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ABSTRACT 
The global incidence of allergic reaction has been rising for years, especially within 

westernised urban areas with the underlying reasons still unclear. There is strong evidence 

that the interaction between pollen grains, environmental pollution and meteorological 

change is increasing the allergenicity of the pollen grain and consequently, increasing the 

misery of hay fever sufferers. Recent laboratory experiments have shown that the interaction 

of pollen with atmospheric oxidants such as ozone (O3) and nitrogen dioxide (NO2) can alter 

protein molecules that are present within pollen grains via post-translational modification 

(PTM) of the protein. 

 
Within the laboratory, key allergenic birch pollen was exposed to atmospherically relevant 

exposures of gas phase NO2 and O3 under a range of environmentally relevant conditions 

(temperature and relative humidity RH). The effects of the exposures on the biochemistry of 

the pollen grains were probed using a proteomic approach. The morphological changes of 

unexposed and exposed pollen samples to RH, rainwater and NO2, where observed under 

fluorescence microscopy and scanning electron microscope (SEM). The discoveries suggest 

that interaction between gas pollutants and pollen do exist and cause protein specific 

modifications; in particular, nitration that occurs on tyrosine residues. These observations 

suggest a possible reason for increased allergies in reaction to such chemically altered 

protein.  

 
Secondly, a detailed analysis of London Ambulance data is presented and compared to 

London temperature data recorded at a central London site (St James Park). The baseline 

relationships established in this work will allow for the prediction of likely changes in 

ambulance demand (and illness types) that will be caused by seasonal temperature changes 

and increased frequency and intensity of extreme weather events, due to climate change, in 

the future.   

 
Lastly, the study applied statistical analyses (time series and odd ratio) to examine short-term 

associations between birch pollen count with allergic related illnesses recorded in the London 

Ambulance data, temperature and NO2.  
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CHAPTER 1  
INTRODUCTION 
 

This chapter summarizes the relationships between climate change, air pollution and 

bioaerosols with human health. In doing so, it provides a concise introduction to air pollution, 

bioaerosols and climate change. Finally, the chapter provides the overall structure of the 

thesis, including the aims and objectives, hypotheses, research questions, scope and 

limitations of the study.  

 

1.0 Background  
 

 
 
Figure 1.1: Interrelationships between bioaerosol, pollution and meteorology. Note that 
all impinge on human health even though not shown visibly, there are countless 
interactive effects between all variables. 
 

 

 

Bioaerosols, climate change and air pollution are important environmental issues because 

they can all affect human health and natural ecosystems. It is important to note, that they can 

be harmful even when not visible. Atmospheric aerosols play a vital role in climate change 

and human health (Calvello et al., 2010; Kroll and Seinfeld, 2008; Lyamani et al., 2010; 

Rengarajan et al., 2011). The effects of these aerosols on human health and the environment 

at large has become one of the significant topics in current environmental research (Pöschl, 
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2005). These environmental issues are interlinked, leading to a variety of medical conditions 

including allergic diseases (Kim et al., 2014). There is evidence suggesting that the 

interaction between plant pollen grains, environmental pollution, and climate change is 

increasing the allergenicity of the pollen thus increasing the misery of hay fever sufferers. 

Both allergens and allergic issues are influenced by air pollution in various ways, making the 

former more stronger and increasing the immune reaction of the latter (Bartra et al., 2007). 

Yet, these processes are not sufficient to explain the increased rate of allergic diseases in 

humans.  It has been reported by Reinmuth-Selzle et al. (2017) that air pollution and climate 

change are possible drivers for the increasing burden of allergic diseases (Reinmuth-Selzle et 

al., 2017). The molecular mechanisms of allergic diseases that may be influenced by air 

pollution and climate factors are complex and elusive (Reinmuth-Selzle et al., 2017).   

One of the main characteristics of urban areas — where, worldwide, human population 

density is at high level — is atmospheric pollution (Sénéchal et al., 2015). In 2014, 54% of 

the world population resided in urban areas and this trend is only going to increase 

(http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/).  

The atmosphere is the channel of transit for a wide variety of particles of biogenic origin in 

addition to pollutant gases and particles emitted repeatedly due to human activities (Sénéchal 

et al., 2015). Bioaerosols are family of aerosol particles that consist of a variety of airborne 

biogenic particles, for example, viruses, bacteria, fungal spores, plant fibers, or pollen 

(Sénéchal et al., 2015).  

 
Allergy to pollen has increased throughout the world especially within westernized urban 

areas. “In the last years, a rising trend of the pollen allergies in urban areas has been 

attributed to atmospheric pollution” (Sousa et al., 2012). However, the reasons for this 

increase remain unclear. This indicates a need to understand the various relationships that 
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exist between bioaerosol, meteorology, pollution and human health. Although, several factors 

have been suggested regarding the 20th century increase (Beggs, 2004; Beggs and Bambrick, 

2006; D'amato and Cecchi, 2008; D’amato et al., 2007) in the burden of allergic respiratory 

diseases, the reasons are not completely understood (Reid and Gamble, 2009).  

 

1.1 Pollution  
 
The term pollution refers to contamination. “Contamination is simply the presence of a 

substance where it should not be or at concentrations above background that results in or 

can result in adverse biological effects to resident communities” (Chapman, 2007). There are 

numerous types of pollution that can come from different sources and have diverse effects on 

human health and the environment at large. However, this thesis will concentrate on air 

pollution and its impact on human health because it is one of the most crucial contemporary 

global environmental issues (Briggs, 2003; WHO, 2014).  

 

1.1.1 Air pollution 

 
Figure 1.2: The route of pollution from source to the end effect on human health and 
environment.  
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Air pollution is a problem of major national and international interest where public awareness 

and concern continues to rise (Lave and Seskin, 2013). Polluted air has a severe impact on 

human health resulting in different kinds of medical conditions. The health effects can result 

from acute or chronic exposure, leading to either mild short-term impacts such as irritation to 

the eyes, nose and throat, or more serious long-term effects such as exacerbations of 

respiratory and cardiovascular diseases resulting in hospital admission or death (Halonen et 

al., 2009; Peng et al., 2008; Poloniecki et al., 1997). The effects of the pollution on health can 

partly be determined by certain combinations of air pollutants, which may be changed by 

other environmental, and behavioural patterns (Kanakidou et al., 2011; Katsouyanni, 1995). 

Air pollutants contribute to increased death and hospital admittances (Brunekreef and 

Holgate, 2002). Figure 1.2 describes the route of pollution from source to the end effect on 

human health and the environment.  

 
Historically important air pollution episodes, where clear deleterious effects on human health 

were observed include the Meuse Valley of Belgium in 1930, Donora in Pennsylvania of 

USA in 1948, and London smog episode in 1952 (Pope III, 2004). Between 1948 and 1962, 

eight air pollution incidences happened in London, but the well-described ‘Great Smog’ 

episode in December 1952 was the most significant where smoke concentration rose to 

greater than 50 times above the regulatory limit, and visibility was so poor for individuals not 

to see their own feet at the National Gallery (Chauhan and Johnston, 2003). These episodes 

encouraged the implementation of legislative and regulatory measures so as to control 

outdoor air pollution in several countries within Europe and United States of America (Pope 

III, 2004). Through the 1960s to 1980s, numerous population-based studies confirmed that air 

pollution has a negative impact on human health (Lave and Seskin, 1973; Pope 3rd , 2000). 

Worldwide, it has been observed over the last few decades, that environmental changes 

appear to be associated with an increased rate of allergic diseases, particularly in countries 
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with a western lifestyle (Ayres, 2010). 

 
Particulate matter (PM) has been identified as the primary mediator of toxic effects of air 

pollution following a series of epidemiological studies conducted within a short period of six 

years (1989 to 1995) (Dockery et al., 1993; Dockery et al., 1992; Pope et al., 1995). These 

results provided epidemiological and toxicological insight into particulate matter air pollution 

(Gupta et al., 2013). Air pollution can negatively affect the cardiovascular and respiratory 

systems of the body (Brook et al., 2004; Pope III, 2004). Gupta et al. (2013) reported that 

prolonged and recurrent contact with air pollution increases the collective threat of chronic 

pulmonary, cardiovascular disease and loss of lives (Gupta et al., 2013). In fact and 

somewhat counter-intuitively, more mortalities transpire due to cardiovascular causes rather 

than pulmonary diseases following air pollution exposure (Pope et al., 2004). 

 
“Air pollution is now fully acknowledged to be a significant public health problem, 

responsible for a growing range of health effects that are well documented from the results of 

an extensive research effort conducted in many regions of the world” (Kelly and Fussell, 

2015). The effects of air pollution on human health can include breathing problems, 

coughing, asthma and causing or worsening existing respiratory and cardiac illnesses (WHO, 

2014). These effects can lead to increased medicine use, hospital admissions, and early death 

(WHO, 2014). According to WHO, “2.4 million people die yearly from causes directly 

attributable to air pollution, with 1.5 millions of these deaths attributable to indoors air 

pollution” (WHO, 2002).  The United Nations Environment Programme has estimated that 

1.1 billion people breathe harmful air (UNICEF and Organization, 2002), globally. It was 

mentioned in another research that despite earlier enhancements in air quality, large 

populations in urban areas still breathe air that is not up to national (European) and 

international (WHO) standards of Air Quality Guidelines (Kelly and Fussell, 2015), even 
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with the legislative measures in place.  

 
Epidemiological studies suggest that cardiopulmonary disease related to inhalation of fine 

particle air pollution results to more than 500,000 deaths in the USA each year (Khan, 2011). 

A convincing association between pneumonia related casualties and air pollution from 

automobiles have been demonstrated in a study by the University of Birmingham (Khan, 

2011). Yearly, more deaths are connected to air pollution than to automobile disasters 

worldwide (Collins, 2012). The WHO has estimated that approximately 800,000 deaths and 

4.6 million lost life yearly throughout the world due to urban air contamination exposures 

(WHO, 2002). 

 
It is now well understood that the key contemporary environmental risk factor related to early 

mortality is air pollution, which surpasses other risk factors such as poor health and scarcity 

of drinking water  (OECD, 2014). Approximately 3.7 million deaths have been attributed to 

outdoor urban and rural sources in the year 2012 as reported by WHO (WHO, 2014).  
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1.1.2 Pollutants 

 

 
 

Figure 1.3: Sources of primary and secondary pollutants. Adopted from  
(http://www.mrgscience.com/ess-topic-63-photochemical-smog.html) 
 
 
 
The atmospheric environment becomes polluted when particulate matter and or gases are into 

the atmosphere, which causes harm to humans, other living organisms, and the environment. 

Any substance in the air that has unfavorable effects on human wellbeing and or the 

environment is referred to as air or environmental pollutant. Various air pollutants are known, 

differing in their properties such as natural structure, reaction properties, release, 

transportation ability and their subsequent influences on human health (Kampa and Castanas, 

2008) and the natural environment. They can be classified into four major types: Gaseous 

pollutants (e.g. nitrogen oxide (NOx), and ozone (O3)), Persistent organic pollutants (e.g. 

dioxins), Heavy metals (e.g. lead, mercury) and Particulate Matter (PM) (Kampa and 

Castanas, 2008). Gaseous pollutants have the greatest impact on atmospheric composition 

and are predominantly associated with fossil-fuel burning (Katsouyanni, 2003). Figure 1.3 

illustrates the sources of primary and secondary pollutants. These pollutants are present in 

solid, liquid or gaseous states, which can either, be natural (biogenic) or man-made 
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(anthropogenic). Notably, all of these pollutants can pose health risks, with the possibility of 

associated allergies even at low levels of exposure, particularly amidst those individuals with 

pre-existing health complications. Pollutants are classified as primary, directly produced from 

source or secondary those that are not produced directly. The most common sources of air 

pollution include: 

 
Particulate matter (PM): is a type of air pollutants, comprising of complex and varying 

mixtures of particles (including diesel exhaust) suspended in the air that are produced by a 

variety of natural and human activities (Pöschl, 2005). PM vary in size and composition. 

“The pathogenicity of PM is determined by their size, composition, origin, solubility and 

their ability to produce reactive oxygen” (Xing et al., 2016). Factories, fire, power plants, 

waste burners, automobile, manufacturing, and environmental windblown dirt are all 

regarded as sources of this pollutant (Kampa and Castanas, 2008). Increased airborne 

concentrations of PM have a strong connection with early mortalities, hospital admittances, 

and asthma attacks, where the aged and individuals with pre-existing breathing conditions are 

at more danger (SEI, 2012).  

 
Ozone (O3): It is formed as a “secondary pollutant in the troposphere from complex 

photochemical reactions following emissions of precursor gases such as NOX and non-

methane volatile organic compounds (NMVOCs), deriving from paint application, road 

transport, dry-cleaning, and other solvent uses” (Ferrante et al., 2015). The high oxidizing 

potential causes O3 to damage mucus and respiratory tissues of animals and plant and 

similarly harms vegetation, specifically, trees and plants throughout their cultivation, and 

ecosystems, resulting in decreased farming returns and plant development (Ferrante et al., 

2015). Ground-level O3 has a negative influence on human wellbeing, however, it helps 

protect the earth from the sun’s damaging rays at upper atmospheric level (Ferrante et al., 
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2015). Combined evidence form different studies have shown that O3 exposure is linked with 

increased respiratory related illnesses (Chen and Kan, 2008). Significant individual 

differences do exist in response to O3 where children, aged individuals, asthmatics and people 

with existing persistent airway ailments are more susceptible to O3 related ailments (Chen and 

Kan, 2008). It has been reported that during the warmer season, the impact of O3 on 

respiratory hospital admittances appear stronger (Chen and Kan, 2008). 

 
Nitrogen dioxide (NO2): is a reddish-brown toxic gas with a harsh, stinging smell (Patocka 

and Kuca, 2014). It largely originates from the exhaust gas of vehicles, other elevated 

temperature burning, and is also formed naturally through thunderstorm due to processes 

related to the electric discharge associated with lightning (Kenneth and Monica, 2014). NO2 

is toxic by inhalation (Kelly and Fussell, 2011), especially for children, the ageing 

individuals, those with existing respiratory related illnesses and people with chronic 

obstructive pulmonary disease (COPD) (Kenneth and Monica, 2014). NO2 causes multiple 

negative respiratory effects associated with increased emergency hospital visits and 

admittances for respiratory illness (Galan et al., 2003). Additionally, a well-defined impact of 

NO2 on occurrence of viral infections among asthmatics patients have been reported among 

studies assessing intensification of asthma in children (Linaker et al., 2000). Atmospheric 

NO2 is also known to be either harmful or beneficial to plants depending on the concentration 

and plant species (Capron and Mansfield, 1977; Sandhu and Gupta, 1989; Wellburn, 1990). 

Because combustion processes typically produce both PM and NOx, it is often difficult to 

epidemiologically separate the effects of NOx and PM. 

Sulfur dioxide (SO2): is usually formed by volcanoes and in several manufacturing 

procedures is often a local pollutant, especially in moist atmospheres (McGranahan, 2012). 

At inhalation exposure, SO2 can cause severe irritation of the nose and throat (Patocka and 



 10 

Kuca, 2014). It forms H2SO4 when in contact with moist membranes (White and Martin, 

2010). At high concentrations it can cause life-threatening accumulation of fluid in the lungs 

(Patocka and Kuca, 2014). Highest levels of SO2 in the atmosphere can result in short-term 

breathing struggle for active outdoors individuals with asthma (El-Sharkawy, 2013) while 

longer-term exposures to the excessive levels of this gas leads to respiratory illness and 

worsen heart ailments (Nguyen and Kim, 2006). “Gaseous SO2 can remain in dry 

atmospheres for many days and combine with other pollutants to form sulphate particles, 

which can persist and be transported considerable distances as a fine particulate and it can 

be an important component of haze” (SEI, 2012). Even though some researchers reported 

connections between SO2 exposure and daily death, emergency hospital admissions for 

asthma, COPD and cardiac illness (Wong et al., 1999), others debated that SO2 may function 

as a “surrogate” for city air pollution from fossil fuel burning (Buringh et al., 2000).  Note 

that in the UK and many other countries the concentrations of SO2 are now much lower than 

their historical highs due to the use of cleaner non-sulphur containing fuels. 

 
Carbon monoxide (CO) - is the most abundant atmospheric pollutant released by our 

technological society and also a natural by-product of different mammalian, plant and 

bacterial cell systems (Uffen, 1981). It is colourless, odourless, non-irritating but very toxic 

gas and a product of partial combustion from vehicles and engines where its major source is 

road transport (Kampa and Castanas, 2008). CO binds in the lungs with hemoglobin in the 

blood to form carboxyhemoglobin (COHb) that impairs the conveyance of oxygen within the 

body system (Schwela, 2000). This reduces the amount of oxygen reaching the body’s organs 

and tissues, thereby aggravating heart illness that results in chest pain and other symptoms. 

Other health effects include hypoxia, neurological deficits and neurobehavioral changes, and 

that persists even at very low CO levels, signifying no threshold for the commencement of 
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these consequences (Schwela, 2000). Formation of COHb at lower levels may have more 

serious health consequences than ambient CO (Hampson et al., 2012). 

 
Figures 2.1 illustrates the schematic drawing of causes and effects of air pollution as a result 

of natural and man-made activities. These ambient pollutants do have a greater impact on 

human health that is associated with a number of disease consequences (Kelly and Fussell, 

2011). 

 

 

 
 
Figure 1.4: Schematic drawing of causes and effects of air pollution: (1) greenhouse 
effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) 
increased ground level ozone concentration, (6) increased levels of nitrogen oxides. CH4- 
Methane, O3- Ozone, SOX- Sulphur oxides, CO2- Carbon dioxide, NOX- Nitrogen oxides 
and CFC- Chlorofluorocarbons (Adopted from Kenneth and Monica 2014). 
 
 
 
Even though, the main air pollutants encountered in daily life are PM, O3, CO, NO2 and SO2, 

in this study only NO2 and O3 were studied in relation to their effects on pollen grain. This is 

partly because SO2 levels have been decreasing in most parts of the world in contrary to 

traffic-related air pollutants, while NO2 and (away from cities) O3 levels tend to increase due 
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to the increased number of motor vehicles. Additionally, NO2 and O3 were studied because of 

the well-known health effects of these traffic-related pollutants in relation to pollen grain. 

 

Pollutants Averaging time AQG values (µg/m3) 

Particulate matter 

PM2.5 1 year 10 

24 h (99th percentile) 25 
 PM10 1 year 20 

24 h (99th percentile) 50 
Ozone O3 8 h daily maximum 100 

Nitrogen dioxide NO2 1 year 40 

1 h 100 
Sulfur dioxide SO2 24 h 20 

10 min 500 
 
 
Table 1.1: Global updated WHO Air Quality Guidelines (AQG) (Adopted from WHO 
Regional Office for Europe; 2006). Short-term values are defined such that the 99th 
percentile of the 24-hour averages measured throughout a calendar year does not 
exceed the stated value. Averaging time is the amount of time frame taken into 
consideration the concentration of pollutant that will have short-term (acute) and long-
term (chronic) effect on human health post exposure. AQG values are the recommended 
maximum concentrations of the pollutant in the air over the averaging time. 
 
 
 
 
 
The WHO Air Quality Guidelines outlines an international reference on the negative effects 

of exposure to air pollutants on human wellbeing. The scientific knowledge on health hazards 

related to air pollutants, providing risk estimates for exposure to air pollutants and 

recommending air quality guidelines for member states to develop their own national air 

quality standards are all summarized on the guidelines (Table 1.1 above). Table 1.1 shows the 

latest global updated version of the WHO AQG published in 2006, which focused on four 

classical air pollutants, namely PM, NO2, O3 and SO2.  
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1.2 Bioaerosols  
 

Primary biological aerosols (PBA), referred to as bioaerosols, are a subset of atmospheric 

particles, which are directly discharged from the biosphere into the atmosphere (Fröhlich-

Nowoisky et al., 2016). As the name implies bioaerosols are biological particles suspended in 

the air.  

“Bioaerosols are airborne viable and non-viable biological particles (e.g fungi, bacteria, 

pollen and viruses), their fragments and by-products” (Exley et al., 2014). 

 
Bioaerosols are abundant in all environments, their concentration depends on several factors, 

including environmental position, climate and time of day (Bertolini et al., 2013; Brodie et 

al., 2007; Fierer et al., 2008; Lee et al., 2010). The aerodynamic behavior of bioaerosols 

depends upon their length dimensions, density and form (Jones and Harrison, 2004). The size 

of a biological particle will affect its survivability in the atmosphere where the “interaction of 

a particle with its environment depends upon its surface area, while its ability to sustain 

damage depends upon its volume, resulting in smaller particles being more susceptible to 

environmental damage” (Jones and Harrison, 2004).  

 
As illustrated in Figure 1.5, PBA particle diameters range from nanometers up to about a 

tenth of a millimetre (Fröhlich-Nowoisky et al., 2016) with the upper limit of the aerosol 

particle size range determined by rapid loss via sedimentation (Hinds, 2012; Pöschl, 2005). 

PBA play a key role in the dispersal of reproductive units from plants and microbes (pollen, 

spores, etc.), for which the atmosphere permits their transportation over geographic barriers 

and long distances (Brown and Hovmøller, 2002; Després et al., 2012; Womack et al., 2010). 

Bioaerosols undergo further chemical and physical transformation, stress, and biological 

aging upon interaction with UV radiation, photo-oxidants, and various air pollutants (e.g 
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acids, NO2, aromatic compounds, and soot) during the process of atmospheric transport 

(Estillore et al., 2016; Franze et al., 2005; Santarpia et al., 2012; Shiraiwa et al., 2012b). 

 

 

                        
 
Figure 1.5: Characteristic size ranges of atmospheric particles and bioaerosols with 
exemplary illustrations: (A) protein, (B) virus, (C) bacteria, (D) fungal spore, and (E) 
pollen grain adapted from (Pöschl and Shiraiwa, 2015).  
 
 
 

1.2.1 Pollen 

“Pollen grains are biological structures produced by superior plants to perform the vital task 

of sexual reproduction” (Sousa et al., 2012). Pollen is a fine to coarse powder comprising the 

micro gametophytes (sperm producing gametophytes) of seed plants (Pastorius, 2014) and is 

part of the coarse fraction of air particulate matter (particle diameters >10 µm) (Després et 

al., 2012; Després et al., 2007; Elbert et al., 2007). Anemophilous plants develop 

compensatory mechanisms enabling successful fertilization, such as the discharge of huge 

quantities of airborne pollen, making dispersal of the grain easier (Sousa et al., 2012). 

Anemophilous plants are plants that rely on the wind to transport their pollen (D’amato et al., 

2007). Pollen fragments are typically located within the fine PM fraction (PM2.5 which is 

less than 2.5 micron in length) that can be easily deposited into the human respiratory tract 

and alveolar areas of the lung (Fröhlich-Nowoisky et al., 2012; Fröhlich-Nowoisky et al., 

2009; Müller-Germann et al., 2015). “These features, associated with the allergens present in 

both inner part of the pollen wall (intine and cytoplasm) and pollen outer wall 
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(submicroscopical sites of the exine and orbicules) make these aerosol biological particles to 

trigger respiratory allergic reactions” (Sousa et al., 2012). Structural and architectural 

features of allergenic proteins appear to play a role in their allergenicity, however, research 

has shown that pollen allergens from almost all plant species belong to only a few (29 out of 

7,868) protein families (Radauer and Breiteneder, 2006; Radauer et al., 2008). Some pollens 

are more allergenic than others and some are produced in larger quantities (Jackson-Menaldi 

et al., 2002). The combination of abundance and allergenicity dictates the level of associated 

human allergy.  

1.2.2 Birch pollen  

Birch (Betula) belongs to the Betulaceae family (Asam et al., 2015) that is assigned to 

Fagales order (APG II 2003). Betulaceae (Fagales) contain roughly 120-150 species of trees 

or shrubs, appearing typically in the northern temperate zone (Grimm and Renner, 2013). The 

birch is a tree or shrub that are medium sized trees with small, triangular, serrated leaves and 

white bark. Birch trees have yellow catkins that produce the pollen and the fruit composed of 

layers of small seeds in a catkin shape, green at first, then brown 

(https://www.worcester.ac.uk/discover/nparu-pollen-types-birch.html). Birch pollen has a 

unique morphology that allows the species to be identified easily. The genus Betula species 

are typically similar, where dissimilarities between the species might be found in the size, 

abundance, and organization of the different structural features. Due to the similarities in 

structure and other components of trees belonging to the Fagales order, their major allergens 

have a degree of cross-reactivity (Puc 2003; Rodriguez-Rajo et al. 2004). More than 96% of 

patients allergic to tree pollen react toward Bet v 1 (Jarolim et al., 1989), which is the major 

allergen in birch trees (Ipsen and Løwenstein, 1983).  
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Birch is mainly distributed in the UK (countrywide), Europe, Asia and Northern USA, 

limited to cooler climates or found at altitude (https://www.worcester.ac.uk/discover/nparu-

pollen-types-birch.html). In England, there are large amounts of Betula (Skjøth et al., 2013), 

and high concentrations have been identified in London (Skjøth et al, 2009) and Worcester 

(Adams-Groom et al, 2002). Worldwide, different birch trees species do exist. However, the 

native to UK are: Betula pendula (silver birch), B. pubescens (downy birch), and B. nana 

(dwarf birch) where B. pendula and B. pubescens are the most common and widespread 

(Preston et al. 2002; Stace 1997). In the UK, the flowering of birch normally happens 

between April and May (Skjøth et al., 2009). Dry and damp conditions are favourable to 

birch trees with B. pubescens being more common in humid surroundings (Skjøth et al., 

2009).  

 
Temperature is one of the main factors determining the start date of a pollen season; 

specifically for trees, flowering in spring it is the temperature during the period prior the 

onset of flowering is most important (Spieksma et al., 1995). The aerosols that contain 

allergens as well as those governing their release due to fragmentation of pollen and spores 

might occur as a result of weather change (Taylor et al., 2004). Records on the start of birch 

pollen seasons monitored across three sites (Cardiff, Derby and London) in the UK for forty-

two years showed a trend for the pollen season to begin earlier (Emberlin et al., 1997). The 

study on these sites have shown that a clear biotic response in the timing of the birch pollen 

seasons is occurring in relation to the warmer spring temperatures of recent years (Emberlin 

et al., 1997). The most influential weather on the start dates of the birch pollen season at the 

three sites was from early February to middle of March (Adams-Groom et al., 2002). Overall, 

it has been established that climate change has a significant impact on airborne pollen since it 

induces faster plant growth, increases the amount of pollen production from each plant and 
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pollen season, increases the amount of allergenic proteins contained in pollen and increases 

the start time of plant growth (D’Amato et al., 2013). 

 
When birch trees are flowering and become exposed to moisture followed by drying winds, 

they can generate particulate aerosols containing pollen allergens (Taylor et al., 2004). Due to 

the small nature of the particles, they can be deposited in the peripheral airways, which have 

the potential to stimulate an inflammatory response (Taylor et al., 2004) and upon interaction 

with air pollutant, can cause pollen protein specific modification that in turn might lead to 

increased pollen allergenicity. “Usually the onset, duration, and intensity of clinical 

symptoms in patients with respiratory allergy to pollen are correlated with counts of 

atmospheric pollen grains, although this relation is not always simple” (D’Amato et al 

,1996). Skjøth et al. (2009) reported that 90% of patients allergic to birch pollen show mild 

symptoms when the pollen count is above 80grains/m3 at the start of the birch pollen season 

(Skjøth et al., 2009). However, 80% of patients do show indications of allergic reaction at a 

level below 30 grains/m3 during the late season (Emberlin 1997; Koivikko et al. 1986; 

Viander and Koivikko 1978). It is reported in another study, exposure to pollen concentration 

of 20 pollen grains/m3 of air showed noticeable symptoms in patients allergic to grass. At 

concentration of 65 and 120 (several hours exposure) pollen grains/m3, the symptoms were 

intensified and causes dyspnoea in some patients respectively (Rapiejko et al., 2007). 

Comparable symptoms transpired after contact with birch pollen. Thus, it can then be 

established that clinical signs of allergic disease are dependent on the concentration and the 

kind of aeroallergen the individual was exposed to (Rapiejko et al., 2007) and the time of 

exposure.  
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1.2.3 Pollen allergy 

Pollen grains are a major concern in allergy (ANSES, 2014). An allergy occurs when a 

specific sensitivity to a foreign material recognised as allergen causes the body's immune 

system to respond using the defence mechanisms (Brain, 2004). Asthma in sensitized 

individual can be triggered by pollen. In the atmosphere, the allergenic content of pollen 

varies according to weather, geography and vegetation (D’Amato et al., 2007). The main 

allergenic period, exact timing and high pollen seasons will differ yearly based on climate 

change and biological factors (http://www.worcester.ac.uk/discover/pollen-calendar.html). 

The most common allergic conditions is hay fever, with more than 10 million estimated 

sufferers in the UK alone (Pashley et al., 2015) . 

 
“Allergies are generally thought to be a detrimental outcome of a mistargeted immune 

response that evolved to provide immunity to macroparasites” (Palm et al., 2012).  The 

immune system treats the pollen as an intruder and responds by mobilizing to attack by 

producing large amounts of antibodies. Seasonal allergic rhinitis (SAR) has been known to 

develop as a result of plant pollens in the atmosphere and its indications overlap with pollen 

season (Davies et al., 1998). However, there are several anomalies that suggest additional 

factors must be considered because the relationship is not direct and simple (Davies et al., 

1998). The occurrence of respiratory allergic reactions stimulated by pollens has increased in 

recent years (D'Amato et al., 1998). Currently, the prevalence of pollen sensitivity is expected 

to be up 40% (D’Amato et al., 2007). Regarding pollen allergenicity, some studies suggested 

that pollen-derived lipid mediators (PALMs), can also interact with the immune system 

thereby resulting in the modification of the allergenic response (Bashir et al., 2013; Traidl-

Hoffmann et al., 2003). 
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1.2.4 Allergenic protein release of pollen grain 

Pollen is a naturally occurring atmospheric environmental allergen where in several cases is 

accountable for severe human health diseases (Bosch-Cano et al., 2011; Cresti and Linskens, 

2000; D'Amato et al., 2010; Traidl-Hoffmann et al., 2009). The release of allergenic proteins 

from pollen and spores usually occurs after cell destruction or under moist conditions 

(Knutsen et al., 2012). Particularly, pollen rupture can occur as a result of osmotic shock 

during rainfall and can lead to occurrences of thunderstorm asthma (Behrendt and Becker, 

2001; Cecchi et al., 2010; D'Amato et al., 2016; Taylor and Jonsson, 2004). These weather 

conditions may stimulate hydration and disintegration of pollen grains that discharge 

allergenic bioaerosols into the air (D'Amato et al., 2010). Additionally, elevated 

concentrations of pollen, fungal spores, and other PBA particles have also been detected 

following the onset of heavy rainfall and moist weather conditions (Elbert et al., 2007; 

Huffman et al., 2013; Müller-Germann et al., 2015). Increased concentrations of free allergen 

particles in fine air PM have also been seen after rainfall (Schäppi et al., 1997). The 

interaction of PBA particles with air pollutants, like NO2 and O3, can also damage the 

particles’ envelope, and it has been hypothesized that this facilitates the release of allergenic 

materials, such as cytoplasmic granules from pollen (Reinmuth-Selzle et al., 2017). Behrendt 

et al. (1997) showed that there is morphological evidence for preactivation of pollen by 

organic extracts of airborne particulate that may then induce local allergen release, resulting 

in either allergenic extrusion followed by generation of allergenic aerosols or adsorption of 

pollen-derived proteins to airborne particles (Behrendt et al., 1997). Furthermore, Okuyama 

et al. (2007) studied the acid adsorption properties of the pollen and concluded that nitric acid 

is not only adsorbed on the surface but also dissolved into the inner part of the pollen, thus 

changing the chemical balance (Okuyama et al., 2007) of the pollen grain. 
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1.2.5 Pollen protein nitration 

At least 50 different diseases have been reported in association with protein nitration (Abello 

et al., 2009; Greenacre and Ischiropoulos, 2001) and it has been shown to modify the 

immunogenic potential aeroallergens like Bet v 1 allergen protein of birch pollen 

(Gruijthuijsen et al., 2006; Karle et al., 2012). High concentrations of traffic-related air 

pollutant particularly NOx and O3 enhanced asthma and allergic diseases suggested by 

numerous studies (D’Amato et al., 2007; Shiraiwa et al., 2012b). The advancement of 

allergies by traffic-related air pollution might be due to post-translational modification  

(PTM), nitration and associated modifications in the immunogenicity of allergenic proteins 

(Pöschl, 2005). PTM (post-translational modification) occurs when there is an addition of a 

functional group on a protein, affecting one or more amino acids (building blocks of protein). 

The modification is catalyzed by enzymes after the completion of protein translation by 

ribosomes (Kumar et al., 2008).  

 
Although the allergen content remained unchanged, birch pollen from urban regions had a 

greater allergenic potential than pollen from rural regions (Bryce et al., 2009). Additionally, 

proteins can be modified upon exposure to pollutants such as NO2 and O3 while still in the 

atmosphere. “Laboratory and field studies showed that proteins were efficiently nitrated 

upon exposure to gas mixtures of NO2 and O3 or polluted urban air (summer smog)” (Franze 

et al., 2005). Nitrated and oxidized proteins as well as protein degradation all occur upon the 

heterogeneous reaction of the protein with the gaseous reactants O3 and NO2 (Shiraiwa et al., 

2012b). A higher degree of nitration (ND) was reported to happen when the protein was 

pretreated with O3. Shiraiwa et al. (2011) reported that the deduction from these studies was, 

the nitration reaction of proteins with O3 and NO2 develop via long-lived reactive oxygen 
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intermediates ROIs (Shiraiwa et al., 2011). ROIs are products of PAH (Polycyclic aromatic 

hydrocarbon) and protein nitration  (Shiraiwa et al., 2011). 

 
In another study, Bet v 1 was nitrated using standard laboratory reagent for protein nitration  

Tetranitromethane (reagent that reacts with tyrosine and cysteine residues of protein leading 

to modification) (TNM) and two naturally occurring nitrating reagents, that is, Peroxynitrite 

(derived from NO) (ONOO−) imitating inflammation and oxidative/nitrosative stress and 

O3/NO2 representing the effect of air pollution (Reinmuth-Selzle et al., 2014). It was revealed 

in their findings that the effectiveness and specificity of the protein nitration is incumbent on 

the nitrating agent and the reaction conditions used during an experiment. It was also 

demonstrated that the nitration percentages were greater for sample of protein solutions (20% 

per day) than for solid or semisolid protein samples (2% per day) (Reinmuth-Selzle et al., 

2014). Thus, it can be assumed that under moist conditions, the allergenic potential of 

allergen protein might be specifically amplified (Garland et al., 2008). 

 

1.3 Climate change 
 

The term climate is generally understood to mean the usual weather of a place but can be 

different for seasons. Climate change can then be described as a variation in the usual 

weather of a particular place that changes in how much it rains in a year or change in 

temperature for a month or season.  

 
Climate change denotes a huge risk to worldwide health that could affect numerous disease 

factors in the 21st century because of its impact on certain food supplies, air and water 

quality, season, finances, and several extra serious wellbeing causes (Gennaro et al., 2015). 

“There is also a link between climate change and air pollution; an individual's response to 

air pollution depends on the source and components of the pollution as well as on climatic 
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agents” (Gennaro et al., 2015). It has been suggested that fundamental changes on the 

atmosphere and the climate created by human activity, affects the biosphere and the human 

environment at large (D'amato and Cecchi, 2008). This has affected and will continue to 

affect the human health (Beggs, 2004). Over the last 30 years, the Intergovernmental Panel 

report of February 2007 on climate change agrees that worldwide temperature has risen 

significantly due to amplified greenhouse gas emissions, mainly from anthropogenic sources 

(Jones et al., 2007).  

 
The occurrence of severe weather events, which includes heat waves, heavy rainfall, and 

thunderstorms, have been reported to increase in recent years (Ayres et al., 2009; Beggs, 

2004; D'amato and Cecchi, 2008). Heat-related prevalence of hospitalization and death 

resulting from cardiovascular and respiratory diseases have also been testified (Baccini et al., 

2008; Michelozzi et al., 2009; Stafoggia et al., 2006). 

 

1.3.1 Climate change and ambulance operations 

There have been very few studies of the effect of severe weather conditions and climate 

change on ambulance operations in the UK (Thornes et al., 2014) but there have been several 

recent studies in other countries namely: Australia, Brisbane: Sydney: Canada, Toronto, 

China, Hong Kong: Italy and Switzerland. Most of these international studies are concerned 

with the negative impacts of heat waves on ambulance; however, the study carried out by 

Thornes et al. (2014) on the impact of extreme weather on ambulance performance has 

examined the negative impacts of extreme cold weather as well. It was shown in the study 

that there is a considerable scope to improve understanding across a number of issues and 

there are potentially significant links between ambulance demand/performance and extreme 

weather and climate change. Even though, more research is required to establish a complete 
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understanding and identification of temperature thresholds, this study (impact of extreme 

weather on ambulance performance by Thornes et al. (2014)) has shown that hot and cold 

temperatures have significant negative impact on ambulance performance. Both hot and cold 

weather significantly increase the total number of incidents and in particular Category A (Cat 

A) incidents. “In the UK, there is a target response rate of 75% of life threatening incidents 

(Category A) that must be responded to within 8 min” (Thornes et al., 2014). More research 

is needed to evaluate which illness codes increase in hot and cold weather (Thornes et al., 

2014).   

 
A meaningful correlation between severe weather, increased ambulance call-out and response 

times was evidently established when daily air temperature data was compared with 

ambulance call-out data for Birmingham within 2007-2011 (Thornes et al., 2014). The 

influence of cold weather on health is predictable and mostly preventable reported by Public 

Health England. Studying the effects of extreme weather will widen the knowledge of the 

relationships between temperature and human health, and also help in generating public 

health policy that will aid in preventing the unfavorable impacts of weather change on the 

population (Lin et al., 2009). It will also help ambulance response time.  

 

1.4 Air pollution, climate change, pollen and human health 
 
In Europe, allergic diseases are increasing (Frank and Ernst, 2016) and climate change and 

anthropogenic air pollution are the probable reasons examined for this trend (Krämer et al., 

2000). Laboratory outcomes indicated that diesel exhaust particles increase sensitivity to 

allergens while epidemiological analyses propose an interaction between allergic illnesses 

and traffic contamination (Davies et al., 1998). Evidence from studies have shown that two 

most important air pollutants; O3 and NO2, can have negative effect on human wellbeing such 
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as the initiation of lung inflammation by O3 (Uysal and Schapira, 2003) and can enhance 

other allergic related illnesses such as asthma. To a lesser extent, SO2 also has possible 

influence on allergic reactions (Saxon and Diaz-Sanchez, 2005). Obviously, there are extra 

factors influencing the prevalence of allergic reactions apart from the already known cause, 

pollen. Thus, it can be assumed that an interaction between air pollutants and allergens do 

exist that aggravates the development of atopy and the indicators of allergic ailment (Davies 

et al., 1998).  

 
In the past few decades, a link between air pollutants and pollen on the severity of respiratory 

allergy signs have been highlighted (Bosch-Cano et al., 2011; D'amato et al., 2010; Sousa et 

al., 2011; Traidl-Hoffmann et al., 2009). It has also been proposed that contact with extreme 

levels of pollutants such as NOx and SOx can increase allergic sensitization, however, the role 

of the air pollutants is not well-defined (Bosch-Cano et al., 2011; Sousa et al., 2011).  

 
In recent years, climate variation has altered exposure to air pollutants that profoundly 

influence public health via exposure to ambient PM 2.5 (Mimura et al., 2014). These recent 

changes are related to an increase in asthma and allergic respiratory diseases (Mimura et al., 

2014). Build-up of air pollutants, such as O3, at ground level has an impact on occurrences of 

rhinitis and asthma exacerbation (Cecchi et al., 2010; Viegi and Baldacci, 2002). Direct 

interference of air pollution on individuals with respiratory allergies induces serious effects, 

however, the indirect consequences on pollen proteins are still under investigation (Sousa et 

al., 2012). The reactions to air pollutants by each individual is based on the kind of pollutant 

exposed to, the degree/time of the exposure, the person's wellbeing status and genetics 

(Vallero, 2007). It is important to note that the impact of air pollutants on individual can 

occur as a direct or indirect effect and its presence also exert vital actions on aeroallergens 

(Bartra et al., 2007).  
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Nonetheless, individuals with already existing allergic related illness such as asthma are 

susceptible to developing obstructive airway exacerbations upon contact with gaseous and 

particulate components of air pollution as suggested by considerable evidence (D'amato and 

Cecchi, 2008). These pollutants also affect plants and their pollen specifically; its 

morphology, cell wall, protein release and pollen protein (Frank and Ernst, 2016). The pollen 

coat, comprising of a complicated combination of pigments, waxes, lipids, aromatics and 

proteins (Edlund et al., 2004) might be damaged upon contact with air pollution as well as 

other factors (Frank and Ernst, 2016) such as humidity. It has also been shown that pollen 

growth in the plant (Schoene et al., 2004) and airborne pollination (Wang et al., 2010) may 

also be interfered by pollutants. The release of NO2 in urban setting is largely by 

transportation and housing heating (Chassard et al., 2015).  The threshold for human health 

protection on an annual basis with in Europe, has been fixed at 40 mg/m
3, ~213 ppb/0.213 

ppm (European Union directive 1999/30/CE) (Chassard et al., 2015). However, in the event 

of urban pollution, hourly concentration may extent up to 350 mg/m
3
 (Airparif, 2009). It is 

not clear whether such levels of NO2 will have an impact on pollen grains (Chassard et al., 

2015). 

 
Changes in the environment (global warming, air pollution, etc.) will result in an earlier and 

longer pollen season, enhanced pollen production and an increase in pollen allergenicity with 

a negative effect on atopic patients (D'amato and Cecchi, 2008). Climate change might alter 

allergic disease through other potential mechanisms, which includes: prolonged pollen 

periods thereby increasing the time of human exposure to aeroallergens; likelihood of longer 

allergy signs in individuals with existing allergic disease and lastly, elevated levels of pollen 

counts in the air may increase the gravity of sensitized symptoms (USEPA, 2008; Ziska et al., 

2011). 
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Figure 1.6: Description of the pathways through which climate parameters and air 
pollutants can influence the release, potency, and effects of allergens: temperature (T), 
relative humidity (RH), ultraviolet (UV) radiation, particulate matter (PM), ozone and 
nitrogen dioxides (O3, NO2) (modified from Reinmuth-Selzle et al., 2017). Pollen grains 
on their own carry allergens that cause allergic reactions. Upon interaction with 
pollutants and climate change, pollen becomes more allergenic and pollen season 
extends thereby increasing misery of sufferers. While climate change directly affect 
human health via extreme weathers, pollutants also affect human health directly 
causing various medical conditions. All these might lead to increase in ambulance call 
out rate. 
 
 
 
 
This interaction between pollen and mentioned variables in the atmosphere may lead to 

pollen pre-activation, morphological changes on the pollen surface, alteration of allergen and 

protein release, generation of more potent allergenic aerosols and increase pollen season 

thereby increasing allergic season and misery of sufferers.  
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1.5 The Research Questions  
 

1 What are the likely impacts of interaction between air pollution, meteorology and 

bioaerosols on human health?  

2 Are there observable differences between pollens that have been exposed to air 

pollution to those which have not? 

3 Do correlations exist between meteorological variables (temperature and relative 

humidity), pollen and different ambulance callout categories? (callout categories are 

defined in Chapter 2) 

 

 1.6 Aims and objectives  
 

The length of the pollen season of some of the most allergenic pollen species (e.g. ragweed 

and birch) is increasing as a result of climate change and hence it is expected that adverse 

health effects will become an even more severe problem in the nearest future. However, 

much less is known about the mechanism linking air pollution and climate change to 

increased pollen allergenicity. Birch pollen was chosen because of its high allergenic 

properties which makes it one of the major cause of pollinosis (hay fever caused by allergic 

reaction to pollen) and ranked one of the most important allergic pollen type. 

 
The overall goal of this project was established not only to better understand birch pollen 

allergenicity but also ascertain the ability to relate and predict the link between temperatures, 

and pollen counts with several medical conditions including allergic diseases.  
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The research used laboratory techniques to understand and measure changes that occur in 

pollen composition upon exposure to particular atmospheric components. The laboratory 

results and London data sets will then be incorporated into a statistical model, to see if there 

will be clear signal of increased allergic illnesses when both the pollutant concentration and 

pollen counts are high. The basic relation between some illness codes of the London 

ambulance with the meteorological variable of St James Park, London was also explored 

using a statistical model. Consequently begin to link the impact of these mechanisms to 

human health.  

 
To achieve the aim, this research:  
 

• Designed a laboratory setup and protocol to measure post-translational modifications 

on bioaerosols. 

• Investigated the post-translational modification of key allergenic pollen species 

(Birch) through exposure of the pollen grains to atmospherically relevant exposures of 

gas phase of NO2 and O3 within a dedicated and highly- instrumented laboratory for 

the investigation of particle (pollen) and gas phase species interactions. 

 
• Studied the effect of air temperature and pollen counts on ambulance callout rates for 

different medical categories using a statistical model. 

 
• Explored real time imaging of pollen exposure (to RH and NO2) to visualize any 

morphological changes on the pollen grain using light microscopy. 

 
• Probed the impact of NO2, RH and rainwater on surface of the pollen grain using 

SEM (scanning electron microscope) microscopy. 
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1.7  Hypotheses  
 

1. Ozone (O3) and nitrogen dioxide (NO2) pollution cause post-translational 

modification on pollen grain proteins. 

2. There are relationships between meteorological variables with some medical 

conditions.  

3. There is a relationship between pollen counts and allergic illnesses. 

4. Exposure to pollutants, humidity and hydration affects pollen grain morphologically 

and enhances the release of its particles. 

 

1.8  The Scope and Limitation of the Research  
 
The thesis will limit its assessment on the impacts of air pollutants, O3 and mostly NO2 upon 

pollen grain. It will investigate one type of pollen, namely birch, which is known to be a 

major allergenic species in the UK and Europe. It will explore the relationship between air 

temperature of St James park, London with key illness category codes used by the London 

Ambulance Service, in particular the top 20 callout categories. It will also study the 

morphological changes on the pollen grain after subjecting it to different treatments and 

conditions. Lastly, relationship concerning pollen counts with allergic related conditions 

amongst illness codes of London ambulance callouts data set will be assessed using time 

series and odds ratio analyses.  

In this thesis, all empirical Chapters have a specific literature survey section and related 

experimental and analytical methodologies.  The exceptions to this rule are Chapters 3 and 4 

that are reliant on one and another. Where Chapter 3 presents the detailed laboratory 

protocols required for the acquisition of the results shown in Chapter 4. 
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1.9 Thesis structure  
 

 
Figure 1.7: Thesis structure 
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CHAPTER 2  
 

Impact of air temperature on London 
ambulance call-out incidents and 
response times 
 
This chapter establishes the relationships between observed weather and the number of 

ambulance calls incidents and response times. A detailed analysis of London Ambulance 

callout data (2003-2013) is presented and compared to London weather data. These results 

are compared, where possible, to published research for other cities around the world.  

 

 
Figure 2.1: London Ambulance Service on response to emergency calls as snow hit parts 
of the capital on 30th November 2010.  
Adopted from (http://www.londonambulance.nhs.uk) 
 
 
 
This chapter has been presented at conferences and is available from online conference 

abstract database and records. This work has also been published in the Journal: Climate  

(Mahmood, M.A.; Thornes, J.E.; Pope, F.D.; Fisher, P.A.; Vardoulakis, S. Impact of Air 
Temperature on London Ambulance Call-Out Incidents and Response Times. Climate 2017, 
5, 61.). 
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2.0 Abstract  
 
Ambulances are an integral part of a country’s infrastructure ensuring its citizens and visitors 

are kept healthy. These services are in operation continuously (24/7) around the world and 

yet, until recently, ambulance data have only been used for operational purposes rather than 

for assessing public health. The impact of weather and climate change on ambulance services 

around the world has received increasing attention in recent years but most studies have been 

single medical condition specific. 

 
In England in 2013/14 more than 8.4 million emergency calls were received of which 71% 

required an emergency response. Ambulance call-out data offers a new and valuable (near) 

real-time source of public health morbidity information that can also be used to assess the 

impact of environmental conditions, such as temperature, upon human health. A detailed 

analysis of London Ambulance data is presented and compared to London temperature data 

recorded at a central London site (St James Park). Ambulance services are susceptible to 

disruptions from both hot and cold weather; disruptions primarily occur due to the increased 

number of emergency calls under such conditions. In London, the speed of ambulance 

response begins to suffer when the mean daily air temperature drops below ca. 2 °C or rises 

above ca. 20 °C. The degradation in response times is more rapid, with respect to change in 

temperature, at lower temperatures compared to higher temperatures, which result in three 

distinct temperature regimes <2, 2-20, >20°C. The baseline relationships established in this 

work will allow for the prediction of likely changes in ambulance demand (and illness types) 

that will be caused by seasonal temperature changes and increased frequency and intensity of 

extreme/severe weather events, due to climate change, in the future.   
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2.1 Introduction  
 
London is the UK’s largest city, and covers 1572 km2 (Smith, 2015). See Figure 2.1 for a 

map of London’s location in the UK. In terms of population density, London is by far the 

most densely populated city in the UK, with 4,779 people per km2 (Allen et al., 2012). The 

Census that took place on the 27th March 2011 indicated that London’s population has 

reached 8.2 million, making it the most populous city (www.ons.gov.uk). The biggest rise in 

London’s population is forecast to be in the 65 plus age group and the overall population is 

forecast to exceed 9 million by 2021 and to be almost 10 million by 2031 (Dunnell, 2007). To 

ensure an effective ambulance service there must be capacity to answer all callouts in a 

timely manner. Therefore, accurate prediction of the daily demand for ambulances is critical 

to meet targets every day. 

 
This study sets out to investigate the basic relationship between mean temperature (also some 

work on RH) and London ambulance callouts of Category A (Cat A) incidents.  

 

 
 

Figure 2.2: Location of London in United Kingdom. Adopted from  
(https://www.google.co.uk/maps/place/United+Kingdom) 
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2.1.1 London weather 

  
London, the capital city of the United Kingdom has broadly similar climates to the rest of the 

UK, having cool summers, mild winters, no wet or dry season, and often moderate to strong 

winds (Parker, 2016). London has a moderate oceanic climate (Köppen-Geiger climate 

classification: warm temperate, fully humid, warm summer (Kottek et al., 2006).  

Nonetheless, absolute minimum temperatures have reported to range from −10.0 °C (14.0 °F) 

at St James Park, in central London down to −16.1 °C (3.0 °F) at Northolt during January 

1962 - the lowest official temperature in the London area. Kew's record showed temperature 

up to 38.1 °C (100.6 °F) which is recorded as the highest temperature in the London area, 

however, the lowest temperature to occur in recent years (21st  century) is −14.2 °C (6.4 °F) at 

Northolt during 2010 (Simon, 2010).  

 
The Figure (2.2 A, B and C) below displays daily mean temperature histograms for the years 

2003 and 2010 (which were the hottest and coldest year for over 100 years), and for the years 

2000 to 2013. The histograms give clear indications of the range of temperatures experienced 

in London within the years.  
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Figure 2.3: Histograms of London temperatures. A- Year 2003 daily mean temperature 
record that indicates a very hot year having a significant summer heatwave with highest 
temperature over 30oC. B- Year 2010 daily mean temperature record that indicates a 
very cold weather having a significant winter coldwave. This has been reported in other 
papers. C- Represents the daily mean temperature from year 2000 to 2013, which shows 
an averagely warm weather from the past 13 years. 
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2.1.2 London Ambulance Service 

 
The London Ambulance Service (LAS) is the busiest ambulance service in the UK. It is an 

integral part of London’s infrastructure ensuring that the residents and visitors to the capital 

of the UK are kept healthy. As such, the smooth running of the LAS is vital.  

 
Within England there are currently 11 National Health Service (NHS) organisations that 

provide ambulance services and more than 8.4 million emergency calls were received in the 

year ending March 2014, of which 71% required an emergency (face to face) response 

(HSCIC, 2014). This is an average of 23,216 calls per day (16.1 calls per minute).  The total 

figure of emergency patient journeys was 5.02 million and 1.99 million patients were cured at 

the scene (HSCIC, 2014). “The total cost of the NHS ambulance service is close to £2 billion 

per year, of which about £1.5 billion is spent on emergency services and the rest on 

ambulatory (pre-arranged) services” (Thornes et al., 2014). 

 
The London Ambulance Service (LAS) employs nearly 5,000 staff, including 3,150 frontline 

staff across 70 ambulance stations serving the Greater London population of more than 8 

million people. In 2014/15 over 1.9 million emergency ambulance calls were received in 

London (Figure 2.4) of which 1.1 million were responded to (on average 3,000 incidents per 

day) and nearly half a million were considered life threatening (Category A). This activity 

levels are steadily increasing with 9% more calls in 2014/15 than in 2013/14 (more than 400 

extra calls per day) (Wu et al., 2012).  
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Figure 2.4:  London Ambulance 999 calls 2005/06 – 2014/15 
 
 
 
 
The LAS uses the Advanced Medical Priority Dispatch System (AMPDS) to initially triage 

the patient’s chief complaint. In this step, there are approximately 30 complaint types that are 

then further categorised as either Cat A (designated as life threatening) – with a target 

response of 8 minutes or less, and all other calls (not serious or life threatening) – with a 

target time agreed locally which is normally up to 19 minutes. The NHS specifies that 75% of 

Cat A incidents must be responded to within the 8 minutes target time that is from the time of 

the 999 call to the ambulance arriving at the scene of incident.  

 
After an ambulance crew has seen the patient, a further refined illness code is specified with 

just over 100 categories used.  For example, a patient originally identified as having breathing 

problems may, after assessment, be further considered as asthma, COPD, hyperventilating, 

respiratory or dyspnoea. This data is recorded on patient report forms, which are available for 

analysis a few weeks after the event. It is noted that whilst LAS ambulance staff are trained 

medical professionals their diagnostic categories may be changed or updated once the patient 

arrives at hospital. Some category codes such as “other medical conditions”, “generally 
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unwell” and “pain (other)” are general and non-specific but are understandable, in that in the 

short time available the patient could be urgently rushed to hospital without the exact 

illness/injury being obvious. There is also some potential for diagnosis error within the other 

illness categories. For example, asthma diagnosis is relatively easy in part because the patient 

is very likely to know the condition from which they are suffering, whereas “respiratory chest 

infection” is more prone to misdiagnosis because of the commonality of its symptoms with 

other call-out categories such as COPD. Overall the illness data is as reliable as other data 

sources confirmed by the consistency and repeatability of results.  

 
 

2.1.3 LAS Ambulance Call out Categories 

 
There are a hundred and three (103) Cat A illnesses with a total number of 3677454 call outs 

in only the year 2013. Figure 2.5 illustrates the cumulative plot of all Cat A illnesses. The 

figure reveals that the top 10 call-outs as defined by total incidence rate account for 

approximately 50% of all Cat A callouts, while the top 20 call-outs accounts for 

approximately 75%. The top 20 illnesses include: Other medical condition (illnesses with no 

designated name), Pain-other (pain with no associated illness), Respiratory chest infection 

(infection of respiratory tract organs), Dyspnoea (shortness of breath or difficulty in 

breathing), Pain-Chest (likely chest pain), Generally unwell (fatigue), Alcohol related, 

Abdominal pains (pain in chest and pelvic region), Dizzy near faint/loss of coordination, 

Vomiting (throwing up), Collapse reason unknown (sudden falling with unknown reason), 

Cardiac chest pain ACS (acute coronary syndrome) (chest discomfort related to heart), 

Hyperventilation panic attack (over breathing that causes panic/anxiety attack), Epileptic fit 

(seizure), No injury or illness, Head injury minor, Seizure non ep, Pyrexia of unknown origin 

(fever of unknown origin greater than 38.3°C on several times), Pain back (pain in the back) 
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and Asthma (long-term lung disease that inflames and narrows the airways). These illnesses 

are shown on the bar chart (Figure 2.6) according to their respective ranking. For this reason, 

this study has limited its investigations to the top 20 medical conditions.  
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Figure 2.5: Cumulative plot of the Cat A illnesses showing top 10 and 20 categories 
making up ~50% and ~70% of the entire call outs, respectively. 
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Figure 2.6: Percentage of total callouts of the top 20 illness codes each positioned at the 
respective rank.  
 
 
 

2.2 Related studies  
 
In recent years there has been an increasing awareness of the impact of weather and climate 

change on public health. In particular, the role of heat waves on public health has been widely 

investigated (Vardoulakis and Heaviside, 2012). Extreme weather condition impacts directly 

on ambulance services through additional calls because of the increased prevalence of 

temperature dependent call-out categories. Response times are affected by increasing call 
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volume but weather can also directly impede response times by creating obstacles to reaching 

patients, for example, flooding, snow, ice, fallen trees and fog. 

 
Previously, studies have investigated the impact of hot and cold temperatures in relation to 

same-day and lagged-days exposures (e.g., heat waves) (Guo et al., 2011; Yu et al., 2011). 

The study carried out by Thornes (2014) on the impact of extreme weather on ambulance 

performance examined the negative impacts of extreme cold weather. It was shown in the 

study that there is a considerable scope to improve understanding across a number of issues 

and there are potentially significant links between ambulance demand/performance and 

extreme weather and climate change. However, limited efforts to study the impact of 

temperature on ambulance attendances have been made (Cerutti et al., 2006; Nitschke et al., 

2011). An increased ambulance call-out and response times with significant link between 

severe weather were evidently revealed after comparing 5 years data of daily air temperature 

with ambulance call-out for Birmingham (Thornes et al., 2014). Furthermore, the figure of 

ambulance call-outs increased through the heat wave of August 2003, while during the 

coldest December (beyond 100 years), “the response rate fell below 50% for 3 days in a row 

(18-20 December 2010) with a mean response time of 15 min” (Thornes et al., 2014). The 

results showed that a decrease in the air temperature by 1oC leads to a reduction of 1.3% in 

ambulance call-out performance (Thornes et al., 2014). The ambulance call-out performance 

is the number of Cat A that is responded to in the 8 mins. Nonetheless, there have been very 

few studies of the impact of severe weather and climate change on ambulance operations in 

the UK (Thornes et al., 2014) but there have been several recent studies where the ambulance 

based studies looked at the negative impact of heat waves on ambulance performance in other 

countries namely: Australia: Adelaide (Nitschke et al., 2011), Brisbane (Turner et al., 2012), 

and Sydney (Schaffer et al., 2012); Canada: Toronto (Bassil et al., 2010; Dolney and 

Sheridan, 2006); Italy: Emilia-Romagna (Alessandrini et al., 2011) and Florence (Petralli et 



 42 

al., 2012); Switzerland: Ticino (Cerutti et al., 2006) and United Kingdom: London (Thornes 

et al., 2014; Wolf et al., 2014). 

 
For example, during warm weather in London, for every 1oC above a mean temperature of 

20oC, it has been shown that the total number of ambulance incidents increases by 1% on 

average. There are fewer studies that looked at cold waves: Australia: Brisbane (Turner et al., 

2012) and the United Kingdom: London (Thornes et al., 2014, showed that for December 

2010, the coldest December for 100 years, the daily number of Cat A incidents for the 

London Ambulance Service was nearly 20% higher than November 2010). These results 

show that severe cold weather has a significant negative impact on ambulance performance. 

For example, during cold weather in London, for every 1oC below a mean temperature of 

2oC, it has been shown that Category A performance declines by 1.5% (Thornes, 2014). 

 
A study in Hong Kong looked at the impact of a range of weather parameters (temperature, 

humidity, air pressure and cloud) on the daily demand for ambulances (Wong and Lai, 2010) 

and concluded that: 

 
“The presence of strong weather effects among different target groups indicates the 

possibility for the development of a short-term forecast system of daily ambulance demand 

using weather variables. The availability of such a forecast system would render more 

effective deployment of the ambulance services to meet unexpected increases in service 

demands” (Wong and Lai, 2010). 

 
Such a forecast system would enable much better handling of ambulance demand during 

severe/extreme weather events likely to be enhanced by climate change. In Germany 

(Bavaria) the impact of a range of weather conditions (2006-2007) on COPD and the effect 

on ambulance incidents has been examined (Ferrari et al., 2012). Also a few studies have 
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looked at the carbon footprint of ambulance services for example in Australia (Brown et al., 

2012) and the United States (Chung and Meltzer, 2009).  

 
Most of these international studies are concerned with the negative impacts of heat waves on 

ambulance. And a number of the investigations have stated that a strong association between 

same-day temperature and emergency admissions for cerebrovascular (Makie et al., 2002; 

Wang et al., 2006) and respiratory disease do exist (Abe et al., 2009). Particularly, the 

ambulance response calls and intense heat study in Toronto Ontario, Canada (Dolney and 

Sheridan, 2006). After studying the difference in calls across the town, the finding indicated 

that increased call rates during hot days were linked to both day-of-week factors and 

population travels (Dolney and Sheridan, 2006). Among the recent studies carried out, 

Toronto, Ontario, Canada (Bassil et al., 2010) and Emilia-Romagna, Italy (Alessandrini et al., 

2011) tried to measure the temperature-ambulance attendance association for cardiovascular 

and respiratory disease and temperature exposure, after controlling for interfering factors. An 

increase in ambulance attendances for both and other non-traumatic diseases was observed 

that is linked particularly to the summer days temperature (Turner et al., 2012). The impact of 

air pollution (PM10) on ambulance incidents has previously been shown to be significant in 

the Italian Region of Emilia-Romagna (Sajani et al., 2014).  Since particular “effects on 

ambulance attendances were found to differ from those on hospital admissions or mortality 

and also between the different attendance categories; it would therefore be useful to compare 

different exposure-response relationships in future research” (Cerutti et al., 2006). Based on 

public health policy (Dolney and Sheridan, 2006), detecting the initial indications of 

temperature effects on human health that cannot be investigated using death and hospital 

admissions data could be supported by studying ambulance attendances data instead (Turner 

et al., 2012). A time-series study in Huainan, China examined their impacts on emergency 

ambulance dispatches under different temperature metrics and reported that both extreme 
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heat and heatwaves were significantly associated with increases in emergency ambulance 

dispatches, and their effects appeared to be acute (Cheng et al., 2016). A significantly 

increased risk for all attendance categories was found to be associated with cold temperature 

effects indicating that the short exposure lags considered in the Italian study (Alessandrini et 

al., 2011) might have followed in an underestimation of the cold impact. In another study by 

Turner et al. (2012), related trends across all the attendance groups were observed, after 

immediate exposure to heat.  

 
 

2.3 Methodology  

2.3.1 Data sets 

London meteorological variables (temperature and relative humidity (RH)) and ambulance 

callouts for Cat A illnesses data sets for the period of 01-04-2003 to 31-07-2013 were 

analyzed. LAS provided daily-anonymised ambulance data, which provided information on 

callout category. Meteorological data was that of St James Park observatory (SJP, 54.97554 

oN and -1.62162 oE), which occupies a central position in London, a location that is 

approximately within the centre of the LAS’s geographical remits. SJP is the longest-record 

Central London meteorology available (Jones and Lister, 2009). The hourly output 

temperature data from this station was obtained via the British Atmospheric Data Centre 

(BADC) (Bhaskaran et al., 2013). Temperature is the measurement of hotness or coldness of 

an environment or object, while RH is the percentage of the partial pressure of water vapour 

referenced to the saturation vapour pressure of water at a given temperature (Seinfeld and 

Pandis, 2016) that varies, depending on the interplay between temperature and gas phase 

water concentration.  
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2.3.2 Data analysis  
 
The meteorological hourly data set was converted to daily mean averaged data using the 

“dplyr” package in R statistical software (Wickham and Francois, 2015). There were no 

missing values for the entire London ambulance data set analysed, however, after conversion 

of the hourly temperature data to daily mean data, 10 days data were missing amongst 3134 

days. These days were omitted from the analysis. Among the 103 categories A (life 

threatening) illnesses, only the top 20 most common call out categories were analysed in this 

study. All data sets used were initially tabulated in excel where the mean data were calculated 

and subsequently analysed in R statistical software (R version 3.0.2) using the appropriate 

packages (lubridate, timeSeries, TTR, zoo, xts, akima, abline, car and plotrix). The highest 

mean temperature and RH in the data were 27.8°C and 100% respectively while the lowest 

were -2.4°C and 40.9% respectively. Initial tests showed that there was little difference in 

outcomes between the use of mean average daily temperature, versus minimum or maximum 

daily temperature. However, Guo et al., (Guo et al., 2011) mentioned that mean temperature 

was found to be a better predictor and thus was used as the temperature indicator in this 

study.  

 
In this study, various statistical analyses were performed, including simple descriptive 

statistics and time series analysis. For the time series analysis, the ambulance callout data was 

de-trended to remove any long-term trend using either a linear fit or polynomial fit of the 

total time series. The de-trending analysis splits the data into three components, namely: 

long-term trend, seasonality and residual components. The seasonality component was used 

for understanding the relationship between illness codes and temperature using linear 

regression analysis. The joint effects of temperature and RH on some of the illness codes 

were also observed using multi linear regression. Lastly, the statistical method used to test for 

statistical significance of the results was the lm function in R statistical software, which 
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provide p-values. The p-value test was performed on individual de-trended callouts versus 

temperature.  

 
 

2.3.2.1 Time series analysis 
 

To investigate the relationship between the meteorological variables (temperature and RH) 

and the illness codes, both data sets were converted into weekly data sets from daily data. The 

daily ambulance callout data was transformed into weekly data through summing of the daily 

data average over seven days. The weekly temperature data used is the mean average 

temperature. It is worth noting that strong correlation does not imply causation. Correlation 

denotes a statistical relationship between variables. The strength of the correlation can be 

measured using the R-squared (R2) metric, which can be a strong, medium, weak or no 

relationship. In this study, the R2 values are defined as: strong (0.5-0.7), medium (0.3-0.49), 

weak (0.19-0.29) and insignificant (0-0.18) correlations respectively. The R2 metric measures 

the fraction of the sample variance that can be explained by the correlating variable.   

 
To probe the effect of temperature, and hence seasonality on the call-out rates, the long-term 

trends need to be removed from the data. There are various statistical methodologies that can 

be used to remove long-term trends (Bhaskaran et al., 2013). In this study, the de-trending 

was achieved through division of the observed data with the cubic least squares fit (by 

subtracting cubic model from the data produced) of the observed. De-trending removes 

background trend and any long-time trend from the data alongside the weekly conversion. 

De-trending data also focuses analysis on the variations in a data set and enables future 

prediction of values because the background trend and long-time trend have been eliminated. 

After the long-term trends of the different callout categories have been removed, then the 

temperature dependence of the different categories was analysed. Time series graphs of the 
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variables were then generated to visualize the effect of the temperature on the illness codes in 

terms of ambulance usage and a scatter plot for the de-trending outcome was also plotted. 

 
For the correlation analysis, scatter plots of the relationship between mean temperatures 

versus de-trended illness code callouts were created. Time lag of the data was also carried 

out, with the time lag either in days or weeks: 0 to 3 weeks, and 0 to 15 days. The R2 values 

were recorded. The term time lag effect refers to the delay between the time of an 

intervention or exposure onset, such as the date on which a person gets exposed, and the 

subsequent development of a health outcome (Gail, 2005). The lag analysis defines how x 

affects y over time, that is the effect of a regressor x on y occurs over time rather that all 

happening at once. Generating R2 values of the relationship between the variables of interest 

explained the time lag relationship of the variables. Lastly, scatter plots of the lag days 

against the R2 values were generated. 

 
Further analyses were performed which investigated the joint effects of temperature and RH 

using multi linear regression. Linear regression and cubic model were performed as well as 

residual analysis (observed differences between dependent variable and predicted value) to 

enable prediction. Multi linear regression was for predicting a dependent variable using 

values of more than one independent variables, while linear regression was used to ascertain 

the linear relationship between dependent and independent variables. This aids in forecasting 

dependent variable based on the values of independent variable.  

 
 
 
2.3.2.3 Air temperature versus ambulance response time 
 

Daily data was extracted from the LAS for 2003-2013 including the number of calls, 

responded incidents, the number of Cat A calls, the % of responses within 8 minutes and 
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illness codes. During those years 14,717,476 calls were received; 9,947,927 incidents were 

responded to with a frontline vehicle (68%) and 3,359,572 Cat A life threatening calls were 

assessed (23% of all calls). The response data was then compared to mean daily temperature 

data from St James Park (SJP, longitude and latitude coordinates 54.97554 oN and -1.62162 

oE) in London over the same period. The heat waves of 2006 and the warm summer of 2013 

plus the very cold December of 2010 are present within the dataset providing a wide cross 

section of weather events.  

 

2.4 Results and Discussion 
 

An increase on the rate of ambulance usage was observed over the time period studied i.e. 

ambulance usage is increasing year on year. The rate of increase is larger than the population 

increase over the same time period. The callout frequencies of many different medical 

conditions are dependent upon the meteorological conditions. In particular, temperature is a 

good predictor of callout rate with both negative and positive temperature dependencies 

observed for different medical categories. Different categories of ambulance callout have 

different time lags associated with them depending on the category. In broad terms, 

categories involving illness, which require an incubation period, will have a time lag (time 

interval between two related spectacles that is, a cause and its effect, here is temperature /RH 

and their effect on human health) whereas accidents tend to have zero time lags. The 

outcomes show statistically significant relationship between mean temperature and some of 

the analyzed illnesses of the London ambulance callout even though some were weakly 

correlated. Furthermore, there were time lagged-effects observed within 0-15 days and 0-3 

weeks as well. Among all the top 20 illnesses, respiratory chest infection had the highest 

correlation with temperature. 
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2.4.1 De-trending effect  
 
 
The outcome of de-trending the data of respiratory chest infection is illustrated in Figure 2.7 

A & B below respectively. The figures show how long-term features that obscure the 

relationship of interest have been eliminated. Additionally, the noise level was removed using 

weekly data as opposed to daily data. The cubic fit line was fitted along the whole data, 

which indicated that all the data has been analysed.  
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Figure 2.7: Time series data of Respiratory chest infection before (A) and after de-
trending (B) respectively. The data is represented in black and a cubic fit line in red, 
which indicates de-trending. 
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2.4.2 Long-term increase in ambulance usage 
 
 
Example of ambulance time series data are shown in Figure 2.8, which shows time series data 

from 2005-2013 of the daily rate for the total LAS ambulance Cat A life threatening call-

outs; as well as “respiratory chest infection” and “abdominal pains” and daily air temperature. 

The two call-outs categories represent temperature dependence and no temperature 

dependence call-out categories respectively. All the time series data show a significant long-

term increase in call-out frequency. The increase from 2005-2013 is non-linear and is 

dependent on category but the approximate increase over all categories is a near doubling. 

This increasing trend can be roughly separated into two distinct phases characterised by a 

slow increase between 2005 and 2009, followed by a much more rapid increase between 

2009 and 2013. This increase can only partly be explained by the increasing population of 

London as there have been other changes within London’s population demographics such as 

the increasing age of the population. In broad terms, the young and the old are more 

susceptible to conditions requiring the ambulance service, and health care in general, 

compared to the in between ages.  However, it is noted that we did not have access to age 

dependent data; so, all analyses are conducted on the total London population. Furthermore, it 

is likely that significant drivers of the change in ambulance call-out rate are due to how the 

London population utilizes the ambulance service. Some of this change may likely be driven 

by an increasing pervasiveness of mobile phone usage (Wu et al., 2012), that makes calling 

an ambulance easier whenever required.  This may also suggest that more people are aware of 

using ambulance rather than going to the Accident and Emergency unit because of the long 

waiting time and or there is an increase in immigrants and/or difficulty in scheduling an 

appointment with a GP. Other social changes will also likely influence call-out rates such as 

changing habits with respect to use of the National Health Service (NHS).  
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Figure 2.8- Time series data from 2005 to 2013 showing the London Ambulance daily 
Category A call-out frequency for selected categories compared to the average mean 
temperature as recorded at St James Park, London. The ‘respiratory’ and ‘abdominal’ 
refer to the call-out categories ‘respiratory chest infection’ and ‘abdominal pains’, 
which represent temperature dependence and no temperature dependence call-out 
categories respectively. 
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2.4.3 The influence of air temperature on ambulance response times 

 
Figure 2.9 (below) demonstrations how both call-out volume and response rate performance 

vary with mean daily temperature. The call-out volume has the long-term trend removed as 

detailed above and values shown are representative for the call-out volume received in 2013.  

It can be seen that as temperature rises above ca. 20 °C and goes below ca. 2 °C the total 

ambulance call-out volume increases and the percentage of responses within the 8 mins target 

reduces. Both call-out volume and percentage of responses rise in a near-linear fashion 

beyond the hot and cold threshold temperatures. Figure 2.9 (bottom panel) shows that, 

performance drops off more quickly as the mean temperature drops below 2 °C compared to 

the reduction in performance when the temperature rises above 20 °C. A 20% increase in 

daily callouts, compared to the average, leads to a decrease in performance (measured as % 

response in 8 min) of 14.4% and 8.2% for temperatures below 2 °C and temperatures above 

20 °C, respectively. This difference between hot and cold periods can partly be explained 

because slippery roads due to ice and snow affect performance at low temperatures whereas 

in warm temperatures the roads and traffic are less likely to be affected. This Figure shows 

that the weather does not have to be severe for an impact on ambulance services to occur at 

low or high temperatures. 

 
There is also a seasonal temperature change in the number and type of incidents, which 

means that the performance of the ambulance service in London is marginally better in spring 

and autumn than in summer and winter. Unseasonably warm and cold weather both 

exaggerate these variations and cause a significant reduction in performance especially 

during ‘heatwaves’ and ‘coldwaves’.    
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Figure 2.9: London mean daily temperature versus ambulance call-out metrics (2003-
2013). Top panel- temperature dependence of response rate as % of category A 
incidents responded to within 8 minutes averaged for each 1°C temperature bin. Error 
bars represent 1°. Red dashed line shows NHS target of 75% or responses to be 
completed within 8 minutes. Middle panel illustrations the temperature dependence of 
ambulance call-out volume. Long-term trend in data has been removed (see main text 
for details) and the values provided are representative for the year 2013. Error bars 
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represent 1°. Bottom panel displays the dependence of response rate on call-out volume. 
The colour of the data points represents the mean daily temperature (see legend). 
 

 

2.4.4 Basic relationship between temperature, RH and respiratory chest 
infection 

 
Figure 2.10 (A and B) shows the time series of weekly averages of daily data (2009-2013) for 

temperature, RH and LAS ambulance call outs of respiratory chest infection and contour plot 

of the three variables. Comparing the time series data of the three variables reveals the 

relationship to be seen clearly. As temperature increases, RH declines which is normally the 

default relationship between the two variables. However, the correlation between temperature 

and respiratory chest infection is negative (R2 0.5), while respiratory chest infection with RH 

is positive (R2 0.2). This is in partial agreement with a study conducted by Mäkinen et al. 

(2009) who concluded that cold temperature and low humidity were linked with increased 

episode of RTIs, and a reduction in temperature and humidity preceded the beginning of the 

infections (Mäkinen et al., 2009). The contour plot (Figure 2.10 B) demonstrations 

interestedly how respiratory chest infection call out rates rise with temperature fall and RH 

increase. In particular, there is a vital spot at temperature below ~5oC and RH above ~75 % 

where respiratory chest infections are most common. Among the analyzed categories, 

respiratory chest infection callout rate had the strongest correlation with the variables. 
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Figure 2.10 A: Time series of weekly averages of daily data (2010-2013) of respiratory 
chest infection call out rate (blue), RH (black) and Temperature (red). B: presents a 
contour plot of RH, Temperature and Respiratory chest infection (log10 transformed) 
indicating the visual relationship between the 3 variables. The arrows signify clear 
temperature (red) and of RH (purple) effects.  For the contour plot legend, any value 
beyond 1 represents above average callout and less than 1 is below average callout. 
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2.4.5 Ambulance Illness codes versus Air Temperature 
 
 
The data collected were studied using time series analysis where all the time series data 

showed a significant long-term increase in callout frequency. The long-term increase is 

typically non-linear and is category dependent. It is also observed that certain categories 

show a clear seasonality. This seasonality, where present, is hypothetically driven by 

temperature.  

 
The rationale behind the use of weekly data is twofold: firstly, it increases the statistical 

robustness of any correlations observed with temperature. Secondly, weekly data removes 

‘day of the week’ effects. For example, call-out categories associated with alcohol show a 

clear weekly cycle: data for Monday to Thursday have near identical frequencies but a 

significant frequency increase is associated with the weekend that peaks on Saturdays. It is 

noted that weekly data does not remove the effects of holiday/special days on the data.  

 
 

2.4.6 Weekly correlation between temperature and illness codes 

 
Sometimes time series data can display what appear to be obvious trends, however, it may be 

hard to explain this data as an overall trend. Breaking down the series into different 

components may allow easy modelling of each part. In this example, the scatter plots of 

weekly de-trended data for respiratory chest infection and total of the entire top twenty 

illnesses against mean temperature is demonstrated (Figure 2.11 A & B). This indicated that 

analysing the data of a single variable or in smaller groups in comparison to analysing mass 

of data sets with multiple variables may yields better results and increases possibility of 

future forecasting.  
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Figure 2.11: Scatter plots of weekly de-trended data for respiratory chest infection (A) 
and total of the entire top 20 illnesses (B) against mean temperature. 
 
 
 
 
Table 2.1 shows the weekly correlation coefficients between R2 values of de-trended data of 

the top 10 Cat. A illnesses and mean temperature from 0 to 3 weeks lag. There exists 

statistically significant correlation between temperature and some of the illness codes 

analyzed. However, some were only weakly correlated. Respiratory chest infection and 

dyspnoea were found to have the strongest correlations with the mean temperature (1-week 

 A      
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
B 
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time lag). For each time lag, there is little or insignificant (about 1%) increase in the R2 value 

for all the illnesses. With the exception of dizzy/near faint/loss of coordination, however, 

there is also an insignificant (1%) decrease in the values. Many of the categories show the 

correlations at time lag = 1 week (see Table 2.1) with the exception of alcohol related and 

dizzy/near faint/loss of coordination. 

 

 

 

 

 
Table 2.1: Correlation between temperature and the top 10 of the medical categories. 
Each box on the table represent 0 – 3 weeks lag time relationship between temperature 
and the specific category, which are highlighted according to the level of correlation 
strength.  Red =Strong correlation (0.5-0.7), Yellow = Medium correlation (0.3-0.49), 
Green = Weak correlation (0.19-0.29), Grey = Insignificant correlation (0-0.18) 
Note: All values were rounded up to 2 decimal places.  

 

 

 
The simple linear temperature dependence model used on the long term de-trended data set of 

the top 20 callout categories revealed some illnesses having statistically significant negative 

temperature dependence such as other medical conditions ***(p<0.001), dyspnoea 
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***(p<0.001), generally unwell ***(p<0.001), pain (other) **(p<0.01), respiratory chest 

infection ***(p<0.001). While only alcohol related shows statistically significant positive 

temperature dependence *** (p<0.001), some among the remaining categories show no 

statistically significant temperature dependence such as pain (chest), abdominal pain, dizzy 

(near faint or loss of coordination) and so on. P value is the probability that results have 

occurred by statistical accident. The lower the p value the higher the statistical significance 

and visa verse. Here, the P values are low which suggest that the results obtained did not 

occur due to statistical accident. However, it is noted, that having low statistical significance 

is not a conclusive result that relationship does not exist between the variables. Figure 2.12 A, 

B and C respectively illustrate the scatter plot for a negative (respiratory chest infection), 

positive (alcohol related) and no temperature dependence (abdominal pains) respectively. 

This indicates that not all categories are temperature dependent according to this research; 

however, some might be dependent on other environmental factors such as pollutant and 

pollen count (see Chapter 6). The time series analysis methodologies developed in this 

chapter can be used for assessing the effect of other environmental variables on ambulance 

callout rates.  
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Figure 2.12: Scatter plots for a negative temperature dependence (respiratory chest 
infection), no temperature dependence (abdominal pains) and positive temperature 
dependence (alcohol related) using de-trended data sets.  
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The linear temperature dependence model does not provide any indication of the rationale 

behind the temperature dependencies but the patterns are clear to see and hypotheses can be 

generated from the data patterns. 

 
 

2.4.7  Daily temperature time lag effects on illness codes 

 
The daily results mirror the weekly results from above but potentially give a better idea about 

incubation rates albeit with poorer statistics (because of less data density). The study carried 

out in Toronto described huge increase in ambulance response calls that was observed in the 

summer period. While in Italy, it was seen for increasing temperature, and was linked to 

same-day heat effects precisely for other non-traumatic and respiratory illnesses 

(Alessandrini et al., 2011). However, in this study, for all the callouts analysed, with the 

exception of dizzy/near faint/loss of coordination that had same-day effect (which could be as 

result of the impact of abrupt change in weather) and alcohol related had one day effect, it 

was observed that all the remaining top illnesses had a similar pattern of time-lagged effects 

of at least 5 days when analysed as daily data (data not shown). Figure 2.13 shows the R2 

values plots of the top 10 illnesses against time lag within 0-15 days. Respiratory chest 

infection had 5 days lag effect, which may suggest an incubation period of about 5 days for 

the infection to develop fully. For alcohol, it was just a 1-day lag effect and a drastic drop 

afterward, perhaps due to hangover. In the case of asthma, studies have shown that it is 

influenced by temperature, however the statistical relationship in this study is weak. This may 

be as a result of “an initial large number of transfers and subsequent admissions of seriously 

ill patients to hospital, thereby removing high-risk individuals from the general population 

that would further use ambulance services” (Turner et al., 2012) and/or the increased use of 

antihistamine (drug for allergies).  
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The common pattern among the top categories, which is the slight drop in the lag effects 

when analyzed as daily data, excluding dizzy/near faint/loss of coordination is consistent with 

the harvesting phenomenon discovered in studies of temperature and death (Yu et al., 2011). 

Although in this part of the study, cold and hot temperature were not segregated but analyzed 

as a whole, the results have proven a relationship between temperature and some medical 

conditions. Other studies have proven that heat effects on some diseases are short term and 

detected instantly (Bassil et al., 2010; Ye et al., 2012), which is usually strongest within the 

first 1-3 days following exposure, before reducing in magnitude (Ostro et al., 2010). The 

lagged effect results of temperatures on the illnesses of up to 15 days following exposure 

support opinions from earlier research (Hajat et al., 2002). This opinion also supports the 

research findings.  
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Figure 2.13: R squared values of the correlation of the top 10 illnesses with temperature, 
plotted against time lag within 0-15 days. 
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Note for some categories there appears to be a lagging effect, e.g. abdominal pains, but the R2 

values are very low so no correlation can be assumed. For some categories, there exist longer 

time-lagged effects for the categories: generally unwell, other medication and vomiting 

amongst the other illnesses, which may suggest a longer or different incubation time for the 

medical condition incorporated within the categories. 

 

2.4.8 Illness Codes versus winter and summer seasons  

 
Figure 2.14 (below) provides the percentage changes for the summer (June, July and August) 

and winter (December, January and February) seasons compared to the total de-trended data 

set. It can be seen that the warmer temperatures associated with the summer season lead to a 

reduction in the top 10 callout categories associated with negative temperature dependence 

and an increase in the “alcohol related” category, which has positive temperature dependence. 

The winter season has the opposite effect to summer for the same reasons; lower average 

temperatures lead to an increase of incidence for the negatively temperature correlated 

categories and a decrease in the “alcohol related” category. In addition to the summer and 

winter seasons, the individual months of July and December are investigated which allows 

for the effect of a heat wave (July 2006) and a cold wave (December 2010) to be investigated 

with the de-trended data sets. The average mean weekly temperatures in July 2006 and 

December 2010 were 21.4 ± 3.4 °C and 1.4 ± 1.2 °C, respectively. However, there can be a 

standard error of 1. The average July and December temperatures over the eight-year study 

period were 18.6 ± 2.8 °C and 6.0 ± 1.4 °C, respectively. The average summer and winter 

temperatures over the eight-year study period were 17.7 ± 2.7 °C and 5.9 ± 1.4 °C, 

respectively.  As expected, the 2010 cold wave led to significant increases, compared to the 

average December and winter, in all of the negatively temperature correlated categories. The 
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“alcohol related” call-out did not reduce as much as might be expected (based on temperature 

alone) in December 2010 and the average December categories, but this is likely due to the 

confounding influence of seasonal Christmas period alcohol drinking. The average summer, 

average July and the July 2006 heat wave call-outs behave mostly as expected with 

temperature dependencies playing a central role.  

 
However, there are a few unexpected results. For example, the “respiratory chest infection” 

category call-out frequency increases in the July 2006 heat wave when a prediction based just 

on a linear temperature dependence would suggest a decrease in call-out rate. This indicates 

that factors, in addition to temperature, were likely to be significant during the heat wave or 

alternatively, the temperature dependence is non-linear at higher temperature. The increased 

levels of pollution (such as O3 often increases in hot temperatures because of increased VOC 

loading) associated with the heat wave are a likely cofactor, which the simple temperature 

dependent model does not take into account (Stedman, 2004). The impact of air pollution 

(PM10) on ambulance incidents has previously been shown to be significant in the Italian 

Region of Emilia-Romagna (Sajani et al., 2014) 
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Figure 2.14: Seasonal percentage differences in ambulance call-out rates for the top 10 
categories. Winter is defined as the months of December, January and February. 
Summer is defined as the months of June, July and August. 
 
 
 
 
 
The fact that the research was limited to the top 20 categories does not mean that the 

outstanding 83 categories are not temperature dependent. They may display a significantly 

larger temperature effect or other influential factors such as pollutants and pollen counts. The 

overall outcome of the findings suggests a statistical significant relationship can be found 

between most call-out categories and temperature. 

 



 67 

2.4.9 Forecasting of ambulance call out rates  
 

Currently daily estimates of the number of LAS ambulances likely to be required for the 

week ahead are based on statistics for the same days of the year for the last 3 years (Thornes 

et al., 2014). This takes into account weekends, national and school holidays, but only 

accounts for changes in the weather on a seasonal basis. However, the weather is rarely the 

same on a particular day, or in a particular week, from year to year. Therefore, further 

research to enable bespoke weather forecasts to be built into the ambulance service prediction 

models is recommended. Better prediction of call-out rates would allow for improved 

operational resilience, as well as reducing air pollution from idling ambulances on urban 

streets. Warming temperatures, due to climate change, may reduce the total number of 

ambulance callouts in winter and conversely increase them in summer, although changes in 

population size and structure and in other climatic factors (e.g. precipitation), not examined in 

this study, may have the opposite effect. There is also evidence that heatwaves and coldwaves 

could increasingly cause increased demand and ambulance response time delays.  

 
Using the relationship between temperature and ambulance call-outs, after controlling for air 

pollution and other confounding factors such as influenza, could inform future studies and 

help forecast ambulance callout numbers up to a week ahead (the time period for which 

robust meteorological forecasts are available). In addition to short term forecasting, the effect 

of climate could be used for yearly projections. Figure 2.15 below shows an example of 

statistical prediction of the 2012/2013 respiratory chest infection callouts. The model uses the 

previous three years of data to train both the long-term trend and temperature dependence of 

the model.  It is noted that the actual measured temperature used in the forecast model would 

not be available in advance. However, long term climate projections are available. It can be 

seen that the model captures much of the detail of the actual ambulance callouts. The only 
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major feature missed by the model is the influenza season peak which occurs at the end of 

2012. It indicates that good long-range ambulance callout rate projections can be generated if 

the appropriate meteorological forecasts, of sufficient skill, are available.  

 

Figure 2.15: Forecast prediction of 2012/2013 respiratory/chest infection call out rates.  
The model is trained using 3 years of data from 2009-2012 shown by black line.  The 
2012/2013 forecast is shown by the red line and the actual call out for 2012/2013 is 
shown in green.  The residual between the forecast and actual is shown by the blue line. 
The grey dotted lines indicate the +10 and -10 daily call out rates, and the dashed line 
gives the call out rate equal to zero.  
 

 

 

The residual part of the graph represents the percentage of the validation data not clarified by 

the model. Agreeing to the independence test criteria, a good model has residuals 

uncorrelated with previous records (Sharma and Sutton, 2012). “Evidence of correlation 

indicates that the model does not describe how part of the output relates to the corresponding 

input. For example, a peak outside the confidence interval for lag k means that the output y 

(t) that originates from the input u (t-k) is not properly described by the model” (Sharma and 

Sutton, 2012). This residual is as a result of flu peaks that is usually not temperature 
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dependent but as a result of holidays when people tend to move around sharing their gems 

and so on. For example, it is well known that New Year’s Day is the busiest day of the year 

for the ambulance service as mentioned previously and weekly data does not remove the 

effect of New Year’s Day, or other holiday/special days, but it does lessen their impact. For 

now, it was challenging to predict the residual peaks using this model. Going further, an 

attempt to uncover any cyclical trends or use more sophisticated methods might allow more 

accurate forecasting analysis to be carried out. The evidence presented in this section 

supports the opinion that ambulance attendance callouts records are an effective and well-

timed source of data that can be used for health early warning systems. The more accurate the 

forecast is the better an early warning tool for health surveillance systems will be. An 

effective forecast will allow the ambulance services to prepare ahead of time leading to more 

lives being saved.  

 
 

2.5 Conclusion 
 

Ambulance services are placed under stress due to increased demand whenever the weather is 

severe – often at a time when patients are also under increased stress – particularly during 

heatwaves and cold weather. In this study, the effect of mean temperature was investigated 

but in theory any meteorological or pollutant related parameter could be investigated.  This 

research illustrates the concept with air temperature but information on snow, ice, gales; 

heavy rain, floods, air pollution and fog could also be beneficial. The study established that 

there is statistically correlation between temperature and different medical condition within 

0-15 days and 0-3weeks lagged effects on some of the illnesses. The weather impacts directly 

on day-to-day operations whilst the climate contributes to the level of service required (e.g. 

the total number of staff and ambulances). Given the existing lack of research into 
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temperature effects on London ambulance callouts, the study will contribute to an 

understanding in this perspective and may also serve as an early warning information for 

ambulance driver and hospital staff to prepare way ahead of time. As the climate changes 

affecting the frequency of hot and cold weather events, the ambulance service needs to 

become more resilient and would be better prepared by using bespoke weather forecasts and 

climate predictions.  

 
In summary, it can be concluded that temperature has influence on many categories of 

illnesses. Albeit, different patterns are observed for different callout categories.  Callouts in 

most categories show significant relationship with temperature. The sign of correlation varies 

with category (e.g alcohol vs dyspnoea) with most negatively correlated and time lag effects 

were observed for some of the call-out categories (typically human-contact related illnesses). 

This is the first study that has shown the effects of ambient temperature and RH on London 

ambulance callouts for specific illness categories. The relationships elucidated in this chapter 

need to be understood before the pollen work in Chapter 6 is undertaken because the 

temperature is a dominant effect. 
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CHAPTER 3 
Laboratory analyses 

  
In this chapter, the experimental methodologies and analytical techniques used in both 

exposing pollen grain to atmospheric gases and determining the degree of pollen nitration are 

described. Certain protocols were used according to manufacturer’s instructions while others 

required bespoke tailoring to meet the study aims. For precision and accuracy, all 

experiments were performed in triplicate.  

      
 
Figure 3.1: Flow diagram of the laboratory techniques used in this study. 
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In line with the objectives of this thesis, Figure 3.1 provides a graphical overview of the 

laboratory analyses used for the study. It starts with the pollen grain, which contains proteins 

(including the allergenic proteins), being exposed to atmospheric gases. Post exposure, the 

pollen is subjected to analysis to explore the effects at a proteomic level using four different 

techniques (explained in detail in the methodology section), which includes dot blot, Western 

blot, in-gel digestion and TMT labeling (Tandem Mass Tag) experiments.  

 

3.0 Introduction 
 
 
Air pollution has shown to interfere with human health, however, its effect on pollen proteins 

are still under study (Sousa et al., 2012). It has been reported in earlier studies that these 

pollutant cause PTM (post-translational modification) of the pollen protein, in particular the 

incorporation of a nitro group (NO2) on the amino acid (tyrosine) of the protein a process 

termed nitration. Laboratory findings on the kinetics and degree of the interactions of 

pollution, in both gas and particulate phase, are relatively scarce (Chassard et al., 2015).  

 
In this chapter, the PTM of birch pollen proteins are measured after interaction of the pollen 

with well constrained environmental conditions. In particular, the pollen grains are subjected 

to different RH conditions, and different concentrations of NO2 and O3.  Furthermore, the 

physical condition of the pollen is modified either by crushing or immersion in rainwater to 

emulate real life cycle scenarios of the pollen.  

As mentioned earlier, RH is the percentage of the partial pressure of water vapour referenced 

to the saturation vapour pressure of water at a given temperature (Seinfeld and Pandis, 2016). 

NO2 comes predominately from automobile exhaust, either directly from the exhaust (largely 

from diesel vehicles) or from the partitioning of nitric oxide (NO, from both petrol and diesel 
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vehicles), that comes from the exhaust, and is converted to NO2 in the atmosphere via 

reaction with O3.  

NO + O3 à NO2 + O2  

O3 in the troposphere (lower atmosphere where pollen largely resides) comes predominantly 

from the interaction of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds 

(VOCs) and sunlight (Seinfeld and Pandis, 2016).   

The concentrations of NO2 and O3 used were such that the pollen exposures to these 

pollutants were atmospherically realistic. The crushing of the pollen mimicked the 

mechanical and chemical stresses encountered by the pollen grains in the outside real world.  

Immersion in rainwater mimicked the effect of rain on the pollen whilst still in the flower 

(catkin) of the birch tree. 

 

3.1 Methodology  
 
Typically, proteomics workflow consists of protein extraction, quantification, separation,  

identification, data analysis and interpretation (Carpentier et al., 2008). The success of the 

entire experiment is determined by the solubilization/precipitation process which is also a 

vital step and strongly affects the quality of the final results (Martínez-Maqueda et al., 2013). 

This process leads to separation of proteins in the sample selectively from different 

substances that may affect the proteomic assay (Berkelman, 1998). Taking into account the 

immense diversity of proteins and the huge amount of interfering contaminants present, 

simultaneous solubilization of all proteins remains a great challenge (Martínez-Maqueda et 

al., 2013) and requires a robust technique for a successful extraction product. In view of all 

that has been mentioned so far, one may accept that sample preparation has an intense effect 
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on the final product of protein and peptide separation and their subsequent analysis. 

 
The preparation of sample from most materials for proteomic analysis requires 

homogenization/cell disruption, which enables access to protein content usually concealed 

with the cell wall of the organism or plant material. Various chemical and physical 

techniques can be used to destroy the cell wall such as mechanical homogenization, 

ultrasound homogenization, pressure homogenization, temperature treatments, and osmotic 

and chemical lysis (Martínez-Maqueda et al., 2013). Because their tissues are rich in 

proteases and other intrusive compounds, plants are generally more problematic for protein 

extraction (Wang et al., 2008) so cell disruption is required before they can be totally 

solubilized and extracted. In this study, the mechanical homogenization (automated) was 

used because pollen grains have an even harder cell than other plants cells; in another section, 

grains were ruptured in rainwater (osmotic lysis). 

 
 

3.1.1 Materials  

3.1.1.1 Pollen samples 

 
Birch (Betula pendula) is an ornamental tree that produces staminate flowers (Cheng et al., 

1999). Birch pollen flowers usually in April and May and is one of the main causes of 

allergic reactions particularly hay fever in the UK and parts of Europe affecting around 15-

20% of the population (Khwarahm et al., 2017). The Pollen was purchased form ALK-Abello 

laboratory and stored dry at ambient temperature (~23-25 degrees). 
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3.1.1.2 Reagents  
Reagents  Application  Manufacturer  

Sodium Dodecyl Sulphate 
(SDS) Solution (10%) 

Buffer solution for extraction or re-solubilisation of 
proteins 

Sigma  

Sucrose Reduces protease release (additive to buffer solution) Fisher Scientific 

Trizma®hydrochloride solution Lysis buffer Sigma  

Protein Inhibitor Cocktail Protein degradation (by protease) Sigma  

Acetone Protein precipitation Sigma  

Trizma-HCl (1 M, pH7.5)  Sigma  

Nitrated BSA (Bovine serum 
albumin) 

Standard (tagging and blotting experiments) ABCAM 

BCA Kit  Protein quantification Thermo scientific  

100 mM TEAB 
(triethylammonium 
bicarbonate) 500 µl of 1 M 
TEAB into 4500 µl of water) 

Buffer  N/A 

200 mM TCEP 

(20 µl of 1 M TCEP into 80 µl 
of 100 mM TEAB) 

Quenching (alkalytion reaction) N/A 

375 mM Iodoacetamide (IAA) 

(0.0347g of 
iodoacetamide in 0.5 
ml of 100 mM TEAB) 

Alkylation  N/A 

230 mM DTT Reduction  N/A 

Trypsin Protein digestion   

Extraction buffer (50 mM Tris-
HCl, 10% sucrose and 
inhibitory proteases) 

Protein extraction  N/A 

Acetic anhydride Acetylation  Sigma  

18% Ammonia solution (1.03 
ml of ammonia solution with 
0.97 ml of water) 

Acetylation  N/A 

5% Hydroxylamine (10 µl of 
50% hydroxylamine stock 
solution in 90 µl of water) 

Quenching (TMT labelling reaction) N/A 

TEAB (1 M) Buffer  Fluka  
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50 mM Sodium dithionite 
(0.018g of sodium dithionite 
and dissolve in 2 ml of 100 mM 
TEAB) 

Reducing reagent (3-nitrotyrosine to 3-
aminotyrosine) 

N/A 

TMT-tags (Tandem Mass Tags) Amine-reactive tags Thermo scientific  

Anhydrous acetonitrile Dissolving reagents (TMT labelling reagents) Fisher Scientific 

Anti-TMT resin (antibody) TMT- labelled peptide identification Thermo scientific  

TMT elution buffer TMT- labelled peptide elution buffer Thermo scientific  

TBS (1X) (1 ml of TBS 10x 
stock in 9 ml water) 

Buffer  N/A 

0.1% TFA (Trifluoroacetic) (10 
µl of TFA in 9.99 ml of water) 

Equilibration (ziptip for desalting) N/A 

100 % ACN (Acetonitrile) Wetting solution Sigma  

50% ACN  N/A 

0.1% TFA Washing solution N/A 

0.1% FA (Formic acid) (10 µl 
of FA in 9.99 ml of water) 

Elution solution  N/A 

Blocking buffer 

5% semi skimmed milk in 
TBST  

Membrane blocking  N/A 

TBST ( Tris-buffer saline & 
Tween 20) 

Washing buffer N/A 

Coomassie protein assay 
reagent 

Gel staining  Pierce  

Transfer buffer Protein bands transfer from gel to membarne BioRad 

Phospho buffered saline (PBS) Membrane wash buffer N/A 

IRDye Antirabbit (Goat) Nitration detection (secondary antibody) Odyssey  

Polyclonal Anti-3-nitrotyrosine 
antibody (Rabbit) 

Nitration detection (primary antibody) Sigma  

 
Table 3.1: Buffers and reagents used for experimental analyses. 
 
 
Table 3.1 list the reagents and recipes used in this study. The analytical reagents were of 

highest purity available and were purchased from either Sigma-Aldrich or Fisher Scientific.  
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Ultrapure (deionised) water was supplied in a quality higher than 18.2 MΩ.cm by a Milli-Q 

Plus 185 system (Millipore S.A., Molsheim, France). Synthetic Air and nitrogen dioxide 

(50ppm) were purchased from BOC (UK) respectively. Ozone was generated using the uv 

lamp.  

 

3.1.1.3 Equipment  

 
Precellys homogenizer- this is a highly efficient rapid cell lysis and homogenizing instrument 

designed to liberate DNA, RNA and proteins from a wide range of specimens. It improves 

sample preparation by breaking cell walls open thereby giving more access to proteins. 

 
LC-MS- Liquid Chromatography (LC) / Mass Spectrometry (MS) is powerful and sensitive 

analytical tool for proteomics research. LC separates the sample components by passing the 

proteins through a column and introduces them to the MS. The MS provides information 

about the sample molecular weight. 

 
Centrifuge- this is a device for separating particles in a solution according to their size, 

shape, density, viscosity nature of the medium. It spins down samples using centrifugal force 

for separating heterozygous aqueous solutions and suspensions of various densities in 

approved test tubes.  

 
Odyssey infrared imaging system – this is a scanner that uses infrared fluorophores for 

imaging applications and supports a wide range of applications that benefit from sensitive 

and near-infrared fluorescence detection such as the blotting techniques. 
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3.2 Experimental set-up for gas exposure 

3.2.1. Setup for the pollen exposure  
 

Pollen samples were exposed to gases in vitro in a purpose built experimental setup. All 

exposure experiments were performed with the following procedure. Figure 3.2 shows a 

schematic diagram of the experimental exposure setup.  

 

 

Figure 3.2- Experimental setup for pollen grain exposure. NO2 (nitrogen dioxide and 
NOX (nitrogen oxide). 
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Pollen grains were weighed onto Whatman TE 35 Membrane Filter (PTFE, supports) (GE 

Healthcare UK Limited) with 0.2µm pores and 47mm diameter and a second filter paper was 

added on top of the pollen sample to prevent the pollen from escaping before putting it 

securely into the filter holder. It is noted that the pore size of the filters is significantly 

smaller than the investigated pollen grains and hence the grains could not escape from the 

filter holder setup.  

 

3.3 Pollen exposure to gases 
 
Experiments were typically performed with 10-50 mg of dry weight pollen. The gases 

flowing through the system were controlled using mass flow controllers (MFC) (Brooks 

Instruments; Model SLA5850S). The NOx monitor is a 42C Thermo Environmental 

instrument that quantifies NO2 via chemiluminescence detection system. The NO2 must first 

be transformed into NO before it can be measured. The NO and NOX calculated 

concentration are stored in the memory and the difference between the concentration are used 

for determining the NO2 concentration. For each gas, the set flow rate was displayed in terms 

of the volume of the gas and expressed either in units of liters per minute (Lmin
-1

) or 

standard cubic centimeters per minute (sccm).  The MFC used to flow synthetic air, O3 and or 

NO2 in the gas flow tubes were controlled through the IGI lab interface software (LAB 

Interface 130410, v1.0) on a laptop and the RH required was monitored using the RH probe 

(Sensirion SHT/1) that monitors the RH during the duration of the experiment. Varying the 

combined ratios of dry and wet (through a water bubbler) airflow through the gas flow tubes 

generated the desired RH. The temperature inside the chamber was found to vary between 

21-25 oC during an experiment lasting 1-2 hours. The MFC and RH probe were calibrated 
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using external meters to ensure accuracy. The RH probe measures both temperature and RH 

with an accuracy ± 1.8% RH and ± 0.3°C.   

 
After placing the pollen sample onto the filter paper holder, the filter holder was then 

connected to the gas flow tubes and gas was introduced at constant flow rates (FR). The FR 

was controlled by the MFC that allowed exposure to the desired gas/gases, under different 

concentrations and variable flow rates. Several experiments were performed as presented in 

Table 3.2 below, which all happened between 1-2 hours with different flow rates, RH, gas 

mixtures and concentrations. The exposure = time × concentration. The maximum 

concentration of NO2 used was 10 ppm, and this value was based on the calculation that the 

exposure is of 24 hours for 7 days. 7 days was chosen as it represents a typical upper limit for 

the time that atmospheric aerosol particles are airborne. For a 1 hour exposure, at 10 ppm of 

NO2, this is equivalent to a weeklong exposure of 0.059 ppm (59 ppb) , which is below 

present atmospheric national hourly-limit value acceptable for human health protection in 

Europe (0.11 ppm, 110 ppb for NO2) (Cuinica et al., 2014).  

Once the required exposure time was reached, the filter paper was carefully removed using 

tweezers and placed onto a petri dish, then sealed with parafilm and stored in the -80 degrees 

freezer until it was required for protein extraction and proteomics analysis. Typically, the 

analysis was carried out on the same day as the exposure. Non-exposed pollen samples were 

used as controls.  The controls are subjected to exactly the same protocol minus the reactive 

gases. Figure 3.3 illustrates the experimental set up for pollen grain exposure to RH, NO2 and 

O3. 
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Figure 3.3- Experimental setup for pollen grain exposure to RH (relative humidy), NO2 
(nitrogen dioxide) and O3 (ozone).  MFC- mass flow controller. 
 

 

The NO2 uptake by the pollen was also investigated under the influence of pre-treatment with 

O3 as studied by Chassard et al. (2015). The O3 used was generated using an ultraviolet 

generator (UV ozone generator) and the concentration was monitored with an O3 analyzer 

(2B Technologies, Model 205). 10 mg of the pollen was exposure to flows of O3 between 21-

26 ppmv (2100 – 2600 ppb which is not atmospherically realistic but for the lifetime 

exposure representing a week is equivalent to a modest concentration of 12.5-15.4 ppb) at a 

flowrate of 1 Lmin
-1

of synthetic air (dry and wet) for 1 hour. After which the gas flow tube 



 82 

was flushed with dry synthetic air for 5 minutes then exposed to NO2 for 1 hour under the 

same experimental conditions. Table 3.2 presents the conditions used for some of the 

experimental exposures. 

 

Samples NO2 / ppm  O3 / ppb  RH% (± 1.8%) Time (hours) 

Unexposed (intact pollen)  0 0 0 NA 

Exposed (intact pollen) 0 0 ~95 1 

Exposed (intact pollen) 2 0 ~80 1 

Exposed (intact pollen) 5 0 ~80 1 

Exposed (intact pollen) 10  ~75 1 

Exposed (intact pollen) 10 2100-2600 ~70 2 

Exposed (ruptured pollen in 
rainwater) 

2 0 ~80 1 

Exposed (ruptured pollen in 
rainwater) 

5 0 ~80 1 

Exposed (ruptured pollen in 
rainwater) 

10 0 ~75 1 

 
Table 3.2: Conditions used for some experimental exposures. Note: 0 means absence of 
O3, NO2 and RH. All experiments were performed for duration of 1-2 hours.  The table 
displays few of the many exposures carried out during the research. 
 

 

3.4 Protein extraction method 
 

Pollen grains have hard cell walls to withstand many environmental stresses and to protect 

the genetic information as well as stored compounds (Fíla et al., 2011). The pollen surface is 

probably hydrophobic because the exine is enclosed with waxes and proteins (Pope, 2010). 

For the proteomics analysis to be achieved, which requires protein to be extracted and 
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separated, homogenization was employed at the initial stage of the experiment to enable 

access to the protein content of the pollen grain after the exposure.  

 

3.4.1 Cell disruption (Homogenization)  

 
Cell disruption was performed using the Precellys 24. It utilizes a bead (ceramic, glass and 

metal) beating process coupled with a powerful figure of 8 motion allowing lysis to be 

achieved with very short programs typically less than one minute. 10-50 mg of the exposed 

pollen grain was transferred into the precellys tube (containing 2.8 mm metal beads) and 

homogenize in 1 ml of 50 mM TrisHCL-pH 6.8, 10% Sucrose and 10 µl inhibitors for 60s at 

6500 rpm speeds. The homogenizer was operated at full capacity in order to enhance release 

of the protein. Proteins were then extracted from the samples as described in the sub section 

below. Sonication was also adopted during protein extraction to complete cell lysis and shear 

DNA to reduce sample viscosity. The sonicator was operated with samples in the tube placed 

on ice during each run at a chosen speed of 15 microns for 15 seconds three times.  

 

3.4.2 Protein extraction from intact pollen samples 

 
The homogenized pollen samples were transferred to 2 ml Eppendorf tube and centrifuged at 

16000 ×g for 20 mins at 4oC. Supernatant was kept and to the pellet the buffer (above) with 

additional 2% SDS was added, mixed and incubated for 60 minutes at laboratory 

temperature. Samples were sonicated (because of the viscosity nature of the sample) in short 

pulses with a sonicating probe to break DNA. To the 2 ml of the sample, 5 fold Acetone (10 

ml) was added and store to precipitate at -20 oC overnight. The 12 ml sample was centrifuge 

at 16000 xg for 30 minutes at 4 oC. The supernatant was kept; pellets dried and given to the 
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facility for proteomics analysis. Several samples were generated from supernatant and pellet 

so as to compare which part of the sample contains higher allergen protein contents. 

 

3.4.3 Pollen rupture  
 
 
To further explore the applicability of NO2 effect on pollen grain, the grains were ruptured in 

three different ways; 1) immersed in rainwater (collected from the University of Birmingham 

using a sterile bottle and funnel) over night for ~ 22 hours, 2) mechanically disrupted dry 

using metal beads and 3) exposed to ~90% RH for 24 hours. Figure 3.4 shows the diagram 

illustrating the 3 different pollen-rupturing conditions. 

 

 

 

                                                 

 

 

 

 

 

 

 

Figure 3.4: Diagram illustrating the 3 different pollen-rupturing conditions. The birch 
pollen grain is easily recognized by its characteristic triangular shape with three 
germination pores in each angle. 
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3.5 Sample preparation and gas exposure to ruptured pollen 
proteins 
 

The ruptured samples were dried (using Eppendorf Vacuum Concentrator at 30 °C that can 

be used to concentrate samples to required amount or dehydrate them completely) on a filter 

paper and exposure to desired amount of gases (2 ppm, 5 ppm and 10 ppm of NO2) as 

described in the previous section 3.2. The exposed sample was recovered from the filter paper 

using the extraction buffer (50 mM Tris-HCl pH6.8, 10% sucrose and inhibitory proteases) 

and protein concentration was estimated with Bicinchoninic Acid (BCA) (is a two-

component, high-precision, detergent-compatible assay reagent available for measuring 

absolute protein concentration by comparing to a protein standard) protein assay kit as 

described in section 3.6 below. The rainwater was also checked using the same protein assay 

protocol to ensure that it does not contain any airborne contaminants that may interfere with 

the experimental results.  

In this experimental setup, only one filter paper was used because the exposure is at the 

extracted pollen protein samples, which are air-dried on the filter paper so have lesser risk of 

being blown away by the gases during exposure.  

 

3.6 Protein concentration determination 
  

BCA protein assay kit is an excellent tool for estimating the protein concentration of a 

sample. The intensity of the coloured reaction product is a direct function of the protein 

amount that can be determined by comparing its absorbance value to a standard absorbance 

curve.  

The protein concentration of the samples was determined by BCA Protein assay kit and read 

by Tecan infinite 5200 pro plate readers absorbance spectroscopy at a wavelength of 570nm. 
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BCA standards ranged from 2 mg/ml to 25 µg/ml. This was carried out by dispensing 10 µl of 

each standard into a 96 well plate along with the protein samples extracted from the pollen. 

BCA protein assay reagents were mixed in the ratio of 1:50. An addition of 200 µl of BCA 

protein assay reagents A and B mixture was added to each well and the plate was incubated 

for 30 minutes at 37 °C. The absorbance at 570 nm was read and using the excel results sheet, 

a linear curve with equation was generated from the known concentrations of BCA standards 

in order to calculate the protein concentration of the samples.  

 

3.7 SDS-PAGE gel procedure 
 
Much proteomic work relies upon the pre-separation of target proteins by one- or two-

dimensional gel electrophoresis (Aebersold and Mann, 2003). Two dimensional difference 

gel electrophoresis has proven to be a powerful technique for examining protein expression, 

which allows the simultaneous resolution of thousands of proteins (O'Farrell, 1975). The 

separation of proteins take place in two steps; in the first dimension separation is dependent 

on their charge using isoelectric focusing (IEF), and in the second dimension on their 

molecular weight using SDS-PAGE (Marouga et al., 2005). An important advantage of gel 

electrophoresis compared to gel-free approach is the identification of proteins from 

polyacrylamide gels, which eliminates low molecular weight contaminations, as well as 

detergents and buffer components, that are often have negative impact on mass spectrometric 

sequencing (Shevchenko et al., 2007).  

Selecting the correct gel for the protein of interest can be a crucial step in optimizing 

detection and quantification of the protein and modification of interest. If the target protein is 

of low molecular weight a high percentage gel gives a better resolution. Here, 12% gradient 

of precast mini gel from BIO-RAD was used (allows a wide coverage of protein weights).  
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The gel was held in a cassette and a comb stacked on top of the 10 wells. The samples 

extracts were run on SDS-PAGE gel in order to observe the amount of protein content in the 

different sample extracts; supernatant and pellet and in another experiment (Western blot and 

in-gel digestion) was done to detect the presence of protein modification. Samples (pollen 

protein extracts) were dried down to 10 µl each (smaller samples were made up to 10 µl with 

water) and 10 µl of Laemmli buffer solution was added (1:1 ratio) making 20 µl in total for 

each sample. The glycerol content of the buffer solution aids the samples to effortlessly sink 

into the wells of the gel.  The samples are then kept on a heating block for 10 minutes at 95 

°C which denatures the protein while retaining the sulphide bonds. Denaturing the protein 

ensures that the negative charge of amino acids is not neutralized, assisting the protein to 

transfer in an electric field applied during the process. Subsequently, it was allowed to cool 

before loading on to the gel. The gels were placed in the tank (the tank houses a dual cell 

holder, an electrode assembly, lid with power cables and mini buffer dam) and the comb 

removed, then about 900 ml SDS running buffer was poured into the tank. Samples were 

loaded in equal proportions (20 µl) and the pre-stained protein ladder, 10 µl. Finally, the gels 

were allowed to run at 200 Volts for at least 45 minutes.   

 

3.8 Dot blot technique 
 
The dot blot is a technique for detecting, analysing, and identifying proteins by spotting 

circular patterned protein samples directly onto the membrane. Dot blot differs from western 

blot in that no gel is used so protein samples are not separated electrophoretically but are 

spotted through circular templates directly onto the membrane of choice and probing it using 

antibody. It can be used to semi-quantify concentration of a protein in the presence of both 

standard protein and specific antibody against it. This technique was applied to assess the 
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presence of nitration in the research samples. The ability of this technique to detect nitration 

is due to the fact that it uses the antibody specific for the target of interest.  

 
In this experiment, the proteins of interest are 3-nitrotyrosine proteins that are supposed to be 

produced as the result of protein exposure to NO2, which where probed using polyclonal 

Anti-3-nitrotyrosine antibody produced in Rabbit (Sigma Aldrich) as the primary and the 

secondary was Goat Anti-Rabbit antibody (Odyssey, LI-COR). The primary antibody binds 

only nitrated proteins on the membrane while the secondary antibody binds to the primary 

antibody and emits the fluorescence signal during scanning. The molecule responsible for the 

fluorescence signal in the secondary antibody is IRDye 800CW dye. IRDye 800CW is ideal 

for antibody labelling and has absorption and emission wavelengths in the NIR spectrum, 

between 680 and 800 nm as well as higher signal-to-noise ratios  

(https://www.licor.com/bio/products/reagents/irdye/). Figure 3.5 below demonstrates how the 

binding of the antibody process works.  

 

Figure 3.5: Schematic diagram explaining the process of antibody binding in the 
detection of nitrated protein 
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Below are the steps used for the dot blot analysis.  

Protein concentrations of the samples were calculated (5 µg/ml). Using a narrow-mouth 

pipette tip, 2.5 µl of nitrated BSA and amount need from the research samples were spotted 

onto the Whatman nitrocellulose transfer membrane (pore size 0.45 um) minimizing the area 

that the solution penetrates (usually 3-4 mm diam.) by applying it slowly and allowing it to 

dry. A grid by pencil to indicate the region of blotting was drawn on the membrane. Once the 

spotting was completed, the membrane was allowed to dry completely and 20 ml of blocking 

buffer (5% milk powder in TBST) was added onto the membrane in a weighing boat then 

incubated at room temperature for 1 hour on a rocker. This blocks non-specific sites of the 

membrane. The blocking buffer was discarded and using 1:1000 ratio of the primary antibody 

(following manufacturer’s instruction), 20 µl in 20 ml of 50% blocking buffer (10 ml of 

TBST and blocking each), the membrane was incubated with the antibody overnight on a 

rocker with gentle shaking at room temperature (RT). Afterwards, it was washed three times 

with TBST (3 x 10 min) and incubated with secondary antibody, 1:10000 (2 µl in 20 ml of 

TBST) for 1 hour on the rocker with gentle shaking at RT. The secondary antibody was 

disposed and membrane washed three times, two washes with TBS-T and last wash with PBS 

to remove residual Tween 20 (3 x 10mins). The membrane was then scanned on Odyssey 

infrared imaging system (MousePod 9120-MP, LI-COR, Inc USA). The scanner uses infrared 

fluorophores for imaging applications and supports a wide range of applications that benefit 

from sensitive and near-infrared fluorescence detection such as the blotting techniques. It is 

distinctively furnished with two infrared channels (700 and 800 channel laser source) for 

direct fluorescence detection on membranes (Osterman and Schutz-Geschwender, 2012). The 

channel used for this study was the 800 laser source that is compatible with the secondary 

antibody used.  
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The total fluorescence intensity from the dots was measured in the Odyssey imaging system 

that has a software for quantifying concentration (picomoles) of the dots. The values 

generated by subtracting the area of dot from the background were used for plotting graphs. 

An estimated degree of nitration was also calculated with reference to equivalent weight of 

nitrated BSA protein. 

 
 

3.9 Western blot  
 
Western blot, also referred to as immunoblotting is an analytical technique similar to dot blot, 

however, it is used for identifying specific protein on gel based on band separation and relies 

on three elements: separation of the protein mixtures by their size according to molecular 

weight; transfer of the separated proteins onto the membrane and identification of the 

targeted protein using antibody (Mahmood and Yang, 2012). Following the SDS-PAGE 

electrophoresis, the gel was placed on to the western blot pads already soaked in transfer 

buffer (so as to saturate the pads) for approximately 10 minutes. The membrane was placed 

onto the gel and another pad added on top making sure no air bubbles are trapped using a 

roller. This was then inserted into the cassette, placed in the transfer tank and transferred for 

approximately 7 minutes. The electric current used for the transfer induces the migration of 

the proteins from the gel onto the membrane producing a band for each protein. Once the 

transfer was completed, 20 ml of blocking buffer (5% milk powder in TBST) was added onto 

the membrane in a weighing boat and incubated at room temperature for 1 hour on a rocker. 

This blocks non-specific binding sites of the membrane. The blocking buffer was discarded 

and using 1:1000 ratio of the primary antibody, 20 ul in 20 ml of 50% blocking buffer (10ml 

of TBST and blocking each), the membrane was incubated with the antibody overnight on a 

rocker at RT. Afterwards, it was washed three times with TBST (3 x 10 min) and incubated 

with secondary antibody (2 ul in 20ml of TBST) for an hour on the rocker at RT. The 
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secondary antibody was disposed and membrane washed three times, two washes with TBS-

T and last wash with PBS (3 x 10mins). The washing eliminates unbound antibody leaving 

only the bound antibody to the protein of interest. The membrane with bound antibodies was 

then scanned and detected on Odyssey system. As the antibodies only bind to the protein of 

interest, single band (if any) should be visible for each gel lane. 

 
Western blot results are typically considered to be semi-quantitative because it offers a 

relative evaluation of protein levels, instead of a complete measure of quantity (Mahmood 

and Yang, 2012). There are two reasons for the lack of complete measure of quantity; first, 

there may be some disparities in loading and transfer rates among the samples in their 

individual lanes, usually diverse on separate blots and secondly, the signal produced “by 

detection is not linear across the concentration range of samples” (Mahmood and Yang, 

2012).  

 

3.10  In-gel trypsin digestion of Coomassie-stained proteins  
 
“In-gel digestion of proteins isolated by gel electrophoresis is a cornerstone of mass 

spectrometry (MS)-driven proteomics” (Shevchenko et al., 2007). It is done to cut the protein 

of interest present within the polyacrylamide matrix. The sequencing of the molecular 

weight-separated protein bands increase the vigorous scope of the protein mixtures analysis 

since each peptides created by in-gel tryptic cleavage of each band are sequenced and 

analyzed separately (Shevchenko et al., 2007). Analyzing complex mixture by spreading out 

the proteome over 10–20 gel slices dramatically increases the depth of analysis, and hence 

the number of identified proteins and detected PTMs will also increase (Shevchenko et al., 

2007). Figure 3.6 shows the main steps involved during the experiment.  
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Figure 3.6: Flow chart of In-gel digestion main procedures. 
 
 
 

After running the gel (described in section 3.6 above), it was stained in Coomassie (a strong 

700 nm fluorophore whose fluorescence is induced upon protein binding) blue protein stain 

overnight. The molecular weight of the visible polypeptide bands were estimated by 

comparison with protein markers. The bands of interest (~17 kDa, which is the molecular 

weight of Bet v1) were excised from the gel, placed in 1.5 ml Eppendorf tubes and cut into 

several pieces (about 2-3 mm). Cutting the band into smaller pieces increases surface area to 

assist diffusion. The gel pieces were washed in 500 µl of 100 mM ammonium bicarbonate 

and 50% acetonitrile/50% 100 mM ammonium bicarbonate respectively for 1 hour on the 

shaker and wash discarded (washing removes excess stain and SDS that can interfere with 

mass spectrometry analysis). To break disulphide bonds and obtain a completely unfolded 

protein for digestion into peptide, 150 µl of 100 mM ammonium bicarbonate and 10 µl of 45 

mM dithiothreitol (DTT) were added then incubated at 60°C for 30 minutes in the heating 

block. For alkylation (prevents reformation of disulphide bonds), sample was cooled to room 

temperature (~10 mins), 10 µl of 100 mM iodoacetamide (IAA) added and sample incubated 

in the dark for 30 minutes. Solvent was discarded and gel pieces washed in 500 µl of 50% 
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acetonitrile/50% 100 mM ammonium bicarbonate (it removes any excess DTT and IAA) for 

1 hour on the shaker. Wash was discarded and an addition of 50 µl of acetonitrile to shrink 

gel pieces. After 5-10 minutes, solvent was removed and gel pieces dried completely in a 

vacuum centrifuge. Acetonitrile was added to draw water out of the gel. Addition of trypsin 

(20 µl for average size band) was done gradually until the gel pieces were completely 

rehydrated to previous size. It is vital to fully cover the gel pieces for good digestion. Finally, 

sufficient amount of 25 mM ammonium bicarbonate was added to cover just over the gel 

pieces (~20 µl) and allowed to digest overnight at 37°C in the heating block. The tube was 

briefly centrifuged to pellet gel pieces and all liquid was transferred to fresh Eppendorf tube 

being careful not to transfer any gel. 20 µl 5% formic acid was added on to the gel pieces and 

incubated for 20 minutes on heating block at 37°C. 40 µl acetonitrile was added to the gel 

pieces in Eppendorf and incubate for another 20 minutes on heating block at 37°C. It was 

briefly centrifuged and the liquid transferred to the same Eppendorf tube as used for the first 

extracted liquid. The combined extracts were completely dried down, ziptipped and handed 

over to the facility for the MS analysis. Figure 3.7 presents the schematic procedure summary 

of in-gel tryptic digestion.  
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Figure 3.7: Procedure summary of in-gel tryptic digestion. Modified from  
(www.thermoscientific.com) 
 

3.11 Trypsin digestion 
 
Trypsin is a proteolytic enzyme, essential for protein digestion with molecular weight of 24 

kDa composed of 220 residues. “Trypsin is an aggressive and stable protease, which very 

specifically cleaves proteins on the carboxy-terminal side of arginine and lysine residues” 

(Olsen et al., 2004). This produces suitable peptides for sequencing and with a basic residue 

at the carboxyl terminus of the peptide that “result in information-rich, and easily 

interpretable, peptide-fragmentation spectra” (Steen and Mann, 2004). 

 
The tryptic digestion is normally performed overnight using small amounts of trypsin enzyme 

depending on the required quantity for an experiment. Typically, the ratio of the trypsin-to-

protein is in the range of 1:20–1:40 (w/w) where the rationale behind the low ratio is to avoid 

trypsin autolysis, which reduces trypsin activity and increases the sample complexity 

(Egeland et al., 2016). For each treatment/condition ~100 µg protein was transferred to new 

Eppendorf tubes and made up to 100 µl with 100 mM TEAB if required.  5 µl of 200 mM 
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TCEP was added and incubated at 55 °C for 1 hour. It was removed from heat and leave to 

cool back to room temperature. 5 µl of 375 mM iodoacetamide was added and incubated for 

30 mins in the dark. The reaction was quenched by adding 5 µl of 230 mM DTT and 

incubated at room temperature for 5 mins. Lastly, 2.5 µl of trypsin (gold standard trypsin) per 

100 µg of sample was added and samples digested overnight at 37 °C. This gives a 1:50 ratio 

of enzyme: protein. The correct ratio of enzyme: protein helps to maintain good digestion 

time with compromising method sensitivity or digestion repeatability (Egeland et al., 2016).  

 

3.12 TMT labeling experiment 
 
The tagging experiment targets the quantitative identification of nitrotyrosine-containing 

proteins/peptides using TMT tags (Tandem Mass Tag™). The TMT tags reagents are 

designed to enable identification and quantitation of proteins in different samples using 

tandem mass spectrometry (MS). Samples are differentially labeled chemically, combined 

and simultaneously analyzed by LC-MS/MS, with relative quantitation performed by 

comparison of intensities of the ‘reporter’ fragments in the MS/MS spectra (Timms and 

Cutillas, 2010). There were five major steps involved for this experiment as shown in the 

Figure 3.8 below. At each stage of the experimental step, aliquots of the samples were taken 

and checked on the MS to ensure investigation was going on as expected. The amount of 

sample needed for the tagging experiment was digested overnight using trypsin as described 

in section 3.11. Nitrated Bovine Serum Albumin (NBSA) (Abcam) was used as standard, 

which was treated with peroxynitrite that modifies tyrosine by acting as an oxidant to produce 

3-nitrotyrosine along the length of the BSA protein; however, the number of the nitrated sites 

of the standard NBSA used was not specified in the manufacture’s manual. Figure 3.8 

represents the flow chart of the major steps involved for TMT labelling experiment. 
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Figure 3.8: Flow chart of TMT labelling experiment.   
 

 

3.12.1 Acetylation of tryptic peptides (to block primary amine groups) 

The acetylation of the N-terminus of the tryptic peptides increases the peptide stability. 20 µl 

of acetic anhydride was added and incubated at 37 °C for 30 min. Then 200 µl of 18% 

ammonia solution added, incubated at 37 °C for another 30 min and samples were evaporated 

to complete dryness by vacuum centrifugation. Figure 3.9 below demonstrates the formation 

of nitrotyrosine (addition of 45Da) and its reduction (addition of 15Da) to aminotyrosine 

using nitrating (NO2) and reducing (Na2S2O4) agents respectively. 
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Figure 3.9: Schemes demonstrating the formation of nitrotyrosine (addition of 45Da) 
and it’s reduction (addition of 15Da) to aminotyrosine using nitrating (NO2) and 
reducing (Na2S2O4) agents respectively. The colored arrows red and green indicates the 
ring position of nitration and reduction respectively.  
 

 

3.12. 2 Reduction and TMT-tagging 
 

The acetylated peptides were re-dissolved in 50 µl of 100 mM TEAB and 50 µl of 50 mM 

sodium dithionite added with continuous stirring of the reaction at room temperature for 30 

min to reduce 3-nitrotyrosine (3NT) to 3-aminotyrosine (3AT). Samples were then 

evaporated to complete dryness by vacuum centrifugation. Immediately before use, the TMT 

Label Reagents were equilibrated to room temperature and 41 µL of anhydrous acetonitrile 

added to each tube. Reagents were left to dissolve for 5 mins with occasional vortexing and 

briefly centrifuged the tube to gather the solution. Carefully, 41 µL of the TMT Label 

Reagent was transferred to each sample and incubated for 1 hour at RT. The labeling, if used 

correctly is efficient for all peptides regardless of protein sequence or proteolytic enzyme 

specificity; however, labeling does not occur when primary amino groups are modified, such 

as when N-terminal glutamine or glutamic acid forms a ring (pyro-glutamic acid) or if the 

group is acetylated (Rauniyar and Yates III, 2014). To quench the TMT labelling reaction, 8 
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µL of 5% hydroxylamine was added to the sample and incubated for 15 mins. All tagged 

samples were combined together (equal proportions) and evaporate to complete dryness by 

vacuum centrifugation. Figure 3.10 explains the detailed conversions of 3NT to 3AT which is 

expected to take place in the process of the tagging experiment.  

 

 

 

                                    
   
Figure 3.10: Flow diagram showing the steps involved in the tagging experiment after 
formation of 3NT up to the stage of LC/MS analysis.  
K and Y represents amino acid lysine and tyrosine respectively.
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3.12.3 Enrichment of TMT-labelled peptides 

Thermo Scientific anti-TMT resin and TMT elution buffer are the main reagents used for 

the enrichment step. Both solutions are used for specific capture and elution of TMT 

Reagent-labelled peptides respectively. The anti-TMT resin and TMT elution buffer are 

effective for reducing sample complexity, and improving dynamic range (Gygi et al., 

1999). Anti-TMT resin uses the highly specific anti-TMT antibody to capture peptides 

labelled with TMT reagents. The antibody is specific for the mass reporter region of the 

TMT reagents that allows for enrichment of TMT-labeled while the Elution Buffer is a 

volatile neutral buffer, which competitively elutes captured TMT-labeled peptides (Gygi 

et al., 1999). 

200 µl of anti-TMT resin slurry was transferred into a fresh Eppendorf tube and spun in 

centrifuge at 2500-x g for 2 min until resin has pelleted. Supernatant was discarded being 

careful not to dislodge the pellet. 500 µl of TBS was added, vortex to resuspend pellet, 

and the centrifugation process repeated. The washing process was done three times with 

TBS. lyophilized peptides was then resuspended with 100 µl of TBS, poured onto the 

anti-TMT resin pellet and incubated for 2 hours at room temperature with mixing. After 

incubation, it was centrifuged at 2500-x g for 2 min to pellet resin. The supernatant was 

removed and washing process (as described above) repeated 5 and 3 times with 500 µl of 

TBS and water respectively. 200 µl of TMT elution buffer was then added to eluted 

sample mix resin and centrifuged at 2500 x g for 2 min until resin has pelleted. The 

supernatant was collected into fresh Eppendorf tube. Then 200 µl of TMT elution buffer 

mix resin was added and the centrifugation process repeated. Supernatant was collected 

into the same Eppendorf as previous elution step. The collected supernatant was spun for 

2 min at 10,000 x g to remove any residual resin, then the supernatant was transferred into 
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a new Eppendorf tube and dried to completeness in vacuum centrifuge. Lastly, sample 

was ziptipped as explained below and handed over for MS analysis. Figure 3.11 below is 

an example of typical workflow for the Thermo Scientific iodoTMT Reagents used for 

tagging experiment using the 6plex TMT tags. During this study, the 10plex TMT and 

TMTzero Reagents were used. TMTzero for trial because is less costly and TMT10 

(enables up to 10 different peptide samples to be labelled at a go) due to large amount of 

the research samples. Both Reagents share identical structure but contain different 

numbers and combinations of 13C and 15N isotopes in the mass reporter. Note all 10-plex 

reagents set contains 10 different isobaric compounds with the same mass and chemical 

structure but each has a unique reporter mass used to measure relative protein expression 

levels (of each analysed sample) upon fragmentation and tandem mass spectrometry.  

 

                                                                                                                     LC-MS/MS analysis 

Figure 3.11: An example of typical workflow for the Thermo Scientific iodoTMT 
Reagents used for tagging experiment.  Modified from Murray et al., 2012. (Murray 
et al., 2012)  
 
 
 

3.13 Zip Tipping/Desalting 
 
The liquid samples containing the mixture of peptides are desalted using millipore C18 

ZipTips. Tips are cleaned by pre-wetting in 100% acetonitrile (ACN) (x2 twice) and 

equilibrated with 0.1% trifluoroacetic acid TFA (rinsed x2). Samples are then aspirated 
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and dispensed 10x (pipette up and down). At this point the sample binds to the matrix. 

The tip is then washed with 0.1% TFA (x2) trifluoroacetic acid to remove excess salts 

before elution of peptides with 100 µL of 50% acetonitrile, 0.1% trifluoroacetic acid.  The 

eluted peptides in fresh Eppendorf tube are dried down using the vacuum centrifuge to 

remove the acetonitrile, and finally re-suspended in 0.1% formic acid solution in water. 

At this stage, the samples are handed over for the MS/MS analysis. 

 
 

3.14 Proteomics MS  
 
“Proteomics is the study of complex biological systems by analysing protein expression, 

function, modifications, and interaction” (Domon and Aebersold, 2006). The field of 

proteomics is built on technologies to analyse whole proteins in an experiment (Ong and 

Mann, 2005). Mass spectrometry (mass spec or MS) is a powerful and sensitive analytical 

tool for proteomics research. It plays a vital role in known and unknown protein detection, 

identification and quantification by revealing their structural and chemical properties 

based on their mass to charge (m/z) ratio. The mass spectrometer impacts energy into the 

peptides causing it to fragment at the peptide bonds between amino acids and the masses 

of these fragment ions are then recorded. The fragmented peptides can then be used to 

produce a characteristic sequence to determine the position and identification of the PTM.  

MS is efficient for identifying and describing proteins that are present in complex 

mixtures. The results are mostly qualitative; nonetheless, recently new approaches offer 

the chance to quantify proteomic information (Ong and Mann, 2005). This involves 

associating the identified signals from the same peptide generated from dissimilar 

conditions that produces an approximate abundance of relative protein between two 

proteomes (Ong and Mann, 2005). Alternatively, and more accurately, peptides are 

labelled with stable isotopes such as the TMT tags, whereby an estimated mass difference 
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is introduced between peptides from different experimental conditions/treatment (Ong and 

Mann, 2005). In this research, this quantitative approach was employed that is supposed 

to give precise practical evidence and temporal modifications in the proteome of the 

pollen, which should be captured by MS (Ong and Mann, 2005). 

 
Because the proteome is a complex mixture, there is no particular method for preparing 

protein samples for the MS analysis, however, the preparation of proteins for an MS 

analysis normally includes initial isolation or separation of the protein(s) so as to lessen 

the complexity of the proteome (Gundry et al., 2009). The main benefit of this step is to 

retain the essential information of the intact proteins prior to enzymatic or chemical 

digestion processes (Gundry et al., 2009). It also increases the possibility of identifying 

other protein isoforms, polymorphisms, and PTMs. There are 13 different identified Bet v 

1 isoforms (Fernandes et al., 2013). In this study, some isoforms of Bet v 1 protein were 

identified. “Bet v 1 comes in a variety of isoforms that share virtually identical 

conformations, but their relative concentrations are plant-specific” (von Loetzen et al., 

2015). 

                    
Figure 3.12: Typical proteomics experiment workflow illustrating the five stages 
involved. Adapted from (Aebersold and Mann, 2003). 
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As explained in a study by Ong and Mann (2005), the typical proteomics experiment 

consists of five stages (Figure 3.12 above), however, in this study the majority of the 

experiments skipped the gel electrophoresis step. The advantage of gel based methods is 

that the dynamic scope of investigation will be increased because sequential separation of 

proteins is based on molecular weight  (Gundry et al., 2009) that will allow for specific 

selection of targeted proteins. This process was employed only during in-gel trypsin 

digest and western blot experiments because both techniques require the separation of the 

complex mixture of protein according to their molecular weight. Ong and Mann (2005) 

explained the five steps as follows:  

• Stage 1, the proteins to be investigated are secluded from cell lysate or tissues 

using appropriate method,  

• Stage 2, proteins are degraded using trypsin enzymes to generate peptides because 

it is more sensitive for MS analysis identification,  

• Stage 3, the peptides are divided by high-pressure liquid chromatography where 

they are nebulized in minute, highly charged drops, which after vaporization, 

multiply protonated peptides enter the MS,  

• Stage 4, a mass spectrum of the peptides eluting at this time point is taken and, 

• Stage 5, the computer generates an arranged list of these peptides for 

fragmentation and a sequence of tandem mass spectrometric (MS/MS) tests 

proceeds (Ong and Mann, 2005). 

 
 

3.15 LC-MS/MS Experiment 
  
There are two main approaches of MS; top-down and bottom up where the former 

provides information on intact proteins and the latter is used for analysis of digested 
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proteins. The LC fractionates the peptides while MS analyses the peptides (Tsikas and 

Duncan, 2014). Here, the bottom-up MS was used.   

UltiMate® 3000 HPLC series (Dionex, Sunnyvale, CA USA) is used for peptide 

concentration and separation. Samples are trapped on uPrecolumn Cartridge, Acclaim 

PepMap 100 C18, 5 um, 100A 300um i.d. x 5mm (Dionex, Sunnyvale, CA USA) and 

separated in Nano Series™ Standard Columns 75 µm i.d. x 15 cm, packed with C18 

PepMap100, 3 µm, 100Å (Dionex, Sunnyvale, CA USA). The gradient used is from 3.2% 

to 44% solvent B (0.1% formic acid in acetonitrile) for 30 min. Peptides were eluted 

directly (~ 350 nL min-1) via a Triversa Nanomate nanospray source (Advion Biosciences, 

NY) into a LTQ Orbitrap Elite mass spectrometer (ThermoFisher Scientific, Germany). 

The data-dependent scanning acquisition is controlled by Xcalibur 2.7 software. The mass 

spectrometer alternated between a full FT-MS scan (m/z 380 – 1800) and subsequent 

collision-induced dissociation (CID) MS/MS scans of the 7 most abundant ions (within 

the peptide of a protein). This eliminates noise from the spectrum and reduces the number 

of ions to be considered (Eng et al., 1994). Survey scans were acquired in the Orbitrap 

with a resolution of 120 000 at m/z 400 and automatic gain control (AGC) 1x106. 

Precursor ions were isolated and subjected to CID in the linear ion trap with AGC 1x105. 

Collision activation for the experiment is performed in the linear trap using helium gas at 

normalized collision energy to precursor m/z of 35% and activation Q 0.25. The width of 

the precursor isolation window is 2 m/z and only multiply charged precursor ions are 

selected for MS/MS. The MS and MS/MS scans are searched against Uniprot database 

(pollen) using Proteome Discoverer 1.4 (ThermoFisher Scientific). Aside from the fixed 

modification; Carbamidomethylation, variable modifications used included acetylation (N 

terminus), acetylation (K), oxidation (M) and Nitration (Y). The precursor mass tolerance 
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is 10 ppm and the MS/MS mass tolerance was 0.8Da. Two-missed cleavages are allowed 

and accepted as a real hit protein with at least two high confidence peptides.  

 

3.16 Qual browser application 
  

The Proteome Discoverer application includes the Qual browser application used for 

examining spectra and chromatograms in detail. This is possible after a full MS scan is 

performed and all the peptide ions are recorded. The browser allows viewing the entire 

ion chromatogram, individual precursor and MS data. Each peak can be selected and 

analysed in detail. The chromatogram and spectra of 3 samples subjected to different 

treatments (RH, O3 and NO2) under same environmental condition were generated using 

the browser. 
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Figure 3.13: Chromatogram and spectrum of birch pollen protein subjected to A- 
RH, B- NO2 and C- O3 respectively. 
 
 
 

A  

B  

C  
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The chromatogram (top Figure.3.13 A, B & C) is a graphical display based on the 

retention time (time taken for a peptide to get eluted from the column) of the peaks 

generated as the components get separated after passing through the detector. Each peak 

represents the component present in the sample and its retention time is labeled at the top 

of the peak. This allows for easier analysis on a specific peak of interest. Peptides eluted 

from the chromatographic column are ionized, and their m/z values are measured by the 

MS. The peptides are eluted from the LC column and their ion intensity is recorded at 

different time points, forming the peptide peak. The mass spectrum (bottom Figure 3.13 

A, B & C) is displayed as a vertical bar graph, where each identified bar act for an ion 

having a certain mass-to-charge ratio (m/z) and the length of the bar describes the relative 

abundance of the ion (Joshi, 2012).   
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                  CHAPTER 4 
 

Detection and Quantification of birch 
pollen nitration 
 

This chapter presents results of laboratory measurements designed to determine the effect 

of atmospheric oxidants on the protein of the birch pollen grain. Measurements, 

conducted at the proteomic level, include dot blotting techniques, in-gel digestion, and 

LC-MS/MS analysis. 

 

4.0 Synopsis  
 
Air pollution can exacerbate several medical conditions, for example, hay fever and 

asthma (Mahmood et al., 2015). The global incidence of hay fever has been rising for 

decades; however, the underlying reasons behind this rise remain unclear (Mahmood et 

al., 2015).  

 
This study investigates the post translational modification (PTM) on the protein content of 

the highly allergenic birch pollen that is common in Europe. Within the laboratory 

through an innovative experimental chamber, the pollen grain was subjected to 

atmospherically relevant exposures of gas phase NO2 and O3 under a range of 

environmentally applicable conditions. The levels of the gases used were below the 

atmospheric limit value acceptable for human health protection in Europe. The effects of 

the trace gas exposures on the biochemistry of the pollen grains were then probed using 

proteomic approaches (liquid chromatography coupled to an ultra-high resolution mass 

spectrometer, dot and western blotting and in-gel digestion). The degree of nitration was 

semi-quantified using nitrated Bovine serum albumin (BSA) as a reference standard. BSA 



 109 

is a model protein that successfully reacts with NO2 at atmospheric concentrations 

(Shiraiwa et al., 2012a). Slightly different polypeptide profiles were revealed by SDS-

PAGE gel analysis between exposed and non-exposed pollen. Overall, the findings 

indicated significant interaction between gas phase pollutants and pollen. These 

interactions result in protein specific modifications; in particular, the addition of a nitro 

group (–NO2) to the phenolic ring of a tyrosine residue is observed. Nitration is seen to 

occur upon tyrosine residues, and nitrosylation occurs on cysteine residues. Upon the 

interaction with tyrosine, it forms 3-nitrotyrosine (3NT), a post-translational modification 

(oxidative) associated with many diseases.  

 
 

4.1 Introduction  
 

It is a well-known fact that pollens from certain plant species like birch and ragweed can 

trigger several kinds of human allergic reactions in sensitized individuals. It is assumed 

that the interaction of pollen with common gas phase pollutants, such as NO2 and O3, 

increases the allergenicity of the pollen and hence increases hay fever incidence (Franze 

et al., 2005; Reinmuth-Selzle et al., 2014).  Protein nitration occurs as a result of oxidative 

stress stimulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

such as NO2 (Nie et al., 2006). ROS are derived from oxygen molecules and RNS are 

nitrogen-containing oxidants (Bedard and Krause, 2007). 

 
Previous studies have shown that the reaction of pollen with atmospheric oxidants can 

alter protein molecules that are present within pollen grains and cause variations in the 

chemical composition of pollen protein via PTM of the protein (Franze et al., 2005; 

Reinmuth-Selzle et al., 2014). This change in protein chemistry is likely linked to the 
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change in allergenicity, and consequently provides the link between urban pollution and 

increased allergenicity.  

 
Since atmospheric pollutants often have greater concentrations within urban areas, in 

particular nitrogen oxides (NOx = NO + NO2) because their predominant source is from 

vehicle exhausts, the hypothesis suggests that greater allergenicity should occur in or 

downwind of urban areas.  

 
A study by Schröder et al. (2015) indicated that there is greater hay fever prevalence 

within urban in comparison to rural areas (Schröder et al., 2015). Induced chemical 

changes may affect human immune reaction to the pollen allergen protein, which provides 

a possible pathway for increased allergenic response to the chemically altered pollen 

protein that has interacted with atmospheric pollution. Other hypotheses for greater 

allergenicity in urban areas are indirect. For example, the higher CO2 levels and higher 

temperatures (urban heat island effect), which promote greater plant growth. 

 
The main identified effect of NO2 on the pollen proteins among research done to date is 

PTM of tyrosine termed, protein tyrosine nitration (PTN), that is irreversible. “This 

posttranslational modification of allergens provides a rationale for the increase in 

allergic diseases in air-polluted regions, summarizing the different studies, little is yet 

known about the molecular mechanisms of the effects of ozone and NO2 on pollen, and 

more research is needed on that point, however, the existing research already clearly 

indicates dose-dependent and species- specific impacts of these air pollutants, which in 

most cases result in heightened allergenicity” (Frank and Ernst, 2016). 
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Nitration of tyrosine as a modification has been known for over hundred years (Tsikas 

and Duncan, 2014), which is facilitated by an amplified concentration of reactive oxygen 

and nitrogen. Even though nitration has been mainly reported to happen on tyrosine 

residue (Tyr); “phenylalanine (Phe) and tryptophan (Trp) are also nitrated by RNS; 

however, their aromatic ring is much less reactive regarding nitrating agents than the 

activated phenolic ring of tyrosine” (Ikeda et al., 2007). Even though the normal 

abundance of tyrosine residues make up to 3.2% in most proteins (Clementi et al., 1999), 

the targeted tyrosine residues for PTN in a given protein sample is unpredictable 

(Ischiropoulos, 1998; Ischiropoulos, 2003; Souza et al., 1999). Figure 4.1 demonstrates 

the modification that involves irreversible and reversible changes on a protein with 

exposure to reactive oxygen (ROS) and nitrogen species (RNS). 

 

               
 
Figure 4.1: Modification of proteins by reactive oxygen and nitrogen species. Upon 
interaction with reactive oxygen and nitrogen species (ROS/RNS), proteins can 
undergo a wide range of reversible and irreversible chemical modifications. Adopted 
from (Bachi et al., 2012).  
 

 

In this chapter, the changes in the pollen protein with respect to exposure to NO2, O3 and 

RH were assessed and a comparative study was made with other studies where possible.  
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4.1.1 Biochemistry of PTM 

 
PTMs happen when proteins react with reactive agents and protein structures are 

chemically altered. A number of different types of these modifications have been 

identified and new modifications are still being discovered (Khoury et al., 2011; Jensen, 

2004). Protein nitration is among the most common modifications and is linked to the 

onset of diseases. The nitration of a protein often involves the addition of a nitro group (–

NO2) to the phenolic ring of a tyrosine residue (Zhan and Desiderio, 2009). Tyrosine 

nitration leads to addition of a –NO2 at the 3rd position of the aromatic ring of amino acid, 

tyrosine forming 3-nitrotyrosine (NTyr) (Walcher et al., 2003). The NO2 creates a 

substantial shift in the pKa (which expresses the strength of the compound as an acid) 

value of the Tyr residue from ~10 to ~7, consequently increasing the acidic nature of the 

hydroxyl group (Abriata et al., 2009). It also decreases the pKa of the neighboring 

hydroxyl moiety, and may modify protein makeup, role, and interactions (Quint et al., 

2006; Sokolovsky et al., 1967). Nitrated tyrosine is usually in low-abundance that is 

associated with a variety of diseases (Abello et al., 2009; Bakillah, 2009; Pacher et al., 

2007; Sultana et al., 2008; Zhan and Desiderio, 2006).  

 

4.1.2 Challenges in charactering post-translational modification of 
pollen 

There are several techniques to quantity protein modification, both using mass 

spectrometry and non-mass spectrometry methods. PTMs are chemical alterations of 

proteins that may explain extremely diverse protein activities in living organisms (Theillet 

et al., 2012). Due to the fact that PTMs are accompanied with mass changes, for example 

a 45 Da increment for nitration, the characterization of PTMs on a certain protein or on a 

subset of proteins is possible using mass spectrometry with proteolytic digestions of 
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sample where necessary. However, it has been reported as a challenging task to reliably 

identify and quantity protein nitration due to its low stoichiometry in a biological system 

(Ischiropoulos, 2003; Radi, 2004), which may also contribute to misidentifications of 

nitrated peptides by “shotgun” proteomics (Prokai, 2009; Stevens et al., 2008). Shotgun 

proteomics is when an indirect measurement of proteins through peptides derived from 

proteolytic digestion of intact proteins is achieved (Zhang et al., 2013). Because PTMs 

generate a mixture of complex and heterogenic gene products, the determination is one of 

the main challenges in proteomics research (Jensen, 2004). Li et al. (2011) have recently 

discussed the need for full valuation of proteomic data and the validation of workflows 

when searching the nitroproteome as a result of the challenges and suggested the usage of 

well-defined reference standards (Li et al., 2011). “There are thousands of distinct 

proteins in biological systems and if nitration is specific, establishing exactly which 

residue(s) within any specific protein(s) is/are nitrated becomes extraordinarily 

challenging” (Tsikas and Duncan, 2014).  

 
Even though numerous methods (direct and indirect) based on chromatography, mass 

spectrometry, and/or immunoassay have been developed for identification and 

quantitation of protein nitration (Agaton et al., 2004; Bigelow and Qian, 2008; Duncan, 

2003; Garbis et al., 2005; Koeck et al., 2004; Ryberg and Caidahl, 2007; Tsikas and 

Caidahl, 2005), recent publications have highlighted limitations associated with these 

techniques (Bigelow and Qian, 2008; Duncan, 2003; Ryberg and Caidahl, 2007; Tsikas, 

2012; Tsikas and Caidahl, 2005). “Liquid chromatography/mass spectrometry (LC-MS) 

does not offer sufficient selectivity for 3-nitrotyrosine measurement in biological 

samples” (Tsikas and Duncan, 2014). In previous decades, a variety of mass 

spectrometric quantification methods have been developed, which include isobaric stable 
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isotope tagging that allows multiplexing in relative or absolute proteomic quantification 

experiments via tandem mass spectrometry (Ahrné et al., 2016).  

 
For all of the above-mentioned reasons, in vitro site-specificity studies on protein tyrosine 

nitration are challenging (Prokai, 2009; Stevens et al., 2008). Clearly, there is the need for 

additional sample manipulation and high-quality investigations to identify 3NT in a 

sample with less challenge. Figure 4.2 displays simplified schematic of the procedures 

used for proteomics analysis on MS/MS. 

 

 
Figure 4.2: Simplified schematic of the procedures used for proteomics analysis on 
MS/MS (adopted from Tsikas and Duncan, 2013).  
 
 

4.1.3 Impact of O3 exposure on pollen grain 

Pollen grains contain a significant quantity of protein materials (Shiraiwa et al., 2012b). 

Air pollution can impact this protein materials particularly; the allergen content, the 

probability of allergen protein release or possible alterations to the allergen proteins 

(Frank and Ernst, 2016). Beck et al. (2013) revealed that Bet v 1 allergen content is 

positively linked with increasing O3 levels (Beck et al., 2013). This is surprising since O3 

itself cannot generate new allergenic proteins. However, the metabolism of both plants 
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and animals can be affect by O3 where its toxicity occurs as a result of ROS, such as the 

superoxide anion radical (•O2
−), hydrogen peroxide (H2O2), the hydroxyl radical (•OH), 

and singlet oxygen (1O2) (Mudd, 1996). In an in vitro analysis with different O3 

concentrations, the pollen of different species displayed dissimilarities in the total soluble 

protein (TSP) content (Frank and Ernst, 2016). Increased allergen contents as a result of 

elevated O3 have also been revealed for other plant species (Eckl-Dorna et al., 2010; 

Masuch et al., 1997). However, additional studies on in vivo and in vitro fumigated 

ragweed pollen found contrary results regarding the allergen content of the major allergen 

Amb a 1(no alterations) (Kanter et al., 2013; Pasqualini et al., 2011).  

 

4.1.4 Impact of NO2 exposure to the pollen grain 

The influence of NO2 on pollen grain has been investigated in several studies. The study 

done on Betula pendula showed decreased pollen viability (Shivanna et al., 1991) after 

exposure to NO2. Ragweed exhibited higher allergen levels under very high concentration 

of the pollutant (Ghiani et al., 2012; Zhao et al., 2016). PTM such as S-nitrosylation or the 

nitration of pollen proteins can result from exposure to air pollution such as NO2 (Frank 

and Ernst, 2016). Increased S-nitrosylation modification was observed following the 

fumigation of ragweed plants with raised NO2 concentrations during a cultivating period 

(Zhao et al., 2016). This happens on the key ragweed allergen Amb a 1 proteins (Zhao et 

al., 2016). An O3-dependent increase of nitration due to NO2 was reported to occur with 

aerosolized proteins (Shiraiwa et al., 2012b). Franze et al. (2005) reported that in the 

presence of NO2 and O3, major allergen (Bet v 1) from birch is effectively nitrated 

(Franze et al., 2005). However, the nitration degree was significantly lower when exposed 

to only NO2 which indicated that reactive species produced upon the interaction of O3 and 
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NO2 performs an important function in the nitration process (Frank and Ernst, 2016). 

Conversely, nitration of  Bet v 1 may modify the allergenic potential of the protein (Selzle 

et al., 2013).  

 

4.2 Results and Discussion 
 
 
Initially, in this research the intact birch pollen grain was first exposed to the gas phase 

and then proteins were extracted afterwards as described in Chapter 3 (section 3.2 & 3.3).  

Contrary to expectations, this study did not find a significant difference between the 

unexposed and gas-phase exposed samples in terms of modification. The nitrated 

modified form of the allergen protein was unable to be detected in the mass spectrum of 

intact pollen protein, which supports another work of Vrtala et al. (1993) that mentioned 

Bet v 1 is rapidly transported to the surface of the grain and released upon hydration 

(Vrtala et al., 1993). Vrtala et al. (1993) also mentioned that the allergen content of the 

pollen pellet fractions decreases after hydration (Vrtala et al., 1993). This was also 

observed in this research. Hence it appears, without hydration, PTM nitration of pollen is 

not likely to occur. In another study, it was mentioned that pollen grains are devised to 

defend their genetic material cargo that can be achieved via resilient to environmental 

pressures subjected to them during transport (Pope, 2010). Additionally, Pope (2010) also 

stated that the water composition of pollen is reliant on the atmospheric RH. That at high 

moisture the pollen grain swells by internal uptake of atmospheric water (Diehl et al., 

2002; Dingle, 1966; Pope, 2010). Using the dot blot technique, the results further 

confirmed the absence of nitration as already indicated in the MS results. Subsequently, 

nitration seems to be present in some of the search results, where pollen was ruptured 

prior to exposure.  
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The samples were further subjected to quantification analysis using the tagging 

experiment and the enrichment strategy, which was supposed to allow quantification of 

the degree of nitration of the nitrated protein. Both non-enriched and enriched samples 

were analysed on the MS. At each stage of the tagging experimental step, aliquot amount 

of the sample was taken and checked on the MS. This helped in detecting any step that 

needed optimization. The results from MS/MS analysis, blotting techniques, in-gel 

digestion and TMT labelling will all be presented here.  

 

4.2.1 Summary of technical and experimental replicates.  

Experimental replicates are equivalent measurements of (biologically) separate samples 

and technical replicates are repeated measurements of the same sample that represent 

independent measurement (Blainey et al., 2014). Both experimental and technical 

replicates are necessary for accurate and consistent results. Technical replicates will aid 

identify errors caused by processing variation, while experimental replicates will help 

confirm that (biological) changes are real and not an irreproducible coincidence. 

  
In this research, the technical replicates were employed in two ways; for the dot blot 

experiment, on single membrane, one sample is used once or in triplicates spots. The 

intensity measurement of spots under same experimental conditions were put together and 

the average reading was used for plotting graph. And for the MS analysis, experiments 

were done twice which are then combined and run as repeats on the MS, which then 

generates one or two data sets. For the experimental replicates (normally how many times 

the initial experiment was done), in total, the main experiments done with RH and NO2 

only (on hydrated pollen) were 42 exposures with at least three exposures in a day. 

However, each experiment was conducted on three different days. Again, samples 

generated under same experimental conditions are sometimes combined and run on the 
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MS. The experimental replicates were also employed for the blot techniques. 

 

4.2.2 Protein concentration 

The protein concentration determined by the BCA method was ascertained in order to 

know the quantity of the protein in each sample. This is a requirement for determining the 

adequate amount of sample needed in µg/ml for each experiment such as the dot blotting 

(5 µg/ml) and MS/MS analysis (from 20 µg/ml upwards depending on the protocol). The 

result showed that all samples generated contained protein where some samples were 

more or less than 2 mg/ml (the standard of the BCA assay). Those above 2 mg/ml were 

diluted prior to the experimental procedure to enable quantification against the BCA 

standard. The supernatant acquired before addition of the second extraction buffer was 

reported to have the highest level of protein concentration. In an attempt to understand the 

reason behind this result, all pellet and supernatant generated before and after the addition 

of the second extraction buffer were ran on SDS-gel, which is discussed in a section.  

 

4.2.3 SDS-PAGE gel separation 

SDS-PAGE is a powerful method that separates proteins according to their molecular 

weight (measured in kilo Daltons, kDa) using protein molecular markers as indicators 

(also known as protein ladder) to estimate the size of the resolved protein by gel 

electrophoresis. SDS-PAGE was employed to determine the best (sample extract that has 

the most protein content) end product to be used: the pellet, supernatant or combination of 

both. The naming of the different pellet and supernatant samples are provided below, the 

methodology used to generate the various samples is given in Chapter 3 under section 3.3, 

which also explained how the pollen grain are being ruptured after exposure to NO2: 
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• Pellet 1 (P1) obtained before addition of 2nd extraction buffer that contains SDS.  

• Supernatant 1 (SN1) obtained before addition of 2nd extraction buffer that contains 

SDS. 

• Pellet 2 (P2) obtained after addition of 2nd extraction buffer that contains SDS. 

• Supernatant 2 (SN2) obtained after addition of 2nd extraction buffer that contains 

SDS. 

 

Figure 4.3 shows the flow chart of the different pollen samples generated as explained 

above. Prior to running the gel, the protein concentration results from the BCA analysis 

showed that a greater amount of total soluble protein is present before the addition of 

second (2nd) extraction buffer. Hence, the addition of buffer containing SDS results in the 

loss of proteins instead of the expected gain. The reason behind the loss of protein is not 

understood. Regarding the proteins bands on the gel (Figure 4.4 A), the SN2 and P1 

samples possess near identical protein bands. SN1 had the most concentrated protein 

bands, as diagnosed by visual inspection. Whilst, P2 appears to have the least amount of 

protein compared to SN1, SN2, and P1, again by visual inspection. As a result of the 

observations gained by the SDS-PAGE results, all subsequent work was carried out using 

the supernatant SN1 samples. The SDS addition step was not used in the extraction 

buffer.  
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Figure 4.3: Flow chart of the different pollen extract generated for the experiments. 
The pollen samples were ruptured mechanically (using precellys tube with metal 
beads) after exposure to NO2 and different type of samples produced. This was 
termed SN1, P1, SN2 and P2 obtained before and after addition of SDS. Pellet 1 (P1) 
obtained before addition of 2nd extraction buffer that contains SDS. Supernatant 1 
(SN1) obtained before addition of 2nd extraction buffer that contains SDS. Pellet 2 
(P2) obtained after addition of 2nd extraction buffer that contains SDS. Supernatant 
2 (SN2) obtained after addition of 2nd extraction buffer that contains SDS. 1st 
extraction buffer-50 mM Tris-HCl pH6.8, 10% sucrose and inhibitory proteases; 2nd 
extraction buffer- 1st extraction buffer with additional 2% SDS. 
 

       
Figure 4.4: SDS-PAGE gel results of unexposed sample and NO2 exposed sample to 
10ppm respectively (A & B). A- From left to right, pre stained protein ladder at 10µl 
and all sample extracts in equal proportions, 20µl. B- From left to right: pre stained 
protein ladder at 10 µl and all sample extracts in equal proportions, 20 µl. There is 
no visually detectable difference between the two gels. Pellet 1 (P1) obtained before 
addition of 2nd extraction buffer that contains SDS. Supernatant 1 (SN1) obtained 
before addition of 2nd extraction buffer that contains SDS. Pellet 2 (P2) obtained 
after addition of 2nd extraction buffer that contains SDS. Supernatant 2 (SN2) 
obtained after addition of 2nd extraction buffer that contains SDS. 1st extraction 
buffer-50 mM Tris-HCl pH6.8, 10% sucrose and inhibitory proteases; 2nd extraction 
buffer- 1st extraction buffer with additional 2% SDS. 
 
 
 

     A                                                                            B 
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Figure 4.4 (A & B) displays the gels of unexposed sample and NO2 exposed sample to 10 

ppm respectively. The polypeptide profiles, revealed by the SDS-PAGE analysis, of the 

pollen extracts (Figure 4.4 A & B) reveal no discernible differences among the unexposed 

and exposed pollen samples of SN1, P1, SN2 and P2 extracts. All electrophoretic profiles 

have several bands ranging from 130 to 15kDa in common, however, the density of the 

bands are lower in some of the samples. This indicates that the exposure of pollen to the 

NO2 did not significantly modify the physical properties of the pollen extracts. To be 

precise, it did not affect the molecular weight of the soluble and insoluble proteins within 

the selectivity and sensitivity of the SDS-PAGE method (Cuinica et al., 2013). This is 

expected as the technique does not have the capability of detecting definite modification 

but is able to reveal the molecular weight of soluble and insoluble protein. Earlier study 

reported the presence of inestimable changes between the polypeptide profiles of pollen 

extracts exposed and not-exposed to atmospheric contaminants (Rezanejad, 2007), which 

is in agreement with this research findings. Irrespective of the experimental condition, the 

fact still remains that SN1 had the most concentrated protein bands. 

 

4.2.4 Trypsin digestion 

Digesting the proteins with trypsin enzyme converted the proteins into peptide. Even 

though the mass spectrometer can analyse the intact proteins, peptides are preferred 

during proteomics analysis since proteins can be problematic to work with and might not 

all be soluble under the equivalent conditions (Steen and Mann, 2004). 
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4.2.5 Protein/Peptide identification  

Several procedures have been established to statistically measure peptide identification 

results from database search programs (Zhang et al., 2013). The obstacle of bottom-up 

proteomics is the requirement to assign peptide identifications back to their respective 

proteins, which becomes difficult when redundant entries or protein isoforms exist (Zhang 

et al., 2013).  

Tables 4.1-4.4 below show the list of identified proteins from the MS analysis of different 

conditions/treatments of some of the samples. Each sample analyzed had greater than or 

equal to 5 identified proteins in each sample submitted (either pellet or supernatant). Each 

protein sample contained its own unique set of protein where some of the samples share 

one or two same type of protein while others were distinct. Every identified protein in the 

list is the master protein in the protein group, which is ranked according to the number of 

peptide sequences, the number of PSMs (peptide spectrum matches), their protein scores 

(sum of the ion scores of all peptides that were identified), and the protein sequence 

coverage. PSM is the total number of identified peptide sequence matched for the protein 

and its value may be higher than the number of peptides identified for high-scoring 

proteins because peptides may be identified repeatedly. PSM is one of the determinant of 

peptide confidence that is used in determining and influences protein confidence (Zhang 

et al., 2015). Protein coverage is the coverage of the identified protein calculated in 

percent by dividing the number of amino acids in all found peptides by the total number 

of amino acids in the entire protein sequence; while PSM is the total number of identified 

peptide sequences for the protein, including those redundantly identified. Both when 

higher indicates high protein confidence identification of the protein in question. 
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Normally, numerous amounts of proteins are identified and available for each sample 

when searched against the UniProt database. Using the high confident peptide filter, only 

the master proteins (the software identifies as high confident peptide) are displayed on the 

proteins page. By default, the top-ranking protein of a group becomes the master protein 

of that set.  So, this could be one of the reasons why the different experimental conditions 

do not have the same identified protein because the score of a set of peptides would be 

different and might not be recognized as high confident peptide in another sample. 

Therefore, the master protein would be different in the same protein group. 

 
Looking at the chromatogram of Figure 3.13 (Chapter 3), again it can be seen that each 

sample condition/treatment has its own unique chromatogram even though all samples are 

from the same pollen. These graphical representations illustrate that each 

treatment/condition has a different impact on pollen (chromatogram) which additionally 

explains the reason for the presence of dissimilar protein within the samples generated 

under different treatment. The NO2 exposed sample had denser chromatogram followed 

by O3 exposed sample and lastly, RH exposed sample. The reason for this is not clear but 

it may have something to do with the effect of gases on the pollen. “Even for a single cell, 

the proteome will change in response to different stimuli” (Han et al., 2008). Putting all 

the findings together, there is definitely an interaction between air pollutant and pollen 

grain. 
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Control sample (not exposed) 
Accession 
number 

Protein 
description  

Protein 
coverage  

Peptide  Modification 

P43186 Major 
pollen 
allergen Bet 
v 1-M/N  

44.38 AFILDGDNLIPK 
IVATPDGGSILK 
KITFPEGSPFK 
AVESYLLAHSDAYN 
VAPQAISSVEnIEGNGGPGTIKK 
ITFPEGSPFK 

 

 
 
 
 
 
N11 (Deamidated) 
 

P43179 Major 
pollen 
allergen Bet 
v 1-F/I 

44.38 AFILDGDNLFPK 

IVATPnGGSILK 

AVESYLLAHSDAYN 

ISFPEGFPFK 

VAPQAISSVEnIEGNGGPGTIKK 
 

 
N6 (Deamidated) 
 
 
 
 
N11 (Deamidated) 
 

P43177 Major 
pollen 
allergen Bet 
v 1-D/H  

36.88 AFILDGDNLVPK 

AVESYLLAHSDAYN 

INFPEGFPFK 

VAPQAISSVEnIEGNGGPGTIKK 
 

 
 
 
 
N11(Deamidated) 
 

O49813 Olee1-like 
protein 
OS=Betula  

19.28 LANPLGFMK 
SIIIQAPALCFLsLLGFAYsESR 

 

 
S13 (Phospho); S20 
(Phospho) 
 

P38500 Ferredoxin--
nitrite 
reductase, 
chloroplastic  

5.83 VEEREGYWVLKEK 
qVAVTRPVR 
IGSDSHLGNLYK 

 

 
Q1 (Deamidated) 
 

 
Table 4.1: Identified tryptic peptides of birch pollen protein from the control sample 
(unexposed) (combination of 2 biological replicates run on MS, which is presented as 
1 data). The protein description (protein name and description), coverage (the 
percentage of the protein sequence covered by identified peptides), peptide score (the 
sum of the highest ions score for each distinct sequence), sequence, modification and 
accession number (unique number for protein identification) are listed.  In total, 5 
proteins were identified where only three are the allergen protein.  
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RH exposed sample 
Accession 
number 

Protein description  Protein coverage  Peptide  Modification  

O23746 Pollen allergen, Betv1 
(Fragment)  

55.35 VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
AFILDGDNLIPK 
GVFNYESETTSVIPAAR 
KITFPEGSPFK 
VAPQAISSVENIEGNGGPGTIKK 
GVFnYESETTSVIPAAR 
ITFPEGSPFK 
LVATPDGGSILK 
GVFnyESETTSVIPAAR 
GVFNyESETTSVIPAAR 
VAPQAISSVEnIEGNGGPGTIKK 
VAPqAISSVENIEGnGGPGTIKK 
AVESYLLAHSDAYN 

 

  
N15(Deamidated) 
  
  
  
  
N4(Deamidated) 
  
  
N4(Deamidated); Y5(Phospho) 
Y5(Phospho) 
N11(Deamidated) 
Q4(Deamidated); N15(Deamidated) 
  

 

O23747 Pollen allergen, Betv1 
(Fragment)  

41.51 VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
GVFNyEIETTSVIPAAR 
AFILDGDNLVPK 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVEnIEGNGGPGTIKK 
VAPqAISSVENIEGnGGPGTIKK 
AVESYLLAHSDAYN 

 

  
N15(Deamidated) 
Y5(Phospho) 
  
  
N11(Deamidated) 
Q4(Deamidated); N15(Deamidated) 
  

 

Q0QLV6 Major allergen Bet v 1.02A 
(Fragment)  

42.00 VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
AFILDGDNLIPK 
KITFPEGSPFK 
VAPQAISSVENIEGNGGPGTIKK 
ITFPEGSPFK 
VAPQAISSVEnIEGNGGPGTIKK 
VAPqAISSVENIEGnGGPGTIKK 

  
N15(Deamidated) 
  
  
  
  
N11(Deamidated) 
Q4(Deamidated); N15(Deamidated) 
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IcNEIKLVAtPDGGstLK 
 

C2(Nitrosyl); T10(Phospho);  
S15(Phospho); T16(Phospho) 

 

Q0QLW0 
 

Major allergen Bet v 1.01C 
(Fragment)  

23.33 VAPQAISSVKnIEGnGGPGTIK 
VAPqAISSVKnIEGnGGPGTIK 
IVATPnGGSILK 
VAPqAISSVKnIEGnGGPGTIKK 
VAPQAISSVKnIEGnGGPGTIKK 

 

N11(Deamidated); N15(Deamidated) 
Q4(Deamidated); N11(Deamidated); N15(Deamidated) 
N6(Deamidated) 
Q4(Deamidated); N11(Deamidated); N15(Deamidated) 
N11(Deamidated); N15(Deamidated) 

 

C0IVV3 
 

PR-10 protein (Fragment)] 
 

28.67 AFILDGDNLIPK 
KITFPEGSPFK 
ITFPEGSPFK 
IVPAPGGGsILKISnKyHTK 

 

  
  
  
S9(Phospho); N15(Deamidated); Y17(Nitro) 

 

A0A096XCA4 Glutathione S-transferase  4.22 VIGESLDLIK 
 

NA 

O49813 
 

Olee1-like protein  6.63 ELGmNPDDVIQ 
 

M4(Oxidation) 
 

Q39419 
 

Polcalcin Bet v 4  16.47 MADDHPqDKAERER 
 

Q7(Deamidated) 
 

 

Table 4.2: Identified tryptic peptides of birch pollen protein from the RH exposed sample (combination of 2 biological replicates run on 
MS, which is presented as 1 data). The protein description (protein name and description), coverage (the percentage of the protein 
sequence covered by identified peptides), peptide score (the sum of the highest ions score for each distinct sequence), sequence, 
modification and accession number (unique number for protein identification) are listed. In total, 8 proteins were identified where only 
four are the allergen proteins.  
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NO2 exposed sample 
Accession 
number 

Protein description  Protein coverage  Peptide  Modification  

O23747 Pollen allergen, Betv1 
(Fragment)  

55.35 VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
GVFNYESETTSVIPAAR 
AFILDGDNLIPK 
GVFnYESETTSVIPAAR 
GVFNyESETTSVIPAAR 
LVATPDGGSILK 
AVESYLLAHSDAYN 
ITFPEGSPFK 
GVFnyESETTSVIPAAR 
KITFPEGSPFK 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGnGGPGTIKK 

 

  
N15(Deamidated) 
  
  
N4(Deamidated) 
Y5(Phospho) 
  
  
  
N4(Deamidated);Y5(Phospho) 
  
  
N15(Deamidated) 

 

O23746 Pollen allergen, Betv1 
(Fragment)] 

41.51 GVFNYEIETTSVIPAAR 
VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
AFILDGDNLVPK 
AVESYLLAHSDAYN 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGnGGPGTIKK 

 

  
  
N15(Deamidated) 
  
  
  
N15(Deamidated) 

 

Q546V0 Pollen allergen, Betv1 
(Fragment)  

49.06 VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVENIEGnGGPGTIK 
AFILDGDNLFPK 
GVFNYETETTSVIPAAR 
GVFnYETETTSVIPAAR 
IVATPDGGSILK 
AVESYLLAHSDAYN 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGnGGPGTIKK 

 

  
N15(Deamidated) 
  
  
N4(Deamidated) 
  
  
  
N15(Deamidated) 

 

P43176 Major pollen allergen 44.38 VAPQAISSVENIEGNGGPGTIK   
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Bet v 1-C  VAPQAISSVENIEGnGGPGTIK 
AFILEGDTLIPK 
IVATPDGGSILK 
AVESYLLAHSDAYN 
ITFPEGSPFK 
KITFPEGSPFK 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGnGGPGTIKK 

 

N15 (Deamidated) 
  
  
  
  
  
  
N15 (Deamidated) 

 

Q0QLS9 Major allergen Bet v 
1.01E (Fragment)  

23.33 VAPQAISSVQnIEGnGGPGTIK 
AFILDGDNLFPK 
VAPQAISSVQnIEGNGGPGTIK 
VAPQAISSVQnIEGnGGPGTIKK 
VAPQAISSVQNIEGnGGPGTIKK 

 

N11 (Deamidated); N15 
(Deamidated) 
 
N11 (Deamidated) 
N11 (Deamidated); N15 
(Deamidated) 
N15 (Deamidated) 

 

Q0QLW0 Major allergen Bet v 
1.01C (Fragment)  

31.33 AFILDGDNLFPK 
IVATPnGGSILK 
VAPqAISSVKnIEGnGGPGTIKK 

 

  
N6 (Deamidated) 
Q4 (Deamidated); N11 (Deamidated); N15 (Deamidated) 

 

O65002 Isoflavone reductase 
homolog Bet v 6.0101 
(Fragment)  

8.33 VVIFGDGNAR 

AVFNKEDDIGTYTIR 
 

 

A0A096XCA4 Glutathione S-
transferase  

4.22 VIGESLDLIK  

O49813 Olee1-like protein  5.42 LANPLGFMK  
Q64LH2 Profilin-2  19.08 ttMALIIGIYDEPMAPGQcNMIVER T1 (Phospho); T2 (Phospho); C19 (Nitrosyl) 

 
V5LU01 Cysteine protease  7.77 FSEqQLVDCDmtnAGCDGGLMEPAFTYVIK Q4 (Deamidated); M11 (Oxidation); T12 (Phospho); N13 

(Deamidated) 
E1XUL9 Pectate lyase 

(Fragment)] 
8.53 HGFVQVVnNNYERWGsYALGGsAGPTILsQGNR 

 
N8 (Deamidated); S16 (Phospho); S22 (Phospho); S29 
(Phospho) 

Q64LH3 Profilin OS=Humulus 
scandens  

19.08 tSQALIIGVYDEPMtPGqcNMIVER 
 

T1 (Phospho); T15 (Phospho); Q18 (Deamidated); 
C19(Nitrosyl) 

 
Table 4.3: Identified tryptic peptides of birch pollen protein from the NO2 exposed sample (combination of 2 biological replicates run on 
MS, which is presented as 1 data).  The protein description (protein name and description), coverage (the percentage of the protein 
sequence covered by identified peptides), peptide score (the sum of the highest ions score for each distinct sequence), sequence, 
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modification and accession number (unique number for protein identification) are listed. In total, 13 proteins were identified where 6 
are the allergen protein. 
 
O3 \NO2 exposed sample 
Accession 
number 

Protein 
description  

Protein 
coverage  

Peptide  Modification 

O23747 Pollen 
allergen, 
Betv1 
(Fragment)  

55.35 GVFNYESETTSVIPAAR 
VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVEnIEGNGGPGTIK 
VAPqAISSVENIEGnGGPGTIK 
GVFnYESETTSVIPAAR 
AFILDGDNLIPK 
VAPQAISSVEnIEGNGGPGTIKK 
GVFNyESETTSVIPAAR 
KITFPEGSPFK 
LVATPDGGSILK 
AVESYLLAHSDAYN 
ITFPEGSPFK 

 

  
  
  
N11 (Deamidated) 
Q4 (Deamidated); N15 
(Deamidated) 
N4 (Deamidated) 
  
N11 (Deamidated) 
Y5 (Phospho) 
  
  
  
  

 

Q546V0 Pollen 
allergen, 
Betv1 
(Fragment)  

60.38 VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVEnIEGNGGPGTIK 
GVFNYETETTSVIPAAR 
AFILDGDNLFPK 
VAPqAISSVENIEGnGGPGTIK 
GVFNyETETTSVIPAAR 
VAPQAISSVEnIEGNGGPGTIKK 
IVATPDGGSILK 
AVESYLLAHSDAYN 
ISFPEGFPFK 
GVFnYETETTSVIPAAR 
EMGETLLR 

 

  
  
N11 (Deamidated) 
  
  
Q4 (Deamidated); N15 
(Deamidated) 
Y5 (Phospho) 
N11 (Deamidated) 
  
  
  
N4 (Deamidated) 
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O23746 Pollen allergen, Betv1 

(Fragment)  
52.83 GVFNYEIETTSVIPAAR 

VAPQAISSVENIEGNGGPGT
IKK 
VAPQAISSVENIEGNGGPGT
IK 
VAPQAISSVEnIEGNGGPGTI
K 
AFILDGDNLVPK 
VAPqAISSVENIEGnGGPGTI
K 
KINFPEGFPFK 
VAPQAISSVEnIEGNGGPGTI
KK 
GVFnYEIETTSVIPAAR 
AVESYLLAHSDAYN 
GVFnyEIETTSVIPAAR 
GVFNyEIETTSVIPAAR 
EMGETLLR 

 

  
  
  
N11 (Deamidated) 
  
Q4 (Deamidated); N15 
(Deamidated) 
  
N11 (Deamidated) 
N4 (Deamidated) 
  
N4 (Deamidated); Y5(Phospho) 
Y5 (Phospho) 
  

 

Q9SCH5 Pollen allergen Betv1, 
isoform at7  

41.88 VAPQAISSVENIEGNGGPGTIKK 
VAPQAISSVENIEGNGGPGTIK 
VAPQAISSVEnIEGNGGPGTIK 
VAPqAISSVENIEGnGGPGTIK 
VAPQAISSVEnIEGNGGPGTIKK 
AFILEGDNLIPK 
KITFPEGSPFK 
AVESYLLAHSDAYN 
ITFPEGSPFK 
EMGETLLR 

 

  
  
N11 (Deamidated) 
Q4 (Deamidated); N15 
(Deamidated) 
N11 (Deamidated) 
  
  
  
  
  

 

Q0QLS9 Major allergen Bet v 
1.01E (Fragment)  

35.33 VAPQAISSVQnIEGnGGPGTIK 
AFILDGDNLFPK 
VAPqAISSVQnIEGnGGPGTIK 
KINFPEGFPFK 
VAPqAISSVQNIEGNGGPGTIK 
EMGETLLR 
VAPQAISSVQNIEGnGGPGTIKK 

 

N11 (Deamidated); N15 (Deamidated) 
  
Q4 (Deamidated); N11 (Deamidated); N15 (Deamidated) 
  
Q4 (Deamidated) 
  
N15 (Deamidated) 
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Q0QLW0 Major allergen Bet v 
1.01C (Fragment)  

43.33 VAPQAISSVKnIEGnGGPGTIK 
VAPqAISSVKnIEGnGGPGTIK 
AFILDGDNLFPK 
IVATPnGGSILK 
ISFPEGFPFK 
VAPqAISSVKnIEGnGGPGTIKK 
EMGETLLR 

 

N11 (Deamidated); N15 (Deamidated) 
Q4 (Deamidated); N11 (Deamidated); N15 (Deamidated) 
  
N6 (Deamidated) 
  
Q4 (Deamidated); N11 (Deamidated); N15 (Deamidated) 
  

 

O65002 Isoflavone reductase 
homolog Bet v 6.0101 
(Fragment) 

10.67 VVIFGDGNAR 
AVFNKEDDIGTYTIR 
IYVPEEK 

 

 

A0A096XCA4 Glutathione S-transferase  4.22 VIGESLDLIK 
 

 

O49813 Olee1-like protein 5.42 LANPLGFmK 
 

M8 (Oxidation) 
 

 
Table 4.4: Identified tryptic peptides of birch pollen protein from the O3 / NO2 exposed sample (combination of 2 biological replicates 
run on MS, which is presented as one data).  The protein description (protein name and description), coverage (the percentage of the 
protein sequence covered by identified peptides), peptide score (the sum of the highest ions score for each distinct sequence), sequence, 
modification and accession number (unique number for protein identification) are listed. In total, 9 proteins were identified where 6 are 
the allergen protein.  
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The overall MS proteomics results indicated a good protein digestion and identification in 

some of the samples. Additionally, the NO2-exposed pollen samples showed slightly higher 

protein content compared with the other samples depending on the exposure conditions. This 

is evident from the number of proteins identified in each sample. Previous literatures have 

reported both a decrease and increase in the protein content of different pollen species 

exposed to diverse pollutants with variation in concentration and exposure time (Bist et al., 

2004; Majd et al., 2004; Parui et al., 1998; Rezanejad, 2009; Rezanejad et al., 2003; 

Rogerieux et al., 2007). It can then be assumed that the effects of the gases are concentration 

and species specific.  

 
All three exposed samples had 5 proteins in common (highlighted in red) while only 1 protein 

was common (highlighted in blue) to all 4 samples. The proteins highlighted in green are only 

present and common to NO2 and O3/NO2 exposed samples. Higher protein content was seen 

in the sample exposed to NO2 having 13 identified proteins (6 allergen proteins) as compared 

to RH (9 protein where 4 are allergen proteins) and O3/NO2 (9 protein where 6 are allergen 

proteins) exposed samples with fewer proteins from the unexposed pollen sample (5 protein 

where 3 are allergen proteins). Although higher protein identification was found in NO2 

exposed sample, the sequence coverage in the O3/NO2 exposed sample was found in 

comparison with the other samples to have higher coverage in most of the protein. Contrary 

to expectation, there was not much difference between NO2 and O3/NO2 exposed sample as 

earlier studies mentioned the increased uptake of NO2 in the presence of O3. Both samples 

had the same number of allergen protein content, however none was nitrated as indicated on 

the MS analysis results (Tables 4.3 and 4.4). This technique clearly identifies the birch 

allergen protein, Bet v 1. All samples undergone similar PTMs as seen in the Tables (4.1-

4.4). 
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4.2.6 Pollen rupture and Gas exposure 
 
To further understand the effects of the gases on the pollen grain, different pollen rupturing 

techniques were used prior to the gas exposure. Figure 4.5 illustrates the flow chart of pollen 

rupture techniques and gas exposures at different NO2 concentration. The TSP (total soluble 

protein) concentration of the pollen extract was quantified using the BCA protein assay. From 

the MS analysis results, hydrated pollen in rainwater showed higher allergen protein content 

in comparison to 24hours-exposed pollen, however, the combination of crushed pollen and 

hydrated in rainwater gave the highest protein content. The contact of birch pollen grain with 

rainwater releases allergens by a mechanisms termed “abortive germination” that is described 

by development of short pollen tubes, which rupture at their tips and discharge particles 

containing allergen protein (Grote et al., 2003). Viewing the samples under scanning electron 

microscope (described in a Chapter) verified the reason behind the results obtained.  

 

 

 

 
Figure 4.5: Flow chart illustrating pollen rupture techniques and gas exposures. All 
NO2 exposures were done within 60 minutes. Note that the ppm values in the figure 
refer to the NO2 concentration. 
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Table 4.5 below shows some of identified Bet v 1 protein and a comparison between peptide 

sequence coverage of 9 samples subjected to different conditions/treatments; control is intact 

pollen without exposure to RH and NO2, RW is the hydrated pollen in rainwater, CR is 

crushed pollen and hydrated in rainwater, and 24 hrs pollen is exposed to high RH for 24 

hours. Note, all generated samples were exposed to NO2 at different levels of concentrations 

(2 ppm, 5 ppm and 10 ppm) with the exception of the control and RH samples. The columns 

highlighted in green were common to all samples generated. Again, when comparing the 

different isoforms and fragments within the samples, it was found that not all proteins are 

common to the 9 samples and each treatment/condition has its own unique combination of 

proteins at different percentage of peptide coverage.  

 
This diversification amongst the identified proteins in each sample might be due to 

incomplete trypsin digestion and/or effect of the different treatment/condition on the sample. 

This result showed that pollen of same species had dissimilar tolerance to different pollutant 

concentrations. 
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Description  
Control 
Coverage RH Coverage 

RW 2ppm 
Coverage 

RW 5ppm 
Coverage 

RW 10ppm 
Coverage 

CR 2ppm 
Coverage 

CR 5ppm 
Coverage 

CR 10ppm 
Coverage 24hrs Coverage 

Glutathione S-transferase - 
[A0A096XCA4_BETPN] 76.79 83.54 82.7 80.17 71.31 57.81 60.76 81.86 81.01 
Pollen allergen Bet v1, isoform 
[Q9SCH5_BETPN] 71.25 0 63.75 0 67.5 63.75 75.63 76.25 71.25 
Pollen allergen, Betv1 
(Fragment) [O23746_BETPN] 76.1 74.84 74.84 80.5 78.62 0 0 74.84 76.1 
Pollen allergen, Betv1 
(Fragment) [Q546V0_BETPN] 69.18 86.16 78.62 65.41 71.07 74.84 86.79 74.84 82.39 
Pollen allergen Betv1, isoform 
[Q9ZS38_BETPN] 69.38 0 0 0 71.25 0 77.5 74.38 69.38 
Major allergen Bet v 1.02B 
(Fragment) [Q0QLV5_BETPN] 64.67 64.67 64.67 0 64.67 0 0 0 0 
Olee1-like protein 
[OLEE1_BETPN] 16.27 16.27 5.42 16.27 5.42 0 0 16.27 19.88 
Major pollen allergen Bet v 1-G 
[BEV1G_BETPN] 0 63.75 63.75 69.38 71.25 63.75 75.63 63.75 0 
Pollen allergen, Betv1 
(Fragment) [O23749_BETPN] 0 78.62 0 0 0 0 94.34 0 80.5 
Pollen allergen Betv1, isoform 
[Q9SCH9_BETPN] 0 0 67.5 54.37 71.25 0 0 0 0 
Pollen allergen Betv1, isoform  
[Q9SCH6_BETPN] 0 0 63.75 0 0 56.88 0 0 63.75 
Pollen allergen Bet v 1 
[Q96365_BETPN] 0 0 0 0 0 63.75 0 0 0 
Pollen allergen Betv1 
[O23752_BETPN] 0 0 0 0 0 63.75 0 71.25 0 
Major pollen allergen Bet v 1-K 
[BEV1K_BETPN] 0 0 0 0 0 0 83.13 0 0 
Pollen allergen Bet v 1 -
[Q96366_BETPN] 0 0 0 0 0 0 0 71.25 0 

 
Table 4.5: Some of identified Bet v 1 protein and a comparison between peptide sequence coverage of the 9 samples subjected to 
different conditions/treatments; control is intact pollen without exposure, RW is the hydrated pollen in rainwater, CR is crushed pollen 
and hydrated in rainwater, and 24 hrs pollen is exposed to high RH for 24 hours. Note, all generated samples were exposed to NO2 at 
different levels of concentrations (2 ppm, 5 ppm and 10 ppm) with the exception of the control and RH samples. The columns 
highlighted in green were common to all samples generated. This data is representative of one of the replicates from the triplicates used 
in the above data.  
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Those proteins that share the similar set of peptide hits are grouped together for a more 

convenient report on the Table 4.5. 10 and above proteins were identified in each sample. 

Each protein sample contained its own unique set of protein but sometimes have two or more 

similar protein in common to another sample. Every identified protein, is ranked according to 

the number of peptide sequences, the number of PSMs, their protein scores, and the sequence 

coverage. Table 4.5 results demonstrated that an increase in the concentration of NO2 

exposure results in the increased release of allergen protein present in the sample, signifying 

that the NO2 concentration has an impact on the pollen protein movement. There are two 

particular proteins highlighted in green (Table 4.5) that are common to all samples; this may 

suggest the importance of the protein and might be linked to a vital function of the pollen and 

allergenicity. However, this is observation that requires further research to verify which was 

beyond the scope of this study. 

 

4.2.7 Dot blot  
 
The dot blot technique was applied to assess the presence of nitration in the research samples. 

Antibody specific for nitration modifications, anti-nitrotyrosine antibody was used to 

determine the presence of the nitration in first set of exposed sample obtained (NO2 exposed 

but intact pollen) alongside nitrated BSA as the standard indicator. Even though dot-blotting 

technique (uses antibodies to detect specific proteins) is more sensitive than MS, it lacks the 

ability to identify and quantify the exact position of the modification. Very low levels of 

nitration were observed but the nitration signal was only marginally more than the 

background signal, which made definitive detection impossible, this was surprising. The 

applicability of the technique to distinguish nitrated proteins was confirmed by observing the 

positive dot generated by nitrated BSA. Figure 4.6 represents coloured (A) and grey scale (B) 
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images of the dot blot results of unexposed sample, 3 samples exposed at different NO2 

concentration (2, 5, and 10 ppm respectively) and nitrated BSA. Figure 4.7 represents the 

semi-quantification of degree of nitration from dot blot analysis (Figure 4.6) showing 

estimated Nitrated BSA concentration against unexposed and NO2 exposed samples at 

different concentration. Hence, the lack of a definitive observation of nitration in the exposed 

pollen could be due to the following possibilities: 

1. No nitrated peptides were generated by exposure to the air pollutants 

2. The laboratory protocol does not expose the pollen samples sufficiently to the air 

pollutants, 

3. The nitration signal is too low to be observed. 

 

 
Figure 4.6: A & B- Coloured and grey scale images of the dot blot. From top to bottom 
dots in blue circles include: unexposed, exposed at 2 ppm NO2, exposed at 5 ppm NO2, 
exposed at 10 ppm NO2 and nitrated BSA. The grey scale image contains the same 
information as the coloured image but in black & white for ease of distinguishing the 
differences by human eyes. 
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Figure 4.7: Represents the semi-quantification of degree of nitration from coloured dot 
blot image (Figure 4.6) showing estimated Nitrated BSA concentration against 
unexposed and NO2 exposed samples at different concentration (2, 5, and 10ppm). Note 
that the intact pollen (IP) was exposed prior to rupturing the pollen grain samples.  
 

 

 

Results from semi-quantification of degree of nitration using the dot blot images shows a 

certain amount of nitration on the NBSA and less on generated samples exposed at 10 ppm 

and 5 ppm of NO2 respectively prior to pollen rupture. The visual inspection of the membrane 

did not reveal this but the Odyssey imaging system has sufficient resolution to observe small 

changes not visible by eye.  

 
Further dot blot analysis was performed on the samples after the pollen was ruptured and the 

protein extract was subsequently exposed to the air pollutant gas mixture. The outcome was 

remarkable, as the samples exposed at 10 ppm concentration of NO2 have undergone 

significant nitration while samples exposure to 2-5 ppm revealed lower amounts but 

significant nitration. As previously mentioned, three different rupturing methods were 
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employed in this study where one method appeared to work better with the NO2 exposure. 

Interestingly, it is the method that most closely mimics the real-world scenario of pollen 

hydration by rainwater (the pollen grains while still on the plant can be rained on and exposed 

to pollutants) that has the highest nitration. The dot blot results indicated stronger signal of 

nitration on the pollen hydrated in rainwater and crushed in comparison to 24hours RH-

exposure sample. A reason could be that only certain specific proteins get easily nitrated that 

were not made accessible in the 24hours RH-exposure samples. Figure 4.8 illustrates the 

results of the nitration detected in different samples using the dot blot analysis. All samples 

(supernatant protein extract) were spotted in triplicates. Multiple droplets were added per dot 

to reach the desired protein concentration resulting in the concentric circles seen. The other 

tiny green dot dissimilar from the droplets of the sample is artefact (probably as a result of 

fluorescent dirt or impurity) and pollen pellet extract on the membrane.  
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NO2 exposed sample (rainwater) @ 2 ppm 
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NO2 exposed sample (crushed) at 5 ppm 
 
 
 
 
 
 
 
NO2 exposed sample (rainwater) at 10 ppm 
 
 
 
 
 
 
NO2 exposed sample (crushed) at 10 ppm 
 
 
 
 
NO2 exposed sample (24 hrs) at 10 ppm 
 
 
 
 
 
 
  

Figure 4.8 : Demonstrates results from dot blot analysis of nitrated BSA, unexposed 
(intact pollen grain), RH exposed and NO2 exposed sample (protein extract) at 2, 5 and 
10 ppm (duplicate) all spotted in triplicates. Multiple droplets were added per dot to 
reach the desired protein concentration resulting in the concentric circles seen. The 
other tiny green dots are artefact and contaminant of the pollen pellet on the 
membrane. All samples (supernatant protein extract) used for NO2 exposures are either 
crushed, 24hours RH exposure and ruptured in rainwater prior to the gas exposure.   
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Figure 4.9: Quantification of nitration from dot blot analysis showing estimated 
Nitrated BSA concentration against NO2 exposed samples at different concentrations 
and conditions. The nitrated rainwater sample at 10ppm appears to have the highest 
concentration in comparison to the other samples. Error bars express potential errors 
in the data set. The error bars represent standard error of the mean. RW- Pollen 
ruptured in rainwater, then subjected to 2, 5, and 10 ppm NO2; RH- Pollen ruptured by 
exposure to high RH for 24 hours, then subjected to 10 ppm NO2; and CR- Pollen 
ruptured by crushing, then subjected to 10 ppm NO2. 
 

 
 
Figure 4.9 shows the quantification of degree of nitration for each sample represented as a bar 

chart. This was calculated based on the circular dimension of the dot blot images beside 

confirmed nitrated BSA sample as standard. It can be evidently seen that exposure to higher 

NO2 concentration yields greater nitrated proteins under certain experimental conditions 

(hydration of pollen in rain water before gas exposure).  

 
It is difficult to compare the degree of nitration observed in this study compared to the work 

of Reinmuth-Selze et al. (2014) and Franze et al. (2005) who investigated the allergen Bet v1 

expressed in e-coli and the pure allergen, respectively. They also used different metrics to 

characterise the degree of nitration. To provide a metric of nitration for this study, which can 
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be subsequently compared to future studies, we benchmark the nitration observed in the 

pollen samples to the nitrated BSA signal on an equal protein weight basis. The relative 

degrees of nitration of the different experiments are given in Table 4.6.  

 

 
Sample Degree of pollen protein 

nitration referenced to the same 

weight of nitrated BSA 

Notes 

RW Control 

 

0.02 Pollen ruptured in rain water, 

but not exposed to NO2 

RH 0.02 Pollen not ruptured, then 

subjected to high RH condition 

RW2ppm 0.04 Pollen ruptured in rain water, 

then subjected to 2 ppm NO2 

RW 5ppm 0.06 Pollen ruptured in rain water, 

then subjected to 5 ppm NO2 

RW 10ppm 

 

0.27 

 

Pollen ruptured in rain water, 

then subjected to 10 ppm NO2 

CR 10ppm 0.21 Pollen ruptured by crushing, 

then subjected to 10 ppm NO2 

24HRS 10ppm 0.12 Pollen ruptured by exposure to 

high RH for 24 hours, then 

subjected to 10 ppm NO2 

 
Table 4.6: Degree of nitration of the pollen samples, under different nitration 
conditions, references to equivalent weight of nitrated BSA protein. 
 

From Table 4.6, it can be seen that the most effective pathway for nitration of birch pollen is 

via rupture in rainwater followed by exposure to the highest concentration of NO2. The effect 

of NO2 concentration on the degree of nitration in the rainwater ruptured pollen appears to be 
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non-linear which potentially suggests threshold effects for the degree of NO2 required to 

cause nitration. It can be seen that the control and the RH only experiments results in a small 

degree of apparent nitration, even though no NO2 exposure occurred. These values can be 

used as a limit of detection of the experiment. The results shown in Figure 4.8 all fall below 

this limit of detection. Hence within the detection limits of this experiment, we conclude that 

for pollen protein to be nitrated, the pollen grain has to be ruptured in some manner. 

 

 
4.2.8 Western blot 
 
The technique was established in this research to identify and separate the nitrated proteins 

within the complex mixture of total proteins. The samples were electrophoresed on SDS-

PAGE gel alongside nitrated BSA and subjected to probing with anti-nitrotyrosine primary 

and secondary antibodies. The transfer time was kept minimal to avoid losing proteins. A 

PVDF (Polyvinylidene difluoride) membrane was used, which allows for detection of low 

abundance proteins due to its greater binding capacity. 

 
Nitration was detected in both nitrated BSA and NO2 exposed rainwater (RW) samples (10 

ppm). The level of nitration in the pollen samples is clearly less than that of the nitrated BSA 

(Figure 4.10). Probably due to low levels of nitrotyrosine residues present or only weakly 

nitrated protein were accessible to the antibody binding. The signal was only apparent in the 

pollen sample exposed to the greatest NO2 concentration (10 ppm) as no obvious bands were 

seen in the other samples (Figure 4.10). The band relating to the nitration detection was 

situated around the 17-kDa marker of the molecular weight ladder. This experiment 

confirmed the dot blot results as revealed in section 4.2.6 (Figure 4.8). The benefit of the 

blots approach is the sensitivity because is antibody-based technique so it acknowledges 
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specificity. The obtained results were not used for semi-quantification of degree of nitration 

because the signals from the bands were not very strong.  

 

 

 

 

	

Nitrated	BSA	

Pollen	sample						
exposed	to	
NO2@10ppm	

Unexposed	

Pollen	sample		  

Figure 4.10. Western blot result showing signals from nitrated proteins in nitrated BSA 
and NO2 exposed samples (sample is from rainwater) pointed with blue and maroon 
arrows respectively. There was no signal from the unexposed sample pointed with green 
arrow. Samples were ran on SDS-gel, transferred onto the membrane and probed with 
anti-nitrotyrosine antibodies. The same 10 ppm band spot on a separate gel was used 
for the in-gel digestion analysis.  The tiny green dots (pointed with yellow arrow) are 
artefact on the membrane. 
 

 

4.2.9 MS analysis  

A variety of chemical modifications can affect the structure and biological functions of 

proteins and peptides which are susceptible, both in vivo and in vitro (Yang and Zubarev, 

2010). Major types of modification identified after several experimental exposures includes: 

Oxidation, deamidation (a spontaneous non-enzymatic reaction), carbamidomethyl, 

phosphorylation and in some instance nitration.  
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The MS analysis was unable to detect nitrated peptides from the exposed pollen samples at a 

high degree of confidence. However, the nitrated peptides of BSA were detected using the 

same approach. The reason for this is not entirely clear since the dot blot and western blot 

results provided clear evidence that nitration occurred in the pollen samples albeit at lower 

concentrations to the nitrated BSA samples. Most likely the negative pollen result is due to 

the lower abundance of the peptides of interest compared to the nitrated BSA samples. 

Subsequently, the pollen samples were further subjected to advanced investigation, in-gel 

digestion technique, and again ran on the MS. Figure 4.11 shows a recap of the basic 

processing steps for MS analysis. 

 

 

 

Figure 4.11: Basic processing steps used for the MS data analysis. Raw data files 
generated on the MS where searched on proteome discover software using the search 
engine Sequest HT against UniProt protein database to identify proteins and 
modifications.  
 
 
 
 
 
 



 146 

4.2.10 In-gel digestion 

Following the MS analysis of the samples and observation of nitration using the blot 

methods, additional efforts were made to see if the modification of interest could be detected 

on the MS in a more reproducible manner. The samples were also ran on SDS-gel and stained 

to reveal all the detected protein bands in the sample. The specific band (17 kDa) of interest 

was cut (Figure 4.12), digested and subjected to MS analysis to characterise and locate the 

nitrated peptide present in the sample. In doing so, the likelihood of detecting the 

modification was increased because the complexity of the sample was reduced and the 

protein of interest isolated. The sample is a highly complex mixture of different proteins that 

can be more sufficiently analysed when separated into fractions and digested separately, 

which lessen protein mixtures complexity.  

 

 

	

	

	

	

Protein	
ladder	

Samples	1									2											3																	4											5											6										7	

 
 
Figure 4.12: Illustrates in-gel digestion gel with excised bands (circled in the black 
circle). 
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The in-gel digestion analysis was successful, as it allowed for detection of the nitration on the 

Bet v 1 and other proteins which were present in the digested band (Table 4.7).  This was not 

reported in earlier literature studies done. The “informative ions are generated by 

fragmentation at the amide bond between amino acids and the resulting ions are called b-

ions if charge is retained by the amino-terminal part of the peptide and y-ions if retained by 

the carboxy-terminal part” (Steen and Mann, 2004). Even though the mass increment of ~ 45 

Da was observed on the product ion mass of suggested nitrated peptides, the exact modified 

fragment ion of interest Y13-Nitro could not be assigned within the b and y ion sequencing 

(Figure 4.13). Thus, these results cannot be considered completely robust. The incorrect 

assignment of the y and b ions could be due to low fragment ion signal and high levels of 

noise in the mass spectrum. Sometimes peptides are too short to be confident of assignment 

(m/z <620), the spectra not good enough to assign, or a wrongly assigned charge not a 

peptide (Chalkley et al., 2005). 

 
To further and more conclusively validate the observed protein modification; de novo 

sequencing (using mass differences between two fragment ions to determine mass of an 

amino acid residue on the tryptic spectra) could be employed, which is outside the scope of 

this investigation. Figure 4.14 describes the obtained MS/MS product ion spectra of tryptic 

Bet v 1 peptide. The tryptic peptides usually become doubly protonated (peptides comprising 

more than 15 amino acid or basic amino acids such as histidine can have higher charge) and 

designated as (M + 2H)2+ where M and H+ represents the masses of the peptide and a proton 

respectively (Steen and Mann, 2004) . 
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Accession 
number 

Protein 
description 

Protein 
coverage  
 

Sequence Modification Retention time 

Q9SCH7 Pollen 
allergen 
Betv1, 
isoform 
at87  

10.00 AFILDGDNLFPK 
 

 19.39  
 

O49813 Olee1-like 
protein  

22.29 EGGTLIySSDSETDKSGTyRIPVDGDHEEEIcEIALK 
 

Y7 (Nitro); Y19 
(Nitro); C32 
(Carbamidomethyl) 

31.05  
 

O23747 Pollen 
allergen, 
Betv1 
(Fragment) 

13.84 EKGETLLKAVESyLLAHSDAYN 
 

Y13 (Nitro) 
 

21.55  
 

Q0QLT4 PR-10 
protein 
(Fragment)  

8.67 GAGLFKAVENyLV 
 

Y11 (Nitro) 
 

11.24  
 

E1XUM0 Pectate 
lyase  

5.29 dMIIYLQQEMVVTSDkTIDGR  
 

N-Term (Acetyl); 
K16 (Acetyl) 
 

19.73  
 

Table 4.7: List and information of identified proteins from in-gel digested sample. 
Modified residues are highlighted in red. Bet v 1 nitrated protein information 
highlighted in green, Olee 1-like protein highlighted in purple and PR-10 protein 
highlighted in blue. 
 

Figure 4.13: Peptide identification details showing peptide summary, fragment matches 
and sequence. The table illustrates some of the main chracteristic of the detected Y13-
nitrated peptide. It also shows the absence of b and y ions fragments on the ion series of 
the nitrated peptide (Y-Nitro) residue .  
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Figure 4.14: MS/MS product ion spectra of tryptic Bet v 1 peptide identified in the in-
gel analysed sample. The fragment ions are labeled with their computer assigned mass-
to-charge ratios. Each peptide fragment in the series is supposed to differ from its 
neighbor by one amino acid that will make it possible to determine the amino acid 
sequence by considering the mass difference between neighboring peaks in a series as 
indicated above. The black traces represent the ion chromatogram of the peptide. 
 

 

Because the probability software can result in mistakes, there is need for careful validation of 

individual MS/MS spectra in order to eliminate false positive assignments (Li et al., 2011). 

This can include the identification of Immonium ions that are charged amino acids, which 

have no carboxylic acid group, but only some amino acids produce high intensity immonium 

ions like tyrosine, phenylalanine, histidine, and tryptophan (Falick et al., 1993; 

Papayannopoulos, 1995). Typically, the occurrence of a 3NT immonium ion at m/z 181.1 

(Danielson et al., 2009) in the MS/MS spectra gives a clear sign of nitration, which is an 

essential benchmark for validation (Li et al., 2011). “Immonium ions are MS/MS fragment 

ions generated from a peptide by multiple internal cleavages and is a faithful signature for 

individual amino acids when observed in the MS/MS spectrum” (Falick et al., 1993). The 

immonium ion of tyrosine, which is 136 Da, will have a further 45 Da added if nitrated 
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making it 181 Da. Identifying y & b ions sequencing are also good pointers of the existence 

of a modified peptide; however, these are the simplest way of validating results for non-

MS/MS expert.  

 

 
4.2.11 TMT labelling experiment outcome 
 
Tyrosine nitration occurs typically as low-abundance PTM that requires suitable enrichment 

methods prior to proteomic analyses (Prokai-Tatrai et al., 2011). The tagging protocol was 

expected to enrich the number of nitrated peptides present with in the complex samples, 

which in the end, only the tagged nitrated peptides will be available for analysis on the MS. 

This should allow quantification of nitration. The tagging experiment involved five major 

steps (Chapter 3, Figure 3.8). It started with sample digestion, N-terminal blockage, followed 

by reducing the nitrotyrosine to amino tyrosine by addition of sodium dithionite. The reduced 

peptides were tagged and enriched then subjected to MS analysis. “Reduction of 3-

nitrotyrosine to 3-aminotyrosine by dithiothreitol (DTT) in proteins such as rat and bovine 

serum albumin (BSA) has been reported to be incomplete and this could result in an 

underestimation of the nitration level as measured by 3-nitrotyrosine immunoblotting” 

(Söderling et al., 2007).  

The strategy was tested using nitrated BSA as standard since it was known to be nitrated and 

contains 21 tyrosine sites that can potentially be nitrated in vitro (Zhang et al., 2007) and in 

another study it contains 19 tyrosine residues (Peters, 1985). For Bet v 1, 7 tyrosine residues 

are present per molecule (Franze et al., 2005). 20 of nitrated tyrosine residues were observed 

in the standard nitrated BSA (Abcam) used after digestion and analysis on MS (Table 4.8).  
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Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4 - [ALBU_BOVIN] 

Description and Coverage Sequence  Modification  

Serum albumin OS=Bos taurus 
GN=ALB PE=1 SV=4 –  
[ALBU_BOVIN] 
 
89.79 

RHPYFyAPELLyYANK 
LGEyGFQNALIVR 
MPcTEDyLSLILNR 
RHPyFYAPELLYYANK 
HPyFYAPELLYYANK 
RHPEyAVSVLLR 
mPcTEDyLSLILNR 
GLVLIAFSQyLQQcPFDEHVK 
DAFLGSFLYEySR 
yNGVFQEccQAEDK 
RPcFSALTPDETyVPK 
dAFLGSFLYEySR 
yIcDNQDTISSK 
yLyEIAR 
yLYEIAR 
HPYFYAPELLyyANK 
hPYFYAPELLyYANK 

 

Y6(Nitro); Y12(Nitro) 
Y4(Nitro) 
C3(Carbamidomethyl); Y7(Nitro) 
Y4(Nitro) 
Y3(Nitro) 
Y5(Nitro) 
M1(Oxidation); C3(Carbamidomethyl); Y7(Nitro) 
Y10(Nitro); C14(Carbamidomethyl) 
Y11(Nitro) 
Y1(Nitro); C8(Carbamidomethyl); C9(Carbamidomethyl) 
C3(Carbamidomethyl); Y13(Nitro) 
N-Term(Acetyl); Y11(Nitro) 
Y1(Nitro); C3(Carbamidomethyl) 
Y1(Nitro); Y3(Nitro) 
Y1(Nitro) 
Y11(Nitro); Y12(Nitro) 
N-Term(Acetyl); Y11(Nitro) 

 

 
Table 4.8: 20 Nitrated tyrosine residues of NBSA sample (Abcam) that were identified   
after digestion and MS analysis. 
 
 
 

The results obtain from MS analysis proved that the protocol was working appropriately up to 

the stage of amino conversion (reduction of nitrotyrosine to aminotyrosine) also verified 

using dot blot experiment (Figure 4.15), however, after enrichment, the proteins seem to be 

lost completely. All tagged samples were supposed to bind the TMT resin while the non-

tagged are discarded during the cleaning session. Results from analysis done on non-enriched 

samples indicated the presence of untagged proteins. A possible explanation is that the 

tagging was done incorrectly, reduction was incomplete or, due to low abundance of the 3NT, 

it might be difficult for the tags to bind the nitrated peptides thus, cannot be detected by the 

MS as earlier mention in similar research. The enrichment protocol used here might not be 

selective enough to enrich the low nitrotyrosine-containing proteins from the complex sample 

matrices. Furthermore, if the conversion of nitrotyrosine to aminotyrosine of a specific 

residue is incomplete, the complexities of the analytical task will be increased.  
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Figure 4.15: Result obtained from reduction of 3-nitrotyrosine to 3-aminotyrosine after 
addition of sodium dithionite and subjected to dot blot analysis. The dot within the 
green circle is the nitrated BSA sample prior to the addition of sodium dithionite, while 
the area within the blue circle is after reduction has occured. The tiny green dots 
(pointed with orange arrow) are artefact on the membrane. 
 
 
 
 
Optimization that was looked into included increasing the starting material; making sure the 

TMT tags were at correct pH and skipping the enrichment step. Table 4.9 shows the number 

of peptides (all untagged) present before enrichment after increasing the starting material. 

Increasing the amount of starting materials yielded peptides after enrichment but untagged 

peptide (Table 4.10). The findings were contrary to expectation even though at low confident 

peptide level, large amount of tagged proteins were been detected.  

 
For future work, it is noted that Boersema et al. (2009) concludes that online stable isotope 

labeling is the more efficient method for the labeling of small quantity of sample, because 

sample loss is reduced by combining sample clean-up and labeling and performing MS 

analysis directly after labeling (Boersema et al., 2009) . It is worth noting that nitration 

happens at randomly selected sides.  
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Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4 - [ALBU_BOVIN] 

Sequence # PSMs Modifications 
nEcFLSHkDDSPDLPK 1 N-Term(Acetyl); C3(Carbamidomethyl); K8(Acetyl) 
ccAADDKEAcFAVEGPK 2 N-Term(Acetyl); C1(Carbamidomethyl); C2(Carbamidomethyl); C10(Carbamidomethyl) 
lFTFHADIcTLPDTEK 4 N-Term(Acetyl); C9(Carbamidomethyl) 
NEcFLSHKDDSPDLPK 1 C3(Carbamidomethyl) 
ccAADDKEAcFAVEGPK 1 C1(Carbamidomethyl); C2(Carbamidomethyl); C10(Carbamidomethyl) 
eccHGDLLEcADDR 2 N-Term(Acetyl); C2(Carbamidomethyl); C3(Carbamidomethyl); C10(Carbamidomethyl) 
vHKEccHGDLLEcADDR 2 N-Term(Acetyl); C5(Carbamidomethyl); C6(Carbamidomethyl); C13(Carbamidomethyl) 
rHPYFYAPELLYYANK 1 N-Term(Acetyl) 
hPYFYAPELLYYANK 2 N-Term(Acetyl) 
aEFVEVTKLVTDLTK 2 N-Term(Acetyl) 
rHPYFYAPELLYYANk 1 N-Term(Acetyl); K16(Acetyl) 
sLHTLFGDELcK 2 N-Term(Acetyl); C11(Carbamidomethyl) 
nEcFLSHKDDSPDLPK 1 N-Term(Acetyl); C3(Carbamidomethyl) 
rHPEYAVSVLLR 3 N-Term(Acetyl) 
MPcTEDYLSLILNR 1 C3(Carbamidomethyl) 
LcVLHEkTPVSEK 1 C2(Carbamidomethyl); K7(Acetyl) 
lKEccDKPLLEK 4 N-Term(Acetyl); C4(Carbamidomethyl); C5(Carbamidomethyl) 
lKPDPNTLcDEFKADEk 3 N-Term(Acetyl); C9(Carbamidomethyl); K17(Acetyl) 
lGEYGFQNALIVR 2 N-Term(Acetyl) 
LKEccDKPLLEK 2 C4(Carbamidomethyl); C5(Carbamidomethyl) 
hLVDEPQNLIK 1 N-Term(Acetyl) 
dDPHAcYSTVFDK 1 N-Term(Acetyl); C6(Carbamidomethyl) 
sLHTLFGDELckVASLR 1 N-Term(Acetyl); C11(Carbamidomethyl); K12(Acetyl) 
KQTALVELLK 2   
RHPYFYAPELLYYANK 1   
SLHTLFGDELcK 1 C11(Carbamidomethyl) 
yNGVFQEccQAEDK 1 N-Term(Acetyl); C8(Carbamidomethyl); C9(Carbamidomethyl) 
eccDKPLLEK 1 N-Term(Acetyl); C2(Carbamidomethyl); C3(Carbamidomethyl) 
LGEYGFQNALIVR 1   
mPcTEDYLSLILNR 1 M1(Oxidation); C3(Carbamidomethyl) 
HLVDEPQNLIK 1   
lkPDPNTLcDEFK 1 N-Term(Acetyl); K2(Acetyl); C9(Carbamidomethyl) 
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RHPEYAVSVLLR 1   
HPYFYAPELLYYANK 2   
DAIPENLPPLTADFAEDKDVcK 1 C21(Carbamidomethyl) 
DDPHAcYSTVFDK 2 C6(Carbamidomethyl) 
lKPDPNTLcDEFK 4 N-Term(Acetyl); C9(Carbamidomethyl) 
lkEccDKPLLEK 4 N-Term(Acetyl); K2(Acetyl); C4(Carbamidomethyl); C5(Carbamidomethyl) 
KVPQVSTPTLVEVSR 1   
DAIPENLPPLTADFAEDK 1   
tVMENFVAFVDK 2 N-Term(Acetyl) 
LKPDPNTLcDEFK 2 C9(Carbamidomethyl) 
HPEYAVSVLLR 2   
EccHGDLLEcADDR 1 C2(Carbamidomethyl); C3(Carbamidomethyl); C10(Carbamidomethyl) 
DAFLGSFLYEYSR 1   
dTHkSEIAHR 2 N-Term(Acetyl); K4(Acetyl) 

tcVADESHAGcEk 1 N-Term(Acetyl); C2(Carbamidomethyl); C11(Carbamidomethyl); K13(Acetyl) 
RPcFSALTPDETYVPK 1 C3(Carbamidomethyl) 
kQTALVELLK 2 N-Term(Acetyl) 
SHcIAEVEK 1 C3(Carbamidomethyl) 
TVMENFVAFVDK 1   
LAKEYEATLEEccAK 1 C12(Carbamidomethyl); C13(Carbamidomethyl) 
hPEYAVSVLLR 4 N-Term(Acetyl) 
eYEATLEEccAK 2 N-Term(Acetyl); C9(Carbamidomethyl); C10(Carbamidomethyl) 
YNGVFQEccQAEDK 1 C8(Carbamidomethyl); C9(Carbamidomethyl) 
AEFVEVTKLVTDLTK 1   
tVmENFVAFVDK 1 N-Term(Acetyl); M3(Oxidation) 
LFTFHADIcTLPDTEK 2 C9(Carbamidomethyl) 
TVmENFVAFVDK 1 M3(Oxidation) 
kVPQVSTPTLVEVSR 6 N-Term(Acetyl) 
LVNELTEFAK 1   
qTALVELLK 3 N-Term(Acetyl) 
tcVADESHAGcEK 1 N-Term(Acetyl); C2(Carbamidomethyl); C11(Carbamidomethyl) 
EYEATLEEccAK 1 C9(Carbamidomethyl); C10(Carbamidomethyl) 
YIcDNQDTISSK 1 C3(Carbamidomethyl) 
QTALVELLK 1   
eAcFAVEGPK 1 N-Term(Acetyl); C3(Carbamidomethyl) 
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fkDLGEEHFk 1 N-Term(Acetyl); K2(Acetyl); K10(Acetyl) 
VPQVSTPTLVEVSR 2   
lAKEYEATLEEccAK 1 N-Term(Acetyl); C12(Carbamidomethyl); C13(Carbamidomethyl) 
EccDKPLLEK 1 C2(Carbamidomethyl); C3(Carbamidomethyl) 
fkDLGEEHFK 3 N-Term(Acetyl); K2(Acetyl) 
lVNELTEFAK 2 N-Term(Acetyl) 
ccTKPESER 1 N-Term(Acetyl); C1(Carbamidomethyl); C2(Carbamidomethyl) 
ETYGDMADccEK 1 C9(Carbamidomethyl); C10(Carbamidomethyl) 
FkDLGEEHFK 3 K2(Acetyl) 
EAcFAVEGPK 1 C3(Carbamidomethyl) 
aEFVEVTK 1 N-Term(Acetyl) 
ALkAWSVAR 1 K3(Acetyl) 
ccTkPESER 1 N-Term(Acetyl); C1(Carbamidomethyl); C2(Carbamidomethyl); K4(Acetyl) 
dLGEEHFk 1 N-Term(Acetyl); K8(Acetyl) 
lcVLHEK 1 N-Term(Acetyl); C2(Carbamidomethyl) 

Table 4.9: Identified peptide after increasing the starting material before enrichment.   
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Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4 - [ALBU_BOVIN] 
Sequence # PSMs Modifications 

rHPEYAVSVLLR 1 N-Term(Acetyl) 
hLVDEPQNLIK 1 N-Term(Acetyl) 
hPEYAVSVLLR 1 N-Term(Acetyl) 
sLHTLFGDELcK 1 N-Term(Acetyl); 

C11(Carbamidomethyl) 
RHPEYAVSVLLR 1   
rPcFSALTPDETYVPK 1 N-Term(Acetyl); C3(Carbamidomethyl) 
LGEYGFQNALIVR 1   
LVNELTEFAK 1   
LkPDPNTLcDEFK 2 K2(Acetyl); C9(Carbamidomethyl) 
hLVDEPQNLIk 1 N-Term(Acetyl); K11(Acetyl) 
kVPQVSTPTLVEVSR 2 N-Term(Acetyl) 
qTALVELLK 1 N-Term(Acetyl) 
tVmENFVAFVDK 1 N-Term(Acetyl); M3(Oxidation) 
HPEYAVSVLLR 1   

 

Table 4.10: Identified peptide after increasing the starting material and enrichment  
 
 
 
Evidently, from the above two Tables (4.9 & 4.10) there was a huge loss of peptides after the 

enrichment strategy, which was the main essence of the step, to remove untagged peptide. 

However, in this case even though the peptides have diminished, but none was tagged. In 

another analysis of unenriched in vitro nitrated bovine serum albumin (BSA) homogenate 

sample, 5.9% of nitrotyrosine-containing peptides were identified, while the enriched 

samples had 35%, respectively (Zhang et al., 2007). 

Finally, after using 5 viral tubes of 100 µg at 0.76 mg/ml of nitrated BSA, few tagged 

peptides were identified before and after enrichment. Table 4.11 shows the identified peptide 

in different produced samples after increasing the starting material. Sample A- whole nitrated 

BSA tagged with TMT zero, C1-concentrate sample from spin column that was enrichment 

and tagged with TMT10 and C2- concentrate sample from spin column without enrichment 

and tagged with TMT10. The spin column is used for quick and easy cleanup of DNA or 

protein samples. The spectra of the identified tagged peptides were not favorable in 

reinforcing the earlier outcome (identified tagged peptides on product ion). As such, the 
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quantification of degree of nitration could not be done using the tagging technique, however, 

the protein nitration was earlier identified by blot and in-gel experiments and semi-quantified 

by the dot blot technique (section 4.2.6).  

 

 

 

Sample  Confidence  Sequence  Search 

Engine  

Modification  

A  High  YYPMGHPASVHLyFLADRFQGFLIKHHATNLAVSk Sequest 

HT 

Y13 (3AT TMT); 

K35 (Acetyl) 

C1  High  

 

mLLPVPLLLGLLGLAAADPTVyFK 

 

lQLTAAFFLATLLIGLAVRLyYGSR 

Sequest 

HT 

N-Term (Acetyl); 

Y22 (3AT TMT) 

N-Term (Acetyl); 

Y21 (3AT TMT) 

C2 High  

 

VISVLyTVIVPFLNPAIycLRNK 
 

Sequest 

HT 

Y6 (3AT TMT); 

Y18 (3AT TMT); 

C19 

(Carbamidomethyl) 

 
 
Table 4.11: Identified tagged peptides (after increasing the starting material by 100%) 
before and after enrichment. The modification is highlighted in red and the tyrosine 
residue on the sequence in blue. Sample A- whole nitrated BSA tagged with TMT zero, 
C1-concentrate sample from spin column that was enrichment and tagged with TMT10 
and C2- concentrate sample from spin column without enrichment and tagged with 
TMT10. 
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4.3 Conclusion  
 
 
The main objective of this chapter was to report on the investigation of the effect of gas phase 

NO2 on birch pollen grains. The experimental results from the initial part of this study 

demonstrated that the allergen proteins of interest are not greatly affected by air pollution 

exposure unless the pollen grains are ruptured. The types and abundance of the proteins 

identified appears to be dependent on the environmental conditions to which the pollen 

samples were exposed as revealed in the Polypeptide profiles by SDS-PAGE gel and MS 

analysis. Particularly, exposure to NO2 without crushing the pollen generated more detectable 

protein content as compared to RH exposure sample alone. Previously reported work in the 

literature using expressed and endogenous protein observed significant amounts of nitration 

compared to the intact pollen results from this work. Thus, we hypothesized that nitration of 

the the pollen proteins is significantly more difficult when the pollen grain is intact and not 

ruptured. We believe our experimental approach of using the whole pollen to be more 

representative of the real-world situation. From a biological point of view, this makes sense. 

The pollen protects its genetic cargo from biochemical transformations. The results at this 

level have shown clearly that once the pollen grain gets in contact with the environment, 

pollen particles are released. These findings raise intriguing questions regarding the extent of 

how these gases impact the pollen.  

The second stage was to rupture the pollen using different methods. At this level, the ruptured 

pollen grains exposed to NO2 at atmospherically relevant concentration levels were found to 

be significantly more nitration compared to the intact pollen grains. The rupturing of the 

pollen grains in rainwater, thereby mimicking the real-world situation where pollen still on 

the catkins likely interacts with rain, appeared to cause the greatest amount of nitration.  
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The lack of definitive detection of nitrated peptide on MS in the samples generated was 

anticipated because of previously reported studies (Nuriel et al., 2008; Petersson et al., 2001). 

However, for the commercially purchased nitrated BSA, the nitrated peptides were detected 

after digestion and MS analysis with no further analysis. Thereby confirming the validity of 

the approach. Identification and characterization of the other modified peptides with MS 

methods demonstrated that mass spectrometry is a useful analytical tool for biological 

samples. The pollen protein nitration was observed using dot and western blot techniques and 

with MS analysis using in-gel digested sample. The benefit of the blot approach is the 

sensitivity because it is antibody based technique so it acknowledges specificity. The 

detection of nitrotyrosine on the MS after in-gel digestion method suggested that the 

technique was sufficiently optimized for the analysis. Possibly, because of the low abundance 

of 3NT peptides, it was very challenging to identify modified proteins, which leads to the 

need for highly selective and sensitive analytical techniques such as enrichment approaches 

that rely on antibodies or chemically tagged protocols. As expected, the determination of 3-

nitrotyrosine peptide on MS was much more demanding particularly within diverse complex 

proteins present in the generated samples. Even though the nitration was certain, which was 

verified using different techniques (dot and western blotting), determining exactly which 

peptide within any sample that has been nitrated needed a bit of detective work.  

 
The last stage was to attempt the quantification of the degree of the nitration using TMT tags. 

Nitrated BSA was used as protein that is known to be nitrated. Unfortunately, a protocol 

could not be developed to successfully quantify the nitration. Various optimization steps were 

attempted such as increasing the amount of starting material. The technique identified a large 

number of tagged proteins at low confident peptide level, so it is possible the protocol was 

close to working but we cannot state this confidently. To summarize, a protocol has been 

developed that shows some promise but requires further optimization. Due to time 
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constraints, no further expansion and initial testing was performed in this study.  

 
This study provides the first evidence of nitration of birch pollen protein directly from real 

pollen grains and their complex mixtures of proteins just as nature provided. Previous 

detection in earlier studies showed nitration of the Bet v 1 protein that was expressed in ecoli 

or in the pure isolated Bet v 1 protein. Neither of which are biological realistic in the real 

world. The protocols developed will be applicable for future bioaerosol allergenicity 

research.  
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     CHAPTER 5 
Pollen grain Imaging  
 
This chapter describes the imaging of birch tree pollen grain. It also examines the effects 

of rainwater, RH and NO2 on the morphology and release of allergen proteins of birch.   

 

                                    

                                         

                                                   

 

 

Figure 5.1: Flow diagram of the graphical Abstract 
 
 
 
 
The main objective of this chapter was to investigate the morphological changes on birch 

pollen grain surface upon interaction with elevated RH, NO2 and rainwater. Figure 5.1 

shows a graphical abstract of this chapter. The preceding chapter has shown that the 

interaction with these parameters has significant influence on the degree of pollen 

nitration observed. The Scanning Electron Microscope (SEM) facility at the School of 

Dentistry and the Birmingham Advance Light Microscopy (BALM) facility both at the 

University of Birmingham carried out the imaging and scanning shown in this chapter, 

respectively. The samples were prepared and handed over to BALM and School of 
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Dentistry for the fluorescence microscopy imaging and SEM scanning analysis, 

respectively. However, the results gathered were analyzed independently. 

 

5.0 Synopsis 
 
Environmental factors, such as RH and air pollutants have been shown to influence 

allergen discharge as well as morphological changes on pollen surface in a complex 

manner. The induced changes on the autofluorescence spectra and morphology of intact 

birch pollen have been observed using fluorescence microscopy and scanning electron 

microscope regarding exposure to NO2 and RH and after subjecting it to different 

rupturing conditions. Exposure to air or pollutants and hydration or crushing damaged the 

pollen grains. The experimental results demonstrated that the use of fluorescence 

microscopy (FM) and scanning electron microscope (SEM) could provide additional 

information regarding morphological modifications on pollen grain upon the interaction 

of the pollen with atmospheric gases, rainwater and RH.  

 

5.1 Objectives   
 
In the preceding Chapter of this thesis, we looked at the effects of pollutants on these 

pollen grains at proteome level. The pollen was commercially purchased and artificially 

exposure to air pollutants in the highly equipped laboratory. However, in this chapter, the 

objectives are to: 

v Investigate the visual changes of the treated and untreated pollen sample via 

imaging.   

v Examine the effect of different rupturing protocol morphologically on the pollen 

grain surface.  
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5.2 Introduction  
 
Air pollution and environmental conditions can impact on pollen grain affecting pollen 

morphology, the pollen cell wall, its protein content or protein release (Frank and Ernst, 

2016). Birch is a widespread Northern European family of tree species that produces 

pollen, which can travel up to 1000s of km but typically the distance is a lot less during 

dispersal (Pope, 2010). Also, its highest concentrations have been measured as high as 2–

3000 pollen grains m-3 (Sofiev et al., 2006). Birch is the second most common of Britain’s 

broad-leaved trees and there are two native species in the UK - Silver Birch (Betula 

pendula) and Downy Birch (Betula pubescens) -which often hybridize (Savill, 2013). In 

this study, B. pendula is the species of interest. The major allergen of B. pendula, Bet v 1 

represent the protein allergens with molecular weight of ~17kDa, which has been 

categorized as major allergens because more than 90% of sensitized patients react to the 

allergen (Jarolim et al., 1989). Bet v 1 is the main cause of the tree pollen allergy in 

humans (Vrtala et al., 2001) affecting 100 million people worldwide (Mogensen et al., 

2002). It is has a three-dimensional structure and is the most extensively studied allergen 

but yet the biological and physiological function remains elusive (Mogensen et al., 2002; 

von Loetzen et al., 2014). However, it is related to a group of pathogenesis-related 

proteins, PR-10, which are expressed through illness and stress situations (Van Loon and 

Van Strien, 1999) and seems to be abundant in plants (Breiteneder and Ebner, 2000).  

 
Certain pollen species from trees are among the most important allergen causes, where 

birch pollen is one of the well-known significant aeroallergen dispersed by wind. Pollens 

dispersed by wind are dry and require hydration to stimulate germination (Songnuan, 

2013). When dry pollen is exposed to water, there will be increase in osmotic potential 

that can lead to pollen damage (Taylor and Hepler, 1997). Thus, environmental conditions 

such as high humidity, rain and air pollution can influence the release of protein content 
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within pollen and once released and suspended in the air are able to trigger allergy 

(Schappi et al., 1999).  

 

5.2.1 Auto fluorescence  

“Autofluorescence is the natural emission of cellular components due to a contribution of 

fluorescent compounds located in different cellular compartments” (Roshchina, 2012). 

The luminescence microscope is often used to observe visible (400–700 nm) 

autofluorescence of intact living cells excited by ultraviolet, violet, or blue light 

(Andersson et al., 1998; Bright et al., 1989). Fluorescence is the emission of visible light 

by a molecule at a precise wavelength when illuminated by light of a shorter wavelength 

(Hibbs, 2004). In another definition, it is a spontaneous radioactive decay process where 

molecular excited state is deactivated by photon emission (Atkin and de Paula, 2006). 

Different types of molecules will absorb light at particular wavelength. The fluorescence 

spectra and the emission intensity of an object of interest can also be measured due to 

special features of microscopes (Roshchina, 2012).  

Chlorophyll is one of the many possible known fluorophore used for environmental 

monitoring with a maximum at wavelengths 675–680nm in plant cells (Agati, 1998). The 

excitation and emission maxima of fluorophores in solution are about 255 and 282 nm for 

phenylalanine; 275 and 303 nm for tyrosine, and 280 and 348nm for tryptophan (Huang et 

al., 2011). It is usual for absorbed energy by phenylalanine and tyrosine to be transferred 

to tryptophan, and emit fluorescence around 350 nm in proteins that contain tryptophan  

(Pan, 2015). The excitation and emission maxima from biological materials are due to the 

fact that fluorescence of the principal biological fluorophores is dependent on their 

indigenous environment, such as the pH, certain ion concentrations, temperature, RH, and 

the relative connection with other different molecules (Pan, 2015). “In a protein, different 
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tyrosine or tryptophan molecules can exhibit different fluorescence depending upon their 

proximity to other amino acids in the same or other protein molecules” (Lakowicz, 2013). 

When looking only at the individual fluorophores, the sum of deviation in fluorescence of 

mixtures can be much greater than expected (Hill et al., 2013; Lakowicz, 2013).  This is 

because the local environmental effect from dissimilar biological materials are not 

certainly the same in different forms, as the aerosols are often dry or somewhat dry (Hill 

et al., 2013).  The nitration of amino acids (as observed in proteomics section, Chapter 4) 

might be expected to change the fluorescence ability of the protein. Hence, this study to 

see if the nitration could be observed by measuring the fluorescence. 

Figure 5.2 demonstrates the single-shot fluorescence spectra from individual dried 

particles measured at 266nm excitation. Phenylalanine, tyrosine, tryptophan and NADH 

fluorescence emission peaks at 280nm, 310nm, 340nm and 450 nm respectively while the 

riboflavin emission from dry particles peaks near 560 nm and in an aqueous solution 

peaks near 520 nm (Pan, 2015). Phenylalanine, tyrosine, and tryptophan are aromatic 

amino acids and account for ~ 8.4% of all amino acids in proteins (Meadows et al., 2001).  

Several additional fluorescent molecules do exist in numerous biological systems, such as 

the chlorophylls present in plants but their influence is not that relevant in aerosols (Pan et 

al., 2007). A typical example is the huge quantity of chlorophyll in the environment, 

however, it displays slight fluorescence in atmospheric aerosols (Pan, 2015). Fluorescence 

microscopy (FM) has been used in studying the auto fluorescence of primary biological 

aerosols particles (PBAP) (Pöhlker et al., 2012). 
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Figure 5.2: Single-particle 266-nm-excited fluorescence spectra of common 
fluorophors found in biological particles. Each spectrum is for a nominal 5 µm 
diameter (Pan, 2015).  
 

 

5.2.2 Fluorescence microscopy (FM) 

Fluorescence microscopy is the most widely used tools for observing the fluorescence and 

is an essential tool in modern biology studies (Gustafsson, 1999). FM is one of the most 

sensitive instruments available for morphological analysis of biological material (Fulcher, 

1982) that allows sharp imaging details of a molecule. The technique also permits the 

observation of various biological structures not resolvable in usual microscopy (Huang et 

al., 2009). Three-dimensional (3D) structures imaging, measurement of  interactions by 

multicolor colocalization, and dynamic processes recording in living cells at the 

nanometer scale are all now achievable due to new advances in these techniques (Huang 

et al., 2009). 
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5.2.3 Scanning Electron Microscope (SEM) 

The SEM is a microscope that works by scanning a focused beam of electrons on a 

sample of interest generating high-resolution imaging of a surface. It uses electrons 

instead of light to generate image. The beam scanning enables information about a 

defined area on the sample to be collected. As a result of the electron-sample interaction, 

a number of signals are produced that are then detected by appropriate detectors.  

All the information regarding SEM operation was retrieved from 

http://www.nanoscience.com/technology/sem-technology/how-sem-works/. 

 
Figure 5.3: Schematic of a scanning electron microscope (SEM). Adopted from 
(www.nanoscience.com) 
 
 

5.3 Methodology  

5.3.1 Materials 

The Pollen was purchased form ALK-Abello laboratory and stored dry at ambient 

temperature (~23-25 degrees) and used without further processing. Synthetic Air and 

nitrogen dioxide (50 ppm) were purchased from BOC (UK) respectively. 
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5.3.2 Methods 

There are various methods involve in imaging and scanning  aerosols (Toner, 2007). The 

imaging of the treated and untreated sample under fluorescence electron microscopy 

allows for measuring and analyzing the absorption and excitation of various wavelengths 

of light within the sample while scanning the sample under scanning electron microscope 

generates high-resolution images of the sample surface. 

 

5.3.3 Pollen imaging procedures  

5.3.3.1 Light microscopy 

Pollen protein often shows visible autofluorescence when excited by ultra violet or violet 

light (Roshchina, 2012). This fluorescence is the ability of an atom and molecules to 

absorb light at a specific wavelength and to subsequently emit light of longer wavelength 

after a brief interval (Valeur and Berberan-Santos, 2012). The “molecules responsible for 

most of the fluorescence in most biological cells are amino acids, nucleic acids, and some 

of the coenzymes” (Hill et al., 2013). The amino acids of the pollen protein that might 

become affected upon exposure to the atmospheric pollutants are either tryptophan or 

tyrosine residue since there is evidence of them becoming nitrated in both the preceding 

chapter and literature. In other to identify if the modifications that occurred on the pollen 

after exposure to these pollutants can also be spotted via physical change of the pollen 

grain, the treated and untreated pollen were viewed under Fluorescence microscopy. For 

the analysis, the pollen samples were imaged in two ways: 

1. Imaging during real-time exposure to air and NO2 on separate samples 

respectively, and 

2. Imaging immediately after exposure to air and NO2 respectively.  
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In order to carry out real time imaging while exposing the pollen to NO2 and RH at 

BALM laboratory which does not have a fume cupboard; a protocol to contain and 

remove NO2 from the air steam was required. This was done so as not to risk exposure of 

the researchers to a toxic gas during the experiment. During the exposure, the gas was 

passed at a flow of l Lmin-1 for 60 minutes through a scrubber filled with 120 g of soda 

lime as described in the research of Ishebi et al (Ishibe et al., 1995). The gas concentration 

was continuously monitored throughout the experiment using an NO2 analyser 

(previously described in Chapter 3). The NOX, NO and NO2 concentrations were 

monitored using the NOX analyzer. The soda lime was replaced with a clean batch after 

each experimental run. Figure 5.4 describes the experimental setup for testing the soda 

lime as an eliminator of NO2. 

 

 
 
 
Figure 5.4: Diagram of the experimental setup for testing soda lime as an eliminator 
of NO2. 
 
 

DDRY R 
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5.3.3.2 Sample preparation 

The sample preparation protocol is slightly different for the two experiments: 

 
• Real time exposure imaging; the pollen grain samples were randomly distributed 

across the surface of the cover-slide. The cover-slides with the sample and without 

sample were attached onto the bottom and top of a custom-made stainless steel 

chamber respectively (dimensions: 50x25x20 mm, Figure 5.6) using high vacuum 

grease. The samples were then handed over to BALM for fluorescence imaging. 

• Pre-exposed sample imaging; the samples were first exposed to NO2 and RH for 

60 minutes each respectively, using the methodology described in Chapter 3 

section 3.3, the samples were then subsequently placed on a microscope glass 

slide. The glass slide was covered with cover-slide using nail polish to prevent 

contamination during transportation between the two laboratories and to avoid 

movement of cover-slide during analysis. Samples were then handed over to 

BALM for fluorescence imaging. 

 
Figure 5.5 below displays the apparatus used for the real-time imaging while the already 

exposed samples were just placed on glass slide and mounted onto specimen holder of the 

microscopy already covered with the cover slide. After sample preparation, it was handed 

over to the BALM facility and the microscopy investigation was initiated automatically 

for 30 minutes per session. The exposure of the samples to the UV light was minimized as 

much as possible to reduce the possibility of photo-bleaching on the samples.  
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Figure 5.5: Schematic and picture of sample stainless steel chamber (20x25x50 mm), 
which sits on the microscope objective. A: Top view; B: Underside view. C: Picture 
of stainless chamber. The sample was placed onto a cover-slide and mounted onto 
the chamber at the bottom using vaccum grease.  
 

 5.3.3.3 Imaging instrument and analysis 

Fluorescence microscopy is a powerful tool for investigating spatial and temporal changes 

in biological systems. Fluorescence images of the pollen grains were acquired before, 

during and after processing with NO2 and high RH conditions.  

Multi-channel confocal images were acquired at BALM. In order to allow a proper 

comparison between different time points, the same optical configuration (digital zoom, 

PMT, laser power, Galvano scanner and pinhole) were employed in all the acquisitions. 

Samples were photo-excited using a 458 nm laser (Ar/ArKr), 633 nm laser (He/Ne). The 

microscope used was an upright Leica SP8 laser scanning confocal system with 63x oil 

objective. ICY software was used for the post-imaging analyses. 

 

5.3.4 SEM 

5.3.4.1 Pollen sample preparation for scanning 

 
For SEM, the samples were subjected to different conditions/treatments as discussed 

previously in Chapter 3 section 3.3 (subsection 3.4.3). Subsequent to processing, the 

samples were air-dried on a petri dish (if initially in liquid form). Samples were submitted 

C  
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to the SEM service dry because the SEM utilizes vacuum conditions, so all water must be 

removed from the samples to avoid water vaporization in the vacuum.  In total, 9 different 

samples were generated as detailed below: 

• Undamaged dry pollen grain (intact pollen grain as provided by supplier) 

• Undamaged dry pollen grain hydrated in rainwater over night (~22 hrs) 

• Undamaged dry pollen grain exposed to high RH (~95%) for 24hrs 

• Undamaged dry pollen grain exposed to high RH (~95%) for 1hr 

• Crushed pollen grain (mechanically crushed dry using metal bead) 

• Crushed dry pollen grain hydrated in rainwater 

• Exposed (NO2) pollen grain sample in extraction buffer 

• Undamaged dry pollen grain exposed to NO2 for 1hr  

• Hydrated pollen grain exposed to NO2 for 1hr 

 

 

5.4 Results and Discussion 
 
The SEM investigation showed that the pollen is roughly triangular in shape with a 

diameter of approximately 20 µm and has noticeable pores upon the grain surface. These 

morphological details are to be expected and provide the key evidence for identifying 

birch pollen in field studies. The SEM work also revealed that pollen grains do suffer 

structural damage by different treatment/condition, which likely enhances the release of 

pollen proteins as presented in Chapter 4.  
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In the second section, fluorescence microscopy imaging provided fluorescence intensity 

values that illustrated the changes in the fluorescence intensity of the pollen after it was 

treated to both enhanced NO2 and high RH. 

 

5.4.1 Fluorescence microscopy (FM) results 

 
From images A and B of Figure 5.6 below, it is clear that birch pollen fluoresces. The 

fluorescence was detected between 461-693 nm wavelengths. The yellow images were 

acquired with a CFP (Cyan Fluorescent Protein) detector (461 nm/515 nm wavelengths) 

that captures a portion of the emission from tryptophan and unfortunately only tiny 

amounts of the tyrosine emissions. The BALM laboratory does not have the laser 

capability to go to a lower excitation wavelength to cause significant tyrosine emission.  

The red images were acquired with a ChA (chlorophyll A) detector (640 nm/693 nm 

wavelengths). While the merge image provides the combination of both detectors. The 

tryptophan emission region fluoresced more strongly compared to the chlorophyll region.  

Previously, it has been reported that the chlorophylls present in plants does not have much 

influence on aerosols and it displays slight fluorescence in atmospheric aerosols. In other 

reported research, some characteristic damages were shown on the autofluorescence 

spectra of many pigmented and colorless pollens following long treatments with O3 in 

various concentrations (Roshchina and Mel'nikova, 2001; Roshchina, 1999; V. V. 

Roshchina and V. N. Karnaukhov, 1999). 
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Figure 5.6: Fluorescence intensity of birch pollen grains; untreated (unexposed) and 
treated (exposed to NO2). A – untreated pollen (as provided by supplier). B – pollen 
sample exposed to NO2 at 10 ppm for 1 hr. CFP (Cyan Fluorescent Protein) is a 
detector that is excited at 461 nm/515 nm wavelength and also captures a portion of 
the emission from tryptophan. The ChA images (red) were acquired with a ChA 
(chlorophyll A) detector that is excited at 640 nm/693 nm wavelength. The merge 
images provide the combination of both detectors. 
 
 
 
Figure 5.6 (images A & B) appear to show a distinctive variation in the fluorescence 

spectra of the untreated and treated pollen grains. Where the untreated pollen grains 

appear sharper with clearer images, and the pollen treated with NO2 appears more 

smudged with blurry images acquired.  The reason for this is unknown but may simply be 

speculated that room vibration led to less clear images in the NO2 treated samples.  

Different effects of pollution on external surface of exine (outer layer of pollen cover 

consisting of sporopollenin) have been demonstrated in previous research reported in the 

literature. Deep physical modification of pollen exine with artificial pollution was 

reported by some researchers, while others found no differences between polluted and 

non-polluted pollen (Sénéchal et al., 2015). The results of this study agrees with Ruffin et 

al. (1983) research who found no significant pollen morphologic changes despite the use 

A  

B  
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of very high doses of pollutants (1% of NO2, SO2, or CO) (Ruffin et al., 1983). 

Additionally, in another study no physical modification of ragweed pollen was found 

from plants after being exposed to 80 ppb of O3 during the entire vegetation period 

(Kanter et al., 2013), which disagrees with the results of Cerceau et al. (1996) (Cerceau-

Larrival et al., 1996). The source of these results inconsistencies is probably due to the 

use of different pollen species and gas pollutant exposures (Sénéchal et al., 2015).  

In this study, it is assumed that NO2 will nitrate the amino acid (tyrosine) residue as 

shown in Chapter 4 and to a lesser extent the tryptophan residues. Since tyrosine and 

tryptophan are fluorescent, it was hypothesized that the nitration should be observable in 

time resolved fluorescence experiments. Tyrosine and tryptophan are the two amino acids 

with the most significant fluorescence. The peak fluorescence emissions of tryptophan 

and tyrosine are relatively close, with peak emissions differing by ca. 50 nm. 

 
Time resolved measurements signified that pollen autofluorescence intensity, in both 

investigated emission channels, decreases upon fluorescence measurement. The 

fluorescence intensity values used for plotting graphs (not shown) are averages of 

multiple fluorescence intensity images of pollen grains (ca. 50-100 per sample). Each 

pollen fluorescence intensity image values were normalized and then the mean of the 

normalized values was calculated. Figures 5.7 & 5.8 show the time resolved average and 

normalized fluorescence signals of the pollen subjected to different environmental 

conditions. Figure 5.7 shows the fluorescence intensity observed in the tryptophan 

emission region, and Figure 5.8 shows the fluorescence intensity observed in the 

chlorophyll emission region. It is observed that whatever the environmental conditions, 

the intensity in all samples degrade over time to the same degree. This reduction in 

intensity can be assumed to be bulk photobleaching of the sample. Photobleaching occurs 
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when a variety of easily oxidizable components, such as proteins, nucleic acids, lipids and 

fluorophores react with ROS thereby losing their fluorescence signal (Dixit and Cyr, 

2003; Martin et al., 2005). ROS production is mainly dependent on the photochemical 

properties of the fluorophore (Sugden, 2004) and the dose of excitation light (Bernas et 

al., 2004; Foyer et al., 1994).  
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Figure 5.7: Comparison between pollen grains fluorescence intensity of 3 different 
samples within the tryptophan region of the pollen grain analysed over a period of 
time (n=3). The control (untreated), air treated and NO2 treated are represented in 
blue, red and green respectively. The signals were normalized to account for the 
absolute differences in intensity. RH and NO2  appear to have more noticeable 
impact on the pollen fluorescence. Note that blurry images have not been used, hence 
the absence of data for frame 6.  
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Figure 5.8: Comparison between pollen grains fluorescence intensity of 3 different 
samples within the chlorophyll region of the pollen grain analysed over a period of 
time (n=3). The untreated, air treated and NO2 treated are represented in blue, red 
and green respectively. The signals were normalized to account for the absolute 
differences in intensity. RH and NO2  appear to have noticeable impact on the pollen 
fluorescence. Note that blurry images have not been used, hence the absence of data 
for frame 7. 
 

Because of the bulk photobleaching during imaging, it was impossible to determine 

conclusively whether the environmental conditions affected the ability of the pollen to 

fluoresce. All measurements fell within the error bars of the other measurements 

conducted under different environmental conditions. Note, Microscope focus was lost 

(images became blurred) in some of the later runs which indicates that the sample moved 

and hence the data is not used, thus the lack of data for frames 6 and 7 of Figures 5.7 and 

5.8 respectively. 

 

 

 



 178 

5.4.2 SEM results 

 
In this section, the study investigated the effects of different rupturing procedures on 

pollen grain morphology. The rupturing mechanisms investigated were 1. pollen grain 

immersion in rainwater overnight, 2. mechanically crushed pollen under dry conditions, 

using metal beads, and 3. exposure to high RH for 24 hours. The effect of NO2 exposure 

on the morphological feature of the pollen grain was also investigated. Under atmospheric 

situations, aerosols comprise a broad range of moisture content, from very dry particles 

under low RH conditions, to extremely wet conditions for example pollen grains 

suspended in cloud water droplets (Selvam, 2010).  In Chapter 4, it was shown that pollen 

proteins, such as the major birch pollen allergen Bet v I, were released in significantly 

greater amounts if they had been ruptured by the methods 1-3. Pollen allergens are 

integral pollen constituents mainly confined within the pollen grain in certain patterns of 

distribution (Behrendt and Becker, 2001). These allergens have to be released during a 

process of activation in order to become bioavailable  (Sénéchal et al., 2015). The SEM 

images of different treated birch pollen samples showed that after hydration in rainwater, 

migration of some pollen material had occurred from inside the pollen onto the surface of 

intact pollen grains in comparison to the dry pollen case. 

Below more details on the individual experiments are provided.  

Contact with rainwater- After hydrating the pollen in rainwater and air-drying, it was 

examined using SEM. At the three different magnifications used, the pollen grains were 

found ruptured at their germination pores and surrounded by submicronic particles shown 

to be of high intensity in the SEM images. Previously, these pollen granules have been 

identified to contain the allergenic proteins of the pollen grain; and this process is referred 

to as abortive germination (Grote et al., 2003) (Figure 5.9 B). The finding is consistent 
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with the observations of Grote et al. (2003) and provides a causal reason to the elevated 

levels of nitrated allergen found in the rainwater processed pollen, as shown in Chapter 4.  

Crushed pollen- In dry pollen grain, Bet v 1 are found predominantly in the cytoplasm 

and not within the pollen wall (Grote et al., 2003). However, after crushing it in dry state, 

there seems to be the movement of some particles probably allergen proteins from the 

intrinsic part of the pollen grain onto the cell wall (Figure 5.9 D). This result agrees to 

another research, which mentioned that the inner subparticles from birch pollen grains 

were shown to be released upon impaction on a solid surface at wind speed of about 3 m/s 

(Sénéchal et al., 2015; Visez et al., 2013). 

Exposed to high RH- The RH is the ratio of the partial pressure of water at a given 

temperature (Seinfeld and Pandis, 2016). The RH in the troposphere is variable, 

depending on factors such as changing temperatures, meteorology and distribution of 

water sources. Water-soluble compounds are ubiquitous in atmospheric aerosol (Jimenez 

et al., 2009), therefore it is expected that water vapor will interact with the particle phase. 

Here, the pollen was humidified for 24 hours via exposure to high RH (~95%) with in a 

chamber. The germination pores have been ruptured open and no or lesser quantity of 

particles were also released as compared to the latter two methods (Figure 5.9 H).  

Contrary to Taylor et al. (2004) research, the commercially purchased pollen used in this 

study did rupture upon hydration. This experiment on birch pollen grains, under various 

conditions showed that the emission of heterogeneous small particles or internal granules 

happens when the pollen source was humidified or crushed (Figure 5.9 images B, C, D 

and F). Grote et al. (2003) also showed that allergenic proteins are released from the birch 

pollen tubes predominantly upon rupture. Taylor et al. (2004), reported that fresh pollen 

ruptures in water after 3 hours (Taylor et al., 2004); however, this research could not 
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verify this statement because non-fresh (commercial) pollen was used in this study. 

5.4.3 Impacts of different conditions/treatment on the surface of the 
pollen grain 

 

 
 
 

 
 

B- undamaged 
pollen grain 
rehydrated in 
rainwater (~22 hrs)  
 

A-Undamaged 
pollen  
 

C-Crushed dry pollen 
grain hydrated in 
rainwater  
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D-Crushed dry 
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F- Hydrated pollen 
grain exposed to NO2 
at 10 ppm for 1 hr 
 

E- Undamaged pollen grain 
exposed to NO2 at 10 ppm 
for 1 hr 
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G-Undamaged pollen 
grain exposed to 1 hr 
RH 
 

H-Undamaged pollen 
grain exposed to 24 hrs 
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Figure 5.9: Picture gallery of pollen characteristics after being subjected to different 
condition/treatment. Starting from top to bottom (A-I) A (control)- Undamaged dry 
pollen grain (intact pollen grain from storage container as provided by supplier) 
without any treatment. B- Undamaged dry pollen grain hydrated in rainwater over 
night (~22 hrs). C- Crushed pollen grain (mechanically crushed dry using metal 
bead). D- Crushed dry pollen grain hydrated in rainwater. E- Undamaged dry 
pollen grain exposed to NO2 for 1hr. F- Hydrated pollen grain exposed to NO2 at 10 
ppm for 1 hr. G- Undamaged pollen grain exposed to 1 hr RH. H-Undamaged pollen 
grain exposed to 24 hrs RH. I- Pollen grain exposed to NO2 at 10 ppm and 
mechanically crushed in precellys tube then extracted in extraction buffer. The blue 
arrow is pointed at ruptured grain after being crushed, while the green arrow is 
pionted at the particles expelled via germination pores following hydration in 
rainwater (rain-induced mechanisms of allergen particles release) and red arrow is 
pointed at the tiny white patches hypothesized to be induced by NO2 exposure. 
  
 

 

 

Figure 5.9: A-I provide an image gallery of birch pollen grains characteristic under 

different conditions/treatments. After hydration in rainwater and dry crushing the pollen, 

most examined pollen grains released particles through the germination pores and exine 

respectively (Figure 5.9 images B, C, D, E, and F). In the released particles, the most 

conspicuous materials are the starchy granules, however, smaller particles and amorphous 

materials were also expelled (Grote et al., 2001). Comparing the cytoplasmic release 

I- Undamaged Pollen grain 
exposed to NO2 at 10 ppm then 
extracted in extraction buffer 
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mechanism of birch pollen to other pollens, particularly sweet grasses, birch pollen exine 

does not burst on hydration which could be due to its thick walls that might not favour 

bursting (Schäppi et al., 1999). However, birch pollen does rupture when crushed (Figure 

5.9 image D, ruptured grain pointed with blue arrow) and also expel particles via 

germination pore upon hydration (Figure 5.9 image B, expelled particles pointed with 

green arrow). Once the pores are filled with water then the rest of the surface is supposed 

to be wetted as revealed in the research of Pope (2010). Looking at Figure 5.9 image A, 

the pollen pores are closed and the exine shrivelled, however, once subjected to some of 

the conditions mentioned above, the get ruptured open at their germination pores and 

swollen (Figure 5.9 image B) as compared to the undamaged (intact) pollen (Figure 5.9 

image A). It can be seen that between Figure 5.9 images B, C, F and I that the pollen grain 

swells internally (Pope, 2010), but there is no obvious sign of water uptake upon the 

pollen surface. This is expected in the low pressure conditions of the SEM. Figure 5.9 

images C and D are subjected to slightly altered conditions, however, both released 

particles onto the outer part of the pollen. For Figure 5.9 images E and F, it cannot be 

established that the tiny white patches pointed with red arrow and particles were induced 

by NO2 exposure. Exposure to the ambient air pollution increased the fragility of exine 

that is the most prominent results shown in many experiments (Majd et al., 2004; 

Rezanejad, 2009 Sénéchal et al., 2015). According to the initial fragility of a specific 

external pollen membrane, it causes collapse and numerous cracks on its surface 

(Sénéchal et al., 2015). In this study, no effect of the exposure to NO2 at 10 ppm for 1 

hour was observed morphological on birch pollen grain. Another experiment strongly 

suggests that NO2 is able to strip off orbicules (small acellular structures of sporopollenin) 

from pollen grains and thus release them as free subparticles in the atmosphere (Shahali, 

2011). For Figure 5.9 image G, is marginally less swollen in comparison to image H 
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because it was exposed to 1 hr RH as opposed to 24 hrs, it shows the swollen of the pollen 

grain with increased humidity exposure. This suggests that the opening of pollen 

germination pores can take place roughly within an hour. Finally, Figure 5.9 image I 

appeared to be coated with artefacts or substances contained in the extraction buffer (50 

mM Tris-HCl pH6.8, 10% sucrose and inhibitory proteases). Hence, this indicates that 

extra care must be taken during sample preparation and processing so as not to introduce 

other foreign material into the sample before SEM imaging. 

Taken together, these results conclude that pollen grains emit smaller particles after 

processing by rainwater immersion, high RH conditions, and mechanical action. This 

provides a mechanism through which the allergens travel to the surface of the pollen 

grain. From the pollen surface, it will be more facile for gaseous air pollutants to interact 

with the allergens and hence become more easily nitrated.  It is worth noting that all the 

above-mentioned mechanisms of the pollen subparticles release are induced and do not 

depict the natural birch pollen germination. 

 

5.5 Conclusion 
 

In this chapter, the FM technique was used to try to observe the effect of nitration of birch 

pollen though use of the inherent autofluorescence of certain amino acids. It is shown 

clearly, that the pollen grains fluoresce in both the tryptophan and chlorophyll 

fluorescence emission channels. Furthermore, both channels show distinct photobleaching 

in time-resolved measurements. This photobleaching effect dominates any change in 

fluorescence that may be caused by the nitration of the amino acids found in the pollen 

protein. A possible future avenue of research that may be more revealing is the use of a 

lower wavelength laser to probe tyrosine fluorescence.  
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The SEM technique was used to observe morphological changes on pollen grain after 

subjecting it to different treatments and conditions. The SEM examination revealed that 

the pollen grain changes from shriveled to swollen upon hydrated with rainwater and 

exposure to high RH and showed that only certain conditions lead to smaller sub-pollen 

particle release from the pollen grain. As far as dry pollen is concerned, no evidence of 

the release of the sub-pollen particles onto the surface of dry pollen was observed. 

However, when in contact with moisture like mucosa of the upper respiratory tract, the 

allergen proteins elute within minutes and can induce local allergic reactions (Grote et al., 

2003).  

In conclusion, the SEM results suggest that the exposure of pollen to different 

environmentally relevant treatments and conditions provide pathways for the release of 

allergen-bearing subcellular particles from the birch pollen grains. However, all the 

mentioned mechanisms of the pollen subparticles release in this study was induced. This 

release of particles from the inside to the outside of the pollen is what allows significant 

nitration to occur. This is most likely why hydrated pollen in rainwater showed the 

highest nitrated allergen protein content within Chapter 4. This result may explain further 

why nitration was not detected prior to rupturing and provided added support for the 

hypothesis that ‘pollen does not get nitrated undamaged but it does when it is ruptured 

open’. 
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            CHAPTER 6 
 

Effect of pollen count on respiratory 
related ambulance callouts 
 

 
This chapter investigates whether there is statistical relationship between birch pollen 

counts with temperature, NO2 and various callout categories of the London Ambulance 

Service.   

 

6.0 Synopsis  
 
Exposure to pollen can contribute to several medical conditions and rise in hospital 

admissions. The laboratory results in Chapter 4 revealed an interaction between pollutants 

and birch pollen, in particular, NO2 was able to nitrate various proteins. Such a 

mechanism may cause an increase in the allergenicity of pollen. This study examines the 

association between birch pollen count and allergic related illnesses using the London 

Ambulance Service callouts, that are discussed in Chapter 2, as the metric of illness 

intensity. The callouts were adjusted for temperature and NO2 concentration. The analysis 

using odds ratio supports an increasing trend in the number of callout rates for some 

illnesses with respect to airborne pollen concentration. However, no significantly robust 

results were identified. Finally, the reasons for these null results are discussed. 

 

6.1 Objective  
 
 

In the preceding chapters, in the laboratory, the link between air pollutants and pollen-

protein-specific modification at the proteome level as well as morphological changes after 
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exposure to NO2, RH and rainwater were demonstrated. Additionally, the basic 

relationship between air mean temperature, and to a lesser degree RH, with certain 

medical conditions have been demonstrated using the ambulance callout rates as a proxy 

for illness. In this chapter, a comparison of allergic related illness measured by the 

London Ambulance Service will be compared to birch pollen counts recorded in 

Highbury, London. Note, a clear defficiency in this study is that the ambulance callouts 

are for the whole of london whilst the birch pollen data is just for Highbury. 

 
 

6.2 Introduction  
 
In order to strengthen investigations of seasonal allergic reaction such as asthma in 

humans, time series analysis of airborne pollen data for various urban locations have been 

conducted (Haberle et al., 2014). Development of predictive models between the variables 

of interest was possible due to the availability of the large data sets (Emberlin et al., 2002; 

Rodriguez-Rajo et al., 2003; Schäppi et al., 1998; Sofiev et al., 2013).  

There are several factors that may provoke allergic reactions and asthma based on 

individual’s condition. This includes pollen, house dust mites, pollutant, climate, exercise, 

tobacco smoke, emotional issues, to mention a few (Osborne et al., 2017). Asthma 

exacerbation as a result of pollen effects is gradually understood (Osborne and Eggen, 

2015). For example, a significant connection between grass pollen exposure and hospital 

admittance for asthma has been observed: in Australia both in adults (Erbas et al., 2007) 

and children (Erbas et al., 2012); in France (Huynh et al., 2010); in the UK (Lewis et al., 

2000); in Spain (Altzibar et al., 2015; Tobias et al., 2004); in Italy  (Ruffoni et al., 2013); 

in Hungary (Makra et al., 2012); and in the USA (Darrow et al., 2012; Gleason et al., 

2014; Jariwala et al., 2014). Previously associated health outcomes with severe pollen 
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contacts include allergic rhinitis, food allergy (Datema et al., 2015), cardiovascular 

incidents (Brunekreef et al., 2000), preterm childbirths (Lavigne et al., 2017), and 

psychological conditions (Qin et al., 2013). Evidences suggested that the levels (Negrini 

et al., 2011; Ziello et al., 2012) and allergenicity of pollen are growing with time, 

probably in connection with worldwide weather alteration (Singer et al., 2005; 

Vardoulakis and Heaviside, 2012) and air pollution as well. Clearly there is a rise in the 

burden of allergic respiratory diseases (Beggs, 2004; Beggs and Bambrick, 2006; D'amato 

and Cecchi, 2008; D’amato et al., 2007), however; the reasons behind it are still not 

entirely understood (Reid and Gamble, 2009). Due to the lack of data suitably resolved 

over time and space, pollen concentration at present is mostly unclear (Schultz and Wang, 

2006). An essential factor for estimating disease development and consequence can be 

based on knowledge of pollen concentration in the air (Schultz and Wang, 2006). 

Additionally, mapping the locations of allergenic plants in the UK can also provide the 

detail required for impact assessments (Mclnnes et al., 2017). 

 

6.2.1 Pollen count  

Pollen concentrations are highly variable daily and may travel lengthy distances partly 

because of weather conditions, thus, its concentration in the atmosphere (particles per m
3
) 

is not just a confined occurrence (Osborne et al., 2017). It has been stated in some studies 

that pollen concentrations when measured, correlate across distances of 20 km (Erbas et 

al., 2007) and 41 km (Pashley et al., 2009), and yet there is possibility of the pollen to 

travel much further, including crossing a continent (Skjøth et al., 2007). Measuring the 

number of pollen grains in a given volume of air, using a pollen trap, generates a pollen 

count. A count of 70 pollen grains/m3 or more is considered high in some cases 

(Kiotseridis et al., 2013). In another study, high pollen count is defined as 80 pollen 
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grains/m3 based on the details showing that 90% of patients with allergies express mild 

signs at this threshold (Skjøth et al, 2015). The risk posed by pollen counts to an 

individual depends on specific plant pollens the individual is allergic to. Essential 

knowledge on pollen count and concentration can significantly help to manage asthma 

and hay fever by providing the public with relevant information. Skjøth et al. (2009) 

reported that 90% of patients allergic to birch pollen show mild symptoms when the 

pollen count is above 80 grains/m3 at the start of the birch pollen season (Skjøth et al., 

2009). However, 80% of patients do show indications of allergic reaction at a level below 

30 grains/m3 during the late season (Emberlin 1997; Koivikko et al. 1986; Viander and 

Koivikko 1978). 

 
The pollen count is simply the number of pollen spores per cubic metre of air. The UK 

pollen data is gathered using a network of pollen monitoring stations run by the Met 

Office.  The stations all use the same type of device, the seven-day volumetric spore trap 

made by Burkard (Latałowa et al., 2002).  Because collecting pollen from the ambient air 

on rooftops avoids measuring highly localized pollen concentrations, most stations are 

located on flat roofs of two or three story buildings. Figure 6.1 shows birch tree density 

(%) in broad-leaved forests and location of broad leaved forests in southern England and 

Wales (Skjøth et al. 2009) as well as location for pollen and air quality monitors, within 

UK. 
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Figure 6.1: Betula tree density (%) in broad-leaved forests and location of broad 
leaved forests in southern England and Wales (Skjøth et al. 2009). Also shown are 
the location of three pollen-monitoring sites (solid circles) and the meteorological 
stations (triangles) within UK. 
 
 
 
 
“Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-

season trends but also to track changing patterns in flowering phenology” (García-Mozo 

et al., 2014) thus offering fundamental information to the public on how to prevent 

unnecessary exposure. 
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6.2.2 Pollen calendar 

Depending on the time of year, the type of pollen in the air changes. Notably, weather 

conditions affect how much pollen is released and spread around. Previously, it has been 

stated that the principal sources of birch (Betula spp) pollen is the urban environment 

(Skjøth et al., 2012) due in part to the use of birch as ornamental trees. Pollen seasons are 

defined by four parameters namely: the start, duration, peak and the end (Haberle et al., 

2014). Several other studies have reported that temperature and pollutant are influencing 

factors for longer pollen seasons (D’Amato et al., 2015; Reid and Gamble, 2009; Schmidt, 

2016).  

Figure 6.2 displays a generalized pollen calendar exhibiting when the main allergenic 

plants are in flower. Yearly, the exact of the pollen seasons will differ depending on the 

weather conditions and other natural and man-made factors. In the U.K, pollen from tree 

species are released typically in the mid-March to early June period, where birch has peak 

pollen release predominantly in April (Osborne et al., 2017). “Although the start of the 

season can vary by up to a one month and often occurs about two weeks later in Scotland 

compared to southern England” (https://www.worcester.ac.uk/discover/nparu-pollen-

types-birch.html). 

 
In Western Europe, the highpoint period of the pollen normally starts at the end of March, 

and in central and Eastern Europe, from the beginning to mid-April (Emberlin et al., 

1990). For Northern Europe, the flowering season starts from late April to late May 

(depending on the latitude) (D’Amato, 1991). Pollen values peak between “1–3 weeks 

after the start of the season and the duration of the main season is remarkably dependent 

on temperature, thus varies from 2 to as much as 8 weeks” (D’amato et al., 2007). This 

statement implies that a relationship between Pollen season and temperature do exist. 
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Spieksma et al. (1995) reported that air temperature in the period prior pollen release is 

influential for the initial date of pollen season (Spieksma et al., 1995). 

 
Figure 6.2: Pollen calendar of different pollen types showing the start and end of 
their flowering seasons.  
Adopted from (https://www.worcester.ac.uk/pdfs/pollen-calendar.pdf) 

 

 

6.3 Methodology 

6.3.1 Data sets 

Birch pollen count data of Highbury, London was provided by University of Worcester. 

LAS provided daily-anonymised ambulance data, which provided information on callout 

category for ambulances for the whole of London. Temperature was that of St James Park 

observatory, which occupies a central position in London. Data from government air 

pollution monitoring stations from the Automatic Urban and Rural Network (https://uk-

air.defra.gov.uk/data/) were used to calculate the daily concentration (µg/m
3
) of air 

pollutants, nitrogen dioxide (NO2). Data was that of urban background station, North 
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Kensington that had no missing data from the periods analyzed (01st April to 31st May 

2005). North Kensington station was chosen because it represents background urban 

pollution levels and is known to be a site with good data coverage. The AURN site and 

pollen station are ~7 km distant to each other.     

The data for the pollen count was recorded from every year from the 1st of April to 31st 

May (two months data) in the time period of 2005 to 2013 with no pollen record of the 

year 2012. Some years contain missing data within the pollen count season.  

 
 

6.3.2 Methods 

All 6 years (2005-2010) of data were combined and analyzed using only the dates 

inclusive of the 1st April – 31st May due to the availability of the pollen measurement 

data. It is noted, in some years, the birch pollen season has clearly started earlier than the 

1st April. Here, within the monitoring period (April and May), pollen season days are 

defined as those on which the recorded pollen count is greater than 30 pollen grains m-3. 

If the pollen count is less than 30 pollen grains m-3 then these days are defined as off-

season. 

 
The data sets analyzed consist of 6 years pollen counts, illness codes, temperature and 

NO2 (2005-2010).  The pollen count record was interpolated to remove any missing data 

from the record. The temperature dependence and long-term trend taken from Chapter 2 

was considered. 

 
The statistical software R (version 3.0.2) was used for statistical analysis and, excel was 

used for data manipulation and generation of some plots.  
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6.3.2.2 Odds ratio 

The odds ratio (OR) statistic measures relationship between an exposure and outcome 

(Szumilas, 2010). “Specifically, the OR measures the ratio of the odds that an event or 

result will occur to the odds of the event not happening” (McHugh, 2009). 

 
The criteria of setting the limit values of high and low pollen day for calculating the OR 

was based on the information regarding pollen counts being high or low and the available 

data range. The set criteria number used were less and greater than 30 grains/m3. The odds 

ratio in the data sets were searched and identified, using the formula below. Results are 

expressed as odds ratios (OR) with their 95% confidence intervals designated as 95% CI. 

OR= a/c = ad 
         b/d    bc 
 
Where  a = Number of exposed cases 
          b = Number of exposed non-cases 
          c = Number of unexposed cases 
            d = Number of unexposed non-cases (Szumilas, 2010) 
 
 
In this study,  

a = daily number of cases of call out category of interest with pollen count over set  

      criteria  

b = daily number of non-cases of call out category of interest with pollen count over set    

      criteria  

    = population of London – daily number of cases of call out category of interest with     

   pollen count over set criteria 

   » population of London 

c = daily number of cases of call out category of interest with pollen count below set      

      criteria  

d = daily number of non-cases of call out category of interest with pollen count below set  
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      criteria  

      = population of London – daily number of cases of call out category of interest with  

      pollen count below set criteria 

      » population of London  

n.b. set criteria = 30 grains/m3 of birch pollen count. 

Because b » d, the OR simplifies to a/c. Results are reported in section 6.4.3  

 

6.4 Results and discussion  
 

In an attempt to identify the causes of increased allergic illness, the correlation between 

trends in pollen counts and allergic related illness codes was evaluated. The time series 

analysis across the 6 years data found evidence of no obvious association between the 

pollen count of Highbury, London and LAS callouts. As shown in Figures 6.3 A and 6.4 

A, there is little obvious evidence of correlation in the 2006 data set (data with highest 

pollen count) with RCI and Asthma illnesses, a similar lack of correlation is observed in 

all years and by combining all 6 years data (Figure 6.3 B and Figure 6.4 B). However, the 

lack of apparent correlation was for same day association between the variables as the 

model used did not investigate any time lag pollen exposure and illness indication. 
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Figure 6.3: Scatter plots of respiratory chest infection (RCI) versus pollen count of 
Highbury, London using single (2006), A and all year’s data (2005-2010), B. There is 
no obvious correlation between the variables. 
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B 



 199 

0

5

10

15

20

25

30

35

40

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

As
th
m
a

Pollen	count

POLLEN	COUNT	AND	ASTHMA	 (2006)

 
 
 
 

0
5

10
15
20
25
30
35
40
45

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

As
th
m
a

Pollen	count

POLLEN	COUNT	AND	ASTHMA	 (2005-2010)

 
 

 
Figure 6.4: Scatter plots of Asthma versus pollen count of Highbury, London using 
single (2006), A and all year’s data (2005-2010), B. There is no obvious correlation 
between the variables. 
 
 
 
In relation to weather, some ambulance callout categories have already been shown to be 

temperature dependent in Chapter 2, and in particular respiratory chest infection is found 

to be very temperature dependent.  Figure 6.5 presents the scatter plot of respiratory chest 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
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infection (RCI) versus temperature for the investigated time period. A slight negative 

relationship between the two variables was observed but is less significant than the 

relationship shown in Chapter 2 due to the reduced data density of only using 2 months of 

data which span a smaller range of temperatures than what is observed if the whole year is 

analysed.  
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Figure 6.5: Scatter plots of RCI (respiratory chest infection) versus temperature of 
St James Park, London. There is a slight negative relationship between the two 
variables. 
 

  

6.4.1 Trends in pollen counts 

 
Characteristically, birch pollen season begins with low pollen counts before the peak 

season starts. However, a large inconsistency in the pollen count trends is evident, 

indicated by the presence of high pollen days. To justify the reason of these trends is not 

within the scope of this study. Longer days of observation and comparison with 

environmental conditions might provide the reason behind the pollen count trends 

(Spieksma et al., 1995). The high pollen days may be caused by several factors such as 
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weather, and occurrences of long-range transport (Ziello et al., 2012). Figure 6.6 shows 

the time series plot of the complete 6 years data investigated. There are no consistent 

trends in the plots with respect to the 6 years data, yet, there is a common occurrence of 

high pollen days either in mid or end of April. Some years show cyclic behaviour (Figure 

6.7; cyclic behaviour and high pollen days indicated with blue arrow). In the peak period 

of the birch season that occurs in April, the count can be very high because each birch 

trees produce millions of wind-dispersed pollen grains  

(https://www.worcester.ac.uk/discover/nparu-pollen-types-birch.html). 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6.6: Shows the trend of the complete 6 years data investigated, 2005-2010. 
 
 

Previous research indicates that per decade over the last thirty years, the birch pollen 

seasons now starts five days earlier (Emberlin et al., 1997; and Emberlin et al., 2002).  

Also, records on the start of birch pollen seasons monitored across three sites (Cardiff, 

Derby and London) in the UK for forty-two years showed a trend for the pollen season to 

begin earlier (Emberlin et al., 1997). 

2005  2006      2007     2008 2009         2010 
       Date     

Pollen counts 

	



 202 

         

          
 
Figure 6.7: Individual pollen counts trend, where the plots display the cyclic up-and-
down behaviour for some years (2008 & 2009) and the high pollen days pointed with 
the blue arrow.  
 

 

Birch pollen season has clearly started as indicated on the pollen calendar (Figure 6.1) and 

stated by the Met Office (Met Office, 2017) before measurements were recorded. Hence 

pollen exposure occurring before 1st April has been missed. This suggests data limitation 

and restriction of intensive analysis. Future longer-term studies that will incorporate all 

pollen season could hypothetically overcome these restrictions. In this study, the 

limitation was the lack of recorded data for days prior to the peak birch season. Typically, 

different tree pollen experience short peak periods of 2–4 weeks with lower 

concentrations, again restraining the statistical influence to assess their effects on 

diseases, unlike the combined grass pollen that naturally has prolonged flowering period 
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and additional days of higher pollen concentrations (Osborne et al., 2017). Furthermore, 

establishing species-specific links using time series analysis may be difficult because tree 

pollen periods can overlap significantly (e.g. ash and birch) (Osborne et al., 2017).  

 

6.4.2 Time series comparison between illness codes and pollen count  

In some years, there appears to be a slight relationship between high pollen counts with 

asthma, respiratory chest infection, dyspnoea and allergic reactions. However, this 

observation is difficult to make statistically robust. This difficulty is almost certainly due 

to other influencing factors such as pollutant and weather change, precipitation, humidity, 

thunderstorms, wind, atmospheric blocking, heat and types of source vegetation (Osborne 

et al., 2017). “These may well be difficult to separate as individual factors, as they are 

often strongly linked (e.g. temperature and pollination in plants), and it can be difficult to 

identify sufficiently large data sets to perform the appropriate stratified analyses” 

(Osborne et al., 2017). Further in-depth analysis with variable data might provide more 

crucial and interesting information. Note that particularly strong pollen counts sometime 

seem to be associated with peaks in certain callout categories, as highlighted (white) in 

Figure 6.8. 

It is reported in another study, exposure to pollen concentration of 20 pollen grains/m3 of 

air showed noticeable symptoms in patients allergic to grass and at concentration of 65 

pollen grains/m3, the symptoms were intensified while at 120 pollen grains/m3 (several 

hours exposure), it causes dyspnoea in some patients (Rapiejko et al., 2007). Comparable 

symptoms transpired after contact with birch pollen. Thus, it can then be established that 

clinical signs of allergic disease are dependent on the concentration and the kind of 

aeroallergen the individual was exposed to (Rapiejko et al., 2007) and the time of 

exposure. 
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Figure 6.8: Demonstrates the daily trend of birch pollen count and some of the 
illness codes using the 2006 birch pollen count (Pollen C) data (asthma, allergic rash 
reaction (ARR) and respiratory chest infection (RCI)). The highlighted section in 
white indicates rise in the illness codes during high pollen count days. 
 

Figure 6.8 displays plots of the daily trend of birch pollen count (2006) and some of the 

illness codes using the 2006 data (asthma, allergic rash reaction and respiratory chest 

infection) where it can noticeably be seen that the illnesses data do have a cyclic up and 

down behaviour even in the nonappearance of pollen season possibility due to other 

influencing factors as mentioned earlier. Very few studies have narrated significant 

associations between pollen concentration and hospital admissions (Lierl and Hornung, 

2003; Zhong et al., 2006), which might be due to geographic differences in allergen levels 

or the prevalence of allergies (Anderson et al., 1998). Some researchers have reported that 

pollen counts correlate weakly with symptoms (Agarwal et al., 1984; Buters et al., 2010; 

Date  
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Frenz, 2000; Marsh et al., 1987 ), since (i) the allergen exposure alone does not strictly 

represent the counts (Buters et al., 2010; Frenguelli et al., 2010; Galan et al., 2013),  (ii) 

relationship between pollen and allergic symptoms is non-linear (Caillaud et al., 2014; 

Caillaud et al., 2012), and (iii) atmospheric conditions or air pollution may interact with 

pollens (Annesi-Maesano et al., 2012; Lubitz et al., 2010). “In general, pollen count and 

allergen in ambient air follow the same temporal trends. However, because a 10-fold 

difference can exist in allergen potency of birch pollen, symptoms might be difficult to 

correlate with pollen counts, but perhaps better with allergen exposure” (Butes et al., 

2010). 

 
Figure 6.9 displays scatter plots of pollen count data versus temperature and NO2 

respectively indicating no significant relationship with temperature and NO2. In another 

study by Newnham et al. (2013) the start of the birch pollen season strongly correlated 

with March mean temperature, which reinforced previous findings that the timing of the 

birch pollen season in the UK is particularly sensitive to spring temperatures (Newnham 

et al., 2013). However, this study did not have the March pollen count data to verify 

previous literature findings.  

 

Unfortunately, the pollen data set was not very dense and measured in a specific area of 

London whereas the ambulance callouts are representative of the whole of London. The 

environment where the pollen data was recorded may also influence results. For instance, 

in larger geographical areas, pollen samplers might be placed at different locations. Hence 

the levels of allergens in environment may vary quite significantly from the levels sensed 

by the sampler in comparison to a distance from the sampler where the patients may live. 

Again, all this comes down to where an individual gets exposed and illness data recorded. 

A future project could profitably investigate the ambulance callouts that are local to the 
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pollen counting measurements not more than 41km away. However, for this study we did 

not have geotagged ambulance data available. 

 

Figure 6.9: Scatter plots displaying the relationship between year 2005 data of birch 
pollen count with temperature (A), and birch pollen count with NO2 (B) respectively. 
There is no statistically significant relationship found between the variables. The 
data sets used are that of year 2005. 
 

 
A                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B                                                         
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Putting all the results together, there were no clear identified patterns of association 

between pollen count, pollutant and analysed allergy related illness of the LAS when 

either individual or collective years’ data are considered. 

 

6.4.3 Odd ratio outcome 

Odds ratios associates the manifestation of an outcome of concern such disease after 

exposure to the variable of interest like pollen count (Szumilas, 2010). A ratio of 1.0 is 

called the null value and is interpreted to mean that there is no relationship between the 

disease and the exposure, above 1.0 indicates that the exposure increases the risk of 

disease, and below 1.0 indicates that the exposure protects from the disease. 

 
Before conducting the odds ratio analysis, the data was corrected for long term and 

temperature dependent trends, as discussed in Chapter 2. Both the illness categories and 

pollen (birch) count used are of 2005-2010 dates ranging from 1st of Aril to 31st May. 

 

Illness codes (2005-2010) OR (95% CI) 

Asthma  1.012(0.812-1.261) 

Allergic rash reaction  1.014(0.843-1.219) 

COPD  1.037(0.8767-1.226) 

Dyspnoea  0.998(0.8134-1.223) 

Generally unwell  1.002(0.815-1.232) 

Respiratory chest infection  0.984(0.810-1.194) 

Table 6.1: Reports the odd ratio between pollen counts and allergic related illness 
codes. Both the illness categories and pollen (birch) count used are of 2005-2010 
dates ranging from 1st of Aril to 31st May. The reported associations (OR above 1) 
are not statistically robust with the 95% confidence limits of all the ORs lying either 
side of unity. This indicates that even though the ORs results might imply increase 
risk due to exposure, they are not statistically significant. 
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Table 6.1 reports the OR and their 95% CI for pollen counts with respect to allergic 

related illness codes. Some of the analysed illnesses (Asthma, Allergic rash reaction, 

COPD and Generally unwell) show odd ratios that are greater than the null value of 1. 

This indicates that pollen counts over the set criteria (30 pollen grain/m3) lead to an 

increased prevalence of illness categories. However, none of the reported associations are 

statistically robust with the 95% confidence limits of all of the ORs lying either side of 

unity.  This indicates that even though the ORs results might imply increase risk due to 

exposure, they are not statistically significant. 

 
In general, the lack of strong relationship and reduced risk on high pollen days could be 

linked to a reverse causation effect, due to increased medicine use such as antihistamines 

and enhanced managing of illnesses during high pollen season, as patients have increased 

knowledge of the situation (Osborne et al., 2017). The absence of any well-defined 

association between birch pollen and asthma is coherent with the recent Osborne et al. 

(2017) study. However, in New York City links between tree pollen including birch was 

established as opposed to previous work (Ito et al., 2015) and the finding from this 

research findings.  

 
Figure 6.10 displays a forest plot of the OR results where the results of the different 

illnesses, with 95% CI, are shown in the plot. The forest plot is a graph that has one line 

representing results for different parameters in the same study (Petrie et al., 2003). It can 

be observed that the OR values were less than one in dyspnoea, respiratory chest infection 

and more than one in asthma, allergic rash reaction, COPD and generally unwell as shown 

in the plot (Figure 6.10). However, the 95% CI indicates that the results are not 

statistically robust. That is the presence of pollen does not increase the risk of the diseases 

with OR above 1 and prevents diseases below 1. 	
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Figure 6.10: Forest plot of the OR results of different illnesses (2005-2010). The 
horizontal bars in dark red represents the OR (odds ratio) value of each illness codes 
presented vertically on the left side of the plot, while the horizontal line alined with 
the dark red bars represents the 95% CI (confidence interval) of the illnesses . The 
vertical line represents value 1.  
 
 

6.5 Conclusion 
 
The chapter sets out to see if ambulance callout rates, for categories that might be linked 

to allergic diseases, could be linked to birch pollen counts and NO2. Previously in Chapter 

2 we have highlighted the importance of temperature on certain ambulance category 

callout rates. There were no consistently clear patterns of association between the illness 

codes and birch pollen count and NO2 observed. 

 
The odds ratio analysis suggests that birch pollen could be linked to certain callout 

categories, but none of the associations were strong and were all statistically insignificant. 

Nevertheless, this chapter does provide some evidence to suggest a pollen count threshold 

above which adverse effects are more likely to occur. 
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In conclusion, more research is needed in this area to understand further the relationship 

between pollen counts, pollutant concentration and weather in relation to human illnesses. 

Understanding this relationship may be the underlying answer why there are additional 

increase in pollen amounts, which in turn, leads to a larger exposure of humans to pollen 

allergens, with potentially severe concerns for public health. The colocation of health data 

with the pollen data would likely help generate data which is more amenable for statistical 

analysis. In future, it might be profitable to look at the grass pollen season. From a 

statistical standpoint, there is a better chance of finding a statistically robust result 

because of the longer flowing season which would allow for a long time series to be 

analysed. 
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   CHAPTER 7 
Summary  
 

This chapter summarizes the different phases of the work carried out and described in this 

thesis. General overviews of the principal outcomes obtained from the various sections of 

the work are organized in this chapter.  

The overall aim of this study was to establish the relationship between pollen, in 

particular birch pollen, with air pollutants and weather and to see if these relationships 

could be linked with increased allergenicity of pollen. If established, these relationships 

could provide rationale behind the general observation of increasing allergic diseases in 

westernized countries. It is important to remember that certain pollen species without 

modification are natural atmospheric environmental allergens that in some instances 

responsible for severe human health effects (Bosch-Cano et al., 2011; Cresti and 

Linskens, 2000; D'amato et al., 2010; Traidl-Hoffmann et al., 2009). In the atmosphere, 

pollen co-exists with air pollutants and weather. The combination of pollen with pollution 

and weather has the potential to increase the allergenicity of pollen. The summary of the 

results for each scenario is reported below. 

o Chapter 2 explored the relationships between observed weather, in particular 

temperature, and a number of ambulance calls, incidents and response times. The 

data were studied using statistical models and specifically time series analysis. 

The time series data all showed a significant long-term increase in callout 

frequency, which were typically non-linear and category dependent due to 

increased ambulance usage in London. Certain categories show a clear seasonality 

and where present, is hypothetically driven by temperature. The findings show that 
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both cold and hot temperature influence different categories of illnesses, as earlier 

stated in other studies. The relationship of the top 20 call-outs and mean air 

temperature were inspected, where some illnesses have displayed lag effects 

indicating the onset of illness categories requires a period of incubation. 

Ambulance services are also shown to be affected due to increased demand by 

patients when there is extreme weather, in particular heat waves and cold waves 

were investigated. Finally, we highlighted that the identified relationship between 

weather and ambulance callout rates could be gainfully used to forecast ambulance 

callout rates and thereby improve the efficiency of the London Ambulance 

Services.  

 
o This is the first study that has shown the effects of ambient temperature on 

London ambulance call-outs for specific categories (Mahmood et al., 2017). Given 

the lack of research into temperature effects on London ambulance callouts, the 

study will contribute to an understanding in this regard and may also serve as a 

firsthand information for ambulance services and hospital staff to plan and prepare 

way ahead of time. As ambulance callouts often occur for situations that do not 

need hospital admission, it may imply that ambulance callout data might be useful 

in surveillance systems since it can provide the facility to monitor health outcomes 

that would not ordinarily be captured during hospital admissions or in case of loss 

of life. The modelling approach for the prediction could serve as an early warning 

tool for health surveillance systems as well as ambulance services.  

 
o Chapters 3 & 4 of this research was a laboratory study into post-translational 

modification of birch pollen protein. In particular, the study investigated the effect 

of NO2 on protein of pollen grain responsible for allergies in humans. To do this, a 
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full methodology and laboratory protocol was devised both to expose the pollen to 

NO2 and other environmental conditions, and subsequently to measure the effect at 

the proteomic level. The NO2 concentrations used were between 2 ppm to 10 ppm 

and exposure time ranged from 60-120 minutes, which led to realistic life time 

exposures of pollen grains in the urban atmosphere. Similarly, realistic exposures 

of O3 and RH were also used. The proteomics approach investigated the whole 

structure of the protein. Proteomic analysis of this post-translational modification 

was ascertained using mass spectrometry-based and dot blot techniques. The 

findings indicated that the interaction between gas phase pollutants and pollen can 

cause protein specific modifications; in particular, addition of a nitro group (–

NO2) to the phenolic ring of a tyrosine residue (Zhan and Desiderio, 2009), which 

is in agreement with some of the previously carried out researches. In a nutshell, a 

link between air pollutants and pollen protein specific modification was 

demonstrated. However, there were challenges in detecting and quantifying the 

degree of nitration using the MS analysis and TMT labeling tags respectively. This 

study provided the first evidence of nitration of pollen protein directly in real 

pollen, which contain a soup of complex protein mixtures held within the 

protective case of pollen walls. Previous studies demonstrated nitration of the 

allergen, but to do so, they had to isolate of the allergen protein Bet v 1 by 

expressing it in e-coli or directly isolated Bet v 1 protein.  

 
o In the preceding Chapters (3 & 4), the changes that occur on a protein of birch 

pollen grain were assessed at the proteome level. Here (Chapter 5), the 

investigation was at morphological level upon contact with rainwater, RH and 

NO2 as well. This study has also proven within pictorial evidence that birch pollen 

grain can rupture through its germination pores in high RH and moisture and also 
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contain fluorescence materials. The fluorescence intensity reduces over time 

mainly due to photobleaching. The finding that, under induced moist conditions, 

pollen grains release protein contents and can be nitrated, adds to our 

understanding of the relationship of pollen exposure and allergic sensitization. It 

may also help to improve the understanding of the reason behind increased pollen 

allerginicity. In line with previous investigations, this release mechanism may 

explain the recurrent observation that illnesses particularly asthma attacks 

commonly strike after episodes of heavy rainfall (Grote et al., 2000).  

 
o In the last empirical Chapter (6) of this study, again using a statistical model, the 

laboratory-derived results were supported with a time series and odd ratio 

examination of allergic related illness codes. This took into account the pollen 

count data from for Highbury in London (provide by the University of Worcester), 

temperature data of SJP and NO2 data of North Kensington, London. Note that 

from the first experimental Chapter, we already know that temperature is a strong 

determinant. However, this was done to advance our understanding and begin to 

link the relationship between pollen and illnesses. That is to see if there would be 

a strong signal of increased allergenic illnesses when both pollen count and 

pollutant concentrations are high. The study showed only a weak and non-

statistically robust relationship between the variables. Nonetheless, from Chapter 

2, we noted that temperature is a major determinant in respiratory illness although 

the lack of adequate data made it difficult to unpick the more subtle effects of 

pollen concentration to the temperature effects, and possibly other non-

environmental effects. Undoubtedly, there are additional factors besides the 

absolute level of the pollen count that is influencing the occurrence of allergic 
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related illnesses since the trend of the illnesses during pollen and non-pollen 

season did not change in a statistically significant manner.  

 
In a wider context of this thesis, we demonstrate that the relationships between 

temperature, and to a lesser extent RH, and some medical conditions do exist and have 

been established (Chapter 2). We show that the air pollutant NO2, under certain 

realistic environmental conditions, can nitrate pollen grains (Chapter 4). Since protein 

nitration is often linked to diseases, this is an important link to have been established. 

It has also revealed that; RH and hydration affects pollen grain morphologically and 

enhances the release of its particles and also shows that pollen grain fluorescence 

(Chapter 5) where the intensity reduces largely as a result of photobleaching.  

Although no strong statistical correlations between pollen, pollution, and illness, as 

interpreted using ambulance callout rates, could be established (Chapter 6), It is 

possible that studies with a larger sample size may allow for obvious relationships to 

be observed (Carracedo-Martinez et al., 2008).  

 

 

7.1 Concluding remarks 
 
This thesis has demonstrated straightforward, reproducible techniques to advance 

understanding of the relationship between pollen, pollutant, weather and human health. 

Collectively, the overall finding of this study outlines the critical impact of weather, 

pollutant and bioaerosols on human health.  
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               CHAPTER 8 
Evidence based recommendation 
 
 
Currently, understanding the effect of air pollutants on pollen and their allergenic 

potential is a critical scientific subject. The work in this thesis has made significant 

inroads into understanding the mechanisms of the interaction of air pollution with 

allergenic pollen. However, the effect of air pollutants on the allergenic potential of pollen 

is not yet completely clear.  

 
 

8.1 Future directions  
 
The outcomes of this research have shown that some issues remain unresolved and require 

further investigation. This study highlights some areas where further understanding of the 

interaction of air pollution, weather, and bioaerosols with human health is required. To 

develop a full picture of this relationship, additional studies are needed.  

Recommendations of future study areas to be further explored are identified and reported 

below:    

 
• Even though the proteomic MS approach, detailed in this thesis, is currently one of 

the best available analytic technologies that is able to offer both qualitative and 

quantitative information about natural and post-translationally modified proteins, 

it has its limitations. MS does not guarantee valid data and must be used with 

other thoroughly validation methods for optimal sensitivity, selectivity, specificity, 

precise and accurate identification and quantification of protein of interest. 

• Precise and accurate quantification of altered proteins is of vital significance to 

numerous areas of biology (Duncan et al., 2009; Stevens et al., 2008). However, it 
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is clear at this point that, perhaps due to very low amount of protein tyrosine 

nitration and less forceful protocol, the definite identification, and precise 

quantification of nitration partially remains unsolved and requires further 

investigation. Thus, there is the need for continuous strive to overcome the 

misidentifications and quantification that have troubled this and other studies with 

the hope that potential investigation will overcome these challenges. In future 

investigations, it might be possible to reuse the Tandem Mass Tag (TMT) system 

or a different advanced analytic and quantitative method in which determining the 

specific sites of this modification will not remain a challenge. Continuous efforts 

to avoid interference from non-nitrated peptides without losing recovered nitrated 

peptides are also an important issue for future research. Employing “de novo 

sequencing” is further recommended to properly validate modification found in 

the searches. Though, quantification of degree of nitration was not achieved using 

the tagging protocol, it was semi-quantified using dot blot technique. A successful 

tagging procedure would have provided precise degree of nitration in each sample 

that may help explain the effect of variable concentration on the pollen protein.  

• The exposure of birch pollen to the air pollutant NO2 at levels that can be 

pondered safe for human wellbeing protection, display adverse effects on the 

protein content of the exposed when compared with the control sample. Thus, 

further research should be undertaken to investigate the effects between pollen and 

higher air pollutants concentration.  

 
• As already mentioned earlier, identified relationship between weather and 

ambulance callout rates could be beneficially used to forecast ambulance callout 

rates and thereby improve the efficiency of the London Ambulance Service. 
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Francis Pope is actively working with London Ambulance Service, West Midlands 

Ambulance Service and Scotland Ambulance Service to do just this. And the work 

presented in this thesis is the first step, towards better ambulance callout 

predictions.  

 
• There has been a clear trend towards an increase in atmospheric pollen despite the 

absence of explicitly identified drivers as reported in previous studies. Various 

hypotheses abound: interactions between allergens and other inducing factors such 

as greenhouse gas CO2 (Ziska et al., 2009), precipitation, humidity, thunderstorms, 

wind, atmospheric blocking, heat and types of source vegetation (Osborne et al., 

2017) that intensify the development and symptoms of allergic disease. In this 

study, the trends of the pollen counts could not be attributed to either temperature 

nor pollutant concentration, but as suggested by other studies may be influenced 

by the anthropogenic increase of the greenhouse gas CO2 (experimental) (Darbah 

et al., 2008; Rogers et al., 2006; Singer et al., 2005; Wayne et al., 2002; Ziska et 

al., 2009; Ziska et al., 2008). In this regards, more research is needed in this area 

because a further worldwide increase in atmospheric CO2 is projected (Parry, 

2007).  

 
• It was not possible to investigate the significant relationships of pollen count 

(Highbury station) and other interested variables further because of data limitation. 

Larger data sets will likely help find statistically valid relationships. A more 

comprehensive model should be established to enable a better and complete 

forecasting. Thus, advanced and complete data collection and their incorporation 

into more comprehensive models are suggested. This might aid in determining 

exactly how pollen affects human health statistically.  
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• Investigation of other allergic pollen species such as grass pollen might be useful 

because of the greater counts and longer season as mentioned in another study 

(Osbourne et al., 2017). Data from other pollen stations might also be useful but 

we were unable to obtain them for this study. 

 
• A further study with more focus on the water content of the pollen grain, which is 

very rarely studied, is also suggested. 

 
• The laboratory and modelling protocols developed in this proposal can now be 

used to investigate the impact of gas phase pollutants, other than NO2, upon post-

translational modification of pollen protein. In particular, this should also include 

exposure to nitrous acid (HONO), which is a source of the most important daytime 

radical, the hydroxyl radical (OH). HONO is highly surface active on aerosols and 

one might expect it to be so on bioaerosols. Different allergenic pollen species 

(such as grass) can also be investigated. 

 
 

8.2 Importance of research replication  
 
 
“Published research findings are sometimes refuted by subsequent evidence, with ensuing 

confusion and disappointment” (Ioannidis, 2005). Contradiction and disagreement is 

perceived through the range of research designs, from scientific trials and traditional 

epidemiological investigations (Ioannidis et al., 2001; Lawlor et al., 2004; 

Vandenbroucke, 2004) to the most modern molecular research (Ioannidis et al., 2001; 

Michiels et al., 2005). Incorrect discoveries may be the popular or even the huge majority 

of published research statements in modern study that is an increasing concern (Colhoun 

et al., 2003; Ioannidis, 2003; Ioannidis, 2005). Hence, this calls for need of research 
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replications. Replications are an important part of scientific disciplines. It tests the 

credibility of original studies and has the potential to separate true outcomes from those 

that are unreliable. Both biological and technical replicates are necessary for accurate and 

consistent results. Technical replicates will aid identify errors caused by processing 

variation, while biological replicates will help confirm that biological changes are real and 

not an irreproducible coincidence.  

 
Hence, we recommend that further tests are conducted by other groups to corroborate our 

findings. 
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