on the OC and EC data by using the 

following equation (3.1): 

 SOC = OC – (OC/EC primary) × EC  (3.1) 

Where: (OC/EC primary) is equivalent to the minimum OC/EC ratio during the sampling 

campaign (Zhou et al. 2012). This method uses EC as a tracer to estimate the secondary 

organic carbon formation indirectly (Zhang et al. 2012). The annual mean SOC is 6.77 

µg·m-3, which accounts for 37.5% of total organic aerosol mass, suggesting a high degree 

of SOA formation in Jinan all year round.  

3.3.2.2 Water Soluble Ions 

Water-soluble ions were also the important constituents of PM2.5 in Jinan, including 

ammonium, potassium, calcium, chloride, nitrate and sulphate. They may come from 

primary precursors such as SO2 and NOx emitted from fossil fuel burning and industrial 

emission or agriculture  (Wu et al. 2013; Gu et al. 2014). According to figure 3.5, sulphate, 

nitrate and ammonium were the three dominant constituents in PM2.5. Potassium, calcium 

and chloride also had reasonable high concentration, though their amount was a 

magnitude less than the three major ions. Sodium, magnesium and oxalate ions were also 

measured by IC but there is relatively minor contribution than the rest constituents (Figure 

3-3).     
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Figure 3-3 annual mean concentration of measured water-soluble ions 

According to Figure 3-3 annual mean concentration of measured water-soluble ions, 

sulphate, ammonium and nitrate account for 41%, 22% and 21% of total water-soluble 

mass, which dominate the total mass of water-soluble ions. First of all, the non-sea salt 

sulphate (SO4
2-

nss) is calculated by equation (3.2) where [SO4
2-

nss] = [SO4
2-]-[Na+]×0.252 

(Long et al. 2014). The non-sea salt sulphate accounted for 99% of total sulphate. Since 

Jinan is an industrialised and urbanised mega-city, the amount of these major secondary 

inorganic aerosols (SIA) implies the high intensity of anthropogenic emission from this 

city rather than from the sea salt at all. Therefore, the contribution from the sea is negligible. 

On the other hand, the nitrate to sulphate ratio (NO3
-/ SO4

2-) (in µg/m3) is a good indicator 

for assessing whether mobile source or coal combustion is the predominance emission at 

the place of interest (Kong et al. 2010). The annual NO3
-/ SO4

2- is 0.58, which further 

implies coal combustion related industry is a major source of PM2.5 in Jinan (Kong et al. 

2010). Furthermore, there is a clear seasonal variation for nitrate and sulphate. The nitrate 

has much higher concentrations in autumn and winter while it decreases substantially in 

spring and summer. This is very likely due to the phase partition of NO3
- , which largely 
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depends on the temperature, humidity and ammonia concentration (Yao et al. 2002). As 

the average temperature in spring and summer are much higher than autumn and winter, 

a significant amount of nitrate may have transferred to the gas phase. However, there is 

more sulphate in spring and summer rather than autumn and winter in Jinan which is not 

that typical compared to other studies (Wang et al. 2009; Zhang et al. 2007; Zhang et al. 

2013; Song et al. 2007; Zíková et al. 2016). It generally has higher sulphate in autumn and 

winter due to the domestic heating supplied by coal burning in China (Yao et al. 2002; Dai 

et al. 2013). However, similar trend has been found in the earlier study in Jinan and Yang 

et al. (2012) suggested that the low RH in winter and autumn does not favour 

heterogeneous aqueous reactions and a higher concentration of ozone and stronger 

sunlight accelerate the secondary conversion of SO2 to sulphate via oxidation. This is also 

supported by the latest findings on secondary sulphate formation mechanism that the 

severe haze pollution in China is largely caused by SO2 oxidation and sulphate formation 

where the high reaction rate principally depends on the water content in the ambient air 

(Cheng et al. 2016; G. Wang et al. 2016).   

Ion balance analysis is applied for assessing both the measurement error of water-soluble 

ions and acidity of secondary inorganic formation in Jinan.  According to figure 3.6, the 

PM2.5 in Jinan was close to neutral, which was the same as what was reported by Cheng et 

al. (2011b). The correlation coefficient R2 is 0.939 (P≥0.001) and gradient is 0.995, which 

show a good degree of ion balance in PM2.5.  
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Figure 3-4 Ion Balance analysis of water-soluble ions measured from Jinan’s PM2.5 sample 

The ion balance analysis also suggests that acids are almost neutralised in Jinan’s ambient 

air throughout the whole sampling campaign since the gradient of this curve is close to one. 

It may imply that the acid rain problem has been remitted in the recent years. This could 

be due to a large amount of ammonium emission in China today. Wang et al. (2016) 

suggested that there are 22 Tg S y-1, 19 Tg N y-1 and 15 Tg N y-1 of SO2, NOx, NH3, 

respectively emitted in China every year where a large amount of ammonium coming from 

the use of nitrogen fertiliser. This ammonium naturalizes the fine PM in the ambient 

eventually.  

y = 0.9952x + 0.0426
R² = 0.9391

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

ca
ti

o
n

s

anions

Annual Ion Balance Analysis 



88 

 

3.3.2.3 Trace metal  

 

Figure 3-5 annual mean concentration of all measured trace elements in PM2.5 in Jinan  

Trace metals can be very useful for the receptor modelling as some of them are closely 

related to anthropogenic emission such as Ni and V, which are normally regarded as the 

tracer for the heavy oil industry (Viana et al. 2008). 24 trace elements which majority of 

their daily concentration were greater than the lowest of detection (LoD) are presented in 

Figure 3-5 annual mean concentration of all measured trace elements in PM2.5 in Jinan. 

Apart from the total sodium, magnesium, potassium and calcium, aluminium, silicon, iron, 

zinc and barium had a higher absolute value of concentration in the PM2.5 compared with 

rest of other trace metal.  
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Figure 3-6 Seasonal variations of trace metals in PM2.5 in Jinan 

Figure 3-6 Seasonal variations of trace metals in PM2.5 in Jinan shows the seasonal 

variation of trace metal in Jinan. A majority of species concentration follows the trends of 

PM2.5 concentration. Major elements including Al, Si, Fe and Ca had the highest 

concentration in winter rather than early summer, which implies that the sandstorm from 

Gobi desert may not the major contribution of mineral dust in Jinan this year in the early 

summer (Sun et al. 2005). However, fly ash or cement, and other construction-related 

sources could influence the concentration of these elements (Gu, et al. 2014). In addition, 

the highest concentration of K appeared in late summer and autumn; this might be due to 

the biomass burning activity during these two periods (Chen et al. 2016).  

Enrichment factor analysis was conducted here to determine the degree of anthropogenic 

impact on the trace metal (Figure 3.8). The enrichment factor (EF) is defined corroding to 

the equation (3.3) below (Wang et al. 2006): 

EF = (X/Y)sample /(X/Y)crust (3.3) 
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Where : X is the trace element of interest, Y is the reference element, and (X/Y)sample  and 

(X/Y)crust are the ratios between the concentration of the trace element of interest in the 

PM2.5 and crust, respectively. In this study, Si and Al are used for the reference element in 

the analysis. If the value of EF of the interest is over 10, it suggests that anthropogenic 

emissions have a significant impact on it. 

Based on the results from figure 3.8, it turns out that Ni, Cu, Zn, Se, Pb, Cd, Sb, Sc and Sn 

could have been affected by the anthropogenic pollution in the ambient air while rest of 

elements have fewer influences from the human-made emission as their enrichment factors 

value are more than 10.  

 

Figure 3-7 Enrichment Factor Analysis  

This can be an important clue for the later receptor modelling as these are the potential 

trace metal that can be used as tracers in the modelling. Based on the previous study, Cu, 

Zn, Sb and Ba is very likely due to the traffic-related source emissions such as tyre wear 

(Wåhlin et al. 2006).  
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Overall, compared to another two available case study in Jinan reported by Cheng et al. 

(2011a) and Gu et al. (2014), there is some decline in terms of total PM2.5 concentration, 

OC, EC and water-soluble ions but the trace metal level are still similar to the previous 

years. Ni might be the sign of oil refinery related industrial emission (Viana et al. 2008). Si, 

Al, Ca, Mg, Fe and Ti in the coarse mode are also commonly used for identifying mineral 

dust (Song, Zhang, et al. 2006) while Mn and Cr are also frequently used as tracers for 

industrial sources (Zhang et al. 2013).  

3.3.2.4 Polycyclic Aromatic Hydrocarbons (PAHs) 

Generally, PAHs are mostly colourless, white or pale yellow solids with high melting point 

and environmentally persistent and toxic to human beings, which are associated with 

incomplete combustion of organic materials, especially the emissions of vehicles, coal 

combustion and industrial process in the urban ambient air (Yin et al. 2010). PAHs are 

very important constituents of OC, however, they are much less studied in Jinan. Table 

3-3 Mean seasonal total PAHs concentration and its range.presents the mean total PAHs 

concentration and its range throughout the year.  

Similar to a majority of inorganics, OC and EC, PAHs also had a highest mean 

concentration in winter. Autumn was another season when Jinan experienced a high 

concentration of PAHs while early summer and summer had the lowest concentration of 

PAHs.   
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Table 3-3 Mean seasonal total PAHs concentration and its range. 

Season Winter Early summer Late Summer Autumn 

Total PAHs 

Concentration in 

ng·m3 

162.5 37.9 31.7 90.9 

Range (ng·m3) 64.95-556.45 26.47-78.97 26.18-41.34 40.71-207.23 
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Figure 3-8 annual mean PAHs concentration  

Figure 3-8 annual mean PAHs concentration shows the mean mass concentration of PAHs 

including retene, BaAnt, Chr, BbPyr, BaPyr, Ipyre, DBahAnt, BghiPer and COR. BaAnt, 

Chr, BbPyr and BaPyr have much higher concentration than other PAHs (~ 12 ng·m3) 

while DBahAnt and COR had a lower concentration than a majority of measured PAHs 

(~2 ng·m3). In comparison, the PAHs concentration is similar to Beijing-Tianjin urban 

region reported by Wang et al. (2011). However, it is about two to three times higher than 

Harbin and Guangzhou in North-eastern China and Southern China, respectively (Ma et 
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al. 2010; Li et al. 2006), which shows Jinan is heavily polluted by PAHs. Figure 3.10 shows 

the average level of PAHs and their seasonal variations that found in Jinan. One of the 

important feature of PAHs in the ambient air is that typically the lower molecular weight, 

the higher vapour pressure and vice versa, though the vapour pressure of PAHs is relatively 

low in most cases (Abdel-Shafy & Mansour 2015). Therefore, the lower molecular weight 

PAHs is more likely in gas phase while some higher molecular weight PAHs is more likely 

in the solid phase in the ambient particulate matter. Therefore, the temperature could result 

in the seasonal variation of PAHs mass distribution. 

 

Figure 3-9 seasonal variations of PAHs mass concentration. 

High level of BaAnt, Chr, BbPyr, BaPyr, BghiPer implies that both the coal combustion 

and vehicle exhaust may play an important role in contributing PM2.5 level in the ambient 

air(Hu et al. 2012; Shen et al. 2010). These species could be helpful for apportioning the 
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oil fuel burning related sources in the PMF or CMB if the profiles which contain PAHs are 

provided.  

3.3.2.5 n-Alkanes 

Normal alkanes (n-alkanes) are another other important organic compounds in the 

ambient air. They may not only come from both anthropogenic sources such as fossil fuel 

combustion, biomass burning or cooking but may also from the biogenic emissions such 

as plant wax (Li et al. 2010). Their mass distribution can suggest the contribution from 

anthropogenic or biogenic sources based on the different n-alkanes mass distribution.   

 

 

Figure 3-10 Annual Mean n-Alkanes concentration in Jinan 
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Table 3-4 the mean concentration and range of total n-alkanes 

Season Winter Early summer Summer Autumn 

Total n-alkane 

Concentration 

(C24 to C34) in 

ng·m3 

815.5 544.14 365.2 942.0 

Range (ng·m3) 436.7-2240.1 409.6-895.5 294.2-508.0 398.5-1473.5 

 

 

 

 

Figure 3-11 seasonal variations of n-alkenes in Jinan. 

Figure 3-11 seasonal variations of n-alkenes in Jinan.and Figure 3-10 Annual Mean n-

Alkanes concentration in Jinanshows the total periods mean n-alkanes mass concentration 

and mass concentration distribution in different periods from C24 to C34 while Table 3-4 the 

mean concentration and range of total n-alkanes presents the mean concentration, the 
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range of total n-alkane and mass concentration distribution of each n-alkanes. Again, the 

results show that both winter and autumn were the most polluted period while early 

summer is much less polluted and summer had the lowest n-alkanes concentration overall. 

In addition, the peak concentration of n-alkanes appeared at carbon number C24 or C25 

in winter and autumn, where the lower molecular weight n-alkanes (C24 to C28) had 

higher mass concentration than the rest of n-alkanes. On the contrary, during the early 

summer and late summer, the mass concentration distribution shows a unimodal 

distribution where the peak appeared at C29. Similar to PAHs, the temperature at different 

seasons could be the major cause of the seasonal variation since n-Alkanes were also 

temperature dependent due to its semi-volatile property (W. Li et al. 2010). Furthermore, 

the coal combustion in winter and autumn could be another cause as the fossil fuel 

combustion was related with n-alkanes with carbon number predominance Cmax at C22-

C25 (Rogge et al. 1993). While the peak at C29 in early summer and late summer was very 

likely due to the plant wax release into the atmosphere as it consists mainly high molecular 

weight coonhounds including odd-even carbon number of Cmax at between C27 and C31 

(Simoneit 1999; Li et al. 2010).  

Carbon preference index (CPI), which is the ratio of odd to even carbon number n-alkanes, 

has been used for evaluating the contribution of anthropogenic and biogenic sources 

(Simoneit 1999). Odd number n-alkanes are normally found in fossil fuels while even 

carbon number n-alkanes are found in the plants. If the CPI value is close to unity, it 

suggests that anthropogenic emission is the major sources; when CPI over 2.0, it indicates 

a major influence from biogenic sources ( Li et al. 2010). The CPI of n-alkanes is 1.16, 2.11, 

1.25 and 1.38 in winter, early summer, late summer and autumn in Jinan, which suggests 
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a strong impact on n-alkanes from anthropogenic sources except for early summer while 

plan wax also played an important role.   

3.3.2.5 Hopanes 

Hopanes are triterpenoid hydrocarbons that are primarily derived from bacteria as 

bacteriohopanols and also can be anthropogenic, i.e., from fossil fuel combustion. They 

are abundant in coal, crude oil and lubricant oil and vehicle exhaust (Wang et al. 2009; 

Yin et al. 2010). Therefore, they are widely used as organic molecular markers for coal 

combustion and traffic emissions (Fu et al. 2008). In this study, the following hopanes 

including: 17α(H)-22,29,30-Trisnorhopane (C27α), 17α,21β(H)-30-norhopane (C29αβ), 

17α(H),21β(H)-Hopane (C30αβ), 22S-17α(H),21β(H)-30-Homohopane(C31αβS) and 22R-

17α(H),21β(H)-30-Bishomohopane (C31αβR) have been analysed.  

 

Figure 3-12 Annual median hopanes concentration in Jinan 

 

The mean total hopanes mass concentration and their ranges in the four seasons are shown 

in Figure 3-12 and Table 3-5. The seasonal concentration is shown in Figure 3-13. Winter 
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and autumn experienced much higher concentration of hopanes than early summer and 

late summer. This is similar to the other case study of hopanes measurement in other places 

in China (Wang et al. 2006). 

Table 3-5 the seasonal mean mass concentration of total hopanes and their ranges at each 

season 

Seasons Mean Total Hopanes (ng·m3) Range (ng·m3) 

Winter 11.84 8.39-18.46 

Early summer 4.32 4.15-4.69 

Late summer 3.47 3.37-3.58 

Autumn 10.99 9.84-13.15 

 

In terms of concentration, the values are at the same order of magnitude withother studies 

in Beijing, Tianjin and Changchun (Wang et al. 2006). Among the five hopane species in 

this study, the three most abundant compounds were C27α, C29αβ and C30αβ, which are 

closely related to coal combustion and vehicle exhaust. C29αβ is considered as the dominant 

hopane compound from coal combustion emission in China, C30αβ is more likely to be from 

vehicle exhausts; similarly, C27α  is also more likely to be from coal combustion rather than 

vehicle emissions (Zhang et al. 2008). The ratios of C29αβ to C30αβ in four seasons (winter to 

autumn) are 0.83, 0.60, 0.59 and 0.74, respectively. The higher ratio implies the impact 

from coal combustion while the lower ratio reflects the influence from vehicles (Zhang et 

al. 2008). The relative abundance of C27α also increased during the winter and autumn 

which was in accordance with the heating period when the coal combustion could be 

enormous.  
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Figure 3-13 Seasonal variations of hopanes in Jinan  

3.3.2.6 Levoglucosan and Cholesterol 

Two sterols were analysed in this study, namely levoglucosan and cholesterol. 

Levoglucosan is normally considered as a tracer for biomass burning sources since it is 

emitted at very high concentration during cellulose combustion (Simoneit et al. 1999; 

Simoneit 1999; Lin et al. 2010), which is widely used in China (Liu et al. 2013; Cheng et 

al. 2013; Chemistry et al. 2013). While cholesterol exists in all the body tissues in higher 

animals by biosynthesis and it is an important emission during the meat cooking, which is 

therefore used as the tracer for cooking (He et al. 2004). Table 3-6 shows the mean 

concentration and its seasonal variations of these two sterols.  
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Table 3-6 Summary of levoglucosan and cholesterol measurement in PM2.5, Jinan 

Seasons Levoglucosan 

mean 

concentration 

(ng·m3) 

Concentration 

range of 

Levoglucosan 

(ng·m3) 

Cholesterol mean 

concentration 

(ng·m3) 

Concentration 

range of 

Cholesterol 

(ng·m3) 

Winter 233.0 62.9-1595 2.3 0.5-10.4 

Early summer 33.7 13.5-113.7 0.4 0.2-2.2 

Late Summer 27.6 26.4-30.5 0.3 0.0-0.8 

Autumn 158.3 29.0-339.8 0.3 0.1-0.6 

 

Both levoglucosan and cholesterol peaked in the winter reaching 1595 ng·m3 and 10.4 

ng·m3, respectively. Autumn was also another period with high levoglucosan 

concentration, but the cholesterol remained at low level. This could be due to the biomass 

burning in autumn when there would be corn residuals burning during October in northern 

China (Chen et al., 2016). Levoglucosan concentration in this study is much higher than 

that reported in Beijing and Shanghai in terms of annual mean concentration reported by 

Jiang et al. (2009) and at the background site in East China by Liu et al. (2013).  However, 

it is similar to the level in Beijing year season by Cheng et al. 2013) but much lower than 

the study by (Zhang et al. 2008) annually. This is likely due to the special distribution of 

levoglucosan is varied from site to site and time to time (Hedberg et al. 2006). 
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As water-soluble potassium is also usually used as an inorganic tracer for biomass burning 

which is usually used in PMF, the correlations between levoglucosan and potassium in the 

four seasons are analysed below.  

          a) 

 

                      b) 
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           c) 

 

            d) 

 

Figure 3-14 the correlations between K+ and levoglucosan in the four seasons  

Summer and autumn have shown some degree of correlation between water-soluble 

potassium and levoglucosan. However, the source of K+ in winter seems more complex, 

one of the cause could be from crustal materials  (Cheng et al. 2013). Alternatively, K+ may 

also have got involved in secondary aerosol formation. On the other hand, there was no 

strong correlation in early summer. It may because the biomass was not that active in May 

during P3. Overall, winter and autumn experienced the greater correlation between K+ and 

levoglucosan while summer and early summer experienced lower correlation. This trend 
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is similar to the study of Beijing’s biomass burning reported by Cheng et al. (2013). In order 

to further investigate the poor correlation between K+ and levoglucosan, the following 

correlations have been also performed. 

a) 

 

b) 

 

Figure 3-15 a) the correlation of K+ and SO4
2- during the five sampling period; b) the 

correlation of K+ and Cl- during the five sampling period 
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Figure 3-15 shows the correlation between K+ and SO4
2- or Cl- during the five different 

sampling periods. Reasonable correlations between K+ and SO4
2- have shown in all five 

sampling period across the year. On the contrary, there is almost no correlation between 

K+ and Cl- in summer. This is very likely due to the temperature-induced volatilization 

during the early summer and summer sampling period as the temperature was up to 35 °C. 

Therefore K+ could be in the form of either KCl or K2SO4 in Jinan as well as other salts 

such as KNO3. However, KCl would be largely decomposed during hot weather but K2SO4 

remained relatively stable.  In addition, the heterogeneous reactions between K+ and 

H2SO4, HCl and HNO3 may both happen during the emission of coal combustion and 

biomass burning. Therefore, the K+ emission from the biomass burning might have become 

K2SO4 while arriving the receptor, which has been suggested by a related study in China 

( Li et al. 2016).  
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Figure 3-16 the correlation of levoglucosan and OC during the five sampling period. 

On the other hand, since levoglucosan has been widely reorganized and used as the organic 

molecular marker for biomass burning.  If the K+ comes from the biomass burning, it may 

have a relatively high degree of correlation with levoglucosan (Urban et al. 2012). Both 

linear and exponential fit could be found during the biomass burning episode (Urban et al. 

2012; Cheng et al. 2013) and this has been evaluated in chapter three. Again, according to 

Figure 3-16, levoglucosan and OC have significant correlation in the first wintery sampling 

period and autumn sampling period and there is a high correlation between levoglucosan 

and K+ in P1 too. These imply that some K+ may come from the biomass burning indeed. 

There have been some studies shown that the levoglucosan to K+ could increase during the 

prevailing biomass burning period (Schkolnik et al. 2005; Caseiro et al. 2009).  
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Table 3-7 Levoglucosan to K+ concentration ratio during all the sampling periods 

Sampling 

Period 

Winter-1 Early summer Summer Autumn Winter-2 

Levo/K+ 0.54 0.08 0.32 0.38 0.35 

 

But it is also worth addressing that both levoglucosan and cholesterol can be released from 

the cooking in China and both species have high loading together by the same factor in the 

PMF modelling (Zhao et al. 2015). Therefore, the influence from other sources to 

levoglucosan should also be concerned in the source identification judgement.  

Finally, some K+ may also come from the soil rather than entirely from biomass burning. 

The Figure 3-17 below assesses whether the K+ may come from the soil dust.  

a) 
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Figure 3-17 a) the correlation of K+ and levoglucosan during the five sampling period; b) the 

correlation of levoglucoan and OC during the five sampling period. 
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al. 2002). Table 3.7 shows the [Cl-] / [NO3
-] during the five sampling periods while both 

winter sampling periods have the highest ratio. It seems that coal combustion could be an 

important source of Cl- in Jinan.  

Table 3-7 Cl- to NO3
- concentration ratio during all the sampling periods 

Sampling 

Period 

Winter-1 Early Summer Late Summer Autumn Winter-2 

[Cl-] / 

[NO3
-] 

0.32 0.12 0.03 0.17 0.32 

 

To sum up, the Cl- signal appearing in the biomass burning factor could be also influenced 

from coal burning. Meanwhile, K+ in the secondary sulphate factor may come from the 

primary emission of both biomass burning and soil dust during different time of year. There 

is evidence showing that the biomass burning contributed the PM2.5 pollution in Jinan is 

likely due to the long-range transport from nearby region. There is also sign that 

levoglucosan may also come from cooking emission too in Jinan but further work required 

to clarify this deduction. 

 

 3.4.3 Meteorological Data 

During the sampling campaign, wind speed, wind direction, temperature, RH and a.t.m. 

pressure were also recorded simultaneously by the simple weather station. Unfortunately, 

the thermometer and barometer sensors were not working properly during the sampling 

periods, only the mean values of ws, wd and RH are summarised below in Table 3.8. 
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Table 3-8 Summary of Wind Speed, Wind direction and RH during the sampling period in 

Jinan 

Seasons Wind Speed 

(m/s) 

Prevailing 

Wind 

Direction 

RH (%) 

Winter 

(P1&P5) 

4.1 NE 48.5 

Early 

summer (P2) 

4.9 N 54.4 

Summer 

(P3) 

4.6 SW 73.0 

Autumn 

(P4) 

1.8 NE 66.8 

  

The meteorological condition based on Table 3-8 Summary of Wind Speed, Wind 

direction and RH during the sampling period in Jinan shows that the wind condition in 

Jinan was calm throughout the year which contributes to PM2.5 accumulation in the 

ambient air. It was also generally dry in Jinan except for the summer period. Autumn was 

also relatively mild and steady. Moreover, Figure 3-15 Wind rose analyses on wind speed 

and direction in Jinan a) winter; b) early summer; c) late summer; d) autumn shows the 

wind rose analysis by Iowa State University (iastate, 2018).  
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a) 

 

b) 
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            c) 

 

 

d) 

 

Figure 3-15 Wind rose analyses on wind speed and direction in Jinan a) winter; b) early 

summer; c) late summer; d) autumn 

It turns out that the prevailing wind in Jinan mainly coming from three directions, namely 

NE and SW or from north in May and June. The wind from NE may bring the pollutants 

from the industrial zone at the suburban area of Jinan while the SW and northerly wind 
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may get involved in the regional transport of pollutants from the Southern Shandong 

Province, Henan, Anhui and Jiangsu Province or Hebei Province. 

3.4.3 Mass Closure Analysis 

Mass closure (or mass reconstruction) is a useful measure for understanding the temporal 

and spatial variations of the chemical composition of PM2.5, which is very helpful for the 

source apportionment judgement and also validating the consistencies and addressing 

uncertainties of mass and chemical measurements by the laboratory analysis (Chow et al. 

2015). The reconstructed PM2.5 is the sum of mass consisting of the following seven 

representative chemical compounds, namely 1) inorganic ions; 2) organic matter (OM); 3) 

elemental carbon (EC); 4) geological minerals; 5) sea salt; 6) trace elements and 7) other 

(Chow et al. 2015). In details, inorganic ions is calculated as the sum of sulphate, nitrate 

and ammonium; OM = 1.4×OC; geological minerals = 1.89Al+2.14Si+1.4Ca+1.43Fe; 

trace elements is the sum of all the measured trace metal elements excluding S, Al, Si, Ca, 

and Fe plus Na+ and Mg2+ (Solomon et al. 1989). Hence, the mass closure of PM2.5 in Jinan 

is reconstructed by this means. The results are shown below.  
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Figure 3-16 PM2.5 mass closure in Jinan  

According to figure 3.16, the nine categories of chemical species explain about 84% of total 

mass of PM2.5. OM, secondary inorganic aerosols, geological materials and EC contributes 

the majority of PM2.5 in the city. Compared to the previous study of Jinan in 2007, there is 

a decline in sulphate. This  could be due to the decrease of primary sulphate emissions 

(Chan. 2008).but the contribution from OM is increased substantially from 13% in 2007 to 

29% in 2015 (Gu, et al. 2014). Furthermore, 16% of total PM2.5 mass has not yet interpreted. 

This could be due to unmeasured aerosol water and other species (Chow et al. 2015).The 

results of mass closure analysis will be helpful in the further receptor modelling data 

analysis and assessment. 

 

3.6 Conclusion 

The data of physical and chemical characterisation of PM2.5 has presented above. The 

meteorological data is also presented. OC, EC, water-soluble ions, trace elements and 
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some important organic molecular markers have been quantified. According to the 

chemical quantification and mass closure analysis, the PM2.5 concentration in Jinan has 

declined in the last decade including some major chemical components including SIA. 

However, OM has become another new major pollutant in the PM2.5 and the annual mean 

concentration of PM2.5 remained high and is much greater than the WHO guideline. Also, 

both inorganic and organic compounds quantification, including emission factor analysis 

etc. have suggested there is still a significant impact from coal burning and mobile sources 

to PM2.5 in this city. Jinan is still suffered by the severe air pollution in the recent year. The 

data will be used in receptor models for further analysis.  
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4 Chapter Four Positive Matrix 

Factorisation Modelling Of PM2.5 

Samples in Jinan 

Abstract  

A couple of source identification studies have been conducted in Jinan by using various 

means including back trajectory, Principle Component Analysis (PCA) and receptor 

models including PMF and CMB. However, none of them applied organic molecular 

markers while apportioning the sources of the PM2.5 in Jinan. This chapter discusses the 

modelling process and results by PMF on the PM2.5 sample collected in Jinan by using 

molecular organic markers. Six factors (sources) were resolved from the models, including 

secondary sulphate (32 %), secondary nitrate (9 %), coal burning (10 %), biomass burning 

(20%), vehicle exhaust (16 %) and mineral dust (10 %) and other sources (3%). The 

rotational ambiguity due to the fact that there is no unique solution in PMF model and 

uncertainty have also been assessed. There is no significant rotational and excessive error 

found in the model run. Secondary sulphate and biomass burning may be overestimated 

by the model compared to the results estimated by alternative empirical equation.  

4.1 Introduction 

Jinan is heavily polluted city due to its urbanisation and industrialisation in the last a 

couple of decades and the coal burning and steel and cement production may play an 

important role to the air pollution in Jinan (Yang et al. 2012). Jinan is surrounded by the 

mountains in the east, west and south side. Due to its semi-enclosed topography and stable 

air mass in winter, the pollution level of PM2.5 could be very high and it has been one of 

the most polluted cities in the world (Yang et al. 2012).  However, it has been less addressed 
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in terms of air pollution study compared to other cities such as Beijing. Fortunately, some 

efforts have been made on discussing the pollutants formation and their variation. Gao et 

al. (2011) conducted an intensive semi-continuous measurement of water-soluble ions by 

ambient ion monitor. It was found that there was more local extensive secondary sulphate 

and nitrate formation in summer than other seasons. While Xu et al. (2011) discussed the 

size distribution of aerosol in Jinan and compared the difference between urban area of 

Jinan and rural areas, they suggested that Jinan has high number concentration of 

accumulation-mode parties with the diameter between 100 to 500 nm but relatively lower 

number concentration of ultrafine parties (10 to 100 nm) and inactive new particle 

formation was observed in Jinan. This is probably due to the high existing particles which 

inhibit the new nanoparticle formation (Xu et al. 2011). In addition, there is also a high 

correlation between the surface concentration and NOx in all seasons, which implies the 

importance of traffic to the pre-existing particles in Jinan. On the other hand, other efforts 

have also been made to find out the sources of PM in Jinan. Bi et al. (2007) sampled the 

PM10 in Jinan and five other northern Chinese cities and established the local source 

profiles including re-suspended dust, soil dust, coal combustion fly ash and vehicle exhaust. 

Bi et al. (2007) also firstly applied the CMB based on the local source profile to quantify 

the contribution of sources in Jinan. While Yang et al. (2013) firstly apportioned the PM2.5 

by PMF and other approaches have also been employed including PCA, CPF and PSCF 

(Gu et al. 2014; Gao et al. 2011). The findings from all of these studies pointed out that 

coal combustion, SIA, mineral dust and vehicles are the major emission sources in Jinan. 

Other sources including cement production, biomass burning, industrial sources have also 

been apportioned (Yang et al. 2013; Bi et al. 2007; Gu et al. 2014). However, there are 

some disagreements on the source categories from the modelling results and uncertainties 
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remain. In addition, it is lack of inter-comparison between different receptor models in the 

previous studies and organic molecular markers are advised to input into the models to 

possibly achieve more robust results. In this project, two different receptor models, PMF 

and CMB were used and organic molecular markers have been applied. This chapter will 

mainly focus on the PMF model run and its results.  

4.2 Models Parameters Setting 

For PMF models, two datasets input is essential for the modelling, which are the chemical 

species concentration data and the corresponding concentration uncertainty data. Two 

datasets were organised by MS Excel 2010 in daily format and saved as .xlsx file. The 

uncertainty is calculated as follows by equation 4.1 (Adam Reff 2012):  

Uncertainty = (0.05 · xij) + DLij  (4.1) 

where xij and DLij are the concentration and detection limit of the jth species in the ith sample, 

respectively. The following preliminary data quality checks were also done before the 

model run, including mass closure, ion balance mentioned in Chapter three as well as 

signal-to-noise ratio. The signal-to-noise ratio (S/N)j is interpreted as the relationship 

between certain portion of the concentration that exceeds the uncertainty. The signal-to-

noise ratio is one of the vital references to decide which species (or variable) should be 

selected for the model run (Paatero & Hopke 2003). In most cases, the species with signal-

to-noise ratio below 0.2 were excluded and the species with the signal-to-noise ratio 

between 0.2 to 2 were generally marked as weak. Therefore, 24 species were used in the 

model run, which is shown in below. 
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Table 4-1 Input Data Statistics for PMF Modelling. 

Species  Category  Signal-to-noise ratio 

PM2.5 Weak 0.0 

OC Strong 10 

EC Strong 10.0 

NH4
+ Strong 10.0 

K+ Weak 10.0 

Cl- Weak 5.6 

NO3
- Strong 9.5 

SO4
2- Strong 10.0 

Al Strong 2.5 

Si Weak 10.0 

Ti Weak 1.6 

Mn Weak 2.0 

Fe Strong 9.8 

Ni Strong 3.6 

Cu Strong 4.9 

Zn Strong 8.2 

As Strong 0.9 

Se Weak 2.6 
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Species  Category  Signal-to-noise ratio 

Pb Strong 7.6 

Ba Weak 0.0 

Ca Weak 10.0 

Sb Weak 0.5 

Chrysene Weak 5.9 

Benzo[b]Fluorathene Weak 8.4 

Indeno[1,2,3-cd]Pyrene Weak 4.0 

Dibenzo[a,h]anthracence Weak 0.1 

C25 Weak 9.9 

17ahop Weak 1.3 

Levoglucosan?   

 

Having set up the data input, the model is ready for base model runs. Base Model Run is 

the process that primary factor profiles and factor contributions are produced (EPA, 2014).  

In this practice, the number of runs was set as 100 times while the seed was set 12 as the 

starting point for each iteration but later was set as “random” to assess whether the found 

solution is a local or global minimum (EPA, 2014).  The number of factors was set from 

three to seven to explore the solution which has the most reasonable physical meaning.    
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4.4 Modelling Results  

4.4.1 Three factors  

Figure 4.1 shows the factor profiles when three factors were set before the model run on 

Jinan’s PM2.5.  

 

Figure 4-1 Factor profiles when three factors was set before the model run 
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According to the run Factor 1 is mainly characterised by Al, Si, Fe, and Ca. This could be 

due to the contribution from mineral dust contribution (Zíková et al. 2016). There are also 

many other species which also have high loadings such as OC, EC, organic molecular 

markers and trace metals. Therefore other sources have also contributed to this factor. In 

factor 2, the profile is mainly characterized by NH4
+, K+, SO4

2-, Sb and Ba, which indicates 

the contribution from secondary sulphate formation and other fossil fuels combustion 

including traffic and biomass burning and coal combustion (Cheng et al. 2013) Zhang et 

al. 2007; Hopke 2016). Factor 3 is, however, characterised with high concernments of Cl-, 

NO3
- and majority of trace metal and organic molecular markers. There is an also 

reasonable high content of K+, levoglucosan and NH4
+, indicating the possible emissions 

from secondary nitrate, industrial emission, fossil fuel combustions and biomass burning 

(Song et al. 2006). Therefore, three factors are not enough to explain all the sources for 

PM2.5 in Jinan as some sources are mixed together in a single factor. In addition, the value 

of objective function Q, which is also known as the goodness-of-fit parameter, is large. 

However, the results still show that there is a strong signal that fossil fuel, mineral dust, 

secondary nitrate and sulphate, industrial and biomass burning could be the major sources 

for PM2.5 in Jinan but they are not fully separated. This model run provides some 

preliminary suggestions on the existence of main sources in Jinan.  

4.4.2 Four factors 

For four factors PMF model run, the number of runs and seed number has not been 

changed as well as the species selection and its corresponding S/N categories. Only the 

number of factors was set to four. The Q value and Q-Robust were reduced to 1471.2 and 

1485.1, respectively, which is a significant decrease compared to the previous results 

(2265.3 and 2320.0). However, in the residual analysis, OC, SO4
2-and NO3

- are not entirely 
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normal distributed and with relatively big scaled residuals, which means poorer species 

model fit.  

Here are the factor profiles in this model run (See Figure 4-2). According to the profile plot, 

factor one is mainly characterised by NH4
+, K+ and SO4

2-. The total mass of NH4
+, K+ and 

SO4
2- are 71.9 %, 58.0% and 73.2%, respectively, in this factor. However, there is a minor 

contribution by levoglucosan but none of Cl- from this factor. The K+ may still come from 

biomass burning in the form of aged particles where KCl has been transformed to K2SO4 

(Jing et al. 2017). Alternatively, it might due to other sources such as soil dust (Pachon et 

al, 2013). Hence, secondary sulphate and possible biomass burning could be the major 

contributors for this factor.  

The second factor is mainly characterised with mineral dust tracers including Al, Si, Ti, Fe 

and Ca etc. Therefore, it can be verified that this is mineral dust source (Viana et al. 2008).  

In the third factor, it is mainly characterised with high contribution of OC (66.3%), EC 

(78.6%) and organic molecular markers including Indeno[1,2,3-cd]pyrene, 

Dibenzo[a,h]anthracene and 17α-hopane. These tracers imply that the influence from the 

vehicle exhaust mainly. Meanwhile, there is also some relatively high contribution from 

trace metals such as Cu, As and Ba. This could be due to the contribution mainly from 

vehicle exhaust  or other fossil fuel combustion such as coal burning ( Huang et al., 2014).  

In the fourth factor, the main contribution comes from Cl-, NO3
-, Ni, Zn, As, Se, Pb and 

levoglucosan. The Cl- may either from biomass burning or from coal combustion-related 

sources such as coal-burning power plant (Song et al. 2006; Cheng et al. 2013). The high 

loading of levoglucosan further suggests that the influence from biomass burning is 

significant. In addition, Ni, Zn, As and Pb may also come from coal burning or other 
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industrial sources. While NO3
- is generally with respect to secondary nitrate. Also, 

considering some minor contribution of K+, this factor might be also a mixture of 

secondary nitrate, coal combustion, industry and some biomass burning contribution. 

 

Figure 4-2 Factor profiles when four factors was set before the model run 
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4.4.3 Five factors 

Again, for five factors PMF model run, the number of runs and seed number has not been 

changed as well as the species selection and its corresponding S/N categories. Only the 

number of factors was set to five to check if more sources can be continuously separated 

and lower the Q value. The Q value and Q-Robust continue reducing to 905.4 and 905.5, 

respectively, which implies an even better simulation. However, in the residual analysis, 

NO3
- remains non-normal distributed and with relatively big scaled residuals. 

According to the factor profile below on Figure 4-3, factor one is marked as NH4
+, and 

NO3
- only, which is primary secondary nitrate. Factor two and four are also more clarified 

by OM, EC, Indeno[1,2,3-cd]pyrene, Dibenzo[a,h]anthracene, 17α-hopane and Al, Si, Ti, 

Ca. They can be confirmed as the mixture of vehicle exhaust and mineral dust. 

Factor three is more refined and clearer. The major markers are NH4
+ (54.3%) and SO4

2- 

(69.6%), which indicates that this is the factor for secondary sulphate. However, there is 

also some K+ existed in this factor. As suggested earlier, it may be due to the aged particles 

from biomass burning emission or soil dust. 

Factor five is mainly characterised by As, Cu, Zn, Mn, Ni and Pb. These could be due to 

different industrial sources including coal combustion, metallurgy, steel industry and oil 

combustion (Viana et al. 2008).  The factor five is also characterised by Cl- and 

levoglucosan, which implies the contribution from biomass burning (Simoneit et al. 1999b). 

Therefore, secondary nitrate, vehicle exhaust and mineral dust have been identified at this 

stage.  
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Figure 4-3 Factor profiles when five factors was set before the model run 

4.4.4 Six factors 

Regarding six factors PMF model run, The Q value and Q-Robust are both 666.4. The 

values have become the same, in the residual analysis, the residual distribution of all the 
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species are normally distributed with much less scaled residuals, indicating that the model 

has already tended to find out good fitting results.  

In this model run, the chemical characterization for each specific source is clearer. The 

factor one is mainly characterized as NO3
- and some NH4

+ while other species’ contribution 

is minor. Hence, it can be identified as secondary nitrate source. The second factor contains 

a reasonable amount of OC, SO4
2- and marked by Ni, Zn, As, Se and Pb and also some Cl-. 

This factor could be interpreted as coal burning (Zhang et al. 2007; Hopke, 2016). The 

third factor mainly characterized by Cl-, Se levoglucosan, which indicates that this is the 

contribution from biomass burning. The factor four is characterized with the elements 

including Al, Si, Ti and Ca. So this is the factor for the PM2.5 from mineral dust including 

soil, road re-suspended dust and maybe cement production too (Zíková et al. 2016). Hence, 

PM2.5 in factor four could be mainly coming from coal burning mainly. The fifth factor is 

characterized as NH4
+, K+ and SO4

2-, this could be just due to secondary sulphate but 

whether the K+ comes from biomass burning is still required some further analysis. The 

sixth factor is characterized by OM, EC, PAHs and α-hopane. This is the factor for vehicle 

exhaust sources (Cao et al. 2013; Wang et al. 2009).  
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Figure 4-4 Factor profiles when six factors was set before the model run 

4.4.5 Seven factors 

The modelling results for seven factors have been also assessed in this study. The Q value 

and Q-Robust are both 509.5, which is even lower than the Q values that were obtained 

when there were six factors. All the selected species show good normal distributions. 

However, the source profiles for mineral dust seems to split up during the seven-factor 



129 

 

model run. Factor 1, 2, 4, 5 and 6 are very similar to the biomass burning, vehicle emission, 

secondary sulphate and secondary nitrate in the previous model run, respectively. However, 

both factor 3 and factor 7 are seems based on the emission from mineral dust. Factor 3 is 

mainly characterised by Al, Si, Ti, Fe and Ca while factor 7 is mainly marked by Al. 

 

Figure 4-5 Factor profiles when seven factors was set before the model run 
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The G-Space plot shows that there is a clear edge existed according to Figure 4-6. There is 

also some correlation between two factors, which implies the rotation and separation 

factors in this result. 

 

Figure 4-6: G-space plot of factor 3 and factor 7. 

To sum up, though the Q values and residual analysis have indicated that the seven-factor 

modelling run may have even better theoretically mathematical solutions, the source 

profiles start losing its physical meaning under the circumstance to the physical 

environment. Therefore the results for the seven-factor model run are excluded (Chen et 

al. 2010).  
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Furthermore, in order to apportion cooking emission, cholesterol has also been applied in 

the PMF model. However, cholesterol has very high loading in the biomass burning factor 

when six factors are set. One possible explanation is that levoglucosan and cholesterol may 

represent some cooking emission while it is released when the vegetable is fried in the cook 

( Zhao et al. 2015). However, the PMF failed to separate biomass burning and cooking 

emissions. Last but not the least, n-alkanes and some other molecular markers are not 

applied in the PMF modelling in the end as it will result in higher Q-value significantly. 

This might be due to the instability caused by too many chosen species for the modelling 

while the limited sample size (n <120) is available ( Zhang et al. 2009).  

4.5 Discussions 

4.5.1 Further Biomass Burning’s Contribution Analysis 

In Chapter three, some evidence has shown that there is potential biomass burning 

contribution to the PM2.5 as there is some extent of correlation between K+ and 

levoglucosan measured in the samples. However, most of K+ appeared in the secondary 

sulphate factor while the levoglucosan does not improve the modelling performance in the 

PMF modelling. Therefore, another approach is attempted to find out its contribution. 

There could be three causes (or hypothesis). First of all, the biomass burning was far 

enough away from the sampling site so that the emitted chemicals is highly aged and 

transferred to secondary aerosols. For instance, K+ and Cl- have been found as the main 

PM2.5 tracers of biomass burning as its emission is largely composed of K and Cl (Li et al. 

2007). However, Cl- may also come from other sources such as coal combustion while K 

can also come from coal combustion or soil dust in China (Yao et al. 2002; Zhao et al. 

2010).   
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4.5.2 Biomass burning contribution estimation by other means 

Another approach is applied to estimate the contribution of biomass burning. Based on the 

enrichment factor approach, the contribution of biomass burning to OC can be calculated 

as follows (Zhang et al. 2014): 

Biomass Burning’s Contribution to OC (%) = 
[levoglucosan/OC]ambient 

[levoglucosan/OC]source 
 × 100%    (4.1) 

Zhang et al. (2007) reported that levoglucoson accounts for 8.2% of cereal burning which 

isthe major biomass burning in China. And the average value of levoglucosan to OC ratio 

in Jinan’s sample is 40.35. The contribution of biomass burning to OC in Jinan is about 

20.3%, which suggests that the impact from biomass burning is significant during sampling 

periods. Hence, the mass contribution of biomass burning to the total PM2.5 is 4.1%. 

4.5.3 PMF Uncertainty Analysis  

After the confirmation of initial factors, the assessment of rotational ambiguity and 

modelling uncertainty (error estimation) are preceded. In PMF v5.0, three methods for 

undertaking error estimation are provided including classical bootstrap (BS), displacement 

of factor elements (DISP) and bootstrap enhanced by displacement of factor elements (BS-

DISP). All of these methods are suggested to use as they are a complement to each other 

(Paatero et al. 2014). The error estimation is attempted to find out the uncertainty of 

modelling results due to random error and any other error and it is helpful for the analyst 

to tell the potential rotational ambiguity too.  
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4.5.3.1 Time series of sources contribution  

 

Figure 4-7 Time series of sources contribution during the sampling campaign 

According to Figure 4-7, secondary nitrate has a steady contribution along the sampling 

campaign, which suggest that the influence by the vehicles emission is persistent. Coal 
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burning and mineral dust have shown more seasonal variation along this period. More 

contribution has been spotted in winter for coal burning but less contribution in summer 

while more mineral dust has found in later winter and early summer, which is consistent 

with expectation due to the more coal burning during the heating time. This could be due 

to the more frequent cold front system coming from Siberia bring more dust while passing 

by the Gobi dessert. Vehicle emission is also similar to secondary nitrate which has 

sustaining contribution along this period. However, biomass burning has much higher 

contribution during the winter than summer while more secondary sulphate is formed 

during the summer than winter. 

4.5.3.1 Base model boostrap Method (BS) 

BS mainly focuses on evaluating the random errors but also partially evaluating the 

rotational ambiguity. In the summary of BS runs, if the base run is within the interquartile 

range box (IQR), the base run results are acceptable. Or any species with the base run 

outside the IQR should be evaluated as it means that even a small set of observation could 

result in the significant change of base run outcomes. BS is particularly useful for 

identifying the factors which are not very reproducible due to the poor solution or other 

causes such as wind direction or source activity etc. (Brown et al. 2015). 

Having initialled the BS run, the BS box plots produced for each factor, which is shown 

below in Figure 4-8.  
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Figure 4-8 Uncertainties of each species contribution in each profile due to random error 

mainly  

According to Figure 4-, the majority of species base run values are within the IQR in each 

factor. This is a positive sign that the random error for this factors simulation is not major. 

In addition, the bootstrap summary shows that the mapped factors are more than 80%. 

Therefore, it implies that the current number of factors may be suitable. However, there 
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are some base run results are out of IQR, indicating minor rotational ambiguity in the 

modelling outcome. 

4.5.3.2 Base Model Displacement Error Estimation (DISP) 

DISP is mainly used for assessing the rotational ambiguity for the PMF solution. The 

exploration of rotational ambiguity is assessed by evaluating the biggest range of source 

profile values without an appreciable increase in the Q-value. The details of how DISP 

works is explained in the “USEPA PMF v5.0 User Guide”, which will not be covered in 

this thesis. Overall, if factor swaps happen during the DISP diagnostics, this suggests that 

there is significant rotational ambiguity, which will be shown as the error code 6 in the 

DISP summary report. Meanwhile, the Q-value decrease should not be over 1%. Or it 

indicates that the current solution is not a global minimum, which will be shown as error 

code 9 in the DISP summary. DISP has been turn out as a good screening tool for solution 

swap assessment in other studies (Brown et al. 2015). 

Here is the BS Summary:  

       0       0.000 

    0    0    0    0    0    0 

    0    2    0    0    0    2 

    0   14    8    0    3    7 

                                                        0   22   15    0    5   10  

This indicates that no factor swaps are found in any factors, which shows that there is 

no significant rotational ambiguity in this PMF solution. There is no Q-value decrease 



137 

 

(<1%), the solution can be considered as a global minimum. Consequently, it is not 

necessary to deploy rotation in the further analysis.  

Finally, the linear correlation equation is y = 0.94702*x + 2.16852, where the gradient is 

very close to 1 and R2 = 0.877. The base model run has suggested that the modelled total 

variable perdition is matched with measurement data reasonably well (Figure 4.9). 

 

Figure 4-9 The Obs/Pred time series analysis of model run 
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Figure 4-10 change of Q value to number of factors ratio against the number of factors 

Figure 4-10 shows the change of Q values to number of factors ratio with respect to the 

increasing number of factors from two to seven. The decrease of the ratio is massive from 

two factors to five factors while the change is less significant from five to seven factors. 

This trend also suggest the results is relatively robust in terms of Q value.  

 

4.6.3 Sources Contribution and Mass Closure 

A convincing PMF modelling solution is achieved during the modelling progress and a 

couple of error diagnostics and other means of modelling results assessments have been 

applied to evaluate the quality of this model outcome. Six major sources have been 

identified including: Secondary Nitrate (9%), Secondary Sulphate (32%), Coal 

Combustion (10%), Mineral Dust (10%), Vehicle Exhaust (16%) and biomass burning 

(20%) etc.  However, secondary sulphate and biomass burning could be overestimated and 
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coal combustion might be underestimated based on the discussion above. It is still worth 

comparing this result with mass closure for further evaluation.  

 

 a) 

 

 b) 

 

Figure 4-7 a) Source contribution modelled by PMF;  b) mass closure analysis. 
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Figure 4-7 shows the results of both source apportionment analysis by PMF and Chemical 

Mass Analysis (CMA) which have been conducted in chapter three. In both analyses, the 

mineral dust accounts for 10% and 9%, respectively, which is fairly consistent with each 

other. In addition, the secondary inorganic aerosol (SIA), which is the sum of NH4
+, SO4

2- 

and NO3
- in CMC, is 36% while the SIA in PMF modelling result is 41%, which also have 

a acceptable agreement. But it seems that sulphate is overestimated by PMF while nitrate 

is underestimated. Overall, the results between PMF and CMC are still similar. The PMF 

modelling results should be compared with CMB results for further evaluation.  

4.7 Conclusions  

In summary, source apportionment by PMF modelling with organic molecular markers 

has been conducted. Six factors have been identified and their contributions to PM2.5 in 

Jinan have been quantified too. The six major sources are Secondary Nitrate, Secondary 

Sulphate, Coal Combustion, Mineral Dust, Vehicle Exhaust, biomass burning and other 

sources, which accounts for 9%, 32%, 10%, 10%, 16%, 20%, 16% and 3% of PM2.5 pollution 

in Jinan. Organic molecular markers turn out helpful while identifying fossil fuel burning 

sources such as coal combustion，biomass burning and vehicle exhaust in Jinan. Error 

estimation is conducted by BS and DISP. Neither significant rotational ambiguity nor any 

other major error has been found in this PMF modelling solution. The result is also 

comparable with CMC for quality control. This PMF model result is useful and helpful for 

the local policy maker and authority for their air pollution control in near future. But PMF 

seems overestimated the biomass burning significantly. For the further work, mannosan 

should be introduced for apportioning the biomass burning (Zhang et al. 2007). There is a 

couple of studies in China have reported that mannosan can be very helpful for 

apportioning the biomass burning in China and levoglucosan to mannosan ratio is a 
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reliable assessment to hardwood burning  (Cheng et al. 2013). Further assessment is 

required to compare its results against CMB modelling results.  
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5 Chapter Five Chemical Mass Balance 

Modelling on Jinan’s PM2.5 Dataset 

Abstract 

In this chapter, the modelling and performance of CMB models is discussed. The PM2.5 

dataset is reorganised to meet the requirements of USEPA CMB v8.2 model input and the 

profiles of ambient PM2.5 emitted from the sources in China, are retrieved from the previous 

published literatures or provided by collaborators. CMB modelling showed that coal 

burning (16%), biomass burning (17%), metallurgy industry (11%), mineral dust (6%), 

petrol vehicles (8%), diesel vehicles (6%), secondary nitrate (13%), secondary sulphate 

(18%) and other (5%) are recognised as the major emission sources annually to PM2.5, 

respectively, in Jinan. All model performance criteria were met for the annual average 

dataset. Regarding seasonal source apportionment results, the outcomes of winter and 

early summer also met the criteria but the summer and autumn have excessive value of   χ2. 

This may be due to the change of sources contributing to PM2.5 in summer and/or poor 

representativeness of the source profiles are used under the context of this two seasons. 

Significant seasonal variation in the contributions to PM2.5 was observed for secondary 

sulphate, secondary nitrate and coal burning. On the other hand, the contribution of other 

sources such as soil dust and biomass burning to PM2.5 mass remains stable throughout the 

year. Model performance analysis suggested that chemical profiles of local PM2.5 sources 

are needed to improve the source apportionment of PM2.5 in Jinan.  
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5.1 Introduction 

CMB is another receptor model tool which has been widely used for receptor modelling. 

Unlike PMF, CMB requires source profiles as data input in the model based on its model 

principles (Watson et al. 2002). However, there were limited source profile data about a 

decade ago so that modellers had to use the source profile dataset elsewhere such the 

USEPA SPECIATE database etc. in China (Pei et al. 2016). There are two major issues 

using non-local profiles. First of all, the chemical compositions of same type of sources 

may differ in the different place and its difference could be huge (Pei et al. 2016). In 

addition, some profiles presented in the USEPA SPECIATE are old and have limited 

quantified species in the profile. Furthermore, lacking of uncertainty data of each measured 

specie is another problem. All of these issues may result in wrong results and errors after 

obsolete profiles are applied.  

However, there are still some studies using CMB models to apportion the PM in China 

and more source profiles of major particle sources data gradually available in the recent 

years, which is very helpful for the future CMB modelling in China (Han et al. 2014; Kong 

et al. 2011; Zhang et al. 2007). For exemple, Bi et al. (2007) firstly applied CMB for 

apportioning the sources’ contribution to PM10 in Jinan with mineral dust samples that are 

collected and measured in local urban area. In this chapter, the sources profiles of PM2.5 

collected in Jinan, Tianjin, Xiamen have been employed for the PM2.5 dataset obtained 

from Jinan. Though there is no source profile is characterised in this project due to limited 

time and budget, the latest published and/or measured PM2.5 profile in China have been 

applied in the CMB modelling. Both annual and seasonal source apportionment have been 

studied. The results reveal that coal combustion, industrial boilers, vehicle exhaust and 

secondary nitrate and sulphate are the major sources in Jinan. Meanwhile, how important 
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the local source profile has been addressed by the sensitivity test. It turns out that though 

the profiles from other places in China do fit better than other source profiles, for example 

USEPA SPECIATE and SPECIEUROPE during the practice, the profiles measured in or 

near Jinan recently still cannot fully represent the local PM2.5 chemical characteristics.  The 

establishment of the local profiles are still essential for the local source apportionment by 

CMB modelling.  

5.2 Methodology  

5.2.1 Chemical Mass Balance Model 

The mathematics of CMB model has already explained in the Chapter Two. In short, it is 

based on the equation derived from the principle of mass conservation of individual 

chemical (or markers) between the emission source and the receptor site, which is similar 

as PMF. However, as the model is conceived for one sampler per site and there is not 

residual term (Belis et al. 2013). The set of equations is then solved with variance-weighted 

least square under the USEPA CMB environment.  

5.2.2 Sampling and Chemical Analysis  

The details of sampling and chemical analysis of PM2.5 samples in Jinan has described in 

the previous chapter, which is not repeated here. 

5.2.3 Model Parameters and Settings and Evaluation Criteria  

In CMB, both the chemical species concentration and its corresponding uncertainty and 

source profile with the measurement uncertainty are compulsory. The species 

concentration dataset is identical as the one used in PMF models except that it was 

reformatted for the CMB model input format requirement. Due to the limited time and 

resources in this project, the source profiles that are used in the model run are collected via 
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data mining from the published literatures where all of them are the profiles established for 

the local sources in China. 

The species used in the CMB are: OC and EC, water soluble ions including NH4
+, K+, Cl-, 

NO3
-, SO4

2- and trace elements including Al, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Na, 

Mg and Ca. In CMB, the following performance measures have been established to assess 

the how well the model has performed, which is consist of the following parameters: 1) R-

square value (r2); 2) chi-square value (χ2); 3) t-stat value and 4) Calculated/Measured Ratio 

(C/M) (USEPA, 2004). 

5.3 Source Profiles Used in the Modelling 

There is plenty of literature regarding the source profiles study in China have been 

examined for finding the appropriate source profiles dataset. Some profiles are also 

provided by the collaborator (College of Environmental Science and Engineering, NKU). 

The types of source profiles include road dust, soil dust, cement production, diesel vehicle 

exhaust, petrol vehicle exhaust, vehicle exhaust, including both petrol and diesel emission), 

biomass burning (general), wheat straw burning, wood burning, corn burning, secondary 

sulphate, secondary nitrate, coal burning, power plant emission, metallurgic plant, steel 

plant (Hao, 2008; Zhang et al. 2016). The profiles with correct particle size fraction (i.e. 

PM2.5) and detailed total mass concentration and corresponding uncertainty to each 

measured species will be taken into the account. If the source was sampled in or near Jinan, 

it will be prioritized. Here are the details of the profiles used in the CMB model.  

 

 



146 

 

Table 5-1 Mass concentrations of source profiles that used in the CMB modelling 

Sources Mass Concentration (% in mass) 

Species Diesel  Petrol Biomass 

Burning 

Sec. 

Sulphate 

Sec. 

Nitrate 

Soil Dust 

(Tianjin) 

Metallurgy Soil Dust 

(Xiamen) 

Coal Burning 

OC 54.4 54.4 40.0 0.0 0.0 8.9 14.4 7.6 12.0 

EC 19.4 6.3 3.0 0.0 0.0 1.2 3.5 0.2 9.1 

Na+ 0.9 3.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

NH4
+ 0.3 0.0 1.0 22.5 27.3 1.1 6.6 2.0 3.1 

K+ 0.0 0.0 10.0 0.0 0.0 0.2 3.6 0.1 0.0 

Mg2+ 0.1 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Ca2+ 0.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cl- 1.2 5.4 17.1 0.0 0.0 0.4 12.5 0.3 1.8 

NO3
- 1.4 1.5 0.3 0.0 77.5 0.4 2.1 0.3 1.0 

SO4
2- 0.5 0.0 2.2 72.7 0.0 4.1 8.6 0.6 23.0 

Al 0.0 0.5 0.0 0.0 0.0 3.8 4.6 4.2 4.6 

Si 0.7 0.0 0.0 0.0 0.0 5.8 4.4 7.0 4.3 

Ti 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.1 0.3 

V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cr 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.0 

Mn 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.0 

Fe 0.0 0.6 0.0 0.0 0.0 3.0 5.1 3.6 2.0 

Co 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ni 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
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Cu 0.0 0.0 0.0 0.0 0.0 0.7 0.1 1.0 0.1 

Zn 0.0 0.1 0.0 0.0 0.0 0.1 2.0 0.1 1.5 

As 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Mo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Pb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 

Na 0.0 0.0 0.0 0.0 0.0 0.6 1.4 0.6 3.5 

Mg 0.0 0.0 0.0 0.0 0.0 2.0 2.0 1.7 0.3 

K 0.0 0.6 15.5 0.0 0.0 0.8 5.8 0.9 3.2 

Ca 0.0 0.0 0.0 0.0 0.0 8.5 3.1 7.9 1.6 

Note: The source profiles are avalable at : 1) Diesel vehicles, petrol vehicles, soil dust, metallurgy by Zhang, 

N. et al., 2016..; 2)Coal burning by Hao, J.M. et al. (2008); 3) soil dust and biomass burning by Dr Shi 

Guoliang, College of Environmental Science and Engineering, NKU (personal communication).  
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Table 5-2 Mass concentration uncertainties of source profiles that used in the CMB modelling (% 

mass) 

Species Diesel  Petrol Biomass 

Burning 

Sec. 

Sulphate 

Sec. 

Nitrate 

Soil Dust 

(Tianjin) 

Metallurgy Soil Dust () Coal Burning 

OC 6.99 18.73 4.11 0.00 0.00 2.08 9.48 2.67 3.74 

EC 6.23 4.29 1.21 0.00 0.00 0.56 2.57 0.25 5.10 

Na+ 1.12 4.32 0.67 0.00 0.00 0.00 0.00 0.00 0.00 

NH4
+ 0.18 0.00 0.85 0.24 0.32 0.51 6.16 0.98 1.06 

K+ 0.00 0.00 4.52 0.00 0.00 0.08 2.82 0.05 0.00 

Mg2+ 0.15 0.30 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

Ca2+ 0.27 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cl- 1.29 6.06 6.86 0.00 0.00 0.17 13.64 0.16 0.73 

NO3
- 0.78 1.28 0.20 0.00 0.39 0.20 1.77 0.17 0.71 

SO4
2- 0.46 0.00 0.23 0.39 0.00 2.37 4.04 0.34 4.43 

Al 0.03 0.61 0.00 0.00 0.00 2.81 4.02 1.06 1.70 

Si 1.28 0.00 0.00 0.00 0.00 4.92 3.12 2.02 1.58 

Ti 0.00 0.00 0.00 0.00 0.00 0.07 0.50 0.04 0.14 

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Cr 0.00 0.00 0.00 0.00 0.00 0.07 0.05 0.21 0.01 

Mn 0.01 0.02 0.01 0.00 0.00 0.07 0.24 0.03 0.00 

Fe 0.02 0.06 0.00 0.00 0.00 2.10 4.33 1.43 0.45 

Co 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ni 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.01 

Cu 0.00 0.01 0.00 0.00 0.00 0.51 0.04 0.25 0.04 
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Species Diesel  Petrol Biomass 

Burning 

Sec. 

Sulphate 

Sec. 

Nitrate 

Soil Dust 

(Tianjin) 

Metallurgy Soil Dust () Coal Burning 

Zn 0.01 0.01 0.00 0.00 0.00 0.23 4.10 0.10 0.32 

As 0.21 0.11 0.00 0.00 0.00 0.01 0.00 0.02 0.02 

Mo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pb 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.41 

Na 0.00 0.00 0.00 0.00 0.00 0.18 0.76 0.22 0.20 

Mg 0.00 0.00 0.00 0.00 0.00 0.94 1.52 1.08 0.09 

K 0.04 0.27 4.01 0.00 0.00 0.69 6.42 0.30 0.76 

Ca 0.01 0.03 0.00 0.00 0.00 3.08 2.47 5.01 0.39 

Note: The source profiles are avalable at : 1)Zhang, N. et al., 2016. Development of source profiles and their 

application in source apportionment of PM2.5 in Xiamen, China. Frontiers of Environmental Science & 

Engineering, 10(5), p.17.; 2) Hao, J.M. et al. (2008) The physical and chemical characterisation of combustion 

sources. Beijing: China Science Press.; 3) Dr Shi Guoliang, College of Environmental Science and 

Engineering, NKU. 

5.3.1 Soil dust 

The soil dust profile was provided by College of Environmental Science and Engineering, 

NKU. The 100g of surface soil dust was collected in the exposed field at north, south, east 

and west side of city as well as along the direction of prevailing wind. Chemicals include 

OC and EC, water soluble ions and trace metal elements, which have been analysed by 

Sunset thermal/optical analyser, IC and ICP-MS in the laboratory. Its chemical mass 

concentration and uncertainty has been shown above in Table 5-1 and Table 5-2 and it is 

also illustrated in Figure 5-1 below. 
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Figure 5-1Chemical characterisation of soil profile in Tianjin, Northern China (Provided by 

College of Environmental Science and Engineering, NKU). 

The soil profile is mainly marked by OC, Al, Si, Fe and Ca. This is similar to the soil 

profiles reported by other studies (Pant, 2014). It is also similar to the factor profile of 

mineral dust apportioned by PMF where Al, Si, Fe, Ti and Ca are the primary components. 

The high amount of OC in the soil dust might come from the organic matter from soil or 

anthropogenic contamination (Soane, 1990).    

5.3.2 Biomass Burning 

The biomass burning profile is cited from the study reported by Zhang et al. (2016) where 

the straw samples were well-burned and its emitted particles collected on the both quartz 

and Teflon filter for chemical analysis. The OC and EC, water-soluble ions and trace 

metals were analysed by Sunset Thermal/optical analyser, IC and XRF (Zhang et al. 2016).  
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Figure 5-2 Chemical characterisation of biomass burning profile in Xiamen, Eastern China 

(Zhang et al. 2016). 

According to Figure 5-2, the biomass burning is characterized by K+ and Cl- except OC as 

well as considerable amount of EC and sulphate. Other species, however, they are only 

accounting for minor constituent from biomass emission.  

5.3.3   Coal burning 

Coal burning is massively used as a thermal power supplier in different kinds of industrial 

boilers in China. One of the major issues about these boilers is that it has not been 

mechanized and automated and limited measures have been taken to remove the dust 

before the emission (Hao et al., 2008). In this study, the boiler profiles cited from Hao et 

al. (2008)’s work has been used for CMB modelling. The samples were collected from eight 

different boilers in China and the average value is being used for representing more broadly 

and realistic coal burning emission. The coal burning is marked by sulphate and other trace 

element, water-soluble ions including NH4
+, SO4

2-, Al, Si, Fe, OC and EC.  
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Figure 5-3 Chemical characterisation of coal burning profile China (Hao, 2008). 

 

5.3.4 Secondary sulphate and nitrate  

The secondary sulphate and nitrate are considered in the form of pure ammonium nitrate 

and ammonium sulphate  (Zhang et al. 2016).  

 

Figure 5-4 Source profile of secondary sulphate and nitrate (Zhang et al. 2016). 
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5.3.5 Diesel and petrol vehicle emissions  

The vehicle exhaust profiles, including petrol and diesel vehicle emissions were collected 

at kerb side in Xiamen (Zhang et al. 2016).  Chemicals include OC and EC, water-soluble 

ions and trace metal elements, which have been analysed by Sunset thermal/optical 

analyser, IC and ICP-MS (hang et al. 2016).  

 

Figure 5-5 Chemical characterisation of vehicle exhaust profile in Xiamen, Eastern China. 

The key components in both diesel and petrol vehicle emission are the exceptionally high 

amount of OC and EC from the emission, which both contribute more than 67% of total 

mass.  

5.3.6 Metallurgic Plant 

As Jinan is a highly industrialized city where played an important role in metallurgy, 

especially the iron and steel production. The metallurgic plant profile is chosen as data 

input in the CMB model. The metallurgic plant profile is also provided by College of 

Environmental Science and Engineering, NKU with same chemical analytical methods. 
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The PM2.5 of steel production plant emission was directly collected by DEKATI Electrical 

Low Pressure Impactor Sampler (ELPI®+) at the end of stack after the de-dusting.  

 

Figure 5-6 Chemical characterisation of metallurgic plant profile in Jinan, Northern China 

(Provided by College of Environmental Science and Engineering, NKU). 

The chemical characteristics of metallurgy is more complex where is the no exceptionally 

high amount of any measured species but many components such as OC, Cl-, SO4
2-, Fe and 

K etc. These tracers can be also found in other sources such as biomass burning, soil dust 

and coal combustion. It suggests that it is highly complicated to industrial emission in 

terms of its chemical components.  
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5.3.7 The rejected source profiles 

Table 5-3 the list of rejected profiles that have been used during the receptor modelling in CMB (% mass) 

Species CNG 
Vehicles 

Fugitive 
Dust 

Secondary 
Sulphate 

Secondary 
Nitrate 

Soil Dust 
(Jinan) 

Road 
Dust 
(Jinan) 

Coal 
Burning 
(Jinan) 

Vehicle 
Exhaust 
(Jinan) 

Vehicle 
Exhaust 
(Tianjin) 

Mineral 
Dust 
(Tianjin) 

Coal 
Burning 
(Tianjin) 

Power 
Plant 
Emission  
(Tianjin) 

Biomass 
Burning 
(Tianjin) 

Wheat 
Straw 
Burning  

Wood 
Burning 

Corn 
residual 
burning  

OC 35.262 5.3496 21.1 2.79 2.099734 10.23858 17.44875 37.42424 37.05 8.906901 19.52423 15.92389 53.07 41.96 40.24 37.7 

EC 7.339 0.266 0.00197 1.87 2.221503 5.058115 3.959023 30.66667 30.36 1.207399 1.369084 2.90437 5.355 3.7 43.7 3.2 

Na+ 4.764 0.3823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH4+ 0 0.0196 11.1 9.82 0 0 0 2.444444 2.42 1.131024 4.952211 13.03148 0 4.14 0.37 3.17 

K+ 0 0.355 0 0 0 0 0 0 0 0.159883 1.618542 0.403172 12.22 4.08 3.58 9.08 

Mg++ 0.3022 0.114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ca++ 6.367 3.5508 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cl- 3.1986 0.1975 0 0 0.251099 0.48762 0.693528 0.888889 0.88 0.442407 4.271816 7.638745 7.125 8.11 4.74 17.02 

NO3- 4.8542 0.1086 0.0188 53.2 0.085316 0.309089 0.110364 1.727273 1.71 0.44482 1.599974 2.292617 0.155 0.06 0.28 0.18 

SO4= 0 0.4438 19.1 0.161 0.57685 5.470556 4.488694 8.656566 8.57 4.149322 31.44806 29.34889 0.72 7.8 1.09 2.43 

Al 0 2.7185 0.223 0.0288 13.01393 11.21945 21.99526 3.686869 3.65 3.768147 3.487126 9.130542 0.66 0.008 0.203 0.015 

Si 0.9923 4.5315 0.321 0.0103 51.27101 25.29202 26.72326 7.292929 7.22 5.815203 3.406073 6.397073 0.34 1.072 0.633 1.997 

Ti 0 0.2084 0.0187 0.00826 1.185499 0.887826 1.60403 0.020202 0.02 0.106017 0.17854 0.344745 0.015 0.0011 0.004 0.0018 

V 0.081 0.0039 0 0 0.028891 0.019479 0.029468 0.010101 0.01 0.01 0.01 0.01 0.01 0.0001 0.0001 0.0001 

Cr 0 0.0046 0 0 0.120993 0.163882 0.073764 0.021212 0.02 0.113731 0.082822 0.973092 0.045 0.0001 0.0011 0.0004 

Mn 0.1349 0.0691 0 0 0.259631 0.143115 0.092908 4.666667 4.26 0.090546 0.040814 0.138435 0.01 0.0002 0.0009 0.0005 

Fe 0.2789 2.7181 0.00187 0.00308 9.016699 6.745549 5.53809 0.010101 0.01 3.035101 1.318774 4.053995 0.42 0.001 0.014 0.007 

Co 0.7825 0.0063 0 0 0.061854 0.025274 0.026653 0.010101 0.02 0.02 0.02 0.02 0.02 0 0 0 

Ni 0.0259 0.0014 0.00375 0.00435 0 0 0 0.020202 0.01 0.006448 0.038209 0.611434 0.025 0.0001 0.0002 0.0003 

Cu 0 0.0056 0.0174 0.0193 0.033932 0.035899 0.035662 0.060606 0.06 0.699923 0.073744 0.137744 0.01 0 0 0 

Zn 0.1608 0.0352 0.0318 0.0723 0.106257 0.228758 0.115807 0 0 0.145667 0.362148 0.122568 0.085 0.0323 0.0787 0.0142 

As 0.5275 0.0005 0 0 0 0 0 0 0 0.016604 0.063684 0.003889 0.003889 0.0003 0.0003 0.0002 

Mo 0.0461 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Species CNG 
Vehicles 

Fugitive 
Dust 

Secondary 
Sulphate 

Secondary 
Nitrate 

Soil Dust 
(Jinan) 

Road 
Dust 
(Jinan) 

Coal 
Burning 
(Jinan) 

Vehicle 
Exhaust 
(Jinan) 

Vehicle 
Exhaust 
(Tianjin) 

Mineral 
Dust 
(Tianjin) 

Coal 
Burning 
(Tianjin) 

Power 
Plant 
Emission  
(Tianjin) 

Biomass 
Burning 
(Tianjin) 

Wheat 
Straw 
Burning  

Wood 
Burning 

Corn 
residual 
burning  

Pb 0.2001 0.0118 0.0252 0.0206 0.016869 0.014489 0.020646 0 0 0 0 0 0 0.0108 0.0066 0.0073 

Na 0 0 0 0 3.805659 2.008597 0.991818 1.050505 1.04 0.600276 3.533556 0.895628 0.015 0.284 0.752 0.263 

Mg 0 0 0 0 3.646468 3.722592 0.973737 0.090909 0.09 1.955369 0.863182 2.060929 0.16 0.006 0.011 0.005 

K 0.0888 0.11239 0 0 3.835519 2.339901 1.291313 0.878788 0.87 0.798883 1.15471 0.363252 9.53 4.156 3.058 8.341 

Ca 0 8.1701 0 0 8.362289 25.5884 5.915657 0.010101 0.01 8.535827 3.127555 3.767364 3.82 0.036 0.047 0.017 
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Other source profiles have also been used for the modelling process. However, the results 

do not meet the model’s robustness requirement and criteria where r2 and χ2 are out of the 

range or more than 120% of mass have been explained.  

5.4 Modelling Results and Model Performance  

5.4.1 Annual source apportionment of PM2.5 in Jinan 

For the model setup, OC and EC, water-soluble ions including NH4
+, K+, Cl-, NO3

-, SO4
2- 

and trace elements including Al, Si, Ti, V, Mn, Fe, Ni, Cu, Zn, Pb, Na, Mg and Ca have 

been chosen from the source profiles as input for the CMB modelling. On the other hand, 

the PM2.5 and species concentration dataset is the same as what was input in PMF model. 

But it has been reformatted with respect to CMB requirement and annual average 

concentration is calculated for PM2.5 apportionment throughout the sampling period in 

Jinan. In addition, Britt and Luecke function, which allows the source profiles used in the 

fit calculation to vary, is not selected and in use as it is not a fully tested method (USEPA, 

2014) but source elimination is selected.  

The modelling result is shown below in Figure 5-7. 
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Figure 5-7 PM2.5 apportionment by CMB v8.2 in Jinan coupled with the PM2.5 profiles from 

China  

According to Figure 5-7, secondary sulphate is found as one of the greatest contributors in 

Jinan, which is account for 18% of total PM2.5 mass. This is very likely to due to a large 

amount of precursor gases emitted from coal burning where have high intensity of coal 

combustion (Zhang et al. 2016). Meanwhile, CMB model suggests that the emission from 

coal burning accounts for 16% of the total PM2.5 mass. In addition, secondary nitrate 

accounts for 13% of the total PM2.5  mass in Jinan, which is another major source of fine 

particles. The CMB model also apportions both petrol and diesel vehicles emissions 

successfully, where petrol vehicle contributes 8% and diesel vehicle contributes 6% of PM2.5 

in Jinan annually.   On the other hand, biomass burning is apportioned in CMB, which 

accounts for 17% of total PM2.5 mass. This is about three times greater than the estimation 

by levoglucosan enrichment factor analysis. This might be due to the differences between 

the real source profiles for the local biomass burning and the profile that used in this model. 

Secondary Nitrate 
13%

Coal Burning
16%

Soil Dust
6%

Biomass Burning
17%

Secondary Sulphate
18%

Diesel
6%

Petrol
8%

Metallurgic Plant
11%

Other 
5%

Source apportionment of PM2.5 in Jinan by CMB v8.2

Secondary Nitrate Coal Burning Soil Dust

Biomass Burning Secondary Sulphate Diesel

Petrol Metallurgic Plant Other



159 

 

As none of single biomass burning has worked including wood burning, wheat burning 

and corn burning, it is likely that the biomass burning in Jinan is consist of a few different 

biomass. Another possibility is that the biomass burning is away from the receptor so that 

the emitted chemicals have been massively aged (Li, et al., 2016). Finally, soil dust and 

metallurgic plant also have significant contribution to fine particles in Jinan, which are 6 

and 11%.   

The model performance is taken into account by the parameters mentioned above. The r2 

and χ2 are 0.97 and 0.79, respectively. This suggests that the source contribution estimates 

explain the observation well with the fitting source profiles and species. In addition, C/M 

and R/U ratio for each species used in the CMB are all within the range of 0.75-1.5 and -

2-2, respectively. This implies the CMB model run reproduced the individual ambient 

concertation by source contribution estimate well too. In summary, the profiles used in this 

CMB model run works reasonably for the PM2.5 concentration dataset in terms of 

modelling performance criteria. It is a convinced result showing the impact to PM2.5 by the 

major sources in Jinan.  

5.4.2 Seasonal variation of source contributions to PM2.5 in Jinan. 

The average of seasonal PM2.5 and individual species concentration were also used as input 

in the CMB models to assess the contributions of major sources during the different seasons. 

Model performance wise, the profile works fine in winter, early summer and autumn. The 

r2 and χ2 ranges between 0.90 to 0.96 and 1.29 to 1.94, respectively. The mass percentage 

is between 80.0 to 118%. However, the source profiles do not work well for summer season 

where its mass percentage is up to almost 120%, and χ2 is over 2.0. The autumn has also 

experienced excessive χ2 value. According to Figure 5-8, soil dust and coal burning remains 
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stable throughout the year. It implies that Jinan might be suffered by the coal burning 

related sources all year round. Meanwhile there is the relatively significant seasonal 

variations suggested by secondary sulphate and nitrate as well as biomass burning. As 

biomass burning is highly dependent on location and time (Yu et al. 2013; Yang et al. 

2013), it is likely that more straws of wheat and corns were burn during the late early 

summer and autumn near Jinan. In addition, there is the particularly high percentage of 

nitrate in autumn (18%). However, the vehicle exhaust emission is down to 5% in autumn 

and there is 16% of unresolved PM2.5 mass in this season. One possible explanation is that 

the some extra nitrate might be due to long-range transport with more complex 

contribution by other sources (Ge et al. 2017). Moreover, secondary sulphate formation 

was largely depressed during the winter in Jinan. This could be due to low RH and very 

low photochemical activity during the winter in Jinan so that there are not enough oxidants 

such as OH and H2O2 formation in favour of SO2 conversion and aqueous phase oxidation 

is also limited. Therefore, the high amount of sulphate in winter may be more likely coming 

from the primary emission (Wang et al. 2014; Zheng et al. 2015).  

 

Figure 5-8 Seasonal variations of source contributions to PM2.5 in Jinan.  
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5.4 Comparison between CMB modelling result and mass closure analysis  

 

Figure 5-9 Annual PM2.5 Mass Closure analysis in Jinan 

Figure 5-9 shows the results from Chemical Mass Analysis (CMC) which have been 

conducted in chapter three. In CMB, the annual soil dust accounts for 6% while the 

geological minerals accounts for 9%, respectively. Again, the CMB shows some good 

agreement with CMC since soil dust is part of the whole geological minerals and it is the 

major components of geological minerals in urban area. In addition, the secondary 

sulphate and nitrate in CMC are 17% and 10% while the result in CMB model is 15% and 

12%. Since the profiles of secondary sulphate and nitrate have considered the contribution 

of secondary ammonium, CMB seems underestimate the impact from the secondary 

inorganic aerosols but still with some good agreement in terms of sulphate to nitrate ratio. 

Similar to the outcomes form PMF, it is possible that the biomass burning in CMB have 

taken into account some of SIA since secondary sulphate and nitrate will be formed quickly 

after the emission (Simoneit 2002) and there is considerable amount of nitrate, sulphate 

Ammonium
9%

Nitrate
10%

Sulphate
18%

OM
29%

EC
5%

Geological 
minerals

9%

Trace Metals
2%

Others
16%

Cl
2%

Mass Closure Analysis of PM2.5 in Jinan

Ammonium Nitrate Sulphate

OM EC Geological minerals

Trace Metals Others Cl



162 

 

and ammonium in the biomass burning profile. Overall, the results between CMB and 

CMC are similar. 

5.5 Further work 

There are two major improvements can be done based on the current work. Firstly, the 

local PM2.5 source profiles establishment is critical for source apportionment of PM2.5 by 

CMB in Jinan. It is also critical for PMF factors assessments. However, there is still a lack 

of PM2.5 source profiles in Jinan have been published. The profiles database (e.g. such as 

USEPA SPECIATE) establishment is highly recommended for the major cities in China 

and the database should be well-maintained and updated for the air quality assessments 

and source apportionments study.   

Secondly, the source apportionment of PM2.5 and OC should be conducted by the profiles 

consists of more organic molecular markers. For example, Zheng et al. (2005) firstly 

apportioned the sources of OM and PM2.5 in Beijing by using CMB model with profiles 

which consists of large number of organic molecular markers. Though most of profiles are 

from USEPA database decade ago, there are also a couple of study specified the source 

profiles in terms of organic molecular markers have been established in China (Wang et al. 

2008; He et al. 2006; Zhao et al. 2015; Zhang et al. 2007). A separate CMB modelling 

based on pure organic molecular markers can also be conducted for the PM2.5 dataset in 

Jinan for assisting the judgement of modelling results. The source apportionment of OC 

can be also helpful to assess the impact of SOC (Gelencser, A. et al., 2007).  

5.6 Conclusion 

In summary, source apportionment by CMB modelling with PM2.5 profiles collected in 

China has been conducted. Annually, eight major sources have been identified including 
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secondary Nitrate (13%), secondary sulphate (18%), coal burning t (16%), biomass burning 

(17%), metallurgic plant (11%), soil dust (6%), petrol vehicle emission (8%)  and diesel 

vehicle emission (6%). 4% of total PM2.5 mass has not been resolved. There are significant 

seasonal variations for a couple of sources including secondary sulphate and nitrate, and 

coal burning while the contribution from soil dust  are more stable throughout the year. 

The CMB model works well with provided source profiles where all the modelling 

performance parameters meet the criteria. However, the establishment of local source 

profiles are still required. The CMB suggests that Jinan is suffered by industrial emission, 

biomass burning, vehicles emission and secondary inorganic aerosols massively. The 

results from CMB and PMF models should be further compared. 

 

 



164 

 

6 Chapter Six PMF and CMB Modelling 

Results Comparison 

 

Abstract  

In this chapter, the results generated by PMF and CMB on PM2.5 dataset of Jinan have 

been compared. Most of the sources have similar results annually except secondary 

sulphate where it might be overestimated by PMF model. There is more similarity on SIA 

and vehicle emission but greater differences in biomass burning, coal burning and mineral 

dust in terms of seasonal variation. The results of Jinan in this study is also compared with 

the previous study in Jinan and Beijing. Some significant similarity of PM2.5 pollution is 

found in both cities.  

6.1 Introduction  

There have been quite a few of inter-comparison of receptor models for PM source 

apportionment since both CMB and PMF have been introduced in China and elsewhere. 

Song et al. (2006; 2007) firstly compared the source apportionment results by a variety of 

receptor models including CMB, PMF and UNIMIX for the PM2.5 in Beijing where 

emissions from coal combustion and biomass burning have a good agreement. Another 

study has also focused on their applications for some certain study area and discussed the 

pros and cons to both CMB and PMF and what could be the best practice to evaluate the 

results from multiple modelling. For example, Querol et al. (2008) employed both PMF 

and CMB to apportioning the emission of PM10 from the industry at an industrial urban 

background site. Querol et al. (2008) found that PMF might be more capable of identifying 

the origin of certain elements, e.g. using for industrial sources, while CMB is adept in 
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apportioning more sources depending on the available local experimental source profiles. 

Ke et al. (2008) compared the modelling results of PM2.5 source apportionment at Atlanta, 

GA, United States. Ke et al. (2008) found that CMB is powerful when apportioning the 

sources with clear and unique markers, e.g. wood combustion and vice versa. Both PMF 

and CMB were performing less well while apportioning the motor vehicle exhaust as diesel 

and petrol emission as it is hard to split due to their similar carbonaceous fractions (Ke, 

Liu, Wang, Armistead G. Russell, et al. 2008).  

One of the key benefits of source apportionments by multiple methods is that it helps to 

assess the uncertainties in the modelling results and evaluate what could be a more robust 

interpretation of the results (Lee et al. 2008). However, there is not many case study on 

multiple receptor modelling on PM2.5 recently in China and there is lack of multiple 

receptor modelling for PM2.5 in Jinan in particular. In this chapter, the results between 

CMB and PMF on Jinan’s PM2.5 are compared. In addition, the results are also compared 

with other similar source apportionments in Jinan and other northern Chinese cities. The 

similarity of the results and the causes of the differences will be discussed.   

6.2 The PMF and CMB results comparison in this study 

6.2.1 Profile Comparison 

The PMF-generated profiles (or factor profiles) and measured profiles that used in CMB 

have been compared. There are six common sources have been apportioned by both 

receptor models, which are secondary nitrate, secondary sulphate, biomass burning, coal 

burning, mineral/soil dust and vehicle emissions. Overall, soil and mineral dust, secondary 

sulphate and nitrate and vehicle exhaust show good agreement in terms of profiles where 

biomass burning has more differences.  
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                a) 

 

                b) 

 

Figure 6-1 a) source (or factor) profiles of soil or mineral dust comparison (Provided by College 

of Environmental Science and Engineering, NKU); b) species abundances correlations between 

measured and PMF-generated profiles for soil/mineral dust 

First of all, Figure 6-1 shows the comparison between the soil dust profile used in CMB 

and PMF-generated profile representing mineral dust. Both profiles are rich in Al, Si, Fe 

and Ca, which drives the contribution to these two sources.  Both Ca and Si have high 
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abundances in these profiles and they have a similar amount in each profile. Therefore 

there is a good correlation between the measured and PMF-generated profiles (r2 = 0.92). 

However, the gradient is about 1.44 which suggests that there is less other constituents that 

has been derived by PMF. This may result in more uncertainty in the PMF results.On the 

other hand, as CMB suggests that the contribution by soil dust accounts for 6% to PM2.5 in 

Jinan while PMF suggests that the contribution by mineral dust is 10%. It might also imply 

that soil dust could be one of the major contributors to the mineral dust in Jinan too.  

       a) 
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Figure 6-2 a) source (or factor) profiles of secondary nitrate comparison (Zhang et al. 2016) 

species abundances correlations between measured and PMF-generated profiles for secondary 

nitrate  
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                b) 

 

 

 

Figure 6-3 a) source (or factor) profiles of secondary sulphate comparison (Zhang et al. 2016); 

b) species abundances correlations between measured and PMF-generated profiles for 

secondary sulphate  

Figure 6-2 and Figure 6-3 show us the comparisons between the secondary nitrate and 

sulphate profiles used in CMB and PMF-generated profiles representing secondary nitrate 

and sulphate, respectively. In CMB, both secondary nitrate and secondary sulphate are 

considered as pure NH4NO3 and (NH4)2SO4, respectively (Zhang et al. 2016). However, 

there is a significant amount of OC suggested in both secondary nitrate and sulphate profiles 

generated by PMF, implying the influence of the SOA formation during the secondary 

nitrate and sulphate formation (Lee et al. 2008). In addition, the molar ratios of ammonium 

to nitrate and ammonium to sulphate in the PMF-generated profiles are 1.05 and 2.42, 

respectively. These suggest that the nitrate and sulphate have been highly neutralized in the 

ambient air and they are mainly in the form of NH4NO3 and (NH4)2SO4, which is the reason 

why the measured profiles and PMF-generated profiles have a good correlation (Tian et al. 

2013). High loading of OC and trace elements in both factor profiles also suggest that there 
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could also be some influence from the secondary organic aerosol and some covariance with 

other sources including coal combustion and traffic emissions (Zíková et al. 2016).  
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              b) 

 

Figure 6-4 a) source (or factor) profiles of biomass burning  comparison (Zhang et al. 2016); b) 

species abundances correlations between measured and PMF-generated profiles for biomass 

burning emissions.  

In Figure 6-4, the biomass burning profile and measured biomass burning profiles have 

been compared. There are great disagreements on these profiles than other comparisons. 

The main differences occur between the loadings of EC, NH4
+, NO3

- and SO4
-, though 

more agreements have been found between trace metals. This probably due to the PMF-

generated profiles represent more complex sources rather than the biomass burning only. 

The Biomass burning factor apportioned by PMF may have the impact from the secondary 

sulphate and coal burning. This is suggested by the G-plot in Figure 6-5 below. Figure 6-5 

implies that the biomass burning and secondary sulphate have some correlation to some 

extent and this may result in some rotational ambiguity which makes the PMF biomass 

profile differs even more than measured biomass burning profile. There is a similar trend 

between biomass burning and coal burning too. 
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           b) 
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Figure 6-5 a) correlation between PMF modelled biomass burning and measured biomass 

burning profile; b) G-plot between PMF modelled biomass burning and secondary sulphate; 

PMF modelled biomass burning and coal burning.  
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Figure 6-6 a) source (or factor) profiles of coal burning comparison; b) species abundances 

correlations between measured and PMF-generated profiles for coal burning  

The coal burning emission profile and measured coal burning profiles have been compared. 

The PMF coal burning factor and CMB profiles show some good agreement in OC and 

EC as well as Cl-, Fe and NH4
+. However, the PMF-generated profile failed to recreate the 
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existence of Al , which is unrealistic (Zhang et al. 2016). Therefore the correlation between 

these two profiles is relatively poorer than secondary inorganic aerosols. In addition, Se is 

another one of the most influential markers which helps for the source identification except 

Cl-. But Se is not helpful in the CMB modelling which also implies the importantance of 

developing local profiles. There is a still some room to optimize on apportioning this source. 

Overall, PMF generates similar profiles compared to the measured source profile that used 

in CMB. Both models also suggest similar mass contribution of coal burning emission to 

the PM2.5 in Jinan. Therefore, another good agreements have achieved   
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                b) 

 

Figure 6-7 a) source (or factor) profiles of petrol car/vehicle exhaust comparison; b) species 

abundances correlations between measured and PMF-generated profiles for petrol car/vehicle 

exhaust 

Figure 6-7 shows that there is a good agreement between the profiles of vehicle exhaust 

used in CMB and PMF. This is largely due to the agreements on OC and EC where OC is 

a very important marker of vehicle exhaust (Zhang et al. 2016). However, some differences 

still remain. For example, the PMF-generated profile suggests more Al, Fe and Ca 

contribution, implying the importance of road dust (Viana et al. 2008). In addition, there 

is much more NO3
- in CMB measured profile where suggest greater influence from the 

tailpipe.  

6.2.2 Annual Source Contribution 

The inter-comparison of CMB and PMF on sources contribution is presented here. The 

annual and seasonal source contribution apportioned by both models are compared. As 

discussed before, both models have shown the similar number and type of emissions 

sources, which is the foundation for a useful comparison (Lee et al. 2008).  
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Figure 6-8 the comparison of source apportionment of PM2.5 results by CMB and PMF model 

run 

Figure 6-8 summarizes the contribution from all the sources identified in both CMB and 

PMF. Overall, most of the sources have similar contributions except secondary sulphate 

and coal burning. Regarding SIA, the secondary nitrate estimation is 13 and 9% in CMB 

and PMF, respectively. However, CMB suggests the contribution of secondary sulphate is 

only 18% in Jinan but this figure is almost doubled in PMF. According to mass closure 

analysis, the sulphate contributes to 17% of total sampled PM2.5 mass. Hence, PMF might 

overestimate the secondary sulphate in the modelling. On the other hand, the coal burning 

has less contribution suggested by PMF than CMB. It is likely that the PMF’s secondary 

sulphate factors have considered some other contributions from SOA formation and other 

primary emissions such as coal burning. This is supported by their factor profiles that there 

is some amount of OC appearing in these two profiles.  

Moreover, the secondary formation of biomass burning may also contribute to the mass of 

SIA, particularly the secondary sulphate in this study, which may result in overestimation. 
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There could be some portion of K+ contribute the factor profile of secondary sulphate in 

factor profile and this could be coming from the biomass burning, which is supported by 

the G-plot (See Figure 6-9). The clear edge suggest that there is correlation between 

biomass burning and secondary sulphate too. By using levoglucosan, 4% of mass 

contribution to PM2.5 by biomass is estimated only.  Furthermore, the primary emission of 

KCl may have been almost transferred to K2SO4 and KNO3 by heterogeneous reactions 

during the long-range transportation from rural area near Jinan to urban Jinan ( Li et al. 

2010).  

 

Figure 6-9 the G-plot of biomass burning against secondary sulphate factor 
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Regarding, vehicle exhaust, CMB has similar estimation against PMF if diesel and petrol 

emission are summed up. Meanwhile, the contribution of soil dust from CMB is also 

similar to PMF. As discussed earlier, both factors have shown good correlation between 

CMB and PMF results. Therefore the agreements on these two factors are high. On the 

other hand, biomass burning also achieved similar contribution in both models. But K+ 

and Cl- are mainly driving this source in CMB while Cl- and levolgucosan mainly drive the 

biomass burning factor in PMF, which is a big difference. Regarding coal burning, the 

source contributions in both models are close too. The agreements on annual contribution 

is good in this study. 

6.2.2 Seasonal Source Contribution and Daily Source Contribution 

Except the overall annual source contributions have been compared, the seasonal and daily 

variation has been also discussed. Both Table 6-1 and Figure 6-10 present the seasonal 

variations of sources contribution apportioned by two different models. For the 

convenience, P1 and P5 is combined together to represent winter period.  
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 Table 6-1 Seasonal Source Apportionment of PM2.5 in Jinan by both CMB and PMF 

 
Winter Early 

summer 

Summer Autumn 

Sources CMB  PMF CMB  PMF CMB  PMF CMB  PMF 

Petrol Vehicle Emission 15% 16% 4% 13% 0% 21% 5% 5% 

Biomass Burning 16% 22% 19% 4% 15% 1% 14% 26% 

Coal Burning Power Station 27% 13% 12% 20% 5% 12% 16% 14% 

Diesle Vehicle Emission  4% 16% 8% 13% 23% 21% 0% 5% 

Secondary Sulphate  1% 4% 25% 21% 37% 27% 17% 18% 

Secondary Nitrate  13% 11% 7% 9% 11% 16% 18% 27% 

Metallurgic Plant  13% 0% 19% 0% 3% 0% 5% 0% 

Soil Dust  6% 20% 6% 20% 6% 3% 6% 6% 

Other  5% 0% 0% 0% 0% 0% 20% 0% 
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                    e) 

 

 

                    f) 

 

Figure 6-10 a) – f) Comparison of seasonal variations of PM2.5 apportionments for vehicle 

emission, soil/mineral dust, coal burning, industrial emission, secondary sulphate and secondary 

nitrate, respectively, by CMB and PMF.  
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As mentioned in Chapter 5, the CMB modelling for summer has poor performance and 

the sources contribution have been overestimated. Apart from it, both models show some 

good agreement overall in four seasons, particularly for vehicle emission and SIA. 

However, there are some major differences for soil and mineral dust, coal burning and 

biomass burning. For instance, there is a stable contribution to PM2.5 from soil dust in Jinan 

but the mineral dust varied in different seasons. The mineral dust has greater emission in 

winter and early summer but the much smaller contribution in summer and autumn by 

PMF. This could be due to the sources of mineral dust in winter and early summer is more 

complex. Some study suggests that there is also a significant amount of Al, Fe, Si in the 

particles that left after coal combustion process (Kong et al. 2011; Pei et al. 2016). Hence, 

the mineral dust may therefore affect by coal-burning too in winter and autumn. This may 

also explain why there is less coal burning contribution than the expectation in autumn by 

PMF. (µg/m3) 

Meanwhile, CMB estimates that there is greater emission from coal burning in winter and 

autumn but less emission in early summer and summer. Compared to CMB, PMF suggests 

that the contribution from these sources is much more stable throughout the year. The 

trend by CMB is relatively closer to the expectation since more coal has been burnt during 

winter and autumn for domestic heating in north China. The difference might suggest that 

the coal burning profile used in CMB fit the real coal combustion profiles in Jinan well. 

Finally, there are a few common issues on seasonal variations of secondary sulphate, 

nitrate and vehicle emissions although they are similar to each other from both modelling 

simulations.  It seems that both CMB and PMF underestimated the vehicle emission in 

autumn while secondary nitrate and sulphate have been overestimated in autumn 
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massively. The reason that results in this outcomes may be due to both model leave 

relatively large portion of unresolved PM2.5 mass in the outcome.  

On the other hand, figure 6-11 shows the comparison of results between PMF and CMB 

in terms of daily variation. 
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               f) 

 

Figure 6-11 a)– f) Comparison of daily variations of PM2.5 apportionments for vehicle emission, 

soil/mineral dust, coal burning, industrial emission, secondary sulphate and secondary nitrate, 

respectively, by CMB and PMF. 

Only selected data has been considered as CMB may fail to apportion some part of daily 

input. This could be due to the significant change of sources in some particular day or the 

variations of source activity. Among all of these sources, secondary nitrate has shown the 

greatest agreement at daily level. Secondary sulphate and vehicle emission are also 

simulated by CMB and PMF with similar results. However, CMB seems overestimate the 

coal burning contribution during the summer. In addition, CMB may also underestimate 

the contribution by mineral dust. This might because that there are more sources rather 

than soil affect the PM2.5. The greatest differences occur on industrial emission. This could 

be due to the complexity of industrial activity in Jinan while there are many other sources 

rather than metal works itself in the city.  
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6.3 The Receptor Modelling results comparison between other studies in Jinan 

As mentioned in Chapter one, there is a couple case study has discussed the sources of PM 

in Jinan. Though the majority of source identification have not employed receptor models 

yet, Bi et al. (2007) and Yang et al. (2013) used CMB and PMF to apportioned the PM10 

and PM2.5 in Jinan.  

                a) 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

Vehicle
Emission

Coal Fly Ash Secondary
Sulphate

Secondary
Nitrate

Soil Dust Road Dust Cement

C
o

n
tr

ib
u

ti
o

n
 (

%
)

Sources 

Source apportionment of PM10 in Jinan by CMB in 2002 (Bi et 
al., 2007) 



190 

 

                b) 

 

Figure 6-11 a) Source apportionment of PM10 by CMB in 2002 (Bi et al. 2007); b) Source 

apportionment of PM2.5 by CMB in this study.   

Figure 6-11 compares the CMB results between the PM10 source apportionment in 2002 

and this study. The two source apportionment provides very different results. The 

dominant contribution in PM10 is mineral dust where the sum of soil dust, road dust and 

cement is more than half of total PM10 mass. In addition, secondary sulphate and nitrate 

contribute only 10% of the total PM10 mass in Jinan. On the contrary, the secondary 

sulphate and nitrate have become the major contributor in PM2.5 while soil dust contributes 

less than 10% in PM2.5. This suggests the SIA plays a much greater role in PM2.5 rather than 

PM10, which is consistent with the fact that more secondary aerosol formation is also an 

emerging trend in China’s fine particle pollution today elsewhere in northern China  

(Huang et al. 2014).  
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and PM2.5. Size distribution of different sources particles could be one of the major causes 

that result in these differences.  
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                 b) 

 

Figure 6-12 a) Source apportionment of PM2.5 by PMF in 2002 (Yang et al., 2012); b) Source 

apportionment of PM2.5 by PMF in this study.   

Figure 6-12  on the other hand, compares the PM2.5 source apportionment of PMF by two 

different studies. There are more agreements between PMF modelling as well as the CMB 

modelling results in this study and previous PMF modelling by Yang et al. (2007). Both 

results show that there is a massive amount of secondary inorganic aerosol formation. The 

increase in mineral dust and vehicle emission is as expected since mineral dust represents 

other Al, Si, Fe and Ca rich sources and there is much more vehicles on the road today. 

However, the PMF modelling in this study has shown much higher biomass burning 

contribution but much lower coal burning contribution to PM2.5.  Further work needs to be 

done to investigate the causes of this difference including the local biomass burning profile 

establishment.  
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6.4 The similarity and difference of PM2.5 sources between Jinan and Beijing 

 

Figure 6-13 the PM2.5 source contribution in Jinan compared with source contributions to PM2.5 

in Beijing from 2005-2014 based on the reviewed literature. Sources: ( Okuda et al. 2004;  Zheng 

et al. 2005; Zhang et al. 2007; Wang et al. 2009; Zhang et al. 2013; Huang et al. 2014;. Liu et al. 

2014; Huang et al. 2014;; Song et al. 2006a; Song et al. 2006b; Wang et al. 2008; ) 

 

Figure 6-13 illustrates the similarity and differences between the source contribution of 

PM2.5 in Jinan and Beijing. Both cities lie in North China Plain (NCP) and they are only 

about 400 km away. According to Figure 6-13, Jinan has greater impact on PM2.5 by 

secondary sulphate, nitrate and biomass burning. This is the common issue of PM2.5 

pollution in northern China today (Huang et al. 2014). However, Beijing suffered more 

mineral dust than Jinan and this is likely due to its location where Beijing is closer to Gobi 

desert and the sandstorm may still play the role for the PM2.5 ( Liu et al. 2014). The impact 

from traffic is pretty similar in this two cities. Overall, there is a considerable similarity of 

PM2.5 pollution in both cities. Since secondary aerosol formation is an regional issue (Guo 
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et al. 2013), the mitigation of PM2.5 should be cooperated and conducted under an even 

bigger framework and expand the Beijing-Tianjin-Hebei mitigation strategy (Wang et al. 

2015).  

 

6.5 Conclusion 

In this chapter, the results of CMB and PMF modelling results for Jinan have been 

compared. Some good agreements have been found in the comparison. Both models 

identify the secondary nitrate, secondary sulphate, vehicle exhaust, mineral/soil dust and 

biomass burning sources. Secondary nitrate and sulphate and vehicle emissions have 

shown the best agreements. The chemical mass closure also reveals that the estimation of 

SIA and mineral dust from CMB are relatively close. However, PMF may overestimate 

the contribution from secondary sulphate and underestimate the contribution from the coal 

burning. Unfortunately, the similarities between each model at seasonal and daily scale are 

getting worse. This is probably due to not only the source profiles that used in CMB are 

not representative enough but also relatively big errors remain in PMF. Meanwhile, the 

source apportionment results of Jinan and Beijing are also compared. Both cities are 

suffered by the similar contribution of secondary sulphate, secondary nitrate and coal 

burning. Overall, both models are good at evaluate the secondary nitrate in this case study. 

Other sources including mineral dust and general vehicle emissions can also be reasonably 

simulated. However, there are more difficulties while assessing the contribution by 

industrial and biomass burning, especially for PMF. It is more likely that CMB may 

apportion these two sources when the proper source profile is provided. In addition, the 

source prcofile by different industrial activity could be completely different while there is 

lots of secondary aerosol formation during the biomass burning process. More careful and 
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sophisticated measures are required when apportioning the contribution by these two 

source.  
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7 Chapter Seven Conclusion 

 

This study and thesis present the source apportionment of PM2.5 in Jinan by different 

receptor models. The major sources that contribute the PM2.5 have been identified by CMB 

and PMF models separately. The similarity and differences of modelling results have been 

compared and the potential causes have also been discussed. This is first work that analyses 

the sources of PM2.5 using different receptor models for the same dataset and sampling 

campaign period in Jinan.  

As a highly urbanised and industrial megacity, Jinan has suffered severe air pollution for 

more than two decades. By 2007, Cheng et al. (2011) suggested the annual mean PM2.5 

concentration is 148.71 µg·m3. In this study, a sampling station consist of one four-channel 

small volume PM2.5 sampler (TH-16A PM Sampler), one medium volume sampler (TH-

150F Automatic Medium Volume Sampler) and weather station was set up on the roof of 

lecture theatre building at central campus of Shandong University in central Jinan to find 

out the latest PM2.5 level. In total, 120 days of sampling have been conducted in Jinan 

where 103 samples of total 120 samples are available for whole measured chemical species. 

After the sampling, the samples have been stored in the freezer at -20 oC and brought back 

to Birmingham by the heat insulated foam box with commercial ice pack. Water-soluble 

ions (including Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, NO3

-, SO4
2-, PO4

3- and C2O2
2-) was 

measured Dionex ICS 500 and Dionex ICS 2000. Trace metals (including Ag, Cd, In, Sn, 

Sb, Te, I, Rh, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, La, Ce, Sm, Eu, Tb, Hf, Ba, Pr, Nd, Gd, Dy, 

Ho , Er, Tm, Yb, Lu, Ge, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, W, Ir, Au, Hg, 

Pb, Pd, Pt, Tl, U, Cs, Bi, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc) have been measured by the 
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Thermo Scientific ARLTM QUANT’X EDXRF Spectrometer at the University of 

Massachusetts, Amherst in U.S.A.. The OC and EC were measured by the Sunset 

Laboratory Thermo-Optical Carbon Aerosol Analyser where EUSAAR2 (European 

Supersites for Atmospheric Aerosol Research) protocol is applied. The molecular markers 

including n-Alkanes, hopanes, PAHs, levoglucosan and cholesterol, however, have been 

extracted from the sample paper first and then analysed by GC-MS.  

The physical and chemical analysis of Jinan’s samples suggests that the annual mean 

concentration of PM2.5 is 79.3 µg·m-3, where the mean concentration during the five 

sampling periods (Winter-1, Early summer, Summer, Autumn and Winter-2) are 122.1, 

57.4, 53.9, 97.7 and 82.1 µg·m-3. The average concentration of PM2.5 throughout the year 

is still much higher than both national guidance (PM2.5 annual mean concentration: 70 

µg·m-3) and WHO guidance (15 µg·m-3) at annual level according to this periods mean. 

Both winter and autumn are the most polluted period which is about 1.5 – 2.2 times greater 

than late early summer and summer. However, the mean concentration in this study is 

lower than the mean concentration reported in 2007 (Cheng et al. 2011), implies that some 

measures on controlling the emissions in Jinan might be effective. This is thanks to the 

declining contribution from secondary inorganic aerosols. But there is also some other 

changes in terms of chemical composition. According to the mass closure analysis, organic 

matter (OM) dominates the PM2.5 compositions, which accounts for 35% of total PM2.5 

mass throughout the year. This weights much more mass than the study reported earlier 

(Cheng et al. 2011; Yang et al. 2013). Except OM, secondary inorganic aerosols including 

ammonium, sulphate and nitrate are the other dominant chemicals, which accounts for 36% 

of total PM2.5 mass. In addition, EC, geological minerals, trace metal, chloride and rest of 

chemical species are accounted 5, 9, 1, 2 and 12 % of total PM2.5 mass.  
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Except the inorganics, the organic molecular markers (OMM) have also been measured 

and quantified including PAHs (retene, BaAnt, Chr, BbPyr, BaPyr, Ipyre, DBahAnt, 

BghiPer and COR), n-alkanes (C24 to C34), hopanes (17α(H)-22,29,30-Trisnorhopane 

(C27α), 17α,21β(H)-30-norhopane (C29αβ), 17α(H),21β(H)-Hopane (C30αβ), 22S-

17α(H),21β(H)-30-Homohopane(C31αβS) and 22R-17α(H),21β(H)-30-Bishomohopane 

(C31αβR)), and sterols (levoglucosan and cholesterol). These OMM are helpful and useful 

to tell the impact from fossil fuel combustion (including coal and vehicle emission), 

plantation, and biomass burning and cooking. Both PAHs and n-alkanes suggest that Jinan 

is suffered from the emission from coal burning related emission while hopanes indicate 

that the impact from traffic is significant. In summer, the natural PM2.5 source such as plant 

wax are also remarkable in Jinan. Moreover, levoglucosan imply that the biomass burning 

can contribute up to 4% of total PM2.5 mass in Jinan. Levoglucosan and cholesterol also 

imply the impact from cooking too.  

In this project, both positive matrix factorisation (PMF) and chemical mass balance (CMB) 

have been applied for the receptor modelling to apportion the sources contribution to PM2.5. 

In the PMF model run, PM2.5, OC, EC, NH4
+, K+, Cl-, NO3

-, SO4
2-, Al, Si, Ti, Mn, Fe, Ni, 

Cu, Zn, As, Se, Pb, Ba, Ca, Sb, chrysene, benzo[b]fluorathene, indeno[1,2,3-

cd]anthracence, dibenzo[a,h]anthracence and 17α(H),21β(H)-Hopane have been 

evaluated as suitable chemical species input and chosen for the model run. The six major 

sources are Secondary Nitrate, Secondary Sulphate, Coal Combustion, Mineral Dust, 

Vehicle Emission, Biomass Burning and other sources, which accounts for 9%, 32%, 10%, 

10%, 16%, 20%, 12% and 3% of PM2.5 pollution in Jinan. OMM turns out helpful to 

identify the sources in PMF modelling to provide greater confidence, particularly for the 

vehicle exhaust and biomass burning. In addition, Error estimation is conducted by BS, 
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DISP and BS-DISP too. Neither significant rotational ambiguity nor any other major error 

has been found in this PMF modelling solution. The result is also comparable with 

chemical mass closure (CMC) for quality control and the results between the CMC and 

PMF have good agreements on mineral dust and secondary nitrate. But there is still 

covariance between some certain sources, which should be concerned while interpreting 

the factor profiles while resolved by the model. PMF also overestimate the contribution by 

secondary sulphate in the model run. 

On the other hand, source apportionment by CMB modelling with PM2.5 profiles collected 

in China has been conducted in the meantime. Annually, eight major sources have been 

identified including Secondary Nitrate (13%), Secondary Sulphate (18%), coal burning 

(16%),, metallurgic plant (11%), soil dust (6%), petrol vehicle emission (8%), diesel vehicle 

emission (6%) and biomass burning (17%) and 5% of total PM2.5 mass has not been resolved. 

There are significant seasonal variations for a couple of sources including secondary 

sulphate and nitrate, vehicle emission and coal burning throughout the year. The CMB 

model works well with provided source profiles where all the modelling performance 

parameters meet the criteria. However, the model performance is getting worse at seasonal 

and daily source apportionment level. The local source profiles are still required for more 

accurate CMB modelling. On the other hand, it might be more difficult for PMF to 

apportion the biomass burning as it will share some sulphate loading with secondary 

sulphate. PMF is also struggling identity for the industrial sources well as its composition 

varies massively from different type of industrial emissions. On the contrary, CMB could 

be a better option to tackle biomass burning and industrial emission if the local profiles are 

provided.  
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Overall, during the receptor modelling, PMF and CMB do show some reasonable 

agreements for in terms of modelling results in Jinan, especially the SIA, vehicle emission 

and coal burning. It is also found that Jinan and its nearby city Beijing share the very 

similar pollution by SIA and coal burning too.  

Further work is required to further improve the receptor modelling and the source 

apportionment of PM2.5 overall. For PMF and CMB modelling, longer period of sampling 

is recommended, which is particularly helpful to optimize the results quality of PMF as 

bigger sample population is preferred by the model. An anther sampling site at rural 

background is also recommended for a better understanding of primary PM2.5 emission and 

secondary formation within the city. Size-resolved sampling by e.g. MOUDI or CMS 

including SMPS can be also helpful to understand the portion of the secondary aerosol 

formation and distinguish the sources further. In addition, there is strong need to establish 

the local source profiles for CMB in order to achieve a more accurate modelling outcome, 

especially on daily and seasonal temporal scale. The profile including OMM for CMB can 

be also very helpful to apportion the sources in much more details than PMF. Other 

methods incorporating the back trajectories techniques including potential source 

contribution (PSCF), conditional probability function (CPF) should be used to have better 

understanding the impact by the long-range transport. High-resolution satellite image and 

remote sensing can be also deployed for tacking biomass burning emission.  

In summary, both PMF and CMB should be applied in the future source apportionment 

case study for a more robust modelling. This work can be also helpful for the local authority 

to mitigate the PM2.5 pollution in Jinan.  
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