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Abstract

This thesis deals with the problem of finding some substructure within a large graph

or hypergraph. In the case of graphs, we consider the substructures consisting

of fixed subgraphs or families of subgraphs, perfect graph packings and spanning

subgraphs. In the case of hypergraphs we consider the substructure consisting of

a hypergraph whose order is linear in the order of the large hypergraph. I will

show how these problems are extensions of more basic and well-known results in

graph theory. I will give full proofs of three new embedding results, two for graphs

and one for hypergraphs. I will also discuss the regularity lemma for graphs and

hypergraphs, an important tool which underpins these and many similar embedding

results. Finally, I will also discuss graph and hypergraph Ramsey numbers, since

two of the embedding results have important applications to Ramsey numbers which

improve upon previously known results.
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CHAPTER 1

INTRODUCTION

1.1 Graph Packings

1.1.1 Notation and Preliminaries

Throughout this thesis, a graph refers to a simple undirected graph, that is a set V

of distinct vertices and a set E of edges which is a subset of the set of unordered

pairs of vertices in V . No loops or multiple edges are allowed.

Given a graph G = (V, E), we write |G| := |V | for the order of G, and e(G) := |E|

for the number of edges. χ(G) denotes the chromatic number of G, i.e. the least

integer ℓ such that there is a partitioning of V (G) into ℓ independent sets (i.e.

sets containing no edges). The minimum degree of G is denoted by δ(G), and the

maximum degree by ∆(G). For disjoint sets X and Y in G, we write e(X, Y ) for the

number of edges of G with one endpoint in X and one in Y , and d(X, Y ) := e(X,Y )
|X||Y |

denotes the density of edges between X and Y . We denote by d(A) := e(A)/
(

|A|
2

)

the density of A. We write x = a ± b to mean a ≤ x ≤ b.

The degree of a vertex x in G is denoted by dG(x), or by d(x) if this is unam-

biguous. The neighbourhood is denoted by NG(x) or simply by N(x). For a set of

vertices X the neighbourhood of X is N(X) :=
⋃

x∈X N(x). For a subset S ⊆ V (G),
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the number of neighbours in S of a vertex x is denoted by d(x, S) or by dS(x). If

we have disjoint subsets A, B ⊆ G, then we define δ(A, B) := minx∈A{dB(x)}, i.e.

the minimum degree in B of a vertex in A. We denote by G[A] the subgraph of G

induced by the vertex set A.

By the notation a ≪ b ≪ c we mean that we pick constants from right to left,

and that there are increasing real-valued functions f and g such that our statements

holds provided b ≤ f(c) and a ≤ g(b). Hierarchies with more constants are defined

similarly. The necessary functions f and g could be calculated explicitly from the

appropriate proofs, but for simplicity we will not do this. We simply assume that

b is sufficiently small compared to c, and a sufficiently small compared to b, for all

our calculations to work.

We usually use n to denote the order of a graph and think of n as very large, or

indeed tending to infinity. Then given a function f , the notation m ∼ f(n) means

that m/f(n)
n→∞−→ 1.

1.1.2 Forcing Subgraphs

The subject area of this thesis has ultimately grown out of the following question:

Which graph properties force the existence of a certain substructure in the graph?

Alternatively we can ask the contrapositive question: How does forbidding a certain

substructure influence the global properties of a graph? Some of the early results in

this field took as the substructure a particular subgraph. Perhaps the most basic

result in this field is Mantel’s Theorem, which gives a best possible condition on the

number of edges in a graph which does not contain a triangle. Mantel’s Theorem

is generalised by Turán’s Theorem, which concerns the number of edges in a graph

which does not contain a copy of Kr, the complete graph on r vertices.

More precisely, let Tr−1(n) denote the complete (r−1)-partite graph on n vertices,
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where the vertex classes have sizes as equal as possible. This is called the Turán

Graph. See Figure 1.1.

⌈n/4⌉ ⌈n/4⌉

⌈n/4⌉ ⌊n/4⌋

Figure 1.1: The graph T4(n) (where n ≡ 3 mod 4)

Clearly Tr−1(n) is Kr-free, i.e. it does not contain any copy of Kr as a subgraph

(any copy of Kr would have to contain at least two vertices from one of the classes).

It is also easy to see that Tr−1(n) has the greatest possible number of edges of any

(r − 1)-partite graph on n vertices. What is slightly harder to prove is that in fact

Tr−1(n) contains the largest possible number of edges of any Kr-free graph on n

vertices.

Let ex(n, Kr) denote the greatest possible number of edges in a graph G subject

to the conditions that |G| = n and that G does not contain a copy of Kr.

Theorem 1.1 (Turán, 1941) Let G be a Kr-free graph on n vertices, and suppose

G satisfies e(G) = ex(n, Kr). Then G = Tr−1(n).

Turán’s theorem essentially says two distinct things. It implies firstly that the

Turán Graph Tr−1(n) achieves the maximum possible number of edges of a Kr-free

graph on n vertices, and secondly that it is the unique graph which achieves this

upper bound. As a corollary of this theorem we have the following result:

Corollary 1.2 ex(n,Kr)

(n
2)

→ 1 − 1
r−1

as n → ∞.

We will generally apply Turán’s Theorem in the following form:
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Corollary 1.3 For any real number ε > 0, there exists an integer n0 = n0(ε) such

that if G is a graph on n ≥ n0 vertices satisfying

e(G) ≥ (1 − 1

r − 1
+ ε)

(

n

2

)

then Kr ⊆ G.

An extension of this result from Kr to more general graphs H was achieved by

the famous Erdős-Stone-Simonovits Theorem. We define ex(n, H) to be the greatest

possible number of edges in an H-free graph on n vertices.

Theorem 1.4 (Erdős, Stone, 1946, Erdős, Simonovits, 1966) Given a graph

H and a real number ε > 0, there is an integer n0 = n0(H, ε) such that any graph

G on n ≥ n0 vertices satisfying e(G) ≥ (1 − 1
χ(H)−1

+ ε)
(

n
2

)

contains a copy of H.

In particular, for any graph H, ex(n,H)

(n
2)

→ 1 − 1
χ(H)−1

as n → ∞.

The lower bound in the limit can be deduced from the Turán graph Tr−1(n),

where r = χ(H).

1.1.3 Forcing Graph Packings

One observation which we can make from the Erdős-Stone-Simonovits Theorem is

that it also provides a condition guaranteeing multiple copies of a graph H . For if

we wish to find k disjoint copies of H , we let H ′ be the graph consisting precisely of

such copies. We can apply the Erdős-Stone-Simonovits theorem to find a copy of H ′

in G provided |G| is large enough and the density of G is at least 1 − 1
χ(H′)−1

+ ε =

1 − 1
χ(H)−1

+ ε. However, the number of copies of H we can find in this way is still

only a bounded number, i.e. it does not depend on the order of G. We now wish to

find a number of disjoint copies of H which cover a large proportion of the vertices

of G.
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We define an H-packing in G to be a collection of vertex-disjoint copies of H in

G. A perfect H-packing in G is an H-packing which covers all the vertices of G.

Given ε > 0, an almost perfect H-packing in G is an H-packing in G covering at

least (1 − ε)|G| vertices.

The aim is to find natural conditions on G which guarantee a perfect H-packing.

Certainly we will require |G| to be divisible by |H|. We will also assume from now

on that χ(H) ≥ 2 (or equivalently that e(H) > 0) for otherwise all packing results

are trivial.

When we were looking for just one copy of H in G, Turán’s Theorem and the

Erdős-Stone-Simonovits Theorem gave us reasonable conditions on the number of

edges in G. Such edge conditions will no longer be useful if we are looking for

a perfect H-packing. For example, G may consist of a complete graph on n − 1

vertices along with one isolated vertex. Clearly such a graph will not contain a

perfect H-packing if H has no isolated vertex, yet it has a very large number of

edges.

To avoid such a situation, we will now be looking at bounds on the minimum

degree of G. We make the following definition:

Definition 1.5 Given a graph H and an integer n divisible by |H|, let δ(n, H)

denote the least integer k such that any graph G on n vertices with minimum degree

δ(G) ≥ k must contain a perfect H-packing.

It is clear that δ(n, H) exists whenever n is divisible by |H|, since k = n − 1

would be sufficient to guarantee a perfect H-packing, so the set of such k is non-

empty. When n is not divisible by |H|, δ(n, H) is undefined. Whenever δ(n, H) is

mentioned, we assume that n is divisible by |H| without mentioning this explicitly.

To make the link between forcing subgraphs and forcing graph packings more

natural, we also define a corresponding function for the subgraph case:
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Definition 1.6 Let δ0(n, H) denote the least integer k such that any graph G on n

vertices with minimum degree δ(G) ≥ k contains a copy of H.

The following can easily be deduced from the Turán and Erdős-Stone-Simonovits

Theorems, and by considering the Turán graph:

Proposition 1.7 δ0(n, H) ∼ (1 − 1
χ(H)−1

)n.

In particular, δ0(n, Kr) ∼ (1 − 1
r−1

)n.

Furthermore, if n is divisible by r − 1, then δ0(n, Kr) = (1 − 1
r−1

)n.

When looking for perfect H-packings, one easy special case is when H = K2, i.e.

a single edge. In this case, an H-packing is a matching, and a perfect H-packing

is a perfect matching. We can deduce an upper bound on δ(n, K2) from Dirac’s

Theorem on Hamilton cycles:

Theorem 1.8 (Dirac, 1962) Any graph G on n vertices with minimum degree

δ(G) ≥ n/2 contains a Hamilton cycle.

In particular, if n is even a Hamilton cycle will naturally guarantee a perfect

matching.

Corollary 1.9 δ(n, K2) ≤ n/2.

On the other hand, for any n = 2k we can easily construct a graph on n vertices

with minimum degree n/2 − 1 which has no perfect matching. Indeed, let G be a

complete bipartite graph with vertex classes of size k− 1 and k + 1. See Figure 1.2.

It is easy to see that G satisfies all of the above conditions. This implies that

δ(n, K2) > n/2 − 1, and thus:

Proposition 1.10 δ(n, K2) = n/2.

6



k − 1 k + 1

Figure 1.2: The extremal graph for K2

Now suppose we wish to extend this observation to Kr. We might look first

for an example of a graph with high minimum degree, but not containing a perfect

Kr-packing. One possible example is the complete r-partite graph with r−2 classes

of size k, one class of size k − 1 and one class of size k + 1, where k = n/r. See

Figure 1.3. (Note that this example can be obtained from the extremal example for

K2 by adding on a copy of Tr−2(n − 2k) and joining all the new vertices to all the

old ones.)

k

k − 1 k + 1

Tr−2(n − 2k)

k k

Figure 1.3: The extremal graph for Kr

This graph does not contain a perfect Kr-packing, and has minimum degree

(1− 1/r)n− 1. Thus we might guess that the following result should be the correct

one.
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Theorem 1.11 (Hajnal, Szemerédi, [36]) For all integers r and all integers n

divisible by r, δ(n, Kr) = (1 − 1/r)n.

The example above demonstrates that δ(n, Kr) ≥ (1 − 1/r)n. The case r = 3 of

Theorem 1.11 was first proved by Corrádi and Hajnal [19], and the full theorem was

proved by Hajnal and Szemerédi in 1970. Comparing this with the single subgraph

result which comes from Turán’s Theorem, we have

δ0(n, Kr) =

(

1 − 1

r − 1

)

n

δ(n, Kr) =

(

1 − 1

r

)

n

whenever n is divisible by r − 1 or r respectively. Thus we might hypothesise that

the extension of this result to the perfect packings analogue of the Erdős-Stone-

Simonovits Theorem would be:

Possible Conjecture 1.12 For all graphs H and all integers n divisible by |H|,

δ(n, H) = (1 − 1
χ(H)

)n.

However, this conjecture can easily be seen to be false.

Proposition 1.13 Let H = K3,3, the complete bipartite graph with two classes of

size 3. Then for each k ∈ N, there is a graph G on n = 6k vertices with minimum

degree n/2 + 1 which does not contain a perfect K3,3-packing.

Proof. Construct G as follows: The vertex set of G consists of a set A of size

3k + 1 and a set B of size 3k − 1. The edges of G will be all the edges between A

and B, along with a cycle on the vertices of A (which is possible as |A| ≥ 4). See

Figure 1.4.

Note that every vertex of G has degree 3k + 1 = n/2 + 1. Furthermore, if G

contained a perfect K3,3-packing, one copy of K3,3 would have to meet A in at least

8



3k + 1 3k − 1

Figure 1.4: The extremal graph for K3,3

4 vertices, and so A would contain vertices from both of the classes of K3,3. Let X

and Y be the classes of K3,3. Furthermore, since B is independent, B could contain

only vertices from one class. Without loss of generality, B contains only vertices

from Y . And so X would lie completely in A, along with at least one vertex from Y .

This vertex would then have degree 3 in A, which is impossible as A only contains

a cycle. �

However, we might attempt to modify the conjecture slightly.

Possible Conjecture 1.14 For all graphs H and all integers n divisible by |H|,

δ(n, H) ∼ (1 − 1
χ(H)

)n.

One of the first partial results towards this conjecture is the following:

Theorem 1.15 (Alon, Yuster [4]) Given any graph H and any real number ε >

0, there exists n0 = n0(H, ε) such that for any n ≥ n0 divisible by |H|, if G is a

graph on n vertices with minimum degree δ(G) ≥ (1 − 1
χ(H)

+ ε)n, then G contains

a perfect H-packing. In other words, δ(n, H) ≤ (1 − 1
χ(H)

+ ε)n.

Alon and Yuster conjectured an improvement to this theorem, which was proved

by Komlós, Sárközy and Szemerédi:
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Theorem 1.16 (Komlós, Sárközy, Szemerédi [48]) Given any graph H there

is a constant C = C(H) dependent only on H such that for any n divisible by |H|,

if G is a graph on n vertices with minimum degree δ(G) ≥ (1− 1
χ(H)

)n+C(H), then

G contains a perfect H-packing. In other words δ(n, H) ≤ (1 − 1
χ(H)

)n + C(H).

This might suggest that the conjecture is indeed true. However, this is mis-

leading, as in some cases we can improve substantially on this upper bound. For

example, the El Zahar conjecture, proved by Abbasi, states the following:

Theorem 1.17 (Abbasi [1]) Let n = n1 + n2 + . . . + nk, and let G be a graph on

n vertices satisfying δ(G) ≥∑⌈ni/2⌉. Then G contains k vertex disjoint cycles of

orders n1, n2, . . . , nk.

In particular, if n is divisible by k and if we let n1 = n2 = . . . nk = n/k =: h, then

the vertex disjoint cycles are precisely a perfect Ch-packing. In the case when h is

odd, this means that the minimum degree required to guarantee such a packing is

certainly no more than k(h + 1)/2 = n(h + 1)/2h, which is considerably less (for

h ≥ 5) than the asymptotic value of 2n/3 given by the conjecture. Thus some more

refined theorem is needed.

In order to introduce the desired theorem, we need to make some definitions.

Given a graph H of chromatic number χ(H), let σ(H) denote the smallest possible

size of a colour class in a χ(H)-colouring of H .

Definition 1.18 The critical chromatic number of H is denoted by χcr(H), and is

defined by

χcr(H) :=
χ(H) − 1

|H| − σ(H)
|H|.

Note that χ(H) − 1 < χcr(H) ≤ χ(H), and that χcr(H) is closer to χ(H) − 1

if σ(H) is comparatively small. Thus the critical chromatic number in some sense

measures how uneven the colour class sizes are, as well as how many are required.
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Komlós proved that if we only require an almost perfect packing, then the critical

chromatic number replaces the chromatic number as the relevant parameter in all

cases.

Theorem 1.19 (Komlós, [46]) For any graph H and any ε > 0 there is an integer

n0 = n0(H, ε) such that if G is a graph on n ≥ n0 vertices and if δ(G) ≥ (1− 1
χcr(H)

)n

then G contains an H-packing covering at least (1 − ε)n vertices.

1 The result we are aiming towards will state that for some graphs, the appro-

priate minimum degree to guarantee a perfect H-packing is also approximately

(1 − 1
χcr(H)

)n. Before we can state the result formally, though, we need some more

definitions.

Let ℓ := χ(H). Given an ℓ-colouring c of H , let x1 ≥ x2 ≥ . . . ≥ xℓ be the sizes

of the colour classes. Define D(c) = {xi − xi+1 | i = 1, . . . , ℓ − 1}. Let D(H) be the

union of all the sets D(c) over all optimal colourings c of H . We define hcfχ(H)

to be the highest common factor of the elements of D(H) (or hcfχ(H) := ∞ if

D(H) = {0}). Define hcfc(H) to be the highest common factor of the orders of all

the components of H .

Definition 1.20 For any graph H, if χ(H) 6= 2, we say hcf(H) = 1 if hcfχ(H) = 1.

If χ(H) = 2, we say hcf(H) = 1 if both hcfc(H) = 1 and hcfχ(H) ≤ 2.

This may appear at first sight to be an artificial and unnatural definition, but

I will briefly give a few examples to give some idea why this is an appropriate

definition when attempting to characterise those graphs H for which the critical

chromatic number is the parameter governing perfect H-packings. In particular, for

each of the conditions required on H for hcf(H) = 1, if the condition does not hold

1In fact, Komlós’ result was much more general than this, and provided asymptotically the
minimum degree condition necessary to guarantee a packing covering xn vertices for any x ∈ (0, 1).
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then I will give an example of a graph G of minimum degree δ(G) ≥ (1−1/χ(H))n−2

which does not contain a perfect H-packing.

If H is not a bipartite graph, then hcf(H) = 1 if and only if hcfχ(H) = 1. So

suppose this does not hold. Let ℓ := χ(H) and let G be the complete ℓ-partite graph

on n = kℓ vertices, where |H| divides k, with ℓ− 2 classes of size k, one class of size

k + 1 and one of size k − 1. (Note that this is the same graph used in Section 1.1

to show that the bound in the Hajnal-Szemerédi Theorem is best possible.) It is

fairly easy to see that this graph does not contain an H-packing. Roughly, when

taking out copies of H we cannot even out the sizes of a class originally of size k

and a class originally of size k + 1. More precisely, we have a class A of size k and a

class B of size k + 1. Set d = hcfχ(H). Then |B| − |A| ≡ 1 mod d. Furthermore,

this holds even if we have modified A and B by taking some copies of H from G,

since the difference in the number of vertices taken from each of these sets is always

a multiple of d. Now since d > 1, for any sets A′ and B′ obtained in this way

we have |A′| 6= |B′|. But if a perfect H-packing existed, its removal would leave

A′ = B′ = φ, which is impossible. So no perfect H-packing exists. Yet this graph

satisfies δ(G) = (1 − 1/ℓ)n − 1.

Now if H is a bipartite graph, to guarantee hcf(H) = 1 we require the weaker

condition hcfχ(H) ≤ 2, but we also need hcfc(H) = 1. To see that the first condition

is necessary we suppose it does not hold and we look at the complete bipartite graph

on n = 2k vertices with one set of size k − 1 and one of size k + 1. Now similarly as

in the non-bipartite case no perfect H-packing exists (this time we cannot even out

the the classes of size k−1 and k+1 because hcfχ(H) > 2), and yet δ(G) = n/2−1.

On the other hand, if hcfc(H) 6= 1, we consider the graph G on n = 2k vertices

consisting of the disjoint union of two cliques, one of order k−1 and one of order k+1.

We also choose k to be divisible by |H|. Once again we can show that no perfect
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H-packing exists. For suppose that c1, c2, . . . , cm are the sizes of the components of

H . Then if it perfect H-packing exists, there are integers a1, a2, . . . , am such that

∑m
i=1 aici = k + 1 (let ai be the number of times the component of size ci appears

in the clique of size k + 1). On the other hand, |H| = c1 + c2 + . . . + cm, and so

k =
∑m

i=1(k/|H|)ci. Therefore

1 =

m
∑

i=1

(ai − k/|H|)ci.

But since k/|H| is also an integer, this shows that hcf{c1, . . . , cm} = hcfc(H) = 1,

which is a contradiction. Thus no perfect H-packing exists, but still δ(G) = n/2−2.

These examples show that if hcf(H) 6= 1, then δ(n, H) ≥ (1 − 1/χ(H))n −

1. Together with Theorem 1.16 this shows that for such graphs, δ(n, H) = (1 −

1/χ(H))n+O(1). The question of what happens for those graphs H with hcf(H) =

1 is answered by the following theorem.

Theorem 1.21 (Kühn, Osthus [53]) For any graph H

δ(n, H) =















(

1 − 1
χcr(H)

)

n + O(1) if hcf(H) = 1,

(

1 − 1
χ(H)

)

n + O(1) if hcf(H) 6= 1.

Here the O(1) error term is bounded by a constant depending only on H . Note

that χ(H) = χcr(H) would mean that hcfχ(H) = ∞, and in particular hcf(H) 6= 1.

So when hcf(H) = 1, the value for δ(n, H) given by Theorem 1.21 is indeed an

improvement on the upper bound given by Theorem 1.16.

Thus we now have equality in all cases, and so the result is best possible up

to the O(1) error term. The natural next step is to ask when this error term can

be removed entirely. The first of the three main results of this thesis states that

the error term can be removed completely in the case when H = K−
r , the graph
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obtained from Kr by removing one edge. The proof of this result will form the

main part of Chapter 2. Observe that χ(K−
r ) = r − 1 and that σ(K−

r ) = 1. Thus

χcr(K
−
r ) = r(r−2)

r−1
. Note also that hcf(K−

r ) = 1 for r ≥ 4, and so the result is:

Theorem 2.1 For every integer r ≥ 4 there exists an integer n0 = n0(r) such that

every graph G whose order n ≥ n0 is divisible by r and whose minimum degree is at

least
(

1 − 1

χcr(K−
r )

)

n

contains a perfect K−
r -packing.

This theorem confirms a conjecture of Kawarabayashi [42] for large n. The case

r = 4 of the conjecture (and thus of Theorem 2.1) was proved by Kawarabayashi [42].

By a result of Enomoto, Kaneko and Tuza [25], the conjecture also holds for the

case r = 3 under the additional assumption that G is connected. (Note that K−
3 is

just a path on 3 vertices and that in this case the required minimum degree equals

n/3.)

The proof of this theorem which appears in Chapter 2 was also given in [16]. In

Section 2.6 I will give a brief sketch of how the proof can be extended to a larger

class of graphs H satisfying certain conditions to remove the error term completely

in these cases. I will also give some examples to show that some of the conditions

are necessary, i.e. that if they do not hold then the O(1) error term in Theorem 1.21

cannot be removed without making the theorem false. Although this is not yet a

complete classification, it goes some way towards a classification of which graphs H

require some error term and which do not.

14



1.2 Graph Embeddings

A natural extension of the packings question is the embedding problem. In this case,

we again aim to embed a graph H into a graph G, but now the order of H might

be linear in n = |G| rather than fixed. The extreme of this problem is of course the

case when |H| = |G|, i.e. when H is a spanning subgraph of G.

We could view the problem of finding a perfect H-packing as an embedding

problem: If we let H ′ be the graph consisting of k disjoint copies of H , where

k = n/|H|, then |H ′| = |G|, and finding a perfect H-packing in G is equivalent

to finding a copy of H ′ in G. In general, though, we allow H ′ to have a much

less regular structure. We do, however, require some constraints on what H can

look like. Typically we seek to bound parameters such as the maximum degree, the

chromatic number or the bandwidth.

Definition 1.22 (bandwidth) Given a graph G and an ordering, L = v1, v2, . . . , vn

of the vertices of G, we define b(G, L) to be the largest integer k such that for some

i, vivi+k ∈ E(G). In other words, b(G, L) is the longest distance in L between two

vertices which are adjacent in G. The bandwidth of G, denoted b(G), is defined as

minL b(G, L), where the minimum is taken over all possible orderings L.

Perhaps the simplest embedding result is Dirac’s theorem, mentioned earlier,

which allows us to embed a Hamilton cycle into G. (Note that a Hamilton cycle has

bandwidth 2.) A generalisation of this is the Pósa-Seymour conjecture:

Conjecture 1.23 (Seymour, [68]) For any k, if G is a graph on n vertices with

minimum degree satisfying δ(G) ≥ k
k+1

n, then G contains the k-th power of a Hamil-

ton cycle.

Here the k-th power of a Hamilton cycle is obtained from a cyclic ordering of the

vertices by joining all those vertices at distance at most k in the ordering. Thus the
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k-th power of a Hamilton cycle has bandwidth 2k. The case k = 2 was originally

conjectured by Pósa in 1962. Note that this conjecture, if true, would automatically

imply the Hajnal-Szemerédi theorem, and therefore the same example as before

shows that it is best possible. Conjecture 1.23 was proved by Komlós, Sárközy and

Szemerédi [49] in an approximate form, in which the minimum degree condition of

G had an extra factor of εn, and then the same authors proved the conjecture for

large graphs [50].

These results only allowed for a constant sized bandwidth. Böttcher, Schacht and

Taraz proved a result which generalises an approximate form of the Pósa-Seymour

conjecture. Here the bandwidth is allowed to grow linearly, but the maximum degree

and the chromatic number must still be bounded by a constant.

Theorem 1.24 (Böttcher, Schacht, Taraz [9]) For any real number ε > 0, and

any integers r ≥ 2 and ∆, there is a real number β > 0 and an integer n0 such

that the following holds. If G is a graph on n ≥ n0 vertices with minimum degree

δ(G) ≥ (1− 1
r
+ε)n, and if H is a graph also on n vertices with χ(H) = r, ∆(H) ≤ ∆

and bandwidth at most βn, then G contains a copy of H as a subgraph.

This result was originally conjectured by Bollobás and Komlós. The case r = 2

of, i.e. when H is a bipartite graph, was proved by Abbasi [2]. Böttcher, Schacht

and Taraz [8] proved the case r = 3 before proving the full conjecture for general r.

Bollobás and Eldridge [7] also conjectured the following result:

Conjecture 1.25 (Bollobás, Eldridge) Let G and H be two graphs each on n

vertices, and suppose δ(G) ≥ ∆(H)n−1
∆(H)+1

. Then H can be embedded into G.

Note that this conjecture, if true, would also automatically imply the Hajnal-

Szemerédi Theorem if we set H to be the disjoint union of r-cliques. Until recently

only a few special cases of Conjecture 1.25 have been proved (see e.g. [20] for
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more details). Recently Kun has announced a proof of an asymptotic version of

the conjecture, in which there is a small linear error term in the minimum degree

required on G, and also a lower bound on both ∆(H) and n − δ(G).

Further areas of interest arise when we consider the problem of embedding non-

spanning subgraphs H . In particular in this thesis I will be concerned with the case

when H is a tree, i.e. a connected graph with no cycles. We denote by Tk the set

of trees on k + 1 vertices; it is a basic graph theory result that such a tree contains

k edges. We write Tk ⊆ G if T ⊆ G for all T ∈ Tk, i.e. if G contains as a subgraph

every tree on k + 1 vertices. The following result is a trivial application of a greedy

embedding algorithm.

Fact 1.26 δ(G) > k − 1 ⇒ Tk ⊆ G.

However, this can be substantially improved upon. Perhaps the most attractive

potential strengthening of this result is the famous Erdős-Sós conjecture, which

replaces the minimum degree by the average degree. Let d(G) := 1
|G|

∑

x∈V (G) d(x)

denote the average degree of a vertex in G.

Note that even in the case when |G| ≫ k, the Erdős-Stone-Simonovits Theorem

(Theorem 1.4) does not provide any useful information about the number of edges

(and therefore also about the average degree) required to guarantee a copy of a

tree. This is because a tree is bipartite and the theorem becomes degenerate, with

the ε
(

n
2

)

error term becoming dominant. However, the following conjecture would

provide an asymptotic condition.

Conjecture 1.27 (Erdős, Sós, 1963) Suppose G is a graph satisfying d(G) >

k − 1. Then Tk ⊆ G.

The conjecture is trivial for stars, since in order to embed a star with k+1 vertices

we need only find a vertex of degree at least k onto which to embed the central point
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and then the k remaining vertices can be embedded among its neighbours; such a

vertex certainly exists if d(G) > k − 1. On the other hand, stars also show that

the bound cannot be improved in general, since we can construct a (k − 1)-regular

graph on n vertices provided that at least one of n and k − 1 is even. Then the

average degree is exactly k−1 and there is no vertex of degree at least k onto which

to embed the central point of a star.

Some further special cases of this conjecture have been resolved. For example,

McLennan [56] proved the conjecture when we restrict our attention only to trees

of diameter at most 4 (the class includes stars, the only trees of diameter 2). On

the other hand, Sacle and Woźniak [67] proved the conjecture with the additional

assumption that G does not contain a copy of C4, the cycle on 4 vertices. Ajtai,

Komlós, Simonovits and Szemerédi have announced a proof of the conjecture in the

case when k is sufficiently large.

The focus of Chapter 3 of this thesis is the Loebl-Komlós-Sós conjecture, which

replaces the average degree in the Erdős-Sós conjecture with the median degree.

Conjecture 1.28 (Loebl, Komlós, Sós [26]) Given any integers k and n, if G

is a graph on n vertices in which at least n/2 vertices have degree at least k, then G

contains as subgraphs all trees with k edges.

Loebl’s initial conjecture covered only the special case k = n/2, and is sometimes

known as the n/2 − n/2 − n/2 conjecture. Komlós and Sós then extended the

conjecture to all k.

Again, the conjecture is trivially true for stars, and stars show that the degree

condition cannot be relaxed to k− 1. In Chapter 3 we will also see that the number

of vertices of degree k cannot be significantly reduced for large k.

Various partial results towards Conjecture 1.28 have been proved. Dobson [23]

proved the conjecture with the additional assumption that the complement of G
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does not contain a copy of K2,3, while Soffer [69] proved that the conjecture is true

for graphs G of girth at least 7. There have also been several partial results which

make some additional assumptions about the trees to be embedded into G. Zhao [72]

proved the special case when k = n/2, provided n is sufficiently large. Bazgan, Li

and Woźniak [6] proved the conjecture for paths, i.e. that if a graph G satisfies the

conditions of the conjecture, then it contains the path on k+1 vertices as a subgraph.

In the same paper, they also proved the conjecture in the case when k ≥ n−3. Barr

and Johansson [5] and independently Sun [70] proved the conjecture when restricting

attention to trees of diameter 4. Improving on this, Piguet and Stein [62] proved

the Loebl-Komlós-Sós conjecture for trees of diameter at most 5, and in [61] they

proved an approximate version of the full conjecture (with linear error terms in both

the number of vertices with high degree and in the degree of those vertices) for n

sufficiently large and for k linear in n, i.e. for large, dense graphs. The main theorem

of Chapter 3 is a proof of the exact conjecture for large, dense graphs.

Theorem 3.1 Given a positive C ′ ∈ R there exists k0 ∈ N such that for any integers

k, n ∈ N satisfying k0 ≤ k ≤ n ≤ C ′k the following holds: Suppose G is a graph on

n vertices in which at least n/2 vertices have degree at least k. Then G contains as

a subgraph every tree with k edges.

The proof of this theorem presented in Chapter 3 also appeared in [15], although

this thesis contains some details which were omitted from that paper. Theorem 3.1

is a partial result in the sense that it only holds for large k and n, and we demand

that k is linear in n. These restrictions come about because the proof makes use of

Szemerédi’s regularity lemma. The same result was also proved independently by

Hladký and Piguet [40].

The Loebl-Komlós-Sós conjecture has a beautiful application to Ramsey numbers

of trees. For a graph H we define the Ramsey number R(H) to be the least integer
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n such that if the edges of Kn are 2-coloured then there is a monochromatic copy of

H . Thus the usual Ramsey number R(k) is just R(Kk). More generally, for graphs

F, H, we define R(F, H) to be the least integer n such that if the edges of Kn are

coloured red and blue then there is a red copy of F or a blue copy of H .

More generally still, for families of graphs F and H, let R(F ,H) denote the

smallest integer n such that if the edges of Kn are coloured red and blue then there

is a red copy of F for every F ∈ F or else a blue copy of H for every H ∈ H.

For most graphs H the best known upper bounds on the Ramsey number are

exponential in |H|. For complete graphs H = Kk, the lower bound is also exponen-

tial in k, a fact which was first proved by Erdős. However, Conjecture 1.28 would

give the following corollary.

Conjecture 1.29 For any positive integers p and q, R(Tp, Tq) ≤ p + q.

Since Theorem 3.1 provides a partial version of Conjecture 1.28, it also gives a

partial version of Conjecture 1.29 as a corollary.

Theorem 3.2 For any real number C ′′ ≥ 1 there exists an integer p0 such that for

any integers p and q satisfying p0 ≤ p ≤ q ≤ C ′′p we have R(Tp, Tq) ≤ p + q. In

particular, for Tp ∈ Tp and Tq ∈ Tq, R(Tp, Tq) ≤ p + q.

In general, Ramsey numbers are famously difficult to calculate. However, as we

will see in Chapter 3, Theorem 3.2 is in fact best possible up to an error term of 1

in some cases.

The proof of Theorem 3.2 given Theorem 3.1 is relatively short and simple, and

will be presented in Section 3.1.

In a similar vein, Chvátal, Rödl, Szemerédi and Trotter proved an embedding

result for graphs which, as a corollary, shows that graphs of bounded degree have

linear Ramsey numbers.

20



Theorem 1.30 (Chvátal, Rödl, Szemerédi, Trotter, [12]) For any integer ∆

there is a real number c > 0 such that if G is any graph on n vertices, and H is any

graph satisfying |V (H)| ≤ cn and ∆(H) ≤ ∆, then either H ⊆ G or H ⊆ G.

Corollary 1.31 For any integer ∆ there is a constant C = C(∆) such that if H is

a graph with maximum degree satisfying ∆(H) ≤ ∆, then R(H) ≤ C|H|.

The aim of Chapter 4 is to prove an embedding result along the lines of Theo-

rem 1.30, and thus also to generalise Corollary 1.31, for hypergraphs.

1.3 Hypergraph Embeddings

A hypergraph is a generalisation of a graph. While a graph consisted of vertices

and edges, a hypergraph consists of vertices and hyperedges. The hyperedges of a

k-uniform hypergraph are unordered k-tuples of distinct vertices in the vertex set.

Thus a graph is simply a 2-uniform hypergraph. Given a k-uniform hypergraph G,

its set of vertices is usually denoted V or V (G), and its set of hyperedges by E(G)

or Ek(G). We denote by |G| the number of its vertices and write e(G) := |E(G)|.

We say that vertices x, y ∈ G are neighbours if x and y lie in a common hyperedge

of G. Just as in the graph case, the degree of a vertex x ∈ V (H) is the number of

neighbours of x in H. The minimum degree and maximum degree of a hypergraph

H are then defined in the obvious way.

Broadly speaking, we consider the problem of embedding a hypergraph H into a

larger hypergraph G, i.e. of finding a subhypergraph of G which is isomorphic to H.

The problem is similar to the discussion in the previous section in that the order

of H will be linear in the order of G. In order to have any chance of embedding H

into G, we must have some sort of restrictions on what H can look like. In the last

of the three main results of this thesis, we demand that the maximum degree of H is
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bounded. However, the hypergraph case is considerably more complicated than the

graph case, and for this reason embedding results for hypergraphs H whose order

is exactly |G|, or even close to |G|, have been out of reach until very recently. In

Chapter 4 I will present the proof of an embedding result for the case when H has

bounded degree and order c|G|, where c is a very small positive constant and where

|G| is large. The bulk of the proof appeared in [18], but I have added some details

which were omitted in that paper.

The complete k-uniform hypergraph on n vertices (i.e. the hypergraph in which

all possible k-tuples form a hyperedge) is denoted K
(k)
n , and the Ramsey number of

a hypergraph H is the least integer n such that whenever the hyperedges of K
(k)
n

are two-coloured then there exists a monochromatic copy of H.

For general H, the best upper bound on R(H) is due to Erdős and Rado [27].

Writing |H| for the number of vertices of H, it implies that for any k ≥ 2

R(H) ≤ 22·
··
2ck|H|

,

where the number of 2’s is k−1. In the other direction, Erdős and Hajnal (see [33])

showed that if k ≥ 3 and H is a complete k-uniform hypergraph then R(H) is

bounded below by a tower in which the number of 2’s is k− 2 and the top exponent

is c′k|H|2.

However, an application of the embedding result in [18] shows that hypergraphs

of bounded degree have linear Ramsey numbers, i.e. a hypergraph analogue of

Corollary 1.31.

Theorem 4.1 For all ∆, k ∈ N there exists a constant C = C(∆, k) such that all

k-uniform hypergraphs H of maximum degree at most ∆ satisfy R(H) ≤ C|H|.

This is an improvement on a result of Kostochka and Rödl [52], who showed that
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Ramsey numbers of k-uniform hypergraphs of bounded maximum degree are ‘almost

linear’ in their orders. More precisely, they showed that for all ε, ∆, k > 0 there is

a constant C such that R(H) ≤ C|H|1+ε if H has maximum degree at most ∆.

The case k = 3 of Theorem 4.1 was earlier proved in [17] and also independently

in [57]. Also, Haxell,  Luczak, Peng, Rödl, Ruciński, Simonovits and Skokan [37, 38]

asymptotically determined the Ramsey numbers of 3-uniform tight and loose cycles.

Ramsey numbers of Berge-cycles were considered in [35] and [24].

After the submission of [18], Conlon, Fox and Sudakov [13] obtained a version

of Theorem 4.1 whose proof does not use the hypergraph regularity lemma, and

therefore gives a much better upper bound on the value of C(∆, k). The same

authors [14] also improved the upper and lower bounds of Erdős, Hajnal and Rado

for complete hypergraphs.

The overall strategy of our proof of Theorem 4.1 is related to that of Chvátal,

Rödl, Szemerédi and Trotter [12], which is based on the regularity lemma for graphs.

We apply a version (due to Rödl and Schacht [64]) of the regularity lemma for k-

uniform hypergraphs. Roughly speaking, it guarantees a partition of an arbitrary

dense k-uniform hypergraph into ‘quasi-random’ subhypergraphs. Our main con-

tribution is an embedding result (Theorem 4.2) which guarantees the existence of

a copy of a hypergraph H of bounded maximum degree inside a suitable ‘quasi-

random’ hypergraph G even if the order of H is linear in that of G. In fact, we prove

a stronger embedding result of independent interest (Theorem 4.3). It even counts

the number of copies of such H in G and thus generalises the well-known hypergraph

counting lemma (which only allows for bounded size H).

After the submission of [18], Keevash [43] extended Theorem 4.2 to a hyper-

graph blow-up lemma for embeddings of spanning subhypergraphs H. The case of

3-uniform hypergraphs in Theorem 4.1 was proved recently in [17] and indepen-
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dently by Nagle, Olsen, Rödl and Schacht [57]. Also, Kostochka and Rödl [52]

earlier proved an approximate version of Theorem 4.1: for all ε, ∆, k > 0 there is

a constant C such that R(H) ≤ C|H|1+ε if H has maximum degree at most ∆.

After [18] was submitted, Conlon, Fox and Sudakov [13] obtained a proof of The-

orem 4.1 which does not rely on hypergraph regularity and gives a better bound

on C. Also, Ishigami [41] independently announced a proof of Theorem 4.1 using a

similar approach to ours. Apart from these, the only previous results on the Ramsey

numbers of sparse hypergraphs are on hypergraph cycles (see e.g. [24, 35, 37, 38]).

It would be desirable to extend Theorem 4.1 to a larger class of hypergraphs.

For instance the graph analogue of Theorem 4.1 is known for so-called p-arrangeable

graphs [11], which include the class of all planar graphs. However, Rödl and Kos-

tochka [52] showed that a natural hypergraph analogue of the famous Burr-Erdős

conjecture on Ramsey numbers of d-degenerate graphs fails for k-uniform hyper-

graphs if k ≥ 3. (A graph is d-degenerate if the maximum average degree over all

its subgraphs is at most d. If a graph is p-arrangeable, then it is also d-degenerate

for some d.) But it may still be possible to generalise the Burr-Erdős conjecture to

hypergraphs in a different way.

1.4 The Regularity Method

The common theme in graph packing, graph embedding and hypergraph embedding

problems is the regularity lemma. Roughly speaking, the regularity lemma states

that any sufficiently large and dense graph or hypergraph can have its vertex set

partitioned into a small number of classes in such a way that the sub(hyper)graphs

induced between the classes look very much like random (hyper)graphs. By applying

the regularity lemma to a graph G or a hypergraph G, we hope to use this pseudo-

randomness to embed H ′ or H into G or G respectively.
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The regularity lemma for hypergraphs is rather more complicated than that for

graphs, and so I will introduce the two separately. The hypergraph version will be

left until Chapter 4, when it is first needed. In Section 1.4.1 I will introduce the

regularity lemma for graphs, originally proved by Szemerédi [71]. The subsections

following will give a brief idea of the method of proof of most graph embedding

results. One important step in this method uses the blow-up lemma, due to Komlós,

Sárkőzy and Szemerédi, which is introduced in Section 1.4.3.

1.4.1 The Regularity Lemma for Graphs

Definition 1.32 (ε-regular pair) Given ε > 0 and a bipartite graph G with vertex

classes A, B, we say the pair (A, B) is ε-regular if for any subsets X ⊆ A, Y ⊆ B

satisfying |X| ≥ ε|A|, |Y | ≥ ε|B| we have

|d(X, Y ) − d(A, B)| ≤ ε.

In other words, for all sufficiently large subsets of A and B, the density of edges

between them is roughly the same as the density between the whole of A and B.

More generally, given a graph G and disjoint vertex sets A and B within G (not

necessarily covering all of V (G)), we say the pair (A, B) is ε-regular if they form an

ε-regular pair in the bipartite graph induced between them.

Occasionally we need a slightly stronger definition of regularity.

Definition 1.33 ((ε, δ)-super-regular pair) We say the pair (A, B) is (ε, δ)-

super-regular if it is ε-regular, and furthermore each vertex in A has at least δ|B|

neighbours in B, and similarly each vertex in B has at least δ|A| neighbours in A.

Super-regularity ensures that there are no ‘very bad’ vertices, which have almost

no neighbours. It is a basic fact (see e.g. [51]) that in any ε-regular pair, at most ε|A|
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vertices in A have degree at most (d(A, B) − ε)|B| and vice versa. So by removing

these vertices we can ensure that the pair is (2ε, d − 2ε)-super-regular.

We also sometimes use the notion of (d, ε)-regularity:

Definition 1.34 ((d, ε)-regular pair) We say a pair (A, B) is (d, ε)-regular if for

any sets X ⊆ A, Y ⊆ B satisfying |X| ≥ ε|A|, |Y | ≥ ε|B| we have

|d(X, Y ) − d| ≤ ε.

It can easily be seen that this definition is roughly equivalent to the definition of

an ε-regular pair given an appropriate choice of d. Indeed, it is exactly equivalent

for d = d(A, B), while for general d any (d, ε)-regular pair is also 2ε-regular. Thus

subject to the deletion of a few vertices of low degree, this definition is also very

similar to the definition of an (ε, δ)-super-regular pair.

Definition 1.35 (ε-regular partition) Given a graph G and a partition P of

V (G) into sets V1, V2, . . . , Vk, we say that P is an ε-regular partition of G if all

but at most ε
(

k
2

)

of the pairs (Vi, Vj) are ε-regular.

In other words, almost all pairs are ε-regular. Roughly speaking, the regularity

lemma states that any sufficiently large and dense graph has an ε-regular partition

into a bounded number of sets of almost equal size.

Theorem 1.36 (Szemerédi’s Regularity Lemma, 1978) Given any integer k0

and a real number ε > 0, there are integers n0 = n0(k0, ε) and K0 = K0(k0, ε) such

that if G is a graph on n ≥ n0 vertices, then there is a partition P of V (G) into sets

V1, V2, . . . , Vk such that

• k0 ≤ k ≤ K0

• |Vi| − |Vj| ≤ 1 for any i, j ∈ [k]
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• P is an ε-regular partition.

We call the classes Vi of the partition P clusters. Note that if we have such a

partition, then the number of edges within clusters is not much more than k(n/k)2 =

n2/k, and the number of edges between pairs of clusters that are not ε-regular is not

much more than ε
(

k
2

)

(n/k)2 ≤ εn2. 1 Thus if we know that a graph G on n vertices

has at least cn2 edges, for some constant c > 0 and sufficiently large n, then we can

apply the regularity lemma with sufficiently small ε and large k0 (dependant on c)

to ensure that a very large proportion of the edges of G run between ε-regular pairs.

We tend to ignore all the remaining edges.

We note also that while the regularity lemma is stated for all graphs, for sparse

graphs it becomes trivial. More precisely, if (Gn) is a sequence of graphs, where Gn

has n vertices and o(n2) edges, then asymptotically any partition of Gn into sets of

the appropriate size will satisfy the conditions of the lemma; we could have all edges

being either within a cluster or between non-regular pairs. Some work has been

done towards generalising the regularity lemma to an appropriate sparse version,

but so far only partial results have been proved. See e.g. [30] for for a survey of the

known results in this area.

For these reasons, we usually only apply the regularity to graphs with at least

cn2 edges.

1.4.2 The Reduced Graph

One very important concept in many applications of the regularity lemma is that of

the reduced graph, which reflects the rough structure of the original graph.

Definition 1.37 (reduced graph) Given parameters d, ε ∈ (0, 1), a graph G and

1We say ‘not much more’ rather than ‘at most’ since we need to take account of the fact that
the clusters do not have size exactly n/k.
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a partition P of V (G), we define the reduced graph R as follows. The vertices of R

are the clusters of the partition P . Two such clusters Vi and Vj are joined by an

edge in R whenever the pair (Vi, Vj) is ε-regular in G, with density at least d.

We normally define the reduced graph with a parameter d which is small, but

still much larger than ε. Then the reduced graph inherits many useful properties

of the original graph G. The aim is to find some relatively simple structure in the

reduced graph, and use this to prove the existence of a more complicated structure

in the original graph.

1.4.3 The Blow-up Lemma

The blow-up lemma is one tool which enables us to transfer structure from the

reduced graph back to G. Each edge of the reduced graph corresponds to an ε-

regular pair of clusters in G with reasonably high density. As mentioned before, this

pair can easily be made (
√

ε, δ)-super-regular by deleting a few vertices. Roughly

speaking, the blow-up lemma states that such an (
√

ε, δ)-super-regular pair Vi, Vj will

contain a copy of any bipartite graph H of bounded degree, provided H is contained

in the complete bipartite graph between Vi and Vj (i.e. provided the clusters Vi and

Vj are large enough to contain the vertex classes of H). In particular, this allows

for spanning subgraphs H . More generally, given a subgraph in the reduced graph,

the corresponding clusters in G will contain any blow-up of this subgraph which has

bounded degree.

Theorem 1.38 (Blow-up Lemma [47]) For any real number δ ∈ (0, 1], and in-

tegers ∆, k ≥ 1 there is a real number ε > 0 such that the following holds. Suppose

G is a k-partite graph with vertex classes V1, V2, . . . , Vk such that all pairs Vi, Vj are

(ε, δ)-super-regular. Let K denote the complete k-partite graph with vertex classes
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V1, V2, . . . , Vk. Suppose H is any graph with ∆(H) ≤ ∆. If K contains a copy of H,

then G also contains a copy of H.

Thus if we have a k-clique in the reduced graph, we may discard a small number

of vertices from the corresponding k clusters in G to ensure that all the
(

k
2

)

pairs

are not just regular but also super-regular. Then if we want to find a copy of H in

G, where H is a k-chromatic graph with bounded maximum degree, we need only

consider whether H is a subgraph of K, the graph obtained from G by turning all

the
(

k
2

)

pairs of clusters into complete bipartite graphs. Equivalently, we need only

consider whether the sizes of the classes of H are small enough to fit into these k

clusters of G.

So roughly the strategy for a proof of the existence of a perfect H-packing is

to find copies of Kχ(H) in the reduced graph and expand these using the blow-up

lemma to a large number of disjoint copies of H in G. There is then some tidying

up to do with those few vertices that are not covered by these copies.

1.4.4 The Regularity Lemma for Hypergraphs

The regularity lemma for k-uniform hypergraphs generalises the Szemerédi’s reg-

ularity lemma for graphs, and similarly aims to describe appropriate “pseudo-

randomness” properties. However, the version of the hypergraph regularity lemma

which we need is rather complicated. For this reason, we leave both the statement

and the explanation of the lemma until Chapter 4, when it will first be required.
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CHAPTER 2

GRAPH PACKINGS

The aim of this chapter is to present the proof of the following theorem.

Theorem 2.1 For every integer r ≥ 4 there exists an integer n0 = n0(r) such that

every graph G whose order n ≥ n0 is divisible by r and whose minimum degree is at

least
(

1 − 1

χcr(K−
r )

)

n

contains a perfect K−
r -packing.

Also in Section 2.6 I will indicate how this proof can be extended to a larger

class of graphs H for which the error term in Theorem 1.21 can be removed entirely.

2.1 Further Notation and Preliminaries

Throughout this chapter we omit floors and ceilings whenever this does not affect

the argument.

For a graph H of chromatic number ℓ, define the bottle graph B∗(H) of H , to be

the complete ℓ-partite graph which has ℓ−1 classes of size |H|−σ(H) and one class

of size (ℓ − 1)σ(H). (Recall that σ(H) is the smallest possible size of a colour class

in an ℓ-colouring of H .) Note that given an optimal colouring of H , then |H|−σ(H)
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is the sum of all colour class sizes except the smallest one. Thus by rotating these

ℓ − 1 classes and keeping the smallest one fixed, we can see that B∗(H) contains a

perfect H-packing consisting of ℓ−1 copies of H . We will use B∗ to denote B∗(K−
r )

whenever this is unambiguous.

2.2 Extremal Examples

For completeness, we include the construction which shows that the bound on the

minimum degree in Theorem 2.1 is best possible.

Proposition 2.2 Let r ≥ 4. Then for all k ∈ N there is a graph G on n = kr

vertices whose minimum degree is ⌈(1 − 1/χcr(K
−
r ))n⌉−1 but which does not contain

a perfect K−
r -packing.

Proof. We construct G as follows. G is a complete (r−1)-partite graph with vertex

classes U0, . . . , Ur−2, where |U0| = k−1 and the sizes of all other classes are as equal

as possible. It is easy to check that G has the required minimum degree. Indeed,

δ(G) = n −
⌈

n − |U0|
r − 2

⌉

= kr −
⌈

kr − (k − 1)

r − 2

⌉

= k(r − 1) −
⌈

2k − (k − 1)

r − 2

⌉

≥ k(r − 1) −
(

k

r − 2
+ 1

)

=
r2 − 3r + 1

r(r − 2)
n − 1

= (1 − r − 1

r(r − 2)
)n − 1.

Moreover, every copy of K−
r in G contains at least one vertex in U0. Thus we

can find at most |U0| pairwise disjoint copies of K−
r which therefore cover at most

(k − 1)(r − 1) < n − |U0| vertices of G − U0. Thus G does not contain a perfect
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K−
r -packing. �

Note that Proposition 2.2 extends to every graph H which is obtained from

a Kr−1 by adding a new vertex and joining it to at most r − 2 vertices of the Kr−1.

Since each such H is a subgraph of K−
r and since χcr(H) = χcr(K

−
r ), it follows from

this observation and from Theorem 2.1 that δ(n, H) = ⌈(1 − 1/χcr(H))n⌉ if n is

sufficiently large (where δ(n, H) is as defined in Chapter 1).

The following example shows that for a large class of graphs, the O(1)-error term

in Theorem 1.21 cannot be omitted completely. The example is an extension of a

similar construction in [48].

Proposition 2.3 Suppose that H is a complete ℓ-partite graph with ℓ ≥ 3 such that

every vertex class of H, except possibly its smallest class, has at least 3 vertices.

Then there are infinitely many graphs G whose order n is divisible by |H| and whose

minimum degree satisfies δ(G) = (1 − 1
χcr(H)

)n but which do not contain a perfect

H-packing.

Proof. Let σ denote the size of the smallest vertex class of H . Given k ∈ N, consider

the complete ℓ-partite graph on n := k(ℓ − 1)|H| vertices whose vertex classes

A1, . . . , Aℓ satisfy |A1| := (|H|−σ)k +1, |Aℓ| := k(ℓ−1)σ−1 and |Ai| := (|H|−σ)k

for all 1 < i < ℓ. Let G be the graph obtained by adding a perfect matching into A1

or, if |A1| is odd, a matching covering all but 3 vertices and a path of length 2 on

these remaining vertices. Observe that the minimum degree of G is (1 − 1
χcr(H)

)n.

Consider any copy H ′ of H in G. Suppose that H ′ meets Aℓ in at most σ − 1

vertices. Then there is a colour class X of H ′ which meets Aℓ but does not lie

entirely in Aℓ. So some vertex class of G must meet at least two colour classes

of H ′. Since H ′ is complete ℓ-partite, this vertex class must have some edges in it,

and so must be A1. However, A1 cannot meet three colour classes of H ′, since it is

triangle free. Thus every colour class of H ′ except X lies completely within one Ai.
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Furthermore, A1 cannot contain two complete colour classes of H ′, since then G[A1]

would have a vertex of degree 3, a contradiction. So A1 meets X as well as another

colour class Y of H ′. Furthermore X \ Aℓ ⊆ A1 and Y ⊆ A1. Let x ∈ X ∩ A1.

Then Y ⊆ NG(x) since Y ⊆ NH′(x). This implies that |Y | ≤ 2 and so σ = |Y | ≤ 2.

Thus |X| ≥ 3. Since at most σ − 1 ≤ 1 vertices of X lie in Aℓ this in turn implies

that |X ∩ A1| ≥ 2. As X ∩ A1 lies in the neighbourhood of any vertex from Y , we

must have that |X ∩A1| = 2. Thus X ∩A1 can only lie in the neighbourhood of one

vertex from Y . Hence σ = |Y | = 1. But then X avoids Aℓ, a contradiction.

So any copy of H in G has at least σ vertices in Aℓ. Thus any H-packing in G

consists of less than k(ℓ−1) copies of H and therefore covers less than k(ℓ−1)(|H|−

σ) < |G|−|Aℓ| vertices of G−Aℓ. So G does not contain a perfect H-packing. �

Note that the proof of Proposition 2.3 shows that if |H| − σ is odd then we only

need that every vertex class of H (except possibly its smallest class) has at least

two vertices. Moreover, it is not hard to see that the conclusion of Proposition 2.3

holds for all graphs H which do not have an optimal colouring with a vertex class of

size σ + 1. See Section 2.6 for details and for further examples of graphs for which

the error term is necessary.

In the proof of Theorem 2.1 we will use the following observation about packings

in almost complete (q + 1)-partite graphs. It follows easily from the blow-up lemma

(see e.g. [45]), but we also sketch how it can be deduced directly from Hall’s theorem.

Proposition 2.4 For all q, r ∈ N there exists a positive constant τ0 = τ0(q, r) =

1/(2(r+1)q−1) such that the following holds for every τ ≤ τ0 and all k ∈ N. Let Hq,r

be the complete (q + 1)-partite graph with q vertex classes of size r and one vertex

class of size 1. Let G∗ be a (q+1)-partite graph with vertex classes V1, . . . , Vq+1 such

that |Vi| = kr for all i ≤ q and such that |Vq+1| = k. Suppose that for all distinct

i, j ≤ q + 1 every vertex x ∈ Vi of G∗ is adjacent to all but at most τ |Vj | vertices in

33



Vj. Then G∗ has a perfect Hq,r-packing.

Proof. We proceed by induction on q. If q = 1 then we are looking for a perfect

K1,r-packing. The result can easily be deduced from Hall’s theorem. For we have

|V1| = kr and |V2| = k. Let us now replace each vertex of V2 with r new vertices,

each joined to the same neighbours in V1 as the original vertex. Now a perfect

matching in the new graph corresponds to a perfect K1,q-packing in the original

graph G∗, and so we only need to check Hall’s condition in the new graph. Suppose

that Hall’s condition fails for A ⊆ V1, i.e. |N(A)| < |A|. Then since τ0 = 1
2

we have

|N(A)| ≥ kr/2, and so |A| > kr/2. Now V2\N(A) 6= ∅ and so |N(V2\N(A))| ≥ kr/2.

But also N(V2\N(A)) ⊆ V1\A and so has size at most kr − |A| < kr/2, which is a

contradiction as required.

Now suppose that q > 1 and note that τ0(q, r) = τ0(q−1, r)/(r+1) < τ0(q−1, r).

As before, we can find a perfect K1,r-packing in G∗[Vq ∪ Vq+1]. Let G′ be the graph

obtained from G∗ by replacing each copy K of such a K1,r with one vertex xK and

joining xK to y ∈ V1 ∪ · · · ∪ Vq−1 whenever y is adjacent to every vertex of K. Let

V ′
1 , . . . , V

′
q be the classes in G′. Then in G′ for all distinct i, j ≤ q, every vertex in V ′

i

is adjacent to all but at most τ0(q, r)/(r + 1)|V ′
j | vertices in V ′

j , and so G′ contains

a perfect Hq−1,r-packing by the induction hypothesis. This corresponds to a perfect

Hq,r-packing in G∗. �

2.3 Overview of the Proof

Our main tool is the following result from [53]. It states that in the ‘non-extremal

case’, where the graph G given in Theorem 1.21 satisfies certain conditions, we can

find a perfect packing even if the minimum degree is slightly smaller than required in

Theorem 1.21. The conditions ensure that the graph G does not look too much like
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one of the extremal examples of graphs whose minimum degree is just a little smaller

than required in Theorem 1.21 but which do not contain a perfect H-packing.

Theorem 2.5 Let H be a graph of chromatic number ℓ ≥ 2 with hcf(H) = 1. Let

z1 denote the size of the small class of the bottle graph B∗(H), let z denote the size of

one of the large classes, and let ξ = z1/z. Let θ ≪ τ0 ≪ ξ, 1−ξ, 1/|B∗(H)| be positive

constants. There exists an integer n0 such that the following holds. Suppose G is a

graph whose order n ≥ n0 is divisible by |B∗(H)| and whose minimum degree satisfies

δ(G) ≥ (1 − 1
χcr(H)

− θ)n. Suppose that G also satisfies the following conditions:

(i) G does not contain a vertex set A of size zn/|B∗(H)| such that d(A) ≤ τ0.

(ii) If ℓ = 2, then G does not contain a vertex set A with d(A, V (G) \ A) ≤ τ0.

Then G has a perfect H-packing.

The proof of this result in [53] used the regularity lemma for graphs. In fact, during

the proof of Theorem 2.1 there will be no explicit reference to the regularity lemma,

since it is only needed implicitly whenever we need to apply Theorem 2.5 (which we

will need to do at two separate points in the proof).

Roughly speaking, Theorem 2.5 deals with the case when there is no obvious

structure in G. The regularity lemma helps in this case because it provides some

sort of structure where there didn’t appear to be any. But if the conditions of

Theorem 2.5 do not hold, then we know that we have some structure in G, and so

we will not need the regularity lemma to provide it.

More precisely, by applying this theorem with H := K−
r (where r ≥ 4), we

only need to consider the extremal case, when there are large almost independent

sets. (Note that if the order of the graph G given by Theorem 2.1 is not divisible

by |B∗(K−
r )|, we must first greedily remove some copies of K−

r before applying

Theorem 2.5. The existence of these copies follows from the Erdős-Stone-Simonovits
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theorem, and since we only need to remove a bounded number of copies, this will

not affect any of the properties required in Theorem 2.5 significantly.)

Suppose that we have q such large almost independent sets. Theorem 2.5 will

deal with the case q = 0, and so we may assume that q ≥ 1. Then we will think

of the remainder of the vertices of G as the (q + 1)th set. We will show in Section

2.4 that by taking out a few copies of K−
r and rearranging these q + 1 sets slightly,

we can achieve that these sets will induce an almost complete (q + 1)-partite graph.

Furthermore, the proportion of the size of each of the first q of these modified sets

to the order of the entire graph will be the same as for the large classes of the bottle

graph B∗(K−
r ) defined in Section 2.1.

Let B∗
1 be the subgraph of B∗(K−

r ) obtained by deleting q of the large vertex

classes. Ideally, we would like to apply Theorem 2.5 to find a B∗
1-packing in the

(remaining) subgraph of G induced by the (q + 1)th vertex set. In a second step we

would then like to extend this B∗
1-packing to a B∗(K−

r )-packing in G, using the fact

that the (q + 1)-partite subgraph of G between the classes defined above is almost

complete. This would clearly yield a K−
r -packing of G.

However, there are some difficulties. For example, Theorem 2.5 only applies to

graphs H with hcf(H) = 1, and this may not be the case for B∗
1 if it is bipartite. So

instead of working with B∗
1 , we consider a suitable subgraph B1 of B∗

1 which does

satisfy hcf(B1) = 1. Moreover, if B1 is bipartite we may have to take out a few

further carefully chosen copies of K−
r from G to ensure that condition (ii) is also

satisfied before we can apply Theorem 2.5 to the subgraph induced by the (q + 1)th

vertex set.
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2.4 Tidying Up the Classes

Let n and q be integers such that n is divisible by r(r − 2) = |B∗(K−
r )| and such

that 1 ≤ q ≤ r − 2. Note that in the case when H := K−
r the set A in condition (i)

of Theorem 2.5 has size r−1
r(r−2)

n. We say that disjoint vertex sets A1, . . . , Aq+1 are

(q, n)-canonical if |Ai| = r−1
r(r−2)

n for all i ≤ q and |Aq+1| = n
r

+ (r − q − 2) r−1
r(r−2)

n =

n−∑q
i=1 |Ai|. Note that in this case the graph K(q, n) obtained from the complete

graph on
⋃q+1

i=1 Ai by making each Ai with i ≤ q into an independent set has a perfect

B∗(K−
r )-packing and thus also a perfect K−

r -packing.

Our aim in the following lemma is to remove a few disjoint copies of K−
r from

our given graph G in order to obtain a graph on n∗ vertices which looks almost

like K(q, n∗). In the next section we will then use this property to show that this

subgraph of G has a perfect K−
r -packing.

Lemma 2.6 Let r ≥ 4 and 0 < τ ≪ 1/r. Then there exists an integer n0 = n0(r, τ)

such that the following is true. Let G be a graph whose order n ≥ n0 is divisible

by r and whose minimum degree satisfies δ(G) ≥ (1 − 1
χcr(K−

r )
)n. Suppose that for

some 1 ≤ q ≤ r − 2 there are q disjoint vertex sets A1, . . . , Aq in G such that

|Ai| = ⌈ r−1
r(r−2)

n⌉ and d(Ai) ≤ τ for 1 ≤ i ≤ q. Set Aq+1 := V (G)\(A1 ∪ . . . ∪ Aq).

Then there exist disjoint vertex sets A∗
1, . . . , A

∗
q+1 such that the following hold:

(i) If G∗ := G[
⋃q+1

i=1 A∗
i ] and n∗ := |G∗| then r(r − 2) divides n∗, and G − G∗

contains a perfect K−
r -packing. Furthermore, n − n∗ ≤ τ 1/3n.

(ii) |A∗
1| = |A∗

2| = . . . = |A∗
q| = r−1

r(r−2)
n∗.

(iii) For all i, j ≤ q + 1 with i 6= j, each vertex in A∗
i has at least (1 − τ 1/5)|A∗

j |

neighbours in A∗
j .
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Proof. We first fix integers r ≥ 4 and n divisible by r and a constant τ such that

0 < 1/n ≪ τ ≪ 1/r.

Note that if n is divisible by r(r−2) then the sets A1, . . . , Aq+1 are (q, n)-canonical.

If n is not divisible by r(r − 2) then we will change the sizes of the Ai slightly as

follows. Write n = n′+kr where n′ is divisible by r(r−2) and 0 < k < r−2. If k ≥ q

then we do not change the sizes of the Ai. If k < q then for each i with k < i ≤ q

we move one vertex from Ai to Aq+1. We still denote the sets thus obtained by

A1, . . . , Aq+1. We may choose the vertices we move in such a way that the density

of each Ai with i ≤ q is still at most τ . Note that ⌈ r−1
r(r−2)

n⌉ = r−1
r(r−2)

n′ + k + 1. Thus

both in the case when k ≥ q and in the case when k < q the sets A1, . . . , Aq+1 can

be obtained from (q, n′)-canonical sets by adding kr new vertices as follows. For

each i ≤ min{k, q} we add k + 1 of the new vertices to the ith vertex set, for each

i with min{k, q} < i ≤ q we add k new vertices to the ith vertex set and all the

remaining new vertices are added to Aq+1. Let K be the graph obtained from the

complete graph on
⋃q+1

i=1 Ai by making each Ai with i ≤ q into an independent set.

It is easy to see that K(q, n′) can be obtained from K by removing k vertex-disjoint

copies of K−
r .

More precisely for each i ≤ min{k, q} we will remove a copy of K−
r with two

vertices in Ai, one vertex in Aj for each i 6= j ≤ q and r − 1 − q vertices in Aq+1.

Furthermore, we remove max{k − q, 0} copies of K−
r with one vertex in each Ai for

i ≤ q and q− r vertices in Aq+1. These copies of K−
r exist, and may be chosen to be

vertex-disjoint, since K is a complete (r− 1)-partite graph, and the graph obtained

by removing them is K(q, n′).

In particular, since K(q, n′) has a perfect K−
r -packing this shows that K also

has a perfect K−
r -packing. Note that if k < q then this would not hold if we had
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not changed the sizes of the Ai. Later on we will use that in all cases we have

|Ai| ≥
r − 1

r(r − 2)
n′ + k =

r − 1

r(r − 2)
(n − kr) + k (2.1)

for all i ≤ q, where we set n′ := n and k := 0 if n is divisible by r(r − 2). Observe

that χcr(K
−
r ) = r(r−2)

r−1
and so δ(G) ≥ (1 − r−1

r(r−2)
)n. Thus the minimum degree

condition on G implies that the neighbours of any vertex might essentially avoid

one of the Ai, for i ≤ q, but no more.

Now for each index i, call a vertex x ∈ Ai i-bad if x has at least τ 1/3|Ai| neigh-

bours in Ai. Note that, for i ≤ q, the number of i-bad vertices is at most τ 2/3|Ai|

since d(Ai) ≤ τ for such i. Call a vertex x ∈ Ai i-useless if, for some j 6= i, x has

at most (1− τ 1/4)|Aj| neighbours in Aj . In this case the minimum degree condition

shows that, provided i 6= r − 1, x must have at least a τ 1/3-fraction of the vertices

in its own class as neighbours, i.e. x is i-bad. Thus every vertex that is i-useless

is also i-bad for i 6= r − 1. In particular, for each i ≤ q, there are at most τ 2/3|Ai|

i-useless vertices.

For i = q + 1 we estimate the number uq+1 of (q + 1)-useless vertices by looking

at the edges between Aq+1 and V (G)\Aq+1. We have

e(Aq+1, V (G)\Aq+1) ≥
q
∑

i=1

{|Ai|δ(G) − 2e(Ai) −
∑

j 6=i,j≤q

|Ai||Aj|}

≥ q(|A1| − 1)δ(G) − qτ |A1|2 − q(q − 1)|A1|2.

On the other hand,

e(Aq+1, V (G)\Aq+1) ≤ uq+1{(q − 1)|A1| + (1 − τ 1/4)|A1|} + (|Aq+1| − uq+1)q|A1|

= q|A1||Aq+1| − uq+1τ
1/4|A1|.
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Combining these inequalities, and using the fact that δ(G)−(q−1)|A1| ≥ |Aq+1|−q,

gives

τ
1
4 uq+1 ≤ q|Aq+1| + qτ |A1| −

1

|A1|
[q(|A1| − 1)δ(G) − q(q − 1)|A1|2]

≤ q|Aq+1| + qτ |A1| − q(|Aq+1| − q) + q
δ(G)

|A1|

= q2 + qτ |A1| + q
δ(G)

|A1|

≤ q2 + qτ |A1| + rq

≤ 3qτ |A1|

and so uq+1 ≤ τ 2/3|Aq+1|. So in total the number of vertices which are i-useless for

some i is at most τ 2/3n.

Given j 6= i, call a vertex x ∈ Ai j-exceptional if x has at most τ 1/3|Aj| neighbours

in Aj . Thus every such vertex is also i-useless, and therefore i-bad if i ≤ q. Note

that if q < r − 2 then the minimum degree condition ensures that there are no

(q + 1)-exceptional vertices. Furthermore, if i = r − 1, then an exceptional vertex

in Ai is also i-bad. So all exceptional vertices are bad.

Now if for some i 6= j there exists an i-bad vertex x ∈ Ai and an i-exceptional

vertex y ∈ Aj , then let us swap x and y. (Note that a vertex is not i-exceptional

for more than one i.) Having done this, since there are not too many exceptional

vertices, we will still have that each non-bad vertex in Ai has at most 2τ 1/3|Ai|

neighbours in Ai, each non-useless vertex in Ai still has at least (1 − 2τ 1/4)|Aj |

neighbours in each Aj with j 6= i and each non-i-exceptional vertex still has at least

τ 1/3|Ai|/2 neighbours in Ai. We will also have that for any i for which i-exceptional

vertices exist, there are no i-bad vertices.

We now wish to remove all the exceptional vertices by taking out a few disjoint

copies of K−
r which will cover them. For simplicity, we will split the argument into
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two cases. In both cases we will repeatedly remove r − 2 disjoint copies of K−
r at a

time. We say that such a collection of r− 2 copies respects the proportions of the Ai

if altogether these copies meet each Ai with i ≤ q in exactly r − 1 vertices.

Case 1. q ≤ r − 3

In this case the minimum degree condition ensures that no vertex is (q + 1)-

exceptional. To deal with the j-exceptional vertices for j ≤ q we will need the

fact that we can find a reasonably large number of disjoint copies of Kr−1−q in

G[Aq+1]. To prove this fact, observe that

δ(G[Aq+1]) ≥ δ(G) −
q
∑

i=1

|Ai| ≥ |Aq+1| −
r − 1

r(r − 2)
n (2.2)

and

r − 1

r(r − 2)

n

|Aq+1|
(2.1)

≤ r − 1

r(r − 2)

1
1
r

+ (r − q − 2) r−1
r(r−2)

≤ 1

r − q − 2
− c(r) (2.3)

where c(r) > 0 is a constant depending only on r. Combining these results gives

δ(G[Aq+1]) ≥
(

1 − 1

r − q − 2
+ c(r)

)

|Aq+1|. (2.4)

Thus we can apply Turán’s theorem repeatedly to find at least c(r)
r−q−1

|Aq+1| disjoint

copies of Kr−q−1 in G[Aq+1].

Now for each i ≤ q+1 in turn, consider the exceptional vertices x ∈ Ai. Suppose

that x is j-exceptional. First move x into Aj . Note that the minimum degree

condition on G means that x is joined to almost all vertices in Aℓ for every ℓ 6= j.

We greedily choose a copy of K−
r covering x and one other vertex in Aj , r − q − 1

vertices in Aq+1 and one vertex in all other classes, where all vertices other than x

were chosen to be non-useless. (Indeed, to find such a copy of K−
r we first choose a
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copy of Kr−q−1 in Aq+1 which lies in the neighbourhood of x and which consists of

non-useless vertices. Then we choose all the remaining vertices.) Remove this copy

of K−
r . Also greedily remove r − 3 further disjoint copies of K−

r such that together

all these copies of K−
r respect the proportions of the Ai. Proceed similarly for all

the exceptional vertices. For each exceptional vertex we are removing r − 2 copies

of K−
r , so in total we are removing at most r(r − 2)τ 2/3n vertices.

Case 2. q = r − 2

In this case, the exceptional vertices in Ar−1 need special attention since we cannot

simply move them into another class without making Ar−1 too small. So we proceed

as follows. For each i ≤ r−2, let si be the number of i-exceptional vertices in Ar−1.

Whenever si > 0 we will find a matching of size si in G[Ai]. To see that such a

matching exists, consider a maximal matching in Ai and let m denote the size of

this matching. Note that

e(Ai) ≤ 2m∆(Ai) ≤ 2m2τ 1/3|Ai|

since the presence of i-exceptional vertices guarantees that no vertex in Ai is i-bad.

Also

e(Ai) ≥
1

2
{δ(G)|Ai| − (n − |Ai| − si)|Ai| − si2τ 1/3|Ai|}

≥ |Ai|
2

{|Ai| −
r − 1

r(r − 2)
n + si(1 − 2τ 1/3)}

(2.1)

≥ |Ai|
2

{si(1 − 2τ 1/3) − k

r − 2
}.

Since k ≤ r − 3 and τ ≪ 1/r, comparing these two bounds on e(Ai) gives m ≫ si

whenever si > 0. So we may pick a matching Mi with si edges in Ai, all of whose

vertices are non-useless (since no vertices in Ai are bad). Now for each i in turn, we
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will remove the i-exceptional vertices in Ar−1 using this matching. For each such

vertex x ∈ Ar−1, pick an edge yz ∈ Mi. Swap x with y; we now no longer consider

x to be exceptional. Then greedily find a copy of K−
r which meets Ar−1 precisely

in y, which meets Ai precisely in z and which contains two vertices in some Aj with

j 6= i, r − 1 (such a j exists since r ≥ 4), and one vertex in each other Aj. All these

vertices will be chosen to be non-useless, and all (except y and z) will avoid each

Mj . Remove this copy of K−
r . Then also greedily take out r − 3 further disjoint

copies of K−
r , avoiding the Mj and all useless vertices, in such a way that altogether

they respect the proportions of the Ai. Note that we can find these copies greedily

since the (q + 1)-partite graph induced by the Ai is almost complete. We continue

doing this until no exceptional vertices are left in Ar−1. The fact that Mi has si

edges ensures that we will always have an edge left in the appropriate matching for

each exceptional vertex in Ar−1.

Now for all other exceptional vertices, proceed using the argument for the case

when q ≤ r − 3. In this way we will remove all the exceptional vertices.

So in both cases we will obtain sets A′
1, . . . , A

′
q+1 not containing any exceptional

vertices. We now want to remove any remaining useless vertices. Before dealing

with the exceptional vertices, each useless but non-exceptional vertex in Ai had at

least τ 1/3|Aj |/2 neighbours in Aj for each j 6= i. Also, we had at most τ 2/3n useless

vertices, and therefore also at most this many exceptional vertices. So we have taken

out at most r(r − 2)τ 2/3n vertices. Thus each remaining vertex x ∈ A′
i still has at

least τ 1/3|A′
j|/3 neighbours in A′

j for each j 6= i, which is much larger than the

number of j-useless vertices.

Ideally, for a useless vertex x ∈ A′
i we would like to pick neighbours in each

other class greedily so that together these vertices form a copy of K−
r with, say,

two vertices in A′
1, r − q − 1 vertices in A′

q+1 and one vertex in each other A′
j . The
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problem is that the neighbours of x may avoid a substantial proportion of A′
q+1,

and so in particular may not include any of the copies of Kr−q−1 which we know are

contained in Aq+1 (and therefore in A′
q+1).

So instead, we proceed as follows. We first deal with all the vertices which have

too few neighbours in A′
q+1. Let U be the set of vertices in A′

1 ∪ . . . ∪ A′
q which

originally had at most (1 − τ 1/4)|Aq+1| neighbours in Aq+1. In particular, all these

vertices are useless. Note that a vertex x ∈ U ∩ A′
i (where i ≤ q) still has at least

τ 1/3|A′
i|/3 neighbours in A′

i. For each such vertex x in turn we proceed as follows.

We first move x into A′
q+1. Then we will greedily find a copy of K−

r which avoids x

and meets each A′
j with j ≤ q in precisely one vertex. Note that similarly as in (2.4)

one can show that

δ(G[A′
q+1]) ≥

(

1 − 1

r − q − 2
+

c(r)

2

)

|A′
q+1|. (2.5)

So we may apply the Erdős-Stone-Simonovits theorem to find the necessary copy of

K−
r−q in A′

q+1 avoiding x as well as all the (q + 1)-useless vertices. We can extend it

to the desired copy of K−
r , also avoiding all the useless vertices. Remove this copy

of K−
r . In effect, we have removed two vertices from A′

i (one vertex in the copy

of K−
r and x), r − q − 1 vertices from A′

q+1 and one vertex from each other A′
j . We

can also find r − 3 further disjoint copies of K−
r in such a way that altogether these

copies respect the proportions of the A′
i. Remove these copies. Repeating this for

each vertex x ∈ U , in total we move or remove at most τ 1/2n vertices. We denote by

A′′
i the sets thus obtained from the A′

i.

The effect of moving the vertices of U and taking out these copies of K−
r is that

all vertices (except those in A′′
q+1) are joined to almost all of A′′

q+1. The vertices in U

may now be (q + 1)-useless, but are certainly non-exceptional.

Now consider any useless vertex x ∈ A′′
i where i 6= q + 1. Let A′′

j be the vertex
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set in which x has the lowest number of neighbours, not including j = i, q+1. (Note

that such a j exists since if q = 1, a useless vertex x ∈ A1 would have been in U ,

so we would already have dealt with it.) Pick non-useless neighbours y and z of

x in A′′
j . (Such neighbours exist since x was not j-exceptional.) Recall that each

of x, y and z is joined to almost all of A′′
q+1. Since A′′

q+1 is almost as large as Aq+1

it follows that many of the copies of Kr−q−1 chosen after (2.4) lie in the common

neighbourhood of x, y and z, and so form a copy of K−
r−q+2 together with x, y and z.

Pick such a copy. Now note that the choice of j implies that x is joined to at least

|A′′
ℓ |/3 vertices in A′′

ℓ for each ℓ 6= i, j, q + 1. So we can greedily extend this copy of

K−
r−q+2 to a copy of K−

r in G by picking one non-useless vertex in every other A′′
ℓ .

We then greedily find r − 3 further disjoint copies of K−
r avoiding all the useless

vertices so that together with the copy just found, these copies of K−
r respect the

proportions of the A′′
i . Remove all these copies of K−

r .

For a (q + 1)-useless vertex x, we perform a similar process, except that x is

already in A′′
q+1, so we find non-useless neighbours y and z of x in A′′

j and find a

copy of Kr−q−1 in A′′
q+1 which contains x and lies in the common neighbourhood of

y and z. We can do this since (2.5) implies that

δ(G[A′′
q+1]) ≥

(

1 − 1

r − q − 2
+

c(r)

3

)

|A′′
q+1|.

(Note that in particular this bound applies to the degree of x in A′′
q+1.) So we can

successively pick common non-useless neighbours of x, y and z in A′′
q+1 to construct

the necessary Kr−q−1 containing x. Together with y and z this forms a copy of

K−
r−q+1 which we extend suitably to a copy of K−

r . As before we then find further

disjoint copies of K−
r such that together all these copies respect the proportions of

the A′′
i . We can repeat this process until no useless vertices are left. The fact that

there are not too many useless vertices will ensure that all our calculations remain
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valid.

Finally, if k > 0, we remove k further disjoint copies of K−
r to ensure that

the sets A∗
1, . . . , A

∗
q+1 thus obtained from the A′′

i are (q, n∗)-canonical where n∗ :=

|A∗
1 ∪ . . . ∪ A∗

q+1|. This can be done because of our modification of the Ai at the

beginning of the proof. Now the A∗
i contain neither exceptional nor useless vertices.

Furthermore, for each exceptional vertex we removed r(r − 2) vertices from G, in

dealing with U we moved or removed at most τ 1/2n vertices and then for each

remaining useless vertex we removed a further r(r− 2) vertices. Because there were

at most 2τ 1/3n exceptional and useless vertices originally, and because k ≤ r − 3,

after switching i-exceptional vertices with i-bad ones we have moved or removed at

most 2r(r− 2)τ 1/3n + τ 1/2n + r(r− 3) ≤ τ 1/4n vertices. Thus each remaining vertex

x ∈ A∗
i satisfies, for each j 6= i,

dA∗
j
(x) ≥ (1 − 2τ 1/4)|A∗

j | − τ 1/4n

≥ (1 − 2τ 1/4)|A∗
j | − rτ 1/4|A∗

j |

≥ (1 − τ 1/5)|A∗
j |.

Furthermore, the A∗
i are (q, n∗)-canonical, and G∗ = G[

⋃q+1
i=1 A∗

i ] was obtained from

G by removing vertex-disjoint copies of K−
r , and so G − G∗ contains a perfect K−

r -

packing. Thus the A∗
i satisfy all the conditions of the lemma. �

2.5 Proof of Theorem 2.1

Recall that B∗ = B∗(K−
r ) denotes the bottle graph of K−

r . Fix integers r ≥ 4 and

n divisible by r and constants τ1, . . . , τr−1 such that

0 < τ1 ≪ τ2 ≪ . . . ≪ τr−1 ≪ 1/r.
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Let G be the graph given in Theorem 2.1. Let q ≤ r − 2 be maximal such that

the conditions of Lemma 2.6 are satisfied with τ := τq. As already observed in

Section 2.3, by Theorem 2.5 we may assume that q ≥ 1. To prove Theorem 2.1,

we first apply Lemma 2.6 with this choice of q to obtain a subgraph G∗ of G and a

(q, |G∗|)-canonical partition A∗
1, . . . , A

∗
q+1 of V (G∗). Our definition of q will ensure

that if q 6= r − 3 then the graph induced by A∗
q+1 does not look like one of the

extremal graphs and so we can apply Theorem 2.5 to it in order to find a perfect

B1-packing, where B1 is the spanning subgraph of B∗
1 defined below. (Recall that

B∗
1 is the (r−q−1)-partite subgraph of B∗ obtained by deleting q of the large vertex

classes.) In the case when q = r − 3 the graph G∗[A∗
q+1] might violate condition (ii)

of Theorem 2.5, i.e. there may exist a set A ⊆ A∗
q+1 such that d(A, A∗

q+1\A) ≤ τ0.

If A is a minimal such set, we call it an almost-component of G∗[A∗
q+1] (it would be

a component if d(A, A∗
q+1\A) = 0). If G∗[A∗

q+1] does indeed violate condition (ii) of

Theorem 2.5 then we will apply Theorem 2.5 to the almost-components of G∗[A∗
q+1]

instead.

Recall that A∗
1, . . . , A

∗
q all have the same size, which is a multiple of r−1 (the size

of a large class of the bottle graph B∗). The size of A∗
q+1 is a multiple of |B∗

1 |. Our

aim is to find a perfect B1-packing in G∗[A∗
q+1], where B1 is the graph consisting of

q vertex disjoint copies of Kr−q−1 together with r − q − 2 vertex disjoint copies of

K−
r−q. We think of these copies as being arranged into an (r − q − 1)-partite graph

with one vertex set of size r−2 and r−q−2 vertex sets of size r−1. Thus B1 ⊆ B∗
1

and the vertex classes of B1 have the same sizes as those of B∗
1 . This B1-packing in

G∗[A∗
q+1] will then be extended to a perfect K−

r -packing in G∗.

Lemma 2.7 We can take out from G∗ at most τ 1/3n∗ vertex-disjoint copies of K−
r

to obtain subsets A⋄
1, . . . , A

⋄
q+1 of A∗

1, . . . , A
∗
q+1 and a subgraph G⋄ of G∗ such that the

sets A⋄
1, . . . , A

⋄
q+1 are (q, |G⋄|)-canonical and such that G⋄[A⋄

q+1] contains a perfect
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B1-packing.

Proof. Note that in the case when q = r − 2 the graph B1 just consists of r − 2

isolated vertices, and the existence of a perfect B1-packing is trivial since r − 2

divides |A∗
r−1|. In the case when q ≤ r − 3 the proof of Lemma 2.7 will invoke the

non-extremal result, Theorem 2.5, with τq+1 playing the role of τ0 there. It is for

this reason that we will need the term −θn in the minimum degree condition in

Theorem 2.5. Finally, note that hcf(B1) = 1 (even in the case when B1 is bipartite,

i.e. when q = r−3). Let s := r− q−1 ≥ 2. Thus B1 is an s-partite graph. Observe

that χcr(B1) = χcr(B
∗
1) = s(r−1)−1

r−1
. Using (i) and (ii) of Lemma 2.6, similarly as

in (2.2) and the first inequality in (2.3) one can show that

δ(G[A∗
q+1]) ≥

(

1 − 1

χcr(B1)
− τ 1/4

q

)

|A∗
q+1|

=

(

(s − 1)(r − 1) − 1

s(r − 1) − 1
− τ 1/4

q

)

|A∗
q+1|. (2.6)

So the minimum degree condition of Theorem 2.5 is satisfied with θ := τ
1/4
q ≪ τq+1.

Our choice of q implies that G∗[A∗
q+1] satisfies condition (i) of Theorem 2.5 (with

τ0 := τq+1). Thus in the case when s > 2 we can apply Theorem 2.5 to find a perfect

B1-packing in G∗[A∗
q+1].

So we only need to consider the case when s = 2. In this case B1 is the bipartite

graph consisting of r − 3 disjoint edges and one path of length 2, and we are done

if condition (ii) of Theorem 2.5 holds. So suppose not and we do have some set

C1 ⊆ A∗
q+1 with d(C1, A

∗
q+1 \ C1) ≤ τq+1. Define C2 := A∗

q+1 \ C1. Then there is a

vertex x ∈ C1 which has at most τq+1|C2| ≤ τq+1|A∗
q+1| neighbours in C2. Together

with (2.6) this shows that |C1| > δ(G∗[A∗
q+1]) − τq+1|A∗

q+1| ≥ |A∗
q+1|/3. Similarly,

|C2| > |A∗
q+1|/3. (This property shows that there cannot be more than two of these

almost-components, i.e. we could not split either of these two sets into further
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subsets satisfying the same properties.)

We now aim to show that by moving a few vertices, we can achieve that each

vertex in C1 has few neighbours in C2 and vice versa. (This in turn will imply that

the graphs induced by both C1 and C2 have large minimum degree.) Call a vertex

x ∈ Ci useless if it has at most |Ci|/3 neighbours in Ci. By (2.6) every such x has

at least |Cj|/3 neighbours in the other class Cj . This is because s = 2 and so (2.6)

gives

δ(G[A∗
q+1]) ≥=

(

(r − 1) − 1

2(r − 1) − 1
− τ 1/4

q

)

|A∗
q+1| ≥ |A∗

q+1|/3.

Furthermore, the low density between C1 and C2 shows that there are at most

τ
3/4
q+1|A∗

q+1| useless vertices. We move each useless vertex into the other class and

still denote the classes thus obtained by C1 and C2. Then d(C1, C2) ≤ τ
2/3
q+1. Now

call a vertex x in either class bad if it has at least a τ
1/6
q+1-fraction of the vertices in the

other class as neighbours. Clearly there are at most τ
1/2
q+1|A∗

q+1| bad vertices. For each

bad vertex x ∈ Ci in turn we greedily choose a copy of B1 in Ci containing x such

that these copies are disjoint for distinct bad vertices. (Use that δ(G∗[Ci]) ≥ |Ci|/4

for i = 1, 2 and the fact that B1 consists only of edges and a path of length 2 to see

that such copies can be found.) By removing these copies of B1, we end up with

two sets C ′
1 and C ′

2 which do not contain bad vertices. So each vertex in C ′
1 has at

most 2τ
1/6
q+1|C ′

2| neighbours in C ′
2 and vice versa. Since |C ′

i| ≥ |A∗
q+1|/4 for i = 1, 2

(and thus also |C ′
i| ≤ 3|A∗

q+1|/4 for i = 1, 2) this in turn implies that

δ(G∗[C ′
i])

(2.6)

≥
(

1 − 1

χcr(B1)
− τ

1/7
q+1

)

4|C ′
i|

3
>

(

1 − 1

χcr(B1)

)

|C ′
i|. (2.7)

We now aim to take out a few further copies of K−
r from G∗ to ensure that

both |C ′
1| and |C ′

2| are divisible by |B1|. As observed at the beginning of this section,

|A∗
q+1| is divisible by |B1|. Thus |C ′

1| + |C ′
2| is also divisible by |B1|. Assume first
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that |C ′
1| = m|B1| − 1 for some m ∈ N. We aim to remove 2(r − 2) disjoint copies

of K−
r from G∗ in such a way that we remove 2(r − 1) vertices from every A∗

i with

i ≤ r − 3, (r − 1) + (r − 2) − 1 vertices from C ′
1 and (r − 1) + (r − 2) + 1 vertices

from C ′
2. Then the sizes of the remaining subsets of C ′

1 and C ′
2 will be divisible

by |B1|. Moreover, since the A∗
i were (q, |G∗|)-canonical, and since altogether we

remove 2((r−1)+(r−2)) vertices from A∗
q+1, the remaining subsets will still induce

a canonical partition of the remaining subgraph of G∗.

The way we remove the above copies of K−
r is as follows: Greedily find r − 2

disjoint copies of K−
r with two vertices in C ′

1, two vertices in A∗
i and one vertex in

each A∗
j with 1 ≤ j ≤ r−3 and j 6= i. For each of these copies of K−

r the index i will

be different except that i = 1 will be chosen twice. Also find r − 4 disjoint copies

of K−
r with two vertices in C ′

2, two vertices in A∗
i and one vertex in each A∗

j with

1 ≤ j ≤ r − 3 and j 6= i. The choices of i will be between 2 and r − 3, and no i will

be chosen twice. Finally, find two copies of K−
r with three vertices in C ′

2 and one in

each A∗
i for 1 ≤ i ≤ r − 3.

In the general case (i.e. when |C ′
i| ≡ t mod |B1|), we simply repeat this proce-

dure t times to even out the residues modulo |B1| between |C ′
1| and |C ′

2|. We denote

the remaining subsets by A⋄
i and C⋄

i and the remaining subgraph by G⋄. We only

need to perform the above procedure at most |B1| − 1 times, so we are taking out a

bounded number of copies of K−
r , which will not affect any of the vertex degrees sig-

nificantly. Thus each G⋄[C⋄
i ] satisfies the minimum degree condition in Theorem 2.5.

Indeed, the first inequality in (2.7) shows that

δ(G⋄[C⋄
i ]) ≥

(

1 − 1

χcr(B1)
− τ

1/8
q+1

)

4|C⋄
i |

3
≥
(

2

5
− τ

1/8
q+1

)

4|C⋄
i |

3
≥ 51

100
|C⋄

i |. (2.8)

This bound on the minimum degree also shows that each C⋄
i cannot contain an

almost independent set of size |C⋄
i |/2, so condition (i) of Theorem 2.5 is satisfied
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with room to spare. To see that condition (ii) also holds, observe that if C⋄
i is

partitioned into S1 and S2, where 0 < |S1| ≤ |C⋄
i |/2 ≤ |S2|, then the neighbours

of any vertex in S1 cover a significant proportion (at least 1/50) of S2, and so

d(S1, S2) ≥ 1/50. So condition (ii) is satisfied too. Thus we can apply Theorem 2.5

to each of the subgraphs of G⋄ induced by C⋄
1 and C⋄

2 to find perfect B1-packings in

G⋄[C⋄
1 ] and G⋄[C⋄

2 ]. Adding back into A⋄
q+1 the vertices in the copies of B1 which were

removed when dealing with the bad vertices (and letting G⋄ denote the subgraph of

G induced by the modified A⋄
i ), we still have a perfect B1-packing in G⋄[A⋄

q+1], and

G − G⋄ consists of those copies of K−
r which we removed. Thus G⋄ and the A⋄

i are

as required in the lemma. �

Our aim now is to extend the perfect B1-packing in G⋄[A⋄
q+1] to a perfect K−

r -

packing in G⋄. To do this, we define a (q + 1)-partite auxiliary graph J , whose

vertices are the vertices in A⋄
i for all 1 ≤ i ≤ q together with all the copies of B1

in the perfect B1-packing of G⋄[A⋄
q+1]. There will be an edge between vertices from

the A⋄
i ’s whenever there was one in G, and a vertex x ∈ A⋄

i for 1 ≤ i ≤ q will be

joined to a copy of B1 whenever x was joined to all the vertices of this copy in G.

Let Hq,r−1 denote the complete (q + 1)-partite graph with q classes of size r − 1

and one class of size 1. We wish to find a perfect Hq,r−1-packing in J . It is easy to

see that this then yields a perfect K−
r -packing in G⋄ and thus, together with all the

copies of K−
r chosen earlier, a perfect K−

r -packing in G.

The existence of such a perfect Hq,r−1-packing follows immediately from Proposi-

tion 2.4. To see that we can apply this proposition, note that Lemma 2.6(iii) implies

that in G∗ each vertex is adjacent to almost all vertices in the other vertex classes

and this remains true in G⋄ since we only deleted a small proportion of the vertices

after applying Lemma 2.6. It follows immediately that every vertex in J is adjacent

to almost all vertices in the other vertex classes of J . Note also that the vertex
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classes of J have the correct sizes since the sets A⋄
1, . . . , A

⋄
q+1 are (q, |G⋄|)-canonical.

This completes the proof of Theorem 2.1.

2.6 Generalisation of Theorem 2.1

2.6.1 Definitions and Conditions

The aim of this section is to sketch how the proof of Theorem 2.1 can be extended

to a larger class of graphs H , and so to a proof that for this class, the error term in

Theorem 1.21 can be removed entirely.

Recall that for a graph H we defined σ(H) to be the smallest possible size of

a colour class in a χ(H)-colouring of H , and the critical chromatic number to be

χcr(H) := χ(H)−1
|H|−σ(H)

|H|.

We now define constants z = z(H) := |H| − σ(H) and z1 = z1(H) := (χ(H) −

1)σ(H). Thus z1 and z are the sizes of the small and large classes of B∗(H) respec-

tively, and χcr(H) = z1|H|/zσ(H).

We call a colouring of H optimal if it uses exactly χ(H) colours. In any opti-

mal colouring, we always label the colours with numbers 1, 2, . . . , χ(H). We call

a colouring of H appropriate if it is optimal and the class of colour χ(H) has

size σ(H). Given an appropriate colouring c of a graph H of chromatic num-

ber ℓ ≥ 3, let x1 ≥ x2 ≥ . . . ≥ xℓ be the sizes of the colour classes. Define

Ddeg(c) = {xi−xi+1 | i = 1, . . . , ℓ−2}. Let Ddeg(H) be the union of the sets Ddeg(c)

over all appropriate colourings c of H . We define hcf deg
χ (H) to be the highest com-

mon factor of the elements of Ddeg(H) (or hcf deg
χ (H) := ∞ if Ddeg(H) = {0}). Note

that if hcf deg
χ (H) = 1 then hcfχ(H) = 1.

In Section 2.5, we used the fact that hcf(B1(K−
r )) = 1. This may not be the

case for more general H . To make a similar condition slightly easier to satisfy, we
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define, instead of B∗(H), a larger graph D∗(H). Where the vertex classes of B∗(H)

were formed by taking the union over cyclic permutations of the large classes of H ,

the vertex classes of D∗(H) will be formed by taking the union over all appropriate

colourings, where we distinguish colourings which differ only in the ordering of the

large vertex classes.

More precisely, label all the vertices of H , and consider all appropriate colourings

of H . (We also distinguish two such colourings even if their only difference is a

switch between colours i and j.) Suppose there are k such colourings. Then it is

clear that (ℓ − 1)! divides k, since by permuting the first ℓ − 1 colour classes we

obtain another appropriate colouring. We form D∗(H) by adding up the sizes of

the colour classes in each of the k colourings to form ℓ classes, and adding in all

edges between classes. Thus D∗(H) will be the complete ℓ-partite graph with ℓ − 1

classes of size k(|H| − σ)/(ℓ − 1) and one class of size kσ. Note that this is simply

a blow-up of B∗(H) by a factor of k/(ℓ − 1).

On the other hand, we form D(H) by taking the disjoint union of these k copies

of H . We view this graph as being arranged into ℓ classes in such a way that each

one of the k appropriate colourings is induced. Thus D(H) is ‘built up’ from these

k colourings by stacking them together.

For q < ℓ − 1, define D∗
q(H) to be the (ℓ − q)-partite graph induced by the last

ℓ − q classes of D∗(H), and Dq(H) is the analogous non-complete graph formed by

taking the union over all k appropriate colourings of the last ℓ − q classes of H .

Dq(H) will play the role that B1(K
−
r ) played in the proof of Theorem 2.1

We now introduce some conditions which will generalise the properties of K−
r

which we needed in the proof of Theorem 2.1.

Conditions:

(i) H has hcf deg
χ (H) = 1.
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(ii) H has a vertex partition into χ(H) sets B1, . . . , Bℓ, where ℓ = χ(H), such

that Bℓ has size at most σ − 1, and each Bi is an independent set except for Bℓ−1.

Furthermore H [Bℓ−1] contains only vertex disjoint edges.

(iii) H has an optimal colouring c1 with a class of size σ + 1.

(iv) hcf(Dℓ−3(H)) = hcf(Dℓ−2(H)) = 1

Note that condition (iv) implies hcf(Dq(H)) = 1 for 1 ≤ q ≤ ℓ − 2, since Di(H) ⊂

Dj(H) for i > j. The generalisation of Theorem 2.1 is now:

Theorem 2.8 Let H be an ℓ-partite graph, where ℓ ≥ 3, satisfying conditions (i) to

(iv). Then there exists an integer n0 = n0(H) such that every graph G whose order

n ≥ n0 is divisible by |H| and whose minimum degree is at least

(

1 − 1

χcr(H)

)

n

contains a perfect H-packing.

Note that K−
r itself does indeed satisfy all of the above conditions (for r ≥ 4). To

see that there are other graphs satisfying the conditions, pick any integer σ ≥ 2, and

any ℓ ≥ 3. (Note that our construction will demand that σ(H) ≥ 2, but alternative

constructions would allow σ(H) = 1, as in the case of K−
r .) We construct an ℓ-

partite graph H as follows: One class will have size σ, one class will have size σ + 1,

one will have size σ+2 and the remaining ℓ−3 classes will have whatever size we like

(but always at least σ). The classes of size σ+2, σ+1 and σ will be called X, Y and Z

respectively. Note that although we haven’t yet added in any edges, these sizes will

ensure that conditions (i) and (iii) are satisfied. Now to ensure that (ii) is satisfied,

pick a vertex z ∈ Z and give it exactly one neighbour y ∈ Y . (z will have neighbours

in the other classes of H .) Then the vertex partition required by (ii) is obtained
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from the present colouring by moving z into Y . To ensure that condition (iv) is

satisfied, we also demand that y has no other neighbours in Z, and that we have

further distinct vertices, y′, y′′ ∈ Y and z′ ∈ Z such that NZ(y′) = NZ(y′′) = {z′}

and NY (z′) = {y′, y′′}. In other words, these 5 vertices induce an edge and a path of

length 2 and are connected to no other vertices within Y and Z. It is fairly simple

to check that these restrictions guarantee that condition (iv) is satisfied. Finally,

apart from all of these restrictions, we make H a complete ℓ-partite graph with the

vertex classes already given. Figure 2.1 gives a picture of such graphs in the case

when χ(H) = 3. It is easy to check that as well as conditions (i) to (iv), H also

Y Z
y

y′

y′′

z

z′

X |X| = σ + 2

|Y | = σ + 1 |Z| = σ

Figure 2.1: The graphs H for χ(H) = 3.

satisfies hcf(H) = 1 and σ(H) = σ.

Thus there are clearly many graphs which satisfy all the necessary conditions,

including K−
r , and so Theorem 2.8 is genuinely an extension of Theorem 2.1.
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2.6.2 Procedural Lemmas

Recall that by applying Theorem 2.5 we were able to assume that G had large almost

independent sets, A1, . . . , Aq, and one remaining set Aq+1. We view G as an almost

complete (q + 1)-partite graph (with some extra edges in Aq+1).

In the proof of Theorem 2.1 for the graph K−
r we repeatedly took out some

copies of K−
r in order to make these sets as nice as we would like them to be. In

this subsection I aim to indicate how we can use the conditions on H required in

Theorem 2.8 to do something similar in the more general case.

In particular, we will often want to ‘fine-tune’ the sizes of the vertex sets Ai.

The following preliminary lemmas will give us the tools we need to do this. Since

we are concerned only with the possible ways in which we can arrange copies of H

to adjust the sizes of the Ai, I will assume for simplicity that q = ℓ − 1, and that

G is a complete ℓ-partite graph whose vertex classes are sufficiently large. (In the

more general case, Aq+1 will not be empty and will play the role of the last ℓ − q

vertex classes, while the copies of H in G would be chosen greedily avoiding any

bad vertices as in Section 2.4.)

Since the arguments for general H are rather abstract, I will also show how these

lemmas correspond to the case when H = K−
r , when it will be possible to give an

explicit construction of the particular arrangement of copies of K−
r which we need.

In the main part of the proof of Theorem 2.1 this construction would have been

stated just for the special case, without reference to the more general lemma.

In the following lemmas I will often refer to a bounded number of copies of H .

This means that there is some constant C = C(H), dependent only on H , which we

regard as being fixed at the very beginning of the argument and a bounded number

of copies of H will mean at most C copies.

Lemma 2.9 For any distinct 1 ≤ i, j ≤ ℓ − 1 we can find a bounded number of

56



copies of H which meet Aℓ in cz1 vertices, meet Ai in cz + 1 vertices, meet Aj in

cz − 1 vertices and meet each other Ak in cz vertices. Here c ≤ C/(ℓ − 1) is some

integer dependent on H. In this case we say that we move a residue from Ai to Aj.

The idea is that by removing these copies of H we effectively shift a vertex from

Ai into Aj. In the case H = K−
r we would find two copies of K−

r which meet Ai in

exactly two vertices and each other Ak in one vertex, and then for each 1 ≤ s ≤ ℓ−1,

s 6= i, j, a copy of K−
r which meets As in two vertices and every other Ak in one

vertex.

Note that we will be removing c(ℓ − 1) copies of H meeting Aℓ in a total of

cz1 = c(ℓ − 1)σ vertices. Since G is complete ℓ-partite, it follows that each of these

copies of H must meet Aℓ in exactly σ vertices. This observation will be used in

Lemma 2.10 below.

Proof. Let d ∈ Ddeg(H). Then there is a colouring of H with colour class sizes

x1, x2, . . . , xℓ = σ such that for some s, t ≤ ℓ − 1 we have xt = xs + d. Without loss

of generality we may assume that s = i, t = j.

We consider all non-trivial rotations of the ℓ − 1 large colour classes, forming

copies of H with colour class sizes

x2, x3, . . . , xℓ−1, x1, xℓ

x3, x4, . . . , xℓ−1, x1, x2, xℓ

...

xℓ−1, x1, x2, . . . , xℓ−2, xℓ.
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We also consider the colouring obtained by switching colours i and j.

x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xℓ

(Note that in this last line we have implicitly assumed i < j, which may not be

the case. The proof in the case i > j is identical.) By taking all these colouring

arrangements (not including the initial one) together we will obtain ℓ − 1 copies of

H which meet Aℓ in z1 vertices, Ai in z + d vertices, Aj in z − d vertices and each

other Ak in z vertices.

Now using the fact that hcf(Ddeg(H)) = 1, we can repeat this process with

appropriate choices of d (note that we could have d being negative) to achieve the

desired copies of H . �

In the proof of Theorem 2.1 we had to deal with i-exceptional vertices in Aj . We

did this by moving such a vertex into Ai. However, we then have too many vertices

in Ai and too few in Aj. It is Lemma 2.9 which enables us to balance out the sizes

even for the more general H in Theorem 2.8.

We also have to deal with ℓ-exceptional vertices, or vertices which are useless

because they have too few neighbours in Aℓ. Once again, in the proof of Theorem 2.8

we move such a vertex from its own class, Aj , into Aℓ. However, we then have too

many vertices in Aℓ and not enough in Aj . The following lemma allows us to transfer

the excess back, and ensure that we have the correct class sizes again.

Lemma 2.10 For any 1 ≤ j ≤ ℓ− 1, we can find a bounded number of copies of H

which meet Aℓ in cz1 + 1 vertices, meet Aj in cz − 1 vertices and meet each other

Ai in cz vertices. Here c ≤ C/(ℓ − 1) is some integer dependent on H. In this case

we say that we move a residue from Aℓ to Aj.

Once again, the idea is to effectively move a vertex from Aℓ into Aj . In the case
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H = K−
r we would find one copy of K−

r which has two vertices in Aℓ and one vertex

in all other classes, and for each 1 ≤ s ≤ ℓ − 1 where s 6= j a copy of K−
r with two

vertices in As and one in every other class.

Proof. By condition (iii) we can find a copy of H which meets Aℓ in σ +1 vertices,

and so meets all the other classes in a total of |H| − σ − 1 vertices. Finding ℓ − 2

further copies of H which intersect the vertex classes in any arbitrary way, except

that they all have σ vertices in Aℓ, we obtain ℓ − 1 copies of H which meet Aℓ in

z1 + 1 vertices, and so meet all the other vertex classes in a total of (ℓ − 1)z − 1

vertices. By Lemma 2.9 we can then find further copies of H such that each meets

Aℓ in σ vertices, and we move residues between the other classes until the sizes are

as equal as possible. In particular, these copies of H will meet ℓ − 2 classes in c′z

vertices and one, Ai say, in c′z − 1 vertices. If i 6= j, apply Lemma 2.9 once more to

move a residue from Ai to Aj, and we have the desired copies of H . �

Lemma 2.11 Let h := hcf(|H| − σ, ℓ− 1). We can find c of copies of H, for some

integer c which depends only on H and which satisfies cz ≡ h mod ℓ − 1, such

that these copies of H meet Aℓ in cσ vertices, Ai in ⌈cz/(ℓ − 1)⌉ vertices for each

1 ≤ i ≤ h and each other Aj in ⌊cz/(ℓ − 1)⌋ vertices. In this case we say that we

remove a residue from the first h classes.

This lemma will be used to overcome the problem that although the order of G

will always be divisible by |H|, it may not be divisible by |B∗(H)|, and so we may

not be able to arrange the vertices of G neatly into a bottle shape.

In the case H = K−
r , we have h = 1, and the arrangement we are looking for

consists of a single copy of K−
r with two vertices in A1 and one vertex in every other

Ai.

Proof. There is some positive integer c′ ≤ ℓ − 2 such that c′(|H| − σ) ≡ h
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mod ℓ − 1. Pick c′ copies of H which meet the Ai in any way we like (except that

they must all meet Aℓ in σ vertices). Then choose further copies of H to move

residues between classes until the classes are as even as possible. Note that when

applying Lemma 2.9, the number c′′ of additional copies of H that we take out is

automatically divisible by ℓ − 1, and so the total number we have taken out is still

congruent to h mod ℓ − 1. Let k := (c′′ + c′)(|H| − σ)/(ℓ − 1). Then we will be

removing ⌈k⌉ vertices from h of the large classes, ⌊k⌋ vertices from the remaining

ℓ − 1 − h large classes and kz1/z = (c′′ + c)σ vertices from Aℓ.

Now by applying Lemma 2.9 at most h times more, we can ensure that we remove

the extra vertices from the Ai for 1 ≤ i ≤ h. These copies of H are then as desired.

�

Note that in the same way we can remove extra vertices from any h of the ℓ− 1

large classes. In the proof of Theorem 2.8 we apply this lemma repeatedly until

the size of the remaining subgraph of G is divisible by |B∗(H)|. The fact that the

copies of H guaranteed by the lemma meet each Ai in about the correct number of

vertices means that once we have a graph divisible by |B∗| the vertex classes will

form a canonical partition - i.e. they have the correct sizes as a proportion of the

whole graph.

2.6.3 Sketch of the Proof of Theorem 2.8

With the help of the three procedural lemmas, we can now sketch the proof of

Theorem 2.8. In essence it is exactly the same as the proof in the case H = K−
r .

At various points in that argument we used the specific structure of K−
r . At these

points, the lemmas above will allow us to do something similar for more general H .

So as before, in the nonextremal case, when there are no large almost independent

sets, we simply invoke Theorem 2.5 to guarantee a perfect H-packing. Therefore
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we may assume that G does have large almost independent sets, A1, . . . , Aq, along

with the remaining set Aq+1. As before we tidy up the classes by moving/removing

exceptional and useless vertices. It is here that the procedural lemmas will be

needed.

For an i-exceptional vertex x ∈ Aj we move x into Ai and use Lemma 2.9 to

remove some copies of H and in so doing effectively transfer the extra vertex back

from Ai to Aj .

Condition (ii) will be used when q = ℓ and we have i-exceptional vertices in

Aℓ. Recall that we were able to find a large matching in Ai whenever i-exceptional

vertices exist. So we aim to move the exceptional vertex from Aℓ to Ai, and then

use condition (ii) to remove a copy of H with only σ−1 vertices in Aℓ, thus making

sure Aℓ is not too small.

To deal with the useless vertices we again use a procedure similar to the case H =

K−
r . This time we apply the Erdős-Stone-Simonovits theorem to find a large number

of copies of Kℓ−q(s) in Aq+1, where s ≫ |H|. For a useless but non-exceptional

vertex, we pick the correct number of neighbours in the class in which it has the

fewest neighbours and extend this to a copy of H . Once again we may need to deal

separately with those vertices which have few neighbours in Aq+1, but just as in the

case when H = K−
r we move these into Aq+1 before using Lemma 2.10 to even out

the class sizes again. Then we proceed as before.

Once the classes have been tidied up, we aim to find a perfect Dq-packing in

Aq+1. Once again the argument is essentially the same as the case when H = K−
r .

It is for this section of the argument that we require condition (iv), since we will

want to apply Theorem 2.5 for Dq to the ‘almost-components’ within A∗
q+1. In the

more general case there may be more than 2 of these ‘almost-components’, but the

same arguments as before generalise fairly naturally.
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Having found a perfect Dq-packing in A∗
q+1, we extend it to a perfect D-packing

(and therefore also a perfect H-packing) in G∗ by applying Lemma 2.4. Together

with the copies of H which have already been removed, this forms a perfect H-

packing in G, as required.

2.6.4 Extremal Examples

In this section, I will discuss the importance of the conditions imposed on H , in-

cluding which are necessary, and which could possibly be weakened without making

Theorem 2.8 false.

The following proposition shows that condition (iii) is necessary in Theorem 2.8.

Proposition 2.12 Suppose H is an ℓ-partite graph which does not satisfy condition

(iii). Then for each n divisible by |B∗(H)| there is a graph G on n vertices, with

minimum degree (1 − 1
χcr(H)

)n, which does not contain a perfect H-packing.

Proof. Let n = k|B∗(H)| = k(ℓ − 1)|H| for some integer k. Construct a graph G

on n vertices as follows. G will be a complete ℓ-partite graph with one class, Aℓ, of

size kz1 + 1, one of size kz − 1, and ℓ − 2 of size kz. Then G has minimum degree

δ(G) = n − kz =

(

1 − |H| − σ(H)

(ℓ − 1)|H|

)

n = (1 − 1

χcr(H)
)n

as required.

Suppose there is a perfect H-packing in G. Then this packing must contain

k(ℓ − 1) copies of H , and so there must be at least one copy with more than σ

vertices in Aℓ. Since there is no colouring of H with a class of size σ + 1, this copy

must contain at least σ + 2 vertices in Aℓ. But then, removing this copy, we are left

with at most (k(ℓ − 1) − 1)σ − 1 vertices in Aℓ, and since each of the other copies

of H meets Aℓ in at least σ vertices, there are at most k(ℓ− 1)− 2 further copies of
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H , and so in total there were fewer than k(ℓ − 1) copies of H , and the packing was

not perfect, a contradiction. Thus no perfect H-packing exists in G. �

Condition (ii) is almost necessary. The following slightly weaker condition is

certainly necessary, as the proposition below shows.

(ii′) H has a vertex partition into χ(H) sets B1, . . . , Bℓ such that Bℓ has size

at most σ − 1, and each Bi is an independent set except for Bℓ−1. Furthermore

H [Bℓ−1] contains only vertex disjoint edges if |H|−σ is odd, and at most one vertex

of degree 2 and no vertices of degree greater than 2 if |H| − σ is even.

Proposition 2.13 Suppose H is an ℓ-partite graph which does not satisfy condition

(ii′). Then for each n = k|B∗(H)|, where k is an odd integer, there is a graph G

on n vertices, with minimum degree (1 − 1
χcr(H)

)n, which does not contain a perfect

H-packing.

Proof.

Case 1: z = |H| − σ is odd.

We construct G as follows: Let G have ℓ − 2 classes of size kz, one class, Aℓ−1, of

size kz + 1 and one class, Aℓ, of size kz1 −1. In order to satisfy the minimum degree

condition, we add a perfect matching into Aℓ−1. (This is possible since k and z are

odd, and so kz +1 is even.) Apart from this matching, let G be a complete ℓ-partite

graph with these vertex classes. Once again, G has minimum degree

δ(G) = n − kz =

(

1 − |H| − σ(H)

(ℓ − 1)|H|

)

n = (1 − 1

χcr(H)
)n

as required.

Now suppose that G contains a perfect H-packing. Then this packing would

contain k(ℓ− 1) copies of H . Since Aℓ has size kz1 − 1 = k(ℓ− 1)σ− 1, one of these

copies of H must meet Aℓ in at most σ − 1 vertices. Let B1, . . . , Bℓ be the vertex
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classes of H induced by this copy in G. Since A1, . . . , Aℓ−2 and Aℓ are independent,

so are B1, . . . , Bℓ−2 and Bℓ. But then, since condition (ii′) does not hold, H [Bℓ−1]

must contain a vertex of degree at least 2. But G[Aℓ−1] does not contain such a

vertex – a contradiction. So G does not contain a perfect H-packing.

Case 2: z = |H| − σ is even.

Once again, let G have ℓ − 2 classes of size kz, one class, Aℓ−1, of size kz + 1

and one class, Aℓ, of size kz1 − 1. Now Aℓ−1 has odd size, and in order to satisfy

the minimum degree condition we add into Aℓ−1 a path covering 3 vertices, and a

matching covering all the remaining vertices. By the same calculation as in Case 1,

G does satisfy the minimum degree condition.

Now just as in the case when z was odd, we assume that a perfect H-packing

exists, and we obtain B1, . . . , Bℓ where once again Bℓ has size at most σ − 1, and

all apart from Bℓ−1 are independent. But now the fact that condition (ii′) is not

satisfied guarantees either two vertices of degree 2 or a vertex of degree at least 3 in

H [Bℓ−1]. This is a contradiction since G[Aℓ−1] only contains one vertex of degree 2

and none of degree greater than 2, and so no perfect matching exists. �

Unfortunately, condition (ii′) is not quite enough to make the proof work. The

problem is that we might be able to adapt the extremal example above in Case 2,

when |H|−σ is even. If we no longer demand that n = |G| is divisible by |B∗(H)| but

only by |H|, then we start with a graph with one class of size σn/|H|, and all other

classes as equal as possible. Now some of the large classes have size ⌊n/χcr(H)⌋,

and some have size ⌊n/χcr(H)⌋+ 1. We move one vertex from the small class into a

class of size ⌊n/χcr(H)⌋. We make this graph complete ℓ-partite, and if ⌊n/χcr(H)⌋

is odd, then we can add a matching into the sets of size ⌊n/χcr(H)⌋ + 1 to ensure

that the minimum degree condition is satisfied. Now similarly to case 2, we cannot

guarantee a perfect H-packing unless we have some modification of condition (ii′)
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which allows for a vertex partition with several sets with only disjoint edges in them.

However, this problem only arises if there is such an n with ⌊n/χcr(H)⌋ odd,

which is not always the case. Therefore a condition which is both necessary and

sufficient for the proof to work would have to consider several different possible

cases. Such conditions turn out to be very complicated, and so I will not consider

them here.

We have seen that condition (iii) is certainly necessary, and condition (ii) is

almost necessary, so let us consider conditions (i) and (iv).

The importance of condition (i) is that it allows us to prove the three procedu-

ral lemmas, each of which is vital to the argument. However, consideration of an

extremal example indicates how (i) might be weakened slightly.

We would like to consider a complete χ(H)-partite graph G on n = k|B∗(H)|

vertices, with one class of size σn/|H|, one class of size k(|H| − σ) + 1, one class of

size k(|H| − σ) − 1 and all other classes of size k(|H| − σ). By arguments similar

to those used in Section 1.1.3, it is impossible to even out classes of size k(|H| − σ)

and k(|H| − σ) + 1 by removing copies of H unless hcf deg
χ (H) = 1.

The problem is that a vertex in the class of size k(|H|−σ)+1 does not meet the

required degree condition; we would have to add some edges into this class to ensure

that all of its vertices have the correct degree. So we might look for a condition

similar to condition (ii), guaranteeing a partition in which only one class has any

edges, and at most one vertex in this class has degree 2. If the sizes of classes of

this partition worked together nicely with the colour class sizes of the appropriate

colourings, then we might be able to use this property to take out one copy of H

before evening out the class sizes of G.

However such a condition would already be quite complicated to state, and the

situation is complicated still further by the case χ(H) = 3. Informally we ignore the
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small classes of H and G and look for a perfect packing of a bipartite graph H ′ in G′.

So we might look for a condition guaranteeing hcf(H ′) = 1. Since H ′ is bipartite,

we might guess that this condition should be something like: hcf deg
c (H) = 1 and

hcf deg
χ (H) ≤ 2. (Note that hcf deg

c (H) has not been defined, but it is the extension

of hcfc(H) in the same way that hcf deg
χ (H) is the extension of hcfχ(H).) However,

to make the condition best possible, we would once again have to consider the

possibility of having vertex partitions with just one non-independent class, which

itself has few edges. I believe that by the time all of this has been taken into account,

any such conditions would be too complicated to be useful.

In summary, condition (i) could indeed be weakened, and Theorem 2.8 therefore

strengthened, but not without sacrificing simplicity. Let us now consider condition

(iv).

Condition (iv) automatically implies that hcfc(Dℓ−2(H)) = 1, and that hcf(Dq)

= 1 if q = 1, 2, . . . , ℓ − 3.

This condition could also be weakened slightly, but again this would make it

much more complicated. The problem is that the last ℓ−q classes of an appropriate

colouring do not always induce the same subgraph of H . Dq itself is the union of

all the possible such subgraphs (with multiplicity). Our aim is to find a perfect Dq-

packing in Aq+1, but it might be possible to find a perfect H-packing in G which does

not induce a perfect Dq packing in Aq+1, if we do not demand that each colouring

of H must be used an equal number of times. However, this complicates the issue

considerably, and I believe any condition designed to take this into account would

again be too complicated to be useful.

In short, while Theorem 2.8 is not as strong as it could be, any substantial

strengthening seems to involve very technical conditions on H , so I have not studied

this problem further.
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CHAPTER 3

EMBEDDINGS OF TREES

The main objective in this chapter is to prove Theorem 3.1.

Theorem 3.1 Given a positive C ′ ∈ R there exists k0 ∈ N such that for any integers

k, n ∈ N satisfying k0 ≤ k ≤ n ≤ C ′k the following holds: Suppose G is a graph on

n vertices in which at least n/2 vertices have degree at least k. Then G contains as

a subgraph every tree with k edges.

Our proof of Theorem 3.1 follows the general strategy of Zhao’s proof in [72] of

the special case when k = n/2, but substantial additional difficulties arise in the

more general case. The proof will be split into two main parts. In Section 3.5 we will

prove that the theorem holds provided that G does not look too similar to certain

extremal graphs - graphs which are close to satisfying the conditions of Theorem 3.1,

but which fail to contain some tree T with k edges. We call this the non-extremal

case. In that section we will use regularity arguments to embed any T ∈ Tk into G.

In Section 3.6 we will show that in the extremal case, i.e. when G is similar to

some extremal graph, we have sufficient structure in G to be able to embed any tree

T ∈ Tk directly. Before all this, in Section 3.4 we will prove Theorem 3.1 when G

satisfies a certain special case. This is considerably shorter than either the extremal

case or the non-extremal case, and will be needed in the proof of the non-extremal
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case.

3.1 Ramsey numbers of trees

Before going on to prove Theorem 3.1, we show how it can be used to prove Theo-

rem 3.2 as a corollary.

Theorem 3.2 For any real number C ′′ ≥ 1 there exists an integer p0 such that for

any integers p and q satisfying p0 ≤ p ≤ q ≤ C ′′p we have R(Tp, Tq) ≤ p + q. In

particular, for Tp ∈ Tp and Tq ∈ Tq, R(Tp, Tq) ≤ p + q.

Proof. Given C ′′, let C ′ = C ′′ + 1, and let k0 be the integer given by Theorem 3.1.

We set p0 = k0, and let p, q be any integers such that p0 ≤ p ≤ q ≤ C ′′p. Suppose

we have a colouring of the edges of Kn, where n = p + q, with two colours, red and

blue. Let Gred denote the monochromatic red subgraph. Suppose that at least n/2

vertices have degree at least p in Gred. Then the conditions of Theorem 3.1 hold in

Gred, where k = p. Thus Tp ⊆ Gred as required.

On the other hand, suppose that fewer than n/2 vertices have degree at least p

in G. Let Gblue be the monochromatic blue subgraph of Kn, i.e. the complement

of Gred. We have at least n/2 vertices in Gred with degree at most p − 1, and so in

Gblue we have at least n/2 vertices with degree at least n− 1− (p− 1) = q. Thus in

Gblue the conditions of Theorem 3.1 hold with k = q, and so Tq ⊆ Gblue, as required.

Thus R(Tp, Tq) ≤ p + q. �

We observe that this result is close to best possible. For example, if Sp and Sq

are stars with p and q edges respectively, then we have

R(Sp, Sq) =















p + q − 1 if p, q are even,

p + q otherwise.
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The lower bound is seen easily by constructing a (p − 1)-regular graph on p + q − 1

vertices, whose complement is (q−1)-regular. This is not possible when p and q are

both even, since then p−1 and p+q−1 are both odd, leading to the case distinction

above. Thus the upper bound in Theorem 3.2 is best possible up to an error of 1.

On the other hand, if Pm denotes a path with m edges, then R(Pm, Pm) = ⌊(3m+

1)/2⌋, as proved in [29].1 Thus for some specific trees the bound in Theorem 3.2 is

a long way from best possible.

3.2 Notation, Definitions and Preliminaries

We first introduce some more notation and definitions. Some of these definitions

will be recalled later, when they are first needed. We introduce them all together

here so that they can be easily found and referred to if necessary.

For a set S we write S = A + B to mean that A and B form a partition of S,

i.e. that A ∪ B = S and A ∩ B = ∅.

Recall from Chapter 1 that for a disjoint pair of subsets X, Y ⊆ V (G), e(X, Y )

denotes the number of edges with one endpoint in X and one endpoint in Y . Then

d(X, Y ) := e(X,Y )
|X||Y | denotes the density of the pair.

While it is certainly true that e(X, Y ) = e(Y, X), we will occasionally distinguish

between the two in order to indicate how our value or bound has been calculated. For

example, if there are constants dX , dY such that for all x ∈ X we have d(x, Y ) ≥ dX

and for all y ∈ Y we have d(y, X) ≤ dY , then we say that e(X, Y ) ≥ dX |X| and

that e(Y, X) ≤ dY |Y |. Thus the order of X and Y indicates that we calculate the

bound based on some property of vertices in the first set listed.

In this chapter we will also need to consider weighted graphs, in which each edge

1Note that this notation may be different to other conventions, when Pm may denote a path
with m vertices rather than m edges.

69



is assigned a weight. Then for a vertex x we will denote by d(x) the weighted degree

of x, i.e. the sum of the weights of all the edges incident to x. Then for a set of

vertices S, dS(x) is defined analogously to the unweighted case. Also for two vertex

sets X and Y we will denote by e(X, Y ) the sum of the weights of all the edges with

one endvertex in X and the other in Y .

For graphs H and G we write H → G to mean that H can be embedded into

G, i.e. that G contains a copy of H as a subgraph. We also use this notation for a

subset S ⊆ V (G). Then H → S means that H → G[S]. In this case, the graph G

is implicitly understood, and it will be obvious from the context what G should be.

Given a tree T rooted at a vertex r, we define Todd to be the set of vertices of

T whose distance from r is odd. Similarly we define Teven. We consider the root

to be at the top of the tree, with all other vertices hanging below it. Then for a

vertex x 6= r the parent P (x) of x is the neighbour immediately above x in the tree.

In other words, P (x) is the neighbour of x on the unique path in T from x to r.

Similarly for a set of vertices X ⊆ V (T ) − r we define P (X) := {P (x) : x ∈ X}.

The children of x are all the neighbours immediately below x, i.e. those vertices y

such that x = P (y). We define T (x) to be the subtree below x, i.e. the subgraph

of T induced by all those vertices y for which the (unique) path between y and the

root r includes the vertex x. Note that x ∈ V (T (x)).

A skew-partition of a tree T is a partition of V (T ) into sets U1 and U2 such that

|U1| ≤ |U2| and U2 is independent. (Note that in particular, Todd and Teven form a

skew-partition in some order.) The gap of a skew-partition is g(U1, U2) := |U2|−|U1|.

The gap of T is defined to be g(T ) := ||Todd| − |Teven||.

We define the ratio of a tree T to be ratio(T ) := |Todd|/|T |. Given a real number

c ∈ (0, 1/2) we say that a tree T is c-balanced, or simply balanced, if ratio(T ) ∈

(c, 1 − c). We will generally use this concept for c ≪ 1.
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We call vertices of a graph G which have degree at least k large vertices, and

vertices of degree less than k are called small vertices. We denote by L(G) the set

of vertices in G which are large, and S(G) denotes the set of small vertices. Thus

for the graph G which we consider in Theorem 3.1 we have |L(G)| ≥ |G|/2.

In many places during the proof, we will observe that if we have a vertex b in T

which is adjacent to a leaf c, and if b has been embedded onto a vertex y in L(G),

then we can always embed the leaf c onto a neighbour of y greedily after performing

any other necessary embedding. This is because y has at least k neighbours, and T

has k + 1 vertices. Therefore if all the vertices of T except for c have already been

embedded, and b has been embedded onto y, at most k − 1 neighbours of y have

already been used in the embedding, and so at least one neighbour remains onto

which we can embed c. From now on, if such a situation occurs, we will simply state

that we can embed the appropriate leaves greedily at the end.

Throughout our proof we will omit floors and ceilings where these do not affect

the argument significantly.

3.3 Outline of the Proof

We now fix various constants that we will need during our proof. First of all let

C ′ be the constant given in the statement of Theorem 3.1. We now pick k0 to be

sufficiently large, and let k and n be the integers given in Theorem 3.1. We define

C := n/k, and note that 1 ≤ C ≤ C ′ ≪ k.

Throughout the rest of the chapter we fix further constants satisfying the fol-

lowing hierarchy.

0 <
1

k0
≪ ε ≪ δ ≪ d ≪ θ1 ≪ θ2 ≪ . . . ≪ θ⌊C⌋+4
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≪ τ ≪ τ ′ ≪ θ†1 ≪ . . . ≪ θ†⌊C⌋+2 ≪ ν ′ ≪ c ≪ ν ≪ 1

C ′
.

Note that if we chose k0 to be sufficiently large compared to C ′ then it is possible

to find these constants. Note also that we have 0 < 1/n ≤ 1/k ≤ 1/k0.

We will also have some further constants which are not fixed, since we will need

to apply the appropriate lemmas with different values of these constants. Most

importantly, the statement of the theorem which covers the non-extremal case uses

constants α1 and α2. The theorem will be applied with α1 depending on θi+1 and

α2 on θi for some i. We will also have another similar situation for αi depending on

θ†i′ . In either case we will therefore have d ≪ α2 ≪ α1 ≪ ν ′ ≪ ν ≪ 1/C ′. We then

define further constants to satisfy:

α2 ≪ η ≪ β ≪ ρ ≪ α1.

We observe that we may make a few preliminary assumptions about the structure

of the graph G. Firstly, the conditions of Theorem 3.1 remain true if we delete any

edges between small vertices. If in this modified graph we can find a copy of a tree

T , then we can certainly find a copy of T in the original graph. We therefore assume

that S(G) is an independent set. More generally, we assume that G is edge-minimal

subject to satisfying the conditions of Theorem 3.1. In particular, if there are at

least n/2 + 2 vertices of degree at least k, then we could remove any edge from the

graph and still leave at least n/2 vertices with degree at least k. So we may assume

that n/2 ≤ |L(G)| < n/2 + 2.

As well as edge-minimality, we will also assume that G is vertex-minimal subject

to satisfying the conditions of Theorem 3.1. So we note that if there exists a set

S ′ ⊆ S(G) with the property that |N(S ′)| ≤ |S ′|/2, then we could delete S ′ and

move some vertices of N(S ′) into S(G) if necessary (i.e. if they were large but
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now have degree less than k). This gives a new graph G′ with |G′| = |G| − |S ′|

and |L(G′)| ≥ |L(G)| − |S ′|/2 ≥ |G′|/2. In particular, L(G′) is non-empty and so

|G′| ≥ k + 1. So G′ also satisfies the conditions of Theorem 3.1, and by repeating

the argument as often as possible, we may assume that there does not exist a set

S ′ ⊆ S(G) such that |N(S ′)| ≤ |S ′|/2.

Recall that in Section 3.2 we assumed that there is no set S ′ ⊆ S(G) such that

|N(S ′)| ≤ |S ′|/2. Slightly more generally than this, suppose that there is a set

S ′ ⊆ S(G), and a set L′ ⊆ L(G) such that |L′| ≤ (2/5)|S ′|, |S ′| ≥ k/4 and such that

e(S ′, L(G)\L′) ≤ τk2, where τ is the constant defined in the hierarchy above. We

may assume that L′ is minimal given S ′, and in particular that every vertex of L′ has

at least one neighbour in S ′. Then deleting S ′ and moving vertices of L′ into S(G)

if necessary, we obtain a new graph G† with the following property. Observe that

τ ≪ τ ′ ≪ ν ≪ 1 and let L∗(G†, G) := {v ∈ V (G†) : dG†(v) ≥ (1 − τ ′)k and dG(v) ≥

k}. Then we can see that |L∗(G†, G)| ≥ (1 + ν)|G†|/2. For if not, then in V (G†)

we have at least |S ′|/10 − ν|G†|/2 ≥ k/41 vertices which lie in L(G)\L′ but not in

L∗(G†, G), and therefore have degree at most (1 − τ ′)k in G†. They must therefore

have degree at least τ ′k in S ′, and so

e(S ′, L(G)\L′) ≥ (τ ′k)(k/41) > τk2

which is a contradiction.

Thus we have a new subset of the large vertices, and although they don’t quite

have degree k in G†, there are substantially more than |G†|/2 of them. This will

enable us to embed T into G.

Theorem 3.3 Let 0 < τ ≪ τ ′ ≪ ν and suppose that we have subgraphs G† ⊆ G∗ ⊆

G. Let L∗ = L∗(G†, G∗) := {v ∈ V (G†) : dG†(v) ≥ (1 − τ ′)k and dG∗(v) ≥ k}.

Suppose furthermore that

73



• G∗ was obtained from G by removing some edges between V (G)\V (G†) and

V (G†)\L∗ (and in particular, V (G∗) = V (G));

• eG∗

(

V (G†), V (G∗)\V (G†)
)

≤ τk2;

• |L∗| ≥ (1 + ν)|G†|/2.

Then Tk ⊆ G.

In order to apply Theorem 3.3 given sets S ′ and L′ as above we define G∗ to

be the graph obtained from G by removing all edges between S ′ and L′, and define

G† := G − S ′. We just need to check that, with L∗ defined as in Theorem 3.3,

L′ ∩ L∗ = ∅ and therefore that G∗ has the form described above. But recall that

originally G was edge-minimal subject to satisfying the conditions of Theorem 3.1.

Therefore since any vertex x in L′ had a neighbour y in S ′ then x had degree exactly

k, since dG(x) ≥ k but if dG(x) ≥ k+1 then we could have deleted xy from G without

violating the conditions of Theorem 3.1. Therefore once the edges between L′ and

S ′ are deleted, every vertex in L′ has degree at most k − 1 in G∗ and so cannot lie

in L∗, as required.

In our proof we will generally identify G with G∗, since if we can prove Tk ⊆ G∗

then certainly Tk ⊆ G. Note that it is not true that at least n/2 vertices in G∗ have

degree at least k, but we will not use this assumption in the proof of Theorem 3.3.

However, it is also not necessarily true that G∗ satisfies some of the assumptions

that we made on G regarding edge or vertex minimality. In particular there may

be a set S ′′ ⊆ S(G∗) such that |NG∗(S ′′)| ≤ |S ′′|/2, which is not the case in G. We

will need this assumption on G in Section 3.6.2 and so in that section we will once

again distinguish between G∗ and G.

As mentioned in Section 4.1, the proof of Theorem 3.1 proceeds in two main

steps, which will constitute Sections 3.5 (which covers the non-extremal case) and 3.6
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(which covers the extremal case). In this section we introduce the main results of

these two sections, as well as giving an outline of how they will be proved. In both

sections we will further distinguish whether or not the conditions of Theorem 3.3

hold. Thus in both Sections 3.5 and 3.6 we will essentially have two subcases, one

where the conditions of Theorem 3.3 hold, and one where they do not and thus there

are no sets S ′ and L′ as defined above. In the non-extremal case, this will lead us to

two separate theorems, one of which will be required to prove Theorem 3.3, and one

in which we will need to apply Theorem 3.3. Although the statements are distinct,

the two proofs are, until the very end, essentially identical, and so we will prove

them together. In the extremal case in Section 3.6 the two proofs will be slightly

more distinct. It will be here that we need the constants θ†i , which play a similar

role to the constants θi. However we need to introduce these different constants so

that τ and τ ′ have the correct place in the hierarchy for the proof to work.

3.3.1 The Non-Extremal Case

Let us first define an extremal graph. As mentioned at the beginning of this chapter,

this is a graph which is close to satisfying the conditions of Theorem 3.1, but which

does not contain some tree T with k edges. In fact, the graph which we define will

not contain any tree with k edges. The construction is an extension of one given

in [72].

Definition. The half-complete graph on k vertices is a graph Hk on vertex set

V = V1 + V2 where |V1| = ⌈k/2⌉ and |V2| = ⌊k/2⌋, and with edge set consisting of

all pairs within V1 and all pairs between V1 and V2.

Definition. Let Gex(n) be the graph consisting of ⌊C⌋ disjoint copies of Hk together

with further copy of Hn−⌊C⌋k (recall that C = n/k).
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Now Gex(n) does not contain any tree with k edges (k + 1 vertices), since its com-

ponents all have size at most k. However, when C is very close to an integer, we

can also see that almost n/2 vertices have degree almost k (at least n/2 if k di-

vides n exactly). Gex(n) therefore comes very close to satisfying the conditions of

Theorem 3.1, but nevertheless fails to satisfy the conclusion. In this sense it is an

extremal graph.

Gex(n) shows that we cannot weaken the conditions in Theorem 3.1 to demand

at least n/2 vertices of degree k − 1. A slight modification of Gex(n) shows that

we also cannot substantially decrease the n/2 bound, i.e. we cannot get away with

substantially fewer than n/2 vertices of degree k.

Definition. We define H ′
k to be the graph on vertex set V ′ = V ′

1 + V ′
2 where

|V ′
1 | = ⌊(k + 1)/2⌋ − 1 and |V ′

2 | = ⌈(k + 1)/2⌉ + 1, and with edge set consisting of

all pairs within V1 and all pairs between V1 and V2.

Definition. Let G′
ex(n) be the graph consisting of ⌊n/(k + 1)⌋ disjoint copies of H ′

k

together with further copy of H ′
n−⌊n/(k+1)⌋(k+1).

Note that G′
ex(n) has ⌊n/(k + 1)⌋(⌊(k + 1)/2⌋ − 1) vertices of degree k. In

particular, if 0 < 1/k, 1/n ≪ ε ≪ 1 then G′
ex(n) has at least (1 − ε)n/2 vertices

of degree k. However, note that G′
ex(n) does not contain a copy of Pk, the path on

k + 1 vertices, since such a copy of Pk would have to lie within a copy of H ′
k, and

so would have to contain at least ⌊(k + 1)/2⌋ vertices within V ′
1 , which is impossible

since V ′
1 is not large enough.

G′
ex(n) is very similar to Gex(n), and could be considered to be an approximation

of Gex(n). In fact, it turns out that in some sense Gex(n) is the unique extremal

graph.1 This fact is captured by the Stability Theorem which will be introduced

1Of course we could modify Gex(n) by making each copy of Hk complete. However, the resulting
graph would clearly contradict our assumption that there are no edges between small vertices and
that there are at most n/2 + 1 large vertices.
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in Section 3.3.2. However, I will not explicitly prove the Stability Theorem in this

thesis - it is simply an implicit consequence of the proof of Theorem 3.1.

The extremal case partly describes the structure of the extremal graph. We

denote the extremal case by EC or EC(α), where α ≪ 1 will be some appropriate

parameter:

Definition 3.4 EC(α): G contains a set of vertices A of size k such that e(A, V (G)\A) ≤

αk2.

However, we will need to be slightly more careful than this, and so we define

ECj for 1 ≤ j ≤ ⌊C⌋. Recall that θ1 ≪ θ2 ≪ . . . ≪ θ⌊C⌋ ≪ 1.

Definition 3.5 ECj: G contains disjoint sets of vertices V1, . . . , Vj each of size k

such that e(Vi, V (G)\Vi) ≤ θjk
2 for 1 ≤ i ≤ j.

For the proof of Theorem 3.3 we will need a similar condition, but with θj

replaced by θ†j .

Definition 3.6 EC†
j : G† contains disjoint sets of vertices V1, . . . , Vj each of size k

such that eG†(Vi, V (G†)\Vi) ≤ θ†jk
2 for 1 ≤ i ≤ j.

Definition 3.7 If a graph G does not satisfy ECj for any 1 ≤ j ≤ ⌊C⌋, we say that

we are in the non-extremal case.

Then it turns out that G is sufficiently different from Gex(n) that we can embed T

into G even if we relax the degree conditions of Theorem 3.1 slightly. As mentioned

before, we will need two versions of the non-extremal theorem. Theorem 3.9 will

be required for the proof of Theorem 3.3 which in turn is required to guarantee the

conditions of Theorem 3.8. However, since it is only towards the end of the proofs

that the two differ significantly, we go through most of the proof for both results

together.
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Theorem 3.8 Suppose we have constants satisfying 0 < α2 ≪ α1 ≪ τ ≪ 1/C ′ ≤ 1,

and an integer k0 satisfying 0 < 1/k0 ≪ α2. Then for any integers k, n ∈ N

satisfying k0 ≤ k ≤ n ≤ C ′k the following holds: Let G be a graph on n vertices, let

G′ ⊆ G be an induced subgraph on n′ ≤ n vertices, and let

L = L(G′, G) := {v ∈ V (G′) : dG′(v) ≥ (1 − α2)k and dG(v) ≥ k}.

Suppose that |L| ≥ (1 − α2)n′/2, that eG(V (G′), V (G)\V (G′)) ≤ α2
2k

2 and that G′

does not satisfy EC(α1). Suppose furthermore that there do not exist sets S ′ ⊆ S :=

V (G′)\L and L′ ⊆ L such that |S ′| ≥ k/4, |L′| ≤ (2/5)|S ′| and e(S ′, L\L′) ≤ τk2.

Then Tk ⊆ G.

Theorem 3.9 Suppose that we have constants satisfying

1/k0 ≪ τ ′ ≪ α2 ≪ α1 ≪ ν ≪ 1/C ′ ≤ 1

and integers k, n ∈ N such that k0 ≤ k ≤ n ≤ C ′k. Let G† ⊆ G∗ ⊆ G be subgraphs

as in the statement of Theorem 3.3, and let G′ ⊆ G† be a further subgraph on n′

vertices. Let

L = L(G′, G†, G∗) := {v ∈ L∗(G†, G∗) : dG′(v) ≥ (1 − α2)k}.

Suppose that |L| ≥ (1 + ν/2)n′/2, that eG†(V (G′), V (G†)\V (G′)) ≤ α2
2k

2 and that

G′ does not satisfy EC(α1). Then Tk ⊆ G.

The crucial difference between these two theorems is that in Theorem 3.8 we have

the condition that there are no sets S ′ ⊆ S(G) and L′ ⊆ L(G) which would have

led to the existence of G†, while in Theorem 3.9 we assume that G† exists, and

thus we have the extra condition that L∗ covers substantially more than half of the
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vertices of G†. This in turn leads to the condition that L covers more than half of

the vertices of G′, as in the statement of Theorem 3.9. To enable us to go through

most of the proof of both together, we will not use either of these extra conditions

until near the end of the proof. Although α1 and α2 appear in both Theorems, they

will not be the same (as mentioned before, they will be chosen later to depend either

on θi or on θ†i ). However, we use the same notation because they will play similar

roles in the two theorems, and by using the same notation we can go through both

proofs together.

The interdependence of the main results in this chapter is shown in Figure 3.1.

We distinguish two cases based on whether there is a set S ′ with the properties

Does there exist

Yes

No

(Theorem 3.3)

Theorem 3.1

Non-extremal case

Section 3.5

Extremal case

Section 3.6

Theorem 3.8

Theorem 3.9
Tk ⊆ G

Tk ⊆ G

a set S ′
?

Figure 3.1: The interdependence of the main results.

described in Theorem 3.8, i.e. a set of small vertices whose neighbourhood, apart

from very few edges which we ignore, lies within a set L′ of large vertices where
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|L′| ≤ (2/5)|S ′|. If there is such a set S ′, then we remove it. A few large vertices

(in L′) may now become small, but nevertheless we now have significantly more

large vertices than small ones, and the conditions of Theorem 3.3 are satisfied. In

this situation if we need to apply the non-extremal case, then the conditions of

Theorem 3.9 will be satisfied and so this theorem, proved in Section 3.5, will be the

non-extremal theorem corresponding to Theorem 3.3. We then go on to complete

the proof of Theorem 3.3 in Section 3.6.2, and so in this case Tk ⊆ G.

On the other hand if there is no such set S ′, then the non-extremal case will be

covered by Theorem 3.8, which will also be proved in Section 3.5. We then go on

to complete the proof in the extremal case of this situation, and therefore complete

the proof of Theorem 3.1, in Section 3.6.

Although it is natural to think of the argument as composed of two parallel

situations which together cover the whole proof, as shown in Figure 3.1, we can also

think of it as a linear argument. Since we aim ultimately to prove Theorem 3.1 by

contradiction, Theorem 3.3 can be interpreted as stating that the conditions of the

theorem are impossible under the assumption that Tk * G, and so ultimately there

is no set S ′ which would have given rise to those conditions, as indicated by the

dashed arrow in Figure 3.1.

In both situations, the extremal case will use the corresponding non-extremal

theorem. Roughly, if V1, . . . , Vj are sets as in the definition of the extremal case,

then we look to apply the appropriate non-extremal theorem to G[V0], where V0 =

V (G)\⋃j
i=1 Vi. This will ensure either that Tk ⊆ G, in which case we are done,

or that the conditions of the non-extremal theorem do not hold and so V1, . . . , Vj

satisfy certain conditions which will be useful to us in the extremal case.

More precisely, note that if G does not satisfy EC, then G′ = G will satisfy the

conditions of Theorem 3.8 (or similarly if G† does not satisfy EC, then G′ = G† will
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satisfy the conditions of Theorem 3.9). However, we need the stronger statement

here because in our proof of Theorem 3.1 (or Theorem 3.3) we will consider the

maximal j for which ECj (or correspondingly EC†
j ) holds in G (in G†). We will

then apply Theorem 3.8 (Theorem 3.9) to G′ = G−⋃j
i=1 Vi (or G′ = G† −⋃j

i=1 Vi).

Since we assumed that j was maximal, EC(θj+1) (or EC(θ†j+1)) will not hold in

G′, and we will show that the remaining conditions of the theorem also hold unless

j = ⌊C⌋ = ⌊n/k⌋ (or j = ⌊|G†|/k⌋). Thus we may assume that G (or G†) splits

completely into “almost components” of size k and one leftover set of size less than

k. In Section 3.6 we will go on to use this structure to embed T directly into G.

The proof of Theorems 3.8 and 3.9 will make use of Szemerédi’s regularity lemma.

Using the standard fact that various properties of the original graph are inherited

by the reduced graph, we will be able to prove a structure lemma (Lemma 3.16).

This will give us two adjacent clusters A and B in the reduced graph, together with

a matching M into which both A and B have appropriately high degree. We will

then split the tree T into a (small) number of sub-trees in an appropriate way. (To

recover T , we re-connect the roots of these trees to their original parent vertices in

T .) The roots and the parent vertices will be embedded into A and B, while the

remaining vertices will be embedded into M.

3.3.2 The Extremal Case

In the extremal case we need to be more careful, since G may be close to a graph

which does not contain some T ∈ Tk, and using the regularity lemma would remove

some edges.

Instead, we use the structure which we already know we have in G. Recall that

we could assume that G splits completely into ⌊C⌋ almost components of size k and

one leftover set of size at most k. We can show first that this left-over set has size
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almost k or almost zero (relative to k). For the proof of Theorem 3.3 this will already

be enough. Secondly, we prove that in fact we may assume that a stronger version

of the extremal case holds, which we call EC ′. We delay the precise definition of

EC ′ until Section 3.6.1. Roughly it guarantees that in addition to the properties of

EC, we may also assume that every vertex of L ∩ Vi has almost all its neighbours

in Vi. We will then use this stronger structure to embed the tree T directly into G

(with most of T generally being embedded into just one of the Vi).

Together with Theorem 3.8, this gives us the following Stability Theorem (c.f.

Theorem 1.9 in [72]).

Theorem 3.10 (Stability Theorem) For every µ > 0 and C ≥ 1 there exist

ε > 0 and k0 ∈ N such that for any k0 ≤ k ≤ n ≤ Ck the following holds: Suppose

that G is a graph on n vertices with |L(G)| ≥ (1− ε)n/2. Suppose furthermore that

no proper subgraph G′ ⊂ G satisfies L(G′) ≥ (1 − ε)|G′|/2, and that G does not

contain some T ∈ Tk. Then G can be transformed into Gex(⌊C⌋k) or Gex(⌈C⌉k) by

adding or deleting at most µk vertices and at most µk2 edges.

In particular either C − ⌊C⌋ ≤ µ or ⌈C⌉ − C ≤ µ.

I will not prove this theorem explicitly in this thesis. However, it is an implicit

consequence of the proof of Theorem 3.1.

Theorem 3.10 roughly says that Gex(n) is the only extremal graph when the

bound on the number of large vertices is decreased by a small amount. The same

cannot be said if we decrease the degree of the large vertices. For example, suppose

we demand that at least n/2 vertices of G have degree at least (1 − ε)k. We will

assume for now that n is even. Then we partition V (G) into V1 and V2, where

|V1| = |V2| = n/2 and construct a random ⌈(1 − ε)k/2⌉-regular graph within V1

and a random ⌊(1 − ε)k/2⌋-regular bipartite graph between V1 and V2. Note that

the maximum degree of G is (1 − ε)k, and so G does not contain the star Sk on
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k + 1 vertices. So with high probability G will satisfy analogous conditions to

Theorem 3.10 while the n/2 vertices of V1 have degree (1− ε)k. However, with high

probability G will not look like Gex(n); in fact G will be an expander. We omit the

proof of these assertions. The case when n is odd is similar.

3.4 The Special Case

We first consider the following special case.

• SC: e(L(G)) ≤ νk2.

We will show that in this case we can embed the tree T into G directly, and thus we

may assume that SC does not hold. We need this assumption in the non-extremal

case, and therefore the following lemma has a similar form to Theorems 3.8 and 3.9,

in that we have a graph G′ which was obtained from G or G† by removing “almost

components” of size k.

Lemma 3.11 Suppose we have constants such that 0 < 1/k0 ≪ ν ′′ ≪ ν ≪ 1/C ′ ≤ 1

and integers k, n ∈ N satisfying k0 ≤ k ≤ n ≤ C ′k. Let G be a graph on n vertices,

let G′ ⊆ G be a graph on n′ ≤ n vertices, and let L = L(G′, G) := {v ∈ V (G) :

dG′(v) ≥ (1 − ν ′′)k and dG(v) ≥ k}. Suppose |L| ≥ (1 − ν ′′)n′/2. Suppose further

that e(L) ≤ νk2. Then Tk ⊆ G.

We will use k0, ν and C ′ as defined in our hierarchy, while ν ′′ may be chosen as

required later. Observe that 1/k ≪ ν ′′ ≪ ν ≪ 1/C, where C = n/k ≤ C ′ as

before. For the proof we will need the following simple fact, which appears in [72]

as Fact 5.13.

Fact 3.12 If the vertex set of a tree T is partitioned into two subsets U1 and U2

such that U2 is an independent set, then U2 contains at least |U2| − |U1| + 1 leaves

of T . �
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Proof of Lemma 3.11. Let S := V (G′)\L. Note that since e(L) ≤ νk2, there

are at most 2
√

νk vertices of L with more than
√

νk neighbours in L. Removing

such vertices, we obtain L′ with δ(L′, S) ≥ (1 − ν ′′ − √
ν)k ≥ (1 − 2

√
ν)k, and

|L′| ≥ (1− ν ′′)n′/2− 2
√

νk ≥ (1− 3
√

ν)n′/2. Let S ′ ⊆ S be the set of vertices with

at least (1 − ν1/5)k neighbours in L′. Now

eG′(L′, S) ≥ (1 − 2
√

ν)(1 − 3
√

ν)kn′/2 ≥ (1 − 5
√

ν)kn′/2.

Conversely, since no vertex in S has degree more than k in G′,

eG′(S, L′) ≤ |S ′|k + |S\S ′|(1 − ν1/5)k

≤ |S ′|k + [(1 + ν ′′)n′/2 − |S ′|](1 − ν1/5)k

= ν1/5k|S ′| + (1 − ν1/5)(1 + ν ′′)kn′/2.

Combining these two inequalities gives

ν1/5|S ′| ≥ ((1 − 5
√

ν) − (1 − ν1/5)(1 + ν ′′))n′/2

≥ (ν1/5(1 + ν ′′) − 6
√

ν)n′/2

≥ ν1/5((1 + ν ′′)n′/2 − ν1/5k)

≥ ν1/5(|S| − ν1/5k)

and thus we have at most ν1/5k vertices in S which have fewer than (1 − ν1/5)k

neighbours in L′. Removing these, we obtain a bipartite subgraph G′′ ⊆ G[L′ ∪ S ′]

with minimum degree at least (1 − ν1/6)k.

Now T is also bipartite with classes U1 and U2, where without loss of generality

|U1| ≤ |U2|. Suppose |U1| ≥ k/3. Then since |U1| ≤ |U2| ≤ 2k/3 + 1, by the

minimum degree of G′′ we can embed T greedily. On the other hand if |U1| ≤ k/3
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then by Fact 3.12, U2 contains at least |U2| − |U1|+ 1 ≥ k/3 leaves. Removing these

leaves gives a set U ′
2 of size at most 2k/3 + 1. So we can embed U1 and U ′

2 greedily

into L′ and S ′ respectively. Then since vertices of U1 were embedded into L′, whose

vertices are large in G, we can embed the remaining leaves of U2 greedily. In either

case, we embed T into G as required. �

3.5 The Non-Extremal Case

We now aim to prove Theorems 3.8 and 3.9. Since the proofs are almost identical,

for most of this section we will go through both together. Only towards the end

of the argument will we distinguish the two proofs. The main tool that we use is

Szemerédi’s regularity lemma

3.5.1 The regularity lemma

In this section we will introduce another version of regularity lemma which is slightly

different from the version given in the introduction, as well as defining the reduced

graph again. Some of the notation here is slightly different to the notation used

in the Chapters 1 and 2; this is to ensure that the notation is consistent with [15].

We will also state some standard properties of both the regularised graph and the

reduced graph. Recall that given a bipartite graph with vertex classes X and Y ,

and given ε > 0, we say that the pair (X, Y ) is ε-regular if for all subsets X ′ ⊆ X

and Y ′ ⊆ Y which satisfy |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have

d(X ′, Y ′) = d(X, Y ) ± ε.

The version of the regularity lemma which we use is the degree form (see e.g. [51]).
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Lemma 3.13 (Regularity Lemma (degree form)) For every ε > 0 there is an

N0 = N0(ε) and an n0 = n0(ε) such that for any d ∈ [0, 1] and for any graph G′ on

n′ ≥ n0 vertices, there is a partition of V (G′) into V0, V1, . . . , VN and a subgraph G′′

of G′ such that the following holds:

• N ≤ N0

• |V0| ≤ εn′

• |V1| = |V2| = . . . = |VN | ≤ ⌈εn′⌉

• e(G′′[Vi]) = 0 for 0 ≤ i ≤ N

• All pairs (Vi, Vj) for 1 ≤ i < j ≤ N are ε-regular in G′′, with density either 0

or at least d.

• dG′′(v) ≥ dG′(v) − (d + ε)n for every vertex v ∈ V (G′). �

The Vi are usually called clusters. We apply the regularity lemma to the graph G′

in Theorems 3.8 and 3.9, with constants d and ε as given in the hierarchy at the

start of Section 3.3. (Note that since we had 1/k ≪ ε, and since n′ & k, we will

have n′ ≥ n0.) We thus obtain a regularised graph G′′, which is simply G′ with some

edges removed. (The edges that have been removed are the edges within clusters

Vi, edges between clusters (Vi, Vj) forming a non-ε-regular pair and edges between

clusters (Vi, Vj) forming a regular pair of density less than d.) V0 is the exceptional

set. We generally ignore V0, removing it from the graph G′′, but still denote the

“pure” graph thus obtained by G′′. Note that now in G′′ we still have that for each

vertex v in V (G′)\V0,

dG′′(v) ≥ dG(v) − (d + ε)n − |V0| ≥ dG(v) − (d + 2ε)n ≥ dG(v) − 2dn.
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As in Chapter 1 we also obtain a reduced graph H on N vertices (where N ≤ N0(ε)).

The vertices of H will be the clusters V1, . . . , VN . There will be an edge in H between

two such clusters if they form an ε-regular pair of density at least d in G′′. (This

is equivalent to saying that there is at least one edge between these two clusters in

G′′.)

Note that each cluster contains approximately n′/N vertices of G′. For simplic-

ity, we will assume that each cluster contains exactly M := n′/N vertices (and in

particular we assume that n′/N is an integer). This assumption does not affect any

calculations significantly.

When appropriate, we will consider H to be a weighted graph. It will be clear

from the context when this is intended. We define the weight of an edge XY in the

reduced graph to be d(X, Y ) := MdG′′(X, Y ) = eG′′(X, Y )/M . Thus the weight of

an edge is the average number of neighbours in one cluster of a vertex in the other.

If XY is not an edge then we define d(X, Y ) := 0. Recall from Section 3.2 that the

weighted degree d(X) of a cluster X in the reduced graph is defined to be the sum

of the weights of all edges incident to that cluster, i.e. d(X) =
∑

Y ∈V (H)−X d(X, Y ).

Suppose that we have an ε-regular pair (A, B) with density d′. Then we say that

a vertex x ∈ A is typical with respect to B if dB(x)/M ∈ (d′ − ε, d′ + ε). By the

definition of an ε-regular pair, all but at most 2εM vertices of A are typical with

respect to B. More generally, if we have a cluster set B = {B1, B2, . . . , Bs} and each

pair (A, Bi) is ε-regular with density di, then we say that a vertex x ∈ A is typical

with respect to B if for all but
√

εs of the clusters Bi, dBi
(x)/M ∈ (di − ε, di + ε)

(i.e. x is typical with respect to Bi). Then that at most 2
√

εM vertices of A are

not typical with respect to B (for each i there are at most 2εM vertices atypical

to Bi, giving at most 2εMs pairs (x, Bi) of vertices x and sets Bi with respect to

which x is atypical). Even more generally, suppose we have subsets B′
i ⊆ Bi for
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i = 1, . . . , s, and we define bi := |B′
i|/M . Let B′ = {B′

1, B
′
2, . . . , B

′
s}. Then we say

that a vertex x ∈ A is typical with respect to B′ if for all but
√

εs of the sets B′
i,

dB′
i
(x)/(biM) ∈ (di − ε, di + ε). If bi ≫ ε for each i, then it is easy to see that all

but at most ε1/3M vertices of A are typical with respect to B′.

3.5.2 Outline of the non-extremal case

In this section we present a short overview of the main ideas in the non-extremal case.

Since the proofs of Theorem 3.8 and 3.9 are very similar, we will go through both

proofs together until near the end of the argument when we need to distinguish

them. The proof proceeds by contradiction and therefore we assume that there

is some tree T ∈ Tk such that T * G. From this assumption we will go on to

prove several properties of the tree T and the graph G, and eventually derive a

contradiction.

We will apply the regularity lemma to the graph G′ defined in Theorem 3.8

or 3.9 to obtain a reduced graph H . In H we define L to be the set of clusters which

contain many vertices of L, and S := V (H)\L. We think of L as being the “large”

clusters of H , and indeed L inherits many of the properties of L.

We will then prove a Structure Lemma (Lemma 3.16) and apply it to H to find

two adjacent clusters A and B and a cluster matching M such that dM(A) and

dM(B) are appropriately large (recall that dM(A) denotes the total weight of edges

between A and V (M)). Our aim will be to embed T primarily into A ∪ B ∪M.

In order to help us to do this, in Section 3.5.3 we split the tree T into smaller

subtrees, giving us a forest in which each tree has its own root. These roots will be

embedded into A or B, while the remaining vertices of a subtree will be embedded

into an edge e of M. Since all trees are bipartite, and since the subtrees are small,

we will be able to use standard regularity arguments to perform this embedding.
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Thus any particular subtree can be embedded easily, but we need to work to show

that we can embed all of the subtrees without re-using any vertices.

The Structure Lemma in fact gives two cases, which we deal with separately.

Case 1: dM(A),dM(B) ≃ k.

In this case we can almost embed the whole tree straight away, with standard

regularity arguments, but small error terms mean we fall just short of a complete

embedding. Thus more work is needed.

We first show that the weighted neighbourhood of A is essentially the same as

that of B, i.e. that for almost all edges e ∈ M, de(A) ≃ de(B) (Corollary 3.21).

We then show that for almost every vertex X in the the cluster matching M,

d(A, X) ≃ 0 or d(A, X) ≃ 1. (Claim 3.24).

Thirdly, we show that for almost every edge e = (X, Y ) ∈ M, either de(A)/M

≃ 0 or de(A)/M ≃ 2 (recall that M is the number of vertices in a cluster given by

the regularity lemma). In other words, we do not have d(A, X) ≃ 0 and d(A, Y ) ≃ 1

or vice versa (Claim 3.25).

We now consider those edges e ∈ M such that de(A) ≃ de(B) ≃ 2M . The

vertices in these edges form a set of size approximately k/M , which we call V1. The

corresponding vertices in G′ form a set V1 of size approximately k. We set V2 :=

V (G′)\V1, and V2 := V (H)\V1. Now since G′ does not satisfy the conditions of the

extremal case, we know that eG′(V1, V2) is reasonably large, and so correspondingly

we deduce that eH(V1,V2) > ρ(k/M)2.

On the other hand, we will split V1 into disjoint cluster sets L1 and S1, and show

that e(S1,V2) and e(L1,V2) are both small (Claims 3.29 and 3.30). This will give

us the required contradiction.

Case 2: dM(A) ≃ k and dL∪M(B) ≃ k/2. Furthermore, every edge of M has
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at most one endvertex in the neighbourhood of A.

In this case we will first use the properties of L to construct a matching ML

attached to NL\M(B). Using this matching to augment the original matching M,

we show that we can embed T unless ML is very small. Since the former would

give us the required contradiction, we can assume that ML is very small. We will

use this to show that dL\M(B) is very small and therefore dM(B) ≃ k/2.

We then observe that under the conditions of Theorem 3.9, we would actually

obtain something even stronger than this. In particular, we can prove that dM(B)

is significantly larger than k/2, and this will allow us to complete the proof of

Theorem 3.9 easily, and we turn our attention to the proof of Theorem 3.8.

From here we use arguments similar to those in Case 1 to show that for almost

all edges e ∈ M, either de(B)/M ≃ 0 or de(B)/M ≃ 2 (Claims 3.32 and 3.33).

We now consider the set of clusters in those edges e ∈ M such that de(B)/M ≃ 2,

and we split the clusters in these edges into two sets, S0 and L0. We also consider

R0 := NH(B)\(L ∪ M) (see Figure 3.2). Our bounds on the degree in H of B,

together with the previous results, will show that altogether V0 := R0 ∪S0 ∪L0 has

size approximately k/M , and that |L0| ≃ k/(4M).

Next we prove that there is no large matching between S0 and V (H)\V0

(Claim 3.34), and no large matching between R0 and V (H)\V0 (Claim 3.36). This

will also imply that R0 ∪ S0 is made up almost entirely of clusters from S (Corol-

lary 3.35).

But then by considering the clusters of R0 ∪ S0 which are also in S and which

lie outside a maximum matching between R0 ∪ S0 and V(H)\V0, we obtain a set

S ′
1 ⊆ R0 ∪ S0 of size approximately 3k/(4M), and whose neighbourhood outside V0

lies only among the other endpoints of the maximum matching. Thus we can show

that NH(S ′
1) lies essentially within L0, and so has size less than 7|S ′

1|/20.
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Figure 3.2: The structure of H in Case 2

However, we can show that in G′ this gives rise to a set S ′ ⊆ S of size approxi-

mately 3k/4 and a set L′ ⊆ L of size at most 2|S ′|/5 such that eG′(S ′, L\L′) is very

small. We then denote the current G′ by G† before deleting S ′, and moving some

vertices of L to S if necessary, to obtain a new G′ which satisfies the conditions of

Theorem 3.9, which we have already proved. Thus the proof of Theorem 3.8 will

also be complete.

3.5.3 Preparing the tree T

We will be attempting to embed the tree T into G using the regularity lemma. In

order to help us do this, we first split T up into smaller trees.

A tree T ′ rooted at a vertex r′ is called an εM-tree if it has at least εM vertices,

but if every tree in the forest T ′ − r′ has fewer than εM vertices. Now if T is

rooted at r and has at least εM vertices, then there must be some vertex r′ such

that T (r′) is an εM-tree (for consider the lowest r′, i.e. furthest from the root r

of T , such that T (r′) has at least εM vertices). As long as T still has more than

εM vertices, we remove such an εM-tree. This process gives us a sequence of trees
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T1, T2, . . . , Tt with roots r1, r2, . . . , rt, where each Ti (except possibly Tt) is an εM-

tree. Let pi := P (ri) (or if ri = r, then we do not define pi). We denote the resulting

forest by F := T1 ∪ . . .∪ Tt, and we can recover T from F by connecting ri to pi for

each i. Note that the pi are not necessarily distinct.

We now perform some extra splitting to ensure that the forest F has the sort of

structure that we will need. For i > j we call the two roots ri and rj close roots

if pj ∈ Ti. (This is equivalent to saying that two roots are close if the unique path

between them in T contains no other roots.) It will be useful later on to have the

property that any two close roots are either at even distance in T or are in fact

adjacent in T (i.e. are at distance 1). Therefore if ri and rj are close roots, with

i > j, and if they are at an odd distance greater than 1, we will split the forest F

still further by turning pj into a root in its own right, and deleting the edge between

pj and P (pj). Note that since pj and ri have even distance, this process does not

create any new pairs of close roots at odd distance greater than 1. We need therefore

perform the process at most once for each of the original roots. Thus in total we

increase the number of roots by at most a factor of 2, and so the number of roots is

still relatively small. This will be important later on.

We now no longer have that F is composed almost entirely of εM-trees. Instead,

F is composed of εM-trees and trees with fewer than εM vertices. For simplicity

we will generally refer to εM-trees, even though the trees may have fewer than εM

vertices.

We now redefine t to be the number of trees we have after this extra splitting,

and we re-enumerate the roots ri in an appropriate way; in particular we require

that if rj ∈ T (ri), then j ≤ i. Then as before we define pi := P (ri) (unless ri is the

root r of the whole tree T ). Thus we obtain a sequence of trees T1, T2, . . . , Tt with
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roots r1, r2, . . . , rt, where

t ≤ 2(k + 1)/(εM) = 2(k + 1)N/(εn′) ≤ 2N/ε ≤ f(ε) ≪ k, dM. (3.1)

Here f is some function arising from the regularity lemma.

We will always start embedding at the root r of T , and so will embed the Ti in

reverse order. In this way, whenever we come to embed a vertex x of T , the only

neighbour of x already embedded is P (x), i.e. none of the children of x will be

embedded before x. Therefore we will only need to find an image vertex for x in the

neighbourhood of one vertex of G′, namely the vertex chosen for P (x). Sometimes

we appear to embed the trees of F in some other order. However, in such cases

we will actually only pick some trees, reserve some clusters of H into which we will

embed them and show that they can be embedded at the appropriate time. We will

always be able perform the actual embedding in reverse order of Ti, although we

will not mention this explicitly from now on.

We will be attempting to embed T into clusters A and B, which are adjacent

in the reduced graph, and a matching M in the reduced graph into which both

A and B have appropriately high degree. The roots ri will be embedded into A

and B, while the remaining vertices will be embedded into the clusters of M. It

is important therefore to observe that as stated in (3.1) the number of roots and

parents t is considerably smaller than M , the size of the clusters A and B.

During the non-extremal case, to ease notation we will sometimes abuse notation

by writing, for example, A ∪M, where A is a cluster and M is a cluster matching.

In this case we mean {A} ∪ V (M).

We also split F into Fa and Fb. If the root ri of Ti has an odd distance from the

root r of T , we put Ti into Fa. Otherwise we put Ti into Fb. By moving the root of
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T to a neighbour of r if necessary1 we may assume that |Fa| ≥ |Fb|. As mentioned

before, we intend to embed the roots of F into A and B. More specifically, the roots

of Fa will be embedded into A, and the roots of Fb into B. It is for this reason that

we required that any close roots were either at even distance or at distance 1.

For if ri and rj are close roots, where j < i, then P (rj) ∈ Ti. If for example

ri ∈ Fa, then Ti−ri will be embedded into some regular pair (X, Y ) which intersects

the neighbourhood of A in H , but may not intersect the neighbourhood of B. Then

if rj ∈ Fa, we will embed rj into A, which will be possible because P (rj) ∈ Fa will

be embedded into (X, Y ) which intersects NH(A). On the other hand, if rj ∈ Fb,

then we will want to embed P (rj) into a cluster which is adjacent to B in H , which

may not be the case for X or Y . But since rj must be at odd distance from ri, with

our additional assumption we know that in fact P (rj) = ri. Therefore P (rj) has

already been embedded into A, which will be a neighbour of B in H as required.

Observe from (3.1) that t ≪ dM . Note therefore that if we have embedded a

parent pi of a root ri ∈ Fa and if pi has been embedded onto a vertex x in a cluster

D adjacent to A, then provided x is typical with respect to A we have at least

(d−ε)M − t ≥ dM/2 neighbours of x still available for the embedding of ri. In fact,

we will embed roots into a subset A′ ⊆ A of size at least
√

dM , which will be defined

later. Provided x is typical with respect to A′, at least d3/2M/2 neighbours of x in

A′ will be available. Furthermore at most
√

εM vertices of D will not be typical

with respect to A′, and since removing these vertices will not affect any calculations

significantly, we may demand that all vertices of Fa are embedded onto vertices of

G′′ which are typical with respect to A′. Similarly, we will assume that vertices of Fb

are embedded onto vertices of G′′ which are typical with respect to a subset B′ ⊆ B

of size at least
√

dM .

1When moving the root we may have to re-order some of the trees of F to ensure that if
rj ∈ T (ri) then j ≤ i.
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Meanwhile, vertices of A and B onto which we embed roots may need to be

typical with respect to some clusters of H , or some subsets of these clusters. These

subsets of clusters will always have size at least
√

dM , and since d ≫ ε, as observed

when we defined typical vertices, at most ε1/3M vertices of A or B will not be

typical with respect to such subsets as we require. On the other hand, a parent

vertex whose child should be a root in A will be typical with respect to A, and

thus have at least dM/2 available neighbours in A, and thus at least dM/3 available

and typical neighbours. Thus we will always have appropriate unused neighbours

remaining. By an identical argument, the same is true for roots to be embedded

into B. Thus we will be able to perform any embedding of roots greedily, and we

need only concentrate on the embedding of the remainder of F . From now on, and

for the rest of the chapter, we will assume implicitly that the roots of F can always

be embedded appropriately.

Let R = {r1, . . . , rt} denote the set of roots of F . We now define Leveli(F ), for

any integer i ≥ 0, to be the set of vertices at distance i from a root in F . Thus

Level0(F ) is exactly R, Level1(F ) = NF (R) etc.

3.5.4 Proof of Theorems 3.8 and 3.9

As mentioned before, most of the proofs of Theorems 3.8 and 3.9 will be presented

together. It is only at the end of the argument, when the two proofs become signif-

icantly different, that we distinguish between them.

Let us first observe that under the conditions of Theorems 3.8 and 3.9, S :=

V (G′)\L contains few edges. To see this we will give the argument under the condi-

tions of Theorem 3.8; the other case is similar. For observe that since

e(V (G′), V (G)\V (G′)) ≤ α2
2k

2, at most α2k vertices in V (G′) have at least α2k

neighbours in V (G)\V (G′), and so at most α2k vertices lie both in L(G) and in S.
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Thus e(S) ≤ α2kn ≤ √
α2k

2. But then, since G′ does not satisfy EC(α1), even if we

remove all edges within S, G′ does not satisfy EC(α1 −
√

α2). Since α2 ≪ α1 the

√
α2 error term will not affect calculations significantly, and so we will assume that

S is an independent set. We will find it convenient to prove Theorems 3.8 and 3.9

by contradiction. Thus we assume that we have some fixed tree T ∈ Tk such that

T * G. From this assumption we will go on to prove certain properties that the

tree T and the graph G must satisfy, and eventually derive a contradiction.

We begin with a claim which corresponds to Claim 5.14 in [72]. Recall that the

ratio of a tree T ′ is defined to be ratio(T ′) := |T ′
odd|/|T ′|. Let ξ := 12c and let

F 2 := {T ′ ∈ F : c < ratio(T ′) < 1 − c}. In other words, F 2 is the set of balanced

trees in F .

Claim 3.14 |V (F 2)| > ck.

Proof. Suppose |V (F 2)| ≤ ck. Let F 1 := F − F 2 = {T ′ ∈ F : ratio(T ) /∈

(c, 1 − c)}. Then |V (F 1)| ≥ (1 − c)k.

For each T ′ ∈ F 1, either |T ′
odd| − |T ′

even| ≥ (1 − 2c)|T ′| or |T ′
odd| − |T ′

even| ≤

−(1 − 2c)|T ′|. In either case by Fact 3.12 T ′ contains at least (1 − 2c)|T ′| leaves.

Thus F 1 contains at least (1 − 2c)(1 − c)k = (1− 3c)k + 2c2k leaves. Now by (3.1),

F contains at most f(ε) trees, so F has at most 2f(ε) more leaves than T . Since

2c2k > 2f(ε) + 1, T contains at least (1 − 3c)k + 1 leaves, and at most 3ck = ξk/4

non-leaf vertices.

Since in both Theorems we have 1/k ≪ α2 ≪ ν we may apply Lemma 3.11 to

G′ with ν ′′ = α2. Thus we may assume that SC does not hold in G′, and observing

that ν > Cξ, we have e(L) ≥ νk2 > ξCk2, and so d(G′[L]) ≥ 2ξk. Therefore there

is an induced subgraph G∗ of G′ with V (G∗) ⊆ L and with δ(G∗) ≥ ξk. We can

embed the non-leaf vertices of T into G∗ greedily, and since each vertex embedded is

large in G, we can embed the leaves greedily, proving that T ⊆ G, which contradicts
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our initial assumption. �

Claim 3.14 states that a reasonable proportion of the vertices of F are contained

in balanced trees.

Let us now consider some properties of the reduced graph H . Let

L := {A ∈ V (H) : |A ∩ L| ≥
√

dM}.

From our comments immediately after the statement of the regularity lemma, all

vertices in L still have degree at least (1 − 2d)k in G′′. Thus any cluster A of L

contains at least
√

dM/2 typical (with respect to V (H) − A) vertices of degree at

least (1 − 2d)k in G′′. We pick one such vertex, x. Then for all but
√

εN clusters

B ∈ V (H) − A we have dH(A, B) ≥ dG′′(x, B) − εM , and therefore the weighted

degree of A in H is

dH(A) ≥ dG′′(x) − (εM)N − (
√

εN)M

≥ (1 − 2d)k − 2
√

εn′

≥ (1 − 3d)k.

In other words, the vertices of L are in some sense large in H (or equivalently are

large clusters in G′′). It is also easy to see that at least (1 − 2α2)N/2 vertices of H

are in L, for otherwise

|L| ≤ (1 − 2α2)MN/2 +
√

dMN + εn′

< (1 − α2)n
′/2

which is a contradiction. For the proof of Theorem 3.9 a similar calculation shows

that in this case |L| ≥ (1+
√

ν ′)N/2. Finally, a cluster A /∈ L has at most
√

dM large
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vertices, and so most of its vertices will have degree less than k in G (and therefore

also in G′). We therefore have at least M/2 typical (with respect to V (H) − A)

vertices in A of degree less than k in G′, and so dH(A) ≤ k + (εM)N + (
√

εN)M ≤

(1 + d)k.

We note here that when we embed the roots of the forest F , we will embed them

onto vertices of A and B which are not only typical with respect to V (H)\{A, B},

but also typical with respect to the sets of large vertices in clusters of L. More

precisely, for Vi ∈ L, let Li := L ∩ Vi. Then let B := {Li : Vi ∈ L}. We will

demand that roots of F are embedded onto vertices of A and B which are typical

with respect to B. Since |Li| ≥
√

dM for each Vi ∈ L, as observed in Section 3.5.1,

almost all vertices of A and B are typical with respect to B, and so making this

restriction will not affect calculations significantly.

Let S := V (H)\L. Note that two clusters A and B of S each have subsets A′, B′

of size greater than M/2 which consist entirely of vertices from S, and so have no

edges between them. Thus dG′′(A′, B′) = 0, and therefore dG′′(A, B) = 0, which

means that A and B are non-adjacent in H . Thus S is an independent set in H .

Note also that if there is a set S ′ ⊆ S of size at least k/(3M) such that |NH(S ′)| ≤

7|S ′|/20, then the small vertices in the clusters of S ′ give a set S ′ of size at least

(M −
√

dM)|S ′| ≥ k/4 such that the neighbourhood of S ′ in G′′ is contained in the

clusters belonging to NH(S ′) together with the large vertices of S ′. Thus |NG′′(S ′)| ≤

7M |S ′|/20 +
√

dM |S ′|+ |V0| ≤ 2|S ′|/5. This gives us a set L′ ⊆ L, and for the proof

of Theorem 3.8 we have

eG(S ′, L\L′) = eG′(S ′, L\L′) ≤ d|S ′||L\L′| ≤ dn2 ≤ τk2

which leads us as before to the conditions of Theorem 3.3. Thus unless we are in

the case when L is substantially larger than n′/2, i.e. in the proof of Theorem 3.9,
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we may assume that no such set S ′ exists.

Using these properties of L and S we will find an appropriate structure in H

into which we will be able to embed T .

We will make use of the Gallai-Edmonds decomposition (see for example [22]).

We say that a graph G∗ is 1-factor-critical if for any x ∈ V (G∗), G∗−x has a perfect

matching.

Theorem 3.15 Every graph H contains a set U ⊆ V (H) such that each component

of H −U is 1-factor-critical, and such that there is a matching which covers U and

which matches the vertices of U to different components of H − U . �

Using this theorem, we obtain the following lemma which will give us the ap-

propriate structure in H . The lemma and its proof are very similar to Lemma 7

in [61].

Lemma 3.16 (Structure Lemma) Let H be a weighted graph on N vertices, in

which d(A, B) ≤ M for all pairs of distinct vertices (A, B). Let k ∈ N, and let

d, α2, η, ν′ be positive real numbers satisfying 0 < d ≪ α2 ≪ η ≪ ν ′ ≪ k/(MN).

Suppose there is a set L ⊆ V (H) such that

• for all x ∈ L, d(x) ≥ (1 − 3d)k

• for all x /∈ L,d(x) ≤ (1 + d)k

• |L| ≥ (1 − 2α2)N/2

• S = V (H)\L is independent

• e(L) > 0.

Then there are two adjacent vertices A, B ∈ L and a matching M in H such that

one of the following holds:
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1. M covers N(A) ∪ N(B) except for at most 5α2N vertices.

2. M covers N(A) and dL∪M(B) ≥ (1 − η)k/2. Moreover, each edge in M has at

most one endvertex in N(A). Furthermore, if in fact |L| ≥ (1 +
√

ν ′)N/2, then we

even have dL∪M(B) ≥ (1 + ν ′)k/2.

The “furthermore” in case 2 will allow us to prove Theorem 3.9, and therefore

also Theorem 3.3. Because the additional assumption in this case gives us a strictly

stronger condition in the conclusion, for most of the proof of Theorems 3.8 and 3.9

we will ignore it and use only the weaker bound for case 2. This will allow us to go

through both proofs together. We will use the stronger bound only towards the end

of the proof, when we need to distinguish the proofs of Theorems 3.8 and 3.9.

Proof. We apply Theorem 3.15 to (the unweighted version of) H to find a set U

and a matching M′. We fix U and choose M′ to contain the maximal number of

vertices of S. Let M consist of M′ together with a maximal matching of V (H)−M′.

Now let L′ := L\U . If there are adjacent vertices A, B ∈ L′, then they are in the

same component of H − U , and since this component is 1-factor-critical, at most

one vertex of it is not covered by M. Since all of U is covered by M, at most one

vertex of N(A) ∪ N(B) is not covered by M, so Case 1 holds.

We may therefore assume that L′ is independent. Since S\U is also independent,

every component of H − U is bipartite. But then since every component is also 1-

factor-critical, each component is in fact a single vertex, and we have M = M′.

Now let L∗ := N(L′) ∩ L ⊆ U . Suppose first that L∗ = ∅. Then either L′ = ∅,

in which case U = L (and so |U | ≥ (1 − 2α2)N/2) 1, or else for every A ∈ L′,

N(A) ⊆ U ∩ S. (See Figure 3.3.)

1Note that U ∩S = ∅, for otherwise, M′ would match each vertex A ∈ U ∩S to a vertex outside
U . But vertices outside U are also in S, and S is independent, which is a contradiction.
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Figure 3.3: The structure of H .

In this latter case e(L′, U ∩S) ≥ (1−3d)k|L′| and e(U ∩S,L′) ≤ (1+d)k|U∩S|.

Combining the two gives |L′| ≤ 1+d
1−3d

|U ∩ S|. Thus

|L′| − |U ∩ S| ≤
(

1 + d

1 − 3d
− 1

)

|U ∩ S| ≤ 4d

1 − 3d
N ≤ 5dN.

Also |S| − |L| ≤ 4α2N , and thus

|S\U | − |L ∩ U | = |S| − |L| + |L′| − |U ∩ S| ≤ 4α2N + 5dN ≤ 5α2N.

In both cases we have L∩U matched with S\U , and any vertices of N(L) uncovered

by M are in S\U . Since |S\U | − |L ∩ U | ≤ 5α2N , at most 5α2N vertices in N(L)

are uncovered. Since e(L) > 0 by assumption, L ∩ U contains an edge AB and the

end-vertices A and B together with the matching M will satisfy Case 1.

Therefore we may assume that L∗ 6= ∅. Let X := S\V (M). Now if there exists
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B ∈ L∗ such that dH−X(B) ≥ (1 − η)k/2, then B together with any neighbour

A ∈ L′ satisfy Case 2 without the “furthermore” part, which will be proved at the

end.

So we assume that dH−X(B) < (1 − η)k/2 for every B ∈ L∗. So dX(B) ≥

(1 + η − 3d)k/2 for all B ∈ L∗, and therefore

e(L∗, X) ≥ (1 + η − 3d)(k/2)|L∗|.

On the other hand

e(X,L∗) ≤ (1 + d)k|X|

and thus |L∗| ≤ 2(1+d)
1+η−3d

|X|.

Let U ′ := U ∩ S. Then e(L∗ ∪ U ′,L′) < (1 − η)k|L∗|/2 + (1 + d)k|U ′|. But for

all A ∈ L′, dL∗∪U ′(A) = dH(A) ≥ (1 − 3d)k. So

e(L′,L∗ ∪ U ′) ≥ (1 − 3d)k|L′|.

Thus |L′| < 1−η
1−3d

|L∗|
2

+ 1+d
1−3d

|U ′|.

S is an independent set, and so M matches U ′ ⊆ S to L′. Thus |L′| ≥ |U ′| +

|L\M|. Therefore

|U ′| + |L\M| ≤ 1 − η

1 − 3d

|L∗|
2

+
1 + d

1 − 3d
|U ′| ≤ 1 − η

1 − 3d

1 + d

1 + η − 3d
|X| +

1 + d

1 − 3d
|U ′|.

So

|L\M| ≤ 1 + d

(1 + η − 3d)(1 − 3d)
(1 − η)|X| +

4d

1 − 3d
|U ′| ≤ (1 − η)|X| + 5d|S ∩M|,
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which we express as

|L| − |L ∩M| ≤ (1 − η)(|S| − |S ∩M|) + 5d|S ∩M|.

Thus

|L ∩M| − |S ∩M| ≥ |L| − (1 − η)|S| − 5d|S ∩M| − η|S ∩M|

≥ |L| − (1 − η2)|S|.

To see the last line, observe that |S| − |S ∩M| = |X| ≥ dX(B)/M ≥ k/(2M) for

B ∈ L∗. Thus |S| − |S ∩M| ≥ 2ηN ≥ 2η|S|.

Now since |L| ≥ (1 − 2α2)N/2 and |S| ≤ (1 + 2α2)N/2, we have |S| ≤ 1+2α2

1−2α2
|L|.

So

|L ∩M| − |S ∩M| ≥ |L| − (1 − η2)
1 + 2α2

1 − 2α2

|L| > 0.

Thus M must contain two adjacent vertices of L, A and B say. Assume without

loss of generality that A ∈ L′, B ∈ L∗. Now B has a neighbour D ∈ X. But then

replacing AB with BD in M gives a matching covering more vertices of S than

M = M′ does, contradicting the choice of M′.

To see the “furthermore” in case 2, suppose that |L| ≥ (1+
√

ν ′)N/2, and suppose

that dH−X(B) < (1 + ν ′)k/2 for every B ∈ L∗ (otherwise the conditions would be

satisfied immediately). The argument is similar to the previous argument in the

case when L∗ 6= ∅, and we simply alter the calculations from that case.

Let X = S\V (M) and let U ′ = U ∩ S be defined as before. We have dX(B) ≥

(1 − ν ′ − 3d)k/2 for all B ∈ L∗, and therefore

e(L∗, X) ≥ (1 − ν ′ − 3d)(k/2)|L∗|.
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On the other hand

e(X,L∗) ≤ (1 + d)k|X|

and thus |L∗| ≤ 2(1+d)
1−ν′−3d

|X|.

Now e(L∗∪U ′,L′) < (1+ν ′)k|L∗|/2+(1+d)k|U ′|. But for all A ∈ L′, dL∗∪U ′(A) =

dH(A) ≥ (1 − 3d)k, and so

e(L′,L∗ ∪ U ′) ≥ (1 − 3d)k|L′|.

Thus |L′| < 1+ν′

1−3d
|L∗|
2

+ 1+d
1−3d

|U ′|.

S is an independent set, and so M matches U ′ ⊆ S to L′. Thus |L′| ≥ |U ′| +

|L\M|. Therefore

|U ′| + |L\M| ≤ 1 + ν ′

1 − 3d

|L∗|
2

+
1 + d

1 − 3d
|U ′| ≤ 1 + ν ′

1 − ν ′ − 3d

1 + d

1 − 3d
|X| +

1 + d

1 − 3d
|U ′|.

So

|L\M| ≤ 1 + ν ′

1 − ν ′ − 3d

1 + d

1 − 3d
|X| +

4d

1 − 3d
|U ′| ≤ (1 + 3ν ′)|X| + 5d||S ∩M|,

which we express as

|L| − |L ∩M| ≤ (1 + 3ν ′)(|S| − |S ∩M|) + 5d|S ∩M|.

Thus

||L ∩M| − |S ∩M| ≥ |L| − (1 + 3ν ′)|S| − 5d|S ∩M| + 3ν ′|S ∩M|

≥ |L| − (1 +
√

ν ′)|S|.
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Now since |L| ≥ (1 +
√

ν ′)N/2 we have |L| − |S| ≥
√

ν ′N >
√

ν ′|S|, and so

|L ∩M| − |S ∩M| > 0.

Thus M must contain two adjacent vertices of L, A and B say. Assume without

loss of generality that A ∈ L′, B ∈ L∗. Now B has a neighbour D ∈ X. But

then replacing AB with BD in M gives a matching covering more vertices of S

than M = M′ does, contradicting the choice of M′. This therefore completes the

proof of the “furthermore” part of case 2, and therefore also completes the proof of

Lemma 3.16. �

We now make a remark based on the proof of Lemma 3.16 which will be required

later on. We define M2(A) to be the set of edges of M with both end-vertices lying

in N(A).

Remark 3.17 Case 1 can arise in one of three ways:

• A: If L′ is not independent, then A lies in some component of H − U and

at most one vertex of this component is uncovered by M. Furthermore at

most one vertex lying in M2(A) does not lie in the same component as A. In

particular, all but at most one of the large vertices of M2(A) could be used as

a vertex for B.

• B: If L′ is independent and L∗ = ∅, then the conclusion of A holds.

• C: If L′ is independent and L∗ = ∅, then |M| ≥ (1/2 − 10α2)N and any two

adjacent clusters of L can play the same roles as A and B.

Lemma 3.16 gives us two possible cases. We will deal with these cases separately.
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3.5.5 Case 1

We now have adjacent clusters A and B and a cluster matching M in G′′ − {A, B}

satisfying

dM(A),dM(B) ≥ (1 − 3d)k − 5α2NM − 4M ≥ (1 − η)k

(the −4M term appears because we may have to delete edges from M incident to A

and B), and furthermore A, B ∈ L, so they contain many vertices of L. The proof

in this case will be very similar to the proof in [72] for k = n/2. We will assume

that dM(A) = dM(B) = (1 − η)k.1

Recall that we split our tree T into εM-trees to obtain forests Fa, Fb, and

parent vertices p1, . . . , pt (not necessarily distinct) where t ≤ f(ε) ≪ M . Let

fa := |Fa|, fb := |Fb| and recall that we assume without loss of generality that

fa ≥ fb. Since fa + fb ≤ k + 1, fb ≤ (k + 1)/2.

We quote two important embedding results from [72]. The first is a simple

consequence of Corollary 5.7 and Lemma 5.9 Part 1 in that paper, while the second

appears as Lemma 5.11.

Lemma 3.18 Let A and B be two adjacent clusters in H. If there are disjoint

cluster matchings Ma and Mb in H − {A, B} such that

fa ≤ d(A,Ma) − 5
√

εn and fb ≤ d(B,Mb) − 5
√

εn (3.2)

then T can be embedded with Fa → A ∪Ma, Fb → B ∪Mb. �

1We can ensure that (1−η)k ≤ dM(A),dM(B) ≤ (1−η)k+M simply by deleting some regular
bipartite graphs between A or B and V (M). Since M is comparatively small, the error term will
not affect calculations significantly.
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Lemma 3.19 Let A and B be two adjacent clusters, and let M be a cluster match-

ing in H − {A, B}. If a tree T satisfies

|T | ≤ min{d(A,M),d(B,M)} − 12
√

εn

then T → {A, B} ∪M. �

Using Lemma 3.19 we can embed into A ∪ B ∪ M a subtree T ′ of T of size

(1 − 2η)k. Our aim now is to show that we can do slightly better than this, and

embed the whole tree T .

Roughly speaking, Lemma 3.19 is proved from Lemma 3.18 in [72] simply by

splitting the matching M into Ma and Mb, where an edge e of M will generally

be placed into Ma if A has a greater neighbourhood within this edge than B, i.e.

if de(A) ≥ de(B). (Here de(A) = d(A, X) + d(A, Y ), where e = XY .) Using this

construction, we only lose in N(B) at most what we need in N(A), and in particular

d(B,Mb) = d(B,M) − d(B,Ma) is almost large enough to embed Fb.

However, if de(B) is substantially less than de(A), then we do not lose as much

as we assumed. If this happens in many edges, then we may gain enough room to

embed Fb. This is formalised in the following claim (c.f. Claim 5.15 in [72]).

Claim 3.20 If fb > η1/3k, then
∑

e∈M |d(A, e) − d(B, e)| < η1/3k.

Proof. Suppose not. We will partition M into Ma and Mb such that (3.2) holds.

Then by Lemma 3.18, T → G which is a contradiction. We define

M1 := {e ∈ M : d(A, e) ≥ d(B, e)};

M2 := M−M1;

a(i) := d(A,Mi) for i = 1, 2;

b(i) := d(B,Mi) for i = 1, 2.

107



Since a(1) + a(2) = b(1) + b(2) = (1 − η)k, we have that

a(1) − b(1) = b(2) − a(2) =
1

2

∑

e∈M

|d(A, e) − d(B, e)| ≥ η1/3k/2.

Without loss of generality1 we assume that a(1) ≤ b(2). Then

b(2) − b(1) = (b(2) − a(1)) + (a(1) − b(1)) ≥ 0 + η1/3k/2.

Also b(2) + b(1) = (1 − η)k, and so

b(2) ≥ 1

2
((1 − η)k + η1/3k/2) ≥ fb + 5

√
εn

where the second inequality follows since fb ≤ (k+1)/2. Now there exists Mb ⊆ M2

such that

fb + 5
√

εn ≤ d(B,Mb) ≤ fb + 5
√

εn + 2M

and furthermore

d(B,Mb) − d(A,Mb)

d(B,Mb)
≥ d(B,M2) − d(A,M2)

d(B,M2)
≥ η1/3k

2b(2)
.

This is because we can order the edges of M2 as e1, e2, . . . , es in such a way that,

setting ai := d(B, ei) − d(A, ei) and bi := d(B, ei) we have ai/bi ≥ ai+1/bi+1 for

1 ≤ i ≤ s − 1. Then for any s′ ≤ s we have
∑s′

i=1 ai
∑s′

i=1 bi
≥

∑s
i=1 ai

∑s
i=1 bi

. We then simply pick

s′ to be minimum such that
∑s′

i=1 bi = d(B,Mb) ≥ fb + 5
√

εn.

1Strictly speaking this is not completely without loss of generality, because edges to which A
and B had the same density were put into M1. However, such edges do not affect the relevant
calculations.
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Now Mb certainly satisfies (3.2). Also

d(B,Mb) − d(A,Mb) ≥ d(B,Mb)
η1/3k

2b(2)
> fb

η1/3k

2k
> η2/3k/2.

Now let Ma := M−Mb. Then

d(A,Ma) = d(A,M) − d(A,Mb)

= d(A,M) + (d(B,Mb) − d(A,Mb)) − d(B,Mb)

≥ (1 − η)k + η2/3k/2 − (fb + 5
√

εn + 2M)

≥ fa + 5
√

εn.

Thus Ma and Mb satisfy (3.2), as required. �

Corollary 3.21 If fb ≥ η1/3k, then except for at most η1/6k/M edges, all edges in

M satisfy |d(A, e) − d(B, e)| < η1/6M . �

We now define a new constant β such that η ≪ β ≪ α1. The following claim (c.f.

Claim 5.16 in [72]) is the crucial point of the argument. It says that if somewhere

within the matching we can embed slightly more of the forest F than we expected

to, then we gain enough room that we can embed the rest of F into the rest of the

matching.

Claim 3.22 Let M0 ⊆ M be a matching of size at most k/(4M). Suppose that

we have a subforest F̃a ⊆ Fa with |F̃a| ≥ d(A,M0) + βk, and suppose that for any

embedding of Root(F̃a), the set of roots of F̃a, to vertices of A typical with respect to

M0, we can extend this to an embedding of F̃a into M0 ∪ (V (H)\(M∪ B)). Then

T → G. The corresponding result holds for a subforest F̃b ⊆ Fb.
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Since both the result and the proof are essentially the same as the corresponding

claim and proof in [72] we will only give an outline of the proof here.

We will partition M into Ma and Mb in such a way that M0 ⊆ Ma,

d(A,Ma\M0) will be slightly greater than |Fa\F̃a|, and d(B,Mb) will be slightly

greater than fb. The fact that |F̃a| is greater than d(A,M0), together with Corol-

lary 3.21, will ensure that we can find such Ma\M0 and Mb. These will then satisfy

Lemma 3.18, and so we can embed T\F̃a into Ma\M0 and Mb using this lemma.

In the case when fb < η1/3k we must be slightly more careful because Corol-

lary 3.21 does not apply. However, in this case fb is small enough that we can find

any appropriate Mb similarly to the method in the proof of Claim 3.20, and remov-

ing this Mb will not subtract too much from d(A,M), and so we will still be able

to embed Fa\F̃a into Ma\(M0 ∪Mb) as required.

From now on we will assume that such M0 and F̃a or F̃b do not exist. Note

also that when we perform our embedding, we can embed R = Root(F ) into large

typical vertices of A and B, and so any adjacent leaf can be embedded greedily at

the end. So apart from at most t parent vertices, we may assume that all vertices in

Level1(F ) have at least one child. Thus almost every tree in F\R contains at least

two vertices.

We now define some notation. Suppose that we have a graph H ′ which we want

to embed into G′′. Suppose that we also have an assignment of the vertices of H ′

to clusters of the reduced graph H , i.e. for each vertex of H ′ we have already

determined into which cluster we would like to embed it. We say H ′ q−→ G′′ if there

is an embedding algorithm which embeds H ′ into G′′ one vertex at a time, which

respects the pre-determined assignment, and in which we always have at least q

choices in G′′ for where to embed each vertex of H ′. We also write H ′ −q−→ G′′ if

such an embedding exists in which for each vertex of H ′ we can pick all but q of
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the vertices in the appropriate cluster of G′′ which have not yet been used in the

embedding. More generally for a subset S ⊆ V (G′′), we write H ′ q−→ S to mean

H ′ q−→ G′′[S], and similarly for H ′ −q−→ S.

Let ε′ be a new constant such that ε ≪ ε′ ≪ δ. We quote another result from [72]

(c.f. Lemma 5.3 in that paper). In fact, Part 1 was proved in [3].

Lemma 3.23 Let (X, Y ) be an ε-regular pair with |X| = |Y | = M and d(X, Y )

≥ d. Let A be a third cluster and let dx := d(A, X), dy := d(A, Y ). Let F be an

ordered forest consisting of εM-trees, and with at most εM roots.

1. If |F | ≤ (dx +dy−ε′)M , then there is an embedding algorithm with x
−2εM−|R|−→

A for x ∈ R = Root(F ) and x
εM+1−→ X ∪ Y for x /∈ R.

2. Suppose furthermore that every tree in F has ratio between c and 1 − c for

some 0 < c ≤ 1/2 and that dx ≤ dy. Then the conclusion of 1 holds provided

|F | ≤ (2dx − ε′)M + 1
1−c

(dy − dx)M .

3. Suppose that for some 0 ≤ λ ≤ 1/2 we have λ ≤ dx, dy ≤ (1 − λ), and that

every tree in F − Root(F ) contains at least 2 vertices. Then the conclusion of 1

holds provided that |F | ≤ (dx + dy + λ − ε′)M . �

Note that |F | denotes the number of vertices in F , and not the number of trees.

Note also that since t ≤ f(ε) ≪ M , F does indeed have at most εM roots. For

part 2, observe that 1
1−c

(dy − dx) + 2dx − ε′ ≥ dx + dy + c(dy − dx) − ε′. We also

observe that since F consists of εM-trees, we can find a subforest F ′ such that

(dx + dy + c(dy − dx) − ε′ − ε)M ≤ |F ′| ≤ (dx + dy + c(dy − dx) − ε′)M.

Therefore provided we can find F ′ such that it also consists of balanced trees, then

by Lemma 3.23 part 2 we will be able to embed a subforest of size at least (dx +

dy + c(dy − dx) − ε′ − ε)M .
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We define M1 = M1(A) := {(X, Y ) ∈ M : dG′′(A, X) ∈ [β1/3, 1 − β1/3] or

dG′′(A, Y ) ∈ [β1/3, 1−β1/3]}. The following result roughly corresponds to Claim 5.18

in [72].

Claim 3.24 |M1| < 2
√

βk/M .

Proof. Suppose |M1| ≥ 2
√

βk/M . Let M0 ⊆ M1 be a matching of size 2
√

βk/M .

Now for almost every edge e = (X, Y ) ∈ M0 we can apply Lemma 3.23 to embed

a subforest of Fa\R as large as possible. We assume without loss of generality that

dx := dG′′(A, X) ≤ dG′′(A, Y ) =: dy. Recall that by Claim 3.14 |V (F 2)| ≥ ck.

Therefore we also assume that |Fa ∩ F 2| ≥ ck/2. We may do this without loss of

generality here because we will not need the fact that |Fa| ≥ |Fb|.

If dy − dx > β1/3/2, we will apply Lemma 3.23 Part 2. We therefore set

ℓ := dx + dy + c(dy − dx) − ε′ ≥ de(A)/M + cβ1/3/2 − ε′ ≥ de(A)/M +
√

β.

Otherwise note that β1/3/2 ≤ dx ≤ dy ≤ 1 − β1/3/2, and we will apply

Lemma 3.23 Part 3 with λ = β1/3/2. In this case we set

ℓ := dx + dy + β1/3/2 − ε′ ≥ de(A)/M +
√

β.

In either case we can find a subforest Fe (which consists of trees in Fa, i.e. we

do not split up the trees of Fa) of size ℓM − εM ≤ |Fe| ≤ ℓM , and so |Fe| ≥

de(A) + 2
√

βM/3. For the former case we also choose Fe from trees of Fa ∩F 2, and

then we can apply the appropriate part of Lemma 3.23 to embed Fe into A∪ e. We

can do this in all but at most
√

ε|M0| edges if Root(F ) is mapped to large vertices

in A which are typical with respect to M0. Then in total we have embedded a union
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of subforests F̃a with

|F̃a| ≥ d(A,M0) + |M0|(2
√

βM/3) − 2M
√

ε|M0|

≥ d(A,M0) + (2
√

βk/M)(2
√

βM/3) − (2M
√

ε)(2
√

βk/M)

= d(A,M0) + 4βk/3 − 4
√

εβk

≥ d(A,M0) + βk.

So M0 and F̃a satisfy the conditions of Claim 3.22, which contradicts our assumption

that no such M0 and F̃a exist. �

Similarly we define M2 = M2(A) := {(X, Y ) ∈ M\M1 : dG′′(A, X) < β1/3 and

dG′′(A, Y ) > (1 − β1/3)}.

Claim 3.25 |M2| <
√

βk/M .

Proof. Suppose instead that there is some M0 ⊆ M2 of size
√

βk/M . Recall

that F 2 = {T ∈ F : Ratio(T ) ∈ [c, 1 − c]}, and that by Claim 3.14, |V (F 2)| ≥ ck.

Let F 2
a := F 2 ∩ Fa and F 2

b := F 2 ∩ Fb. We will assume that |F 2
a | ≥ ck/2; the other

case (when |F 2
b | ≥ ck/2) is similar. Suppose Root(Fa) has been mapped into large

vertices of A typical with respect to M0. For all but at most
√

ε|M0| edges e ∈ M0

we can apply Lemma 3.23 Part 2 to embed at least

d(A, e) + c(dy − dx)M − ε′M − εM ≥ d(A, e) + cM/2

vertices of F 2
a into e. Thus in M0 we embed a forest F̃a of size

|F̃a| ≥ d(A,M0) + |M0|cM/2 − 2M
√

ε|M0|

≥ d(A,M0) + (c/2)
√

βk − 2
√

εβk

≥ d(A,M0) + βk.
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So M0 and F̃a satisfy the conditions of Claim 3.22, which is a contradiction once

again. �

We now define M3 = M3(A) := {e ∈ M\(M1 ∪M2) : d(A, e) < 2β1/3M} and

set M′ := M−M1 −M2 −M3, i.e.

M′ = {(X, Y ) ∈ M : dG′′(A, X), dG′′(A, Y ) > 1 − β1/3}.

By Claims 3.24 and 3.25, |M1| + |M2| ≤ 3
√

βk/M , and since A has low degree to

vertices in M3, M′ carries most of the weight of d(A). More precisely, note that by

the definition of M3, d(A,M3) < β1/3MN . Thus

d(A,M′) > (1 − η)k − 3
√

β(k/M)2M − β1/3MN > (1 − β2/7)k

and so |M′| > (1 − β2/7)k/(2M). Furthermore since for any edge e = (X, Y ) ∈ M′

we have d(A, X),d(A, Y ) ≥ (1 − β1/3)M , we also have

(2 − 2β1/3)M |M′| ≤ d(A,M′) = (1 − η)k

and so

|M′| ≤ 1 − η

1 − β1/3

k

2M
≤ (1 + β2/7)k/(2M).

Recall that M2(A) = {(X, Y ) ∈ M : X, Y ∈ N(A)}. Thus M′ ⊆ M2(A). For

any real number α ∈ [0, 1], let Nα(J) := {X ∈ V (H) : d(J, X) ≥ α}.

Remark 3.26 If two clusters J and K can play the same roles as A and B, then

all but at most 3
√

βk/M vertices of Nβ1/3(J) in M are contained in M2(J).

This is because we can simply follow all of the above arguments with A and

B replaced by J and K. We obtain sets M1(J), M2(J) and M3(J), but observe
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that M3(J) ∩ Nβ1/3(J) = ∅. Then every edge of M which contains a vertex of

Nβ1/3(J) but does not lie in M2(J) must lie in M1(J) ∪M2(J). But we also have

|M1(J)| + |M2(J)| ≤ 3
√

βk/M as required.

Now if fb ≥ η1/3k, then we let Min = Min(A, B) := {e = (X, Y ) ∈ M′ :

|d(A, e) − d(B, e)| ≤ βM} and Mout := M−Min. Let V1 := V (Min) and V2 :=

V (H) − V1. By Corollary 3.21,

d(A,Min) ≥ d(A,M′) − 2Mη1/6k/M ≥ (1 − 2β2/7)k

and so |V1| ≥ (1 − 2β2/7)k/M . Also

d(B,Min) ≥ d(A,M′) − 2Mη1/6k/M − βMN ≥ (1 − 2β2/7)k.

On the other hand, if fb < η1/3k, then we observe that since we are in Case 1,

we could without loss of generality have switched A and B at the start of the

argument. Then we would have obtained a submatching M′(B) ⊆ M of size at

least (1−β2/7)k/M . We pick a further submatching M0 ⊆ M′(B) of size η1/3k/M .

Then

d(B,M0) ≥ (2 − 2β1/3)Mη1/3k/M ≥ η1/3k + 5
√

εn ≥ fb + 5
√

εn.

Therefore we can embed Fb into B ∪ M0 by Lemma 3.18. We now set Min =

Min(A) := M′(A)\M0. Note that

d(A,Min) ≥ (1 − β1/3)k − 2M |M0| ≥ (1 − 2β2/7)k.

As before we set Mout := M−Min and V1 := V (Min), V2 := V (H) −V1. Thus in
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either case we have |V1| ≥ (1 − 2β2/7)k/M , and

d(A,Min) ≥ (1 − 2β2/7)k. (3.3)

In the first case we also have

d(B,Min) ≥ (1 − 2β2/7)k. (3.4)

In the second case we have already embedded Fb outside Min. In order to go

through the proof of both cases together, we will sometimes refer to embedding

some subforest F0 ⊆ F in Min. It should be understood that some of these vertices

may already have been embedded outside Min in the case when Fb is small, and we

do not attempt to rearrange this embedding. Rather, we embed only F0\Fb in Min.

In both cases we also have |V1| ≤ 2|M′| ≤ (1 + β2/7)k/M . We define a new

constant ρ such that β ≪ ρ ≪ α1. Recall that α1 is the constant used in EC (i.e.

we assume that EC(α1) does not hold).

We first remove all edges between regular pairs which run between V1 and V2 with

density less than β1/3, and denote by H ′ the (unweighted) graph which we obtain

from H by deleting the corresponding edges. Let Wi denote the set of vertices of G

contained in the clusters of Vi for i = 1, 2 (and we also put V0 into W2). Suppose
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first that eH′(V1,V2) ≤ ρ(k/M)2. Then

eG(W1, W2) ≤ eG′′(W1, W2\V0) + εn2 + |V0|n

≤
∑

X∈V1,Y ∈V2

dH(X, Y )M2 + 2εn2

≤ eH′(V1,V2)M
2 + β1/3M2|V1||V2| + 2εn2

< ρk2 + β1/3M2N2 + 2εn2

< (ρ + β1/4)k2.

So eG(W1, W2) < 2ρk2, and even after moving a few vertices to ensure that |W1| = k,

we have eG(W1, W2) < 3ρk2 < α1k
2. But this would imply that EC(α1) holds, which

is a contradiction. Thus we may assume that eH′(V1,V2) > ρ(k/M)2.

We need to quote one more result from [72] (c.f. Lemma 5.8 part 2 in that

paper). We call a forest consisting of εM-trees an εM-forest.

Lemma 3.27 Given a cluster matching M, a cluster set C outside V (M) and a

cluster A /∈ V (M) ∪ C, let δ1 := minC∈C |{(X, Y ) ∈ M : d(C, X) > 0 or d(C, Y ) >

0}|.

If F is an εM-forest with |V (F )| ≤ (1 − ε′)δ1M and |Level1(F )| ≤ d(A, C) −

2
√

εM |C|, then F can be embedded (in any order of the trees) into A ∪ C ∪M with

Root(F ) → A and Level1(F ) → C. �

Note that the result in [72] actually requires δ′1 := minC∈C |{(X, Y ) ∈ M : d(C, X) >

0 and d(C, Y ) > 0}|. However, the proof in that paper does not use this stronger

assumption, and we require the result in the stated form.

We define F3 := {T ∈ Fa\Root(Fa) : |V (T )| ≥ 3}. The following claim corre-

sponds to Claim 5.19 in [72].

Claim 3.28 |F3| < 16
√

βk.
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Proof. Suppose instead that |F3| ≥ 16
√

βk. Now since eH′(V1,V2) > ρ(k/M)2 >

24
√

βN2, V1 contains at least 8
√

βN clusters which have at least 16
√

βN neighbours

in V2.

We now claim that there is a set of at least 7
√

βN clusters in V1 which have

at least 14
√

βN neighbours in Mout. This comes from any of the three cases in

Remark 3.17.

In case C of that remark, when M covers all but at most 10α2N vertices of

H , this is trivial, since each one of the 8
√

βN vertices we have already chosen has

at least 16
√

βN neighbours in V2, at most 10α2N of which are not covered by M .

(Recall that α2 ≪ β.)

In cases A and B we need to be a bit more careful. However, we observe that

each of our 8
√

βN clusters lies in V (M2(A)), and so all but at most one of them

lies in the same component as A. Therefore for all but one of these clusters, all but

one of its neighbours lies in M, and the result follows.

From the set of at least 7
√

βN clusters, we pick a set of 3βN clusters which

lie in different edges of M, and we call this set C. Let M0 := {(X, Y ) ∈ Min :

{X, Y } ∩ C 6= ∅}. Then |M0| = |C| and so d(A,M0) ≤ 2M3
√

βN . Observe also

that since each vertex C ∈ C has at least 14
√

βN neighbours in Mout there are at

least 7
√

βN edges e = (X, Y ) such that d(C, X) > 0 or d(C, Y ) > 0.

Now let F̃a ⊆ Fa with F̃a\Root(Fa) ⊆ F3 be the largest subset of the trees of Fa

which we can embed into A ∪ C ∪Mout with Root(F̃a) → A, Level1(F̃a) → C. By

Lemma 3.27 with δ1 = 7
√

βN , either |V (F̃a)| ≥ (1− ε′)7
√

βNM > d(A,M0) + βk,

or else |Level1(F̃a)| ≥ d(A, C) − 2
√

ε|C|M . In the latter case, since each tree in F3

has at least three vertices, we have |F̃a| ≥ 3|Level1(F̃a)| ≥ 3d(A, C) − 6
√

ε|C|M >

d(A,M0) + βk.

In either case, we have F̃a and M0 satisfying the conditions of Claim 3.22, which
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is a contradiction. �

Recall that R denotes the set of roots of F . Thus we may assume that most

vertices in Fa\R are contained in trees with at most 2 vertices, and since we already

assumed that (apart from a few parent vertices) all are contained in trees with at

least two vertices, we may in fact assume that almost all vertices of Fa are covered

by root-2-paths, where a root-2-path is a path of length two with one endvertex in

R. Furthermore, these root-2-paths are disjoint except for the vertices in R.

We define S1 := {Y : ∃X ∈ L, (X, Y ) ∈ Min}, and L1 := V1\S1. Note that all

small clusters of V1 are contained in S1 and that L1 ⊆ L. We will aim to bound

both eH′(S1,V2) and eH′(L1,V2) from above and thus obtain a contradiction.

Claim 3.29 eH′(S1,V2) < 16β1/4N2.

Proof. Suppose not. By Claim 3.28 we can pick 3β1/4k root-2-paths in Fa which

contain no parent vertices. We denote the set of non-root vertices in these paths

by Z, so |Z| = 6β1/4k. Note that because Z contains no parent vertices, it can be

embedded at any time.

From our assumption it is easy to see that there are at least 8β1/4N clusters in

S1 each with at least 8β1/4N neighbours in V2. For suppose not. Then eH(S1,V2) <

8β1/4N · N + (1 − 8β1/4)N · 8β1/4N < 16β1/4N2, which is a contradiction. Pick

4β1/4k/M such clusters which belong to different edges of Min. Denote this set by

S0 and the submatching containing it by M0. Let L0 := V (M0)\S0 ⊆ L.

As dV2(J) ≥ 8β1/4N ≥ |S0| for all J ∈ S0, we can form a new matching of size

S0 between S0 and V2, and replace M0 in Min by this new matching. Now by

Lemma 3.19 we can embed F\Z into Min since |V (F )\Z| ≤ (1 − 6β1/4)k/M and

by (3.3), even after our rearrangement of Min we have

d(A,Min) ≥ (1 − 2β2/7)k − 4β1/4(k/M)M ≥ (1 − 6β1/4)k + 12εn
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and similarly for d(B,Min).

The clusters in L0 have not been used yet. Each such cluster J has at least
√

dM

large vertices, and at least (1−√
ε)M vertices typical with respect to V (H)−J , which

have degree at least (1 − 5d)k in G′′. Furthermore, if we have already embedded

a parent vertex in A (recall that Z ⊆ Fa), then at most 2β1/3M are not in the

neighbourhood of this vertex of A. We map the midpoints of paths of Z to typical

vertices or large vertices in clusters of L0, using large vertices wherever possible.

Note that (1−ε−2β1/3)M4β1/4k/M > 3β1/4k, so we always have available vertices.

Note also that since L0 ⊆ L, at least
√

dM |L0| =
√

d4β1/4k vertices of L0 are large.

Furthermore, since the roots of the paths in Z have been embedded onto vertices

typical with respect to the subsets of large vertices in L0, each such vertex has at

least (1 − β1/3 − ε)
√

dM large neighbours in all but
√

ε|L0| clusters of L0. Thus by

a simple greedy argument, we can use at least

(1 −√
ε)|L0|(1 − β1/3 − ε)

√
dM ≥ d2/3k

large vertices for midpoints of Z.

We now pick 6dk such large midpoints, set these aside and consider the remaining

(3β1/4 − 6d)k midpoints. Since they are either large or typical, they all have degree

at least (1− 5d)k in G′′, and since 6dk endpoints have been kept aside and have not

yet been embedded, we can greedily find neighbours in G′′ onto which to embed the

endpoints of these (3β1/4 − 6d)k midpoints.

We now have just 6dk midpoints remaining, each of which is embedded onto a

large vertex of G. Thus we can greedily find neighbours of these vertices for the

endpoints of these root-2-paths, and thus complete the embedding of T . �

Let β1 := β1/16. We have the following final claim to complete Case 1 (c.f.
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Claim 5.21 in [72]).

Claim 3.30 eH′(L1,V2) < 16β1N
2.

Proof. Suppose not. From the definition the clusters in L1 are large and belong

to different edges in M, the other end of each edge being a small cluster. Choose

L0 ⊆ L1 of size 8β1N such that dH′(X,V2) ≥ 8β1N for each X ∈ L0. This is possible

for otherwise eH′(L1,V2) ≤ (8β1N)|V2| + |L1|(8β1|V2|) ≤ 16β1N
2 which contradicts

our initial assumption. Let S0 := {Y : (X, Y ) ∈ Min, X ∈ L0}, so S0 ⊆ S1. We will

show that eH′(S0,V2) ≥ 16β1/4N2, contradicting Claim 3.29.

Consider X ∈ L0. As in Remark 3.17, since X is large and X ∈ M2(A), unless

X is a vertex in U matched to the component of H −U to which A belongs (which

can only be the case for at most one X, by the initial construction of M), X and

A can play the roles of A and B respectively.

Let us now delete any regular pairs which still have density less than β1/3. Recall

that we had already deleted such regular pairs between V1 and V2, and so this

deletion will not affect dH′(X,V2) or eH′(S0,V2) at all.

Since we have deleted regular pairs of density less than β1/3, Remark 3.26 implies

that all but at most 3
√

βk/M neighbours of X are contained in M2(X), and so make

up edges of M. We pick one large cluster from each of these edges in Mout to form

a set Ñ(X) of size at least (8β1N − 3
√

βk/M)/2 > 3β1k/M . Now since X also lies

in the component of H −U containing A, by Remark 3.17 it is still true that for all

but at most one Y ∈ Ñ(X), Y and X can play the roles of A and B respectively.

Thus all but at most 3
√

βk/M neighbours of Y in V1 make up edges of M. So

|d(Y,L0) − d(Y,S0)| ≤ 3
√

βk/M . (Note that these degrees are unweighted.)

Let N := ∪X∈L0Ñ(X). Consider the (unweighted) bipartite subgraph H ′′ ⊆ H ′

induced on (L0,N ). Let N0 consist of those vertices of degree at least e(H ′′)/(2|N |).

Then e(H ′′) ≤ e(H′′)
2|N |

(|N | − |N0|) + |N0||L0| ≤ e(H ′′)/2 + |N0||L0|. Thus |N0||L0| ≥
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e(H ′′)/2. So

|N0| ≥
e(H ′′)

2|L0|
≥ δH′′(L0,N )

2
≥ 3

2
β1k/M

and for all Y ∈ N0,

dL0(Y ) ≥ e(H ′′)

2|N | ≥ 1

2|N |8β1(k/M)3β1(k/M)

=
1

|N |12β2
1(k/M)2 ≥ β

5/2
1 k/M.

Thus dS0(Y ) ≥ β
5/2
1 k/M − 3

√
βk/M > 1

2
β

5/2
1 k/M for all Y ∈ N0. Therefore

e(N0,S0) >
3

2
β1(k/M)

1

2
β

5/2
1 (k/M) =

3

4
β

7/2
1 (k/M)2

=
3

4
β7/32(k/M)2 > 16β1/4N2.

Which is a contradiction, as required. �

Now Claims 3.29 and 3.30 together show that

eH′(V1,V2) = eH′(S1,V2) + eH′(L1,V2) < 16β1/4N2 + 16β1N
2 < ρ(k/M)2.

But we already assumed that eH′(V1,V2) > ρ(k/M)2, which is a contradiction.

This therefore completes the proof of the non-extremal theorems in Case 1.

3.5.6 Case 2

Recall that we have adjacent vertices A, B ∈ L and a matching M such that M

covers N(A) and dL∪M(B) ≥ (1 − η)k/2. In the case when |L| ≥ (1 +
√

ν ′)N/2,

i.e. in the proof of Theorem 3.9 we even have dL∪M(B) ≥ (1 + ν ′)k/2. Moreover,

in both cases each edge in M has at most one endpoint in N(A). Recall also that

by Claim 3.14, |V (F 2)| > ck, where F 2 = {T ∈ F : c < ratio(T ) < 1 − c}.
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Roughly speaking, we will attempt to embed F (and therefore T ) as follows. Split

Fb into F
(M)
b , of size approximately dM(B), and F

(L)
b . We embed F

(M)
b into Mb, an

appropriate sub-matching of M intersecting N(B). For each vertex J ∈ N(B) ∩L,

pick a neighbour to form a fractional matching (which we will define later) ML,

and embed F
(L)
b into ML. Finally, we embed Fa into Ma, which will consist of the

unused part of M.

Of course, we cannot necessarily do this immediately, since dM(A) and dL∪M(B)

are not quite large enough.

We use the same hierarchy of constants as we had in Case 1, so in particular we

have α2 ≪ η ≪ β ≪ α1. (We will not need the constant ρ for this case.) We split

the proof further into two cases.

• Case a: |Fb| ≤ (1 − β)k/2

• Case b: |Fb| > (1 − β)k/2.

In fact, almost all of the same problems that arise in Case a will also arise in Case b,

but we concentrate first on the easier Case a for the sake of clarity.

In both cases we will assume that dM(A) = (1 − η)k and dL∪M(B) = (1 −

η)k/2, or else dL∪M(B) = (1 + ν ′)k/2 if |L| ≥ (1 +
√

ν ′)N/2, (i.e. for the proof of

Theorem 3.9).1 We will not need this stronger assumption in Case a.

Case a

Now if dM(B) ≥ fb + 5
√

εn, then by Lemma 3.18 (in a degenerate form, since we

ignore Ma and Fa), we can embed Fb into B ∪M easily.

1As in Case 1, we can ensure that the true values are within M by deleting some regular pairs
as appropriate. As in that case, M is comparatively small, and so will not affect the relevant
calculations significantly.
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Otherwise we find a subforest F
(M)
b such that

dM(B) − 5
√

εn − εM ≤ |F (M)
b | ≤ dM(B) − 5

√
εn.

We can do this because F consists of εM-trees. Now F
(M)
b and M satisfy the

degenerate conditions of Lemma 3.18, and so we can embed F
(M)
b into B ∪ M.

Then if F
(L)
b := Fb\F (M)

b , we have

dL\M(B) = (1 − η)k/2 − dM(B)

≥ (1 − η)k/2 − |F (M)
b | − 5

√
εn − εM

≥ |F (L)
b | + β2k.

We define a fractional matching to be a set of edges, each with a positive weight,

such that the sum of the weights of the edges incident to any vertex is at most 1.

(Thus a matching is just a fractional matching in which every edge has weight 1.)

For our purposes we will also allow loops in a fractional matching. Our convention

is that when calculating the weighted degree of a vertex with a loop attached to it,

the weight of the loop is counted only once. We will define a fractional matching

which will prescribe where we embed the remainder of Fb. The weight of an edge

will indicate approximately how many vertices of F
(L)
b we will embed into that edge.

For any D ∈ N(B) ∩ (L\M), we have d(D) ≥ (1 − η)k. We now define the

fractional matching ML into which we intend to embed F
(L)
b . Firstly for every

cluster K of M, if M ′ vertices of F
(M)
b have been embedded into K we add a loop

of weight M ′/M to K. We do this to take account of vertices which have already

been chosen for the embedding of F
(M)
b , and are therefore forbidden for F

(L)
b .

We would like to end up with a fractional matching in which the total weight

of the edges is at least (1 − β2)k/(2M). We first delete any edges between B and
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D ∈ N(B) ∩ (L\M) which satisfy d(B, D) ≤ η2M . Note that we still have

dM∪L(B) ≥ (1 − η)k/2 − η2MN ≥ (1 − 2η)k/2.

Let N := N(B) ∩ (L\M). For each cluster D ∈ N we also temporarily add in a

loop of weight d(B, D). These loops will ensure that we do not match the clusters

of N together. This is not strictly necessary for Case a, but we will want to use

the same construction in Case b later, and so we prove the existence of a stronger

structure than we need at the moment.

Now for each cluster D of N in turn we will delete the loop attached to it and

find neighbours D1, D2, . . . , Ds of D in H−{A, B} such that each Di has a weight of

at most 1−η2 in the fractional matching so far, and such that the total weight of all

the Di is at most s−d(B, D)/M . We will assume that s is minimal such that these

properties hold. Then we add edges (D, Di) to the fractional matching such that

the weight of each Di (except possibly Ds) is 1, and the total weight of these new

edges is d(B, D)/M . We continue doing this until we reach a D for which we can no

longer find the appropriate Di. Suppose that at this stage the total weight of edges

in the fractional matching, not including the loops of N , is less than (1−β2)k/(2M).

Then since dL∪M(B) ≥ (1− 2η)k/2, and since the set of loops in M carried a total

weight of |F (M)
b |/M ≥ dM(B)/M − 6

√
εn/M , we have a total weight on the non-

loop edges attached to N of at most (1 − β2)k/(2M) − dM(B)/M + 6
√

εn/M ≤

dN (B)/M −β2k/(4M). Thus in particular, there must be some D ∈ N which is not

yet used, and this must be because we could not find the appropriate Di. However,

since D ∈ N ⊆ L we have dH−{A,B}(D) ≥ (1 − 3d)k − 2M ≥ (1 − η)k. The total

weight of edges in the fractional matching, now including the loops of N , is

|F (M)
b |/M + dN (B)/M ≤ dM(B)/M − 5

√
εn/M + dN (B)/M ≤ (1 − η)k/(2M).
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Thus the total weight of all the vertices in the fractional matching is at most (1 −

η)k/(2M) + (1 − β2)k/(2M). But since we could not find the appropriate Di for D

we have

dH−{A,B}(D)/M ≤ (1 − η)k/(2M) + (1 − β2)k/(2M) + η2N + d(B, D)/M

≤ (1 − η)k/M − β2k/(2M) + η2N + 1

< (1 − η)k/M.

But this is clearly a contradiction. Therefore the process of replacing loops by

matching edges does not stop until we have a weight of at least (1−β2)k/(2M), not

including loops of N . Now let ML be the resulting fractional matching obtained by

removing all loops of both M and N .

For each edge e = (X, Y ) in the fractional matching we choose subsets Xe ⊆ X

and Ye ⊆ Y of size w(e)M , where w(e) is the weight of e in the fractional matching.

If X is incident to more than one edge e, we choose the subsets Xe to be disjoint,

and to avoid any vertices of F
(M)
b that have already been embedded. This is possible

since with the loops of M which we initially included, we had a fractional matching

and so the total weight of any cluster was not more than 1. We now note that

since the weight of any edge is at least η2, each of these subsets has size at least

η2M . By standard regularity arguments it is easy to see that each edge therefore

still corresponds to an (ε/η2)-regular pair, and ε/η2 ≤ √
ε, so we may say that

each edge of ML represents a
√

ε-regular pair. Since |F (L)
b | ≤ dL\M(B) − β2k ≤

dML
(B) − 5ε1/4n, we can embed F

(L)
b into ML by Lemma 3.18.

We now aim to embed Fa in M, while avoiding vertices which have already

been used for the embedding of Fb. We will define a new matching Ma: For each

edge of M we choose subsets of the two clusters which have equal size, and where

the subsets are chosen to be as large as possible without including any previously
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embedded vertices. However, if this size is less than η2M , then we will ignore the

edge entirely. This leaves us with a matching Ma, in which every cluster has size

at least η2M . Thus each edge is still (ε/η2)-regular, and therefore also
√

ε-regular.

Now from the definition of Ma, dMa(A) ≥ (1 − η)k − fb − η2MN ≥ fa − 2ηk.

However, this is not quite enough to embed Fa, and so we will either need to gain

some extra room while embedding Fa, or else show that we have already gained room

during the embedding of Fb, and thus we have a better bound on dMa(A) than the

one above. This leads to a case distinction based on whether we have a reasonably

large number of balanced trees in Fa or in Fb (recall that by Claim 3.14, we have a

reasonably large number of balanced trees in total). Roughly, if Fa contains many

balanced trees, then since each edge of Ma ⊆ M has only one cluster in N(A), we

will be able to apply Lemma 3.23 part 2 to embed Fa. On the other hand, if Fb

contains many balanced trees then whenever we embed a balanced tree T ′, at most

a (1−c)-proportion of the vertices of T ′ will be embedded into a cluster D ∈ V (M).

The remaining vertices will be embedded either in the partner of D in M or outside

M. When we come to define Ma we consider subsets of the clusters such that the

endclusters of each edge still contain the same number of vertices. Since we have

often embedded vertices either outside M or into vertices in partner clusters, we

will need to remove from M significantly less than 2|Fb| vertices of G′′. In particular

this will mean that dMa(A) > dM(A)− |Fb|, and indeed we will gain an extra term

which will be enough to allow us to embed Fa into Ma.

More precisely, since |V (F 2)| > ck, either |V (F 2
a )| > ck/2 or |V (F 2

b )| > ck/2 (or

both). We first assume the former.

Suppose therefore that |F 2
a | ≥ ck/2. Then since every edge in M has at most one

endvertex in N(A), when we come to embed the trees in F 2
a we will embed at least a

c proportion of them into clusters not lying in N(A). In particular, by Lemma 3.23
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part 2 (with dx = 0), we will be able to embed in such an edge e = (X, Y ) a subforest

of size (1+c)de(A)−ε′M −εM . Thus overall we will be able to find a sub-matching

M̃a and a subforest F̃a ⊆ F 2
a such that F̃a → A∪M̃a and |F̃a| ≥ dM̃a

(A) + c3k. So

dMa\M̃a
(A) = dMa(A) − dM̃a

(A)

≥ fa − 2ηk − dM̃a
(A)

≥ |Fa| − 2ηk − |F̃a| + c3k

≥ |Fa\F̃a| + 5ε1/4n

and thus by Lemma 3.18 we can embed Fa\F̃a into A ∪ (M\M̃a) as required.

Suppose instead that |F 2
b | ≥ ck/2. Again, since every edge in M has at most

one endvertex in N(A), when we embedded a tree T ′ of F 2
b we embedded at most

(1 − c)|T ′| vertices into a cluster D ∈ N(A), and also at most (1 − c)|T ′| vertices

onto its partner. We modify the clusters by taking away at most (1− c)|T ′| vertices

from both classes, including all embedded vertices of T ′, and keeping the sizes the

same. Repeating this for every T ′ ∈ F 2
b , and then deleting any clusters which now

have size at most η2M , we obtain a matching Ma with

dMa(A) ≥ (1 − η)k − |F 2
b |(1 − c) − (fb − |F 2

b |) − η2MN

= fa + c2k/2 − ηk − η2n′ ≥ fa + 5ε1/4n.

Thus by Lemma 3.18 we will be able to embed Fa into Ma as required. So we may

assume that we are in Case b.

Case b

Recall that in Case b, |Fb| ≥ (1 − β)k/2. We now need to make ourselves some

extra room for Fb as well as for Fa. However, the extra room for Fa will be gained
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similarly as in Case a, so we will not repeat the argument here, focussing instead

only on embedding Fb in a similar way to before. We can therefore observe that for

the proof of Theorem 3.9, i.e. if we are in the case where |L| ≥ (1 +
√

ν ′)n′/2, we

have dL∪M(B) = (1 + ν ′)k/2, and since ν ′ ≫ β, the extra weighted degree that we

have attached to B will allow us to complete the embedding in the same way as in

Case a. More precisely, we will embed within Mb ⊆ M a subforest F
(M)
b of Fb of

size at least dM(B) − 5
√

εn − εM . We will then find a fractional matching ML

attached to N(B) ∩ (L\M) of weight at least

dL\M(B) − β2k ≥ dL∪M(B) − |F (M)
b | − 5

√
εn − εM − β2k

≥ |Fb\F (M)
b | + ν ′k/2 − 5

√
εn − εM − β2k ≥ |Fb\F (M)

b | + βn

and since all the edges in the fractional matching will be
√

ε-regular, we will be

able to embed Fb\FM
b into ML by Lemma 3.18. Thus the proof of Theorem 3.9 is

complete, and we turn our attention to the proof of Theorem 3.8. We may assume

that |L| ≤ (1 +
√

ν ′)n′/2, which as observed in the paragraph before Theorem 3.15

means that we may assume that there are no sets S ′ ⊆ S and L′ ⊆ L such that

k/(10M), |L′| ≤ (7/20)|S ′| and N(S ′) ⊆ L′. This will be important later on.

Note that the condition for Case b means that Fa and Fb have approximately

the same size. In some cases it will be convenient to switch them around in order to

complete the embedding. To ensure that we lose no generality doing this switching,

we will assume for the rest of this proof that fa = fb = (1 + β)k/2. We can ensure

this simply by adding some extra leaves adjacent to roots of trees in Fa and Fb. Note

that this does not affect the fact that the trees of F are εM-trees. It may affect

whether trees are balanced, but by choosing to add the new vertices in such a way

that they are all adjacent to just one root of Fa or one root of Fb, only at most 2

trees can become unbalanced, and this will not affect calculations significantly.

129



We may therefore assume without loss of generality that |V (F 2
b )| ≥ ck/2, for if

not we simply switch Fa and Fb.

Now suppose first that dL\M(B) ≥ β1/3k. Then as in Case a we embed a

subforest F
(M)
b ⊆ Fb into M, where dM(B)−5

√
εn−εM ≤ |F (M)

b | ≤ dM(B)−5
√

εn.

We also choose F
(M)
b in such a way that F

(L)
b := Fb\F (M)

b contains as many balanced

trees as possible. Now

|F (L)
b | ≥ |Fb|−dM(B)+5

√
εn = dM∪L(B)+ηk/2+βk/2−dM(B)+5

√
εn ≥ β1/3k.

The equality holds since we assumed that |Fb| = (1 + β)k/2 and that dM∪L(B) =

(1 − η)k/2. Since β ≪ c we may assume that F
(L)
b contains at least β1/3k vertices

which lie in balanced trees. We also have |F (L)
b | ≤ dL\M(B)+βk/2+ηk/2+5

√
εn+

εM ≤ dL\M(B) + βk. Since each edge e of ML is
√

ε-regular, and since only one

endvertex of e lies in N(B), we may use Lemma 3.23 part 2 to embed at least

(1 + c)de(B)− ε′M − εM ≥ (1 + c/2)de(B) vertices into B ∪ e. Thus taking a sub-

matching M0 ⊆ ML such that d(B,M0) = β1/3k/2, we can embed into B ∪M0 a

subforest F̃b ⊆ F
(L)
b of size at least (1 + c/2)β1/3k/2 ≥ d(B,M0) + β1/2k. Thus

|F (L)
b \F̃b| ≥ d(B,ML\M0) − βk + β1/2k

≥ d(B,ML\M0) + βn

and therefore we can embed FL
b \F̃b into ML\M0 using Lemma 3.18.

We now note also that when embedding F̃b, at least c|F̃b| vertices were embedded

into those endvertices of M0 which lie in N(B) ∩ (L\M), and so in particular at

least c(1 + c)β1/3k/3 ≥ β1/2k vertices of Fb have been embedded outside M. Thus

when we come to define Ma (including removing those edges where the clusters now
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have size less than η2M) we now have

d(A,Ma) ≥ (1 − η)k − |Fb| + β1/2k − η2MN ≥ |Fa| + βn

and since the pairs in Ma are still
√

ε-regular, we can embed Fa into Ma by

Lemma 3.18 as required.

So we may assume that dL\M(B) < β1/3k. Thus dM(B) ≥ (1 − β1/4)k/2. The

following claim is similar to Claim 3.22.

Claim 3.31 Let M0 ⊆ M be a matching of size at most k/(4M). Suppose F̃b ⊆ Fb

with |F̃b| ≥ d(B,M0) + β1/5k can be embedded into V (M0) ∪ (V (H)\(V (M) ∪A))

after we map Root(F̃b) to any vertices of B typical with respect to M0. Then T → G.

Proof. The proof is essentially similar to that of Claim 3.22, and so we only sketch

it here. Similarly to that proof, since we have embedded more than we expected

into M0, Fb\F̃b is now small enough that we can embed it into M\M0. Note also

that since many trees in Fb are balanced, when we define Ma we gain room for Fa

automatically: For if we have embedded balanced trees into some edge e = CD,

where C ∈ N(A), and if in total we have used up c′M vertices in C ∪ D (where

c′ ∈ [0, 2]) then we have used at most (1 − c)c′M in both C and D, which means

that what we have lost for Ma in each cluster has size at most (1 − c)c′M . Note

in particular that this is significantly better than the worst case scenario, in which

everything would be embedded into one of the clusters and we would have had to

delete just as many vertices in the other cluster to maintain equal size. Then we

would have deleted c′M vertices from both clusters, whereas in this case we only

have to delete at most (1 − c)c′M vertices from each cluster. It is this that allows

us to gain the extra room we need.

Summing up over all the balanced trees in Fb, we find that d(A,M)−d(A,Ma)
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is significantly smaller than |Fb|, and thus we also gain enough room to embed Fa,

even after deleting edges in which the clusters now have size at most η2M . The

details are very similar to those given for the case when d(B,L\M) ≥ β1/3k before

the Claim, and we do not repeat them here. �

Similarly to Case 1, we define M1 := {(X, Y ) ∈ M : dG′′(B, X) ∈ [β1/12, 1 −

β1/12] or dG′′(B, Y ) ∈ [β1/12, 1−β1/12]}. The following claim is similar to Claim 3.24.

Claim 3.32 |M1| < β1/12k/M .

Proof. Suppose not, and let M0 ⊆ M1 be a matching of size β1/12k/M . For

almost every edge e = XY ∈ M0 we apply Lemma 3.23 Part 3 to embed a subforest

of Fb with at least d(B, e)−ε′M +β1/12M −εM vertices into X∪Y . We can do this

in all but
√

εN edges of M0, since the roots of Fb have been embedded into vertices

of B typical with respect to V (H) − B. We denote the union of such subforests by

F̃b, and observe that

|F̃b| ≥ d(B,M0) − 2M
√

εN + (β1/12M − ε′M − εM)(|M0| −
√

εN)

≥ d(B,M0) − ε1/3k + β1/11Mβ1/11k/M

≥ d(B,M0) + β1/5k.

So F̃b and M0 satisfy the conditions of Claim 3.31. So T → G, which is a contra-

diction. �

We also define M2 := {(X, Y ) ∈ M\M1 : dG′′(B, X) < β1/12 and dG′′(B, Y ) >

(1 − β1/12)}, and the following claim corresponds to Claim 3.25 in Case 1.

Claim 3.33 |M2| < β1/12k/M .

Proof. Suppose not, and let M0 ⊆ M2 be a matching of size β1/12k/M . For all

but at most
√

εN edges e in M0 we can apply Lemma 3.23 part 2 to embed at least
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de(B) + c(1 − 2β1/12)M − ε′M − εM ≥ de(B) + cM/2 vertices of F 2
b . Thus in M0

we embed a forest F̃b with

|F̃b| ≥ d(B,M0) − 2M
√

εN + (|M0| −
√

εN)cM/2

≥ d(B,M0) + (cM/2)|M0| −
√

εMN(2 + c/2)

≥ d(B,M0) + β1/12(c/2)k − ε1/3k

≥ d(B,M0) + β1/5k.

So F̃b and M0 satisfy the conditions of Claim 3.31, and therefore T → G, which is

a contradiction. �

Let M3 := {(X, Y ) ∈ M : dG′′(B, X), dG′′(B, Y ) < β1/12}, and let M′ :=

M−M1 −M2 −M3. Then

d(B,M′) ≥ (1 − η)k/2 − dL\M(B) − 2β1/12(k/M)M

−2β1/12(k/M)M − β1/12MN

≥ (1 − β1/15)k/2.

Thus |M′| ≥ (1 − β1/15)k/(4M). Furthermore, since d(B, e) ≥ (1 − β1/12)2M for

any e ∈ M′, and since d(B,M′) ≤ d(B,M) ≤ d(B,L∪M) = (1− η)k/2, we have

|M′| ≤ (1 − η)k/2

2(1 − β1/12)M
≤ (1 + β1/15)k/(4M).

Now let S0 := {Y : (X, Y ) ∈ M′, X ∈ L}, and let L0 := {Y : (X, Y ) ∈

M′, X ∈ S} = V (M′) − S0. Observe that L0 ⊆ L, since the vertices of L0 are

matched to vertices of S which is independent, but it is not necessarily true that

S0 ⊆ S.
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Lemma 3.34 There is no matching between S0 and V (H)\V (M′) of size

β1/30k/(2M).

Proof. Suppose there is such a matching, and let S ′
0 be the intersection of

this matching with S0. Now let L′
0 be the partners of S ′

0 in M′ which do not

themselves lie in S ′
0. Then since the vertices of L′

0 are large, δ(L′
0, V (H)\V (M′)) ≥

(1−η)k/M −(1+β1/15)k/(2M) ≥ k/(3M), and so we can also match L′
0 to a subset

of V (H)\V (M′) avoiding the previous matching. We call these two matchings

together M0.

But now replacing M′
0 := {(X, Y ) ∈ M′ : X ∈ S ′

0 or Y ∈ S ′
0} with M0 in M′,

we can embed Fb. For recall that |V (F 2
b )| > ck/2, so by Lemma 3.23 part 2 we can

embed a subforest of size (1 + c)(1 − β1/12)M |M0| − εM |M0| ≥ (1 + c/2)β1/30k ≥

d(B,M′
0) + cβ1/30k/2 into M0. Let F̃b be this subforest. Then

d(B,M′\M0) = (1 − η)k/2 − d(B,M′
0) − dL\M(B)

≥ |Fb| − βk − ηk/2 − d(B,M′
0) − β1/3k

≥ |Fb\F̃b| − βk − ηk/2 + cβ1/30k − β1/3k

≥ |Fb\F̃b| + 5
√

εn

and so we can apply Lemma 3.18 to embed Fb\F̃b. Note that we still have plenty of

room for Fa, and so we can embed T into G, which is a contradiction. �

Corollary 3.35 At most |M′| + β1/30k/(2M) clusters of M′ lie in L.

Proof. If not, then at least β1/30k/(2M) vertices of S0 are large, and therefore we

could easily find a matching between these vertices and V (H)\V (M′), contradicting

Lemma 3.34 �

Now let R0 := {X ∈ N(B)\M′ : d(B, X) ≥ β1/60M}.
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Lemma 3.36 There is no matching between R0 and V (H)\(V (M′) ∪ R0) of size

β1/30k/(2M).

Proof. Suppose there were such a matching M∗, and let R′
0 be the intersection

of this matching with R0. Since d(B, e) ≥ β1/60M for each edge e of this matching,

we have d(B,M∗) ≥ β1/60Mβ1/30k/(2M) = β1/20k. Thus

d(B,M′ ∪M∗) ≥ (1 − β1/15)k/2 + β1/20k ≥ |Fb| + 5
√

εn

and so by Lemma 3.18 we can embed Fb into B ∪ M′ ∪M∗. Once again, we still

have plenty of room for Fa, and so T → G, which is a contradiction. �

Lemmas 3.34 and 3.36 together give the following.

Lemma 3.37 Suppose M′′ is a matching from S0 ∪R0 into V (H)\V0, where V0 :=

V (M′) ∪R0. Then |M′′| ≤ 2β1/30k/M . �

However, recall that dL\M(B) < β1/3k, that |M1|, |M2| < β1/12k/M , and that

d(B,M3) < β1/12MN . Therefore

d(B,V0) > (1 − η)k/2 − 2β1/12k − 2β1/12k − β1/12n − β1/3k > (1 − c)k/2.

Recall that |M′| ≤ (1 + β1/15)k/(4M) and thus |L0| ≤ (1 + β1/15)k/(8M), therefore

|S0 ∪R0| ≥ (1 − c)k/(2M) − (1 + β1/15)k/(8M)

≥ (3/8 − 2c)k/M.

By Lemma 3.37 there is a set S1 ⊆ S0 ∪ R0 of size |S0 ∪ R0| − 2β1/30k/M whose

neighbourhood outside V0 has size at most 2β1/30k/M . For consider a maximum

matching M′′ between S0 ∪R0 and V (H)\V0, and let S1 := S0 ∪R0\V (M′′). Then
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the neighbourhood of S1 outside V0 lies within V (M′′)\V0, and therefore has size at

most |V (M′′)| ≤ β1/30k/M

Note also that Lemma 3.37 implies that |(S0 ∪ R0) ∩ L| ≤ 2β1/30k/M , and so

there is a set S ′
1 ⊆ S1 of size |S0 ∪R0|−4β1/30k/M consisting only of small clusters.

Now

|N(S ′
1)| ≤ |V (M′) ∩ L| + |R0 ∩ L| + 2β1/30k/(2M)

≤ |M′| + β1/30k/(2M) + β1/30k/(2M) + 2β1/30k/(2M)

≤ (1 + β1/40)k/(4M) ≤ 7|S ′
1|/20

where the last line follows since |S ′
1| ≥ |M′|+ |R0|−β1/40k/M ≥ (3/4−β1/50)k/M .

But observing that S ′
1 ⊆ S, this contradicts our assumption at the start of the Case

b that no such set exists, which gives a contradiction. This completes the proof of

Theorem 3.8, and since the proof of Theorem 3.9 was completed earlier, this also

completes the non-extremal case. �

3.6 The Extremal Case

3.6.1 Outline and main results

As in the non-extremal case, we will prove the extremal case by contradiction, i.e.

we will assume that there is some tree T on k + 1 vertices that is not contained as a

subgraph of G, and show that this leads to a contradiction. We therefore consider

the tree T to be fixed. Since the proof holds for any choice of T , this contradiction

then shows that Tk ⊆ G. In this section, we will present statements of the main

results for the extremal case without proof. This will give an extended outline of the

main ideas. The results will then be proved in Section 3.6.3. Before this, though,
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in Section 3.6.2 we will complete the proof of Theorem 3.3. The proof uses some

of the results of this section, and includes some of the ideas needed for the proof

of the extremal case of Theorem 3.1 while being considerably shorter and easier.

Thus it serves as a useful introduction to the main proof. It is here that we use the

constants θ†i instead of θi.

The results in this section often take the form of saying that if some property P

holds in G (or in T ) then T ⊆ G. Since we assumed that T * G, in context this

amounts to saying that P does not hold.

Recall that we have constants

0 < θ1 ≪ θ2 ≪ . . . ≪ θ⌊n/k⌋+4 ≪ 1/C.

Let j be maximal such that there are pairwise disjoint vertex sets V1, . . . , Vj in G

satisfying |V1| = . . . = |Vj| = k, and e(Vi, V (G)\Vi) ≤ θjk
2 for 1 ≤ i ≤ j. (In

Section 3.6.2 for the proof of Theorem 3.3 we will use a similar condition with θj

replaced by θ†j .) Let V0 := V (G)\(
⋃j

i=1 Vi), and for each i we define Li := Vi ∩ L

and Si := Vi ∩ S. With j defined to be maximal in this way, we say that we are in

ECj. Throughout this section we assume that G satisfies ECj for some j ≥ 1. We

also define a slightly stronger condition with parameter α, which we call EC ′.

EC ′(α): There are pairwise disjoint sets V0, V1, . . . , Vj ⊆ V (G), where j = ⌊n/k⌋

such that

• |Vi| = k for i = 1, . . . , j,

• (1 − α)k/2 ≤ |Li| ≤ (1 + α)k/2 for i = 1, . . . , j,

• e(Vi, V (G)\Vi) ≤ αk2 for i = 0, 1, . . . , j and

• for all x ∈ Vi ∩ L we have d(x, V (G)\Vi) ≤ αk for i = 0, . . . , j.
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Our proof of the extremal case will proceed as follows. We will first show that

either we can continue applying the non-extremal case to split the vertex set of G

essentially completely into “almost components” of size k, i.e. that j = ⌊n/k⌋, or

we find some “almost component” of size k with significantly more than k/2 large

vertices. In the latter case we will prove that Tk ⊆ G directly using the following

proposition. Let θi ≪ µi ≪ θi+1 for each i.

Proposition 3.38 Suppose j < ⌊n/k⌋. Then there is some 1 ≤ i ≤ j such that

|Li| ≥ (1/2 + µj)k.

This proposition will be proved by contradiction; if the conclusion does not hold

then V0 will satisfy the conditions of Theorem 3.8, and so T ⊆ G, which we already

assumed was not the case. We will also have a similar argument in Section 3.6.2 for

the proof of Theorem 3.3, but we will not need to present it as a separate proposition

in that case.

Once we know that there such an i, we assume without loss of generality that it

is i = 1, and obtain T ⊆ G by the following lemma.

Lemma 3.39 Suppose we have a set V1 ⊆ V (G) of size k such that e(V1, V (G)\V1)

≤ α1k
2 and |L1| ≥ (1/2 + α2)k, where 0 < α1 ≪ α2 ≪ 1. Then T ⊆ G.

We will also need a result very similar to this for the proof of Theorem 3.3.

Lemma 3.40 Suppose we have constants satisfying

0 < 1/k ≪ τ ≪ τ ′ ≪ α1 ≪ α2, ν ≪ 1/C

and suppose we have subgraphs G† ⊆ G∗ ⊆ G as in Theorem 3.3. Suppose further-

more that we have a set V1 ⊆ V (G†) of size k such that eG∗(V1, V (G∗)\V1) ≤ α1k
2

and |L1| ≥ (1/2 + α2)k, where L1 = L∗ ∩ V1. Then T ⊆ G.

138



Let us note that in the case when we have G† as in Theorem 3.3, we will obtain

such a set V1 even if j = ⌊n/k⌋, and therefore the proof of Theorem 3.3 will be

complete. A more precise argument for this is given in Section 3.6.2. We will prove

Lemma 3.39 in Section 3.6.3 and then note that Lemma 3.40 can be proved in an

almost identical way.

Lemma 3.39 and Proposition 3.38 together give the following.

Theorem 3.41 If j < ⌊n/k⌋, then T ⊆ G. �

The proof of Lemma 3.39 and Lemma 3.40 is rather involved, and requires some

preliminary results (Claims 3.42 and 3.43 and Lemma 3.44). We define a path

segment of the tree T to be a subgraph of T which forms a path, and furthermore

each vertex of this subgraph has degree 2 in T (thus the only neighbours of the

internal vertices of such a path also lie on the path).

Claim 3.42 Let q be a positive integer and let γ1, γ2 be real numbers such that

1/k < γ1, γ2 ≪ 1/q. Suppose T contains at most γ1k leaves. Then T contains at

least γ2k vertex-disjoint path-segments on q vertices.

Observe that we do not require any relation between γ1 and γ2.

Claim 3.43 Let A ⊆ V (G) and suppose that |A ∩ L| ≥ k/2 and |A| ≥ (1 − α)k,

for some 0 < α ≪ 1/C. Consider in G a maximal set P ′ of vertex-disjoint paths

of length between 2 and 6 which have their end-points in A ∩ L and their internal

vertices in V (G)\A. Then |A ∪ V (P ′)| ≥ k − 1.

These two claims are designed to complement each other. One guarantees paths

in T , and the other guarantees paths in G. Naturally, we will aim to embed the

paths of T onto the paths in G. This, and much more, is the aim of the following

technical embedding lemma.
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Lemma 3.44 Let 0 < γ1 ≪ γ2 ≪ 1. Suppose that we have a tree T ′ on at most

k − 1 vertices such that V (T ′) = U1 + U2 where

• U1 and U2 are independent sets;

• There exists a set P of γ2k disjoint path-segments of length 8 in T ′.

Suppose also that we have a bipartite graph G′ with vertex classes L1 and S1, and

further partitions S1 = C1 + D1 and L1 = L′′
1 + L′

1 such that the following conditions

hold:

• |L1| = |U1|, |S1| = |U2|;

• δ(L′′
1, S1) ≥ |S1| − γ1k;

• δ(C1, L1) ≥ |L1| − γ1k;

• |D1| ≤ γ1k;

• S1 is independent;

• G′ contains a set P ′ of disjoint paths of even length between 2 and 6 covering

D1, L′
1 and 2|P ′| vertices of L′′

1, disjoint from C1 and whose endpoints lie in

L′′
1.

Then T ′ can be embedded into G′, with U1 embedded in L1 and U2 embedded in S1.

Roughly speaking, we prove Lemma 3.39 and Lemma 3.40 by first discarding any

large vertices which do not have almost all of V1 as neighbours. We then discard

any small vertices which do not have almost all of L1 as neighbours. We may now

have |V1| < k, but we will still have |L1| ≥ k/2 and so we apply Claim 3.43 to find

paths with which to extend V1. Then if T has few leaves, Claim 3.42 will give us the

paths in T which will complete the conditions of Lemma 3.44. On the other hand,
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if T has many leaves then we can show that in fact U2 contains many leaves, where

U2 is the larger of the two bipartition classes of T . Deleting these leaves will give us

sets that are sufficiently small that we could embed them into L1 and C1 greedily.

Furthermore, neighbours of deleted leaves will be embedded onto large vertices and

so we can add the remaining leaves greedily at the end.

In the case when j = ⌊n/k⌋, the following two theorems will prove Theorem 3.1.

Theorem 3.45 EC⌊n/k⌋ ⇒ either EC ′(θ3
⌊n/k⌋+2) holds or Tk ⊆ G.

Theorem 3.46 EC ′(θ3
⌊n/k⌋+2) ⇒ Tk ⊆ G.

Theorem 3.45 is proved using two main propositions. The first implies that we

may assume large vertices have almost all of their neighbours in one class. It is very

similar to Proposition 6.12 in [72].

Proposition 3.47 If some v0 ∈ L has at least θ
1/4
j+1k neighbours in both Vi1 and Vi2

(1 ≤ i1 < i2 ≤ j), then Tk ⊆ G.

We can then show that in fact almost all large vertices are already in the class

in which they have most of their neighbours. For those few that remain, we move

them into the appropriate class. This tidies up the large vertices so that they have

the properties required for EC ′. Thus we have the following proposition.

Proposition 3.48 If the condition of Proposition 3.47 does not hold, then we can

rearrange the sets Vi to ensure that EC ′(θ3
j+2) holds.

This will complete the proof of Theorem 3.45. Theorem 3.46 is harder to prove.

We first rearrange any small vertices which do not have appropriately high degree

in their own class such that they now belong to the class in which they have the

most neighbours. After this rearrangement, we no longer have sets of size exactly
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k. However, we can now prove the following proposition, which is very similar to

Proposition 3.47. In Section 3.6.3 we will define what we mean by “good” and

“bad” vertices. Roughly speaking, a vertex x in Si is good if it has almost all of Li

as neighbours, and bad otherwise. We define good and bad vertices of Li similarly,

although by the time we need such a definition all large vertices will be good.

Proposition 3.49 No small vertex has more than (1/2 + 2θj+3)k neighbours. In

particular, no good small vertex in Vi has more than 3θj+3k neighbours outside Vi,

and no bad small vertex in Vi has more than (1/4 + θj+3)k neighbours in any Vi′ for

i′ 6= i.

The “in particular” will follow very easily from the first statement later on, once we

have properly defined what it means for a vertex to be good or bad.

This proposition will be required for the proof of the following lemma. Since at

least half of the vertices of G are large, there must be some i such that |Li| ≥ |Vi|/2.

Without loss of generality we will assume that this holds for i = 1, and we will do

most of our embedding in V1. For each i = 0, . . . , j let mi := k − |Vi|.

Lemma 3.50 Let q1, q2, . . . , qs be positive integers such that q :=
∑s

i=1 qi ≤ 2(m1 +

1)/3, and let C1, . . . , Cs ⊆ L1 be (not necessarily distinct or disjoint) sets of size

(1/2 − 2θj+4)k. Then there are

• q disjoint (1/θj+4)-stars in V \V1 with midpoints y1, . . . , yq;

• distinct vertices x1, . . . , xs ∈ L1 and

• a partition of the set of stars into Q1, . . . , Qs

such that for each i = 1, . . . , s we have

• xi ∈ Ci;
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• |Qi| = qi and

• M(Qi) ⊆ N(xi)

where M(Qi) denotes the set of midpoints of the stars in Qi. Furthermore, all

endpoints of stars are good vertices.

Let us note here that if we set c1 := k/2−|L1| then by assumption we have c1 ≤ m1/2,

and therefore

2(m1 + 1)/3 ≥ ⌊2(m1 + 1)/3⌋ ≥ m1/2 ≥ c1

for all non-negative integers m1.

The idea of this lemma is that we will be able to use a midpoint of a star to

embed a vertex y of T , and the endpoints of the star to embed the children of y.

Then the remainder of T (y) will be embedded outside V1. This enables us to gain

room within V1 if V1 has size less than k, and is therefore not large enough to contain

T .

The proof of Theorem 3.46 will be split into two cases.

Case 1: T contains at least 36θ⌊n/k⌋+4k leaves.

Recall that a skew-partition of T is an ordered partition V (T ) = U1 + U2 such

that |U1| ≤ |U2| and U2 is an independent set. We say that a skew-partition is ideal

if both U1 and U2 contain at least 5θ⌊n/k⌋+4k leaves. The following two propositions

prove Theorem 3.46 in Case 1. (In both propositions we implicitly assume that

EC ′(θ3
⌊n/k⌋+2) holds.)

Proposition 3.51 If T has an ideal skew-partition, then T ⊆ G.

Proposition 3.52 If T contains at least 36θ⌊n/k⌋+4k leaves, then either T ⊆ G or

T has an ideal skew-partition.
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Case 2: T contains at most 36θ⌊n/k⌋+4k leaves.

In this case we will apply Claim 3.42 to find path segments in T . We will also

apply Lemma 3.50 to find 2-paths in G with one endpoint in L1 and the other being

a good endpoint outside V1. We will then join up these endpoints using bounded

length paths to create a situation in which we can apply Lemma 3.44 to obtain

T ⊆ G, as required. This will complete the proof of the extremal case.

3.6.2 Proof of Theorem 3.3

We can now complete the proof of Theorem 3.3. We assume for now that Lemma 3.40

holds, although we will delay the proof of this fact until Section 3.6.3, so that we

can combine it with the proof of Lemma 3.39.

In G† we have L∗ = L∗(G†, G∗) := {v ∈ V (G†) : dG†(v) ≥ (1 − τ ′)k and

dG∗(v) ≥ k}, and |L∗| ≥ (1 + ν)|G†|/2.

We define j to be maximal such that there exist disjoint sets V1, . . . , Vj ⊆ V (G†)

of size k and such that e(Vi, V (G†)\Vi) ≤ θ†jk
2 for i = 1, . . . , j. If for some i we

have |L∗ ∩ Vi| ≥ (1 + ν/2)k/2, we assume without loss of generality that this holds

for i = 1. Then we recall that eG∗(V (G†), V \V (G†)) ≤ τk2, and so eG∗(Vi, V \Vi) ≤

(τ + θ†j)k
2 ≤ 2θ†jk

2, and so we can apply Lemma 3.40 with α1 = 2θ†j and α2 = ν/2

to obtain T ⊆ G.

But if this does not hold for any i, then let V0 := V (G†)\(
⋃j

i=1 Vi), and observe

that |L∗ ∩ V0| ≥ (1 + ν)|V0|/2. We also have

eG∗(V0, V \V0) ≤ jθ†jk
2 + τk2 ≤

√

θ†jk
2.

Therefore at most (θ†j)
1/4k vertices have more than (θ†j)

1/4k neighbours outside V0.

Thus in G[V0] at least (1 + ν/2)|V0|/2 vertices have degree at least (1 − (τ ′ +

(θ†j)
1/4))k ≥ (1 − 2(θ†j)

1/4)k. Therefore if |V0| ≥ k, we can apply Theorem 3.9
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with α1 = θ†j+1 and α2 = 2(θ†j)
1/4 to find T ⊆ G, which is a contradiction.

We must therefore have |V0| < k. Suppose that θ†j+1k ≤ |V0| ≤ (1−θ†j+1)k. Then

|L∗ ∩ V0| ≥ θ†j+1k/2, and each vertex of L∗ ∩ V0 must have at least k − |V0| ≥ θ†j+1k

neighbours in G∗ which lie outside V0, and so eG∗(V0, V \V0) ≥ ((θ†j+1)
2/2)k2 ≥

√

θ†jk
2, which is also a contradiction. So either |V0| ≥ (1 − θ†j+1)k or |V0| ≤ θ†j+1k.

Now if |V0| ≤ θ†j+1k, then trivially |L∗ ∩ V0| ≤ θ†j+1k, and so

|L∗| ≤ j(1 + ν/2)k/2 + θ†j+1k < j(1 + ν)k/2 < (1 + ν)|G†|/2 ≤ |L∗|

which is clearly a contradiction.

On the other hand, if |V0| ≥ (1− θ†j+1)k, then |L∗ ∩V0| ≥ (1 + ν)(1− θ†j+1)k/2 ≥

(1 + ν/2)k/2. By moving at most θ†j+1k small vertices1 into V0, we can ensure that

|V0| = k, and we now have eG∗(V0, V \V0) ≤
√

θ†jk
2 + kθ†j+1k ≤ 2θ†j+1k

2, and we can

apply Lemma 3.40 once again with α1 = 2θ†j+1 and α2 = ν/2 to obtain T ⊆ G. This

completes the proof of Theorem 3.3, except for Lemma 3.40, which will be proved

along with Lemma 3.39 later.

3.6.3 Proof of Theorem 3.1

Proof of Theorem 3.41

We assume that j < ⌊n/k⌋. Recall that Theorem 3.41 followed immediately from

Proposition 3.38 and from Lemma 3.39, which in turn required Claims 3.42 and 3.43

and Lemma 3.44. Recall that we define a new constant µj such that θj ≪ µj ≪ θj+1.

Proof of Proposition 3.38. Suppose the conclusion of Proposition 3.38 does

not hold. Recall that V0 = V (G)\(
⋃j

i=1 Vi) and so we have |V0| > k and |L0| ≥

n/2− j(1/2 + µj)k = |V0|/2− jµjk ≥ (1−√
µj)|V0|/2. Now since e(V0, V (G)\V0) ≤

1These small vertices exist in G† since |Li| ≤ (1 + ν/2)k/2 and therefore |Si| ≥ (1 − ν/2)k/2
for i = 1, . . . , j.
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jθjk
2 ≤

√

θjk
2, at most µjk vertices of L0 have at least µjk neighbours outside V0,

and so at least (1 − 2
√

µj)|V0|/2 vertices of L0 have at least (1 − µj)k neighbours

in V0. Since we also chose j to be maximal, the conditions of Theorem 3.8 hold

with G′ = G[V0] and with α1 = θj+1 and α2 = 2
√

µj, and so T ⊆ G, which is a

contradiction. �

Proof of Claim 3.42. Let L(T ) denote the set of leaves in T and let ℓ(T ) :=

|L(T )|. Note that
∑

x∈V (T )(d(x) − 2) = 2e(T ) − 2|T | = −2. Thus

∑

x∈V (T ), d(x)>2

(d(x) − 2) = ℓ(T ) − 2 ≤ γ1k.

and so there are at most γ1k vertices of degree more than 2. We remove vertices

which have degree more than 2 and all leaves. Removing a vertex x from T increases

the number of components by at most d(x)−1, and so we obtain a forest F ′ with at

most
∑

x∈V (T ), d(x)>2(d(x)− 1) ≤ 2γ1k components. Now the remaining components

are in fact path-segments, as are any sub-paths. Let P be a maximal set of vertex-

disjoint paths on q vertices in F ′. Suppose |P| < γ2k. Then P covers at most

qγ2k vertices. Let F ′′ be the graph obtained by removing P. Then F ′′ has at

most 2γ1k + 1 + γ2k components, and at least (1 − 2γ1 − qγ2)k vertices. But then

some component of F ′′ contains at least 1−2γ1−qγ2

2γ1+γ2+1/k
≥ q vertices, and so we can find

another path on q vertices in F ′′ ⊆ F ′, contradicting the maximality of P. Thus

|P| ≥ γ2k. �

Proof of Claim 3.43. Suppose that |A ∪ V (P ′)| ≤ k − 2. Let LA := A ∩ L, let

L′
A = LA ∩ V (P ′), the set of endpoints of P ′, and L′′

A := LA\V (P ′). We will try to

find an additional path with end-vertices in L′′
A, thus contradicting the maximality

of P ′. Note that |V (P ′)\LA| ≤ k − 2 − |A| ≤ αk. Thus, since each path in

P ′ has exactly two vertices in L′
A and at least one vertex in V (P ′)\L′

A, we have
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|L′
A| ≤ 2|V (P ′)\LA| ≤ 2αk, and so |L′′

A| ≥ k/2 − 2αk. Let A′ = A ∪ V (P ′). Then

since |A′| ≤ k − 2, each vertex of L′′
A has at least three neighbours outside A′.

Furthermore, by the maximality of P ′, no such neighbour is adjacent to more than

one vertex of L′′
A. We thus obtain disjoint sets N1, N2 and N3, each of size |L′′

A|,

such that there is a perfect matching between L′′
A and Ni for each i.

Now observe that for any two vertices in Ni their neighbourhoods outside A′ are

disjoint, by the maximality of P ′. So suppose that there is a set of αk large vertices

in Ni. Each one has at most one neighbour in L′′
A, and |A′\L′′

A| ≤ k − (k/2 − 2αk),

and so certainly each one of these vertices has at least k/3 neighbours outside A′.

But these are all distinct, since otherwise we would have a path of length 4 which

contradicts the maximality of P ′, and so we have a set of at least αk(k/3) > n

distinct vertices in G, which is impossible. Thus at most αk vertices of Ni are large

for each i, and so we obtain sets N ′
i ⊆ Ni of size |L′′

A| − αk ≥ k/2 − 4αk consisting

entirely of small vertices.

Now consider a maximal matching Mi between N ′
i and V (G)\A′. Observe that

since the N ′
i consist of small vertices, N ′

i is an independent set, and furthermore

any neighbours of a vertex in N ′
i are large. Suppose |Mi| ≥ αk. Then V (Mi)\N ′

i

is a set of at least αk large vertices, each of which has at most one neighbour in

L′′
A (otherwise we have a path of length 2, contradicting the choice of P ′) and at

most k/2 + 3αk neighbours in A′\L′′
A, and whose neighbourhoods outside A′ are

disjoint (otherwise we have a path of length 6, contradicting the choice of P ′). Thus

as before we obtain a set of at least αk(k/3) > n distinct vertices in G, which is

impossible and therefore |Mi| ≤ αk.

Let N∗
i := V (Mi) ∩ N ′

i , Qi := V (Mi)\N ′
i and N ′′

i := N ′
i\N∗

i . Then |N ′′
i | ≥

|N ′
i | − αk ≥ |L′′

A| − 2αk. Furthermore, |Qi| ≤ αk and N ′′
i has neighbours only in

Qi ∪ A′, by the maximality of the matching Mi. Thus since N ′′
i consists of small
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vertices, N ′′
i has no neighbours in S ∩ A, and so has neighbours only in Qi, L′′

A

and V (P ′). Now let S ′ := N ′′
1 ∪ N ′′

2 ∪ N ′′
3 . Then S ′ is a set of small vertices, and

N(S ′) ⊆ Q1 ∪ Q2 ∪ Q3 ∪ L′′
A ∪ V (P ′). Thus |N(S ′)| ≤ 3αk + |L′′

A| + αk. Also

|S ′| ≥ 3(|L′′
A| − 2αk). Altogether,

|S ′|/|N(S ′)| ≥ 3(|L′′
A| − 2αk)

|L′′
A| + 4αk

≥ 2

since |L′′
A| ≥ (1/2− 2α)k. But initially in Section 3.2 we assumed that there was no

such set S ′ ⊆ S. This is a contradiction, and completes the proof of the claim. �

Proof of Lemma 3.44. We have a set P of γ2k vertex-disjoint path-segments of

length 8 in T ′ and a set P ′ of paths in G′ which cover D1 and L′
1. For each path P ′

in P ′, we pick a path P of P. This is possible because |P ′| ≤ γ1k ≤ γ2k = |P|. Thus

we can pick a distinct P for each P ′. We then pick a subpath P ∗ of P such that

|P ∗| = |P ′| and P ∗ has both its endpoints in U1. This is possible since |P | ≥ |P ′|+1,

and because the vertices of P alternate between U1 and U2. We can also pick the

subpath P ∗ so that it does not include the vertex of P nearest the root. We then

embed P ∗ onto P ′ in the obvious way. Let us observe that because the endpoints

of P ∗ are in U1 while the endpoints of P ′ are in L1, and because L1 and S1 are

independent sets, we have embedded vertices of P ∗ ∩ U1 into L1 and vertices of

P ∗ ∩ U2 into S1.

Note also that because we avoided the vertices of P closest to the root of T , the

vertices of the paths P ∗ nearest the root are always at distance at least 3 from each

other, and so do not have a common neighbour. This will be important later on.

We also have sufficiently many paths in P left over to find γ2k/3 paths of length

2 with midpoints in U1 and γ2k/3 paths of length 2 with midpoints in U2. Indeed

we can also choose these paths sufficiently far from the ends of paths in P that the
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endpoints have distance at least three from any other paths. We construct a forest

T ∗ from T ′ by deleting the midpoints of these paths. Observe that we now have

U∗
1 = U1 ∩ V (T ∗) and U∗

2 ∩ V (T ∗) with

|U∗
1 | = |U1| − γ2k/3 ≤ δ(C1, L1)

|U∗
2 | = |U2| − γ2k/3 ≤ δ(L1, C1)

Now let x1, . . . , xℓ be the endpoints closest to the root of the paths of P chosen to

cover P ′, and let yi := P (xi), zi := P (yi). (Recall that P (x) denotes the parent

of x, i.e. the vertex directly above x in the rooted tree T .) Note that because the

xi all have distance at least 3 from each other, the yi are distinct. We embed the

remainder of T ∗ greedily, starting at the root of T and placing vertices of U1 into

L1 and vertices of U2 into S1. To see that we can do this, observe that when xi has

been embedded to ui and zi to wi, then ui, wi ∈ L1 and we have

|N(ui) ∩ N(wi) ∩ C1| ≥ |C1| − 2γ1k ≥ |U∗
2 |

and so there is always a free common neighbour vi available for yi. It is important

here that the yi are distinct, although the zi may not be. Therefore when embedding

this parent, we only need to find a common neighbourhood of two vertices that have

already been embedded (the vertex of the path and its grandparent).

It remains only to embed the midpoints of the paths of length 2 which were

deleted. We begin with those midpoints which were in U1. Note that γ2k/3 vertices

of L′′
1 remain free. Let bi, ci denote the vertices of C1 which were chosen as endpoints

of such paths.

We construct a bipartite auxiliary graph H . One class of H will consist of pairs

(bi, ci) and the other class will consist of the γ2k/3 free vertices in L′′
1. Such a vertex
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will be joined to a pair (bi, ci) if it is adjacent to both of these vertices in G′. Note

that dH((bi, ci)) ≥ γ2k/3 − 2γ1k > γ2k/4, since δ(C1, L1) ≥ |L1| − γ1k, while for

x ∈ L′′
1, at most γ1k pairs (bi, ci) are not adjacent to x, since δ(L′′

1, S1) ≥ |S1| − γ1k.

Thus dH(x) ≥ γ2k/3 − γ1k > γ2k/4. Thus δ(H) > γ2k/4. It is now easy to see

that Hall’s condition is satisfied. For we have a bipartite graph on classes A and

B, where |A| = |B| the minimum degree is at least |A|/2 = |B|/2. Suppose that

there exists a set S ⊆ A such that Hall’s condition is violated, i.e. |N(S)| < |S|.

Then since |N(S)| ≥ δ(H) ≥ |A|/2 we have |S| > |A|/2. Let S ′ = B\N(S). Then

S ′ 6= ∅ and therefore |N(S ′)| ≥ δ(H) ≥ |A/2|. On the other hand N(S ′) ⊆ A\S

and so |N(S ′)| ≤ |A| − |S| < |A|/2, which is a contradiction. Thus Hall’s condition

is satisfied, and so a perfect matching exists. This corresponds to finding suitable

vertices of L1 onto which to embed the U1-midpoints of the paths of length 2.

By an identical argument we can also find a perfect matching in a bipartite

auxiliary graph, with one vertex class consisting of unused vertices in C1 and the

other consisting of pairs of vertices in L1 onto which the endpoints of some 2-path

have been embedded. This allows us to embed the midpoints which lie in U2. Thus

we can embed the whole of T ′ as required. �

Proof of Lemma 3.39. We will first tidy up the set V1 to ensure that all vertices

have an appropriately high minimum degree. Note that at most
√

α1k vertices in

L1 have at least
√

α1k neighbours outside V1. We remove these vertices from L1.

Now by relocating some vertices of L1 to S1, and by removing some vertices from

S1, we may assume that |L1| = (1/2 + α2/2)k, and that |S1| = (1/2 − 3α2/4)k. It

is still true, however, that each large vertex has at least |V1| −
√

α1k neighbours in

V1. Thus

e(L1, S1) ≥ |L1|(|S1| −
√

α1k) ≥ |L1||S1| −
√

α1k
2.

Thus at most α
1/4
1 k vertices of S1 have fewer than |L1| − α

1/4
1 k neighbours in L1.
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We remove these vertices from S1 (and thus also from V1). We also remove a few

more vertices from S1 to obtain |S1| = (1/2 − α2)k.

We still denote the sets thus obtained by L1, S1 and V1. We now have that

|V1| = (1/2 − α2/2)k, that every vertex in L1 has at least |V1| −
√

α1k neighbours

in V1 (and thus at least |L1| −
√

α1k neighbours in L1 and at least |S1| −
√

α1k

neighbours in S1) and that every vertex in S1 has at least |L1| − α
1/4
1 k neighbours

in L1. Note that we may treat a vertex of L1 as a vertex of S1 if necessary. This is

why it is useful that L1 is larger than actually required. However, as we will see V1

may now not be large enough, which will present some technical difficulties.

We consider a bipartition of the tree T into independent sets U1 and U2, where

|U1| ≤ |U2|. If |U1| = |U2|, we will choose U2 to be the set with the greater number

of leaves. Now by Fact 3.12, U2 contains at least |U2| − |U1| + 1 leaves. So U2

contains at least two leaves except when |U1| = |U2| and T contains only two leaves

in total, i.e. T is a path. In this special case, we will move the leaf in U1 into U2, and

move its parent into U1. Now U1 contains exactly one edge. Since we will usually

be embedding U1 into L1, this will not be a problem. Indeed, this case will be so

similar to the more general case when U1 and U2 are independent that we will not

mention it any further, noting only that the proof can be trivially adapted to resolve

it.

Thus we assume that U2 contains at least two leaves, and all leaves in U2 are

adjacent to vertices in U1. Since we will be embedding U1 into L1, which consists of

large vertices, we may embed any leaves in U2 greedily at the end of the embedding

process. So we delete any leaves from U2. We still denote this set by U2, and the

tree by T . Now |T | ≤ k − 1. Suppose in fact that |T | ≤ k − 2α2k/3 = |V1| − α2k/6.

Since |U1| ≤ (k + 1)/2 ≤ |L1|, we move vertices from L1 to S1 to ensure that

|L1| = |U1|+α2k/12. Then we also have |S1| ≥ |U2|+α2k/12. The minimum degree
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conditions between L1 and S1 ensure that we can complete the embedding greedily.

Now suppose instead that |T | > k − 2α2k/3. This means that originally U2

contained at most 2α2k/3+1 leaves, and thus by Fact 3.12, originally |U2|−|U1|+1 ≤

2α2k/3 + 1. Since also |U1| + |U2| = k + 1, we have |U2| ≤ k/2 + α2k/3 + 1/2 ≤

|L1| − α2k/7. Thus if U1 contains at least α2k leaves we can perform the same

process as before, now removing leaves of U1 and embedding U2 into L1.

Thus in total we may assume that T contains at most 2α2k leaves. We may

therefore apply Claim 3.42 with γ1 = 2α2 and γ2 = α3, where α2 ≪ α3 ≪ 1, to find

a set of α3k vertex-disjoint path-segments of length 8 in T . We will use these to

help us embed T by using some extra vertices which are not in V1.

Now by Claim 3.43 applied to V1 we have a set of vertex-disjoint paths P ′ of

length at most 6, each of which has its endpoints in L1 and its internal vertices, of

which there is at least one for each path, outside V1 and such that V ′
1 := V1 ∪ V (P ′)

has size at least k − 1 ≥ |T | (recall that we have removed all leaves from U2). If

|V ′
1 | ≥ |T | + 5, we simply remove some paths from P ′ to ensure that V ′

1 is not

substantially bigger than we need it to be, i.e. that |V ′
1 | ≤ |T |+4. This ensures that

|V (P ′)| ≤ 3α2k. If we still have |V ′
1 | > |T |, we simply discard some small vertices

(not in V (P ′)), or large vertices if no small vertices are left, to ensure that |V ′
1 | = |T |.

Now for each path in P ′ of odd length, we find a neighbour in L′′
1 := L1\V (P ′) of

one of the end-vertices, and add this to the path. This ensures that all paths in P ′

have even length, and means that we will be able to use the endpoints for vertices in

U1 while still respecting the bipartition of T . We rearrange the vertices of the paths

of P ′ to ensure that they alternate between L1 and S1, with the endpoints lying in

L1.

We now note that by moving some vertices of L1 into S1 (and deleting any

edges which now lie within S1 and L1), the conditions of Lemma 3.44 are satisfied,
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where D1 ∪ L′
1 consists of the internal vertices of paths in P ′, C1 consists of any

remaining vertices of S1 and L′′
1 consists of any remaining vertices of L1, and where

γ1 = max(|P ′|/k,
√

α1) ≤ α2, and γ2 = α3. So we can apply that lemma to embed

the tree T into V1 and since |U1| vertices will be embedded into L1 ⊆ L, we can also

embed the remaining leaves of T greedily, and thus T ⊆ G, as required. �

Proof of Lemma 3.40. It is in this proof that we finally need to use the full

strength of the conditions on G rather than G∗.

At first we remain in G∗ and we go through exactly the same proof as the

one for Lemma 3.39 to obtain V1 = L1 + S1 such that |L1| = (1/2 + α2/2)k and

|S1| = (1/2 − α2)k. We also have that each vertex in L1 has at least |V1| −
√

α1k

neighbours in V1 and each vertex in S1 has at least |L1|− (α1)1/4k neighbours in L1.

We now transfer to G and continue to go through the same proof as the one for

Lemma 3.39. Note that we needed to apply Claim 3.43 for that proof. In order to

see that this is still permissible, we must observe that L∗ ⊆ L. Note also that in

the proof of Claim 3.43 we needed to use the fact that G is edge-minimal subject

to satisfying the conditions of Theorem 3.1, and in particular that there is no set

S ′ ⊆ S such that |N(S ′)| ≤ |S ′|/2. This is not necessarily true in G∗ and this is the

reason that we need to use G instead. �

Note that with the proof of Lemma 3.40 we have finally completed the proof of

Theorem 3.3, and therefore also the proof of Theorem 3.8.

Now Proposition 3.38 and Lemma 3.39 (with α1 = θj and α2 = µj) prove Theo-

rem 3.41, and so we move on to proving Theorems 3.45 and 3.46.

3.6.4 Proof of Theorem 3.45

We now know that j = ⌊n/k⌋. Let us define θ′j and θ′′j such that θj ≪ θ′j ≪ θ′′j ≪

θj+1. We also know that for each i > 0, |Li| ≤ (1/2 + θ′j)k (from Lemma 3.39). We
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begin the proof of Theorem 3.45 with two simple claims.

Claim 3.53 Either |V0| ≤ θ′′j k or |V0| ≥ (1 − θ′′j )k.

Note that although we did not state it as a numbered result, a similar argument

appeared in Section 3.6.2 for the proof of Theorem 3.3.

Proof. Suppose instead that |V0| ∈ (θ′′j k, (1 − θ′′j )k). Then

|V0 ∩ L| ≥ n/2 −
j
∑

i=1

(1 + θ′j)k/2 = (n − jk)/2 − jθ′jk/2

= |V0|/2 − jθ′jk/2 ≥ θ′′j k/4.

But e(V0, V (G)\V0) ≤ ∑j
i=1 θjk

2 ≤ θ
2/3
j k2. So at most θ

1/3
j k vertices of V0 have

degree at least θ
1/3
j k outside V0. But this does not cover all the large vertices in V0,

and so there must still be some vertices with degree at least (1 − θ
1/3
j )k in V0. So

|V0| ≥ (1 − θ
1/3
j )k ≥ (1 − θ′′j )k, which is a contradiction. �

Note in particular that if |L0| ≥ (1/2 + θj+1)k, then we could move a few small

vertices into V0 to ensure that |V0| = k. Then we have

e(V0, V (G)\V0) ≤
j
∑

i=1

θjk
2 + θ′′j k

2 ≤ 2θ′′j k
2

and we can apply Lemma 3.39 with α1 = 2θ′′j and α2 = θj+1 to obtain T ⊆ G. Thus

we may assume that |L0| ≤ (1/2+θj+1)k. Thus for every i, including i = 0, we have

|Li| ≤ (1/2 + θj+1)k.

Claim 3.54 For all i 6= 0, |Li| > (1/2 −
√

θj+1)k.

Proof. Suppose not. Then since no vertex class has substantially more than half

its vertices being large (including V0) there cannot possibly be a total of n/2 large
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vertices in the classes of G. More precisely

|L| ≤ |L0| + (1 −
√

θj+1)k/2 + (j − 1)(1 + θj+1)k/2

≤ |L0| − 2
√

θj+1k/2 + (n − |V0|)/2

and so

|L0| ≥ |V0|/2 + 2
√

θj+1k/2.

In particular |V0| ≥ (1− θ′′j )k, and so |L0| > (1/2 + θj+1)k. But we already assumed

that this is not the case, which is a contradiction �

Note that by a similar argument we have either |V0| < θ′′j k or |L0| > (1/2 −
√

θj+1)k.

In general, if |V0| < θ′′j k we can ignore it, and if |V0| ≥ (1 − θ′′j )k we can, if

necessary depending on whether we intend to embed into V0, add in a few vertices

from some other class to increase the size to k. This doesn’t affect calculations

significantly, so for the remainder of the proof of Theorem 3.45 we will assume for

simplicity that V0 = ∅, or |V0| = k, in which case we will call it Vj+1 and increase

j. In either case we now have that e(Vi, V \Vi) ≤ θjk
2 for i = 1, . . . , j. In the proof

of Theorem 3.46 we will need to consider the case when n is not divisible by k (and

therefore 0 < |V0| < k) and deal with it more carefully.

Let us observe that since we are in ECj, we have e(Vi, V \Vi) ≤ θjk
2 for each

1 ≤ i ≤ j. Thus at most
√

θjk vertices of Li have more than
√

θjk neighbours

outside Vi. Thus at least |Li| −
√

θjk vertices of L1 have at least (1 −
√

θj)k

neighbours in Vi, and so in particular have at least |Si| −
√

θjk neighbours in Si.

Thus e(Li, Si) ≥ (|Li|−
√

θjk)(|Si|−
√

θjk) ≥ |Si|(|Li|−θj+1k). This last inequality

holds since (1/2−
√

θj+1)k ≤ |Li|, |Si| ≤ (1/2+
√

θj+1)k. Therefore at most
√

θj+1k

vertices of S1 have fewer than |Li| −
√

θj+1k neighbours in Li. Thus we obtain sets
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L′
i ⊆ Li and S ′

i ⊆ Si such that

δ(L′
i, L

′
i), δ(L′

i, S
′
i), δ(S ′

i, L
′
i) ≥ (1/2 − 2

√

θj+1)k. (3.5)

We call the vertices of Si\S ′
i bad vertices, and denote this set by Bi.

We now aim to prove Proposition 3.47. In the proof we will use two simple facts

from [72] (Fact 6.2 Part 1 and Fact 6.8 in that paper).

Fact 3.55 Suppose G′ is a graph with V (G′) = C + D, and T ′ a tree. Suppose

also that V (T ′) = U1 + U2, where |U1| ≤ |U2| and U2 is an independent set, and

that G′ satisfies δ(C, C), δ(D, C) ≥ |U1| and δ(C, D) ≥ |U2|. Then T ′ ⊆ G′ with U1

embedded into C and U2 into D. �

Recall that ℓ(T ) denotes the number of leaves of T .

Fact 3.56 1. For any positive integer q ≤ k + 1 there is a vertex x of T , and some

children y1, y2, . . . , yt of x such that q/2 ≤ |T (x)\(
⋃t

i=1 T (yi))| < q.

2. For any positive integer q ≤ ℓ(T ) there is a vertex x of T , and some children

y1, y2, . . . , yt of x such that T (x)\(
⋃t

i=1 T (yi)) contains [q/2, q) leaves of T . �

We also need the following simple result, which is very similar to Claim 6.6 in [72].

Recall that a skew-partition is an ordered vertex partition V (T ) = U1 + U2 such

that |U1| ≤ |U2| and U2 is an independent set. Recall also that we call g(U1, U2) :=

|U2| − |U1| the gap of the partition, and that g(T ) := g(Todd, Teven) is the gap of T .

Remark 3.57 If T has a skew-partition with g(U1, U2) ≥ 5
√

θj+1k, then T ⊆ G.

Proof. By Fact 3.12, U2 contains at least |U2| − |U1| + 1 leaves. Deleting these

leaves gives two vertex sets U1, U
′
2 each of size at most (k + 1)/2 − 5

√

θj+1k/2 ≤

(1/2 − 2
√

θj+1)k. Now the minimum degree conditions of (3.5) ensure that for any

i we can embed U1 into L′
i and U ′

2 into S ′
i greedily, starting at the root. Now the
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remaining vertices of U2 are leaves adjacent to vertices of U1. Since vertices of U1

were embedded onto large vertices, we can embed these remaining leaves greedily.

�

Given a partition U1, U2 of the vertices of T and a subtree T ′, flipping T ′ means

moving the vertices of T ′ that lie in U1 into U2 and vice versa.

Corollary 3.58 k/2 − θj+2k ≤ |Todd|, |Teven| ≤ k/2 + θj+2k. Furthermore, for any

subtree T ′ ⊆ T , of the form T ′ = T (x)\⋃s
i=1 T (yi), where x ∈ V (T ) and y1, . . . , ys

are children of x, we have

|T ′ ∩ Todd| − |T ′ ∩ Teven| ∈ (−3θj+2k, 3θj+2k)

or else T ⊆ G.

Proof. The first part is immediate from Remark 3.57. For the second, suppose

that |T ′∩Todd|−|T ′∩Teven| ≥ 3θj+2k. Then we start with U1 = Todd, U2 = Teven and

we flip T ′ (except for x if x lies in U1). Together with the bound in the first part,

this gives a skew-partition with a gap of size at least 3θj+2k − 1 − 2θj+2 ≥ 5
√

θj+1,

and thus by Remark 3.57 we could embed T in G. A similar argument shows that

|T ′ ∩ Todd| − |T ′ ∩ Teven| ≥ −3θj+2k. �

Proof of Proposition 3.47. Let I := {i : d(v0, Vi) ≥ θ
1/4
j+1k} and note that by

assumption |I| ≥ 2. By relabelling if necessary, we may assume that I = {1, . . . , s}.

We also assume without loss of generality that for 1 ≤ i1 < i2 ≤ s,

d(v0, Vi1) ≤ d(v0, Vi2). (3.6)

We will follow the proof of Proposition 6.12 in [72] with some minor modifications.
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Recall that we have sets L′
i ⊆ Li and S ′

i ⊆ Si satisfying (3.5). By Remark 3.57

we may assume that T has no skew-partition with a large gap.

Now by Fact 3.56 we can find a vertex x in T and some children y1, . . . , yt such

that setting T = T (x)\(
⋃t

i=1 T (y)) we have |T ′| ∈ [θ
1/4
j+1k/4, θ

1/4
j+1k/2).

Now dT ′(x) ≤ θ
1/4
j+1k/2, and dL′

1∪S′
1
(v0) ≥ θ

1/4
j+1k − 4

√

θj+1k ≥ θ
1/4
j+1k/2. So we

embed x onto v0, and T ′ into L′
1 ∪ S ′

1 greedily (note that δ(L′
1 ∪ S ′

1) ≥ |T ′|).

Now let F := T\T ′ be the forest consisting of T\T (x), T (y1), T (y2), . . . , T (yt).

Since any isolated vertices of F are neighbours of x, and since v0 ∈ L, we can embed

these greedily at the end. So we assume that F contains no isolated vertices. Thus

the number of roots in F is at most |F |/2 ≤ (1−θ
1/4
j+1/4)k/2. Let VI :=

⋃

i∈I(L′
i∪S ′

i).

Then

d(v0, VI\V1) ≥ k − jθ
1/4
j+1k − 4j

√

θj+1k − d(v0, L
′
1 ∪ S ′

1).

If s ≥ 3 then by (3.6) we have d(v0, L
′
1∪S ′

1) ≤ 1
3
d(v0, VI), and so d(v0, VI\V1) ≥ k/2,

which will be enough for our purposes. If s = 2, however, we need to be more

careful. (The following argument also works for s ≥ 3, although in that case it is

substantially more complicated than necessary, as indicated by the easy argument

above.) We have

d(v0,

j
⋃

i=2

L′
i ∪ S ′

i) ≥ k/2 − 4j
√

θj+1k ≥ 1

2
(1 − θ

1/4
j+1/4)k

so we can embed the roots of F greedily into
⋃j

i=2 L′
i ∪ S ′

i.

For 2 ≤ i ≤ j, let F a
i , F b

i denote the subforests of F with roots in L′
i, S

′
i re-

spectively. Let U
(1)
i := (F a

i )even ∪ (F b
i )odd, and U

(2)
i := (F a

i )odd ∪ (F b
i )even. If

|U (1)
i |, |U (2)

i | ≤ (1/2 − 2
√

θj+1)k for each i, then the conditions of (3.5) ensure that

we can complete the embedding using the greedy algorithm. (We embed U
(1)
i into

L′
i and U

(2)
i into S ′

i.) Note also that since [θ
1/4
j+1k/4, θ

1/4
j+1k/2) vertices have already
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been embedded into V1, only at most one i can fail to satisfy this condition. We will

show in this case that T has a skew-partition (U1, U2) with gap at least 5
√

θj+1k.

If |U (2)
i | > (1/2− 2

√

θj+1)k, we put U
(2)
i into U2. We place x into U1 along with

the smaller half of the bipartition of T ′. We place the larger part of T ′ into U2, and

any remaining vertices of T into U1. Then U2 is indeed an independent set, and

|U2| ≥ (1/2 − 2
√

θj+1)k + θ
1/4
j+1k/8 − 1 ≥ (1/2 + θ

1/4
j+1/10)k.

Thus |U1| ≤ (1/2 − θ
1/4
j+1/10)k, and so |U2| − |U1| ≥ θ

1/4
j+1k/5 ≥ 5

√

θj+1k, and U1, U2

is a skew-partition with a large gap, which by Remark 3.57 we assumed earlier was

not the case, and so we have a contradiction.

If on the other hand |U (1)
i | > (1/2 − 2

√

θj+1)k, the process is similar. Now

U
(1)
i goes into U2 along with the larger part of T ′, except for x. The rest of T ,

including x, goes into U1. The calculations are the same and again yield the desired

contradiction. This completes the proof of Proposition 3.47. �

Proof of Proposition 3.48. For each i ∈ [1, j], let L∗
i := {x ∈ L : d(x, Vi) ≥

θ
1/4
j+1k}. Since the conditions of Proposition 3.47 do not hold, the L∗

i are pairwise

disjoint. Furthermore, for x ∈ L∗
i , d(x, Vi) ≥ k − jθ

1/4
j+1k ≥ (1 − θ

1/5
j+1)k. Since

e(Vi, V (G)\Vi) ≤ θjk
2, we have |L∗

i \Vi| ≤
√

θjk.

We move each L∗
i into Vi, and move some small vertices to rebalance the sizes of

the Vi. We have moved at most 2j
√

θjk vertices, and thus1

e(Vi, V (G)\Vi) ≤ θjk
2 + (

√

θjk)(jθ
1/4
j+1k) + (j

√

θjk)(θ
1/4
j+1k) + (j

√

θjk)k ≤ θ3
j+2k

2.

1The four terms in the central expression come from the original number of edges, the edges
coming off those vertices of L∗

i which we had to move into Vi, those edges coming off large vertices
moved out of Vi and those edges coming off small vertices which were moved either into or out of
Vi.
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Furthermore, each vertex in Li still has at least

(1 − θ
1/4
j+1)k − 2j

√

θjk
2 ≥ (1 − θ3

j+2)k

neighbours in Vi, and at most θ
1/4
j+1k + 2j

√

θjk ≤ θ3
j+2k neighbours outside. Thus

the conditions of EC ′(θ3
j+2) are now satisfied. �

This therefore also completes the proof of Theorem 3.45.

3.6.5 Proof of Theorem 3.46

We have now tidied up the large vertices in each of the classes to ensure that

EC ′(θ3
j+2) holds. Note that every class has approximately half its vertices in L.

We would like to say now that there is some class which has at least k/2 large ver-

tices. However, this may not be the case if (1 − θ
1/4
j )k ≤ |V0| < k. Then V0 may

have more than half its vertices lying in L, but nevertheless |L0| < k/2. Therefore

if all the remaining vertices have very slightly less than half their vertices lying in

L, we have no class for which |Li| ≥ k/2. This will cause some difficulty later on.1

The proof in the case when there is some i with |Li| ≥ k/2 is substantially easier.

However, since the harder case would rely on many very similar results, we prove

the two together. This involves stating and proving certain results in considerably

more generality than we would require for the easier case.

We begin by rearranging some small vertices. Recall that for each i = 1, . . . , j

we have |Li| ≥ (1/2 − θ3
j+2)k, and that for each x ∈ Li, dVi

(x) ≥ (1 − θ3
j+2)k. This

means that e(Li, Si) ≥ |Li|(|Si| − θ3
j+2k) ≥ |Si|(|Li| − 2θ3

j+2k). (Note that this also

holds for i = 0 in the case when |V0| ≥ (1− θ′′j )k.) Thus at most
√

2θ
3/2
j+2|Si| vertices

1We don’t have the same problem if |V0| ≤ θ
1/4

j , since then by Proposition 3.47 we could move
any large vertex of V0 to the (unique) class in which it has almost k neighbours, effectively leaving
L0 = ∅.
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of Si have fewer than |Li| −
√

2θ
3/2
j+2k neighbours in Li. We call such vertices bad,

and we move them into the class Vi in which they have most neighbours. Note that

since all bad vertices are small, and because the set of small vertices is independent,

this rearrangement is well-defined. We still call those vertices bad, and denote by

Bi the set of bad vertices in Vi. Because we are moving fewer than 3θ
3/2
j+2n vertices

in total, we still have sets Vi with the following properties:

• (1 − θj+2)k ≤ |Vi| ≤ (1 + θj+2)k;

• (1/2 − θj+2)k ≤ |Li| ≤ (1/2 + θj+2)k;

• e(Vi, V (G)\Vi) ≤ θj+2k
2;

• For each x ∈ Li, d(x, V (G)\Vi) ≤ θj+2k;

• |Bi| ≤ θj+2k, and δ(Si\Bi, Li) ≥ (1/2 − θj+2)k.

Recall that in the proof of Theorem 3.45 we ignored the set V0 if its size was

small, or called it Vj+1 and increased j if it had size almost k. It did not affect

calculations significantly to assume that either |V0| = 0 or |V0| = k. Now, however,

we no longer need to make such assumptions, because we no longer demand that

|Vi| = k. If originally V0 was small (i.e. |V0| ≤ θ′′j k ≤ θj+1k), then its vertices

will now be distributed among the other Vi, each vertex being placed into the class

in which it has most neighbours. Since θj+1 ≪ θj+2, this does not affect the above

conditions significantly. If it had size almost k, then because we treated it as a set of

size k we have already performed all the same rearrangements as we have performed

for all the other classes, and therefore V0 will satisfy the above conditions just like

all the other Vi.

We note also that for 0 ≤ i ≤ j we have |Si| ≥ (1 − θj+2)k − (1/2 + θj+2)k ≥

(1/2− 2θj+2)k, and each x ∈ Li has at least k− θj+2k ≥ |Vi| − 2θj+2k neighbours in
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Vi, so (with the bound for δ(Si\Bi, Li) which we had before) we have

δ(Li, Si\Bi) ≥ (1/2 − 2θj+2)k − θj+2k − 2θj+2k = (1/2 − 5θj+2)k

δ(Li, Li) ≥ (1/2 − θj+2)k − 2θj+2k = (1/2 − 3θj+2)k (3.7)

and δ(Si\Bi, Li) ≥ (1/2 − θj+2)k.

We can now prove Proposition 3.49.

Proof of Proposition 3.49 First of all, to see how the “in particular” follows from

the first statement, recall that a good small vertex in Vi has at least (1/2 − θj+3)k

neighbours in Vi, and so has at most (1/2 + 2θj+3)k − (1/2 − θj+3)k = 3θj+3k

neighbours outside Vi. On the other hand a bad small vertex in Vi has at least as

many neighbours in Vi as in any other Vi′ . Therefore if it has more than (1/4+θj+3)k

neighbours in Vi′ , it also has at least (1/4 + θj+3)k neighbours in Vi, and so has at

least (1/2 + 2θj+3)k neighbours in total, which is a contradiction.

Therefore we need only show that any small vertex has at most (1/2 + 2θj+3)k

neighbours. Suppose instead that we have some vertex v0 ∈ Si with at least (1/2 +

2θj+3)k neighbours. Then since |Li| ≤ (1/2+θj+2)k, v has at least θj+3k neighbours

outside Vi, and since v0 is small these neighbours must be large vertices.

By Corollary 3.58 we may assume that |Todd|, |Teven| ≤ (1/2 + θj+2)k. Thus

d(v0) ≥ (1/2 + 2θj+3)k ≥ |Todd|, |Teven|. In particular, d(v0) ≥ ∆(T ).

As in the proof of Proposition 3.47, by Fact 3.56 we can find a vertex x and

some children y1, . . . , yt in T such that T ′ := T (x)\(
⋃t

i=1 T (yi)) satisfies |T ′| ∈

[θj+3k/2, θj+3k).

Note that by Corollary 3.58 we have |T ′∩Teven|, |T ′∩Todd| ≥ θj+3k/4−3θj+2k ≥

θj+3k/5. Thus

|Todd\T ′|, |Teven\T ′| ≤ (1/2 + θj+2)k − θj+3k/5 ≤ (1/2 − θj+3/6)k.
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We now embed x onto v0 and N(x)∩T ′ greedily onto neighbours of v0 in V \Vi. This

is possible since |T ′| ≤ θj+3k ≤ d(v0, V \Vi). Now since v0 is small its neighbours

must be large, and the minimum degree conditions of (3.7) (applied with i′ instead

of i) ensure that we can easily embed the remainder of T ′ greedily into V \(Vi ∪B),

where B =
⋃j

i′=0 Bi′.

We now embed T\T ′ into V greedily with x as the root. If v0 is good, then it

has at least (1/2 − 5θj+2)k ≥ |Todd\T ′|, |Teven\T ′| neighbours in its own class, and

so we can embed T\T ′ into Li ∪ (Si\Bi) greedily, using the minimum degree of at

least (1/2 − 5θj+2)k between these two sets.

On the other hand, if v0 is bad then it contains at least as many neighbours

in its own class as in any other. We order the remaining neighbours yt+1, . . . , yt′

of x in such a way that |T (yt+1)| ≥ |T (yt+2)| ≥ . . . ≥ |T (yt′)|. Then if we begin

by embedding the ym in order, first embedding as many as possible into Vi, then

we will eventually embed at least (1 − θj+3)k/C vertices into Vi. Since we have

already embedded at least θj+3k/2 vertices into V \Vi, this ensures that we never

attempt to embed too many vertices (i.e. (1 − 20θj+2)k) into any one class. Note

that T ′′ = T (x)\
(

⋃m−1
i=1 T (yi) ∪

⋃s′

i=m′+1 T (yi)
)

is balanced by Corollary 3.58, and

so T ′′ − x, which we intend to embed in Vi′ , is also balanced. Thus the minimum

degree conditions of (3.7) between the Li′ and the Si′\Bi′ ensure that we can do

the remainder of the embedding greedily. But since we assumed that T cannot be

embedded into G this is a contradiction, as required. �

We now note that since in total half the vertices of G are large, there must be

some set Vi for which |Li| ≥ |Si|. Without loss of generality, we will assume that

this set is V1. We will do most of the embedding in V1, although it may be too small

to embed all of T , and a few vertices will be embedded into other classes. This is

the purpose of Lemma 3.50, which we will prove shortly.
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Recall that T is rooted at r. We may assume without loss of generality that

|Teven| ≤ |Todd| (otherwise we move the root to one of its neighbours). Recall that

we define the gap of T to be g(T ) = |Todd| − |Teven|. Note in particular that by

Remark 3.57 we may assume that g(T ) ≤ 5
√

θj+1k, and so k/2 − θj+2k ≤ |Teven| ≤

|Todd| ≤ k/2 + θj+2k. We split the proof further into two cases:

• Case 1: T has at least 36θj+4k leaves,

• Case 2: T has fewer than 36θj+4k leaves.

Recall that mi := k− |Vi|. If a vertex is not bad, then we call it good. Note that

this includes all large vertices. Recall Lemma 3.50 which we will need in both cases,

although its full strength is only needed in Case 1.

Lemma 3.50. Let q1, q2, . . . , qs be positive integers such that q :=
∑s

i=1 qi ≤

2(m1 + 1)/3, and let C1, . . . , Cs ⊆ L1 be (not necessarily distinct or disjoint) sets of

size (1/2 − 2θj+4)k. Then there are

• q disjoint (1/θj+4)-stars in V \V1 with midpoints y1, . . . , yq;

• distinct vertices x1, . . . , xs ∈ L1 and

• a partition of the set of stars into Q1, . . . , Qs

such that for each i = 1, . . . , s we have

• xi ∈ Ci;

• |Qi| = qi and

• M(Qi) ⊆ N(xi)

where M(Qi) denotes the set of midpoints of the stars in Qi. Furthermore, all

endpoints of stars are good vertices.
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Proof. We prove the lemma inductively on s. For s = 0, there is nothing to prove,

so we assume that s ≥ 1 and that we have a set Q of appropriate stars for integers

q1, . . . , qs−1, along with vertices x1, . . . , xs−1.

Now let P be the set of vertices outside V1 with fewer than (m1 + 1)/θj+4 neigh-

bours in their own class and let C ′
s := Cs\{x1, . . . , xs−1}. Now if any vertex in C ′

s

has at least qs neighbours in V \(V1 ∪P ∪ V (Q)), then we call this vertex xs and we

can greedily pick qs neighbours y1, . . . , yqs and (1/θj+4) further neighbours for each

yi to find the required further stars to form Qs, and so the proof is complete. (Note

that if yi is bad, then it is small and all its neighbours are large and therefore good.

On the other hand, if yi is good, then by (3.7) there are plenty of good neighbours

to choose from. So we can ensure that all the endpoints are good.) Thus we may

assume that any vertex in C ′
s has fewer than qs neighbours in V \(V1 ∪ P ∪ V (Q)).

This means that

e(C ′
s, V \(V1 ∪ P ∪ V (Q))) ≤ qs|C ′

s|. (3.8)

Note also that since any vertex in End(Q) := V (Q)\M(Q) (the set of endpoints

of the stars in Q) is good, it has at most 3θj+3k neighbours in C ′
s by Proposition 3.49.

Thus we have

e(C ′
s, End(Q)) ≤ 3θj+3k|End(Q)| = 3θj+3k(q − qs)/θj+4. (3.9)

Now we also have that any vertex in M(Q) has at most (1/4 + θj+3)k neighbours

outside its own class (by Proposition 3.49) and so

e(C ′
s, M(Q)) ≤ (1/4 + θj+3)k|M(Q)| = (1/4 + θj+3)k(q − qs). (3.10)

Note also that the vertices of P are bad, and so have at most as many neighbours

in V1 as they have in their own class, and therefore certainly at most as many
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neighbours as they have in V \V1, which itself is at most (m1 + 1)/θj+4 neighbours.

Thus, since |P | ≤ |B| ≤ θj+2n,

e(C ′
s, P ) ≤ ((m1 + 1)/θj+4)|P | ≤ ((m1 + 1)/θj+4)θj+2n ≤ (m1 + 1)θj+3k. (3.11)

Finally we note that each vertex in C ′
s has at least k− |V1|+ 1 = m1 + 1 neighbours

in V \V1, and so

e(C ′
s, V \V1) ≥ (m1 + 1)|C ′

s|. (3.12)

Now (3.8), (3.9), (3.10) and (3.11) together give

e(C ′
s, V \V1) ≤ qs|C ′

s| + 3(q − qs)kθj+3/θj+4

+(1/4 + θj+3)k(q − qs) + (m1 + 1)θj+3k

≤ qs|C ′
s| + k(q − qs)/3 + (m1 + 1)θj+3k

≤ qs|C ′
s| + (q − qs)|C ′

s| + 3(m1 + 1)θj+3|C ′
s|

≤ (2(m1 + 1)/3)|C ′
s| + 3(m1 + 1)θj+3|C ′

s|

< (m1 + 1)|C ′
s|

which contradicts (3.12). �

We will need a slightly different version of Lemma 3.50 later on, for which we

make the following remark.

Remark 3.59 In the proof of Lemma 3.50, we did not need any properties of L1\Ci.

In particular, we did not use the fact that vertices of L1\Ci had degree at least k.

Therefore the Lemma remains true even if we had already deleted some set of vertices

S ′
1 ⊆ S1 with N(S ′

1) ⊆ L1\ (
⋃s

i=1 Ci).

Case 1: T contains at least 36θj+4k leaves.
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Recall that we call a skew-partition ideal if both U1 and U2 contain at least

5θj+4k leaves. Instead of Proposition 3.51, which states that if T has an ideal skew-

partition then it can be embedded into G, we will prove a very slightly stronger

result which also allows for the possibility that |U1| = k/2 + 1 (so |U2| = k/2). We

will need this extra possibility later on.

Proposition 3.60 Let V (T ) = U1 + U2 where U2 is an independent set and |U1| ≤

k/2 + 1 if k is even and |U1| ≤ (k + 1)/2 if k is odd. Suppose that both U1 and U2

contain at least 5θj+4k leaves of T . Then T ⊆ G.

Proof. Let Wi be the set of leaves in Ui. Let Ŵ1 be the set of leaves in U1 whose

parent is in U2. (Note that the corresponding Ŵ2 would just be W2.) If Ŵ1 ≤ 4θj+4k,

we can move at least θj+4k leaves from U1 to U2, thus giving a new skew-partition

with gap at least 2θj+4k ≥ 12θj+2k, and we can apply Remark 3.57. So we assume

that |Ŵ1| > 4θj+4k.

Let W ′
1 := {v ∈ Ŵ1 : v is the only leaf among the children of P (v)}. Note that

|P (W ′
1)| = |W ′

1|.

Case 1.1: |W ′
1| < 2θj+4k.

Let W ′′
1 := Ŵ1\W ′

1, and flip the subforest on P (W ′′
1 )∪W ′′

1 . Note that any new edges

within a class come from the vertices of P (W ′′
1 ), which now lie in U1, so U2 is still

independent. Also, since |P (W ′′
1 )| ≤ |W ′′

1 |/2 and |W ′′
1 | > 2θj+4k, we now have

|U1| ≤ k/2 + 1 − (|W ′′
1 | − |P (W ′′

1 )|) < k/2 − θj+4k/2 < (1/2 − θj+2)k

and therefore we can apply Remark 3.57 to obtain T ⊆ G.

Case 1.2: |W ′
1| ≥ 2θj+4k.

This case is considerably harder. Recall that if |L1| < k/2, then m1 ≥ 2(k/2−|L1|) >

167



0. We pick a set W ′′
1 ⊆ W ′

1 of size 2θj+4k. Let W ′′
1 = {c1, c2, . . . , ct}, let P (W ′′

1 ) =

{b1, b2, . . . , bt} and let P (P (W ′′
1 )) = {a1, a2, . . . , at′} (where t′ ≤ t = 2θj+4k).

Now we would like to use Lemma 3.50 to find a set of at least 2(m1 + 1)/3 stars

with (1/θj+4) endpoints outside V1 and vertices x1, . . . , xs in L1 such that we can

embed some of the ai onto xi, the bi onto the midpoints of stars (which we call

yi) and ci and any remaining neighbours onto the endpoints of stars. Since these

endpoints are good, we could embed whatever remains of T below these neighbours

into the appropriate classes greedily using the minimum degree conditions of (3.7).

We would then have embedded at least 2(m1 + 1)/3 vertices of U1 (namely the ci)

outside V1, and this would give us enough room in V1 to embed the remainder of

the tree greedily.

However, performing this process näıvely may fail for any one of three reasons.

(1) When attempting to embed the trees T (bi) outside of V1, we may inadver-

tently end up attempting to embed almost all of the tree in some other Vi, thus

merely moving our problems to a different class.

(2) Some of the bi may have degree greater than 1/θj+4, and so the stars guaran-

teed by Lemma 3.50 are not large enough to fit in all of the neighbours as we would

wish to.

(3) Some of the ai may be at distance two from each other. Thus when we

attempt to embed what remains of the tree into V1 greedily, we may be looking for

common neighbours of a large number of vertices. The minimum degree conditions

may not be sufficient to guarantee that we can find this.

The first two problems are easy to deal with, but the third is harder, and it is

to solve this problem that we introduced the candidate sets Ci in Lemma 3.50.

We define the weight of a vertex x to be |T (x)| (and r has weight |T | = k + 1).

To deal with problem (1), we first note that if some child r′ of the the root r of T
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satisfies |T (r′)| ≥ (k + 2)/2, then we can move the root to r′. Since this can only

happen for at most one r′, and since with this new root we have |T (r)| ≤ k/2, we

can continue with this process until no child of the root r carries more than half the

weight of the tree. In order to ensure that we have not switched Todd and Teven we

then move the root to a neighbour once more arbitrarily if necessary. Now at most

one child and no grandchild of the root carries at least half the weight of the tree.

Thus in particular, unless bi is the root or this one special child (which can only

happen for at most two bi) |T (bi)| ≤ (k + 1)/2. By removing at most two bi from

consideration, we assume that every bi satisfies this property. Since |W ′′
1 | is large,

removing two vertices will not affect matters significantly. Now if |⋃i T (bi)| ≥ 3k/4,

we will simply take a subset of the bi such that together they carry a weight of

between k/4 and 3k/4 (successively remove vertices bi from consideration until the

combined weight is at most 3k/4, and since the last vertex to be removed had weight

at most (k + 1)/2, the remaining weight is at least k/4).

To deal with problem (2) we note that |P (W ′′
1 )| = |W ′′

1 | = 2θj+4k, and if at

least θj+4k + 1 of these vertices have degree more than 1/θj+4, then |T | ≥ (θj+4k +

1)/θj+4 > k + 1 which is a contradiction. So we can take a set W ′′′
1 ⊆ W ′′

1 such that

|W ′′′
1 | = θj+4k and the vertices of P (W ′′′

1 ) all have degree at most 1/θj+4. Without

loss of generality we will assume that W ′′′
1 = {c1, . . . , ct/2}, P (W ′′′

1 ) = {b1, . . . , bt/2}

and P (P (W ′′′
1 )) = {a1, . . . , at′′}.

We now turn our attention to problem (3). Instead of embedding the ai, bi and

ci straight away, we will first embed some preliminary vertices. Let P1 ⊆ V (T ) be

the set of vertices which are parents of more than one ai. Inductively we then define

Pi to be the set of vertices which are parents of more than one vertex of Pi−1. We

observe that |Pi| ≤ |Pi−1|/2 (where we may define P0 to be P (P (W ′′′
1 )), the set of ai),

and so P :=
⋃

i≥1 Pi satisfies |P | ≤ |P (P (W ′′′
1 ))| ≤ θj+4k. In particular, the process
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must terminate at some i = p, say. We now greedily embed P into V1 starting with

Pp and embedding each Pi in order of decreasing i. Furthermore, if a vertex is in

U1 we will embed it into L1, and if it is in U2 we will embed it into S1\B1. The

fact that |P | ≤ θj+4k means that the minimum degree conditions of (3.7) applied

with i = 1 will be more than sufficient. Let P̃ denote the set in V1 onto which P is

embedded.

We now show that we can apply Lemma 3.50. If a vertex ai of P (P (W ′′′
1 )) is not

a child of any vertex of P1, then the candidate set Ci for the corresponding xi will

be L1\P̃ . If on the other hand ai is a child of a vertex di in P1, then let d̃i be the

vertex in V1\B1 onto which di is embedded. The candidate set Ci in this case will

be (L1 ∩ N(d̃i))\P̃ . Observe that the minimum degree condition of (3.7) ensures

that |Ci| ≥ (1/2− 2θj+2)k − |P̃ | ≥ (1/2− 2θj+4)k. Thus we may apply Lemma 3.50

to find appropriate xi and yi onto which to embed the ai and bi. Since the bi have

degree at most 1/θj+4, we may embed the children of the bi onto endpoints of the

stars. Since |⋃i T (bi)| ≤ 3k/4 and
⋃

i T (bi) is “well-balanced” (by Corollary 3.58

applied to T ′ = {x} ∪ ⋃i T (bi) it has a gap of size at most 4θj+2k + 1), and since

the endpoints of stars were good, we may then embed the remainder of the T (bi)

greedily outside V1.

We now embed what is left of T into V1. Observe that at least 2(m1 + 1)/3 >

m1/2 ≥ k/2 − |L1| vertices of U1 have been embedded outside L1. This ensures

that L1 is now big enough to hold the remainder of U1 (even in the case when

|U1| = k/2 + 1 since then k is even and at least k/2 − |L1| + 1 vertices of U1 have

been embedded outside L1).

Since no vertices of Pi (including P0 = P (P (W ′′′
1 ))) are leaves, any leaves that

have been embedded have been embedded outside V1. We delete any remaining

leaves from U2 and from W ′′
1 , and since we have at most (1/2 − θj+4)k vertices
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remaining in each of U1 and U2 (because |W ′′
1 | ≥ 2θj+4k and because U2 had at

least 5θj+4k leaves, but g(U1, U2) ≤ 12θj+2k ≤ θj+4k), we may embed U1 into L1

and U2 into S1\B1 greedily. To do this we start at the root and work down the

tree, observing that any already embedded vertices have different parents, and so

we will only ever have to find an image vertex in the common neighbourhood of

at most two vertices during the embedding process (one vertex embedded before

the greedy algorithm began, and its grandparent). The minimum degree conditions

of (3.7) ensure that the common neighbourhood of two good vertices has size at

least (1/2− 7θj+2)k, which is larger than the number of vertices already embedded,

so we can always find an appropriate vertex for the final embedding.

It now remains only to embed those leaves which we deleted. We begin with

the leaves deleted from W ′′
1 , which we call U ′

1, and observe that there are at least

as many unused vertices in L1 as there are leaves in U ′
1. In fact, there are also at

least θj+4k/2 unused vertices of L1, although there may be fewer leaves. We take

a subset X of size t := max(θj+4k/2, |U ′
1|) of unused vertices in L1. We also take a

subset Y of t vertices from S1\B1 consisting of the parents of unembedded leaves in

U ′
1 and some extra vertices chosen arbitrarily if necessary (i.e. if |U ′

1| < θj+4k/2).

We now consider the bipartite subgraph between X and Y , and observe that it

has minimum degree at least |X| − θj+2k = |Y | − θj+2k ≥ |X|/2 = |Y |/2. So Hall’s

condition holds, and therefore we can find a perfect matching between X and Y . In

particular we can find a matching between the vertices chosen for the parents of U ′
1

and unused vertices of L1. This allows us to embed U ′
1 into L1, as required.

Finally recall that the leaves deleted from U2 were adjacent to vertices of U1,

which have been embedded into L1. Since these vertices are large, we may embed

the remaining leaves greedily. This completes the proof of Case 1.2. �

Proof of Proposition 3.52. Recall that we want to prove that if T contains

171



at least 36θj+4k leaves then either T ⊆ G or T has an ideal skew-partition. Let

g = |Todd| − |Teven| ≥ 0 without loss of generality. We start with the skew-partition

given by U1 = Teven and U2 = Todd. Note that by Remark 3.57 we may assume that

g ≤ 2θj+4k.

Let Wo be the set of leaves of T in Todd, and similarly let We be the set of leaves

of T in Teven. Let wo := |Wo| and we := |We|. Thus by the assumption of Case 1,

wo + we ≥ 36θj+4k. We now split into three further cases:

• Case A: wo, we ≥ 5θj+4k;

• Case B: wo < 5θj+4k;

• Case C: we < 5θj+4k.

Case A: wo, we ≥ 5θj+4k. In this case, (Teven, Todd) is already an ideal skew-

partition, as required.

Case B: wo < 5θj+4k. So we ≥ 31θj+4k.

Case B (i): |P (We)| ≤ 15θj+4k. We flip P (We) and We. Since we originally

chose U1 = Teven, U2 = Todd, then with this flip |U2| increases by at least 31θj+4k −

15θj+4k, and so the gap of the partition increases by at least 16θj+4k. Thus we can

apply Remark 3.57 to obtain T ⊆ G.

Case B (ii): |P (We)| ≥ 15θj+4k. We choose 5θj+4k vertices of P (We) (in U2)

and flip these along with those children which are leaves. There are at least 5θj+4k

such children, so now U2 has at least 5θj+4k leaves. But at least 10θj+4k vertices of

P (We) remained unflipped, and so at least 10θj+4k leaves of We remain in U1. Note

also that |U1| ≤ |U2|, and so we have an ideal skew-partition as required.

Case C: we < 5θj+4k. So wo > 31θj+4k.
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We apply Fact 3.56 to find a subtree T ′ of T which contains [12θj+4k, 24θj+4k)

leaves of T , rooted at a vertex x. Let d = |V (T ′) ∩ Todd| − |V (T ′) ∩ Teven|.

Case C(i): d ≥ g/2, x ∈ Teven.

Let U2 = Teven, U1 = Todd and then flip T ′. Since d ≥ g/2, we now have

|U1| ≤ |U2|. Since x ∈ Teven and x was flipped, U2 is independent, and U1 has only

edges coming from x (to P (x) and y1, . . . , ys).

Now U2 contains at least 12θj+4k − 5θj+4k = 7θj+4k leaves, and U1 contains at

least 31θj+4k − 24θj+4k = 7θj+4k leaves. Thus (U1, U2) is an ideal skew-partition.

Case C(ii): d ≤ g/2 and x ∈ Todd.

Let U1 = Teven, U2 = Todd and flip T ′. Similarly to case C(i) this gives an ideal

skew-partition.

Case C(iii): d ≤ g/2 − 1 and x ∈ Teven.

Let U1 = Teven, U2 = Todd and flip T ′\{x} to obtain an ideal skew-partition.

Case C(iv): d ≥ g/2 + 1 and x ∈ Todd.

Let U1 = Todd, U2 = Teven and flip T ′\{x} to obtain an ideal skew-partition.

We now only have two special cases left, and these only when g (and therefore

|T | = k + 1) is odd.

Case C(v): d = (g − 1)/2 and x ∈ Teven.

Case C(vi): d = (g + 1)/2 and x ∈ Todd.

In either case we start with U1 = Todd, U2 = Teven. In Case (v) we flip T ′ and

in Case (vi) we flip T ′\{x}. In either case we obtain (letting Wi denote the set of

leaves in Ui)

• |U1| = k/2 + 1, |U2| = k/2;

• U1, U2 are independent except for some edges in U1;

• |W2 ∩ T ′| > 12θj+4k − 5θj+4k = 7θj+4k;
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• |W1 ∩ (T\T ′)| > 31θj+4k − 24θj+4k = 7θj+4k.

But then (U1, U2) satisfies the conditions of Proposition 3.60, and so T ⊆ G. �

Case 2: T contains at most 36θj+4k leaves.

Our aim is to “cover” the bad vertices of V1 first so that we can then apply

Lemma 3.44. Consider a maximal set P of disjoint 2-paths in G with their midpoints

in B1 and their endpoints in L1. Now if any vertices of B1 remain uncovered by

these paths, then each is adjacent to at most one uncovered vertex of L1. We delete

such vertices from G. Now let L′
1 consist of the uncovered neighbours of such deleted

vertices in L1 together with the vertices of L1 already used as endpoints of 2-paths.

The fact that each deleted vertex had only at most one uncovered neighbour in

L1 means that |L′
1| ≤ 2|B1| ≤ 2θj+2k. Therefore setting L′′

1 := L1\L1 we have

|L′′
1| ≥ |L1| − θj+2k ≥ (1/2 − θj+4)k. Thus L′′

1 is certainly large enough to be used

as a set Ci in Lemma 3.50, which we will want to apply. Note that since we may

have deleted some vertices from B1, some vertices in L1 may now have degree less

than k. However, all such vertices lie in L′
1, and it is for this reason that we made

Remark 3.59 after the proof of Lemma 3.50.

We split Case 2 further into two subcases:

Case (a): m1 ≥ 6C. Thus m1/2 + C ≤ 2m1/3.

In this case we use Claim 3.42 to find a set of at least m1θj+3/θj+2 disjoint path-

segments of length 10 in T . (Note that m1 ≤ θj+2k, and so m1θj+3/θj+2 ≤ θj+3k.)

In particular, we can take sub-paths of length 8 and ensure that both endpoints of

any path-segment are in U1, and furthermore such that we avoid the vertices of the

paths closest to the root. As before, this ensures that for the paths which we choose,

the vertices closest to the root do not have a common neighbour.

Now in G, using Proposition 3.50 we can find a set P ′ of at least ⌊2(m1 +1)/3⌋ ≥

2m1/3 disjoint paths of length 2 each with one endvertex in L′′
1, the other endvertex
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being a good vertex of V \V1 and with midpoint also outside V1. Our candidate

sets Ci will all just be L′′
1. Whenever we have two paths of P ′ with endpoints in

the same Vi, we can use the fact that these endpoints are good, together with the

minimum degree conditions within Vi, to join them together using vertices in Vi to

create a path of length 6 with endpoints in L1. As long as we have at least C such

paths available, we can always find two with their endpoints in the same class. Since

2m1/3 ≥ m1/2+C we can connect at least m1/2 of the paths and we obtain a set of

m1/4 paths of length 6 in G whose endpoints lie in L1, and for which the rest of the

vertices lie outside L1. Now if |S1| < |U2|, then we move some (unused) vertices of

L1 to S1 to ensure that |S1| = |U2|. We also delete some (unused) vertices from L1

if necessary to ensure that |L1| = |U1|. For those original 2-paths whose midpoints

were in B1, we move the endpoints from L′
1 into L′′

1. Finally we delete all edges

within S1 and L1. It is then simple to check that the conditions of Lemma 3.44 hold

with γ1 = m1/(4k) and γ2 = m1θj+3/(θj+2k) ≫ γ1, and so we have T ⊆ G.

Finally, we consider:

Case (b): m1 ≤ 6C.

In this case we use Claim 3.42 to find θj+4k disjoint paths on 20C vertices in

T . We first consider one such path and by taking a subpath P of length 15C, we

may assume that both endpoints lie in U1. Removing the internal vertices of this

path splits the tree T into T1 and T2. Without loss of generality we assume that

|T1| ≥ |T2|. Let v = V (P ) ∩ T1 ∈ U1, and let w be the neighbour of v on P .

Now any vertex x ∈ L1 has a neighbour y in some other class Vi (wlog in V2). We

embed v onto x and w onto y. Now if y is small it must have at least one neighbour

z in V2 as well, and we embed the other neighbour of w onto z, which must be large.

We now note that both T1 and T2 are “well-balanced” by Corollary 3.58, i.e.

|T2 ∩ U1|, |T2 ∩ U2| ≤ |T2|/2 + 2θj+2k ≤ k/3. Thus we can easily embed the rest of
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the path P and T2 into V2 using the minimum degree conditions between L2 and

S2\B2.

Also, we have now embedded all but one vertex of P outside V1, and so we have

embedded at least 7C > m1 vertices of both U1 and U2 outside V1. Together with

the 2-paths in P which we found earlier to cover B1, this ensures that the conditions

of Lemma 3.44 hold, and so we can embed T into G as required. This completes

the proof of Theorem 3.46, and therefore also completes the proof of Theorem 3.1.
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CHAPTER 4

HYPERGRAPH EMBEDDINGS

4.1 Introduction

The main aim of this chapter is to prove the following.

Theorem 4.1 For all ∆, k ∈ N there exists a constant C = C(∆, k) such that all

k-uniform hypergraphs H of maximum degree at most ∆ satisfy R(H) ≤ C|H|.

The proof given in this chapter also appeared in [18], although here I have added

some extra details which were omitted in that paper.

This chapter is organised as follows. In Section 4.2 we give an overview of the

proof of Theorem 4.1 and we state the embedding theorem (Theorem 4.2) mentioned

above. Our proof of Theorem 4.2 relies on a more general version (Lemma 4.4) of

the well-known counting lemma for hypergraphs as well as an ‘extension lemma’

(Lemma 4.5), whose proofs are postponed until Sections 4.7 and 4.8. We introduce

these lemmas, along with further tools, in Section 4.3. We then prove a strength-

ened version (Theorem 4.3) of Theorem 4.2 in Section 4.4. The regularity lemma for

k-uniform hypergraphs is introduced in Section 4.5. In Section 4.6 we deduce The-

orem 4.1 from the regularity lemma and Theorem 4.2. In Section 4.7 we derive our

version of the counting lemma (Lemma 4.4) from that in [65]. Finally, in Section 4.8
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we use it to deduce the extension lemma (Lemma 4.5).

4.2 Overview of the proof of Theorem 4.1 and

statement of the embedding theorem

4.2.1 Overview of the proof of Theorem 4.1

The proof in [12] that graphs of bounded degree have linear Ramsey numbers pro-

ceeds roughly as follows: Let H be a graph of maximum degree ∆. Take a complete

graph Kn, where n is a sufficiently large integer. Colour the edges of Kn with red and

blue, and apply the graph regularity lemma to the denser of the two monochromatic

graphs, Gred say, to obtain a partition of the vertex set into a bounded number of

clusters. Since almost all pairs of clusters are regular or ‘quasi-random’, by Turán’s

theorem there will be a set of r clusters, where r := R(K∆+1), in which each pair of

clusters is regular. A pair of clusters will be coloured red if its density in Gred is at

least 1/2, and blue otherwise. By the definition of r, there must be a set of ∆ + 1

clusters such that all the pairs have the same colour. If this colour is red, then one

can apply the so-called embedding or key lemma for graphs to find a (red) copy

of H in the subgraph of Gred spanned by these ∆ + 1 clusters. This is possible since

χ(H) ≤ ∆ + 1. If all the pairs of clusters are coloured blue we apply the embedding

theorem in the blue subgraph Gblue of Kn to find a blue copy of H . It turns out

that in this proof we only needed n ≥ C|H|, where C is a constant dependent only

on ∆. Thus R(H) ≤ C|H|.

We will generalise this approach to k-uniform hypergraphs. As mentioned in

Section 4.1, the main obstacle is the proof of an embedding theorem for k-uniform

hypergraphs (Theorem 4.2 below), which allows us to embed a k-uniform hyper-

graph H within a suitable ‘quasi-random’ k-uniform hypergraph G, where the order
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of H might be linear in the order of G. Our proof uses ideas from [17].

4.2.2 Notation and statement of the embedding theorem

Before we can state the embedding theorem, we first have to say what we mean by

a regular or ‘quasi-random’ hypergraph. In the setup below, this will involve the

relationship between certain i-uniform hypergraphs and (i−1)-uniform hypergraphs

on the same vertex set. Given a hypergraph G, we write E(G) for the set of its

hyperedges and define e(G) := |E(G)|. We write K
(j)
i for the complete j-uniform

hypergraph on i vertices. Given a j-uniform hypergraph G and j ≤ i, we write

Ki(G) for the set of i-sets of vertices of G which form a copy of K
(j)
i in G. Given an

i-partite i-uniform hypergraph Gi, and an i-partite (i− 1)-uniform hypergraph Gi−1

on the same vertex set, we define the density of Gi with respect to Gi−1 to be

d(Gi|Gi−1) :=
|Ki(Gi−1) ∩ E(Gi)|

|Ki(Gi−1)|

if |Ki(Gi−1)| > 0, and d(Gi|Gi−1) := 0 otherwise. More generally, if Q :=

(Q(1), Q(2), . . . , Q(r)) is a collection of r subhypergraphs of Gi−1, we define Ki(Q) :=

⋃r
j=1 Ki(Q(j)) and

d(Gi|Q) :=
|Ki(Q) ∩ E(Gi)|

|Ki(Q)|

if |Ki(Q)| > 0, and d(Gi|Q) := 0 otherwise. We sometimes write |K(i−1)
i |Q instead

of |Ki(Q)|.

We say that Gi is (di, δ, r)-regular with respect to Gi−1 if every r-tuple Q with

|Ki(Q)| > δ|Ki(Gi−1)| satisfies

d(Gi|Q) = di ± δ.

179



Given ℓ ≥ i ≥ 3, an ℓ-partite i-uniform hypergraph Gi and an ℓ-partite (i − 1)-

uniform hypergraph Gi−1 on the same vertex set, we say that Gi is (di, δ, r)-regular

with respect to Gi−1 if for every i-tuple K of vertex classes, either Gi[K] is (di, δ, r)-

regular with respect to Gi−1[K] or d(Gi[K]|Gi−1[K]) = 0 (but the latter should not

hold for all K). Instead of (di, δ, 1)-regularity we sometimes refer to (di, δ)-regularity.

Recall from Chapter 1 that the density of a bipartite graph G with vertex

classes A and B is defined by d(A, B) := e(A, B)/|A||B| and G is (d, δ)-regular if for

all sets X ⊆ A and Y ⊆ B with |X| ≥ δ|A| and |Y | ≥ δ|B| we have d(X, Y ) = d±δ.

We say that an ℓ-partite graph G2 is (d2, δ)-regular if each of the
(

ℓ
2

)

bipartite sub-

graphs forming it is either (d2, δ)-regular or has density 0 (and if for at least one of

them the former holds).

Suppose that we have ℓ ≥ k vertex classes V1, . . . , Vℓ, and that for each i =

2, . . . , k we are given an ℓ-partite i-uniform hypergraph Gi with these vertex classes.

Suppose also that H is an ℓ-partite k-uniform hypergraph with vertex classes

X1, . . . , Xℓ. We will aim to embed H into Gk, and in particular to embed Xj into Vj

for each j = 1, . . . , ℓ. So we make the following definition: We say that (Gk, . . . ,G2)

respects the partition of H if whenever H contains a hyperedge with vertices in

Xj1, . . . , Xjk
, then there is a hyperedge of Gk with vertices in Vj1, . . . , Vjk

which also

forms a copy of K
(i)
k in Gi for each i = 2, . . . , k − 1.

The following is our main tool in the proof of Theorem 4.1. It states that

provided an ℓ-partite hypergraph G satisfies certain suitable regularity conditions,

then we can embed in G any bounded degree ℓ-partite hypergraph H, provided that

the partition classes of H are not too large compared with those of G. In particular,

we allow for the classes of H to have up to a small linear size compared with those

of G.

Theorem 4.2 (Embedding theorem for hypergraphs) Let ∆, k, ℓ, r, n0 be pos-
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itive integers with k ≤ ℓ and let c, d2, d3, . . . , dk, δ, δk be positive constants such that

1/di ∈ N,

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ dk, 1/∆, 1/ℓ

and

c ≪ d2, . . . , dk, 1/∆, 1/ℓ.

Then the following holds for all integers n ≥ n0. Suppose that H is an ℓ-partite

k-uniform hypergraph of maximum degree at most ∆ with vertex classes X1, . . . , Xℓ

such that |Xi| ≤ cn for all i = 1, . . . , ℓ. Suppose that for each i = 2, . . . , k, Gi

is an ℓ-partite i-uniform hypergraph with vertex classes V1, . . . , Vℓ, which all have

size n. Suppose also that Gk is (dk, δk, r)-regular with respect to Gk−1, that for each

i = 3, . . . , k − 1, Gi is (di, δ)-regular with respect to Gi−1, that G2 is (d2, δ)-regular,

and that (Gk, . . . ,G2) respects the partition of H. Then Gk contains a copy of H.

4.3 Further notation and tools

4.3.1 Embedding theorem for complexes

Instead of Theorem 4.2, we will prove a considerably stronger version which appears

as Theorem 4.3 below. It allows the embedding of hypergraphs which are not nec-

essarily uniform and gives a lower bound on the number of such embeddings. This

enables us to prove the lemma by induction on |H|. Before we can state Theorem 4.3,

we need to make the following definitions.

A complex H on a vertex set V is a collection of subsets of V , each of size at

least 2, such that if B ∈ H, and if A ⊆ B has size at least 2, then A ∈ H. (So if

we add each vertex in V as a singleton into a complex, we obtain a downset.) A
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k-complex is a complex in which no member has size greater than k. The members

of size i ≥ 2 are called the i-edges of H and the elements of V are called the vertices

of H. We write Ei(H) for the set of all i-edges of H and set ei(H) := |Ei(H)|. We

also write |H| := |V | for the order of H. Note that a k-uniform hypergraph can

be turned into a k-complex by making every hyperedge into a complete i-uniform

hypergraph K
(i)
k , for each 2 ≤ i ≤ k. (In a more general k-complex we may have

i-edges which do not lie within an (i + 1)-edge.) Given k ≤ ℓ, a (k, ℓ)-complex is an

ℓ-partite k-complex. Given a k-complex H, for each i = 2, . . . , k we denote by Hi

the underlying i-uniform hypergraph of H. So the vertices of Hi are those of H and

the hyperedges of Hi are the i-edges of H.

Two vertices x and y in a k-complex are neighbours if they are joined by a 2-edge.

(Note that if x and y lie in a common i-edge for some 2 ≤ i ≤ k, then they are

joined by a 2-edge.) The degree d(x) of a vertex x is the maximum (over 2 ≤ i ≤ k)

of the number of i-edges containing x. Thus x has at most d(x) neighbours. The

maximum degree of the complex H is the greatest degree of any vertex. Note that

if H is a k-uniform hypergraph of maximum degree ∆, the maximum degree of

the corresponding k-complex is crudely at most ∆2k. The distance between two

vertices x and y in a k-complex H is the length of the shortest path between x and y

in the underlying 2-graph H2 of H. The components of H are the subcomplexes

induced by the components of H2.

We say that a k-complex G is (dk, . . . , d2, δk, δ, r)-regular if Gk is (dk, δk, r)-regular

with respect to Gk−1, if Gi is (di, δ)-regular with respect to Gi−1 for each i = 3, . . . , k−

1, and if G2 is (d2, δ)-regular. We denote (dk, . . . , d2) by d and refer to (d, δk, δ, r)-

regularity.

Suppose that G is a (k, ℓ)-complex with vertex classes V1, . . . , Vℓ, which all have

size n. Suppose also that H is a (k, ℓ)-complex with vertex classes X1, . . . , Xℓ of size
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at most n. Similarly as for hypergraphs we say that G respects the partition of H if

whenever H contains an i-edge with vertices in Xj1 , . . . , Xji
, then there is an i-edge

of G with vertices in Vj1, . . . , Vji
. On the other hand, we say that a labelled copy of H

in G is partition-respecting if for each i = 1, . . . , ℓ the vertices corresponding to those

in Xi lie within Vi. We denote by |H|G the number of labelled, partition-respecting

copies of H in G.

Theorem 4.3 (Embedding theorem for complexes) Let ∆, k, ℓ, r, n0 be posi-

tive integers and let c, α, d2, . . . , dk, δ, δk be positive constants such that 1/di ∈ N,

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ α ≪ dk, 1/∆, 1/ℓ

and

c ≪ α, d2, . . . , dk.

Then the following holds for all integers n ≥ n0. Suppose that H is a (k, ℓ)-complex

of maximum degree at most ∆ with vertex classes X1, . . . , Xℓ such that |Xi| ≤ cn

for all i = 1, . . . , ℓ. Suppose also that G is a (d, δk, δ, r)-regular (k, ℓ)-complex with

vertex classes V1, . . . , Vℓ, all of size n, which respects the partition of H. Then for

every vertex h of H we have that

|H|G ≥ (1 − α)n

(

k
∏

i=2

d
ei(H)−ei(Hh)
i

)

|Hh|G,

where Hh denotes the induced subcomplex of H obtained by removing h. In partic-

ular, G contains at least ((1 − α)n)|H|
∏k

i=2 d
ei(H)
i labelled partition-respecting copies

of H.

As discussed in the next subsection, Theorem 4.3 is a generalization of the hyper-

graph counting lemma (which counts subcomplexes H of bounded order) to subcom-
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plexes H of bounded degree and linear order. Note that the bound relating |H|G
to |Hh|G in Theorem 4.3 is close to what one would get with high probability if G

were a random complex1. This also shows that the bound is close to best possible.

Theorem 4.3 will be proved in Section 4.4. In the proof we will need two lemmas on

embeddings of complexes of bounded order, which are stated in the next subsection.

Recall that if the maximum degree of a k-uniform hypergraph H is at most ∆

then the maximum degree of the corresponding k-complex is at most ∆2k. So it is

easy to see that Theorem 4.3 does indeed imply Theorem 4.2.

4.3.2 Counting lemma and extension lemma

We will need a variant (Lemma 4.4) of the counting lemma for k-unifom hyper-

graphs due to Rödl and Schacht [65, Thm 9]. (A similar result was proved earlier

by Gowers [31] as well as Nagle, Rödl and Schacht [60].) It states that if |H| is

bounded and G is suitably regular, then the number of copies of H in G is as large

as one would expect if G were random. The main difference to the result in [65]

is that Lemma 4.4 counts copies of k-complexes H instead of copies of k-uniform

hypergraphs H and also includes an upper bound on the number of these copies.

We will derive Lemma 4.4 from the result in [65] in Section 4.7.

Lemma 4.4 (Counting lemma) Let k, ℓ, r, t, n0 be positive integers and let

ε, d2, . . . , dk, δ, δk be positive constants such that 1/di ∈ N and

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ ε, dk, 1/ℓ, 1/t.

Then the following holds for all integers n ≥ n0. Suppose that H is a (k, ℓ)-complex

on t vertices with vertex classes X1, . . . , Xℓ. Suppose also that G is a (d, δk, δ, r)-

1That is, G2 is an ℓ-partite random graph with density d2, each triangle of G2 is an edge of G3

with probability d3 etc.
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regular (k, ℓ)-complex with vertex classes V1, . . . , Vℓ, all of size n, which respects the

partition of H. Then

|H|G = (1 ± ε)nt
k
∏

i=2

d
ei(H)
i .

The main difference between the counting lemma and Theorem 4.3 is that the

counting lemma only allows for complexes H of bounded order. We will apply

the counting lemma to embed complexes of order ≤ f(∆, k) for some appropriate

function f . Note that the upper and lower bounds of the counting lemma imply

Theorem 4.3 for the case when |H| is bounded. A formal proof of this (which settles

the base case for the induction in the proof of Theorem 4.3) can be found at the

beginning of Section 4.4.

In the induction step of the proof of Theorem 4.3 we will also need the following

extension lemma, which states that if H′ is a complex of bounded order, H ⊆ H′ is

an induced subcomplex and G is suitably regular, then almost all copies of H in G

can be extended to about the ‘right’ number of copies of H′, where the ‘right’ number

is the number one would expect if G were random. We will derive Lemma 4.5 from

Lemma 4.4 in Section 4.8.

Lemma 4.5 (Extension lemma) Let k, ℓ, r, t, t′, n0 be positive integers, where t <

t′, and let β, d2, . . . , dk, δ, δk be positive constants such that 1/di ∈ N and

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ β, dk, 1/ℓ, 1/t′.

Then the following holds for all integers n ≥ n0. Suppose that H′ is a (k, ℓ)-complex

on t′ vertices with vertex classes X1, . . . , Xℓ and let H be an induced subcomplex

of H′ on t vertices. Suppose also that G is a (d, δk, δ, r)-regular (k, ℓ)-complex with

vertex classes V1, . . . , Vℓ, all of size n, which respects the partition of H′. Then all
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but at most β|H|G labelled partition-respecting copies of H in G are extendible to

(1 ± β)nt′−t
k
∏

i=2

d
ei(H′)−ei(H)
i

labelled partition-respecting copies of H′ in G.

As well as these versions of the counting lemma and extension lemma, we will

need to be able to apply versions of these lemmas to underlying (k − 1)-complexes.

In this case, we have that the regularity constant δ is much smaller than all the

densities d2, . . . , dk−1, but on the other hand we have no r in the highest level and

thus we cannot apply Lemmas 4.4 and 4.5. So instead of Lemma 4.4 we will use the

following variant of a result of Kohayakawa, Rödl and Skokan [44, Cor. 6.11].

Lemma 4.6 (Dense counting lemma) Let k, ℓ, t, n0 be positive integers and let

ε, d2, . . . , dk−1, δ be positive constants such that

1/n0 ≪ δ ≪ ε ≪ d2, . . . , dk−1, 1/ℓ, 1/t.

Then the following holds for all integers n ≥ n0. Suppose that H is a (k − 1, ℓ)-

complex on t vertices with vertex classes X1, . . . , Xℓ. Suppose also that G is a

(dk−1, . . . , d2, δ, δ, 1)-regular (k − 1, ℓ)-complex with vertex classes V1, . . . , Vℓ, all of

size n, which respects the partition of H. Then

|H|G = (1 ± ε)nt
k−1
∏

i=2

d
ei(H)
i .

In Section 4.7 we will show how Lemma 4.6 can be deduced from the result

in [44]. The following dense version of the extension lemma can be deduced from

the dense counting lemma (see Section 4.8).
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Lemma 4.7 (Dense extension lemma) Let k, ℓ, t, t′, n0 be positive integers and

let β, d2, . . . , dk−1, δ be positive constants such that

1/n0 ≪ δ ≪ β ≪ d2, . . . , dk−1, 1/ℓ, 1/t′.

Then the following holds for all integers n ≥ n0. Suppose that H′ is a (k − 1, ℓ)-

complex on t′ vertices with vertex classes X1, . . . , Xℓ and let H be an induced sub-

complex of H′ on t vertices. Suppose also that G is a (dk−1, . . . , d2, δ, δ, 1)-regular

(k − 1, ℓ)-complex with vertex classes V1, . . . , Vℓ, all of size n, which respects the

partition of H′. Then all but at most β|H|G labelled partition-respecting copies of H

in G can be extended into

(1 ± β)n|H′|−|H|
k−1
∏

i=2

d
ei(H′)−ei(H)
i

labelled partition-respecting copies of H′ in G.

An overview of how all these lemmas are used in the proof of Theorem 4.1 is shown

in Figure 4.1.

Thm. 4.13 [65] L. 4.14 L. 4.4

L. 4.5

L. 4.6

L. 4.7

L. 4.12 [44]

Thm. 4.3

Thm. 4.9 [64]

Thm. 4.2

Prop. 4.10

Thm. 4.1

L. 4.8

Figure 4.1: Proof of Theorem 4.1 - Flowchart

Another auxiliary result that we will use in the proof of Lemma 4.4 as well as

in the proof of Theorem 4.1 is the slicing lemma. Roughly speaking, this says that

in a regular complex G, we can partition the edge set Ej(G) of the jth level into an

arbitrary number of parts so that each part is still regular with respect to Gj−1 with
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the appropriate density, at the expense of a larger regularity constant. This can be

proved using a simple application of a Chernoff bound.

Lemma 4.8 (Slicing lemma [64]) Let j ≥ 2 and s0, r ≥ 1 be integers and let

δ0, d0 and p0 be positive real numbers. Then there is an integer n0 = n0(j, s0, r, δ0,

d0, p0) such that the following holds. Let n ≥ n0 and let Gj be a j-partite j-uniform

hypergraph with vertex classes V1, . . . , Vj which all have size n. Also let Gj−1 be a j-

partite (j−1)-uniform hypergraph with the same vertex classes and assume that each

j-set of vertices that spans a hyperedge in Gj also spans a K
(j−1)
j in Gj−1. Suppose

that

1. |K(j−1)
j (Gj−1)| > nj/ ln n and

2. Gj is (d, δ, r)-regular with respect to Gj−1, where d ≥ d0 ≥ 2δ ≥ 2δ0.

Then for any positive integer s ≤ s0 and all positive reals p1, . . . , ps ≥ p0 with
∑s

i=1 pi ≤ 1 there exists a partition of E(Gj) into s + 1 parts E(0)(Gj), E
(1)(Gj), . . . ,

E(s)(Gj) such that if Gj(i) denotes the spanning subhypergraph of Gj whose edge set is

E(i)(Gj), then Gj(i) is (pid, 3δ, r)-regular with respect to Gj−1 for every i = 1, . . . , s.

Moreover, Gj(0) is ((1 −∑s
i=1 pi) d, 3δ, r)-regular with respect to Gj−1 and

E(0)(Gj) = ∅ if
∑s

i=1 pi = 1.

4.4 Proof of the embedding theorem for complexes

(Theorem 4.3)

Throughout the rest of the chapter, whenever we talk about a copy of a complex H

in G we mean that this copy is labelled and partition-respecting, without mentioning

this explicitly. We prove Theorem 4.3 by induction on |H|. [17] contains a sketch

of the argument for the graph case which gives a good idea of the proof. We first
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suppose that the connected component of H which contains the vertex h has order

less than ∆5. In this case we will use the counting lemma to prove the embedding

theorem. So let C be the component of H containing h, and let D := H− C. Also,

let Ch := C − h. We may assume that both Ch and D are non-empty. (If D is empty

then the result follows from Lemma 4.5, and if Ch is empty then h is an isolated

vertex and the result is trivial.) Note that a copy of H consists of disjoint copies of C

and D, while Hh consists of disjoint copies of Ch and D. Copies of these complexes

in G will be denoted by C, D and Ch.

Choose a new constant β such that c, δk ≪ β ≪ α. Now note that |H|G =
∑

D⊆G |C|G−D, and by applying the upper and lower bounds of the counting lemma

(Lemma 4.4) to copies of C in G and G − D respectively, we obtain |C|G−D ≥
(1−c)∆

5
(1−β)

(1+β)
|C|G ≥ (1 − 3β)|C|G. So

|H|G ≥
∑

D⊆G

(1 − 3β)|C|G = (1 − 3β)|C|G|D|G. (4.1)

On the other hand, by a similar argument using the upper and lower bounds from

the counting lemma in G for Ch and C respectively,

|Hh|G ≤ |Ch|G|D|G ≤ 1 + β

1 − β

|C|G|D|G
n
∏k

i=2 d
ei(C)−ei(Ch)
i

. (4.2)

Combining (4.1) and (4.2) gives the desired result.

Thus we may assume that the component of H containing h has order at least ∆5.

This deals with the base case of the inductive argument, and it also means that the

fourth neighbourhood of h in H will be non-empty, which will be convenient later

on in the proof as we will only be counting complexes which are non-empty.
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We pick new constants εk and εk−1 satisfying the following hierarchies:

δ ≪ εk−1 ≪ d2, d3, . . . , dk, 1/∆,

c, δk, εk−1 ≪ εk ≪ α.

Let Nh be the subcomplex of H induced by the neighbours of h, and let B be the

subcomplex of H induced by h and the neighbours of h. Then any copy of H in G

extending a copy Nh of Nh can be obtained by first extending Nh into a copy of Hh

and then extending Nh into a copy of B, where the vertex chosen for h has to be

distinct from all the vertices chosen for Hh. In particular,

|H|G ≥
∑

Nh⊆G

|Nh → Hh|(|Nh → B| − cn). (4.3)

We now introduce some more notation. Given k-complexes H′ ⊆ H′′ such that H′

is induced, and a copy H ′ of H′ in G, we define |H ′ → H′′| to be the number of ways

in which H ′ can be extended to a copy of H′′ in G. We also define

|H′ → H′′| := n|H′′|−|H′|
k
∏

i=2

d
ei(H′′)−ei(H′)
i .

Thus |H′ → H′′| is roughly the expected number of ways H ′ could be extended to a

copy of H′′ if G were a random complex.

We define a copy Nh of Nh to be typical if it has about the correct number of

extensions into B, i.e. if |Nh → B| = (1 ± εk)|Nh → B|. An application of the

extension lemma (Lemma 4.5) shows that at most εk|Nh|G copies of Nh in G are not

typical. We denote the set of typical copies of Nh by typ, and the set of all atypical

copies by atyp.

Now observe that if all of the copies of Nh were typical, the proof would be
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complete, since then

|H|G
4.3
≥
∑

Nh⊆G

|Nh → Hh|(|Nh → B| − cn)

≥
(

(1 − εk)|Nh → B| − cn
)

∑

Nh⊆G

|Nh → Hh|

≥ (1 − α)|Nh → B||Hh|G = (1 − α)|Hh → H||Hh|G. (4.4)

The third inequality follows since c ≪ α, d2, . . . , dk, and εk ≪ α.

However, we also need to take account of the atypical copies of Nh. The propor-

tion of these is about εk, which may be larger than some di. It will turn out that

this is too large for our purposes, and so we will need to consider the atypical copies

more carefully.

We define, instead of |H ′ → H′′|, the expression |H ′ k−1→ H′′|, where H′ ⊆ H′′

are induced subcomplexes of H and H ′ is a copy of H′ in G. We consider the

underlying (k − 1)-complexes in each case, and define |H ′ k−1→ H′′| to be the number

of ways in which the underlying (k − 1)-complex of H ′ can be extended to the

underlying (k − 1)-complex of H′′ within (the underlying (k − 1)-complex of) G.

Clearly |H ′ k−1→ H′′| ≥ |H ′ → H′′|. We also define

|H′ k−1→ H′′| := n|H′′|−|H′|
k−1
∏

i=2

d
ei(H′′)−ei(H′)
i .

Thus |H′ k−1→ H′′| is roughly the expected value of |H ′ k−1→ H′′| if G were a random

complex. Also,

|H′ k−1→ H′′| = |H′ → H′′|/dek(H′′)−ek(H′)
k ≥ |H′ → H′′|.

We define N ∗
h to be the subcomplex of H induced by the vertices at distance 3
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from h. We also define F to be the subcomplex of H induced by the vertices at

distance 1, 2 or 3 from h, i.e. the subcomplex induced by Nh, N ∗
h and the vertices

in between (see Figure 4.2).

h Nh N ∗
h

H∗
h

F

H−
h

Hh

H′
h

B

Figure 4.2: The complex H

Given copies Nh of Nh and N∗
h of N ∗

h , we say that the pair Nh, N
∗
h is useful if Nh

and N∗
h are disjoint and if the pair has about the expected number of extensions

into copies of F as (k − 1)-complexes, i.e. if

|Nh ∪ N∗
h

k−1→ F| = (1 ± εk−1)|Nh ∪N ∗
h

k−1→ F|.

We use Lemmas 4.4, 4.6 and 4.7 applied to Nh ∪ N ∗
h to show that at most

√
εk−1|Nh|G|N ∗

h |G disjoint pairs Nh, N
∗
h are not useful. Let |Nh∪N ∗

h |(k−1)
G denote the

number of copies of the underlying (k − 1)-complex of Nh ∪ N ∗
h in G. Then Lem-

mas 4.4 and 4.6 together imply that |Nh∪N ∗
h |(k−1)

G ≤ (1+2εk)|Nh∪N ∗
h |G/d

ek(Nh∪N
∗
h )

k .

Moreover, the dense extension lemma (Lemma 4.7) shows that all but at most

εk−1|Nh ∪ N ∗
h |(k−1)

G copies of the underlying (k − 1)-complex of Nh ∪ N ∗
h in G are

useful. Altogether this shows that all but at most

εk−1(1 + 2εk)|Nh ∪N ∗
h |G/d

ek(Nh∪N
∗
h )

k ≤ √
εk−1|Nh ∪N ∗

h |G ≤ √
εk−1|Nh|G|N ∗

h |G (4.5)
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disjoint pairs of copies of Nh and N ∗
h are useful. Note that if we had chosen N ∗

h to

be the subcomplex of H induced by the vertices at distance 2 from h (instead of 3),

then we could not have applied Lemma 4.6, since Nh ∪N ∗
h would not be an induced

subcomplex of F . Together with the fact that only comparatively few of the pairs

Nh, N
∗
h will intersect, this shows that at most 2

√
εk−1|Nh|G|N ∗

h |G pairs Nh, N
∗
h are

not useful. Hence at most ε
1/4
k−1|Nh|G copies of Nh form a non-useful pair together

with more than 2ε
1/4
k−1|N ∗

h |G copies of N ∗
h . We call all other copies of Nh useful and

let Usef denote the set of all these copies. Then

|Nh|G − |Usef| ≤ ε
1/4
k−1|Nh|G. (4.6)

We denote by Usef∗(Nh) the set of all N∗
h which form a useful pair together with Nh.

Claim. Any useful copy Nh of Nh satisfies

|Nh → Hh| ≤
10

d∆3

k

|Hh|G
|Nh|G

.

Note that
∑

Nh
|Nh → Hh| = |Hh|G, so |Hh|G/|Nh|G is the average value of |Nh →

Hh| over all copies Nh of Nh. Later on, we will apply the claim to show that only a

small fraction of copies of H contain a useful but atypical copy of Nh.

Proof of Claim. Fix a useful copy Nh of Nh. Put H∗
h := Hh − (F −N ∗

h ). We aim

to extend Nh to a copy of Hh by first picking a copy N∗
h of N ∗

h , then extending this

to a copy of H∗
h and also extending Nh ∪ N∗

h to a copy of F . We must also make

sure that no vertices are used more than once. However, since we are only looking

for an upper bound on |Nh → Hh|, and ignoring this restriction can only increase
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the number of extensions we find, we may ignore this difficulty. Thus

|Nh → Hh| ≤
∑

N∗
h∈Usef

∗(Nh)

|Nh ∪ N∗
h → F||N∗

h → H∗
h|

+
∑

N∗
h /∈Usef∗(Nh)

|Nh ∪ N∗
h → F||N∗

h → H∗
h|. (4.7)

We bound the two sums separately. To bound the first sum, we need to bound

|Nh ∪ N∗
h → F| in the case when the pair Nh, N

∗
h is useful. But clearly

|Nh ∪ N∗
h → F| ≤ |Nh ∪ N∗

h
k−1→ F|, and

|Nh ∪ N∗
h

k−1→ F| ≤ (1 + εk−1)|Nh ∪N ∗
h

k−1→ F| =
(1 + εk−1)|Nh ∪ N ∗

h → F|
d

ek(F)−ek(Nh)−ek(N ∗
h )

k

whenever N∗
h ∈ Usef∗(Nh). So the first sum in (4.7) is bounded by

1 + εk−1

d
ek(F)−ek(Nh)−ek(N ∗

h )

k

|Nh ∪N ∗
h → F||H∗

h|G ≤ 2

d∆3

k

|Nh ∪N ∗
h → F||H∗

h|G. (4.8)

To see the bound of ∆3 on the number of k-edges which we used in the final inequal-

ity, note that |F − Nh − N ∗
h | ≤ ∆2 and that the number of k-edges each of these

vertices lies in is at most ∆. We now want to express the bound in (4.8) in terms

of |H−
h |G, where H−

h := Hh −Nh. By the induction hypothesis applied |H−
h | − |H∗

h|

times,

|H∗
h|G ≤ ((1 − α)n)−(|H−

h |−|H∗
h|)

(

k
∏

i=2

d
−(ei(H

−
h )−ei(H∗

h))
i

)

|H−
h |G

≤ 2

∏k
i=2 d

ei(Hh)−ei(H
−
h )−ei(Nh)

i

|Nh ∪ N ∗
h → F|

|H−
h |G.

In the last line we used that ei(Hh) = ei(H∗
h)+ei(F)−ei(N ∗

h ) and |F|−|Nh|−|N ∗
h | =
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|H−
h |−|H∗

h| (see Figure 4.2). We also used that (1−α)−(|H−
h |−|H∗

h|) ≤ 2. So we obtain

∑

N∗
h∈Usef

∗(Nh)

|Nh ∪ N∗
h → F||N∗

h → H∗
h| ≤

4
∏k

i=2 d
ei(Hh)−ei(H

−
h )−ei(Nh)

i

d∆3

k

|H−
h |G. (4.9)

To bound the second sum in (4.7), we define H′
h := H∗

h − N ∗
h , and observe that

trivially any copy N∗
h of N ∗

h satisfies |N∗
h → H∗

h| ≤ |H′
h|G. Note that H′

h is nonempty.

On the other hand, by the induction hypothesis applied |H−
h | − |H ′

h| times,

|H′
h|G ≤ ((1 − α)n)|H

′
h|−|H−

h |

(

k
∏

i=2

d
ei(H′

h)−ei(H
−
h )

i

)

|H−
h |G

≤ 2|H−
h |G

(

∏k
i=2 di

)2∆4

n|H−
h |−|H′

h|

.

Since at most 2ε
1/4
k−1|N ∗

h |G ≤ 2ε
1/4
k−1n

|N ∗
h | copies of N ∗

h do not lie in Usef(Nh), the

second sum in (4.7) is bounded by

∑

N∗
h /∈Usef(Nh)

|Nh ∪ N∗
h → F||N∗

h → H∗
h|

≤ 2ε
1/4
k−1n

|N ∗
h |n|F|−|Nh|−|N ∗

h |
2|H−

h |G
(

k
∏

i=2
di

)2∆4

n
|H−

h
|−|H′

h
|

= 2ε
1/4
k−1

2|H−
h |G

(
∏k

i=2 di)
2∆4

≤
(

∏k
i=2 d

ei(Hh)−ei(H
−
h )−ei(Nh)

i

)

|H−
h |G.

(4.10)

The last inequality follows since εk−1 ≪ d2, d3, . . . , dk, 1/∆. Substituting (4.9) and
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(4.10) into (4.7) we obtain

|Nh → Hh| ≤
(

1 +
4

d∆3

k

)

(

k
∏

i=2

d
ei(Hh)−ei(H

−
h )−ei(Nh)

i

)

|H−
h |G

≤
5
(

∏k
i=2 d

ei(Hh)−ei(H
−
h )−ei(Nh)

i

)

d∆3

k

|H−
h |G. (4.11)

It now remains only to relate |H−
h |G to |Hh|G/|Nh|G. Once again we apply the

induction hypothesis |Hh| − |H−
h | times to obtain

|Hh|G ≥ ((1 − α)n)|Hh|−|H−
h |

k
∏

i=2

d
ei(Hh)−ei(H

−
h )

i |H−
h |G.

On the other hand, the counting lemma implies that

|Nh|G ≤ (1 + α)

(

k
∏

i=2

d
ei(Nh)
i

)

n|Nh|.

Putting these two bounds together, we obtain

|Hh|G
|Nh|G

≥
((1 − α)n)|Hh|−|H−

h |
(

∏k
i=2 d

ei(Hh)−ei(H
−
h )

i

)

|H−
h |

(1 + α)
(

∏k
i=2 d

ei(Nh)
i

)

n|Nh|

≥ 1

2

(

k
∏

i=2

d
ei(Hh)−ei(H

−
h )−ei(Nh)

i

)

|H−
h |G. (4.12)

Together with (4.11), this shows that

|Nh → Hh| ≤
5 · 2

d∆3

k

|Hh|G
|Nh|G

,

which completes the proof of the claim. �

Using the claim we now go on to prove the induction step. Given a copy Hh of Hh,
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we denote by Nh(Hh) the induced copy of Nh. We have

|H|G =
∑

Hh⊆G

|Hh → H|

≥
∑

Hh⊆G

(|Nh(Hh) → B| − cn)

=
∑

Nh⊆G

|Nh → Hh||Nh → B| − cn|Hh|G

≥ (1 − εk)|Nh → B|





∑

Nh⊆G

|Nh → Hh| −
∑

Nh /∈typ

|Nh → Hh|



− cn|Hh|G.

(4.13)

We want to show that the term in this expression which comes from the atypical

copies of Nh does not affect the calculations too much, and so we aim to bound the

contribution from atypical copies of Nh. We have

∑

Nh /∈typ

|Nh → Hh| =
∑

Nh /∈typ,Nh∈Usef

|Nh → Hh| +
∑

Nh /∈typ,Nh /∈Usef

|Nh → Hh|. (4.14)

Now the claim implies that we can bound the first sum in (4.14) by

∑

Nh /∈typ,Nh∈Usef

|Nh → Hh| ≤
∑

Nh /∈typ,Nh∈Usef

10

d∆3

k

|Hh|G
|Nh|G

≤ |atyp| 10

d∆3

k

|Hh|G
|Nh|G

≤ √
εk|Hh|G. (4.15)

Meanwhile we can also bound the second sum by

∑

Nh /∈typ,Nh /∈Usef

|Nh → Hh| ≤
∑

Nh /∈typ,Nh /∈Usef

|H−
h |G

(4.12)

≤ (|Nh|G − |Usef|) 2
∏k

i=1 d∆2

i

|Hh|G
|Nh|G

(4.6)

≤ ε
1/5
k−1|Hh|G. (4.16)
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Combining (4.14), (4.15) and (4.16), we have

∑

Nh /∈typ

|Nh → Hh| ≤ 2
√

εk|Hh|G

and combining this with (4.13), we obtain

|H|G ≥ (1 − εk)|Nh → B| (|Hh|G − 2
√

εk|Hh|G) − cn|Hh|G

= (1 − εk)n

(

k
∏

i=2

d
ei(B)−ei(Nh)
i

)

(1 − 2
√

εk)|Hh|G − cn|Hh|G

≥ (1 − α)n

(

k
∏

i=2

d
ei(H)−ei(Hh)
i

)

|Hh|G,

as required. This completes the proof of Theorem 4.3.

4.5 The regularity lemma for k-uniform hyper-

graphs

4.5.1 Preliminary definitions and statement

In this section we state the version of the regularity lemma for k-uniform hypergraphs

due to Rödl and Schacht [64], which we use in the proof of Theorem 4.1 in the next

section. To prepare for this we will first need some notation. We follow [64]. Given a

finite set V of vertices, we will define a family P = {P(1), . . . ,P(k−1)} where each P(j)

is a partition of certain j-subsets of V . These partitions will satisfy properties which

we will describe below. We denote by [V ]j the set of all j-subsets of V . Suppose

that we are given a partition P(1) = {V1, . . . , V|P(1)|} of [V ]1 = V . We will call the Vi

clusters. We denote by Crossj = Crossj(P(1)) the set of all those j-subsets of V that

meet each part of P(1) in at most 1 element. Each P(j) will be a partition of Crossj.
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Moreover, any two j-sets that belong to the same part of P(j) will meet the same j

clusters. This means that each part of P(j) can be viewed as a j-partite j-uniform

hypergraph whose vertex classes are these clusters. In particular, the parts of P(2)

can be thought of as bipartite subgraphs between two of the clusters. Moreover, for

each part A of P(3) there will be 3 clusters and 3 bipartite graphs belonging to P(2)

between these clusters such that all the 3-sets in A form triangles in the union of

these 3 bipartite graphs.

More generally, suppose that we have already defined partitions P(1), . . . ,P(j−1)

and are about to define P(j). Given i < j and I ∈ Crossi, we let P (i)(I) denote the

part of P(i) the set I belongs to. Given J ∈ Crossj , the polyad P̂ (j−1)(J) of J is

defined by

P̂ (j−1)(J) :=
⋃

{P (j−1)(I) : I ∈ [J ]j−1}.

Thus P̂ (j−1)(J) is the unique collection of j parts of P(j−1) in which J spans a copy

of the complete (j − 1)-uniform hypergraph K
(j−1)
j on j vertices. Moreover, note

that P̂ (j−1)(J) can be viewed as a j-partite (j−1)-uniform hypergraph whose vertex

classes are the j clusters containing the vertices of J . We set

P̂(j−1) := {P̂ (j−1)(J) : J ∈ Crossj}.

Note that the polyads P̂ (j−1)(J) and P̂ (j−1)(J ′) need not be distinct for differ-

ent J, J ′ ∈ [V ]j. However, if these polyads are distinct then Kj(P̂
(j−1)(J)) ∩

Kj(P̂
(j−1)(J ′)) = ∅. (Recall that Kj(P̂

(j−1)(J)) is the set of all j-sets of vertices

which form a K
(j−1)
j in P̂ (j−1)(J). So in particular, Kj(P̂

(j−1)(J)) contains J .) This

implies that {Kj(P̂
(j−1)) : P̂ (j−1) ∈ P̂(j−1)} is a partition of Crossj . The property

of P(j) which we require is that it refines {Kj(P̂
(j−1)) : P̂ (j−1) ∈ P̂(j−1)}, i.e. each

part of P(j) has to be contained in some Kj(P̂
(j−1)).
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We also need a notion which generalises that of a polyad: given J ∈ Crossj and

i < j we set

P̂ (i)(J) :=
⋃

{P (i)(I) : I ∈ [J ]i}.

Then the properties of our partitions imply that
⋃j−1

i=1 P̂ (i)(J) is a (j−1, j)-complex.

Altogether, given a = (a1, . . . , ak−1) ∈ Nk−1 we say that P(k−1, a) = {P(1), . . . ,

P(k−1)} is a family of partitions on V if

1. P(1) is a partition of V into a1 clusters.

2. For all j = 2, . . . , k − 1, P(j) is a partition of Crossj such that for each part

there is a polyad P̂ (j−1) ∈ P̂(j−1) so that the part is contained in Kj(P̂
(j−1)).

Moreover, for each polyad P̂ (j−1) ∈ P̂(j−1), the set Kj(P̂
(j−1)) is the union of aj

parts of P(j).

We say that P = P(k − 1, a) is t-bounded if a1, . . . , ak−1 ≤ t. Suppose that a1

divides |V |. Then P = P(k − 1, a) is called (η, δ, a)-equitable if

1. P(1) is a partition of V into a1 clusters of equal size;

2. |[V ]k \ Crossk| ≤ η
(

|V |
k

)

;

3. for every K ∈ Crossk, the (k−1, k)-complex
⋃k−1

i=1 P̂ (i)(K) is (d, δ, δ, 1)-regular,

where d = (1/ak−1, . . . , 1/a2).

In particular, the second condition implies that 1/a1 is small compared to η.

Let δk > 0 and r ∈ N. Suppose that G is a k-uniform hypergraph on V and

P = P(k − 1, a) is a family of partitions on V . Recall that we can view each

polyad P̂ (k−1) ∈ P̂(k−1) as a (k − 1)-uniform k-partite hypergraph. G is called

(δk, r)-regular with respect to P̂ (k−1) if G is (d, δk, r)-regular with respect to P̂ (k−1)
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for some d. Setting

Irreg(G) := {P̂ (k−1) ∈ P̂(k−1) : G is not (δk, r)-regular with respect to P̂ (k−1)},

we say that G is (δk, r)-regular with respect to P if

∣

∣

∣

∣

∣

∣

⋃

P̂ (k−1)∈Irreg(G)

Kk(P̂ (k−1))

∣

∣

∣

∣

∣

∣

≤ δk|V |k.

This means that not much more than a δk-fraction of the k-subsets of V form

a K
(k−1)
k that lies within a polyad with respect to which G is not regular.

Now, we are ready to state the regularity lemma, which we are going to use in

the proof of Theorem 4.1.

Theorem 4.9 (Rödl and Schacht [64]) Let k ≥ 2 be a fixed integer. For all

positive constants η and δk and all functions r : Nk−1 → N and δ : Nk−1 → (0, 1],

there are integers t and m0 such that the following holds for all m ≥ m0 which are

divisible by t!. Suppose that G is a k-uniform hypergraph of order m. Then there

exists an a ∈ Nk−1 and a family of partitions P = P(k − 1, a) of the vertex set V

of G such that

1. P is (η, δ(a), a)-equitable and t-bounded and

2. G is (δk, r(a))-regular with respect to P.

The advantage of this regularity lemma compared to the one proved earlier by Rödl

and Skokan [66] is that it uses only two regularity constants δ and δk instead of k−1

different ones. The regularity constants δ2, . . . , δk produced by the regularity lemma

in [66] might satisfy δ2 ≪ 1/a2 ≪ δ3 ≪ 1/a3 ≪ · · · ≪ 1/ak−1 ≪ δk, which

would make the proof of the corresponding embedding theorem more technical in

appearance.
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Note that the constants in Theorem 4.9 can be chosen such that they satisfy the

following hierarchy:

1

m0
≪ 1

r
=

1

r(a)
, δ = δ(a) ≪ min{δk, η, 1/a1, 1/a2, . . . , 1/ak−1}. (4.17)

4.5.2 The reduced hypergraph

In the proof of Theorem 4.1 that follows in the next section, we will use the so-called

reduced hypergraph. If P = {P(1), . . . ,P(k−1)} is the partition of the vertex set of G

given by the regularity lemma, the reduced hypergraph R = R(G,P) is a k-uniform

hypergraph whose vertices are the clusters, i.e. the parts of P(1). To define the set of

hyperedges we need the following notion. We say that a k-tuple of clusters is fruitful

if G is (δk, r)-regular with respect to all but at most a
√

δk-fraction of all those

polyads P̂ (k−1) which are induced on these k clusters. The set of hyperedges of R

consists of precisely those k-tuples that are fruitful. In the proof of Theorem 4.1, we

shall need an estimate on the number of these hyperedges. In particular, we need

to show that R is very dense. This is conveyed in the following proposition.

Proposition 4.10 All but at most 2
√

δka
k
1 of the k-tuples of clusters are fruitful.

Proof. By the dense counting lemma (Lemma 4.6) each polyad in P̂(k−1) contains

at least

f(m, a) :=
1

2

(

m

a1

)k k−1
∏

i=2

(

1

ai

)(k
i)

copies of K
(k−1)
k . Since G is (δk, r)-regular with respect to P, the number of polyads

in P̂(k−1) with respect to which G is not (δk, r)-regular is at most

δkm
k

f(m, a)
=

2
∏k−1

i=1 a
(k

i)
i

mk
δkm

k = 2δk

k−1
∏

i=1

a
(k

i)
i . (4.18)

202



We call these polyads bad. Now, each k-tuple of clusters induces
∏k−1

i=2 a
(k

i)
i polyads

in P̂(k−1). Thus if there were more than 2
√

δka
k
1 k-tuples of clusters each inducing

more than
√

δk

∏k−1
i=2 a

(k
i)

i bad polyads, the total number of bad polyads would exceed

the bound given in (4.18), yielding a contradiction. �

4.6 Proof of Theorem 4.1

We now give a brief outline of the proof of Theorem 4.1: consider any red/blue

colouring of the hyperedges of K
(k)
m , where m = C|H| and C is a large constant

depending only on k and the maximum degree of H. We apply the hypergraph

regularity lemma to the red subhypergraph Gred to obtain a reduced hypergraph R

which is very dense. Thus the following fact will show that R contains a copy of K
(k)
ℓ

with ℓ := R(K
(k)
k∆).

Fact 4.11 For all ℓ, k ∈ N with ℓ ≥ k, every k-uniform hypergraph R on t ≥ ℓ

vertices with e(R) >
(

1 −
(

ℓ
k

)−1
)

(

t
k

)

contains a copy of K
(k)
ℓ .

Proof. Let R be as in the statement of the fact. Assume for the sake of contra-

diction that R is K
(k)
ℓ -free. Then for each ℓ-subset S of V (R), we have e(R[S]) ≤

(

ℓ
k

)

− 1. But note that

e(R) =

(

t − k

ℓ − k

)−1
∑

S

e(R[S]).

Thus e(R) ≤
(

t−k
ℓ−k

)−1(t
ℓ

) ((

ℓ
k

)

− 1
)

. Now the observation that
(

t−k
ℓ−k

)−1(t
ℓ

)(

ℓ
k

)

=
(

t
k

)

yields the required contradiction. �

The copy of K
(k)
ℓ in R involves ℓ clusters and for each k-tuple of them the red

hypergraph Gred is regular with respect to almost all of the polyads induced on it.
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We will then show that we can find a (k−1, ℓ)-complex S on these clusters such that

for each j = 2, . . . , k − 1 the restriction of its underlying j-uniform hypergraph Sj

to any (j + 1)-tuple of clusters is a polyad. Moreover, Gred will be regular with

respect to Sk−1. By combining E(Gred) ∩ Kk(Sk−1) with S, we will obtain a regular

k-complex Sred. Similarly we obtain a k-complex Sblue which also turns out to be

regular. We then consider the following red/blue colouring of K
(k)
ℓ . We colour a hy-

peredge red if Gred has density at least 1/2 with respect to the corresponding polyad

in Sk−1 and blue otherwise. By the definition of ℓ, we can find a monochromatic

K
(k)
k∆. If it is red, then we can apply the embedding lemma to Sred to find a red copy

of H. This can be done since ∆(H) ≤ ∆ implies that the chromatic number of H

is at most (k − 1)∆ + 1 ≤ k∆. If our monochromatic copy of K
(k)
k∆ is blue, then we

can apply the embedding theorem to Sblue and obtain a blue copy of H.

Proof of Theorem 4.1. Given ∆ and k, we choose C to be a sufficiently large

constant. We will describe the bounds that C has to satisfy at the end of the proof.

Let m := C|H| and consider any red/blue colouring of the hyperedges of K
(k)
m .

Let Gred be the red and Gblue be the blue subhypergraph on V = V (K
(k)
m ). We may

assume without loss of generality that e(Gred) ≥ e(Gblue). We apply the hypergraph

regularity lemma to Gred with constants η, δk ≪ 1/∆, 1/k as well as functions r and δ

satisfying the hierarchy in (4.17). This gives us clusters V1, . . . , Va1 , each of size n say,

together with a t-bounded (η, δ, a)-equitable family of partitions P = P(k − 1, a)

on V where a = (a1, . . . , ak−1). (Note that by deleting some vertices of Gred if

necessary we may assume that m = |Gred| is divisible by t!.) Since η ≪ 1/∆, 1/k,

condition (2) in the definition of an (η, δ, a)-equitable family of partitions implies

that the a1 which we obtain from the regularity lemma satisfies

a1 ≥ R(K
(k)
k∆) =: ℓ.
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Note that the definition of ℓ involves a hypergraph Ramsey number whose value is

unknown. However, for the argument below all we need is that this number exists.

Let R denote the reduced hypergraph, defined in the previous section. Propo-

sition 4.10 implies that R has at least (1 − ε)
(

a1

k

)

hyperedges, where ε := 4
√

δkk!.

Since δk ≪ 1/∆, 1/k, we may assume that e(R) ≥ (1 − ε)
(

|R|
k

)

>
(

1 −
(

ℓ
k

)−1
)

(

|R|
k

)

.

Since |R| = a1 ≥ ℓ, this means that we can apply Fact 4.11 to R to obtain a copy

of K
(k)
ℓ in R. Without loss of generality we may assume that the vertices of this

copy are the clusters V1, . . . , Vℓ.

As mentioned above, we now want to find a (k−1, ℓ)-complex S on these clusters

such that for each j = 2, . . . , k−1 its underlying j-uniform hypergraph Sj is a union

of parts of P(j) and Gred is regular with respect to Sk−1. We construct S inductively

starting from the lower levels. To begin with, for each pair (Vi, Vj) (1 ≤ i < j ≤ ℓ)

independently, we choose with probability 1/a2 one of the parts of P(2) induced on

(Vi, Vj). S2 will be the union of these parts. Now suppose that we have chosen Sj−1

such that its restriction to any j-tuple of clusters forms a polyad (clearly this is the

case for S2). Now, if P̂ (j−1) is such a polyad, we choose a part of P(j) uniformly

at random among the aj parts of P(j) that form Kj(P̂
(j−1)), independently for each

j-tuple of clusters. We let S be the (k − 1, ℓ)-complex thus obtained.

We will show that there is some choice of S such that for every k-tuple among

the clusters V1, . . . , Vℓ the hypergraph Gred is (δk, r)-regular with respect to the

restriction of Sk−1 to this k-tuple. Note that Sk−1 restricted to any particular k-tuple

of clusters is in fact a polyad selected uniformly at random among all polyads P̂ (k−1)

induced by these k clusters. Therefore, since all the k-tuples of clusters are fruitful,

the definition of a fruitful k-tuple implies that the probability that Gred has the
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necessary regularity is at least

1 −
√

δk

(

ℓ

k

)

>
1

2
.

The final inequality holds since we may assume that δk is sufficiently small com-

pared to 1/ℓ. This shows the existence of a (k − 1, ℓ)-complex S with the required

properties. In what follows, PS will always denote a (k− 1)-uniform subhypergraph

of S induced by k of the clusters V1, . . . , Vℓ. So each such PS is a polyad and to

each hyperedge of the subhypergraph of R induced by the clusters V1, . . . , Vℓ there

corresponds such a polyad PS .

We now use the densities of Gred with respect to Sk−1 to define a red/blue colour-

ing of the K
(k)
ℓ which we found in R: we colour a hyperedge of this K

(k)
ℓ red if the

polyad PS corresponding to this hyperedge satisfies d(Gred|PS) ≥ 1/2; otherwise we

colour it blue. Since ℓ = R(K
(k)
k∆), we find a monochromatic copy K of K

(k)
k∆ in

our K
(k)
ℓ . We now greedily assign the vertices of H to the clusters that form the

vertex set of K in such a way that if k vertices of H form a hyperedge, then they are

assigned to k different clusters. (We may think of this as a (k∆)-vertex-colouring

of H.) We now need to show that with this assignment we can apply the embed-

ding lemma to find a monochromatic copy of H in either the subhypergraph of Gred

induced by the k∆ clusters in K or the subhypergraph of Gblue induced by these

clusters.

First suppose that K is red, so we want to apply the embedding theorem to

the k-complex formed by Gred and S (induced on the k∆ clusters in K). However,

the embedding theorem requires all the densities involved to be equal and of the

from 1/a for a ∈ N, whereas all we know is that for every polyad PS corresponding

to a hyperedge of K, we have d(Gred|PS) ≥ 1/2. This minor obstacle can be overcome

by choosing a subhypergraph G′
red ⊆ Gred such that G′

red is (1/2, 3δk, r)-regular with
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respect to each polyad PS . The existence of such a G′
red follows immediately from

the slicing lemma (Lemma 4.8). We then add E(G ′
red)∩Kk(Sk−1) to the subcomplex

of S induced by the clusters in K to obtain a regular (k, k∆)-complex Sred and we

apply the embedding theorem (Theorem 4.2) there to find a copy of H in G′
red, and

therefore also in Gred.

On the other hand, if K is blue, we need to prove that Gblue is regular with

respect to all chosen polyads PS . So suppose Q = (Q(1), . . . , Q(r)) is an r-tuple of

subhypergraphs of one of these polyads PS , satisfying |Kk(Q)| > δk|Kk(PS)|. Let d

be such that Gred is (d, δk, r)-regular with respect to PS . Then

|(1 − d) − d(Gblue|Q)| = |d − (1 − d(Gblue|Q))| = |d − d(Gred|Q)| < δk.

Thus Gblue is (1 − d, δk, r)-regular with respect to PS (note that δk ≪ 1/2 ≤ 1 − d).

Following the same argument as in the previous case, we add E(G ′
blue) ∩ Kk(Sk−1)

to the subcomplex of S induced by the clusters in K to derive the regular (k, k∆)-

complex Sblue to which we can apply the embedding theorem to obtain a copy of H

in Gblue.

It remains to check that we can choose C to be a constant depending only on ∆

and k. Note that the constants and functions η, δk, r and δ we defined at the

beginning of the proof all depend only on ∆ and k. So this is also true for the

integers m0 and t and the vector a = (a1, . . . , ak−1) which we then obtained from

the regularity lemma. Note that in order to be able to apply the regularity lemma

to Gred we needed m ≥ m0, where m = C|H|. This is certainly true if we set C ≥ m0.

The embedding theorem allows us to embed subcomplexes of size at most cn, where

n is the cluster size and where c satisfies c ≪ 1/a2, , . . . , 1/ak−1, dk, 1/(k∆) (recall

that dk = 1/2 and di = 1/ai for all i = 2, . . . , k − 1). Thus c too depends only

on ∆ and k. In order to apply the embedding theorem we needed that n ≥ n0,
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where n0 as defined in the embedding theorem depends only on ∆ and k. Since the

number of clusters is at most t, this is satisfied if m ≥ tn0, which in turn is certainly

true if C ≥ tn0. When we applied the embedding lemma to H, we needed that

|H| ≤ cn. Since n = m/a1 = C|H|/a1 ≥ C|H|/t, it suffices to choose C ≥ t/c for

this. Altogether, this shows that we can define the constant C in Theorem 4.1 by

C := max{m0, tn0, t/c}. �

4.7 Deriving Lemmas 4.4 and 4.6 from earlier work

First, we deduce Lemma 4.6 from [44, Cor. 6.11]. The difference between the two

is that the latter result only counts complete hypergraphs but on the other hand

it allows for different densities within each level. We need a few definitions that

make this notion precise. Let G be a (k, t)-complex. Recall that Gi denotes the

underlying i-uniform hypergraph of G. For each 3 ≤ i < k, we say that Gi is

(≥ di, δi)-regular with respect to Gi−1, if for every i-tuple Λi of vertex classes of G

the induced hypergraph Gi[Λi] is (dΛi
, δi)-regular with respect to Gi−1[Λi], for some

dΛi
≥ di. Similarly we define when Gk is (≥ dk, δk, r)-regular with respect to Gk−1 and

when G2 is (≥ d2, δ2)-regular. Let d := (dk, . . . , d2). We say that a (k, t)-complex G

is (≥ d, δk, δ, r)-regular if

• Gk is (≥ dk, δk, r)-regular with respect to Gk−1;

• Gi is (≥ di, δ)-regular with respect to Gi−1 for each 3 ≤ i < k;

• G2 is (≥ d2, δ)-regular.

Lemma 4.12 (Dense counting lemma for complete complexes [44]) Let k,

t, n0 be positive integers and let ε, d2, . . . , dk−1, δ be positive constants such that

1/n0 ≪ δ ≪ ε ≪ d2, . . . , dk−1, 1/t.
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Then the following holds for all integers n ≥ n0. Suppose that G is a (≥ (dk−1, . . . , d2),

δ, δ, 1)-regular (k − 1, t)-complex with vertex classes V1, . . . , Vt, all of size n. Then

|K(k−1)
t |G = (1 ± ε)nt

k−1
∏

i=2

∏

Λi

dΛi
,

where the second product is taken over all i-tuples Λi of vertex classes of G.

We now show how to deduce Lemma 4.6 from this.

Proof of Lemma 4.6. First we prove the lemma for the case when ℓ = t, i.e. when

each of the vertex classes X1, . . . , Xt of H consists of exactly one vertex, say Xi :=

{hi}. Given such an H and a complex G as in Lemma 4.6, we construct a complex G′

from G as follows: Starting with i = 2, for all i with 2 ≤ i ≤ k − 1 in turn,

we successively consider each i-tuple Λi = (Vj1, . . . , Vji
) of vertex classes of G. If

hj1, . . . , hji
forms an i-edge of H we let G′

i[Λi] = Gi[Λi]. If hj1 , . . . , hji
does not form

an i-edge we make each copy of K
(i−1)
i in G′

i−1[Λi] into an i-edge of G′
i. Thus in the

latter case the density of G′
i[Λi] with respect to G′

i−1[Λi] will be 1. (If i = 2, this means

that we let G′
i[Λi] be the complete bipartite graph with vertex classes Vj1 and Vj2.)

Using that H is a complex, it is easy to see that G′ is also (≥ (dk−1, . . . , d2), δ, δ, 1)-

regular. Clearly, there is a bijection between the copies of H in G and the copies

of K
(k−1)
t in G′. So |H|G = |K(k−1)

t |G′. The result now follows if we apply Lemma 4.12

to G′.

It now remains to deduce Lemma 4.6 for arbitrary ℓ-partite complexes H from

the result for the above case. For this, we use a simple argument that was also used

in [17] to obtain Lemma 4.4 in the case k = 3. We define a complex G∗ from G

by making |Xi| copies V 1
i , . . . , V

|Xi|
i of each vertex class Vi in such a way that for

any selection of indices i1, . . . , it the complex G∗[V i1
1 , . . . , V it

t ] is isomorphic to G.

Note that G∗ is |H|-partite. Also, we can turn H into an |H|-partite complex H∗ by
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viewing each vertex as a single vertex class. Note that different copies of H in G give

rise to different copies of H∗ in G∗. Thus |H|G ≤ |H∗|G∗. Conversely, the only case

where a copy of H∗ in G∗ does not correspond to a copy of H in G is when there is

some i and indices j1 6= j2 such that the vertices that are used by H∗ in V j1
i and V j2

i

correspond to the same vertex of Vi. It is easy to see that the number of such copies

is comparatively small. Thus the desired bounds on |H|G immediately follow from

the bounds on |H∗|G∗ which we obtained in the previous paragraph. �

We now prove Lemma 4.4. Its proof is based on the following version of the

counting lemma that accompanies the hypergraph regularity lemma (Theorem 4.9)

from [64]. Theorem 4.13 gives a lower bound on the number of complete com-

plexes K
(k)
t in a regular (k, t)-complex G, under less restrictive assumptions on the

regularity constants than those in Lemma 4.12.

Theorem 4.13 (Counting lemma for complete complexes [65]) Let k, r, t,

n0 be positive integers and let ε, d2, . . . , dk, δ, δk be positive constants such that 1/di ∈

N for i = 2, . . . , k − 1 and

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ ε, dk, 1/t.

Then the following holds for all integers n ≥ n0. Suppose that G is a (d, δk, δ, r)-

regular (k, t)-complex with vertex classes V1, . . . , Vt, all of size n, which respects the

partition of K
(k)
t . Then

|K(k)
t |G ≥ (1 − ε)nt

k
∏

i=2

d
(k

i)
i .

Lemma 4.4 is more general in the sense that it counts copies of complexes that may

not be complete, and also gives an upper bound on their number. We will deduce
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Lemma 4.4 from Theorem 4.13 in several steps. The first (and main) step is to

deduce a counting lemma which gives the number of copies of complete complexes,

but now in a (k, t)-complex G where the density of Gi[Λi] with respect to Gi−1[Λi]

might be different for different i-tuples Λi of vertex classes of G.

Lemma 4.14 (Counting lemma for complete complexes –

different densities)

Let k, r, t, n0 be positive integers and let ε, d2, . . . , dk, δ, δk be positive constants

such that

1/n0 ≪ 1/r, δ ≪ min{δk, d2, . . . , dk−1} ≤ δk ≪ ε, dk, 1/t.

Then the following holds for all integers n ≥ n0. Suppose G is a (≥ d, δk, δ, r)-regular

(k, t)-complex with vertex classes V1, . . . , Vt, all of size n, such that for all 2 < i < k

and all i-tuples Λi of vertex classes of G the hypergraph Gi[Λi] is (dΛi
, δ)-regular with

respect to Gi−1[Λi] where dΛi
can be written as dΛi

= pΛi
/qΛi

such that pΛi
, qΛi

∈ N

and 1/qΛi
≥ di. Suppose that the analogue holds for all the dΛ2 and all the dΛk

.

Then

|K(k)
t |G ≥ (1 − ε)nt

k
∏

i=2

∏

Λi

dΛi
,

where the second product is taken over all i-tuples Λi of vertex classes of G.

Proof. We will prove this lemma by an inductive argument, in which we allow for

different densities in the top levels but not in the lower levels, and show that we

can always move down another level, until we allow different densities in all levels.

This leads to the following definition. For any 2 < j ≤ k, we say that a complex G

is (≥ dk, . . . ,≥ dj, dj−1, . . . , d2, δk, δ, r)-regular if

• Gk is (≥ dk, δk, r)-regular with respect to Gk−1;

• Gi is (≥ di, δ)-regular with respect to Gi−1 for each j ≤ i ≤ k − 1;
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• Gi is (di, δ)-regular with respect to Gi−1 for each 3 ≤ i ≤ j − 1;

• G2 is (d2, δ)-regular.

Choose new constants ηi, ξi, εi and integers ri satisfying

1/n0 ≪ δ = ξ2 ≪ · · · ≪ ξk ≪ min{δk, d2, . . . , dk−1} ≤ δk = η2 ≪ · · · ≪ ηk+1

≪ εk ≪ · · · ≪ ε2 = ε, dk, 1/t

and 1/n0 ≪ 1/r = 1/r2 ≪ · · · ≪ 1/rk ≪ min{δk, d2, . . . , dk−1}. Then the following

claim immediately implies the lemma:

Claim. Let 2 ≤ j ≤ k. Suppose that G satisfies the conditions of Lemma 4.14 but

is (≥ dk, . . . ,≥ dj, dj−1, . . . , d2, ηj, ξj, rj)-regular instead of (≥ d, δk, δ, r)-regular if

j > 2, where 1/di ∈ N for all i = 2, . . . , j − 1. Then

|K(k)
t |G ≥ (1 − εj)n

t

(

j−1
∏

i=2

d
(t

i)
i

)

k
∏

i=j

∏

Λi

dΛi
.

We prove this claim by backward induction on j as follows: given a t-partite com-

plex G which is (≥ dk, . . . ,≥ dj, dj−1, . . . , d2, ηj, ξj, rj)-regular, we will partition the

hyperedges of Gj to obtain several (≥ dk, . . . ,≥ dj+1, d
′
j, dj−1, . . . , d2, ηj+1, ξj+1, rj+1)-

regular complexes for some d′
j. We will then apply the lower bound from the induc-

tion hypothesis to each of these complexes. Summing over all of them will give the

lower bound in the claim.

We first consider the case j = k. We will apply the slicing lemma (Lemma 4.8) to

split the kth level Gk of the complex G to obtain regular complexes whose densities

within the kth level are the same. Set d′
k := 1/

∏

Λk
qΛk

. The slicing lemma implies

that for all Λk there is a partition P (Λk) of the set E(Gk[Λk]) of k-edges induced
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on Λk such that each part is (d′
k, ηk+1, rk)-regular with respect to Gk−1[Λk]. So for

each Λk, P (Λk) has dΛk
/d′

k parts. Now for each Λk, choose one part from P (Λk)

and let Ck denote the resulting k-uniform t-partite hypergraph. Let GCk denote the

k-complex obtained from G by replacing Gk with Ck. Then

|K(k)
t |G =

∑

Ck

|K(k)
t |GCk .

Here the summation is over all possible choices of parts from each of the
(

t
k

)

parti-

tions P (Λk). So the number of summands is
∏

Λk
dΛk

/d′
k = d′−(t

k)
k

∏

Λk
dΛk

. More-

over, by Theorem 4.13 each summand in the above sum can be bounded below:

|K(k)
t |GCk ≥ (1 − εk)nt

(

k−1
∏

i=2

d
(t

i)
i

)

d′(
t
k)

k .

Altogether, this implies the claim for j = k.

Now suppose that j < k and that the claim holds for j+1. To apply the induction

hypothesis, we now need to get equal densities in the jth level. We will achieve this

by applying the slicing lemma (Lemma 4.8) to this level. Set d′
j := 1/

∏

Λj
qΛj

. So

1/d′
j ∈ N. The slicing lemma implies that for every j-tuple Λj of vertex classes of G

there is a partition P (Λj) of the set E(Gj [Λj]) of j-edges induced on Λj such that each

part is (d′
j, ξj+1)-regular with respect to Gj−1[Λj]. For each Λj, the corresponding

partition P (Λj) will have aΛj
:= dΛj

/d′
j parts. Now for each Λj, choose one part

from P (Λj) and let Cj denote the resulting j-uniform t-partite hypergraph. We

let GCj denote the (k, t)-complex obtained from G as follows: we replace Gj by Cj

and for each j < i ≤ k we replace Gi with the subhypergraph whose i-edges are all

those i-sets of vertices that span a K
(j)
i in Cj . Thus GCj

j is (d′
j, ξj+1)-regular with

respect to Gj−1 = GCj

j−1. However, to apply the induction hypothesis this is not

enough. We also need to prove the following more general assertion.
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For all i = j, . . . , k and any Λi the following holds. If i = j then GCj

i [Λi]

is (d′
j, ξj+1)-regular with respect to GCj

i−1[Λi]. If j < i < k then GCj

i [Λi]

is (dΛi
, ξj+1)-regular with respect to GCj

i−1[Λi]. If i = k then GCj

i [Λi]

is (dΛi
, ηj+1, rj+1)-regular with respect to GCj

i−1[Λi] for all but at most

√
ηj+1

∏

Λj
aΛj

hypergraphs Cj .

(∗)

We will prove (∗) by induction on i. If i = j then we already know that the

assertion is true. So suppose that i > j and that the claim holds for i − 1. We

will first consider the case when i < k. The induction hypothesis together with the

dense counting lemma for complete complexes (Lemma 4.12) implies that

|K(i−1)
i |

G
Cj
i−1[Λi]

≥ 1

2
ni

(

j−1
∏

ℓ=2

d
(i

ℓ)
ℓ

)

d′(
i
j)

j

i−1
∏

s=j+1

∏

Λs⊆Λi

dΛs. (4.19)

Similarly, the assumptions on G in the claim together with Lemma 4.12 imply

|K(i−1)
i |Gi−1[Λi] ≤ 2ni

(

j−1
∏

ℓ=2

d
(i

ℓ)
ℓ

)

i−1
∏

s=j

∏

Λs⊆Λi

dΛs. (4.20)

If we combine these inequalities and use the fact that ξj ≪ ξj+1 ≪ dj, 1/k, we obtain

|K(i−1)
i |

G
Cj
i−1[Λi]

≥
√

ξj+1|K(i−1)
i |Gi−1[Λi] ≥

ξj

ξj+1

|K(i−1)
i |Gi−1[Λi]. (4.21)

In other words, a ξj+1-proportion of copies of K
(i−1)
i in GCj

i−1[Λi] gives rise to a ξj-

proportion of copies in Gi−1[Λi]. Moreover, Ki(GCj

i−1[Λi])∩E(GCj

i [Λi]) = Ki(GCj

i−1[Λi])∩

E(Gi[Λi]) by the definition of GCj and so d(GCj

i [Λi]|GCj

i−1[Λi]) = d(Gi[Λi]|GCj

i−1[Λi]) =

dΛi
± ξj by (4.21) and the (dΛi

, ξj)-regularity of Gi[Λi] with respect to Gi−1[Λi].

Thus the (dΛi
, ξj+1)-regularity of GCj

i [Λi] with respect to GCj

i−1[Λi] follows from the

(dΛi
, ξj)-regularity of Gi[Λi] with respect to Gi−1[Λi].
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But if i = k, this might not be true, as ηj+1 may not be small compared to dj.

However, given a k-tuple Λk of vertex classes of G, it is true for most complexes

GCj [Λk]. To see this, given Λk, let B be a (k, k)-complex obtained as follows: For

each Λj ⊂ Λk, choose one part from P (Λj) and let Bj denote the resulting j-uniform

k-partite hypergraph. To obtain B from G[Λk], we replace Gj [Λk] by Bj and for each

j < i ≤ k we replace Gi[Λk] with the subhypergraph whose i-edges are all those

i-sets of vertices which span a K
(j)
i in Bj . Thus there are

∏

Λj⊂Λk
aΛj

=: AΛk
such

complexes B. (Recall that aΛj
= dΛj

/d′
j was the number of parts of the partition

P (Λj).) Using that (∗) holds for all i < k, similarly as in (4.19)–(4.21) one can show

that

|K(k−1)
k |Bk−1

≥ d′
j
(k

j)

4
∏

Λj⊂Λk
dΛj

|K(k−1)
k |Gk−1[Λk] =

|K(k−1)
k |Gk−1[Λk]

4AΛk

. (4.22)

We will now prove the following:

The underlying k-uniform hypergraph Bk is not (dΛk
, ηj+1, rj+1)-regular

with respect to Bk−1 for less than ηj+1AΛk
of the complexes B.

(∗∗)

If (∗∗) is false then we can find T := ηj+1AΛk
/2 such complexes B1, . . . ,BT , such

that each Bℓ has a Qℓ = (Qℓ
1, . . . , Q

ℓ
rj+1

) satisfying Qℓ
s ⊆ Bℓ

k−1 for all s = 1, . . . , rj+1

and |K(k−1)
k |Qℓ ≥ ηj+1|K(k−1)

k |Bℓ
k−1

, but either d(Bℓ
k|Qℓ) > dΛk

+ ηj+1 for each ℓ or

d(Bℓ
k|Qℓ) < dΛk

−ηj+1 for each ℓ. We will assume the latter – the proof in the former

case is similar. But then let Q = (Q1,Q2, . . . ,QT ). Thus Q is a Trj+1-tuple and

|K(k−1)
k |Q ≥

T
∑

ℓ=1

ηj+1|K(k−1)
k |Bℓ

k−1

(4.22)

≥ ηj |K(k−1)
k |Gk−1[Λk].

Since we may assume that Trj+1 ≤ rj our assumption on the regularity of Gk[Λk]

with respect to Gk−1[Λk] implies that d(Gk[Λk]|Q) ≥ dΛk
− ηj . On the other hand,

the definition of B implies that d(Bℓ
k|Qℓ) = d(Gk[Λk]|Qℓ). Thus d(Gk[Λk]|Q) ≤
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max1≤ℓ≤T d(Gk[Λk]|Qℓ) = max1≤ℓ≤T d(Bℓ
k|Qℓ) < dΛk

− ηj+1. This is a contradiction,

and so (∗∗) holds.

Note that (∗∗) implies that for all but at most
(

t
k

)

ηj+1

∏

Λj
aΛj

hypergraphs Cj

the hypergraph GCj

k is (dΛk
, ηj+1, rj+1)-regular with respect to GCj

k−1 – we call these

Cj nice. Since ηj+1 ≪ 1/t, this completes the proof of (∗).

We are now ready to finish the proof of the induction step of the claim. The

induction

|K(k)
t |G ≥

∑

nice Cj

|K(k)
t |GCj ≥ (1 − εj+1)

∑

nice Cj

nt

(

j−1
∏

i=2

d
(t

i)
i

)

d′(
t
j)

j

k
∏

i=j+1

∏

Λi

dΛi
.

The summation is over all possible choices of nice Cj . So the number of summands is

at least (1−√
ηj+1)

∏

Λj
aΛj

and for each Λj we have aΛj
d′

j = dΛj
. Since ηj+1, εj+1 ≪

εj, the claim follows and hence the lower bound in Lemma 4.14 as well. �

Instead of making use of the parameter r in the proof of (∗) we could have also

used the fact that the partitions guaranteed by the slicing lemma are obtained by

considering random partitions.

It is straightforward to obtain a corresponding upper bound from the lower bound

in Lemma 4.14.

Lemma 4.15 (Counting lemma for complete complexes – upper bound)

Under the conditions of Lemma 4.14,

|K(k)
t |G = (1 ± ε)nt

k
∏

i=2

∏

Λi

dΛi
.

Proof. Clearly, all we have to prove is the upper bound. The proof is based on an

argument that was used in [58] and later in [17] to derive a similar upper bound in

the case of 3-complexes. Let [t]k denote the set of all k-subsets of [t] = {1, . . . , t}.

Given S ⊆ [t]k, we let GS denote the (k, t)-complex obtained from G as follows: for
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each {i1, . . . , ik} ∈ S we replace the set Ek(G[Λk]) of all k-edges of G induced on

Λk := {Vi1, . . . , Vik} by Kk(Gk−1[Λk]) \ Ek(G[Λk]). Thus the density of GS
k [Λk] with

respect to GS
k−1[Λk] is now 1 − dΛk

. Moreover,

|K(k−1)
t |Gk−1

=
∑

S⊆[t]k

|K(k)
t |GS .

Observe that |K(k)
t |G = |K(k)

t |G∅ and hence

|K(k)
t |G = |K(k−1)

t |Gk−1
−

∑

S⊆[t]k,S 6=∅

|K(k)
t |GS .

Thus, to obtain an upper bound on |K(k)
t |G all we have to do now is to obtain an

upper bound on |K(k−1)
t |Gk−1

and a lower bound on |K(k)
t |GS , for every non-empty S.

But the former follows from the dense counting lemma (Lemma 4.6) and the

latter follows from Lemma 4.14 above. (This is why in Lemma 4.14 we need to

allow more general densities than just 1/a, for a ∈ N.)

We first fix a constant ε′ such that δk ≪ ε′ ≪ ε, dj, 1/t. Note that if ε′ replaces

ε, this hierarchy is more restrictive than that which is required by Lemma 4.6, and

so we can apply Lemma 4.6 with ε′ playing the role of ε.

One technical difficulty in these calculations is that we wish to apply Lemma 4.14

to a new hypergraph GS. However, the k-tuples of GS corresponding to hyperedges

in S now have density roughly 1 − de, which may not be greater than dk. Indeed,

if de(S) denotes the density of the k-tuple corresponding to the hyperedge e in GS

(so de(S) = de if e /∈ S and de(S) = 1 − de otherwise), there may not be any

d′
k = d′

k(S) ≫ δk such that de(S) ≥ d′
k for every e.

To overcome this difficulty, we first consider the set E ′
k of all those hyperedges

e ∈ Ek(H) for which 1 − de ≤ ε′. We would like to be able to apply Lemma 4.14 to
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obtain the lower bound of

(1 − ε′)dk−1(H)nt
∏

e∈Ek(H)

de(S)

for |H|GS for any D 6= φ, where dk−1(H) :=
∏k−1

i=2 d
ei(H)
i . However as indicated

above, this is not possible. Instead, we use the trivial lower bound |H|GS ≥ 0, and

we observe that if S ∩ E ′
k 6= φ, then

(1 − ε′)dk−1(H)nt
∏

e∈Ek(H)

de(S) ≤ ε′dk−1(H)nt

so

|H|GS ≥ 0 ≥ (1 − ε′)dk−1(H)nt
∏

e∈Ek(H)

de(S) − ε′dk−1(H)nt.

since de(S) ≤ ε′ for some e ∈ Ej(H). So by adding on an error term of

2(t
k)ε′

(

∏k−1
i=2 d

ei(H)
i

)

nt, we may assume that for each S, GS is (d′
k, dk−1, . . . , d2,

δk, δ, r)-regular, where d′
k = min{dk, ε

′}. (The term 2(t
k) is the number of possi-

ble sets S, a trivial upper bound on the number of S’s satisfying S ∩ E ′
k 6= φ.) We

will now make this assumption and compensate for this by adding the above error

term at the end of the argument.

Note that replacing ε, dk with ε′, d′
k, we still have constants satisfying the hier-

archy of Lemma 4.6.

Recall that

|H|G = |H(k−1)|G −
∑

S⊆Ek(H),S 6=φ

|H|GS .

By the dense counting lemma for (k − 1)-complexes,

|H(k−1)|G ≤ (1 + ε′)

(

k−1
∏

i=2

d
ei(H)
i

)

nt.
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Furthermore, by Lemma 4.14, for each S 6= φ,

|H|GS ≥ (1 − ε′)

(

k−1
∏

i=2

d
ei(H)
i

)

nt
∏

e∈Ek(H)

de(S).

Now
∑

S⊆Ek(H),S 6=φ

∏

e∈Ek(H)

de(S) = 1 −
∏

e∈Ek(H)

de

and so

|H|G = |H(k−1)|G −
∑

S⊆Ek(H),S 6=φ

|H|GS

≤ dk−1(H)nt



1 + ε′ − (1 − ε′)(1 −
∏

e∈Ek(H)

de)





≤ dk−1(H)nt



2ε′ +
∏

e∈Ek(H)

de





Hence we obtain

|H|G ≤ dk−1(H)nt(1 +
√

ε′)
∏

e∈Ek(H)

de.

Now it only remains to add back in the error term which we obtained from our

assumption that each GS was (d′
k, dk−1, . . . , d2, δj, δ, r)-regular. Observe that 2(t

k)ε′ ≤
√

ε′
∏

e∈Ek(H) de. Thus the upper bound on the number of copies of H in G becomes

|H|G ≤ (1 + 2
√

ε′)dk−1(H)nt
∏

e∈Ek(H)

de ≤ (1 + ε)dk−1(H)nt
∏

e∈Ek(H)

de

as required. �

Lemma 4.4 now follows from Lemma 4.14 in exactly the same way as Lemma 4.6

followed from Lemma 4.12.
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4.8 Proof of the Extension Lemmas 4.5 and 4.7

We now use Lemma 4.4 to derive Lemma 4.5 (Lemma 4.7 can be derived in the

same way from Lemma 4.6). The proof idea is similar to that of [65, Cor. 14], [32,

Lemma 6.6] and [17, Lemma 5]. Pick a copy H of H in G uniformly at random,

and define X := |H → H′|. Then X is a random variable. We have E(X) =

1
|H|G

∑

H∈G |H → H′| = |H′|G/|H|G. (Here the sum
∑

H∈G is over all copies of H

in G.) We pick some constant ε satisfying δk ≪ ε ≪ β. By applying the upper

bound of the counting lemma (Lemma 4.4) to H and the lower bound to H′ we

obtain a lower bound for E(X). Similarly we obtain an upper bound. In this way

we can easily deduce that

E(X) = (1 ±√
ε)|H → H′|. (4.23)

Now consider E(X2). We aim to show that its value is approximately |H → H′|2,

and so X has a low variance. Using Chebyshev’s inequality, this will then imply

that X is concentrated around its mean. In other words, only a few copies of H do

not extend to the correct number of copies of H′ in G.

Observe that E(X2) = 1
|H|G

∑

H∈G |H → H′|2. We view |H → H′|2 as the number

of pairs H ′
1, H

′
2 of copies of H′ which extend H . Here the pairs are allowed to overlap,

but we first obtain a rough estimate by insisting that they intersect precisely in H .

So let H∗ be the (k, ℓ)-complex obtained from two disjoint copies of H′ by identifying

them on H. Thus any copy of H∗ in G extending H corresponds to a pair H ′
1, H

′
2.

However, we will later need to take account of those pairs H ′
1, H

′
2 which do not arise

from a copy of H∗. These pairs are exactly those whose intersection is strictly larger

than H .

By applying the counting lemma (Lemma 4.4) to H∗ and to H, as before we

220



obtain

1

|H|G
∑

H∈G

|H → H∗| = (1 ±√
ε)|H → H∗| = (1 ±√

ε)|H → H′|2.

On the other hand, the number of pairs H ′
1, H

′
2 which do not arise from a copy of H∗

is at most (t′ − t)2n2(t′−t)−1 < ε((
∏k

i=2 d
ei(H′)−ei(H)
i )nt′−t)2 = ε|H → H′|2. Thus

1

|H|G
∑

H∈G

|H → H′|2 = (1 ± 2
√

ε)|H → H′|2. (4.24)

Putting (4.23) and (4.24) together, we obtain

var(X) = E(X2) − (E(X))2 < 5
√

ε|H → H′|2.

Now recall Chebyshev’s inequality: P(|X − E(X)| ≥ t) ≤ var(X)/t2. We apply this

inequality with t := β|H → H′|. This implies that the probability that a randomly

chosen copy of H in G does not satisfy the conclusion of the extension lemma is at

most var(X)/β2|H → H′|2 < 5
√

ε/β2 < β, and so at most β|H|G copies of H do

not satisfy the conclusion, as required.
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[10] S.A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers
for graphs. In Infinite and Finite Sets, Colloquia Mathematica Societatis János
Bolyai vol. 10 1 (1975), 214–240.

[11] G. Chen and R. Schelp, Graphs with linearly bounded Ramsey numbers,
J. Combinatorial Theory B 57 (1993), 138–149.
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[24] P. Dorbec, S. Gravier, G. Sárkőzy, Monochromatic Hamiltonian t-tight Berge-
cycles in Hypergraphs, Journal of Graph Theory 59, (2008), 34–44.

[25] H. Enomoto, A. Kaneko and Z. Tuza, P3-factors and covering cycles in graphs
of minimum degree n/3, Combinatorics (A. Hajnal, L. Lovász and V. Sós eds.),
Colloq. Math. Soc. J. Bolyai 52, Eger (Hungary) (1987), 213–220.
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[50] J. Komlós, G. N. Sárközy and E. Szemerédi, Proof of the Seymour Conjecture
for large graphs, Ann. Comb. 2, (1998), 43-60.

[51] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its applica-
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