Investigating the neurobiological changes associated with cerebellar transcranial direct current stimulation (TDCS) using magnetic resonance imaging (MRI)

Jalali, Roya (2017). Investigating the neurobiological changes associated with cerebellar transcranial direct current stimulation (TDCS) using magnetic resonance imaging (MRI). University of Birmingham. Ph.D.

[img]
Preview
Jalali17PhD.pdf
PDF - Accepted Version

Download (4MB)

Abstract

Anodal cerebellar transcranial direct current stimulation (tDCS) is known to enhance motor learning and it is suggested to hold promise as a therapeutic intervention. However, the neural mechanisms underpinning the effects of cerebellar tDCS are unknown. In addition, it is unclear whether this effect is robust across varying task parameters as if cerebellar tDCS is to be used clinically it must have a consistent effect across a relatively wide range of behaviours. Therefore, I performed four studies to address these questions. In the first three studies, I investigated the neural changes associated with cerebellar tDCS using magnetic resonance spectroscopy (MRS) and resting state functional magnetic resonance imaging (fMRI). My goal was to understand how cerebellar tDCS affected the metabolites within the cerebellum and functional connectivity between the cerebellum and distant brain areas. In addition, I wanted to understand if individual differences in how cerebellar tDCS influenced visuomotor adaptation could be explained by the effect tDCS had on neurobiology. Therefore, healthy participants underwent 3 sessions in which they received concurrent anodal cerebellar tDCS during visuomotor adaptation, MRS and resting state fMRI. I found that in 21% of participants cerebellar tDCS caused enhanced visuomotor adaptation, a decrease in GABA and increase in functional connectivity between the cerebellum and parietal cortex. This work suggests an ‘all-or-nothing’ type effect of cerebellar tDCS. In my final study, I examined the consistency of the cerebellar tDCS effect on visuomotor adaptation across a wide range of task parameters which were systematically varied. Each experiment examined whether cerebellar tDCS had a positive effect on adaptation when a unique feature of the task was altered. I found cerebellar tDCS to have an inconsistent effect on visuomotor adaptation. I conclude that such inconsistencies could be dependent on the amount of participants in each group that are receptive to cerebellar tDCS and suggest that at the very least it warrants substantially large sample size in cerebellar tDCS studies.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Miall , RowlandUNSPECIFIEDUNSPECIFIED
Galea, JosephUNSPECIFIEDUNSPECIFIED
Wyatt, JeremyUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemistry
Funders: Other
Other Funders: Funds For Women Graduates
Subjects: Q Science > QH Natural history > QH301 Biology
T Technology > TK Electrical engineering. Electronics Nuclear engineering
URI: http://etheses.bham.ac.uk/id/eprint/7661

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year