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Abstract

Photochemistry plays a critical role in many fundamental processes. These re-

actions necessarily involve excited states and therefore the breakdown of the Born-

Oppenheimer approximation means that many photochemical processes are dominated

by non-adiabatic effects, such as conical intersections. The study of such reactions is

therefore vital to our understanding of many fundamental processes and the interesting

topological features which cause them.

The photophysics and photochemistry of benzene is a classic example of the rich-

ness of competing pathways available to a molecule after photoexcitation. Computer

simulations are one way to provide a molecular picture for the dynamics behind the

experimental observations. We develop a Vibronic Coupling Hamiltonian previously

published [G.A.Worth, J . Photochem. Photobio. 190:190-199,2007]. Using CASPT2

we add dynamic correlation to the description of the excited states, improving their ac-

curacy dramatically. Seven coupled states and all vibrational mode are included in the

model and the parameters are obtained by fitting to points provided by the quantum

chemistry calculations. The model is shown to be a good fit of the adiabatic surfaces

and its accuracy is demonstrated by the calculation of three absorption bands, which

compare favourably with the experimentally obtained spectra.

Using the calculated Hamiltonian we investigate the ultrafast dynamics of benzene

of electronically and vibrationally excited benzene. We observe ultrafast decay which is

a result of internal conversion occurring at the S1/S0 conical intersection at a prefulvene

geometry. These results are able to describe most of the dynamical features seen

experimentally.

Spin orbit coupling is generally a small, but sometimes a vital perturbation to

the Hamiltonian. It is often ignored in hydrocarbons due to the size of the static

coupling at equilibrium. However these static couplings ignore the vibrational effects
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which can occur, and which can be important in describing fine details on spectroscopic

measurements. A detailed analysis of spin orbit coupling in cyclobutadiene and benzene

is presented. Spin orbit coupling values are presented along the important normal

modes, which promote the strength of the coupling. The effect of conical intersections

on the strength of spin orbit coupling are presented by plotting the vector in normal

mode space from equilibrium geometry to the S1/S0 conical intersection.

We further investigate the ultrafast dynamics of benzene by including the triplet

manifold and spin orbit coupling to the Hamiltonian. Ultrafast intersystem crossing is

observe between S1 and T2, which are degenerate along the important prefulvene reac-

tion coordinate. These results challenge the accepted view that ultrafast intersystem

crossing cannot occur in hydrocarbons due to the size of spin orbit coupling.

Coherent control uses shaped laser pulses to control the outcome of chemical re-

actions. Local control calculates a pulse as a function of the instantaneous dynamics

of the system at each time step. By defining some operator, the field is calculated to

ensure an increase or decrease in its expectation value. We present the initial imple-

mentation of this method within MCTDH quantum dynamics package. Using models

of cyclobutadiene, pyrazine and ammonia we demonstrate that this method is effec-

tive in controlling chemical reactions and extremely efficient. The simplicity of this

approach means that the calculated fields are very easy to relate to the dynamics of

each system providing detailed understanding of the processes involved.
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X̃1B1g (red), Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene

over 100fs for the control of population to S2, λ=0.25. (b) Electric field

calculated by the local control algorithm. . . . . . . . . . . . . . . . . . 151

7.9 (a) The diabatic state populations of of the lowest three singlet states,
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Chapter 1

Introduction

Photochemistry is the study of chemical reactions which are initiated by light. In the

simplest scenario light interacts with a molecule resulting in the formation of an excited

species. Each excited state has a definite energy and lifetime, which are exclusively

dependent upon the electronic and nuclear structure of that state. Photochemistry

should therefore simply be considered as the study of the time evolution of the nuclear

and electronic coordinates following perturbation by the radiation field.

Each day the sun provides the earth 100k cal cm−2 of radiant energy, it is therefore

unsurprising that photochemical processes, such as photosynthesis, play such a critical

part in life as we know it. Understanding these processes is therefore not only critical

to our understanding of many natural processes, but also to developing systems which

are able to utilise this energy as efficiently or more so then nature.

There is a multitude of photochemical reactions which play an important role in

chemistry, physics and biology [1]. Photosynthesis is the most obvious example. In this

reaction the pigment chlorophyll absorbs one photon and loses one electron, initiating a

chain reaction to form Nicotinamide adenine dinucleotide phosphate (NADPH). Photo-

synthesis is a very complex process which involves a multiple step mechanism, however

there are many examples of other fundamental processes which are remarkably simple.

A prime example of this is the cis/trans-isomerisation of the retinal chromophore of

the Rhodopsin protein (figure 1.1) [2–4].
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Fig. 1.1: Model potential energy surface of the cis/trans-isomerisation of retinal in Rhodopsin.
At the Franck-Condon point the energy gap between the states is equivalent to the frequency
of visible light, this results in efficient excitation. The gradient in the excited state leads to the
S1/S0 surface crossing resulting in the formation of either the trans form or the regeneration
of the cis ground state. Figure adapted from [2]

.

Rhodopsin is a pigment of the retina that is responsible for the formation of the pho-

toreceptor cells, the first events in the perception of light. Upon interaction with light,

the system is efficiently excited to the S1, because the energy gap at the Franck-Condon

(FC) point is equivalent to the frequency of light. The isomerisation then occurs on

a timescale of approximately 200fs, this is shown in figure 1.1. Other fundamental

examples can be found in [5–7].

As illustrated in retinal the dynamics immediately proceeding excitation can often

describe the ultimate outcome of the reaction and reveal detailed information about

the behaviour of a chemical system. Driven by the manipulation of the electronic

distribution in a molecule, changes occur on the femtosecond (fs) to the nanosecond

(ns) time frame. Quantum dynamics in which a chemical system is represented in a

multi-dimensional model is a powerful method for elucidating dynamical information

about chemical systems on these ultrafast timescales. A wavefunction is propagated
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under the Hamiltonian operator according to the time dependent Schrödinger equation

(TDSE) :

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (1.1)

The solution of the TDSE is a superposition of eigenstates of the quantum system, this

superposition is called a wavepacket and will evolve with time over a potential energy

surface (PES) according to the Hamiltonian operator Ĥ. Therefore one can see that

in order to obtain a good description of the dynamics the PES must be accurately

described, especially in low energy regions most often visited by the wavepacket.

Ĥ = − ~
2

2m

∂2

∂r2
+ V (r) (1.2)

The potential, V(r), which is generally time independent, can be obtained using ab-

initio calculations. By calculating points at various geometries on the PES it is possible

to perform a fit to these points, and thus obtain parameters which will accurately

describe the surface. This obviously becomes increasingly difficult in multi-dimensional

surfaces as the number of points required to obtain a good fit increases.

In all but the simplest cases it is impossible to solve the Schrödinger equation ex-

actly, therefore approximations must be used. A fundamental approximation is the

Born-Oppenheimer approximation (BOA) [8]. By utilising the mass difference be-

tween the nuclei and electrons we can consider the nuclei as stationary with respect

to electronic motion and therefore represent the nuclei as point masses moving over a

PES, provided by the electrons. This approximation allows separation of the nuclear

and electronic wavefunctions in the form:

Ψ(r;R, t) = ψ(r;R, t)χ(R) (1.3)

where r is the nuclear coordinates, R is the electronic coordinates, ψ is the nuclear

wavefunction and χ is the electronic wavefunction. By neglecting the coupling that

can exist, we significantly simplify the overall wavefunction. This approximation works

very well when nuclear vibrations are small.
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Fig. 1.2: Typical types of conical intersection. (a) Symmetry induced sloped (b) E x ε linear
Jahn-Teller. Figure taken from [10].

Photochemical processes, like the isomerisation of Rhodopsin, necessarily involve

excited electronic states. In this scenario fast nuclear vibrations means that the BOA

is no longer valid. The coupling between nuclear and electronic motion can no longer

be considered negligible and can cause the PES to cross resulting in the formation of

a topology called a conical intersection (CI).

First derived in 1929 by Neumann and Wigner [9] CI provide an ultrafast and highly

efficient radiationless transition between electronic states. Since their discovery such

topological features have been shown to play a key role in many photochemical reac-

tions. Figure 1.2 shows two classic examples of CI. Figure 1.2(a) is a sloped intersection

which is formed because the gradient of the upper state is smaller then the lower state,

causing the glancing interaction of the two surfaces. Figure 1.2(b) is a special case, a

Jahn-Teller (JT) CI [11], these occur from the splitting of a degenerate state along a

doubly degenerate mode.

A vital tool for understanding photochemical processes is spectroscopy. Detection

of emission products following radiation of a molecular species naturally lends itself

to photochemistry. In order to accurately probe a process in a time resolved manner
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the radiation source must: (1) Operate typically an order of magnitude faster then the

event, (2) be highly tunable and (3) have a small bandwidth of frequencies to obtain

processable signal.

The development of lasers in the 1950’s accelerated understanding photochemical

reactions. The lasers were able to produce pulses on reaction timescales making it

possible to probe reactions in real time. However it was not until the 1980’s when huge

developments in technologies resulted in lasers which could obtain a subpicosecond

pulse width. This made it possible to probe photochemical processes in the femtosecond

regime, the timescale on which molecules vibrate and bonds break [12,13].

Culminating in the 1999 Nobel prize, femtosecond work was pioneered by Ahmed

Zewail [14]. Ultrafast lasers produced pulses on the order of 10−15s meaning that they

were an order of magnitude faster then a vibrational period (10−14 to 10−13s). This

made it possible to create wavepackets focused upon a section of a vibrational motion

enabling the observation of chemical reactions in real time.

The first example showing the progress of ultrafast events is the dynamics of the I-

CN bond cleavage (PES shown in figure 1.3(a)) [15]. Excitation into the Ã continuum

leads to dissociation along two channels producing ground or excited state iodine,

however importantly for both channels the CN fragment is produced in the ground

state. An initial pump pulse prepares the molecule in the Ã continuum and a delayed

secondary pulse excites the wavepacket into a higher electronic excited state, which

yields an excited CN fragment. The fluorescence signal from the excited CN is detected

by a Laser Induced Fluorescence (LIF) . Because the PES for the two continua are

not parallel by altering the wavelength of the probe pulse the resonance position on

the PES may be moved along the reaction coordinate. Figure 1.3(b) shows results

when the probe wavelengths are 388.9nm, 389.8nm, 390.4nm and 391.4nm. In the

lower three plots the wavepacket passes through resonance and progresses along the

reaction coordinate, shown by the rise and fall of the LIF signal. When λ=388.9nm
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Fig. 1.3: Femtochemistry of ICN: (a) A schematic of the potential energy surface and the
motion of the wavepacket along the I-CN coordinate following excitation into Ã. (b) Ex-
perimental results probing the CN fragment via LIF signal as a function of time with probe
wavelengths of λ=388.9nm, 389.8nm, 390.4nm and 391.4nm. Figure taken from [15,16].

the molecule is dissociated and therefore the wavelength is on resonant with the CN

product fluorescence and therefore no decay in the signal is observed.

This pump-probe approach was also applied to the study of the dissociation of NaI

(figure 1.4) [17]. This showed that upon initial excitation the wavepacket is promoted

to the covalent state which corresponds to Na + I. The wavepacket proceeds along the

dissociative coordinate whereupon it encounters a crossing between the covalent and

ionic states, at R = 6.93Å. At this point a small portion of the wavepacket continues

along the covalent curve, via the avoided crossing and dissociates to produce Na +

I. The larger portion of the wavepacket follows the ionic potential, but does not have

enough energy to produce Na+ + I− and so oscillates back and forth along the dis-

sociative mode, with a small portion of the wavepacket yielding Na + I each time it

encounters the crossing [18]. The oscillations of the wavepacket in the well is shown in

figure 1.4(b). Each peak on the lower plot corresponds to the wavepacket returning to

its initial position and as the dissociation progresses there is a decay in the oscillations

as more Na + I is produced. The upper plot (figure 1.4(b)) is a measure of the amount
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Fig. 1.4: Dissociation of NaI: (a) A schematic of the potential energy surface including the
ground state, first excited state and second excited state. (b) Experimental results plotting
the Na fragment as a function of time. The upper plot on figure (b) shows an increasing
signal of the free Na, the lower plot shows the oscillatory behaviour of the transition state.
Figure taken from [15,16].

of neutral Na produced over time and of course this increases as the reaction proceeds.

This seminal work has been the basis for a huge number of investigations into the

short time dynamics of a large range of important chemical systems [16, 19]. The use

of ultrafast lasers has made it possible to observe reactions in real time. This naturally

lead to the question: If we can use lasers to watch reactions, can we also use them to

control them?

Initial attempts to control reactions were simple and focused upon using force.

They typically used monochromatic light to deposit increasing amounts of energy into

a chemical bond or vibrational mode [20–22]. One initial notable success was the

dissociation of semi deuterated water. By altering the frequency of the light it is

possible to selectively break either the OH or OD bond.

HOD + hνIR → HOD∗ (1.4a)

HOD + hνUV → OH +D or H +OD (1.4b)

This control is a two step process. Initially by varying the wavelength of the first

pulse (νOH=3735.21cm−1 and νOD=2720.9cm−1) it is possible to selectively excite one
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Fig. 1.5: In the Brumer-Shapiro approach coherent control can be achieved by manipulating
interfering pathways of two pulses connecting an initial state to a final state [23].

of the OH or OD bonds. The second ultra violet (UV) pulse is then used to break the

vibrationally excited bond, leading to the products selected by the initial radiation.

Although conceptually a realistic and simple approach, in more complex systems the

energy focused on a bond is spread around the entire system by inter-vibration redistri-

bution (IVR) . Increasing the energy only results in the breaking of the weakest bond.

This early approach for controlling chemical reactions ignored the benefits which could

be obtained by utilising the wavelength and interference properties of light.

Femtosecond lasers and pulse shapers made it possible to introduce more sophisti-

cated ideas for controlling chemical reactions. By altering the amplitude, time delay

(phase) and frequencies of the pulses it becomes possible to create a superposition

which would excite particular eigenstates of interest and hence more selectively control

the wavepacket.

The most well known of these methods are the Brumer-Shapiro (BS) [24] and the

Tannor-Rice-Kosloff (TRK) method [25, 26]. The former (shown in figure 1.5) proved

that by altering the relative phase between two pulses which couple to the final state

allows control of the outcome. The TRK method (shown in figure 1.6) uses a time

dependent picture. By timing the ultrashort pulse correctly is it possible to drive the

wavepacket into a desired channel. The use of the excited state to access the desired
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Fig. 1.6: A schematic for the Tannor, Rice and Kosloff pump-dump approach. An initial
pump pulse creates a wavepacket on an excited state. This is then allowed to evolve on the
excited state field free. At some time after t0 a dump pulse transfers the wavepacket down
to the ground, into the desired minima. Figure adapted from [27].

minima on the ground state lead to this method being referred to as the pump-dump

approach. Both of these techniques proved successful for a variety of chemical systems,

but more importantly exhibited the strong time and frequency dependence required

for controlling chemical reactions.

Theoretical calculations have been very important in advancing understanding of

coherent control. There are numerous examples and methods throughout the literature

[28–30]. One of the most commonly used methods is optimal control theory (OCT) .

First proposed by Judson and Rabitz [31] this technique uses the variational principle

and a iterative process of forward and backward propagations to construct a field which

guides the wavefunction towards a predefined target wavefunction. This method has

been shown to be extremely successful in both theoretical and experimental calculations

[32, 33]. Despite the successes of this method, in theoretical calculations there exists

two main drawbacks of this approach. The nature of the iterative process means that

this method can be extremely computational expensive. Also the optimisation of a field

using a ‘global picture‘ can make them very complex and hard to relate the calculated

fields to the atomic/molecular dynamics.
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Local control theory (LCT) first appeared in the formulation of OCT. Introduced

by Kosloff it has been extensively developed since then [34, 35]. This method moves

away from the picture of a global target, instead LCT produces a control field which is

calculated as a function of the instantaneous dynamics of the system at each time step.

By defining an operator such as electronic population, vibrational state population or

nuclear motion, the field is calculated to ensure an increase or decrease in its expectation

value.

During this thesis the scientific advances we have made during my PhD are pre-

sented. In chapter 2 the fundamental theory surrounding this topic is shown, this is

developed in a practical sense in chapter 3 as the methods used are discussed in detail.

In chapter 4 a detailed study of the early time dynamics of benzene is discussed.

Benzene and its derivatives form a basic structure for a vast range of organic com-

pounds in nature, and is a primary example of a photochemically rich molecule, with a

number of competing pathways that can result after photoexcitation. Much of the be-

haviour has been characterised however a number of questions, especially in the higher

vibrational states of the B2u (S1) state remain unanswered. In this study a Vibronic

Coupling Hamiltonian is set up by obtaining parameters from a fit, up to 4th order,

to ab-initio points calculated along the important normal modes. The main three ab-

sorption spectra of benzene are calculated to test the validity of the models produced.

In the final section of this chapter a detailed analysis of the short time dynamics is

provided and compared with experimental data.

In chapter 5 we discuss the nature of spin orbit coupling (SOC) in some simple

hydrocarbons. The triplet manifold is often ignored in hydrocarbons due to the size of

SOC which is usually very small. In this chapter we give a detailed analysis of SOC

in benzene and cyclobutadiene, with particular interest in the vibrational effects along

the normal modes and the vector leading to the S1/S0 CI.

In chapter 6, the triplet manifold is included into the benzene model Hamiltonian
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calculated in chapter 4. By including the SOC parameters obtained from chapter 5

we are able to present dynamics of a benzene model including both singlet and triplet

states. These calculations are related to recent experimental work done by the Fielding

group at University College London.

Chapter 7 details the work on coherent control. Since the development of fem-

tosecond lasers coherent control has become an important tool for both understanding

and controlling chemical reactions. Various control strategies exist, one of which is

LCT. In this approach the objective is to increase some predefined observable. By in-

tegrating this method into the Heidelberg Multi-configuration time dependent Hartree

method (MCTDH) quantum dynamics package (see chapter 3), we show the effective-

ness of this method in designing laser pulses to control ultrafast processes, especially

on multi-dimensional PES. In this chapter we present control calculations for model

systems of cyclobutadiene, pyrazine and ammonia. This chapter represents a stepping

stone to progress to larger systems with more complicated operators.
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Chapter 2

Theory

In this chapter a detailed description of the fundamental theory and important ap-

proximations used in this thesis are discussed. The core equation for the whole of this

work is of course the Schrödinger equation, in both the time independent and time

dependent forms. Time independent methods, known as ab initio calculations are used

to treat the electronic problem and calculate the potential energy at nuclear geome-

tries to form a PES. Time dependent methods, in which a wavepacket is propagated

over the calculated PES then allow us to accurately describe the nuclear dynamics of

a chemical system.

Due to the size of the wavefunction and Hamiltonian it is impossible to solve the

Schrödinger equation exactly for systems much larger then H2. The requirements of

basis set size and configuration space become too large especially when more complex

systems contain a large number of degrees of freedom (DOF). Therefore approxima-

tions, such as the BOA, are critical to quantum mechanics calculations

2.1 The Schrödinger Equation

Developed by Erwin Schrödinger and first published in 1926 [36], the Schrödinger

equation is one of the single most important equations in physical sciences and is the

basis of modern quantum mechanics. The partial differential equation describes each
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chemical system as a wavefunction which evolves in time:

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.1)

the Hamiltonian operator (Ĥ) is written:

Ĥ = − ~
2

2µi

∇2
i + V (r) (2.2)

i is
√−1 and ~ is Planck’s constant divided by 2π and µ is the reduced mass.

One method of solving equation 2.1 is by using separation of variables. This is done

by expressing the full adiabatic wavefunction Ψ(r, t) as a product of the spatial and

temporal parts [37]:

Ψ(r, t) = ψ(r)T (t) (2.3)

where ψ(r) is the spatial wavefunction and T(t) is the temporal part. Substituting

equation 2.3 into equation 2.1 and dividing by the overall wavefunction we obtain two

equations:

i~
∂T (t)

∂t
= ET (t) (2.4a)

Ĥψ(r) = Eψ(r) (2.4b)

Equation 2.4b is the time independent Schrödinger equation. This equation is an

example of an eigenvalue equation. E is the eigenvalue and can take on certain discrete

values depending on the eigenfunction ψ and linear operator Ĥ. Equation 2.4a can be

developed to give the solution:

T (t) = T0 exp−iEt/~ (2.5)

We may now write the TDSE as

Ψ(x, t) = ψ(r)T0 exp−iEt/~ (2.6)

This describes the time evolution of the wavefunction. T0 is the initial temporal wave-

function which can be absorbed into ψ(r).
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2.2 Born-Oppenheimer Approximation

The Hamiltonian, as described in equation 2.2, is comprised of a kinetic energy and

potential energy part. This may be written in terms of electronic and nuclear compo-

nents:

H = Te + TN + Ve + VN + VeN (2.7a)

H =
∑

i

− ~
2

2m

∂2

∂2ri

+
∑

i

− ~2

2Mi

∂2

∂2Ri

+
∑
j>i

e2

|ri − rj| +
∑
j>i

ZiZje
2

|Ri −Rj| −
∑
ij

Zje
2

|ri −Rj|
(2.7b)

Te and TN are the kinetic energy terms for the electrons and nuclei, Ve and VN are the

potential energy terms for the electrons and nuclei and VeN is the nuclear-electronic

potential coupling term. R,
∂2

∂2Ri

is the nuclear position and momenta, Zi is the nuclear

charge and r,
∂2

∂2ri

is the electronic position and momenta.

Equation 2.7b shows that even in the simplest molecule, it is very difficult to solve

the Schrödinger equation analytically due to the large number of terms. This is over-

come by utilising the huge difference in mass between the electrons and the nuclei [8].

The mass difference means that the position of the electrons will change instanta-

neously in conjunction with any change in the nuclear geometry. Therefore we may

consider the nuclei fixed and solve only for the electrons at a fixed nuclear geometry.

This can be shown by expressing the full wavefunction as:

Ψ(r;R) = ψ(r;R)χ(R) (2.8)

a product of the electronic (ψ) wavefunction and nuclear (χ) wavefunction. The elec-

tronic wavefunction is dependent on the coordinates of the electrons, r and the position

of interacting nuclei, R. The nuclear wavefunction is only dependent on R. Substituting

equation 2.8 into equation 2.4b with the Hamiltonian in equation 2.7b we obtain:

[T̂N(R) + T̂ e(r) + V̂ eN(r,R) + V̂ NN(R) + V̂ ee(r)]ψ(r;R)χ(R) = Eψ(r;R)χ(R) (2.9)
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since T̂ e contains no R dependence, we can write:

T̂ eψ(r;R)χ(R) = χT̂ eψ (2.10)

However the same cannot be assumed for the nuclear kinetic energy term because it

is dependent on R. Hence equation 2.11a cannot be written and must be expressed,

using the product rule, as 2.11b:

T̂Nψ(r;R)χ(R) = ψT̂Nχ (2.11a)

∂2

∂R2
ψ(r;R)χ(R) = ψ

∂2

∂R2
χ+ 2

∂

∂R
ψ
∂

∂R
χ+ χ

∂2

∂R2
ψ (2.11b)

This is more commonly written:

Hψχ = Teψχ+ Veψχ+ VNψχ+ VeNψχ+W = Eψχ (2.12a)

W = −
∑

j

~2

2m
(ψ

∂2

∂R2
χ+ 2

∂

∂R
ψ(r;R)

∂

∂R
χ(R) + χ

∂2

∂R2
ψ) (2.12b)

In equation 2.12b the last two terms involve derivatives of the electronic wavefunction,

with respect to nuclear coordinates, however both of these terms are proportional to

the mass ratio between electrons and nuclei, and hence due to the massive difference

in size these terms can be ignored [37–39]. This means the Schrödinger equation in the

BOA is written:

ψTNχ+ (Teψ + Veψ + VNψ + VeNψ)χ = Eψχ (2.13)

we may multiply on the left by ψ∗ to yield the nuclear Schrödinger equation:

(TN + V )χ = Eχ (2.14)

From equation 2.12b it is possible to deduce the limit of this approximation. In excited

states fast nuclear vibrations means thats the two terms neglected can no longer be

ignored. This results in the coupling between nuclear and electronic motion and some

interesting and important dynamical features.
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2.3 Adiabatic to Diabatic Representation via Non-

Adiabatic corrections

2.3.1 Adiabatic Representation

The adiabatic representation is based upon the BOA. This method is fundamental to

much of our understanding of modern science. Spectroscopy relies heavily on the adia-

batic picture, each individual state is represented by a spectral band, whose structure

and shape is defined by the motion of nuclei on a PES [10].

In this representation we go beyond the BOA by writing the exact solution in the

adiabatic basis as:

Ψ(r;R) =
∞∑

n=0

ψn(r;R)χn(r;R) (2.15)

Strictly, this sum spans only bound electronic states and for completeness one needs

to include an integral over the unbound states, but this is ignored for simplicity. Sub-

stiuting equation 2.15 in equation 2.12a and projecting from the left with ψm(r;R)

leads to:

∑
n

{
(TN + En(R) + VN(R))δnm + 2T (1)

mn(R)∇+ T (2)
mn(R)

}
χn(R) = Eχm(R) (2.16a)

T (1)
mn(R) = 〈ψm|∇ψn〉 (2.16b)

T (2)
mn(R) = 〈ψm|∇2ψn〉 (2.16c)

Note that T
(1)
mn is a vector the number of whose components is equal to the number of

vibrational DOF. T
(2)
mn is scalar.

When nuclear and electronic coupling is small we keep just the diagonal elements of

equation 2.16a. We can therefore write the Schrödinger equation in the form expressed

in equation 2.14 with an additional small but non-vanishing T
(2)
nn .

∑
n

(TN + En + VN + T (2)
nn )χn = Eχn (2.17)

However in the case where non-adiabatic couplings are large (avoided crossing) the off

diagonal elements cannot be ignored and can be inconvenient to calculate.
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2.3.2 Conical Intersections

The BOA and adiabatic approximation holds for the vast majority of chemical situa-

tions. However in the presence of fast nuclear vibrations the electrons are unable to

instantaneously adapt to the rapid changes in nuclear positions, this leads to signifi-

cant coupling between nuclear and electronic motion called vibronic coupling [10]. This

coupling is ultimately responsible for the breakdown of the adiabatic picture and the

interesting topological features, such as CI that can result.

First proved in 1929 by Neumann and Wigner [9], the existence of intersecting

electronic states can be shown by considering two adiabatic electronic states ψ1 and ψ2.

The adiabatic potential surfaces may be expanded into a diabatic basis (φ, discussed

in section 2.3.4) and therefore for a two state system may be written [10]:

ψ1 = c11φ+ c12φ (2.18a)

ψ2 = c21φ+ c22φ (2.18b)

The Hamiltonian matrix is written:

W (t) =

(
W11 W12

W21 W22

)
(2.19)

where Wij=〈φi|Ĥ|φj〉. The eigenvalues are therefore written:

V± = W̄ ±
√

∆W 2 +W 2
12 (2.20)

where W̄=
1

2
(W11+W22) and ∆W=

1

2
(W22-W11). From inspection it is easy to see

that the eigenvalues of the matrix will be degenerate when W22-W11=0 and W12=0

and therefore the PES may cross. This assumes that there are either two or more DOF

or that φ11 and φ22 are different symmetries.

CI may take a wide variety of forms, of which two are shown in figure 1.2. Symmetry

plays a critical role in the nature of a CI. The off-diagonal coupling and gradient

difference terms are only non-zero if the product of symmetries of the two states and
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nuclear coordinate involved is totally symmetric:

Γi ⊗ Γj ⊗ Γα ⊃ Ag (2.21)

where Γi and Γj are the two coupled states and Γα is the coordinate. From this we can

deduce that for the first order gradient difference (∆W from equation 2.20) terms will

only be non-zero for totally symmetric modes or when degenerate states are involved.

Conversely first order linear coupling elements (W12 from equation 2.20) will be non-

zero for non-totally symmetric modes, assuming the intersecting states have different

symmetry [10].

A special case occurs when the states involved are degenerate (i.e belonging to E or

T representation). The most well known example is when two fold degenerate E terms

couple, as a result of JT effect [40–42] in which degeneracy of a doubly degenerate

state is lifted by a doubly degenerate vibration resulting in a lowering of symmetry.

This forms a Mexican hat intersection shown in figure 1.2(b). This was first described

by Van Vleck in 1939 [43] and properly characterised in the 1960’s following extensive

work by Longuet-Higgins, Bersuker and O’Brian [44].

Most molecular systems in nature have little or no symmetry. CI can still exist in

these cases and are simply termed accidental CI. Locating such intersections is harder

due to the lack of symmetry for guidance. The earliest example of such an intersection

was found in ozone. In this case two minima (of differing symmetry) are separated by

a transition state which lies near an intersection between the 11A1 and 21A1 states [45].

2.3.3 Non-Adiabatic Corrections

It is possible to rewrite equation 2.16a so that the evolving wavefunction is written:

(
T̂N + Vi

)
|Ψi〉 −

∑
j

Λij|Ψi〉 = i~
∂

∂t
|Ψi〉 (2.22)

where i and j represent the two states, and Λij is the non-adiabatic coupling which is

expressed:

Λij =
1

2M
(Gij + 2Fij∇) (2.23)
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Gij represents a matrix of numbers which can be further broken down into the form

Gij = 〈Ψi|∇2Ψj〉 (2.24)

Showing that the force matrix Fij is the defining quantity in the strength of the non-

adiabatic coupling, which itself is dependent on the energy gap between the two states:

Fij = 〈Ψi|∇Ψj〉 (2.25a)

Fij =
〈Ψi|∂H̃el|Ψj〉
Vj − Vi

(2.25b)

Vj − Vi is the gap between the two states.

2.3.4 Diabatic Representation

Equation 2.25b highlights the limit of the adiabatic picture. This picture breaks down

when the energy gap between states tends to zero, (Fij → ∞ as Vj-Vi → 0). It is

therefore desirable to switch to a diabatic representation.

Diabatization, in which the adiabatic coupling terms are replaced with a diabatic

coupling matrix containing the whole potential is the natural choice, especially for

systems which contain CI. The diabatic representation is the natural choice for systems

containing large non-adiabatic effects because it removes singularities created as Vj-Vi

→ 0, and creates a smooth, simple surface without such phenomena as CI [10]. The

Schrödinger equation in this basis is now expressed:

T̃N |Ψi〉+
∑

j

Wij|Ψj〉 = i~
∂

∂t
|χi〉 (2.26)

where Wij represents the potential matrix, coupling is now achieved by the off-diagonal

elements. Wij can be expressed as:

Wij = 〈Φi|H̃el|Φj〉 (2.27)

Practically the diabatic states of a system are usually obtained by a unitary trans-

formation on the adiabatic states. The orthogonal matrix, S transforms the operator
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from adiabatic to diabatic:

(|Φ1〉|Φ2〉
)

= S
(|φ1〉|φ2〉

)
(2.28)

In two state space the matrix, S can be written as a R dependent rotation:

S(R) =

(
cosθ(R)− sinθ(R)
sinθ(R)− cosθ(R)

)
(2.29)

Where θ is the mixing angle between the two diabatic states. From equation 2.29 we

can write:

W 11 = 〈Φ1|Ĥel|Φ1〉 = V1 cos2 θ + V2 sin2 θ (2.30)

W 22 = 〈Φ2|Ĥel|Φ2〉 = V1 sin2 θ + V2 cos2 θ (2.31)

for the on-diagonal terms. For the off-diagonal terms we write:

W12 = 〈Φ1|Ĥel|Φ2〉 = (V1 − V2) cos θ sin θ (2.32)

V1,2 are the adiabatic energies, W11 and W22 are the diabatic potential energies and

W12 is the coupling.

2.4 The Vibronic Coupling Model Hamiltonian

In order to describe a molecular system containing vibronic coupling, it is essential

that the appropriate Hamiltonian is used. First described by Cederdaum et al [46] the

Vibronic Coupling Hamiltonian is a diabatic expression of the PES around the area

of interest. This method has been successfully used to describe many systems where

coupling between states exists [10,47–49].

The Hamiltonian can be written as a sum of a zeroth order Hamiltonian (H(0)) and

a set of diabatic coupling matrices (W(i)):

H = H(0) + W(0) + W(1) + . . . (2.33)
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The zeroth order Hamiltonian is simply expressed using, for example a ground state

harmonic oscillator approximation:

H(0) =
∑

α

ωα

2
(
∂2

∂Q2
α

+Q2
α) (2.34)

with the vibrational frequencies ωα. The zeroth order coupling matrix contains the

adiabatic state energies at Q0. The adiabatic PES are equal to the diabatic surfaces

at this point, so W(0) is diagonal.

The first order coupling matrix elements contain linear terms and are expressed:

W
(1)
ii =

∑
α

κ(i)
α Qα (2.35)

W
(1)
ij =

∑
α

λ(i,j)
α Qα (2.36)

The on-diagonal terms κ
(i)
α are related to the derivative of the adiabatic PES with

respect to the coordinates and represent the forces on the diabatic surface. The off-

diagonal λ
(i,j)
α terms are the non-adiabatic couplings between states:

κ(i)
α =

〈
φi|∂Hel

∂Qα

|φi

〉
(2.37)

λ(i,j)
α =

〈
φi|∂Hel

∂Qα

|φj

〉
(2.38)

where φi are the diabatic electronic wavefunctions at Q0. Second order coupling ma-

trices follow the same pattern, the second order terms can be expressed:

W
(2)
ii =

1

2

∑

α,β

γ
(i)
α,βQαQβ (2.39)

W
(2)
ij =

1

2

∑

α,β

µ
(i,j)
α,β QαQβ (2.40)

where γ
(i)
α,β are second order derivatives of the adiabatic PES at Q0 and µ

(i,j)
α,β are second

order non-adiabatic derivatives.

Symmetry is important in obtaining the Vibronic Coupling Hamiltonian. Many

parameters can be considered zero due to symmetry, as described in equation 2.21.
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However the Vibronic Coupling Hamiltonian is complicated when degenerate states

are present in the system. For example in the D6h point group, E1g ⊗ E1g = A1g + E2g

+ A2g, therefore modes with e2g symmetry can be either on-diagonal, or off-diagonal

coupling terms. But which? The easiest way to answer this question is to look at the

symmetries of the states and modes using the D2h point group. This is the largest

Abelian point-group, that is a subset of D6h. If a coefficient must be zero at D2h it

must also be zero at D6h. The lower symmetry however means that potentially non-

zero coefficients at D2h may be zero at the higher symmetry. At D2h an e2g mode goes

to ag + b3g. The component that goes to ag thus enters on the diagonal of the coupling

matrix, while the b3g component goes on the off-diagonal. This is an example of the E

⊗ e JT effect in which degeneracy of a doubly degenerate state is lifted by a doubly

degenerate vibration resulting in a lowering of symmetry. The linear coupling matrices

in the E ⊗ e JT interaction have 2x2 blocks for the states i,i+1:

W
(1)
i,i+1 =

∑
α

(
κ

(i)
α Qα,x λ

(i,i+1)
α Qα,y

λ
(i,i+1)
α Qα,y κ

(i+1)
α Qα,x

)
(2.41)

κ(i)
α = −κ(i+1)

α = λ(i,i+1)
α (2.42)

where x,y denote the 2 components of of the doubly degenerate mode Qα. A rigorous

method for obtaining the relationship between the coupling parameters is found in

[48,50].

In some coordinates it is important to add fourth order terms to the potential to

model symmetric anharmonic effects at large displacements. For these modes, in place

of Equation 2.34, the diabatic surfaces for state i are defined as:

V (i)
α =

ωα

2
Q2

α +
γ

(i)
αα

2
Q2

α +
ε
(i)
α

24
Q4

α (2.43)

It should be noted that adding higher order terms for degenerate modes in systems

involving JT and PJT is non-trivial. For an analysis of the correct symmetry retaining

relationship see [51].
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In a few modes, particularly the totally symmetric modes the surfaces can be asym-

metrically anharmonic that a Morse potential of the form below was used [52]:

V (i)
α = D0[exp(β(Qα −Qiα)− 1)]2 (2.44)

D0 = k1 (2.45)

β =

√
ω + k2

2D0

(2.46)

Qiα = k3 (2.47)

Where k1,k2 and k3 are the parameters for fitting.

2.5 Coherent Control

2.5.1 Light and Matter Interaction

The Hamiltonian written in equation 2.2 describes an isolated system with no external

forces (Hsys). Upon interaction with light the Hamiltonian is perturbed and must be

written in the form:

H = Hsys +Hrad (2.48)

Hrad is the Hamiltonian to describe the effect of the external field. The full radiative

Hamiltonian is written:

H =
1

2m
(~p− e ~A)2 − eφ+ V ′ (2.49)

in which ~p is the momentum of the electrons, e is the electric charge ~A is the vector of

the applied potential, φ is the scalar potential and V ′ is the static electric potential [53].

Expanding equation 2.49 gives:

Hsys = − ~
2µ
∇2 + V (2.50a)

Hrad =
e

2µ
[2i~∇+ i~(∇. ~A) + e ~A. ~A] (2.50b)

where we have let V =-eφ + V ′. From here it is possible to differentiate between

two limits, the weak and strong field limits. In the weak field limit, |~p| À |e ~A|, and
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therefore only the first term in equation 2.50b needs to be considered and we therefore

seek solutions to the Schrödinger equation which are perturbations to wavefunctions

which are eigenstates of Hsys. We can therefore write the perturbed Hamiltonian as:

H = H0 +W (R, t) (2.51)

where H0 is the unperturbed Hamiltonian and W is the field written as:

W (R, t) = −µ(R)E(t) (2.52)

where µ is the dipole moment and E is the energy. Within this thesis we work exclu-

sively in the weak field limit.

2.5.2 The Essence of Controllability

The fundamental concept behind coherent control is the aim to maximise a desired

state within a chemical system. Expressed mathematically this is simply written:

J ≡ lim
t→∞
〈ψ(t)|Pα|ψ(t)〉 (2.53)

where Pα is a projection operator describing the target scenario. The yield J is defined

in the limit t→∞, this represents the time for the wavepacket to reach its asymptotic

arrangement. In a system pertubed by an external field, it is clear that the yield (J) is

a function of the field (ε(t)), and hence equation 2.53 is rewritten as:

J [ε(t)] ≡ lim
t→∞
〈ψ([ε(t)], t)|Pα|ψ([ε(t)], t)〉 (2.54)

This describes coherent control in the simplest form. In the perturbative regime it is

necessary to add a constraint on the field strength, to ensure that the field doesn’t

become too strong in attempts to obtain better control. This is written [37]:

E ≡
∫ t

0

dt|ε(t)|2 (2.55)

The main objective functional is now written

J = lim
t→∞
〈ψ(t)|Pα|ψ(t)〉 − λ

∫ t

0

dt|ε(t)|2 (2.56)
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where λ is a lagrange multiplier. This functional may be maximised using calculus of

variations and is the fundamental process behind OCT [37], and in many ways in the

most intuitive method for control.

2.5.3 Local Control Theory

LCT provides a different approach to coherent control. In this approach there is no

target wavefunction and therefore no functional to optimise making it a simpler method

to implement. The aim of local control is to create a control field at each time step to

ensure the desired change in the expectation value of some observable.

The time evolution of an operator A is written:

d〈A〉t
dt

=
d

dt
〈ψ(t)|A|ψ(t)〉 =

i

~
〈ψ(t)|[H0, A]|ψ(t)〉+ i

~
〈ψ(t)|[W,A]|ψ(t)〉 (2.57)

[X,Y] = XY-YX denotes the commutator of operators X and Y. W denotes the in-

teraction, and therefore the electric field E (t). This equation shows that if W and A

do not commute it is possible to influence the changes in the expectation of A with a

shaped external field.

Assuming that H0 commutes with any operator, A, which is true for any Hamilto-

nian in the adiabatic picture equation 2.57 can be written:

d〈A〉t
dt

= −E(t)
i

~
〈ψ(t)|[µ(R), A]|ψ(t)〉 (2.58)

and therefore the control is achieved by changing the temporal evolution of E.

LCT has been used for a wide range of operators and opens the possibility of the

use of sequential operators. Two of main operators are discussed below [35].

Heating and Cooling

The simplest approach to LCT is by controlling the amount of energy in the system

which is achieved by using the unperturbed Hamiltonian (H0) as the control operator.

In this case the time evolution of the expectation values is written:

d〈H0〉t
dt

=
i

~
〈ψ(t)|[H0, H0]|ψ(t)〉+ i

~
〈ψ(t)|[W,H0]|ψ(t)〉 (2.59)
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This can be simplified to:

d〈H0〉t
dt

= −E(t)
i

~
〈ψ(t)|[µ(R), T (P )]|ψ(t)〉 (2.60)

The control field is therefore a function of the momentum and is written:

E(t) = ±λ〈ψ|[µ(R), T (P )]|ψ〉 (2.61)

By choosing either + or - the system can be heated or cooled respectively. This par-

ticular operator can be very effective in surmounting barriers on the potential surfaces

and exciting selected vibrational modes [54,55].

Electronic and Vibrational Transfer

To control the transfer to a particular electronic state, k, the projector operator: |k〉〈k|
is chosen. The time evolution is now written:

d〈k〉t
dt

=
i

~
〈ψ(t)|[H0, |k〉〈k|]|ψ(t)〉+ i

~
〈ψ(t)|[W, |k〉〈k|]|ψ(t)〉 (2.62)

The projector commutes with the unperturbed Hamiltonian the remaining expression

is written:

d〈k〉t
dt

= −2E(t)
∑
m

Im〈ψm|µmk|ψk〉 (2.63)

where E (t) is the electric field and µmk is the transition dipole between states m and

k. From this equation it is simple to write:

Ek(t) = ±λ
∑
m

Im〈ψm|µmk|ψk〉 (2.64)

λ is a strength parameter and the sign controls the direction of the population transfer.

By replacing the projector of state k with a projector of vibrational state(s) a pulse

can be found to ensure the increase of population in a vibrational level:

Ek(t) = ±λ
∑
m

Im〈ψ|µ|ϕk〉〈ϕk|ψ〉 (2.65)

Where |ϕk〉〈ϕk| is the vibrational state projector. This approach is particularly useful

for locating a specific region on a PES [35,55].
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Chapter 3

Computation and Methodology

The methods used in this thesis can be split into two distinct groups, time independent

and time dependent. The electronic structure methods which are time independent are

performed at a wide selection of nuclear geometries allowing us to accurately describe

the PES. Time dependent dynamic methods are used to describe the movement of a

wavepacket on the calculated PES.

A variety of electronic structure methods are used in this thesis. Each develops

the treatment of electron-electron repulsion (correlation) which represents the limiting

factor for most ab-initio calculations. Hartree-Fock (HF) is the starting point for most

ab-initio calculations and treats the electron-electron repulsion using an averaged field

approach. Therefore the effects of electron correlation are neglected. Complete active

space self consistant field (CASSCF) uses multiple excited electronic configurations in

a determinant to account for static correlation. Complete active space with 2nd order

perturbation (CASPT2) includes a second order perturbation to also include dynamic

correlation associate with the spatial arrangement of electrons in an orbital [38,39,56].

Dynamics are performed exclusively with the MCTDH method. Based upon the

time dependent Hartree (TDH) method, this multiconfigurational approach provides

important correlation between the motion along the various coordinates, which is not

correctly described in the mean field TDH method. This is akin to the correlation

described above in the electronic structure methods. This approach has proved suc-
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cessful in numerous situation and is able to perform calculations beyond many time

dependent approaches [57–59].

3.1 Hartree-Fock (HF) theory

HF is the starting point for most ab-initio electronic structure methods. The HF

approach treats the electron-electron repulsion in an average manner. Each electron is

considered to move under the effect of a field created by (n-1) electrons. Ignoring the

electron-electron repulsion term enables the wavefunction to be expressed as a product

of one electron wavefunctions:

ψ = ψa(1)ψb(2)ψc(3)......ψz(n) (3.1)

where electron one is described by ψa, electron two by ψb and so on. This wavefunction

(ψ) depends on the coordinates of each electron and therefore also the positions of the

nuclei. However writing the wavefunction in this manner does not take into account

the spin of the electron and therefore the requirement to fulfil the Pauli principle. To

do this the product wavefunction must be expressed as a Slater determinant [38,39,56]:

ψ(x;R) = (n!)−1/2det | φa(1)φb(2)....φz(n) | (3.2)

φa(i) represents a spinorbital for an electron with coordinate x, and nuclear arrange-

ment R. The spinorbitals which give the best wavefunction are found by using the

variational theory to minimise the Rayleigh ratio of the determinant:

εhf =
〈ψ(x;R) | Ĥ | ψ(x;R)〉
〈ψ(x;R) | ψ(x;R)〉 (3.3)

εhf is the energy of the ground state in nuclear configuration R. In doing this minimi-

sation one obtains an expression for the best (HF) orbitals, this is written:

f1ψa(1) = εaψa(1) (3.4a)

f1 = h1 +
∑

u

Ju(1)−Ku(1) (3.4b)

Computation and Methodology 28



Hartree-Fock (HF) theory 3.1

f1 is the Fock operator, h1 is the core Hamiltonian for one electron, which is added to

the sum over all the spinorbitals of the Coulomb operator, Jb and exchange operator,

Kb. For any electron φu interacting with electron φa these are defined:

Ju(1)φa(1) = j0

〈
φu(2)| 1

r1 − r2 |φu(2)

〉
|φa(1)〉 (3.5a)

Ku(1)φa(1) = j0

〈
φu(2)| 1

r1 − r2 |φa(2)

〉
|φu(1)〉 (3.5b)

where j0 is:

j0 =
e2

4πε0

Physically the Coulomb operator describes the repulsion between electrons and the

exchange operator describes the modification of the energy due to the effects of the

Pauli principle.

To solve equation 3.4a and obtain the best energy is computationally complex for

molecular systems. In 1951 Roothaan and Hall [60] independently suggested expanding

the spinorbitals in a known basis set of the form:

φi =
M∑
α

cαiχα (3.6)

This defines the molecular orbitals using a linear combination of atomic orbitals (LCAO),

where χα are the basis functions and cαi are the coefficients which are calculated by

the self-consistent field (SCF) method. This SCF approach transforms the problem of

the wavefunction to that of calculating coefficients. When expanded into equation 3.4a

we can write:

f1

M∑
j=1

cjaχ(1) = εa

M∑
j=1

cjaχ(1) (3.7)

By multiplying by χi(1)∗ and integrating over the spin space we obtain:

Fc = Scε (3.8)

where S is the overlap matrix 〈χa|χb〉 and F is the fock matrix, 〈χa|f1|χb〉. This

equation only has a non-trivial solution if the following equation is satisfied:

det|F− εaS| = 0 (3.9)
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This equation cannot be solved directly because the matrix elements of F involve

integrals over the Coulomb and exchange operators which themselves are dependent

on the spatial wavefunctions. Therefore it must be solved by taking an initial guess

of the coefficients in equation 3.6. Equation 3.9 is then solved by using this guess to

give new values. This continues in an iterative manner until a predefined convergence

criteria is reached.

The HF ground state wavefunction accounts for ∼99% of the total energy of a

system. The remaining 1% can be very important, especially when describing systems

that contain significant quantum phenomena. To improve upon the HF ground state

wavefunction electron correlation must be calculated more accurately.

3.2 Complete Active Space Self Consistent Field

(CASSCF) theory

The HF method uses averaged effects and does not consider instantaneous Coulombic

interactions between electons. It also does not take into account the numerous quantum

effects that rely on electronic distribution. As discussed in the previous section the HF

method yields a set of spinorbitals forming a Slater determinant in which the lowest n

orbitals are occupied by 2n electrons. Clearly many more determinants can be described

by occupying the virtual orbitals.

The exact ground state or excited state wavefunction can be describe as a linear

combination of all the possible determinants written:

Ψ = C0Ψ0 +
∑
a,p

Cp
aφ

p
a +

∑

a<b,p<q

Cpq
abφ

pq
ab +

∑

a<b<c,p<q<r

Cpqr
abcφ

pqr
abc + · · · (3.10)

Where the first term is the ground state determinant, the second is a single excited

determinant arising from excitation of an electron from orbital a to p and the third

term is a doubly excited determinant containing excitation from orbital a to p and

from b to q, when a < b and p < q. Unfortunately even in calculations involving

small molecular species the number of possible determinants is extremely large and
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therefore the wavefunctions are usually truncated at doubly excited determinants. The

wavefunction (in equation 3.10) can therefore be expressed in a simpler form as a linear

combination of a finite set of determinants:

Ψs =
L∑

J=1

CJsΦJ (3.11)

where the sum is over L determinants, ΦJ , multiplied by the coefficients CJs for state

s.

Configuration Interaction methods optimise the basis set coefficients, cji, arising

from the Roothaan equation [60] during the initial HF calculations (equation 3.8).

These are held fixed during the optimisation of CJs in the subsequent configuration in-

teraction calculation. However in Multi Configuration Self Consistant Field (MCSCF)

methods, these are optimised simultaneously. This is computational more expensive

but it enables more accurate results with fewer configuration state functions (CSF).

One such MCSCF approach is CASSCF theory. In this scheme the spinorbitals are

split into three classes:

• Inactive orbitals: The lower energy spinorbitals which remain doubly occupied

in all determinants.

• Virtual orbitals: The higher energy spinorbitals which remain unoccupied in all

determinants.

• Active orbitals: The intermediate energy spinorbitals which are involved in the

CSF which are most important in obtaining an accurate wavefunction. The

configuration of the electrons within these active orbitals is calculated from the

determinants possible within the active space.

By selecting the most important orbitals this method allows a complete set of the

important determinants to be described accurately, while the reduced configuration

space limits the computational expense. The selection of the active space is critical to
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the accuracy of the calculations. The active space must contain sufficient spinorbitals

to describe the appropriate determinants, however the number of CSF rises rapidly

with the number of active orbitals, making calculations harder to execute [61].

3.3 Complete Active Space with 2nd Order

Perturbation (CASPT2) Theory

Static correlation which is described as the preferential occupation of certain deter-

minants is included by the MCSCF methods. This improves the description of Ψ.

However dynamic correlation in which the spatial conditions of the electrons are taken

into account are not included. This can be very important, especially in excited states

which display a lot of ionic character. One method for including this is CASPT2 [62,63].

The basis of the CASPT2 approach is to partition the Hamiltonian into a zeroth

order part (H0) and perturbation, V:

H = H0 + λV (3.12)

H0 is the zeroth order approximation, in this case the CASSCF Hamiltonian, V is the

perturbed Hamiltonian and λ is the perturbation factor. The TISE in this regime is

expressed [64]:

H|Φi〉 = (H0 + V )|Φi〉 = εi|Φi〉 (3.13)

We know the eigenfunction and eigenvalue of H0 is:

H0|Ψ(0)
i 〉 = E

(0)
i |Ψ(0)

i 〉 (3.14)

Therefore if the perturbation is small we can expect |Φi〉 and εi to be reasonably close

to |Ψ(0)
i 〉 and E

(0)
i and hence we wish to systematically improve the eigenvalues of H0

to converge onto the total Hamiltonian, H. This is done using the perturbation factor

(λ) in equation 3.12.
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The exact eigenfunctions and eigenvalues are expanded in a power series in λ, so

that:

εi = E(0)
n + λE(1) + λ2E(2) + · · · (3.15a)

|Φi〉 = |Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉+ · · · (3.15b)

Substituting 3.15a and 3.15b into equation 3.13 up to a first order perturbation we

obtain:

(H0 + λV )(|Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ · · · ) = (E
(0)
i + λE

(1)
i + · · · )(|Ψ(0)

i 〉+ λ|Ψ(1)
i 〉+ ...) (3.16)

Collating the powers we write:

H0|Ψ(0)
i 〉 = E

(0)
i |Ψ(0)

i 〉, n=0 (3.17a)

H0|Ψ(1)
i 〉+ V |Ψ0

i 〉 = E
(0)
i |Ψ(1)

i 〉+ E
(1)
i |Ψ(0)

i 〉, n=1 (3.17b)

H0|Ψ(2)
i 〉+ V |Ψ(1)

i 〉 = E
(0)
i |Ψ(2)

i 〉+ E
(1)
i |Ψ(1)

i 〉+ E
(2)
i |Ψ(0)

i 〉, n=2 (3.17c)

H0|Ψ(3)
i 〉+ V |Ψ(2)

i 〉 = E
(0)
i |Ψ(3)

i 〉+ E
(1)
i |Ψ(2)

i 〉+ E
(2)
i |Ψ(1)

i 〉+ E
(3)
i |Ψ(0)

i 〉, n=3 (3.17d)

and therefore expressions for the nth order energies can be written:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 (3.18a)

E
(1)
i = 〈Ψ(0)

i |V |Ψ(0)
i 〉 (3.18b)

E
(2)
i = 〈Ψ(0)

i |V |Ψ(1)
i 〉 (3.18c)

E
(3)
i = 〈Ψ(0)

i |V |Ψ(2)
i 〉 (3.18d)

Therefore to determine the nth order energy we are required to solve equation 3.17a,3.17b,

3.17c and 3.17d for |Ψ(n)
i 〉. Consider equation 3.17b for a first order perturbation, this

can be rearranged:

(E
(0)
i −H0)|Ψ(1)

i 〉 = (V − E(1)
i )|Ψ0

i 〉 (3.19)
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This equation is no longer an eigenvalue, but a differential. To solve this we expand

|Ψ(1)
i 〉 in terms of eigenvalues of H0:

|Ψ(1)
i 〉 =

∑
n

c(1)
n |n〉 (3.20)

By multiplying equation 3.19 by 〈n|, and using the fact that the zeroth order wave-

functions are orthogonal we have:

(E
(0)
i − E(0)

n )〈n|Ψ(1)
i 〉 = 〈n|V |Ψ0

i 〉 (3.21)

and using |Ψ(i)
i 〉 =

∑
n

|n〉〈n|Ψ(i)
i 〉 with equation 3.18b we derive:

E
(2)
i =

∑
n

〈Ψ0
i |V |n〉〈n|Ψ(1)

i 〉 (3.22)

and finally using equation 3.21 we arrive at:

E
(2)
i =

∑
n

〈Ψ0
i |V |n〉〈n|V |Ψ0

i 〉
E

(0)
i − E(0)

n

=
∑

n

|〈Ψ0
i |V |n〉|2

E
(0)
i − E(0)

n

(3.23)

The CASPT2 method calculates the energies in a molecular system very accurately.

However problems can arise when two states are very close together or when intruder

states occur (spurious states arising from a situation when the energy of the perturba-

tion is a similar magnitude to the energy associated to the zero order wavefunction).

For these problems Roos et al [65] have developed a method in which the energy levels

are positively shifted and recalculated removing this interference. In a shift calculation

the Hamiltonian takes the form:

H0 = H0 + ζPe (3.24)

ζ is a small positive shift value and Pe is a projection operator on the interacting space.

Following the same procedure as above that the first order perturbation is expressed

in the form of equation 3.19 and 3.20, we can write that :

Ẽ2 = −
∑

n

|
〈
n|Ĥ|Ψ0

〉
|2

εn − E0 + ζ
(3.25)
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where εn is the eigenvalues of H0. Assuming that the inequality εn − E0 À ζ is

maintained we can write:

E2 ' Ê2 − ζ
(

1

ω
− 1

)
≡ ELS

2 (3.26)

ω is the weighted reference CASSCF wavefunction. This method successful removes the

intruder states, and allows calculation of almost degenerate levels, without shifting the

relative energy of the states, and was first shown on the Cr(CO)5 molecule [62,65–67].

3.4 Spin Orbit Coupling

In first order approximations transitions between pure singlet and pure triplet states

are forbidden due to the orthonormality of the spin wavefunctions. However SOC

arising from the interaction between spin and orbital angular momentum allows mix-

ing between the singlet and triplet manifold providing a mechanism for intersystem

crossing.

The strength of SOC has been shown to be strongly dependent on (a) nuclear

charge, (b) the availability of transitions between orthogonal orbitals and (c) spatial

proximity of the two orbitals. In singlet transitions π2 → n,π transitions possess a

much greater oscillator strength. However in spin forbidden transitions it is n2 → n,

π which play a more important role, because the change momentum is conserved by

the change in spin angular momentum change associated with a αβ → αα spin flip.

For non-zero SOC matrix values the two interacting states must obey El-Sayed’s rule.

This says that angular momentum must be conserved. Therefore the product of the

two states symmetry must be part be a subset of one of the rotational symmetries in

that group.

The SOC Hamiltonian (Hso) acts as a small, but sometimes vital element to the

Hamiltonian of the whole system [39]. Providing that the coupling is small, the spin

orbit interaction can be treated as a perturbation of a non-relativistic spin pure wave-
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function and written:

H = Hel +Hso (3.27)

In the most accurate regime the spin orbit matrix elements are calculated from two

interacting configuration interaction wavefunctions using the Briet-Pauli (BP) Hamil-

tonian operator:

HSO =
∑

α

∑
i

[ĥα(i) · ŝα(i) +
∑

i6=j

ĝα(i, j) · ŝα(i)] (3.28)

where the one electron (ĥα(i)) and two electron (ĝα(i, j)) parts are written:

ĥα(i) =
1

2c2

∑
K

ZK [riK × p̂(i)]α
r3
iK

(3.29a)

ĝα(i, j) = −[2ĝoα(i, j) + ĝsα(i, j)] (3.29b)

ĝoα(i, j) =
[rij × p̂(j)]α

2c2r3
ij

(3.29c)

ĝsα(i, j) =
[rji × p̂(i)]α

2c2r3
ij

(3.29d)

riK is the distance between electron i and nuclei K, p(i) is the momentum of electron i

and α is the spin. The terms ĝsα and ĝoα represent the spin-same orbit and spin-other

orbit components of the Hamiltonian. ŝα in equation 3.28 is a spin operator which is

able to change the spin part of the electronic wavefunction on which it operates and

enables mixing of wavefunctions with different multiplicities.

The matrix elements of Ĥso between two states are evaluated by:

Eso = 〈Ψ1|Ĥso|Ψ2〉 (3.30)

This is split into a simple schematic:

Hso = H1e
act−act +H2e

core−act +H2e
act−act (3.31)

where H1e
act−act is the one electron Hamiltonian between the active orbitals, H2e

core−act

is the two electron Hamiltonian between the core and active orbitals and H2e
act−act is
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the two electron Hamiltonian between active orbitals. In some cases the one electron

approach is enough to describe SOC, however in many cases the two electron terms are

required for a complete description. A detailed analysis and derivation can be found

in [68,69].

3.5 Multi-Configuration Time Dependent Hartree

(MCTDH) method

3.5.1 General Formulation

The molecular dynamics method was first introduced by Alder and Wainwright in the

late 1950’s [70,71] to study the interactions of hard spheres. Many important insights

concerning the behaviour of simple liquids emerged from their studies. The next major

advance was in 1964, when Rahman carried out the first simulation using a realistic

potential for liquid argon [72]. These early approaches focused upon classical methods

in which a swarm of classical particles were propagated over a PES.

To recover some of the error lost using classical methods, semi-classical methods

were developed. The most important of these was proposed by Heller [73] and used

gaussian wavepackets. This developed many of the ideas now used as standard.

The first full quantum dynamics simulation was reported by McCullough and Wy-

att in 1969 on the H+H2 exchange reaction [74, 75]. The introduction of grid based

methods, particularly the Fast Fourier Transform (FFT) method by Kosloff [76] and

the discrete variable representation (DVR) method of Light [77] in the 1980’s, provided

exact simulations with efficient and accurate routines for general calculations [78].

The standard approach for solving the TDSE using a propagating wavepacket is to

express the wavefunction in a time independent basis with time dependent coefficients

written:

Ψ(Q1, ...Qf , t) =

N1∑
j1=1

...

Nf∑
jf=1

Cj1...jf
(t)

f∏

k=1

χ
(k)
jk

(Qk) (3.32)

f specifies the number of degrees of freedom, Q1,...,Qf are the nuclear coordinates,
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Cj1...jf
are the time dependent coefficients, χ

(k)
jk

are the time independent basis functions

and Nf is the number of basis functions employed for the fth DOF. Scaling is a major

problem with this approach, computational effort grows exponentially with the number

of DOF. For a calculation with N basis functions and f degrees of freedom there are

Nf coefficients.

In order to negate the scaling difficulties approximate methods for solving the time

dependent Schrödinger equation must be implemented. One such example is the TDH

approach (also known as time dependent self consistant field due to similarities with

HF). In this approximation the wavefunction is expressed:

Ψ(Q1, ..., Qf , t) = a(t)ϕ1(Q1, t) · · ·ϕf (Qf , t) (3.33)

Where a(t) is a time dependent complex number and ϕ are one dimensional functions.

These are time dependent, unlike in the standard approach. The product ϕ1ϕ2 is the

Hartree product.

The performance of the TDH approach is often poor due to the lack of correlation,

especially in situations when the energy of the potential changes appreciably over the

width of the wavepacket [78]. Therefore, as in electronic structure methods, it seems

logical to extend the approach to account for multiple configurations. In the MCTDH

method the general equation 3.32 is written as a function of a linear combination of

Hartree products:

Ψ(Q1, ..., Qf , t) =

N1∑
j1=1

...

Nf∑
jf=1

Aj1...jf
(t)

f∏

k=1

ϕ
(k)
jk

(Qk, t) (3.34a)

Ψ(Q1, ..., Qf , t) =
∑

J

AJΦJ (3.34b)

As above Q1,...,Qf are the nuclear coordinates, but now Aj1...jf
denotes the MCTDH

expansion coefficient and ϕ
(k)
jk

are expansion functions for each k DOF known as single

particle functions (SPF). The number of configurations represented in the wavefunction

is nk and thus it is can be easily seen that by setting the number of configurations to 1,
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equation 3.34a becomes the TDH wavefunction. Equation 3.34b defines the composite

index, ΦJ is the Hartree product.

The wavefunction expressed in Equation 3.34a can be used in conjunction with the

Dirac-Frenkel variational principle to obtain a set of coupled equations of motion, one

for the expansion coefficients and the other for each set of SPF:

iȦJ =
∑

I

KJIAI (3.35a)

iϕ̇(k) = (1− P (k))(ρ(k))−1Hkϕ(k) (3.35b)

AJ uses a composite index representing Aj1...jf
, KJI is the matrix element of the Hamil-

tonian operator between two Hartree products. ρ(k) is the density matrix, P(k) is a

projector onto the SPF space and Hk is the mean field operator. The matrix KJI is

the the matrix element of the Hamiltonian operator in the Hartree basis:

KJI = 〈ΦJ |H|ΦI〉 (3.36)

The operator (1- P(k)) where:

P
(k)
j = |ϕ(k)

j 〉〈ϕ(k)
j | (3.37)

ensures that the time derivative of the SPF retain the orthogonality. When the basis

is complete, i.e 1 − P = 0, the SPF become time independent and the equations of

motion are identical to the standard method [78,79]. H(k) the mean field operator and

ρ(k) the density matrix are expressed:

〈H〉(k)
ab = 〈Ψ(k)

a |H|Ψ(k)
b 〉 (3.38)

ρ
(k)
ab = 〈Ψ(k)

a |Ψ(k)
b 〉 (3.39)

where the single hole functions Ψ
(k)
a ignore the SPF of the kth mode, ϕ

(k)
a and the

integration is over all the DOF except k. The mean field operators represent the

correlation between two different sets of SPF (J and L). See reference [78] for details.
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3.5.2 Efficiency and Memory

Standard dynamics, using an ansatz in the form written in equation 3.32 have severe

scaling problems. For a system with f DOF and N basis functions there will be Nf

expansion coefficients to calculate. This exponential problem is highlighted in the

memory requirements for a typical system with N=50 basis functions. Even for a simple

4 dimensional system the memory required is 100MB just to store one wavefunction,

however for a 5 dimensional system it is already 4.8GB [78]. The memory requirement

for the MCTDH method is written:

memory ∼ np + pnNd (3.40)

where n is the number of SPF for p particles, which can contain more then one DOF.

The first term in this expression is the number of A coefficients and the second term is

the representation of the SPF through the primitive basis functions which arise from

expansion of the SPF using a set of DVR functions written:

ϕ
(k)
j (Qk) =

Nk∑

k=1

a
(k)
kj χ

(k)
k (Qk) (3.41)

Although there is still exponential scaling n < N and p < d and therefore the scaling

problem is significantly reduced.

3.5.3 DVR Functions

The DVR is a grid representation which is used for representing wavefunctions and

operators. It has become a widely used method for quantum dynamics simulations

because it solves the problem of having to evaluate complex integrals [77, 80–82]. The

time independent basis of the DVR functions can exist in various forms, including

harmonic, Legendre and exponential.

In order to solve the equations of motion, equation 3.35a and 3.35b, we are required

to evaluate the elements of the Hamiltonain matrix K:

〈ϕ(p)
j1 . . . ϕ

(p)
jp |H|ϕ(p)

j1 . . . ϕ
(p)
jp 〉 = 〈ϕ(p)

j1 . . . ϕ
(p)
jp |T + V |ϕ(p)

j1 . . . ϕ
(p)
jp 〉 (3.42)
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In a spectral basis this would require multi dimensional integrals and would be

a complicated process. However in a pseudo-spectral basis, such as DVR, where the

functions are represented on grids this is straight forward. A set of DVR functions

(χ(v)(qv)) along coordinate qv has a diagonal position operation, therefore:

〈χ(v)
i |qv|χ(v)

j 〉 = q(v)
v δij (3.43)

and the values qv provide a grid of points related to the DVR functions. Hence if there

are enough grid points the potential energy operator can be considered diagonal in this

basis and the integral is obtained by evaluating the potential energy only at the grid

point q
(1)
j1 ,· · · ,q(1)

jf

The kinetic energy operator usually acts on one coordinate, and therefore matrix

elements are evaluated in the related finite basis representation (FBR) . This can then

be transformed using the FBR-DVR transformation. Detailed reviews can be found

in [59,78,83–85]

3.5.4 Autocorrelation Functions and Calculation of Spectra

Spectra are calculated by performing a Fourier transform (FT) of an autocorrelation

function, obtained using a quantum dynamics simulation. A time autocorrelation

function, C(t), indicates how a physical variable, in this case a wavepacket overlaps to

its initial value. In the case of a wavepacket it is a representation of the overlap of the

wavepacket at t with the initial wavepacket at t = 0

C(t) = 〈ψ(0)|ψ(t)〉. (3.44)

The absorption spectrum, I(ω), for a particular molecule is generated by Fourier trans-

form of C(t) to the frequency domain [86]

I(ω) ∼
∫ ∞

−∞
C(t)e−iωtdt (3.45)

Before the autocorrelation function is transformed, it is modified slightly. To reduce

the artifacts associated with the Gibbs phenomenon, overshooting of the fourier sum
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at a discontinuity jump, the autocorrelation function is multiplied by cos2(nπt/2T ),

where n=1,2.. and T denotes the final time (plus one time step) of the autocorrela-

tion function. To introduce a damping, i.e. Lorentzian or Gaussian broadening, the

autocorrelation function is further multiplied with exp(−|t|/τ)i) where τ and i are

parameters set when calculating the spectrum.
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Benzene

Benzene and its derivatives form a basic structure for a vast range of organic com-

pounds in nature, and can therefore be considered a model compound for a wide vari-

ety of hydrocarbons. Despite being a relatively simple molecule, benzene is a primary

example of a photochemically rich molecule, with a number of competing pathways

that can result after photoexcitation. Much of the behaviour has been characterised

by extensive theoretical [63,87–91] and experimental [92–97] studies. However a num-

ber of questions, especially in the higher vibrational states of the B2u state remain

unanswered.

The ground state configuration of benzene (ignoring the inner-core) is:

(2a1g)
2(2e1u)

4(2e2g)
4(3a1g)

2(2b1u)
2(1b2u)

2(3e1u)
4(1a2u)

2(3e2g)
4(1e1g)

4 (4.1)

The π-orbitals, formed from the 6 carbon 2pz orbitals contain 6 valence electrons giv-

ing (a2u)
2(e1g)

4(e2u)
0(b2g)

0. This is shown in figure 4.1. The initial π → π∗ transition,

(a2u)
2(e1g)

3(e2u)
1(b2g)

0, leads to three singlet excited states seen in the absorption spec-

trum between 4.5-8eV [94], they are assigned Ã1B2u, B̃
1B1u and C̃1E1u. The D̃1E2g

band has a different origin, with doubly excited configurations. The X̃ → Ã and

B̃ transitions are electronically forbidden and as a result give fairly weak absorption

bands, X̃ → C̃ is allowed and gives an intense, structureless band.

At low excess energy in the first excited state, (Ã1B2u), fluorescence (channel 1) is

observed with a quantum yield of ' 0.2 and any non-radiative decay is attributed to
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Fig. 4.1: The π valence orbitals in benzene. The lowest three are doubly occupied in the
ground state determinant. The unoccupied π∗ orbitals (e2u and b1g) are occupied in the most
important excited determinants and therefore are required to provide the electron correlation
required to give a good energetic description of the excited states.

intersystem crossing (channel 2) to the low lying triplet states [98, 99]. Photophysical

data shows that the fluorescence from this state disappears when the molecule is excited

3000cm−1 above the band origin [95]. The explanation of this decay has been a source

of debate since it was first reported by Calloman et al [100], however it is now widely

accepted that at this energy a CI leading to a dark state becomes available [88].

Photochemically, benzene undergoes significant rearrangement upon irradiation.

Fulvene, benzvalene and dewar benzene (shown in figure 4.2) have all been detected,

with yields depending on the initial wavelength of light used [92, 93]. Excitation to Ã

at 254nm gives quantum yields of 0.01:0.01:0.00 respectively, however excitation to B̃

at 165nm results in 0.05:0.02:0.01. It has been demonstrated that the X̃/Ã CI plays

an important role in this process leading directly to prefulvene, the precursor for the

transformation [101]. However it is thought that excitation into these photochemical

channels requires excitation of a very specific combination of normal modes.
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Fig. 4.2: Ground state minimum energy geometry structure of (a) fulvene (b) benzvalene and
(c) dewar benzene.

This chapter is a development on a previous CASSCF study, enabling us to accu-

rately describe the dynamics of benzene in the manifold of states involved [102]. In the

following sections a diabatic potential operator matrix suitable for studying the early

time dynamics of benzene after photoexcitation is described using parameters obtained

by a fit of the adiabatic PES along the vibrational modes. Data points along the nor-

mal modes and diagonally along the important combination modes were obtained using

CASPT2 calculations [103]. These calculations include the required dynamic correla-

tion to accurately describe the higher lying electronic states. The operator obtained is

the Vibronic Coupling Hamiltonian [104] which has proved successful in describing a

wide range of molecular systems in which non-adiabatic effects are important [10, 49].

This is described in detail in section 2.4. The simplicity of this model allows a natural

description of the photo-initiated dynamics in terms of excitation of normal modes

and couplings between the diabatic electronic states. This method has also been used

to describe the benzene cation [48, 50] and due to symmetry many of the results for

benzene are identical with the cation. By utilising the powerful MCTDH wavepacket

dynamics method [57, 105] we are then able to study the dynamics of photo-excited

benzene using two calculated Hamiltonians and compare results to experimental data

obtain by the Fielding group [19].
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The benzene photochemical surfaces are epitomised by avoided crossings and CI,

to enable us to give a clear description of these features we introduce the following

nomenclature. The diabatic states are labelled with X̃, Ã, B̃ etc, while the adiabatic

states are labelled S0, S1, S2 etc. At the ground state equilibrium geometry (the FC

point) the states are equivalent.

4.1 The Model Hamiltonian

Benzene contains 30 vibrational modes and in the energy range of interest 7 states.

Quantum dynamics using a model containing all of them would be very computationally

demanding. However using the linear coupling scheme (described in section 2.4) [102],

many of the less important modes, i.e. with no first order coupling, can be ignored, as

they make little difference to the dynamics.

The CAS(6,6)/6-31g* frequencies, which define the normal mode coordinates and

provide the zero-order harmonic diabatic surfaces, are listed in tables 4.1 and 4.2.

They are in reasonable agreement with the experimental values, with the modes in the

correct order. CASPT2 frequency calculations did not change the values significantly

and therefore were not used so that easier comparisons with the CASSCF model of [102]

were possible. The high energy modes, which are mostly unimportant in this work,

have an error of ∼ 0.035eV (280cm−1), the low frequency modes have an error ∼ 0.01eV

(90cm−1).

The modes of critical importance to the benzene model are: the low frequency (a1g)

breathing mode, the lowest frequency JT active (e2g) mode, the lowest two frequency

e1u modes, the boat mode (e2u) and the chair (b2g) mode. The combination of the boat

and chair modes results in the formation of prefulvene, the reaction intermediate for

the formation of benzvalene and fulvene.

As stated above this is a development of previous electronic structure calculations

performed at CASSCF level [102]. These were unable to accurately describe the B1u
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Mode Symmetry Vibration Theory Experimental [106] Description

1 1a1g 0.1292 0.1231 C-H Breathing

2 2a1g 0.4198 0.3811 C-H Breathing

3 1a2g 0.1861 0.1674 C-H Twist

4 1b2g 0.0898 0.0877 Chair

5 2b2g 0.1286 0.1227 Antisymmetric C-H Bend

6 1e2g 0.0886 0.0754 Quinoid

7 4e2g 0.4160 0.3790 C-H Breathing

8 3e2g 0.2157 0.1985 Antisymmetric C-H Bend

9 2e2g 0.1582 0.1460 Symmetric C-H Bend

10 1e1g 0.1086 0.1050 Antisymmetric C-H Bend

Table 4.1: Mode symmetry and vibration energies (in eV) for the gerade normal modes of
benzene, using Wilson numbering. Calculated using a CAS(6,6) active space and 6-31g* basis
set.
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Mode Symmetry Vibration Theory Experimental [106] Description

11 1a2u 0.0811 0.0834 C-H Bend

12 1b1u 0.1363 0.1252 Antisymmetric Twist

13 2b1u 0.4148 0.3790 C-H Breathing

14 2b2u 0.1662 0.1623 C-C Stretch

15 1b2u 0.1470 0.1423 C-C Stretch

16 1e2u 0.0535 0.0493 Boat

17 2e2u 0.1231 0.1199 Out of Plane C-H Bend

18 1e1u 0.1382 0.1287 Twist

19 2e1u 0.2021 0.1840 C-H Antisymmetric Twist

20 3e1u 0.4183 0.3799 C-H Breathing

Table 4.2: Mode symmetry and vibration energies (in eV) for the ungerade normal modes
of benzene, using Wilson numbering. Calculated using a CAS(6,6) active space and 6-31g*
basis set.
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State SA-CAS(6,6) CASPT2(6,6) CASPT2(6,10) Experimental [63]

Ã1B2u 4.895 4.76 4.84 4.90

B̃1B1u 8.166 6.55 6.45 6.20

C̃1E1u 9.542 7.29 6.94 6.94

D̃1E2g 8.110 7.81 7.81 7.8

Table 4.3: Vertical excitation energies (in eV) of six singlet excited states of benzene, cal-
culated at equilibrium geometry. The SA-CAS(6,6) used a 6-31g* basis and is averaged
over all 6 states plus the ground state. The PT2(6,6) and PT2(6,10) uses a Molpro specific
Roos(3s2p1d/2s) basis.

and E1u states due to the lack of dynamic correlation, which is important for describing

states with significant ionic character. This can be seen in Table 4.3, which lists the

energies of each state at the ground state equilibrium geometry. The CASSCF states

are not ordered correctly and the E2g state is the lowest doubly degenerate state. This

is likely to have a big effect on the coupling parameters obtained.

Throughout this work CASPT2 implemented in Molpro [107] was used. CASPT2

uses the CASSCF wavefunction as a zeroth order approximation, and adds a second or-

der perturbation (see section 3.3). Developed by Roos et al [103], this method has been

used on a large variety of chemical systems. For the cuts along the vibrational modes we

used a CAS(6,6) active space in combination with a Molpro specific Roos(3s2p1d/2s)

basis, which uses the atomic natural orbitals (ANO) basis truncated to 6-31g* size.

Following [63] a larger (6,10) active space, which includes diffuse Rydberg orbitals was

tested. Despite being slightly more accurate at the equilibrium geometry, it proved

difficult to converge calculations along symmetry breaking modes. The difference in

the two calculations at ground state equilibrium geometry can again been seen in Ta-

ble 4.3. The larger active space, which includes diffuse Rydberg orbitals, important in

the excitation process, is very accurate. Despite being less accurate the smaller (6,6)

space is able to describe the surfaces well and is preferred because of the computational

expense and lack of stability of the larger active space.

The adiabatic PES are the eigenvalues of the diabatic Hamiltonian matrix (equation
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2.33). A model Hamiltonian using a particular set of expansion coefficients can thus

provide the adiabatic PES at a particular value of Q by diagonalising the matrix. As

a result the parameters can be obtained from a fit of the model to adiabatic PES

obtained from quantum chemistry calculations.

The fit was performed using the VCHAM program. This program helps to automate

the procedure and is distributed with the MCTDH quantum dynamics package [79].

It has been used previously to provide a model Hamiltonian for a number of systems

[52,108,109].

The starting point is the ground state minimum energy D6h structure, Q0. The

coordinates for the Hamiltonian are obtained from the dimensionless normal modes at

this point. The seven surfaces were calculated with a spacing of ∆Q=1.0 at 21 points

along each normal mode (10 either side of Q0). Fewer points were calculated along

the breathing mode due to difficulties associated with the highly distorted structure.

Combination modes were also calculated, the most important of these is the preful-

vene mode (ν4+ν16), however others containing intra-state coupling that contribute to

IVR were also fitted. A database is prepared containing the vibrational and energetic

information, and the parameters are obtained by a least squares fit using a simple

conjugate gradient optimisation scheme with the mean-square difference between the

ab-initio and model adiabatic energies at all points as a penalty function. Due to the

dependencies between parameters of different order the fit is performed in stages, first

optimising the linear parameters before including the higher order ones. The linear

Hamiltonian has a total of 93 parameters that need to be evaluated. This demon-

strates the power of symmetry. There are 796 linear parameters, but most are zero by

symmetry.

The parameters obtained from the fitting are listed in tables 4.4, 4.5, 4.6, 4.7,

4.8, 4.9 and 4.10. Cuts through the PES along the important modes are shown in

figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. The quality of the fitted model is judged
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by how closely the eigenvalues fit the ab-initio points. The root-mean square standard

deviation (RMSD) between the model surfaces and ab-initio points is 0.154eV over

2546 datasets. An exponential weighting to the points (wi = exp−R(Ei−E0)), where

R is an input parameters, Ei is the ab-initio energy and E0 is the energy of the relevant

surface at Q0 can enhance the fit in the important low energy regions. When this

weighting is used during the fit the weighted RMSD falls to 0.08eV, showing that most

of the error is in the regions unvisited by the wavepacket.

4.1.1 First Order Parameters

Table 4.4 lists the on-diagonal linear coupling constants (κα). These values are non-

zero along all totally symmetric modes. The importance of this parameter is related to

κα/ωα, the distance the excited state minima is shifted from the ground state minimum

in the harmonic approximation. The FC overlap and hence transition strengths have

a direct dependence on this factor because when κα/ωα is larger the transition band

in the spectra will be wider. The frequency of the second totally symmetric mode

is 0.4198eV and therefore is less important than its lower energy counterpart whose

excited state minima show significant displacement from the FC point. κα values can

also arise in doubly dengenerate states along doubly degenerate modes. In benzene this

can occur along the e2g,x modes, as part of the JT interaction as shown in equation

2.41. Displacement due to this coupling is largest in ν8, but is still small in comparison

to ν1.

The linear off-diagonal coupling parameters (λ) are listed in table 4.5. Non-zero

parameters can be found for pairs of states dependent on the symmetry involved [102].

The most significant coupling is between the X̃, Ã, B̃ and C̃ states. The coupling

between X̃/Ã is along ν14 and ν15 and X̃/C̃ is along ν18 and ν19. There is also large

coupling between B̃/C̃ along ν8, however B̃ and ν8 play little role in the dynamics and

therefore this can be considered unimportant.

Although at first appearance it seems that the coupling between X̃/Ã is the most
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Ã B̃ C̃ C̃ D̃ D̃
Mode B2u B1u E1u, x E1u, y E2g, x E2g, y
υ1 (1a1g) 0.173 0.244 0.388 0.388 0.093 0.093
υ2 (2a1g) 0.125 0.015 0.106 0.106 0.094 0.094
υ6a (1e2g, x) – – 0.029 -0.029 0.024 -0.024
υ7a (4e2g, x) – – – – – –
υ8a (3e2g, x) – – 0.128 -0.128 0.103 -0.103
υ9a (2e2g, x) – – 0.056 -0.056 0.122 -0.122

Table 4.4: On-diagonal linear coupling constants, κα, for the normal modes of benzene (in
eV). Obtained by fitting a Vibronic Coupling Hamiltonian to the adiabatic potential energy
surface at the CASPT2(6,6) level. There are no values for υ7a because they are so small they
can be considered negligible.

significant to the dynamics at the S1/S0 CI, it is actually the coupling between X̃/C̃

which is most important when the two surfaces cross at the prefulvene CI. This is

shown and discussed in more detail in section 4.4.2.

JT coupling in which a doubly degenerate state is split by coupling involving a

doubly degenerate mode is present for both the C̃ and D̃ states. In both cases it is the

y component of the e2g mode responsible for splitting the dengeneracy. The strength

of the coupling is equal to the on-diagonal elements shown in Table 4.4. Between the

E1u state components this is largest along ν7b, and between the E2g state components

the largest is along ν9b.

Pseudo Jahn-Teller (PJT) interactions, in which a singly degenerate state couples

to a doubly degenerate state along a doubly degenerate mode completes the set of

linear inter-state interactions. The PJT couples the x component of each vibration

to the x component of the electronic state and the y component of each vibration to

the y component of the electronic state. This splits the degenerate state in a similar

topological manner to that seen in the JT interaction. The PJT interaction is the

most prominent coupling type in benzene. The most significant is between X̃/C̃ which

is very large and plays an important role in the dynamics at the S1/S0 CI (discussed

later). There is also extensive coupling between the X̃ and Ã states to the doubly
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X̃ Ã B̃ C̃ D̃
A1g B2u B1u E1u,x E2g,x

ÃB2u λ14 = 0.220 – – – –
λ15 = 0.352 – – – –

B̃B1u λ12 = 0.140 λ3 = 0.020 – – –
λ13 = 0.078 – – – –

C̃E1u,x λ18a = 0.210 λ6a = 0.111 λ6a = -0.033 – –
λ19a = 0.350 λ7a = 0.129 λ7a = -0.072 – –
λ20b = 0.060 λ9a = 0.124 λ8a = -0.241 – –
– – λ9a = -0.086 – –

C̃E1u,y λ18b = -0.210 λ6b = -0.111 λ6b = 0.033 λ6b = 0.030 –
λ19b = -0.350 λ7b = -0.129 λ7b = 0.072 λ7b = 0.128
λ20a = -0.060 λ9b = -0.124 λ8b = 0.241 λ8b = 0.056 –
– – λ9b = 0.086 – –

D̃E2g,x λ9a = 0.047 λ18b = 0.180 – – –
– λ19b = 0.120 – – –

D̃E2g,y λ9b = -0.047 λ18a = -0.180 – – λ6b = 0.025
– λ19a = -0.120 – – λ8b = 0.043
– – – – λ9b = 0.122

Table 4.5: Off-diagonal linear coupling constants, λα, for the normal modes of benzene (in
eV). Obtained by fitting a Vibronic Model Hamiltonian to the adiabatic potential energy
surface at the CASPT2(6,6) level. The columns and rows are the different states, subscripts
denote the normal modes providing the coupling. The E1u,y and E2g,y columns are not
included as they symmetrically replicate the x component data.

Benzene 53



The Model Hamiltonian 4.1

degenerate states along the e2g modes. The coupling between Ã and C̃ is strongest

along ν7b, there is also significant coupling along ν6b and ν9b. The PJT between B̃ and

C̃ is very strong along ν8b while the other e2g modes play little part. There is also PJT

coupling between Ã/D̃ however these do not play a significant role in the dynamics

and are therefore not important.

In most cases the linear coupling forms the major component of non-adiabatic

coupling within a model, and will alone describe most of the prominent features in the

crossing region of the PES nearest the expansion (FC) point. This is also the case

for benzene and it is clear that, mainly due to the e2g modes, there is a multitude of

possible pathways for the wavepacket to spread through. However to obtain a more

accurate model, which includes finer details of the dynamics, higher order terms must

be included.

4.1.2 Morse Parameters

The first term in Vibronic Coupling Hamiltonian, equation 2.33, is the zeroth order

approximation for the PES. This is typically a harmonic oscillator term including the

frequency of the mode. However in some cases the PES is too unsymmetric to use the

harmonic approximation. In this case a Morse potential is implemented in the form

described in equation 2.44.

The parameters obtained by fitting a Morse potential are shown in table 4.6. The

D̃E2g is not shown because this state does not play a key role in the dynamics. There

are 3 modes which require the potential in this form: ν1, ν8a and ν9a. The most

important of these is the totally symmetric low frequency breathing mode (ν1). The

parameters shows that Ã is the shallowest (smallest D0) of the excited state surfaces

along this mode. This is indicative of a state with little ionic character, meaning there

is less repulsion upon compression. All 4 surfaces indicate a degree of shifting from

the equilibrium geometry (X0) associated with the degree of double excitation in the

determinant and therefore the occupation of the anti-bonding orbitals.
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4.1.3 Second Order Parameters

The frequencies of the excited state are changed from those of the ground state by the

second order on-diagonal parameters, γαα. Due to the coordinate scaling used in this

Hamiltonian, the frequency of a mode with potential:

V =
1

2
(ωα + γ(i)

αα)Q2
α (4.2)

is

√
ω2

α + ωαγ
(i)
αα. The parameters are shown in tables 4.7 and 4.8. A 5% change in the

frequency is given by the ratio:

|γ
(i)
αα

ωα

| > 0.1 (4.3)

and therefore only values greater then this are listed. In general the γ parameters are

small, however noticeable effects can be seen along several modes, including ν4 and

ν16. The lowering of the frequency flattens the PES allowing the wavepacket to spread

more easily [110].

As well as on-diagonal γαα parameters, the off-diagonal γαβ parameters which are

responsible for IVR can be important (shown in table 4.8). These parameters tend to

be small and generally do not have a large effect of the appearance of the absorption

spectra, however they can play a critical role in the subtle dynamics of a model system.

The off-diagonal second-order coupling parameters (µ), listed in table 4.9, are re-

sponsible for inter-state coupling diagonally between the vibrational modes. They are

typically quite small, however again they can be important to the dynamics of the

model. Coupling elements for this model were considered for the first three excited

states, as it is these that are most important in the dynamics following excitation

into the B2u state. In this model the µ parameters are small and therefore will have

an almost negligible effect on the dynamics of the overall system, this is a significant

change from the CASSCF model in which they play an important role in an accurate

description of the surfaces [102].

In cases when the PES are anharmonic but symmetric, fourth order terms are some-
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Ã B̃ C̃ C̃ D̃ D̃
B2u B1u E1u,x E1u,y E2g,x E2g,y

ν1 -0.116 -0.006 0.025 0.025 -0.015 -0.015
ν2 0.028 0.012 0.024 0.024 -0.031 -0.031
ν4 -0.048 -0.033 -0.062 -0.062 -0.093 -0.093
ν5 -0.073 -0.041 -0.048 -0.048 -0.048 -0.048
ν6a -0.018 -0.017 – – -0.034 -0.034
ν6b -0.015 – – – -0.015 -0.015
ν7a – – 0.012 0.012 0.012 0.012
ν7b – – – – – –
ν8a 0.01 – -0.039 – – –
ν8b – – – – – –
ν9a – -0.025 – -0.025 -0.048 –
ν9b – -0.021 -0.01 -0.01 – –
ν10a -0.051 -0.040 -0.074 -0.074 -0.113 -0.113
ν10b -0.056 -0.040 -0.114 -0.114 -0.157 -0.157
ν11 -0.033 -0.024 -0.030 -0.030 -0.072 -0.072
ν13 – – – – -0.055 -0.055
ν16a -0.039 -0.019 -0.091 -0.021 -0.026 -0.026
ν16b -0.045 -0.063 -0.109 -0.023 -0.033 -0.033
ν17a -0.079 -0.021 -0.090 -0.090 -0.118 -0.118
ν17b -0.046 -0.011 -0.095 -0.095 -0.094 -0.094
ν18a – – 0.015 0.015 -0.016 -0.016
ν18b – – 0.015 0.015 -0.016 -0.016
ν19a – – 0.301 0.301 -0.04 -0.04
ν19b – – 0.034 0.034 -0.037 -0.037
ν20a -0.030 – 0.05 0.05 -0.04 -0.04
ν20b – – 0.02 0.02 -0.02 -0.02

Table 4.7: On-diagonal second order coupling constants, γα for the normal modes of benzene
(in eV). Obtained by fitting a Vibronic Coupling Hamiltonian to the adiabatic potential
energy surface at CASPT2(6,6) level.
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X̃ Ã B̃ C̃ C̃ D̃ D̃
A1g B2u B1u E1u,x E1u,y E2g,x E2g,y

ν12−13 -0.0212 -0.0208 -0.0210 -0.0187 -0.0187 -0.0230 -0.0230
ν13−9a – – – 0.009 0.0013 0.012 0.0113
ν6a−9a 0.0285 0.0246 0.0415 0.0422 0.0283 0.0151 0.0219
ν1−2 0.0271 0.0256 0.0228 0.0320 0.0191 0.0254 0.0254
ν1−6a – – – 0.070 – 0.0122 –
ν1−16a – – – – – 0.0122 –
ν1−16a – – – 0.070 – – –
ν1−16b – – – 0.070 – – –

Table 4.8: Off-diagonal intrastate second order coupling constants, γαβ for the normal modes
of benzene (in eV). Obtained by fitting a Vibronic Coupling Hamiltonian to the adiabatic
potential energy surface at CASPT2(6,6) level.

X̃ Ã B̃ C̃ C̃
A1g B2u B1u E1u,x E1u, y

Ã B2u ν1−14 = 0.00645 – – ν6a−9a = -0.00679 ν6a−9b = -0.00749

B̃ B1u ν1−12 = 0.01800 – – ν6a−9a = -0.01480 –
– – – ν1−9a = -0.00525 –
– – – ν1−6a = 0.01194 –

C̃E1u, x – – – – ν12−13 = 0.0010
– – – – ν11−16a = 0.0043

C̃E1u, y – – – – –

Table 4.9: Off-diagonal inter state second-order coupling terms µαβ (see equation 2.41) for
the normal modes of benzene (in eV). Obtained by fitting a Vibronic Coupling Hamiltonian
to the adiabatic potential energy surface at PT2(6,6) level. The D̃E2g state is not included
in this table because there were no significant parameters for this state required.

Benzene 58



Cuts Through The Potential Energy Surfaces 4.2

X̃ Ã B̃ C̃ C̃ D̃ D̃
A1g B2u B1u E1u,x E1u,y E2g,x E2g,y

ν10a 0.006 0.008 0.009 0.012 0.012 0.014 0.014
ν10b 0.011 0.014 0.013 0.026 0.026 0.030 0.030
ν16a 0.002 0.003 0.002 0.006 0.001 0.003 0.003
ν16b 0.002 0.003 0.005 0.010 0.010 0.003 0.003
ν17a 0.006 0.015 0.003 0.013 0.013 0.018 0.018
ν17b 0.003 0.005 – 0.011 0.011 0.011 0.011
ν20a 0.039 0.043 0.039 0.020 0.020 0.051 0.051
ν20b 0.048 0.049 0.049 0.047 0.047 0.051 0.051

Table 4.10: On-diagonal quartic coupling constants, εα (see equation 2.44) for the normal
modes of benzene (in eV). Obtained by fitting a Vibronic Coupling Hamiltonian to the
adiabatic potential energy surface at CASPT2(6,6) level.

times required to improve the fit, especially at points a long way from the equilibrium

geometry. These were required for ν10, ν16, ν17 and ν20 and are listed in table 4.10.

4.2 Cuts Through The Potential Energy Surfaces

4.2.1 Along The Normal Modes

Figures 4.3, 4.4, 4.5, 4.6 and 4.7 show fitted cuts through the adiabatic PES for the

most important modes in benzene. In the case of doubly degenerate modes only the x

component is shown, because of the similarity between the two components. Figures

4.1 and 4.2 contain the most important modes which are involved in the prefulvenic

reaction coordinate, groupings which follow are chosen by symmetry or characteristics,

where possible.

Along ν1 (figure 4.3(a)) the excited state minima are shifted from the ground state

minima. This is most apparent in C̃, where occupation of the anti-bonding orbitals

results in the weakening of the bonds. A variation in the frequency of electronic states

is also most apparent in C̃ which crosses both the B̃ B1u and doubly degenerate D̃

E2g at points along the coordinate. This behaviour is attributed to the significant

ionic character of this state leading to increased repulsion on compression. The very
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Fig. 4.3: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 6 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u, C̃ E1u, D̃ E2g. (a) ν1 (1a1g), the breathing mode, (b) ν4 (1b2g), the chair mode, (c)
ν6a (1e2g), the quinoid mode

antisymmetric nature of this mode means a Morse potential was required for the fit

(see section 4.1.2).

The chair mode, ν4, (figure 4.3(b)) has a significant change of frequency in the

excited states. This is most significant in Ã and D̃, the latter is very flat and is

indicative of states with less ionic character and more double excitations, which results

in the molecule having more freedom to vibrate. The quinoid mode, ν6, (figure 4.3(c))

is the main JT active e2g mode. Splitting due to linear coupling is seen in both C̃ and

D̃, it is however quite small.

The boat/twist, ν16, (figure 4.4(a)) is the lowest frequency mode. Being e2u sym-

metry there is no linear coupling but strong second order coupling which results in 2nd

order JT splitting for C̃ and D̃. It is clearly a very strong effect in C̃ leading to a deep

double well along this mode and lowering the energy enough to bring C̃ below B̃ at

large distortions along the mode.

Figures 4.4(b) and 4.4(c) show the e1g mode, ν10 and the a2u mode, ν11 respectively.

Both have relatively flat PES, especially ν11. This is a similar behaviour as that seen
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Fig. 4.4: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 6 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u, C̃ E1u, D̃ E2g. (a) ν16a (1e2u), the boat mode, (b) ν10a (1e1g) (c) ν11 (1a2u).

Fig. 4.5: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 6 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u, C̃ E1u, D̃ E2g. (a) ν12 (1b1u) (b) ν13 (2b1u) (c) ν17a (2e2u).
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Fig. 4.6: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 6 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u, C̃ E1u, D̃ E2g. (a) ν18a (1e1u) (b) ν19a (2e1u) (c) ν20a (3e1u).

Fig. 4.7: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 6 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u, C̃ E1u, D̃ E2g. (a) ν7a (4e2g) (b) ν8a (3e2g) (c) ν9a (2e2g).
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in the PES of the chair mode. Like the chair mode, the vibration is dominated by C-H

bending and the flat shape of the surface can be attributed to the dominance of doubly

excited determinants in the overall wavefunction.

Figures 4.5(a) and 4.5(b) shows the low and high frequency b1u modes. These

modes are responsible for the linear coupling between X̃ and B̃. Figure 4.5(a) is the

lower frequency mode, and one can see that motion along this mode is energetically

more favourable than its higher frequency counterpart ν13, which has a very steep PES.

Figure 4.5(c) shows the high frequency e2u mode, which due to symmetry contains no

linear coupling. There is no splitting between the degenerate states, but the each state

has a slightly flat profile indicating the role of double excitations.

Figures 4.6(a), 4.6(b) and 4.6(c) shows the x component of the doubly degenerate

e1u modes. These modes are responsible for the coupling between X̃ and C̃. This

is critically important at the S1/S0 CI. All three have very similar shaped surfaces,

however it is possible to see that the lowest frequency mode has the most X̃/C̃ coupling

due to the flatter shape of the ground state.

Figures 4.7(a), 4.7(b) and 4.7(c) shows the x component of the doubly degenerate

e2g modes, ν7, ν8 and ν9. ν7a (figure 4.7(a)) is the highest frequency e2g mode and

hence the PES has a very steep gradient, there is also very little splitting due to JT

coupling. ν8a and ν9a are both lower frequency and so that structure of the surface

is easier to ascertain. In both cases there is significant splitting and the asymmetric

behaviour, meaning that in both cases a Morse potential fit is required.

4.2.2 Combination Modes

As discussed in section 4.1.3 second order terms, and especially off-diagonal second

order terms can be very important in the fine dynamic structure of the model. In

order to obtain such parameters we are required to fit to ab-initio points calculated

along combinations of normal modes. These combination modes can play a key role,

and parameters obtained from them are essential for describing the ultrafast dynamics.
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Fig. 4.8: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 4 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u and C̃ E1u. (a) ν4+16a (b) ν1+16a (c) ν6a+16a.

This is especially true for a highly symmetric molecule such as benzene.

Figures 4.8 and 4.9 show the PES of five such calculated combination modes. In each

case only 4 excited states have been calculated because the higher order parameters

needed to describe the dynamics were only required for the states most actively involved

in the dynamics. This does not include D̃ E2g and therefore, to make the electronic

structure calculations easier to converge, this state was remove from the calculations.

Figure 4.8(a) is the combination mode (ν4+16) thought to be the photochemical

pathway for the creation of prefulvene and the precursor for fulvene. Figure 4.8(a)

shows the splitting of the C̃ state in this mode and results in the x component crossing

both the Ã and B̃ state. This forms an avoided crossing between S1/S0 at Q4=Q16=10

from the FC point. This plot clearly shows that the S1/S0 intersection will not be

formed from crossing between X̃ and Ã, instead from one component of the doubly

degenerate C̃ splitting and intersection B̃ and Ã before reaching X̃.

Figures 4.8(b), 4.8(c), 4.9(a) and 4.9(b) show four other combination modes cal-

culated. In each case it can be seen that there is significant asymmetric behaviour
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Fig. 4.9: Cuts through the adiabatic potential energy surfaces for benzene, including the
ground states and 4 excited states. In order of energy at Q=0 these states are X̃ A1g, Ã B2u,
B̃ B1u and C̃ E1u. (a) ν1+6a (b) ν4+6a

and therefore the γ parameters shown in table 4.8 and µ parameters shown in 4.9 are

required for a good fit. The fits in these plots, especially figures 4.8(b) and 4.8(c),

although still close the ab-initio points are not as good as those shown along the nor-

mal modes. This is because they require higher then 3rd and 4th order terms to give

an excellent fit. However to obtain these parameters is computationally expensive and

since they are typically small and have little effect on the dynamics they have not been

calculated in this study.

4.3 The Prefulvene Vector and S0/S1 Conical Inter-

section

The combination mode, ν4+16, shown in figure 4.8(a) is referred to above as the preful-

vene mode because it leads to the prefulvene S1/S0 CI, a precursor to the formation

of fulvene and benzvalene. The adiabatic PES calculated shows that although the

two surfaces (S0 and S1) become close, the crossing does not actually occur along this

combination mode.
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Fig. 4.10: Cuts along the vector for the prefulvene S1/S0 minimum energy CI and the mini-
mum barrier height leading to the S1/S0 CI. (a) The prefulvene S1/S0 minimum energy CI
along QCoIn, using parameters up to second order. (b) Including the third order parameters.
(c) Fit of the minimum barrier height along Qbarrier including third order parameters. The
ab-initio points were calculated at PT2(6,6) level.

In order to locate the lowest point on the CI seam a CAS(6,6) CI minimisation was

performed using Gaussian03 [111]. This point in the space of normal modes is termed

QCoIn. The ab-initio points were then calculated using CASPT2(6,6) at equal steps

along the vector from the FC point, Q0, to QCoIn.

Figures 4.10(a) and 4.10(b) show the fitted ab-initio points along the reaction coor-

dinate from the FC point to the minimum energy point on the S1/S0 CI seam. Figure

4.10(a) shows the fit using parameters only up to 2nd order. Although this describes

the intersection region relatively well, it does not give any barrier on the S1 surface

leading to the crossing. Lasorne et al [110] showed that 3rd order parameters can be im-

portant. These parameters take the form of the change in on-diagonal γαα parameters

with respect to another mode. In this case the most important parameter is the change

in the gradient of boat mode as a function of the breathing mode: W
(3)
ii =ι(i)441Q

2
4Q1.

In good agreement with data obtained by Lasorne et al [110], a value of -0.01eV is

required to obtain the correct barrier along the prefulvene vector, this is shown in figure
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4.10(b) which includes the third order parameters. However the barrier leading directly

to the energy minima of the CI is approximately 7000cm−1, this is too high for the

wavepacket to cross over. Figure 4.10(c) is a plot of the vector leading to the minimum

barrier height, the most likely route of the wavepacket to the intersection region. The

barrier height at the point is under 4000cm−1 and is low enough for the wavepacket to

cross to the intersection. Once these terms have been included the calculated RMSD

for this cut is 0.153eV.

The barrier seen along these vectors (figure 4.10) arises as a result of C̃E1u state

crossing ÃB2u. This barrier can also be seen in figure 4.10(c), the prefulvene combi-

nation mode. The point in space of the minimum energy point on the S1/S0 CI seam

expressed as a function of the normal mode coordinates is: ν1=3.09, ν2=2.14, ν4=6.27,

ν5=1.21, ν6a=-4.13, ν7a=-1.38, ν9a=2.52, ν10b=-2.64, ν11=2.36, ν12=-3.28, ν13=-2.10,

ν16b=8.15, ν18a=3.45, ν20a=-1.17. The actual intersection, although heavily dependent

on the the two modes, ν4 and ν16b, also relies on the totally symmetric mode, JT active

modes ν6 and ν9, the lowest frequency e1u vibrational modes and both b1u modes. The

vector leading to the minimum barrier height is very similar to the minimum energy

point on the S1/S0 CI seam, with only slight differences in the magnitude of each mode.

The most significant differences are as follows: ν1=1.62, ν6a=-2.96, ν4=5.14, ν16b=7.20.

4.4 The Absorption Spectra

The quantum dynamics were performed with using the MCTDH quantum dynamics

package [112]. This efficient algorithm which has been used on a wide variety of systems

allows us to set up a 5 state and 9 mode model, a size which represents a significant

challenge for many quantum dynamics methods [78]. Details of the calculations per-

formed can be found in table 4.11.

The experimental spectra are shown in figure 4.11. Figures 4.12 and 4.13 show the

calculated absorption spectra. Each of the spectra have been shifted to account for
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Mode Ni,Nj n0,n1,n2,n3,n4

ν16a and ν4 60,60 5,6,4,5,5
ν6a,6b 30,30 5,6,4,5,5
ν1 60 5,6,4,5,5
ν14 ν15 30,30 5,6,4,5,5
ν9a 30 5,6,4,5,5
ν8a 30 5,6,4,5,5

Table 4.11: Computational details for the quantum dynamics simulations for the calculation
of the absorption spectra. Ni,Nj are the no. of primitive Harmonic oscillator DVR basis
functions used to describe each mode [78]. ni are the number of single-particle functions
used for the wavepacket on each state. CPU time for the B2u spectra was just over 2hrs, for
the other two spectra (B1u and E1u) the CPU was just under 30mins, as these calculations
required fewer modes.

match the experimental spectra. The initial wavepacket for the E1u spectra is prepared

using a vertical excitation into C̃. For the B1u and B2u spectra, a dipole operator along

the e2g modes was used to excite the wavepacket into the appropriate state. For the B2u

spectra a damping time of 150fs was used, but for the B1u and E1u spectra a damping

time of 20fs was used. In all three cases the calculations were propagated for 300fs.

The 1B2u ← X̃ spectra (figure 4.12(a)), which becomes an allowed transition by a

first order Herzberg-Teller coupling along the lowest frequency e2g mode shows excellent

agreement with the experimentally obtained spectra. Since this is a forbidden transition

the band origin (0-0) transition is not present, the apparent origin is actually the 61
0

transition, which involves the e2g vibration to induce intensity. The breathing mode

progression (61
01

n
0 ), is well replicated in this model, in terms of both spacing and relative

peak height. The most important hotbands have also been included in the calculation,

these are the 61
0161

1 and the 62
1 and have been weighted according to experimental

spectra [91].

Figure 4.12(b) shows the calculated B1u spectra, this, like the B2u is a forbidden

transition and is calculated using a first order Herzberg-Teller coupling along the lowest

frequency e2g mode ν6. The main progression in the spectra is a result of a progression

with mode 91
0. This band is fairly structureless and so the importance of other modes
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Fig. 4.11: The experimental spectra [90, 113]. (a) The 1B2u ← X̃ spectra. The four major
peaks are a breathing mode progression coupled with 61

0 to make it allowed transition. One
can also see 61

0161
1 and 62

1 hotbands. (b) The 1E1u ← X̃ absorption spectra, with the 1B1u ←
X̃ spectra inset. The 1E1u ← X̃ transition is an allowed transition and therefore produces a
broad and structureless band.

are hidden by the weak and broad structure.

Figure 4.13 shows the 1E1u ← X̃ absorption spectra. There is again good agreement

with experimental spectra. This allowed transition produces an broad, intense and

structureless band. The tail structure (enlarged inset) is the 1B1u ← X̃ spectra arising

from intensity borrowing of the allowed transition. This B1u tail agrees well with the

calculated spectra in figure 4.12(b), however it is a little too strong in comparison to

the experimentally obtained 1E1u ← X̃ spectra suggesting the coupling between the

two states is larger then actually exists.

4.5 Quantum Dynamics Calculations

4.5.1 Experimental Data

The dynamics of vibrationally and electronically excited benzene were studied experi-

mentally using an ultrafast laser and the pump-probe scheme, pioneered by Zewail (see
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Fig. 4.12: (a) The 1B2u ← X̃ absorption spectra. This shows agreement with the experimen-
tal spectra. The spectra includes the main breathing mode progression and the 61

0161
1 and

62
1 hotbands. (b) The 1B1u ← X̃ absorption spectra. Main progression in the spectra is a

breathing mode progression with mode 91
0

Fig. 4.13: The 1E1u ← X̃ absorption spectra. This allowed transition produces an broad,
intense and structureless band. The tail structure (enlarged inset) is the 1B1u ← X̃ spectra
arising from intensity borrowing of the allowed transition as a result of the vibronic coupling
which exists between the two states.
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introduction). The experimental apparatus consisted of a femtosecond laser system,

molecular beam and velocity map imaging spectrometer. The commercial femtosecond

laser system consisted of an ultrafast oscillator and amplifier producing a 1kHz train of

2.5mJ pulses of 35fs duration and a central wavelength of 795nm [19]. Results obtained

by the Fielding group (University College London) are shown in figures 4.14, 4.15 and

4.16.

A pump pulse, centred at 243nm, excited the ground state wavepacket into S1 at

3070cm−1, just above the onset of the channel 3 region. The initial wavepacket on the

ground state was prepared in two ways, (1) vibrationally excited (v=1) along ν16, this

is done by a thermal excitation. This from now on is termed the hot wavepacket. (2)

Vibrational ground state of S0, achieved by cooling using a supersonic molecular beam.

From now on this is referred to as the cold wavepacket. Following the pump pulse, a

probe pulse using wavelengths between 235-260nm was used to ionise the wavepacket,

the photoelectrons emitted were then detected.

Figure 4.14a shows the intensity of the photoelectron yield as a function of the

temporal delay in the probe pulse following excitation of the hot wavepacket into S1

and ionisation by probe pulses of 235nm (blue) and 254nm (red). Both decay curves

show two distinct timescales, an initial fast decay which occurs for the first 500fs, this

is followed by a slower decay. Figure 4.14b shows a plot of the ratio between the fast

and slow decay as a function of the probe wavelength. A clear step is visible at 250nm,

this is a clear indication of a photochemical channel that can only be ionised by a probe

pulse of wavelength below 250nm. From these two plots we can conclude that following

excitation of the hot wavepacket into S1 about 50% of the wavepacket propagates away

from the FC point, approximately 30% through a photochemical channel which is not

accessible to any probe wavelength and 20% which can be ionised by a probe wavelength

under 250nm.

Further information can be obtained from the kinetic energies of the expelled photo-
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Fig. 4.14: (a) Experimental decay curves, detecting the photoelectron yield as a function
of probe delay of hot wavepacket following excitation into S1. The pump pulse was 243nm
and the probe pulse 235nm (blue) and 254nm (red). (b) The ratio of the amplitude of the
slow component to the amplitude of the fast component is plotted as a function of the probe
wavelength. The step at 250nm is a signature of a new ionisation pathway opening. Figure
reproduced with the permission of Prof. H. Fielding, UCL, London. [19].
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Fig. 4.15: Intensity of kinetic energies of the expelled photoelectrons as a function of pump-
probe delay, the exponential decay has been removed. (a) Photoelectron kinetic energies
following a Franck-Condon excitation of the hot wavepacket into S1 (b) Photoelectron ki-
netic energy following a Franck-Condon excitation of the cold wavepacket into S1. Figure
reproduced with the permission of Prof. H. Fielding, UCL, London. [19].

Fig. 4.16: Integrated intensities of photoelectrons as a function of pump-probe delay with the
exponential decay removed. The open circles correspond to integration over the range ε1a

and ε1b. The closed circles correspond to integration over the range ε2 and the filled triangles
correspond to integration over the range ε3. ε1a=1.25-1.35eV, ε1b=1.13-1.23eV, ε2=0.75-
0.95eV and ε3=0.35-0.45eV. Figure reproduced with the permission of Prof. H. Fielding,
UCL, London. [19].

Benzene 73



Quantum Dynamics Calculations 4.5

Mode Ni,Nj n0,n1,n2,n3,n4

ν16a and ν9a 111,27 40,22,3,18,4
ν6a and ν4 27,91 40,22,3,18,4
ν1 and ν6b 91,27 40,22,3,15,4
ν14 and ν15 21,21 40,22,3,13,3

Table 4.12: Computational details for the quantum dynamics simulations for the diabatic
5 state model. Ni,Nj are the number of primitive Harmonic oscillator DVR basis functions
used to describe each mode [78]. ni are the number of single-particle functions used for the
wavepacket on each state. This ensured convergence for 1000fs in the hot wavepacket case
and for the full 2000fs in the cold wavepacket case. The CPU time was 780hrs.

electrons. Figure 4.15 shows the intensity of the kinetic energy for photoelectrons as a

function of the pump-probe delay. When the hot wavepacket is excited to S1 (shown in

figure 4.15a) the intensity of photoelectrons rapidly decays from the region around 1.2

eV, attributed to photoelectrons expelled from the FC region of S1. It then oscillates

between two energy regions at 0.4eV and 0.8eV. Figure 4.16 replots figure 4.15a includ-

ing only the energy regions of interest. This figure shows a 1.2ps oscillation between

ε1 (1.13-1.35eV) and ε2 (0.75-0.95eV). There is also another channel, ε3 (0.35-0.45eV)

which is accessed when the population of ε2 is at the maximum amplitude.

Figure 4.15b shows when the cold wavepacket is excited into S1. This shows no

decay from the FC region, indicating the wavepacket does not have enough energy in

the right modes to surmount the barrier which exists on the PES near to the FC point.

4.5.2 5 State Diabatic Model

Using the Vibronic Coupling Hamiltonian (calculated in section 4.1) we performed

quantum dynamics simulations to replicate and explain the experimental data. All

of the quantum dynamics calculations are performed using MCTDH (see section 3.5).

The computational details for these simulations are shown in table 4.12.

The experimental pump-probe setup is able to follow the time dependence of the

wavepacket by relating the photoelectron intensity to FC factors. This can be simulated

theoretically by following the time evolution of the diabatic state populations of the
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important electronic states.

The probe pulses, used experimentally, are able to ionise different portions of

the wavepacket on the PES. The lower energy pulse of 254nm is only able to ionise

wavepacket in the FC region of S1, but the higher energy pulse (235nm) is able to ionise

all of the wavepacket on the PES in the region of the interest which leads to the S1/S0

CI. Therefore we can attribute the population of Ã as corresponding to photoelectron

yield arising from the lower energy pulse and wavepacket population in states Ã+ C̃

corresponding to photoelectron intensity arising from the higher energy pulse. Due to

energetic considerations it is not possible to ionise X̃ at any probe wavelength used in

the experimental study.

Figure 4.17 shows the diabatic state population of Ã (blue line) and Ã+C̃ (red

line) for the first 2000fs following a dipole excitation of the wavepacket into Ã, (a)

represents the dynamics from the hot wavepacket and (b) the dynamics from the cold

wavepacket.

When the hot wavepacket is propagated (shown in figure 4.17a) there is rapid decay

from Ã within the first 50fs. This is because of the wavepacket crossing into C̃ via the

CI along ν4 and ν16a. Between 50-100fs a decay in the Ã+C̃ curve is observed as the

wavepacket reaches the S1/S0 CI and crosses into the ground state X̃. After 500fs

70% of the wavepacket is in Ã + C̃, of which 60% of this remains in Ã. The Ã + C̃

population agrees exactly with the experimental decay curves, however the population

of Ã found in the theoretical calculations is approximately 10% greater then indicated

in the experimental data, suggesting that a photochemical channel which contains a

significant portion of the wavepacket is missing in this simulation.

Figure 4.17b shows the diabatic state populations of the dynamics using the cold

wavepacket. We do see some decay from the FC point into both C̃ and X̃, but this

is slower and significantly reduced from the hot wavepacket case. This is because the

wavepacket is not excited along ν16a before excitation in S1 and therefore there is not

Benzene 75



Quantum Dynamics Calculations 4.5

Fig. 4.17: (a) Diabatic state populations of Ã (blue) and Ã+C̃ (red) following a excitation of
the hot wavepacket into the Franck-Condon point on Ã. (b) Diabatic populations of Ã (red)
and Ã+C̃ (blue) following excitation of the cold packet into Franck-Condon point on Ã.
.

enough energy in the prefulvene mode to surmount the barrier on the PES leading to

the S1/S0 CI.

Comparison of the experimental results to the theoretical calculations reveal two dif-

ferences. (1) Decay from Ã lasts longer then seen experimentally. In the hot wavepacket

propagation the fast decay lasts for 1000fs, a lot longer then 500fs which is observed

experimentally. (2) There is significant decay in the cold simulation, however in the ex-

periment none is observed. Both of these can be explained by considering the reduced

dimensionality of the model used. Due to the sheer size of the quantum basis required

only 8 of the 30 modes of benzene are included in these calculations (table 4.12), there-

fore many of the modes which contribute second order on-diagonal coupling parameters

(responsible for IVR) are left out. This means that the energy of the wavepacket is

not distributed correctly throughout the model and energy remains concentrated in

the modes included. These modes are all involved in the motion towards the S1/S0

intersection and therefore it is unsurprising that decay is enhanced.
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This also causes the decay in the cold wavepacket propagation. Instead of initial

fast decay we find a constant slower decay. Following the dipole excitation into S1, both

ν1 and ν6a contains a reasonable amount of vibrational energy, this would gradually

dissipate throughout the rest of the 28 modes in the full model, however in the reduced

space a larger amount will dissipate along ν16a and ν4, giving enough energy in these

modes for slow decay to occur.

Further analysis of the dynamics can be obtained by plotting expectation values

of the position and width of the wavepacket and the density of the wavepacket in

normal mode space. Figures 4.18 and 4.19 show the expectation values and figures

4.20, 4.21, 4.22, 4.23, 4.24 and 4.25 show the densities of the wavepacket on states X̃,

Ã and C̃ along modes ν1,ν4,ν6a and ν16a. These are only plotted for the hot wavepacket

calculations. In the cold wavepacket calculation similar dynamics are obtained, but the

amplitude of the oscillations are reduced, this is especially evident along the critical

prefulvene combination mode and is why the decay is slower.

Figures 4.18c and e and 4.19c and e shows the importance of the motion along ν4

and ν16a to the ultrafast dynamics. Initially small oscillations and the spreading of the

wavepacket along both ν4 and ν16a on Ã causes the wavepacket to reach the intersection

with C̃. C̃ has a steep gradient along these modes and crosses both Ã and X̃. This

causes the wavepacket to follow the profile of the surface to large negative values along

these modes towards the S1/S0 CI. Upon inspection the width of the wavepacket on Ã

along ν4 and ν16a one can immediately see a 900fs oscillation. This is in good agreement

with the experimental oscillation of 1.2ps. We therefore predict that the oscillation is

the wavepacket either side of the barrier leading to the S1/S0 CI. We see a reduced

time period in this model because the coordinate spans two electronic states (Ã and

C̃). This is discussed further in section 4.5.3 when the reaction coordinate is treated

as one adiabatic state.

The wavepacket on Ã along ν1 (shown in figure 4.18d) shows large rapid oscillations
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because the S1 minima along ν1 is shifted, and therefore the wavepacket is not excited

into the minima. Oscillations along ν1 on C̃ are much smaller. The motion along mode

ν6a on Ã and C̃ are small in both cases. Oscillation around the equilibrium position

on these state occur on a faster timescale, but with much less motion.

The width of the wavepacket on each of the states of interest are shown in figure

4.19. Modes ν1 and ν6a both show rapid and large oscillations on Ã, this is most evident

in ν1 whose width oscillates between 0.7-1.2au with a timescale period of approximately

25fs. The wavepacket is widest on X̃ this is because the position of the S1/S0 CI means

that the wavepacket which crosses into the ground state is very vibrationally hot and

will quickly spread around the surface. This is most evident along modes ν4 and ν16a

which are very wide, this is because these modes require the largest motion to reach

the CI.

The wavepacket density plots are shown in figures 4.19-4.24. The density along ν4

and ν16a exhibits the most significant motion. Figure 4.21 shows the wavepacket on Ã.

It very quickly spreads along both coordinates, due to the flat profile of the PES on

the diagonal. When the wavepacket oscillates to negative values along these two modes

it reaches the intersection between Ã and C̃, resulting the transfer of population to

C̃. This can be seen in the wavepacket on C̃ in figure 4.22, density increases between

50-100fs, and propagates to large negative positions, around the intersection region.

Upon reaching the intersection point, the density is able to cross onto X̃ (shown in

figure 4.20). Because of the location of the CI, the density crossing onto this state is

very vibrationally hot and therefore the wavepacket spreads throughout these modes

very quickly. This dispersed nature is why a large number of SPF are required on the

ground state.

The density along ν1 and ν6a shows a tight and well structured packet on all states.

Oscillations due to the FC excitation are visible on Ã along ν1. On X̃ the wavepacket is

more spread out and the width increases throughout the propagation as the population

Benzene 78



Quantum Dynamics Calculations 4.5

Fig. 4.18: Expectation values of the position of the hot wavepacket during propagation for
the first 2000fs. (a) < q > of ν4 (green) and ν16 (red) on S0. (b) < q > of ν1 (purple) and ν6

(blue) on S0. (c) < q > of ν4 (green) and ν16 (red) on S1. (d) < q > of ν1 (purple) and ν6

(blue) on S1. (e) < q > of ν4 (green) and ν16 (red) on S3. (f) < q > of ν1 (purple) and ν6

(blue) on S3.
.
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Fig. 4.19: Expectation values of the width of the hot wavepacket during propagation for the
first 2000fs. (a) < dq > of ν4 (green) and ν16 (red) on S0. (b) < dq > of ν1 (purple) and ν6

(blue) on S0. (c) < dq > of ν4 (green) and ν16 (red) on S1. (d) < dq > of ν1 (purple) and ν6

(blue) on S1. (e) < dq > of ν4 (green) and ν16 (red) on S3. (f) < dq > of ν1 (purple) and ν6

(blue) on S3.
.
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on this state increases. On C̃ very little motion is observed.

4.5.3 2 State Adiabatic Model

The dynamics calculations performed using the 5 state Hamiltonian are able to accu-

rately describe the early time dynamics in the excited states of benzene and especially

to explain the importance of the X̃, Ã and C̃ interaction in the ultrafast dynamics.

However such a calculation is very computationally expensive. Large displacements of

the wavepacket along the normal modes means that each calculation requires a large

number of DVR grid points and SPF to ensure convergence.

In order to make full convergence for 2000fs a more realistic objective a new Hamil-

tonian has been calculated in which the coordination space has been reduced to 2

electronic states and 6 vibrational DOF. This model uses most of the parameters from

the large model, but some of the combination modes refitted with only two electronic

states. In this model the barrier formed by the intersection between Ã and C̃ in the pre-

vious model is now treated adiabatically, arising from third and fourth order intra-state

couplings on S1.

The vibrational modes included in this model are the boat and chair modes which

are required to reach the S1/S0 CI, the JT active mode (ν6a), the breathing mode (ν1)

and ν14,15 responsible for coupling between S1/S0. The computational details are shown

in table 4.13. This ensures that Ã is converged for the full calculations. Due to the

nature of the wavepacket on the X̃ surface this state is only converged for the first

1000fs, however because the important dynamics occurs on Ã within the first 500fs

this loss of convergence is not expected to be important.

As discussed in the previous section for the 5 state model, we perform two calcula-

tions (1) the hot wavepacket and (2) the cold wavepacket. Figure 4.26a shows the hot

wavepacket dynamics and figure 4.26b shows the cold wavepacket dynamics. In both

cases the green line represents the state population of Ã and the red line is Ã minus

the population which has crossed the barrier on S1, which in the 5 state model is the
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Fig. 4.20: The wavefunction density on X̃ in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.21: The wavefunction density on Ã in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.22: The wavefunction density on C̃ in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.23: The wavefunction density on X̃ in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.24: The wavefunction density on Ã in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.25: The wavefunction density on C̃ in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Mode Ni n0,n1.
ν16a 121 40,22
ν4 111 40,22
ν6a 27 40,22
ν1 60 40,22
ν14 91 40,22
ν15 15 40,22

Table 4.13: Computational details for the quantum dynamics simulations using the 2 state
model Hamiltonian. Ni is the no. of primitive Harmonic oscillator DVR basis functions
used to describe each mode [78]. ni are the number of single-particle functions used for the
wavepacket on each state. This ensured full convergence on S1 for 2000fs and on S0 for 1000fs.
The CPU time was 380hrs.

equivalent of populating C̃. This population is calculated as the expectation value of

a step function operator defined at the peak barrier height in normal mode space.

The state populations for the hot wavepacket propagation (shown in figure 4.26a)

shows the two decay timescales seen in the experimental data. In this model, unlike

the 5 state model, this lasts for only 500fs, in excellent agreement with the experiment

results. The slow decay is larger then seen in the experiments, but this is due to the

reduced dimensionality of the model. After 500fs 75% of the wavepacket remains in S1,

while 65% of this remains in the FC region of Ã and has not crossed the barrier leading

to the intersection. This is approximately 5% more then seen in the 5 state model.

This represents good agreement with both the previous model and experimental data.

Figure 4.26b shows the state populations from the cold wavepacket propagation

following a dipole excitation in Ã. One can immediately see there is about a 10%

decay from Ã into X̃. This is significantly less then the 5 state model, and is therefore

in better agreement with the experimental data.

Figure 4.27 shows the expectations value, 〈q〉, for the four most important normals

modes (ν1, ν4, ν6 and ν16a) on X̃ and Ã states. Figure 4.27c and d shows the 〈q〉 on

Ã. Along ν16a and ν4 (figure 4.27c) it is immediately apparent there are two distinct

oscillatory timescales, one faster relating to the vibrational period of the mode and a

slower superimposed period with a wavelength of 1.2ps, like that seen in the experi-
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Fig. 4.26: (a) Diabatic state population of Ã (green) and Ã minus population on the CI
side of the barrier (red) for the two state model Hamiltonian following excitation of the hot
wavepacket into Ã. (b) Diabatic state population of Ã (green) and Ã minus population on
the CI side of the barrier (red) following excitation of the cold wavepacket into Ã.

mental data. This oscillation is the wavepacket moving either side of the barrier on the

S1. By comparing this with the width of the wavepacket along the same modes (figure

4.28) it is clear that this 1.2ps oscillation is out of phase between the position and

width. As the wavepacket oscillates along these modes its becomes spreads along the

whole mode, increasing the width, but reducing the overall size of oscillations. As part

of the wavepacket decays to the lower state, the density is no longer spread along the

entire mode and therefore the wavepacket can begin to oscillate again, the reduction

in the overall density on S1 means that the size of the oscillations are reduced.

For 〈q〉 on the ground state we see a initial large displacement from equilibrium as

the wavepacket comes through the CI onto the S0 surface, following this the wavepacket

oscillates, around the equilibrium position. As the dynamics proceeds we see the energy

in modes ν4 and ν16 spread to the breathing mode, this is due to coupling parameters

on the ground state between these modes. The width of the wavepacket on S0 is a

lot larger than seen on S1. This is because, as discussed in the previous model the

wavepacket on S0 is very vibrationally hot due to the position of the CI.
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Fig. 4.27: Expectation values of the position of the hot wavepacket during propagations for
first 2000fs. (a) < q > of ν4 (green) and ν16 (red) on S0. (b) < q > of ν1 (purple) and ν6

(blue) on S0. (c) < q > of ν4 (green) and ν16 (red) on S1. (d) < q > of ν1 (purple) and ν6

(blue) on S1.
.
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Fig. 4.28: Expectation values of the width of the hot wavepacket during propagations for
first 2000fs. (a) < q > of ν4 (green) and ν16 (red) on S0. (b) < q > of ν1 (purple) and ν6

(blue) on S0. (c) < q > of ν4 (green) and ν16 (red) on S1. (d) < q > of ν1 (purple) and ν6

(blue) on S1.
.
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Figures 4.29, 4.30, 4.31 and 4.32 show the motion of the wavepacket on both elec-

tronic states for the most important four DOF; ν16a. ν6a, ν4 and ν1. Figures 4.29

and 4.30 confirms the observation that the wavepacket on S0 is very vibrationally hot,

this results in the wavepacket very quickly spreading out on the S0 surface making the

calculations much harder to converge. This is highlighted especially well in figure 4.29

in which the motion along ν4 and ν16a is very rapid.

Figures 4.31 and 4.32 show the wavepacket motion on S1. Figure 4.32 shows a

simple oscillatory behaviour, of which neither modes ν1 or ν6a show a huge amount

of movement. Figure 4.31 shows the motion between ν16a and ν4. The oscillatory

behaviour seen in the expectation value is seen again as the wavepacket oscillates

along each coordinate. The flat nature of the surface along these modes allows the

wavepacket to spread along the entire coordinate, this motion is the main vibration

which leads to the CI.

4.6 Conclusion

The topology of the PES plays a crucial role in the dynamical behaviour of a system.

This is particularly true if non-adiabatic effects are present when the highly coupled

system that results can be sensitive to the accuracy of the PES obtained. As discussed

the CASSCF method is unable to perform the dynamic correlation required to account

for the double excitations associated with the B̃ and C̃ states in benzene. As a result the

E2g state lies below the E1u state in the CASSCF model and is wrongly preferentially

coupled to the B2u state making the coupling between the E1u and B2u states small.

The CASPT2 calculations corrects the order of the states, enabling a more accurate

description of the inter-state coupling. This description has a significant effect on the

dynamics and the accuracy of the model.

Benzene represents an ambitious target for full quantum dynamics calculations with

seven coupled states and 30 vibrational modes, but the automatic fitting procedure
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Fig. 4.29: The wavefunction density on S0 in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.

Benzene 93



Conclusion 4.6

Fig. 4.30: The wavefunction density on S0 in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.

Benzene 94



Conclusion 4.6

Fig. 4.31: The wavefunction density on S1 in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 4.32: The wavefunction density on S1 in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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used here is able to provide the necessary parameters. Due to the linear optimisation

used there is unfortunately no guarantee that the parameters obtained are the best,

and it is possible that a different set of parameters would obtain a similar fit. The

procedure used takes an initial guess and first optimises the linear parameters before

adding higher order terms. Despite this and the simplicity of the model, the surfaces

obtained fit very well to those obtained from the quantum chemistry calculations.

Vibronic coupling can be conveniently characterised according to the symmetry

of the the states and modes involved. In benzene there is both JT and PJT coupling

present. Both arise as a result of e2g vibrations coupling the states. We find that ν8 and

ν9 are the most important for JT couplings, and modes ν7 and ν8 are the most important

for PJT interactions. There are also significant first order couplings between the singly

degenerate states, which contribute to an overall highly coupled multi-channel model,

allowing the wavepacket, in various quantities, to spread throughout the whole system

after an initial excitation. This model, as shown, is accurate enough to enable good

reproduction of the lowest three absorption bands, thus describes the region around

the FC point well. After adding some third order terms to the model, it is also able to

reproduce the adiabatic surfaces leading to the S1/S0 CI.

Using the full 5 state and reduced space 2 state Hamiltonian we were able to perform

quantum dynamics simulations for the first 2000fs following excitation into S1. In both

cases it was shown that when vibrationally hot, there is significant decay away from

the FC point towards and through the S1/S0 CI. In the case of the 5 state model the

barrier was created from a diabatic crossing between the Ã and C̃ and therefore in

order to reach the intersection the wavepacket initially populates C̃. In the two state

model the barrier is treated adiabatically, arising from intra-state coupling parameters.

The results obtained show good agreement with the experimental data. There is

an initial fast decay, followed by a slower one. In both calculations the fast decay

continues for longer than seen experimentally, but this is attributed to the reduced
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dimensionality. The calculations allow us to conclude that much of the decay in the

channel 3 region of benzene occurs through the S1/S0 CI. We are also able to attribute

the 1.2ps oscillations seen experimentally to oscillations along the reaction coordinate.

However the singlet model is unable to fully assign the step in the ion yield arising

from altering the energy of the probe pulse. Part of this step arises from wavepacket

population in C̃, which cannot be ionised at longer wavelengths of the probe pulse.

Despite this, 10% of the decay from the FC region is not shown in this singlet model,

indicating that we are still missing a photochemical channel.
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Chapter 5

Spin Orbit Coupling

5.1 Introduction

The factors effecting ultrafast internal conversion (IC) in small hydrocarbon molecules

has been widely discussed in regards to photochemical behaviour [10,11,114,115]. The

importance of such topological features as CI in singlet transitions is well documented

[116–121]. In comparison the behaviour and importance of intersystem crossing (ISC)

in the same time regime is relatively unknown [122–126].

The involvement of triplet states in the ultrafast dynamics of hydrocarbons is often

dismissed due to the strength of the coupling that exists between the two manifolds.

However the lowest triplet states tend to lie in close proximity to the lowest singlet

excited states and it has been shown that in some cases the lowest triplet state intersects

the S0 at the same point as S1, forming a triple intersection point [123]. This behaviour

gives rise to a high density of states, and increases the probability of ISC, even when

the coupling is relatively small.

The strength of SOC is strongly dependent on (a) nuclear charge, (b) the availability

of transitions between orthogonal orbitals and (c) spatial proximity of the two orbitals.

Singlet-triplet transitions are governed by El-Sayed’s rule [122], which states:

f [S(n, π∗)↔ T(π, π∗)] and f [S(π, π∗)↔ T(n, π∗)] (5.1a)
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are much greater then transitions arising from:

f [S(π, π∗)↔ T(π, π∗)] and f [S(n, π∗)↔ T(n, π∗)] (5.1b)

Equations 5.1a and 5.1b express that transitions between a singlet and a triplet state

will be more efficient when the associated change in spin angular momentum is accom-

panied by a change in orbital angular momentum. A spin flip that occurs via a n↔ π∗
transition may be considered as an orbital angular momentum change associated with

a transition from a p orbital in the plane to one which is perpendicular. This orbital

angular momentum change can couple to the spin momentum change associated with

a αβ → αα spin flip [1], therefore conserving the total angular momentum. This is

highlighted in figure 5.1. In figure 5.1(a) the HOMO-LUMO transition from S0 to T1

is a π → π∗ transition, this does not involve an angular momentum change and is

therefore forbidden. However in the figure 5.1(b), the transition from S0 to T3 (in-

volving LUMO+1) requires a one-centre jump in p-orbitals and therefore a change in

orbital angular momentum is coupled with the same change in spin angular momentum,

making this an allowed transition [1].

Aromatic hydrocarbons, such as benzene, have very small SOC at the equilibrium

geometry because they are unable to invoke n→ π∗ transitions. The closest analogous

transition is σ → π∗ or π → σ∗. However in planar geometry the π, π∗ states and

σ, σ∗ states do not mix and therefore there is no mechanism for coupling. Out of

plane vibrations, such as C-H bends (shown in figure 5.2), break the symmetry and

allow mixing between σ and π states. This symmetry breaking operation transforms

the originally symmetric p-orbital into an spn orbital providing a weak mechanism for

SOC.

Symmetry considerations play a key role in all electronic transitions, as described

in section 2.4. For coupling between the two different spin states the product of the

state symmetries must be a subset of a rotational symmetry from the symmetry group
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Fig. 5.1: (a) The HOMO and LUMO orbitals of ethylene and the spin flip involved in a
ππ∗ transition from S0 to T1. There is no possible change in angular momentum and hence
the spin-flip is forbidden. (b) The electron one-centre jump involved in S0 to T3 transition
(HOMO and LUMO+1). The change in angular momentum involved in a jump from a
pz to py is match exactly by the change in angular momentum associated with a spin-flip,
conserving angular momentum and making this an allowed transition.

of the molecule [127].

Γi ⊗ Γj ⊗ Γα ⊃ Rx, Ry or Rz (5.2)

where Γi and Γj are the two coupled states and Γα is the coordinate. The rotational

symmetries in D2h are B3g (Rx), B2g (Ry) and B1g (Rz) and therefore SOC may exist at

equilibrium between S1 (21Ag) and T1 (3B1g); Ag ⊗ B1g = B1g (Rz). Higher order cou-

pling symmetry considerations follow the same analysis used for the Vibronic Coupling

Hamiltonian (in section 2.4), in which the symmetry of the vibration is also included in

the sum. An example is between 11B1g and 13B1g along a b1g mode; B1g ⊗ B1g ⊗b1g =

B1g (Rz). First and higher order vibronic couplings are critical in accurately describing

the PES and hence dynamics in singlet models, especially in the non-adiabatic regime.

By contrast the effects of vibrations on SOC couplings are often not considered in such

detail and only a few literature examples exist, these include studies on naphthalene

and anthracene by Lawetz et al and benzene by Fujimura et al [124,125]. These higher
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Fig. 5.2: The pure p orbital is able to mix when an out of plane C-H bend occurs. This
create an spn orbital and the mixing between σ and π states provides a mechanism for spin
orbit coupling.

order terms are likely to be important when considering the interactions between the

singlet and triplet manifold.

This chapter has been motivated by work presented in the previous chapter in-

volving the channel 3 region of benzene. As discussed in chapter 4 excitation into the

high vibrational states of S1 results in a sudden loss of fluorescence. Radiationless

transitions in the singlet manifold account for a lot of this behaviour but experimental

results have indicated that a small portion of the wavepacket is crossing onto the triplet

states in the ultrafast timescale, through the S1/S0/T1 CI. Recent publications have

also postulated that the SOC increases at CI [123]. Therefore the high density of states

and larger coupling at the CI would result in a mechanism for ultrafast ISC.

In this chapter we calculate the SOC for cyclobutadiene and benzene. Cyclobutadi-

ene represents an excellent starting point because there are many similarities between

the two system, but being a smaller molecule is easier to characterise with a range of

active spaces and basis sets. Performing these calculations along all the normal modes

and the vector in normal mode space between the FC point and the S1/S0/T1 CI we

hope to characterise the behaviour of SOC in these simple hydrocarbons and discuss

the possibility of its importance in ultrafast dynamics.
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5.2 Methodology and Computation

Geometry optimisations of the S0 equilibrium geometry and S1/S0 CI were determined

using Gaussian03 [111] and Molpro [107]. They were performed at CASSCF level

with a 6-31g* basis. Results obtained gave good agreement between each other and

previously obtained results [128–130].

Ab-initio points and SOC energies calculated using Molpro were initially performed

with a variety of basis sets and active spaces, the most appropriate was selected for

the normal mode cuts based upon accuracy and computational expense. Molpro uses

a full two electron Breit-Pauli Hamiltonian for SOC calculations (this is discussed in

chapter 2). The internal configurations are treated exactly, while contributions from

the external configurations are treated using a one electron mean field approach. This

method has proved successful in a variety of systems and the error caused by this

approximation is usually smaller than 1cm−1 [68].

The geometries along the normal mode coordinates were obtained using the VCHAM

program distributed with the MCTDH package [112]. Coordinates are generated from

dimensionless (mass-frequency scaled) normal modes along each vibration, in the same

manner as chapter 4. The cuts along the vector leading to S1/S0/T1 CI were calculated

by using the intersection geometry as the mid-point of the plot and taking a number of

equal predefined steps to the equilibrium geometry and in the opposite direction away

from the intersection.

5.3 Results

5.3.1 Cyclo-Butadiene

Cyclobutadiene, C4H4, is a simple hydrocarbon, whose stable structure has D2h sym-

metry. Upon inspection one might expect a D4h geometry but due to vibronic coupling

between the ground (X̃1B1g) and first excited state (Ã1A1g) which makes the square

planar D4h geometry unstable. Extensive theoretical studies [129, 131–134] have suc-
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Fig. 5.3: Optimised structures of cyclobutadiene using a CAS(4,4)/6-31g* basis. (a) D2h

rectangular form (b) D4h square planar form. Bond lengths are in Å.

cessfully characterised the vibronic coupling which breaks the D4h symmetry. The

difference between the bond lengths of the two structures is shown in figure 5.3.

Various studies also exist characterising the triplet surfaces [134, 135] and isomeri-

sation barrier between each rectangular form [131], however there remains little work

on the nature of SOC [127]. In this section we characterise the vibrational effects on

the SOC, using the D2h minimum energy geometry as equilibrium.

Cyclobutadiene contains 18 vibrational normal modes (14 of which are shown in

table 5.1). These are calculated at MP2 level with a 6-31g* basis. The low frequency

modes, which are most important in these calculations have an error of ∼0.006eV

(50cm−1). The higher frequency modes have an error of ∼0.02eV (150cm−1), but these

play little part in SOC.

Table 5.2 shows the ground and excited state energies and SOC between S2/T1 in

cyclobutadiene at equilibrium geometry. Two active spaces and three basis sets are

used. The (4,4) active space incorporates the valence π orbitals and the (8,8) active

space also includes the most important σ and σ∗ orbitals. The electronic structure

calculations (shown in table 5.2) use CASSCF except where labelled Multireference

configuration interaction (MRCI) . The MRCI calculations use the Roos basis set.

In rectangular (D2h) form the occupied π valence orbitals have b1u and b2g sym-
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Mode Symmetry Vibration Theory Expt [129] Description

1 1au 0.059 - Anti-Symmetric C-H Bending

2 1b2g 0.060 0.066 Anti-Symmetric C-H Bending

3 1b3u 0.069 0.070 Symmetric C-H Bending

4 2au 0.088 - Anti-Symmetric C-H Bend

5 1b2u 0.093 0.089 In plane C-H bend

6 1b1g 0.096 - Anti-Symmetric C-H Bend

7 1b3g 0.106 0.090 C-H Breathing

8 1ag 0.123 0.123 In plane C-H bend

9 1b1u 0.134 0.127 In plane C-H bend

10 2ag 0.142 0.131 In plane C-H bend

11 2b3g 0.140 - In plane C-H bend

12 2b2u 0.160 0.154 In plane C-H bend

13 3ag 0.198 0.208 Ring Distortion

14 2b1u 0.200 0.189 Anti-Symmetric Ring Distortion

Table 5.1: Mode symmetry and vibration energies (in eV) for the lowest 14 normal modes
of cyclobutadiene. Calculated using MP2 and 6-31g* basis set. The last 4 high frequency
vibrational modes not included because they play no role in this study but can be found
in [129].
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metry, the π∗ orbitals have b3g and au symmetry [136]. The excited determinants in

the π space are responsible for the singlet and triplet states that we consider. The σ

orbitals, included in the larger active space do not contribute much to the accuracy of

the vertical excitation energies. The excited state energies (table 5.2) obtained shows

good agreement with previously calculated values [137]. The first singlet excited state

(11B1g) and lowest triplet state (13B1g) is poorly described using the smaller basis set,

but using a the large basis gives energies close to the experimental values even using

CASSCF with the smaller active space. The second excited state (21Ag) is poorly

described when the smaller active space is used, this is unsurprising because analysis

of the orbitals shows that the wavefunction for this state contains significant doubly

excited determinants.

At equilibrium SOC exists between the S2 (21Ag) and T1 (3B1g) in the z (out of the

plane) direction. It is very small, as one would expect for an aromatic type system.

This is because hydrocarbons, like cyclobutadiene are unable to invoke the n → π∗
transitions responsible for strong SOC. The closest analogous transition is σ → π∗ or

π → σ∗. In planar geometry the π, π∗ states and σ, σ∗ states do not mix and therefore

there is no mechanism for coupling.

The size of SOC increases when the basis set and active space are enlarged, although

the increase is only from ∼0.04cm−1 to ∼0.08cm−1 in the former case and ∼0.08cm−1

to ∼0.1cm−1 in the latter case. This suggests that the σ and σ∗ orbitals (included in the

(8,8) active space) are not important for obtaining accurate values for SOC. However

as mentioned the σ and π orbitals do not mix at planer geometry and therefore their

inclusion will have little effect. Distortions from the equilibrium geometry along out of

plane modes will invoke σ/π mixing and therefore the larger (8,8) active space is likely

to make a big difference to the SOC energies. For the rest of the calculations MRCI

with the (8,8) active space with a Roos basis set is used.

Figure 5.4 shows the change in SOC along the normals modes which exhibit signifi-
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cant vibrational effects, these are ν1, ν2, ν3 and ν4. The vibrational SOC terms are most

evident, as predicted, in normal modes which contain out of plane C-H bends. The

largest effect is observed along ν3 (seen in figure 5.4c); the SOC between 21A1g/
3B1g

and 11A1g/
3B1g rises to 5cm−1 and 4cm−1 respectively. At this point the hydrogen

atom is bent 63◦ out of the plane of the molecule and the C-H bond length has ex-

tended to 1.67Å. The SOC gradient is largest in this mode because all of the C-H bonds

bend out of the plane in the same direction, causing the most mixing between π and σ

orbitals. The extent of the mixing is illustrated in figure 5.5. At the equilibrium posi-

tion (shown in figure 5.5a) the unperturbed valence π orbitals show no s type character

and are therefore symmetric through the plane of the molecule. However following a

displacement along ν3 so that the hydrogen atom is bent 63◦ out of plane, (figure 5.5b),

it can be clearly seen that the π orbitals have mixed with σ orbitals giving slight spn

character to the π orbitals.

Figure 5.4a shows the effect of ν1 on SOC. In this mode there is still a C-H bending

motion, however the most dominant motion in this mode is an out of plane C-C torsion.

This torsion reduces the extent of the mixing between π and σ orbitals and therefore

the gradient of SOC is reduced significantly.

Figures 5.4b and 5.4d show an increase in the SOC between 21A1g/
3B1g and 11A1g/

3B1g

along modes ν2 and ν4 respectively. Both modes contain two up and two down C-H

bends. The SOC gradient along ν4 is a lot greater than ν2 because it is a higher fre-

quency mode and therefore the out of plane motion of the hydrogen is greater. For ν2

the C-H bending angle is 64◦ at 10units from equilibrium, but for ν4 the C-H bending

angle is 68◦ at 10units. The coupling between 11A1g/
3B1g in both modes shows an

increase before decaying. This occurs due to vibronic mixing between the 11Ag and

11B1g electronic states. This effectively changes the symmetry, making SOC forbidden

at large distortions.
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Fig. 5.4: Changes in spin orbit coupling values along selected normal modes of cyclobutadiene:
(a) ν1 (1au) (b) ν2 (1b2g) (c) ν3 (1b3u) (d) ν4 (2au). In all cases the green line is spin orbit
coupling between 21A1g/3B1g. The red curve is spin orbit coupling between 11A1g/3B1g.
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Fig. 5.5: The π valence orbitals of cyclobutadiene. (a) Equilibrium geometry (b) Distorted
along ν3, an out of the plane C-H bend. At this point the hydrogen atom is bent 63◦ out of
plane of the molecule. The orbitals show spn character responsible for a mechanism for spin
orbit coupling.
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5.3.2 Benzene

In chapter 4 we presented work on the singlet manifold of benzene. This described

the competing pathways in the photochemistry of benzene following excitation into

the higher vibrational states of S1 [19, 138]. Much of the behaviour can be described

within the singlet manifold, but some questions still remain. Early research considered

the involvement of triplet states in the dynamics [139], however this idea was gradually

dropped due to the small size of the SOC. Recent experimental studies have indicated

that although dominated by the ultrafast S1/S0 transition through the prefulvenoid

CI, ISC may play a small role [19]. Another recently published paper has stated that

SOC increases at a CI [123], and therefore this could provide a mechanism for ultrafast

ISC to occur.

Table 5.3 shows the vertical excitation energies calculated at equilibrium geometry

using a variety of basis sets and active spaces. The (6,6) active space (as described

and used in chapter 4) contains the π valence orbitals, the (10,10) active space also

includes the most important σ and σ∗ orbitals. The electronic structure calculations

in table 5.3 uses CASSCF except where labelled as MRCI. The MRCI calculation uses

the Roos basis. As expected there is a steady improvement in the energy with the size

of basis and active space (this is discussed in more detail in chapter 4).

At the equilibrium geometry benzene has symmetry allowed SOC between 11B2u/13B1u.

Like cyclobutadiene the SOC is very small due to its aromatic nature. There is a steady

increase in the size of SOC when the basis set and active space sizes are increased, but

the values remain small even in the largest calculations. As expected, from cyclobuta-

diene calculations, the inclusion of the σ orbitals has little effect at equilibrium, due

to their inability to mix. However the larger active space does have an effect at large

distortions from equilibrium geometry. The effect is less than found in cyclobutadiene

and is limited to modes which strongly promote SOC, however in such cases the (10,10)

active space increased the SOC at large distortions by ∼10% compared to the (6,6)
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active space.

Calculations for SOC using Gaussian [111] yielded a SOC between 11B2u/13B1u at

equilibrium geometry of 1.5cm−1. The Gaussian method only contains one electron

terms, this result highlights the importance of two electron terms in the SOC Hamil-

tonian. Analysis of the one and two electron terms using GAMESS [141] showed that

for benzene (S1/T1) the one electron term is ∼1.5cm−1 but the two electron term is ∼-

1.5cm−1, therefore combined creates the almost zero SOC at equilibrium. By ignoring

the two electron terms one obtains a seriously wrong description of SOC in benzene.

Throughout the rest of this chapter the (6,6) active space and Roos(3s2p1s/2d)

basis was used for benzene calculations. This was selected to provide a continuity with

ab-initio calculations performed in chapter 4 and because this gave the most reliable

convergence at distorted geometries. The (10,10) active space was shown to produce

slightly larger SOC values along some modes, but convergence was difficult along the

symmetry breaking modes. The normal modes can be found in table 4.1.

Figure 5.6 shows the change in SOC along the normal modes which exhibit sig-

nificant vibronic effects, these are ν4, ν5, ν10, ν11, ν16 and ν17. Figure 5.6a shows the

SOC along the chair (ν4) mode, this mode is important because it is this mode in

combination with ν16 that is the important motion towards the prefulvenoid S1/S0 CI.

Displacement along this mode induces a small increase in SOC to 0.5cm−1 at 10units.

At first glance the motion of the mode is a carbon out of plane ring motion. However

upon close inspection the hydrogens oscillate with a slightly greater amplitude, creat-

ing a slight C-H bend and mechanism for SOC. Symmetry considerations mean that

the vibrationally induced SOC terms along this mode must be second order, because

first order vibrational terms are forbidden by symmetry.

Figures 5.6b,c and d show the modes with the greatest SOC change. Unsurprisingly

these are the modes which are dominated by out of plane C-H bends. Like cyclobuta-

diene it is ν11, a symmetric C-H bending mode which has the largest SOC, just over
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4cm−1 when the hydrogen atom is 71◦ out of the plane of the molecule. Along ν10

(figure 5.6c), a higher frequency symmetry pair of the chair mode, this graph not only

shows greater SOC which is a factor of 4 higher then ν4. The symmetry of this mode

means that SOC is also between the S1 and T2 states, however this is a lot smaller

then the S1/T1 coupling.

Figures 5.6c,e and f are normal modes which induce coupling between S1 and the

doubly degenerate T2. The green line is coupling to the x component and the blue

line is to the y component. This coupling is likely to be very important in dynamics

calculations because T2 is degenerate with S1 at equilibrium, and this degeneracy is

maintained along the vector leading to the S1/S0 CI, providing a possible mechanism for

ISC. One can see that it is ν17 which results in the largest coupling between S1 and both

components of the T2 state. The coupling strength reaches just under 1.0cm−1 for the

x component and just over 0.5cm−1 for the y component at 10units from equilibrium.

The boat mode (ν16) in combination with the chair mode (ν4) plays a critical role in the

dynamics. This mode has the same symmetry as ν17 and so the behaviour is similar,

albeit slightly smaller. The SOC is always below 0.5cm−1.

5.3.3 Spin Orbit Coupling at the Intersection

A recent study by Cogan et al [123] has shown that SOC increases dramatically at

a CI, for benzene a value of 6.23cm−1 was been recorded between S1/T1 at the CI.

This study used a (8,7)CAS/DZV within the GAMESS package [141]. GAMESS, like

Molpro, includes the two electrons terms in a rigorous description of the Breit-Pauli

Hamiltonian.

This reported result is very important because a larger SOC at a CI in conjunction

with the density of states which arises from the S1 and T1 states crossing the S0 at

the same point could provide a mechanism for ultrafast ISC. However the study by

Cogan et al has two main disadvantages, firstly it uses an unusual CAS space, which

we found no justification for, secondly the SOC calculations were point calculations
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Fig. 5.6: Changes in spin orbit coupling values along the important vibrational modes of
benzene: (a) ν4 (1b2g), (b) ν5 (2b2g), (c) ν10 (1e1g), (d) ν11 (1a2u), (e) ν16 (1e2u), (f) ν17

(2e2u)
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Fig. 5.7: The π valence orbitals (without the degenerate pairs) of benzene. (a) Equilibrium
geometry (b) Distorted along ν5, an out of the plane C-H bend. The orbitals clearly show
spn character responsible for a mechanism for spin orbit coupling. (c) Distorted along the
Jahn-Teller mode ν6. Although the orbitals are distorted there is no out of plane C-H motion
and no spn character. Therefore despite being a very important coupling mode in both the
triplet and singlet manifold it is not responsible for linking the two.
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which were only calculated at the intersection, this gave no insight into changes along

the coordinate from the FC point.

Figures 5.8a and b show the PES for the states of interest along the vector from

equilibrium to the intersection for both cyclobutadiene and benzene respectively. Fig-

ures 5.8c and d show the change in the SOC along this vector for cyclobutadiene and

benzene respectively.

Figure 5.8c shows that in cyclobutadiene the SOC between 21A1g/13B1g and 11A1g/
3B1g

gradually increases along the vector. We find that there is no dramatic increase at the

intersection point. The increase observed is similar to that seen along the normal

modes and this is because it is the combination of normal modes leading to the in-

tersection, which involves ν1,ν3 and ν4, which is the important factor in how the SOC

will change. At the intersection the SOC between 21A1g/13B1g=2.0cm−1 and between

11A1g/13B1g=0.75cm−1. This is attributed to the out of plane motion of the hydrogens

and at this point the hydrogens are 52◦ out of the plane of the molecule. This can be

seen in the orbital plots shown in figure 5.9a, although the orbitals are distorted due

to other the modes involved in reaching the CI, there is clearly some spn character, as

shown in figure 5.5.

Figure 5.8d shows the SOC along the vector leading to the S1/S0 CI in benzene.

This also shows a gradual increase in the SOC between 11B2u/13B1u. However in this

case it is not as large as seen in some of the normal modes especially those with out of

plane C-H bends. This is because the normal mode combination required to reach the

CI is dominated by ν4 and ν16, and modes such as ν5 and ν11 which result in strong SOC

are not as important. This is demonstrated in figure 5.9b, in which although distorted

there is very little spn mixing, limiting the strength of SOC. A value of 1.5cm−1 is

found at the CI, we also recalculated this single point using a (10,10) active space

to clarify the effect of the σ orbitals. In this calculation the SOC only increases to

1.8cm−1 which is not surprising because σ/π mixing due to out of plane motions are
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Fig. 5.8: The potential energy surface cuts along the vector from the Franck-Condon point
to the S1/S0 conical intersection and corresponding spin orbit coupling values. (a) Cyclo-
butadiene: States at Q0 are ordered S0, T1, S1 and T2 at equilibrium. (b) Benzene: States
at Q0 are ordered S0, T1, T2, x, T2, y and S2 at equilibrium. (c) Spin orbit coupling be-
tween 21A1g/13B1g (green) and 11A1g/13B1g (red) towards the S1/S0 conical intersection
for cyclobutadiene. (d) Spin orbit coupling between 11B2u/13B1u towards the S1/S0 conical
intersection for benzene

Fig. 5.9: The π valence orbitals (without the degenerate pairs) at the conical intersection of
(a) cyclobutadiene and (b) benzene

Spin Orbit Coupling 118



Conclusion 5.4

not huge at the CI point in this case. Both of these values are significantly lower then

that reported by Cogan et al, which seems unreasonably high.

Calculations of the SOC along the benzene CI vector show that there is not huge

SOC coupling, however the density of vibronic states and highly symmetrical nature

means that there is a large number of small couplings present along this vector. Al-

though not shown in figure 5.8d, many of the singlet and triplet states couple along

this vector with a strength of ∼0.4cm−1.

5.4 Conclusion

The triplet states are often neglected from ultrafast dynamics calculations in hydro-

carbons due to the size of the coupling. Despite being small, especially at equilibrium,

this chapter has indicated that higher order vibrational terms can induce a degree of

coupling that could be important especially in regions around the S1/S0 CI where the

density of states is high and there are numerous possible channels for decay.

In cyclobutadiene, the low frequency out of plane C-H bends provide a mechanism

for SOC to occur. This results in SOC energies two orders of magnitude greater then

seen at equilibrium. Such observations are explained by plots of the distorted orbitals

which are able to show the mixing of the σ and π states. The SOC also increases along

the vector towards the CI, this is because the combination of normal modes required

to reach the CI includes modes which strongly promote SOC, this again is confirmed

by the distortions seen in the molecular orbitals.

A similar behaviour of SOC is seen in benzene. Modes which have some degree of C-

H bending contribute the most to SOC. The combination of normal modes required to

reach the S1/S0 CI in benzene is dominated by modes which contribute smaller second

order effects to the mechanism for SOC. As a result the gradient along this vector

is not as great as seen in cyclobutadiene. Our calculations disagree with previous,

less detailed calculations performed by Cogan et al which suggested SOC increased
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dramatically at the CI to a value of 6.23cm−1. This value is unrealistic considerating

the type of distortions along the this vector.

From this study we can conclude that SOC is a well defined and smooth function,

whose behaviour can be easily described with the considerations of orbital interactions,

proximity and mixing of electronic states. Despite having small SOC at equilibrium,

we have shown that vibrational effects in these two simple cyclic hydrocarbons can

induce significant SOC. This is likely to be especially important when the density of

states is high and dengeneracy occurs.

In the next chapter we investigate the ultrafast dynamics of benzene, as before,

but including the triplet manifold and see as a result that the triplet manifold, espe-

cially under the conditions described above should not be discarded. This is especially

important when considering the detail that can be achieved from spectroscopic data

using modern ultrafast laser techniques.
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Chapter 6

Ultrafast Intersystem Crossing
Dynamics in Benzene

ISC which occurs due to SOC between the singlet and triplet states creates a reser-

voir of energy within the triplet manifold. This energy is ultimately responsible for

phosphorescence [142,143] and in some cases the formation of photoproducts [144]. Ex-

amples of ISC are ubiquitous throughout chemistry and recent work has implicated an

important involvement within the photochemistry of DNA and the protection against

UV radiation [145,146].

It is well known that timescales for ISC are typically much slower then the corre-

sponding singlet transitions. However examples of ultrafast ISC do exist, but tend to

be limited to molecular systems which contain heavier atoms such as nitropolycyclic

aromatic hydrocarbons [147] and metal complexes [148].

Figure 4.14a in chapter 4 shows experimental data of the decay in the photoelec-

tron yield as a function of the probe pulse delay (time) following excitation into the

higher vibrational states of S1. Using the singlet Hamiltonian calculated in chapter

4 we have used quantum dynamics simulations to describe many of the features seen

experimentally. However these models were unable to account for some of the decay

especially when using the shorter probe wavelengths. In this regime a portion of the

wavepacket unaccounted for during the singlet calculations decays from the FC region.

This has been attributed to ultrafast ISC which occurs along the reaction coordinate
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State SA-CAS(6,6) CASPT2(6,6) CASPT2(6,10) Experimental [63]

Ã3B1u 3.98 3.96 3.95 3.94

B̃3E1u 5.06 4.85 4.74 4.76

C̃3B2u 7.53 5.79 5.56 5.60

Table 6.1: Vertical excitation energies (in eV) of lowest three triplet states of benzene relative
to the benzene singlet ground state, calculated at equilibrium geometry. The SA-CAS(6,6)
used a 6-31g* basis and are averaged over three states. The PT2(6,6) and PT2(6,10) uses a
Molpro specific Roos(3s2p1d/2s) basis.

towards the S1/S0 CI [19].

In this chapter we further develop the singlet model Hamiltonian presented in the

chapter 4. Diabatic PES and couplings for the triplet states are calculated and fitted

to obtain parameters for the model Hamiltonian along the important modes. We use

the same method described for the benzene singlet model in chapter 4. The singlet and

triplet manifolds are then coupled using SOC values obtained from the investigation

described in chapter 5. We then perform a detailed analysis of the ISC dynamics and

compare to the experimental data.

6.1 The Model Hamiltonian

The model used to study ultrafast ISC in benzene is a development of the 2 state model

presented in chapter 4. The new model includes eight normal modes DOF (shown in

table 6.9), two singlet states, S0 (A1g) and S1 (B2u) and 2 triplet states, T1 (B1u) and

the x component of the doubly degenerate T2 (E1u) state. The parameters for the

triplet states have been obtained by performing a fit to ab-initio points, as described

for the singlet states in chapter 4.

The vertical excitation energies for the triplet states are shown in table 6.1. Values

obtained for both 3B1u and 3E1u are close to experimental values, even at CASSCF

level. This shows that these states are dominated by singly excited determinants. The

3B2u state is poorly described at CASSCF level, but is much improved by the addition of

dynamic correlation with CASPT2. Following calculation of the PES along the normal

Ultrafast Intersystem Crossing Dynamics in Benzene 122



The Model Hamiltonian 6.1

Mode T1
3B1u T2

3E1u,x T2
3E1u,y

υ1 (1a1g) 0.280 0.347 0.347
υ6a (1e2g, x) – 0.014 -0.014
υ9a (1e2g, x) – 0.080 -0.080

Table 6.2: On-diagonal linear coupling constants, κα (in eV), for the important normal modes
of benzene in the triplet manifold. Obtained by fitting a Vibronic Coupling Hamiltonian to
the adiabatic potential energy surfaces at the CASPT2(6,6) level.

modes it was decided that C̃3B2u plays no significant role in the dynamics in the triplet

manifold and therefore was ignored for the rest of the calculations. All of the ab-initio

points along the normal modes were calculated using PT2(6,6)/Roos(3s2p1d/2s) basis

to keep continuity with the singlet calculations.

The PES along the normal modes in the triplet manifold closely mirror the be-

haviour seen in the singlet manifold and parameters up to 4th order are required to

produce an accurate fit. Symmetry considerations and the reduced dimensionality

means that many of the possible parameters do not need to be evaluated, greatly

reducing the computational effort.

6.1.1 First Order Parameters

Tables 6.2 and 6.3 show the on- and off-diagonal first order parameters. The on-

diagonal, κ, parameters, as discussed in chapter 4 define the distance the excited state

minima is shifted from the ground state minimum. The off-diagonal, λ, are responsible

for coupling between electronic states. Comparison between the κ parameters in the

triplet and singlet manifold shows that the displacement of 3B1u and 3E1u along ν1

corresponds very closely to that seen in 1B1u and 1E1u respectively, indicating the

similarity between states of the same symmetry despite differing multiplicities.

Table 6.3 shows the off-diagonal inter-state coupling. Similar to the on-diagonal

parameters, these parameters show the same effects as seen in the singlet manifold.

There is significant PJT coupling between 3B1u and 3E1u along ν6a, ν8a and ν9a. JT

coupling is present along ν6 and ν9, but is small.
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T1
3B1u T2

3E1u,x

T1
3B1u – –

T2
3E1u,x λ6a = 0.013 –

λ8a = 0.143 –
λ9a = 0.157 –

T2
3E1u,y λ6b = -0.013 λ6b = 0.014

λ8b = -0.143 λ9b = 0.08
λ9b = -0.157 –

Table 6.3: Off-diagonal linear coupling constants, λα (in eV), for the important normal modes
of benzene in the triplet manifold. Obtained by fitting a Vibronic Coupling Hamiltonian to
the adiabatic potential energy surfaces at the CASPT2(6,6) level. The columns and rows are
the different states, subscripts denote the normal modes providing the coupling. The E1u,y

column is not included as it would symmetrically replicate the x component data.

6.1.2 Second Order Parameters

Tables 6.4 and 6.5 show the on- and off- diagonal second order coupling constants.

Comparison between the triplet and singlet parameters for the on-diagonal elements

shows that they follow the same trends, albeit with a smaller magnitude. The largest

parameters are found for ν4 and ν16, showing that the potential along these modes, like

in the singlet manifold are very flat.

Table 6.5 shows the off-diagonal elements which is responsible for coupling between

vibrational degrees of freedom and phenomena such as IVR. The parameters are gen-

erally very small, but show a slight coupling between all the important vibrational

degrees of freedom. These parameters are generally between 2-4 times smaller then

found in the singlet manifold and thus are not expected to have a huge effect of the

nature of the dynamics

Some of the surfaces are anharmonic, therefore third and fourth order terms are

required to improve the fit, especially at points a long way from the equilibrium ge-

ometry and along diagonal cuts between normal modes. Table 6.6 shows the quartic

fourth order parameters required for the triplet states. These parameters show that

in general the triplet states are much more harmonic because these parameters are

typically an order of magnitude smaller then their singlet counterparts.
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T1
3B1u T2

3E1u,x T2
3E1u,y

ν1 0.032 -0.011 -0.011
ν4 -0.072 -0.071 -0.071
ν6a -0.014 -0.010 -0.009
ν6b -0.016 -0.004 -0.011
ν14 0.046 0.075 0.075
ν15 0.004 0.005 0.005
ν16a -0.028 -0.076 -0.018
ν16b -0.025 -0.066 -0.017

Table 6.4: On-diagonal second order coupling constants (in eV), γα, for the important nor-
mal modes of benzene in the triplet manifold. Obtained by fitting a Vibronic Coupling
Hamiltonian to the adiabatic potential energy surfaces at CASPT2(6,6) level.

T1
3B1u T2

3E1u,x T2
3E1u,y

ν1−4 – -0.005 –
ν1−16a 0.009 -0.018 -0.010
ν1−16b – -0.019 -0.010
ν4−16a – -0.009 –
ν16a−16b -0.011 -0.013 -0.009
ν6a−16b – 0.014 –
ν4−16b – -0.006 –

Table 6.5: Off-diagonal intrastate second order coupling constants (in eV), γαβ for the im-
portant normal modes of benzene in the triplet manifold. Obtained by fitting a Vibronic
Coupling Hamiltonian to the adiabatic potential energy surfaces at CASPT2(6,6) level.
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T1
3B1u T2

3E1u, x T2
3E1u, y

ν4 0.003 0.004 0.004
ν6a -0.001 – –
ν6b -0.002 – –
ν14 0.016 0.005 0.006
ν15 0.006 0.006 0.007
ν16a 0.003 0.003 0.003
ν16b 0.004 0.003 0.003

Table 6.6: On-diagonal quartic coupling constants, εα (in eV) for the normal modes of ben-
zene. Obtained by fitting a vibronic Hamiltonian to the adiabatic potential energy surfaces
at CASPT2(6,6) level.

In order to accurately describe the profile of triplet states, particularly T2,x along

the vector leading to the S1/S0 CI we are required to include off-diagonal third order

terms (ι), as discussed in section 4.3. In this model we include two important ι terms

on T2,x: ι
(i)
1−4 = 0.0150eV and ι

(i)
1−16a = 0.0142eV.

6.1.3 Cuts Through The Potential Energy Surfaces

Figures 6.1 and 6.2 show fitted cuts through the triplet PES for the most important

modes in benzene. In the case of doubly degenerate modes only the x component is

shown, because of the similarity between the two components.

Both of the minima of the triplet states along ν1 are shifted from the singlet ground

state equilibrium, and like the singlet excited states this is due to the significant role

that excited determinants plays in these states. ν4 the chair mode is a particularly flat

mode, in which degeneracy of T2 is not broken at any point.

Along ν6a there is splitting of T2, this is a combination of JT and PJT coupling,

however as shown in the parameters section both of these are quite small. Splitting

is also seen along the very flat ν16a, this is due to a second order JT splitting, first

order couplings along this mode are zero by symmetry. Along the higher frequency e2g

modes, ν8a and ν9a we see significant splitting of the two components of the T2 state.

This is due to strong PJT coupling along these modes.
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Fig. 6.1: Cuts along the normal modes for the triplet potential energy surfaces in benzene. In
order of energy at Q=0 these states are T1 (B1u) and T2 (E1u). (a) ν1 (1a1g), the breathing
mode, (b) ν4 (1b2g), the chair mode, (c) ν6a (1e2g), the quinoid mode (d) ν16a (1e2u), the
boat mode, (e) ν8a (3e1g) (f) ν9a (2e1g)
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Fig. 6.2: Cut along the prefulvene combination mode (ν4 + ν16a) for the triplet potential
energy surfaces in benzene. In order of energy at Q=0 these states are T1 (B1u) and T2

(E1u).

Figure 6.2 shows the cut along the prefulvene combination mode (ν4−16a). This

shows the flat nature of the triplet states along this mode and splitting of the T2

degeneracy due to second order JT coupling.

6.1.4 Spin Orbit Coupling Parameters

The nature and effect of vibrations on SOC in benzene was discussed in detail in chapter

5. There is symmetry allowed SOC at equilibrium between S1/T1 ∼ 0.11cm−1. Higher

order terms, included by calculating the gradient of the SOC along each normal mode

and the important combination modes, are shown in the tables 6.7 and 6.8. It is noted

that in the final model some of the couplings used are greater then presented in tables

6.7 and 6.8, but are within 1cm−1.

Tables 6.7 and 6.8 shows the first and second order spin orbit coupling terms which

are included into the Hamiltonian in the same manner as the parameters for the singlet
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Mode S1/T1 (cm−1) S1/T2,x (cm−1) S1/T2,y (cm−1)
ν1 0.01 (z ) 0 0
ν2 0.02 (z ) 0 0
ν6a 0 0.04 (x,y) 0
ν6b 0 0 0.04 (x,y)
ν7a 0 0.09 (x,y) 0
ν7a 0 0 0.09 (x,y)
ν8a 0 0.07 (x,y) 0
ν8a 0 0 0.07 (x,y)
ν9a 0 0.05 (x,y) 0
ν9a 0 0 0.05 (x,y)
ν10a 0.08 (z ) 0.16 (x,y) 0
ν10b 0.08 (z ) 0 0.17 (x,y)

Table 6.7: First order vibrational spin orbit coupling terms. Calculations performed with
(6,6) active space and Molpro specific Roos(3s2p1d/2s) basis.

and triplet surfaces. i.e

W
(1)
st =

∑
α

κ(st)
α Qα (6.1)

W
(2)
st =

1

2

∑

α,β

γ
(st)
α,βQαQβ (6.2)

Where κ
(st)
α and γ

(st)
α,β are the first and second order parameters for the Hamiltonian

(see also section 2.4).

One can see that the most significant vibrational first order term are between S1/T2,

this is most evident along ν10a and ν10b, however there is also significant coupling along

ν6a and ν7a. Second order coupling is most significant along ν11, an out of plane

hydrogen bending mode, importantly there is significant coupling along ν4, ν5, ν16 and

ν4+6 whose motion has been shown to be critical to the dynamics of benzene.

6.1.5 Effective Couplings

Quantum dynamics simulations are extremely computational expensive, this expense

increases exponentially with the number of electronic states and DOF included in the

calculation. This is be a huge problem in systems which contain significant vibronic

coupling because there are many states that play a role. However the highly symmetric
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Mode(s) S1/T1 (cm−1) S1/T2,x (cm−1) S1/T2,y (cm−1)
ν4 0.05 (x,y) 0 0
ν5 0.35 (x,y) 0 0
ν11 0.11 (z ) 0.41 (x,y) 0.41 (x,y)
ν16a 0.04 (z ) 0.06 (x,y) 0
ν16b 0.04 (z ) 0 0.06 (x,y)
ν17a 0.06 (z ) 0.11 (x,y) 0
ν17b 0.06 (z ) 0 0.11 (x,y)

ν4 + ν6a 0.04 (x,y) 0.10 (x,y,z ) 0
ν4 + ν6b 0.04 (x,y) 0 0.10 (x,y,z )
ν6a + ν10a 0.11 (x,y) 0.16 (x,y) 0
ν6a + ν10b 0.11 (x,y) 0 0.16 (x,y)
ν6b + ν10a 0.11 (x,y) 0.16 (x,y) 0
ν6b + ν10b 0.11 (x,y) 0 0.16 (x,y)
ν11 + ν16a 0 0.18 (z ) 0
ν11 + ν16b 0 0 0.18 (z )
ν16a + ν16b 0.03 (z ) 0.10 (x,y) 0.05 (x,y)
ν16a + ν17a 0.09 (z ) 0.12 (z ) 0
ν16a + ν17b 0.09 (z ) 0 0.12 (z )
ν16b + ν17a 0.09 (z ) 0 0.12 (z )
ν16b + ν17b 0.09 (z ) 0.12 (z ) 0

Table 6.8: Second order vibrational spin orbit coupling terms. Values above the middle
double line are on-diagonal terms and below are off-diagonal. Calculations performed with
(6,6) active space and Molpro specific Roos(3s2p1d/2s) basis.
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nature of couplings such as JT and PJT make it possible to ignore one half of doubly

degenerate modes and states and form an effective coupling. This has been previously

considered by Domcke et al [149]. The resulting Hamiltonian is referred to as a cluster

Hamiltonian.

If we consider a 3x3 case, a singlet state coupled to the x and y component of a

doubly degenerate triplet state we write:

W11 = 〈1φ|Hel|1φ〉 (6.3a)

W22 = 〈3φx|Hel|3φx〉 (6.3b)

W33 = 〈3φy|Hel|3φy〉 (6.3c)

W12 = 〈1φ|Hso|3φx〉 (6.3d)

W13 = 〈1φ|Hso|3φy〉 (6.3e)

where |1φ〉, |3φx〉 and |3φy〉 are eigenfunctions of Hel and Hso is the spin orbit Hamil-

tonian. The secular determinant can be written:

W =

∣∣∣∣∣∣

W11 − V W12 W13

W21 W22 − V W23

W31 W32 W33 − V

∣∣∣∣∣∣
= 0 (6.4)

We are only considering the coupling between the singlet and triplet manifold, and

therefore ignore coupling between the triplet states, therefore W23 and W32 = 0. Ex-

panding the secular determinant we write:

(W11−V )

∣∣∣∣
W22 − V 0

0 W33 − V
∣∣∣∣−W12

∣∣∣∣
W21 0
W31 W33 − V

∣∣∣∣+W13

∣∣∣∣
W21 W22 − V
W31 0

∣∣∣∣ = 0

(6.5a)

−V 3 +W22V
2 +W33V

2 +W11V
2 −W11W22V −W11W33V −W22W33V +W 2

12V
−W 2

13V +W11W22W33 +W 2
12W33 +W 2

13W22 = 0

(6.5b)

By removing the orthogonal terms the equation reduces to:

−V 3 +W22V
2 +W33V

2 +W11V
2 +W 2

12V +W 2
13V = 0 (6.6)
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Because the coupling between the singlet state and each component of the triplet is

the same, hence W12=W13, we can rewrite the above equation as:

−V 3 +W11V
2 +W22V

2 +W33V
2 + 2W 2

13V = 0 (6.7)

This can be factorised:

−V (V 2 − (W11 +W22 +W33)V − 2W 2
13) = 0 (6.8)

By solving the quadratic we can write:

V =
W11 +W22 +W33

2
± 1

2

√
(W11 +W22 +W33)2 + 4× 2W 2

13 (6.9)

By comparing this to the 2*2 diabatic coupling matrix, equation 2.20, instantly we can

see that by considering the W12=W13, we obtain a prefactor to the coupling term of
√

2. Therefore to treat a doubly degenerate states which are both coupled to the same

singly degenerate state with the same magnitude, the state can be treated as one state

providing the coupling size is multiplied by
√

2.

6.2 The Dynamics

The dynamics calculation includes both singlet state, the T1 state and the x component

of the doubly degenerate T2 state, taking into account the effective coupling discussed

above. The normal modes included are the same used in the singlet model, but ν8a and

ν9a are also included due to the strong PJT effect in the triplet manifold along these

modes. The dynamics were performed using the details shown in table 6.9. This basis

guaranteed convergence for 1000fs on all states and for the full 2000fs for S1, T1, T2.

The highly vibrationally excited nature of the S0 state made convergence for 2000fs

unrealistic.

Figure 6.3a shows the relative diabatic state populations of Ã (S1 in the FC region

before the barrier) and S1+triplet population. These have been plotted to replicate

the experimental data presented in 4.14b. The dynamics show, like the singlet model
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Mode Ni n0,n1,n2,n3,n4

ν16b 121 40,22,8,8
ν4 111 40,22,8,8
ν6a 27 40,22,8,8
ν8a 27 10,10,4,4
ν9a 27 10,10,4,4
ν1 60 40,22,8,8
ν14 91 40,22,8,8
ν15 15 40,22,8,8

Table 6.9: Computational details for the quantum dynamics simulations using the Intersystem
crossing model Hamiltonian. Ni is the number of primitive Harmonic oscillator DVR basis
functions used to describe each mode [78]. ni are the number of single-particle functions used
for the wavepacket on each state. The modes are combined to produce 4 2D singlet particle
functions, to reduce the computational expense. The CPU was 620 hours

two distinct decay timescales, a faster timescale for the first 500fs followed by a slower

decay. After 500fs the population of Ã, corresponding to the ionisation using the weaker

probe pulse, is 51% and the population S1+triplet state population, corresponding to

the ionisation using the stronger probe pulse, is 68%. These values agree very closely

with those found from experimental data (shown in 4.14b).

After 500fs a slower decay occurs, this decay is larger then found experimentally,

this highlights the inaccuracies created by using the reduced dimensionality model,

discussed with respect to the two state singlet model in chapter 4. The reduced di-

mensionality means that the barrier which exists near to the FC point on S1 along the

prefulvene reaction coordinate is not described as well as would be in full space and

hence after 500fs small amounts of the wavepacket is still able to surmount the barrier

and propagate along the prefulvene coordinate, decay through the S1/S0 CI and also

to populate the triplet states.

Figure 6.3b shows the diabatic state populations of each triplet state. The total

population of the triplet states (blue line) shows that the population increases through-

out. The population of the triplet states occurs with the same two timescale increase

as seen in the decay through the S1/S0 CI. The initial population is of the T2,x state,

Ultrafast Intersystem Crossing Dynamics in Benzene 133



The Dynamics 6.2

Fig. 6.3: (a) Diabatic state populations of benzene during the first 2000fs following excitation
of the hot wavepacket into S1. The blue line is the population of S1 minus the population
which is over the barrier to the S1/S0 population. This corresponds to the photoelectron
data using the 254nm probe wavelength. The red line is the population of S1 plus the
triplet populations corresponding the photoelectron data using the 235nm probe wavelength.
(b) Diabatic state populations of the benzene triplet states during the first 2000fs following
excitation of the hot wavepacket into S1. T1 (red), T2,x (green) and the sum of all of the
triplets (blue).

however due to the strong vibronic coupling which exists between T2,x and T1 along

ν8a and ν9a population of T1 occurs very rapidly and contains the greatest population

after 250fs. After 500fs the population of the total population of the triplet states is

6%, this is significant considering the size of the SOC.

The population of the triplet state occurs along the prefulvene coordinate due to

degeneracy between S1 and T2,x along with reaction vector. We see an increase in the

population of T1 around 1500fs. Although this is not a fast decay, it is larger then

expected and is because the reduced dimensionality means more wavepacket is able to

cross the barrier on Ã, however after 1500fs of the propagation the wavepacket does

not have enough energy to reach the S1/S0 CI, but can still reach the S1/T1 CI which

is along the same coordinate, but closer to the FC point.

The position and width of the wavepacket in the triplet states are shown in figures
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Fig. 6.4: Expectation values of the position of the hot wavepacket in the triplet states during
propagations for first 2000fs. (a) < q > of ν4 (green) and ν16 (red) on T1. (b) < q > of ν1

(purple) and ν6 (blue) on T1. (c) < q > of ν4 (green) and ν16 (red) on T2,x. (d) < q > of ν1

(purple) and ν6 (blue) on T2,x.

6.4 and 6.5. Upon inspection of the figure 6.4a,b and c,d we see that population of

the T1 and T2,x state initially occurs at their respective intersections with S1 along the

prefulvene reaction coordinate. Following population, the wavepacket oscillates along

the reaction coordinate, this is most evident in T2,x state. In both cases the oscillations

reduce after 500fs, as the wavepacket begins to relax into the equilibrium position. The

width of the wavepacket (shown in figure 6.5) is similar on both triplet states. This is

because the location of the intersection for both states means that any population will

be very vibrationally hot and therefore the wavepacket will spread over a large part of

the coordinate space.

The motion of the wavepacket along modes ν1, ν4, ν6a and ν16a for each of the

triplet states is shown in figures 6.6, 6.7, 6.8, 6.9. We see that most of the wavepacket
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Fig. 6.5: Expectation values of the width of the hot wavepacket in the triplet states during
propagations for first 2000fs. (a) < q > of ν4 (green) and ν16 (red) on T1. (b) < q > of ν1

(purple) and ν6 (blue) on T1. (c) < q > of ν4 (green) and ν16 (red) on T2,x. (d) < q > of ν1

(purple) and ν6 (blue) on T2,x.
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in the triplet manifold populates the T1, as discussed this is due to the strong vibronic

coupling between the T1 and T2,x states.

Figures 6.6 and 6.7 show the wavepacket on T1. These show that the initial popula-

tion on the T1 state is slow and it is not until 200fs that there is significant population.

It is clear from the plots that the wavepacket in this state is very vibrationally hot,

this is most evident in figure 6.6j which has a similar structure to the vibrationally hot

wavepacket in S0 shown in figure 4.29.

The wavepacket motion on T2,x (shown in figures 6.8 and 6.9), are unsurprisingly

very similar to those seen on S1 (figures 4.31 and 4.32). Population of this state initially

occurs around the region close to the S1/S0 CI. Further population also occurs along

the whole coordinate leading to the CI as the wavepacket oscillates along this entire

mode and S1 and T2,x are degenerate at all points.

6.3 Conclusion

ISC crossing and the triplet states are known to play an important role in dynamics.

Their involvement depends entirely on the strength of SOC which exists, for this reason

the triplet states in molecules such as benzene are often ignored because the absence

of heavy atoms means that SOC is typically small.

In this chapter we have presented a model containing 4 electronic states and 8

nuclear DOF. This model is a development of the 2 state singlet model presented in

chapter 4. The triplet states (T1 and T2) which play a significant role in the dynamics

are included by using parameters obtained from the fit to ab-initio data. SOC cou-

pling parameters included are obtained from the study of the nature of SOC in simple

hydrocarbons presented in chapter 5

Dynamics results obtained in this chapter support the experimental observations

that, following excitation in the higher vibrational states of benzene ultrafast ISC is

witnessed along side the IC which occurs at the S1/S0 CI. During the first 500fs between
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Fig. 6.6: The wavefunction density on T1 in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 6.7: The wavefunction density on T1 in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 6.8: The wavefunction density on T2,x in benzene along ν4 and ν16a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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Fig. 6.9: The wavefunction density on T2,x in benzene along ν1 and ν6a. (a) 0fs (b) 50fs (c)
100fs (d) 150fs (e) 200fs (f) 250fs (g) 350fs (h) 450fs (i) 550fs (j) 1000fs.
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5-10% of the wavepacket crosses into the triplet states giving excellent agreement with

experimental data.

These dynamics results allow us to describe the step in the experimental decay

curves shown in figure 4.14 and 4.16. When the lower frequency probe (red line) pulse

is used, it is only possible to ionise wavepacket in the FC region of S1, both theory and

experiment show that approximately 50% of the wavepacket decays from this region.

Using the higher frequency probe pulse (shown in the slower decaying (blue) line in

figure 4.14) it is possible to ionise wavepacket which exists on all of the S1 surface and

triplet states. Experimental and theoretical data indicates that approximately 30% of

the wavepacket decay from this region, into S0.

These dynamics show the first example of ultrafast intersystem crossing in a simple

hydrocarbon. The triplet states in such systems are generally ignored, however the

combination of vibronic effects and degeneracy between S1 and T2,x along the reaction

coordinate provide conditions for ultrafast intersystem crossing to occur.
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Coherent Control

Since the advent of femtosecond lasers and the pioneering work of Ahmed Zewail [15,

16,18,19] it has been possible to not only witness chemical reactions in real time, but to

control them [150]. Lasers, which operate on timescales that are an order of magnitude

faster then IVR, in conjunction with pulse shapers utilise the advantages of the wave

properties of light to control chemical reactions. This has become a very exciting and

active area of research in recent years with a wide range of both experimental and

theoretical studies [24, 29,35,150–155].

The first control strategies were a simple resonant force approach. A pulse was

tuned to the frequency of a selected bond, a second pulse was then used to increase the

energy in the excited bond until it broke. Despite promising results with deuterated

water [156] these approaches ultimately failed in larger systems due to IVR [20–22].

Since then there has been a wide variety of control strategies developed, the most well

known of which are the Brumer-Shapiro (BS) method [24] and the Tannor-Rice-Kosloff

(TRK) method [25,26]. The former showed that by altering the relative phase between

two pulses which couple an initial state to a final state allows control of the outcome

in the final state. The TRK method uses a more time dependent picture. By timing

an ultrashort pulse correctly it was shown to be possible to drive the wavepacket

into a desired product channel. The use of the excited state to access the desired

minima on the ground state led to this method being referred to as the pump-dump
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approach. Both of these techniques proved successful for a variety of chemical systems,

but more importantly exhibited the strong time and frequency dependence required

for controlling chemical reactions.

One of the most commonly used techniques in coherent control is OCT. First pro-

posed by Judson and Rabitz [31, 157], this technique uses a variational principle and

iterative process of forward and backward propagations to construct a field which guides

the wavefunction optimally towards a predefined target wavefunction. This method has

been shown to be extremely successful in numerous theoretical calculations [32,33]. The

nature of the forward and backwards optimisations shows many similarities with the

experimental learning algorithm approach commonly used. Despite the successes of the

OCT method, there exists two main drawbacks. The nature of the iterative process

means that this method can be extremely computational expensive, hence limiting the

size of the systems possible to study. Also optimisation of a field using a “global view”

can make the pulses very complex and therefore hard to relate to the atomic/molecular

dynamics.

LCT first appeared in the formulation of OCT [31, 157], introduced by Kosloff

[34, 35]. This method moves away from the picture of a global target, instead the

concept used is that the control field is calculated as a function of the instantaneous

dynamics of the system at each time step. By defining some operator, such as electronic

state population, vibrational state population or nuclear motion, the field is calculated

to ensure an increase or decrease in its expectation value. A rigorous explanation is

presented in section 2.5.

In this chapter we present preliminary results using operators to control electronic

transfer after implementing the local control method in the Heidelberg MCTDH pack-

age. We show results of calculations controlling the dynamics in model systems for

neutral and cationic cyclobutadiene, pyrazine and ammonia, giving a detailed analysis

of the field and resulting dynamics. Comparisons with optimal control calculations are
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provided where appropriate. Each of these models contain strong non-adiabatic effects

such as vibronic coupling and CI. Control of these multidimensional models therefore

represents a challenge for any proposed method.

7.1 Methodology and Computation

The dynamics were performed with the Heidelberg MCTDH quantum dynamics pack-

age. This efficient algorithm has been used to perform molecular dynamics calculations

on a large range of multidimensional system, performing particularly well on larger

systems which are typically beyond most other methods [57–59]. The details of each

calculation can be found in tables in each section. The Hamiltonian in each calculation

has been previously published, the references are included. The FT are performed

with the Xmgr semistatic program this can be found at the web page address given in

reference [158].

7.2 Results

7.2.1 Neutral cyclobutadiene

Cyclobutadiene, C4H4, is a simple cyclic hydrocarbon which is a prime example of the

importance vibronic coupling can play in the structure and stability of a molecular

system. Upon inspection one might expect a square planar D4h geometry, however this

is unstable according to the Hückel 4n+2 rule and the geometry is in fact D2h. This

reduction in symmetry is caused by vibronic coupling which exists between the ground

state (X̃1B1g) and first excited state (Ã1A1g) at D4h symmetry [129].

The Vibronic Coupling Hamiltonian was calculated in the same manner as the

benzene Hamiltonian in chapter 4. Using the D4h minimum energy as the expansion

point ab-initio calculations were performed along the normal modes using CASSCF

with a (4,4)/6-31g* basis. First order on-diagonal coupling parameters are present

along the breathing (ν1) mode, causing the displacement of the excited state minima
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Mode Ni,Nj n0,n1,n2

No control Maximise S1 Maximise S3

ν4, ν6 51,19 4,4,4 14,14,8 9,14,9
ν1, ν5 11,13 4,4,4 14,14,8 9,14,9
ν7, ν2 21,13 4,4,4 14,14,8 9,14,9
CPU Time λ=0.01 1min 53secs 1hrs 37mins 1hrs 36mins

λ=0.25 – 1hrs 32mins 33mins 3secs

Table 7.1: Computational details of the quantum dynamics simulations for the control of
cyclobutadiene. Ni is the no. of primitive Harmonic oscillator DVR basis functions used
to describe each mode [78]. ni are the number of singlet particle functions used for the
wavepacket on each state. λ denotes the strength parameter of the pulse. Note that some of
the variation in the CPU is because of different Tfinal.

from the ground state minima (figure 7.1a). There is also significant first order off-

diagonal coupling between S0/S1 along ν4. This is responsible for the lowering of

symmetry and double minima along this mode (figure 7.1b). Coupling between S1/S2

exists along ν6 (figure 7.1c). Second order coupling parameters are present along ν5.

Further details and discussion of the model can be found in [129].

Details of the MCTDH calculations are shown in table 7.1, convergence is ensured

for the full propagation. Each calculation contains 3 electronic states which play an im-

portant role in the dynamics and 6 vibrational DOF which contain significant coupling

parameters and the higher frequency ag mode and b2g mode. In the control calculations

from S1 to S0 the transition dipole is consider linear along ν4. For the transfer from S1

to S2 the transition dipole is consider linear along ν6.

Figure 7.3 shows the diabatic state populations of the three lowest singlet states in

neutral cyclobutadiene (with no external field) following a vertical excitation into S1.

There are small oscillations in the populations between all the states due to vibronic

coupling, however there is no significant electronic transfer and wavepacket is stable in

the S1 minima.

Figures 7.4a and 7.5a show the diabatic state populations when the calculated

external field (figures 7.4b and 7.5b), is applied to control the transfer of electronic
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Fig. 7.1: “Cuts through potential energy surface for the lowest 3 singlet states X̃1B1g, Ã1Ag,
and B̃1B2g of neutral cyclobutadiene along the D4h normal vibrational modes (a) ν1(1ag), (b)
ν4(2b1g) and (c) ν6(1b2g). Points are energies calculated using SA-CAS(4,4)/6-31G*, lines
are from the Vibronic Coupling Hamiltonian.” Figure used with permission of Dr G. Worth,
taken from [129].

Fig. 7.2: “ Contour plots of the potential energy surface for the lowest adiabatic singlet state,
X̃1B1g, of neutral cyclobutadiene in the space of (b), (d) the b1g modes, ν4 and ν5, and
(a), (c) the strongest vibronically coupled modes, ν4 and ν6. Surfaces are from the vibronic
coupling model Hamiltonian fitted to SA-CAS(4,4)/6-31G* data: (a) and (b) include only
linear coupling, (c) and (d) including second-order terms.” Figure used with permission of
Dr G. Worth, taken from [129]
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population from S1 to S0. In figure 7.4 the strength parameter (λ) for the pulse is 0.25

and in figure 7.5 λ is 0.01. These figures highlight the importance of λ to the success

of the control calculations. When λ=0.25 60% of the wavepacket is transferred from

S1 to S0, this is approximately 10% less then when λ=0.01 (for equal real time). Also

the control shown in figure 7.4a, using a larger λ, is more chaotic. Following the initial

population of S0, at just below 20fs, we observe oscillatory population transfer between

S1 and S0. There is no consistant increase in the S0 population. However when λ=0.01

(shown in figure 7.5a) the control is more stable. Following the initial population of

S0, at 40fs, oscillations between S1 and S0, due to vibronic coupling, are observed but

there is always a steady increase in S0 population.

The difference in the dynamics of the control is highlighted in the two calculated

pulses. When λ=0.25 the calculated pulse is very unphysical and contains a large

range of frequencies (shown in the FT in figure 7.6a). The frequencies are difficult to

attribute to the nuclear dynamics. However when λ=0.01 a much simpler attenuating

pulse is produced. This contains a narrow range of frequencies (figure 7.6b) which can

be easily assigned to parameters of the model system, in this case to the energy gap

between the two electronic states.

The difference between the dynamics using the different λ values is also shown in the

wavepacket density plots in figure 7.7. When λ=0.25 (figure 7.7b) the stronger pulse,

means that the wavepacket, upon transfer to the ground state, has more energy and is

more dispersed along the normal modes. In this case the density is dispersed along ν1

and ν4 and the largest density is around the CI between the two states. This causes

the constant oscillations in the populations and the very complicated and unphysical

pulse. When λ=0.01 (figure 7.7a) the largest density of the wavepacket is at the S0

minima. Therefore the crossing at the CI is greatly reduced making the control easier.

Figures 7.8a and 7.9a shows the diabatic state population when the calculated field

(figures 7.8b and 7.9b) is applied to control the transfer of population from S1 to S2
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Fig. 7.3: The diabatic state populations for 50fs of the lowest three singlet states, X̃1B1g

(red), Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene, without an external field
following a vertical excitation into Ã.

Fig. 7.4: (a) The diabatic state populations of of the lowest three singlet states, X̃1B1g (red),
Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene for 100fs of controlled dynamics
to populate S0, λ=0.25. (b) Electric field calculated by the local control algorithm.

Fig. 7.5: (a) The diabatic state populations of of the lowest three singlet states, X̃1B1g

(red), Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene for 200fs of the controlled
dynamics to populate S0, λ=0.01. (b) Electric field calculated by the local control algorithm.
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Fig. 7.6: Fourier transform of the pulse calculated to the control the dynamics of population
transfer between S1 and S0 of neutral cyclobutadiene: (a) λ=0.25 (b) λ=0.01.

(following a vertical excitation from S0). Like the previous example, this demonstrates

the importance of the λ parameter to the control calculations. Figure 7.8 shows the

control performed when λ is 0.25. Initially there is some control with population of S2

reaching 50% after only 20fs. However after 40fs the state populations become very

chaotic and uncontrolled with rapid oscillations between the two states. This behaviour

is also shown in the very unphysical behaviour of the pulse. The FT of the calculated

pulse (figure 7.10a) shows a large range of frequencies with no obvious physical relation

to the chemical system.

Figure 7.9 shows the control dynamics performed when λ=0.01. We observe a very

simple control, with 95% of the wavepacket successfully transferred into S2 within 100fs.

There are minor oscillations between the populations of S1 and S2 this is due to the

large vibronic coupling between the two states. However this stops once the full transfer

has occurred, showing that the wavepacket is stable in S2 despite the vibronic coupling.

A FT (figure 7.10b) of the pulse shows a single frequency field which corresponds to

the energy gap between the two states.

The difference in the dynamics using the different strength factors (λ) is highlighted

in figure 7.11. Figure 7.11a shows the wavepacket on S2 along ν5 and ν6 after 65fs when

λ=0.01. It is a very well structured wavepacket which following excitation into the po-

tential minima shows very little motion along either mode, making the population of S2

Coherent Control 150



Results 7.2

Fig. 7.7: Snapshot of wavepacket on S0 for neutral cyclobutadiene during the control of S1

and S0 population after 100fs: (a) λ=0.01 (b) λ=0.25

Fig. 7.8: (a) The diabatic state populations of of the lowest three singlet states, X̃1B1g

(red), Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene over 100fs for the control of
population to S2, λ=0.25. (b) Electric field calculated by the local control algorithm.

very stable. However 7.11b shows the same wavepacket when λ=0.25, the extra energy

clearly excites the wavepacket into S2 with more energy and therefore large oscillations

are seen along both modes, this causes the wavepacket to reach and repeatedly cross

the intersection between S1/S2 and make the population unstable.

7.2.2 Cyclobutadiene Radical Cation

The model Hamiltonian for the cyclobutadiene radical cation is obtained in the same

manner as the neutral species and is explained in [129]. This surface is dominated by

a JT interaction which lifts the dengeneracy of the 2E2g state along b1g and b2g modes.

PJT interactions are also present [159], but these are weak in comparison to the JT

interaction and are ignored in this model. The model contains one doubly degenerate
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Fig. 7.9: (a) The diabatic state populations of of the lowest three singlet states, X̃1B1g

(red), Ã1Ag (green), and B̃1B2g (blue) in neutral cyclobutadiene over 100fs for the controlled
population of S2, λ=0.01. (b) Electric field calculated by the local control algorithm.

Fig. 7.10: Fourier transform of calculated pulse for the control of populations from S1 to S2

of neutral cyclobutadiene using (a) λ=0.25 (b) λ=0.01

Fig. 7.11: Snapshot of the wavepacket on S2 of neutral cyclobutadiene after 65fs for control
of S1 and S2 population: (a) λ=0.01 (b) λ=0.25
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Fig. 7.12: The diabatic PES of the 2E2g state along ν4 (b1g) and ν6 (b2g) modes of the
radical cationic cyclobutadiene. The two minima represent the rectangular structures, while
the transition state is the square planar geometry.

electronic state and two vibrational degrees of freedom, ν4 and ν6. The PES is shown

in figure 7.12 and the details of the calculations are shown in table 7.2. The control

objective for this model is to transfer the wavepacket between minima in the 2E2g state

formed by JT coupling, this corresponds to electronic transfer between the x and y

components of the split degenerate state. Throughout these calculations we consider

the transition dipole moment as linear along ν6.

Figure 7.13 shows the diabatic state populations for the first 8ps without pertur-

Mode Ni,Nj n0,n1

No control Control
ν4 51 8,8 8,8
ν6 19 8,8 8,8
CPU Time λ=0.002 22mins 49secs 23mins 25secs

Table 7.2: Computational details for the quantum dynamics simulations for control of the
radical cation of cyclobutadiene for 8ps. Ni is the no. of primitive Harmonic oscillator DVR
basis functions used to describe each mode [78]. ni are the number of SPF used for the
wavepacket on each state.
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Fig. 7.13: The diabatic state populations of the lowest doubly degenerate 2E2g state, 2E2g,x

(red) and 2E2g,y (green) of radical cation cyclobutadiene for 8ps.

Fig. 7.14: (a) The diabatic state populations of the lowest doubly degenerate 2E2g state,
2E2g,x (red) and 2E2g,y (green) of radical cation cyclobutadiene for 8ps using the control field
(b).
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bation from an external field. This shows that the wavepacket cannot overcome the

barrier between the two minima and therefore the wavepacket stays in its initial state.

Figure 7.14 shows the diabatic state populations and calculated pulse when using the

local control algorithm. The pulse excites 90% of the wavepacket onto the D0,y surface.

The gradient along ν4 on the D0,y surface causes the wavepacket to propagate down

the steepest gradient to the D0,y minima.

In order to establish more detailed analysis of the dynamical information of the

control scenario we plot the position and width of the wavepacket on each state as a

function of time, these are shown in figure 7.16. We also plot the wavepacket density

on each state, this is shown in figure 7.15.

From inspection of the wavepacket plots in figure 7.15 we see that the wavefunction

on the initial state, D0,x, oscillates slightly along ν4 and ν6, however most density

remains around the equilibrium position between 0 and -2units. After 1000fs only a

small amount of density populates D0,y, this is because the overlap between ground and

excited state wavefunctions is small up to this point, making the pulse weak. After

1800fs the density on D0,y has increased dramatically, following the energy profile of

the pulse. The wavefunction on D0,y is bifurcated due to the dipole interaction. We

also see that the wavepacket is split into 5 distinct packets along ν4, relating to each

excitation from the pulse. After 4000fs one can see that the wavepacket is beginning

to cool into the minima on D0,y and the width is greatly reduced. After 4700fs the

wavefunction on D0,y is almost exclusively relaxed at the minima, Q4=0.5au.

Such observerations are supported by inspection of the 〈q4〉 and 〈dq4〉 (shown in

figure 7.16). Between 1-3ps there is continuous excitation to D0,y. The gradient of the

PES causes the wavepacket to spread along this mode, this is reflected in the size of

〈dq4〉 on D0,y. At longer timescales the size of 〈dq4〉 falls because the wavepacket is

cooled into the D0,y minima.

The 〈q4〉 and 〈dq4〉 on D0,x shows the wavepacket increasing in width, as more energy
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Fig. 7.15: The wavefunction density on D0.x and D0,y in the radical cation cyclobutadiene
along ν4 and ν6 (a)/(b) 0fs, (c)/(d) 1000fs (e)/(f) 1800fs (g)/(h) 4000fs and (i)/(j) 4700fs.
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Fig. 7.16: (a) 〈q4〉 for D0,x and D0,y. (b) 〈dq4〉 for D0,x and D0,y. In both cases red represents
D0,x and green represents D0,y.

is added to the system from the pulse. At -0.5au along ν4 the overlap between the lower

and upper states ensures efficient population transfer. The fraction that remains on

D0,x following the control settles at the D0,x minima at Q4=-0.5au.

Filtering the pulse

A FT of the pulse (shown in figure 7.17a) can reveal more information about the

dynamics of the system and mechanism for control. In the calculated pulse 4 frequencies

dominate these are at 0.54eV, 0.64eV, 0.85eV and 0.95eV and there is also a large

number of low intensity frequencies. The strongest two frequencies (0.54 and 0.85) are

separated by 0.31eV, this corresponds to the sum of the vibrational frequencies of the

normal modes, ν4 and ν6. The gap between the major peak and its pair (i.e. 0.54 and

0.64) corresponds the the off-diagonal coupling element between the two states along

ν6. This does not apply for ν4 because all coupling elements are zero by symmetry. The

FT also shows a low intensity peak at around 0.25eV, this peak matches the energy

gap between vibrational states and is therefore likely to be responsible for the cooling

of the wavepacket on the D0,y surface following excitation.

The calculated pulse for the control of the radical cation of cyclobutadiene contains a

lot of low intensity frequencies, this makes it more difficult to reproduce experimentally

and give an accurate assignment of the role of each frequency. It is therefore desirable
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Fig. 7.17: Fourier transform of the calculated pulses for the radical cation cyclobutadiene.
(a) Unfiltered (b) Filtered.

Fig. 7.18: Controlled dynamics performed with the filtered field. (a) Controlled diabatic state
populations, 2E2g,x (red) and 2E2g,y (green). (b) Filtered control pulse. This pulse contains
only the four main frequencies highlighted from the first control.

to filter the control pulse. This will help assign the role of each frequency and will

become increasingly important as the pulses become more complex in larger systems.

To filter the frequencies a discrete FT is performed, producing a spectra of intensity

vs index. Any peaks below a preset threshold are removed from the spectra and

the inverse transform is calculated to return the new filtered pulse. In this test case

frequencies with an intensity lower then 0.000015 were removed.

Figure 7.18 shows the control using the filtered pulse and figure 7.17b shows the FT

of the filtered field. The diabatic state populations show that 85% of the wavepacket

is excited in this control, 5% less then the unfiltered pulse. This is still a very effective

control especially considering the number of frequencies in the field has been reduced
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to three. At later timescales in the control using the filtered pulse, the diabatic state

populations (figure 7.18a) show rapid oscillations between the two states, suggesting

the wavepacket still contains a lot of energy and is able to surmount the barrier between

the two minima. This supports the observation that the frequency at 0.25eV is cooling

the wavepacket, because upon its removal this is no longer the case.

7.2.3 Pyrazine

Pyrazine, C4H4N2, has been extensively studied in both experiment and theory [104,

115, 160, 161], including a 24 dimensional model performed using MCTDH, [84] (and

references therein). The model used in this study has three electronic states and three

nuclear DOF. The PES along the two DOF showing the CI between S1/S2 is shown

in figure 7.19. There is first order on-diagonal coupling along ν1, ν6a and ν9a and off

diagonal coupling between S1/S2 along ν10a. This model has been used in an OCT

study [157], therefore we can draw direct comparisons in the performance of the two

methods. We will perform three control calculations, two controlling the population

of S2 with and without the vibronic coupling which exists between S1 and S2 and one

control using the vibronic coupling between S1 and S2 to efficiently populate S1. In all

control cases we consider the transition dipole moment as linear along ν10a.

Maximising S2: No S1/S2 coupling

The objective of this first control is to selectively populate S2 in the absence of the non-

adiabatic coupling between S1 and S2. Figure 7.20 shows the diabatic state populations

and calculated field for the first 500fs of propagation. The pulse successfully manages

to transfer 90% of the wavepacket to S2 in a step wise manner, this performance is equal

to the OCT calculation. The OCT calculation achieves the target state population in

a much faster real time of 100fs.

Figure 7.22 plots the wavefunction on each electronic state during the control pro-

cess. After 30fs there is significant population of the excited S2 state and the wavefunc-
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Fig. 7.19: The diabatic potential energy surface for pyrazine along ν6a and ν10a showing the
conical intersection which is located close to the Franck-Condon point on S2.

tion is slightly bifurcated due to the dipole excitation. The most significant motion on

the excited state is along ν6a, this is due to the slope of the PES. This motion leads to

the CI between S1/S2, however in this case no crossing occurs because the coupling is

ignored.

The wavepacket plots shows that the oscillation period of the wavepacket in this

state is approximately 60fs, this is also shown in the time between first two major

pulses in the calculated field. This is unsurprising as a pulse will only be large when

overlap between the wavefunctions the initial and target state is good. This can only

been seen in the pulse in early timescales, because as the propagation time continues

the wavepacket becomes more spread allowing more smaller overlap to occur at smaller

time intervals.

The FT of the pulse (figure 7.21) shows a broad peak around 4-5eV, this is equivalent

to the energy gap between the two states, showing that the control mechanism is a

simple excitation process. There is a small amount of structure which is a vibrational

progression of ν10a.
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Fig. 7.20: (a) The diabatic state populations of pyrazine over 500fs under the influence of
the field shown in (b). In this control the coupling between S1 and S2 has been ignored. S0

(blue) and S2 (green)

Fig. 7.21: Fourier transform of the electric field for pyrazine control, selectively populating
S2 in the absence of vibronic coupling between S1-S2.
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Fig. 7.22: The wavefunction density on S0 and S2 in pyrazine along ν6a and ν10a (a)/(b) 0fs,
(c)/(d) 30fs (e)/(f) 45fs (g)/(h) 60fs and (i)/(j) 75fs.
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Fig. 7.23: Control to maximise the S2 population (a) The diabatic state populations of
pyrazine over 45fs under the influence shown of the field shown in (b). The coupling between
S1 and S2 is included. S0 (blue), S1 (red) and S2 (green).

Maximising S2 and S1: Including internal conversion

In the last section we considered only the S0 and S2 states by ignoring the vibronic

coupling which exists between S1 and S2. In this section we include the vibronic

coupling, this significantly complicates the control. Figure 7.19 shows that there is a

CI between S1 and S2 very close to the FC point therefore IC will occur on an ultrafast

timescale.

In the first instance we perform the same control as before, attempting to achieve

maximum population of S2, but including vibronic coupling between S1 and S2. Figure

7.23 shows the diabatic state population and the field for the first 45fs. In this control

scenario the pulse is able to transfer 75% of the wavepacket to S2, with just over 10%

of this crossing through the CI to S1. This population is unstable due to the IC and

continued propagation would result in increased decay to S1. This result was also

reported using the OCT approach [157] and encouragingly both results show excellent

agreement on real time scales.

In the second instance we use the IC to create a pulse which will efficiently transfer

population to S1. The oscillator strength of the S0-S2 transition is much greater than

that of the S0-S1 transition, so excitation to S2 will be more efficient. Utilising the IC
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Fig. 7.24: Control to maximise the S1 population (a) The diabatic state populations of
pyrazine over 200fs under the influence shown of the field shown in (b). The coupling between
S1 and S2 is included. S0 (blue), S1 (red) and S2 (green).

will allow efficient mechanism for the population of S1.

Figure 7.24 shows the diabatic state population and the field over the first 500fs.

Following the initial excitation into S2 there is rapid decay into S1. The population

of S1 is already 75% within the first 150fs and reaches 80% by 500fs. This population

continues to rise in a step wise manner, due to the kicking nature of the pulse, which

arises due to overlap considerations.

Following excitation into S2 population in this state decays rapidly into S1. Os-

cillations between S1 and S2 are seen throughtout the control because the wavepacket

passing through the CI is very vibrationally hot and has enough momentum to cross

back onto the upper surface. This reduces at longer timescales.

This result gives a similar population agreement with that obtained in the equivalent

OCT study [157]. Due to the global view of the OCT control the pulse calculated cools

the wavepacket when crossing to S1 and the oscillations between S1 and S2 are not

seen.

7.2.4 Ammonia

The photodissociation of ammonia has been studied extensively both theoretically and

experimentally [162–165]. The theoretical work has led to the PES being well charac-

Coherent Control 165



Results 7.2

Fig. 7.25: 2D NH3 model with DOF R and θ defining the umbrella mode by the motion of
one proton relative to a fixed NH2 group [169].

terised, diabatic PES with coupling have been calculated by Truhlar et al [166, 167].

These surfaces show that the ground state has a double minimum along the inversion

mode, with each minima corresponding to a pyramidal, C3v, structure. The first sin-

glet excited state has a single minimum at the D3h planar geometry where a CI exists

between the 2 states. These features can be seen in figure 7.26.

The shape of the PES means that upon excitation into S1, there are two possi-

ble routes to dissociation: non-adiabatically via the CI in to the ground electronic

state to form NH2(X̃
2B1) + H, and adiabatically on the first excited state to form

NH2(Ã
2A1) + H.

The competition between these two routes has been studied by by Crim et al [168].

Using velocity map imaging (VMI) the paths to dissociation were studied for different

vibrations in the excited state. It was found that molecules with an excited symmetric

N-H stretch (ν1) dissociated to produce ground state NH2 and that the antisymmetric

N-H stretch (ν3) resulted in production of NH2 in the excited Ã 2A1 state. They

concluded that the antisymmetric stretching mode caused the photodissociation to

avoid the CI.

We use a 2D model which provides a description, using Jacobi coordinates (figure
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Mode Ni,Nj n0,n1

No control Control 1 Control 2
νθ 61 1,1 1,1 1,1
νrd 61 1,1 1,1 1,1
CPU Time λ=1.0 10mins 30sec 40mins 5secs 36mins 10secs

Table 7.4: Computational details of the quantum dynamics simulations for ammonia. Ni is
the no. of primitive Harmonic oscillator DVR basis functions used to describe each mode [78].
ni are the number of SPF used for the wavepacket on each state.

7.25), of the umbrella mode of NH3 with the motion of just one proton relative to

the fixed NH2 group. For more extensive on reading this model see [169]. We aim to

control the dissociation dynamics following excitation into S1. This is complicated due

to the strong coupling and presence of CI close to the FC point. The computational

details can be found in table 7.4. In order to stop grid edge effects occurring a complex

absorbing potential (CAP) [170] was placed on the dissociative channel at 8.0 au. The

dipole surfaces were calculated using MRCI and are shown in figure 7.27.

Control

Figure 7.28 shows the diabatic state populations for the two electronic states of ammo-

nia in the first 50fs following vertical excitation into S1 from one of the S0 minima. This

shows in that in this model the favoured dissociative channel is the diabatic channel

leaving NH2 in its ground state. However, most of the wavepacket has still not disso-

ciated on this timescale, this can been seen in the wavepacket density plots in figure

7.31. The density plots shows the wavepacket oscillates back and forth along θ, each

time it passes the CI, at the centre of the surface, some of the wavepacket proceeds

along the dissociative mode.

Figure 7.29a shows the diabatic state populations of the two states of ammonia

under control of an external pulse (figure 7.29b), in the first 50fs following excitation

to S1. The effect of the field is large and immediately obvious. One can observe that the
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Fig. 7.26: Lowest two excited states (X̃1A′ and Ã1A′′) of ammonia . The two coordinates
are expressed in terms of the dissociating H atom where R is the distance between H and the
centre of mass of the NH2, and θ is the angle that R makes with the plane of the NH2.
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Fig. 7.27: Calculated transition dipole surfaces between X̃1A′ and Ã1A′′ for ammonia (a) x
component (b) z component. Calculated at MRCI level.

Fig. 7.28: The diabatic state populations for the lowest singlet state (X̃1A′ and Ã1A′′) of
ammonia in an unperturbed system. X̃1A′ (green) and Ã1A′′ (red).

Fig. 7.29: (a) The diabatic state populations for the lowest singlet state (X̃1A′ and Ã1A′′) of
ammonia under the influence shown of the field shown in (b). X̃1A′ (green) and Ã1A′′ (red).
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Fig. 7.30: Fourier transform of the control pulse obtained from the local control calculation
of ammonia.

field selectively populates the S0 state with 80% compared to 20% on the uncontrolled

dynamics.

The wavepacket plots for the controlled dynamics are shown in figure 7.32. We see

that instead of the wavepacket propagating along the dissociative channel, the pulse

pushes the wavepacket back to the ground state minima at positive value of θ. This is

because as the wavepacket moves across the θ coordinate on the excited state a large

overlap with the ground state is created around the intersection due to the strong

vibronic coupling and therefore a pulse is created and transfers the wavepacket onto

S0. The FT of the pulse (figure 7.30) shows frequencies centred at 6eV. This is equal

to the energy gap between the two states at the point the wavepacket is dumped back

to the ground state.

7.3 Conclusion

LCT uses the instantaneous dynamics of the system at each time step to calculate a

pulse which ensures the desired change in the expectation value of an operator. This

approach which is focused upon a particular element of the system provides an alter-

native to the global optimisation used in OCT. During this chapter we have presented

the initial results obtained following the implementation of the LCT-MCTDH. Despite

there being a wide range of operators appropriate for control in this chapter we have
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Fig. 7.31: Wavefunction density plots for S0 and S1 for ammonia with no pulse applied along
rd and θ. (a)/(b) 0fs, (c)/(d) 5fs (e)/(f) 10fs (g)/(h) 20fs and (i)/(j) 30fs.
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Fig. 7.32: Wavefunction density plots for S0 and S1 for ammonia with pulse applied along rd
and θ. (a)/(b) 0fs, (c)/(d) 5fs (e)/(f) 10fs (g)/(h) 20fs and (i)/(j) 30fs.
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focused on control of electronic state population.

The control of neutral cyclobutadiene using a 6 dimensional, 3 electronic state

model shows the importance of the λ parameter to the LCT method. Both control of

the population to S0 and S2 show very encouraging control, especially considering the

vibronic coupling involved which significantly complicates the Hamiltonian. However

when λ is too large the control fails, too much energy creates a very vibrationally

excited wavepacket on the target state enabling it to cross to the CI that exist between

the surfaces destroying the control.

The second example of control was demonstrated on a 2 dimensional model of the

radical cation of cyclobutadiene. By controlling the population transfer between the

two components of the doubly degenerate D0 we are able to switch between the two

D2h minima which exist in the molecule due to JT coupling. Results demonstrated that

the algorithm is able to create a field which was able to transfer 90% of the wavepacket

from one minima to the other.

A FT of the control field resolved the frequencies that were responsible for the

control. This revealed a range of frequencies which could easily be related to the

properties of the model, such as vibrational frequency and inter-state vibronic coupling.

However even in a relatively simple control objective the pulse utilised a wide range

of frequencies which would make it more difficult to reproduce experimentally. By

filtering some of the frequencies in the frequency spectra of the pulse and performing

an inverse FT we show that by limiting the number of frequencies we are able provide

a simpler pulse but also a more detailed understanding of how the pulse controls the

dynamics. By filtering the pulse obtained from the initial control we are able to assign

the important frequencies and demonstrate that even when all other frequencies are

removed this control is still effective, transferring 85% of the wavepacket from one

minima to the other.

The pyrazine model presented in this chapter has been previously used in a study of
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OCT-MCTDH, this makes it the perfect test system to compare the two methods. We

presented results controlling the population of S2 in the absence of vibronic coupling

and controlling the population of S1 and S2 with the vibronic coupling included.

The control of the S2 population in the absence of vibronic coupling is able to

excited 90% of the wavepacket into S2. This performance is equivalent to the OCT

methods, but occurs on a much slower real time period, taking 500fs to reach this as

opposed to 100fs seen in OCT. The optimisation of S2 with the presence of vibronic

coupling between S1/S2 is very difficult, because a CI which exists not far from the

FC point on S2 and therefore any excitation is followed by rapid internal conversion.

Despite being unstable a population of 70% on S2 is reached after 45fs. This is in

excellent agreement with OCT in both population and the field produced.

Because the oscillator strength for the S0-S2 transition is an order of magnitude

greater then the S0-S1 transition, controlling the S1 population is most efficient by

taking advantage of the fast IC. Using this method we manage to transfer 80% of the

wavepacket to S1. This, as before, occurs on a slower real time period then the OCT.

In this control we see oscillations between S1 and S2. Because the wavepacket on S1 is

so vibrationally hot it has the energy to cross back to S2, this is not seen in OCT [157].

The final control presented was to control the excitation and dissociative branch-

ing ratio in ammonia. The PES has been extensively studied and show two possible

channels, a diabatic dissociation and a adiabatic channel. Unsurprisingly the diabatic

channel in strongly favoured due to the profile of the PES. Both of the calculations

presented showed a degree of control, however neither achieved the explicit prestated

aim. This is because vibronic coupling around the FC point complicates the control

and therefore more sophiscasted implementation of the LCT method are required for

a successful outcome of this control objective.

Throughout this chapter we have presented CPU times for the LCT calculations.

One can see that they are typically not much slower then propagation without the
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pulse. This is extremely encouraging for the prospect of moving onto larger systems.

These results, although in relatively simple systems shows incredible promise for

the method for moving to more complex and larger systems. It is able to perform

well in comparison to OCT in these cases, but with significantly less computational

expense. The natural progression for this approach is to implement this into MCTDH

with a wider range of possible operators, enabling a more flexible control on any given

system.
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Conclusion

Early time ultrafast dynamics play a critical role in the outcome of chemical reactions.

The motion of the wavepacket within the first few hundred femtoseconds will often

define the overall outcome of the reaction, this is especially true in photochemical re-

actions. In such reactions the involvement of excited states results in the breakdown

of the BOA and significantly complicates the Hamiltonian of the system. Coupling be-

tween nuclear and electronic motion can cause such topological features as CI, which

provide an ultrafast radiationless transition between electronic states. Observing and

understanding such features and their effect on the dynamics is critical to our under-

standing of many fundamental processes.

In this thesis we have presented a variety of methods required to study and con-

trol the ultrafast dynamics of photochemical processes. Electronic structure methods

enabled us to obtain an accurate description of a PES and the MCTDH quantum dy-

namics method is able to perform dynamics on molecular systems containing a large

number of nuclear and electronic DOF.

Benzene on inspection appears to be a highly symmetrical and relatively simple

molecule. However it is its highly symmetrical nature which results in a multitude of

possible photochemical pathways, making an accurate description very complicated.

This is highlighted by the channel 3 problem. When a wavepacket is excited to

3000cm−1 above the FC point in S1 fluorescence disappears due to the opening of
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a radiationless pathway.

We have presented a Vibronic Coupling Hamiltonian suitable for studying the ul-

trafast dynamics of electronically and vibrationally excited benzene. The Vibronic

Coupling Hamiltonian was calculated by performing a fit to ab-initio points calculated

at various geometries on the PES. This Hamiltonian had been previously calculated

using CASSCF, however this method does not include dynamic correlation critical for

describing excited states with double excitations. We used CASPT2 with a (6,6) active

space and Roos(3s2p1d/2s) basis set.

Cuts along the normal modes, important combination modes and the vector in

normal mode space which leads to the S1/S0 CI were all calculated and fitted to obtain

the parameters for the description of the Hamiltonian. In order to properly describe

the PES we were required to fit up to 4th order, this is especially important for the

region around the CI.

The accuracy of the Hamiltonian was tested by calculating the absorption spectra,

1B2u ← X̃, 1B1u ← X̃ and 1E1u ← X̃. In each case the calculated spectra reproduced

the main features seen in the experimental spectra, indicating the accuracy and success

of the calculated Hamiltonian. The 1B2u ← X̃ is dominated by a breathing mode

progression, like the 1B1u ← X̃ spectra. It also contains two hotbands, one from the

JT active, ν6, and other from the boat mode, ν16. The 1E1u ← X̃ is a symmetry allowed

transition and therefore the spectra is a broad and structureless band, containing the

tail structure which is the 1B1u ← X̃ spectra, arising from intensity borrowing due to

coupling between the two states.

Using the Heidelberg MCTDH package we obtained dynamics simulations using

the full 5 state Hamiltonian and a reduced space 2 state Hamiltonian. The parameters

required for the 2 state Hamiltonian were fitted in the same manner as the larger 5 state

model and was used to reduce the size of the calculations making it easier to converge.

In this smaller model the barrier leading to the S1/S0 CI is treated adiabatically instead
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of a diabatic barrier which is formed by C̃ crossing Ã.

Both models show good agreement with each other and experimental results. We

performed two calculations, (a) cold wavepacket and (b) hot wavepacket (see chapter

4 for description). The cold wavepacket shows reduced decay from the FC region,

because there is not enough energy in the right modes. The hot wavepacket dynamics

shows rapid decay from the FC point occurring on two timescales as the wavepacket

has enough energy in the right modes to surmount the barrier near the FC point.

The two state model also shows the wavepacket oscillating either side of the barrier

on S1 which leads to the intersection, this oscillation has a timescale of 1.2ps giving

excellent agreement with the experimental results. Despite accounting for much of the

dynamics in the excited state of S1, the singlet manifold does not not account for all

of the decay from the FC region in S1.

Triplet states are often ignored, especially in hydrocarbons because the SOC is

considered to small. However vibrational effects can be critical. First and second order

effects, in which the symmetry of the vibrational mode can enhance or destroy the

strength of the coupling, can play an important role. This, in conjunction with the

degeneracy, found between the lowest singlet and triplet states at the S1/S0 CI, could

provide the required conditions for the triplet states play an important role in the

dynamics, even if coupling is small.

In chapter 5 a detailed study into the nature of SOC in simple hydrocarbons was

presented. Comprehensive studies of the vibrational effects of SOC are presented for

cyclobutadiene and benzene by calculating the SOC along the normal modes and the

vector in normal mode space leading to the S1/S0 CI.

At equilibrium the SOC in both cases is very small because there is no mixing

between the σ and π orbitals, which provides the mechanism for SOC. In cyclobutadiene

SOC is enhanced by the low frequency modes which are out of plane C-H bends. The

C-H bends allows mixing between the σ and π orbitals creating an spn type orbital
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and a mechanism for SOC. This results in SOC energies which are as large as 4.5cm−1

when the hydrogen is ∼65◦ out of the plane of the molecule.

In benzene first order vibrational effects are, like cyclobutadiene, dominated by

out of plane C-H bends, which results in SOC coupling energies between 3.5-4.5cm−1.

There are smaller second order effects which occur along the boat and chair modes,

which play a critical role in the dynamics around the S1/S0 CI. These modes not only

increase the SOC between S1/T1, which is symmetry allowed at equilibrium, but also

induced SOC between S1 and the doubly degenerate T2.

The SOC along the vector in normal mode space leading to the S1/S0 CI increases

in both cyclobutadiene and benzene. This is dependent on the combination of modes

required to reach the CI. In the case of cyclobutadiene the required modes include

a larger dependence on out of plane C-H and therefore there is a large increase in

SOC towards the intersection. However in the case of benzene although we still see an

increase in SOC it is not as great as cyclobutadiene because there is less out of plane

C-H bending motion.

In chapter 6 the 2 state model described in chapter 4 is developed to include a

triplet manifold, using the spin orbit coupling values calculated in chapter 5. The

parameters for the Hamiltonian in the triplet manifold were acquired using the same

fitting procedure for the singlet states. The dynamics were performed using 4 state (2

singlet and 2 triplets) and 6 normal modes.

Comparing these dynamics to the experimentally obtained data shows excellent

agreement. In both cases the fast decay is apparent for the first 500fs. After 500fs

there is 55% of the wavepacket in the FC region of S1, and 70% of the wavepacket in

the S1 and triplet states, this is almost identical to the experimental results. Unlike

the experiments after 500fs the wavepacket continues to decay out of S1. This can be

attributed to the reduced dimensionality of the model.

The dynamics obtained give a clear support to the ultrafast intersystem crossing

Conclusion 179



Conclusion 8.0

which has been observed experimentally in benzene. Despite the small coupling which

exists between the singlet and triplet manifolds 5-10% of the wavepacket is still able

to cross in the first 500fs. This is clear example of ultrafast intersystem crossing and

the first example of it occurring in simple hydrocarbons.

Chapter 7 looks at controlling dynamics and shows the results obtained following

the implementation of the LCT algorithm within the Heidelberg MCTDH package. In

this chapter we present the control of the electronic state populations for neutral and

radical cationic cyclobutadiene, pyrazine and ammonia.

The control of neutral cyclobutadiene using a 6 dimensional, 3 electronic state

model shows the importance of the λ parameter to the LCT method. Both control of

the population to S0 and S2 show very encouraging control, especially considering the

vibronic coupling involved which significantly complicates the Hamiltonian. However

when λ is too large the control fails, too much energy creates a very vibrationally

excited wavepacket on the target state enabling it to cross to the CI that exist between

the surfaces destroying the control.

Using a radical cationic cyclobutadiene model we controlled the wavepacket motion

between the two D2h minima. By using a projector onto the excited state a pulse was

calculated which selectively transferred 90% from one minima to the other. FT of

the calculated pulse shows the range of frequencies required, these could all be related

to the parameters of the system, such as the vibrational frequencies and interstate

vibronic coupling.

We also present a further analysis of the cyclobutadiene by filtering the some of the

frequencies. Despite removing all except 3 of the major frequencies from the calculated

pulse the new pulse is still able to transfer 85% of the wavepacket from one minima to

the other. This is encouraging, especially considering that larger systems are likely to

produce more complex pulses and therefore filtering will play a more important role

in simplifying pulses to be reproduced experimentally and reveal the dynamics of the
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control.

Using a model system for pyrazine we present results controlling the population

of S2 in the absence of vibronic coupling and controlling the population of S1 and S2

with the vibronic coupling included. This has been previously used in a study of OCT-

MCTDH, this makes it the perfect test system to compare the two methods. In all

three control scenarios the LCT method was able to perform as well as OCT methods,

achieving similar amounts of control.

The LCT method took longer in real time to match the OCT results, however from

the propagation times displayed one can see that the LCT calculations did not use

much more CPU time then the propagations without the field. This result is very

encouraging as it shows that LCT is ideal for larger systems.

The final control presented aims to alter the dissociative branching ratio in ammo-

nia. The PES has been extensively studied and shows two possible channels, a diabatic

dissociation and a adiabatic channel. Unsurprisingly the diabatic channel is strongly

favoured due to the profile of the PES. Our results show that by applying the LCT

algorithm a pulse is produced which is able to stop much of the dissociation down the

diabatic channel. The wavepacket is successfully transferred onto S0, part of which

dissociates and the result returning to the equilibrium geometry.

The work presented in this thesis provides a detailed insight into elements of photo-

dynamics and coherent control. The calculation of the benzene Hamiltonian is shown

to be accurate from the calculation of absorption spectra and replication of experimen-

tal results. It represents the limit for such methods, calculating the full PES for larger

systems becomes very difficult due to the sheer size of the coordinate space involved.

As computational advancements and methods enable the possibility of larger and larger

calculations, methods such as direct dynamics, in which the potential energy surface is

calculation “on-the-fly” as and when it is required will become increasingly important.

The calculations performed on ultrafast intersystem crossing in benzene reveal that
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the triplet states can play a role in early time dynamics even when coupling is small.

Further work should be focused upon studying more systems which are likely to contain

similar characteristics to benzene and are likely to also contain ultrafast intersystem

crossing.

LCT-MCTDH results are encouraging, but should be viewed as a stepping stone

to more complex systems. We have only presented results obtained by controlling the

electronic state population and therefore by increasing the range of possible operators

will provide a greater flexibility and success in control.
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Bibliography 195



Bibliography 8.0

editors, Conical intersections: Electronic structure, dynamics and spectroscopy..

World Scientific, Singapore, 2004 .

[120] Yarkony, D. R. Conical intersections: diabolical and often misunderstood . Acc.

Chem. Res., 1998. 31, 511–518.
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1A′′2). Faraday Discuss. Chem. Soc., 1986. 82, 163–175.

[163] Yarkony, D. R. Exploring molecular complexity: Conical intersections and NH3

photodissociation. J. Chem. Phys., 2004. 121, 628–631.

[164] Biesner, J., Schneider, L., Schmeer, J., Ahlers, G., Xie, X., Welge, K. H., Ashfold,

M. N. R., & Dixon, R. N. State selective photodissociation dynamics of Ã state
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