
ECONOMICS-DRIVEN APPROACH FOR
SELF-SECURING ASSETS IN THE CLOUD

by

GIANNIS TZIAKOURIS

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
September 2017



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ABSTRACT

This thesis proposes the engineering of an elastic self-adaptive security solution for the

Cloud that considers assets as independent entities, with a need for customised, ad-hoc

security. The solution exploits market-inspired methodologies and learning approaches

for managing the changing security requirements of assets by considering the shared and

on-demand nature of services and resources while catering for monetary and computa-

tional constraints. The usage of auction procedures allows the proposed framework to

deal with the scale of the problem and the trade-offs that can arise between users and

Cloud service provider(s). Whereas, the usage of a learning technique enables our frame-

work to operate in a proactive, automated fashion and to arrive on more efficient bidding

plans, informed by historical data. A variant of the proposed framework, grounded on a

simulated university application environment, was developed to evaluate the applicability

and effectiveness of this solution. As the proposed solution is grounded on market meth-

ods, this thesis is also concerned with examining the dependability of market mechanisms.

We follow an experimentally driven approach to demonstrate the deficiency of existing

market-oriented Cloud solutions in facing common market-specific security threats and

provide candidate, lightweight defensive mechanisms for securing them against these at-

tacks.
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CHAPTER 1

INTRODUCTION

Cloud has become the defacto solution for businesses and individuals, with an increasing

number of users migrating from offline software systems to online Cloud-based services.

The vast increase in consumers can be attributed to the numerous advantages that the

Cloud introduces. Consumers can acquire on-demand access to various virtual computing

services and resources on shared infrastructures at anytime from anywhere in the world.

The Cloud can assist in lowering capital costs as it can scale to the runtime requirements

of companies and individuals, providing them with ad-hoc solutions, while eliminating

expensive activities such as the installation of hardware, software and its maintenance.

Furthermore, the Cloud can be a dependable and robust solution for the protection of data

due to the state-of-the-art security enforced by Cloud service providers in conjunction

with their routine data back-ups.

Cloud hosting services can be classified under three main umbrellas, namely the Soft-

ware as a Service (SaaS), the Infrastructure as a Service (IaaS) and the Platform as

a Service (PaaS). SaaS solutions are concerned with the provision of ready-to-use web

applications to their customers. Examples of such services are Gmail [1] and Microsoft

Office 365 [2]. On the other hand, PaaS solutions (e.g. Microsoft Azure [3], Google App

Engine [4] etc.) provide consumers with end-to-end IT solutions comprising hardware and

software tools that allow them to develop and run their applications without the need for

the complex and expensive construction and maintenance of an in-house infrastructure.
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Finally, IaaS solutions deliver computing infrastructures to consumers, including com-

puting resources and equipment such as networking, storage and datacenters. Examples

of IaaS solutions are the Amazon EC2 [5], Rackspace [6] and Google Compute Engine

[7].

The paradigm shift from offline software systems to online Cloud-based services has

changed the way we engineer, run and continuously monitor applications and users for

security. The ultra-large, dynamic and elastic nature of the Cloud has made it extremely

complex, if not impossible to predict all potential malicious behaviour that might be

encountered at runtime and consequently provide countermeasures for securing Cloud

users in the face of these threats. As a result, the design of offline, static and reactive

security strategies for the Cloud tend to be limited [8], [9], making self-adaptive security

systems increasingly popular due to their potential support for dynamism in detecting

and mitigating runtime threats.

1.1 Problem Statement

During the last decade, significant progress has been witnessed in self-adaptive security

systems for the Cloud [50], [11], [12], [13]. In spite of the progress, the existing solutions

tend to be limited in the way they treat security and its constraints (i.e. computational

and monetary) as well as the way they discover and allocate resources to users.

Although some of the existing Cloud-based self-adaptive solutions allow the cus-

tomization of their security they treat security as an “aggregated quality” by enforcing

the deployment of “one service for all” while overlooking the security requirements and

constraints of individual assets. This practice results in unnecessarily high costs due to

the deployment of obsolete services and resources, as well as unmet security requirements

per asset. The security requirements of assets can change along with the services and

resources that a user access in the Cloud. They can also change with content (e.g. file

modification) and contextual variations (e.g. time, location, etc.) which can emerge from
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different Cloud users and the operating environment itself. Moreover, existing solutions

do not facilitate effective mechanisms for the discovery and allocation of required services

and resources to users. Instead, they exhaustively search vast search spaces to identify

candidate solutions which can be ineffective for ultra-large environments, such as the

Cloud.

Current solutions need to consider the varying nature of assets and the need for cus-

tomised, ad-hoc security. This is a challenging undertaking as self-adaptive systems need

to not only continuously meet the changing security requirements, priorities and con-

straints of multiple assets from different users. They also need to deploy lightweight

mechanisms to enable users to short list and acquire suitable services and resources in

an effective manner (even in the presence of scarce resources) without embarking on an

exhaustive search. Finally, security software engineers need to revisit their assumption

that Cloud systems maintain adequate resources for the continuous and concurrent sat-

isfaction of large numbers of users. They need to ensure that their solutions are able to

prioritise security requests based on their significance to converge to a better solution

that maximises the utility of the whole environment (i.e. satisfy the largest number of

requests possible) while guaranteeing the security of assets that face an imminent threat.

1.1.1 Defining Assets in the Context of the Cloud

The Cloud has changed the way we view and secure assets. Existing literature on asset-

centric security defines assets as any data, device or any other component that supports

information related operations, such as hardware, software and data. The current defi-

nition of assets [14] is outdated and unsuited for ultra-large and dynamic environments

such as the Cloud. This rises from the shared and multitenant nature of these environ-

ments, where a majority of the physical and virtual/software resources can no longer be

perceived as traditional assets, but as mere resources/tools serving the needs of multi-

ple Cloud users. Therefore, it is essential to re-define assets, including the assumptions

describing them to better identify what needs to be secured in the Cloud and how.
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In this work, by assets, we refer to a “commodity” that can be of value for a user/organization

such as files, privacy settings, location, digital identities, accounts, endpoint devices etc.

that support the operation of Cloud-based applications and are owned by users. Our

work clearly defines the explicit link between the security of assets and users, in the ab-

sence of closely related work. We consider that if the security of an asset is compromised

then the overall security of a user is compromised.

1.2 Proposed Solution

We propose a self-adaptive security framework that builds on decentralised market-

inspired approaches and a supervised learning technique. Our framework manages the

changing security requirements/goals of assets by considering the shared and on-demand

nature of services and underlying resources while catering for their monetary and compu-

tational constraints. The usage of auction procedures (i.e. English auction and Posted-

Offer variant auction models) enable the proposed framework to deal with the scale of

the problem and the trade-offs that can arise due to the self-interested and diverse nature

of the security requests coming from the assets of various users. Whereas, the usage of a

supervised learning technique (i.e. Random Forest classifier [15]) allows our framework to

operate in a proactive and automated fashion by detecting runtime anomalies that could

be indicators of possible security threats and mitigating them prior to their manifestation.

By using the learning approach it is feasible to arrive on more efficient bidding plans,

informed by historical data. Instead of entering the bidders into exhaustive bidding for

candidate offers, the learning helps us to identify optimal security strategies (i.e. identify

and short list appropriate services and resources) for securing an asset.

As the proposed solution is grounded on market-inspired methodologies, this thesis is

also concerned with examining the dependability of auctioning mechanisms. In particu-

lar, it identifies market-specific security limitations in the engineering of commonly used

market-oriented Cloud mechanisms and attempts to overcome them by proposing can-
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didate defensive mechanisms for warranting the secure operation of bidders, sellers and

auctioning mechanisms in market-oriented Clouds. This thesis aims to provide answers

to the following research questions:

1. Can asset-centric security be more cost-effective and efficient for the satisfaction of

the runtime security goals of multiple assets compared to aggregated security?

2. What techniques/mechanisms can be used in the Cloud to secure multiple assets in a

proactive, cost-effective and elastic manner? The selection of market-inspired tech-

niques as the foundation of the proposed solution raise the following sub-questions:

• Can market-inspired mechanisms be more effective in the allocation of ser-

vices and resources compared to conventional non-market mechanisms in the

presence of scarce resources in security constrained environments?

• Can learning algorithms be used to arrive on more efficient bidding plans

(identify and short list appropriate candidate solutions), instead of entering

bidders into exhaustive bidding for candidate offers?

• How can representative auction models influence the security and performance

of the proposed system?

• Can market-inspired mechanisms be a dependable and secure optimisation tool

for securing assets in the Cloud?

These questions are established in the subsequent chapters and sections.

1.2.1 Motivating Example

To exemplify the need for engineering market-inspired self-adaptive security systems for

the Cloud, we consider a motivating example based on Cloud storage services in a uni-

versity application environment. Despite that universities are not considered to be ultra-

large environments they are characterised by multitenancy and they often store immense
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amounts of sensitive data/assets, such as classified research, student data, etc. which are

maintained and used by various employees (e.g. lecturers, researchers, etc.). Identifying

appropriate services and resources for supporting the security of these assets is a chal-

lenging task due to the elastic and multitenant nature of these environments alongside

the finite, often limited, resources available for supporting security. A candidate solution

to the problem is the deployment of market-inspired self-adaptive security solutions that

will allow users to compete with each other for service while catering for computational

and monetary costs. By doing so it will be feasible to converge to a better solution for

maximising the utility of the whole environment (i.e. satisfy as many users as possible)

while ensuring the provision of service to users that face an imminent threat. In the

occasion where simplistic allocation mechanisms are deployed it is possible to witness the

wasteful allocation of resources to users that do not require their immediate use or cause

resource starvation, which can render a system ineffective or even outright unresponsive.

To demonstrate the significance of the proposed solution we consider the following

motivating example. University “X” obliges employees of externally funded projects to

store their assets, for a cost, in four university owned Cloud storage services that vary in

terms of security features and computational resources (e.g. disk space). The university

maintains limited resources which, in some occasions, are not sufficient for the concurrent

satisfaction of the security needs of a large number of employees and their assets. John is

one of the externally funded employees which maintains four folders/assets (i.e. Classified

Research Folder, Video Folder, Student Welfare Folder and Photo Folder) that need to be

stored in a secure Cloud storage. John is often very busy and regularly handles classified

data, thus he requires a self-adaptive security solution that can dynamically store his

assets in the Cloud in a secure manner while catering for monetary and computational

costs. To achieve this, the self-adaptive solution uses the Random Forest classifier to

examine the contextual data (e.g. location, employee position, etc.) and content (e.g.

file type, etc.) of each asset to identify their security requirements and dynamically short

list candidate solutions based on recorded historical training data samples. Each sample
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Figure 1.1: Asset-Centric allocation of storage services.

contains information concerning the security strategies that a user, such as John, followed

to secure similar files in different occasions. By analysing these samples, the self-adaptive

system can learn and enforce security (i.e. select appropriate storage services) in an

automated and efficient manner, without entering bidders into exhaustive bidding for

candidate offers. We assume that users have an insight into their own threat models and

are able to evaluate their security properties. In the case where a user has insufficient

information concerning the threat models and/or the security properties, he/she can use

third party Cloud service providers to enforce security on their behalf.

A model security decision that the Random Forest algorithm could make for the above

scenario is: Asset1-Classified Research Folder: Requires encryption at rest and in transit

with encryption keys that are concealed from the service provider, Asset2-Video Folder:

Requires no security, Asset3-Student Welfare Folder: Requires encryption in transit and

at rest and Asset4-Photo Folder: Requires no security with search capability (Figure 1.1).

Based on the identified security requirements the self-adaptive solution needs to select
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appropriate Cloud storage services that can best satisfy the security requirements and

constraints (e.g. disk space size, price, etc.) of each asset. As we assume that the four

Cloud providers maintain scarce resources and they need to serve a large number of self-

interested users and their assets, the self-adaptive system uses an auctioning mechanism

to allow John and the other users to compete for service (Figure 1.2).

Figure 1.2: Competition between users for acquiring services and resources.

There are multiple candidate mechanisms/solutions for auctioning, with each intro-

ducing different characteristics, benefits and limitations to the problem environment. For

this example, we consider a variant of the well-known Posted-Offer auction model [16].

The Posted-Offer auction model is founded on a take-it-or-leave-it basis. In this model,

the SPs publicly announce the services and resources that are trading along with the

prices that are willing to sell them on for a fixed trading period and it is up to the

user agents/users to accept or decline the offers. In order for the proposed system to

automatically determine whether a user can afford to pay a seller’s requested price, as

well as to identify users that face an imminent threat, we have introduced user bidding

prices in the classical Posted-Offer model. The usage of bidding prices as a heuristic

for ranking users based on their threat level rises from the sentiment that Cloud users

8



that face an imminent threat are more willing to pay higher prices compared to secured

users. For each of John’s assets, the self-adaptive system forms a bid encapsulating a

description of its security requirements along with its computational and monetary (i.e.

the highest price that John is willing to pay to secure a file) constraints. John’s bids are

then forwarded to a central auctioneer along with the bids of rival users for auctioning.

For the purpose of this example, we assume that 1000 bids were received from various

bidders and there were enough computational resources to serve only 800 bids. John

submitted high bidding prices for Asset1 and Asset3 and low bidding prices for Asset2

and Asset4. As a result, Asset1 and Asset3 acquired the required Cloud storage service,

where Asset3 and Asset4 were not served due to their low bidding prices and significance.

Now consider that a new photo is added by John in Asset4, depicting sensitive data.

The self-adaptive system identifies the runtime modification of Asset4 and re-deploys the

supervised learner to determine if the security requirements of Asset4 have also changed.

The goal is to form a new bid reflecting the refined security requirements and constraints

of Asset4. A sample security decision from the Random Forest algorithm could be that

Asset4 needs to be transferred to another Cloud storage that supports file segmentation

to multiple physical machines for enhanced security.

1.3 Contributions of this Thesis

This thesis makes the following contributions:

1. Literature Review on Self-adaptive Security-aware Systems: We survey

self-adaptive security methodologies. We propose an architecture-centric taxonomy

drawn by the existing work in ultra-large, open and elastic environments includ-

ing the Cloud. The taxonomy maps and compares current research directions in

self-adaptive security systems. We reflect on the taxonomy findings and discuss

limitations, research challenges and design principles in the current research and

practice. We then provide recommendations concerning the future directions of
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self-adaptive security systems and their effective application in elastic and open

environments, such as the Cloud.

2. Market-Inspired Methodology for Asset-centric Security: We present a

self-adaptive security system that proactively manages the runtime changes in the

security goals and constraints of assets via the selection of services and resources.

The system exploits decentralised agent-based market-inspired methodologies and

a learning algorithm to deal with the scale of the problem as well as the need for

the efficient identification of appropriate services and resources for security (even

in the presence of scarce resources).

3. Proofing Market-Inspired Methodologies from Market-Specific Threats:

Market-oriented methodologies have been widely employed by software engineers

for solving dynamic allocation problems in online systems such as the Cloud [17],

[18], [19], [20]. Despite the growing work in the area, to our knowledge, the exist-

ing market-oriented methodologies have not provided treatment for online market-

specific threats in the context of distributed systems and the Cloud. To ensure the

secure operation of these systems, it is not sufficient to protect them against generic

attacks (e.g. denial of service, etc.), but to also consider possible market-specific

threats that can disturb the operation of bidders, sellers and auction mechanisms.

We experimentally demonstrate the deficiency of existing market-oriented Clouds in

facing market-specific security threats and provide candidate, lightweight defensive

mechanisms for securing market-oriented Clouds against these attacks. In addition,

we compare and analyse how markets are affected in the absence and presence of

the selected attacks and the proposed defensive mechanisms. The market-specific

attacks considered by this work are: Shill bidding [21], Reputation attack [22],

Monopoly [23] and Denial of payment attack [24].
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1.4 Structure of the Thesis

This thesis is structured according to the aforementioned contributions.

Chapter 2: We perform a literature review on self-adaptive security methodolo-

gies from the context of open, ultra-large environments and examine the architectural

characteristics enabling their effective application in these environments. We propose an

architecture-centric taxonomy for mapping and comparing the current research directions

in the field. We reflect on the taxonomic findings and discuss design principles, limitations

and research challenges in the current-state-of-art and practice. We then highlight can-

didate future research directions contributing to the effective application of self-adaptive

security systems in ultra-large, dynamic environments, such as the Cloud. Surveying

existing solutions is a valuable exercise as it can assist security engineers, analysts, re-

searchers and practitioners to better comprehend the challenges, limitations and research

gaps in existence. It can also provide guidance on commonly used security mechanisms,

design principles and strategies along with their strengths and pitfalls, with the objective

of engineering more cost-effective, elastic and dynamic solutions.

Chapter 3: This chapter discusses how the proposed framework addresses the chal-

lenges presented in Chapter 1. In Chapter 3 we introduce and examine the conceptual

architecture model of our framework. Among other aspects, our system analysis entails

the examination of i) the entities comprising our system and their operational phases,

ii) the market-oriented mechanism enabling the auctioning and allocation of the ser-

vices/resources supporting the runtime security goals of assets and iv) the usage of the

Random Forest algorithm for identifying candidate solutions and enforcing security in

an automated manner. The applicability and effectiveness of our framework have been

tested by instantiating and developing a variant of our framework, based on a simulated

university application environment facilitating Cloud storage and Voice-Over-IP (VOIP)

services. The use of simulation allows us to examine the applicability, effectiveness and

elasticity of our system on a larger scale.

Chapter 4: This chapter investigates market-specific security attacks. We follow an
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experimentally driven approach for exposing existing market-specific security vulnerabili-

ties. We use a market-oriented Cloud simulation tool (i.e. CloudSim [25]) to demonstrate

that the designs of existing markets are limited when facing market-specific attacks and

when thwarting malicious bidders and sellers from manipulating auction mechanisms for

personal gain. We then demonstrate the negative effects of these attacks on market-

oriented Clouds.

Chapter 5: Based on the observations made, in Chapter 4, in our experiments with

market-specific security attacks we develop candidate, lightweight defensive mechanisms

for securing market-oriented Clouds against these attacks. To evaluate the effectiveness

of the candidate solutions, we deploy them in CloudSim and analyse how the market

is affected in the absence and presence of the selected attacks and the proposed defen-

sive mechanisms. We then designate the added value of using market-specific defensive

mechanisms in the Cloud.

Chapter 6: This chapter conducts a qualitative and reflective evaluation of the thesis

with respect to our established research questions.

Chapter 7: We summarise the contributions and the implications of this work. We

then present limitations of our work along with our thoughts on possible future research

directions and their potential impact on the field.

1.5 Publications Emerging from this Thesis

Conferences:

1. G. Tziakouris, R. Bahsoon, T. Chothia and R. Buyya (2016). Thwarting Mar-

ket Specific Attacks In Cloud. The 9th IEEE International Conference on Cloud

Computing, IEEE Cloud, San Francisco, USA, IEEE press.

2. G. Tziakouris, M. Zinonos, T. Chothia, R. Bahsoon (2016). Asset-Centric Security-

Aware Service Selection. The 5th IEEE International Congress on Big Data, San
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Francisco, USA, IEEE press.

3. G. Tziakouris, C. J. Mera Gomez, R. Bahsoon (2014). Securing Cloud Users at

Runtime via a Market Mechanism: A Case for Federated Identity. The 16th IEEE

International Conference on High Performance Computing and Communications,

Paris, France, IEEE Press.

Journals:

1. (Under review for publication) G. Tziakouris, R. Bahsoon, T. Chothia and A.

Babar, “A Survey on Self-Adaptive Security for Large Scale Open Environments.”

ACM Computing Surveys (CSUR).

2. (Under review for publication) G. Tziakouris, C. M. Gomez, F. Ramirez and R.

Bahsoon, “Economics-Inspired Self-Adaptive Security for Assets in Cloud”, IEEE

Transactions on Cloud Computing (TCC).
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CHAPTER 2

TAXONOMY AND SURVEY OF SELF-ADAPTIVE
SECURITY SYSTEMS FOR LARGE SCALE

ENVIRONMENTS

This chapter conducts an in-depth examination of self-adaptive security solutions in the

context of open, ultra-large environments, their idiosyncrasies and characteristics. We

focus on the analysis of solutions that maintain architectural characteristics, such as

scalability and operational transparency, which can enable the effective application of

self-adaptive security systems in ultra-large and elastic environments, such as the Cloud.

Large scale open environments can be viewed as Systems of Systems (SoS), which consist

of several large and small distributed and complex systems [26]. The analysis of self-

adaptive security systems for open environments can assist us to better comprehend the

challenges, limitations and research gaps shared by modern solutions including the Cloud.

It can also provide guidance on commonly used security mechanisms, design principles

and strategies along with their strengths and pitfalls, with the objective of applying

this knowledge in the area of Cloud computing for engineering more robust, elastic and

dynamic security solutions. 2

2Part of the work presented in this chapter has been submitted for publication [27].
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2.1 Taxonomy of Self-Adaptive Security Systems

Our survey extends existing taxonomies of self-adaptive security solutions [28], [29], [30],

[31], [32] by looking at them from the architectural point of view. We revisit the charac-

teristics, design patterns and methodologies enabling these solutions to understand their

fit for ultra-large environments. The proposed architecture-centric taxonomy aims to

assist security engineers and researchers in better comprehending the patterns, pitfalls,

gaps, strengths and limitations of contemporary implementations of self-adaptive security

mechanisms when deployed in open and elastic environments, with a particular focus on

Cloud. We provide guidance on the selection of design patterns based on the dynamism

of the operating environment and the problem setting. Moreover, we explore how spe-

cialised application knowledge can drive different domain-specific models, approaches and

patterns for autonomous software security architectures.

The remaining of this section describes the research methodology used for constructing

our taxonomy, followed by the introduction and analysis of our hierarchical taxonomy.

2.1.1 Research Methodology

This survey can be considered a representative study that attempts to identify and exam-

ine the current state-of-the-art in self-adaptive security for open and elastic environments.

The research methodology followed is grounded in the selection of indicative work that

can demonstrate the current trends, challenges and gaps in the field. Even though we

have not fully complied to the systematic literature review (SLR) procedure, much of

the work was guided by variations for queries covering the subject of this investigation,

mainly related to self-adaptive security and their applicability to open, elastic environ-

ments. Thus, we were able to alleviate the biased and restrictive nature of the search

queries used in SLR studies. A detailed analysis of our research methodology is provided

in the succeeding sub-subsections.

15



2.1.1.1 Research Protocol

The research protocol followed by this study consists of i) background research; ii) the

identification of appropriate research questions and objectives; iii) the identification of

the targeted data sources for the collection of the surveyed work; iv) the establishment

of inclusion/exclusion criteria for the selection of relevant papers; and v) the extraction

and analysis of the data for constructing the taxonomy.

2.1.1.2 Research Questions

Our research questions focus on the fundamental mechanisms, architectural primitives

and design strategies that enable self-adaptive security systems to operate in ultra-large,

elastic environments. Table 2.1 presents the research questions along with their objec-

tives.

2.1.1.3 Target Data Sources

We searched the electronic databases of high-impact conferences and journals on self-

adaptive systems for selecting the relevant papers. The electronic databases used for

identifying the surveyed work were the digital libraries of IEEE, ACM, ScienceDirect and

Springer. These digital libraries are expected to cover a majority of the state-of-the-art

work in the area. We also used Google Scholar to identify any high-impact work that

was not archived by the aforementioned digital libraries.

2.1.1.4 Inclusion and Exclusion Criteria

As this work is primarily concerned with the fundamental methods and architecture

primitives enabling the effective application of self-adaptive security systems in elastic,

ultra-large environments, we selected the papers to be reviewed based on the elasticity and

dynamism of their operating environments. We mainly focused on reviewing self-adaptive

systems for security that operate in decentralised and/or hierarchical configurations in
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Table 2.1: Survey Research Questions and Their Objectives.
ID Research Questions Objective

RQ1 What dimensions of security have researchers ad-
dressed in open and ultra-large environments?

This research question aims to identify which as-
pects of security have been explored by researchers
in open and elastic environments.

RQ2 What architectural characteristics of open, elastic
environments have been explored by researchers?

The objective of this research question is to iden-
tify the various architectural characteristics of elas-
tic environments considered by researchers for pro-
moting more effective security solutions in the con-
text of ultra-large environments.

RQ3 What are the different mechanisms enabling self-
adaptive security systems to effectively operate in
open, elastic environments?

This research question aims to identify various
mechanisms that allow self-adaptive security so-
lutions to manage the dynamism of ultra-large en-
vironments.

RQ4 How can different architecture designs impact the
effectiveness and dynamism of a security solution
for ultra-large environments?

The objective of this question is to discover how
different architectural designs can affect a self-
adaptive security solution.

RQ5 How specialised application knowledge can drive
different domain-specific models, approaches and
patterns for software security architectures?

This research question aims to identify how spe-
cialised application knowledge for ultra-large and
elastic environments can assist in further advanc-
ing software security architectures.

RQ6 What are the gaps in and limitations of effectively
applying self-adaptive security solutions in open,
elastic environments?

This research question aims to identify the gaps
and limitations that may restrict the effective ap-
plication of the existing self-adaptive security so-
lutions in ultra-large environments.

RQ7 How can we further advance the existing solutions
to become more elastic and dynamic?

The objective of this question is to identify how
current solutions can be advanced towards be-
coming more dynamic, elastic and open-ended for
facing the dynamism and emerging challenges of
ultra-large environments.

the context of Cloud, Grid, Ad-hoc, mobile environments and distributed systems which

are characterised by scalability, multi-tenancy, dynamism and heterogeneity. Our work

does not restrict its survey to Cloud-based solutions as we believe that self-adaptive

security solutions for open, ultra-large systems share various characteristics due to their

similar nature. These characteristics can inform and drive our attempt for engineering

more effective and dynamic solutions for the Cloud. Our survey excludes solutions that

are deployed in closed, controlled and static environments. Examples of such work are

the adaptive compiler techniques of Cowan et al., [33] for eliminating buffer overflow

attacks, the work of Lai et al., [88] and Safe et al., [35] on adaptive steganographic

techniques and the adaptive cryptographic methodologies of Dodis et al., [36]. However,
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as the research conducted on self-adaptive security solutions for open environments is

limited, we have relaxed our selection criteria and considered solutions that operate in

semi-controlled environments, but still maintain characteristics and design patterns, such

as scalability and operational transparency that can assist researchers and practitioners

in developing more elastic, dynamic and open-ended security solutions. Our study only

considers work that was published in the English language, in high-impact journals and

computing conferences.

2.1.1.5 Search and Study Selection Process

We explored four selected digital libraries, i.e., ACM, IEEE, ScienceDirect and Springer,

as well as Google Scholar to identify relevant papers for revision. We were able to identify

39 research papers for review which we believe that represent a majority of the work

reported on self-adaptive security systems.

2.1.2 Synthesis of Architecture-Centric Taxonomy

Based on our knowledge of the area, we propose a taxonomy that consists of the fol-

lowing fifteen dimensions: Security Goals, Control Topology, Component Composability,

Component Dependency, Component Discoverability, Operational Transparency, Design

Centricity, Platform Dependencies, Elasticity, Security Mechanism(s) Deployment, Adap-

tation Inspiration, Adaptation Awareness, Adaptation Layer, Anticipatory Support and

Cost Sensitivity, which fall into two groups: the System Conceptual Model and the

Adaptation Characteristics group. Similarly to the taxonomy proposed by Salehie and

Tahvildari [30], our taxonomy deals with the What and How characteristics of adapta-

tion. The system Conceptual Model group deals with the “What” aspects of security

adaptation (e.g., What security qualities should I consider for adaptation? etc.). It char-

acterizes the security goals and architecture design of self-adaptive security systems. It

is feasible to relate security goals to different architectures (e.g., centralised and hier-
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archical) which introduce diverse sensitivities, limitations and trade-offs in the problem

environment. Whereas, the Adaptation Characteristics group is concerned with the fun-

damental features and characteristics of adaptation mechanisms. It deals with the “How”

aspects of adaptation (e.g., How to stimulate adaptation?).

Figure 2.1 presents the proposed taxonomy and indicates, with a red dotted line, the

mutually exclusive design strategies for each dimension. This will allow us as well as

security software engineers to identify the possible sets of design principles that can be

used together for developing more dynamic and elastic solutions. For example, a system’s

control topology cannot be simultaneously grounded in decentralised and centralised ar-

chitectures due to their mutually exclusive nature. Security systems can be grounded in

either decentralised or centralised or semi-decentralised methodologies, where all of the

aforementioned architectures can be used (mutually inclusive) with hierarchical designs.

The subsequent sections provide an in-depth analysis of the dimensions comprising

our taxonomy.

2.1.2.1 System Conceptual Model

(i) Security Goals: This dimension describes the security objectives of a self-adaptive

system. We define security goals in terms of confidentiality, integrity, availability, invasive

behaviour and accountability. Our organization of the taxonomy has been guided by the

taxonomy on “dependable and secure computing” [37].

Confidentiality: Confidentiality is concerned with concealing information from unau-

thorized third parties.

Integrity: Integrity is the assurance that data is an accurate and unchanged represen-

tation of the original secure information.

Availability: Availability is concerned with ensuring that information is accessible by

authorized users at all times.
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Figure 2.1: Architecture-centric taxonomy for self-adaptive security systems.
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Invasive behaviour: Invasive behaviour illustrates that a self-adaptive system is con-

cerned with the detection and mitigation of intrusive behaviour (such as malware,

DoS attacks, and code injection).

Accountability: Accountability is concerned with the assignment of responsibility for

malicious actions to the user(s) that committed them.

(ii) Control Topology: The control topology describes the architectural deployment of

the components comprising a self-adaptive security solution. To describe this dimension,

we use the following classes:

Hierarchical: In hierarchical architectures, the components comprising a self-adaptive

system operate in multiple layers. Adaptation in hierarchical architectures results

from the operations of different layers at different times. Lower layers, often, consume

short time to operate ensuring the accurate and timely adaptation of the part they

are responsible for. Whereas, higher layers necessitate more time for their operations

and share a more global vision. To adapt, it is required for all layers to exchange data

between them and coordinate.

Decentralised: In decentralised architectures, each host implements a complete con-

trol loop. Adaptation is achieved through the coordination of corresponding peer

components from different physical hosts.

Centralised: Centralised self-adaptive systems implement a complete adaptation loop

with a central control mechanism that is responsible for the overall adaptation process.

All adaptation decisions and actions are taken and deployed by a central control

mechanism.

Semi-decentralised: Semi-decentralised architectures delicate adaptation tasks to mul-

tiple distributed hosts/mechanisms in a system, which are organised by a central

authority.
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(iii) Component Composability: Component composability signifies if a solution is able to

select multiple (a bundle) components/mechanisms to support the security requirements

of a system/user. We use the following descriptors to define this dimension:

Runtime: Illustrates that a self-adaptive system is able to compose different compo-

nents at runtime for satisfying security requirements.

Design Time: Designates that a self-adaptive solution can only use security bundles

(if any) that were predefined at design time.

(iv) Component Dependency: The component dependency signifies the separation level

between the components comprising a self-adaptive system. We use the following classes

to define this dimension:

Autonomous: Indicates that the components/mechanisms in a system are completely

separated/isolated from each other. Though they may co-operate with each other,

they have full control over their functionalities/operations.

Semi-Controlled: Semi-Controlled components are partially controlled by a central

component that orchestrates their operations; however, they still perform some core

functionalities separately.

Controlled: Controlled indicates that a self-adaptive system implements the master-

slave methodology, where one or more master components fully control the function-

alities/operations of slave components.

(v) Component Discoverability: The component discoverability shows if a system can

discover security components/mechanisms that are situated in different locations (can be

locally and/or online) at runtime for mitigating runtime threats. We use the following

descriptors to describe this dimension:

Supported: Illustrates that a system is able to discover and use components situated

in different locations at runtime.
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Unsupported: Shows that a system is unable to discover new components/mechanisms.

The system is restricted to use a set of pre-installed security components.

(vi) Operational Transparency: This dimension demonstrates whether a user can monitor

the operations of a self-adaptive security system and how his/her data is handled by the

system. We use the following classes to describe operational transparency:

Transparent: Indicates that a system allows users to monitor its activities.

Partially Transparent: Demonstrates that only some of the system functionalities are

visible to users.

Concealed: Signifies that a system does not allow users to monitor its operations.

(vii) Design Centricity: This dimension describes the entity/entities that a self-adaptive

security system was designed to protect. We use the following classes to describe design

centricity:

User-Centric: User-centric systems revolve around the runtime security requirements

of users. Based on changes in a user’s security requirements, appropriate countermea-

sures are deployed to secure them.

Asset-Centric: Asset-centric systems revolve around the runtime security requirements

of individual assets. When runtime events occur that can threaten the security goals

of assets, security countermeasures are deployed to protect them.

System-Centric: System-centric adaptive mechanisms revolve around the runtime se-

curity of a system. Based on behaviour and/or contextual changes in a system, self-

adaptive mechanisms adapt their security to protect it.

(viii) Platform Dependencies: This attribute demonstrates if a system is based on a

specific platform or not. We use the following classes to describe platform dependencies:

Platform Specific: This dimension signifies that a system was engineered based on a

specific platform. To use it, certain platform requirements should be met.
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Platform Independent: Indicates that a system can be applied to any platform that

can support the architecture and interface requirements of a system, without the need

for specialised mechanisms.

(ix) Elasticity: This feature presents how scalable a self-adaptive security system is. We

use the following classes to describe elasticity:

Linear Elasticity: The elasticity remains constant when capacity is added to the

system.

Sub-Linear Elasticity: The elasticity factor slightly decreases when capacity is added

to the system.

Negative Elasticity: The performance of the system gets worse when capacity is added.

(x) Security Mechanism(s) Deployment: Indicates the location of the security mecha-

nisms of a self-adaptive security system. We use the following classes to describe this

dimension:

Integrated: Signifies that the security mechanisms comprising a self-adaptive system

are maintained locally.

Add-on/External: Indicates that a system is able to select external security mecha-

nisms situated at different physical locations (such as web services over the Internet).

2.1.2.2 Adaptation Characteristics

(i) Inspiration: This dimension signifies the source of inspiration for the adaptation mech-

anism of each self-adaptive security system. The following classes are used to define the

adaptive inspiration of self-adaptive systems:

Control Method: Control method is the most common approach used by software

engineers for self-adaptive solutions [38], [39], [40]. This technique is grounded on the

automatic adjustment of system controllers at runtime to ensure the satisfaction of
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security requirements when uncertain/malicious events are sensed. Classical control

methods comprise a sequence of four phases: monitor, analyse, plan, and execute.

The monitor phase gathers information required to inform adaptation. The monitored

data is then forwarded to the analysis phase for examination. Based on the adaptation

goals the analysis phase draws conclusions on which action(s) should be undertaken

by the self-adaptive system. Once decisions are made the planning phase is employed

to put together a series of adaptation actions to resolve unpredictability. The set of

actions are then carried out in the execution phase.

Economics Inspired: Indicates that a self-adaptive system is founded on economic

methodologies, such as auctioning mechanisms [41].

Bio-Inspired: Self-adaptive systems that are grounded on bio-inspired methodologies

exploit key paradigms from biology that allow them to self-organize, self-maintain and

self-heal. An example of such work is the paper of Dressler [42] on cellular metabolism

for improving the efficiency of behaviour patterns of routers and firewalls.

Nature Inspired: Nature inspired self-adaptive systems leverage mechanisms found in

nature to promote security, such as how the crystal-growth process has inspired the

tile architecture style [43].

(ii) Awareness: The awareness describes the attributes that a self-adaptive system mon-

itors to inform its adaptation process. We use the following descriptors to define this

dimension:

Contextual: Self-adaptive systems that ground their adaptation on context are con-

cerned with capturing the situational and environmental information describing the

current situation of users and/or systems which can use to anticipate their immedi-

ate needs. Examples of contextual attributes are time, resource availability, location,

battery and processor load. Context-driven adaptation is usually used by mobile and

pervasive systems [44].
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Behaviour: Self-adaptive systems that ground their adaptation on behavioural pat-

terns are concerned with monitoring the runtime behaviour of a user and/or a system.

The runtime security of a system/user is adapted according to the behavioural pat-

terns exhibited. Typically if the runtime actions of a system/user deviate from the

expected behaviour, adaptation is triggered to ensure the satisfaction of their security

goals.

(iii) Adaptation Layer: The adaptation layer describes the set of system attributes that

are manipulated for performing adaptation. The attributes used to describe the adapta-

tion layer are:

Host: Adaptation at host level indicates the adjustment/adaptation of local system

attributes such as physical resources, firmware, operating systems and visualisation

aspects. An example of host level adaptation is the work of Son et al., [45] which deals

with the adaptation of the behaviour of a real-time database system during transient

overloads by executing transactions at a lower security level, thereby reducing resource

consumption.

Application: Adaptation at the application layer is concerned with updating policies

and re-configuring application parameters at runtime. A notable work is the paper

of Saxena et al., [46] which presents an autonomic framework that analyses security

events and based on the results suggests a high-level security action to reconfigure a

system.

Network: Adaptation at the network level is concerned with the manipulation of

communication links, networking protocols, network devices, network resources and

topologies. An example of such work is the paper of Hsieh et al., [47] which per-

forms adaptation on the network level by establishing secure communication links,

broadcasting authentication between neighbouring nodes and detecting-eliminating

malicious nodes in the network.
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Service: Self-adaptive systems operating on the service layer deal with the selection,

composition and deployment of online services. An example of service layer adaptation

is the work of Xu et al., [48] which presents an architecture that composes collaborative

Cloud security services based on user runtime requirements.

(iv) Anticipatory Support: The anticipatory support shows the ability of a self-adaptive

system to forecast runtime threats. To denote this feature we use the following descrip-

tors:

Proactive: Proactive self-adaptive solutions support the anticipation of anomalous

behaviour at runtime. Such systems use learning methodologies to predict possible

threats and deploy countermeasures before they are manifested. Proactive methodolo-

gies have been used by Abie et al., [49] for estimating and predicting the risk damages

and future benefits for an IoT system using context-aware game theoretic models.

Reactive: Reactive self-adaptive system do not use any forecasting mechanisms. These

systems adapt once threats are manifested and detected. An example of such work is

the paper of Mazur et al., [50] which uses multiple agent systems and network data

to provide automated defence for malware upon their detection.

(v) Cost Sensitivity: Cost sensitivity signifies if a system is concerned with the trade-offs

that can arise from adapting security. The classes used to describe cost sensitivity are:

Monetary: Illustrates that a self-adaptive system considers the trade-off between se-

curity and the associated costs.

Time: Demonstrates that an adaptive system is time critical and considers time as a

dimension when adapting security.

Resources: Signifies that an adaptive system considers the link between security and

resource consumption.

Cost Insensitive: Indicates that a self-adaptive system is not concerned with any of

the trade-offs that can arise from adapting security.
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2.2 Landscape of Self-Adaptive Security-Aware Re-

search

This section categorises and presents the existing research and practice in self-adaptive

security systems (SAS). We survey a representative set of work that accommodates the

existing, state-of-the-art self-adaptive security solutions in large-scale open environments.

We discuss the limitations, gaps, opportunities and new directions in the field. The sur-

veyed work has been clustered based on the application areas. Thus enabling us to identify

the architectural characteristics, design strategies, challenges and pitfalls shared by area-

specific solutions. We have established three applications areas: Service Oriented SAS;

Mobile Ad-hoc Network driven SAS; and Host-driven SAS. Service oriented self-adaptive

systems operate in service repositories (e.g. Cloud) and deal with the management and

adaptation of online services, computational resources, physical infrastructures and vir-

tual machines. Mobile Ad-hoc Network driven SAS operate in mobile environments and

deal with communication links, network protocol/devices and topologies. Finally, Host

driven SAS operate in a localised fashion and deal with the adaptation of hardware compo-

nents, firmware, operating system attributes, security policies and application properties.

Although Mobile Ad-hoc Network driven SAS and Host-driven SAS solutions do not

share many architectural characteristics with service-oriented solutions, and in extent

the proposed solution, the selected papers facilitate security mechanisms that are charac-

terised by dynamism, scalability, transparency, etc. which are dimensions that can drive

the design of our solution.

2.2.1 Service Oriented SAS

The work of Siljee et al., [38] proposes DySOA, an architecture that allows existing service

oriented applications to become dynamic. This framework enables software engineers

to design attributes, including security, that are concerned with the quality of service

(QoS) evaluation and variable composition configuration. DySOA consists of four phases:
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monitoring, analysis, evaluation and reconfiguration. During the monitoring phase, data

related to the runtime requirements of QoS attributes are recorded and forwarded to

the QoSCalculator which determines the current QoS. Following, the evaluation phase is

deployed in which the Evaluator contrasts the quality of service information to their goals.

In the case where the existing QoS cannot be satisfied, adaptation is stimulated. The

reconfiguration phase determines the new application configurations based on a variation

model, which provides information concerning the variability of QoS between candidate

services.

Mazur et al. [50] propose a semi-autonomous defensive security mechanism for Cloud

environments. The proposed system uses smart agents and network data to dynamically

detect and mitigate classified and zero-day threats. The distributed intelligent agents are

used at runtime to collect data related to machine language execution, services, network

devices and data streams within the Cloud environment. The collected information is

handled by agents who settle threats in a local fashion, wherein some occasions it is

required to correlate or reason for the appropriate course of action. The brokering agents

constantly alter their runtime behaviour with the assistance of game theoretic hazard

evaluation and network data generated based on the input of agents. By using network

data, for describing malware, the framework is able to compare pairs of data to determine

if malware exists, which depends if the two pieces of data have a close match. If a threat

is detected the framework uses the predefined policies to eliminate it.

The work of Tziakouris et al., [20] dynamically manages the runtime variations in the

security requirements of the digital identities of users in federated Clouds. This is achieved

with the allocation of suitable computational resources that support those requirements

via a market inspired mechanism. The security adaptation is stimulated once the security

requirements of a user are not satisfied. To initialize adaptation, a user formulates a bid

that inquires the support of its runtime security goals with the allocation of additional

resources from different service providers (SPs) within the federated Cloud. Once a bid is

constructed, it is forwarded to the central market auctioneer which matches the bids with
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available SP offers (ask) that can best satisfy the security goals of a user at the requested

price. Once a match is performed, the selected SP(s) allocate the requested resources to

the users to allow them to deploy computationally heavy security policies/services (e.g.

an intrusion detection system that analyses network traffic for violations) for meeting

their security goals and eliminate runtime threats.

Xu et al., [48] present CloudSEC, a peer-to-peer overlay-based architecture for secure

service composition in the Cloud. CloudSEC uses resources from various security mech-

anisms scattered over a network to satisfy global runtime goals. This is achieved via the

collection of data from different security mechanisms in a Distributed Hash Table. In

particular, CloudSEC’s service composition aims to detect and contain threats such as

intrusions, distributed denial of service (DDoS) attacks, spam and malware. To achieve

this, CloudSEC uses three different mechanisms: “the administration group, the collab-

oration groups and the peripheral entities”. The administration group is the kernel of

CloudSEC, which is an interface and is maintained by task coordinators. Each coordi-

nator is responsible for a set of autonomous security agents as part of an administrative

domain. Task coordinators are responsible for: i) performing security policy decisions;

ii) managing collaboration tasks and iii) sharing analytical data over various domains.

Following, each collaboration group composes a security service by performing a collab-

orative process. Collaboration groups consist of security agents that are dynamically

clustered, each providing a group of global access points to various security facilities. Fi-

nally, the peripheral entity summarises service providers and users and is able to install

security services and supply/consume resources via a push/pull mechanism.

The work of Li et al., [51] introduces CyberGuarder, a “visualisation security assurance

architecture” that provides three types of security services: “a virtual machine security

service; a virtual network security service; and a policy based trust management service”.

The virtual security service comprises: i) a VMM-based (Virtual Machine Management)

integrity measurement methodology for network applications trusted loading, ii) “a multi-

granularity network application isolation mechanism to enable OS-user isolation” and iii)

30



“a dynamic approach for virtual machine and network isolation for multiple network

application’s based on energy-efficiency and security requirements” [51]. The virtual

network service allows the dynamic deployment of virtual secure services in a network

application system. In such environments, secure services can be delivered as virtual

machine instances and be used in a virtual network. Finally, the trust management

service is used to enforce access control on network resources and play the role of a trust

federation tool that selects optimal configurations for maximising the privacy and cost

efficiency between various resource pools.

AdapTest [52] is a self-adaptive integrity attestation system grounded on a weighted

attestation graph model for large-scale Clouds. AdapTest is able to lessen attestation

overhead and reduce detection time through the dynamic selection of attested nodes. The

probabilistic attestation is guided by deriving trust scores per-node and pair-wise. The

proposed system is able to dynamically evaluate the trustworthiness of various services

according to their previous attestation results. Attack detection is performed through

the usage of replay-based consistency check, which duplicates input data and resends

them as attestation data to similar service instances for consistency check. Based on the

results obtained, the clique-based algorithm is deployed to discover compromised nodes

with the construction of an attestation graph that represents nodes as identical services.

If two nodes return a “consistent output” they are labelled as legitimate users, where if

an inconsistent result is received they are classified as compromised.

Youngmin and Chung [53] propose an authorization algorithm based on an improved

role-based access control technique that dynamically determines the access level to Cloud

computational resources considering contextual and security information. Once a user

attempts to retrieve the protected resources, the Service Provider (SP) collects the context

data from both the user and the environment to perform access decisions. The SP

consists of two modules: the service module, which provides users with various types of

services (such as e-commerce and Digital Rights Management service) and the security

module that offers the security function of the services. The algorithm uses a context
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interpreter that converts collected contexts to quantitative values, which are used to

evaluate the security level and the access control algorithm required. According to the

security level, role, and access policy, the context engine determines and allocates the

appropriate security services to a user.

Squicciarini et al., [12] propose policy execution techniques for the dynamic protection

of users’ sensitive resources (referred by the authors as “security-aware objects”) in the

Cloud. Based on the contextual characteristics of a security-aware object, the local

laws and the service level agreements, the proposed system adapts and deploys security

policies of varied granularity. For each security-aware object, the system deploys five

key components for its protection: i) authentication and authorization tools; ii) self-

enforcement policy engine; iii) security policies in executable form; iv) secure connections

manager and v) protected file(s). When a security-aware object is created or is moved to

a new location, the policy composition and translation process is activated to ensure that

only relevant and applicable policies are used. The policy translation process is preceded

by the selection of applicable rules, followed by the static ordering of applicability, which

reveals the optimal available policy.

Ma and Wang [54] introduce a self-adaptive access control model for the Cloud. The

model is based on feedback loops and consists of five phases: monitor, analyse, plan, exe-

cute and knowledge-base. The feedback loop starts with monitoring the access requests,

access attributes, access behaviour and history records of a user which are then provided

as an input to other modules. The proposed model uses an analysis module to exam-

ine the recorded access behaviour of a user, which determines whether it is required to

update the knowledge-base by selecting a sample from the records. The knowledge-base

contains basic access control information, including the relation degrees among access

control attributes. According to access feedback data, the relation degree can self-repair

and self-improve. Following, the plan module computes the relation degrees in the sample

history records and updates the knowledge-base to provide decision support for access

control. Lastly, the execute module is used as an interface to retrieve the new knowledge-
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base and perform the access request decisions.

Yee et al., [55] promote a self-adaptive intrusion detection system for protecting web

services from security threats associated with SOAP/XML/SQL. To achieve this, the

proposed system deploys agents to monitor user behaviour. The recorded behaviour

consists of: “the source and destination IP, service requests and responses, user ID, SOAP

parameters, message size, request/response time frame, the number of messages over a

certain time frame for a request/response, valid SQL commands and valid XML syntax

and schema”. The agents are then using data mining methods to identify violations.

These violations are further analysed with the usage of fuzzy logic to reduce false positives.

In the case of a detected violation, the action provider can either block, reject or terminate

an activity to eliminate/mitigate the violation.

2.2.2 Mobile Ad-hoc Network Driven SAS

The work of Dressler [42] explores similarities between computer networking and cellular

mechanisms. This work analyses how molecular biology can be promoted as a generic

approach for self-organizing solutions in computer networking. Specifically, the author

examines how the signalling pathways can be adaptable to information exchange in net-

work security environments and other communication relationships.

Chigan et al., [39] address the issue of limited resource consumption in Mobile Ad-hoc

Networks (MANETs), which unintentionally causes Denial-of-Service attacks. To resolve

this limitation, the authors promote a framework that can design an adaptive network

provisioning scheme that caters for the security and resource consumption of users. The

proposed framework operates on two layers: the ”offline optimal secure protocol selection

module” and the ”online self-adaptive security control module”. By using these modules

it is feasible to deploy various combinations of security protocols at runtime. The ”offline

optimal protocol selection module” is used to determine the optimal permutation of se-

curity protocols between various system layers, where the ”online self-adaptive security

control module” is responsible for alleviating the trade-off between network and secu-

33



rity performance in MANETs. The proposed framework quantitatively evaluates various

permutations of protocols based on their security level and the computational overhead

they produce, which is achieved with the usage of two ”quantitative indexes: the Security

Index (SI) and the Performance Index (PI)”. The SI illustrates the effect of each group

of security protocols to the overall security of a MANET, where PI signifies the perfor-

mance of a security protocol in a network according to the quality of a specified service.

By using these benchmarks the offline module is able to deploy different sets of secure

protocols that provide varying security capabilities and are associated with different cor-

responding performance costs. To compare protocol sets the proposed system utilises

two SI quantification procedures: the equal and unequal threat procedures. The equal

threat procedure is used when little information exists concerning a threat. Whereas, the

unequal threat procedure is used when substantial information exists for a threat. Lastly,

the “online self-adaptive security control module” uses data from the “offline optimal se-

cure protocol selection module” to dynamically adapt the secure protocols according to

contextual changes.

Kong et al., [56] propose a framework for authenticating nodes and detecting security

intrusions in hierarchical Ad-hoc networks with Unmanned Aerial Vehicles (UAVs). De-

pending on the infrastructure changes on a UAV-MBN (mobile backbone node) network,

the proposed solution alters between two modes to satisfy the network and security re-

quirements, namely: i) the infrastructure mode, in which UAVs play the role of central

authentication authorities and ii) the infrastructure-less mode, which is employed once all

UAVs malfunction or are eliminated. The framework consists of three layers: the “ground

mobile nodes (soldiers), the ground mobile backbone (MBN) nodes, and the UAV nodes”

[56]. Based on the availability of UAVs in the network, a mobile backbone node alters

between the two modes of communication. When UAVs are absent, the surviving units

turn to the infrastructure-less mode for security and communication. The authentica-

tion of nodes and intrusion detection in the infrastructure-less mode is localised to each

ground node until a new UAV is available to switch back to the infrastructure mode.
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In infrastructure mode, UAVs take the role of centralised certification authorities and

perform node authentication and distributed intrusion detection.

The work of Farid et al., [57] presents an adaptive network intrusion detection system

that reduces false positives and maximises the detection rate when classifying intrusions.

This is achieved by using a modified Bayesian algorithm on given datasets describing

sets of probabilities concerning the likelihood of being part of various clusters. Zero-

day attacks are classified in a training set and assume maximum value. The weights

assigned to training sets are adjusted until every training set is classified or until a

certain threshold of classification accuracy is achieved. Based on the weights of the

training samples produced and the large volume of network data analysed, it is feasible

to enhance the effectiveness and precision of the detection mechanism.

Kurosawa et al., [58] propose a new detection method for MANET environments that

is grounded in dynamically updating learning data. As a case study, the authors use the

Ad-hoc On-demand Distance Vector (AODV) routing protocol. The framework uses four

features of the AODV routing protocol to detect abnormalities in a network link, namely:

“Number of received RERR messages, Number of sent out RERR messages, Number

of dropped RREQ messages and Number of dropped RREP messages” [58]. To detect

anomalous behaviour, all nodes in the MANET monitor their traffic. The framework uses

the Principal Component Analysis methodology on the recorded traffic data to explore

the correlation between the normal and malicious state of network activity. When the

projection distance between the two vectors surpasses a certain threshold, then this traffic

is labelled as an attack. On the contrary, all normal traffic is used as a learning dataset.

Abie and Balasingham [49] present a risk-based self-adaptive security system for the

Internet of Things (IoT) in e-Health. The proposed system is capable of estimating and

predicting system benefits and risks with the assistance of context-aware game theoretic

models. The system consists of the following models: “Adaptive risk management model;

Adaptive monitoring model; Analytics and predictive model; Adaptive decision-making

model; and Evaluation and validation model” which operate in a repeated cycle. This cy-
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cle allows the system to alter its security policies according to the obtained estimations.

The adaptive monitoring model adapts the architecture through a continuous cycle of

monitoring and analysis of contextual data and IoTs status information at runtime. The

analytics and predictive model examines the recorded data with game theory models to

evaluate and forecast possible risks and benefits. Following, the decision-making model

adapts to the environment, the runtime variations of things and the potential threats.

Finally, the evaluation and validation model is used to discover trade-offs between dif-

ferent solutions by varying assumptions on threats and requirements, which leads to the

selection of better metrics.

Robertson and Laddaga [59] suggest a self-adaptive trust modelling system for net-

worked resources. The proposed framework is founded on conditional preferences and the

principle of maximum entropy [60]. The authors assume that they maintain explicit mod-

els of the computational assets that their framework reasons over including the models of

executing configurations and candidate alternative configurations. The framework uses

these models to identify unexpected behaviour and diagnose which parts are responsible

for the unexpected behaviour.

Hsieh and colleagues present SecCBSN [47]. The system comprises of three security

modules that are used for establishing secure communication links, broadcasting authen-

tication between neighbouring nodes, and detecting and eliminating malicious network

nodes. The self-organization module is initially used to adapt the clustering algorithm of

LEACH. To achieve this, the cluster head plans future transmissions and monitors the

periods for each of the nodes in the network. Following, member nodes transmit data to

the base station through the cluster head within the predetermined transmission periods.

Each cluster further divides its members to multiple monitoring subgroups which are

used to monitor communication throughout the delivery phase. SecCBSN authenticates

newly registered sensor nodes by using neighbouring authenticated nodes at the end of

each cluster round. All authenticated nodes share pairwise keys with all their neigh-

bouring nodes, which results to trust relations between the nodes. To achieve greater
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security, SecCBSN utilises a secure transmission module that operates between member

nodes and the cluster head; and between the cluster head and base station nodes in which

symmetric and pairwise keys are used for the authentication of nodes and their private

data. All authenticated member nodes are then forwarding their encrypted data to the

cluster head. The cluster head then forwards the cumulative obtained data (encrypted

with the shared key) to the base station by the end of each cluster round. In the case

that a network node is compromised, SecCBSN employs the compromised node detection

and elimination module in which an alarm-return protocol is deployed. All monitoring

nodes are able to report malicious nodes to the base station by forwarding alarm packets.

Once an alarm packet is received by the base station, the source node is evaluated based

on a trust value. The evaluated nodes are then clustered into a blacklist or a whitelist

based on their given values. Nodes in the blacklist are eliminated, whereas nodes in the

whitelist are used as a reference for candidate member nodes.

Son and colleagues engineered an adaptive security manager for distributed database

systems [45]. The security manager is responsible for authenticating clients and enabling

secure communications between them while catering for resource consumption in the

system. In the case of a system overload, the manager changes its behaviour by deploying

computationally lighter security, thus lessening resource consumption. This work exploits

a multi-level security classification methodology, in which the upper layers provide higher

security and necessitate more resources than the underlying layers.

Schneck and Schwan engineered Authenticast [61], a dynamic communication protocol

that offers varying security levels. Authenticast aims at satisfying the runtime authenti-

cation needs of clients while catering for the trade-offs between security and performance.

More precisely, this work is concerned with the manipulation of CPU resources and the

elimination of security threats. The solution uses heuristics to dynamically determine the

level of authentication required in a network and the strategy for deploying the security

solution. The proposed method uses a “security thermostat” as a controller for deploying

adaptive authentication policies at runtime.
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Zou and colleagues present an intelligent firewall architecture grounded in a fuzzy

adaptive security algorithm [62]. The proposed framework uses six different modules, the:

“packet capture and data mining module, static packet filter, dynamic packet monitor,

address translation gateway, control module and security policy rules”. A fuzzy controller

is used as the input of the system, which records the characteristics of network packets.

The system determines and adjusts the security level for each network packet based on

the various states of each packet, hence mitigating the trade-off between performance and

security.

The work of Tedesco et al., [63] proposes an intrusion detection algorithm inspired by

the human immune system for discovering zero-day attacks. This is achieved by detecting

packets whose contents significantly diverge from the current signature databases with the

assistance of dendritic cells (DC) and T-cells. DC are a part of the immune system, which

interacts with antigen to regulate the state of adaptive immune systems cells, where “T-

cells are members of the adaptive immune system that use receptors that bind to antigen

presented in an MHC-antigen complex on the surface of DCs and respond to the strength

of the match between receptor and antigen” [63]. Once a DC depicts the needed packets,

it is then the duty of T-cells to decrease their number by discovering similarities in their

data structure. DCs are responsible for discovering anomalous behaviour, where T-cells

are dealing with the selection of patterns among the antigen data.

Awais and colleagues propose a “bio-inspired self-defending framework” for IP multi-

media subsystems [64]. Their system is used for protecting infrastructure nodes against

denial of service (DoS) and distributed denial of service (DDoS) attacks. It serves as an

artificial immune system that classifies anomaly detection that emerges from the analysis

of network packets. To detect DoS and DDoS attacks, the proposed system uses the

negative selection classification technique, which can be found in the immune system.

Lymphocytes (detectors) grow in thymus and undertake the negative selection process.

The lymphocytes that are able to withstand the negative selection procedure remain in

the thymus (database describing normal behaviour). Following, the remained lympho-
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cytes are distinguishing and separating the self (healthy packages) and non-self (malicious

packages) antigens.

The work of Carney and Loe [40] proposes four techniques for the engineering of

dynamic security policies for distributed trusted operating systems that separate the def-

inition and enforcement of a policy in a server. The distributed trusted operating system

comprises a micro-kernel and a set of servers. The micro-kernel coordinates and manages

the communication between servers, where the servers provide different operating system

services (e.g., authentication). Once a service request is made, the micro-kernel forwards

the security identifiers describing the context of a subject/object to a special server, called

the Security Server, to define the security policies. The four methods studied by this work

are the following: “i) Reloading a new security database for the security server, ii) Ex-

panding the state and security database of the security server to include more than one

mode of operation, iii) Implementing another security server and handing off control for

security computations and iv) Implementing multiple, concurrent security servers each

controlling a subset of processes”. The four methods have been evaluated based on five

criteria: policy flexibility, functional flexibility, security, reliability and performance.

The work of Bailey et al., [65] proposes a self-adaptive authorization system for manag-

ing distributed policy-based access control and attribute-based access control authoriza-

tion infrastructures. The system uses a control loop that monitors the behaviour of users

and based on its assessment the authorization policy is either relaxed or strengthened to

meet the new requirements at hand. The proposed system consists of five manageable

assets: the attributes-credentials, “the attribute authority’s credential issuing policy, the

resource owner’s credential validation and the access control policies”. Throughout the

modification of these attributes, the system is able to manage the credentials issue to

users, thus increasing/decreasing their permissions. By adapting/switching between au-

thorization policies the system is able to control the access rights for different groups of

users at policy level.

Foo et al. promote an automated, proactive response mechanism for the containment
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of intrusions in distributed e-commerce systems comprising of interacting services [66].

The proposed system uses an I-GRAPH to define the associations between services in

terms of intrusion spread. By maintaining this graph, the system is able to proactively

stop an attacker from moving between attack nodes with the deployment of countermea-

sures at specific nodes. This is achieved by estimating the likelihood of an intrusion spread

between neighbouring services based on a propagated I-GRAPH and then determining

the appropriate countermeasures for facing an attack. The decisions taken are grounded

on the disruptivity of the responses to non-benign system processes, the effectiveness

of previously deployed countermeasures and the assurance that the intrusion will occur.

Finally, the feedback mechanism examines the outcome of the enforced countermeasures

and uses that for future decisions.

Hassan and Abdellatif [67] propose a two-layer framework that adapts the security of

mobile agents at runtime. The first layer performs a static adaptation with the assistance

of MSAS (Management System of Agents Security) component, which is a storage for

various security mechanisms. Based on the services requested by an agent, the MSAS

component selects appropriate security mechanisms for the agent and determines how

the mobile agent can further adapt at runtime. Following, the second layer is deployed

for performing a reflexive structural adaptation. Based on the degree of confidence that

a mobile agent has for the operating platform the security mechanisms are accordingly

adapted.

The work of Tsigkanos et al., [68] proposes a topology-aware adaptive security system

that can identify possible violations in the security requirements that emerge from the

topological changes of users and their assets. Based on the occurring runtime changes,

the system selects appropriate security countermeasures to prevent these violations before

they are manifested. To achieve this, the proposed methodology uses the paradigm of

ambient calculus to represent a real-time model of the topology, including the agents and

assets comprising the environment, as well as the possible future states of the system.

Whenever assets/agents re-allocate, or the structure of the physical space is changed,
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the system tries to identify possible violations in their security requirements and deploys

appropriate countermeasures to avoid them. This work grounds its adaptation strategy

on topological changes, which can prove ineffective in dynamic environments, such as the

Cloud, where the location of users and assets is often unknown.

2.2.3 Host Driven SAS

Sexena and colleagues present a system for autonomic security that is grounded on an

adaptation loop comprising of: monitoring, analysing, and responding modules [46]. The

proposed system selects different access control, authentication and cryptographic secu-

rity services to reconfigure itself according to a system’s runtime security requirements.

To accomplish this, the system starts with the deployment of monitoring modules that

observe security related events, called security context. Following, the analysing modules

subscribe to the events detected by the monitoring modules and based on the type of

the events, each analysing module proposes a security task for re-configuring the system.

Finally, the responding module maps these security actions to implementation specific

sub-systems.

Salehie et al. [69] consider assets as primary entities that dynamically evolve at

runtime and need to be individually secured. At design time, the framework uses three

models describing: “assets, threats and security requirements” along with risk information

and utility nodes for building a fuzzy causal network. The constructed fuzzy causal

network defines the elements (i.e. assets, threats, security requirements) and the links

between them, which are used to determine how the runtime variations in assets can

influence security. The fuzzy causal network is updated and used at runtime when assets

are modified to provide a set of security options, from which the most suitable option

is depicted for adaptation. The authors test their framework based on a mobile phone

example, where different mobile phone devices maintain different assets with varying

significance and different security policies are enforced. In spite of the asset-centric nature

of the solution, the way that assets are defined and the assumptions describing them
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significantly vary from assets in the Cloud. This rises from the shared and multitenant

nature of the Cloud, where a large number of physical and software resources can no longer

be perceived as traditional assets, but as mere resources serving the needs of users.

Shrobe and colleagues examine two information systems (i.e., PMOP and AWDRAT)

and show how they can adaptively defend against internal and external attackers [70].

PMOP is used as a defence mechanism for internal threats, where AWDRAT is deployed

for detecting external system threats. In particular, PMOP is used to identify if a system

administrator has requested an action that is considered malicious by a system, while

AWDRAT is used to determine if a system’s behaviour is correct in response to a non-

malicious request. Both AWDRAT and PMOP are able to discover variations from

benign behaviour via the usage of self-monitoring wrappers that collect data and control

application tasks; and an architectural methodology that predicts the behaviour of a

system in response to internal user requests. More specifically, the authors developed a

malicious behaviour detector that examines a user’s application modification records and

compares this information to a static model representing benign behaviour. The described

model provides information concerning the type of behaviour that can be anticipated

along with information on how to assess the correctness of the exhibited behaviour,

which is achieved with the analysis of plant models, security models, efficient applications,

heuristics and design policies.

Harmer and colleagues promote an adaptive, distributed defence system that is grounded

on biological methodologies within a multi-layer architecture [71]. The proposed system

is able to detect, identify and eliminate malicious code and bad network packets. The

level of effectiveness is tunable through the selection of the number of antibodies, the

antibody length, and the detection threshold.

Abie and colleagues propose an adaptive messaging middleware called GEMOM,

which promotes self-adaptability and assurance to malicious behaviour and incorrect

input at runtime [72]. GEMOM uses dynamic security and a quality of service model

comprising a “continuous cycle of monitoring, assessment and evolution”. More specifi-
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cally, contextual information is gathered from within the system and the environment for

analysis which results in the adjustment of security functions (e.g., encryption schemes).

The work of Venkatesan et al., [73] presents a threat-adaptive firewall that uses a

trust state mechanism for capturing various levels of security while catering for a system’s

performance. More specifically, the authors promote a threat-adaptive methodology with

a dynamic non-binary access control mechanism and various levels of authentication based

on the runtime threats. The proposed method links a trust level with each user and

accordingly deploys an ad-hoc security policy for each.

Carver et al. [74] propose an automated intrusion response system that uses a group

of software agents as the first line of defence for the protection of computer systems until

their administrator can take action and protect them. The proposed system uses five

types of agents, namely the: interface agent, master analysis agent, response taxonomy

agent, tactics agent and policy specification agent. The interface agents poses a model

for each intrusion detection system, illustrating the number of previous false negatives

and positives occurred. These models are used for constructing a confidence metric,

which is then forwarded with the intrusion report to the “master analysis agent”. Upon

reception, the intrusion is classified as either a new or an existing threat. In the case

of a new threat a new “analysis agent” is generated to devise a set of countermeasures,

whereas if it is an already existing threat the “confidence metric and intrusion report”

is forwarded to the “analysis agent” responsible for the attack. The “analysis agent”

generates a specification describing the actions to be followed for resolving the attack

by invoking the response taxonomy agent and policy specification agent to respectively

categorize the threat and concretise the security countermeasures. Following, the analysis

agent forwards the planned actions to the tactics agent for carrying out the devised

countermeasures. Finally, the system records the decision of the analysis and tactic

agents for administrator review.

Evesti et al. [75] present a self-adaptive security methodology for smart spaces. The

proposed system is based on control loops. Initially, the monitor phase employs mon-
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itoring probes to record the changes on security-related characteristics from the smart

space and the applications comprising it. Once a significant amount of knowledge is

gathered, the recorded data are examined to determine if the existing requirements are

satisfied. If not, the planning phase generates an adaptation strategy, which is imple-

mented during the execution phase. The authors test their system on a case study based

on authentication and authorization methodologies.

Locasto et al. [76] promote FLIPS, an adaptive intrusion prevention system that

thwarts binary code injection attacks at host level. To achieve this, FLIPS uses a hybrid

methodology combining anomaly classification and signature matching mechanisms. The

feedback used for the proposed framework is obtained by STEM, an x86 emulator. STEM

is able to “discover injected code, automatically recover from an attack and forward the

attack code to the anomaly and signature classifiers”. To evaluate their system, the

authors have deployed it to an HTTP server for discovering zero-day attacks.

The work of Garlan et al., [77] proposes an automated mechanism for detecting and

recovering a system from errors with the enforcement of “externalize” adaptation. Ex-

ternalise adaptation is performed by deploying components outside the system for moni-

toring its behaviour to determine whether the exhibited behaviour abides to the accept-

able/predefined system design. The externalised mechanisms sustain and utilise system

models defining an abstract, global view of the running system along with support rea-

soning concerning system errors/problems and repair plans. In the case of a system

violation, a repair mechanism is deployed to adapt the architecture of the system and

protect it.

2.3 Application of Proposed Taxonomy

This section applies the proposed taxonomy to the surveyed work presented in section

2.2. The findings of our taxonomic analysis are clustered based on the design centricity

of the surveyed work and presented in three tables. Table 2.2 presents self-adaptive se-
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curity solutions that are concerned with the runtime security of assets; Whereas, Table

2.3 and Table 2.4 present work that revolves around the runtime security of users and

software systems respectively. Due to the varying nature and composition of different

entities (i.e., users, assets, and systems), different security approaches/mechanisms can

be used for securing them. These mechanisms can operate at different layers with vary-

ing architectures and methodologies. By grouping our findings according to the design

centricity of the surveyed solutions, it is feasible to extract and identify the fundamental

characteristics, idiosyncrasies and design patterns shared by security solutions of similar

centricity. Thus, gaining a better understanding of the methods that need to be followed

when securing specific entities in open environments such as the Cloud.

2.4 Taxonomic Analysis Findings and Observations

This section reports and discusses our taxonomic findings. The results have been pre-

sented in terms of the fifteen dimensions comprising our architecture-centric taxonomy.

For each dimension, we present a quantitative analysis of the design principles and ap-

proaches used by security engineers when developing self-adaptive security systems, along

with our understanding of their limitations and challenges. We then propose strategies

for overcoming these limitations and challenges, to engineer more dependable, elastic and

dynamic solutions.
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Table 2.2: Taxonomic Findings for Surveyed Asset-Centric Security Solutions.
System Conceptual Model Adaptation Primitives

Reference Security
Goals

Control
Topology

Component
Composabil-

ity

Component
Discoverability

Component
Dependency

Operational
Transparency

Platform
Dependancies Elasticity

Security
Mechanism(s)
Deployment

Inspiration Awareness Adaptation
Layer

Anticipatory
Support

Cost
Sensitivity

[12]

Confidentiality
(Authorization)

Integrity
(Authentication)

Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Service Reactive Cost

Insensitive

[59] Invasive
behaviour Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Network Reactive Cost
Insensitive

[69]

Integrity
(Authentication)
Confidentiality
(Encryption)
Availability

Accountability

Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Application

Host Reactive Cost
Insensitive

[68] * Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Network
Application Proactive Cost

Insensitive
’*’ Indicates a generic adaptive security solution with no explicit links to any specific security features (e.g. integrity, confidentiality etc.).
’N/A’ Indicates that a work is not concerned with a dimension of our taxonomy.

Table 2.3: Taxonomic Findings for Surveyed User-Centric Security Solutions.
System Conceptual Model Adaptation Primitives

Reference Security
Goals

Control
Topology

Component
Composabil-

ity

Component
Discoverability

Component
Dependency

Operational
Transparency

Platform
Dependancies Elasticity

Security
Mechanism(s)
Deployment

Inspiration Awareness Adaptation
Layer

Anticipatory
Support

Cost
Sensitivity

[20]
Confidentiality

Integrity
Availability

Semi-
decentralised Design Time Supported Autonomous Transparent Platform

Independent Linear Add-on Economic Inspired Contextual Service Reactive Resources
Monetary

[53]
Confidentiality
(Authorization) Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Service Reactive Cost
Insensitive

[54]
Confidentiality
(Authorization) Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Service Reactive Cost
Insensitive

[39]
Availability

(DoS) Centralised Design Time Unsupported Semi-Controlled Partially
Transparent

Platform
Independent N/A Add-on Control Method Contextual Network Reactive Resources

[61]
Integrity

(Authentication) Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Network Reactive Resources

[46]

Confidentiality
(Authorization)

Integrity
(Authentication)

Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Add-on Control Method Contextual Application Reactive Cost

Insensitive

[67] * Semi-
decentralised Runtime Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Service Reactive Cost
Insensitive

“N/A” Indicates that a work is not concerned with a dimension of our taxonomy.
“*” Indicates a generic self-adaptive security solution with no explicit links to any specific security features (e.g. integrity, confidentiality etc.).
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Table 2.4: Taxonomic Findings for Surveyed System-Centric Security Solutions.
System Conceptual Model Adaptation Primitives

Reference Security Goals Control
Topology

Component
Composability

Component
Discoverability

Component
Dependency

Operational
Transparency

Platform
Dependencies Elasticity

Security
Mechanism(s)
Deployment

Inspiration Awareness Adaptation
Layer

Anticipatory
Support

Cost
Sensitivity

[38] - Centralised Runtime Supported Semi-Controlled Partially
Transparent

Platform
Independent Sub-linear Integrated

Add-on
Control Method Contextual Service Reactive Cost

Insensitive

[50] Invasive behaviour
(Malware)

Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Service Reactive Cost
Insensitive

[48]
Invasive behaviour

(DDoS, spam,
malware)

Semi-
decentralised Runtime Supported Autonomous Transparent Platform

Independent Sub-linear Add-on Control Method Contextual Service Reactive Cost
Insensitive

[51]

Accountability
Confidentiality
(Authorization)

Integrity
(Authentication)

Semi-
decentralised Design Time Unsupported Controlled Partially

Transparent
Platform

Independent N/A Integrated Control Method Contextual Service Reactive Resources

[52]
Integrity

(Trustworthiness) Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Service Reactive Time

[42] Invasive behaviour Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Bio-inspired Contextual Network Reactive Cost
Insensitive

[56]
Integrity

(Authentication)
Invasive behaviour

Hierarchical
decentralised Design Time Unsupported Autonomous Concealed Platform

Independent N/A Integrated Control Method Contextual Network Reactive Cost
Insensitive

[57] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method behaviour

Contextual Network Proactive Cost
Insensitive

[58] Invasive behaviour decentralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Network Reactive Cost

Insensitive

[49] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Add-on Control Method Contextual Host

Network Proactive Cost
Insensitive

[47]
Invasive behaviour

Integrity
(Authentication)

Hierarchical Design Time Unsupported Controlled Concealed Platform Specific N/A Integrated Control Method Contextual Network Reactive Cost
Insensitive

[45]

Integrity
(Authentication)
Confidentiality
(Encryption)

Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Network Reactive Resources

[62] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Network Reactive Time

[63] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Bio-inspired Contextual Network Reactive Cost

Insensitive

[64]
Availability (DoS,

DDos)
Semi-

decentralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Bio-inspired Contextual Network Reactive Cost

Insensitive

[40] * Semi-
decentralised Design Time Supported Semi-Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Application
Host Reactive Cost

Insensitive

[70] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method behaviour Application Reactive Cost

Insensitive

[71] Invasive behaviour Hierarchical Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Bio-Inspired Contextual Application

Network Reactive Cost
Insensitive

[72] * Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Application Reactive Cost
Insensitive

[73]

Integrity
(Authentication)
Confidentiality
(Authorization)

Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method behaviour Application Reactive Cost

Insensitive

[74] Invasive behaviour Centralised Design Time Unsupported Controlled Concealed Platform
Independent N/A Integrated Control Method Contextual Application

Host Reactive Cost
Insensitive

[55] Invasive behaviour
(SOAP/XML/SQL) Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method behaviour Service Reactive Cost
Insensitive

[65]
Confidentiality
(Authorization)

Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Network
Application Reactive Cost

Insensitive

[75]

Integrity
(Authentication)
Confidentiality
(Authorization)

Semi-
decentralised Design Time Unsupported Semi-Controlled Concealed Platform

Independent N/A Integrated Control Method Contextual Application
Host Reactive Cost

Insensitive

[66] Invasive behaviour
(Threat containment)

Semi-
decentralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method behaviour Network Proactive Cost
Insensitive

[76] Invasive behaviour
(Code Injection) Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method behaviour Host Reactive Cost
Insensitive

[77]
Availability (System

errors)
Centralised Design Time Unsupported Controlled Concealed Platform

Independent N/A Integrated Control Method behaviour Host Reactive Cost
Insensitive

“N/A” Indicates that a surveyed work is not concerned with a dimension of our taxonomy.
“–“ Indicates that an adaptive mechanism is not security explicit, however it implicitly considers and supports security.
“*” Indicates a generic adaptive security solution with no explicit links to any specific security features (e.g. integrity, confidentiality etc.).
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2.4.1 Security goals

Tackling invasive behaviour has been identified as the most common security focus (32%)

among self-adaptive security systems (Figure 2.2). The majority of the surveyed work

focuses on the detection and mitigation of generic security attacks [57], [58], [49], [59],

[47] with few exceptions that aim at stopping [50] and containing [48] malware binaries

[66], code injection attacks [76] and SOAP/XML/SQL threats [55].

Integrity has been identified as the second most prominent security goal, holding the

24% of the surveyed work. The encountered work is primarily concerned with adaptive

authentication strategies [51], [12], [56], [47] apart from the work of [52], [20] which focus

on trustworthiness and integrity respectively.

Confidentiality has been also extensively addressed by security software engineers

(22%). A majority of the encountered work is heavily associated with adaptive autho-

rization mechanisms [53], [12], [54] and encryption schemes [45].

Following, availability gained limited attention (10%), showing a tendency towards

omitting warranting the continuous access of data/services to users. The current work

on availability restricts its focus on DoS attacks [39], [64] and system errors [77] which

are only some of the threats that can harm availability.

Finally, 8% of the surveyed work is associated with generic security (security solutions

Invasive behaviour

32%

Generic (*-)

8%

Integrity
24%

Availability

10%

Confidentiality

22%

Accountability
4%

Figure 2.2: Security goals of the surveyed work.
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with no explicit links to any particular security goal), where accountability is neglected

by a vast majority of the existing solutions (4%).

Despite the focused attempts on goal-specific security, the existing solutions are lim-

ited as they have not been engineered with ultra-large environments in mind. Though

they are highly adjustable and dynamic, they are not able to manage the varying nature

and composition of the threats that might encounter in open environments. To engineer

more dynamic and autonomous solutions it is necessary to realize that security cannot

be achieved with the usage of limited/fixed number of pre-installed security mechanisms

and countermeasures. Based on environmental changes, different security mechanisms of

diverse nature must be deployed for securing users, assets and software systems. The

Service Oriented Architecture (SOA) paradigm can promote a dependable solution, that

will enable adaptive security systems to support diverse security goals via the discovery

and selection of different security services at runtime. Despite that SOA can be used as

a candidate solution to the problem, it can also introduce privacy-related threats from

the side of the service providers. Therefore, security software engineers must develop

methodologies that will preserve the privacy of users/systems from service providers in

the occasion where they act maliciously. This can be achieved with the introduction of

authorization mechanisms that will allow users/systems to enforce restrictive policies for

service providers, forbidding them to perform unwanted actions.

Furthermore, security engineers should conduct a fine-grained analysis of the “adap-

tation boundaries” of their solutions, in terms of what are the acceptable adaptation

actions that their systems can perform when operating unsupervised, which is currently

overlooked by the existing work. The problem occurs in cases where “extreme” secu-

rity measures are considered and executed by self-adaptive systems to protect a sys-

tem/user/asset. These measures often come at a high cost as they sacrifice other features

(e.g., availability). Consider the example where a user is connected to a compromised

network and it is facing multiple threats with no available countermeasures. One “ex-

treme” measure that a self-adaptive system could consider is to disconnect that user from
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the network for some time to protect him, at the cost of his/her availability. Despite the

cautious nature of the certain action; however, it can be perceived by a user as a non-

dependable/irrational action. Therefore, software engineers should carefully determine

what adaptation strategies are appropriate yet customizable by individual users before

deploying them.

2.4.2 Control Topology

Our findings concerning the control topology (Figure 2.3) of the surveyed solutions illus-

trate a tendency towards centralization (57%) [38], [52], [53], [12]. We have observed that

all the solutions that are grounded on centralised architectures operate in more static and

controlled environments.

Following, semi-decentralised architectures have been identified as the second most

preferable control topology (31%) for self-adaptive systems [64], [40], [72], [65] illustrating

that a significant number of existing work considers elasticity and dynamism to an extent.

Finally, hierarchical (7%) and decentralised architectures (5%) identified as the less

dominant architectures. We have noticed that hierarchical architectures are often used

for Ad-hoc and mobile networks [56], [47], whereas decentralised architectures are often

used for the Cloud [48], [51].

Semi-decentralised

31%

Centralised

57%

Decentralised

5%
Hierarchical

7%

Figure 2.3: System architecture designs of the surveyed work.
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The control topology preferences of contemporary solutions signify various limita-

tions. Centralised architectures can be limited or unsuitable for open and ultra-large

environments due to their unpredictable and elastic nature. Centralised architectures are

ineffective as they introduce a single point of failure, processing and coordination, which

damages performance and restricts users from handling their own security and assets in

ways that they seem fit. Additionally, centralised architectures are not capable of the

concurrent management of large numbers of heterogeneous user requests due to the high

computational overhead imposed to a single processing unit. For the aforementioned

reasons, security engineers should further explore decentralised and hierarchical architec-

tures to engineer more secure and efficient self-adaptive solutions. To another extent a

better, yet more complex approach is to engineer adaptable architectures to allow self-

adaptive security solutions to switch between different architectures according to changes

on runtime security. An example of such work is the paper of Kong et al., [56] which

proposes a system for UAV-MBN networks that can switch between two infrastructures

based on the availability of key nodes. A major challenge for the engineering of adaptable

architectures is the transitioning between architectures, which is an extremely complex,

time-consuming and costly procedure [78]. Transitioning methodologies should operate

in an efficient manner while warranting the regular operation of self-adaptive systems

throughout the transition.

2.4.3 Component Composability

Figure 2.4 illustrates that a vast majority (i.e. 92%) of the surveyed solutions do not facil-

itate any mechanisms for composing security mechanisms at runtime. Whereas, only 8%

of the examined solutions are able to compose security mechanisms. We have observed

that all the solutions capable of composing components operate in open, ultra-large en-

vironments, such as mobile networks [67] and the Cloud [38], [48].

In some occasions, using a single security mechanism might be inadequate for securing

a user/system. Such occurrences can be extensively witnessed in open, elastic environ-
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Runtime
8%

Design Time

92%

Figure 2.4: Component composability capabilities of the surveyed work.

ments, where unforeseen threats of diverse nature are frequently encountered. In these

cases, it is needed to compose and orchestrate a bundle of security components to mitigate

runtime threats. Therefore, security engineers should transition from the trivial deploy-

ment of sole security components to the deployment of multiple security components of

diverse nature.

A key challenge for component composability is to ensure that different components

do not maintain conflicting goals. In the case where trade-offs exist between security

components, the operations of a system can be challenged or even break. To better

illustrate this challenge, consider the example where a user wants to deploy a context-

aware security solution to detect malicious network traffic. Now consider that an anomaly

is detected and the self-adaptive system deploys SSL/TLS encryption to protect data from

leaking. Once the SSL is deployed, the context-aware mechanism can no longer function

properly due to the encrypted traffic that restricts it from accessing the data. Thus,

the overall stability of a user’s security is damaged. To avoid such occurrences, trade-off

analysis mechanisms should be used to examine the compatibility of newly introduced

security components to the operating environment. A method to achieve this is the use

of symbiotic simulation [79] in which administrators can test the compatibility of new

components in a simulated, risk-free environment prior to their deployment in the real

52



system. Significant work exists on trade-off analysis, though, it is concerned with the

analysis of generic, security implicit trade-offs [80], [81], [82], [83].

2.4.4 Component Dependency

A majority (i.e. 81.6%) of the surveyed self-adaptive security systems enforce a high

degree of control and dependency between the security components comprising them

(Figure 2.5). To our surprise, some of these solutions were designed for Cloud computing,

which are environments that necessitate the deployment of dynamic solutions. Despite

the co-depended nature of the security mechanisms comprising the identified Cloud-based

solutions, they were still able to effectively operate due to the static nature of their

operations, such as integrity attestation [52], access control [53] and policy enforcement

[12].

On the contrary, semi-controlled and autonomous methodologies acquired limited

attention, reaching the 10.53% and 7.87% of the surveyed work respectively. The obtained

results illustrate that these methodologies were employed by solutions applied in highly

elastic and dynamic environments such as Ad-hoc networks [56], [39] and Service Oriented

Architectures [48], [20], [38].

As ultra-large environments undergo significant runtime changes, they necessitate

Controlled

81.6%

Semi-Controlled

10.53%

Autonomous
7.87%

Figure 2.5: Level of dependency between the security components of the surveyed solu-
tions.
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the deployment of different security components to fulfil their changing security needs.

Therefore, it is essential that security components are not highly correlated to each other

or the host systems so they are easily removed and replaced. Security components should

be treated as add-ons with no specific composition to allow their effective integration in

adaptive security systems.

2.4.5 Component Discoverability

Existing self-adaptive systems (i.e., 90%) favour security that emerges from pre-installed

security mechanisms that are instantiated at design phase (Figure 2.6). These solutions

can prove limited as they may fail to face runtime threats of diverse nature due to the use

of pre-defined countermeasures. Only 10% of the reviewed solutions were able to discover

components that are situated at different locations at runtime. These solutions were

mostly deployed in service oriented architectures [38], [20] and distributed environments

[40], in which it is crucial for users and software systems to switch between different

security mechanisms to meet their runtime goals.

Security engineers should further consider the development of suitable mechanisms

for the discovery of security components/mechanisms, to ensure the secure operation of

Supported

10%

Unsupported

90%

Figure 2.6: Component discoverability capabilities of the surveyed work.
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their systems/users in the face of runtime threats. A way to achieve this is through the

construction of a public record that will maintain information concerning the location

of different security components that can be provided by various third party providers,

along with appropriate interfaces that will enable self-adaptive security systems to use

them. By doing this, it is possible to warrant the deployment of state-of-the-art security,

as this procedure heavily relies on various security professionals to provide their security

components. Despite the effectiveness of this solution, it is a challenging undertaking

as these mechanisms need to be grounded in platform-independent technologies to allow

various systems to utilise them without the need for special mechanisms. Furthermore,

as these mechanisms need to cater for the needs of a large number of users, provisioning

and distribution mechanisms should be used to ensure the fair and dependable sharing of

resources between users/systems. From the legal point of view, all the entities involved

in this environment should be bounded by legal agreements concerning the usage of the

resources/services.

2.4.6 Operational Transparency

Despite the vast acknowledgement from security software engineers that “security through

obscurity” is neither effective or a good practice, the surveyed work (Figure 2.7) demon-

Concealed

87%

Partially Transparent

8%
Transparent

5%

Figure 2.7: Operational transparency of the surveyed work.
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strated that a vast majority of the self-adaptive security systems (i.e., 87%) still follow

this paradigm. Only 8% of the surveyed solutions considered operation transparency at

some extent [51], [38], where just 5% of them promoted complete transparency on their

operations [48], [20].

We have observed that the solutions offering some degree of transparency were de-

signed for service oriented environments, where users are concerned with how their data

and security is handled due to their association with multiple providers and third parties.

Operational transparency should be further explored as it can promote trust between

users and systems [84], [85], [86]. A way to promote operational transparency is by

deploying logging mechanisms to monitor, record and display the actions performed by

an adaptive system, including the processes used for handling user data. Based on the

recorded data, a user should be able, if required, to establish policies that can restrain a

self-adaptive system from performing unwanted/unnecessary actions.

2.4.7 Design Centricity

74% of the reviewed solutions were designed for protecting software systems [70], [72],

[71], [74] (Figure 2.8). Whereas, 18% of the solutions are concerned with the security of

users [54], [61], [46], [67]. Finally, only a small number (i.e. 8%) of the encountered work

is concerned with securing individual assets [69], [68].

The work conducted on asset-centric security is still in infancy. Security software

engineers should further explore cost-effective, elastic mechanisms to allow self-adaptive

security solutions to handle diverse and complex requests that necessitate the enforcement

of different security policies for different types of assets. Added, security engineers need

to re-define assets and the assumptions describing them in the Cloud to better identify

what needs to be protected and how.

Furthermore, the correlation between system-centric and user-centric methodologies

can be further exploited. As monitoring and controlling ultra-large environments as a

whole is a difficult undertaking; it is possible to follow a holistic approach by employing
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Asset-Centric

8%
User-Centric
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Figure 2.8: Design centricity of the surveyed work.

user-centric methodologies to monitor and control the behaviour of individual entities in

a localised fashion and then orchestrate these methods to protect the overall system from

malicious behaviour. By using this approach, it is possible to effectively secure a system

as a big part of the computations and decisions are performed in a decentralised fashion.

2.4.8 Platform Dependencies

The vast majority (i.e. 97.36%) of the surveyed solutions (Figure 2.9) are platform

independent, with the exception of the work of Hsieh et al., [47] which is specifically

applied on the LEACH algorithm.

Platform Independent

97.36%

Platform Specific
2.64%

Figure 2.9: Platform dependencies of the surveyed work.
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The results are encouraging as they signify that security engineers have made an ex-

tensive effort to make their solutions applicable to a vast majority of the application

environments in existence by switching from archaic, platform-specific systems to plat-

form independent solutions.

2.4.9 Elasticity

A significant number of the examined solutions (92%) did not consider any dimensions of

elasticity (Figure 2.10). Only three Cloud-based self-adaptive security systems considered

elasticity, from which two exhibited sub-linear elasticity [38], [48] and one linear elasticity

[20].

Linear Elasticity
3%

Sub-Linear Elasticity

5%

Not Applicable

92%

Figure 2.10: Elasticity of the surveyed work.

Despite that elasticity is one of the main characteristics of ultra-large systems, how-

ever, the existing implementations are limited in dealing with this dimension, making

these solutions unsuitable for open environments. In the case where a solution cannot

scale, it is possible that it can be challenged or even break when applied in ultra-large,

high-demand environments. Therefore, it is necessary for self-adaptive security solutions

to be assessed against various workloads to determine their elasticity, performance and

suitability for ultra-large environments. Even by doing this, challenges remain as security
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software engineers can determine the breaking point of their solutions but they cannot

accurately speculate the varying demand and its implication on security. However, test-

ing scalability from the security point of view is essential for anticipatory and proactive

security solutions.

2.4.10 Security Mechanism(s) Deployment

The acquired results (Figure 2.11) signify that modern self-adaptive security solutions

prefer the usage of integrated security mechanisms (i.e. 84.21%) compared to the usage

of external/add-on security mechanisms. Only 13.16% of the reviewed solutions use add-

on security mechanisms, where just one solution (2.63%) uses a hybrid methodology [38].

Hybrid
2.63%

Add-on

13.16%

Integrated

84.21%

Figure 2.11: Security mechanism deployment of the surveyed work.

We have observed that all the encountered work that uses add-on security mechanisms

is applied in mobile environments [49], Ad-hoc networks [39] and service oriented archi-

tectures [20], [48] which often necessitate the deployment of different security mechanisms

for treating heterogeneous runtime threats. On the contrary, the surveyed solutions found

to use integrated security mechanisms, are more static and do not require the use of ad-

ditional security mechanisms. A few examples of such solutions are trust management

frameworks [51], integrity attestation systems [52], authorization techniques [53], [54],
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policy execution methods [12] and adaptive firewalls [42].

We view security as a set of varying goals, that cannot be satisfied with the use of

static, pre-installed security mechanisms and countermeasures. However, a majority of

the existing systems ground their solutions on pre-installed security. To overcome this

limitation, contemporary solutions must deploy mechanisms that will enable them to

access and deploy different security “components” that are situated at different locations

via programmable interfaces. Thus, making them more elastic and dynamic, capable of

tuning their security capabilities according to runtime threats.

2.4.11 Adaptation Inspiration

A majority (i.e. 87%) of the surveyed systems base their adaptation mechanisms on the

classical paradigm of control methods (Figure 2.12), which often consist of four phases:

monitor, analyse, process and execute. Whereas, 10% of the reviewed solutions ground

their adaptation on bio-inspired methodologies (e.g., [42], [64]). The remaining 3% ex-

plore economics inspired methodologies for security (e.g., [20]). Finally, none of the

surveyed work has exploited nature inspired methodologies for security.

Control Method

87%

Bio-Inspired

10%
Market

3%

Figure 2.12: Source of inspiration for the adaptation mechanisms surveyed.

It is imperative that bio-inspired, nature-inspired and economic-inspired adaptation

techniques are further explored, to advance the current solutions from the classical
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paradigm of control methods to more dynamic and elastic methodologies. Software en-

gineers can leverage economic-inspired methodologies, promising ”efficient” and “light”

optimisation mechanism for the continuous satisfaction of varying security requirements,

as they are considered to be an efficient solution to dynamic allocation problems [87],[88],

[89], [90], [91], [92]. The economic-inspired models can promote transparency in the way

services and resources are traded as their operations are founded on systematic proce-

dures; henceforth, promote trust between self-adaptive systems and users. Furthermore,

the decentralised nature of these methods promote the development of more cost-effective

and elastic frameworks as it: i) eliminates the single point of failure, ii) allows users to

handle their security requirements and data and iii) simplifies the concurrent manage-

ment of multiple user requests, as a major part of the computations and decisions are

performed in a decentralised manner and iv) allows service providers and users to make

their own decisions for maximising their gain.

2.4.12 Adaptation Awareness

82% of the surveyed systems monitor (Figure 2.13) contextual data (e.g., location) to

inform their adaptation process, where the remaining 18% of the work considers the

behaviour of a user and/or a system for adaptation. We have observed that the solutions

that ground their adaptation on behavioural information tend to be concerned with the

behaviour of software systems [70], [73] and not the behaviour of users.

Choosing between contextual and behaviour driven adaptation and determining the

optimal set of attributes for informing adaptation is a key challenge [93], [94], [95]. This

is a complex decision as security engineers need to ensure that their systems can thor-

oughly monitor the behaviour and/or context of the entities that are protecting while

minimising the computational overhead that can emerge from monitoring and analysing

a large number of attributes. As any attempt for selecting a pre-defined set of attributes

for informing adaptation can prove ineffective in the long-run, it is possible to use mech-

anisms that will enable self-adaptive security systems to switch between various sets of
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Figure 2.13: Adaptation awareness of the self-adaptive mechanisms surveyed.

monitoring attributes according to the changes in the runtime security requirements. A

way to achieve this is by using symbiotic simulations [79], in which administrators can

test different sets of attributes for identifying the optimal set for adaptation.

2.4.13 Adaptation Layer

Network layer has been identified as the dominant layer for adaptation (i.e., 37%) [39],

[56], [57]. Followed by the service layer with 24% [51], [52], [53], [48]. Lastly, application

[46] and host [40], [69] layers have been identified as the most neglected layers possessing

22% and 17% of the surveyed solutions respectively. The results (Figure 2.14) demon-

strate that engineers have well acknowledged open and elastic environments as well as

the need for adaptable security in these environments.

Security solutions to a big extent have looked at securing explicit layers which is

limiting as it may be necessary to adapt/manipulate multiple layers in order to satisfy

changes in security. The challenge is to secure multiple layers and to provide effective self-

adaptive solutions covering these layers. This can be achieved by managing the explicit

link between low-level (e.g. computational resources and hardware components) and

high-level layers (e.g. online services and applications). This link is crucial as it captures

the computational overhead that a higher layer could impose on underlying layers as well
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Figure 2.14: Adaptation layer of the surveyed mechanisms.

as the security that a solution could deploy.

2.4.14 Anticipatory support

Figure 2.15 illustrates that a large number of the reviewed systems (i.e., 92%) do not

facilitate any mechanisms for forecasting their future state and the threats that might

encounter at runtime (operate in a reactive manner). Only 8% of the examined solutions

facilitate mechanisms for the anticipation of runtime threats. Examples of such work

are reported in Foo et al., [66] which perform containment of intrusions in distributed

e-commerce systems, the work of Abie et al., [49] which estimates and predicts system

benefits and risks in IoT. And the work of Farid et al., [57] which promotes a proactive

network intrusion detection system.

Despite the extensive usage of reactive mechanisms for satisfying functional require-

ments, reactive security is a difficult task to achieve. This is due to the time-critical and

proactive nature of security, which does not tolerate delays. These delays rise due to the

time required by reactive mechanisms to discover, select and deploy countermeasures,

which can, in turn, cause the compromise of a system/user/asset. To avoid adaptation

delays and engineer more efficient solutions, self-adaptive security systems should deploy

proactive mechanisms to anticipate and mitigate runtime threats before they are mani-
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Figure 2.15: Ability of the surveyed adaptive mechanisms to anticipate threats.

fested. A key challenge that should be addressed when designing proactive methodologies

is the adaptation frequency. As adaptation is expensive, it should only be triggered when

critical events occur. The frequency of adaptation must be well-defined and scheduled, as

any delays in the adaptation, can compromise a system’s resilience. Whereas, continuous

adaptation can cause operational problems due to high computational overhead which

can lead to resource starvation and system errors.

2.4.15 Cost Sensitivity

77% of the surveyed solutions (Figure 2.16) have omitted considering the mitigation of

potential trade-offs that can occur when adapting security. Just 15% of the reviewed sys-

tems are concerned with exploring the relationship between security and computational

overhead, where the trade-off between security and time received less attention (5%).

Finally, monetary constraints were almost overlooked by the surveyed work, reaching

3%.

Mitigating possible trade-offs in ultra-large environments is crucial, as the costs of

adapting security may overtake its benefits. Examples of existing attempts for trade-off

resolution is the work of Zou et al., [62] and Du et al., [52] for mitigating the trade-
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Figure 2.16: Cost sensitivity of the surveyed solutions.

off between security and time in networks and the Cloud respectively. The work of

Tziakouris et al., [20] for monetary constraints in the Cloud and the work of Li et al., [51]

and Chigan and Ye [39] for mitigating resource consumption in the Cloud and Ad-hoc

networks respectively. Despite that some of the existing work has addressed potential

trade-offs that can emerge from adapting security, they are still at infancy. Security

engineers need to further examine the costs associated with security and to promote

more cost-effective security solutions.

2.5 Summary

Our analysis of the past and ongoing research on self-adaptive solutions has revealed a

notable advancement towards adaptive and autonomic security for ultra-large and open

environments, including the Cloud; however, it also illustrates the gaps, limitations and

challenges that need to be further explored. The analysis of our results has provided us

with guidance on commonly used security mechanisms, design principles and strategies

along with their strengths and pitfalls. By applying this knowledge in the Cloud it will

be feasible to engineer more elastic and dynamic security solutions.

In particular, we have observed that in order to stay ahead of today’s evolving threats
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and allow the effective application of self-adaptive security solutions in open and elastic

environments and more specifically the Cloud, a number of outstanding research issues

need to be addressed as part of this thesis:

Design Cloud-based security solutions that are grounded on fundamentally elastic

architectures to promote solutions that can scale to the varying demand for service.

Deploy learning techniques to make Cloud-based security solutions proactive for iden-

tifying and mitigating runtime threats prior to their manifestation.

Engineer security mechanisms that will allow Cloud-based solutions to enforce differ-

ent ad-hoc security policies for different assets, to advance from aggregated security

to asset-centric security.

Consider the trade-off between security and the cost of a solution.

Further explore the link between services and underlying computational resources.
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CHAPTER 3

MARKET-INSPIRED FRAMEWORK FOR
SECURING ASSETS IN THE CLOUD

This chapter looks at market-inspired techniques as a candidate solution to the challenges

posed by our research questions in Chapter 1 and our taxonomic findings in Chapter 2.

As part of the solution, this chapter outlines an architecture which draws inspiration from

market-inspired methodologies and learning algorithms. The proposed solution makes an

analogy between markets and their usage for securing assets at runtime in the Cloud. We

then provide a conceptual architecture model for our framework comprising the entities

and operational phases of our solution. Consequently, we assert the applicability and

effectiveness of our framework by instantiating and developing a variant of our system

based on a simulated university application environment, facilitating Cloud storage and

Voice-Over-IP (VOIP) services. 2

2Part of the work presented in this chapter has been published in [20], [98] and submitted for publi-
cation in [99].
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3.1 Self-Securing Assets In the Cloud by Combining

Market and Learning

3.1.1 The Use of Market in the Self-Securing Framework

Market-oriented methodologies have been widely employed by software engineers in the

Cloud for solving dynamic allocation problems. Examples of such work are the paper

of Jiayin et al., [17] on preemptable resource scheduling; the work of Shin and Akkan

[18] on resource management in IaaS; the paper of Lai and Chang [88] on low-latency

high-efficiency resource allocation mechanisms; and the research of AuYoung et al., [91],

Stoica et al., [96] and Waldspurger and Weihl [97] for managing excessive demand for

service.

The extensive usage of market methodologies in the Cloud can be mainly attributed

to their potential to support decentralisation in architecture and decision making. This

is known to promote more dependable self-adaptive security systems. Infusing the ar-

chitecture with market approaches can i) eliminate the single point of failure, ii) enable

users to handle their own security requirements and data and iii) simplify the concurrent

management of multiple security requests as a major part of the computations and de-

cisions are performed in a decentralised manner. Moreover, market solutions allow both

users and providers to make their own decisions for maximising their utility and regulate

the supply and demand of services and resources at market equilibrium. In the presence

of limited resources, auction mechanisms can promote the effective allocation of services

and resources by prioritising security requests based on their criticality (reflected in the

bidding prices); hence, ensuring their provision to users that face an imminent threat.

We assume that users have a good understanding of their security requirements and data

to select appropriate bidding prices for their assets. In the case that a user is not able

to identify suitable prices for its assets it can automate the process by allowing the ma-

chine learner to generate a bidding price based on the historical bidding data of other

users. The use of market enables users to express their preferences concerning the type
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of resources required and the time they want to acquire them, hence allowing a system to

manage excess demand by spreading it out over time [91]. Furthermore, market models

can promote transparency in the way services and resources are traded and mapped to

security requirements/goals as their operations are founded on a systematic procedure,

henceforth encouraging trust between SPs and users.

Despite the growing work in the area of market-oriented Cloud computing, a majority

of the existing methodologies have not explicitly address any dimensions of security. Our

work exploits market-inspired methodologies and demonstrates their fit for the effective

delivery of security in the Cloud. Given the multitenant and shared nature of Cloud

systems along with their ultra-large scale, any security solutions for these environments

should be grounded on fundamentally scalable architectures to ensure the continuous

satisfaction of the varying security requirements of multiple assets.

Our work perceives the Cloud as the 5 th utility [100]; an ultra-large marketplace

with shared, on-demand services and resources that are traded in the same manner as

traditional utilities. These services and resources can serve the changing security goals

of assets in dynamic and shared environments. Therefore, assets can be secured with

the discovery and selection of appropriate services and underlying resources, with the

assistance of market mechanisms, that can best satisfy their changing security goals and

constraints.

In particular, a goal-oriented methodology can be followed. Each security goal (e.g.

text file security) can be further decomposed into a set of security sub-goals, such as

anonymity, integrity, availability, etc. which can then be mapped to suitable services

and resources that can best support and satisfy an asset’s security sub-goals and goals

respectively (Figure 3.1). It is possible for us to use any goal-oriented methodology in

our framework but as our work is not concerned with contributing to the goal-oriented

requirements engineering literature, we have adopted the notion of goals from the work

of Lamsweerde [101]. The work of [101] defines goals as the objectives that a system

must achieve. These goals refer to intended characteristics that are required by a system.
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Goals can be formed at various abstraction levels, ranging from high-level, strategic

concerns (e.g usage of high-level security to protect a document) to low-level, technical

requirements (e.g. delete a classified document after two wrong password entries).

Figure 3.1: The link between goals, sub-goals, services and resources.

3.1.2 The Use of Learning in the Self-Securing Framework

The ultra-large and dynamic nature of market-oriented Clouds in conjunction with the

vast search space of homogeneous candidate security solutions make the selection of dom-

inant services and resources a difficult and expensive (in terms of time and resources)

undertaking. One way to make markets more effective, hence allowing bidders to quickly

identify and select suitable security solutions, without re-defining auctioning algorithms,

is to use machine learning techniques to arrive at more efficient bidding plans, informed

by historical data. Instead of entering bidders into exhaustive search for the identification

of candidate security solutions, per asset, the learning can assist in the formulation of ad-

hoc security strategies via the analysis of historical bidding records. Moreover, learning
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can significantly decrease the bidding frequency of a user, when applicable, by identify-

ing occasions where adaptation is obsolete based on the outcomes of past incidents, thus

lowering the computational overhead associated with adaptation.

Although the learning approach can be an effective optimisation tool for market-

oriented Clouds, security engineers have omitted considering them for security. The

existing work is concerned with the deployment of learning approaches in simplistic elec-

tronic markets with no explicit links to security. Example of such work is the paper of

Zhang et al. [102], which uses Markov random fields to model the payment transactions

on eBay for classifying users as honest or fraudsters. The work of Balcan et al. [103] for

reducing the profits of bidders arising from the selection of dishonest bidding approaches

in revenue-maximising incentive-compatible mechanisms with the use of sample complex-

ity techniques. The paper of Hummel and McAfee [104] on improving the performance

of advertisers by incorporating active learning into a machine learning system for online

auctions.

To optimize the proposed self-adaptive security solution we have used the Random

Forest classifier [15] to automate security and alleviate the additional resource over-

head imposed by repetitive bidding for the identification of candidate security solutions.

The deployed learner examines past bidding strategies originating from recorded runtime

threats to effectively identify appropriate countermeasures (i.e. services and resources)

while catering for computational costs.

In spite of the benefits arising from the use of learning approaches in online mar-

kets, disadvantages and challenges exist. In terms of costs, learning approaches can

significantly increase computational overhead. This is due to the need for recording and

continuously updating user historical data, as well as training and deploying learners for

the analysis of recorded data. Moreover, it is not always possible to completely automate

security via the usage of learning algorithms due to various reasons, such as insufficient

or inconsistent training data. In these occasions, it is necessary for users to switch to

semi-autonomic or user-controlled adaptation and provide manual input for the counter-
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measures they wish to deploy.

3.2 Conceptual Market-Inspired Architecture

This work considers markets to be regulated environments where several buyers and sellers

can join / leave the market at any time for purchasing and trading services and resources

respectively. The market can operate with different auction mechanisms according to the

runtime requirements of bidders / sellers and the operating environment itself (e.g. avail-

able resources, number of buyers, etc.). Different auctioning mechanisms can introduce

different benefits and limitations to the operating environment. We assume that market

auctioneers are able to monitor the behaviour of sellers and buyers in their markets, in-

cluding available resources, bidding prices, etc. to identify malicious behaviour that can

damage the interests of legitimate bidders, sellers and the market itself.

The remaining of this section provides a conceptual architecture model describing

the proposed agent-based market-inspired security framework including the entities and

operational phases comprising it. We demonstrate, at a high-level, how agent-based archi-

tectures and market-inspired methodologies can co-exist for effectively securing multiple

assets in the Cloud.

3.2.1 System Entities Description

The choice of market-inspired approaches has motivated the need for leveraging agent-

based modelling as a solution. Our solution exploits agents to model and automate

the behaviour of the entities comprising our framework. An agent is a computer software

system that can perform autonomous actions, including decisions, for satisfying its design

objectives. A multi-agent system comprises a number of different agents that interact

with each other. In order for agents to successfully interact, they need to be able to

cooperate, coordinate and negotiate. Cooperation is the process where multiple agents
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Figure 3.2: The system entities.

operate together to accomplish a common goal [105]. Due to the dynamic and complex

operations (e.g. discovery of services, bargaining for services, composition of services,

etc.) of the proposed entities we have used agents to automate and simplify their runtime

behaviour. The use of agent-based modelling provides us with the complete control

over the operations of the proposed market entities, thus allowing us to dynamically

adjust their runtime behaviour and interaction patterns for examining various hypothesis

and scenarios. Furthermore, the use of agents enables us to test the applicability and

effectiveness of our approach on a larger scale, which is an essential aspect of the Cloud.

Our conceptual architecture consists of the following agents (Figure 3.2).

3.2.1.1 User Agents

User agents are self-interested, autonomous entities that represent users in the Cloud.

A user agent is responsible for monitoring changes in the runtime security goals and
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sub-goals of assets and triggering adaptation. In particular, user agents record events

that can cause changes in the security of the assets that are in charge of along with

relevant contextual and behavioural data. By maintaining data records for each user it is

feasible to construct training datasets for informing the learning approach (i.e. Random

Forest algorithm) and replicate a user’s behaviour to enforce security in an automated

and proactive manner. When a runtime event occurs that signifies known malicious

behaviour, the adaptation evaluator, facilitated by each agent, examines if the existing

services and resources can satisfy the runtime security goals and underlying sub-goal(s)

of an asset based on pre-defined adaptation rules. If the assessment illustrates that are

inadequate, the agent triggers service-resource adaptation.

To adapt, the Random Forest algorithm examines the recorded historical data of a

user to discover correlations between previously encountered threats, including their mit-

igation strategies, and the existing situation. For the purposes of our prototype system,

we have used synthetic training datasets generated with normal distribution. By doing

so it was feasible to examine the effectiveness of our solution against a wide number of

scenarios while considering occasions that are not often encountered in market-oriented

Clouds. The results from the Random Forest algorithm are then used to construct a

security specification, called a bid, which reflects the refined security goals and sub-goals.

The bid is then analysed by the constraint evaluator to ensure that the specified adap-

tation constraints, such as monetary and computational costs, are not violated by the

adaptation plan. In particular, bids consist of the following attributes: i) the name of

the asset that needs to be secured, ii) the security sub-goals that require support, iii) the

type of the service(s) required, iv) the highest price that a user is willing to pay to secure

his/her asset and v) the level of security provision required. Once a bid is formed, it is

forwarded to the market coordinator (auctioneer) for auctioning.
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3.2.1.2 Cloud Service Providers (SP)

Cloud SPs are vendors that trade their services and resources in the market. They are

responsible for publicly announcing their offers (called asks) to the market coordinator.

The asks comprise a specification of the services and resources that are trading along

with the price that they want to sell them on. In the case of a match between an ask and

a bid, the SP allocates the required service(s) and resources to the winner user agent in

the form of a virtual machine (VM) instance. The allocated instance is formed accord-

ing to the runtime security goals and sub-goals of an asset. Thus, each VM facilitates

different configurations of services (varying in: service type, level of security provision,

security features) and resources (varying in: number of processors, memory, bandwidth

and storage space) that may be provided by different SPs.

3.2.1.3 Market Coordinator

The market coordinator acts as an auctioneer and market regulator. It implements

trading rounds for a market during which it accepts bids and asks from user agents

and SPs respectively and performs a match between them via the usage of auctioning

procedures. The coordinator is also responsible for overseeing the behaviour of user

agents and Cloud SPs, including the allocation of VM instance(s), to ensure the effective

operation of the market and protect the interests of all transacting parties.

3.2.2 System Operation Phases

To deal with the runtime changes in security and the dynamic nature of the Cloud

we have grounded our solution on the widely acknowledged control method, MAPE-

K [106]. MAPE-K has become the de facto architecture for developing self-adaptive

solutions due to the introduction of the learning/knowledge component which enables

software engineers to analyse previous data and based on them to reason concerning

future decisions. The MAPE-K control loop comprises a sequence of four computations,
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namely: Monitor, Analyse, Plan and Execute which operate over a Knowledge-base.

The wide use of the MAPE-K architecture by existing self-adaptive systems [38],

[39], [40] promoted different implementations, including variations where two or more

phases are merged/integrated. Although all the phases of the MAPE-K architecture are

equally significant, our work gives emphasis to the analysis and planning phases. In

which lies our novel contribution for the discovery and allocation of secure services and

resources via the usage of learning algorithms and market mechanisms. For the monitor

and execution phases, we follow a simplistic approach to model the necessary operations.

The simplistic nature of the proposed monitoring procedure encourages us to integrate it

with the analysis phase. Whereas, the complex and multifaceted nature of our planning

phase necessitate its separation to two distinct phases, namely the bid formulation and

bid auctioning phases. Below we provide an abstract description of the operation phases

of our system and their mapping to our conceptual architecture presented in Figure 3.3.

Figure 3.3: The conceptual architecture.
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3.2.2.1 Monitor & Analysis Phase

Monitor

Work on monitoring already exists (e.g. [83], [107]). Although it is possible to use moni-

toring from literature, we instead follow a simplistic monitoring approach to monitor the

behaviour of bidders and their assets. In particular, our implementation monitors changes

in the context (e.g. user location, available resources, etc.) and content (e.g. file modi-

fication, etc.) of assets. The recorded information is fed into a watch-dog process called

adaptation evaluator that runs as a monitor to depict changes that can affect the security

goals and sub-goals of assets. The obtained data is recorded in the knowledge-base to

inform the adaptation process. The monitoring attributes informing the adaptation are

system specific and should be altered based on the application environment.

Analysis

Similarly to the monitoring phase, the analysis phase has received significant attention.

Some notable work is the paper of Souag et al. [108] on the analysis of security require-

ments based on domain ontologies. The work of Li et al. [109] on modelling security

patterns as contextual goal models; and KAOS [110], a meta-model for capturing initial

requirements for the requirements acquisition process. Despite the existence of substan-

tial work on analysis, we have chosen to develop an ad-hoc monitoring approach due

to the various idiosyncrasies and challenges arising from the use of market mechanisms

and learning algorithms for security, in the absence of closely related work. During the

analysis phase, the adaptation evaluator examines the data recorded from sensors to de-

termine whether the existing services and underlying resources can satisfy the runtime

security goals of an asset. The adaptation evaluator contains a pre-defined set of rules

describing the occasions where adaptation is necessary. In the case where the existing re-

sources/services are deemed insufficient adaptation is triggered. We adopt a goal-oriented

approach to map security goals to their sub-goals. For example, the goal “Online Account

77



Security” can be further decomposed into authentication, anonymity and authorization

sub-goals. Critical changes to the dynamics of one or more interrelated sub-goals can

trigger the need for adaptation. As adaptation is expensive, the frequency of adaptation

can be determined by considering the extent to which the security goals and sub-goals

diverge from the tolerance level.

3.2.2.2 Plan Phase

Although a large number of self-adaptive security systems have used the MAPE archi-

tecture, the planning phase has received limited attention. A notable work on planning

is the paper of Durfee and Lesser [111] proposing a partial global planning where multi-

ple distributed agents communicate with each other during the calculation of their local

plans for making effective decision plans. In the context of our work, the planning phase

is a complex, multi-step procedure performed at two different layers. Firstly, it is nec-

essary for each user agent to plan its adaptation strategy locally (i.e. form a bid) and

then conduct synchronous planning (i.e. auctioning) with other user agents on a global,

system-wide scale for identifying appropriate services and resources. These services /

resources can be provisioned by various providers within the Cloud and can be subject

to availability.

Bid Formulation

Adaptation initiates with the construction of a plan/workflow for facing unforeseen, run-

time security threats in a localised manner. More specifically, a bid specification is

formulated by each user agent to inquire the discovery, selection and allocation of ap-

propriate services and resources from different SPs in a Cloud. The bid is constructed

with the assistance of the Random Forest classifier which identifies a suitable adaptation

strategy for facing a runtime threat based on previously encountered threats and their

mitigation strategies which are recorded in the knowledge-base. To ensure that the adap-

tation strategy will abide to the constraints defined by a user agent, if any, the machine
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learner, facilitated by user agents, uses a constraint evaluator that holds and warrants

that the adaptation constraints are respected throughout adaptation. The constructed

bid is then forwarded to the market coordinator for auctioning for the identification of

appropriate services and resources for security.

Bid Auctioning

The adaptation continues at a global/system-level, where the bids received by the market

coordinator are entered in multiple auctions with available ask(s) to discover appropriate

services and resources that can best satisfy the security goals, sub-goals and constraints of

each asset. Depending on the method used for auctioning (e.g. Posted-Offer auction, En-

glish auction, etc.) it is possible to witness different results, in terms of service/resource

availability, computational overhead and time delays. Based on the application envi-

ronment, different ad-hoc market mechanisms must be deployed to witness the required

results.

3.2.2.3 Execution Phase

The execution phase is a system-specific procedure grounded on the composition, goals

and idiosyncrasies of a self-adaptive security system [51], [48], [52]. Therefore, there is

no work known to us that is explicitly concerned with the execution phase of the MAPE

architecture. In the absence of related work, we follow a simplistic approach to model the

execution phase. In the event of a match between a bid and an ask, the user agent pays

the SP(s) for their services/resources via the coordinator. Following payment, the SP(s)

allocate their services and resources to the winner user agent. Upon the deployment of the

received services and resources, enforced by the adaptation executor, the training dataset

(i.e. knowledge-base) of a user agent is accordingly updated to maintain information

concerning the latest threats and their defensive adaptation strategies.
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3.3 Variant Design And Implementation

This section examines the applicability of the proposed framework by instantiating it

from the aforementioned high-level architecture and realising a variant of the system

based on Cloud storage and Voice-Over-IP (VOIP) services in a university application

environment. It is possible for us to develop the proposed framework in different ways.

However, we have chosen the aforementioned services and application environment, due

to the wide usage of storage and VOIP services by a large number of users in conjunction

with our familiarity with university environments. Universities often maintain immense

amounts of sensitive data/assets, such as classified research, student data, etc. which are

used by various users. Securing assets in these environments is a challenging undertaking

due to the large number of users and assets that need to be secured, alongside the often

limited resources available for supporting security. The remaining of this section provides

an in-depth analysis of our variant design and implementation.

3.3.1 Adaptation Triggering

During the monitor phase, sensors are employed at the user agent side to detect and record

changes in the security goals and sub-goals of their assets (e.g., anonymity, integrity, etc.).

Once a runtime threat is detected, the recorded data is fed to the adaptation evaluator,

during the analysis phase, to determine if adaptation is necessary.

Two questions are raised from the monitor and analysis phase: Which system at-

tributes to record? and When should adaptation be stimulated? According to Salehie et

al. [30] the adaptation methodology varies for each self-adaptive system due to six causes:

“i) the different attributes of adaptable software and the dependency between them, ii)

the temporal aspects of adaptation, iii) the system attributes that can be altered through

adaptation and what needs to be altered in each situation? iv) the goals of a system, v)

the level of automation and vi) what are the most appropriate actions to take for each

given condition?” Since those parameters are unknown to us and determining the optimal
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attributes for informing adaptation is outside the scope of this thesis, we do not provide

a fine-grained analysis of which system attributes to record and the threshold tolerance

for adaptation. Instead, based on our experience with machine learning, we base our

adaptation methodology on the following attributes:

• Location: This dimension is concerned with the locality of a university employee.

The values used to describe this attribute are: secured location, unknown location,

and hostile location.

• Position: Signifies the working position of a university employee. Different work

positions necessitate different levels of security. The values used for describing

this dimension are: researchers, lecturers and administrators. We assume that

researchers and administrators maintain large amounts of sensitive data, whereas

lectures maintain limited or no sensitive data.

• Device: Describes the type of the device used by a university employee for perform-

ing a task. The values used for describing this dimension are: university device

(secured device within the premises of a university) and personal device (unsecured

device).

When the “state” of one or more of the aforementioned attributes ((p isChanged)

OR (l isChanged) OR (s isChanged) OR (d isChanged)) changes user agents trigger

adaptation (TriggerAdaptation(T)) to proactively secure an asset. To simulate the events

causing the runtime changes on the above attributes, we have assigned a timer to each

agent which alters their state/values at random time intervals. An algorithmic description

of the adaptation triggering process is illustrated in Algorithm 1.

3.3.2 Forming Bids

Once the adaptation evaluator triggers adaptation, the user agent employs the classifica-

tion algorithm to refine and map the security sub-goals of an asset to suitable services and
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Algorithm 1 Adaptation triggering

Let: p denote the working position of an employee, l denote the location of an employee,
d denote the device type and t denote a Boolean value showing whether adaptation is
needed.

while (UserAgent isRunning) do
if (p isChanged) OR (l isChanged) OR (d isChanged) then

t:=true
TriggerAdaptation(t)

end if
end while

resources. These services/resources are believed to satisfy the runtime security goals and

sub-goals of an asset in the most efficient way. In particular, to adapt the user agents de-

ploy the Random Forest algorithm to analyse the historical data of users and accordingly

devise a bid specification for auctioning. Random Forest refers to a supervised learning

technique founded on bootstrap aggregation and the random selection of features. Given

a dataset D of size N((x1, y1), .., (xN, yN)), the algorithm constructs B tree classifiers

by selecting uniformly at random Z bootstrap samples of size N ’ <= N from D. At

each node of each tree b, where b ∈ B , the algorithm selects a random set of variables

m from the variables p (m ⊆ p) and splits the nodes in the tree to two children nodes.

Once the ensemble trees Tb
B
1 are constructed, each tree votes for the dominant class with

equal weight 1
B

B∑
1

Pb(c|x), where c is the probability of each outcome in a single tree and

x each test point. The class with the most votes is the algorithm’s derived decision / bid

(SecDecision:=AVG(SUM(Pb(c | x))).

The formed bids are then examined by the constraint evaluator to ensure that the

selected adaptation strategies do not violate any monetary or computational constraints.

Each bid comprises the following attributes: i) the name of the asset that needs to be

secured; ii) the security sub-goals that require support; iii) the highest price that a user

is willing to pay to secure an asset; iv) the type of service required (VoIP and/or data

storage services); and v) the level of security provision required. Agents can specify the

level of security provision for each service via the usage of a predefined list of security
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descriptors. For VoIP services the following descriptors are used: encryption in transit

(encrypts data while transferred online, e.g. TLS/SSL); proxy support (usage of proxy

servers for anonymity); and media encryption (provides authentication and authorization,

e.g. Secure Real-time Transport Protocol), whereas storage services are described by

encryption at rest (encryption of stored data); encryption in transit; different encryption

keys per file; password protected files; and segmentation of files to different physical

machines. Based on the security goals and sub-goals of an asset, each user agent can

use different combinations of security descriptors to request different levels of security.

To simplify the process of constructing bids, in our proof-of-concept system, we have

restricted our security descriptors to boolean / binary values which can either request or

eliminate a security function. The selected attributes are system specific and are selected

for serving the explicit needs of our envisioned market architecture / proof-of-concept.

Therefore, the selected binary system should be modified / altered based on the explicit

requirements and goals of an application system / market. An example of an alternative

set of descriptors for the encryption at rest feature is the usage of the values: AES,

Triple-DES and Blowfish encryption algorithms.

To determine how the choice of an auction can affect the trade-off between security

and cost of a solution, we have engineered and instantiate our system with two dominant

market mechanisms, namely the English auction and a variant of the Posted-offer auction

models. Consequently, we use two different methods to calculate the bidding prices when

forming bids.

To approximate the behaviour of a real-life user that is trying to establish suitable

bidding prices in our Posted-Offer variant model, we allow user agents to view historical

data of bids of interest (histbids:=ExtractFixBiddingPrices(historicData)). User agents

determine their bidding prices (highest price that a user is willing to bid/pay in an auc-

tion) by calculating the average value of all the recorded bid prices and then subtract

or add to that value a percentage v (

∑n
ι=1BidPrices

NumOfBids
±
∑n

i=1 BidPrices× v). v is a flexible

parameter which can change according to the needs of each market. For the purposes
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of our experiments, v is generated with normal distribution between 1% and 5%. The

methodology used for calculating bidding prices aims to simulate real-life economic mar-

kets with small price fluctuations, where the supply and demand can reach economic

equilibrium. Alternative values can be selected for v, which will outcome in the genera-

tion of different bidding price ranges. The proposed bidding method has well considered

the occurrence of bidding price anomalies that are often witnessed in traditional markets

in terms of excessively high prices or low prices (compared to the average market bidding

price). The submission of high bidding prices, from a number of bidders, in our market

can only have a marginal impact as it can only ensure that these bidders will acquire

the required services and resources, while slightly increasing the average bidding price of

bidders in the long-run (only applicable if the majority of bidders in the market submit

excessively high prices which is not often witnessed). On the contrary, if bidders submit

low prices, they will not be able to acquire service, thus exposing the security of their

assets to potential runtime threats. However, this is similar to what occurs in contem-

porary traditional markets where bidders that are not able to compete with rival bidders

for goods do not receive them. The selected pricing methodology must be perceived as

an attempt for enabling the market to quickly converge to equilibrium, as well as a mean

for quantifying the significance of assets. The proposed pricing / bidding methodology

can be adjusted according to the goals of a market and the operating environment itself.

Once the price is calculated the user agent encapsulates it along with the other required

attributes in a bid.

Similarly, the English auction procedure follows almost identical steps to the Posted-

Offer variant model for calculating bidding prices. In the English auction, each user agent

calculates its highest bidding price by considering the closing prices of completed auctions

(histClosebids:=ExtractClosingAuctionPrices(historicData) ), in contrast to the fixed bid-

ding prices used in the Posted-Offer variant model (

∑n
ι=1ClosingPrices

NumfOfAuctions
±
∑n

i=1 ClosingPrices×v).

An algorithmic description of the formulation of bids is presented in Algorithm 2.
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Algorithm 2 Bid formulation

Let: t denote the Boolean output from Algorithm 1, b denote a tree, B denote the
ensemble trees, Z denote the samples used to create a tree, N denote the total number
of data samples, m denote the variables selected from a dataset, p denote the total
number of variables in a dataset, c denote the probability of each outcome in a tree,
x denote each test point/node in a tree and v denote a flexible percentile increment
value.

if t isTrue then
for all b ∈ B do

Select Z samples of N size from Dataset D
repeat

create Tree b
randomly select m variables from p
Pick best split-point among m // p (m ⊆ p)
Split node to two children nodes

until node Nmin is reached in Tree b
EnsembleTrees.add(b)

end for
SecDecision:=AVG(SUM(Pb(c | x))
historicData:=retrieveHistoryOfBids()
if AuctionType isPostedOffer then

BidPrices:=ExtractFixBiddingPrices(historicData)
calcBidPrice:=AVG(BidPrices)±AVG(BidPrices)×v
fB:=(calcBidPrice, secDecision)

else if AuctionType is EnglishAuction then
ClosingPrices:=ExtractClosingAuctionPrices(historicData)
calcBidPrice:=AVG(ClosingPrices)±AVG(ClosingPrices)×v
fB:=(calcBidPrice, secDecision)

end if
end if

3.3.3 Forming Asks

SP’s on their side form their offers/asks which they forward to the market coordina-

tor for auctioning. Each SP is assigned a timer (assignRandomTimerToSP()) which at

random time intervals triggers the process of constructing and submitting asks. SPs

use two methods to calculate their selling prices, namely the Posted-Offer and En-

glish auction procedures. In both procedures, the SPs determine the selling price of

their services and resources based on the historical data of submitted asks. SPs esti-

mate their selling prices by calculating the average value of previously submitted ask
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prices and then subtract or add a percentage s on that value, depending on the profit

margin that a SP wants to make. s is a flexible parameter which can change accord-

ing to the needs of the simulation user. For our experiments, s was generated with

normal distribution between the values 1% and 10%. For the Posted-Offer procedure

the values used for calculating the ask prices are the fixed prices paid by users to SPs

(

∑n
ι=1fixedPrices

NumOfFixedPrices
±
∑n

i=1 fixedPrices × s), where for the English auction is the closing

auction prices of interest (

∑n
ι=1ClosingPrices

NumOfClosingPrices
±
∑n

i=1 ClosingPrices× s). Similarly to the

method used for calculating the bidding prices of user agents, the procedure used for

calculating ask prices aims at converging to economic equilibrium. Once a selling price

is calculated a SP encapsulates the price along with a specification of the services and

resources that is trading in an ask (fA:=(cost,features,resources,securityLevel)). The al-

gorithmic steps describing the creation of asks are presented in Algorithm 3.

Algorithm 3 Ask formulation

Let: fB denote a formed Bid from Algorithm 2 and s denote a flexible parameter taking
values between 1%-10%.

assignRandomTimerToSP()
while SP isRunning do

if RandomTimer isTriggered then
histData:=retrieveHistoryOfAsks()
if AuctionType isPostedOffer then

fixedPrice:=extractAuctionFixedPrices(histData)
cost:=AVG(fixedPrice)±AVG(fixedPrice)×s
fA:=(cost,features,resources,securityLevel)

else if AuctionType isEnglishAuction then
closingPrices:=extractAuctionClosingPrices(histData)
cost:=AVG(closingPrices)±AVG(closingPrices)×s
fA:=(cost,features,resources,securityLevel)

end if
forwardToCoordinator(fA)

end if
end while
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3.3.4 Auctioning

The proposed solution uses the English auction and a variant of the Posted-Offer model

to examine how different auctioning mechanisms can influence the security, performance

and applicability of our solution. The choice of the English and Posted-Offer auction

mechanisms aims at promoting transparency in the bidding and allocation process. We

assume that we operate in a cooperative context, where there is no benefit of sealing bids.

Although, we understand that sealed bid auctions (bidders simultaneously submit sealed

bids to the auctioneer, so that no bidder knows how much the other auction participants

have bided) are more strategy proof than open-sealed auctions the choice of our auctioning

mechanisms was made for promoting fairness, transparency and collaboration which are

essential when enforcing security in ultra-large and heterogeneous environments. We

are aware that unsealed bid auctioning mechanisms can be manipulated for personal

gain, thus this work considers potential market-specific threats (Chapter 4) and proposes

defensive methodologies (Chapter 5) for mitigating them.

3.3.4.1 Posted-Offer Variant Auction

The Posted-offer auction is founded on a take-it-or-leave-it basis and conducted in two

stages. In the first stage, the sellers privately select a price for their services/resources for

a certain trading period along with the maximum number of units they can offer at that

price. Once all sellers make their offers available their prices are revealed to buyers and

rival sellers. The trading period follows, where buyers are selected in a descending price

order (instead of being randomly selected as performed in the traditional Posted-Offer

model [16]) and given the opportunity to purchase service on a take-it-or-leave-it basis.

By introducing user bidding prices in the Posted-Offer model, we enable our solution to

determine whether a user can afford to pay a seller’s requested price, hence automating

the selection process. As well as, to use bidding prices as a heuristic for ranking/selecting

users that face an imminent threat and necessitate immediate security provision for their
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assets. This rises from the sentiment that users that face an imminent threat are willing

to pay higher prices compared to users that are secured. The auctioning round continues

until all buyers acquire service, or until all offered service instances have been purchased.

3.3.4.2 English Auction

The English auction model [112] is an open ascending auction, in which the bidding price

starts at a low price and then rises incrementally so that progressively higher bids are

solicited until the auction is closed or no higher bids are received.

3.3.4.3 Auctioning Procedure

Once a bid is received, the coordinator discovers appropriate asks that can satisfy the

security goals and sub-goals of an asset and registers that user in these auction(s) to

compete with rival bidders for acquiring them. Depending on the method used for cal-

culating the bid/ask prices there is a respective auctioning procedure (i.e. Posted-Offer

or English auction).

In the case where the Posted-Offer methodology was used, the coordinator discovers

SPs that can support the runtime security goals and sub-goals of an asset by comparing

the service specification in an ask with the bid specification. In particular, the coordinator

compares the: type of service, the level of security provision (consisting of the aforemen-

tioned security descriptors for each service) and the price to determine the suitability of a

service for a user agent (askList:=findAsksWhere(bidSecFeature satisfiedBy askSecFeature

& bidSecLevel satisfiedBy askSecLevel & bidPrice <= askPrice)). Upon elimination of

all unsuitable asks, the coordinator sorts the remaining asks in ascending price order to

ensure optimal prices and efficient mapping between bids and asks. Following, the algo-

rithm examines whether the specified computational constraints, if any, of an asset can be

satisfied by an available ask. In the case where an agent’s computational constraints are

met a match is performed (ReqResources > askList[i].ProvResource) whereas if a service

maintains inadequate resources then the algorithm examines the next available ask (agen-
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tResources < askList[i].reqResource). The objective is to migrate user agents to another

Cloud infrastructure that maintains sufficient resources for sustaining the deployment of

the required service(s).

Alternatively, in the occasion where the English auction is used, the coordinator

discovers all the ongoing auctions that satisfy the type of service, the security level and

bidding price and sets a bid on behalf of the user agent. The bidding price reflects the

current highest price in an auction plus a bid increment value p (Table 3.1). The bid

increment price is the minimum amount by which a user agent’s bid can be raised to

become the highest bidder. The increment value can be determined based on the highest

bid in an auction. The values used by our framework are similar to eBay’s proxy auction

increment values [113]. These values are case specific and they can be altered by user

agents according to their runtime needs and the market prices.

In the occasion where a rival user agent tries to outbid the winning user agent, the

out-bidded agent automatically increases its biding price to remain the highest bidder,

whilst ensuring that the highest price specified in its bid is not violated (agent isOutbided

& z < h). The winning auction, in which a match occurs, is the one that an agent

has set a bid and upon completion of the auction round has remained the highest bidder

(auction isCompleted & agent isHighestBidder). If a match occurs and the user agent has

set a bid to more than one ongoing auctions that trade similar services/resources these

bids are discarded (deleteBidsInOngoningAuctions()). Submitting multiple bids to more

than one similar auction is permitted to increase the likelihood of a match to occur. As

Table 3.1: Bid Increment Values.
Current Price Bid Increment

$0.01 - $0.99 $0.06
$1.00 - $4.99 $0.25
$5.00 - $14.99 $0.60
$15.00 - $59.99 $1.30
$60.00 - $149.99 $3.00
$150.00 - $299.99 $5.00
$300.00 - $599.99 $14.00

$600.00 - $1,499.99 $25.00
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the proposed system is concerned with the time critical task of runtime security it needs

to efficiently match bids with asks in short time periods to overcome runtime threats.

Failing to do so can result in the compromise of the security of assets. An algorithmic

description of the auctioning procedure is presented in Algorithm 4.

Algorithm 4 Auctioning Procedure

Let: fBs denote the formed Bids from Algorithm 2, fAs denote the formed Asks from
Algorithm 3, p denote a bid increment value, h denote the current highest price in an
auction and z denote the highest price that a user can pay in an auction.

if fBs areReceived & auctionType isPostedOffer then
askList:=findAsksWhere(bidSecFeature satisfiedBy askSecFeature & bidSecLevel
satisfiedBy askSecLevel & bidPrice <= askPrice)
Sort.ascendingPriceOrder(askList)
for i=1st to Nth ask in askList do

if ReqResources > askList[i].ProvResource then
notifyAgentForMatch(askList[i])
BreakLoop {match found, exit}

else if agentResources < askList[i].reqResource then
askList[i++] {check next ask in list}

end if
end for

else if fBs areReceived & AuctionType isEnglishAuction then
askList:=findAuctionsWhere(bidSecFeature satisfiedBy askSecFeature & bidSe-
cLevel satisfiedBy askSecLevel & bidPrice <= auctionPrice)
for j=1st to Nth ask in askList do

if ReqResources > askList[j].ProvResource then
askList[j].setBid(h+p)

end if
end for
while auctions areNotCompleted do

if agent isOutbided & z < h then
askList[j].reBid(h+p)

end if
end while
if auction isCompleted & agent isHighestBidder then

notifyAgentForMatch(askList[j])
deleteBidsInOngoningAuctions()

end if
end if
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3.3.5 Allocation of Services and Resources

We have followed a simplistic methodology to deal with the runtime allocation of services

and resources, as is outside the scope of our research. Our allocation mechanism is guided

by a goal oriented modelling approach which differentiates between different types of

services and associates them with different primitives (security features) and underlying

computational resources. As we operate in a simulated environment it is not possible

to provide explicit resource requirements for each service, therefore we instead associate

each service with a range of resources.

Once a match occurs the execution phase is initiated, during which the coordinator

notifies the winner SP and user agent to commence the trade. The agent is requested

to forward the payment for the won service(s) and resources to the SP. Due to the

security-driven nature of the proposed system, secure and transparent currency / token

mechanisms are needed for performing the payment. Apart from the use of traditional fiat

e-systems, cryptocurrencies can be a good solution for enhancing the security of bidders

in the market due to their pseudo-anonymous nature, which will allow them to purchase

services and resources without exposing their personal information / identity. Although,

this is an important part of an economics-driven system, the development of a payment

mechanism is also outside the scope of this work.

The transaction is recorded by the coordinator to ensure that no party will lie con-

cerning the validity of the payment and allocation. In the case where the auctioning was

performed based on the English auction, the agent needs to pay the price of the second

highest bid plus a defined bid increment (Table 3.1), where if the Posted-Offer auction

was used the fixed price set by a SP is paid. Upon reception of the payment, the SP

constructs a VM that encapsulates the requested service instance(s) and resources and

allocates it to the winner user agent. The objective is to migrate user agents to another

VM that maintains sufficient resources for sustaining the deployment of the required

service(s). Following allocation, the adaptation executor of each user agent deploys the

required services and underlying resources to secure an asset. The coordinator is paid
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for its auctioning services by adding a small commission fee for every successful match

which is equally split between the winner user agent and SP. The algorithmic steps for

the allocation procedure are presented in Algorithm 5.

Algorithm 5 Allocation of services and resources

Let: fM denote the match found between a bid and an ask from Algorithm 4, p denote
the auction price and m denote a market fee.

if fM isTrue then
notifyWinners(SP, Agent)
agent.Pay(p + m/2)
if payment isPerformed then

VM:=CreateVM(Services, Resources)
SP.Allocate(VM)to(WinnerUserAgent)

end if
end if

3.4 Test and Evaluation

To examine the applicability of our method, as well as to provide answers to the research

questions presented in Chapter 1, we have developed a Java prototype simulation system

that implements our framework based on the aforementioned variant design 1.

We have identified simulation as the dominant methodology for evaluating our frame-

work as the development of real test-beds limit the experiment to the scale of the test-bed

and make the reproduction of results a difficult undertaking. Additionally, the creation of

real test-beds introduces low-level tasks which are time and money consuming. Further-

more, real life markets do not allow the manipulation of key attributes from developers,

which restricts the experiment and its outcomes. On the contrary, the use of simulation

tools, allow the evaluation of hypothesis in an environment where one can reproduce

experiments. It allows users to test their services/resources in a repeatable and control-

lable environment free of cost. At the provider side, simulation environments allow the

evaluation of different kinds of resource leasing scenarios under varying loads and pricing

1Simulation tool can be found at: github.com/GiannisT/UniMarketSimulation
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distributions. Lastly, simulation tools enable the homogeneous quantification of results

as they are generic, architecture imperative solutions, where real life markets have their

own composition and deployment requirements [25].

The engineered solution manages the runtime security goals and sub-goals of the assets

of multiple university employees via the selection and allocation of services and underly-

ing resources. For illustration purposes, we restrict the available services in the market

to VoIP and Cloud-based storage services. We assume that similar services can facilitate

different security features and come at different price. VoIP services vary in terms of

encryption in transit, media encryption and anonymity mechanisms, where storage ser-

vices vary in terms of encryption at rest, encryption in transit, encryption keys per file,

authentication schemes and cryptographic data splitting techniques (encrypt and split a

file to different physical machines). To support these services our system is configured

to support the provision of CPU, memory and disk space resources. Despite the small

number of different types of services and resources supported by our simulation, it can

be extended to support a wider variety of services/resources based on the needs of the

users and the market itself. All the experiments were conducted with the assistance of

a notebook running on Intel Core i5-3210M CPU @ 2.50 GHz, 8 GB RAM and JDK

version 1.8.0 91.

The engineered simulation allowed us to answer the following research questions from

Chapter 1:

1. Can asset-centric security be more cost-effective and efficient for the satisfaction of

the runtime security goals of multiple assets compared to aggregated security?

2. Can market-inspired mechanisms be more effective in the allocation of services

and resources compared to conventional non-market mechanisms in the presence of

scarce resources in security constrained environments?

3. Can learning algorithms be used to arrive on more efficient bidding plans (identify

and short list appropriate candidate solutions), instead of entering bidders into an
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exhaustive bidding for candidate offers?

4. How can representative auction models influence the security and performance of

the proposed system?

3.4.1 Aggregate vs Asset-Centric Security

Existing self-adaptive systems are not concerned with the runtime security of individual

assets; instead, they treat security as an aggregated quality, which imposes high costs and

unmet security goals. To demonstrate the above assertion and exemplify the significance

of asset-centric security we have examined if the selection of a single storage service can

satisfy the security goals of all of the assets/files maintained by a user agent. To conduct

this experiment we have configured our simulation to operate with both asset-centric and

aggregated security to draw conclusions concerning the effectiveness of each approach.

In particular, the purpose of this experiment is to identify the number of assets with:

satisfied security goals, excessive security provision and insufficient security provision. In

the occasion where an asset acquires insufficient services and resources, it can lead to

the compromise of its security, wherein the presence of excessive security the associated

monetary and computational costs can be unnecessarily high.

To conduct this experiment we have used 50 files/assets. For each asset, we have

constructed a bid (according to the method reported in subsection 3.3.2) describing its

security requirements. All the values used for forming the bids were generated with nor-

mal distribution to simulate the diverse nature of the security requirements of different

assets. We have then compared the constructed bids with the security specification/ask

of a real life, well secured Cloud storage provider, i.e. Cubby [114] (supports encryption

at rest and in transit, different encryption keys per file and password protected files), to

determine whether aggregate security can satisfy the security goals of all 50 assets. The

acquired results demonstrated that only 27 files met their exact security goals, where

15 obtained excessive security and 8 insufficient security due to the absence of crypto-
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graphic data splitting techniques. On the other hand, the experiment conducted with

the proposed asset-centric security framework exhibited the satisfaction of the security

goals of all 50 assets. In terms of reserved disk space, our framework required 1 GB to

accommodate all the assets, whereas the experiment conducted with Cubby reserved 5

GB of disk space, as part of its smallest storage plan.

To warrant the consistency of our results we have executed this experiment a number

of times (i.e. 20). The acquired results reveal that the use of asset-centric approaches

for security can be effective for the satisfaction of the security goals and constraints

of multiple assets while minimising the usage of the underlying computational resources

supporting security. This can be attributed to the deployment of ad-hoc security solutions

that are tailored to the explicit security requirements and constraints of each asset. On

the contrary, the use of aggregated security has proven limited for the protection of

multiple, heterogeneous assets. This rises due to the enforcement of security solutions

that are grounded on the premise that one-solution-fits-all, which overlooks the explicit

security requirements and constraints of each individual asset.

3.4.2 Market vs Non-Market Allocation Mechanisms

As ultra-large systems need to continuously satisfy the changing security requirements

and constraints of a large number of users and their assets with (often) limited resources,

it is essential to use effective allocation mechanisms that can prioritise security requests

based on their significance. By doing so, self-adaptive systems can allow users that face

an imminent threat to acquire service first. This experiment demonstrates that market

mechanisms can be an effective solution to the above challenge, compared to existing

non-market mechanisms. This can be attributed to the fact that users in online markets

can express their preferences concerning the type of resources required, the time they

want to acquire them and the significance of their requests (reflected in their bidding

prices), thus enabling self-adaptive security systems to manage excess demand [91].

To conduct this experiment we have simulated a Cloud storage provider (i.e. Cubby)
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and 100 user agents (university employees), each owning 10 assets (total of 1000 assets).

The simulation tool was configured to operate with limited resources that could only

suffice for securing 700 assets. For each asset we have generated a bid specification by

selecting attribute values with normal distribution and labelled them according to their

significance: 500 as of “high significance”, 100 as of “medium significance”, 110 as of “low

significance” and 290 as of “future storage”. We have then executed our simulation with

both a market (i.e Posted-Offer variant model) and a first-come-first-served non-market

allocation mechanism and observed their effectiveness in prioritising security requests

based on the number of assets served from each significance group. For the experiment

conducted with the non-market mechanism, the security requests were submitted in a

random order to approximate real-life conditions. The obtained results show that only

352 “high significance” requests, 80 “medium significance” requests, 88 “low significance”

requests and 180 “future storage” requests were served. Indicating the wasteful allocation

of resources as a large number of “high significance” requests were not served, where a

big number of “future storage” requests were accommodated.

On the contrary, our experiment with the market mechanism indicates a more ef-

fective allocation of services and resources, allowing: 453 “high significance” requests,

90 requests of “medium significance”, 85 “low significance” requests and 72 requests for

“future storage” to acquire service. The results signify a vast increase in served “high

significance” requests, as well as a massive drop in the number of accommodated “fu-

ture storage” requests (Figure 3.4). This can be attributed to the absence of simplistic

allocation mechanisms that are grounded on a “first-come-first-served” basis.

The small number of 47 “high significance” requests not accommodated by our Posted-

Offer variant mechanism can be attributed to their low bidding prices. The bidding

price of each asset was generated based on the significance group it belonged in. “High

significance” bidding prices were generated with normal distribution between $30-$17,

where “medium significance” bidding prices between $23-$12, “low significance” bids

between $19-$9 and bids for “future storage” between $15-$3. The rationale behind
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Figure 3.4: Number of assets satisfied from each “significance group” with market and
non-market mechanisms.

selecting these prices is grounded on the sentiment that users that face an imminent

threat are often willing to pay higher prices to secure their assets compared to users that

are secured.

The obtained results (Figure 3.4) have attested our hypothesis that markets can be

an effective mechanism for the allocation of services and resources in elastic environments

with limited resources. We have demonstrated that market mechanisms can prioritise and

satisfy the security requests of the assets originating from users that face an imminent

threat while managing excess demand. To ensure the correctness of the acquired results

we have executed this experiment a number of times (i.e. 20) which verified our initial

results.

3.4.3 Machine Learning Algorithms for Security

To identify the most suitable machine learning algorithm for our solution and determine

whether learning techniques can assist us in reaching more effective bidding plans for
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security, we have examined the supervised learners of WEKA data mining tool [115] and

monitored their effectiveness on multiple scenarios involving Cloud-based storage and

VOIP services in a university application environment. In particular, this experiment

allowed us to determine to what extent machine learning algorithms can automate security

and whether learning can be used for optimising the bidding process to arrive in more

efficient bidding plans.

To evaluate these algorithms we have generated a synthetic training dataset of 5000

samples to inform our supervised learners. Each sample comprises the position, loca-

tion, device and information sensitivity of a university employee’s asset. The values used

for describing these attributes were selected with normal distribution from the values

presented in subsection 3.3.1. We then generated a test dataset of another 5000 sam-

ples describing additional scenarios to examine the effectiveness of each algorithm. The

values used for constructing the attributes of each sample were generated with normal

distribution. The aim of this experiment is for each learning algorithm to classify the test

samples according to the level of security provision that they require, namely: secure,

fairly secure and unsecure.

Our results identified BayesNet as the dominant learning algorithm, achieving the

correct classification of 91.17% of our test samples. Despite the high classification rate

witnessed by the BayesNet algorithm, we have selected Random Forest as the classifier

for our solution (identified as the 4th best performing algorithm). The reason for doing so

is that the Random Forest algorithm is grounded on the principles of bagging or boosting

which allows it to effectively handle high dimensional spaces as well as large numbers of

training samples. This makes Random Forest ideal for the efficient processing of large

sizes of security information arising from multiple users and their assets in ultra-large,

heterogeneous environments such as the Cloud. Table 3.2 demonstrates our comparison

between the selected classifiers in terms of testing and cross-validation rates. The test

results demonstrate the detection accuracy of the selected algorithms when classifying the

generated test samples, whereas the cross-validation provides the average accuracy (i.e.
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Table 3.2: Percentage of Correctly Classified Samples Per Classifier.
Classifier Test Cross-validation Average

BayesNet 92% 90.34% 91.17%
NaiveBayes 91.6% 90.3% 90.95%
NaiveBayesMultinomialText 46.8% 45.32% 46.06%
NaiveBayesUpdatable 91.6% 90.3% 90.95%
Logistic 90% 90.4% 90.2%
MultilayerPerceptron 89.8% 90.38% 90.09%
SimpleLogistic 91.4% 90.14% 90.77%
SMO 90.6% 90.4% 90.5%
Ibk 86.6% 86.76% 86.68%
Kstar 14.6% 39.56% 27.08%
DecisionTable 90.4% 90.52% 90.46%
Jrip 90% 89.88% 89.94%
OneR 91.6% 90.58% 91.09%
PART 90.6% 90.86% 90.73%
ZeroR 46.8% 45.32% 46.06%
DecisionStump 53.8% 51.06% 52.43%
HoeffdingTree 91.2% 90.3% 90.75%
J48 89.4% 91.38% 90.39%
LMT 90.6% 90.42% 90.51%
Random Forest 90.8% 90.34% 90.87%
RandomTree 89.6% 85.46% 87.53%
REPTree 89.4% 90.9% 90.15%

precision) of each classifier based on multiple runs. The acquired results have validated

the experiments conducted in the work of Caruana and Niculescu-Mizil [116], in which a

comparison between a large number of classification techniques on various datasets has

been performed and identified Random Forest as one of the best classification techniques

with a high detection accuracy and low computational overhead.

In spite of the high classification rate witnessed by the Random Forest algorithm, its

accuracy can vary according to the volume and quality of the data informing its training

process. To test the accuracy of the Random Forest algorithm in the presence of limited

training data, we have used a varying number of training samples and examined the

percentage of the correctly classified test samples. We have observed that even in the

presence of 200 training samples, the Random Forest algorithm was still able to correctly
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Table 3.3: Percentage of Correctly Classified Samples by Random Forest.

Number of Samples Cross-validation Test

200 88.05% 88.6%
500 91.61% 90.4%
1000 92.10% 90.6%
2500 91.60% 90.8%
3750 90.21% 91.0%

classify 88.6% of our test samples (Table 3.3).

We demonstrated that the Random Forest algorithm can be an effective mechanism

for identifying appropriate services and resources for security, once a small yet significant

amount of data is collected for training the algorithm. Therefore, we argue that learning

approaches can be used for informing auctioning mechanisms for the efficient discovery

of services and resources, instead of conducting an exhaustive search for candidate solu-

tions. In the occasion where insufficient and/or inconsistent data is used for informing

adaptation, it is possible that incorrect conclusions are drawn and false security measures

are deployed. Therefore, in the existence of insufficient or inconsistent data users need

to manually provide input concerning the security countermeasures that they wish to

deploy.

3.4.4 Performance

This experiment aims to examine the performance and computational overhead of our

framework. It is also concerned with how different auctioning models can influence the

security and performance of the proposed system. In particular, we compare two auction-

ing algorithms, namely the English auction and Posted-Offer variant model and speculate

concerning their performance and fit for purpose. This experiment was executed multi-

ple times (i.e. 20) to ensure that the reported results are a true representation of the

behaviour of our system.

To perform this experiment we have simulated 2 SPs, generating a total of 1500 asks,
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and 100 user agents, generating a total of 1000 bids. The fixed, small number of SPs and

user agents used for this experiment can be attributed to the homogeneous nature of their

operations. Examining the performance of our framework with a varying number of sellers

and bidders is unnecessary due to the proportional increase of the computational overhead

to the number of bidders and sellers in the market. In approximately 40 seconds our

simulation system was able to replicate a Cloud environment, construct all system entities

described in section 3.2.1, simulate runtime threats (trigger adaptation), formulate bids

with the assistance of the Random Forest algorithm, perform market auctions and allocate

services and resources to user agents. No network latency or noise was simulated in our

approach; hence, the time recorded for the simulation is not an accurate representation

of the execution time in real life, since it can vary based on the network latency, noise,

data rate, collisions and traffic in a network.

In terms of computational overhead, our approach demanded between 15 MB and 108

MB of RAM and up to 40% of our CPU resources (Intel Core i5-3210M CPU @ 2.50GHz)

to operate with the given configuration. To identify the additional computational strain

imposed from continuously satisfying the security requirements and constraints of indi-

vidual assets, we have configured our simulation to treat security as an aggregated quality

with the allocation of a “one-fits-all” service to each bidder. We have then compared the

acquired results with the computational overhead exhibited in our experiment with the

proposed asset-centric approach. The obtained results illustrate that aggregated security

can significantly lower computational overhead, 15 MB - 89 MB of RAM (Figure 3.5)

and up to 25% of our CPU resources (Figure 3.6), compared to our asset-centric security

framework.

Furthermore, to assert the performance and effectiveness of our framework with differ-

ent auctioning algorithms we have executed our simulation 20 additional times using the

Posted-Offer and English auction models and compared their performance and fit for pur-

pose. Throughout these tests, we have observed significant differences between the two

algorithms. English auction exhibited a more complex, time-consuming procedure that
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Figure 3.5: Memory usage with aggregated and asset-centric security.
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Figure 3.6: CPU usage with aggregated and asset-centric security.

necessitated an average of 789.8 milliseconds to establish an auction match in contrast

to the 577.8 milliseconds required by our Posted-Offer variant algorithm. Although the

time difference exhibited by the two models may seem negligible, it can play a major role

in the case where a large number of assets face an imminent threat. As security is time-
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Figure 3.7: English auction and Posted-Offer algorithm CPU usage.

critical, the security of assets needs to be efficiently adapted to avoid possible time-delays

that may cause their compromise. Added, the English auction algorithm displayed signs

of high computational overhead, reaching at some occasions 22% more than the CPU

overhead generated by our Posted-Offer variant model (Figure 3.7). On the contrary, the

Posted-Offer variant model has illustrated a lower computational overhead due to the

absence of complex negotiations between SPs and agents. Therefore, the Posted-Offer

model can be more suitable for occasions where user agents face an imminent threat and

time is a critical aspect of adapting security. On the contrary, the English auction is more

suitable for occasions where user agents are not constrained by time, their security is not

threatened and are willing to sacrifice time to discover cheap and/or scarce services and

resources.

Despite the usage of only two auctioning algorithms, our framework can be used with

a variety of auctioning algorithms. Based on the application environment and the security

objectives of a system and its users, different auctioning models can be used. Each auc-

tioning algorithm can introduce different characteristics, benefits and limitations to the

problem environment. The selection of the English auction and the Posted-Offer auction
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models for the purposes of this work can be attributed to their vast acknowledgement

and usage in the fields of economics and computing, in conjunction with their varying

nature which allow us to examine the proposed framework with two distinct auctioning

approaches.

3.5 Summary

In this chapter, we have looked at market-inspired techniques as a candidate solution to

the research questions in Chapter 1. As part of the solution, this chapter outlines an

architecture grounded on agent-based modelling and market-inspired approaches infused

with learning.

We have tested the applicability and effectiveness of our framework by instantiating

and developing a variant of the proposed system based on a simulated university ap-

plication environment, facilitating Cloud storage and VOIP services. In particular, this

chapter provided answers to the succeeding research questions from Chapter 1:

1. Can asset-centric security be more cost-effective and efficient for the satisfaction of

the runtime security goals of multiple assets compared to aggregated security?

2. Can market-inspired mechanisms be more effective in the allocation of services and

resources compared to non-market mechanisms in the presence of scarce resources

in security constrained environments?

3. Can learning algorithms be used to arrive on more efficient bidding plans (identify

and short list appropriate candidate solutions), instead of entering bidders into an

exhaustive bidding for candidate offers?

4. How can representative auction models influence the security and performance of

the proposed system?

We have demonstrated that asset-centric security is more effective than aggregate se-

curity in terms of costs and security goal satisfaction. We have also shown that market
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models are an effective and scalable solution for securing multiple assets in environments

with limited resources as they enable users to compete for provision in a decentralised

manner. Moreover, we have compared the performance of the English and Posted-Offer

auction models and showed that the latter should be employed in occasions where time

is a critical aspect of adapting security due to its simplistic nature. On the contrary,

the English auction should be employed when users are secured and need to acquire

cheap and/or scarce services due to the bargaining that takes place between agents and

SPs. Finally, we have illustrated that learning approaches can assist users in short list-

ing candidate solutions and acquire service in an efficient and dynamic manner without

embarking on an exhaustive search for candidate solutions.

In the next chapter, Chapter 4, we examine the dependability of market-inspired

methodologies for security. In particular, we investigate market-specific attacks and their

effects on existing market-oriented Cloud architectures.
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CHAPTER 4

INVESTIGATING MARKET-SPECIFIC THREATS

Market-oriented methodologies have been widely employed by software engineers for solv-

ing dynamic allocation problems [18], [19], [20] in online systems such as the Cloud. De-

spite the growing work in the area, the majority of the existing methodologies such as

SHARP [87], Tycoon [88], Bellagio [91], Shirako [90], Aneka [117] and Gridbus [118] are

neither security oriented nor they provide treatment for market specific threats. The

existing work on market-oriented Cloud security has primarily focused on improving the

anonymity [119], [120], [121], confidentiality [122], [123] and integrity [124] characteristics

of these systems; however it has less considered market-specific threats, which can affect

the operation of bidders, sellers and auction mechanisms. To ensure the secure operation

of these systems, it is not sufficient to protect them against generic attacks (e.g. denial

of service, etc.), but to also consider possible market-specific threats.

In this chapter, we investigate market-specific attacks in the Cloud and follow an ex-

perimental methodology to demonstrate the deficiency of existing market-oriented Clouds

in facing these threats. We then examine how these attacks can manipulate the oper-

ations of bidders, sellers and auctioning mechanisms for personal gain. In particular,

we focus on the analysis of four market-specific threats, namely: Shill bidding attack,

Reputation attack, Monopoly attack and Denial of payment attack, and their effects on

existing market-oriented Clouds. 2

2Part of the work presented in this chapter has been published in [125].
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4.1 Background Information and Related Work

This section introduces the four selected market-specific attacks. It then presents related

work on the analysis and counteraction of market-specific threats in online markets and

differentiates them from our work.

4.1.1 Shill Bidding

Shill bidding is the deliberate forgery and submission of bids in an auction to escalate the

auction price and defraud legitimate bidders. By submitting shill bids, a seller can inflate

the bidding price and sell goods at a higher price [126]. The effectiveness of shill bidding

can vary based on the auctioning algorithm used in a market. For example, the submission

of shill bids in English auctions can rapidly escalate auction prices, as each bidder can

set a new highest price for services and resources. In contrast, the submission of shill

bids in sealed bid auctions can only set the reserve price for the shill bid value (highest

bidding price) prior to the start of an auction, which renders shill bidding ineffective.

Although online auctioning houses forbid shill bidding, there has not been any recorded

attempt concerning the analysis of shill bidding in the context of the Cloud. The existing

work restricts its application to simplistic e-commerce markets that trade single items

and are grounded on the English auction model. Despite the significance of the existing

work, market-oriented Clouds often necessitate the use of combinatorial auctions to allo-

cate bundles of services and resources to bidders, which is not addressed by the existing

literature. Furthermore, the majority of the existing work assumes that the operating

environment is semi-trusted with bidders that operate in a symmetric fashion, which does

not hold for shared, dynamic and elastic environments, such as the Cloud. Some notable

work on the analysis and mitigation of shill bidding attacks are the following:

The work of Bhargava et al. [127] proposes a shill bidding counteracting algorithm for

risk neutral online English auctions. The proposed algorithm uses an equilibrium strategy

that maximises a bidder’s utility, holding the bidding strategies of all other bidders fixed.
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The authors assume that agents bid according to a symmetric strategy that maximises

their utility as it results into Bayes Nash equilibrium.

Kauffman et al. [128] analyse bidding data from eBay coin auctions to gain insight

and counter reverse price shill bidding. To identify shill bidding the authors examine the

following attributes: the ratio of the number of auctions with questionable bids compared

to the total number of auctions held by a seller; the experience level of a seller; a seller’s

reputation; the starting bid in an auction; duration of an auction; and the coin value.

The work of Threvathan et al. [129] presents an algorithm that detects shill bidding in

online English auctions. The algorithm observes bidding patterns over a series of auctions,

providing each bidder with a score indicating the likelihood of their potential involvement

in shill behaviour. The assigned score is determined by analysing the following bidding

characteristics: seller received bids; bidding frequency; number of won auctions; time of

bid submission; and bidding price.

Wang et al. [126] examine the effects of shill bidding attacks on English auction mar-

kets and how auctioneers can deterring fraud. More specifically, this work promotes a

Shill-deterrent Fee Schedule (SDFS) algorithm which allows auctioneers to charge sellers

an intermediation fee for discouraging them from submitting shill bids. The intermedi-

ation fee is calculated based on: i) “the listing fee, which is a function of the seller’s

reverse”, ii) “the commission fee, which is a function of the commission rate and the

difference between the final sale price and the reserve price” and iii) “the commission

rate, which is mathematically determined to ensure the non-profitability of shill bidding”

[126]. The authors argue that the selection of appropriate commission rates can eliminate

additional gains for sellers.

4.1.2 Reputation Attack

Reputation attack is the defamation of sellers by rival sellers or buyers. Attackers in-

tentionally fabricate false bad feedback and submit them to sellers to harm their status,

profit and clientle. False bad feedback damages the reputation of sellers and the infor-
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mation available to bidders, so meaning that markets can no longer function properly.

Reputation attacks can be equally effective in all types of auctions, given that a market

uses reputation status for sellers.

Despite the frequent occurrence of reputation attacks in online systems [130], [131]

very little has been done for their analysis, including the effects of reputation attacks in

market-oriented Clouds. Some noteworthy attempts on the analysis and mitigation of

reputation attacks have been conducted by the following work.

FIRE reputation system [132] computes a trust metric for each user in a market by

classifying trust information into direct experience, witness information, role-based rules

and third party referrals. It then filters out and penalizes inaccurate opinions. FIRE uses

an inaccuracy tolerance threshold to specify the maximal permitted differences between

the actual performance and witness rating. To operate, FIRE requires data from multiple

sources, which in the Cloud is a complex undertaking due to the absence of third party

referrals and user refusal to provide data.

TRAVOS [133] is a reputation system that uses Bayesian probability to compute the

trust of an agent by analysing the past experience between two agents. To remove unfair

opinions TRAVOS estimates the accuracy of reputation advice based on the number of

valid and invalid advice submitted by an agent in the past. TRAVOS assumes that sellers

act consistently which may not be the case in the Cloud.

Beta Reputation System (BRS) [134] estimates the reputation of sellers by using the

beta probability density function. It combines the ratings of a seller being provided with

multiple advisors by accumulating the number of good and bad ratings. To handle unfair

opinions, BRS filters out ratings that are not in the majority. BRS can operate only

when the majority of the ratings are fair, which cannot be guaranteed in the Cloud due

to its heterogeneous and dynamic nature.
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4.1.3 Monopoly Attack

In economics, a monopolistic market describes a market structure with a lone seller that

trades a unique product [135]. In such a market, the seller faces no competition as he is

the only seller. Monopolies can distort investment incentives and damage market profit.

In our context, monopoly attack is perceived as any attempt, originating from a Cloud

seller, that aims to buy up the vast majority of the resources in a market for escalating

their prices.

Despite the significance of monopolies and their acknowledgement by economists,

there is no known to us work that addresses monopolies in the context of the Cloud or

work that considers monopoly from the perspective of a malicious, deliberate attack. The

existing work is rather concerned with the theoretical analysis of specific monopolistic

markets, including their effects on the incentives of bidders and sellers [136], [137]. This

can be primarily attributed to the reason that traditional monopolistic markets often

facilitate a single dominant seller with no major competitors. On the contrary, in the

context of market-oriented Clouds it is possible for a malicious seller to join a market at

any point and attempt to corner it by leasing physical infrastructure and services from

rival sellers. To achieve this, the seller needs to maintain sufficient funds to purchase

/ lease the majority of the resources in a market. Therefore, it is significant to view

monopoly as a candidate threat for market-oriented Clouds and examine its effects on

these systems.

4.1.4 Denial of Payment Attack

Denial of payment attacks describes the process of a buyer/seller that creates fake bidding

accounts to bid and win resources from sellers and then intentionally deny payment to

harm their profit. Despite the significance of the denial of payment attacks, they have

not received any attention from economists or computer scientists as existing traditional

markets operate with the assumption that a vast majority of the buyers submit legitimate
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requests for service. This assumption does not hold for contemporary market-oriented

Clouds as it is possible for an attacker to create multiple fake bidding accounts and

perform collaborative denial of payment attacks.

In the case where a collaborative denial of payment attack is performed by the minority

of bidders in a market, its effects can prove negligible. Whereas, if a significant number

of bidders collude, a market can be severely affected. Therefore, it is essential that

economists and security software engineers examine neglected market-specific threats,

such as the denial of payment attack to determine their possible effects on contemporary

market-oriented Clouds.

4.2 Experimental Analysis of Market-Specific Attacks

in the Cloud

This section examines our hypothesis that market-oriented Clouds are unsecured against

market-specific attacks and in particular towards the four aforementioned attacks. The

main contribution of this section is to provide an answer to our research question in

Chapter 1: Can market-inspired mechanisms provide a dependable and secure mecha-

nism for securing assets in the Cloud? More specifically, we follow an experimentally

driven methodology to examine the following queries: i) How is the utility of bidders

and sellers affected by the deployment of the selected market-specific attacks? ii) How

are existing market-oriented Clouds and their auctioning algorithms affected by these

attacks? and iii) Can online markets that are vulnerable to market-specific attacks be

utilized as dependable optimisation mechanisms?

To examine our hypothesis we have used the CloudSim [25] simulation framework

and its CloudAuction market component as our test-bed 1. For the purpose of our

experiments, we assume that we operate in a regulated market-oriented Cloud where the

market auctioneer is able to monitor the behaviour of vendors and buyers in the market

1The source code of the developed attacks can be found in: github.com/GiannisT/MarketAttacks
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to identify malicious behaviour and protect all transacting parties.

The remaining of this section presents our experimental setup, including the usage

of the CloudSim simulation framework and the CloudAuction component for performing

our experiments. It then evaluates the effects of the four selected market-specific attacks

on market-oriented Clouds.

4.2.1 Experimental Setup

CloudSim Framework and CloudAuction Component

CloudSim is a framework for modelling and simulating Cloud computing infrastructures

and services. It enables the simulation of i) large-scale Cloud environments on a sin-

gle physical computing node, ii) service brokers, iii) service provisioning, iv) allocation

policies, v) network connections among the simulated system elements and vi) a feder-

ated Cloud environment that inter-networks resources from private and public domains.

CloudSim facilitates a visualisation engine that aids in the creation and management of

multiple, co-hosted virtualized services.

The CloudAuction component [25] is an extension of the Cloudsim framework that

enables the system to handle auction-based services. CloudAuction simulates a market-

oriented Cloud in which a varying number of SPs (sellers) trade their resources (RAM,

bandwidth and CPU MIPS) to user agents / buyers with the assistance of a combinatorial

double auction mechanism.

Combinatorial auctions [138], refer to auctions of multiple goods, as opposed to single

auctions. In combinatorial double auctions there are X items x1, ...., xn, m bidders and

k sellers. Bidder i has (true) reservation value Pi per unit for a bundle of items Si ⊆

{x1, · · ·, xn} , and submits a bid Bi that demands up to Di units of the bundle Si, such

as Bi{Pi, Di, Si}. On the other hand, each seller j forms and submits an ask Aj that

has Cj as the unit cost and offers to sell up to Sj units of xj at a unit price of Fj, such

as Aj{Sj, xj, Fj}. In each auction round, all bids and asks are simultaneously submitted
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to the auctioneer for auctioning. The auctioneer sorts bids in a descending price order

B1 ≥ B2 ≥ ... ≥ Bn and asks in an ascending price order A1 ≥ A2 ≥ ... ≥ An, where

a subset h of them are used for auctioning. h is the largest index such that Bm ≥ Ak.

The subset of the selected bids (q ⊆ Bn) and asks (z ⊆ An) are in the price range of

[ max(Ah, Bh+1),min(Bh, Ah+1) ] which results in an equilibrium price as both demand

and supply is h. To match the selected asks and bids the auctioning mechanism first

ensures that bids are matched with asks up to their maximum demand (Di < Sj) and

that asks are matched with bids up to their maximum supply (Sj < Di). Finally, a

settlement price is calculated by deriving the average of the selected bid and ask prices

and then the average of the two (Equation 4.1). All sellers who asked less than the

settlement price sell and all bidders who bid more than that price buy resources at the

settlement price.

AV G(

∑q
i=1 Di×Pi

q
+

∑z
j=1 Sj×Fj

z
) (4.1)

For the purposes of our experiments, in this chapter, the items comprising our se-

curity bundles are restricted to the resources supported by the CloudSim tool, namely

RAM, bandwidth and CPU MIPS. As the main goal of this chapter is to determine the

effects of market-specific attacks on market-oriented Clouds, the types of services and

resources traded in the market are irrelevant to our experiments. The security bundles

are constructed by clustering together a set of the aforementioned resources with normal

distribution to simulate a realistic environment where different bidders necessitate dif-

ferent bundles. The price of each bundle is generated with normal distribution between

$15-$50, where the price of each resource is accordingly selected (with normal distribu-

tion), such as the aggregated price of all the resources in a bundle sum up to its total

price. The selection of the specific pricing methodology only aims to serve as a metric

for quantifying the economic effects of the attacks in the market. In the case that the

selected prices are replaced with analogous (higher or lower) prices the outcome of the

experiments will reflect similar trends.
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As Cloud users often necessitate the composition and allocation of diverse security

services and resources that are supplied by different sellers in a market, it is essential to

further explore the use of combinatorial auctions. Combinatorial auctions can alleviate

the added computational strain imposed by single item auctions for forming and submit-

ting multiple bids to acquire different services and resources. As identified in subsection

2.1.2.1 one of the main characteristics that self-adaptive security solutions must maintain

is the ability to identify and compose various bundles of security components at runtime.

Combinatorial auctions can be a candidate solution to the problem, enabling the effective

delivery of bundles of security services and resources. Despite that the previous chapters

have focused on the use of single item auctions (to adhere to the existing economics-

inspired computing literature and simplify the complexity of our proof-of-work), this

chapter wants to explore the applicability of combinatorial auctions for security and how

they are affected by market-specific attacks. By deploying our market-specific attacks in

combinatorial auctions it is possible to determine how highly complex auctioning algo-

rithms can be affected, compared to simplistic single item auctions which have received

vast attention in the past. As mentioned in Chapter 3, the auctioning mechanism of each

market should not be treated as a static component but rather as add-on which can be

easily replaced based on the runtime requirements and constraints of a market.

Why CloudSim Simulation Framework?

The engineering of real test-beds limit the experiment to the scale of the test-bed and

make the reproduction of results difficult. Furthermore, the creation of real test-beds

introduces low-level tasks, such as setting up basic hardware and software, which is ex-

pensive and time-consuming. Additionally, attributes such as allocation and provisioning

algorithms are beyond the control of developers in real life markets, which restricts the

experiment and its outcomes. A suitable alternative is the use of simulation tools, which

enable the evaluation of hypothesis in an environment where one can reproduce tests.

Furthermore, the development of simulation frameworks allows users to test their ser-
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vices and resources in a repeatable and controllable environment free of cost. At the

provider side, simulation environments allow the evaluation of different resource leasing

scenarios under varying loads and pricing distributions [25]. Furthermore, simulation

tools allow for the homogeneous quantification of results as they are architecture impera-

tive, where real life market-oriented Clouds have their own composition and deployment

requirements.

The selection of the CloudSim tool as our test-bed can be attributed to its plethora

of recognition and extensive use from academia and industry [139].

4.2.2 Experimental Design and Results

This subsection describes the use of CloudAuction for testing our hypothesis. We report

on the effects of each market specific attack and solution on the operation of sellers,

bidders and the combinatorial double auction mechanism. The market parameters (e.g.

number of user agent, detection thresholds, etc.) used for our experiments are tailored

according to the idiosyncrasies and characteristics of each attack. We may note that these

parameters are flexible thresholds, which can be adjusted by the auctioneer according to

the needs of the market.

4.2.2.1 Shill Bidding

Shill Bidding Attack In CloudAuction

To test the CloudAuction market to shill bidders we have simulated 3 SPs and a varying

number of user agents (between 5-220). In particular, the aim of this experiment is to

observe how the increase in the number of shill bidders can affect the average accumulated

profit margin of sellers in the market. The bidding prices submitted by user agents

were generated with a normal distribution between $10-$50. The absence of similar

experiments in the Cloud, along with the sole need for quantifying the cumulative profit

of SPs have driven us to select the aforementioned indicative values. At the beginning
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of each auction round, a number of bidders (currently set to 10%) are randomly selected

and “forced” to act as shill bidders by submitting forged bids. As we operate in a market

that uses the combinatorial double auction model, a large number of bidders (i.e. 10%)

need to submit high bidding prices for the settlement price (Equation 4.1) to significantly

increase. In the event where a small number of shill bidders are deployed in the market,

a shill attack can remain undiscovered or have a marginal impact on the expected gain of

malicious sellers. The price Pi submitted in the bids of shillers is calculated by increasing

the average bidding prices, b, submitted by legitimate users in the market by a percentage

v (10%-20%). Value v represents the tendency of shill bidders that make unnecessarily

large price increments to quickly drive up selling prices. However, as the submission of

bids resulting in large bidding increments increase the likelihood of detection. Our shill

bidding prices only aim to moderately increase selling prices, for legitimate bidders to

retain their interest in auctions and for shill bidders to evade detection. To compute the

bidding price for each shill bidder we perform the following calculation: Pi = (b× v) + b.

Comparative Results

Our comparative results illustrate the variations observed in the average accumulated

profit of SPs in the presence and absence of shill bidders in the CloudAuction market.

Our initial tests were performed in the absence of shill bidders, witnessing a profit margin

that was proportionally increased to the numbers of bidders in the market (Figure 4.1,

dashed blue line).

We then tested CloudAuction in the presence of shill bidders, witnessing a higher

average market price with a disproportional, continuous growing trend. The average

accumulated market price in the absence of shill attackers was $242.36, wherein their

presence it was increased to $285.91 (Figure 4.1, red line). The upsurge in the price

demonstrated that even if shill bidders submit bids with moderate price increments,

legitimate bidders will still not be able to acquire resources at optimal prices. To warrant

the accuracy of the acquired results, we have performed multiple runs of this experiment
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Figure 4.1: The average market price in the absence and presence of shillers.

which verified our initial results.

Although the combinatorial double auction mechanism is not highly susceptible to

shill bidding attacks due to the way that its selling/settlement price is calculated, which

necessitates a large number of shill bidders to collude, it was still feasible to overcome

this obstacle with the creation of multiple fake bidding accounts. Demonstrating that

existing market-oriented Clouds are susceptible to shill bidding attacks.

4.2.2.2 Reputation Attack

Reputation Attack In CloudAuction

To perform reputation attacks in CloudAuction we have introduced a reputation status

for each seller and allowed bidders to i) submit feedback to sellers according to their

end service satisfaction and ii) to specify in their bids the reputation of the sellers they

would like to obtain service from. Depending on the nature of the market and the

services/resources that it trades, different feedback information can be used to enable

users to express their opinions. For the purpose of this experiment we assume that all
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feedback is grounded on five causes: i) seller fails to meet resource demands (e.g. allocated

fewer resources, etc.), ii) seller fails to allocate resources, iii) seller fails to satisfy the QoS

requirements of a bidder, iv) payment errors and v) hardware/software errors that restrict

a bidder from acquiring the won resources.

To test the CloudAuction market to reputation attacks we have simulated 3 SPs and

25 user agents. The small number of sellers and buyers used in this experiment simplifies

our need for the quantification of the profit of sellers. The usage of a larger/varying

number of bidders and sellers is unnecessary due to the homogeneous nature of their

runtime behaviour which will promote analogous results. At the end of each auction

round, we randomly select one bidder that won, paid and received resources from a seller

to submit false bad feedback to that seller.

Figure 4.2: The profit of sellers in the absence of false bad feedback.
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Comparative Results

To determine how sellers are affected in the absence and presence of false bad feedback,

we have initially configured CloudAuction to operate with no false bad feedback and then

introduced bad feedback to a seller (i.e., SP3). Bidders were programmed to avoid sellers

with bad reputation to simulate the reluctance of real world buyers to be associated with

bad reputation sellers.

We have witnessed a vast variation in the profit margin of the seller with bad repu-

tation. In the absence of false bad feedback, SP3 was able to obtain 11 bids, whereas in

the presence of false bad feedback the number of bids (3 bids) and its profit dramatically

decreased. The debt column in Figure 4.2 and Figure 4.3 presents the money received

by the simulated SPs in the absence and presence of false bad feedback respectively.

Similarly to the shill bidding attack, the bidding prices submitted by user agents in this

experiment were generated with a normal distribution between $10-$50.

The obtained results demonstrate that the submission of false bad feedback can drive

candidate buyers away from sellers and thus damage their profit. Due to the highly

competitive nature of contemporary market-oriented Clouds, it is essential to identify

and eliminate false bad feedback at runtime to ensure that sellers are not defaming rival

sellers for personal gain.

4.2.2.3 Monopoly Attack

Monopoly Attack In CloudAuction

To conduct our monopoly experiments we have simulated 3 SPs and 25 user agents.

At the beginning of each simulation round, we randomly select one seller that forwards

multiple requests for leasing resources from rival sellers until it exceeds the ownership of

the 50% of the overall resources in a market [141]. This aims to simulate the malicious

behaviour of a seller that tries to buy up resources and corner a market.
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Figure 4.3: The profit of sellers in the existence of false bad feedback.

Comparative Results

Similarly to our tests for the reputation and shill bidding attacks, we have performed mul-

tiple runs for this experiment to ensure the correctness of our results. The acquired results

demonstrate how the average price of each traded resource is affected in the presence and

absence of a monopoly attack in CloudAuction. We have observed that monopoly can

significantly increase the average price of resources. Therefore, damaging the profit of

rival sellers, as well as distorting their investment interest as they are only able to ac-

quire resources at higher prices. More specifically, we have observed that in the absence

of monopoly attacks the average price for leasing RAM (per 1 MByte), storage (per 1

GByte) and bandwidth (per 1 Mbit/s) was $4.8, $4.8 and $5.2 respectively, whereas when

we introduced a monopoly attack the prices escalated to $6.2, $6.1 and $5.5 (Figure 4.4).
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Figure 4.4: The average price of resources in the existence and absence of monopoly.

The values used for pricing the traded resources were generated with normal distribution

between $4 and $6. The selected values serve as a mere metric unit for comparing the av-

erage resource prices in the absence and presence of a monopoly attack and should by no

means perceived as a realistic representation of the prices of computational resources in

the Cloud. The price difference exhibited between the bandwidth and the other resources

in the presence and absence of a monopolistic attack can be attributed to the generation

of bidding prices with normal distribution. The small bandwidth price difference in the

presence and absence of monopoly does not invalidate / contradict the rest of our results

as it still demonstrates that the attack has increased the price of bandwidth.

In this experiment, we have illustrated that security software engineers have not

provided any treatment for the malicious acquisition of monopolistic power by service

providers/sellers in market-oriented Clouds. In particular, we have shown that market-

oriented Clouds are susceptible to malicious behaviour aiming to “forcibly” acquire the

majority of the resources in a market for escalating their prices.
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4.2.2.4 Denial of Payment Attack

Denial of Payment Attack In CloudAuction

To perform denial of payment attacks, in CloudAuction, we have simulated 3 SPs and

25 user agents. At the beginning of each simulation run, we randomly select a number

(currently set to the 15%) of ongoing auctions and halt their payments. This aims to

simulate the behaviour of bidders that refuse payment to sellers. The large number of

bidders selected for the purpose of this attack (i.e. 15%) aims to exemplify its effects on

the profit of sellers and the overall revenue of the market.

Comparative Results

Our findings illustrate how the cumulative profit of sellers is affected in the presence

and absence of denial of payment attacks. The obtained results show that the profit of

sellers is severely affected by bidders that intentionally refuse to pay for won resources

as their resources remain bounded, where no money is received. More specifically, in the
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Figure 4.5: The profit of SPs in the presence and absence of denial of payment attacks.
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absence of intentional denial of payments the cumulative profit of sellers reached $12010,

wherein their existence the market revenue dropped to $4010 (Figure 4.5). Similarly to

our previous experiments, the bidding prices submitted by user agents were generated

with normal distribution between $10-$50. We have performed multiple runs of this

experiment to verify the correctness of our results.

Treating denial of payment attacks in the context of the Cloud is essential as attackers

can create multiple fake bidding accounts with the objective to flood a market with forged

bids, thus increasing the damage caused to the profit of sellers.

4.3 Summary

In this chapter, we have hypothesised that market-oriented Clouds are threat-unaware

and unable to deal with market-specific attacks such as shill bidding and monopoly. We

have used CloudAuction, a market-oriented extension of CloudSim simulation framework,

as our test-bed to verify our hypothesis.

Our results have confirmed that existing markets are vulnerable towards market-

specific attacks and ascertain on how such threats can affect sellers, bidders and under-

lying auctioning mechanisms (i.e. combinatorial double auction) in these environments.

Grounded on the findings of this chapter, the following chapter uses observations of the

experiments to promote and engineer candidate, lightweight and scalable defensive mech-

anisms for securing market-oriented Clouds against the four examined market-specific

attacks.
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CHAPTER 5

THWARTING MARKET-SPECIFIC ATTACKS IN
THE CLOUD

In Chapter 4 we have shown that existing markets are vulnerable towards market-specific

attacks and ascertain how such attacks can affect sellers, bidders and auctioning mecha-

nisms. In this chapter, we use observations of the experiments on market-specific attacks

to develop defensive mechanisms for securing market-oriented Clouds against these at-

tacks. We then report on the added value of introducing our defensive mechanisms for

securing market-oriented Clouds by comparing how these systems are affected in the

absence and presence of the selected attacks and the proposed solutions. 2

5.1 Motivation

Even though advanced strategy-proof (e.g. Vickrey–Clarke– Groves [140]) auction mech-

anisms exist for warranting that the established auctioning protocols are respected, we

are not aware of any systematic or ad-hoc attempt in deploying them in the context of

the Cloud. This may be attributed to the following: firstly, strategy-proof solutions can

be complex and/or of limited scalability when applied in dynamic and fundamentally

elastic environments like the Cloud. This can render them ineffective, where the per-

ceived benefits are likely to be overtaken by the cost and overhead of their application.

2Part of the work presented in this chapter has been published in [125].
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Secondly, these proofs have been to a big extent theoretical in nature and concerned with

the fundamentals of auctions. Consequently, their assumptions and solutions may be

challenged or even break when applied in scalable and unpredictable environments. The

employment of strategy-proof auction mechanisms in the Cloud might negatively impact

Service Level Agreement compliance in many ways, for example, i) the time required to

adapt security will increase exponentially as the number of violation alerts increases, ii)

given the dynamism of the system, mitigation decisions are likely stale by the time they

are deployed, and iii) the auction controller may become overloaded and thus fail, making

a Cloud system out-rightly unavailable.

Henceforth, market-inspired security solutions shall be fundamentally lightweight and

scalable; they may need to operate with assumptions suited for the Cloud covering ar-

eas related to distribution and/or federation management. These solutions should not

be concerned with the fundamental characteristics of underlying auctioning mechanisms,

but instead operate as lightweight plug & play add-ons that can scale in the presence

of a large number of users. Henceforth, this chapter proposes lightweight, add-on de-

fensive mechanisms 1 for each of the four market-specific attacks presented in Chapter

4 (i.e. Shill Bidding, Reputation attack, Monopoly and Denial of payment attacks). To

experimentally demonstrate the applicability and effectiveness of the proposed defensive

mechanisms we have deployed them in the CloudAuction market. Signifying the added-

value of market-specific defence mechanisms in market-oriented Clouds. In particular,

we compare how a market can be affected in the absence and presence of the selected

attacks and the proposed solutions.

5.2 Experimental Design and Results

This section describes the use of CloudAuction to test our candidate solutions. We report

on the effects of each market-specific attack and solution on the operation of sellers,

1The source code of the developed attacks and solutions can be found in:
github.com/GiannisT/MarketAttacks
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bidders and the combinatorial double auction mechanism. All the experiments were

performed using the experimental setup discussed in section 4.2. The market parameters

(e.g. number of user agent, detection thresholds, etc.) selected for our experiments were

tailored according to the idiosyncrasies and characteristics of each attack/solution. The

selected parameters allowed our defensive mechanisms to attain the highest detection and

lowest false positive and false negative rates possible. We may note that these parameters

are flexible thresholds, which can be adjusted by the auctioneer according to the needs

of the market. Unfortunately, it is impossible for us to identify and establish a set of

optimal values for the detection thresholds of our defensive mechanisms. This is due to

the diverse composition of markets and the environments they operate in, which render

these parameters system and case specific. One possible method to overcome this problem

is to examine the sensitivity of our defensive mechanisms by altering the thresholds until

the required results are witnessed.

5.2.1 Shill Bidding

5.2.1.1 Defensive Mechanism

The proposed shill bidding defensive mechanism is founded on the real time analysis of

bidding records. Each bidding record archives the following attributes for each bidder:

i) price difference between a buyer’s bid and the next highest bid in an auction, ii)

bidder’s feedback (e.g. positive, negative), iii) number of lost auctions, iv) total number

of auctions participated, v) number of times that a bidder overbid himself/herself while

winning an auction, vi) number of bids submitted before and after the halftime of an

auction, vii) the number of bids submitted to each seller and viii) the overall number

of bids submitted to the market. At the end of each auction round all bidding records

are analysed. The record analysis entails the comparison of the nine archived attributes

with given thresholds which result to a shill value for each bidder. In the case that a

comparison is true, 1 is returned and added to the “shill value”, where if it is false 0 is
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returned instead. The shill value illustrates the number of malicious conditions met by

a bidder in a single iteration of our algorithm. The higher the score of a shill value, the

higher the likelihood of a bidder being malicious.

The proposed algorithm performs the following tests to determine whether a bidder

is malicious. First, it examines the feedback of a bidder. If no or negative feedback

is found the algorithm increases the likelihood of a bidder being malicious (feedback is

bad OR neutral) as shill bidders usually do not receive feedback. Following, it examines

the ratio between the lost auctions of a bidder and the total number of auctions that

he/she participated in. As the sole goal of shill bidders is to drive up prices and then

allow legitimate bidders to win, shill bidders maintain an unusually high number of lost

auctions. Therefore, we assume that if a bidder has lost more than a = 70% of the

auctions he/she participated in (LostAuct > NumOfAuctPartic×a) he/she is probably

malicious. We consider 70% to be a fitting value for a as it is high enough to avoid the

misclassification of legitimate bidders and low enough to identify shill bidders. In the case

that a legitimate bidder has lost more than 70% of its auctions, he/she is still at no risk

of being misclassified as this is just one of the nine dimensions examined for calculating

the shill value.

Our algorithm then examines whether a bidder has overbid himself/herself while win-

ning an auction. Shill bidders tend to overbid themselves even when they are winning

an auction, as their primary goal is to constantly increase auction prices. The proposed

defensive mechanism is programmed to tolerate bidders that overbid themselves once

(c = 2) to avoid misclassifying legitimate bidders that accidentally overbid themselves

(OverbidWinSelf ≥ c). Next, the proposed algorithm compares the bidding frequency of

a bidder during the first and second half of an auction. Shill bidders are more eager to

bid during the first half of an auction in order to give legitimate bidders sufficient time

to place their bids and win (BidNumFirHalf > BidNumSecHalf ).

Following, our defensive mechanism examines the percentage of bids submitted by a

user to each seller. In particular, our algorithm examines whether a bidder has submitted
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a majority of its bids (i.e. d = 60%) to a single seller (BidsToSeller > TotalBids×d).

Shill bidders often submit all of their bids to a specific seller to increase its revenue, where

legitimate users submit their bids to various vendors. Therefore, the selected value for d

is high enough to avoid misclassifying legitimate bidders and low enough to identify shill

bidders. Even if a legitimate bidder focuses all its bids to a specific seller he/she will not

be penalised as this is one of the dimensions examined to calculate the shill value. Finally,

the proposed solution evaluates the price difference between the bidding price submitted

by the bidder in question and the next highest bid in an auction. It then compares the

identified price difference with the average price difference exhibited in similar auctions

in the market (SubmitBidPrice-OverbidPrice > AverageMarketPriceDiff ). This allows us

to determine if the prices submitted by a bidder are unnecessarily high, which signifies

behaviour often witnessed by shill bidders.

Once the shill value of a bidder is calculated, it is compared with a threshold (i.e.

t ≥ 5) to determine whether the bidder is malicious. The value selected for t is high

enough to avoid the misclassification of legitimate bidders, that exhibit signs of shill-like

behaviour (meet some of the malicious conditions in our algorithm), but still effective

for the identification of shill bidders in the market. If a bidder is found malicious, it

is flagged as a possible shill bidder and is given a warning. If the exhibited malicious

behaviour is repeated from the flagged bidder a number of times (current set to q =

2), the bidder needs to pay a fine f to the market and its account is discarded. The

algorithm has been configured to tolerate the first occurrence of shill bidding from each

bidder in order to decrease the cases of false positives. The imposed fine f aims to

discourage shill bidding by exceeding the expected gain of a shill bidder and the seller

it represents. The imposed fine is obtained by subtracting the average market price of

resources in similar, shill-free auctions from the average price of resource in the presence of

shill bidders and then increase the outcome by z = 10% (f = (AVG(ShillResourcePrice)

- AVG(NonShillResourcePrice))×z). The algorithmic steps of the proposed defensive

mechanism are presented in Algorithm 6.
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Algorithm 6 The shill bidding defensive mechanism pseudocode

Let: a denote a flexible parameter currently set to 70 %, c denote a flexible parameter
currently set to 2, d denote a flexible parameter currently set to 60 %, t denote a
flexible parameter currently set to 5, q denote a flexible parameter currently set to
2, f denote a fine payment, z denote a flexible parameter currently set to 10 % and
shillValue denote a value illustrating if a user is malicious

for i=1 to Nth Bidder do
shillValue:=0
if feedback = bad OR neutral then

shillValue:= shillValue + 1
end if
if LostAuct > NumOfAuctPartic ∗ a then

shillValue:= shillValue + 1
end if
if NumOfBidsSubmittedToAuction > BidsInAuction ∗ b then

shillValue:= shillValue + 1
end if
if OverbidWinSelf ≥ c then

shillValue:= shillValue + 1
end if
if BidNumFirHalf > BidNumSecHalf then

shillValue:= shillValue + 1
end if
if BidsToSeller > TotalBids ∗ d then

shillValue:= shillValue + 1
end if
if SubmitBidPrice-OverbidPrice > AverageMarketPriceDiff then

shillValue:= shillValue + 1
end if
if ShillValue ≥ t then

FlagAsPossibleShillBidder()
WarnBidder()

end if
if TimesFlagged ≥ q then

f:= (AVG(ShillResourcePrice) - AVG(NonShillResourcePrice))×z
PayFine(f)
DeleteBidderAccount()

end if
end for

5.2.1.2 Results and Analysis

The proposed defensive mechanism was able to detect 83% of the shill bidders simulated

in the CloudAuction market. To conduct this experiment we have used the experimental
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setup used in subsection 4.2.2.1 for our shill bidding attack experiment. To demonstrate

the added value of the proposed defensive mechanism we have compared the average

accumulated profit of SPs (in CloudAuction) in a healthy market; in the presence of shill

bidders; and in the presence of shill bidders and our solution. In particular, we have

compared the results presented in Chapter 4 showing the average cumulative market

price in the presence (Figure 5.1, red line) and absence (Figure 5.1, blue dotted line) of

shill bidders with the average cumulative market price in the presence of shill bidders and

our solution. The usage of our defensive mechanism in CloudAuction (Figure 5.1, green

line), in the presence of shill bidders, has illustrated a significant drop in the average profit

margin of SPs and similar price fluctuations to the experiment conducted in the absence

of shill bidders. More specifically, the average accumulated market price in the absence

of shill attackers was $242.36, wherein their presence it was increased to $313.91. With

the deployment of our defensive mechanism, the price declined to $239.36, demonstrating

a similar average cumulative price to a healthy market.
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Figure 5.1: The average market price in the absence and presence of shill attackers and
our solution.

Finally, to examine how sensitive is our defensive mechanism to the detection thresh-
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old t we have lowered t from 5 to 3. The obtained results signify an increase in the

detection rate of shill bidders reaching 100%. However, we have also witnessed a rise in

false positives (9,5%). The acquired results were conflicting as the benefits from lowering

t were overtaken by the occurrence of false positives. False positives in market-oriented

environments can be disastrous as they can defame legitimate bidders, damage the trust-

worthiness of the market and distort investment incentives. Therefore, it is better to

adjust the detection threshold to a point where the defensive mechanism can detect a

vast majority of the shill bidders in a market while minimizing false positive occurrences.

Even if it implies that a small number of malicious bidders will still be able to deceive

the defensive mechanism and occasionally shill.

5.2.2 Reputation Attack

5.2.2.1 Defensive Mechanism

To counteract reputation attacks, the proposed defensive mechanism automatically inter-

cepts bad feedback for analysis prior to their publication. During analysis the following

aspects are examined: i) has the bid successfully received by the seller in question? ii)

has the bid been served? iii) has the requested amount of bandwidth, CPUs and RAM

been successfully allocated to the bidder? iv) is the agreed price paid? and v) have

any hardware or software errors been reported during the utilisation of the resources by

the bidder? If the analysis shows that the bidder has valid reasons for submitting bad

feedback, the feedback is released and submitted to the seller, whereas if the analysis

illustrates that the bidder had invalid reasons, the feedback is discarded and a bad feed-

back is instead submitted to the bidder. The algorithmic steps for the proposed defensive

mechanism are presented in Algorithm 7. Our algorithm heavily relies on the assumption,

section 3.2, that the coordinator is able to monitor the behaviour of bidders and sellers

for compliance.
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Algorithm 7 Reputation defensive mechanism pseudocode

Let: b denote the bid associated with the submitted feedback, rBW denote the re-
quested bandwidth, aBW denote the allocated bandwidth, rM denote the requested
CPU MIPS, aM denote the allocated CPU MIPS, rR denote the requested RAM, aR
denote the allocated RAM, z denote the price paid for the won services/resources and
x denote the agreed bidding price for won services/resources.

if BadFeedback isReceived then
Intercept(Feedback)

end if
if (b isReceived) & (b isServed) & (rBW ≥ aBW) & (rM ≥ aM) & (rR ≥ aR) & (z ≤
x) & (Payment is Performed) & (SoftErrors OR HardErrors not found) then

Delete(Feedback)
SubmitBadFeedback(bidder)

else
ReleaseFeedback()
SubmitBadFeedback(seller)

end if

5.2.2.2 Results and Analysis

The proposed solution was able to detect all the cases of false feedback in CloudAuction

(based on the experimental setup used in subsection 4.2.2.2) demonstrating that in some

occasions it is feasible to proactively determine the validity of feedback in electronic

markets without the need for human intervention and manual revision. By identifying

all the cases of false bad feedback we have provided buyers with accurate information

concerning the end-service quality and legitimacy of each seller, thus establishing fair

competition between the sellers in the market. In subsection 4.2.2.2 we have shown

that in a healthy market SP3 was able to acquire a cumulative profit of $2970.4 (Figure

4.2), wherein the presence of false bad feedback its profit declined to $1991.22 (Figure

4.3). In the presence of false bad feedback and our defensive mechanism, it was feasible

to witness a cumulative profit similar to a healthy market reaching $2580. The small

deviation in the cumulative profit of SP3 between a healthy market and the presence

of attackers and our solution can be attributed to the generation of bidding prices with

normal distribution between $10 - $50. In spite of the successful identification of all the

cases of false bad feedback, the proposed solution is only applicable to online markets
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that share a similar composition and trade similar services/resources to the CloudAuction

market. Different markets have different requirements and necessitate different feedback

information. Consequently, they also necessitate different defensive mechanisms that

adhere to their idiosyncrasies.

5.2.3 Monopoly

5.2.3.1 Defensive Mechanism

According to the work of Oswald [141] if a vendor owns more than 40% of the market

shares it can be likely a case of monopoly. Based on [141], our monopoly solution flags

sellers that own more than m = 40% of the market resources as suspicious. Suspicious

sellers are further examined to determine whether they were intentionally buying up

resources to corner the market. The analysis entails the examination of a seller’s idle

resources; used resources, and the number of requests made for leasing resources. In the

case where a vast majority of a seller’s resources are in idle state (current threshold set

to i = 70%) and has repeatedly requested to lease resources (current threshold set to the

average number of leasing requests per hour) from rival sellers (NumOfReq > MarketRe-

qPerHour/NumOfSellers), it is classified as malicious. If a seller is found malicious, its

leasing capability is revoked for a period of time t. The algorithmic steps of the proposed

monopoly defensive mechanism are presented in Algorithm 8.

5.2.3.2 Results and Analysis

Based on the experimental setup used in subsection 4.2.2.3, for our monopoly attack

experiment, the proposed defensive mechanism was able to successfully detect the attempt

for acquiring monopolistic control. The obtained results have demonstrated that the use

of our monopoly defensive mechanism can mitigate these attempts by minimising the

incentives and expected gains of this attack. Thus, retaining the cost of resources in the

market at low prices while protecting the financial interests of bidders. In particular,
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Algorithm 8 The monopoly defensive mechanism pseudocode

Let: m denote a flexible parameter set to 40%, i denote a flexible parameter set to
70% and t denote the duration of time the leasing capabilities of a seller are revoked.

if (sellerRAM > marketRAM ∗m) OR (sellerStorage > marketStorage ∗m) OR (sell-
erBW > marketBW ∗m) OR (SellerMIPS > marketMIPS ∗m) then

flag(suspicious Seller)
end if
if (seller is suspicious) & ((idleSellerRAM > totalSellerRAM ∗ i) OR (idleSellerBW >
totalSellerBW ∗ i) OR (idleSellerStorage > totalSellersStorage ∗ i) OR (idleSellerMIPS
> totalSellersMIPS ∗ i)) & (NumOfReq > MarketReqPerHour/NumOfSellers) then

Flag(Malicious seller)
PausePurchaseCapabilities(t)

end if

we have observed that in the presence of a monopolistic attempt and our solution, in

CloudAuction, the average price for leasing RAM, storage and bandwidth resources was

similar to the prices witnessed in a healthy market (Figure 4.4) reaching $4.7, $4.9 and

$5 respectively. The small variation in the selling prices between our experiments in a

healthy market ($4.8, $4.8 and $5.2) and the presence of attackers and our solution can

be attributed to the dynamic generation of selling prices with normal distribution.

Regardless of the successful detection and mitigation of monopoly attacks, our algo-

rithm is unable to resolve the situation where an attacker distributes the overall amount

of owned resources to multiple fake seller accounts, to evade detection and still maintain

the majority of resources in the market. However, even in this occasion, the attacker is

penalised as it is both harder and more expensive to maintain multiple accounts.

5.2.4 Denial of Payment

5.2.4.1 Defensive Mechanism

Similarly to our shill bidding defensive mechanism, this solution is grounded on the real

time analysis of bidding records. Each bidder in the market maintains a bidding record

that archives the following attributes: i) price difference between a submitted bid and

the next highest bid in an auction, ii) a bidder’s feedback, iii) number of bids submitted

134



from a bidder to each seller, iv) number of bids submitted from a bidder to the market, v)

number of times that a bidder denied payment for won resources and vi) number of won

auctions for a bidder. At the end of each auction round all bidding records are analysed.

The outcome of the analysis is expressed as an unpaid-status value. The unpaid-status

value is calculated by comparing the six archived bidding attributes with given thresholds.

In the case that a comparison is true, 1 is returned and added to the unpaid-status value,

where if it is false 0 is returned. The unpaid-status value illustrates the total number of

malicious conditions met by a bidder in a single iteration of our algorithm. The higher

the score of the unpaid-status, the higher the likelihood of a bidder being malicious.

The defensive algorithm initiates with examining a bidder’s feedback to determine

his/her credibility amongst market entities. In the case that a buyer’s feedback is feed-

back = bad OR neutral his/her chance of being malicious increases. Following, the

number of bids submitted to each seller (by each bidder) is examined. Bidders that

intentionally refuse payment to sellers have specific targets to which they often sub-

mit a majority of their bids. Therefore, we examine whether a bidder has submitted

more than a percentage (i.e. d = 50%) of its bids to a single seller (BidsToSeller >

TotalBids×d). Following, we analyse the ratio between the total number of won auctions

and the times that a bidder denied payment. We consider bidders that denied payment to

more than w = 50% of their won auctions as probably malicious (TimesDeniedPayment

> WonAuctions ∗w). As the sole goal of legitimate bidders is to bid and win resources

(excluding few, exceptional circumstances) it is imperative that they are also willing to

pay for their resources/services. Lastly, we examine the price difference between the

bidding prices submitted by a bidder and the second highest price in an auction. We

then compare the acquired price difference with the average price difference exhibited in

similar auctions (SubmitBidPrice-OverbidPrice > AverageMarketPriceDiff ). This allows

us to determine if the prices submitted by a bidder are unnecessarily high, which is be-

haviour often witnessed by malicious bidders aiming to ensure winning their auctions and

denying payment.
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Once the unpaid-status value is calculated, it is compared with the threshold u (cur-

rently set to 3), which determines if a bidder is malicious. If found malicious, he/she

is warned and the maximum number of bids that is able to submit in the market is

restricted to the s = 30% of the average number of bids submitted in the market per

hour (MaxBidsPerHour(AverageMarketBidsPerHour ∗ s)). If the bidder repeats the same

malicious behaviour a number of times (i.e. k = 3), then he/she has to pay a fine f and

its account is discarded. The imposed fine is calculated by deriving the c = 8% of the

total cost of the unpaid won auctions. Though we consider f to be reasonably low for

attackers to afford and high enough to discourage them, however, it can be adjusted

according to how strict the penalty should be. The algorithmic steps for the proposed

denial of payment defensive mechanism are presented in Algorithm 9.

5.2.4.2 Results and Analysis

To determine the detection accuracy of our denial of payment defensive mechanism, we

have simulated one hundred instances of denial of payment attacks in the CloudAuction

market. The acquired results (based on the experimental setup used in subsection 4.2.2.4)

signified a high detection rate, reaching the 89% of the malicious bidders in the market.

In subsection 4.2.2.4 we have compared the cumulative profit of sellers in the absence

and presence of denial of payment attacks and demonstrated (Figure 4.5) that their profit

can be severely damaged. In particular, in the absence of intentional denial of payments

the cumulative profit of sellers reached $12010, where in their presence the overall market

revenue declined to $4010. In this subsection, we examine the added value of our defensive

mechanism by comparing the results acquired in Chapter 4 with the revenue witnessed in

the presence of attackers and our solution. Our experiment illustrates that by deploying

our defensive mechanism the profit of sellers escalated to $10150, witnessing a profit

margin similar to the one exhibited in a healthy market. The small price difference

between the cumulative market revenue witnessed in a healthy market and the presence

of attackers and our defensive mechanism can be attributed to the generation of bidding
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Algorithm 9 The denial of payment defensive mechanism pseudocode

Let: d denote a flexible parameter set to 50%, w denote a flexible parameter set to
50%, u denote a flexible parameter set to 3, s denote a flexible parameter set to 30%,
k denote a flexible parameter set to 3, c denote a flexible parameter set to 8% and f
denote the imposed fine payment.

for 1st to Nth Bidder do
UnpaidStatus:=0
if feedback = bad OR neutral then

UnpaidStatus:= UnpaidStatus + 1
end if
if BidsToSeller > TotalBids ∗ d then

UnpaidStatus:= UnpaidStatus + 1
end if
if TimesDeniedPayment > WonAuctions ∗w then

UnpaidStatus:= UnpaidStatus + 1
end if
if SubmitBidPrice-OverbidPrice > AverageMarketPriceDiff then

UnpaidStatus:= UnpaidStatus + 1
end if
if UnpaidStatus ≥ u then

FlagAsMalicious()
WarnBidder()
MaxBidsPerHour(AverageMarketBidsPerHour ∗ s)

end if
if TimesFlagged ≥ k then

f:= Sum(UnpaidResources) ∗ c
PayFine(f)
DeleteBiddingAccount()

end if
end for

and selling prices with normal distribution (Figure 5.2).

Regardless of the effectiveness of our solution, attackers can evade detection by dis-

carding their fake bidding account after each auction and then create new ones for suc-

ceeding auctions of interest. To mitigate the certain shortcoming, we impose a registration

fee (currently set to $80) on newly registered bidders to discourage the creation of multi-

ple fake bidding accounts. The registration fee is reserved by the auctioneer and is used

to pay the first won resources of the bidder.

Finally, we have attempted to improve the detection rate of our mechanism by lowering
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Figure 5.2: The Cumulative Profit of Sellers in the Absence, Presence of Denial of Pay-
ment Attacks and our Solution.

the detection threshold k from 3 to 2. The results were contradictory, as the detection rate

increased to 97.3%, but it also miss-classified 6% of the legitimate bidders as malicious.

The increase in false positives can be attributed to the lack of sufficient bidding data, for

some of the bidders, due to the short period they were registered in the market.

5.3 Summary

In this chapter, we have used the observations of the experiments conducted in Chapter

4 to engineer defensive mechanisms for securing market-oriented Clouds against market-

specific attacks and in particular: Shill bidding, monopoly, reputation attack and denial

of payment attack.

We have deployed our candidate solutions in the CloudAuction market to experi-

mentally illustrate and report on the added value of introducing these mechanisms to

secure electronic markets. We then asserted the sensitivity of our candidate defensive
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mechanisms to the aforementioned attacks, where applicable, by adjusting the detection

thresholds of our defensive mechanisms.

Our results demonstrated that market-specific defensive mechanisms can assist se-

curity engineers to deliver more dependable market-oriented Cloud systems, where the

incentives, objectives and profit of bidders and sellers are not threatened. Although we

have identified a few methods that attackers can exploit to bypass our candidate solu-

tions, the attackers are still penalised as it is significantly harder to perform these attacks

and the expected gains are considerably lessened.

The following chapter, Chapter 6, conducts a qualitative and reflective evaluation of

the thesis with respect to our established research questions.
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CHAPTER 6

FURTHER EVALUATION AND REFLECTION

The techniques introduced in this thesis have been separately evaluated in their respective

chapters. Throughout this work we have followed an experimentally-driven methodology,

grounded on simulation, to examine the proposed techniques. The use of simulation as

a suitable tool for evaluating our work has been justified in section 3.4. The aim of this

chapter is to determine the extent to which this thesis has addressed the research ques-

tions reported in Chapter 1, discuss and reflect on the evaluation carried on in previous

chapters.

6.1 Asset-Centric vs Aggregated Security

Can asset-centric security be more cost-effective and efficient for the satisfaction of the

runtime security goals of multiple assets compared to aggregated security?

Throughout this thesis, we have promoted the enforcement of ad-hoc security that

adheres to the runtime security requirements and constraints of individual assets. In

spite of the importance of asset-centric security, our literature review (subsection 2.4.7)

signified that existing self-adaptive security solutions have not been extensively concerned

with asset-centric security. As a result, there is a pressing need for the development of

self-adaptive security solutions that are able to handle complex and diverse requests that

necessitate the enforcement of different security policies for different assets.
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In Chapter 3, we have proposed a novel self-adaptive security approach that considers

assets as independent entities with a need for customised, ad-hoc security. To assert

the effectiveness of the proposed asset-centric security framework, in subsection 3.4.1, we

have compared it with existing aggregated security solutions in terms of security goal

satisfaction and computational costs. More specifically, our experiment entailed securing

50 files with both asset-centric and aggregated security (i.e., Cubby) to draw conclusions

concerning the effectiveness of each method. The acquired results demonstrated that the

usage of asset-centric approaches can be effective for the continuous satisfaction of the

security goals of individual assets due to the provision of ad-hoc security (i.e. services

and resources) that is tailored to the explicit requirements and constraints of each asset.

On the contrary, the use of aggregated security has failed to satisfy the security needs

and constraints of a vast number (i.e. 46 %) of the assets, with the provision of excessive

or inadequate security. In terms of computational costs, aggregated security exhibited

an excessive use of underlying resources (compared to asset-centric security) due to the

over-provisioning of obsolete services and resources to users.

Despite the witnessed benefits of asset-centric security we have also shown, in subsec-

tion 3.4.4, that the computational overhead associated with the enforcement of ad-hoc

security can be significantly higher than aggregated security approaches. In particular,

our results signify that the proposed asset-centric solution requires up to 68% more mem-

ory (Figure 3.5) and up to 50% more CPU (Figure 3.6) resources to operate, compared to

aggregated security solutions that follow the paradigm of “one solution fits all”. Despite

the high computational overhead witnessed by the proposed framework the benefits aris-

ing from asset-centric security can outweigh the strain imposed on resources. Although

we have provided a speculation of the imposed computational overhead of our framework,

the given estimation cannot be perceived as an accurate representation of the expected

overhead in real-life due to the lack of networking operations in conjunction with the

over-simplified user behaviour replicated by agents in our prototype simulation system.
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6.2 Elastic, Cost-effective Mechanisms for Asset-Centric

Security In the Cloud

What techniques/mechanisms can be employed in the Cloud to secure multiple assets in

a proactive, cost-effective and elastic manner?

Whilst a naive bruteforce mechanism can be adequate for the identification and selec-

tion of suitable services and resources for security in the Cloud, the costs associated (i.e.

computational and time) with these approaches are excessive. Due to the ultra-large and

dynamic nature of the Cloud, it is imperative that lightweight and scalable security mech-

anisms are used for warranting the continuous satisfaction of the security requirements

and constraints of multiple assets. Despite the need for scalability, our literature review

has signified that dimensions such as elasticity (subsection 2.4.9) and cost-effectiveness

(subsection 2.4.15) have been heavily neglected by existing self-adaptive security solu-

tions, which make them ineffective for ultra-large and dynamic environments such as the

Cloud. To overcome this challenge, in Chapter 3, we have motivated the usage of market-

inspired methodologies as an effective optimisation mechanism for securing assets in the

Cloud.

The choice of market as a candidate solution is heavily grounded on its proven ef-

fectiveness in dynamic allocation problems, witnessed by its wide usage in ultra-large

environments [17], [18], [88], [91], [96], [97]. The decentralised decision-making nature of

markets promotes the engineering of scalable (computations and decisions are performed

in a decentralised manner) and dependable solutions (users can handle their own secu-

rity requirements and data). Market approaches allow both users and providers to make

their own decisions for maximising their utility and regulate the supply and demand

of services and resources at market equilibrium. In the presence of limited resources,

auctioning mechanisms can promote the effective allocation of services and resources by

prioritising security requests based on their criticality (reflected in the bidding prices);

thus, ensuring their provision to users that face an imminent threat. Lastly, the use of
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market methodologies enable users to express their preferences concerning the type of

resources needed and the time they want to acquire them. Thus, enabling a system to

manage excess demand by spreading it out over time [91].

6.2.1 Market vs Non-Market Mechanisms

Can market-inspired mechanisms be more effective in the allocation of services and re-

sources compared to conventional non-market mechanisms in the presence of scarce re-

sources in security constrained environments?

Even though the market has been extensively used, the minute we factor security into

the problem the available services and resources that could support security in a system

may be narrowed down, thus making them scarce.

To determine whether the market can be effective for supporting security, in subsec-

tion 3.4.2, we have used our prototype system to compare how non-market and market-

inspired mechanisms (i.e., our Posted-Offer variant model) can operate in the existence of

scarce resources. Although the non-market mechanism was able to identify and allocate

resources to users faster than our market mechanism, due to its simplistic nature (absence

of coordination and bargaining), it was ineffective in prioritising security requests. Its

simplistic first-come-first-served allocation policy allowed a large number of users that

did not require the immediate usage of services and resources to reserve and waste them

while refusing service to users that faced an imminent threat.

On the contrary, the usage of our Posted-Offer variant model demonstrated that

market-inspired methodologies can be effective for the allocation of Cloud services and

resources by allowing users to specify the significance of their security requests in their

bidding prices. By doing so, the auctioning mechanism is able to prioritise bids according

to the criticality of their security requests and provide service to users that face an im-

minent threat first. Demonstrating that even when we add more constraints (because of

security) to the operating environment and services/resources are scarce, market mecha-

nisms are still able to operate in an effective and dependable manner for securing multiple
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assets. However, we need to state that different auctioning models can produce different

results when compared to non-market mechanisms. In some situations, it can even be

more effective to use non-market methodologies compared to certain market models.

6.2.2 Evaluating Auctioning Models

How can the use of representative auction models influence the security and performance

of the proposed system?

Different auctioning models can bring different characteristics, benefits and limitation

to the operating environment. To better understand how different auctioning mechanisms

can influence the security and performance of the proposed solution, in subsection 3.4.4,

we have analysed two auctioning algorithms, namely the English auction and a variant of

the Posted-Offer auction model, and compared their exhibited performance and implica-

tions on security. Throughout this test, we have observed significant differences between

the two algorithms. English auction demonstrated a more complex, time-consuming pro-

cedure that necessitate an average of 789.8 milliseconds to establish an auction match

in contrast to the 577.8 milliseconds required by our Posted-Offer variant algorithm. As

we have stated in subsection 3.4.4, the time difference exhibited between the two auction

models may seem negligible at first, however it can play a major role when the number

of users and assets significantly increase in a market which can exponentially increase

the time needed for processing these requests. As security is time-critical, the security

of assets needs to be adapted efficiently by avoiding time-delays which can cause the

compromise of assets. Additionally, the English auction algorithm displayed signs of high

computational overhead, reaching in some occasions 22% more than the CPU overhead

generated by the Posted-Offer variant model. On the contrary, our Posted-Offer model

proven an efficient and scalable procedure with low computational overhead, due to the

lack of complex negotiations between SPs and user agents. Therefore, we argue that the

Posted-Offer model is more suitable for occasions where user agents face an imminent
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threat and time is a critical aspect of adapting security. On the contrary, the English

auction is more fitting for occasions where a user agent is not constrained by time, its

security is not threatened and is willing to sacrifice time to discover cheap and/or scarce

services and resources.

Though we have only considered/examined the English auction and a variant of the

Posted-Offer model as our auctioning algorithms, the proposed system can be instantiated

with various auctioning mechanisms according to the needs of each market and its users.

The choice of the English and Posted-Offer auctioning models can be attributed to their

vast acknowledgement and usage in economics and computing, in conjunction with their

highly divergent nature, which allows us to test our framework with the deployment of

two distinct auctioning approaches. In the case where the selected auctioning algorithms

are replaced different results will be witnessed. Based on the application environment

and the security objectives of a system different auctioning models must be employed to

acquire the desired qualities and results.

6.2.3 Learning Approaches for Security in the Market

Can learning algorithms be used to arrive on more efficient bidding plans (identify and

short list appropriate candidate solutions), instead of entering bidders into an exhaustive

bidding for candidate offers?

In Chapter 3, we have examined whether learning algorithms can be used to auto-

mate security while allowing bidders to arrive on more efficient bidding plans for candidate

offers. To answer this question, in subsection 3.4.3, we have trained various learning al-

gorithms and tested their classification accuracy against 5000 test samples (describing

various scenarios in a university application environment) to identify the best learning

algorithm for our solution. Our results identified the Random Forest algorithm as the

dominant learning approach, witnessing a correct classification rate of 90.87% of the ex-

amined test samples. The acquired results demonstrated that learning algorithms can

practically assist bidders in identifying appropriate services/resources (i.e. short listing
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candidate solutions) for security in an automated and effective manner without the need

for examining all available services and resources. In the occasion where no learning

algorithms are employed, bidders need to perform additional effort to interact with the

market (e.g take appropriate security decisions and manually deploy security measures)

which can introduce significant delays and consequently stake the security of assets. As

well as to damage the scalability of a system due to the employment of ineffective bidding

methodologies. Furthermore, the learning approach allows users to form and deploy their

own security (given that a learning algorithm is trained from a user’s previous experi-

ences), instead of relying on the biased security enforced by various Cloud administrators.

By doing so it is feasible to overcome the “acceptable adaptation boundaries” challenge

described in subsection 2.4.1. As users will enforce their own security, they can ensure

that all enforced security adaptation strategies adhere to their specific requirements and

policies, thus avoiding the execution of security measures that violate their policies.

Although we have witnessed a high classification rate by the Random Forest algorithm,

we have argued that the accuracy of the algorithm is explicitly linked to the amount and

consistency of the data used for training the algorithm. To identify the effects of limited

training samples and unclassified/unknown test samples, we have examined the Random

Forest algorithm with a varying number of training data samples from which some of

them contained new values that were unknown to the classifier (i.e. new services and

resources). The acquired results demonstrated that even when the Random Forest algo-

rithm was trained with just 200 samples, it was still able to correctly classify 84.6% of

them. However, it was unable to identify the new, unclassified parameters introduced. As

the security decisions of classifiers are grounded on previous experiences, the introduction

of new distinct parameters can remain unnoticed by learners. To overcome this challenge,

users need to manually set a number of policies concerning the newly introduced values

and re-train their classifiers or switch to the usage of semi-classifiers or clustering algo-

rithms. Lastly, to ensure that the security of assets will not be compromised, users can set

specific fail-safe policies that will be enforced whenever the classification rate of an asset
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is below a certain threshold. By doing so it is feasible to enforce automated security even

in situations where there is insufficient data for achieving high classification accuracy.

6.2.4 Threat-Aware Markets

Can market-inspired mechanisms provide a dependable and secure optimisation tool for

securing assets in the Cloud?

As the proposed self-adaptive security solution is grounded on market-inspired method-

ologies, it is imperative to determine whether markets are secured against market-specific

attacks. To assert the dependability of markets, in section 4.2, we have deployed four

market-specific attacks (i.e. Shill bidding, Monopoly, Reputation attack and Denial of

Payment attack) in CloudAuction, a market-oriented Cloud simulation tool, to iden-

tify the effects of each attack on bidders, sellers and underlying auctioning mechanism

(i.e. combinatorial double auction). Our results have signified that existing markets

are vulnerable towards market-specific attacks and demonstrated that the manipulation

of underlying auctioning mechanisms can severely damage the incentives and profits of

sellers and bidders respectively.

Grounded on our findings on market-specific threats, we have used the observations

of our experiments to promote and engineer candidate, lightweight and scalable defensive

mechanisms for securing market-oriented Clouds against the four selected market-specific

attacks. Our efforts, in Chapter 5, have demonstrated that market-specific defensive

mechanisms can thwart malicious attackers from manipulating auctioning algorithms, as

well as to increase the profit and incentives of both bidders and sellers in the market.

In particular, the experiments conducted in the presence of attackers and our defen-

sive mechanisms demonstrated similar price fluctuations and profit margins to the ones

exhibited in a healthy market (absence of attackers).

Despite the witnessed benefits arising from the deployment of our defensive mecha-

nisms, we have also identified some occasions where attackers can bypass our solutions and

still perform these attacks. However, the attackers are still penalised as it is significantly
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harder to perform their attacks with their expected gains are considerably lessened. Fur-

thermore, this thesis has restricted its analysis and mitigation of market-specific threats

to a small subset of the available threats and in no way has foolproof markets against

these threats. Our work on market-inspired threats can be a guide for further, in-depth

research in the area. Finally, the applicability of the proposed defensive mechanisms is

restricted to homogeneous markets. This arises from the varying nature and composi-

tion of different market systems, which render our defensive mechanisms system and case

specific.

6.3 Summary

This chapter has provided further evaluation of the research questions of this thesis.

The specific techniques introduced in preceding chapters have been evaluated in small,

however, this chapter focuses on the big questions and the extent to which this thesis has

addressed them.

We have demonstrated that our work has adequately addressed all the aforementioned

research questions, but we have also identified multiple omissions. In terms of scalability,

we have judged our work in terms of the effectiveness of the market concerning the

optimisation of the usage of scarce resources as well as the efficiency of bidding for the

identification of appropriate services and resources.

The next chapter, Chapter 7, summarises the contributions and the implications of

this work. It then presents limitations of our work along with our thoughts on possible

directions for future research and their potential impact on the field.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

7.1 Thesis Contributions Revisited

This thesis promotes the engineering of elastic self-adaptive security solutions for the

Cloud that consider the varying nature of assets and their need for customised, ad-hoc

security. The thesis conducts (Chapter 2) an in-depth literature review on self-adaptive

security methodologies in open, ultra-large environments, signifying a pressing need for

the development of scalable, lightweight self-adaptive security systems for the Cloud.

Driven by the taxonomic findings of Chapter 2 and the thesis research questions in Chap-

ter 1, we have looked at market-inspired techniques as a candidate solution. In particular,

Chapter 3 outlines a novel self-adaptive architecture which draws inspiration from market-

inspired methodologies (i.e. English auction and a variant of the Posted-Offer model) and

learning approaches (i.e. Random Forest classifier). The proposed approach manages the

changing security requirements/goals of assets via the selection of shared, on-demand

services and underlying resources while catering for their monetary and computational

constraints. The use of auction procedures enable the proposed framework to deal with

the scale of the problem and the trade-offs that can arise due to the self-interested and

diverse nature of security requests coming from the assets of various users. Whereas, the

use of a supervised learning technique allows our framework to operate in a proactive and

automated fashion by detecting runtime anomalies that could be indicators of possible
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security threats and mitigating them prior to their manifestation. By using the learning

approach it is feasible to arrive on more efficient bidding plans, informed by historical

data. Instead of entering the bidders into an exhaustive bidding for candidate offers, the

learning helped us to effectively identify optimal security strategies (short list appropriate

solutions) for securing assets.

As the proposed solution is grounded on market-inspired methodologies, this thesis

has also been concerned with asserting the dependability of market mechanisms. Chapter

4, follows an experimentally driven approach to identify market-specific security limita-

tions in the engineering of commonly used market-oriented Cloud mechanisms. We have

used a market-oriented Cloud simulation framework, CloudAuction, to demonstrate that

the designs of existing markets are limited when facing market-specific attacks and when

thwarting malicious bidders and sellers from manipulating auction mechanisms for per-

sonal gain. Grounded on the observations made in our experiments with market-specific

security attacks, Chapter 5 proposes and delivers candidate defensive mechanisms for

securing market-oriented Clouds against selected market-specific attacks. To evaluate

the effectiveness of our candidate solutions, we have deployed them in the CloudAuction

simulation tool and analysed how the market is affected in the absence and presence

of the selected attacks and the proposed solutions. We have then designated the added

value of market-specific defensive mechanisms in the Cloud and promoted the engineering

of threat-aware electronic markets for warranting the secure operation of bidders, sellers

and auctioning mechanisms in market-oriented Clouds.

In particular, this thesis makes the following contributions:

• A literature review on self-adaptive security methodologies from the context of

open, ultra-large environments and the architectural characteristics enabling their

effective application in these environments. We propose a novel architecture-centric

taxonomy for mapping and comparing the current research directions in the field.

We reflect on the taxonomic findings and discuss design principles, limitations and

research challenges in the current-state-of-art and practice. We then highlight di-

150



rections for future research, contributing to the effective application of adaptive

security systems in ultra-large, dynamic environments, such as the Cloud.

• A novel agent-based, market-inspired architecture for satisfying the changing secu-

rity requirements and constraints of assets in the Cloud at runtime.

• A learning approach (i.e. Random Forest classifier) that allow bidders to arrive

on more efficient bidding plans, informed by historical data. The learning helps

to identify optimal security strategies for securing assets, instead of entering the

bidders into an exhaustive bidding for candidate offers.

• An analysis of existing market-specific security threats and their impact/effect on

modern market-oriented Clouds.

• A set of novel defensive mechanisms for thwarting market-specific attacks. Based on

the observations made in our experiments with market-specific security attacks we

develop candidate, lightweight defensive mechanisms for securing market-oriented

Clouds against these threats.

The contributions of this thesis have covered various aspects of the Cloud, among oth-

ers asset-centric security, software architectures, elasticity, self-adaptation, optimisation

methodologies, learning approaches and threat-aware markets that will assist security

software engineers to further advance self-adaptive security solutions for the Cloud in

terms of elasticity, cost-awareness, dependability and effectiveness. Although this thesis

has made some contributions, it is significant at this stage to recognise the shortcomings

of the approach and analysis presented. In order to assert the applicability and effec-

tiveness of our conceptual architecture, we have instantiated and developed a variant of

our framework in a simulated environment. Though this approach helped us to evaluate

the proposed solution on a larger scale, it is limited in terms of real-world application

(application to a wider real-world problem is going to be part of our future work). There-

fore, the acquired simulation results can only be interpreted as a mere indication that
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our framework can possibly be effective for securing multiple assets in ultra-large and

elastic environments, such as the Cloud. Despite, that we have identified this shortcom-

ing in the early stages of this research, it was impossible for us to engineer an ultra-large

Cloud system to conduct our experiments. Another limitation of this work is that the

effectiveness of the engineered market-specific defensive mechanisms cannot be guaran-

teed over different market-oriented Clouds. This can be attributed to the system-specific

nature of our mechanisms and in particular the system/case-specific values used for the

detection parameters of each defensive mechanism. The varying nature and composition

of each market make it impossible for us to guarantee similar detection rates to the ones

witnessed in our experiments. Therefore, it is necessary for each marketer to identify

the optimal threshold values for the parameters of our defensive mechanisms to tune the

solution to the needs and idiosyncrasies of each market.

We hope that the results presented in this thesis will stimulate additional research on

market-inspired methodologies for security.

7.2 Future Directions

This thesis identifies a number of future directions to further consolidate the effectiveness

of asset-centric self-adaptive security approaches and the development of threat-aware

market-oriented Cloud systems. They are described as below:

7.2.1 An In-Depth Analysis and Counteraction of Market-Specific
Attacks

Although we were the first to examine market-specific attacks in the Cloud and propose

candidate defensive mechanisms for securing market-oriented Clouds against them, illus-

trated by our work in [125], we hope that our work will steer the future research directions

in the field and stimulate interest in examining new attacks. To warrant the secure oper-

ation of bidders, sellers and auctioning mechanisms in market-oriented Clouds, including
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our framework, it is not sufficient to investigate a small number of market-specific threats.

Instead, we need to conduct an exhaustive examination of the landscape of market-specific

threats and identify novel methods for thwarting them. Therefore, future work benefit-

ing from this investigation can expand the analysis and counteraction of market-specific

attacks on a larger scale. One of the potential future directions is to investigate mul-

tiple concurrent attacks and identify possible effects of various co-deployed attacks in

market-oriented Clouds.

Furthermore, as malicious users continuously advance their attack strategies, it is

imperative that we identify appropriate methodologies that will enable market-specific

defensive mechanisms to co-evolve (e.g. dynamically adjust detection thresholds) and face

these threats. Future research should focus on encapsulating sophisticated intelligence in

our defensive mechanisms to allow the effective detection and resolution of market-specific

threats when the attack landscape changes.

7.2.2 Dynamic Transitioning Auctioning Mechanisms

This work has exploited the English and (a variant of) Posted-Offer auction models for

securing assets at runtime. Despite the selection of the two algorithms, there is a vast

number of candidate auctioning models, with each introducing various characteristics,

benefits and limitations to the problem environment. The selection of a sole auctioning

algorithm, can in some occasions prove limited in the long-run, due to various changes

that a market environment can undergo (e.g. available services, the number of sellers

and buyers etc.). A solution to this challenge is the selection and deployment of dif-

ferent auctioning mechanisms at runtime based on the changing needs and constraints

of a market. Thus, this thesis aims as part of its future research to focus on the de-

velopment of an intelligent transitioning mechanism that will be able to identify and

deploy appropriate auctioning algorithms based on the runtime changes in a market for

maximising the utility of bidders and sellers. To perform this, it is necessary to profile

various auctioning models to determine what are the appropriate auctioning mechanisms
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for each situation. Furthermore, suitable learning strategies are needed that will enable

the autonomic selection of auctioning mechanisms at runtime, based on contextual and

content changes.

7.2.3 Industrial Application

The fundamental of our framework can help a number of emerging applications and

paradigms that are enabled by the Cloud and/or exhibit similar characteristics to the

Cloud. As an example, the vision of smart cities has been enabled by advancement

in computing infrastructure, including the Cloud. Over the last years, smart cities got

an increasing number of followers as they offer self-aware, automated procedures for

simplifying our day-to-day lives. Despite their significance, the devices in these smart

cities can be used by governments, organisations and lone hackers for data trace analysis.

These traces comprise semantics for individual preferences, physical locations and social

relations. They can be collected via GPS, GSM, WIFI, Bluetooth, RFID, published

locations, installed applications, etc. These traces can enable the unlawful surveillance of

users along with the disclosure of personal data to unauthorised third parties. According

to the work of Pan et al., [142] one of the main challenges for data trace analysis is to

ensure the “fidelity of data for applications while warranting the privacy of users”. Driven

by [142], Smart cities can potentially benefit from our framework to protect user devices

at runtime against traceability. Smart cities are essentially ultra-large environments,

where multiple users necessitate lightweight, scalable mechanisms to identify and use

different services (e.g. anonymity proxies, firewalls, GPS jammers, etc.) and resources for

protecting their devices against various security threats that can trace a user. Each device

can be considered as a heterogeneous entity, with a need for ad-hoc privacy. Some devices

(e.g. laptop used for classified research) necessitate higher levels of security/privacy,

whereas other devices (e.g. e-Reader for novels) require lower security/privacy. The use

of market mechanisms as part of our solution has enabled us to deal with the scale of the

problem and the trade-offs that can arise due to the self-interested and diverse nature of
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the security requests coming from various assets in the smart city setting.

7.2.4 Revising MAPE-K Architecture for Security

There are many open questions for MAPE-K elements such as monitors, planners, execu-

tors, etc., each can require vertical and in-depth treatment. This thesis has focused to a

big extent on the analysis and plan phases, where its novelty lies. To ensure the effective

usage of the MAPE-K architecture for security, research shall also look at securing the

fundamental components of the MAPE-K to deliver more dependable and threat-aware

self-adaptive solutions. To demonstrate the need for an in-depth analysis and refine-

ment of the MAPE-K architecture for security, we provide a simple example based on

monitoring mechanisms. Existing monitors are often deployed without any means for

the verification of the authenticity of the recorded data. This practice leaves monitors

vulnerable to malicious attackers that wish to trick them by submitting false monitoring

data. Therefore, enabling attackers to perform their malicious actions, such as forcing a

self-adaptive system to deploy wrong countermeasures. Similarly to monitors, there are

multiple elements in the MAPE-K architecture that are susceptible to various threats,

which can severely affect the dependability of self-adaptive security solutions. Therefore,

it is imperative that we integrate proofing mechanisms in the MAPE-K architecture to

promote the engineering of more effective and threat-aware self-adaptive security solu-

tions.

7.3 Concluding Remarks

This thesis makes a novel contribution to the field of Cloud security by introducing a

self-adaptive approach for securing assets, as well as candidate defensive mechanisms for

facing market-inspired threats in the Cloud. The thesis presents an in-depth study and

solution that exploits the fundamental characteristics of markets and learning techniques
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for securing Cloud-based assets in the absence of closely related work.

We believe that the proposed framework can assist security engineers and researchers

to design and engineer more cost-effective, elastic and dynamic self-adaptive security so-

lutions for the Cloud. The conducted experiments signify the effectiveness, scalability

and dynamism of the proposed framework in satisfying the changing security require-

ments, priorities and constraints of multiple assets from different users. In addition, the

experiments demonstrate that market-inspired methodologies can assist in converging to

a better solution (even in the presence of scarce resources) by maximising the utility of

the whole environment while securing assets that face an imminent threat first.

The contributions of this thesis have covered various aspects of the Cloud, among

others asset-centric security, elasticity, self-adaptation, optimisation methodologies and

threat-aware markets which aim to advance our understanding and state-of-the-art prac-

tices in Cloud security. We hope that the presented work will stimulate and steer further

research in self-adaptive security solutions for the Cloud in terms of elasticity, cost-

effectiveness, dynamism and threat-awareness.
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