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Abstract

The detection of galaxy groups and clusters is of great importance in the field

of astrophysics. In particular astrophysicists are interested in the evolution and

formation of these systems, as well as the interactions that occur within galaxy

groups and clusters. In this thesis, we developed a probabilistic model capa-

ble of detecting galaxy groups and clusters based on the Hough transform. We

called this approach probabilistic Hough transform based on adaptive local ker-

nel (PHTALK). PHTALK was tested on a 3D realistic galaxy and mass assembly

(GAMA) mock data catalogue (at close redshift z < 0.1)(mock data: contains

information related to galaxies’ position, redshift and other properties). We com-

pared the performance of our PHTALK method with the performance of two ver-

sions of the standard friends-of-friends (FoF) method. As a performance measures,

we used the precision versus recall curve. Furthermore, to test the efficiency of

recovering the galaxy groups’ and clusters’ properties, we also used completeness

and reliability, fragmentation and merging, velocity and mass estimation of the de-

tected groups. The new PHTALK method outperformed the FoF methods in terms

of reducing the detection of spurious agglomerations (false positives (FPs)). This

smaller sensitivity to the false positive (FP) is mainly due to the clear description

of the galaxy groups’ model based on astrophysical prior knowledge; in particu-

lar, the fingers of god (FoG) pattern (a pattern formed by the projected velocity

dispersion of galaxies, inside a galaxy group, along the line of sight). However,

the FoF methods seem to outperform the PHTALK in terms of detecting galaxy

groups or clusters that do not follow the FoG pattern. The main advantage of our

probabilistic model is its flexibility to incorporate any prior knowledge expressed

in terms of a galaxy group model.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The basic active element of cosmic structure is the galaxy. The nature of gravity

impels the galaxies to aggregate into groups. The galaxies orbit around an attract-

ing centre (usually the most massive luminous galaxy). The formation of galaxy

groups or clusters is supposed to happen according to the theory of inflation and

hierarchical structure formation, beginning as over-dense fluctuations in the Uni-

verse and increasing and merging matter during cosmic history to become current

huge structures (Wardlow 2010).

Astrophysicists are interested in detecting galaxy groups and clusters to study

and analyse the evolution and formation of these kind of systems and to try to

investigate more about their activities. In this chapter, we will mention some of the

key points of detecting galaxy groups/clusters, identify the difficulties of detecting

the pattern of interest, and present a brief overview of the following chapters.

1



1.1 The Importance of Detecting Galaxy Groups

and Clusters

In general, galaxies tend to expand away from one another. However, in some

parts of space, there can be an over-density of galaxies, which means that the

gravitational field in these areas is sufficiently strong to prevent these galaxies

from escaping from one another; and therefore, they remain bound and interact

together, forming groups or clusters of galaxies.

Studying the corresponding interactions of the evolution and the formation

of galaxies (such as star formation, stellar nucleosynthesis and AGN feedback)

is paramount in understanding and obtaining more consistent descriptions of the

cosmic structure and the environmental impact of these interactions on galactic

and extragalactic levels (Liang et al. 2016). Galaxy groups and clusters play a

significant role in explaining the evolution of the Universe and measuring its bary-

onic content. Moreover, they can signify the gravitational lenses and contribute

to the estimation of cosmological parameters such as the variation in the density

field in fixed physical scales. Also, the clusters act as laboratories to study the

evolution of cluster properties and contents such as gases, shapes, colours and the

star formation history of the member galaxy (Tyson et al. 1984). Furthermore,

studying galaxy groups and clusters is instrumental in probing the history of the

structure and the formation of galaxies; since clusters retain an imprint of how

they were formed as well as providing a history of nucleosynthesis in the Universe

(Mushotzky 2004).
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The detection of galaxy groups is known as a very complex ill-posed prob-

lem. These groups spread within clouds of gases which prevents the distinction

of the amount and the boundaries of these clusters; furthermore, it is difficult to

assess if they are stable or unstable groups. There are some problems in detecting

galaxy groups’ boundaries, especially if they have overlapped with filaments (some

scattered galaxies spread as threads in the field). To identify galaxy groups and

clusters, astrophysicists generate mock data (a mock survey) simulating reality,

due to the incompleteness of the real data that they can obtain from the tele-

scopes. In the mock data, they know exactly the components of their simulations

and the contents of the celestial systems (e.g. stars, galaxies, galaxy groups). In

addition, they can produce as much data as necessary to analyse some phenomena.

Given the amounts of available survey data, automated discovery of galaxy

groups and clusters with a degree of uncertainty is of utmost interest to astrophysi-

cists. Furthermore, the introduction of ever more powerful computing techniques

has enabled applications of machine learning which can make many contributions

to astronomical dataset analysis (Kramer et al. 2013). If we compare the current

clusters’ identification techniques with Abell’s technique (i.e. using the early pho-

tographic plate surveys, Abell applied some criteria 1 to obtain a homogeneous

catalogue), these modern ways appear more reasonable, since they are automated

and objective (Gal et al. 2003). Also, they have a logical selection function and

suppose former minimal limitations on the features of the system to be identified

(Koester et al. 2007).
1These criteria include counting the galaxy in a specific fixed physical area, selecting a mini-

mum number of galaxies within 2 magnitude (see section 2.4) of the third brightest galaxy in a
cluster, specifying a minimum and maximum redshift to the clusters.
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Many large galaxy surveys have been conducted to identify galaxy positions in

the sky and their recession (line-of-sight) velocities. However, there are difficul-

ties in classifying galaxies into groups and clusters due to observational problems

such as redshift distortion (especially in photometric observations), edge effects

and bright stars masking regions (Duarte 2014). Some approaches have achieved

success; however, they are very complex in terms of computational and statistical

processing. Other heuristic methods, such as FoF (a standard method used to

detect galaxy groups/clusters, see section 2.14), tend to be used to obtain fast

outcomes but with a high false positive rate. Thus, the necessity to propose new

probabilistic models appears. A rationale for building a probabilistic model is to

give some uncertainty in a principled way, considering prior knowledge discerned

from the local density and the theoretical notions of the galaxy groups’ distribution

as much as possible; then coming up with probabilistic answers. Furthermore, the

benefit of applying a probabilistic approach is to have more flexibility in updating

the model based on the new physical simulations and findings.

The main questions of this research can be presented as: “Can we identify

galaxy agglomerations in a probabilistic way?”; “What are the pros and cons for

this kind of detection?”; and “How is the performance compared with the modified

FoF method?”.

1.2 The Major Challenges in Galaxy Group De-

tection

The observer on Earth surveys the Universe over a certain patch of the sky specified

through two angles - right ascension (RA) and declination (Dec) (θ, β thereafter).
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Besides the spatial position in the sky (θ, β), the velocity of the object along the

line of sight (LoS) can be deduced from the redshift (z) (see Eq.2.2). A typical

example of the form of a galaxy survey (GAMA mocks: see section 2.12 for more

details) is shown (as a 2-D slice) in Figure 1.1. The patterns of interest (galaxy

groups/clusters) are weak signals because they are swamped inside a huge back-

ground/foreground environment of galaxies. They (i.e. galaxy groups/clusters)

form prolonged features, due to the projection of their galaxy velocities, along the

LoS. Thus, they are called the “fingers of god” (FoG). As an example, the mean

positions of FoG patterns are marked by red points in Figure 1.1. The challenge is

to detect patterns corresponding to the real galaxy groups’ true positives (TPs),

while reducing the detection of similar patterns formed by the fore/background

and chance superposition (FPs).

Figure 1.1: 2-D slice from a volume of GAMA mock data: RA vs Z. Red points signify the
centre of FoG patterns

A new hybrid, theoretical plus data driven, model for detecting galaxy groups

is needed due to the large amount of false detections in the previous techniques. In

general, the existing galaxy group finders have many free parameters that need to

be carefully set before applying the analysis. This raises issues regarding the gen-
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erality of the results and the stability of the calibration process. A mere mixture

distributions model will not be useful in this scenario because of the noisy fore-

ground/background galaxies. This noisy environment makes the detection process

of the pattern of interest infeasible. The main contributions of this work are build-

ing an adaptive probabilistic model to generalize the possibility of detecting groups

and clusters of galaxies, learning from previous knowledge based on the expertise

of astrophysicists. The input of the probabilistic model is the coordinate of each

galaxy: the two angles (θ,β), redshift z. The output from the probabilistic model

is a density mixture of voted galaxies belonging to a given galaxy group/cluster

position as will be illustrated in detail in Chapters 4, 5 and 6.

Our research has been limited to finding galaxy systems (groups/clusters)

within the close redshift (0.01 < z ≤ 0.1) and mass (size) (1012 M� - 1015 M�) .

1.3 Thesis Outline

The rest of the thesis consists of six chapters:

In Chapter 2, some astronomical concepts and terminologies related to the cos-

mology of the Universe and the generation of a mock galaxy survey are presented.

Also, we explain some related works concerning detecting galaxy groups in a prob-

abilistic way, in addition to other techniques that have been used in detecting

galaxy groups and clusters.

In Chapter 3, we demonstrate some machine learning concepts relevant to the

Hough transform and its ability to detect objects in a noisy environment. Examples
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of the utilisation of the Hough transform in astronomy and in detecting spherical

shapes are presented.

Chapter 4 explains the basic formulation of the probabilistic Hough transform

model (PHTM) and the preliminary data generations and modifications of the

method in simple 2D data and a 2D model experiment. Furthermore, we illustrate

the basic 3D mock data and the preliminary 3D model.

In Chapter 5, the generation of complete and well-defined realistic 3D data

is discussed, by including the flux limit effect and applying the 3D probabilistic

Hough transform based on adaptive local kernel (PHTALK); which is the updated

version of the PHTM.

Chapter 6 presents the application of the modified PHTALK on the most so-

phisticated realistic GAMA mock data and compares the results with two versions

of the FoF method. In addition, we illustrate the problem of FP and demon-

strate some suggestions to reduce them. Furthermore, we investigate the recov-

ered groups and their properties such as galaxy group members and galaxy groups’

velocity and mass estimation.

Chapter 7 delivers the conclusion and suggests some future work.

1.4 Publications

A part of Chapters 4 and 5 contains a paper (Ibrahem et al. 2015) which was sub-

mitted to the ICONIP-2015 conference and was published by Springer in Neural
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Information Processing, volume 9491 of the series Lecture Notes in Computer Sci-

ence, pp 323-331 with the title "Automated Detection of Galaxy Groups Through

Probabilistic Hough Transform". We were awarded ‘best paper’ in the College of

Engineering and Physical Sciences at the University of Birmingham in December

2015 for this work. Chapter 6 is a paper which is to be submitted to the MNRAS

Journal (in prep.). My own contributions are around 80% of the papers.
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CHAPTER 2

ASTRONOMY BACKGROUND AND
TERMINOLOGY

Isaac Newton and Richard Bentley were pioneers in trying to describe and un-

derstand the Universe, based on physical laws. However, Newton realised that

his gravitational law could not fully describe a homogeneous, static and isotropic

Universe on a cosmological scale (Janiak 2009). In 1916, Albert Einstein proposed

a theory of the Universe based on the general theory of relativity, but he could not

find a static solution for the Universe either(Einstein 1916, Figueiro Spinelli 2011).

Hence, he introduced the cosmological constant Λ as a force that acts against grav-

ity. Later, Alexander Friedmann found a solution for Einstein’s field equation that

described the expansion of the Universe. Then Hubble’s observations, in 1928,

of the distance and recession velocity of galaxies confirmed Friedmann’s findings

(Hubble 1929). This evidence of the expansion of the Universe was a spark that

motivated new studies of the evolution and structure of the Universe, based on

observations and particle physics.

The aims of this chapter are to outline some key concepts in cosmology; to
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illustrate some properties of large celestial systems (galaxies, groups, clusters);

and to present a brief overview of some works on detecting galaxy groups and

clusters. These cosmology concepts will be employed in subsquent chapters for

generating galaxy mock data surveys and generating a new probabilistic model to

improve the detection process.

2.1 The Expansion of the Universe

In 1928, Edward Hubble identified a linear relation between the velocity v of

distant galaxies, which can be measured using the Doppler shifts of spectral lines,

and their distance D from Earth can be calculated as

v = H0D, (2.1)

where v is measured in km/sec; D in Mpc; and H0=69.7 which is the Hubble

constant in km s−1Mpc−1; this is a measure of the slope of the line through the

distance versus recession velocity data. Eq. (2.1) is utilised to estimate the age

and the size of the Universe. Also, it can be used to estimate the mass and the

intrinsic brightness of the stars in the nearby galaxies (i.e. local Universe). The

zero in the Hubble constant refers to the current time, because H0 changes with

time (Hogg 1999).

In Figure 2.1, the line passes through the origin point, which represents the

Earth at zero distance and zero speed. Hubble concluded that all far galaxies

appear to move away from us according to the expansion of the Universe, which is

called ‘Hubble flow’. By this movement, the wavelengths will stretch according
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Figure 2.1: The Hubble diagram shows the radial velocity of galaxies vs. their distance. “The
black discs and full line represent the solution for solar motion using the nebulae individually;
the circles and broken line represent the solution combining the nebulae into groups; the cross
represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances
could not be estimated individually.” (Hubble 1929).

to the Doppler effect and reach the earth.

The change in the wavelength between the observed λob and emitted λem wave-

lengths is annotated as ∆λ or λob-λem. The difference between the emitted and

observed wavelength object photons is called ‘redshift’ z,

z ≈ ∆λ

λem
≈ λob − λem

λem
≈ υ

c
, (2.2)

where c is the speed of light, equal to 299792.458 km s−1. As shown in Figure 2.2,

when the object (the emitter) is moving away from the observer, the emission and

the absorption features of that object’s wavelength will appear shifted toward the

red end of the spectrum (Hogg 1999).

The redshift of a galaxy is considered as a proxy for the third spatial dimension
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Figure 2.2: The electromagnetic spectrum and the redshift phenomena.

D which results from the combination of two velocities v: the recessional velocity

(due to the expansion of the Universe), and the local peculiar velocity (motion of

a galaxy relative to the galaxy group/cluster frame) of the galaxy (Miller 2012).

Hubble also compared the recessional velocities of the galaxies with their ap-

parent magnitudes (i.e. brightness) and found that the fainter, smaller galaxies

have higher redshifts (Hubble 1929).

2.2 The Current Cosmology Paradigm

The current theoretical paradigm of hierarchical structure formation in the Uni-

verse is the Lambda cold dark matter(ΛCDM) model which depends on two as-

sumptions: the evolution of the matter in the Universe can be interpreted by

the general relativity theory; and over a large scale (>100 Mpc) the Universe is

isotropic and homogeneous (Kurek & Szydlowski 2008, Ostriker & Steinhardt 1995,

Peebles 1980, Turner 1997). ΛCDM, along with the theory of cosmic inflation, ex-

plains the initial conditions of structure formation and predicts its hierarchical
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nature due to gravitational instability. Observations have confirmed the hierar-

chies of the formation of the Universe (Tegmark et al. 2006). As small objects

crash into one another, the hierarchies begin to form self-gravitated hot gases,

which condense into large gravitationally bound systems such as galaxies, then

galaxies agglomerate to create groups and clusters as a result of cosmic processes

(Tegmark et al. 2004). This hierarchical nature is the core aspect of all cosmic

formation of structures and their evolution (Press & Schechter 1974). In ΛCDM,

the Universe is flat and it is composed of around 4% baryonic matter, 20% dark

matter, and 76% dark energy.

The necessary amount of matter for the Universe to be flat can be computed

from Friedmann’s equation (Friedman 1922):

ρcrit =
3H(z)2

8πG
, (2.3)

which is called the ‘critical density’, where H(z) is the Hubble constant at red-

shift z and G is the gravitational constant. The density ratio of the Universe at

redshift z to the critical density ρcrit(z):

ΩM =
ρ(z)

ρcrit(z)
=

8πGρM

3H2
0

,

which is a dimensionless quantity known as the ‘density parameter’. Through

multiple contributors (related to the evolution of the Universe), astrophysicists

determine the geometry of the Universe whether it is homogeneous, isotropic and

matter dominated. Including the matter parameter (ordinary mass plus dark

matter, ΩM), the other contributors are , radiation (ΩR), curvature (the flatness of

the Universe, ΩK), and the cosmological constant (ΩΛ), which includes the effective
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mass density of dark energy. They are defined by the following equations (Hogg

1999, Serjeant 2010):

ΩR =
8πGρR

3H2
0

,

ΩΛ =
Λc2

3H2
0

, and

ΩK = − Kc
2

a2H2
0

,

where ρ = ρM + ρR is the current mass density. The total density:

Ωtotal = ΩR + ΩM + Ωk + ΩΛ = 1.

The Friedmann equation can be written in terms of density parameters as

H(z)

H0

=
√

ΩR(z)4 + ΩM(z)3 + Ωk(z)2 + ΩΛ,

where (1 + z) is the redshift at the present day (it is the ratio of the size of

the Universe today to its size at redshift z). Supposing a flat Universe, both

the curvature ΩK and the radiation ΩR parameters become negligible. Thus, the

scaling parameter of the evolution E will be

E(z) =
H(z)

H0

=
√

ΩM(z)3 + ΩΛ, (2.4)

which will be used in sections (2.3.1 and 2.6) to find the comoving distance and

comoving volume.

14



2.3 Cosmological Distances

Distance measures are used to obtain the distance between two objects or events

in the Universe. They are utilised to infer some non-directly observable quantities

from those which are observable. There are different ways to find the distance

between two celestial objects in the Universe. Astrophysicists specify which to use

based on the available parameters of the object of interest, such as its physical

size or intrinsic luminosity. Some of the distance measures that were used in our

simulation are listed as follows,

2.3.1 Comoving Distance

The distance between two nearby objects in the Universe remains constant with

epoch if both objects are moving according to the Hubble flow; this is called the

‘comoving distance’.

The comoving distance Dc from the Earth to a distant object is found by

integrating small εDc contributions between them along the radial ray from z = 0

(our position) to the z of the object’s position (Peebles 1993), expressed as:

Dc = DH

∫ z

0

dz′

E(z′)
, (2.5)

where DH is the Hubble distance,

DH =
c

H0

= 3000h−1Mpc; (2.6)

E is the evolution scaling parameter Eq. (2.4); and dz
E(z)

is proportional to the
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time-of-flight of a photon travelling through the redshift interval dz divided by the

scale factor at that time. The comoving distance is the proper distance divided by

the scale factor, because the speed of light is constant (Hogg 1999).

2.3.2 The Angular Diameter Distance

If the actual physical size χ of the object of interest and its angular size ϕ are

known, then astrophysicists tend to use the angular diameter distance Da:

Da(z) =
χ

ϕ
, (2.7)

to find the object distance; Da has an inverse relation with angular size ϕ; Da

increases until z ∼ 1.5, then turns over and decreases as z → ∞. Thus, the

objects with the lowest angular size are the most distant. This is also related to

the transverse comoving distance Dm:

Da =
Dm

1 + z
. (2.8)

Assuming the flatness of the Universe ΩK = 0, then Dm = Dc (Hogg 1999).

2.3.3 Luminosity Distance

Another way to find the distance from one object to another is to use the luminosity

distance (DL), which is how far away the object is in Euclidean space. The DL is

calculable if astrophysicists can measure the total amount of flux (F ) emitted by

an object in energy per area per time, and its luminosity (L) in energy per time
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(Hogg 1999) using

DL =

√
L

4πF
.

DL is also related to the comoving transverse distance Dm, through Ethering-

ton’s reciprocity relation, and related to the radial comoving distance Dc:

DL(z) = (1 + z)Dm = (1 + z)Dc. (2.9)

2.4 Absolute and Apparent Magnitude

The apparent magnitude m is the brightness measurement of an object as seen by

an observer; the brighter an object, the lower its magnitude. The scale is backward

and logarithmic. The value of the apparent magnitude is adjusted by considering

the absence of the Earth’s atmosphere. An object’s brightness differs based on its

distance from the observer; an extremely bright object looks dim if it is far away.

The term brightness is another way to say the flux of light, in Watts per square

metre, coming towards us and varies inversely with the square distance. If two

objects have the same apparent magnitude, there are two possibilities:

1- The objects are the same distance from the earth.

2- They are of different distances with a different value of luminosity (i.e. the

highly luminous object is located far away from the earth, while the less luminous

is located close to the earth) as shown in Figure 2.3.

The absolute magnitude or the real magnitude M is the apparent magnitude
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that the object would have if it is positioned at a distance of 10 parsecs (32.6

light-years) from the Earth. To compare the intrinsic brightness of celestial objects

regardless of their distances, astrophysicists tend to convert apparent magnitude

to absolute magnitude. This conversion is based on the distance from the object

to the observer using the following relation:

m−M = 5 log10(DL(pc)/10(pc)) (2.10)

where m −M known as the ‘distance modulus’ and DL is the luminosity dis-

tance(Bradt 2007, Schneider 2014).

Figure 2.3: Left: group A and B have the same apparent magnitude; Right: however, group A
is more luminous and a farther distance than B from the Earth.

2.5 The Solid Angle

The solid angle Ω is an angular area on the celestial sphere. It is expressed re-

garding two angular displacements: the RA or θ and Dec or β. The hatched area

in Figure 2.4 represents the solid angle and can be declared in ‘square degrees’ or

‘square radians’ units; the latter are called steradians (sr). The solid angle will be

used in Chapter 5 to generate the data in a specific comoving volume (see section
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2.6).

Figure 2.4: The concept of solid angle,Ω, which is the ‘angular’ area on a sphere. The element
of solid angle dΩ can be declared in terms of steradians (sr) which is equivalent to an element of
surface area on a sphere of unit radius (Bradt 2007).

The unit of the solid angle (sr) is a dimensionless quantity of magnitude 1rad×

1rad where 1 rad= 360
2π

= 57.3◦. The equivalent number in square degrees is:

1sr =
360

2π
· 360

2π
= (57.3)2 = 3282 deg2

To obtain the correct solid angle, integration over the area of the sphere should

be conducted. However, for small solid angles (≤ 100 deg2 = 0.03 sr), the relative

solid angle in steradians is gained through calculating the area of the sky, in (sr),

as if the piece of sky was a flat piece of paper (Bradt 2007).
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2.6 Comoving Volume

The comoving volume(Vc) is the volume measure of the number densities of objects

as if they are non-evolving and being trapped into the Hubble flow with constant

redshift. The Vc element per solid angle dΩ element and redshift interval dz is:

dVc =
DH · (1 + z)2 ·D2

a · dΩ · dz
E(z)

(2.11)

and the total comoving volume (V ) is the integral of dVc from zmin to zmax (Hogg

1999):

V =

∫ zmax

zmin

dVc(z) dz (2.12)

2.7 What is a Galaxy?

A galaxy is a dynamically bounded system1 of stars, stellar remnants, planets,

gases, and dark matter. It has a different number of stars, ranging from 107 stars

as in dwarfs, to 1014 stars as in massive galaxies. The schematic structure of

a galaxy is shown in Figure 2.5; which illustrates what a galaxy comprises: the

disk which contains the spiral arms, the halo, and the nucleus or central bulge.

Also, it contains at least three other components that are “invisible”: the galactic

magnetic field; charged particles trapped in the galactic magnetic field; and a

halo of dark matter that is of unknown composition but that makes itself felt

through its gravitational influence on the visible matter (Amores 2011, Robin et al.

2003). Most likely this kind of galaxy is shaped as a spiral, or barred spiral which
1The change of patterns, of galaxies or galaxy groups, will take much long time because these

systems are far away from us. Thus, the detection process is relatively stable and is not been
affected.
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Figure 2.5: Schematic side view of Milky Way galaxy (Amores 2011).

is younger and has a more recent star formation than other types. There are

different galaxy morphologies: such as the elliptical shape galaxy, which is the

oldest passive type and it has no clear substructure; the irregular, which has a

weak or no structure; and the lenticular, which is a transition between the spiral

and elliptical morphology (Dressler 1984, Stott 2007).

It has been shown that the older galaxies occur in a denser environment com-

pared to the younger galaxies; this is based on the colour-density relation, which

leads to a stronger clustering of older galaxies. Also, the galaxies with a high star

formation rate (SFR) tend to be more clustered than those with a lower SFR. In

both elliptical and spiral galaxies, the degree of clustering among them depends

on their size, and how many types of galaxies are gathered together(Frost 2010).
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Figure 2.6: The First Slice Universe Survey - contains 1057 galaxies out to approximately 200
Mpc distance. It illustrates non-random distributions of groups and clusters throughout the
field; rather, they form a filamentary structure around nearly empty voids. The distances shown
assume H0 = 75 km/s/Mpc (Huchra 1988).

2.8 What are Galaxy Groups/Clusters and Their

Properties?

The basic active element of cosmic structure is the galaxy. The nature of gravity

impels the galaxies to aggregate into groups. The galaxies orbit around an at-

tracting centre (usually the most massive luminous galaxy). Figure 2.6 (Huchra

1988) illustrates the distribution of galaxies for the closest redshift Z < 0.05; they

are not randomly distributed throughout the space, but tend to aggregate along

filaments in clusters and groups (Snaith 2011).

The smallest virialized system of aggregation in the cosmic hierarchy is called

a galaxy group. Galaxy groups usually contain around 2-50 galaxies and have a

mass of around 1012- 1014 M� (Huchra & Geller 1982). The majority of galaxies
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(around 70%) in the local Universe are placed in groups (O’Sullivan et al. 2014).

Groups normally have a radius r between 0.5 and 1.5 Mpc and a velocity dispersion

σv <500 km s−1 (Saviane et al. 2007).

Galaxy groups can be found in different structural states( i.e. virialized and

non-virialized systems). Poor systems with few numbers of galaxies can be identi-

fied by optical detection methods; whereas, some galaxy groups are X-ray luminous

systems. This kind of group can be detected in X-ray observations if they have

enough galaxies with hot intra-group medium. Galaxy groups can be detected

in different redshift bands. Some galaxy groups can contain early and late types

of galaxies. Due to the low velocity dispersion of galaxy groups, the interactions

between galaxy group members creates a huge impact through galaxy evolution

processes, such as merging and transformation.

A substantial part of the baryons in galaxy groups contains hot, diffused gas

and it is supposed that galactic interactions would have a significant impact on

this gas (Liang et al. 2016). Many studies have found that galaxy groups are

more likely to be in rich environments. Thus, astrophysicists are more interested

in analysing the relations between the galaxies and their neighbourhood systems

(Dressler 1984, Erfanianfar 2014, Martinez & Muriel 2006).

Clusters are the largest gravitationally bounded system in the Universe (Malin

2001). As in some types of galaxy groups, clusters contain three components:

galaxies, gas and dark matter. The galaxies contribute as a very small proportion

(1 − 2%) to the cluster mass. The rest is a diffused hot gas (5 − 18%) called

intergalactic medium (IGM) and unseen component (dark matter 80%) (Sarazin
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1986). Galaxy clusters typically contain between 50-1000 galaxies and have a mass

range of 1014-1015 M�. The core of the cluster, the centre, is dominated by a huge

elliptical galaxy, which is called the brightest cluster galaxy (BCG) (Santos, J. S.

et al. 2009). Clusters are usually defined with a radius r range of (1-3) Mpc and

a velocity dispersion σv range of (800-1400) kms−1 (Murdin 2001).

The detection of galaxy groups is more difficult and they look fainter than

galaxy clusters, especially in the high redshift. Compared to galaxy clusters, galaxy

groups are lower in density contrast against galaxies in the field (Knobel 2011).

Astrophysicists have further classified groups and clusters of galaxies into viri-

alized and non-virialized. Virialized clusters are characterized by richness, as well

as having a symmetrical spherical shape. Galaxies are more condensed in the core,

which comprises of large elliptical galaxies. Mostly, these kinds of clusters contain

elliptical and lenticular-shaped galaxies. Meanwhile, non-virialized clusters are

more likely to be scattered and disorganized and furthermore, lack the condensed

core of the virialized type. Although they contain smaller numbers of galaxies,

they are characterized by the diversity of the galaxies morphologies. However, the

spiral-shaped galaxies are more dominant.

2.9 Luminosity Function

The luminosity function is an observational quantity that specifies a member dis-

tribution of a class of objects based on their luminosity (Schneider 2014, Stahler

& Palla 2008). Moreover, it is used to estimate the luminosity for each particular

object (e.g., star, galaxy). It is used to optain information related to primor-
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dial density fluctuation; processes that change one type of galaxy into another;

processes that create or destroy galaxies; and processes that transform mass into

light. Also, the approximated distribution of a galaxy can be obtained using the

Schechter luminosity function.

2.9.1 Schechter Function

In the early 1970s Press and Schechter calculated the mass distribution of groups,

later Schechter applied this function to fit the luminosity distribution of galaxies

in Abell clusters. There are two versions of the luminosity function: φ(L) per dL

and φ(M) per dM, where L is the luminosity and M is the absolute magnitude

of the celestial object, as shown in Figure 2.7 (Schechter 1976). The Schechter

function in terms of luminosity can be written as:

φ(L)dL = φ∗(
L

L∗
)α exp(− L

L∗
)d(

L

L∗
),

where L∗ is the characteristic luminosity that separates the low and high luminosity

parts; α is the faint end slope of the luminosity function for small L, and φ∗ is

the number density (the normalization of the distribution). At low luminosity

(L < L∗), there is a power law (φ ∝ Lα) where α ∼ -0.5 − -1.5 (flat to steep);

while at higher luminosity (L > L∗) there is an exponential cut-off (φ ∝ e−L)

that means very luminous galaxies are very rare. The previous equation can be

written in terms of magnitude, L
L∗

= 100.4(M∗−M), where M∗ is the characteristic

magnitude.
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Figure 2.7: Sketch of the Schechter luminosity function.

2.10 The Halo Mass Function (HMF)

The theories of the cosmological structure formation assume that the dark matter

forms into a massive gravitationally bound structure called halos. The halo mass

function (HMF) quantifies the number of the halos per unit comoving volume of

the Universe as a function of their mass. The HMF is affected by the cosmological

parameters ΩM , ΩΛ, in addition to the nature of the dark matter. The comoving

number density of halos per unit logarithm of the halo mass Mh was introduced

by Press & Schechter (1974):

dn

dlnMh

=
ρ0

Mh

.f(σmv).

∣∣∣∣dlnσmvdlnMh

∣∣∣∣ (2.13)

where ρ0 is the cosmology dependent mean density of the Universe, σmv is the rms

variance of the mass within a sphere of radius r containing mass Mh and f(σmv),

where f represents the functional form that defines a particular HMF fit (fitting

function). Many researchers have refined the form of f to produce a better match

to cosmological simulations. An on-line web-based tool (HMFcalc) has been used

to calculate dn
dlnM

(Murray et al. 2013) 1.

1http://hmf.icrar.org/
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For generating our mock data in Chapter 5, Reed’s fitting function f(σmv)

has been chosen, which has been improved and modified from the Sheth-Tormen

(S-T) mass function (Reed et al. 2007, Sheth & Tormen 1999) with mass range

(1012-1015) M�; mass bin width 0.05; redshift range 0.01- 0.1; and cosmological

parameters ΩM=0.28, ΩΛ=0.72, ΩK=0 and H=69.7 km/s/Mpc.

2.11 The Radial Distribution (The Surface Mass

Density)

Navarro, Frenk and White (NFW) found that the density profile of dark matter

halos can be described by a universal two - parameter function over a wide range

of halo masses (Navarro et al. 1996):

ρ(R) =
ρs

ξ(1 + ξ)2
, where ξ =

R

rs
,

and ρs is the characteristic density; rs is a scale radius; and both are mass-

dependent scaling parameters. R is the 3D radius from the centre of an expected

group. The projected NFW profile derived by (Bartelmann 1996) is used to de-

scribe the surface density of galaxy groups and clusters:

Σ(r) =
2ρsrs(
r
rs

)2

− 1
f

(
r

rs

)
, (2.14)
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where r is the 2D radius and by using x = r/rs:

f(x) =



1− 2√
x2 − 1

tan−1

(√
x− 1

x+ 1

)
: x > 1

1− 2√
1− x2

tanh−1

(√
1− x
1 + x

)
: x < 1

0 : x = 1

, (2.15)

and

ρs =
200

3

c3
200

[ln(1 + c200)− c200/(1 + c200)]
(2.16)

with c200 = r200/rs, r200 = r500/0.67 (Liang et al. 2016),

rs =
r500

c500

. (2.17)

Here, c200 and c500 are the concentration parameters. c500 can be calculated:

c500 = 29.1M−0.091
500 (1 + zk)

−0.44 (2.18)

and r200 and r500 are the characteristic over-density radii, r500 can be defined as:

r500 = 3

√
M500

500 · 4
3
π · ρcrit(zk)

, (2.19)

where ρcrit(zk) is the critical density of the Universe at redshift (zk) as shown in

Eq. (2.3). M500 is the mass w.r.t. over-density equivalent to 500 times the critical

density of the Universe.

28



2.12 Galaxy and Mass Assembly (GAMA) Mock

Survey

The GAMA mock survey style is one of the major data product for the GAMA

project which was constructed by Peder Norberg and various collaborators in

Durham. It is a 3D more realistic simulation constructed from a large numer-

ical simulation of cosmic structure formation (cosmological N-body simulation).

In the simulation the galaxies are attached to the dark halos according to a halo

occupation distribution (HOD). The outcome from the simulation then can be

utilized as a mock survey, which is comparable with the real observations. Thus,

the distribution of dark halos is known (Liu et al. 2008).

The aims of generating GAMA mock survey are to study the evolution and for-

mation of galaxy systems, test galaxy systems’ grouping quality and furthermore,

due to the need for mock data to cover multi-wavelength bands (i.e. ultraviolet, in-

frared, and radio frequencies), this makes GAMA an important data mock survey

for combining a varied collection of galaxy properties.

The GAMA survey spans across three equatorial fields measuring 12 × 5 deg2

centred at RA=9h, Dec=0.5◦ (G09), RA=12h, Dec=-0.5◦ (G12) and RA=14.5h,

Dec=-0.5◦ (G15); spectroscopic coverage is m=19.8 magnitude, which helps to

discover more galaxies at high redshift(z). A sample of GAMA data is presented

in Figure 2.8. The characteristics of the GAMA survey are given in Driver et al.

(2011); while the survey input catalogue was described in Baldry et al. (2010) and

the spectroscopic tiling algorithm in Robotham et al. (2010) (Robotham et al.

29



Figure 2.8: The right ascension vs. redshift (z) of volume no.1 of GAMA mock survey; the
galaxies spread till z=0.5.

2011).

In Chapter 6, we test our model on the GAMA data and compare the outcome

(i.e. predicted galaxy groups) with the galaxy groups identified via two FoF ver-

sions by Eke et al. (2004) and Robotham et al. (2011) 1. We have nine volumes of

GAMA. Each volume was divided into three cones for simplicity with redshift (z)

cut-off till (0.1); as a result, we have 27 cones in total.

2.13 Identifying Galaxy Groups/Clusters

Detecting galaxy groups and clusters helps astrophysicists to explain the origin of

the Universe and to understand how galaxies can be formed and evolve over time.

Galaxy groups have a direct environmental impact on galaxies and are the direct
1The FoF methods have been implemented by astrophysicists.
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feedback receiver of the galaxies’ gravitational potential, such as galactic winds,

active galactic nuclei (AGN) and radiation. Furthermore, finding galaxy groups

and clusters helps to study and measure cosmological relations such as mass to

light ratios. Thus, mock data surveys are also necessary to validate cosmological

simulations and estimate cosmological parameters (Tempel et al. 2016).

There are different methods of detecting galaxy groups/clusters, which can be

categorized according to the data type used; there are four main categories.

2.13.1 Gravitational Lensing (GL)

Gravitational lensing represents the appearance of galaxies, which are located in

the background of a giant galaxy cluster as an arc pattern. In other words, galaxy

cluster systems can affect and bend the light of a background celestial source, due

to their strong gravitational effect in which some copies are produced from the

same source in the background as an arc like pattern. This gravitational lensing

(GL) is mainly used to detect huge systems such as galaxy clusters, especially in

the large redshift range. Gladders et al. (2003) used strong lensing to detect a few

systems. Weak lensing also has been applied to detect galaxy clusters and their

masses at high redshift; only huge clusters with a mass >1014 M� can be identified

due to the cross section for the gravitational lensing falling consecutively with z.

Weak lensing provides a way to check the shape and the profile of the system at

relatively large radii. Some researchers have concluded that the utilization of weak

lensing and the strong galaxy lens observations close by the groups could help in

estimating the total mass and gain accurate information about matter distribution

in the groups (Moller et al. 2001, Oguri et al. 2009).
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2.13.2 Sunyaev-Zeldovich (SZ) Effect

The Sunyaev Zeldovich (SZ) effect is the deformation of cosmic microwave back-

ground (CMB) radiation photons due to the hot gas intra-cluster medium (ICM).

The SZ effect is an efficient method for identifying clusters at high redshift; since

it varies the magnitude based on the mass of the cluster, regardless of the redshift.

However, the SZ signal is limited to higher mass clusters due to confusion of the

SZ signal with the background, which may affect the brightness and reduce the

possibility of identifying the mass of galaxy groups (Connelly 2012, Holder et al.

2007, Johansson 2011, Reichardt et al. 2013, Sunyaev & Zeldovich 1970, Vikhlinin

et al. 2014).

2.13.3 The Radiation of X-ray from Hot Intra-group/cluster

Medium (IGM/ICM)

The signifying of X-ray emissions from galaxy groups/clusters was one of the im-

portant discoveries of the UHURU X-ray satellite (Schneider 2014). Recently,

many groups/clusters of galaxies have been observed in X-ray through satellites’

telescopes such as ROSAT and Chandra (Jones et al. 2014, Rosati et al. 2002). In

addition to the active galactic nuclei (AGN), galaxy clusters are the most luminous

X-ray sources. The luminosity of galaxy clusters is between 1043 and 1045 erg/s;

while galaxy groups’ luminosity is between 1041 and 1043 erg/s. However, there is

a possibility that the detection is biased towards galaxy groups with rich IGM; it

may not be efficient to detect a wide spectrum of fainter galaxy groups which are

dominant in the Universe. The X-ray photons are detected for a region of a size

around 1 Mpc (i.e. the X-ray photon from a single galaxy cannot be detected)
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(Mirkazemi 2014).

2.13.4 Redshift Surveys

Groups and clusters of galaxies can be detected as overdensity systems in redshift

surveys (Berlind et al. 2006, Duarte & Mamon 2015). The redshift surveys allow

searching for systems in two (RA and Dec) plus redshift (related to the distance)

dimensions. These surveys are more accurate spectroscopy but cheaper and faster

to obtain photometry (Miller 2012). They can be built from the ground and so are

easier to obtain than X-ray surveys. There are three main classes of methods for

detecting celestial systems based on the redshift surveys characteristics (Ascaso

et al. 2012):

Geometrical methods

One of the common approaches for galaxy groups/clusters’ detection is friends of

friends (FoF) method (Eke et al. 2004, Huchra & Geller 1982, Robotham et al.

2011, Tempel et al. 2016). Galaxies are considered within the same group and

linked together if they are within a particular linking length. The linking length

is specified according to the typical overdensity of the galaxies within groups.

Several approaches have been proposed to determine the linking length and to

measure local galaxy densities (Berlind et al. 2006, Ramella 1989). Also, FoF has

been utilized in finding dark matter halos within N-body simulation (Knebe et al.

2011).

Another geometrical approach is the Voronoi tessellation which can be defined
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as a group of convex polygon cells and their locations can be identified by groups

of points (galaxies) in the plane. Each cell contains all points close to its location

to some extent. The cell size is inversely proportional to the local point density

(Miller 2012). The distribution of galaxies over space has been modelled using

the natural partitioning of the Voronoi tessellation. M. Ramella et al. (2001)

developed a Voronoi galaxy cluster finder model (VGCF) model which uses galaxy

positions and magnitudes to find clusters and determine their key features, such as

size, richness, and contrast above the background (Zaninetti 2006). By conducting

an adaptive search on galaxy redshift to find high-density regions, Marinoni et al.

(2002) developed the Voronoi-Delaunay method (VDM) to identify and reconstruct

galaxy groups. The VDM works based on calculating the 3D Voronoi tessellation

and its Delaunay triangulations. However, the calculation of the Delaunay mesh

and Voronoi tessellation is not easy in non Euclidean space. Furthermore, at the

edges of the galaxy sample the border effects appear from the formation of the

infinite size of the Voronoi cells; and the cell size close to the edges might not

reflect the local density because the galaxy distribution is unclear beyond the

sample size(Duarte 2014).

The FoF method has many parameters to tweak based on the data surveys.

Also, both FoF and Voronoi techniques seem to be arbitrary and heuristic methods,

and they are not related to physical group/cluster profiles/properties (i.e. no

assumption has specified). Despite the ability to detect an irregular type of galaxy

group/cluster (non-virilized system or non-relaxed type), they cannot avoid the

contamination of many interlopers and consider the interlopers as members of

actual galaxy groups/clusters.
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Furthermore, other techniques have been used to create catalogues of galaxy

groups and clusters. For example, the hierarchical group finding scheme (Materne

1978) and the percolation technique (Klypin & Shandarin 1993)

Colour/red sequence clustering methods

This type of detection is based on galaxy colours in addition to their close spatial

locations. In Miller (2012) divided this type of grouping into two divisions. First,

it can be defined as a model of specific colour and luminosity of the galaxy groups

and clusters and its distance from such centres, such as the maxBCG method

(Koester et al. 2007) based on the red sequence of galaxies. The red sequence

method relies on the fact that galaxy clusters contain well defined, highly regular

lenticular and elliptical galaxies, which are known as a red sequence. These types

of galaxies are based on their colour relation with their magnitude, employed as

an indicator of the existence of galaxy clusters (Gladders & Yee 2000). If we plot

the relation between the colour and magnitude of galaxies in a cluster, the galaxies

will show almost a linear relation. Thus, in this method, the projection effect is

no longer a problem, because if galaxies are located in different redshifts they will

not produce a consistent red sequence. However, this kind of tracing requires a

considerable number of red galaxies which leads to bias in finding old groups or

relaxed dynamical states of the galaxy clusters (rich in red early galaxies), rather

than identifying the typical kind of groups (Dariush et al. 2010, Koester et al.

2007). Also, this method depends on the quality of the optical data and the

accuracy of redshift estimation of the systems, based on the filters that have been

used to gain the colour of the red sequence.

Secondly it can be defined as a non-determined model; but the groups and
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clusters are considered to form as a set of galaxies, located according to a position

as well as colour, and without specified centres. The C4 method is an example

based on galaxy colours (Miller et al. 2005). In the maxBCGmethod, the likelihood

has been calculated of each galaxy being the brightest depending on two factors:

the magnitude, along with the degree to which other galaxies are grouped around

it in magnitude; and the position. While in the C4 algorithm, four-dimensional

colours will be assigned a ‘probability box’ around each galaxy; and to find out

the number of galaxies which have similar gradients of colour box a sample of

galaxies is selected. The galaxies are called a cluster or group if they have the

same gradient of colour in the colour box (Nichol et al. 2001).

However, this kind of galaxy groups’ finder suffers from having many require-

ments, such as galaxy surveys that need to have an accurate measure of colour and

brightness. While in reality, with some galaxies at high redshift, it is difficult to

identify their colours. In addition, some galaxy groups contain mostly spiral blue

galaxies, especially at high redshift, which makes them difficult to detect (Oemler

1974). Furthermore, colour clustering methods are a suitable identifier for some

scenarios, but they may be biased towards a specific type of galaxy group/cluster;

which leads to inefficient detection and less diverse types of galaxy groups (Don-

ahue et al. 2002), than the geometrical methods. Also, colour clustering can have

fewer interloper galaxies from the back/foreground than the geometrical methods.

Model based methods

This kind of detection incorporates many galaxy group/cluster properties, distri-

bution and luminosity to model them; such as the matched filter (MF), which

convolve the data with a shaped filter based on the pattern signal of interest.
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The peaks are obtained by matching the proposed filter and the observed galaxies

which will be considered as potential galaxy groups/clusters. Groups/clusters can

be detected by specifying the local maxima within a moving window using a spec-

ified size and centring on each element from the galaxy map array (Kepner et al.

1999). If the centre of the window is a local maximum, then the group/cluster

will be registered. Many different approaches of MF have been suggested, such as

the adaptive MF (Dong et al. 2008, Kepner et al. 1999, Lobo et al. 2000), 3D MF

(Milkeraitis et al. 2010) and multi-scale wavelets techniques (Moretti et al. 2004).

These kind of methods are able to detect galaxy groups/clusters with a high com-

pleteness, little contamination and less false-positive rates. The main drawback of

these methods is that they may fail to detect some groups/clusters which are not

symmetrical, or which may not be similar to the suggested profile (M. Ramella

et al. 2001).

Other approaches of galaxy groups/clusters’ identification are based on prob-

abilistic formulations and they can be a combination from all the aforementioned

(i.e. geometrical, colour and model based) methods; such as extending FoF to

probabilistic friends of friends (PFoF) (Liu et al. 2008); or including model-based

analysis (Ascaso et al. 2012, Dominguez Romero et al. 2012, Duarte & Mamon

2015, Yang et al. 2005). Our method in Chapters 5 and 6 can be classified under

this kind of formulation to identify galaxy groups.

The reasons behind the trend for developing probabilistic based galaxy groups/

clusters’ finders are: avoiding the unnatural heuristic methods (which needs to be

tuned based on each mock galaxy survey), reducing the free parameters, devel-

oping more natural and sufficient methods with a strong theoretical background,
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having a flexibility of including cosmological prior knowledge and adding phys-

ically related galaxy group/cluster characteristics to help improve the detection

process. The probabilistic framework enables one to deal consistently with issues

such as redshift distortion. All the previous methods, apart from the probabilistic

method are decisive (e.g. taking the decision that a galaxy belongs to a partic-

ular group/cluster of galaxies). While in reality, there is a degree of uncertainty

and this needs to be considered. The drawback is that some systems can not be

detected if they are small and do not follow the same pattern as the object of

interest. Thus, our method has been developed to tackle some of these scenarios.

In the following sections, we describe the widely used FoF method by Eke

et al. (2004) and some of the related probabilistic existing models of galaxy group

finders.

2.14 Friends of Friends (FoF)

FoF uses spatial and velocity information of galaxies to locate galaxy groups/clusters

as overdensity regions. It has three free parameters to be set in regards to mock

catalogue characteristic: a linking length b based on the comoving number density

of galaxies n̄, which is specified for each galaxy; an upper limit of the perpen-

dicular linking length Lmax depending on the nature of the galaxy survey; and

the ratio Rf between the perpendicular to (`⊥) and along the LoS (`‖) linking

lengths. The Rf guarantees that `‖ linking length is larger than `⊥ considering the

elongation along the LoS due to the impact of the FoG (i.e. to avoid the redshift

distortion). Galaxies are linked together after comparing their separation along

and perpendicular to the LoS with their linking lengths. If the separation between
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two galaxies is less than the linking criteria regarding linking lengths, this pair

of galaxies will be linked; otherwise, they will be classified as field galaxies. The

linked pair will be called friends and groups of friends (friends of friends) will form

a galaxy group/cluster. The comoving linking lengths for a particular galaxy are:

`⊥ = min

[
Lmax(1 + z),

b

n̄
1
3

]
, (2.20)

`‖ = Rf · `⊥. (2.21)

Two galaxies a and g, at comoving distances Dca and Dcg , respectively with

angular separation Θa,g, are linked together if they satisfy two conditions:

Θa,g ≤
1

2

(
`⊥,a
Dca

+
`⊥,g
Dcg

)
, (2.22)

where

Θa,g =
180

π
tan−1

(√
cos2 βg sin2(θg − θa) + [cos βa sin βg − sin βa cos βg cos(θg − θa)]2

sin βa sin βg + cos βa cos βg cos(θg − θa)

)
,

(2.23)

and

|Dca −Dcg | ≤
`‖,a + `‖,g

2
. (2.24)

The performance of FoF is controlled through scaling the linking length de-

pending on the number of galaxies that are identified as a function of redshift.

The optimizing of the linking length and calibrating the related parameters are

based on the mock surveys onto which FoF has been conducted [e.g. (Berlind

et al. 2006, Eke et al. 2004, Robotham et al. 2011)]. Choosing a small linking
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length leads to many incomplete, fragmented groups/clusters, increases the possi-

bility of obtaining false positive groups by linking separate galaxies via “bridges”

(Knebe et al. 2011). While setting a large linking length implies reducing the

number of false positive groups/clusters, but at the same time will increase the

contamination of the expected galaxy groups/clusters by combining field galaxies

as members. Furthermore, two factors will affect the linking length indirectly by

affecting the comoving number density n̄, the low density of galaxies at high red-

shifts in the flux limited catalogues causes decreasing in n̄ and increasing in the

mean inter- galaxy separation. Secondly, the completeness variation of the mock

survey also leads to a change in n̄. The FoF method is easy to interpret and it does

not need assumptions related to the shape of the pattern of interest; however, this

can also count as a disadvantage because it can assume that many dense regions

are galaxy groups/clusters. Moreover, as structure formation is hierarchical, to

find substructures, FoF requires different linking lengths (Knebe et al. 2011).

2.15 Some of the Existing Probabilistic Approaches

Due to some observational issues related to galaxy surveys such as edge effects,

bright star masking and poor measurements of redshift in photometric surveys,

some probabilistic approaches to finding galaxy groups depending on photometric

and spectroscopic data have been developed to address these problems (Duarte &

Mamon 2015).

• Probability Friends of Friends (PFoF) Methods (Jian et al. 2014,

Li & Yee 2008, Liu et al. 2008)

There are two PFoF approaches applied and developed which are based on photo-

metric mock surveys and consider poor precision of redshift in this kind of survey.
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The first PFoF method was developed by Li & Yee (2008), taking into account the

photometric redshift probability density of each galaxy and galaxy groups/clusters,

and conducting extensive modification on the conventional FoF algorithm, with

an updated definition related to the linking length. Each galaxy in the survey is

considered as a seed of a group. For each seed and depending on a comparison

in probability between the redshift probability density function(PDF) of both the

group seed and galaxy, the probability membership ratio in redshift space has been

calculated:

Pratio =

∫∞
0
Pgal(z) · Pgroup(z)dz

maxP

where z is the photometric redshift; Pgal(z) is the PDF of the galaxy; Pgroup(z)

is the PDF of the group; and maxP is the normalization term (the maximum

value of the numerator). The Pratio finds the amount of overlapping between the

galaxy PDF and group PDF. For each galaxy to be added to the group, it has to

pass the friendship criteria in redshift space Pratio,crit. If Pratio ≥ Pratio,crit, the new

galaxy will be a member in this particular group. Then the group PDF will be

recalculated again considering the current group members (which is the likelihood

for all these members to occur at the same redshift):

Pgroup(z) =

∏
nm Pnm(z)∫ zmax

zmin

∏
nm Pnm(z′)dz′

,

where nm is the number of galaxies in the group and Pnm is the PDF of the

individual galaxy currently within the group. The process will be repeated until

no additional galaxies can be added or removed from the group and then continued

for all galaxies in the survey to be considered as a seed group galaxy and add

its members of galaxies. The resulting groups will be checked for duplications

(merging those with most likely memberships and removing the less significant).

This approach has been tested on Virgo Consortium Millennium Simulation mock
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catalogues (Springel et al. 2005) and on the CNOC2 group catalogue and it was

confirmed that it recovered more than 80% for mock groups of at least 2×1013M�

with 10% false detection rate of galaxy groups containing ≥ 8 galaxies.

The second PFoF method was developed by Liu et al. (2008) to overcome the

disadvantages of the traditional FoF and EXT- FoF methods (Botzler et al. 2004,

Eke et al. 2004) when detecting galaxy groups in a galaxy catalogue with large

error dispersion in redshift (to deal with photometric redshift uncertainty). Two

criteria have been tested to check two galaxies are physically linked, one related to

the perpendicular to the LoS direction and another along the LoS direction. The

first criteria is the separation distance between two galaxies Di,j has to be less than

the comoving linking length `⊥ (i.e. Di,j ≤ `⊥). While for the second criteria, they

have calculated the probability of the distance between any two galaxies along LoS

to be less than the parallel linking length `‖:

P (|z2 − z1| ≤ `‖) ≡
∫ ∞

0

P1(z)dz ·
∫ z+`‖

z−`‖
P2(z′)dz′,

where P1 and P2 are the probability distribution functions for both galaxies in the

LoS direction. If the probability P is larger than an artificial threshold Pth (i.e.

P (|z2 − z1| ≤ `‖) > Pth), then the galaxies are associated. The PFoF here has

aimed to measure the probability of two galaxies being associated and not just

the intersection of the two distribution functions. It considered the probability

amplitude besides the error distribution width. The DEEP2 mock catalogues and

additional simulated photometric redshift error have been used to measure the

performance of the PFoF method. In addition, PFoF was compared with the

conventional FoF method. It was confirmed that the outcome of the method is

better than the outcome from the traditional FoF if applied on given data with
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the same redshift uncertainty. Recently, further tests and optimizations on PFoF

have been carried out (Jian et al. 2014).

We could not use the PFoF methods (Jian et al. 2014, Li & Yee 2008, Liu

et al. 2008) to compare with our method because both PFoF methods are based

on the redshift probability density functions (PDF) of both the group seed and

individual galaxies. These PDFs are used in PFoF to check the pertinence between

the galaxy and the galaxy group/cluster. In our case, the galaxies are represented

only through the spatial information without PDFs. As no such PDFs are available

from the GAMA mock survey. In addition, PFoF methods were designed to be

applied on photometric mock surveys which are known to yield a poor redshift

estimate.

• Yang et al. (Yang et al. 2007, Yang et al. 2005) Method

In Yang et al.’s method, the potential galaxy groups were found using the tra-

ditional FoF algorithm with small linking lengths. For each potential group, the

luminosity L19.5 of the group was estimated based on its tentative members with

absolute magnitude ≤ -19.5 for a group within redshift z ≤ 0.09. Then the halo

mass Mh was estimated based on the mass to light relation Mh/L19.5 and also

the size and the velocity dispersion. The galaxy memberships of these groups is

updated based on density contrast p(r,∆z) using the estimated information (halo

mass, size and velocity dispersion). They assumed that the distribution of galaxies

inside groups are following the same distribution of dark matter particles in cosmo-

logical simulations (NFW profile); while the velocity distribution of galaxies p(∆z)

in terms of the differences between galaxies’ and groups’ redshifts is distributed

normally:

p(r,∆z) =
H0 Σ(r) p(∆z)

cρ̃
,
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where ρ̃ is the mean density of the Universe. For a given group, if a galaxy has

p(r,∆z) ≥ B where B is the chosen background level, then this galaxy will be

assigned to the group, otherwise it will be dismissed. If a galaxy can be assigned

to multiple groups based on this condition, it is assigned to the group where the

galaxy has obtained the highest p(r,∆z) value. The iteration process continues to

reassess the centres of the galaxy groups and their luminosities L19.5 after the new

updates in the galaxy memberships until the membership convergence is reached,

then the mass - luminosity relation will be recalculated L19.5,Mh, size and velocity

dispersion until the relation Mh/L19.5 - L19.5 will be converged. They used mock

catalogues constructed for the SDSS DR4 to check the performance of the group

finder in terms of completeness of true members, contamination by interlopers,

and accuracy of the assigned masses. They used the density profile in assessing

the galaxy membership to each galaxy group. While in our probabilistic approach,

we used the density profile to signify the potential galaxy group positions through

the Hough Transform.

• Romero et al. (Dominguez Romero et al. 2012) Method

Romero et al. improved Yang et al.’s (Yang et al. 2007, Yang et al. 2005) method as

they realised that Yang’s method is similar to the well-known “k-means” clustering

method. The main improvement was in the galaxy assignment process. Inspired

by the “soft k-means” algorithm (MacKay 2003), they introduced a soft assignment

to each galaxy, making it belong to each cluster rather than a hard, equal degree

of assignment to a given group. These are called “responsibilities”, which represent

that a galaxy belongs partially to k galaxy groups. Romero et al. started by

taking all galaxies as centre of galaxy groups. They used the same estimations of

the system’s (i.e. group/ cluster) properties as in Yang’s method. However, instead

of using merely the luminosity of the members to find the estimated luminosity of
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the whole group, they used a weighted luminosity of the members by incorporating

their responsibilities. The responsibility of group k for each galaxy i is:

R(i)
(k) =

π(k)p(k)(r,∆z)∑
(k′) π(k′)p(k′)(r,∆z)

.

Afterwards, they followed Yang’s method and assigned the satellite galaxies to

the potential group candidates based on comparing their density contrast p(r,∆z)

with the background threshold value B. They allowed a lower background level

value so that the likelihood of a galaxy being in a given galaxy group is higher

than that of the central galaxy of a nearby halo. They used the likelihood value

to classify the galaxies into central group galaxy or satellite. If the likelihood of

relevance to another halo is over the background level, the galaxy is classified as

a satellite. The method continues by updating the central galaxy group (i.e. the

mean position of the responsible galaxies) and calculating the groups’ weighting

parameters πk based on R(i)
(k) values. The method iterates the assignment and the

update procedures until the convergence in the membership occurs. It was checked

by a mock catalogue generated by using the Millennium Simulations, in addition

to applying the method on the NYU-DR7 galaxy catalogue.

• MAGGIE (Duarte & Mamon 2015)

Duarte & Mamon (2015) created the MAGGIE method which is a probabilistic

abundance matching grouping algorithm. MAGGIE consists of the combination of

previously measured universal distribution of halo interlopers in projected phase

space and knowledge of NFW halos with realistic internal kinematics. The MAG-

GIE method was performed on two kinds of orientation: group luminosities and

stellar masses. They compared MAGGIE’s performance with an optimized ver-

sion of FoF for detecting groups of at least three galaxies extracted from two sub-
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samples that are complete in distance and luminosity within a mock, flux-limited,

SDSS Legacy redshift survey.

The method assigned a probability to each galaxy of being in a given group.

The galaxy can be assigned to many groups. The MAGGIE method is based on

an iterative process assuming that the galaxies’ basic information is known: Ra,

Da, redshift, stellar masses (galaxy masses), luminosities, absolute magnitudes and

their apparent magnitudes. Then it start with a seed of significant positions to

be considered as galaxy groups, assuming either the most massive galaxies or the

most luminous are the potential group centres. For each group, the virial radius

was estimated by assuming the halo mass corresponds to the virial mass. The

halo mass can be estimated at the first iteration based on the relation between

the halo mass and the central stellar mass of galaxy from (Behroozi et al. 2010)

and the ratio relation for luminosity; with learning from the previous iterations for

the next iterations. Then, all galaxies are assigned within an angular separation

corresponding to the virial radius to become members of the group. They compute

the probabilities of galaxies to become members of a given group:

P (R, vz) =
gh(R, vz)

gh(R, vz) + gi(R, vz)

where gh is the density profile inside the group (a multiplicative combination be-

tween Gaussian profile along the LoS and NFW profile orthogonal to the LoS);

and gi is the interloper density profile. Then, galaxy group members will be fil-

tered (i.e. whether they contribute in estimating the mass and luminosity of the

group through weighted multiplicity or are dismissed) based on comparing their

P (R, vz) values and a free parameter threshold ρmem, with an additional condition

that these members of a given group should have absolute magnitude values less
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than the absolute magnitude of the sample. Then, MAGGIE uses the abundance

matching technique which assumes a one to one relation between the stellar mass

of the group central galaxy and the halo mass of the group. By comparing the

cumulative distribution function (CDF) of the two quantities, it appears that the

number of groups above a specific central galaxy stellar mass is equal to the num-

ber of groups above a specific corresponding halo mass. Thus, for a certain HMF,

MAGGIE can predict the halo mass of a group with a given galaxy central stel-

lar mass by comparing the CDF with that predicted by the HMF. The MAGGIE

method reiterates the computation of groups with the halo mass - central stellar

mass relation until it reaches a convergence in the number of groups.

Our approach in Chapters 5 and 6 differs from Yang et al. (2007), Yang et al.

(2005) and MAGGIE (Duarte & Mamon 2015) in the way the distribution of

galaxies within galaxy groups is utilised. In our case this distribution forms a core

of a probabilistic Hough transform targeted towards primarily finding the galaxy

group positions, rather than the group membership. The group memberships are

then later inferred based on the detected positions and estimated group mass.
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CHAPTER 3

HOUGH TRANSFORM BACKGROUND

The aims of this chapter are to define the HT and the probabilistic Hough trans-

form (PHT) principles, along with their ability to detect objects in a noisy envi-

ronment. Examples of the utilisation of the Hough transform in astronomy and in

detecting spherical shapes are presented.

3.1 Introduction

The idea behind the HT is to recognize patterns (eg. lines, circles) which are

essential parts of computer vision and digital image processing. These geometric

features of interest could be regular or irregular in shape and could be embedded

within a noisy background. A fine description of the pattern of interest should

be determined if the utilization of the HT concept needs to be considered. Paul

Hough originally devised the HT to identify the intricate patterns in a picture and

to recognize particle tracks in pictures derived from a bubble chamber based on

a voting procedure (Hough 1962). The HT can be utilized for the recognition of

any shape that can be described in parametric form. The basic principle is to
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convert the image point (data point) from its space (S) into Hough (parameter)

space (H) and then identify the peaks in the H-space. Each peak (intersection)

in the H-space represents a pattern in S-space. Besides, the location of this peak

in the H-space leads to the determination of the position of this pattern in the

S-space.

The main advantages of the HT are its tolerance of discontinuities in shape

boundary and robustness against the noise. Thus it can determine the patterns

more accurately, and the results mostly do not require post processing. Also,

there is a trade-off between work in image space and parameter space by handling

inaccurate edge locations. The classical HT was concerned with the identification

of lines in the image, but later the HT was extended to identifying positions

of irregular shapes. The disadvantages of the HT are associated with its large

storage and computational requirements (Kesidis & Papamarkos 2000). For these

reasons, many approaches have been proposed in the literature, regarding the

reduction of computation time and memory requirements (Chiu et al. 2010, Guo

et al. 2009, McLaughlin 1998). For more details, the HT surveys and the references

therein, such as (Antolovic 2008, Hassanein et al. 2015, Illingworth & Kittler 1987,

Mukhopadhyay & Chaudhuri 2015) can be consulted.

3.2 Straight Line Detection using HT

Using a simple slope sh - intercept eh parametric representation of a line, every

point (xi, yi) in image space can correspond to many lines in parametric space

49



(H-space) (sh, eh) passing through it,

yi = sh × xi + eh. (3.1)

By partitioning the parameter space into a number of cells in a grid, every point

(xi, yi) now “casts a vote” as to what line could be passing through it in the

parametric space. This is simply done by associating a counter (accumulator :

initialized to 0) with each cell in the parameter space and then taking the points

(xi, yi) in the image one-by-one, incrementing a cell’s counter if the parameter line

eh = −xi × sh + yi passes through it. This way the cells with highest counter

values correspond to lines in the image with the strongest support. Hence the line

detection is cast as peak detection in the parameter space. Random points in an

image (e.g. a noisy environment surrounding patterns) are unlikely to contribute

coherently to one bin of the accumulator and therefore produce only a very low-

level background of counts in the H-space (Ballester 1996, Laschinsky 2012, M. &

Muthukrishnan 2015).

As shown in Figure 3.1a the five points (0,20), (2.5,16), (5,15), (7.5,12.5) and

(10,10) in the image space are transformed into five lines in the Hough space with

the slope sh=-1 and intercept eh=20 as shown in Figure 3.1b.

The important point in the HT is the ability to detect each point or pattern

in the image space in accordance with the parametric constraints. This leads in

some cases to an unfavourable situation if there is a high noise background, when

noise points or spurious patterns may satisfy the constraints, which will then lead

to a high level of false positive results. In our case, we utilize a peak detection
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Figure 3.1: Line detection

process to overcome these false positives as much as possible. There are no specific

generalization rules for achieving good outcomes because the method will always

rely on the nature of the properties of the data which are observed.

The parametric representation of a line in Eq. (3.1) has an infinite slope in the

case of vertical lines. To deal with this a solution was presented by Duda & Hart

(1971), is called a singularity-free normal parameterization and is depicted in Eq.

(3.2).

ρh = xi cos (Yh) + yi sin (Yh) (3.2)

where ρh is the typical form of the line representing the distance from the origin; Yh

is an angle between the x-axis and the ρh; thus the parameter space here changes

from (sh,eh) (slope,intercept) into (ρh, Yh) (length, angle). The cost of this change

is the trigonometric computing of these functions. If there are multiple points in

the image that are collinear then their sinusoidal shapes in the Hough space will

interpolate as shown in Figure 3.2.
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Figure 3.2: Normal form - sinusoidal shapes

This form seems more efficient if there is a similarity coincidence between a

line and noise that can be detected more precisely by the angles of the patterns, to

distinguish the genuine from the spurious (Laschinsky 2012). The same example

above leads to the sinusoidal lines in Hough Space as in Figure 3.3.

In the case of galaxy group patterns’ detection, our approach will consider the

mixture of posterior distributions as an accumulator of galaxies’ votes for a given

galaxy group/cluster position, as will be illustrated in the following chapters.

3.3 Probabilistic Hough Transform

Probabilistic Hough transform was defined by Stephens (1991), who noticed that

there is a relationship between the standard Hough transform (SHT) and maximum

likelihood (ML) method due to the voting procedures in the SHT are similar to
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Figure 3.3: Line detection: Hough space

the highest probability regions in the probability density function (PDF).

By converting the detection of the patterns into a parameter estimation prob-

lem and supposing that each set of parameters represents a model, the challenge

will be how to fit that model into a specific pattern. The analysis of the ML leads

to the definition of the PHT.

If the assumption is reasonable about the input feature error properties of such

a system, then the outcomes of the PHT are equal to those of the SHT. However,

if the assumption is too far from the correct properties, the SHT will not work well

and that will require some adjustments to the model of the input feature errors

during the detection process.

The PHT adds previous knowledge to the Hough space, but it is a more com-
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putationally expensive procedure compared to the SHT. Besides, it is dependent

on floating point arithmetic and therefore, does not work well with low dimen-

sional features but it is more resistant than the SHT when the dimensionality is

increased. The PHT is defined as a continuous function; while, the SHT is defined

as a discrete model. Hence, the PHT can be applied more reliably to any model.

Furthermore, the PHT is defined as a mathematical form of the SHT; which is

represented in the log of the PDF of the output parameters given all input patterns

(Stephens 1991).

PHT(y) = ln P(y|Xn) (3.3)

where Xn refers to a set of random variables (x1, x2, x3, ..., xn) (features) in image

space; Y is a set of patterns collected from points (y1, y2, y3, ..., ym) in Hough space.

From Bayes’ theorem :

PHT(y) =
n∑

i=1

ln P(xi|y) + ln P(y) + C (3.4)

The purpose of developing the PHT was to improve the performance of the

conventional HT in solving problems that occur when there are many unknown

parameters (i.e. the existence of uncertainty).

Our approach will rely on finding the mixture of local posterior distributions
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instead of the log of the PDF of the output parameters, as will be illustrated in

subsequent chapters.

3.4 HT in Astronomy

The HT is utilised in many applications in astronomy; for example, a modified HT

was applied by Ragazzoni & Barbieri (1994) to obtain the correct cycle number for

each observation. This procedure determined the durations of some of the periodic

events during a specific period. Also, the HT can be used to analyse astronomical

light curve times. The light curve of an eclipsing binary star has been identified

with reasonable accuracy and confirmed through these observations (Ragazzoni

& Barbieri 1996). A variant HT was adapted by Llebaria et al.(Llebaria & Lamy

1999) to understand the temporal evolution of radial structures on the solar corona

‘polar plumes’, by tracking the coherent trajectories of the time intensity diagram

(TID) on a set of images from the LASCO/C2 coronagraph. Another utilisation

of HT was to clean the SuperCOSMOS Sky Survey (SSS) by Storkey et al. (2004).

They employed their approach to clean some types of records in the SSS: linear

phenomena can appear on the plate such as scratches fibres and satellite tracks,

circular halos around bright stars and diffraction spikes close to bright stars. Ad-

ditionally, they developed a probabilistic technique combining the HT, renewal

processes and hidden Markov models and applied it to the SSS data to develop a

dataset of spurious object detections, and confidence measures, which allow this

unwanted data to be removed from consideration (Storkey et al. 2014).

HT has been employed to identify gravitational waves’ signals, such as devel-

oping an incoherent method by Krishnan et al. (2004). The HT was utilised to dis-
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tinguish patterns in the time-frequency plane of data collected via an earth-based

gravitational wave detector. Two HT search methods were applied, depending on

the type of data used with the HT: the Fourier transforms of the detector data,

or the output of a coherent, matched filtering type search. Another version of HT

called frequency Hough transform (FHT) was developed by Astone et al. (2014) for

scanning the sky to identify continuous gravitational wave signals via hierarchical

data analysis. Starting with a coarse grid of the parameter space, the area around

the revealed candidates from applying FHT was processed with a refined analysis.

Furthermore, the HT has been extended to many varieties such as arc-line,

circular and elliptical shaped detections in the astronomy context. For instance,

Ballester (1994) developed two methods based on the detection of straight lines

and parabolas for a spectral data reduction domain. The HT was utilised for fast

detection of echelle orders and automated arc-line identification by cross-matching

arc spectra and line catalogues. Hollitt & Johnston-Hollitt (2012) developed a

circle Hough transform (CHT) and explored its response in detecting the circular

or arc-like forms of cosmological objects. Images containing noise alone, as well as

images containing point sources, were examined. The CHT was applied to different

images and the extent of the filtering was investigated as well as the robustness of

the presence of noise. It was found that the CHT had the effect of identifying

the circular structures. However, the CHT is computationally challenging, in

terms of both computational effort and memory consumption, making it quite

time-consuming. Lastly, another automated procedure by Massone et al. (2014)

was developed to identify curves and elliptical shapes in medical and astronomical

images. A set of classes of curves were defined to utilise in detecting patterns. Their

recognition method was applied to astronomical images provided by NASA’s solar

dynamic observatory satellites to identify the front ends of solar eruptions. The
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main limitations of their approach are its dependency on the defined profiles of

curves in the catalogue, and the known computational requirements of the HT for

the optimisation problem.

3.5 HT for Detecting Spherical Shapes

There have been few attempts to use the HT in 3D space due to its high level of

time and memory consumption. Tsuji & Matsumoto (1978) presented an adjusted

HT that could be used to detect a 3D ellipsoidal shape with five parameters. They

identified the approximate positions of the centres of the ellipses and all points

inside these ellipses. After checking whether the candidates are inside or not, the

true points can be used to calculate the five parameters of these ellipses. To scale

down both the time and space of the ellipsoid identification, Hsu & Huang (1990)

proposed a partitioned method based on the HT, splitting the original parameter

space into many small parameter spaces, to reduce the dimension of detecting

the ellipsoidal shapes using the independent properties of ellipsoid parameters.

In addition, they utilised information derived from a given image to reduce the

search space range of each parameter. They were able to detect the ellipsoidal

shapes with noise no more than N (0,0.01). Moreover, They could identify multiple

ellipsoids inside each other, but it was important that the ellipsoid centre was not

occluded due to the identification of the ellipsoid depending on the information

from its central part. Taylor (1990) developed a methodology for recomposing

parametrised surfaces, using a parameter set decomposed into multiple-subsets.

The full parametrisation of the surface is revealed through the detection of the

conjunctions of the individual parameter into these subsets. These recognitions are

obtained through a multi-window parameter estimation method; multi-resolution

k-tree parameter subspace searching and voting; and a conflict filtration process
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to avoid the false parameter hypothesis and find a unique parameter set for each

surface region. This methodology has been shown to provide consistent results in

the detecting of multiple spherical and cylindrical shapes.

The circular HT (CHT) has been used to detect the ball in soccer game images

to verify goals (D’Orazio et al. 2004). In this application, many problems must

be faced; such as occlusions, shadows, objects similar to the ball, and real-time

processing. The implementation of this method has to solve this issue through a

visual framework. The identification of the ball should be fast, in terms of time

for processing, and robust about reducing the rate of false positives. D’Orazio et

al. applied two sequential steps: first they used a modified directional CHT to

recognise the most significant candidate regions that might contain the ball; and

second, neural back-propagation was applied to determine whether the selected

region included the ball or whether there was just a false positive in that region.

Some experiments have been conducted to prove that this proposed method obtains

a fair detection score.

In the medical sector, for successful joint replacement surgery, it is necessary

to identify the joint’s geometric centre; Glas et al. developed a technique to

automatically determine the sub-voxel position and size of a sphere in unsegmented

3D images generated by CT and MRI scans, using the direction and strength of

the gradient.Their technique is stable to size and robust to noise. Just a quarter

of a sphere is needed to detect the centre of the humeral head (van der Glas et al.

2002).

In the following chapters, the developing of a new probabilistic model based on
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the Hough transform to detect galaxy group and cluster patterns will be illustrated

in detail. Also, the model will be tested on simple and realistic mock data and its

performance will be evaluated.
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CHAPTER 4

PRELIMINARY GALAXY GROUP
DETECTION BASED ON PROBABILISTIC

HOUGH TRANSFORM

The aim of this chapter is to construct the basic PHTM for detecting elongated pat-

terns (i.e. imitating the FoG patterns). These patterns are imposed and generated

in a simple 2D flat area and a 3D cone shaped area2 within a noisy environment.

The PHTM is based on the mixture of posterior distributions as an accumulator

of galaxies’ votes being within a given galaxy group/cluster position (as will be

illustrated in section 4.1.2).

For each data type in this and the following chapters, we describe the generation

of the data and illustrate the implementation of the PHTM and its modifications.

At the same time, the results for each scenario are discussed.
2 imitating the real 3D cone as constructed by astrophysicists when observing the sky.
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4.1 2D Experiment: Testing the Concept

Before the methodology is demonstrated on realistic 3-D data in the next chapter,

we will first test our method in a large set of controlled experiments in 2-D, where

we can control the amount of background noise. This section shows preliminary

proof of the efficiency of utilizing the Hough transform concept in detecting 2D

simple prolonged patterns in a noisy environment.

4.1.1 Preliminary 2D Data Generation: Flat Area

In the 2-D flat setting, the LoS direction was assumed as the y-axis and the galaxy

groups are represented by points (galaxies) generated from Gaussian distributions

elongated along the y-axis. In each group we generate 10–25 points from such

Gaussian distributions. Six groups are created with different fixed means and the

same covariance Cov:

Cov =

εkσ2 0

0 σ2

 , (4.1)

where σ = 0.5, εkk = 0.025 to form the elongated shape of galaxy groups as shown

in Figure 4.1.

The background is generated from uniform distribution to make the scene more

sophisticated and imitate reality. The number of background points Ns is deter-

mined as TNg, where Ngrp is the number of galaxies in galaxy groups and T is

a multiplicative factor in the range (5- 30), as presented in Figure 4.2. In each

setting there are six galaxy groups at fixed positions as shown in Figure 4.1.
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Figure 4.1: Synthetic data before adding noise

(a) Ns=5T (b) Ns=10T (c) Ns=15T

(d) Ns=20T (e) Ns=25T (f) Ns=30T

Figure 4.2: Synthetic data after adding the uniform noise
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4.1.2 Preliminary 2D PHTM Model: Flat Area

The search space is covered by a regular structure of NG grid points. On each

grid point, we position a noise model representing a possible galaxy group position

and ask all observed galaxies (points) to ascertain whether they are likely to have

come from that group. Formally, for the k-th grid point (xk, yk) we have a Gaussian

noise model centred at µk = (xk, yk) with axis-aligned (diagonal) covariance matrix

Cov = diag(εkσ
2, σ2) with variance along the y-axis σ2 and variance along the x-

axis 1/εk times smaller, i.e. εkσ2 (we used σ = 0.5 and εk = 0.025). The likelihood

model for the Gk-th grid point is thus a multivariate Gaussian with mean µk and

covariance Cov:

p(gq|Gk(µk, Cov)) =
1√

2π|Cov|
e−0.5(gq−µk)Cov−1(gq−µk)T (4.2)

Given a galaxy gq, q = 1, 2, ..., Ngal, the degree to which it belongs to the

possible group centred at the k-th grid point µk is quantified through posterior:

P (Gk|gq) =
p(gq|µk, Cov)P (Gk)

P (g)
, (4.3)

where P (g) is the normalization term:

P (g) =

NG∑
j=1

P (gq|µj, Cov)P (j). (4.4)
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We assume no preferred positions for galaxy groups, i.e. flat prior P (Gk) =

1/NG. The posterior can be interpreted as a ‘soft’ vote of the q-th galaxy for the

possible galaxy group at position µk. The overall vote for the presence of a galaxy

group at µk is then obtained as a flat mixture of posteriors H given by the observed

galaxies Ngal (which is called PHTM):

H(xk, yk) =
1

Ngal

Ngal∑
q=1

P (Gk|gq) (4.5)

4.1.3 Results and Discussion: 2D Flat Area

The H(x, y) values of the true peaks (true galaxy groups) were affected by the

intensity of the noise as shown in Figure 4.3. As long as the intensity of the

noise increases, the difficulty of finding the true galaxy groups increases, due to

the increasing of spurious peaks (i.e. FP). In addition, the number of true group

members (galaxies) is not enough to keep the centre position of the galaxy group

candidate prominent (i.e. sometimes the high intensity of the galaxies (noise)

close to the true group will form H(x, y) values approximately equal to the true

group H(x, y) values). For example, the three upper true groups in Figure 4.3d

have almost disappeared, which means the false negative (FN) increase because

we can not see the true first three groups clearly. Whereas, when the number

of background galaxies has increased further, the appearance of the upper three

groups has recovered but in kind of blurry noisy way, as shown in Figure 4.3e and

Figure 4.3f.
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Figure 4.3: The results of applying the probabilistic Hough transform method for all noise
scenarios: the contour formed to any prolonged pattern with enough characteristics to be a
group candidate. The contours with the highest peaks with their centres in a red colour, means
that they have the highest value positions as group candidates

Given a detection threshold τ> 0, the possible galaxy groups are detected as

peaks above τ in the H(x, y) landscape. Note that high values of τ will produce

over-cautious conservative detections with a significant number of undetected true

galaxy groups (FN). On the other hand, low τ will lead to insignificant low peaks

declared as group candidates (FP).

Noticeably, in Figure 4.3f due to the high noise, the first upper group from the

left has dispersed into two group candidates and the first lower group from the
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left has nearly disappeared. To obtain the true groups correctly with decreasing

or avoiding the detection of false peaks, we have applied a simple peak detection

based on the convolution technique of moving a 3 by 3 sliding window through

all grid cells to find the highest peaks by comparing the H(x, y) values within the

window and then choosing the highest as a representative for all surrounding grid

cells.

4.1.4 Precision vs. Recall Test

The performance of the detector has been evaluated using a precision versus recall

curve (see appendix A). To evaluate the model, each intensity of noise scenario

has been replicated 30 times. Thus, each precision (Pr) vs. recall (Re) curve

in Figure 4.4 represents the average of each intensity scenario (5T–30T). We can

easily notice the curves tend to go down as the intensity of the noise starts to

increase, because we obtain more false positive peaks when the amount of noise

increases.
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Figure 4.4: Precision versus recall for all intensity scenarios
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However, we are able to detect all the true groups correctly as the recall can

indicate reaching to value one exactly. On the other hand, the precision will be

affected by the false positive peaks and go down gradually through increasing the

intensity of the noise.

4.2 3D Data : Preliminary Experiment

We can describe the generation of the preliminary 3D mock data in radian space;

assuming galaxies in galaxy groups have distributed normally as a prolonged ellip-

soidal pattern along the LoS. While field galaxies (fore/back-ground) have dis-

tributed uniformly with different intensities of noise (5T- 30T); we apply the

PHTM model to the 3D data after some adjustments.

4.2.1 Preliminary 3D Data Generation

In the case of 3D cone mock data (θ,β and z), where θ and β denote to the RA and

Dec, respectively and z is the redshift, we generate the fore/back- ground galaxies

as uniform with θx, βx and z generated as:

θx = (θmax − θmin) · U(0, 1) + θmin (4.6)
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By finding the cumulative distribution of β F:

F(β) =
1

Ñ
·
∫ βx

βmin

sin(β)dβ (4.7)

=
cos βmin − cos βx

U(0, 1)Ñ

βx = cos−1(cos βmin − U(0, 1)Ñ)

where Ñ= cos βmin − cos βmax. In the same way the redshift z is calculated as:

zx = 3

√
U(0, 1) · (z3

max − z3
min) + z3

min (4.8)

While galaxy groups have been generated as 3D Gaussian shapes, elongated,

and oriented along the LoS by employing the rotated covariance matrix:

CovRot3D = Rot3D ·


εkσ

2 0 0

0 εkσ
2 0

0 0 σ2

 ·RotT3D (4.9)

where Rot3D is the rotation matrix for each group using the perpendicularity of

three vectors as shown in Figure 4.5. Given the LoS direction v=(vx,vy,vz) in the

Cartesian system, the rotation matrix Rot3D can be derived by considering the

local frame u = (ux, uy, uz), s = (sx, sy, sz) and v. We impose: u ⊥v, s ⊥ v and

u ⊥ s. In other words, the dot products vTu, vT s and uT s vanish. This leads to

an undetermined system. By imposing u = (0, vz,−vy) we automatically satisfy
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vTu = 0. Substituting u in uT s = 0, we obtain:

Figure 4.5: Rotation vectors

vzsy − vysz = 0,
vysz
vz

= sy. (4.10)

Using vT s = 0, we get:

vxsx +
v2y
vz

sz + vzsz = 0, (4.11)

yielding:

sx =
−sz(v

2
y + v2z)

vxvz
. (4.12)

we are left with one free parameter, sz, that can be assigned an arbitrary value

(we used sz = 1). After normalization of u, s and v into unit vectors, the rotation

matrix is formed as follows:

Rot3D =




ux sx vx

uy sy vy

uz sz vz



. (4.13)
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The generated 3D cone is shown in Figure 4.6 with no noise, and with noise=30T.
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Figure 4.6: (a) 3D cone shape with no noise: six groups have been generated along LoS assuming
the origin point is the position of the observer. (b) 3D cone shape with uniformly distributed
noise=30T.

4.2.2 Preliminary 3D PHTM Model

After translating from the spherical system (θ, β, z) to the Cartesian x(θ, β, z),

y(θ, β, z), z(β, z), the noise model will be a 3-D Gaussian formulated in the cor-

responding Cartesian coordinate system (x,y,z) and elongated along the LoS. The

noise model at the k-th grid point takes the form p(gq|(xk, yk, zk), CovRot3D) =

N (µk, CovRot3D). To apply the PHTM, the accumulators’ set has initiated as an

equally likely uniform 3D cone mesh-grid as in Figure 4.7.

Algorithm (1) illustrates the main points of PHTM method :
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Algorithm 1 PHTM Algorithm
Input:
RA(θ), Dec(β) and redshift(z): Spatial information consists of galaxy groups and
field galaxies.
Output:
H: A landscape of mixture local posterior distribution of galaxies for the expected
group positions.
Method:

1- Construct the accumulator as a 3D cone regular grid mapping on the spatial
location of the data as in Figure 4.7.

2- For each galaxy g and galaxy group Gk, find the posterior probability of the galaxy
group/cluster given the galaxy as shown in Eq.(4.3).

3- Sum the posteriors together to form the landscape see Eq.(4.5).
4- Identify the peaks of the landscape, which are the patterns of interest.
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Figure 4.7: A uniform 3D cone meshgrid
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4.2.3 Results and Discussion

To find the precision vs. recall curves, we should apply a peak detection method.

We detect the local maxima peaks for all scenarios (5T-30T) utilizing the image

dilation process, which is a fast and reasonably accurate method that has been

used in image processing and detection. A simple example of the dilation process is

shown in Appendix(B). The mask form (4.14) has been applied on the 3D H(x,y,z)

values. The outcome data from the dilation process (D⊕) is compared with the 3D

H(x,y,z) values. If the value of D⊕ is less than the corresponding H value, then

the specific (x,y,z) coordinate of the H data point will be considered as a peak.

mskd1,d3 =



1 1 1 1 1

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1


mskd2 =



1 1 1 1 1

1 1 0 1 1

1 0 0 0 1

1 1 0 1 1

1 1 1 1 1


(4.14)

The final precision vs. recall curves (each curve represents the average of 20

replications) for all 3D scenarios (5T-30T) for 6 groups are illustrated in Figure

4.8. As in the 2D flat area, the detection process has degraded when the intensity of

noise has been increased. In reality, due to the limited sensitivity of observational

devices, more distant galaxies are less likely to be detected than those comparable

at closer redshift; this is called the flux limit effect. The model developed so far

will not work in real cosmology since it does not account for the flux limit effect.

In the next chapter, we will discuss in detail the generation of the mock galaxy

groups and galaxies in the field with the flux limit effect; and furthermore, how

we adjust the model to compensate for the incompleteness of groups along the
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Figure 4.8: Precision vs. recall curves for 3D cone-shape scenarios

redshift bands.
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CHAPTER 5

REALISTIC 3D DATA GENERATION AND
MODEL MODIFICATIONS

To identify any phenomenon, we need to have an accurate description of it, whether

it happens in Space or on Earth. Also, to devise a reasonable approach to detect-

ing aggregated galaxies (galaxy groups and clusters), we cannot just assume any

randomness of data patterns. Astrophysicists have discovered that each kind of

celestial object has its properties (movement direction, distribution, and whether

influenced by gravitational effects from its neighbourhood objects). It is impos-

sible that we can find such objects or groups of objects without studying their

relations and aggregations, in addition to what kind of possible patterns they can

form.

Due to the limitations of the telescopes’ observations of the real data, astro-

physicists tend to generate mock data to simulate reality. Furthermore, in the

actual data, there are some difficulties in suggesting the ground truths of such

phenomena such as galaxy groups and clusters. Whereas the ground truths are

more likely to be known of these phenomena in the generated data, which helps in
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the study of the possible densities of celestial objects and finding a way to distin-

guish between them. Therefore, mock galaxy surveys tend to simulate very detailed

processes (phenomena: e.g. redshift distortion, flux limit factors and gravitational

lensing, celestial objects); and that leads to hugely sophisticated data.

Mock galaxy surveys are effective to test and evaluate different cosmological

models such as galaxy groups’ detectors and to analyse statistical properties: such

as luminosity functions, the distribution of the particles in the group, the behaviour

of the gases, the interactions between the galaxies during the collapse process and

the star formation process.

In this chapter, the distributions of galaxies inside galaxy groups and clusters

in GAMA mock surveys are confirmed, via comparing to the theoretical profiles

that have been provided by astrophysicists, the generation of complete and well-

defined realistic 3D data, by including the flux limit effect, is discussed and the

3D probabilistic Hough transform based on the adaptive local kernel (PHTALK);

which is the updated version of the PHTM is applied.

5.1 Galaxy Distributions Inside Galaxy Groups and

Clusters

To perform theoretical based modelling, we would need to know how galaxies are

distributed in a group - on average; but there is no analytical model describing

this. In reality, this model is needed as an input and the only way to determine

what to input is via numerical simulations. Galaxy formation and evolution is
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not amenable to analytical modelling. The evolution of galaxies is complex and

the only way to understand their distribution is to look at numerical simulations.

Ideally, one would like to take some very different numerical simulations, determine

galaxy distributions (spatial and velocity) in those and then use that template for

different mock data. However, in this case we have one large simulation and so we

can use a few volumes of the GAMA mock survey (see section 2.12) to determine

the distributions of galaxies in their systems (i.e. groups and clusters). We have

analysed the distributions towards two directions: one related to galaxy redshift

distributions (velocity dispersion) along the LoS and the other related to galaxy

radial distributions orthogonal to the LoS.

5.1.1 Galaxy Redshift Distributions

Empirically, we collected true groups from the GAMA data based on their mass

(we collected the groups within two mass bands (1012-1013 M�) and (1013-1014

M�), since most galaxy groups are concentrated within these bands). For each

mass band we assumed five redshift bands [0.01 < z ≤ 0.1].

To plot redshift dispersion, we take group galaxies and subtract from their

redshifts the group’s redshift (which is the x-axis in Figure 5.1) and find their

histogram. We compare the empirical curve (blue colour) with the theoretical

curve ( red colour). We establish Gaussian distributed z projected onto the LoS

of the galaxy group, with redshift dispersion σz, that is calculated as:

σz(M500) = (1 + z)
σv(M500)

c
, (5.1)

where σv(M500) is the velocity dispersion of a galaxy group distributed as (Pearson
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et al. 2015):

3 log10

(
σv

537.2
km/s

)
= 0.94 log10

(
M500E(z)

1014

)
− 0.0403 +N (0, 0.26) (5.2)
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Figure 5.1: Redshift galaxy distributions along LoS: the blue curve is the empirical redshift
dispersion and the red curves are the theoretical curves with σz, calculated as shown in Eq. (5.1)

We obtained an empirical distribution, similar to the theoretical profile, which

resembles a Gaussian profile.

5.1.2 Galaxy Radial Distributions

For the empirical radial galaxy distributions, we again collect true groups from

GAMA data based on two bands of mass (1012 − 1013 M�) and (1013 − 1014 M�).

For a given group we conduct concentric circles around the group centre (as

in Figure 5.2) with r1 (radius of the first circle) being bin1, dr1=r2-r1 being bin2

(annulus) and so on. We count the number of galaxies ∆N in each bin. Then we
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calculate the number of galaxies per square distance, for bin1 as

Σ(r) =
∆N1

πr2
1

, (5.3)

while the rest of the bins are calculated as:

Σ(r) =
∆Na

2πradra
, (5.4)

where dra = ra+1 − ra.

Figure 5.2: A schematic plot of computing the parameters to check the radial galaxy distributions.

For the theoretical section, we find the projected radii (r, the blue line in

Figure 5.2) for all galaxies belonging to each group. We find the corresponding

NFW values, Σ(r) as mentioned in section 2.11, for each projected radius r of each

galaxy per group.

We look at the stacked galaxy profiles (empirical profiles) and compare the

similarity in shape to the NFW profile (theoretical profiles) by plotting the em-
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pirical and theoretical curves as shown in Figure 5.3. We have for each band of

mass the empirical (starred blue curve) and theoretical (dashed black curve) for

all z bands.
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Figure 5.3: The radial galaxy distributions orthogonal to LoS for two bands of mass: the blue
curves are the empirical radial dispersions and the black curves are the theoretical (NFW profile)
curves calculated as shown in section (2.11). The area of interest is between 10−1 (x-axis) and
the red vertical line based on the radius reasonable cut-off (1.5r500).

In both cases, the shape is consistent with the sampled NFW and sampled

Gaussian. In our detailed control experiments, we employ two sets of data: our

generation of the mock data including the flux limit effect (in this chapter) and

Galaxy And Mass Assembly (GAMA) mock data (in the next chapter). On both

mock data, we use redshift cut-off till (0.1) with apparent magnitude limit m =

19.8 and mass range (1010M�-1015M�).

5.2 Restricted Mock Data

Before we apply our model on GAMA mock (more realistic data), we need to

test and improve our approach based on restricted data at close redshifts z ≤ 0.1

with specific ranges of (θ=RA and β=Dec) angles as a control experiment. We

generate 3-D realistic data consisting of two parts: galaxy groups’ generation and
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fore/background galaxies’ generation. The groups are generated from a joint dis-

tribution, consisting of a Gaussian distribution of dispersed, projected velocities

along the LoS and the radial distribution in the orthogonal complement of the LoS,

formulated using the Navarro, Frenk and White (NFW) density profiles (Navarro

et al. 1996). In addition, our limited mock data have been generated with differ-

ent intensities of foreground/background noise, which is (5, 10 or 15) times the

intensity of galaxies in all generated galaxy groups, to test the efficiency of our

approach.

To achieve a large set of controlled experiments, we have tried to be more

concise in generating data in a reasonable way through simulating the distribution

of galaxy groups and the dispersion of the galaxies inside. The galaxy groups in our

data are similar to the real galaxy groups; however, the foreground/background

is uniformly distributed, as we have assumed the test will be within the closest

redshift cosmology; RA, Dec 5× 5 deg2 have been specified.

The flux limit effect in the generation of the synthesised galaxy groups has been

included in the next section and in the fore/background objects’ intensities based

on the degree of brightness using the Schechter luminosity function, as illustrated

in section (5.2.2).

We considered a flat ΛCDM, Ωk = 0 cosmology and cosmological parameters

ΩM=0.28, ΩΛ=0.72 and h=H0/100 (kms−1 Mpc−1)=0.697.
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5.2.1 Generating Galaxy Groups

The steps for generating simulated galaxy groups oriented along the LoS with

overdensity equivalent to 500 times the critical density of the Universe are:

1- Specifying a small solid angle Ω by assuming both (Ra=θ) and (Dec=β)

angles from −2.5 to 2.5 (i.e. ∆ for θ, β = 5):

Ω = [sin β]β2β1d(β)d(θ) (5.5)

2- Finding the total comoving volume, for a patch of the sky of solid angle Ω

(in sr); the comoving volume element dVc within a redshift range dz (centred at Z

band) is given by Eq.(2.11). The total comoving volume (Vc) can be found by Eq.

(2.12)

3- Using the online tool (HMFcalc)1 by (Murray et al. 2013) to find the halo

mass function (HMF) dn/d ln(Mh) as shown in Eq.(2.13), which quantifies the

number of halos per unit comoving volume of the Universe as a function of their

mass, with respect to the following characteristics: transfer function Wilkinson

Microwave Anisotropy Probe (WMAP); ∆halo = 500 on critical density. The Reed

fitting function f has been chosen, which has been improved and modified from

the Sheth-Tormen(S-T) mass function (Reed et al. 2007, Sheth & Tormen 1999),

mass range (1010M�-1015M�), bin width 0.05, and, redshift range (0.01- 0.1).
1http://hmf.icrar.org/
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4- Calculating the group mass function δN , which is the mean of the Poisson

distribution:

δN =
dn

d lnMh

d lnmV (5.6)

where dn
d lnMh

is acquired through Eq. (2.13); d lnm represents the log mass bin

width (i.e. the offset among the masses’ intervals); V is the total comoving volume

at redshift range dz centred at z.

5- Applying the Poisson random number generator by considering δN values

as mean values to find the number of groups is required to generate per Z interval

per comoving volume of that interval.

6- Finding the richness of the galaxy group from the relation that is scaled to

a lower absolute magnitude limit M = −16.5, which is independent of redshift;

log10

(Ngrp

224

)
= 0.97 log10

[
M500 · U(0, 1)

1014

]
− 0.0411 +N (0, 0.2) (5.7)

This relates the log10 of mass M500 to the log10 of the number of galaxies Ngrp

within a group and has a scatter in log10 space of 0.2 - i.e. the distribution in log

richness at a given M500 can be drawn from a Gaussian N (µi, 0.2).

7- Including the effect of the flux limit on the number of galaxies in each group.

We calculate the ratio and the number density of the luminosity function of each

group at its redshift zc. The calculation is achieved by integrating over the galaxy

luminosity function Φ(M) annotated by Φ(M)gal in Figure 5.5.
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The Ngrp value is within an absolute magnitude limit (-25 – -16.5); whereas to

add redshift dependence, we should find Ngrp within the limit (-25 – M(z)) for a

particular zc value of galaxy group;

fscale(zc) =

∫M(zc)

−25
Φ(M)dM∫ −16.5

−25
Φ(M)dM

(5.8)

where M(zc) is the conversion from the apparent magnitude m to the absolute

magnitude M at a redshift zc as depicted in Eq. (2.10), S(M) is the luminosity

Schechter function (Schechter 1976);

Φ(M) =
ln(10)

2.5
· φ∗ ·

(
10

M∗−M
2.5

)(α+1)

· exp
{
−10

M∗−M
2.5

}
, (5.9)

with parameters from the r-band cluster luminosity function of (Pearson et al.

2015, Popesso et al. 2005); Φ∗ = 1.49× 10−2h3 Mpc3 is the number density; M∗ =

−21.35+5 log10 h is characteristic magnitude; and α = −1.3 is the faint end slope.

The final number of galaxies Ngrpf
for a certain galaxy group considering the

flux limit effect at redshift zc is:

Ngrpf
= Ngrpfscale(zc). (5.10)

8- For each group, we specify an arbitrary group centre in the spherical coordi-

nate and within a specified range of (z, Ra=θ, Dec=β) as mentioned in Eq. (4.6,

4.7, 4.8).
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Figure 5.4: The probability of projected NFW profile for a galaxy group where ϕ in arcmin unit
and the area under the curve equal to unity.

9- Finding the radial distribution - the surface mass densities using the pro-

jected NFW profile as depicted in Eq. (2.14). However, before applying ΣNFW(r),

we have to change the actual size of the group radius r into an angular size (ϕ)

through dividing by Da Eq. (2.7). Instead of r and rs, we have ϕ = r
Da(zc)

, ϕ in

arcmin unit, and ϕs = rs
Da(zc)

. r values are located within (rmin-rmax) range; where

rmax=1.5 r500, is the maximum radius of the group.

The probability of observing a galaxy g at angular size ϕg, as shown in Figure

5.4, is:

P (ϕg) =
2πϕgΣNFW(ϕg)∫ ϕmax

ϕmin
2πϕΣNFW(ϕ)dϕ

(5.11)

10- Specifying an arbitrary angular distance ϕwin within the range (ϕmin, ϕmax)

for each galaxy from its particular group centre using the inverse transform method,
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a- generate a random number U(0, 1) and deliver the random variable ϕwin:

ϕwin = ϕi, iff F(ϕi−1) < U ≤ F(ϕi) (5.12)

where F is the cumulative distribution function.

b- generate the angle γ, U(0, 2π), which represents the azimuthal, angle of

positioning galaxy g around the centre of the group.

θg = θc + ϕwin cos(γ) (5.13)

βg = βc + ϕwin sin(γ) (5.14)

11- Find the velocity distribution v, which represents how the galaxies dis-

tribute in velocity space (Pearson et al. 2015) as in Eq 5.2.

∆vg = N (0, σv) (5.15)

The approximate redshift values of galaxies within a particular group after trans-

lating them into the correct positions are:

zf = zc +
(1 + zc)∆vg

c
(5.16)

then translate from the spherical space (θg, βg, zf ) to the Cartesian space x(θg, βg, zf ),

y(θg, βg, zf ), z(βg, zf ).

The generation process and the generated galaxy groups have been checked
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Figure 5.5: The profile of the luminosity function vs. the magnitude range for both galaxies in
groups and in background respectively

and verified by astrophysicists.

5.2.2 Generating Fore/Back-ground galaxies

The fore/back-ground galaxies have been generated and distributed uniformly with

different degrees of faint based on the redshift and the comoving volume as follows:

a- finding the density of galaxies in the entire region d= TNgf ; where Ngf ,

Ngf =
∑
Ngrpf

, is the number of galaxies in flux limited galaxy groups and T =

(5, 10, 15) is a multiplicative factor to imitate the galaxy intensity surveys.

b- following the same relation of generating the galaxies of the galaxy groups

with the degree of faint (section 5.2.1, step 7); we have changed the parameter

values M∗ = −20.44 + 5 log10(h) and α = −1.05 in order to find Φ(M) for the

background based on the redshift as annotated by Φ(M)bg in Figure 5.5.
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c- supposing we have J redshift bins, we find the comoving volume at each

redshift bin Vc(zb). The number of background galaxies Nbg to generate at redshift

bin zb is:

Nbgb = d · Vc(zb)fscale(zb)
J∑
i=1

Vc(zi)fscale(zi)

(5.17)

A 2D projection, RA versus redshift, slice of 26 galaxy groups of the generated

mock data is depicted in Figure 5.6a. Background/foreground galaxies are gen-

erated with an intensity equivalent to 5 times the number of galaxies in all flux

limited groups as shown in Figure 5.6b. The intensity of the fore/back-ground

galaxies has been increased , T = (5, 10, 15), purely to demonstrate the power of

the HT and verify the idea from the machine learning point of view. It is worth

mentioning that the intensity of fore/back-ground galaxies with T = 5 could cor-

respond to a realistic situation (observation). However, the density model of the

fore/back-ground is completely different; thus, these two situations cannot be com-

pared.

5.3 The Groups Finder: Probabilistic Hough Trans-

form Based on Adaptive Local Kernel (PHTALK)

To reduce the false positive peaks without affecting the detection of the actual

group peaks, the model has been improved further to deal with the flux limit

effect (a galaxy group/cluster of a specific mass at high redshift appears fainter

with less number of galaxies comparing to a galaxy group/cluster has the same

mass located at closest redshift). To accelerate the model computation time, the

calculations have confined to only the galaxy positions to be considered as probable

potential galaxy group candidates.
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(a) RA vs. Z: galaxy groups with no noise

(b) RA vs. Z: galaxy groups with the flux limit intensity noise=
5T

Figure 5.6: One projected 2D slice of the new mock data in a polar system

The key object in our probabilistic Hough transform is a probability distri-

bution characterizing a galaxy group of mass M500 centred at G, assigning to

each possible galaxy position g in the cone a density value P (g|G,M500). Given a

prior P (G|M500) specifying how likely a-priori it is to find a galaxy group of mass

M500 at location G, we can then calculate the posterior probability of the galaxy

group at a particular position G, given an observed galaxy g, P (G|g,M500) ∝

P (g|G,M500)P (G|M500). In particular, given a set of observed galaxies gq, q =

1, 2, .., Ngal, and a set of candidate group positions Gk, k = 1, 2, ..., NG, we have

P (Gk|gq,M500) =
P (gq|Gk,M500)P (Gk|M500)

P (gq|M500)
, (5.18)
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where:

P (gq|M500) =

NG∑
j=1

P (gq|Gj,M500)P (Gj|M500). (5.19)

The posterior P (Gk|gq,M500) can be interpreted as a probabilistic vote of a

galaxy gq for the group of mass M500 positioned at Gk. The Hough landscape

for galaxy groups of mass M500 is then obtained by accumulating votes from all

galaxies for each group position Gk in a flat mixture:

H(Gk|M500) =
1

Ngal

Ngal∑
q=1

P (Gk|gq,M500). (5.20)

However, galaxies at higher redshift are more difficult to observe and we compen-

sate for this flux limit effect by weighting the galaxy contributions with weights

w(gq) depending on their redshift, instead of simply giving each galaxy equal vote

weight 1/Ngal:

H(Gk|M500) =

Ngal∑
q=1

w(gq).P (Gk|gq,M500) (5.21)

where w(gq) ≥ 0,
∑Ngal

q=1 w(gq) = 1.

In general, the mass of the expected group at position Gk is unknown and

we express this uncertainty through a distribution over possible mass bands `=

1, 2, ...,NM , P (M `
500|Gk). We therefore calculate the expected vote for Gk with

respect to the mass distribution around Gk:

H(Gk) = IEP (M500|Gk)[H(Gk|M500)]

=

NM∑
`=1

P (M `
500|Gk)H(Gk|M `

500)
(5.22)
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In the following sections the basic building blocks of the general model intro-

duced above will be expanded in greater detail.

5.3.1 The Likelihood Model P (gq|Gk,M500)

Consider a group position Gk in a 3D cone; we denote the redshift component of

Gk by Zk. Given a galaxy gq with redshift zq and angle ϕkq from the LoS going

through Gk, the P (gq|Gk,M500) is modelled as a joint distribution,

P (gq|Gk,M500) = p(zq|Gk,M500)p(ϕkq |Gk,M500), (5.23)

of a Gaussian distribution of LoS velocities and the radial distribution in the

orthogonal complement of the LoS formulated using the projected Navarro, Frenk

and White(NFW) density profile (Bartelmann 1996, Navarro et al. 1996).

The projected zq along the LoS, relative to the group position Gk can be ob-

tained as ∆z̃kq = ∆zkq cos(ϕkq), where ∆zq = zq−Zk, ϕkq = arccos(vk ·uq), vk and uq

are unit vectors along the LoS of the galaxy group Gk and galaxy gq respectively,

as depicted in the schematic of Figure 5.7.

We assume Gaussian distributed z projected onto the LoS of the galaxy group,

with dispersion σ̃kz ,

σ̃kz (M500) = (1 + z)
σ̃kv (M500)

c
, (5.24)

where σ̃kv (M500) is a random quantity distributed as shown in Eq.(5.2). This equa-
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Figure 5.7: A schematic graph of finding the required parameters of the likelihood model

tion can be rewritten as:

(σk
v )

3 =

(
1.55108

100.0403

)(
M500E(Zk)

1014

)0.94

10ε. (5.25)

Denoting

A =

(
1.55108

100.0403

)(
M500E(Zk)

1014

)0.94

we get

σk
v = A1/3IE[10ε1 ], (5.26)

where ε1 ∼ N (0, σε/3) . We have 10ε1 = exp{ε1 ln 10} therefore,

σk
v = A1/3IE

[
exp{ε2}

]
(5.27)

where ε2 ∼ N (0, σε2), and σε2 = (σε ln 10)/3.
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Denoting O = 1/(
√

2πσε2), we find:

IE
[
exp{ε2}

]
= O

∫ ∞
−∞

exp

{
−u2

2σ2
ε2

}
exp{u}du

= O

∫ ∞
−∞

exp

{
−u2 + 2uσ2

ε2

2σ2
ε2

}
du

= O

∫ ∞
−∞

exp

{
−(u− σ2

ε2
)2

2σ2
ε2

+
σ2
ε2

2

}
du

= exp

{
σ2
ε2

2

}
O

∫ ∞
−∞

exp

{
−(u− σ2

ε2
)2

2σ2
ε2

}
du

= exp

{
σ2
ε2

2

}
.

(5.28)

Hence,

σkv = A1/3 exp

{
σ2
ε2

2

}
, (5.29)

then

σkz = (1 + z)(σkv/c), (5.30)

and

p(zi|Gk,M500) =
1√

2πσkz
exp

(
−0.5

(∆z̃ki )2

(σkz )2

)
. (5.31)

The angle ϕkq is used to find the projected radius rkq = ϕkqDa(Zk), where Da(Zk)

is obtained via Eq. (2.8).

The surface mass density of the group, p(ϕkq |Gk,M500), can be obtained using
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the projected normalized NFW profile:

p(ϕkq |Gk,M500) =
rkqΣ(rkq )∫ rmax

0
rΣ(r) dr

(5.32)

where rmax = 1.5r500 is the maximum radius. The projected NFW profile Σ(rkq ) is

described in section 2.11.

5.3.2 Considering the Degree of Faintness

In Eq. (5.21) a weight is given to the vote of each galaxy gi based on its redshift

zi and absolute magnitude Mi to compensate for the shortfall in the number of

galaxies during the voting procedure especially at high redshift. In other words,

we are more likely to observe galaxies of the same magnitude close by (at smaller

redshift) than at high redshift. The weights should sum to 1 and need to be

inversely related to the (Schechter 1976) luminosity function Eq.5.9.

The weight for galaxy gi is then

w(gi) =
Sψi

Ngal∑
q=1

Sψq
, (5.33)

with −1.5 ≤ ψ ≤ 1.5 modulating the influence of Si on the weight profile1 and,

Si =

∫ Mi

−25

Φ(M) dM, (5.34)

where Mi is the conversion from the apparent magnitude m to the absolute mag-
1 ψ = 0 corresponds to the equal weight setting Eq. (5.20), large values of ψ concentrate

weights on galaxies with largest Si.

93



nitude at redshift zi as depicted in Eq.(2.10).

For the generated data in this chapter, we have created three different cones,

in order to check the value of beta and that gave better results. We found ψ = 0.5

to work robustly on the generated mock data. The same process was carried out

for the GAMA mock data in the next chapter; where we selected three different

cones and checked their outcomes by applying different ψ values. Then we found

ψ = 1.3 to work robustly on the GAMA mock data.

5.4 Testing PHTALK on the Newly Generated Mock

Data

We apply both the PHTALK method and FoF method by Eke et al. (2004) on

the generated data and compare the outcomes of both methods using precision

versus recall for each intensity of noise scenario. We assume a uniform prior for

each of P (Gk|M500) in Eq. (5.18) and P (M500|GK) in Eq. (5.22); then search

for any detected galaxy group within a tolerance boundary of (1.5 virial radii)

perpendicular to the LoS and (2σz) along the LoS around the ground truth galaxy

group centres, within tolerance (boundary) based on the true halo mass limit,

to evaluate the performance of the methods (see Appendix C). We generate 30

examples for each intensity of fore/background with fixed galaxy group positions

and the average Pr versus Re curves of them; depicted in Figure 5.8 for one stripe

from the mock data cones, consisting of 25 galaxy groups and with three different

intensities of noise background, T=(5,10,15). We compare the mean positions of

the expected galaxy groups’ candidate for both FoF and PHTALK, with the mean

positions of the actual galaxy groups of the simulated data.
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Figure 5.8: Precision vs. recall for the mock data example: the curves represent the PHTALK
detection outcome, which is denoted as (H); while the coloured stars represent the FoF by the
Eke et al. (2004) method outcome.

Note that while it is very natural to create precision versus recall curves from

PHTALK (by varying τ), this turned out to be cumbersome for FoF (modifying

free parameters can lead to abrupt changes in performance). Therefore, we report

a single value (star) of (precision versus recall) obtained with the parameter setting

recommended in Eke et al. (2004). The star points represent the performance of

the FoF method; while the curves represent the performance of PHTALK. As

noticed in Figure 5.8, the FoF indicators (stars) decrease (along y-axis) means

the FP increases as long as the intensity of noise increases. While on the other

hand, the PHTALK curves remain approximately consistent through all intensity

of noise scenarios T=(5,10,15). It is shown clearly that PHTALK has not been

affected dramatically by increasing the noise fore/back-ground, in contrast to the

FoF case. In conclusion, PHTALK is more robust for identifying the patterns in

a highly noisy environment.
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The reason for using realistic mock data (i.e. 3D generated data and GAMA

mock data (in Chapter 6)) instead of using real data is related to the testing

and validation procedures. The TPs are not clearly known (prominent) in the

real data, thus testing and validation procedures related to the efficiency of the

detection cannot be conducted.
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CHAPTER 6

GAMA MOCK DATA AND FURTHER
PHTALK MODEL UPDATES

Due to the existence of filament patterns in the real and realistic mock surveys

(such as GAMA mocks), PHTALK model needs to be updated to overcome the

spurious galaxy group patterns and focus on detecting the actual groups. We

suggest and implement some procedures to suppress and refute FP peaks (spurious

galaxy groups candidates). As well as improve the probabilistic model accuracy

in signifying galaxy groups positions.

The generated mock data in the previous chapter does not have the filament

patterns. Thus, we did not suffer severely from the FP and simple filtration based

on 3D image dilation to find the local maxima does work very well. While using the

realistic GAMA mock data, we reduced the false positives based on three different

factors of a given galaxy: a prior knowledge from the local density of the galaxy,

its luminosity, and its H value.
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6.1 PHTALK Updates

6.1.1 The prior P (Gk|M500)

The prior P (Gk|M500) specifies how likely it is to find a galaxy group of massM500

at position Gk. We determine P (Gk|M500) in two ways: (i) based on theoretical

expectation of finding a galaxy group of mass M500 at the given Zk of Gk. There

is no local density information of galaxies included in this measure. The prior

calculated in this way expresses a bias towards groups with smaller mass at a

given z and reflects the evolving mass distribution in groups; (ii) based on local

density of galaxies, we produce an estimate of the mass of the galaxy group, should

such a group indeed exist at position1 Gk.

The prior P (Gk|M500) based on Zk

The prior of a group position Gk given a M `
500 band needed in Eq. (5.18) can be

determined as:

P (Gk|M `
500) =

P (Gk)P (M `
500|Gk)

NG∑
j=1

P (Gj)P (M `
500|Gj)

, (6.1)

where, assuming no a-priori preference for some grid points over the others, P (Gk) =

1/NG. As explained above, the mass likelihood P (M500|Gk) expresses the notion

that some group masses will be more likely than others at redshift Zk. To ex-
1 Note that this is strictly speaking not a prior, as we use the observed galaxies to express the

level of confidence that at position Gk there is a group of mass M500. However, it seems natural
to use the local galaxy density for this purpose, as relying purely on Zk can be insufficient.
Indeed, there can be two group candidate positions with the same z but very different local
galaxy densities. This cannot be easily resolved through likelihood formulation, as the likelihood
term in our case specifies how likely it is that a certain galaxy is a member of a group at Gk,
assuming that indeed there is a galaxy group at Gk.
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press explicitly that in this case the conditioning on the grid position Gk is really

conditioning on the Zk of Gk, we write P (M500|Gk) as P (M500|Zk).

To obtain P (M500|Zk), we calculate the group mass function δN from the halo

mass function (HMF) (using the online tool (HMFCalc) developed by (Murray

et al. 2013)) Eq.5.6.

δN is the mean λ(M500, Zk) of Poisson distribution over galaxy group number

Nm at Zk, giving the expected number of galaxy groups of mass M500 at redshift

band centred at Zk, per unit comoving volume. Binning the group mass into NM

bins and using the mean of the (normalized) galaxy group number, we formulate

P (M `
500|Zk), ` = 1, 2, ..., NM , as,

P (M `
500|Zk) =

λ(M `
500, Zk)

NM∑
l=1

λ(M l
500Zk)

. (6.2)

This expression is used in Eq.6.1 to determine the local mass distribution and in

Eq.5.22 to marginalize the Hough landscape over group mass.

The prior P (Gk|M500) based on local galaxy density

Inspired by (Smith et al. 2012) we also formulated an alternative way of calculating

P (Gk|M500) according to the local galaxy density.

Given a position Gk of redshift Zk, we investigate the distribution of galaxy

count C inside a cylindrical volume V (within 2σz along LoS and 1.5r500 per-
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pendicular to LoS, given a group mass M500) in the local z-band Zk ± δz
1. To

that end we estimate distribution of galaxy counts inside volume V(gi,M500) cen-

tred around “suspected” galaxy group centres gi within the local z-band Zk ± δz.

To declare a galaxy gi a suspected centre of a group we first check the richness

within V(gi, 1012) and reject galaxies with richness ≤ 3. Next, for each mass band

` = 1, 2, ...NM , we check the normality of projected velocities along LoS of the

galaxies inside V(gi,M
`
500) using Shapiro-Wilk test (p = 0.1, code obtained from

(BenSaida 2014)). We record the richness

C(gi,M `
500) = |{gj ∈ V(gi,M

`
500), j = 1, 2, ..., Ngal}|, (6.3)

for all volumes V(gi,M
`
500) that pass the normality test. For each mass band `, the

counts C(gi,M `
500) are then used to construct a distribution2 Q(C|Zk,M `

500) over

galaxy counts in groups of mass within M `
500 at redshift Zk ± δz.

Given a position Gk, we obtain the galaxy counts C(Gk,M
`
500) for every mass

band ` = 1, 2, ..., NM , and then estimate the probability of a particular group mass

band M `
500 at Gk through

P (M `
500|Gk) =

Q(C(Gk,M
`
500)|Zk,M `

500)∑̀
′
Q(C(Gk,M `′

500)|Zk,M `′
500)

. (6.4)

Finally, we estimate the group mass M̂ for a given position Gk as the mean of
1δz=0.001.
2 We used smoothed normalized histogram estimation using Matlab smoothing function (Local

regression using weighted linear least squares and a 2nd degree polynomial model with assigns
lower weight to outliers in the regression and zero weight to data outside six mean absolute
deviations).
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mass estimates Mvr
` obtained through virial theorem,

M̂(Gk) =

NM∑
`=1

M `
vr P (M `

500|Gk), (6.5)

where

M `
vr = F

(σ`p)
2 r`

G
, (6.6)

with F=3 (Barschel 2007), σ`p is the estimated velocity dispersion at Gk (estimated

using gapper estimator Eq.(6.7) (Beers et al. 1990, Wainer & Thissen 1976)) and r`

is the projected radius of the group at Gk estimated as the average of the projected

radii of its members.

For a group of galaxies with count C(Gk,M
`
500) and velocities v1 ≤ v2 ≤ ... ≤ vC,

we evaluated the gaps gpq = vq+1− vq, q = 1, ..., C −1. Each gpq is associated with

a weight related to its position in the ordered list, wq = q(C − q). The estimator

is defined as

σp =

√
π

C(C − 1)

C−1∑
q=1

wqgpq. (6.7)

Besides the mass estimation described above, the mass distribution Eq.6.4 is

also used in Eq.5.22. The probability of a group position Gk given a M `
500 band

needed in Eq. (5.18) can be calculated as

P (Gk|M `
500) =

Q(C(Gk,M
`
500)|Zk,M `

500)∑
k′
Q(C(Gk′ ,M `

500)|Zk′ ,M `
500)

. (6.8)
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6.2 Experiments

The performance of group finders were compared using two families of measures.

One evaluates the methods by viewing them as detectors of groups (group detection

measures), the other one quantifies how closely are the properties of true groups

matched by those of the detected groups (group properties measures).

6.2.1 Group Detection Measures

Precision (Pr), also known as group reliability (purity), is the percentage of the

detected groups that are true groups,

Pr =
truepositive(TP)

TP + FP
, (6.9)

where TP is the number of detected groups that are true groups and FP is the

number of detected groups that are not true groups.

Recall (Re), sensitivity or group completeness, is the percentage of true groups

that have been detected,

Re =
TP

TP + FN
, (6.10)

where FN is the number of true groups that are not detected.
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6.2.2 Group Properties Measures

Completeness represents the fraction of galaxies in true group (TG) that have been

recovered in the predicted group (PG)

completeness(Com) =
TG ∩ PG

TG
, (6.11)

while reliability is the fraction of galaxies in the PG that belong to the actual

group (TG)

reliability(Rel) =
TG ∩ PG

PG
(6.12)

Before applying the completeness and reliability, we follow the strategy of

(Duarte & Mamon 2015) to link the predicted galaxy groups PG with the true

galaxy groups TG based on the central galaxy of the true groups (i.e. the bright-

est galaxy in the group).

Also, for each predicted group Pi linked to a true group, we calculate its frag-

mentation rate

Fragi =
Di

|Pi|
, (6.13)

where |Pi| is the number of galaxies in Pi and Di is the number of galaxies from

the linked true group that were not detected.

Merging is the fraction of true groups that were (incorrectly) merged into single

predicted groups.
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Velocity dispersion and mass estimation of the predicted groups

To stabilize velocity dispersion estimation for detected groups, we first excluded

suspected “groups” with galaxies not distributed normally (using Shapiro-Wilk

test) due to the fact that the projected velocity of galaxies inside real galaxy

groups/clusters distribute normally along LoS. The velocity dispersion σp of each

detected group was estimated using gapper estimator (see Eq. 6.7).

To estimate the mass M̃ i (in Figures 6.9 and 6.10 annotated as MP ) for each

predicted group Pi linked to a true group with mass Ti (in Figures 6.9 and 6.10

annotated as MT ), we use the virial theorem Eq.6.6. The estimation quality is

quantified through bias log10(M̃i/Ti). We also assess the match between velocity

dispersions/masses of true groups and the corresponding predicted groups through

scatter plots and correlation coefficients.

6.2.3 Experimental Results

Pre/Post-processing

Before applying the PHTALK method, in order to increase efficiency and reduce

false positives, we positioned the grid points on the observed galaxies that have a

potential to be galaxy group centres. The potential is evaluated by positioning a

cylindrical volume1 defined by the mass2 1012M�, within 1.5r500 perpendicular to

LoS and 2σz along LoS. We only consider as grid points that contain more than 3
1 In FoF method by Eke, the cylindrical shape was used instead of ellipsoidal volume, as it

improved the group detection performance (Eke et al. 2004).
2 reasonable lower bound on mass for groups we would like to find
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galaxies within this volume (see Appendix C).

After the application of PHTALK, the potential group centres correspond to

local peaks in the Hough landscape H(Gk) Eq. 5.22. Recall that the grid positions

correspond to observed galaxy positions and hence can be associated with the

corresponding galaxy luminosities. We sort the grid points in descending order

according their luminosities. We then process the grid points corresponding to the

peaks of the Hough landscape in this order. It may be that some of the close-

by peaks can be merged into a single group. Given a peak grid point Gk, we

first estimate the potential group mass M̂(Gk) around it as the expected value

over mass bands Eq.6.5 and collect all peaks within that volume. Finally, the

merged group centre will be the peak grid point Gj with the highest hough value

H(Gj). Processing the peak grid points in descending order of their luminosity

ensures that the more luminous positions act as merger seeds that will absorb

less luminous smaller groups (the first merging process based on the H(Gk) peak

values).

Finally, we applied a group merging operation based on the estimated group

membership. For each grid point Gk corresponding to a predicted galaxy group

centre with estimated mass M̂(Gk) (see section - 6.1.1, Eq.6.5) we collect galaxies

within the cylindrical boundary V(Gk, M̂(Gk)) (see section 6.1.1). If two close-by

groups overlap in galaxy membership in more than one half of the smaller group

members, the two groups are merged. As before, the centre of the new merged

group will be the peak grid point Gj with the highest Hough value H(Gj) and the

mass M̃ will be estimated.
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Precision vs. Recall results

We use precision versus recall curve (to compare the performance of detecting

galaxy group centre positions by PHTALK and two FoF versions (Eke et al. (2004)

and Robotham et al. (2011)). For the FoF methods we calculate the galaxy group

centres as the mean positions of the corresponding predicted groups, while in

PHTALK we identify the group centres as the dominant peaks of the Hough land-

scape. We search for any detected galaxy group within a tolerance boundary of

1.5 virial radii perpendicular to LoS, and 2σz along LoS around the ground truth

galaxy group centres as annotated in GAMMA mock data.
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Figure 6.1: Precision vs. Recall for four example cones of GAMA mock: (a) volume 1 - cone 1,
(b) volume 6 - cone 3, (c) volume 7 - cone 3, and (d) volume 9 - cone 3.

Figure 6.1 shows examples of Pr vs. Re results for few cones taken from different

GAMA volumes. Pr vs. Re values of FoF by Eke and FoF by Robotham are

presented as stars and circles, respectively. The settings of the FoF methods were

taken from Eke et al. (2004) and Robotham et al. (2011). For PHTALK full Pr vs.

Re curves can be obtained naturally by manipulating the peak detection threshold

on the Hough landscape. The curves are shown as solid lines.
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To quantitatively compare the galaxy group finders across the GAMA survey,

for each cone and for a given FoF method, we evaluate the difference between

Pr values of PHTALK and FoF, i.e. Pr(PHTALK) − Pr(FoF). Box plots of the

differences across the cones are presented in figure 6.2a. Analogously, box plots of

the differences in recall values, Rec(PHTALK) − Rec(FoF) are shown in figure 6.2b.

Overall, PHTALK has superior Precision performance over the FoF methods (less

false positives), at the cost of inferior Recall values (more false negatives). This

tendency is more pronounced for FoF by Eke. Note, however, that in this case

the positive values of precision differences are approximately twice the (absolute

value of negative) values of recall differences. So the overall gain in precision at

the expense of recall is more favourable for PHTALK. For FoF by Robotham, the

situation is less distinct, but when compared to PHTALK, the balance between

precision and recall is slightly favourable for FoF by Robotham. To evaluate

statistical significance of these results, we performed Wilcoxon Signed-rank test

(see Appendix D) at 5% significance level. For recall, PHTALK is significantly

better than both FoF by Eke and FoF by Robotham. When the precision values

are compared, PHTALK is significantly better than FoF by Eke, but no significant

difference between PHTALK and FoF by Robotham has been found.

The results confirm observations based on Figure 6.1: Compared with both FoF

methods, PHTALK suffers from less false positives (better Pr results). However,

PHTALK misses some of the galaxy groups correctly detected by the FoF method

(worse Re results). Those are predominantly groups with weak FoG signatures,

that is not well-formed groups, or groups with small number of galaxies (e.g. <5).

Our model based method will obviously suffer in such situations. Also, FoF by

Robotham et al. tends to fragment high mass groups into many smaller groups

(see Figures 6.7 and 6.10).
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Figure 6.2: Box plots represent the values of difference between PHTALK and FoF versions
across 27 cones for precision 6.2a and recall 6.2b respectively

Finally, we note that in GAMA mocks (z ≤ 0.1) there are 1924 true galaxy

groups with ≥ 5 galaxy members. FoF by Eke et al., FoF by Robotham et al. and

PHTALK were able to detect ≈ 95%, 85% and 87% of them, respectively.

Completeness vs. Reliability Results

To compare the capabilities of identification of group members by PHTALK and

the two FoF methods considered in this study, we evaluate the Completeness (Com)

and Reliability (Rel) measures for all detected groups across the 27 cones. For the

PHTALK method a threshold value τ on the Hough landscape defining which

peaks to consider needs to be specified. For all cones τ is set to a small value close

to minimum Hough count Hmin = minkH(Gk). This generous threshold setting

is possible thanks to the post-processing steps described above. In particular,

τ = Hmin + Hmax−Hmin

100
, where Hmax = maxkH(Gk).

In Figure 6.3 we show the mean Com and Rel values for each of the 27 cones.
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Figure 6.3: Mean Reliability and Completeness values of the studied methods for all cones.

PHTALK is better or comparable to FoF by Eke et al. and superior to FoF

by Robotham et al. in terms of completeness. On the other hand, reliability

performance of FoF by Robotham et al. is superior to both PHTALK and FoF by

Eke et al.

To extend this analysis according to group mass, we categorized the predicted

galaxy groups into four mass bands, (11.5 - 12.375, 12.375 - 13.25, 13.25 - 14.125,

14.125 - 15) M� (log scale), based on the masses of the linked true galaxy groups.

Figure 6.4 shows the mean Com and Rel values along with std dev bars for each of

the four mass bands. PHTALK tends to overestimate group membership of small

groups by including more interlopers (Figure 6.4(a)), whereas FoF by Robotham

et al. misses greater portion of galaxies from large groups (Figure 6.4(d)). This

finding is confirmed by more detailed study of the distribution of reliability and

completeness values through CDF curves in Figure 6.5 and Figure 6.6, respectively.
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Figure 6.4: Completeness versus Reliability in the mass band 11.5-12.375M� (a), 12.375-13.25M�
(b), 13.25-14.125M� (c) and14.125-15M� (d).
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Figure 6.5: Reliability CDF in the mass band 11.5-12.375M� (a), 12.375-13.25M� (b), 13.25-
14.125M� (c) and14.125-15M� (d).
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Figure 6.6: Completeness CDF in the mass band 11.5-12.375M� (a), 12.375-13.25M� (b), 13.25-
14.125M� (c) and14.125-15M� (d).
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Fragmentation and merging results

Fragmentation rates shown in Figure 6.7 for the four mass bands confirm the

completeness results. For larger groups PHTALK has consistently the lowest rates,

whereas FoF by Robotham et al. exhibits the largest fragmentation.

Merging of two true groups occured only once in a predicted group by PHTALK

at redshift ≈ 0.075 within the second mass band (12.375− 13.25M�). No merging

has been detected for the FoF methods.
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Figure 6.7: Fragmentation Measurement: the x-axis represents the mass bands M500 in log
scale, the FoF methods’ results have shifted slightly for illustration purposes, y-axis represent
the fragmentation rate.

Velocity dispersion and mass estimation results

Scatter plots of predicted versus true velocity dispersions for pairs of linked esti-

mated and true groups are presented in Figure 6.8. All methods have comparable
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performance with correlation coefficient for PHTALK, FoF by Eke et al., and FoF

by Robotham et al. equal to 87.57%, 86.59%, and 87.36%, respectively. Scatter

plots of predicted versus true group masses are shown in Figure 6.9. PHTALK

and FoF by Eke et al. are comparable and superior to FoF by Robotham et al. -

correlation coefficient values 73.22%, 74.7% and 69.25%.

The accuracy of estimating the mass is evaluated through bias measure dis-

cussed in section 6.2.2 and presented in Figure 6.10 for the four mass bands.

Overall, PHTALK and FoF by Eke et al. tend to overestimate and underestimate,

respectively, the mass of smaller groups, while FoF by Robotham et al. underes-

timates the mass of both small and large groups.

6.2.4 Enhancing the estimated mass

We attempted to improve the mass estimation of the predicted galaxy groups

as follow, for each predicted galaxy group and depending on its current mass

estimation and its current members, we recalculate the mean position of the group

and consider the closest galaxy to that mean position as a centre of the group. Also,

we use the cylindrical volume (see Appendix D) by repositioning it centred around

the new centre position to recollect the members of the group and re-estimate

the mass based on the current group members using the virial theorem. For each

predicted group, the process will be iterated until the convergence between the

current estimation of its mean position and the previous estimation of its mean

position occurs. Figure 6.11 shows the final estimation of the mass after the

iterated process. In Figure 6.11b some galaxy groups have gained better mass

estimate, while others have deviated towards lower mass estimates than their true
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Figure 6.8: Predicted velocity dispersion σP vs. actual velocity dispersion σT in km/s of (a)
PHTALK, (b) FoF by Eke, and (c) FoF by Robotham et al. methods.
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Figure 6.9: Predicted mass Massp vs. actual mass Masso in log scale of the total predicted
galaxy groups from GAMA mock with reliability ≥ 0.5; (a) PHTALK, (b) FoF by Eke, and (c)

FoF by Robotham et al. methods
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Figure 6.11: Mass estimation, (a) the estimation of the mass before the iteration process. (b)
mass estimation after iteration process.

We did not rely on the luminosity of the members (i.e considering the high

luminous galaxy as a centre of a group) because we have used this technique on the
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previous mass estimation as shown in Figure 6.11a in addition to the issue related

to overusing the luminosities of the current galaxy members in the iterative process

may lead to a huge deviation in estimating the true centre position, members and

mass of a galaxy group. Due to the possibility of combining field galaxies that have

higher luminosities than the true galaxy members during the iterative process. In

this case, field galaxies may dominate the groups and lead to miss the true group

members and their masses if these high luminous field galaxies considered as centre

positions mistakenly.

Although astronomers use the repetitive approach till converge occur in order

to estimate some properties, in our case it did not work due to the overdoing of

mass estimation (i.e. for a given galaxy group Gk, the mass has been estimated

first (M̂(Gk)) as illustrated in Eq.6.5 and then re-estimated (M̃(Gk)) after the

merging processes as mentioned in sub-section (Pre/Post-processing - 6.2.3))
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In general, the existing galaxy group finders have many free parameters that need

to be carefully tuned before applying analysis. This raises issues regarding gener-

ality of the results and stability of the calibration process. Hough transform based

models have been shown to be effective in the detection of patterns of interest in

cluttered scenes.

Probabilistic Hough transform formulation enables us to include explicitly prior

expectations of the shape of interest through the likelihood model and to treat the

background noise consistently. In addition, we can include a particular model for

describing the interloper galaxies in order to filter out field galaxies and obtain

more purity in terms of galaxy group members.

The PHTALK is a principled approach which effectively incorporates a type of

prior knowledge on what is the expected appearance of a group/cluster. As such, it

could naturally be modified to seek out groups/clusters with distinct characteristics
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- a property which FoF methods do not share. The PHTALK approach is adaptable

and flexible to include more astrophysics’ information. It is able to detect galaxy

groups with more than five galaxies in our simulation and in the GAMA mock

data. It has to be said, however, that PHTALK is time-consuming due to the

costly voting process for each grid point, in the accumulator, by all galaxies in the

cone.

Thus, we have used parallel computing to speed up the performance and have

positioned grid points only on observed galaxies that were suspected to be galaxy

group centres. The PHTALK approach has less false positives in detecting galaxy

groups’ positions than both FoF methods. However, both FoF methods can detect

galaxy groups which are not well-formed, or where their members follow a different

kind of distribution profile. In such special cases our model PHTALK obviously

cannot be effective.

We can summarize some reasons for such limited cases of missing true groups

as follows:

• The true groups suffer from a lack of intensity of galaxies (i.e. not enough

prominent galaxies) around the centre.

• Galaxy groups do not have the prolonged shape ‘finger of god’ very well

formed.

• Some galaxy groups are close to each other; hence they can be detected as a

single group.
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Possible reasons for obtaining false positive groups (peaks) include:

• True groups with high mass are identified as several smaller groups, due to

the fragmentation factor (i.e. if the true group mass has been underesti-

mated).

• Some fore/back-ground galaxies may follow the same distribution by inci-

dence of the pattern of interest (i.e. true galaxy groups).

This work includes several model decisions that helped to find the true esti-

mation of a galaxy group’s centre and the mass estimation of a galaxy group. For

example: we estimated the mass based on the local density; incorporated that esti-

mation in calculating PHTALK; merged the fragmented peaks that were obtained

from PHTALK based on their locations, luminosities and H values, using virial

theorem in the final mass estimation.

The main contributions of this work are as follows:

• Building an adaptive probabilistic model to generalize the possibility of de-

tecting groups and clusters of galaxies with fewer free parameters and based

on the coordinates of the galaxies.

• A well-grounded principled framework based on probability theory.

• A very natural framework to incorporate prior knowledge.

• It is the first time to propose the Hough transform for galaxy groups/clusters

detection.
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• It has provided a principled way, to deal with uncertainty with respect to

the mass of the galaxy groups/clusters; as it is a probabilistic formulation,

we can integrate it out over the masses.

Future works may consist of collecting the galaxies for each significant grid

position (i.e. group) with a probabilistic technique, after filtering out the field

galaxies. This can be done by including an interloper profile in the collecting

process. It would be interesting to include an appropriate description of filaments

in the process of finding the galaxy groups. This should obviously be helpful

because most potential galaxy groups are condensed in the intersection regions

of the filaments. Analysing the distribution of galaxies that are scattered within

the filaments outside known galaxy groups is more likely to improve the detection

outcomes.
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APPENDIX A

PRECISION VERSUS RECALL (PR V. RE)

To evaluate the performance of the detector, positive − predictive − value(PPV)

otherwise called precision (Pr), which is the percentage of the detected groups that

have been identified as actual groups, and the true− positiverate(TPR) otherwise

called recall (Re), which is the percentage of real groups that have been detected,

have been calculated; as shown in Eq. (A.1) and Eq. (A.2) respectively. We in-

spected the true positive(TP), which means the ground truths (the mean positions

of the true groups) that are detected. Moreover, the false negative (FN) means

the ground truths that are not detected; while the false positive(FP) indicates the

detected peaks that are not true peaks.

PPV =
TP

TP + FP
(A.1)

TPR =
TP

TP + FN
(A.2)
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To obtain a more balanced and fair trade-off between the FP and FN, the

measurement of the PPV and TPR have been combined into a single curve. The

curve is well known in the machine learning field as the precision versus recall

curve. In our detection case, each point in the curve will represent the precision

versus recall at a particular threshold τ ; where τ will take 100 H(x, y) values

within the range of minimum and maximum H(x, y) values increasing gradually.

The detected peaks above τ will be tested to check if they are FP or TP.
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APPENDIX B

SIMPLE PEAK DETECTION USING
DILATION

Dilation is the one of fundamental morphological image processing operations. It is

used interchangeably with another morphological operation called erosion to noise

suppression and image smoothing (i.e. opening and closing operation) (Maragos

2005). These operations are used in peak detection by convolving the image with

a mask (i.e. structuring element). As an example, for peak detection let us assume

we have a matrix with pixel values

A =


34 24 433 123 123 654

234 21 32 65 78 34

23 454 54 96 24 2

 , (B.1)

and mask

msk =


1 1 1

1 0 1

1 1 1

 , (B.2)
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find the dilation ⊕ between the A and msk

D⊕ = A⊕msk. (B.3)

The obtained dilated matrix is

D⊕ =


234 433 123 433 654 123

454 454 454 433 654 654

454 234 454 78 96 78

 . (B.4)

By comparing the original image values with the outcome values of the dilated

process, we can identify the original image positions that have values larger than

the dilated positions as prominent peaks. The identified peak positions in Amatrix

are the positions with the values of ‘1’ as shown bellow:

A > D⊕ =


0 0 1 0 0 1

0 0 0 0 0 0

0 1 0 1 0 0

 (B.5)
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APPENDIX C

CHECKING THE CYLINDRICAL REGION
AROUND THE POTENTIAL PEAKS

To check whether a galaxy gi with position gi is within the cylindrical volume

centred around a given peak Gk positioned at Gk as illustrated in Figure C.1, we

calculate the difference vector: vi = Gk − gi, then the unit vector in the direction

of Gk has been found denoting by uk; then the dot product (·) between uk and vi

has been calculated to get the projected length (bi) w.r.t Gk along the LoS:

bi = uk · vi , where −α · σz <= bi <= α · σz, (C.1)

the length of bi should not exceed the interval [−α.σz, α.σz] where σz is the redshift

dispersion estimated using Eq. (5.30) and α = 2 is the quantile factor.

The perpendicular distance (X) of gi from the LoS should not exceed the varial

radius (1.5r500) calculated using the NFW profile (section 2.11), depending on a
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Figure C.1: Schematic illustration of the cylindrical volume around the suspected group position.

particular mass and current central galaxy group redshift z(Gk).

X = ‖vi − bi · uk‖ , and X <= 1.5 · r500 (C.2)
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APPENDIX D

WILCOXON SIGNED-RANK TEST

Most common statistical methods depend on assumptions related to the distribu-

tion of the data. In the testing of the mean, it is assumed that the distribution

is normal. However, in practice, if there is a doubt about the normality of the

population, especially when we have small sample, there are some inference meth-

ods which do not require a particular distribution of the data; these are called

‘non-parametric methods’. For the inference of the mean difference in data of

matched pairs, we use the Wilcoxon signed-rank test (Neuhauser 2011, SEGRE

n.d.). For matched pairs’ data, the absolute value of the differences (magnitude

with no sign) has been compared. We discard any zero differences from the list

then assign ranks for all differences after sorting them in increasing order, keeping

track of which rank attached to positive difference values. We sum all the ranks

that attached to the positive sign difference (S+). If the null hypothesis is true

and there is no difference between the distributions of the matched pairs’ data,

(S+) has the mean:

µS+ =
s±(s± + 1)

4
, (D.1)
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and standard deviation

σS+ =

√
s±(s± + 1)(2 · s± + 1)

24
, (D.2)

where s± is the total sample size (i.e. positive (S+) and negative (S−) differences).

Otherwise, the hypothesis (i.e. no differences in distributions) will be rejected, if

(S+) is far from its mean. Then we find the one or two-sided P-value of (S+) from

special tables.
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