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Abstract

In this thesis we prove two major ZJ-type group-theoretic results before generalising

them to the category of fusion systems. We also study alternative proofs of the fact that

when a fusion system F on a finite p-group P is sparse and p is odd or F is S4-free, F is

constrained.
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Introduction

In the following p is always assumed to be prime. We begin by stating an important

theorem:

Theorem 0.0.1 (Glauberman’s ZJ theorem) [11, 2.11] Let G be a finite group and

let p be an odd prime. Let P ∈ Sylp(G). Suppose that G is p-stable and has characteristic

p. Then Z(J(P ))EG.

The proof runs over several chapters in [11] and for applications, the fact that Z(J(P ))

exists and is characteristic is more important than its definition. The result can be turned

on its head: Given a p-group P , there is a characteristic subgroup of P , W (P ), in which

for certain finite groups, G, where P ∈ Sylp(G), W (P ) is normal. A new proof of this fact

was found by Stellmacher ([19]) in the 1990s as a byproduct of his result which generalises

this theorem to the case p = 2:

Theorem 0.0.2 (Theorem A) [14, 9.4.4] Let p be an odd prime and let P be a p-group.

Then there is a characteristic subgroup W (P ) of P which satisfies:

(a) Ω(Z(P )) 6 W (P ) 6 Ω(Z(J(P ))).

(b) If G is a p-stable group of characteristic p, with P ∈ Sylp(G), then W (P )EG.

(c) W (P η) = W (P )η, where η is any automorphism of P .

Both of these theorems have famous corollaries which we respectively state below:
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Theorem 0.0.3 (Glauberman-Thompson Normal p-complement Theorem) [11,

3.1] Let G be a group, p an odd prime and P ∈ Sylp(G). Then NG(Z(J(P ))) has a normal

p-complement iff G has a normal p-complement.

Theorem 0.0.4 (Theorem B) [14, 9.4.7] Let G be a group, p an odd prime and P ∈

Sylp(G). Then NG(W (P )) has a normal p-complement if and only if G has a normal

p-complement.

Now Frobenius’ Theorem (2.1.37) tells us that the notion of a group having a normal

p-complement is related to the concept of fusion (conjugation) inside that group. So,

loosely speaking, we can understand the fusion that goes on inside a group G by looking

at the normalisers of some non-identity p-subgroups of that group.

It turns out that to every finite group, G, one can associate a saturated fusion system

on a Sylow p-subgroup of G. A fusion system, F , on P is a small category whose objects

are the subgroups of P , and whose arrows are certain injective group homomorphisms.

Saturation of a fusion system is an important technical furnishing which is satisfied by

all fusion systems of finite groups. Since the converse to the above statement is not true,

that is, there exist saturated fusion systems, F , on P which do not arise from groups G

with P ∈ Sylp(G) (we write F 6= FP (G) in this case 1) the category of saturated fusion

systems is larger than the category of finite groups. This makes them an interesting

object of study since results about fusion systems are a generalisation of results about

finite groups.

If such generalisations are to be possible, a basic requirement is the need to define

saturated subsystems of a fusion system; to replace subgroups of a group. For example

NF(S) instead of NG(S), etc. In Section 2.1.3 we will define these systems and show that

they are saturated. This is summed up in the following result due to Puig [17] where

different subgroups K, of Aut(Q) give rise to different subsystems, NK
F (Q) of F :

1F is called an exotic fusion system.
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Theorem 0.0.5 (Theorem C) Let Q 6 P and K 6 Aut(Q). If Q is fully K-normalised

in F , then NK
F (Q) is a saturated fusion system on NK

P (Q).

The categorical approach to fusion exemplified by fusion systems lends itself well to

being studied via homotopic means. Indeed this has been done extensively in [5] by Carlos

Broto, Ran Levi and Bob Oliver. A highlight of this approach is the following result of a

subsequent paper which states that for certain objects Q in the fusion system, F on P ,

one can associate a finite group, G (called a model) so that every map in F is realisable

as G-conjugation:

Theorem 0.0.6 (Theorem D) [5, 4.3] Let F be a fusion system on a finite p-group, P .

For Q ∈ Ffc, there is, up to isomorphism, a unique finite group G = GFQ with NP (Q) ∈

Sylp(G) such that QEG,CG(Q) 6 Q and NF(Q) = FNP (Q)(G).

For example, if F = NF(Q), for some Q ∈ F c, then the above result applies to show

that F cannot be exotic so F has a model and we can apply results from finite group

theory to F . This idea forms the backbone of the proofs of the following two results, where

the finite group theoretic results in question are those stated above. A fusion system is

called constrained if it possesses a normal, centric subgroup, and it is called H-free if

every element of the set {GFQ | Q ∈ Ffc} is. Also note that a sparse fusion system is a

fusion system whose only proper subsystem is FP (P ). We have the following remarkable

fact:

Theorem 0.0.7 (Theorem E) [10, 2.6] Let F be a sparse fusion system over a finite

p-group P . If p is odd or F is S4-free then F is constrained.

Using Theorem E, we are able to prove the following result of Kessar and Linckelman:

Theorem 0.0.8 (Theorem F) [12, Theorem A] Suppose that p is odd and let F be a

fusion system on a finite p-group P . Then NF(W (P )) = FP (P ) if and only if F = FP (P )

and NF(Z(J(P ))) = FP (P ) if and only if F = FP (P ).
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Theorem F is a generalisation of the Normal p-complement Theorem and Theorem B.

In fact Theorem F follows almost immediately from Theorem E since it turns out that a

minimal counterexample to the forward direction of each part of Theorem F is a sparse

fusion system.

Our final result, also due to Kessar and Linckelman, is a generalisation of Theorem A

to arbitrary fusion systems:

Theorem 0.0.9 (Theorem G) Let P be a finite p-group and let F be a Qd(p)-free fu-

sion system over P . Then there exists a non-trivial characteristic subgroup, W (P ) of P

which is normal in F .

The absence of any condition on the prime, p, is a consequence of the fact that W is a

Glauberman Functor for every prime p, a condition which the functor Z(J(−)) does not

enjoy.
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Chapter 1

Finite Group Theory

1.1 Basic results

In our first section we review some elementary but important results in p-local group

theory. From now on, all groups are assumed to be finite unless explicitly stated otherwise.

1.1.1 Sylow’s Theorems

Sylow’s Theorems are fundamental to all results involving fusion in finite groups. As-

suming basic notation, we will prove them in this section. p denotes an arbitrary prime

number.

The following is useful and well known:

Lemma 1.1.1 [14, 3.1.7] Let a finite p-group G act on a set Ω. Then |Ω| ≡ |FixΩ(G)|

mod p.

Proof. Set Ω′ := Ω−FixΩ(G). Then no element of Ω′ is fixed by every element of G so for

every α ∈ Ω′, Gα < G and p divides |G : Gα|. i.e. p is a divisor of the size of every orbit

in Ω′ and hence divides |Ω′| itself. Thus:

|Ω′| = |Ω| − |FixΩ(G)| ≡ 0 mod p
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as needed. �

We now prove Sylow’s famous result. Recall that a p-subgroup, P , is called Sylow if

P is not a proper subgroup of any other p-subgroup of G. We write Sylp(G) to denote

the set of Sylow p-subgroups of G.

Theorem 1.1.2 (Sylow) Suppose that p is a prime divisor of a finite group G. Then

Sylow p-subgroups exist, have maximal p-power order and are all conjugate in G. Fur-

thermore,

|Sylp(G)| = |G : NG(P )| for all P ∈ Sylp(G) and |Sylp(G)| ≡ 1 mod p.

Proof. By Cauchy’s Theorem, G contains a subgroup of order p. Let Q be a subgroup of

G of order pi. Letting Q act on the left cosets G/Q by left multiplication, we have that

|NG(Q)/Q| ≡ |G/Q| mod p (Lemma 1.1.1). If p||G : Q| then NG(Q)/Q has a subgroup

of order p whose preimage in NG(Q) has order pi+1, thus Sylow p-subgroups exist.

Let P1, P2 ∈ Sylp(G) and let P2 act on Ω := G/P1 by left multiplication. By Lemma

1.1.1, |FixΩ(P2)| 6= 0 so pick xP1 ∈ FixΩ(P2). Then for all y ∈ P2, yxP1 = xP1 so that

P x
2 6 P1. Comparing orders we see that P x

2 = P1 as needed.

Finally let P ∈ Sylp(G) act on the set Sylp(G) by conjugation. We claim that the

number of fixed points for this action is 1 and apply Lemma 1.1.1. Indeed, if there is

T ∈ Sylp(G) not equal to P such that T x = T for all x ∈ P then P, T ∈ Sylp(NG(T ))

and hence P and T are conjugate in NG(T ) by what we have just proved. However since

T ENG(T ), we must have T = P . �

Lemma 1.1.3 (Frattini) Let G be a finite group and let N EG. Suppose N acts tran-

sitively on a set Ω. Then for every α ∈ Ω, G = GαN . In particular when P ∈ Sylp(N),

we have G = NG(P )N.
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Proof. The transitive action of N on Ω means that for α ∈ Ω, x ∈ G, there is a y ∈ N

such that αx = αy. Then xy−1 ∈ Gα implies that x ∈ GαN and thus G = GαN . The

second part follows by setting Ω = Sylp(N), since N acts transitively on the set of its

Sylow p-subgroups. �

1.1.2 Fusion in Finite Groups

We begin with some definitions and results from finite group theory. Throughout this

section, let G be a finite group and p be any prime. First, recall the theorem of Schur-

Zassenhaus:

Theorem 1.1.4 (Schur-Zassenhaus) Let N EG be such that (|N |, |G : N |) = 1. Then

there exists H 6 G such that G = HN and H ∩ N = 1. Further, if either of the groups

N or G/N are solvable, then all such H are conjugate in G.

Using Theorem 1.1.3 we get:

Lemma 1.1.5 [14, 6.2.2 (a)] Let G act on a set Ω and suppose that K EG is such that

(|K|, |G : K|) = 1, either K or G/K is soluble and K acts transitively on Ω. Then for

every complement H of K in G, FixΩ(H) 6= ∅.

Proof. The transitive action of K on Ω implies that Ω is the unique orbit, and so |Ω|

divides |K|. By Lemma 1.1.3, for any β ∈ Ω we have G = GβK and an Isomorphism

Theorem implies that G/K ∼= Gβ/(K∩Gβ). Now apply Theorem 1.1.4 to Gβ and K∩Gβ

to find a complement H ′ of K ∩ Gβ in Gβ. But then H ′ must also complement K in G

and since H ′ 6 Gβ, β ∈ FixΩ(H ′). Theorem 1.1.4 also implies that there is g ∈ G such

that H ′g = H so also FixΩ(H) 6= ∅ and we are done. �

Definition 1.1.6 We say that G possesses a normal p-complement, N , if there exists

N EG such that G = NP and P ∩N = 1 for some P ∈ Sylp(G).
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Notice that we must have Op′(G) = N = Op(G) in this case.

Example 1.1.7 If G is p-closed1, then Theorem 1.1.4 tells us that G has a normal p-

complement.

Here is an easy lemma:

Lemma 1.1.8 (Burnside) Let P ∈ Sylp(G). Then any two normal subsets of P that

are conjugate in G are conjugate in NG(P ).

Proof. Let X, Y ⊆ P and suppose Y = Xg, some g ∈ G. Certainly P 6 NG(X), so that

P g 6 NG(X)g = NG(Xg) = NG(Y ). But P 6 NG(Y ) so by Sylow’s Theorem there is

z ∈ NG(Y ) such that P = P gz which implies that gz ∈ NG(P ) and Xgz = Y z = Y as

required. �

We will study the relationship between control of fusion, i.e. when conjugacy in one

group implies conjugacy in another, and the possession of a normal p-complement in later

sections. Notice that under the hypothesis that P is abelian, every subset is normal, so

in particular, Lemma 1.1.8 applies to two G-conjugate elements of P .

The following definitions will be important later so we state them now:

Definition 1.1.9 Let G be a finite group.

(a) We say that G is p-reduced if Op(G) = 1.

(b) A proper subgroup H of G is strongly p-embedded if H contains a Sylow p-subgroup

of G and p does not divide |H ∩Hg| for g ∈ G−H.

Remark 1.1.10 Notice that if there exists some subgroup H of G satisfying (b) then G

is p-reduced since Op(G) is the intersection of all elements of Sylp(G).

1i.e. there is a unique Sylow p-subgroup which must therefore be normal.
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Definition 1.1.11 A group G is said to be p-soluble if every composition factor of G is

either a p′-group or a p-group.

Lemma 1.1.12 Suppose a group is p-soluble and that Op′(G) = 1. Then CG(Op(G)) 6

Op(G).

Proof. An equivalent conclusion would be that Z(Op(G)) = CG(Op(G)), so suppose that

Z(Op(G)) < CG(Op(G)). Let G := G/Z(Op(G)) and suppose that CG(Op(G)) 6= 1. Let

N be a minimal normal subgroup of G contained in CG(Op(G)). Since G is p-soluble,

N is either a p-group or a p′-group. Let N denote the inverse image of N in G and

note that N 6 CG(Op(G)). If N is a p-group, then N is a p-group so N 6 Op(G).

But then N 6 CG(Op(G)) implies that N 6 Z(Op(G)), a contradiction. If N is a p′-

group then Z(Op(G)) ∈ Sylp(N) and Z(Op(G)) 6 Z(N) so Theorem 1.1.4 implies that

N = Z(Op(G))×Op′(N), and 1 6= Op′(N) 6 Op′(G), a contradiction. �

Definition 1.1.13 Let G be a finite group. For S, T 6 G, with S E T , we call the

quotient S/T a section of G. A group A is said to be involved in the group G if it is

isomorphic to some section of G. For a finite group H, G is said to be H-free if H is not

involved in G.

Definition 1.1.14 A subgroup M of G is a p-local subgroup of a finite group G if there

is a non-trivial p-subgroup P of G such that NG(P ) = M .

Example 1.1.15 If G ∼= Sym(4), the Sylow 2-subgroup, S ∼=Dih(8) is itself p-local since

S = NG(S).

Definition 1.1.16 We say that a group G has characteristic p or equivalently that G is

p-constrained if CG(Op(G)) 6 Op(G).

Lemma 1.1.17 [14, 3.2.8] For a finite group, G, let N EG and set G := G/N . If Q is

a p-subgroup of G with (|N |, p) = 1, we have NG(Q) = NG(Q).
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Proof. It is evident that NG(Q) = NG(NQ) (by definition). Now (|N |, p) = 1 means that

Q ∈ Sylp(NQ) so Lemma 1.1.3 applied to NG(NQ) yields the factorisation: NG(NQ) =

NQNNG(NQ)(Q) = NNNG(NQ)(Q). Since NNG(Q) 6 NG(NQ) we get NNNG(NQ)(Q) =

NNG(Q) so that NG(NQ) = NG(Q), hence the claim. �

Lemma 1.1.18 [14, 3.1.10] Let G be a finite group and let P be a p-subgroup of G. If p

divides |G : P |. Then P < NG(P ).

Proof. Set Ω = G/P , and let P act on Ω by right multiplication. By hypothesis |Ω| ≡ 0

mod p and by Lemma 1.1.1, we get 0 ≡ |Ω| ≡ |FixΩ(P )| mod p. Now |FixΩ(P )| 6= 0 since

the coset P is fixed by every element of P . So |FixΩ(P )| > p > 2. In particular, there is

some Pg ∈ FixΩ(P ), with P 6= Pg. So g /∈ P and we get (Pg)P = Pg. So gPg−1 = P

and g ∈ NG(P )− P , which proves the result. �

Lemma 1.1.19 [14, 3.1.11] Let P be a p-group and N be such that 1 6= N E P . Then

Z(P ) ∩N 6= 1.

Proof. Setting Ω := N , we have that P acts on Ω by conjugation and FixΩ(P ) = Z(P )∩N .

Since P is a p-group, Lemma 1.1.1 implies that, 0 ≡ |Ω| ≡ |FixΩ(P )| mod p. Since 1 ∈

FixΩ(P ), |FixΩ(P )| > p as needed. �

1.1.3 Frobenius’ Theorem for Finite Groups

In this section we prove a fundamental result concerning fusion. Loosely it demonstrates

that the structure of p-local subgroups of a group, G, relates strongly to that of G. Not

only is it important in the proof of Theorem B, there is also a formulation in terms

of fusion systems which we prove later (Theorem 2.1.37). In fact many of the following

definitions and results have analogues in the context of fusion systems which we encounter

in the next chapter.

As in the previous section, let p be a prime and G be a finite group.
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Definition 1.1.20 Suppose Z 6 P 6 G. Then Z is weakly closed in P with respect to

G if for g ∈ G, Zg 6 P implies that Zg = Z.

We state the following result concerning weakly closed subgroups without a proof 2:

Theorem 1.1.21 (Grün) [[11], 7.5.2] Let P ∈ Sylp(G) and Z 6 Z(P ) be weakly closed

in P with respect to G. Let N := NG(Z). Then

G 6= Op(G) if and only if N 6= Op(N).

Lemma 1.1.22 [14, 7.1.9] Let P ∈ Sylp(G) and Z 6 P be such that ZENG(P ). Then Z

is weakly closed in P with respect to G if and only if Z is normal in every Sylow p-subgroup

which contains it.

Proof. Suppose R ∈ Sylp(G) is such that Z 6 R = P g−1
, some g ∈ G. Then Zg 6 P

implies Zg = Z and Zg−1
= Z. Let r ∈ R. Then writing r = xg

−1
for x ∈ P , gives

Zr = Zgxg−1
= Zxg−1

= Zg−1
= Z and so Z E R. Conversely if Zg 6 P then Z 6 P g−1 ∈

Sylp(G) so ZEP g−1
and ZgEP . By Lemma 1.1.8, there is y ∈ NG(P ) such that Zy = Zg

showing Zg = Zy = Z as needed.

One more simple observation is required before the proof of Frobenius’ Theorem:

Lemma 1.1.23 [14, 7.2.3] Suppose there is a normal p-complement, N say, of G and

P ∈ Sylp(G). Then every normal subgroup of P is weakly closed in P with respect to G.

Proof. Let g ∈ G be written as g = yx for some y ∈ N, x ∈ P . Suppose Z E P and that

Zg 6 P . Since Zy E P , P > Zyx = Zy implying that [z, y] = z−1y−1zy ∈ N ∩ P = 1, so

y ∈ CG(Z). Finally Zg = Zyx = Zx = Z. �

2The proof requires a concept known as transfer.
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Theorem 1.1.24 [14, 7.2.4] Let P ∈ Sylp(G). Then G has a normal p-complement if

and only if every p-local subgroup has a normal p-complement

Proof. The forward direction is obvious since if G = KoP for some KEG, then for any

subgroup H of G, H ∩K = Op′(H) is a normal p-complement for H. Setting H = NG(Q)

for any Q 6 P then gives the result. To prove the converse, we proceed by induction

on |G|. Notice that we may assume P 6= 1, so that Z := Z(P ) 6= 1. Now N := NG(Z)

has a normal p-complement (by hypothesis), so Op(N) 6= N . Next, we claim that Z is

weakly closed in P . If this is the case, then Theorem 1.1.21 implies that G 6= Op(G)

and by induction, a normal p-complement for Op(G) is also one for G. By Lemma 1.1.22

it suffices to show that Z is normal in every Sylow p-subgroup containing it. Assume

Z 6 R ∈ Sylp(G) but Z 5 R and that R was chosen so that S := NR(Z) is as large as

possible. Let T ∈ Sylp(NG(Z)) contain S. Then we have S < R, T and so by Lemma

1.1.18, S < NR(S), NT (S). Now pick T ′ ∈ Sylp(NG(S)) so that NT (S) 6 T ′. Since

S < T ′, the maximality of S implies that Z E T ′. But by our hypothesis on p-local

subgroups, Lemma 1.1.23 applies to NG(S) so Z is weakly closed in T ′ with respect to

NG(S). So by Lemma 1.1.22, Z E NR(S) (a Sylow p-subgroup of NG(S)) contradicting

S = NR(Z) < NR(S), as needed.

1.2 Group Action

1.2.1 Coprime Action

Recall that if two finite groups A and G are such that A acts by conjugation on G then

there exists a homomorphism, φ : A → Aut(G) 6 S|G| which gives rise to a semidirect

product A n G. The section concerns the case when the orders of A and G are coprime

and either group is soluble. Our proofs closely follow those found in Chapter 8 of [14].

12



We let G be a finite group on which another finite group A acts. We begin by recalling

some conventions:

Definition 1.2.1 We define the following groups:

(i) For a ∈ A, CG(a) := {g ∈ G | ga = g}.

(ii) For B ⊆ A,CG(B) :=
⋂
b∈B CG(b) is the set of fixed points of B in G.

(iii) For B ⊆ A,CB(G) := {b ∈ B | gb = g for all g ∈ G } is the kernel of the action of

B on G.

Notation 1.2.2 For g ∈ G, a ∈ A and U ⊆ G,B ⊂ A:

(i) [g, a] := g−1ga.

(ii) [U,B] := 〈[u, b] | u ∈ U, b ∈ B〉.

Remark 1.2.3 Notice that U 6 CG(A) if and only if [U,A] = 1.

Notation 1.2.4 For elements of a group, a, b, c, write [a, b, c] := [[a, b], c] and similarly

for groups A,B,C, set [A,B,C] := [[A,B], C].

We have the following:

Lemma 1.2.5 For g ∈ G, a, x ∈ A, [g, ax] = [g, x][g, a]x and for g, x ∈ G and a ∈

A, [gx, a] = [g, a]x[x, a]. In particular when G is abelian, [g, A] = [G,A].

Lemma 1.2.6 (Three Subgroups Lemma) For subgroups X, Y, Z of A or G:

[X, Y, Z] = [Y, Z,X] = 1 implies that [Z,X, Y ] = 1.

Consider the following result in the case where A is a p-group:
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Lemma 1.2.7 Suppose that A is a p-group. Then there is an A-invariant Sylow p-

subgroup of G.

Proof. Pick P ∈ Sylp(AG) so that A 6 P . Then P := P ∩G is A-invariant and is a Sylow

p-subgroup of G. �

We now define coprime action:

Definition 1.2.8 (Coprime Action) Let the group A act on the group G. The action

is called coprime if (|A|, |G|) = 1 and either A is soluble or G is soluble.

We immediately see two applications of Theorem 1.1.4:

Lemma 1.2.9 Suppose the group A acts coprimely on the group G. Then every subgroup

of order |A| in AG is conjugate to A.

Proof. The resulting product, AG, to which this action gives rise is clearly a semi-direct

product, AnG. So the result follows directly from Theorem 1.1.4. �

Lemma 1.2.10 [14, 8.2.1] Let U 6 G be A-invariant, and the action of A on G be

coprime. If g ∈ G is such that Ug is A-invariant, then we can find c ∈ CG(A) such that

Ug = Uc.

Proof. Since both U and Ug are A-invariant, we get Ug = (Ug)A = UAgA = UgA, so

gag−1 ∈ U for every a ∈ A. In other words, ag
−1 ∈ aU and Ag

−1
6 AU . By Lemma 1.2.9

and Theorem 1.1.4, we have that A and Ag
−1

are conjugate in AU , so there is u ∈ U such

that Au = Ag
−1

. Clearly c := ug ∈ Ug so Ug = Uc. Also notice [A, c] 6 A ∩ G = 1, so

that c ∈ CG(A), as required. �

Lemma 1.2.11 [14, 8.2.2] Let N E G be A-invariant, and the action of A on N be

coprime. Then CG/N(A) = CG(A)N/N and [N,A] = [G/N,A] = 1 imply [G,A] = 1.
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Proof. Setting U := N , and using the result for cosets in the previous lemma, gives

that CG/N(A) = CG(A)N/N . Now [G/N,A] = 1 implies CG/N(A) = G/N so we get

CG(A)N = G. Now [N,A] = 1 implies CG(A) = N and so CG(A) = G as required. �

Recall that Φ(G) is the Frattini Subgroup of G and is defined to be the intersection of

all maximal subgroups of G. Also, recall that any proper subgroup of G is contained in

a maximal subgroup. A special case of Lemma 1.2.11 is the following:

Proposition 1.2.12 Suppose the action of A on Φ(G) is coprime and that [G/Φ(G), A] =

1. Then [G,A] = 1.

Proof. Lemma 1.2.11 implies that G = Φ(G)CG(A) and so the definition of Φ(G) yields

G = CG(A), as needed. �

The last result in this section is an elementary consequence of Lemma 1.1.5:

Lemma 1.2.13 [14, 8.2.3] Let p ∈ π(|G|) and suppose that A acts coprimely on G. Then

there exists an A-invariant Sylow-p subgroup of G.

Proof. The group AG acts on Ω :=Sylp(G) by conjugation and G(EAG) acts transitively

on Ω by Sylow’s Theorem. Since A is a complement for G in AG, Lemma 1.1.5 implies

FixΩ(A) 6= ∅ and we are done. �

1.2.2 Quadratic Action

It will turn out, in our definition of p-stability in the next section, that we require a

certain condition to hold, namely that G acts quadratically on a subgroup. If we are

to understand a p-stable action, we must at the very least understand when our group

is acting quadratically. Thanks to Proposition 1.2.17, we are able to make a precise

statement about when this happens. We base our proofs on those found in Chapter 9 of

[14]. In this section, V will always denote an arbitrary elementary abelian p-group and

G, a group.

15



Definition 1.2.14 (Quadratic Action) We say that a group A acts quadratically on

V if:

[V,A,A] = 1.

Remark 1.2.15 Note that any elementary abelian p-group (of rank n, say), can be

viewed as a vector space Fnp over the field Fp in a natural manner. Indeed, no difficulty

arises if we view V in this way.

Example 1.2.16 If |G| = 2 = p, then [v, a]a = v−av = [v, a]−1 = [v, a]. Thus for any

a ∈ G, v ∈ V we have [v, a, a] = [[v, a], a] = [v, a]−1[v, a]a = 1. Hence in this case G acts

quadratically on V .

For proofs in later sections, we will require conditions that guarantee quadratic action.

As a preliminary observation, notice that we certainly have for A∗ := CA([V,A]) that

[V,A,A∗] = 1, so that A∗ acts quadratically on V . Notice also that if A acts quadratically

on V then A/CA(V ) is an elementary abelian p-group. In fact we get the following:

Proposition 1.2.17 [14, 9.2.1] Suppose a group A acts on V , so that A/CA(V ) is

abelian. Then there is A∗ 6 A so that either

(i) |A||CV (A)| < |A∗||CV (A∗)|; or

(ii) for any U 6 V , A∗ = CA([U,A]), CV (A∗) = [U,A]CV (A) and |A||CV (A)| =

|A∗||CV (A∗)|.

Proof. Suppose (i) is not true. Then for all B 6 A, we have |A||CV (A)| > |B||CV (B)|.

For any subgroup U of V , set A∗ = CA([U,A]) so trivially [U,A,A∗] = 1. Also, the fact

that A/CA(V ) is abelian implies that [A,A] 6 CA(V ) and so [A,A∗, U ] 6 [A,A, V ] = 1.

By the Three-Subgroups Lemma 1.2.6 we get [U,A∗, A] = 1 which means [U,A∗] 6 CV (A).

We now set X := [U,A] and Y := CV (A) and claim that

|A : A∗| 6 |XY |/|Y |.
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To prove this we consider two cases: Case 1: |U | = p. Set U = 〈u〉. Now the result

would follow if the map ϕ : A/A∗ → XY/Y with aA∗ 7−→ [u, a]Y were well-defined and

injective. It is well defined since for any c ∈ A∗, Lemma 1.2.5 gives us

[u, ca] = [u, a][u, c]a ∈ [u, a]Y

since [U,A∗] 6 CV (A). It is injective since if a1, a2 ∈ A are such that [u, a1]Y = [u, a2]Y ,

then [u, a1][u, a2]−1 = ua1u−a2 ∈ Y . This implies

[u, a1a
−1
2 ] = u−1ua1a

−1
2 = (u−a2ua1)a

−1
2 = ua1u−a2 ∈ Y.

So [u, a1a
−1
2 , A] = 1 = [a1a

−1
2 , A, u] and the Three-Subgroups Lemma 1.2.6 gives a1a

−1
2 ∈

CA([u,A]) = CA([U,A]) = A∗. (Since U is cyclic, Lemma 1.2.5 implies that [u,A] =

[U,A]). Case 2: |U | > p. In this case we may write U = U1〈u〉, some u ∈ U . Write

X1 := [U1, A], X2 := [〈u〉, A]

and let Ai = CA(Xi) for i ∈ {1, 2}. We have

X1X2CV (A) = XCV (A), A∗ = A1 ∩ A2 and X1CV (A) ∩X2CV (A) 6 CV (A1A2).

By induction we may assume that |A||CV (A)| = |Ai||XiCV (A)| for i ∈ {1, 2}. So

|A||CV (A)| > |A1A2||CV (A1A2)| > |A1A2||X1CV (A)∩X2CV (A)| = |A|2|CV (A)|2/|A∗||XCV (A)|,

completing the second case. Since

|A∗||CV (A∗)| 6 |A||Y | 6 |A∗||XY | 6 |A∗||CV (A∗)|,
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the result follows. �

We get a useful consequence of this result, a famous ‘replacement’ theorem of Timmes-

feld which we state without proof:

Theorem 1.2.18 (Timmesfeld) [14, 9.2.3] Let A 6 G and suppose that for all A∗ 6 A,

|A||CV (A)| > |A∗||CV (A∗)| and that A/CA(V ) is an elementary abelian p-group. Then

for all subgroups U of V :

[V,A] 6= 1 implies [V,CA([U,A])] 6= 1.

Remark 1.2.19 Suppose A satisfies the hypotheses of Theorem 1.2.18. Then Theorem

1.2.17 yields that:

|A||CV (A)| = |CV (A∗)||A∗| and CV (A∗) = [V,A]CV (A).

We now introduce two subgroups which will play key roles in the next section:

Definition 1.2.20 For any p-group G,

Ωi(G) := 〈x ∈ G | xpi = 1〉.

For simplicity, we set Ω(G) := Ω1(G).

Remark 1.2.21 Note that Ωi(G) is Aut(G)-invariant and hence a characteristic sub-

group of G. Also note that when G is abelian, Ω(G) is elementary abelian, since for

x, y ∈ Ω(G), (xy)p = xpyp = 1.

Definition 1.2.22 Let E(G) be the set of all elementary abelian p-subgroups of G. Let
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m :=max{|A||A ∈ E(G)} and A(G) := {A ∈ E(G)||A| = m}. Then set:

J(G) := 〈A | A ∈ A(G)〉.

Then J(G) is called the Thompson subgroup3 of G with respect to p.

We collect:

Lemma 1.2.23 (a) J(G) char G.

(b) If J(G) 6 U 6 G, then J(G) = J(U).

(c) If P is a p-group, then Ω(Z(P )) 6 J(P ).

Proof. Clearly A char G for every A ∈ E(G) so (a) follows. J(G) 6 U 6 G clearly implies

J(U) 6 J(G). The reverse inclusion follows from the fact that U contains every maximal

abelian subgroup of G, proving (b). To prove (c), notice that every maximal elementary

abelian subgroup of P is self-centralising, thus Ω(Z(P )) =
⋂
CP (A) 6 J(P ). �

It turns out that every A ∈ A(G) satisfies the hypothesis of Theorem 1.2.18. This is

because if A∗ 6 A ∈ A(G) then A∗CV (A∗) ∈ E(G) and so:

|A| > |A∗CV (A∗)| = |A∗||CV (A∗)|/|A∗ ∩ V | > |A∗||CV (A∗)|/|CV (A)|.

This means that Timmesfeld’s result can be applied directly to obtain:

Lemma 1.2.24 [14, 9.2.10] Let A ∈ A(G) and set A0 := [V,A]CA([V,A]). If [V,A] 6= 1

then [V,A0] 6= 1.

The following fact concerning A0 is also very important:

3There is an alternative characterisation of the Thompson subgroup exclusively for p-groups, P , gen-
erated by all abelian subgroups of P whose orders coincide with that of the largest abelian subgroup.
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Theorem 1.2.25 Let A0 be defined as in the previous lemma. Then A0 ∈ A(G) and A0

acts quadratically on V .

Proof. We prove the second statement first. Certainly A0 is elementary abelian and by

definition, [V,A0, A0] 6 [V,A,A0] = 1. Next we show that |A| = |A0|. First decompose

A0 as A∗X where X := [V,A] and A∗ = CA(X). Notice that CV (A) = V ∩ A = V ∩ A∗

and by definition, X ∩A = X ∩A∗. Now by these observations and Remark 1.2.19 we get

|A||A ∩ V | = |A||CV (A)| = |XCV (A)||A∗| and so

|A| = |A∗||XCV (A)|/|CV (A)| = |A∗||X|/|X∩CV (A)| = |A∗||X|/|X∩A∗| = |A∗X| = |A0|,

as required. �

1.2.3 p-stable Groups

The notion of a p-stable group has varied historically. A group is p-stable if it acts p-

stably on certain of its subgroups, and the definition varies depending on precisely which

subgroups these are chosen to be. The definition we use will allow us to prove Theorem

A most easily.

Definition 1.2.26 Let V be an elementary abelian p-group. We say that the action of

a group G on V is (weakly) p-stable if for every a ∈ G,

[V, a, a] = 1 implies aCG(V ) ∈ Op(G/CG(V )).

We can now define what it means for a group to be p-stable:

Definition 1.2.27 We say that a group G is p-stable4 if for P ∈ Sylp(G):

4In [19], this definition is a variant of what is termed weak p-stability (of a finite group).
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(a) G is p-stable on V whenever V is an elementary abelian p-group with V E G and

also on Op(G)/Φ(Op(G)).

(b) NG(J(P )) is p-stable on V whenever V ENG(J(P )) and V 6 Ω(Z(J(P ))).

This definition seems rather technical, but it is precisely what is needed to prove

Theorem A. Fortunately there are certain conditions on a group which are easier to

describe that imply p-stability:

Proposition 1.2.28 [14, 9.4.5] Suppose p 6= 2. If any of the following conditions holds

then G is p-stable:

(a) |G| is odd.

(b) G has abelian Sylow 2-subgroups.

(c) SL2(p) is not involved in G.

Where in fact (b) implies (c). 5 Now consider the following subgroup:

Definition 1.2.29 We define Qd(p) := (Zp×Zp)oSL2(p), where we are viewing Zp×Zp

as a vector space on which SL2(p) acts naturally.

We show that the group Qd(p) is not p-stable:

Example 1.2.30 [9, 11.4] Set G=Qd(p), S ∈ Sylp(G). Clearly |S| = p3 since |SL2(p)| =

p(p + 1)(p − 1). If p = 2,then S is dihedral. If p is odd, the characteristic subgroups

of S are 1, Z(S), and S and for p = 2, we also have the cyclic group of order 4. Now

H := Op(G) is elementary abelian of order p2 and so [H,S, S] = 1. Also, G/H ∼= SL2(p)

and CG(H) = H. This means that S/H * Op(G/H) so G is not p-stable on H and hence

G is not p-stable.

5This is a result due to Dickson whose proof can be found in [11], 2.8.4.
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In fact we have the following:

Proposition 1.2.31 (Glauberman) [9, 14.6] For p, an odd prime and G a finite group,

the following are equivalent:

(a) No section of G is isomorphic to Qd(p).

(b) Every section of G is p-stable.

Thus when a group is Qd(p)-free, it is also p-stable.

1.3 The ZJ-Theorems for Finite Groups

1.3.1 Glauberman’s ZJ-Theorem

We are now ready to prove Theorem A. The proof is due to Stellmacher and will closely

follow that found in Chapter 9 of [14]. The idea is to construct a characteristic subgroup,

W (P ) of a p-group P containing Z(P ), which is normal in certain groups G for which it is

a Sylow p-subgroup. This approach is justified since we are interested only in the fact this

group exists under certain conditions; computing W (P ) would be no more difficult than

computing Z(J(P )) for practical applications. We have the following setup for W (P ):

Definition 1.3.1 We denote by CJ(P ) the class of all embeddings (if they exist) (τ,H)

which satisfy the following:

C1 H is a group of characteristic p and τ : P → H is a monomorphism.

C2 P τ ∈ Sylp(H).

C3 J(P τ )EH.

C4 H is p-stable on V whenever V 6 Ω(Z(J(P τ ))).
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We define the subgroup W (P ) as follows. For any p-group, Q let

A(Q) := Ω(Z(Q)) and B(Q) := Ω(Z(J(Q))).

Notice that these groups are elementary abelian by Remark 1.2.21 and that A(Q) 6

B(Q). Notice also that for any automorphism, η of Q, we have B(Qη) = Ω(Z(J(Qη))) =

Ω(Z(J(Q)η)) = Ω(Z(J(Q))η) = Ω(Z(J(Q)))η = B(Q)η, since the groups J(X), Z(X)

and Ω(X) are all characteristic in G, for X 6 G. A similar argument shows that A(Qη) =

A(Q)η.

Now set W0 := A(P ) and assume that we have defined Wk for 0 6 k 6 i − 1. If

Wi−1
τ EH for every (τ,H) in CJ(P ), then set W (P ) = Wi−1. If this is not the case, then

we can pick some (τi, Hi) in CJ(P ) for which Wi−1
τ 5 H. Now define Wi so that:

Wi
τi = 〈(Wi−1

τi)Hi〉.

Then we have:

A(P τi) 6 Wi−1
τi < Wi

τi 6 B(P τi)EHi.

The final normality statement follows here since J(P τi)EHi and Ω(Z(N))EG for NEG.

So applying τ−1, gives us:

A(P ) 6 Wi−1 < Wi 6 B(P ).

This recursive definition must end by the fact that B(P ) is a finite upper bound, so for

m ∈ N there must exist a chain of subgroups:

A(P ) = W0 < W1 < ... < Wm = W (P ) 6 B(P )
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so that W (P )τ EH for every (τ,H) in CJ(P ).

Lemma 1.3.2 The definition of W (P ) is independent of the choice of the pairs (τi, Hi)

used in its construction. In particular W (P ) is characteristic in P .

Proof. Suppose we have defined W ′(P ) analagously, so that

W0 = W ′
0 < ... < W ′

m′ =: W ′(P )

for (τ ′i , H
′
i) ∈ CJ(P ). We claim thatW (P ) 6 W ′(P ). IfW (P ) � W ′(P ) then there exists a

j ∈ N such that Wj 6 W ′(P ) and Wj+1 � W ′(P ). Notice that W
τj+1

j 6 W ′(P )τj+1EHj+1,

so X := 〈(W τj+1

j )Hj+1〉 6 W ′(P )τj+1 . This means that Xτ−1
j+1 6 W ′(P ), a contradiction

to its definition. A similar argument implies that W ′(P ) 6 W (P ) and hence W (P ) =

W ′(P ). �

We will need two fairly technical lemmas to prove Theorem A. Here is the first:

Lemma 1.3.3 For x ∈ P satisfying [W (P ), x, x] = 1, we have that [W (P ), x] = 1.

Proof. Clearly [W0, x] = 1 for x ∈ P since W0 = A(P ) 6 Z(P ). Suppose P is a coun-

terexample. Then for some i ∈ N and y ∈ P , [Wi, y, y] = 1 implies that [Wi, y] 6= 1. Let

this i be minimal, so in particular, [Wi−1, y, y] = 1 will satisfy [Wi−1, y] = 1. Applying τi

(as defined above) we get:

[W τi
i , y

τi , yτi ] = 1 but [W τi
i , y

τi ] 6= 1.

Set a := yτi and consider C := CHi(W
τi
i ). Let L be a the normal subgroup of Hi containing

C such that L/C = Op(Hi/C). Then using the p-stability criterion (C4) applied to W τi
i we

have that aC ∈ Op(Hi/C). Recall P τi ∈ Sylp(Hi) so clearly Q := P τi ∩L ∈ Sylp(L). Thus
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L = CQ since C is a p′-group. Now, by Lemma 1.1.3 we get Hi = NHi(Q)L = NHi(Q)C

since Q 6 NHi(Q). So

Wi
τi = 〈(Wi−1

τi)Hi〉 = 〈(Wi−1
τi)NHi (Q)〉

(The last equality follows from the fact that CHi(W
τi
i ) 6 NHi(W

τi
i−1)). So there must be

some h ∈ NHi(Q) with [(Wi−1
τi)h, a] 6= 1, i.e [Wi−1, x] 6= 1 for x := (ah

−1
)τi
−1
. But

[Wi−1, x, x] = [(Wi−1
τi)h, a, a]h

−1τ−1
i 6 [W τi

i , a, a]h
−1τ−1

i = 1.

Thus, we have contradicted [Wi−1, x, x] 6= 1, as required. �

In the proof of Theorem A we will consider separately the cases when J(P τ )EH and

J(P τ ) 5 H. For the second case, we need to prove a result about a similar but slightly

modified class of embeddings:

Definition 1.3.4 We denote by C ′J(P ) the class of all embeddings (if they exist) (τ,H)

which satisfy the following:

C ′1 H is a group of characteristic p and τ is monomorphism from P into H.

C ′2 P τ ∈ Sylp(H).

C ′3 J(P τ ) 5 H and (τ,NH(J(P τ ))) ∈ CJ(P ).

C ′4 H is p-stable on V whenever V is elementary abelian with V E H and also on

Op(H)/Φ(Op(H)).

The technicalities in C ′4 are necessary to make the proof work. They are also the reason

we defined p-stability as we did in Definition 1.2.27. This lemma is the crux of the proof:

Lemma 1.3.5 W (P )τ EH for (τ,H) ∈ C ′J(P )
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Proof. For (τ,H) ∈ C ′J(P ), write W := W (P )τ . Since, Op(H)τ
−1
,W (P )E P , we have

[Op(H)τ
−1

,W (P )] 6 Op(H)τ
−1 ∩W (P )

which implies that

[Op(H),W ] 6 Op(H) ∩W.

In particular, [Op(H),W,W ] = 1 so [V,W,W ] = 1 for V := Op(H)/Φ(Op(H)). By p-

stability in C ′4, we get that

WCH(V )/CH(V ) 6 Op(H/CH(V ))

which by Lemma 1.2.11 implies that W 6 Op(H). But then W τ−1
6 Op(H)τ

−1
, and since

W τ−1
= W (P )EP , W is normal in every Sylow p-subgroup of H and so W EOp(H) char

H. SoWEH and for h ∈ H, W = W hEOp(H). Now since [W,W h] 6 W∩W h, we get that

[W,W h,W h] = 1 and applying τ−1, then gives [W (P ), (W h)τ
−1
, (W h)τ

−1
] = 1. Applying

Lemma 1.3.3 gives [W (P ), (W h)τ
−1

] = 1 so [W,W h] = 1. In particular [W h,W g] = 1,

for all h, g ∈ H and the group W ∗ := 〈W h | h ∈ H〉 is elementary abelian. We finish

off the proof by considering two cases: Case 1 [W ∗, J(P τ )] = 1. The H-invariance of

W ∗ implies that [W ∗, J(P τ )h] = 1 for every h ∈ H. In particular, [W ∗, J(H)] = 1 and

J(H) = CH(W ∗). Now P τ 6 H implies that J(P τ ) 6 J(H), so there is a T ∈ Sylp(J(H))

with J(P τ ) = J(T ). Lemma 1.1.3 then gives the factorisation: H = J(H)NH(T ) =

CH(W ∗)NH(J(P τ )). So W ∗ := 〈W h | h ∈ H〉 = 〈W h | h ∈ NH(J(P τ ))〉. Our condition

C ′3 now gives (τ,NH(J(P τ ))) ∈ CJ(P ), so that W = W (P )τ E NH(J(P τ )). But then

W ∗ := 〈W h | h ∈ NH(J(P τ ) = W and W = W (P )τ EH as required.

Case 2 [W ∗, J(P τ )] 6= 1 We show that this leads to a contradiction. We begin similarly

as in the proof of Lemma 1.3.3, by setting L to be the group satisfying CH(W ∗) 6 LEH
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and L/CH(W ∗) = Op(H/CH(W ∗). Let Q := P τ ∩L be in Sylp(L) so that L = QCH(W ∗)

and apply the Frattini Lemma to get H = LNH(Q) = CH(W ∗)NH(Q). So W ∗ = 〈W h |

h ∈ NH(Q)〉, by a familiar argument. By Theorem 1.2.24, there is some A∗ ∈ Pτ such

that [W ∗, A∗] 6= 1, A∗ 6 Q. Then A∗ 6 J(Q) 6 J(P τ ) implying [W,J(Q)] = 1. But then

1 6= [W ∗, A∗] 6 [Q∗, J(Q)] = 1,

a contradiction. �

Our main result is now almost obvious from what we have proved:

Theorem 1.3.6 (Theorem A) Let P be a p-group. Then there is a characteristic sub-

group W (P ) of P which satisfies:

(a) Ω(Z(P )) 6 W (P ) 6 Ω(Z(J(P ))).

(b) If G is a p-stable group of characteristic p, with P ∈ Sylp(G), then W (P )EG.

(c) W (P η) = W (P )η, where η is any automorphism of P .

Proof. Only (b) remains to be seen. Suppose G is as stated. If J(P ) E G, then, then

we certainly have (id,G) ∈ CJ(P ) (see Definition 1.2.27). Thus, by its construction

W (P ) E G and we are done. If J(P ) 5 G, a quick check shows that (id,G) ∈ C ′J(P )

(again by Definition 1.2.27 (id,NG(J(P ))) ∈ CJ(P )) and in this case Lemma 1.3.5 implies

W (P )EG. �

In Theorem G, we see that in fact this result holds for all saturated fusion systems.

Consider the following definitions:

Definition 1.3.7 A positive characterstic p functor is a map, U from a non-trivial p-

group, P to U(P ) satisfying U(Pφ) = U(P )φ for all φ ∈ Aut(P ). A Glauberman functor
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is a positive characterstic p functor, U , such that whenever P ∈ Sylp(G), where G is a

Qd(p)-free group of characteristic p, U(P )EG.

Example 1.3.8 It is clear that the functors J,W and Z(J(−)) are all positive charac-

terstic p functors. Theorem A and Glauberman’s ZJ-Theorem show that when p is odd,

W and Z(J(−)) are Glauberman functors. There are other examples of such functors,

some of which are listed in Section 14 of [9].

When p = 2, G := Qd(2) ∼= V4 o S3
∼= S4 and it was shown in Example 1.2.30 that

G is not 2-stable and hence Glauberman’s ZJ-Theorem does not hold. However with the

functor Z(J(−)) replaced by W , the result does hold, thanks to Stellmacher’s main result

in [18] 6:

Theorem 1.3.9 (Stellmacher) [16, 6.8] Let G be an S4-free (Qd(2)-free) finite group.

Let P ∈ Syl2(G). Suppose that G has characteristic 2. Then there exists a non-trivial

characteristic subgroup, W (P ) of P which is normal in G.

Combining this with Theorem A, we get the following result, independent of the nature

of the prime p:

Theorem 1.3.10 Let G be an Qd(p)-free finite group. Let P ∈ Sylp(G) and suppose that

G has characteristic p. Then there exists a non-trivial characteristic subgroup, W (P ) of

P which is normal in G.

1.3.2 Glauberman and Thompson’s p-nilpotency Theorem

Having proved Theorem A it is in fact possible to derive Theorem B as a consequence:

Theorem 1.3.11 (Theorem B) Let G be a group, p an odd prime and P ∈ Sylp(G).

Then NG(W (P )) has a normal p-complement if and only if G has a normal p-complement.

6For a brief discussion of the technical reasons that allow Stellmacher’s result to be reformulated in
this way, see Lemmas 6.5 and 6.6 and Remark 6.7 in [16].
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Proof. Note first that since the property of having a normal p-complement is inherited

by subgroups (and quotients), we only need to prove the forward direction. Let G be a

minimal counterexample and let N := Op′(G). We claim N = 1. To see this, suppose N 6=

1 and set G := G/N . Then P ∈ Sylp(G) and in fact P ∼= P since the natural surjection

P → P is also injective. So by 1.3.2 above, we have W (P ) = W (P ). Furthermore by

Lemma 1.1.17, NG(W (P )) = NG(W (P )). Thus since NG(W (P )) must have a normal

p-complement, so must NG(W (P )) and this means G also satisfies the hypothesis. But

now if |G| < G, then the minimality of G implies G has a normal p-complement. But

the preimage of such a complement is also one for G (by the definition of Op′(G) = N),

a contradiction. This proves the claim.

Now, Since G does not possess a normal p-complement, Frobenius’ Theorem 1.1.24

implies that the set of non-trivial p-subgroups, whose normalisers have no normal p-

complement is non-empty. Let S be such a subgroup, chosen so that |NG(S)|p is as large

as possible. We claim that S E G. If not then G′ := NG(S) < G. By Sylow’s Theorem,

we can assume (after conjugating by a suitable element of G), that T := NG(S) ∩ P ∈

Sylp(G
′). Certainly T < P , else NG(S) has a normal p-complement by the minimality of

G, a contradiction. So by Lemma 1.1.18 T < NP (T ). If U char T , we have T < NP (T ) 6

NP (U) 6 NG(U) and so the maximality of |NG(S)|p implies that NG(W (T )) has a normal

p-complement, as then does NG′(W (T )). So G′ satisfies the hypothesis of the theorem

and since |G′| < |G|, G′ has a normal p-complement. Finally this implies S has a normal

p-complement, a contradiction. In particular, we have proved that Op(G) 6= 1.

Now set G := G/Op(G) and let N be the preimage in G of the subgroup NG(W (P ))

of G. Now |G| < |G| and 1 6= W (P ) 5 G, since Op(G) = 1 which means N < G so that

N < G. The minimality of G implies that G has a normal p-complement and so G is
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p-soluble. Also, recall Op′(G) = 1 so by Lemma 1.1.12 we get:

CG(Op(G)) 6 Op(G) and G has a normal p-complement, K .

If G is p-stable then by Theorem A, G = NG(W (P )), a contradiction. So G is not p-stable

and by Proposition 1.2.28, G and hence K have non-abelian Sylow 2-subgroups. Since P

is acting coprimely on K, Lemma 1.2.13 implies the existence of a S-invariant Sylow 2-

subgroup, T of K. In particular, Z(T ) is S-invariant. Now consider the preimage, U of the

group Z(T )S in G. Since T is non-abelian, Z(T ) < K and so this preimage cannot be all

of G. So U < G means U possesses a non-trivial normal p-complement U ′, say, satisfying,

[U ′, Op(G)] 6 U ′ ∩Op(G) = 1. But then U ′ 6 CG(Op(G)) and U ′ � Op(G), implying that

CG(Op(G)) � Op(G) which is a contradiction. Thus G is not a counterexample and we

are done.
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Chapter 2

Fusion Systems

2.1 The Theory of Fusion Systems

2.1.1 Motivation and Definitions

Fusion systems arose gradually over the course of the last two decades and the idea is

attributed to Puig 1. They are an attempt to axiomatise the notion of fusion in the context

of both finite groups and p-blocks 2, by encoding the fusion data in a category. The focus

will be the generalisation of group-theoretic results (involving fusion) to arbitrary fusion

systems. This idea has been employed, most recently by Kessar and Linckelman (see, [12],

[13]) amongst others. It has also been used by Aschbacher in [3] in an effort to simplify

results used in the CFSG 3. This followed some speculative observations that recognising

simple fusion systems may be easier than recognising finite simple groups. The goal of

this section will be to develop the basic theory of fusion systems, proving some important

results for our later discussion.

For any group, G, let cg ∈ Aut(G) denote conjugation by an element of G. For

A,B 6 G, define HomG(A,B) := {cg|A | Ag 6 B} to be the set of all injective group

1In [17], Puig called them ‘Full Frobenius Systems.’
2p-blocks arise in modular representation theory. For a group G and field, K, of characteristic p, such

that p | |G| they are defined as indecomposable two-sided ideals of the group algebra KG.
3The Classification of Finite Simple Groups.
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homomorphisms given by conjugation by an element of G. Set AutG(A) := HomG(A,A).

For Q 6 G and H 6 NG(Q), we write H∗ for the group of automorphisms induced by

elements of H, so for example, NG(Q)∗ :=AutG(Q), etc. 4

Definition 2.1.1 Let H 6 G. A subgroup K of G is said to control G-fusion in H

provided: whenever two subsets A,B of H are conjugate via a map cg : A→ B, for some

g ∈ G then there is a k ∈ K such that ck|A = cg.

Definition 2.1.2 Given any group, P , we define a fusion system, F to be a category

whose objects are the subgroups of P and whose morphisms, HomF(Q,R), satisfy:

(a) HomP (Q,R) ⊆ HomF(Q,R) ⊆ Inj(Q,R) 5,

(b) for every φ ∈ HomF(Q,R), the map φ : Q→ Qφ is in HomF(Q,Qφ), and

(c) if φ ∈ HomF(Q,R) is an isomorphism, φ−1 ∈ HomF(R,Q).

We will be particularly interested in the case where P is a finite p-group.

Definition 2.1.3 When P ∈ Sylp(G), we write FP (G) for the fusion system on P whose

morphisms satisfy HomFP (G)(Q,R) = HomG(Q,R).

Example 2.1.4 Suppose P ∈ Sylp(G) and N is such that P 6 N 6 G. If N controls

G-fusion in P then FP (N) = FP (G). Thus by Theorem 1.1.8, FP (G) = FP (NG(P )) when

P is abelian.

2.1.2 Saturation

As can be seen from its definition, a fusion system (in itself), has fairly limited structure;

it requires a certain furnishing termed saturation. To define what this means, some

definitions are required:

4Note that when A 6 H 6 G, by AutH(A), we mean NH(A)∗ and not NH(A)/CH(A).
5This is the set of all injective group homomorphisms from Q to R.
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Write IsoF(Q,R) for the set of isomorphisms from Q to R in F . Suppose that ϕ ∈

IsoF(Q,R). One can ask: What is the largest subgroup of P to which ϕ can possibly

extend? The following lemma provides the answer:

Lemma 2.1.5 [6, 4.7] Let F be a fusion system on a finite p-group P . Suppose that

there is ϕ ∈ IsoF(Q,R) for subgroups Q,R of P . If ϕ : S → P , with S 6 NP (Q) then

Sϕ 6 NP (R). In particular S∗ 6AutP (Q)∩ AutP (R)ϕ
−1
.

Proof. Let x ∈ S. Then clearly gx ∈ Q for all g ∈ Q and so (gϕ)xϕ = (xϕ)−1gϕxϕ =

(gx)ϕ ∈ R which implies that xϕ ∈ NP (R). Thus Sϕ 6 NP (R). In particular, (S∗)ϕ 6AutP (R),

which proves the second part. �

The following subgroup is thus the largest subgroup of P to which ϕ can possibly

extend:

Definition 2.1.6 Let F be a fusion system over a finite p-group, P and let Q 6 P . For

every ϕ : Q → R we define the control of ϕ to be the subgroup of NP (Q) satisfying

N∗ϕ =AutP (Q)∩AutP (Qϕ)ϕ
−1

, or equivalently:

Nϕ = {y ∈ NP (Q) | there is z ∈ NP (R) such that (uy)ϕ = (uϕ)z for every u ∈ Q}.

Remark 2.1.7 Clearly QCP (Q) 6 Nϕ 6 NP (Q).

We say that two subgroups, Q and R are F-conjugate provided there exists an iso-

morphism from Q to R. Also define:

QF := {Qφ | R ∈ F and φ ∈ HomF(Q,R)}

to be the F-conjugacy class of Q in F .

Definition 2.1.8 Let F be a fusion system over a finite p-group, P .
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(a) A subgroup, Q, of P is called fully F-centralised if |CP (R)| 6 |CP (Q)| for any

R ∈ QF .

(b) A subgroup, Q, of P is called fully F-normalised if |NP (R)| 6 |NP (Q)| for any

R ∈ QF .

Put another way, a subgroup Q is fully F -normalised (F -centralised) if its normaliser

(centraliser) is of maximal order among all subgroups in its F -conjugacy class. In partic-

ular, every subgroup is F -isomorphic to a fully F -normalised (F -centralised) subgroup.

We define OutF(Q) := AutF(Q)/AutQ(Q). The following definitions will be very

important in what follows.

Definition 2.1.9 Let F be a fusion system on a finite p-group, P . Then for Q 6 P we

say that:

(a) Q is F-centric if CP (R) 6 R for any R ∈ QF .

(b) Q is F-radical if OutF(Q) is p-reduced.

(c) Q is F-essential if OutF(Q) contains a strongly p-embedded subgroup.

Notice by the remark following Definition 1.1.9, every F -essential subgroup is F -radical.

As is customary, we will denote by Ff ,F z,F c,F r and F e, the set of fully F -normalised,

fully F -centralised, F -centric, F -radical and F -essential subgroups of F respectively.

Also for any X ⊆ {f, z, c, r, e}, FX :=
⋂
x∈X Fx.

We now define what it means for a fusion system to be saturated:

Definition 2.1.10 Let F be a fusion system over a finite p-group, P . Then we say that

F is saturated if the following two conditions are satisfied:

(a) Sylow Axiom: AutP (P ) ∈ Sylp(AutF(P )).
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(b) Extension Condition: Every morphism ϕ : Q→ P for which Qϕ ∈ Ff extends 6

to a morphism ψ : Nϕ → P.

The standard definition of a saturated fusion system has been a subject of debate. The

one presented here is equivalent to that given in [4] where in part (b), the condition that

Qϕ is fully F -normalised is strengthened to the condition that it is fully F -centralised.

We prove this fact in Lemma 2.1.15.

We will soon see (in Theorem 2.1.35) that FP (G) is saturated, providing us with our

first example.

To conclude this section, we demonstrate that saturated fusion systems form a cate-

gory; that is, there exist morphisms between them:

Definition 2.1.11 [7, 5.4] Let P and Q be p-groups and F and G be fusion systems on

P and Q respectively. A morphism Φ : F → G is a pair (φ, {φR,S | R, S 6 P}), where

φ : P → Q is a group homomorphism and for all R, S 6 P, φR,S is a function

φR,S : HomF(R, S)→ HomG(Rφ, Sφ)

so that Φ is a functor.

Notice that the underlying group homomorphism, φ, determines the morphism com-

pletely.

2.1.3 Saturated Subsystems of Fusion Systems

Of fundamental importance will be the facility to form new fusion systems from old.

In this section we develop the important notions of normaliser and centraliser fusion

subsystems of a fusion system, F , which give rise to normal subgroups and centres of F .

We also prove the important result that when F is saturated, so are certain subsystems.

6We mean that ψ|Q = ϕ.

35



Our development is based on that in [8] and [15]. Throughout this section we let P be a

p-group and let F be a saturated fusion system on P .

The following result and its corollary are both very useful:

Proposition 2.1.12 [15, 2.5] Let Q ∈ F . Then Q ∈ Ff if and only if Q ∈ F z and

AutP (Q) ∈ Sylp(AutF(Q)).

Proof. Suppose Q ∈ Ff . To see that Q ∈ F z, pick R ∈ F z such that there is an

isomorphism ϕ : R → Q. By Definition 2.1.10 (ii), there is ψ : RCP (R) → P such that

ψ|R = ϕ. So CP (R) is mapped to CP (Q). Thus since R ∈ F z, |CP (R)| = |CP (Q)| and

then Q ∈ F z. For the second part let Q, be a maximal counterexample. Certainly Q < P ,

by Definition 2.1.10 (i). Pick A 6 AutF(Q) so that AutP (Q)E A. Let ϕ ∈ A−AutP (Q).

Then since AutP (Q)∩AutP (Qϕ)ϕ
−1

=AutP (Q), Nϕ = NP (Q). Definition 2.1.10 now

implies that there is some morphism ψ ∈AutF(NP (Q)), such that ψ|Q = ϕ. Furthermore

we may assume to have chosen ψ to be p-element. Let τ : NP (Q) → P be picked so

that NP (Q)τ ∈ Ff . Then ψτ is also a p-element, hence conjugate to an element of

AutP (NP (Q)τ). So τ may be chosen so that there is some y ∈ NP (NP (Q)τ) such that

(x)ψτ = xy for each x ∈ NP (Q)τ . Notice ψτ stabilises Qτ (since ψ|Q = ϕ), so in fact

y ∈ NP (Qτ). Since Q ∈ Ff , NP (Qτ) 6 (NP (Q))τ , so uψ = uyτ
−1

for every u ∈ NP (Q),

But yτ−1 ∈ NP (Q) implies ϕ ∈ AutP (Q), a contradiction to its choice. For the converse,

note that |CP (Q)| > |CP (R)| for R ∈ QF , so:

|NP (Q)| = |AutP (Q)||CP (Q)| > |AutP (R)||CP (R)| = |NP (R)|

as needed. �

Corollary 2.1.13 [15, 2.6] For Q,R ∈ F , let ϕ ∈ IsoF(Q,R) with R ∈ Ff . Then there

exists ψ ∈ IsoF(Q,R) such that Nψ = NP (Q) and a factorisation ϕ = β−1 ◦ψ|Q for some

β ∈ AutF(Q).
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Proof. Clearly AutP (Q)ϕ is a p-subgroup of AutF(R). By Proposition 2.1.12, AutP (R) ∈

Sylp(AutF(R)) and so there exists some β ∈ AutF(R) such that AutP (Q)ϕβ 6 AutP (R).

Setting ψ := βϕ, this means that for any y ∈ NP (Q), there is z ∈ NP (R) such that

cψy = cz, i.e. Nψ = NP (Q), as needed. �

This means that we may always assume to have picked an F -isomorphism which fully

extends when the target lies in Ff . Here is a result of a similar nature which we require

later:

Lemma 2.1.14 Suppose that Q ∈ Ff and K 6 Q is such that NP (K) > NP (Q). Then

there exists χ ∈ HomF(Q,P ) such that Kχ,Qχ ∈ Ff .

Proof. Assume we have picked φ ∈ HomF(K,P ) so that Kφ ∈ Ff . By Lemma 2.1.12,

AutP (Kφ) ∈ Sylp(AutF(K)). Hence AutP (K)φ is conjugate to some subgroup of AutP (Kφ),

say AutP (K)φ◦τ 6 AutP (Kφ), for some τ ∈ AutF(Kφ). Set χ := φ ◦ τ . Then Nχ =

NP (K) > NP (Q), with Kχ = K(φ ◦ τ) = Kφ ∈ Ff and Qχ = Q(φ ◦ τ) = Qφ ∈ Ff . �

A consequence of Corollary 2.1.13 is the reassurance that our definition of saturation

is equivalent to that in [4]:

Lemma 2.1.15 [15, 2.7] Let Q ∈ F . Then every morphism ϕ : Q → P for which

Qϕ ∈ F z extends to a morphism ψ : Nϕ → P

Proof. Let ϕ be as stated in the hypothesis and let ρ : Qϕ → P be such that (Qϕ)ρ ∈

Ff , chosen so that Nρ = NP (Qϕ) (Corollary 2.1.13). So ρ extends to a morphism ρ :

NP (Qϕ) → P . This implies that Nϕ ⊆ Nϕρ since if ϕ extends ϕ to some subgroup of

NP (Q), ϕ ◦ ρ extends ϕ ◦ ρ to the same subgroup since Nρ = NP (Qϕ). This means that

ϕρ extends to a morphism θ : Nϕ → P . Then observe that θ ◦ ρ−1|Nϕθ : Nϕ → P is the

desired map. �
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We now define a subsystem of a fusion system, making no assumptions about

saturation:

Definition 2.1.16 A fusion subsystem, G of F is a fusion system over a subgroup, P̃ of

P such that for all Q,R 6 P̃ , HomG(Q,R) ⊆ HomF(Q,R).

The following terminology will be useful:

Definition 2.1.17 Let R,Q 6 P and let ϕ ∈ HomF(R,P ). We say that ϕ K-stably

extends to Q if QR 6 P and there is ϕ ∈ HomF(QR,P ) such that:

(a) ϕ|R = ϕ, and

(b) ϕ|Q ∈ K 6 Aut(Q).

If K = 〈idQ〉 then we say that ϕ centrally extends to Q, and if K = AutF(Q), we say

that ϕ stably extends to Q.

The following definition provides us with our first example of a (not necessarily satu-

rated) fusion subsystem:

Definition 2.1.18 For Q 6 P and K 6 Aut(Q):

(a) The K-normaliser of Q, in P , is the following subgroup of NP (Q):

NK
P (Q) = {y ∈ NP (Q) | cy|Q ∈ K}.

(b) The K-normaliser of Q in F is the category NK
F (Q) whose objects are subgroups

of NK
P (Q) and for two objects R, S, we have:

HomNK
F (Q)(R, S) = {ϕ ∈ HomF(R, S) | ϕ K-stably extends to Q}.

38



Notation 2.1.19 We set AutKP (Q) := K ∩ AutP (Q) and AutKF (Q) := K∩ AutF(Q).

Notice that AutKP (Q) = NK
P (Q)/CP (Q). Observing that the group Kϕ := ϕ−1◦K◦ϕ 6

Aut(Qϕ), means we can also consider the Kϕ-normaliser of Qϕ, in P . This gives rise to

the following important definition:

Definition 2.1.20 We say that Q is fully K-normalised in F if

|NKϕ

P (Qϕ)| 6 |NK
P (Q)| for any ϕ ∈ HomF(Q,P ).

We write FfK for the set of fully K-normalised subgroups of P .

Notice that this generalises Definition 2.1.8. We now generalise Proposition 2.1.12 for

all K:

Proposition 2.1.21 Let Q ∈ F . Then Q ∈ FfK if and only if Q ∈ F z and AutKP (Q) ∈

Sylp(AutKF (Q)).

Proof. Suppose that Q ∈ FfK . By Corollary 2.1.13, there is some isomorphism ϕ : Q→ R

with R ∈ Ff so that ϕ extends to ψ : NP (Q) → P . Write L := Kϕ and notice that

NK
P (Q)ψ 6 NL

P (R). But Q ∈ FfK implies that NK
P (Q) ∼= NL

P (R), and by restriction,

CP (Q) ∼= CP (R). Now Proposition 2.1.12 implies R ∈ F z so we also have Q ∈ F z. For the

second part we have that the p-group (AutKP (Q))ϕ 6 AutLF(R) and by Proposition 2.1.12

AutP (R) ∈ Sylp(AutF(R)). So Sylow’s Theorem implies there is some β ∈AutF(R) such

that AutP (R)β∩ AutLF(R) ∈ Sylp(AutLF(R)). And moreover this β can be chosen in order

that this Sylow p-subgroup contains (AutKP (Q))ϕ. Conjugating by β−1 yields AutP (R)∩

AutL
β−1

F (R) ∈ Sylp(AutL
β−1

F (R)). Lastly Q ∈ FfK and AutKP (Q) = NK
P (Q)/CP (Q) imply

that |AutKP (Q)| > |AutL
β−1

P (R)| so AutKP (Q) ∈ Sylp(AutKF (Q)).

To prove the converse take ϕ,R and L as above and notice that the fact that AutKF (Q) ∼=

AutLF(R) means |AutLP (R)| 6 |AutKP (Q)|. This, together with the fact that Q ∈ F z, imply
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that:

|NL
P (R)| = |CP (R)||AutLP (R)| 6 |CP (Q)||AutKP (Q)| 6 |NK

P (Q)|

and Q ∈ FfK , as needed. �

The following table neatens up notation for certain subgroups, K, of Aut(Q):

Notation 2.1.22 Let K be a subgroup of Aut(Q).

K FfK NK
P (Q) NK

F (Q)

〈idQ〉 F z CP (Q) CF(Q)

AutF(Q) Ff NP (Q) NF(Q)

AutQ(Q) QCP (Q) QCF(Q)

AutP (Q)† PCP (Q) PCF(Q)

† We require that QE P in this case.

Lemma 2.1.23 Let G be a finite group and P ∈ Sylp(G). Let F = FP (G). For any

Q 6 P , Q ∈ FfK if and only if NK
P (Q) ∈ Sylp(N

K
G (Q)).

Proof. Suppose S ∈ Sylp(N
K
G (Q)) is such that NK

P (Q) 6 S. Since P ∈ Sylp(G), there ex-

ists x ∈ G such that (QS)x 6 P (by Sylow’s Theorem). Since Qx 6 P , cx ∈ HomF(Q,P ),

thus cx induces a group homomorphism AutKP (Q) → AutK
cx

P (Qx). This means that

Sx 6 NKcx

P (Qx). If Q ∈ FfK then

|S| = |Sx| 6 |NKcx

P (Qx)| 6 |NK
P (Q)| 6 |S|,

so S = NK
P (Q). Under the same notation, if NK

P (Q) ∈ Sylp(N
K
G (Q)), |NK

P (Q)| = |S|

is the order of a Sylow p-subgroup of NKcx

G (Qx) so we have |NKcx

P (Qx)| 6 |NK
P (Q)| as

needed. �

We use this result to prove that the definition of NK
F (Q) makes sense when F = FP (G):
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Lemma 2.1.24 [6, 4.25] Let G be a finite group, P ∈ Sylp(G) and F = FP (G). If

Q ∈ FfK then FNK
P (Q)(N

K
G (Q)) = NK

FP (G)(Q).

Proof. Write F := FP (G). Note first that by Lemma 2.1.23, NK
P (Q) ∈ Sylp(N

K
G (Q))

so the fusion systems are on the correct subgroups. If ϕ ∈ HomNK
F (Q)(A,B) then by

definition there is ϕ ∈ HomF(QA,QB) with ϕ|Q ∈ AutKF (Q)= AutKG (Q), i.e. there is

g ∈ G such that ϕ|Q = cg|Q. This means that g ∈ NK
G (Q) so cg : A→ B is a morphism in

FNK
P (Q)(N

K
G (Q)). Conversely if ϕ : A → B lies in FNK

P (Q)(N
K
G (Q)), there is g ∈ NK

G (Q)

such that ϕ = cg|A. Clearly (QA)g = QB so cg : QA → QB extends ϕ and acts on Q

implying ϕ ∈ HomNK
F (Q)(A,B), as needed. �

Luckily, we have the following important result:

Theorem 2.1.25 (Theorem C) Let Q 6 P and K 6 Aut(Q). If Q is fully K-normalised

in F , then NK
F (Q) is a saturated fusion system on NK

P (Q).

We will prove this shortly, but first require some further results. In what follows, we

assume that Q 6 P and that K 6 Aut(Q) as in the hypothesis of the theorem.

Observation 2.1.26 For an F-isomorphism, ϕ : Q → R, set L = Kϕ. If R ∈ FfL then

there is a morphism:

τ : QNK
P (Q)→ P such that τ |Q = κ ◦ ϕ for some κ ∈ K.

Proof. Let X := (QNK
P (Q))∗. Our goal is to show that some conjugate of Xϕ is contained

in AutP (R). We do this by considering the factors of X: First, since Q∗ E Aut(Q), Q∗ϕE

Aut(R) and is contained in AutP (R), thus any conjugate of Q∗ϕ also has this property.

Second, since R ∈ FfL, (NK
P (Q)∗)ϕ = AutKP (Q)ϕ 6 AutLP (R). By 2.1.21, AutLP (R) ∈

Sylp(AutLF(R)) and so there is some λ ∈ AutLF(R) so that (AutKP (Q)ϕ)λ 6 AutLP (R) which

is a subgroup of AutP (R).
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Putting these together we have (Xϕ)λ 6AutP (R) which means that QNK
P (Q) 6 Nϕλ.

But now we are done by letting τ := ϕλ and κ := λϕ
−1

. �

Observation 2.1.27 Let ψ : QNK
P (Q)→ P be a morphism in F . Then Q ∈ FfK implies

that Qψ ∈ Ff
Kψ .

Proof. Since ψ maps NK
P (Q) to NKψ

P (Qψ), injectively, we get |NK
P (Q)| 6 |NKψ

P (Qψ)|.

Since Q ∈ F f
K we have equality and the result holds. �

Observation 2.1.28 For every K 6 AutP (Q), Q ∈ Ff implies that Q ∈ FfK.

Proof. For such K, |NK
P (Q)| = |CP (Q)||K| (every element of K is realisable by conju-

gation by an element of NP (Q)), and by Proposition 2.1.12, Q ∈ F z so the result is

clear. �

Now for R 6 NP (Q) and L 6 Aut(R), define a set:

K • L := {α ∈ Aut(QR) : α|Q ∈ K and α|R ∈ L}.

We have that:

NL
NK
P (Q)(R) = NK•L

P (QR) = NK
P (Q) ∩NL

P (R),

is just the set of g ∈ P inducing automorphisms of both Q in K and R in L. We get the

following:

Observation 2.1.29 The restriction map AutK•LF (QR)→AutL
NK
F (Q)

(R) is surjective.

Proof. For every β ∈AutL
NK
F (Q)

(R) there is an extension of β, β ∈ AutLF(QR) with β|Q ∈ K.

Since β = β|R, the result follows. �
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The following result turns out to be very useful:

Proposition 2.1.30 Suppose Q ∈ FfK. Then for any R 6 NK
P (Q) and L 6 Aut(R),

there is a morphism in F :

ϕ : QR→ QNK
P (Q) with ϕ|Q ∈ K and (QR)ϕ ∈ Ff(K•L)ϕ .

Proof. We need to build such a map so start with ρ : QR → P with (QR)ρ ∈ Ff(K•L)ρ

and define σ := ρ|Q. Since Q ∈ FfK , Observation 2.1.27 implies that Qσ ∈ FfKσ and so we

can apply Observation 2.1.26 with ϕ = σ−1, Q replaced by Qσ and K = Kσ−1
, implying

the existence of a morphism:

τ : (Qσ)NKσ−1

P (Qσ)→ P such that τ |Qσ = κ ◦ σ−1 for some κ ∈ Kσ−1

.

Writing ϕ := ρ ◦ τ , we have ϕ|Q = ρ|Q ◦ τ = σ ◦ τ = σ ◦ κ ◦ σ−1 ∈ K since σ ∈ Aut(Q).

Since

(QR)ρN
(K•L)ρ

P ((QR)ρ) 6 (Q)σNKσ−1

P ,

we have (QR)ρ ∈ Ff(K•L)ρ . The last part follows on applying Observation 2.1.27 to τ and

(QR)ρ. �

As a consequence of this, we have the following:

Corollary 2.1.31 Let R 6 NK
P (Q) and L 6 Aut(R). Then:

R ∈ NK
F (Q)fL implies that QR ∈ FfK•L.

Proof. By Proposition 2.1.30 there is ϕ : QR → QNK
P (Q) with ϕ|Q ∈ K and (QR)ϕ ∈
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Ff(K•L)ϕ . By an earlier remark, NK•L
P (QR) = NL

NK
P (Q)

(R) and R ∈ NK
F (Q)fL means that

|NL
NK
P (Q)(R)| > |NLϕ

NK
P (Q)(Rϕ)| = |NK•Lϕ

P ((QR)ϕ)|,

where the final equality is a consequence of the same remark. Since ϕ|Q ∈ K, we have

K • Lϕ = (K • L)ϕ, so

|NK•L
P (QR)| > |N (K•L)ϕ

P ((QR)ϕ)|,

as needed. �

Finally we are ready to prove Theorem C:

Proof (of Theorem C). The Sylow Axiom: Our goal is to show that for R := NK
P (Q),

AutR(R) ∈ Sylp(AutNK
F (Q)(R)). Let A :=Aut(R) and L :=AutR(R). By Observation

2.1.29, the map AutK•AF (QR)→AutA
NK
F (Q)

(R) surjectively maps AutK•AF (QR) onto L. So

it will suffice to demonstrate the existence of a Sylow p-subgroup of AutK•AF (QR) in

AutK•LF (QR). By Proposition 2.1.30, with R = NK
P (Q), we get a morphism ϕ : NK

P (Q)→

QNK
P (Q) with ϕ|Q ∈ K and (NK

P (Q))ϕ ∈ Ff(K•A)ϕ = Ff(K•A). Proposition 2.1.21 then

implies that AutK•AP (QR) ∈ Sylp(AutK•AF (QR)). Also AutK•AP (QR) =AutK•LP (QR) ⊆

AutK•LF (QR) (since R = NK
P (Q)) and we are done.

The Extension Axiom: Let R 6 NK
P (Q) and pick ϕ : R→ NK

P (Q), a morphism in

NK
F (Q) so that Rϕ ∈ NK

F (Q)f . We are searching for a morphism with source

Nϕ := {y ∈ NNK
P (Q)(R) | there is z ∈ NNK

P (Q)(Rϕ) such that (uy)ϕ = (uϕ)z for every u ∈ R}

which extends ϕ. It is clear that for L :=AutNϕ(R), Nϕ can be rewritten as NL
NK
P (Q)

(R) =

NK•L
P (QR). Notice also that since Lϕ ⊆AutNK

P (Q)(Rϕ), we can apply Observation 2.1.28

and get Rϕ ∈ NK
F (Q)fLϕ . An application of Corollary 2.1.31, then gives Q(R)ϕ ∈ FfK•Lϕ .

Now, by the definition of NK
F (Q), there is a morphism ψ in F , extending ϕ, with ψ|Q ∈ K,
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so in fact (QR)ψ = Q(R)ϕ ∈ FfK•Lϕ . Since (K • Lϕ)ψ
−1

= ψ ◦ K • Lϕ−1 = K • L

(ϕ ◦ ψ−1|R =IdR and ψ|Q ∈ K), Observation 2.1.26 applied to ψ and QR implies the

existence of a morphism:

τ : QRNK•L
P (QR)→ P such that τ |QR = κ ◦ ϕ for some κ ∈ K • L.

Now recall that NK•L
P (QR) = Nϕ and notice that since κ|R ∈ L, κ|R = cy for some y ∈ R.

Claim: The morphism c−1
y ◦ τ |Nϕ : Nϕ → P lies in NK

F (Q) and extends ϕ.

Proof of Claim: We must first show that there is a morphism in F which K-stably

extends c−1
y ◦ τ |Nϕ . We claim that c−1

y ◦ τ |QNϕ : QNϕ → P is such a morphism. It clearly

extends and its restriction to Q is

c−1
y ◦ τ |Q = c−1

y |Q ◦ κ|Q ◦ ψ|Q ∈ K.

Lastly, the restriction of c−1
y ◦ τ |Nϕ to R is

c−1
y |R ◦ κ|R ◦ ψ|R = ψ|R = ϕ.

Thus we have completed the proof.

Trivially if NK
F (Q) = F then NK

P (Q) = P . We have:

Lemma 2.1.32 Let Q,R ∈ F with K 6 Aut(Q) and J 6 Aut(R). Suppose that F =

NK
F (Q) = NJ

F(R). Then F = NK•J
F (QR).

Proof. Let φ ∈ HomNK
F (Q)(A,B). Then φ ∈ HomF(A,B) and there is φ ∈ HomF(AQ,BQ)

such that φ|Q ∈ K and φ|A ∈ φ. But this implies there is φ̃ ∈ HomF(AQR,BQR) such

that φ̃|AQ = φ and φ̃|R ∈ J . This means φ̃|A = φA = φ and φ̃|Q = φQ ∈ K. i.e. φ̃

(K • J)-stably extends φ as needed. �
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Thus we may define the following:

Definition 2.1.33 We denote by Z(F) the largest central subgroup of P such that

CF(Z(F)) = F . We denote by Op(F) the largest normal subgroup of P such that

NF(Op(F)) = F .

Notation 2.1.34 We will frequently write QE F in place of NF(Q) = F .

We now have more than enough machinery to prove the following important fact:

Theorem 2.1.35 [15, 2.11] Let G be a finite group and P ∈ Sylp(G). Then FP (G) is a

saturated fusion system.

Proof. We check the axioms from Definition 2.1.10 since clearly FP (P ) ⊆ FP (G). For a

fully F -normalised (and hence centralised by Proposition 2.1.12) subgroup Q of P , we

get from 2.1.23 that

AutP (Q) ∼= NP (Q)/CP (Q) ∼= NP (Q)CG(Q)/CG(Q) ∈ Sylp(NG(Q)/CG(Q)) = Sylp(AutG(Q)).

For the extension condition, let Q 6 P and ϕ : Q → P be a morphism in F , assuming

that R = Qϕ ∈ Ff . Suppose ϕ = cx, with x ∈ G. Then:

Nϕ = {y ∈ NP (Q) | ∃ z ∈ NP (R) such that (uy)ϕ = (uϕ)z ∀ u ∈ Q}

= {y ∈ NP (Q) | ∃ z ∈ NP (R) such that uyx = uxz ∀ u ∈ Q}.

Now uyx = uxz implies that yxz−1x−1 ∈ CG(Q) which in turn gives x−1yxz−1 ∈

CG(Qx) = CG(R). i.e. x−1yx = cz, for some c ∈ CG(R). So Nx
ϕ ⊆ CG(R)NP (R). Since

R ∈ Ff , Lemma 2.1.23 implies thatNP (R) ∈ Sylp(NG(R)) soNP (R) ∈ Sylp(CG(R)NP (R)).

The fact that Nϕ is a p-group and Sylow’s Theorem imply there is some d ∈ CG(R) such
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that Nϕ
xd ⊆ NP (R). We claim the morphism ψ : Nϕ → P which sends y to yxd extends

ϕ. Indeed for u ∈ Q, (u)ψ = uxd = (uϕ)d = (u)ϕ, since d ∈ CG(Qϕ). �

Consider the following two examples:

Example 2.1.36 Let G be a finite group, p, a prime and P ∈ Sylp(G).

(1) Suppose for some Q 6 P that F = FP (G) = NF(Q). Is it true that QEG? In fact

the answer is no. As a counterexample, take G =Alt(4) and P = 〈(123)〉. Then

FP (G) = NF(P ) since AutF(1)= AutF(P ) = 1. Clearly P 5 G.

(2) Suppose N is such that P 6 N 6 G and FP (N) = FP (G). Does N = G? Again

the answer is no. Take G = Sym(p) and N = NG(P ) for p > 5. Then since P is

cyclic, by Burnside’s theorem, FP (G) = FP (N). But clearly NG(P ) 6= G.

2.1.4 The Theorems of Frobenius and Alperin

In this section we prove analogues of the theorems of Frobenius and Alperin for saturated

fusion systems. The latter provides us with important information concerning the struc-

ture of the fusion system, saying that we need only consider a small class of subgroups

to understand it completely. This class forms an example of what we term a conjugation

family, which we define to be any set of subgroups which determines a fusion system.

From now on, unless explicitly stated, the term ‘fusion system’ will be used to mean

‘saturated fusion system’. We begin with a useful reformulation of Theorem 1.1.24:

Theorem 2.1.37 (Frobenius) [15, 1.4] Let G be a finite group, p, a prime and P ∈

Sylp(G). Then the following three statements are equivalent:

(a) G has a normal p-complement.

(b) FP (G) = FP (P ).
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(c) AutG(Q) is a p-group for any Q 6 P .

Proof.

(a) implies (b): Suppose that G has a normal p-complement, K. Let x ∈ G, u ∈ P be

such that ux ∈ P . Then since G = PK we may write x = zy, z ∈ P, y ∈ K. Thus

u−zy−1uzy = [uz, y] ∈ P ∩K since K E G and uzy ∈ P . Since P ∩K = 1, [uz, y] = 1 so

ux = uz, so every morphism in FP (G) is in FP (P ) as required.

(b) implies (c): By (b), AutG(Q) =AutP (Q) is a p-group.

(c) implies (a): We proceed by induction on |G|, and assume that every proper subgroup

of G has a normal p-complement (notice that for Q 6 P 6 H 6 G, AutH(Q) 6 AutG(Q),

so our hypothesis carries down to subgroups of G). Let Q 6 P . If G = NG(Q) then by

induction G/Q has a normal p-complement. Set G := G/Q and let Q 6 L 6 G be such

that L = Op′(G). Since Q is a normal Sylow p-subgroup of L, we can write L = K n Q

where K is a p′-subgroup of L. We claim that K E L. Now G/CG(Q) is a p-group so

CG(Q) must contain every p′ subgroup of G. Hence K 6 CG(Q) so [K,Q] = 1 = K ∩ Q

and K E L. So L = K × Q implies K = CG(Q) and K is a normal p-complement in G.

So we are reduced to considering the case Op(G) = 1. But in this case NG(Q)(6= G) has

a normal p-complement for all Q 6 P and Theorem 1.1.24 delivers the result. �

Alperin’s Fusion Theorem was first proved for finite groups in [1] in 1967. To under-

stand it, we need a new definition:

Definition 2.1.38 Let G be a finite group, and P,Q ∈ Sylp(G), for some prime p. The

intersection R := P ∩Q is called tame if {NP (R), NQ(R)} ⊆ Sylp(R).

Theorem 2.1.39 (Alperin) [11, 7.2.6] Let G be a finite group, and P ∈ Sylp(G), for

some prime p. For subsets A,B ⊆ P satisfying A = Bg for some g ∈ G, there exist Qi ∈

Sylp(G), p-elements xi ∈ NG(P ∩Qi) for 1 6 i 6 n and y ∈ NG(P ) with:
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(a) g = x1...xny;

(b) P ∩Qi is tame; and

(c) Ax1...ni ⊆ P ∩Qi+1 for every 0 6 i 6 n− 1.

Example 2.1.40 Notice that in the case where P is abelian, A = {x} and B = {y}, by

Theorem 1.1.8, we get a factorisation of g so that x1...xny ∈ NG(P ).

We can view Theorem 2.1.39 as saying that in a finite group the fusion is always

dependent upon certain p-local subgroups, namely the NG(P ∩Qi)’s. There is a result of

a very similar flavour for fusion systems. It says that any F -isomorphism can be factored

as restrictions of automorphisms of subgroups in Ffcr. In other words we need only

consider a small class of objects of F to understand F completely.

First, we introduce the concept of a conjugation family :

Definition 2.1.41 A conjugation family for F is a set C of subgroups of P such that for

any Q,Q′ 6 P and φ ∈ IsoF(Q,Q′), there is:

(a) a sequence of F -conjugate subgroups Q = Q0, Q1, ..., Qn = Q′,

(b) a sequence S1, S2, ..., Sn where Si ∈ C and Qi−1, Qi 6 Si for all i, and

(c) a sequence φ̃i ∈ AutF(Si) such that, for φi := φ̃i|Qi−1
:

Qi−1φi = Qi and (φ1φ2φ3...φn)|Q = φ.

We have the following result concerning conjugation families:

Proposition 2.1.42 [8, 2.10] Let C := {A1, ...An} be a conjugation family for F . Sup-

pose that Bi ∈ AFi . Then C ′ := {B1, ...Bn} is also a conjugation family for F .
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Proof. Pick Ai ∈ C so that Ai 6= Bi. Then Ai < P . It suffices to show that

AutF(Ai) 6 〈AutF(Bi) | 1 6 i 6 n〉 =: X.

By induction we may assume that AutF(T ) 6 X for P < T ∈ C. Let ϕ ∈IsoF(Ai, Bi). As

C is a conjugation family, ϕ can be written as the composition of isomorphisms extending

to groups AutF(Q), where |Q| > |Ai| and Q ∈ C. By induction each such isomorphism is

the restictrion of an isomorphism in X. This means that ϕ ∈ X. Taking ψ ∈ AutF(Ai),

we get χ := ψϕ
−1 ∈AutF(Bi), which means ψ = χϕ ∈ X, as needed. �

Theorem 2.1.43 (Alperin’s Fusion Theorem) [5, A.10] Let F be a fusion system on

a finite p-group, P . Then Ffcr is a conjugation family for F .

Proof. We closely follow the argument presented in, for example [5] Theorem A.10. We

proceed by downward induction on the order of Q, with a view to repeatedly applying

part (b) in Definition 2.1.10. Note that it is clear that P ∈ Ffcr (P ∈ F r follows trivially

from part (a) of Definition 2.1.10.) Let Q < P . Pick any Q̃ ∈ QF , such that Q̃ ∈ Ff and

let ψ ∈ HomF(Q, Q̃). Then the result will follow for φ = ψ ◦ (φ−1 ◦ ψ)−1 if it follows for

both ψ and for ψ ◦ φ−1 ∈ HomF(Q′, Q̃), where both target groups lie in Ff . So we may

assume that Q′ ∈ Ff .

We may now apply Corollary 2.1.13 to obtain a morphism extending φ, φ : NP (Q)→ P

and a factorisation φ = β−1 ◦φ|Q for some β ∈ AutF(Q). Since Q < P , by Lemma 1.1.18,

NP (Q) > Q, so the result follows for φ if and only if it holds for β ∈ AutF(Q). So we are

reduced to considering the case where φ : Q ∼= Q′ ∈ Ff .

Suppose Q /∈ F c. Since Q ∈ Ff , Q ∈ F z by Theorem 2.1.12 so by 2.1.15, φ extends to

a morphism φ ∈ HomF(CP (Q)Q,P ). Since such a map must act trivially on both CP (Q)

and Q, we may assume φ ∈ AutF(CP (Q)Q). Since Q /∈ F c, CP (Q)Q > Q so by induction,

such a factorisation must exist in this case.
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Now suppose Q /∈ F r so that K := Op(AutF(Q)) >AutQ(Q). Since Q ∈ Ff , by

Lemma 2.1.23 we have AutP (Q) ∈ Sylp(AutF(Q)) so the p-subgroup K is contained

in AutP (Q). Recall that NK
P (Q) := {y ∈ NP (Q) | cy ∈ K}. Since K >AutQ(Q),

NK
P (Q) > Q. Obviously KE AutF(Q) so that for g ∈ NK

P (Q), cφg ∈ K 6AutP (Q). This

means that Nφ contains NK
P (Q), i.e. φ extends to a morphism from NK

P (Q) > Q so by

induction, we are also done in this case.

The final case to consider is when Q ∈ Ffrc, but then the result follows trivially. �

In fact it turns out that Ffe is also a conjugation family and since F e ⊆ F cr, this

generalises Theorem 2.1.43. See [15] Theorem 5.2 for a proof of this fact.

The following useful result (which we will need later) concerns elements of F cr:

Lemma 2.1.44 For Q 6 P , suppose that F = NF(Q). Then Q 6 R for all R ∈ F cr.

Proof. Let R ∈ F cr. First, we show that AutQR(R)E AutF(R). Let ϕ ∈ AutF(R). By

the definition of F , we can extend ϕ to an automorphism, ϕ in AutF(QR), such that both

Q and R are invariant under ϕ. This implies that NQR(R) is invariant under ϕ. Now

clearly g ∈ NQR(R) if and only if cg ∈ AutQR(R). For any x ∈ R,

x(ϕ−1cgϕ) = (xϕ−1)cgϕ = (g−1xϕ−1g)ϕ = g−1ϕ−1xgϕ = (gϕ)−1x(gϕ),

implying AutQR(R)E AutF(R). Since R ∈ F r, this gives us AutQR(R) = AutR(R).

Taking preimages we get NQR(R) 6 RCP (R) and R ∈ F c means NQR(R) = R, i.e.

QR = R or equivalently Q 6 R. �

We also have the following lemma which helps us to find some elements of F c:

Lemma 2.1.45 Let F be a fusion system on a finite p-group, P and suppose that Q ∈ F c.

If |Q| = p then |P | = p.
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Proof. Since Q ∈ F c, CP (Q) 6 Q. Now |Q| = p and Z(P ) 6 CP (Q) imply that Q =

Z(P ), and hence Q = CP (Q) = P . �

Example 2.1.46 We claim that there are exactly three F -centric subgroups in FP (G),

whereG ∼=Alt(6) and P ∈ Syl2(G). Since |Alt(6)| = 23325, |P | = 8 and an easy calculation

shows that we can choose P = 〈(12)(34), (23)(56)〉 ∼=Dih(8). Of the four non-trivial

normal subgroups, only the centre is not centric by the above lemma.

Example 2.1.47 We use Theorem 2.1.43 to show that for F1 := FP (Alt(4)) and F2 :=

FP (Alt(5)), we have F1
∼= F2. (In each case P is a Sylow 2-subgroup isomorphic to

V4). Indeed by the previous Lemma, Ffrci = {P} so it suffices to check that AutF1(P ) ∼=

AutF2(P ). WritingG1 :=Alt(4) andG2 :=Alt(5), we haveNGi(P ) ∼= Alt(4) so AutFi(P ) ∼=

NGi(P )/CGi(P ) is isomorphic a cyclic group of order 3 for i = 1, 2, as needed.

We remark that it is probably the case that for all n ∈ N, FP (Alt(2n)) ∼= FP (Alt(2n +

1)) when P is a Sylow 2-subgroup.

We will need one further example of a conjugation family:

Definition 2.1.48 Let F be a fusion system on a finite p-group and U be a positive

characteristic p-functor 7. For Q 6 P , set U1(Q) = Q and Ui+1(Q) = U(NS(Ui(Q))) for

i > 2. If Ui(Q) ∈ Ff for all i then we say that Q is (F , U)-well placed.

Concerning this situation, we have:

Proposition 2.1.49 [16, 3.3] For 1 6 i 6 n, let Ui 6 P be such that:

(a) Ui+1 char NP (Ui) for 1 6 i 6 n− 1; and

(b) Ui ∈ Ff for 1 6 i 6 n− 1.

7see Definition 1.3.7.
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Then there is a morphism ϕ : NP (Un) → P such that Uiϕ|Ui ∈ Ff for all 1 6 i 6 n.

In particular, NP (Uiϕ) = NP (Ui)ϕ. Moreover for X ⊆ {c, r}, Ui ∈ FX implies that

Uiϕ ∈ FX for any 1 6 i 6 n.

Proof. By Lemma 2.1.13, there is ϕ ∈ HomF(NP (Un), P ) such that Unϕ ∈ Ff . Since

Ui+1 char NP (Ui) for 1 6 i 6 n− 1, NP (Ui) 6 NP (Ui+1). This means NP (Ui) 6 NP (Un)

so we may restrict ϕ to NP (Ui) for every 1 6 i 6 n. Let 1 6 i 6 n − 1. Clearly

NP (Ui)ϕ 6 NP (Uiϕ) and since ϕ is injective we get |NP (Ui)| 6 |NP (Ui)ϕ|. Since Ui ∈ Ff ,

|NP (Ui)| > |NP (Ui)ϕ| so |NP (Ui)| = |NP (Ui)ϕ| and Uiϕ ∈ Ff for all 1 6 i 6 n − 1. In

particular, NP (Uiϕ) = NP (Ui)ϕ, for 1 6 i 6 n− 1 so Unϕ,Un ∈ Ff .

Now since for 1 6 i 6 n, Ui ∈ Ff , we have Ui ∈ F z so CP (Uiϕ) = CP (Ui)ϕ.

Thus Ui ∈ F c implies that Uiϕ ∈ F c. Since AutF(Ui)
ϕ = AutF(Uiϕ) and AutP (Ui)

ϕ =

AutP (Uiϕ), Ui ∈ F r implies that Uiϕ ∈ F r, as needed. �

Corollary 2.1.50 [12, 5.2] Let U be a positive characteristic p-functor and Q 6 P . Then

there is a morphism ϕ : NP (Q)→ P such that Qϕ is (F , U) well-placed.

Proof. For every i ∈ N, set Ui := Ui(Q). Assuming that Ui ∈ Ff for 1 6 i 6 n − 1,

Proposition 2.1.49 yields the existence of the required morphism and the result follows by

induction. �

Theorem 2.1.51 [8, 2.12] The (F , U)-well placed subgroups of P form a conjugation

family for F .

Proof. By the previous result, every element of an arbitrary conjugation family, C is F -

conjugate to an (F , U) well-placed subgroup of P . The claim now follows from Proposition

2.1.42. �

To conclude this section we prove a technical lemma which we require later:
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Proposition 2.1.52 [12, 5.3] Suppose that for 1 6= Q ∈ Ff , NF(Q) = NNF (Q)(U(NP (Q))).

Then F = NF(U(P )).

Proof. Suppose the conclusion does not hold. Then by Theorem 2.1.43, there is a proper

subgroup of P , Q ∈ Ffcr such that AutNF (U(P ))(Q) ( AutF(Q). Setting U1 := Q and

Ui := U(NP (Ui−1)), we have that Ui char NP (Ui−1) so by Proposition 1.1.18, NP (Ui−1) <

NP (NP (Ui−1)) 6 NP (Ui). This means that there is a sequence

NP (U1) < NP (U2) < ... < NP (Un)

which must terminate at P , since if NP (Ui−1) = NP (Ui) then NP (Ui) = NP (NP (Ui)) 6 P

so NP (Ui) = P . By Proposition 2.1.49, we may assume that Ui ∈ Ff so NF(Ui) is

saturated for all 1 6 i 6 n − 1. By assumption, NF(Ui−1) ⊆ NF(Ui) for all 1 6 i 6

n − 1, but this means that NF(Q) = NF(U1) ⊆ NF(Un) = NF(U(P )). Now AutF(Q) ⊆

AutNF (U(P ))(Q), a contradiction. �

2.1.5 Quotients of Fusion Systems

We now turn our attention to the notion of a quotient fusion system. Our introduction

will follow that found in [7] and [15]. We begin with some important definitions:

Definition 2.1.53 Let F be a fusion system over a finite p-group P and let Q 6 P .

(a) Q is called weakly F-closed if QF = {Q}.

(b) Q is called strongly F-closed if for any R 6 Q and φ ∈ HomF(R,P ) we have

Rφ 6 Q.

Notice that if 〈x〉 6 P is weakly F -closed, then x ∈ Z(P ) since FP (P ) ⊆ F and so

when F = FP (G), for a finite group G with P ∈ Sylp(G), weakly F -closed is the same as

weakly closed in the sense of Definition 1.1.20.
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The following result will be useful in later sections:

Lemma 2.1.54 [8, 2.8] Let F be a fusion system over a finite p-group P . The set of

weakly F-closed elements is precisely Z(F).

Proof. Let x ∈ Z(F). Since F = CF(〈x〉), x must be weakly F -closed (by definition

of CF(〈x〉)). Conversely suppose that x ∈ P is weakly F -closed. Pick any Q ∈ Ffrc.

Then since x ∈ Z(P ), x ∈ CP (Q) = Z(Q), so x ∈ Q. Now for every ϕ ∈AutF(Q),

ϕ|〈x〉 =Id〈x〉 and so by Alperin’s Theorem 2.1.43 any morphism in F is the identity on

〈x〉, i.e. 〈x〉 6 Z(F). �

Definition 2.1.55 Let F be a fusion system over a finite p-group P and let QE P . Let

F/Q be a category on P/Q such that for subgroupsR, S 6 P containingQ, HomF/Q(R/Q, S/Q)

is the set of morphisms induced by HomF(R, S) which leave Q invariant.

Lemma 2.1.56 Let F be a fusion system on a finite p-group, P . Let R 6 P and Q 6 P

be weakly F-closed. Suppose that R/Q ∈ (F/Q)f . Then R ∈ Ff .

Proof. Setting G := G/Q, let R′ and φ be such that φ ∈ IsoF/Q(R,R′) so that R′ ∈

(F/Q)f . Since Q is weakly F -closed, Q 6 T for every T ∈ RF . Trivially Q 6 NP (T ).

Since NP (R) = NP (R),

|NP (T )| = |NP (T )||Q| 6 |NP (R′)||Q| = |NP (R′)|

so R′ ∈ Ff and hence R ∈ Ff , as needed. �

That F/Q defines a (not necessarily saturated) fusion system on P/Q is immediate

from its definition. Saturation is dependent on a condition on Q:

Proposition 2.1.57 [7, 5.3] Let F be a saturated fusion system over a finite p-group P

and let QE P be weakly F-closed. Then F/Q is a saturated fusion system on P/Q.
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Proof. Sylow Axiom: Since elements of AutF/Q(P/Q) are induced by elements of

AutF(P ), AutP (P ) is surjectively mapped to AutP/Q(P/Q) in AutF/Q(P/Q) as needed.

Extension Condition: Let ψ : R/Q → S/Q be an isomorphism in F/Q so that

S/Q ∈ (F/Q)f . By Lemma 2.1.56, S ∈ Ff . Before dealing with the general case,

consider φ ∈ AutF/Q(R/Q) and let ψ ∈ AutF(R) be its preimage under the canonical

homomorphism. Certainly Nψ/Q 6 Nφ but equality may not necessarily hold. Let K

denote the kernel of the canonical surjection AutF(R)→ Aut(R/Q). We claim that there

exists χ ∈ K and θ : R → R with ψ = χθ and Nθ/Q = Nφ. If this follows, then φ

extends to Nφ since θ and ψ are both mapped to φ in F/Q. To prove the claim, notice

KEAutF(R) and AutP (R) ∈ Sylp( AutF(R)) imply that AutKP (R) ∈ Sylp(K). Theorem

1.1.3 implies that AutF(R) = KNAutF (R)(AutKP (R)). Let X := NAutF (R)(AutKP (R)) so

that AutP (R) ∈ Sylp(X). By the Second Isomorphism Theorem, X/(X ∩K) ∼= KX/X =

AutF(R)/K ∼= AutF/Q(R/Q). Also since S := AutKP (Q) is a normal Sylow p-subgroup of

X ∩K, we have:

AutF/Q(R/Q) ∼= X/X ∩K ∼= (X/S)/(X ∩K/S).

Now Nφ is the preimage in P/Q of AutP/Q(R/Q)∩ AutP/Q(R/Q)φ
−1

, which is the in-

tersection of two Sylow p-subgroups of AutF/Q(R/Q). Since (X ∩ K)/S is a p′-group

there exist A/S,B/S ∈ Sylp(X/S) and a coset Sg ∈ X/S such that A/S ∩ (B/S)Sg
−1

maps onto this intersection. We may (in turn) take the pre-image of this group in

X(= NAutF (R)(AutKP (R)). Putting this together we get an element θ ∈ X, so that

AutP (R)∩ AutP (R)θ
−1

maps surjectively to AutP/Q(R/Q)∩ AutP/Q(R/Q)φ
−1

. This means

the map Nθ → Nφ is surjective and so Nθ/Q = Nφ. Since F is saturated, θ extends to

Nθ and so φ extends to Nφ as needed.

It remains to consider the general case. Let φ ∈ HomF/Q(S/Q,R/Q) with (R/Q) ∈
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(F/Q)f . Then there is a map ψ ∈ HomF(S,R) with R ∈ Ff , so that by Lemma 2.1.13,

there is θ ∈ HomF(S,R), with Nθ = NP (S). Let χ denote the image of θ in F/Q. Then

φ extends to Nφ if χ extends to Nχ and χ−1φ (∈ AutF/Q(R/Q)) extends to Nχ−1φ. The

first case trivially holds since Nχ = NP/Q(S/Q) = NP (S)/Q and the second case was

dealt with above. This completes the proof. �

Notice that by Definition 2.1.11, the homomorphism α : P → P/Q, gives rise to a

morphism of saturated fusion systems α : F → F/Q. Furthermore, when R/Q ∈ (F/Q)f

and QER, we get an isomorphism NF(R)/Q→ NF/Q(R/Q). Note that both these fusion

systems are saturated by Lemma 2.1.56 and Proposition 2.1.57.

Definition 2.1.58 A fusion system F on a finite p-group P is called trivial if F = FP (P ).

We will need the following result later:

Proposition 2.1.59 [12, 3.4] Let F ,G be fusion systems over a finite p-group P , such

that G ⊆ F . Suppose that Q, R E P are such that Q 6 R, Q is weakly F-closed and

F=PCF(Q). Then NF(R) = G if and only if NF/Q(R/Q)=G/Q. In particular:

(a) When G = FR(R), NF(R) = FR(R) if and only if NF/Q(R/Q)=FR/Q(R/Q)

(b) F is trivial if and only if F/Q is trivial.

First note that since Q and R are both normal subgroups of P , they are in particular

fully F -normalised and hence all fusion systems in question are saturated by Theorem C

and Theorem 2.1.57. To prove Proposition 2.1.59 we will proceed by induction on |Q|,

considering first the group Q/Z where 1 6= Z 6 Z(P ). We require a series of results (as

in [12]) concerning this situation. In each case F is a fusion system on a finite p-group P .

Proposition 2.1.60 [12, 3.1] Let Z 6 Z(P ) be such that F = CF(Z) and write P :=

P/Z, F := F/Z. Let Q be a subgroup of P containing Z. Then there exists a surjective

group homomorphism ρ : AutF(Q)→ AutF(Q) whose kernel is an abelian p-group.
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Proof. It is clear that the canonical mapQ→ Q induces the homomorphism ρ : AutF(Q)→

AutF(Q). Furthermore if φ ∈ ker ρ then φ fixes both Z and Q pointwise, so for each

u ∈ Q, uφ = u(u)χ, where χ ∈ Hom(Q,Z). Since the latter group is an abelian p-group,

the result follows. �

Corollary 2.1.61 [12, 3.1] Assuming the same hypotheses as Proposition 2.1.60, the

following implications hold:

(a) Q ∈ F r implies Q ∈ F r;

(b) Q ∈ F c implies Q ∈ F c; and

(c) Q ∈ F cr implies Q ∈ F cr.

Proof. By Proposition 2.1.60 there is ρ : AutF(Q) → AutF(Q). Then since ker ρ 6

AutQ(Q), OutF(Q) = AutF(Q)/ AutQ(Q) ∼= AutF(Q)/ AutQ(Q) = OutF(Q) so (a)

follows. If Q ∈ F c then CP (R) 6 R for each R ∈ QF , so CP (R) 6 R which proves (b).

For (c), notice we may assume that Q ∈ F crz. By Proposition 2.1.60, K :=ker ρ 6

AutQ(Q). If C is the preimage in P of CP (Q), we have AutC(Q) 6 K, since the image

in P of elements of C centralise Q. This means C 6 QCP (Q) = Q and hence C 6 Q so

Q ∈ F cr, as needed. �

Proposition 2.1.62 [12, 3.2] Let G ⊆ F be a fusion system on P and Z 6 Z(P ) be such

that F = CF(Z). Then:

F = G if and only if F/Z = G/Z.

Proof. The forward implication is trivial. For the converse, suppose that F/Z = G/Z

and let Q ∈ F cr. By Proposition 2.1.60 there is ρ : AutF(Q) → AutF/Z(Q/Z) with ker

ρ 6 AutQ(Q). But then kerρ=ker ρ′, where ρ′ : AutG(Q) → AutG/Z(Q/Z). Since by
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hypothesis, im ρ = im ρ′, |AutF(Q)| = |AutG(Q)| which means AutF(Q) = AutG(Q) since

G ⊆ F . But now by Alperin’s Theorem 2.1.43, F = G. �

Corollary 2.1.63 [12, 3.3] Let G ⊆ F be a fusion system on P and Z 6 Z(P ) be such

that F = CF(Z). Suppose Q satisfies Z 6 QE P . Then:

G = NF(Q) if and only if G/Z = NF/Z(Q/Z).

Proof. Again, the forward implication is trivial. Write G := G/Z, F := F/Z and Q :=

Q/Z and suppose that G = NF(Q). By Lemma 2.1.44, Q 6 R for all R ∈ Gcr. Then

by Corollary 2.1.61, Q 6 R for all R ∈ Gcr so G = NG(Q) ⊆ NF(Q). Since NF(Q)/Z =

NF(Q), G = NF(Q) by Proposition 2.1.62. �

Proof (of Proposition 2.1.59). The forward implication is again trivial. Suppose that

G/Q = NF/Q(R/Q). As remarked earlier, to prove that G = NF(R) we proceed by induc-

tion on |Q|. When |Q| = 1 the result trivially holds. By Lemma 1.1.19, Z := Q∩Z(P ) 6= 1

and since F = PCF(Q) it is clear that F = CF(Z). Set F := F/Z, G := G/Z, and

P := P/Z. Notice that:

F = PCF(Q) and G ⊆ F .

Also, via the isomorphism P/Q ∼= P/Q we get:

G/Q ∼= G/Q and NF/Q(R/Q) ∼= NF/Q(R/Q).

This means that G/Q = NF/Q(R/Q) and so we may apply induction to get that G =

NF(R). But now Corollary 2.1.63 implies that G = NF(R), as needed. �
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2.1.6 Models for Fusion Systems

In this section we introduce the notion of a model, for a fusion system F on a finite p-

group, P , a term frequently used in the literature referring to the existence of a group, G

so that F = FP (G). We present a basic outline of some of the ideas used in the proof of

Theorem D, and discuss the result’s importance for our purposes. We will also introduce

convenient notation of Aschbacher’s found in, for example [2].

F will always denote a saturated fusion system on a finite p-group P .

Definition 2.1.64 We say that F is constrained if there exists QEF , such that Q ∈ F c

Example 2.1.65 In the case where F = FP (G) and CG(Op(G)) 6 Op(G), it is clear that

F is constrained, since NF(Op(G)) = F .

The following notation of Aschbachers’ will be useful:

Definition 2.1.66 Let G(F) denote the class of finite groups G such that P ∈ Sylp(G),

CG(Op(G)) 6 Op(G), and F = FP (G). Call elements of G(F), models of F .

What Example 2.1.65 essentially shows is that if G(F) 6= ∅ then F is constrained.

What is alarming is that the converse is also true:

Theorem 2.1.67 (Theorem D) For Q ∈ Ffc, there is, up to isomorphism, a unique

finite group G = GFQ with NP (Q) ∈ Sylp(G) such that Q E G,CG(Q) 6 Q and NF(Q) =

FNP (Q)(G).

Definition 2.1.68 As in the above theorem we define {GFQ | Q ∈ Ffc} to be the set of

potential models for F .

It is clear that every model for F is a potential model. To recapitulate:

Proposition 2.1.69 G(F) 6= ∅ if and only if F is constrained.
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Proof. To prove the reverse direction, we may choose Q ∈ Ffc, maximal with respect to

satisying the conclusion of Theorem D, i.e. Q := Op(G) and G(F) 6= ∅, as needed. �

We introduce the important notions of a centric linking system and a p-local finite

group associated with F :

Definition 2.1.70 A centric linking system associated to F is a category, L whose object

set is F c, together with a functor π : L → F c and monomorphisms δQ : Q → AutL(Q)

for Q ∈ F c satisfying:

• π is the identity on objects of L. For Q,R ∈ L, δQ(Z(Q)) 6 AutL(Q) acts on

MorL(Q,R) so that MorL(Q,R)/Z(Q) ∼= HomF(Q,R).

• For Q ∈ F c and x ∈ Q, π(δQ(x)) = cx ∈ AutF(Q).

• For f ∈ MorL(Q,R), x ∈ Q, f ◦ δQ(x) = δQ((x)) ◦ f .

Definition 2.1.71 A p-local finite group is a triple (P,F ,L), where L is a centric linking

system associated to F , a fusion system over P .

It is not at all obvious that a centric linking systems (and hence p-local finite groups)

should exist for a given fusion system. Luckily we have:

Proposition 2.1.72 [4, 4.2] Let F be constrained. Then there is a centric linking system

associated to F and it is unique up to isomorphism of categories.

In terms of proving Theorem D, the fact that this centric linking system, L, exists,

allows one to recover a group G, satisfying F = FP (G), as the group AutL(Q) of L-

automorphisms of Q. This fact can be deduced quite quickly (see [4], 4.3), while the

proof of Proposition 2.1.72 uses many of the deep ideas found in [5].

If we are to transfer results about H-free finite groups to fusion systems, we need an

analogous notion:
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Definition 2.1.73 For any finite group H, F is called H-free if no potential model of F

involves H.

The following two results, due to Kessar and Linckelman are concerned with the

inheritance of the property of being H-free. They are important in the proof of Theorem

G and their proofs can be found in [12], Section 6:

Proposition 2.1.74 [12, 6.3] Let H be a finite group. Suppose that Q ∈ Ff . If F is

H-free then NF(Q) is H-free.

Proposition 2.1.75 [12, 6.4] Let H be a finite group. Suppose that Q E P F is such

that F = NF(Q). If F is H-free then F/Q is H-free.

2.2 The ZJ-Theorems for Fusion Systems

2.2.1 Sparse Fusion Systems and Glauberman and Thompson’s

p-nilpotency Theorem

In this section, we prove Theorems E and F. In [12], the authors proceed by showing

that a minimal counterexample is constrained in order to apply Theorem D and use

the corresponding result from group theory to derive a contradiction. In [10], Adam

Glesser streamlines the approach by introducing the notion of a ‘sparse fusion system’, and

noticing that such a counterexample is sparse. He proves that under certain conditions,

sparse systems are constrained. In this section we provide two different proofs of this

result, one of which is independent of the results in [8]. Let F be a fusion system over a

finite p-group, P .

Definition 2.2.1 A non-trivial fusion system F over a finite p-group P is called sparse

if the only proper subsystem of F on P is the trivial fusion system, FP (P ).
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We begin with some important lemmas:

Lemma 2.2.2 [8, 2.5] Let Q 6 P be such that QEF . Suppose that AutF(Q) is a p-group.

Then F = PCF(Q).

Proof. Saturation implies that AutP (Q) ∈ Sylp(AutF(Q)) so clearly AutP (Q)=AutF(Q).

So since F = NF(Q), every morphism in F AutP (Q)-stably extends to Q and so F =

PCF(Q). �

The following tells us how to ‘split up’ a fusion system:

Definition 2.2.3 For some indexing set I, given a collection of subsytems of F : {Fi |

i ∈ I}, we define:

〈Fi | i ∈ I〉 :=
⋂
H∈X

H, where X := {H | Fi ⊆ H for all i ∈ I}

to be the smallest (not necessarily saturated) fusion system containing all the Fi’s.

We remark that this notation permits a nice restatement of Theorem 2.1.43, telling

us that every fusion system is generated by constrained fusion systems:

F = 〈NF(U) | U ∈ Ffrc〉.

The next result, although easy to prove, is powerful and has led to considerable short-

enings of the proofs of the ZJ-theorems:

Lemma 2.2.4 (Stancu) Let F be a saturated fusion system on a finite p-group, P . If

QE F then

F = 〈PCF(Q), NF(QCP (Q))〉.
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Proof. Since F = NF(Q), Lemma 2.1.44 implies Q 6 R, for all R ∈ Ffcr. Pick φ ∈

AutF(R), so that ψ := φ|Q, is an automorphism of Q. Clearly then, R,QCP (Q) 6 Nψ, so

there is some θ ∈ HomF(RQCP (Q), P ) such that θ|Q = ψ. We factorise φ as

θ|R ◦ ((θ|R)−1 ◦ φ).

Now θ|R is a morphism in NF(QCP (Q)) since θ(QCP (Q)) = QCP (Q), and it is clear that

(θ|R)−1 ◦ φ is a morphism in PCF(Q). So φ ∈ 〈PCF(Q), NF(QCP (Q))〉, and since R was

chosen arbitrarily, Theorem 2.1.43 delivers the result. �

Notice that if F is constrained, F = NF(QCP (Q)) for some normal subgroup Q of F .

Thus Lemma 2.2.4 is only interesting when F is not constrained.

In Theorems 4.1 and 4.5 of [8], the authors prove analogues for fusion systems of the

following two results, due to Glauberman:

Theorem 2.2.5 [9, 14.10] Let G be a finite group, and P ∈ Sylp(G). Suppose that

x ∈ P ∩ Z(NG(J(P ))) and that any of the following hold:

(a) p is odd.

(b) x ∈ (Z(P ))p.

(c) G is S4-free.

Then x is weakly closed in P with respect to G.

Theorem 2.2.6 [9, 14.11] Suppose p is odd or G is S4-free. If CG(Z(P )) and NG(J(P ))

both have normal p-complements, then so does G.

The original proof of [8], Theorem 4.1 is longer than necessary. The proof presented

here uses less group theory:
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Theorem 2.2.7 [8, 4.1] Let F be a fusion system on a finite p-group, P . Suppose x ∈

Z(P ) ∩ Z(NF(J(P ))) and that any of the following hold:

(a) p is odd.

(b) x ∈ (Z(P ))p.

(c) p = 2 and F is S4-free.

Then x is weakly F-closed. In particular, Z(F) = Z(NF(J(P ))).

Proof. Let F be a minimal counterexample, so x ∈ Z(P ) ∩ Z(NF(J(P ))) and x is not

weakly F -closed, i.e. by Lemma 2.1.54, x /∈ Z(F). We let C denote the conjugation family

of all (F , J) well-placed subgroups of F (recall that J defines a positive characteristic p

functor). Now x /∈ Z(F) means there is ϕ ∈ F with xϕ 6= x, so there is Q ∈ C, ψ ∈

AutF(Q) with x ∈ Q and xψ 6= x. From amongst all such Q ∈ C, pick Q so that |NP (Q)|

is maximal. By definition of C, we haveQ, J(NP (Q)) ∈ Ff and so J(NP (Q)) ∈ NF(Q)f , so

their respective normaliser fusion systems, NF(Q), NF(J(NP (Q))) andNNF (Q)(J(NP (Q))),

by Theorem C, are all saturated. Suppose that F 6= NF(Q). Since xψ 6= x, x /∈

Z(NF(Q)) and x ∈ Z(P ) implies x ∈ Z(NP (Q)), so by the minimality of F , the

hypothesis must fail when applied to NF(Q), i.e. x /∈ Z(NNF (Q)(J(NP (Q)))). But

then x /∈ Z(NF(J(NP (Q)))), in particular, NP (Q) 6= P . But now by Lemma 1.1.18,

|NP (J(NP (Q)))| > |NP (Q)|, a contradiction to the choice of Q. So F = NF(Q).

Now Stancu’s Lemma 2.2.4 applies to give F = 〈PCF(Q), NF(QCP (Q))〉. Since x ∈

Z(PCF(Q)), x /∈ Z(NF(QCP (Q))). Since QCP (Q) E P , we have QCP (Q) ∈ Ff so

NF(QCP (Q)) is saturated. Also x ∈ Z(NNF (QCP (Q))(J(P )) and the minimality of F imply

that F = NF(QCP (Q)). Then QCP (Q) ∈ F c so F is constrained and has a model, G say.

But the hypotheses of Theorem 2.2.5 are now satisfied for G. So x ∈ Z(FP (G)) = Z(F),

as needed for the final contradiction. �
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The fusion system equivalent of Theorem 2.2.6, [8], Theorem 4.5 is an easy corollary.

By Theorem 2.1.37 this is the required generalisation.

Corollary 2.2.8 [8, 4.5] Let F be a fusion system on a finite p-group, P . Assume p is

odd or p = 2 and F is S4-free. Then:

CF(Z(P )) = NF(J(P )) = FP (P ) implies that F = FP (P )

Proof. By Theorem 2.2.7, Z(F) = Z(NF(J(P ))) = Z(FP (P )) = Z(P ), the last equality

following from the fact that every element in Z(P ) is fixed by every inner automorphism

of P . The result follows trivially since F = CF(Z(F)) = CF(Z(P )) = FP (P ). �

Using Corollary 2.2.8, we can now prove Theorem E. The idea is due to Glesser.

Theorem 2.2.9 (Theorem E) Let F be a sparse fusion system over a finite p-group P .

If p is odd or F is S4-free then F is constrained.

Proof (1). If J(P ), Z(P ) 5 F , then since F is sparse, CF(Z(P )) = NF(J(P )) = FP (P )

and by Corollary 2.2.8, F = FP (P ), a contradiction. Thus Q := Op(F) 6= 1. If Q ∈ F c,

we are done, so assume that Q /∈ F c. Then Q < QCP (Q) 5 F so NF(QCP (Q)) = FP (P )

which, by Lemma 2.2.4 means that F = PCF(Q).

Next recall that by Lemma 2.1.75, if F is H-free, so is F/Q. By Proposition 2.1.59, if

F/Q = FP/Q(P/Q) then F = FP (P ), so F/Q 6= FP/Q(P/Q). By Corollary 2.2.8 applied

to F/Q, NF/Q(R/Q) 6= FP/Q(P/Q), for some R > Q. A further application of Proposition

2.1.59 yields NF(R) 6= FP (P ), but since F is sparse, Q < RE F , a contradiction. �

We get the following result as a corollary:

Corollary 2.2.10 Suppose that p is odd or F is S4-free and . If NF(Q) = F or NF(Q) =

FP (P ) for all Q ∈ Ff , then F is constrained.
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Proof. Suppose not. Then by Theorem E, F is not sparse. However we can pick G ⊇

FP (P ), sparse. Then G is constrained so NF(Op(G)) ⊇ G with CP (Op(G)) ⊆ Op(G). But

Op(G) ⊆ Op(F), so CP (Op(F)) ⊆ CP (Op(G)) ⊆ Op(G) ⊆ Op(F) and F is constrained,

contradicting our initial assumption. �

We also get a swift proof of Theorem F, as noticed by Glesser in [10]:

Theorem 2.2.11 (Theorem F) Suppose that p is odd and let F be a fusion system on

a finite p-group P . Then NF(W (P )) = FP (P ) if and only if F = FP (P )

Proof. Let F be a minimal counterexample with respect to the number of morphisms in

F , i.e NF(W (P )) = FP (P ) but F 6= FP (P ). Now let G ⊆ F , be a proper subfusion

system of F , so that NG(W (P )) ⊆ NF(W (P )) = FP (P ). So NG(W (P )) = FP (P ) and by

the minimality of F we get G = FP (P ). So F is sparse. By Theorem E, F is constrained

so F has a model, G, say. But now FP (NG(W (P )))) = NF(W (P )) = FP (P ) implies

NG(W (P )) has a normal p-complement and hence so does G by Theorem B. In other

words, F = FP (G) = FP (P ), a contradiction, as needed. �

In some ways the proof of Theorem E, was unsatisfactory as its proof required results

which involve fusion systems. Remarkably, there is a very different proof requiring only

one ZJ-type theorem from finite group theory, namely Glauberman’s ZJ-Theorem. We

demonstrate this now:

Theorem 2.2.12 (Theorem E) Let F be a sparse fusion system over a finite p-group

P . If p is odd or F is S4-free then F is constrained.

Proof (2). Let F be a minimal counterexample with respect to the number of morphisms

and set Q = Op(F). If F = NF(QCP (Q)). Then QCP (Q) is normal and we must have

Q = QCP (Q) so Q ∈ F c and F is constrained in this case. Hence we may assume that
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F 6= NF(QCP (Q)). Since F is sparse, NF(QCP (Q))=FP (P ). Then Stancu’s Lemma

implies that F=PCF(Q).

We first show that Q = 1. Suppose not. Since Q is weakly F -closed, we may let

G be a fusion system on P/Q satisfying F/Q ⊇ G ⊇ FP/Q(P/Q) so that G is sparse.

Then R/Q := Op(G) 6= Q as G is constrained, by inclusion and the minimality of F .

But then R/Q is normal in P/Q and its preimage, R is normal in P . In particular, R

is fully normalized and NF(R) is saturated. Since FP/Q(P/Q) 6= G ⊆ NF/Q(R/Q) by

Theorem 2.1.59, NF(R) 6= FP (P ) so, as F is sparse, R E F which is a contradiction as

R > Q = Op(F), proving the claim.

Assuming Op(F) = 1, now choose T 6 P , fully F -normalised, so that R := NP (T ) is

of maximal order subject to the restriction that NF(T ) 6= FR(R). Notice such T exist by

Alperin’s Theorem. Choose U , a fusion system on on R, sparse, so that FR(R) ⊆ U ⊆

NF(T ). Notice that by Lemma 2.1.74, U is Qd(p)-free. By the minimality of F , and the

fact that U is sparse, U is constrained with Op(U) = T and thus there exists a Qd(p)-free

model, H for U .

We may now apply Glauberman’s ZJ-Theorem to get that Z(J(R)) E H. Since

Z(J(R)) char R, Lemma 2.1.14 implies that Z(J(R)) ∈ Ff and hence that NF(Z(J(R)))

is saturated. Now NF(Z(J(R))) ⊇ FR(H) implies that NP (Z(J(R))) is not a p-group

contradicting the maximal choice of T as R < NP (R) 6 NP (Z(J(R)). This final contra-

diction implies that F is constrained as needed. �

2.2.2 Glauberman’s ZJ-Theorem for Fusion Systems

In this section, F will always denote a fusion system on a finite p-group, P . Recall that

in Section 1.3, we saw that the following was true for the group W (P ) defined in the first

chapter:

Theorem 2.2.13 Let G be an Qd(p)-free finite group and let P ∈ Sylp(G). Suppose that
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G has characteristic p. Then there exists a non-trivial characteristic subgroup, W (P ) of

P which is normal in G.

In the fusion system case it is possible to bypass treating the odd/even prime case

separately by applying this Theorem. The proof idea is attributed to Stancu and Onofrei.

First an analogous definition of W (P ) in terms of fusion systems is needed. We define

this now:

Definition 2.2.14 Let P be a finite p-group. Let CJ be the class of fusion systems F on

P satisfying:

C1 J(P )E F for every F ∈ CJ .

C2 F is Qd(p)-free.

Set W0 := Ω(Z(P )) and let W := 〈W0ϕ | ϕ ∈ HomF(J(P ), P ) for F ∈ CJ〉.

Proposition 2.2.15 [16, 4.3] The following hold:

(a) 1 6= W char P ;

(b) W = W (P ); and

(c) for every F ∈ CJ ,F has a model, in which W is normal.

Proof. Let α ∈ Aut(P ) and F be a fusion system on P . Let Fα denote the fusion system

on P with morphisms:

HomFα(Q,R) := α−1 ◦ HomF(Qα,Rα) ◦ α.

Then F ∈ CJ implies that Fα ∈ CJ 8 and:

Wα = 〈W0ϕα | ϕ ∈ HomF(J(P ), P ) for F ∈ CJ〉
8F and Fα are isotypically equivalent.
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= 〈(W0α)α−1ϕα | ϕα ∈ HomFα−1(J(P )α, Pα) for F ∈ CJ〉.

Set ϕ := ϕα. By the fact that W0, J(P ) char P , this becomes

〈W0ϕ | ϕ ∈ HomFα−1 (J(P ), P ) for F ∈ CJ〉

which is clearly contained in W . The injectivity of α implies that |W | = |Wα|, so

W = Wα and part (a) follows.

Part (b) follows from [16], Section 4.2, where an analogous construction for W (P ) is

given in terms of fusion systems.

For any F ∈ CJ , J(P ) ∈ F c, thus F is constrained and has a Qd(p)-free model, L say.

Part (c) now follows from part (b) and Theorem A. �

Having constructed, W , we can now prove Theorem G:

Theorem 2.2.16 (Theorem G) Let P be a finite p-group and let F be a Qd(p)-free

fusion system over P . Then there exists a non-trivial characteristic subgroup W (P ) of P

which is normal in F .

Proof. This is trivially true for FP (P ). Let F be a minimal counterexample and set

Q := Op(F), R := QCP (Q). If Q = 1 then for every non-trivial X ∈ Ff , NF(X) < F and

by Proposition 2.1.74, since F is Qd(p)-free, NF(X) is Qd(p)-free. Thus by the minimality

of F , NF(X) satisfies the conclusion of the theorem, i.e NF(X) = NNF (X)(W (NP (X))).

But then Proposition 2.1.52, implies that F = NF(W (P )), a contradiction.

Claim: Q /∈ F c. Proof of Claim: If not, then F is constrained, which, by Theorem

D means that G(F) 6= ∅, i.e. there is a Qd(p)-free finite group, G with Sylow p-subgroup

P , such that FP (G) = F . By Theorem 1.3.10, G = NG(W (P )) so

F = FP (G) = FP (NG(W (P ))) = NF(W (P )),
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a contradiction.

Claim: F 6= PCF(Q). Proof of Claim: Suppose not. Since F is Qd(p)-free, so is F/Q

by Proposition 2.1.75 so by the minimality of F , F/Q = NF/Q(W (P/Q)). If V denotes

the inverse image of W (P/Q) in P , then by Proposition 2.1.59, F = NF(V ) implying

that V 6 Q. So W (P/Q) = QV/Q is trivial. But this is a contradiction since Q < R 6 P

means that P/Q is non-trivial, as then is W (P/Q).

Claim F is not a counterexample. Proof of Claim: Since F = NF(Q), Lemma 2.2.4

imples that F = 〈F1,F2〉, for F1 := PCF(Q),F2 := NF(R). Since F1,F2 ⊂ F , by

induction, W (P ) E F1,F2. Since W (P ) ∈ Ff , there is ϕ ∈ HomF(NP (W (P )), P ), such

that (W (P ))ϕ ∈ Ff . Since W (P ) char P , (W (P ))ϕ = W (P ) ∈ Ff . Thus, since

F = 〈NF1(W (P )), NF2(W (P ))〉 ⊆ NF(W (P )) ⊆ F ,

we have

F = NF(W (P ))

as needed. �
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