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SUMMARY 

 

Conservators treat and repair a huge array of damaged and degrading materials on a regular 

basis. As such, there are many techniques and protocols in place to deal with these problems 

successfully, be that via preventative or interventive methods. However, there is need for new 

and innovative techniques that offer long term stabilisation to materials and objects that are 

prevalent within museum collections. As an alternative to some of these conservation 

techniques, hydration with supercritical carbon dioxide was investigated here. 

Both modern and historic, hardwood and softwood samples were successfully hydrated using 

this technique. The addition of a co-solvent (methanol) to the supercritical fluid solvent stream 

was used as a method to increase the solubility of water in carbon dioxide, and therefore 

improve levels of hydration. To evaluate the extent of any damage being caused during the 

supercritical fluid treatment, microstructural and macrostructural analytical techniques were 

carried out. The supercritical hydration technique allowed historic wood to be hydrated and 

stabilised. Strength properties were seen to be maintained or improved after the supercritical 

treatment, providing conservators with a viable method of hydration. 

A feasibility study looking at the cleaning and characterisation of historic leather samples was 

investigated using spectroscopic methods. The sensitivity of Diffuse Reflectance Infrared 

Fourier Transform spectroscopy on historic leather was explored. Additionally, changes in 

elemental composition on the surface of the leather were monitored using Scanning Electron 

Microscopy Energy Dispersive spectroscopy. Cleaning historic leather via a supercritical 

carbon dioxide solvent stream showed the greatest potential for future work. However, the 

characterisation of unattributed historic leather is a vast and complex task that would require 

the expertise of a leather conservator, if the investigation were to be continued.  
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1.0 Literature Review 

 

 

ABSTRACT 

To ensure the long-term survival of culturally significant materials, conservation professionals 

employ a number of different preventative and interventive techniques. In museums, 

preventative techniques are typically used to stabilise a range of dry and fragile materials. 

Although effective, these stabilisation methods do not strengthen the deteriorated materials. As 

such, there is a need to investigate alternative conservation methods that are able to 

simultaneously stabilise and strengthen materials that are often complex and intricate in nature.  

Supercritical fluid (SCF) applications are widespread across the chemicals industry, mainly for 

extraction of high-value molecules or materials from complex mixtures or to oxidise waste 

products. Additionally, SCFs have previously been used to solve a number problems faced by 

museum collections around the world. Cleaning and deacidification are among the various 

conservation techniques investigated with the use of SCFs. It is proposed that the hydration of 

historic materials, via a SCF solvent stream, may be added to the list of techniques suitable for 

use within a conservation department. The possibility that this technique may stabilise, and 

strengthen historic materials to a greater degree than conventional conservation methods drives 

the programme of research described in this thesis. 

The first part of this chapter discusses the properties and uses of SCFs and specifically 

supercritical carbon dioxide (scCO2). Applications are highlighted as to why SCFs are expected 

to be a suitable solvent for applications within art conservation. This is followed by a current 

state of the art for international conservation practices. Common problems faced by 

conservation professionals, and the methods they use to solve such issues are then discussed 

alongside previous applications of scCO2 in art conservation. Finally, both wood and leather 

are characterised, with wood being the primary material of focus for the thesis. Methods to 

assess the microstructural and macrostructural features of both wood and leather are considered 

and discussed.  
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1.1 Introduction to supercritical fluids 

A supercritical fluid (SCF) can be defined as a substance that has a temperature and pressure 

greater than its critical temperature (Tc) and critical pressure (Pc) respectively (Subramaniam 

et al., (1997)). The critical temperature is the highest temperature at which the gas can be 

converted to a liquid by increasing the pressure. The critical pressure is the highest pressure at 

which a liquid can be converted to a gas by increasing the liquid temperature. The phenomenon 

is clearly shown in the phase diagram below (Figure 1.1). 

 

Figure 1.1. Generic temperature-pressure phase diagram for a pure substance made by author. 

Above the critical point the substance exists as in a single homogenous phase, where it will 

not condense or evaporate to form a liquid or gas (Taylor, 1996). The disappearance of the 

distinction between the liquid and the gas phases is illustrated in Figure 1.2 ((i) – (iv)). 
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Figure 1.2 Illustration of the formation of a homogenous phase: (i) The presence of a meniscus 

shows the two clear phases of a liquid and a gas (ii) The meniscus starts to diminish with increased 

temperature and pressure (iii) The density difference between the gas and liquid phases is 

decreasing. The meniscus is still present but severely diminished (iv) Critical temperature and 

pressure has been reached, therefore the distinct phases of a gas and liquid are no longer visible. 

One homogenous phase is shown. Adapted from (Oakes et al., 2001) 

1.1.1 Properties of supercritical fluids 

As mentioned in Section 1.1 SCFs exhibit a number of important characteristics including 

homogeneity, compressibility and a continuous change from gas-like to liquid-like properties 

(Clifford, 1999). The physiochemical properties of a SCF are of equal importance as they 

intermediate to those of a liquid and a gas. Table 1.1 shows some of these properties for a gas, 

liquid and SCF. 

Table 1.1 Typical physiochemical property values of gases, liquids and supercritical fluids 

Table 1.1 shows that SCF have liquid-like densities and gas-like viscosities and diffusivities 

higher than those of a liquid. These properties can be easily controlled by varying the 

temperature and/or pressure of a system, they are said to be ‘tuneable’ especially in the critical 

region (Figure 1.1) (Baiker, 1999). Due to this ‘tuneable’ capability and solvating power of a 

SCF being functions of density, the system can be changed between liquid and gas in the same 

critical phase. 

The density of a SCF is known to increase with increasing pressure at a constant temperature, 

and decrease with increasing temperature at constant pressure. As such the fluid is therefore 

compressible in the critical region. The diffusivity of a SCF decreases with increasing pressure 

and generally increases with increasing temperature (Tucker and Maddox, 1998). Higher 

Phases Density (kgm-3) Viscosity (μPa.s) Diffusivity (m2s-1) 

Gas 1 10 0.001- 0.01 

Supercritical Fluid 100-1000 50-100 1e-5 – 1e-4 

Liquid 1000 500-1000 1e-6 
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diffusivity allows for higher mass transfer and reaction rates. This is particularly applicable to 

carbon dioxide (CO2) due to the small size of its molecules, this is discussed later in section 

1.1.3. Temperature has a greater effect on SCF viscosities than pressure, however viscosity is 

also known to increase with pressure (Özcan, 1997). 

1.1.2 Supercritical carbon dioxide  

Although there are a number of substances that are useful as SCFs, CO2 is most the most 

commonly used solvent. CO2 is non-toxic at low concentrations, non-flammable, inexpensive, 

inert and recyclable resource. It also holds a generally regarded as safe (GRAS) status 

(Montanari et al., 1999) and is an environmentally friendly substitute for other organic solvents. 

Furthermore, CO2 is a gas at ambient temperature, therefore removing any solvent traces when 

it returns to ambient conditions. The conditions required for CO2 to become supercritical are; 

Tc = 31.1oC and Pc = 7.38 MPa. 

The CO2 used can be recycled from other existing industrial processes and therefore will have 

no adverse effects to global warming or the depletion of the ozone layer. 

1.1.3 Solvent properties of supercritical carbon dioxide 

Pure CO2 is a non-polar solvent, therefore supercritical carbon dioxide (scCO2) is a good 

solvent for non-polar or very slightly polar organic solutes. It is generally accepted that if a 

compound dissolves in hexane (short chain hydrocarbon) then it will dissolve in scCO2, due to 

their similar solvating abilities. This rule works well for low molar mass compounds but is not 

applicable to polymers with negligible vapour pressures (Subramaniam et al., (1997)).  

To overcome this problem scCO2 is commonly modified with polar entrainers to improve its 

affinity with polar compounds. Mixtures of two substances are known as binary mixtures. 

Entrainers can be used to increase or decrease polarity, aromaticity and chirality. Different 

entrainers can be added to CO2 to provide different characteristics for example aliphatic 

hydrocarbons decrease polarity, toluene imparts aromaticity and  [R]-2-butanol aids chirality 

(Clifford, 1999). However ethanol (EtOH) or methanol (MeOH) are most commonly entrained 

to increase polarity, because both have a relatively low molar mass and a critical pressure 

similar to that of CO2 (Clifford, 1999, Ekart et al., 1993). These are often added in 5% to 10% 

volumes but can also be added in up to 50% volumes, a small addition of an entrainer can have 

a large effect on the characteristics of the solvent. 
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When scCO2 is modified with EtOH its solvating power will be higher than that of pure CO2 

(scCO2(PURE)). This is largely due to the interactions between the solvent, CO2 and the co-

solvent, EtOH. Lewis acid-base interaction between the electron accepting carbon in CO2 and 

the electron donating oxygen in EtOH have been investigated by Lalanne et al (2004). Below 

Figure 1.3 illustrates the relatively strong specific interaction between OH-CO2 molecules, 

these were investigated with vibrational spectroscopy (Lalanne et al., 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Optimized geometry of CO2/EtOH complex (Lalanne et al., 2004) 

Saquing et al. (1998) report that the addition of a co-solvent also increases the density of the 

SCF solvent (CO2), however this is believed to play a minor role in enhancing the solubility’s 

of solutes (Saquing et al., 1998). Instead attention must also be paid to co-solvent and solute 

interactions. Physical interactions such as dipole-dipole, dipole-induced dipole and induced 

dipole-induced dipole may occur alongside chemical hydrogen bonding. Hydrogen bonding is 

known to play a part in the enhanced solubility of solutes in scCO2(EtOH), thus an enhanced 

solubility of water (H2O) in scCO2(EtOH) would also be expected due to the increased hydrogen 

bonding with the co-solvent and water (Foster, 2002). It can be predicted that MeOH will 

interact in similar way to EtOH as a co-solvent, due to its comparable size and intermolecular 

bonding. 
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1.1.4 Physio-chemical properties of carbon dioxide and methanol systems 

Adding an organic entrainer to a CO2 system, creates a mixture that has a higher critical 

temperature and pressure than a pure system. It is important to understand the effect of 

parameters, such as temperature and pressure, on the mobile phase of the mixture to ensure that 

experiments are carried out in the correct supercritical phase. 

1.1.4.1 Physical properties of carbon dioxide and methanol systems 

Figure 1.4 below shows experimental vapour-liquid equilibria data of CO2 and MeOH mixture 

system (non-ideal mixture) at 40oC by (Kodama et al., 1998). The figure shows that the CO2 

and MeOH mixture can exist in one phase, liquid, gas or SCF outside the data points, and as 

two phases, vapour and liquid, shown by the enclosed area from the data points. The liquid and 

gas region reaches a maximum in pressure at the critical point for a temperature of 40oC. To 

ensure the mixture is in a single phase it is normal to use a pressure above 10 MPa, thus 

avoiding the vapour-liquid area.  

Figure 1.4. Vapour-liquid equilibria for the CO2 and MeOH system at 40oC, adapted 

from (Kodama et al., 1998) 

Increasing the pressure from below the critical pressure with a mixture of critical composition 

where gas and liquid phases will exist, as seen above, will cause the following to occur. 

Increasing pressure will cause the liquid to dissolve more CO2 whilst the gas will solvate more 

MeOH, the gas will then increase in density more rapidly than the liquid (Clifford, 1999). When 

the critical point is reached the compositions and densities of the two phases will be identical, 

or homogenous and hence above the critical pressure only one fluid phase will exist. It should 
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be said that for a binary mixture the term “supercritical” is more arbitrary than for that of a 

pure substance. 

1.1.4.2 Critical temperature and pressure in a carbon dioxide and methanol system 

Computer programmes that have been developed by Saito et al. (1994) can be used alongside 

equations proposed by Cheuh and Prausnitz (1967), to calculate theoretical values for the 

critical temperature and critical pressure for different mixtures of CO2 and organic solvents 

(Chueh and Prausnitz, 1967) (Saito et al., 1994). Table 1.2 uses such values to demonstrate the 

relationship between the MeOH mole fraction and the critical parameters. We can see that with 

an increasing MeOH mole fraction the critical temperature increases at a steady rate whilst the 

critical pressure increases to a point and then starts to decrease again. This relationship is shown 

more clearly in Figure 1.5 with the critical pressure exhibiting a maximum value at a MeOH 

mole fraction of approximately 0.45. 

CO2 Volume 

Ratio 

MeOH Volume 

Ratio 

MeOH Mole 

Fraction 

Critical 

Temperature 

(oC) 

Critical 

Pressure 

(MPa) 

100 0 0.00 31.1 7.4 

90 10 0.07 51.1 10.5 

80 20 0.12 64.9 12.2 

70 30 0.20 85.9 14.4 

50 50 0.36 124.4 16.5 

0 100 1.00 239.5 8.1 

Table 1.2 A table to show the effect on critical temperature and critical pressure with 

varying MeOH mole fraction in a CO2 and MeOH system.  

As the pressure increases the density will rapidly increase, this relationship is more distinct as 

the temperature of the fluid increases. This shows that if the pressure is kept above the critical 

pressure of the mixture, but the temperature is increased, then the mobile phase will be 

changed from liquid to gas to supercritical. When the pressure is increased at a higher fluid 

temperature, the mobile phase will be changed from gas to supercritical. 
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Figure 1.5. A graph to show the relationship between calculates values for critical 

temperature and pressure and the MeOH mole fraction, adapted from JASCO INC 

Application Notes (Burkhardt, 2012).  

1.2 Uses and applications of supercritical fluids 

Although the phenomena of SCFs was first reported in 1822 by Baron Gaginard de la Tour, 

the technologies associated with them have only really been developed extensively since the 

late 1970’s (Berche et al., 2009). There are many applications of SCFs, listed below are three 

of the most common; 

• Supercritical Fluid Extraction (SFE) 

• Supercritical Fluid Chromatography 

• Supercritical Fluid Cleaning 

Of these applications SFE is the most developed technology on an international scale. 

1.2.1 Supercritical fluid extraction 

SFE can be used to extract compounds of interest from a more complex compound matrix e.g. 

vanillin from vanilla pods and caffeine from green coffee beans (Reverchon et al., 1993). SFE 

is commonly carried out on a solid matrix but is also possible in a liquid. Compared to a 

traditional SOX extraction system SFE provides a more efficient, environmentally friendly and 

cost effect method (Snyder et al., 1992).  

A typical SFE rig (Figure 1.6) will consist of the following: CO2(l) from a cylinder is passed 

through a chiller to form the more dense CO2(l). The CO2(l) then arrives at the mechanised pump 
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and is pressurised above the critical pressure of CO2. This high pressure gas can then be passed 

through a modifying chamber where the chosen co-solvent e.g. MeOH, will be entrained with 

the CO2(g). The SCF mix is then sent to the heat exchanger and bought above the critical 

temperature of CO2, the CO2 is then supercritical. This is then passed through a vessel 

containing the sample and the extraction takes place. The solutes are then separated out and 

removed at a lower pressure in a collection reservoir (Sihvonen et al., 1999).  

 

Figure 1.6 A basic schematic illustration of a typical scCO2 extraction rig (Liang et al., 

2012) 

A SFE system can be set up in one of three ways; in a dynamic method where the SCF 

continuously flows through the sample and the collection reservoir or in a static method, here 

the SCF is circulated in a loop with the extraction vessel for a period of time before being 

released into a trapping vessel. A combination of both these methods can also be used. For SFE 

the choice of the optimum pressure at which to run the system is a compromise between process 

yield and operational cost. 

1.2.1.1 SFE and solubility 

Solubility is hugely important in extraction. As previously mentioned in Section 1.1.1 varying 

the temperature and pressure of the SCF allows for an easily tuneable system with small 

changes in solubility. It should be noted here that generally SCFs are at their most sensitive 

around the critical point (Hegg, 2010). Work carried out by Lou et al. (1997) suggests that the 

effects of temperature on solubility is far more complicated than that of pressure. They found 

that the effects of temperature depended on not only the temperature and pressure conditions 
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but also the properties of the solutes and the fluid. Mass transfer mechanisms also play a part 

in extraction processes (Reverchon, 1997). For example, even though waxes on the surface of 

a leaf have very low solubility in scCO2, it is possible to extract them because they have no 

affinity with the solid leaf matrix. Therefore, the scCO2 extraction occurs with minimal mass 

transfer resistances. In contrast, essential oils that are highly soluble in scCO2 also exhibit high 

mass transfer resistances through the solid phase, thus extractions here are controlled by mass 

transfer mechanisms. 

Consideration of the matrix and rates of diffusion are therefore important (Engelhardt and 

Haas, 1993). Location of the natural materials and the components being extracted should be 

considered as the solute must be transported relatively rapidly from the interior matrix. The 

rate at which this occurs depends on the shape and dimensions of the matrix and its diffusion 

coefficient. Desorption from the matrix site must be allowed to occur, this may be a case of 

being released from a polymer chain or passage through a cell wall. 

scCO2 behaves as a lipophilic solvent and is good at extracting light oils and also higher 

molecular weight materials which can include waxes, paraffin’s, lipids and resins. As 

previously mentioned the advantage of using scCO2 for SFE is that its selectivity and solvent 

power are adjustable; liquid-like and gas-like properties can be achieved for the extraction of 

different solutes (Reverchon, 1997). Attention should be paid to the temperature and pressure 

at which oils are extracted using scCO2, as thermal degradation of the oil can occur under 

extreme conditions. 

1.2.2 Supercritical cleaning with carbon dioxide 

Both CO2(l) and CO2(s) are known for their cleaning properties. Snow cleaning systems require 

a high output velocity and are particularly good at removing a range of particle sizes from 

material surfaces (Sherman, 2007). Whilst CO2(l) operates at a low pressure and can be 

incorporated in common bulk washer systems with the addition of surfactants. scCO2 is 

particularly suited to the precision cleaning of porous intricate parts (Purtell et al., 1993). The 

technology is able to use the solvent properties of CO2 alongside the unique properties of SCFs 

to carry out precision cleaning. The lower surface tension associated with the fluid state allows 

for scCO2 to spread along the surface of a sample part more easily than a liquid, whilst also 

maintaining the ability to dissolve substances that are soluble, which a gas cannot.  

Cleaning with scCO2 uses the same procedure as SFE except the main vessel is replaced with 

a cleaning vessel which can contain an impeller to promote mixing. The contaminants in liquid 
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form are then separated off in a separator vessel and CO2 gas is sent to the chiller to be recycled 

through the system (Sawan, 1998). It is a closed loop process with only a very small portion of 

cleaning solution needing to be replaced over time. Drying or rinsing are not required to remove 

any residual dirt and there is not a waste stream apart from the removed contaminants. 

Due to the properties discussed in Section 1.1.3 scCO2 is particularly suited to removing non-

polar, hydrophobic contaminants.  Of course, a co-solvent can be added to help aid the removal 

of polar soils e.g. fingerprints. The process is effective from a technical viewpoint and is 

superior to other methods when samples are composed of an intricate geometry, or when 

samples are water and or heat sensitive (Mchardy et al., 1993). It is also advantageous for 

samples that have very long drying times with aqueous cleaning. However, there are technical 

limitations to the process and problems with economies of scale. 

1.2.2.1 Problems with polymeric materials 

Polymers will absorb CO2 to a lesser or greater degree depending on their solubility. Polymer 

solubility is dependent on three key characteristics; morphology, composition and polarity (Lee 

and Henthorn, 2012). When absorption occurs the polymer viscosity is reduced along with the 

melting temperature (Woods et al., 2004). Absorption only occurs in the amorphous regions of 

the polymer, amorphous polymers therefore absorb CO2 to a greater extent than crystalline 

polymers (Shieh et al., 1996). These property changes can be advantageous. In the medical 

industry research into drug delivery systems has focused on the decrease in the glass transition 

temperature caused by the polymer swelling (Kasturirangan, 2007), this allows for increased 

diffusion rates which in turn can be used for impregnating small drug molecules into the 

polymer structure. When the glass transition temperature of a polymer is reduced below the 

processing temperature it is known as plasticization (Lee and Henthorn, 2012). 

Sensitive polymers that undergo extreme polymer swelling and CO2 dissolution are not suitable 

for applications of cleaning. However, cleaning at the polymer surface can be suitable for more 

crystalline polymers that undergo little or no change on interaction with CO2 (Tomasko et al., 

2003). 

1.2.3 Sterilisation with scCO2 

Perrut (2012) states the growing importance of the use of SCFs and their interactions with 

microorganisms. The ‘green’ status of scCO2 provides an interesting alternative to established 

processes for sterilization, pasteurisation and virus inactivation. Sterilisation is the act of 
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making some object free of live bacteria or other microorganisms, usually by heat or chemical 

means. Pasteurisation is the partial sterilization of foods at a temperature that destroys harmful 

microorganisms without major changes in the chemistry of food (Perrut, 2012). There are three 

common methods of sterilization used in the medical and pharmaceutical industries today; 

ethylene oxide exposure, γ-irradiation and steam sterilisation (Dillow et al., 1999). Whilst ultra-

high temperature (U.H.T.) is the most common form of pasteurisation in the food industry. 

These methods are effective but carry disadvantages for thermally and hydrolytically sensitive 

materials/substances. Sterilisation by scCO2 provides a route for complete inactivation that is 

free of organic solvents and irradiation and be carried out at moderate temperatures.  

1.2.4 Impregnation 

Impregnation is the process of imbuing or saturating a material or substance with something. 

Functionalising substances, known as impregnates, are able to chemically or physically bind 

to a bulk material, or substrate, thereby modifying or enhancing certain characteristic properties 

of the substrate (Builes and Vega, 2012).  

1.2.4.1 Classical vs. supercritical fluid impregnation 

Due to disadvantages associated with liquid and gas phase solutes for impregnates, exploiting 

SCF properties for impregnation has become of increasing interest. Liquid phase solutes 

provide slow diffusion rates and long process times, whilst gas phase solutes are hindered by 

low space yields (Elles and Crim, 2006). SCF solutes however, can deliver deep penetration 

over short periods of time with low associated temperatures, and can provide the possibility of 

altering the substrate due to easily tuneable pressures in the critical region (Weidner, 2012) 

(Table 1.3). 
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                  Classical Impregnation              vs.           SCF Impregnation 

• Low diffusion rates 

• High operating temperatures 

• Low depth penetration 

• Long process times 

• Need for hazardous solvents 

• Need for drying procedures 

 

• High rates of diffusion associated 

with SCF 

• Low/moderate operating 

temperatures 

 

• Potential for deep penetration 

• Short contact times 

• No need for hazardous solvents 

• No drying procedures 

 

Table 1.3. A table to show the key properties associated with both classical and SCF 

impregnation methods. 

 

1.3 Introduction to art conservation 

Art conservation is a science based discipline dedicated to the preservation of cultural heritage 

for the benefit of future generations (Price et al., 1996). Conservators are trained in the methods 

of conservation for different art works of varying material, age and deterioration. These 

methods can include cleaning, preserving and repairing works of art from deliberate damage 

or the inevitable decay caused by the effects of time and handling (Viñas, 2005). Conservators 

often specialise in specific types of art work, including but not limited to, painting, paper, 

textiles, photographs, sculpture, furniture and ethnographic objects. Specific guidelines are 

dictated by international centres of conservation as shown by Table 1.4. The guidelines that are 

particularly relevant to the nature of this study are highlighted in bold. 

Conservation can be preventative or take direct action on an object in order to stabilise or retard 

further degradation. Whilst restoration involves work carried out on an already severely 

damaged object in order to bring back some of the original historic and aesthetic values relevant 

to object and its environment (Letellier and Eppich, 2015). 
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Professional Standards Professional Judgement & Ethics 

1. Assessment of cultural heritage - 

Assessing and reporting on condition, 

environment  

and threats, assessing risks, identifying any  

problems to be solved.  

 

2. Conservation options and strategies - 

Identifying and evaluating options;  

courses of action for conservation 

measures. 

  

3. Conservation measures - 

Advising on, developing policy for and  

implementing conservation measures; 

planning to minimise the effects of disasters 

and emergencies; maintaining conservation 

records 

 

4. Organisation and management - 

Managing projects and workflow; 

client/internal and external relations; health 

and safety; security; records and reports 

 

5. Professional development - 

Maintaining up-to-date practice; 

extending and communicating 

knowledge; promoting  

conservation and the care of cultural 

heritage 

i. Understanding principles and practice  

 

ii. Conversance with guidelines  

 

iii. Understanding the wider contexts of 

conservation  

 

iv. Critical thinking, analysis and synthesis  

 

v. Openness to alternative methods and  

approaches  

 

vi. Understanding the ethical basis of the  

profession  

 

vii. Observing code of ethics and practice  

 

viii. Observing legal requirements  

 

ix. Responsibility for the care of cultural 

heritage  

 

x. Responsible and ethical dealings with 

others  

 

xi. Respect for the cultural, historic and 

spiritual context of objects  

 

xii. Handling value-conflicts and ethical 

dilemmas  

 

xiii. Understanding and acting within the 

limits of own knowledge and competence  

 Table 1.4 Summary of the professional standards and professional judgement and ethics 

recommended by Professional Accreditation of Conservators-Restorers (PACR) and the 

Institute of Conservation (ICON), taken from (Icon, 2014) 

1.3.1 Conservation practices and problems  

There is an ongoing debate between artists and conservation professionals. Many are concerned 

about the methods used to restore valuable artworks, believing that the preservation techniques 

not only devalue the work but harm the original integrity of the work. Conversely many think 

that these practices are essential to the long term survival of irreplaceable and historic works 

(Viñas, 2005). Both sides state strong arguments that are unlikely to be solved soon. It can be 

said that conservation work destroys the authenticity of the artwork, however it is also true that 
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if it weren’t for skilled conservation methods artworks would be unlikely to survive for future 

generations to enjoy. 

 

Each different material, be it paper or paint, requires a different technique for conservation. In 

practice, most techniques are relatively simple following standard procedures according to the 

media. However, they require a very high level of patience and care with some conservation 

projects taking years to complete. All materials require a controlled environment for optimum 

conservation, with humidity control being the most vital. However light exposure, air pollution 

and changes in temperature must also be controlled within strict guidelines.  

Art conservators are faced with a number of different problems for different media on a daily 

basis. However, there are problems that occur more commonly than others and pose larger 

threats to the survival of cultural heritage. Highlighted below are three specific areas that 

warrant a large amount of the conservator’s time, they include; environmental (atmospheric) 

controls, deacidification of media and the presence and removal of pesticides in museum 

collections. 

1.3.1.1 Environmental controls (preventative conservation) 

A major part of preventative conservation is maintaining and controlling the environmental 

and atmospheric conditions within a museum or gallery space. Unfortunately, it is often found 

that the need to display and promote cultural heritage to the general public has a direct negative 

effect on the stability of the collections. Commonly, it is the needs of the visitors that are 

catered for and not the works within the museum. This can result in the collections being 

housed in environmental conditions that may cause long term detrimental problems (Blades et 

al., 2000). Consequently, a number of studies have been carried out across European museums 

recording and collecting environmental data to find the key factors which cause degradation.  

Camuffo et al. (2001) investigated microclimate, gaseous and particle air pollution and 

biological contamination in four museums across Europe. Variations in temperature and 

humidity are known to directly affect factors associated with preventative conservation. Across 

all four museums it was found that building structure, air conditioning or vent systems, heating, 

exchange of outside air and visitor numbers all played a part in temperature and humidity 

imbalance (Camuffo et al., 2001).  

Humidity is defined as the amount of moisture or water vapour in the air. An increase in 

humidity will cause hygroscopic materials to absorb water causing dimensional changes and 
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internal stress, whilst a decrease in humidity causes shrinkage (Brown and Rose, 1996). If these 

variations persist long term, then changes in dimensions of a material will have an adverse 

cumulative effect. Non-hygroscopic materials are sensitive to variations in temperature; 

continual raising and lowering of temperature causes changes in their visco-elastic properties, 

therefore reducing the materials ability to return to their original structural integrity under 

controlled conditions (Placet et al., 2008). This is a particular problem for paintings as the 

possibility of the cracking and flaking of paint increases dramatically. 

The discovery and subsequent public access to the Palaeolithic cave paintings at Lascaux in 

the 1940’s, provides a harsh lesson in the fragility of media in a disturbed microclimate. Now 

a United Nations Education, Scientific and Cultural Organisation (UNESCO) world heritage 

site, the cave paintings show some of the oldest prehistoric art in the western world. Left in 

peace since around 15000 BC the paintings were found in near perfect condition. However, 

they were soon to become victims of their own fame, with the markings almost disappearing 

from site just some twenty years after their opening to the public. A number of factors including 

changes in air circulation, light and approximately 1,200 visitors per day caused a damaging 

change in the established equilibrium resulting in extensive mould and fungus growth (Bastian 

et al., 2010). After being closed for a number of years, it has now been established that the 

original environmental conditions can once again be restored in the cave interior (Brunet et al., 

2000). Here the decision to completely stop public access has been vital to the survival of the 

Lascaux paintings, mass tourism meant that the irreplaceable works were very nearly lost 

forever.  

It seems that conservators face an ongoing difficult decision between the comfort and interests 

of museum visitors or the long term survival of cultural heritage (Kerschner, 1992). Certainly, 

many museums compromise the necessary stable conditions essential to the long term 

conservation of cultural heritage over the daily needs of mass tourism. Attention must be paid 

to the microclimates established within a museum walls and the factors needed to maintain 

that.  

1.3.1.2 Deacidification 

Acidification of different media is a major problem in all areas of art conservation, with the 

acidification of cellulose fibres in paper and canvas being the most prevalent. Throughout 

history, paper in various forms and structure, has been used for the dissemination of cultural 
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heritage (Baty, 2010). Paper deacidification therefore represents a fundamental process within 

conservation. 

An increase in demand and the invention of the printing press in mid-nineteenth century saw a 

dramatic change in the way paper was produced. The birth of the printing press saw linen and 

hempen based paper replaced with the more convenient and industrially efficient wood pulp 

paper (Baglioni et al., 2013). Unfortunately, this media was more chemically reactive to 

hydrolytic degradation as well as thermal and oxidative degradation. 

Hydrolysis in paper, under stable conditions, is usually a slow process that causes the yellowing 

of paper and loss of mechanical strength. However, the hydrolytic process can be catalysed by 

acidic pH levels due to the increase in available hydrogen positive (H+) ions, causing increased 

cellulose depolymerisation and subsequent aging of the cellulose fibres (Arney et al., 1979). 

Paper degradation is termed as an ‘autocatalytic’ process (Giorgi et al., 2002). This is due to 

the main components of paper, including lignin, hemicellulose and hydrolysed cellulose being 

oxidised by acidic products added during the papermaking process. The oxidation of these 

materials produces acidic by-products that continue to catalyse the degradation process. 

Increased temperature and moisture will also increase the rate of hydrolysis. These degradation 

processes shorten the average chain length of a fibre therefore damaging the mechanical 

strength. Giorgi et al (2002) estimate that the breaking of 0.5 – 1.0% of bonds in the cellulosic 

fibrils virtually leads to the complete loss of fibre strength. 

In general a successful deacidification process should neutralize the acidic paper and produce 

thermodynamically stable by-products that are able to act as a alkaline reservoir (Giorgi et al., 

2002). There are currently two main deacidification techniques in conservation; the Wei T’o 

Method and The Bookkeeper Method (Porck, 1996).  

1.3.1.2.1 The Wei T’o Method 

Used for mass deacidification of books, the Wei T’o method uses the effective agent methoxy 

magnesium methyl carbonate (MMMC) in a solvent mixture of MeOH and hydrochloro-fluoro 

carbons (HCFC’s). HCFC’s have replaced previously used chloro-fluoro carbons (CFC’s) 

which are harmful and known to cause depletion in the ozone layer. The books for 

deacidification have to be preselected so that books with certain inks, adhesives and synthetic 

bookbinding’s are excluded due to risk from MeOH. The books are dried prior to treatment to 

decrease the water content from  about 6% to 0.5%. The books are then impregnated under 
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pressure with MMMC. The magnesium compounds formed neutralise the acid and build an 

alkaline reserve. 

1.3.1.2.2 The Bookkeeper Method 

The Bookkeeper Method uses the magnesium oxide (MgO) in a solvent of perfluoro heptane. 

Prior to treatment books or sheets of paper are place in a cylinder and brought to equalised 

pressures. The deacidification suspension is then pumped in causing the deposition of highly 

reactive, sub-micron sized particles of MgO. These particles have high surface area and are 

held to the paper by electrostatic forces, they will neutralise any acid present in the paper 

texture e.g. sulphuric acid (H2SO4). Any unreacted MgO forms an acid reserve. In the presence 

of sulphuric acid, the following reaction will occur: 

𝑀𝑔𝑂 + 𝐻2𝑆𝑂4 → 𝑀𝑔𝑆𝑂4 + 𝐻2𝑂                                                                        (Equation 1.1) 

 

Although there are established methods for deacidification in paper and cellulose based 

materials, due to the enormity of the task there is a need to develop mass deacidification 

methods that work on an unselective basis. Currently a number of books and cellulose material 

varieties are not suitable for deacidification treatment due to a certain level of risk (Arney et 

al., 1979). The use of nano-technologies is one particular route that may prove fruitful to 

conservators in the future (Baglioni et al., 2013, Giorgi et al., 2005). 

 

1.3.1.3 Cleaning and pesticides in museum collections 

 

Collections and museum objects are often routinely cleaned as part of conservation procedures. 

However, it has recently become apparent that in many cases more extensive cleaning is 

necessary to remove the presence of harmful pesticides. In the past, to prevent pest infestations, 

the use of pesticides in museum storage areas and on collections has been extensive. It is known 

that since the eighteenth century the application of pesticides in museums has been liberal and 

mismanaged, resulting in a lack of or very incomplete records (Krug and Hahn, 2013). 

Collections and staff are at potential risk due to the toxic nature of many of the well-known 

chemicals and heavy metals in standard pesticides. 

 

Chlorine, lead, arsenic and mercury are found in pesticides. These chemicals and elements are 

often volatile or semi-volatile and will accumulate in the air or dust particles. Due to the lack 
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of records the amounts or types of pesticides used are not known.  This is a major problem for 

museums worldwide. In America the National Museum of American Indian Act in 1989 and 

the Native American Graves and Repatriation Act in 1990 encouraged the return of objects to 

their native communities with information of treatments applied (Madden et al., 2010). This in 

part led to the need to recognise and record the pesticides used. However, there is no 

standardised methodology in place to measure residues and simple question such as what 

degree of removal is sufficient, remain unanswered.  

 

Although Integrated Pest Management  is now state-of-the-art worldwide, the problem remains 

with the recognition and removal of pesticides, with no standardised guidelines. Early 

insecticide analysis using gas chromatography on 118 samples from the Danish National 

Museum Ethnological Department showed the presence of naphthalene, dichloro-diphenyl-

trichloro-ethane (DDT) and methoxychlor (Glastrup, 1987). Whilst analysis carried out by 

Kigawa et al (2011) found that fumigation under standard museum conditions caused chemical 

alterations to proteins such as muscle, animal glue and silk. They also found residues of 

bromine and iodine left in glue and silk (Kigawa et al., 2011). X-Ray fluorescence (XRF) 

results from the textiles at the German Historical Museum Collections found the presence of 

lead and chlorine in high quantities with mercury and arsenic in smaller amounts (Krug and 

Hahn, 2013). 

 

Clearly there is a need to remove these substances from museum collections. However, there 

is a lack of effective methods for the removal of harmful substances that are embedded in the 

matrix of items. In current practise conservators are primarily concerned with cleaning the 

surfaces of materials and removing dust from museum storage and facilities (Tello and Unger, 

2010). These methods of cleaning are not enough to remove embedded substances. An effective 

decontamination method needs to be established to successfully and permanently remove 

poisonous substances. 

 

1.3.2 Conservation of wood 

In general, the conservation methods applied to wood all depend on the circumstances in which 

it was found or kept, and what state it is in. Dry, wet and waterlogged wood all present 

conservators with different challenges. The moisture content of the wood collected dictates the 

conservation method that will be applied; at the extremes the wood will either be dry or 
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waterlogged with the fibre saturation point of the wood providing the distinction point (Unger 

et al., 2001). Dry wood is most susceptible to attack by pests and microorganisms and is also 

more at risk to changes in its environment. Although waterlogged wood is considered the more 

sensitive of the two  having been weakened by water, it is the most commonly found of the 

historic wood types due to the anaerobic environment in which it is submerged (Haake, 2014).  

1.3.2.1 Waterlogged wood 

In waterlogged wood, water-soluble starches and sugars are the first to be leached from the 

wood structure along with tannins and mineral salts. Over time, hydrolysis will also cause the 

cellulose in the cells walls to break down leaving only lignin to support the wood structure. 

Water replaces the degraded wood materials which provides some stability in the structure 

(Christensen et al., 2006). Consequently, wood from waterlogged, archaeological sites is 

always treated immediately or stored in water to stop the wood structure from undergoing 

shrinking or extreme warping (Kaye, 1995). 

Following the correct storage, the treatment of large waterlogged wood items is well 

established. The process commonly proceeds in two key steps; a consolidant material is added 

to help retain mechanical strength in the structure, whilst the excess water needs to be removed 

from the wood, avoiding shrinkage and distortion (Grattan and Clarke, 1987). This procedure 

was followed after the excavation of Henry VIII’s flagship, the Mary Rose, in 1982. For 12 

years conservators in Portsmouth sprayed fresh water onto the ship structure to remove the salt 

and to stop the wood from drying out, whilst the following 19 years were spent spraying the 

structure with Polyethylene Glycol (PEG) to displace excess water (Björdal and Nilsson, 2001). 

PEG has been used as a consolidant on large waterlogged items for several years, however the 

process is time consuming, irreversible and expensive. The conservators on the Mary Rose 

have therefore sought to develop an alternative to PEG that is more time efficient in its 

application and has antibacterial properties that make separate applications of antibacterial 

preservatives redundant (Walsh et al., 2014). Freeze-drying combined with a solution of PEG 

is the most favoured method for the conservation of smaller waterlogged items. However, it is 

also an expensive treatment and is limited by the size of the freeze-chamber (Hamilton, 1999). 

1.3.2.2 Dry wood  

Dry wood exposed to insect activity and environments of fluctuating humidity is at the highest 

risk of degradation. In galleries or museums maintaining and controlling a stable environment 

is a key factor in the preservation of wooden items. However, for wood that has that has been 
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buried at terrestrial sites or exposed to the environment, attack by microorganisms, including 

fungi and bacteria, is the most prevalent form of degradation. It has been found that some 

woods are at a greater advantage than others with oak, cedar, redwood, juniper and cypress 

wood having a higher tolerance to decay than pine, birch, beech (Zabel and Morrell, 1992). As 

discussed in Section 1.2.3 most microorganisms require oxygen and moisture to thrive in an 

environment, a lack of either of these conditions will severely hinder their growth (Perrut, 

2012). Therefore conservators often place wood in an oxygen purged environment, impeding 

the colonisation of aerobic organisms (Blanchette, 2000). Boric acid can also be used by 

conservators as it kills most common insects (Haake, 2014).  

1.3.3 Conservation of leather  

Of all the materials to be found in a museum collection, leather is one of the most complex to 

conserve. ‘Leather’ as a category of material cannot be considered as a single material, but 

more as an indication of many sources from which the material may have originated (Waterer, 

1971); leather can be made from almost any animal hide and processed in many different ways 

(Dirksen, 1997). The manufacturing of leather as a product has changed and developed over 

time, however it is the application of different tanning processes (vegetable or mineral) 

(Section 1.6) that cause the most problems for conservators. 

 The conservation of leather is usually approached in one of two ways; via either an interventive 

or preventative method, depending on whether the item requires more urgent or passive 

conservation (Haines, 1991a). In recent times there has been a move away from the traditional 

interventive methods of conservation that can include the application of dressings and 

treatments, towards methods of preventative conservation (Dirksen, 1997). Here preventative 

conservation is concerned with the appropriate storage conditions for leather varieties, rather 

than the addition of waxes or resins that can cause oxidation and biological deterioration. As 

such temperature, humidity and light exposure should all be controlled by conservators, as well 

as providing a physical support for the leather items to avoid cracking, splitting and general 

loss of structure (Alcántara, 2002).  

1.4 Applications of supercritical carbon dioxide in art conservation 

The application of scCO2 within art conservation has not been extensive, this is probably due 

to the high costs associated with the specialist equipment required for scCO2 and the relatively 

low research funding found in most conservation departments across the world. However, 

when scCO2 has been used in a conservation capacity the results have been very encouraging. 
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scCO2 has been known to be used in the restoration of paper, wood, stone, textiles and various 

ethnographic materials (Sousa et al., 2007). Cleaning, including the removal of pesticides, and 

deacidification are two of the most widely investigated applications in conservation. 

1.4.1 Cleaning with supercritical carbon dioxide 

Sousa et al. (2007) carried out some very interesting work on the cleaning of heavily 

deteriorated and soiled eighteenth century textiles using liquid and scCO2 as a solvent stream. 

The addition of co-solvents to the solvent stream including scCO2 with isopropanol (IPA), and 

scCO2 with IPA and water were investigated. Commonly, with textiles such as these, a wet 

cleaning method would be employed in the restoration process. However, this can be 

ineffective at dirt removal and cause problems such as shrinkage. The dry-cleaning properties 

of scCO2, as discussed in section 1.2.2 are well known attributes of the fluid and can be used 

for the delicate cleaning of textiles as a replacement to contemporary wet cleaning practices. 

The dirt extracted from the textiles by Sousa el al. (2007) was evaluated through weight loss 

and colour variation. Through various degradation processes the textiles had lost mechanical 

strength, mechanical properties were therefore also investigated with optical microscopy in 

longitudinal cross sections. It was found that scCO2 with IPA as a co-solvent actually increased 

the percentage of dirt found on the surface of the material, this is probably due to the high 

diffusivity of the fluid causing particles to migrate to the surface without being extracted. The 

higher density CO2(l) was more successful at removal of dirt from the surface, water as a co-

solvent was also found to have a very positive effect. A two-step process was found to be the 

most effective process for dirt extraction. Firstly, pure scCO2 is used, removing 50 - 70% of 

dirt and roughly 25 - 35% in extremely soiled areas. Secondly, CO2(l) is used, removing up to 

50% of dirt from extremely soiled areas. The addition of co-solvents helps to promote the 

extraction of polar particles from the surface, this removes a further 20% of the dirt. Analysis 

showed that the fibre and texture of the material was not physically damaged and there was no 

loss of material, this is obviously of primary importance to conservators. 

The addition of a co-solvent in scCO2 is commonly used to increase the solubility of CO2 

(Section 1.1.4). Recently scCO2(co-solvent) mixtures have been used for the removal of organic 

materials from archaeological artefacts for radiocarbon dating. Currently harsh acid-base 

treatments are used to remove contaminating organic matter from archaeological objects in 

preparation for 14C dating with accelerator mass spectroscopy (AMS). Unremoved 

contaminants can interfere with the AMS reading and cause an inaccurate determination of age. 
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Rowe et al. (2013) employed a simple SFE process with scCO2(MeOH) to remove the organic 

contaminants prior to plasma oxidation and AMS. Initially, wood and charcoal samples were 

extracted. Comparison between these SFE samples and the acid-base pre-treatments found 

equivalent 14C results. Russian textiles along with Russian and Egyptian mummy gauzes were 

also treated. A gas chromatography/mass spectroscopy carried out on these extractions found 

traces of beeswax, coconut oil, frankincense, glycerol, humic acids (Rowe et al., 2013). This is 

not unexpected given that scCO2 is known to be particularly good at extracting fat and lipid 

based materials (Section 1.2.2). This method to pre-treat samples before 14C dating shows great 

promise as a method where conservation is of interest. Coupled with non-destructive plasma 

oxidation it provides a viable alternative to harsh acid-base treatments (Rowe et al., 2013). 

1.4.1.1 SFE for the Removal of Pesticides  

Tello (2006) in her thesis used SFE with CO2 to clean a range of ethnographic objects of 

varying media, followed by SFE for the removal of heavy metals and pesticides. There are 

currently no set procedures for the removal of heavy metals and pesticides within museum 

collections, methods are therefore wide ranging, inefficient and in some cases can present 

health hazards. Dry and wet cleaning procedures dominate the current removal practices with 

methods including vacuum extraction, freeze drying procedures and the use of ultrasonic waves 

(Tello, 2006). For the removal of the poisonous substances from the selected samples Tello 

(2006) slightly altered her experimental conditions from the SFE cleaning conditions. Using a 

10L vessel the pressure was increased from 25 MPa to 35 MPa along with the extraction time 

from 3 to 7 hours, whilst the flow rate was decreased from 20 kgh-1 to 2 kgh-1. The temperature 

remained constant at 40oC, remaining just above the Tc for CO2. The addition of modifiers was 

also assessed; 95% EtOH was used as a co-solvent and trimercaptotriazine was sometimes 

added to EtOH to form chelates; these were to try and aid the removal of arsenic and mercury. 

It was determined that pesticides and heavy metals can be removed from the ethnological 

materials and objects via SFE with a solvent stream of scCO2. Levels of chlorine containing 

compounds such as DDT and lindane can all be reduced significantly, as can the heavy metal 

mercury. It was also found that even with the addition of entrainers, the levels of arsenic were 

not affected. Visually all the materials remained unaffected, with the exception of a piece of 

caribou fur that was subject to drying and de-greasing, thus reducing its stability.  

Kang et al. (2004) focused on pesticide reduction in wood using scCO2, with special attention 

paid to colour retention in the material. A much shorter extraction period of 30 minutes under 
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45oC and 30 MPa was used to assess the removal of DDT from wood species. scCO2 was found 

to removal 60% of DDT from wood coated with pigments that would commonly be found on 

wooden icons.  Overall, there was a minimal impact on the colour quality of pigments (Kang 

et al., 2004). Zimmt et al (2009) used scCO2 with acetone as a co-solvent for the removal of 

commercial Diazonion solution, a pesticide in chrome tanned leather. Here it was found that 

extraction with pure scCO2 resulted in 50% pesticide removal, whilst the addition of acetone 

resulted in no detectable pesticide residue (Zimmt et al., 2010). From a conservation viewpoint, 

it is important to note that in all of these studies scCO2 was used as a solvent stream for the 

extraction of pesticides without harming fragile materials. 

Clearly, several factors affect the extent of pesticide removal from a chosen material. 

Consideration must be paid to the non-polarity of CO2 and the poisonous substance, solubility 

of substance in CO2 and the structure of the matrix of the object/material. For example, scCO2 

is particularly good at removing chlorine-based pesticides, these like CO2 tend to be non-polar 

and are therefore soluble in CO2 (Section 1.1.3). Wet cleaning procedures are unable to remove 

these non-polar substances due to the high polarity of water. Diffusion of the pesticides into 

the material matrix is also influential. Some matrices are in general easier to penetrate than 

others, for example leather and plant fibres are easier to penetrate than calcium or keratin based 

substances. Initially easy penetration allows the pesticide to diffuse deep into the matrix, 

however it also allows for easy diffusivity of scCO2; aiding the extraction of pesticides. 

Interestingly, Tello (2006) suggests that the thickness of material may play a part in 

decontamination, with thicker materials such as fur and leather responding much better to 

extraction than thinner blades of grass or horse hair. This is perhaps something to consider 

when determining extraction conditions. 

1.4.2 Neutralising and strengthening with supercritical carbon dioxide 

Neutralising and strengthening treatments for aged acidic paper are some of the most important 

methods in conservation, they are used on a regular basis and help to restore yellowing paper 

with diminished mechanical properties. Although there are established methods for 

deacidification and strengthening within conservation, they are not without their problems. 

Some treatments are known to actually damage paper strength, whilst others that require a gas 

phase treatment that can only be carried out in industrial settings which increases costs (Selli 

et al., 2000). Using scCO2 as a solvent stream provides a low cost, non-toxic alternative that 

does not cause further deterioration of inks, bindings or adhesives. 
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Selli et al. (2000) carried out a cleaning treatment on wood pulp paper under supercritical 

conditions with CO2 for 30 minutes. This was followed by a deacidification treatment with 

scCO2 and calcium carbonate (CaCO3). Due to the high diffusivity and low viscosity of the 

fluid, CaCO3 is distributed across the whole vector, neutralising acidic ions and acting as an 

alkaline reservoir. Analysis of kinetic equations have shown that an alkaline reservoir 

significantly reduces the rate of degradation over time (Selli et al., 2000). Treatments were then 

carried out on artificially aged acidic paper samples under similar conditions but with the 

addition of an EtOH co-solvent and 40 wt.-% of either Catechol (1,2-dihydroxybenzene) or 

PEG 400. Under mechanical tests these samples were shown to have improved strength after 

the addition of Catechol, PEG 400 showed no improvements. It has been suggested that 

Catechol forms strong hydrogen bonds with the cellulose chains in the paper creating a stronger 

cross-linked structure (Arshid et al., 1956). 

Research carried out by Francais et al. (1998) looks at a mass deacidification and strengthening 

process that consists of three key processes; extraction, impregnation and stripping. Extraction 

of the degradation products using scCO2 and EtOH is followed by impregnation of a basic 

organometallic agent. The best results were found using methyl-ethyl magnesium carbonate 

with scCO2 and EtOH, neutralising papers with a pH over 7.0 and creating a significant alkaline 

reserve. It should be said that the basic extraction not only reduced odorous components, 

biological contamination and yellowing colour agents, but also showed significant moisture 

reduction with slight deacidification and increased mechanical strength. There was also no 

adverse effect on the paper, printing inks, or covers with only the disappearance of hand written 

inks. These are all important observations to note in the context of conservation. Extraction 

was followed by a strengthening treatment which was carried out via the impregnation of 

silicon-derived and cellulose-derived polymers, concluding that a mixture of strengthening 

agents would perhaps produce the best results. Stripping with scCO2 and EtOH was used to 

remove any unreacted agents, with a final treatment of pure scCO2 to eliminate any EtOH 

residues. 
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1.5 Material Characterisation: Wood 

1.5.1 Cellulose, hemicellulose and lignin 

Wood is a non-homogenous, porous solid composed mainly of three constituents; cellulose, 

hemicellulose and lignin. Cellulose provides the skeleton of the wood structure, hemicellulose 

the matrix and lignin binds the cells together providing rigidity for the cell (Sahle-Demessie, 

1994). Cellulose consists of linear chains made of D-glucose linked ß-1,4-glycosidic bonds 

forming polymer chains that are stiff and straight (Figure 1.7). Cellulose polymers are known 

to have both, highly crystalline and amorphous regions. Hemicelluloses are carbohydrate 

polymers with random and amorphous structures located within the cellulose and between the 

crystalline cellulose and lignin (Yang et al., 2007). Hydrogen bonding exists between cellulose 

and lignin, as well as the cellulose and hemicellulose. 

 

 

 

Figure 1.7. Cellulose linear chains of D-glucose linked by ß-1,4-glycosidic bonds (Benabid 

and Zouai, 2016) 

Lignin occurs uniquely in vascular plants and serves several vital functions including bonding 

cellulose and hemicellulose together, cross-linking carbohydrates, and providing mechanical 

strength and biodefence to plants. Lignin also provides the hydrophobic surface that allows 

plants to transport water to heights greater than 100 metres (Novaes et al., 2010). Wang (2016) 

defines lignin as an amorphous, polyphenolic material arising from an enzyme mediated 

dehydrogenative polymerisation of three phenylpropanoid monomers; conniferyl, synapyl and 

p-coumaryl alcohols (Figure 1.8). 
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Figure 1.8. The lignin precursors and the most abundant binders in lignin (Santos et al., 

2012) 

Viscoelastic properties of wood are due to the amorphous polymer structure of lignin. Lignin 

demonstrates both areas of elasticity and areas of viscosity, with the elastic regions responding 

immediately to strain and the viscous areas responding more slowly. Viscoelastic properties 

are often advantageous causing the wood to bend under strain rather than snap, with the lignin 

matrix dissipating energy through the structure. 

In general softwood contains 26 – 32% lignin, temperate hardwood structures contain 20 – 

25% whilst tropical hardwood structures can contain in excess of 30% lignin. Evidence has 

shown that softwood lignin varies little between species, however it has been suggested that 

the structure of hardwood lignin may vary greatly between species (Santos et al., 2012). 

1.5.2 Hardwood and softwood structures 

The anisotropic nature of wood means that it is described in three co-ordinate directions; radial, 

tangential and longitudinal (Figure. 1.9). 
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Figure 1.9. Diagram showing the three main axes in wood; longitudinal, tangential and 

radial. With respect to grain direction and growth rings, taken from (Bergman, 2010)   

Wood species can be characterised by their macroscopic characteristics and are classified into 

two distinct groups; gymnosperms also known as softwoods and angiosperms also known as 

hardwoods. However the structure and permeability of wood can be complex to understand 

due to the presence of early and late wood, sapwood and heartwood within the species 

(Eriksson et al., 1990). 

1.5.2.1 Softwood 

Softwoods have a simpler structure than hardwood (Figure 1.10). For most softwoods over 

90% of the wood is composed of vertical cells called tracheids, these longitudinal cells control 

fluid conduction through the wood (Stamm, 1964). The cell cavity of the tracheid is called the 

lumen and adjoining each tracheid are openings known as pits (Section 1.5.2.3). Pits in 

softwoods consist of minute membrane pores which can be easily blocked by debris, thus 

affecting fluid penetration (Section 1.5.6). In the horizontal plane, bands of ray parenchyma 

cells are orientated from the pith of the tree to the bark. Around 1% of softwood is made up of 

resin canals.  

1.5.2.2 Hardwood 

Hardwood structures have two main types of cells in the vertical plane; vessels (pores) which 

are joined together one on top of another and carry sap upwards, and bulky tracheids that are 

made up of thick cell walls which provide strength in the vertical plane (Figure 1.10) (Stamm, 

1964). These vessels can be arranged in one of two ways, ring-porous or diffuse-porous. In 
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ring-porous hardwoods the vessels are large in the early wood and small and evenly distributed 

in the latewood. Diffuse-porous hardwoods are composed of medium sized, evenly distributed 

vessels throughout. When the vessels dry up they are called tyloses. Some hardwoods have 

impenetrable tyloses and some have none, so are easily penetrable (Rowell, 2012). 

Longitudinal parenchyma are thin walled cells that store food for wood, in some domestic 

hardwoods up to 24% volume can be parenchyma.  Horizontal rays are much more abundant 

in hardwoods than in softwoods. Hardwood rays have two different cell types; procumbent and 

upright cells. Procumbent cells are square or rectangular and arranged horizontally, whilst 

upright cells lie along the axis parallel to the grain and are located on the upper or lower ray 

margins. 

 

Figure 1.10 Illustration to compare the cellular arrangement in hardwoods and 

softwoods. Taken from (Bergman, 2010). 

Many hardwoods are deciduous species. Temperate hardwoods tend to be dormant in winter, 

as the temperature falls in the autumn the trees will lose their leaves. Tropical hardwoods 

however will only lose their leaves in response to seasonal or sporadic periods of drought.  

 

1.5.2.3 Pits 

In both soft and hardwood flow between the longitudinal conductive cells is controlled by pits 

(Ahmed and Chun, 2011). The two main types of pits are called simple and bordered. All pits 

consist of a pit cavity and pit membrane. Pit cavity width can vary; in simple pits it is usually 

constant, in bordered pits the cavity wall narrows towards the cell lumen. The pit membrane is 

made up of the primary wall and middle lamella. Pits commonly occur in pit-pairs, as the walls 

of adjoin cells are layered on top of each other. Two simple pits are a simple pit-pair, two 
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bordered pits are a bordered pit-pair and a pairing of a simple and a bordered pit is called a 

semi-bordered pit (Rowell, 2012). 

In softwood bordered pits, the membrane has a central thickened disk called a torus. Aspiration 

of this pit can occur though lateral displacement of the membrane, this usually occurs when a 

wood is dried or when sapwood is transformed into heartwood. Permeability of aspirated pits 

depends on membrane area, the type of material that has covered the membrane and how firmly 

the torus is seated. In unaspirated pits permeability is a function of porosity, thickness and 

membrane area. 

 

Figure 1.11. Diagram showing the common types of pit pair (from left to right) A: Simple 

pit. B: A simple pit-pair. C: Softwood bordered pit pair where the border is raised above 

the level of the surrounding wall and the membrane has a torus. Reproduced from 

(Meylan and Butterfield, 1972). 

1.5.3 Wood strength and stiffness 

Wood is found to be reasonably stiff, this is due to the composite nature of the material. As 

discussed in Section 1.5.1 wood is made up of cellulose fibrils, hemicellulose and lignin. The 

cellulose fibrils bind the lignin and hemicellulose together providing strength within the wood 

structure. The fibrils have a Young’s Modulus (E) value of 100 GPa with lignin and 

hemicellulose only around 6 GPa (Greer, 2008). As expected the cell walls within the wood 

have a much higher elasticity than the wood itself. Hence less force is need to split with the 

grain, separating the weaker lignin and hemicellulose, whilst a greater force is needed to split 

the strong cellulose against the grain.  
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Modulus of Elasticity (MOE) refers to Young’s Modulus and is a number that measures an 

object or substance’s resistance to being elastically deformed as a force is applied to it. MOE 

of wood is made weaker by spaces between the cell walls being filled by air or water even 

though the cellulose fibrils have a high Young’s Modulus.  Modulus of Rupture (MOR) or 

bending strength is defined as the stress in a material just before it yields in a flexure test. MOR 

can be used to measure a wood species overall strength, unlike MOE, which measure’s the 

woods deflection but not its overall strength. Young’s Modulus is strongly correlated to density 

as shown in Figure 1.12. Typically, a very stiff (or very strong) material has a high value of 

Young’s Modulus and a high density, hence as the density of the material increases so does the 

stiffness. Wood types have very different densities depending on the different specimens. For 

example, Balsa is a very low density wood at about100 kgm-3 whist Oak can have a density of 

up to about 1000 kgm-3.  

 

Figure 1.12. A graph to represent the relationship between density and Young’s Modulus 

for different wood types with and across the grain. Reproduced from (Walters et al., 2010) 

1.5.4 Moisture content in wood  

Wood is a hygroscopic material. Hygroscopic materials absorb and retain moisture from the 

air; high levels of humidity lead to high levels of moisture being absorbed by the wood 

structure. Water molecules are attracted to the free hydroxyl sites on the cellulose polymer 

chain resulting in a monomolecular layer of water held in place by strong hydrogen bonds. The 

pushing apart of the cellulose by the water molecules is the beginning of the wood structure 
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starting to swell. The measure of water in wood is described by the Moisture Content (MC). 

MC  is a percentage measure of how much water is in wood relative to the wood itself 

(Simpson, 1993) this is expressed in Equation 1.2 below (Eckelman, 1994); 

𝑀𝐶 = (
𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡−𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
)×100                                                                      (Equation 1.2) 

Equilibrium moisture content (EMC) occurs when the MC of the wood is stabilised and there 

is no difference in the vapour pressure between the wood and local air. EMC in hygroscopic 

materials is reached when the surrounding environment has a temperature and relative humidity 

that are stable. 

Wood Condition MC (%) 

Dry Wood ≤19 

Stabilised Wood – INDOOR 8 – 14 

Stabilised Wood – OUTDOOR 12 – 18 

Fibre Saturation 28 

Table 1.5 Moisture content values for wood in different conditions. Values taken from 

(Reeb, 1995) 

When a wood becomes saturated, and reaches a MC of about 28% there are two types of water 

known to be present in the wood structure; free and bound water. Water held in the cell walls 

is known as bound water, this is where water will be held initially when the wood absorbs 

moisture. Once the fibres within the cell wall become saturated water will be absorbed and held 

in the cell cavities, this is free water. The presence of free water can be destructive and lead to 

decay as the water is accessible within the wood structure. Therefore, usually decay only starts 

to occur once the MC of wood goes beyond the fibre saturation point (FSP). 

Unseasoned timber 

 

 

 

 

 

 

 

 

100% MC: free and bound 

water present 

Partially unseasoned timber 

 

 

 

 

 

 

25% MC: free water removed 

FSP 

 

 

Seasoned timber 

 

 

 

 

 

 

 

 

15% MC: all the bound 

water has been removed  

Figure 1.13. The presence of free and bound water and the respective MC values in the 

three stages of seasoned to unseasoned timber. Drawn by author. 
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Changes in MC can also cause wood to shrink and swell, this only occurs below the fibre 

saturation point with shrinkage commonly taking place between 28 – 19% MC. Changes in the 

presence of bound water in the cell walls directly effects dimensional changes in wood, 

however free water has no effect as it is only present above a MC of 28%. Shrinkage is known 

to take place mainly the tangential plane of the wood, with only half as much occurring in the 

perpendicular plane. Repetitive shrinking and swelling can cause ‘checks’ or cracks to develop 

tangential to the wood rings, causing permanent structural damage. 

1.5.4.1 Effect of water on the mechanical behaviour of wood 

Increased water content in wood lowers the stiffness and strength of the wood structure. When 

wood is saturated the cell walls fill with water, which causes them to soften and change in 

dimension. The cellulose fibrils that make up the cell wall have both a crystalline and 

amorphous matrix composed of a series of polymer chains. These polymer chains have strong 

hydrogen bonds between the cellulose-cellulose chains. However, cellulose-water bonds are 

more preferential due to water being a small highly polar molecule, thus cellulose-cellulose 

bonds are broken to form cellulose-water bonds. The hydrogen bond linkage in cellulose is 

show in Figure 1.14. 

The broken cellulose bonds cause the softening of the cell walls, making the fibrils easier to 

stretch, in turn reducing stiffness. The strength of wood is also reduced as wood becomes 

saturated and water fills the cells walls, the walls expand, increasing in surface area and 

reducing the number of cellulose fibrils per unit area (Greer, 2008). 

 

Figure 1.14. The structure and intra - (1) and interchain (2) hydrogen bonding pattern in 

cellulose (Baptista et al., 2013) 
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1.5.5 Transportation processes in wood 

The transport of fluids through wood can be divided into two types; bulk flow and diffusion. 

1.5.5.1 Bulk flow 

Bulk flow is the flow of fluids through the interconnected voids of wood structure under the 

influence of a static or capillary pressure gradient e.g. the impregnation of wood with 

monomers for in-situ polymerization or the pressure treatment of wood with biocides to prevent 

decay. The extent of bulk flow of a fluid through a wood is determined by permeability (Siau, 

1984).   

Discussing the relationship between porosity and permeability can help us greater understand 

bulk flow through wood. Porosity is a measure of how much of a material is open space, whilst 

permeability is a measure of the ease with which a fluid can move through a porous material. 

A material therefore has to be porous to be permeable, however for permeability to exist the 

spaces in the material must be connected by free unblocked openings, hence not all porous 

materials are permeable (Hoadley, 2000). The permeability of wood will therefore also depend 

on the distribution of pit pairs and the number of cell walls that must be traversed. As mentioned 

in Sections 1.5.2.1 and 1.5.2.2 the structure of wood not only varies greatly between species 

and specimens of the same species, but between one growth ring to the next (Stamm, 1964). It 

is therefore acknowledged that fine measurements of both permeability and porosity in porous 

solids are difficult to calculate. 

Darcy’s Law is commonly used to describe liquid flow through porous media, however it can 

also be used to help understand the flow of fluids through wood (Cussler, 2009): 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐹𝑙𝑢𝑥

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡
                                                                                      (Equation 1.3) 

Here conductivity is permeability. Darcy’s Law makes a number of assumptions some of which 

are not applicable to wood. Nonetheless it is still useful to utilise Darcy’s Law for looking at 

flow rate and pressure gradient. The main assumptions of Darcy’s Law are (Siau, 1984): 

I. Flow through the media is viscous and linear. Applied pressure differential is therefore 

directly proportional to linear velocity and volumetric flow. 

II. The fluid is homogenous and incompressible. 

III. The porous medium is homogenous. 

IV. There is no interaction between the fluid and the substrate 



 

35 
 

V. Permeability is independent of length of the specimen and flow direction. 

Accordingly, when applying Darcy’s Law to wood the following assumptions should be 

addressed (Siau, 1984); I – viscous flow generally occurs when capillary openings are small, 

as they are in wood. For this there is a relatively high viscous drag because of the high ratio of 

surface area to volume. Under these conditions the high flow velocities necessary for 

turbulence are improbable. However, non-linear flow can occur at relatively low velocities 

where fluid moves from a large to a small capillary, such as a tracheid lumen to a pit opening. 

II – liquids are essentially incompressible, but the compressibility of gases must be taken into 

consideration.  III and IV – wood has a very complex and non-homogenous structure especially 

in the case of hardwoods. When water flows through wood there are hydrogen bonding forces 

exerted by the hydroxyl sorption sites on the cell wall surface. Therefore, the permeability of 

wood to water and aqueous solutions is lowered in comparison to non-polar liquids of the same 

viscosity. 

Darcy’s Law for liquids: 

𝐾 = (
𝐹𝑙𝑢𝑥

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡
) = (

𝑄
𝐴

𝛥𝑃
𝜇𝐿

) =
𝑄𝐿𝜇

𝐴𝛥𝑃
 

(Equation 1.4) 

Where K is permeability (m2), Q is volumetric flow rate (m3s-1), L is the length of the specimen 

in the flow direction (m), μ is the viscosity of the liquid (Pa⸳s), A is the cross-sectional area of 

the specimen perpendicular to the flow direction (m2) and ΔP is the pressure differential (Pa). 

Due to the high penetration ability of SCF solvents compared to that of liquids, SCF 

impregnation for the delivery of aqueous solutions e.g. biocides, into wood and wood 

composites has become an area of great interest, with developments into commercial scale 

practices. scCO2 is able to overcome pit impermeability which poses a limitation to effective 

biocide treatment in heartwood (Acda et al., 2001). It has been shown that SCF treatments are 

able to completely impregnate Douglas-fir heartwood, which have previously been resistant to 

fluid treatments (Morrell et al., 1993).   

Wood will not equilibrate instantaneously when being pressurised by a fluid, a pressure 

differential will occur between the surface of the wood and the interior. The development of 

this differential is dependent on pressurisation, venting rates and the structural geometry of the 
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wood (Lenth and Kamke, 2007). Permeability is therefore directly related to pressure 

development. To some extent the differential can be controlled by adjustments in pressurisation 

and venting rates, therefore avoiding excessive pressure differentials and decreasing the 

chances of permanent damage to the wood structure (Schneider et al., 2006). However, the 

inclusion of a co-solvent makes the relationship more complex. 

 

1.5.5.2 Diffusion  

Diffusion through wood can be subdivided into two types; inter-gas diffusion which includes 

the transfer of water vapour through the air in the lumens of the cells and bound water diffusion 

which takes place within the cell walls of the wood. Examples of diffusion in wood include the 

air drying or kiln drying of wood and in the interior of woodwork or furniture in response to 

seasonal changes in relative humidity.  

The movement of biocides into wood during SCF impregnation is also dependent on diffusion. 

The rate of diffusion is controlled by many factors including the chemical and physical 

interaction between each component part; wood, biocide and CO2. An understanding of each 

of these relationships and the condition effects upon them is crucial in being able to create a 

diffusion model to describe and predict impregnation (Lucas et al., 2007). Unfortunately, there 

has been limited success in the development of such models that are accurately able to predict 

the total retention figures and distribution of biocides in wood under supercritical conditions. 

Sahle-Demessie (1994) based a model for predicting retention and biocide distribution on 1-D 

compressible flow through porous media controlled by measurable fluid and wood 

characteristics. However, no attention was paid to adsorption and desorption interactions and 

their subsequent effect on the model. Kang et al. (2006) used the Egners solution method and 

experimental data to calculate a diffusion co-efficient in 1-D diffusion, however the co-

efficients were found to be unusually high as the concentration gradients approached zero. 

Lucas et al. (2007) were able to create a two-parameter model that made accurate retention 

predictions. However, decanal, the biocide used has an extremely high solubility in scCO2 

compared to other biocides, and is capable of both physical and chemical reactions with 

lignocellulosic material. 

 

This relationship between the lignocellulose and the high pressure scCO2 is of importance, but 

not greatly understood (Kjellow and Henriksen, 2009). The structure of wood mainly consists 

of amorphous polymers. Sorption of scCO2 into a synthetic polymer matrix can cause swelling 
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and affect the physical and mechanical properties of the polymer (Von Schnitzler and Eggers, 

1999) (Section 1.2.2.1). 

 

1.6. Additional material characterisation: leather  

Leather encompasses a vast material category, as a product is can be made from the skin of any 

animal and can be manufactured in many ways (Guldbeck, 1969). The most common skins 

used for leather production include cattle, sheep, goats, pig and horse. The skin of any of these 

animals is made up of three main layers; the top layer or epidermis which provides 

waterproofing and a barrier to infection, the corium or dermis is the thickest layer and provides 

tensile strength and elasticity to the skin, and finally the bottom layer which is mainly consisted 

of flesh (Demeroukas and Ritchie, 2015) (Figure1.15). The correct handling of the corium layer 

in skin produces a durable and flexible leather, a tanner’s main job is to preserve the corium 

from putrefaction. The corium “is made up of collagen fibres, which in turn are composed of 

helically-twisted protein biopolymers, chemically linked to one another to allow for strength 

and flexibility”(Storch, 1987). It is important to remember, especially when considering the 

conservation of leather products, that each species of animal will have a slightly different 

collagen composition in its skin, therefore giving the leather a unique appearance. 

 

 

 

 

 

 

 

 

Figure 1.15. A diagram to show the three main layers of skin: epidermis, dermis and fatty 

tissue or flesh. Reproduced from (John. F, 2015) 

The manufacture of leather has changed greatly over the last 50 years with the development of 

faster tanning processes. Traditionally leather was manufactured via vegetable or alum tanning, 

the processes of which are outlined below. From 1884 onwards, chrome tanning was developed 
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and revolutionised leather production with much shorter tanning times, today, 80% of leather 

is produced via chrome tanning methods (Dirksen, 1997). Despite these different methods, the 

preparation for tanning all follow the same process which involves the following steps; soaking 

→ fleshing → liming/dehairing → de-liming → bating → pickling. The removal of hair and 

the epidermis of the hide allows the tanning solution to infiltrate the collagen fibres, the flesh 

layer is also cut away leaving just the corium for conversion to leather.  

1.6.1 Vegetable tanning 

Vegetable tanning is the most traditional form of tanning for leather production. This process 

uses tannins derived from plant sources such as extracts from bark and wood of trees e.g. oak. 

The tannin molecules bind to the collagen fibrils and separate them, this stops the fibrils from 

shrinking and sticking together and create a tough and durable leather that has a natural colour 

varying from pale to reddish brown.  

However, vegetable tanning is not without its disadvantages. The process is very slow and can 

take up to two years, some tannins have also been found to produce leathers that are more 

susceptible to degradation by red rot (Van Soest et al., 1984). This is especially the case with 

leathers that were produced between 1850 – 1900. During this time, H2SO4 was added to the 

preparation process as a more effective method of hair removal, consequently all the calcium 

salts which made the up protective enzymes known as ‘non-tans’, were also removed (Haines, 

1991b). Although the addition of H2SO4 gave the leather a higher quality finish desired by 

manufacturers, it also left the leather more much more susceptible to deterioration by red rot.  

1.6.2 Mineral tanning 

1.6.2.1 Alum tanning 

Alum tanning is the more traditional of the two mineral tanning methods outlined here, it 

follows a simple method called thawing that requires inexpensive chemicals. A chosen animal 

skin, typically pig or goat, is steeped in a warm solution of potash alum and salt for 10 to 15 

minutes, egg yolk and flour may also be added at this point to enhance the leathers pliability 

and softness (Barlee, 2001). The leather is then removed and dried over a period of weeks. 

Leather produced by the thawing process is white in colour, soft and resistant to many 

microorganisms. It should be noted that the thawing process is not permanent and can be 

reversed by submerging the leather in water. 
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1.6.2.2 Chrome tanning  

Chrome tanning has been used from around the early 1880’s onwards and is distinct from 

vegetable tanning in its efficiency of leather production. Leather hides must be placed in acid 

baths prior to the addition of chromium (III) sulphates, this ensures that the chromium 

complexes are small enough to fit between the fibre and residues of the collagen fibrils 

(Sreeram and Ramasami, 2003). The pH of the solution is then raised after a sufficient level of 

penetration of chromium has been reached, this is the basification step. Chrome tanned skins 

are naturally blue in colour (wet blue) but can be surfaced dyed to a variety of colours; the 

leather is also typically hard-wearing, waterfproof and supple.  

The main disadvantages associated with chrome-tanning are its related environmental 

concerns. The poor exhaustion levels of chromium salts have led researchers in America to 

believe that there would be an economical loss of $100 million per annum, due to material loss 

(Sundar et al., 2002). Guidelines have been set for permissible levels of chromium in 

wastewater, however the high cost of treatment systems for chromium waste removal have 

rendered better management in tanneries a priority (Suresh et al., 2001b).  

1.7 Analytical techniques for wood and leather  

1.7.1 Macrostructural analysis: Three-point bend test  

The three-point bending test is a popular method for determining the MOR and hence the 

strength of wood. In this test a specimen with a rectangular or flat cross-section is placed on 

two parallel supporting pins. The loading force is applied in the middle by means of a loading 

pin; the test requires very basic sample preparation and is simple to carry out. Motlagh et al. 

(2010) used the three-point bending test to evaluate the load capacity, ultimate strength, MOR 

and the mode of failures of Iranian historic wood samples that were reinforced with carbon 

fibre polymers. Samples were prepared as per ASTM D-143 (2006) standards. Samples such 

as these are said to be clear and homogenous and they are void of any defects such as knots or 

cracks which are common in unprepared wood samples (Motlagh et al., 2012).   

Although the three-point bending test and the four-point bending test seem very similar in 

procedure and sample preparation they do have some distinct differences in application 

(Mujika, 2006). The four-point bending test is thought to be the more reliable of the two 

mechanical tests for measuring tensile stress, this is supported by Weibull statistical analysis 

(Junior et al., 2008). The selection of a mechanical test is important, especially if you are 
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dealing with very brittle materials such as ceramics. Hence the three-point bending test is 

recommended for homogenous samples like plastic, whilst the four-point bending test is more 

suitable for non-homogenous, composite materials (Belouettar et al., 2009).  The three-point 

bend test is ideal for the specific isolation of stress on a material, whereas the four-point 

bending test produces peak stresses across a larger region of the test specimen, therefore 

causing greater exposure to possible defects or failures in a sample.  

1.7.2 Microstructure analysis: Microscopy 

Wood properties at a macroscopic scale are in part determined by the structure at a microscopic 

scale. Light microscopy provides a simple and effective way of looking at wood morphology 

with minimal sample preparation. For conservation purposes species, determination is a key 

step when assessing wooden artefacts. Light microscopy can provide identification of the wood 

species as well as information for evaluating the samples chemical, physical and mechanical 

properties (Mizuno et al., 2010, Čufar et al., 2014). Ultraviolet (UV) microscopy is convenient 

for the study of lignin compounds. This type of microscopy is able to exploit the characteristic 

π-π* transitions of the aromatic moieties in lignin that cause a higher level of UV absorption 

than lignin found in carbohydrates (Łucejko et al., 2015); Li et al. (2014) used UV microscopy 

to determine the state of lignin preservation in historic Chinese bamboo samples.  

Scanning Electron Microscopy (SEM) can also be used for looking at the surface morphology 

of wood. Visual information about the sub microscopic level in wood which consists of 

microfibrils embedded in an interfibrillar matrix can also be determined. In SEM, after an 

electron beam is scanned across the surface of a prepared sample, signals caused by the 

excitation of secondary electrons are detected and mapped to produce images. For these images 

to be successful the samples must be carefully prepared. Typically, solid bulk samples are 

mounted on holders or stubs using a conductive tape or adhesive. Non-conductive samples such 

as wood, are then coated in a thin layer of electrically conducting material e.g. gold or 

gold/palladium alloy, via low vacuum splutter-coating. This coating enhances the emission of 

secondary electrons, allowing for more detailed mapping and thus more clarity in the SEM 

images produced. 

By comparing known degradation effects on wood, sometimes known as ‘degradation 

signatures’, it is possible to observe and classify types of bacterial and fungal attacks on wood 

via SEM (Blanchette, 2000). SEM is commonly used alongside other analytical procedures to 

help clarify types of degradation in wood and interpret chemical results. Light and electron 
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microscopy were used in conjunction to determine major forms of microbial decay in 

waterlogged wood found in Sweden (Björdal and Nilsson, 2001). SEM has also been used for 

the analysis of chrome tanned leather to study grain surface and fibre bundles (Suresh et al., 

2001a, Krishnamoorthy et al., 2012). 

SEM with Energy Dispersive X-ray spectroscopy or SEM/EDS is used for surface elemental 

analysis of solid materials. During SEM, interactions between the primary beam and the atoms 

in the test sample cause shell-transitions which result in the emission of an X-ray. The energy 

characteristic of the X-ray can be detected and characterised which allows for EDS analysis 

(Fandrich et al., 2007). SEM/EDS can provide quantitative analysis of elemental compositions 

with a sampling depth of 1 to 2 microns, as such it has been used to look at the level of 

penetration of water-based chemicals in wood cell walls (Wallström and Lindberg, 1999). 

Alongside other spectroscopic and micro-analysis techniques SEM/EDS has also been used for 

the characterisation of historic leather samples; seven separate paint layers and individual 

pigment grains were identified on a  post-Byzantine icon of St Nicolas painted on a leather 

support (Ganitis et al., 2004) using Raman spectroscopy and SEM/EDS. The same combination 

of analytical techniques were used successfully to determine the palette used on seventeenth 

century illuminated pages and a leather screen (Chaplin et al., 2010). 

1.7.3 Spectroscopic analytical techniques 

Fourier Transform Infra-Red (FTIR) spectroscopy is the most regularly used spectroscopic 

technique when analysing wood samples. This is probably due to laboratories more commonly 

having FTIR rather than Raman spectrometers. FTIR is suitable for wood analysis therefore 

labs do not need to invest in new equipment for this type of study. Additionally, extra care may 

need to be taken with analysis by Raman spectroscopy due to possible heat damage to the 

samples caused by high power lasers. Qualitative and quantitative analysis of wood samples 

by FTIR has been used by Chen et al (2010). Multivariant calibration models were used to 

separate samples into hardwoods and softwoods with quantities of lignin, cellulose and 

hemicellulose also being identified (Chen et al., 2010). FTIR has also been used successfully 

to look at rot deterioration caused by fungi in wood. Changes is spectral bands associated with 

lignin and carbohydrates were able to indicate the level of decay over time in different wood 

species (Pandey and Pitman, 2003). Thermogravimetric analysis alongside FTIR (TG-FTIR) 

has been used to help understand the pyrolysis mechanism of lignin (Liu et al., 2008). Due to 

its advantageous properties this method of online gas analysis has been widely adopted to look 
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at the kinetics and mechanisms associated with biomass. Attenuated Total Reflectance FTIR 

(ATR-FTIR) has been used to quantitively distinguish degradation differences in historic and 

sound elm wood (Pizzo et al., 2015) . 

Raman spectroscopy uses the inelastic scattering of monochromatic light from a laser in the 

visible, near infrared or near ultraviolet range. Interactions between the laser light and 

molecular vibrations or excitations in the system, result in energy of the laser photons being 

shifted up or down. The shift in energy can provide information about the vibrational modes in 

the system. As such Raman spectroscopy can be used in science conservation and cultural 

heritage as it provides a non-destructive qualitative and quantitative analysis of organic 

materials at a chemical level (Łucejko et al., 2015).  Despite this there are few examples of 

Raman being used for conservation analysis, Petrou et al (2009) and Marengo et al (2003) 

provide some of the few examples of the analysis of Neolithic and sixteenth century wood via 

FT-Raman. Information on the chemical composition of wood and pulp fibres provided by 

Raman spectra are of interest in industry, especially when related to changes due to processing. 

However Raman spectra of the lignin constituents within wood  can be extremely complex to 

interpret, as such much work has been done around lignin, their models and lignin model 

compounds to further understand the spectra produced (Agarwal, 2008). 

Although Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is suitable for 

opaque materials such as wood, the technique can introduce anomalies into the IR spectrum of 

wood (Ferraz et al., 2000). These anomalies occur because of a scattering effect due to the 

irregular surface of wood, nevertheless it is possible to reduce this effect and produce high 

quality spectra by using granular size samples and a solution of potassium bromide (Michell, 

1994) or for solid wood surfaces, the roughness and structure of the cut must be identical 

(Pandey and Theagarajan, 1997). Baldock et al (2002) used a combination of DRIFT and solid-

state 13C nuclear magnetic resonance (NMR) to assess the chemical composition of char after 

the incomplete combustion of vegetation. NMR is a powerful analytical tool for determining 

the chemical characterisation of natural materials such as wood (Bardet et al., 2004). The water 

content of wood is a common measure of degradation within archaeological wood samples. 

Bardet et al (2004) used ssNMR to give an illustration of the water content of archaeological 

wood as an indication of the state of degradation, however it was noted that it was still difficult 

to determine the structural properties of historic waterlogged wood.  
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1.8 Aims of this work  

Although there are established methods used by conservators to help hydrate dry and brittle 

materials in museum collections, none are ideal. Therefore a need exists to explore alternative 

hydration techniques. Given that SCFs have been used successfully in various areas of art 

conservation, the overall objective of this work was to explore whether similar methods could 

be applied to the hydration of wood.  

More specifically, the main aims of this work were to; 

• Design, construct and optimise process equipment for supercritical hydration, using 

scCO2 as the fluid of choice, and additionally to investigate co-solvent addition and 

changes in experimental process parameters. 

• Investigate supercritical hydration as a method for the addition of water to wood 

samples, including historic and modern, hardwood and softwood. 

• Asses, via microstructural and macrostructural analytical techniques, the extent of any 

damage caused during the supercritical hydration treatments. It is hoped that assurance 

can then be made to conservation professionals as to the suitability of this technique.  

• Investigate the potential of the supercritical hydration mechanism to maintain or 

increase the MOR of the wood samples.  

• Present findings to conservation professionals at cultural heritage conferences and 

symposiums to assess the suitability of the supercritical hydration technique as a 

standalone, or collaborative method in art conservation. Compare this novel process 

with conventional methods of wood hydration used in conservation departments. 

• Finally, in a feasibility study to investigate other historic media, asses the additional 

applications of scCO2 technology for use in conservation departments. 
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Chapter 2: Hydrating Wood Using Supercritical Carbon Dioxide 

 

ABSTRACT 

The use of supercritical carbon dioxide (scCO2) in the presence of water (H2O) to drive the 

absorption of water into oven dried, rectangular samples of historical and modern, hardwood 

and soft wood (Scots Pine, Maple, White Oak, Red Oak, Zebrano, Keruing) (length = 0.06 m, 

width = 0.01 m and height = 0.01 m) samples were investigated. All experiments were carried 

out at 50oC under 20 MPa of pressure for 45 minutes. Additionally, the effect of the co-solvent, 

methanol (MeOH), on the hydration levels of the wood samples was investigated. Comparison 

of these results allowed a mechanism for the supercritical hydration of wood samples to be 

suggested.  

A range of conditions were then chosen to hydrate the wood samples that could then undergo 

a selection of microstructural studies (using Light Microscopy, Scanning Electron Microscopy 

and Diffuse Reflectance Infrared Fourier Transform spectroscopy) and further analysis of 

sample properties including hydration via mass measurement and strength via the three-point 

bend test. All samples were compared to oven-dried untreated samples. 

The historic and modern wood samples hydrated with scCO2 all gained in mass after treatment. 

Increasing the concentration of the co-solvent, MeOH (scCO2(MeOH)), improved the levels of 

hydration; increased mass gain and a higher stable mass gain over time was recorded for all 

wood samples. Wood type was found to have more of an influence than wood age upon water 

absorption and retention, with hardwood samples being the most responsive to the supercritical 

treatment. The type and/or relative quantity of water absorbed by the hydrated wood samples 

was the most difficult property to deduce. As such, speculative conclusions have been made 

from the collaborative analysis techniques carried out. 
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2.1 Introduction  

The presence of dry and fragile materials such as wood, leather and paper is not unusual within 

museum collections. A variety of established methods are used by conservation professionals 

to help stabilise and preserve these materials for continued public enjoyment (Richmond, 

2009). These approaches, although effective, do not always seek to strengthen the materials 

but simply stabilise them.  Previous research has shown that there may be a role for SCFs and 

more specifically scCO2, within existing conservation practices. These have included the 

deacidification of books and paper and the removal of harmful pesticides from ethnographic 

objects and other fragile museum artefacts (Français et al., 1997, Tello, 2006). 

The wide application of uses and the differing structural properties of both hardwood and 

softwood species means that wood is a material found in many guises within museum 

collections. From picture frames to canoes, tables to bow and arrows, wooden objects and 

treenware take many forms and thus provide conservators with many problems. Due to the 

hygroscopic nature of wood it is often found in a fragile state which requires preventative 

conservation methods, usually in the form of environmental controls, to preserve the wood as 

well as possible. Development of a safe and effective interventive hydration method for 

wooden artefacts and objects may therefore be of use to conservation professionals. Hydration 

with scCO2, in the presence of water may provide an alternative route for the prevention of 

future damage to the wood stability and structure. 

The wood samples discussed in this thesis were oven-dried to a constant mass to within 

±0.001g, to simulate dried out wood that may be found in museum collections. Discussion of 

the effect of different moisture contents in wood can be found in Section 1.5.6. Once the 

supercritical hydration treatment had been achieved the properties and microstructure of the 

wood samples were studied in detail. This is the main area of research in this chapter: the 

external and internal structure of (treated and untreated) historic and modern wood samples, as 

well as hydration, strength, and visual properties. Supercritical hydration with the co-solvent, 

MeOH, showed some benefits over supercritical hydration without a co-solvent. 
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2.1.1 Solvent systems and the use of methanol as a co-solvent  

Hydration of wood using both pure scCO2 (scCO2(PURE)) and scCO2 modified with MeOH 

(scCO2(MeOH)), in the presence of water, was carried out. The critical point of scCO2(PURE) is 

known to be 31.1oC and 7.38 MPa (Kumar et al., 1987). As discussed in Section 1.1.4, when a 

co-solvent is added into the solvent stream and a binary solvent mixture is produced, the critical 

point will be altered. The critical point of the binary solvent mixture will determine whether 

the system exists in a single phase or in a vapour-liquid equilibrium under the chosen 

conditions. For the experimental conditions discussed in this chapter to remain constant, it was 

ensured that the system was in the single phase, supercritical region for all treatment 

procedures. Phase diagrams and Table 2.1 below were consulted to ensure the correct 

conditions were maintained.  

MeOH mole fraction Tc (oC) Pc (MPa) 

0.00 

0.07 

0.12 

0.20 

0.36 

1.00 

31.1 

51.1 

64.9 

85.9 

124.4 

240.0 

7.4 

10.5 

12.2 

14.4 

16.5 

8.0 

Table 2.1 The critical temperatures and pressures of a scCO2 and MeOH system. The 

critical temperatures and pressures increase with increasing MeOH concentration. 

2.2 Materials  

2.2.1 Rig components 

The high-pressure rig was constructed from 316 stainless steel rated to 45 MPa at 200oC, 

connected by stainless steel Swagelok fittings (Swagelok, Manchester, UK). The rig vessels 

with volumes of 5 mL and 25 mL are also rated to 45 MPa at 200oC. Details of further rig 

components and experimental set up is found in Section 2.3. 

2.2.2 Wood Preparation and storage 

Modern hardwood samples were collected from SL Hardwoods (Croydon, UK), whilst 

historical hard and softwood samples were collected from Oxford Violins (Oxford, UK) and 

Oxford Wood Recycling Ltd (Abingdon, UK). All the wood samples were kept under ambient 

conditions until they underwent oven drying.  
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2.2.2.1 Desiccant based versus nitrogen purged storage solutions for treated wood 

samples 

There are two main storage techniques used when looking to achieve low humidity 

atmospheres for storage within a desiccator; desiccant based or nitrogen (N2) purged storage. 

Desiccant based storage techniques commonly consist of a desiccator chamber containing a 

naturally hygroscopic material e.g. silica gel, which absorbs moisture from the ambient air 

within the chamber, thus reducing the humidity. This is a simple and economic solution for 

storage however it does not give a precise control on humidity and the removal of moisture 

from the environment is a passive process which is slow in achieving a dry environment. 

Frequently removing the wood samples from the chamber will reintroduce moisture, once again 

increasing the amount of time taken to create a low relative humidity atmosphere. Nitrogen 

purged storage provides an alternative solution that is more time efficient. The introduction of 

nitrogen gas from an external source into a chamber effectively replaces a humid atmosphere, 

containing water, with an inert, dry atmosphere containing N2. The treated wood samples in 

the experimental procedure outlined in this chapter are weighed at regular intervals over an 

extended period. The rapid recovery time of the N2 purged storage technique which reduces 

the exposure of the wood samples to moisture, is therefore the most appropriate method of 

storage for this experimental procedure. 

Treated wood samples were kept in N2 sealed containers that were purged with N2 every time 

the samples were removed for weighing, therefore limiting the exposure to ambient conditions 

in the lab. The N2 sealed containers were stored in a cupboard in the lab in which the rig was 

set up, internal lab conditions were monitored over the duration of the experiments. A control 

was also set up whereby one untreated (oven-dried) and three treated wood samples 

(scCO2(PURE) and scCO2(MeOH) with MeOH at 2.5 mol% and 5.0 mol%) were kept in a low 

humidity dessicator chamber with silica gel over a 48-week period. The results of this 

controlled test can be found in the Appendix (Appendix 1).  

2.2.3 Carbon dioxide and methanol 

CO2 (liquid withdrawal) was supplied by Air Liquide (Paris, France). Absolute MeOH 

(99.9% pure) was supplied by Fisher Scientific (Loughborough, UK) and was of Analar 

grade. 
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2.3 Apparatus and methodology 

2.3.1 High pressure equipment and supercritical hydration method 

The experimental rig, constructed by the author, for carrying out supercritical hydration 

experiments is shown in Figure 2.1. 

 

Figure 2.1. A schematic illustration of the supercritical hydration rig as constructed by 

the author. Key: V1 = CO2 inlet valve; DT = dessicator tube; HE1 = refrigerated heat 

exchanger (cooling); P1,2,3 = pressure gauges; V2 = pump inlet valve; PUMP1 = 

pneumatic liquid CO2 pump; PRV = safety pressure release valve; NRV1 = non-return 

valve; MV1,2 = micrometering valves, PV1 = hydration pressure vessel, PV2 = reaction 

pressure vessel; ABPR = automated back pressure regulator; BPR = back pressure relief 

valve. 

The rig, seen in Figure 2.1, can be separated into three separate sections; supercritical fluid 

delivery, supercritical hydration, and depressurisation. 
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Supercritical Fluid Delivery  

This section delivered CO2 at the correct pressure to the hydration section. Liquid CO2 was 

supplied by a 50 kg cylinder released by the valve (V1). CO2(l) was withdrawn and passed 

through a refrigerated heat exchanger coil in a liquid state to allow efficient pumping and avoid 

cavitation effects in the pump. The refrigerated heat exchanger coil was chilled by a continuous 

flow of coolant fluid from the recirculation bath, maintained below -10oC by the refrigeration 

unit (Stuart SRC4). The cooled CO2(l) was compressed to the desired pressure using a Thar 

high pressure P-series pump. The pressure and flow rate was monitored and set by the Thar 

Instruments Process Suite. CO2(l) leaving the pump passed through a non-return valve (NRV1) 

into the oven. 

Supercritical Hydration  

CO2(l) was delivered into the hydration section at a controlled pressure and was heated to a 

desired temperature before passing over the material which was being hydrated. The 

compressed CO2(l) entered the oven (Genlab MINO/50) which was set to 50oC, and passed 

through the 5 mL hydration vessel and the 25 mL vessel containing the chosen samples as 

scCO2. The system was held at static pressure for 45 minutes. 

Depressurisation  

Following the required hydrating period for the experiment the system was depressurised. To 

depressurise the system, the pump was turned off and the valve (MV1) was closed to hold the 

chilled CO2(l) for the next run. The exit valve (MV2) was opened further to allow for 

depressurisation over 45 minutes. A hair dryer was used to stop the CO2(g) freezing and 

blocking the exit valve when venting to atmospheric pressure. The CO2(g) was vented into a 

fume hood. CO2(g) was not recycled at this point. 

2.3.1.1 Depressurisation study 

To assess the most suitable rate of depressurisation for the system a selection of wood samples 

underwent treatment with scCO2 and were depressurised over three different time periods. It 

was decided that the historic Scots Pine samples would be the most suitable for the study as 

they appeared to be the most fragile of the sample set and were the only softwood species. Post-
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treatment samples were depressurised from 20 MPa to 0 MPa over 5, 45 and 90 minutes which 

were deemed fast, medium, and slow timescales respectively.  

Rate of depressurisation 

(min) 

Observations Concerns 

5 Fractured samples 

Foaming at either end of the 

samples through epoxy resin 

layers (see photographs 

below) 

Samples have reduced in 

mass 

• Sample damage 

• Unsafe 

• Possible extraction 

45 Visually samples seem 

unharmed by the treatment 

Samples have gained in 

mass 

• N/A 

90 Visually samples seem 

unharmed by treatment  

Samples have gained in 

mass 

• Time consuming  

Table 2.2. A table to show the observations recorded and the concerns regarding 

depressurising the scCO2 system over three time periods. 

Depressurisation over 5 minutes gave some concerning results; it was observed that a possible 

extraction had taken place, highlighted by the photograph in Table 2.2, and there was also some 

structural damage to the samples. Although both times of 45 and 90 minutes gave no major 



 

51 
 

cause for concern regarding sample damage, it was thought that a time of 90 minutes may 

impede the number of experiments which could be completed within the available time. As a 

safe compromise, 45 minutes was selected as a suitable depressurisation rate that should, if 

performed correctly, cause no undue damage to the historic or modern wood samples subjected 

to the scCO2 treatment. 

2.3.2 Initial sample characterisation and the preparation of wood samples 

Wood samples were collected and characterised into historic (H) (>100 years since being cut) 

and modern (M) (<100 years since being cut) and then sub-categorised into hardwoods and 

softwoods. Hardwood species included Maple (H/M), White Oak (H/M), Red Oak (M), 

Zebrano (M) and Keruing (H). Scots  Pine (H) was the only softwood species used. Table 2.3 

below describes the key properties of the different species in the sample set. Grain type and 

texture are also described as they may be significant when analysing individual supercritical 

hydration levels in Section 2.4. It has been assumed that the wood samples have been taken 

from the heartwood of the tree rather than the sapwood, unless severe inconsistencies arise. 

The heartwood is the preferred cut for woodworking and construction as it is stronger and less 

susceptible to shrinkage and fungal attack. To deduce whether the wood samples consist mainly 

of earlywood or latewood, the age of the specific tree from which the samples originate would 

need to be known. As this information is not known it has been assumed that that the wood 

samples consist equally of early and latewood, unless severe consistencies arise. 
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Wood Species Properties Grain Type/Texture 

Tropical Hardwood  

Zebrano (Zebrawood) 

Microberlinia 

brazzavillensis 

Av. Dried Weight: 805 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.67, 0.81 

MOR: 122.8 MPa 

MOE: 16.37 GPa 

Grain is usually wavy or 

interlocked with a coarse 

texture and open pores.  

Endgrain is diffuse-porous 

with medium pores in no 

specific arrangement.  

Keruing (Apitong) 

Dipterocarpus spp 

Av. Dried Weight: 745 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.59, 0.74 

MOR: 115.2 MPa 

MOE: 15.81 GPa 

Grain is generally straight to 

interlocked.  

Endgrain is diffuse-porous 

with very large pores in no 

specific arrangement. 

Temperate Hardwood  

Maple (Hard Maple, 

Sugar Maple) 

Acer saccharum 

Av. Dried Weight: 745 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.59, 0.74 

MOR: 115.2 MPa 

MOE: 15.81 GPa 

Grain is generally straight but 

may be wavy, 

Endgrain is diffuse-porous 

with small pores that are 

uniformly spaced. 

White Oak (e.g. 

European Oak, English 

Oak) 

Quercus alba 

 

 

Av. Dried Weight: 755 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.60, 0.75 

MOR: 102.3 MPa 

MOE: 12.15 GPa 

Grain is straight with a 

coarse, uneven structure. 

Ring-porous with 2-4 rows of 

solitary earlywood pores and 

numerous small latewood 

pores in radial arrangement. 

Red Oak (e.g. Willow 

Oak 

Quercus rubra 

 

 

Av. Dried Weight: 700 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.56, 0.70 

MOR: 99.2 MPa 

MOE: 12.14 GPa 

Grain is straight with a 

coarse, uneven structure. 

Large, open pores 

Softwood   

Scots Pine 
Pinus sylvestris 

Av. Dried Weight: 550 kgm-3 

Specific Gravity (Basic, 12% 

MC): 0.39, 0.55 

MOR: 83.3 MPa 

MOE: 10.08 GPa 

Grain is straight with a 

medium, even texture. 

Medium sized resin canals, 

numerous and evenly 

distributed 

Table 2.3. Characterisation of individual wood species used in the experimental 

procedure described in this chapter. Species include Zebrano, Keruing, Maple, White 

Oak, Red Oak and Scots Pine. MOE is described here as the ratio of tensile stress to 

tensile strain. MOR is described here as the ratio of the rupture’s bending moment to the 

beam’s section modulus.  

Samples were kept under atmospheric conditions until they were cut with a precision high-

speed table circular saw into rectangular pieces (length = 0.06 m, width = 0.01 m, height =0.01 

m). They were then lightly sanded to remove any debris from cutting. Each sample was then 

weighed, with the mass recorded being taken as the non-dried mass (M0). Samples were oven 
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dried at 70oC in the presence of anhydrous sodium sulphate to within a constant mass of ±0.001 

g, this mass was recorded as the oven dried mass (M1a). The initial moisture content (IMC) 

for the wood samples was taken to be: 

𝐼𝑀𝐶 = (𝑀0 − 𝑀1𝑎)×100                                                                                    (Equation 2.1) 

Typical IMC for stabilised wood indoors is found to be between 8.0% w/w and 14.0% w/w 

(Reeb, 1995), with modern wood having a higher MC than historic wood. The average IMC 

for historical and modern wood samples is shown in Table 2.4 below. The IMC on average for 

the historic woods was found to be around 7.7% w/w and for the modern woods around 9.0 % 

w/w. It is to be expected that the historic samples have a lower IMC given that they will have 

received a certain amount of damage over the years and will have been exposed to a variety of 

atmospheric conditions causing the wood to dry out. 

 

Sample Type 

 

Wood Species 

Average Initial 

Moisture Content 

(% w/w) 

 

Historic (H) 

Maple 8.0 

White Oak 7.2 

Scots Pine 7.1 

Keruing 8.3 

 

Modern (M) 

Maple 9.7 

White Oak 8.6 

Red Oak 8.8 

Zebrano 8.8 

Table 2.4. A table to show the average initial moisture content in historic and modern 

wood samples before prior to SCF treatment. 

To be sure that the mass that is being lost from the wood samples could be claimed to be water 

weight a second method was carried out as a comparison. Wood samples were dried over the 

drying agent, anhydrous sodium sulphate, at room temperature and pressure until a constant 

weight was reached. This method confirmed that the weight lost from the wood during the oven 

dried method could be assumed to be water, with other volatile matter being insignificant. The 

oven dried method was chosen as the preferred method for establishing MC throughout the 

experimental procedure, due to its speed and ease. 

Two coats of epoxy resin were painted on the ends of each sample to allow 2-D diffusion 

(Figure 2.2) rather than 3-D diffusion into the samples (Acda et al., 2001, Muin and Tsunoda, 

2003). The resin was allowed to dry and the samples were re-weighed, this mass was recorded 
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as the oven dried + resin mass (M1b). Samples were then kept in N2 sealed containers until 

they were needed for the hydration experiments, these samples were weighed at regular 

intervals in order to establish that a constant mass was being maintained. 

  

 

 

 

 

Figure 2.2. Diagram to show expected diffusion into wood samples. Shaded areas 

represent coats of epoxy resin. Arrows represent the expected 2-D diffusion pathway of 

scCO2 and water. 

2.3.3 Method for supercritical hydration of oven dried wood samples using supercritical 

carbon dioxide 

Preliminary hydration experiments were carried out in a single 70 mL pressure vessel. 

Cellulose tissue saturated with water was placed in the vessel linearly with two samples of 

wood, the vessel was then sealed. The tissue mass was recorded pre-and post-saturation. The 

oven temperature was set to 50oC and chilled CO2(l) was introduced to the system and pumped 

to pressure. All system valves were open during pumping, apart from the exit valve which was 

closed until depressurisation. The rig was set up to be a static system, pressure was held at 20 

MPa for 45 minutes. Several experiments with both hardwood and softwood samples were 

carried out with this rig following this procedure. 

2.3.3.1 Addition of a separate hydration vessel and sample vessel  

It was found that higher levels of hydration were achieved if two separate pressure vessels were 

used in series with each other in the oven, rather than a single larger vessel (Figure 2.3). One 5 

mL vessel was introduced as the hydration cell which held the cellulose tissue saturated with 

distilled water and one 25 mL vessel was introduced in series containing two wood samples. 

This rig layout was used for the duration of the hydration experiments, it is represented in 

Figure 2.1. The tissue mass was recorded pre-and post-saturation with distilled water, placed 

in the 5 mL vessel and sealed. If a co-solvent (MeOH) was used it was added at this point with 
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water to the cellulose tissue with a pipette. Two wood samples were placed linearly in the 25 

mL vessel and sealed. Samples of the eight different wood species were carried out in 

quintuplets. 

 

 

 

 

 

 

 

 

Figure 2.3 A diagram showing two different pressure vessel layouts in the oven of the 

experimental rig; single vessel hydration (PV1) and dual vessel hydration which uses a 

separate hydration cell (PV1, PV2). 

 

The temperature of the oven was set to 50oC and recorded. A separate temperature probe (K 

Type thermocouple) with a digital monitor (TC305K Digital handheld thermometer) was used 

to ensure that the temperature remained constant for the duration of the experiment (Appendix 

2). The CO2(l) was chilled to -10oC by the chiller unit and was introduced into the system by 

opening V2. All the system valves were opened apart from the exit (MV2) valve which 

remained closed until depressurisation. Once conditions had stabilised the samples were held 

at static pressure for 45 minutes. The pump was then turned off and valve (MV1) was closed 

to hold the chilled CO2(l) for the next run. The exit valve was manually opened slightly and 

with care to allow the system to depressurise slowly over 45 minutes in-order to avoid any 

damage to the samples. It was deemed safe to unseal the vessel when the pressure gauge (P3) 

read zero bar. The samples could then be immediately removed from the vessel to be weighed 

and stored in N2 sealed containers. 

 

2.3.3.2 Addition of methanol as a co-solvent  

 

The reactions between scCO2 and MeOH as a co-solvent are detailed in Section 1.1.4 (Chapter 

1). Initial experiments showed that higher levels of hydration were achieved with higher 

concentrations of co-solvent in the scCO2 solvent stream. This is due to the favourable increase 

in the solubility of water in scCO2 with the addition of polar MeOH. However, adding a co-
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solvent to a SCF alters the parameters of the critical point at which the fluid becomes 

supercritical, hence the addition of MeOH increases the Tc and Pc of the system. To avoid 

thermal damage to the samples it was preferred that the temperature of the oven was kept at or 

below 50oC. Concentrations of 2.5 mol% and 5.0 mol% were used as this allowed experiments 

to be carried out at ~50oC whilst also increasing hydration levels compared to 0.0 mol%. 

Concentrations of 10.0 mol% require a critical temperature and pressured of around 51oC and 

10 MPa respectively, therefore concentrations were kept below this level.  

 

The following table was used to calculate the volume ratio of MeOH to H2O (dilution factor) 

used in each experiment for the differing mole ratios. For example, to make a 2.5 mol% solution 

of MeOH(aq): 

 

 MeOH H2O 

Vol (cm3) 1.00 17.4 

Density (gcm-3)* 0.792 1.00 

Mass (g) 0.792 17.4 

Molar mass (gmol-1) 32.0 18.0 

Moles 0.0248 0.965 

Ratio 1 39 

Table 2.5. Values used to calculate the dilution factor for 2.5 mol% MeOH in H2O. *The 

SI unit of density is kgm-3, gcm-3 has been used here as a convenient unit to allow for ease 

of calculation with figures to similar decimal places.  

 

Therefore, for 2.5 mol% the dilution factor is 17.4 MeOH/H2O. The co-solvent solution was 

used to saturate the cellulose tissue in the hydration cell. The tissue was saturated and replaced 

for each treatment. 

 

2.3.4 Method for weighing hydrated wood samples 

 

The percentage change in mass of each sample was calculated using the following equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠 = (
𝑀2−𝑀1𝑏

𝑀1𝑏
) ×100                                               (Equation 2.2) 

Where M1b is the oven dried mass and M2 is the mass post SCF treatment. This value was 

known as the normalised moisture content (NMC) of the wood sample; the value is 

‘normalised’ by the sample mass giving a percentage.  This calculation was carried out 

immediately after depressurisation, continuing at regular time intervals until a constant mass 
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was reached, it was assumed that any mass gained during the treatment was due to water 

addition to the sample. For the duration of the time post-SCF treatment the samples were kept 

in individual, nitrogen sealed vials to maintain a dry environment. The vials were kept at lab 

temperature and pressure. All experiments (each involving two wood samples) were carried 

out in quintuplets. The mean values from each of the individual experiments were combined 

and an overall mean ±one standard error of the mean calculated.  

 

2.3.5 Methods for the analysis of microstructural studies 

2.3.5.1 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) was used to study the internal microstructure of 

untreated samples and samples one week post-treatment. It was hoped that SEM would provide 

a visual aid as to whether the samples were being damaged internally by the moderate 

temperature and high pressure of the SCF treatment. The samples were fractured along the 

grain as carefully as possible to minimise further damage to the structure of the wood. Flat, 

square fragments of the wood samples approximately 0.01 × 0.01 m were mounted on 

aluminium stubs (Figure 2.4). Colloidal carbon cement was placed on the base of the stub and 

up the side of the sample. The carbon cement ensured the non-conductive wood was made 

conductive for the SEM treatment. The stubs were left to dry and then coated in gold (Au) prior 

to visualisation in a Hitachi S- 4300 field emission scanning electron microscope at Oxford 

University (Oxford, UK). The images used in this study were taken at 50 x and 200 x 

magnification, additional images are found in the Appendix (Appendix 3). 

 



 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. A photograph to show the wood samples mounted on the aluminium stubs 

using colloidal carbon cement. 

 

Turkulin (2004) states that “microscopic observations cannot quantify the degradation 

process” (Turkulin, 2004), in respect to photo degradation; therefore it may be difficult to 

assess damage to the sample through SEM alone. However, if SEM is combined and 

corroborated with other microscopic evidence, such as light microscopy, then conclusions as 

to potential damage caused by the scCO2 treatments may be made.  

 

2.3.5.2 Light microscopy  

Pictures of treated and heat damaged wood samples and pictures of the wood cuts were taken 

using a digital camera Olympus C5050.V Microscopic analysis of the wood samples was 

achieved using a trinocular microscope (ca. 10 x – 40 x magnification) with a Nikon digital 

camera attached, employing reflected lighting as appropriate. The images used in this study 

were to 40 x magnification. Light microscopy was carried out at Chiralabs Limited (Oxford, 

UK). 

2.3.6 Feasibility studies of wood samples by spectroscopy  

 

Three different types of vibrational spectroscopy techniques were investigated; Attenuated 

Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Diffuse Reflectance Infrared 
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Fourier Transform (DRIFT) and Fourier Transform Near Infrared Raman spectroscopy (FT-

NIR Raman). The aim was to investigate which spectroscopic technique provides the best 

information about treated and untreated wood samples. Prior to this some preliminary studies 

had been performed using ATR-FTIR on treated and untreated samples. From these studies, it 

was agreed that in principle it may be possible to identify a degree of water content and other 

constituents of the wood. This would be with regards to a relative scale and with the limitation 

that these studies were carried out on the surface of the wood. All spectroscopic analysis was 

carried out at Chiralabs Limited (Oxford, UK) (Lindon et al., 2016). 

 

On an infrared (IR) spectrum each trough is caused by energy being absorbed from a particular 

frequency of IR radiation to excite bonds in the molecule to a higher level of vibration. Some 

of the troughs produced can be easily assigned to particular bonds e.g. OH group. However, 

the fingerprint region on the right-hand side of a spectrum usually at around 1800 cm-1 to 400 

cm-1, can contain a very complicated series of absorptions that can be difficult to identify. The 

fingerprint region is still important because each compound produces a different pattern of 

troughs in this part of the spectrum. 

 

2.3.6.1 ATR-FTIR 

 

ATR is ideal for strongly absorbing or thick samples which can produce intense peaks when 

measured by transmission, it was therefore deemed suitable to try in the feasibility study on the 

treated and untreated wood samples. Furthermore, the samples can be analysed in their natural 

state without grinding or the addition of heat. For this ATR-FTIR spectroscopy technique each 

wood sample was placed on a FTIR Diamond ATR crystal and the surface was analysed in-

situ. Untreated and treated Scots Pine (H) and Maple (M) samples were analysed. 

 

In ATR-FTIR spectroscopy an infrared red (IR) beam is directed at a certain angle onto an 

optically dense crystal with a high refractive index. This internal reflectance creates an 

evanescent wave. In regions of the IR spectrum where the wood samples absorb energy, the 

evanescent wave will be attenuated. This attenuated beam then returns to the crystal and exits 

via the opposite end, where it is directed to a detector in the IR spectrometer. An IR spectrum 

is then generated from the detected attenuated IR beam.  
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2.3.6.2 DRIFT 

 

Initially DRIFT spectroscopy was carried out on Scots Pine (H) and Maple (M) samples. Each 

sample was presented by placing the holder of a Diffuse Reflectance optics attachment such 

that a rough flat face was illuminated. This technique can be applied to freshly sectioned 

portions of wood, either with or across the grain, allowing the probing of the internal levels of 

constituents compared to those on the established outer surfaces. DRIFT spectroscopy uses IR 

radiation which interacts with the wood samples and IR transparent matrix causing the light to 

diffuse or scatter, as it moves throughout the wood sample. An output mirror then directs this 

scattered energy to the detector in the spectrometer to generate a spectrum.  

 

In the primary study, DRIFT was found to give the most feature-rich spectra and was therefore 

deemed suitable for further analysis of wood samples.  For the second study using DRIFT 

twenty wood samples were analysed, with some trends being identified.  

 

2.3.6.3 FT-NIR Raman Spectroscopy 

 

To minimise any heat damage to the wood samples being tested, a near-infrared (NIR) laser 

was used in the Raman spectroscopy technique. The technique depends on the scattering of 

light. The wood sample is illuminated with a monochromatic laser beam which interacts with 

the molecules of the wood samples and originates a scattered light. A small amount of the 

scattered light will have a different frequency to that of the incident light and this is used to 

construct a Raman spectrum (Bumbrah and Sharma, 2016). Raman spectra tend to have a large 

number of scattered lines because molecules exist in a number of rotational and vibrational 

states therefore giving off a number of different corresponding frequencies. 

 

Scots Pine (H) and Maple (M) samples were analysed using this method. In each case the 

sample was presented by placing in a bespoke holder of a FT-Raman spectrometer. 

  

2.3.7 Three Point Bend Test for the determination of wood strength 

A simple three-point bend test was used to determine Young’s Modulus (E) of different wood 

samples. Bending strength or Modulus of Rupture (MOR), can also be determined as a function 

of E. A selection of wood samples was collected to test the possible adverse effects of the SCF 
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treatments on the mechanical properties of the wood. Treated and untreated samples were 

selected in order to be able to make direct comparisons between the mechanical properties. For 

each treatment three samples of wood were selected, and the three-point bend test was carried 

out in triplicate. The untreated wood was oven dried to a constant mass and kept in sealed 

nitrogen containers until use. The testing was carried out using a Bose Electroforce 5500 

mechanical tester (Bose / TA Instruments, Minnesota, USA) and WinTest 7 software (Bose) in 

the Biochemistry Department at University of Birmingham. All the wood samples were tested 

at 504 hours (3 weeks) after treatment, once the wood samples had achieved a stabilised NMC. 

Thus, the MC of the wood samples tested will have been relatively low and will have varied 

between each wood sample and species. 

 

 

 

 

Figure 2.5. Illustration to show layout for a three-point bend test, where P is force and L 

is the distance between the two supports. Figure adapted from (Brancheriau et al., 2002) 

 

The wood samples being tested had previously been cut into consistent rectangular beams prior 

to SCF treatment. The width (a) and height (b) of the wood samples were measured and the 

samples were placed in the apparatus with the height of the wood orientated vertically. The 

distance (L) between the two supports was measured. A force (P) was applied up to 200 N over 

40 seconds. In order to make accurate assumptions about the samples elastic properties it is 

important that the wood does not become permanently deformed i.e. the beam does not return 

to its original shape after deflection. The force applied was therefore added incrementally and 

could be stopped at any time. For each treatment type, force (P) and displacement (w) values 

were recorded perpendicular to the grain for the three wood samples for each of the wood 

sample set. The triplicate values were averaged to give a mean value representative of the 

woods structure. 
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Force, displacement curves were plotted using the WinTest 7 software. A gradient (δP/δw) was 

recorded in the elastic region (linear) of the graph for each test. Figure 2.6 and Figure 2.7 are 

both examples of the force displacement graphs produced during testing. 

 

Figure 2.6. An example force displacement graph for Maple (H) 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. An example force displacement graph for White Oak (H) 

Deflection at the centre of the beam is: 

 

𝑤𝑜 =
𝑃𝐿3

48𝐸𝐼
 

  

(Equation 2.3) 
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I is the second moment of area defined by: 

 

𝐼 =  
𝑎3𝑏

12
 

 

(Equation 2.4) 

 

However, because the gradient is equal to δP/δw it is possible to rearrange equations (2.3) 

and (2.4), so the gradient of the line equals: 

 

𝛿𝑃

𝛿𝑤
=  

48𝐸𝐼

𝐿3
 

 

(Equation 2.5) 

 Equation 2.5 can be rearranged to solve for Young’s Modulus (E); 

 

𝐸 =
(

𝛿𝑃
𝛿𝑤

) 𝐿3

48𝐼
 

 

(Equation 2.6) 

 

The bending strength (MOR) of the wood can be found using the Equation 2.6 where m is 

equal to the gradient of the graph and g is the gravitational constant.  

 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
3𝑚𝑔𝐿

2𝑎𝑏2
 

 

(Equation 2.7) 
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Using these equations, values for E and MOR can be collected for the different wood samples. 

The advantage of using equation (2.5) instead of equation (2.3) to estimate E means that it is 

possible to deal with experimental error by using the best line of fit to find the gradient (δP/δw). 

2.3.8 Statistical analysis techniques 

The effects of the experimental conditions on the overall mean moisture contents were 

statistically examined. The Student t Test was used to examine for differences where 

experiments were paired for comparison. The null hypothesis stated that the SCF treatment 

with either scCO2(PURE) or modified scCO2 has no effect on the moisture content of an oven-

dried wood sample. The chosen level of significance, α, for all tests was 0.05. The Student t 

Test was also used to statistically examine the effects of the supercritical hydration treatments 

on the bending strength of the sample set. The null hypothesis stated that the supercritical 

hydration treatment has no effect on the MOR of the oven-dried wood samples. Again, the 

level of significance, α, for all tests was 0.05. 

2.3.9 Sources of Error 

The main sources of error associated with the methods and materials for the supercritical 

hydration treatments are presented in Table 2.6 below. Errors were minimised where possible 

within the experimental procedure, however improvements have been suggested which should 

be considered for future work.  
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Sources of Error Precautions Taken Future Improvements 

Natural variability of 

wood 

Care was taken to choose wood 

samples that had little or no defects 

e.g. splits, knots, discolouring. 

 

 

Taking wood samples of the 

same species from the same 

larger sample rather than 

smaller off cuts would ensure 

more consistencies through 

the individual samples.  

Cutting wood to size Individual wood samples were all cut 

to size using the same method. 

 

Cutting wood samples to a 

larger, more manageable size 

may reduce the errors in 

cutting.  

Leaks in the rig  The rig was constructed by the 

author and required many 

modifications due to leaks. 

 

PTFE tape was applied where it was 

safe. New fittings were bought where 

tape would not be sufficient. 

 

Construct the rig with new 

fittings to minimise leaks. 

However, this can be 

extremely costly. 

Small batch runs  The pressure vessel containing the 

wood samples was 25 mL and could 

only hold two wood samples at 

maximum capacity.  

 

An average of 5 runs per day were 

carried out in two week blocks. The 

experimental work was carried out in 

bulk so that consistency was 

maintained between the separate 

runs. 

 

Scale up the pressure vessel 

containing the wood 

samples. 2000 mL and 

20,000 mL pressure vessels 

are available to use via the 

authors company sponsor. 

 

Use of these larger vessels 

would require modifications 

to the rig to enable efficient 

cooling and heating of CO2. 

Table 2.6. A table listing the main sources of error associated with the supercritical 

hydration treatments, the ways in which these errors were minimised and suggestions for 

improvements that can be made in the future. 
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2.4. Hydration results and discussion  

In this section the hydration profiles for treatments with scCO2(PURE) and scCO2(MeOH), in the 

presence of water are presented and debated. The concentration of MeOH was varied to best 

establish the most feasible method for the supercritical hydration. With conservation methods 

in mind and due to the variance in the wood samples age and physical properties, it is important 

to look at the samples performance post treatment, on an individual basis. Therefore, material 

characteristics determined by the wood samples age, type and species are individually 

discussed to help determine the key factors affecting the hydration levels achieved by the 

different woods.  

 

Chapter 3 will discuss additional analytical techniques which were used to determine any 

changes to the microstructural and macrostructural properties of the samples set pre and post 

treatment with scCO2.  

 

2.4.1. Hydration profiles for wood samples treated with scCO2(PURE) and scCO2(MeOH), in 

the presence of water 

 

2.4.1.1. Hypotheses  

Four main hypotheses were made before the wood sample set were subject to supercritical 

hydration, with and without a co-solvent (MeOH). 

• Due to the low solubility of water in scCO2 the hydration levels (NMC) achieved by all 

wood samples were expected to be low at around1- 2% at a constant mass.  

• The use of the co-solvent, MeOH, will give higher levels of NMC than the scCO2 

treatments without a co-solvent. Additionally, levels of NMC across the wood sample 

set will also increase with the increase of MeOH from 2.5 mol% to 5.0 mol%.  

• A difference in the NMC of the modern and historic wood samples at a constant mass 

was expected with historic samples achieving a lower NMC at a constant mass than the 

modern wood samples, irrespective of the presence of MeOH. 

• Due to the differences in pore and pit arrangement in hardwoods and softwoods, it was 

expected that the softwood sample, Scots Pine (H), would achieve lower NMC levels 

than the temperate hardwood samples, irrespective of the presence of MeOH. 
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2.4.1.2 Hydration profile for wood treated with scCO2(PURE) in the presence of water 

A mass loss profile for wood samples treated with scCO2(PURE) in the presence of water is 

presented in Figure 2.8. A hydration profile is presented in Figure 2.9 which utilises the data 

obtained in Figure 2.8. 

Figure 2.8. A mass loss profile for wood samples weighed over 8,064 hours (48 weeks), a 

Log T (time) scale has been used here to better see the individual data points The wood 

samples have been treated with scCO2(PURE) in the presence of water for 45 minutes. Each 

point represents the overall mean from five independent sets of measurements ± one 

standard error of the mean. The same mass loss profile without a Log T scale is presented 

in the Appendix (Appendix 3, Figure 1)  
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Figure 2.9. The NMC of wood samples taken at 0 hours, 168 hours (1 week) and 504 hours 

(3 weeks). The wood samples have been treated with scCO2(PURE) in the presence of water. 

Each point represents the overall mean from five independent sets of measurements ± 

one standard error of the mean. *Normalised moisture content is expressed here as the 

percentage change in mass due to water in respect to the oven dried mass of the wood 

sample. 

 

At 504 hours, or three weeks, all the wood samples had stabilised at a constant mass. Hydration 

profiles presented in this chapter use data up to and including the 504 hours (at which all wood 

samples had stabilised), but do not after that time. However, all the samples where continually 

weighed at regular intervals over a 48-week (8,064 hours) period as seen in Figure 2.8. The 

wood samples treated with scCO2(PURE) have shown an increased MC post treatment (Figure 

2.8, Figure 2.9). An average stabilised NMC (at 504 hours) of approximately1.5% for both the 

historic and modern wood samples was achieved. Thus, showing that hydration with 

scCO2(PURE) in the presence of water was possible, if very low. Understandably, due to the very 

low levels of hydration, none of the NMC recorded for scCO2(PURE) treatment were significant 

in comparison to untreated wood samples. 

In Figure 2.8 at 504 hours the hardwood samples White Oak (M), Maple (M) and Red Oak (M) 

have retained the highest mean percentage mass increase at approximately 2.5%. Keruing (H) 

and Zebrano (M), the tropical hardwoods, have achieved the lowest mass increase at 
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approximately 0.5%. Maple (H), Scots Pine (H) and White Oak (H) all have a mass increase 

of approximately1.5%. The only softwood in the sample set, Scots Pine (H), had the second 

highest percentage mass increase of approximately 7.7% at 0 hours, however this dropped off 

rapidly to finish at approximately1.3%. This profile and the hydration profile (Figure 2.9.) 

indicate that the age of the wood, rather than the type of the wood (hardwood or softwood), is 

the influencing factor in determining the level of hydration retained by the wood samples. In 

this instance, it seems that that the hardwoods; White Oak (M), Maple (M) and Red Oak (M) 

have been able to form cellulose-water bonds with greater ease than the tropical hardwood and 

softwood samples. Both Keruing (M) and Zebrano (H) have responded very poorly to 

scCO2(PURE) treatment. The complex nature of tropical hardwood structures makes it difficult 

to the assign this poor response to just one factor, however likely explanations are suggested 

in Section 2.4.1.4 and Section 2.4.1.5 below.  

 

2.4.1.3 Hydration profile for wood treated with scCO2(MeOH) in the presence of water 

The addition of the co-solvent, MeOH, was clearly seen to increase the overall NMC for both 

the historic and modern wood samples (Figure 2.10, Figure 2.11). Statistically the treatment 

using 5.0 mol% MeOH, as a co-solvent, gave the highest number of significant results, 

followed by 2.5 mol% MeOH and then scCO2(PURE). For 5.0 mol% MeOH, the stabilised NMC 

after 504 hours for all wood samples was above 4%. As discussed in Section 1.1.3 (Chapter 1) 

when scCO2 is modified with a polar co-solvent such as MeOH, the solvating power of scCO2 

with other polar compounds e.g. water, is significantly increased (Lalanne et al., 2004). This 

solvent stream of scCO2(MeOH) and water is known as a binary mixture (Clifford, 1999) and will 

improve the affinity of scCO2 with water. Therefore, the increased levels of NMC in the wood 

samples were expected. However, it should be noted that hydrating with scCO2(PURE) was also 

possible although the samples only achieved a maximum NMC at constant mass of 

approximately 2.7%. 
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Figure 2.10. NMC of wood samples taken at 0 hours, 168 hours (1 week) and 504 hours 

(3 weeks). The wood samples have been treated with scCO2(MeOH) in the presence of water, 

MeOH has a concentration of 2.5 mol%. Each point represents the overall mean from 

five independent sets of measurements ± one standard error of the mean. 
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Figure 2.11. NMC of wood samples taken at 0 hours, 168 hours (1 week) and 504 hours 

(3 weeks). The wood samples have been treated with scCO2(MeOH) in the presence of water, 

MeOH has a concentration of 5.0 mol%. Each point represents the overall mean from 

five independent sets of measurements ± one standard error of the mean.   

Figure 2.10 presents the NMC of the wood samples treated with 2.5 mol% MeOH. White Oak 

(M) is shown the have the highest NMC at 0 hours and 504 hours, at 13.4% and 6.8% 

respectively. White Oak (M) also held the highest mean NMC at 504 hours without the use of 

a co-solvent (Figure 2.9). Maple (H) and Scots Pine (H) are shown here to have a high mean 

NMC at 0 hours, however, both wood samples had a steady loss of moisture over time and 

stabilise at a mean NMC of approximately 5%. The use of a co-solvent seems to have helped 

the Scots Pine (H) samples retain a higher NMC over time. Previously, without the use of a co-

solvent Scots Pine (H) gained a high initial NMC at 0 hours but was unable maintain the 

increase in MC over time. Conversely, Maple (M) has not responded in the same way with the 

use of a co-solvent 2.5 mol%; its high initial NMC of 13.1% fell to 5.2% at 504 hours. Without 

the use of a co-solvent Maple (M) was also unable to retain a high initial NMC of 7.9%. The 

Keruing (H) has performed surprisingly well with the addition of MeOH, especially in 

comparison to its counterpart, Zebrano (M), which has consistently retained the lowest NMC 

with and without the use of a co-solvent. 
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White Oak (H), shown in Figure 2.11, had the highest initial retention at zero hours at 13.4% 

and the highest mean NMC of 8.2% at 504 hours. Red Oak (M) and Maple (M) both had a high 

mean NMC of approximately 7% at 504 hours. Yet, Maple (M) had a better retention level than 

Red Oak (M) which drops from a high initial NMC of 13%. Again Keruing (H) performed well 

with an initial retention of 11.1% dropping to 5.5%, just below that of White Oak (M) at 5.9% 

at 500 hours. Of the hardwoods, White/Red Oak and Maple both historic and modern, seem to 

have responded well to the SCF treatment, especially the Oak samples which consistently 

gained a high stabilised NMC. This suggests the treatment is suitable for both historic and 

modern wood samples even with the highest percentage co-solvent. White Oak (H) and Red 

Oak (M) gave significant results at 0, 168 and 504 hours when treated with 5.0 mol% MeOH. 

The mechanical analysis carried out will assess whether the SCF treatment is in turn 

unfavourably affecting the integrity of the wood samples. The NMC of the tropical hardwood 

Zebrano (M) increased with the use of a co-solvent, however it is shown to be the poorest of 

all the tested wood types at retaining water over time.  

Zebrano (M) gave no significant results at 504 hours with any of the supercritical treatment 

types. Due to this low ability to retain increased levels of moisture, it could be suggested that 

Zebrano (M) is one of the wood samples that is not suitable for SCF impregnation of this type. 

Scots Pine (H) also provides an interesting series of responses to the SCF treatment, especially 

with the addition of a co-solvent. With 2.5 mol% MeOH, Scots Pine (H) retains a 5.2% NMC 

at 504 hours. Comparable to its response with the scCO2(PURE), Scots Pine (H) had a high uptake 

initially but was unable to retain a significant NMC at 504 hours. With 5.0 mol% MeOH, Scots 

Pine (H) had a lower uptake initially then 2.5 mol% MeOH at 0 hours and had a sharp drop in 

retention between 0 hours and 168 hours. This resulted in Scots Pine (H) only just managing a 

slightly higher NMC than the worst performing wood, Zebrano (M) at 4.3% and 4% at 504 

hours respectively. Additionally, Scots Pine (H) gave no significant results under any of the 

supercritical treatments. 
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Figure 2.12. A comparison of the wood samples mean NMC at 504 hours (3 weeks) after 

different treatment conditions. Each point represents the overall mean from five 

independent sets of measurements ± one standard error of the mean. 

2.4.1.4 Connectivity in wood 

The differing connectivity of the hardwood and softwood structures is also likely to influence 

the level of impregnation and penetration of water into the wood matrix. As discussed in 

Section 1.5.3 (Chapter 1), pits are the main pathways for liquid flow between longitudinal 

conductive cells in wood and pit arrangement is distinct between hardwoods and softwoods 

(Ahmed and Chun, 2011). 

For hardwoods, longitudinal flow is conducted by vessels and wood fibre; however, vessel 

flow is preferential to wood fibre, and thus vessel rather than fibre characteristics are directly 

related to flow (Sano and Jansen, 2006). Vessel diameter and length, inter-vessel pit size and 

number are all influential to flow, with the size, number and distribution of vessels affecting 

the appearance or uniformity of hardwoods. For radial penetration, flow is influenced by ray 

parenchyma lumen diameter and length, and end wall pit number and diameter. Whereas for 

softwoods, longitudinal flow is the responsibility of vertical cells called tracheids that make up 

90% of the wood structure and the adjoining bordered pits. Ray parenchyma cells are also 

influential in the radial penetration of softwoods. As described later in this Section, the 
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relationship between vessel diameter and length and inter-vessel pit size and number are 

complex and extensive. Differences can been found between species and even positions in the 

structure within the same species. Therefore, attempts have been made to draw feasible 

conclusions from the hydration data collected and known properties of the individual wood 

samples. 

Hardwoods, because of the presence of vessels (which when cut across the end grain are 

referred to as pores), are called “porous” woods. The lack of these vessels in softwoods means 

that they are referred to as “non-porous”.  Table 2.7 below further classifies White Oak, Red 

Oak, Maple, Keruing, Zebrano and Scots Pine and expands on the initial characterisation made 

in Table 2.3 in Section 2.3.2.  
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Table 2.7. Characterisation of the wood sample set into ring-porous, diffuse-porous and 

non-porous. Illustrations adapted from (Hoadley, 2000) 

It has previously been reported that diffuse- porous wood has a higher permeability than ring-

porous wood and that softwoods have a lower permeability than hardwoods; density was said 

to not be related to permeability (Bao et al., 1999). Evidence from the hydration profiles shown 

in Figure 2.12 support the statement that permeability in softwoods is lower than that in 

hardwoods; Scots Pine (H) consistently retained low levels of NMC. On the other hand, both 

ring-porous woods White Oak (M/H) and Red Oak (M) both achieved some of the highest 

levels of stabilised NMC whilst Zebrano (M) and Keruing (H), both diffuse-porous woods, 

consistently achieved the lowest.  In Table 2.7 above it can be clearly seen that the diffuse-

Pore Arrangement Characteristics 

 

Ring Porous 

e.g. White Oak and Red Oak  

The largest pores are found in the earlywood, those in the 

latewood are more evenly distributed and uniform in size 

with a smaller diameter. These woods have open-grain 

structures. 

  

 

Diffuse Porous 

e.g. Maple, Keruing and Zebrano 

Pores, especially in temperate hardwoods, are small in 

diameter and distributed evenly across the early and 

latewood. Some tropical hardwoods have larger pore 

diameters to adapt to more extreme climate conditions. 

These woods have a closed-grain structure.  

 

Non-porous 

e.g. Scots Pine  

Softwoods have tracheid cells rather than vessel cells. 

Different softwoods can have different growth-ring 

characteristics. Scots Pine is characterised as a yellow 

pine. In yellow pine, the rings are clearly visible and 

behaviour is similar to that of ring-porous woods. 
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wood woods (Maple (M/H), Keruing (H) and Zebrano (M)) have an even distribution of small 

diameter vessels whilst ring-porous woods (White Oak (M/H), Red Oak (M)) have a 

combination of small and large diameter vessels spread between the early and latewood. 

Therefore, the composition of the Zebrano (M), Keruing (H) and Maple (M/H) samples could 

affect the levels of hydration achieved via supercritical treatment. For example: a high 

composition of earlywood consisting of large vessel diameters would be expected to give 

greater levels of impregnation in comparison to a high composition of latewood and small 

diameter vessels. Earlywood permeability can be many times higher than of that in latewood 

(Domec and Gartner, 2002); this could go some way to explaining why there is variability 

between wood samples from the same species. 

 

Figure 2.13. A comparison of hardwood (angiosperm) and softwood (gymnosperm) pit 

structure. Illustration adapted from (Hacke et al., 2004). 

The conclusions made by Bao et al (1999) do not take into consideration the effect on 

permeability with the increasing age of a wood sample. It would be expected that the small 

diameter vessels in ring-porous wood would be more susceptible to blockage over time, leading 

to lower levels of permeability. Pits are found in both porous and non-porous woods are also 

susceptible to damage over time. Despite hardwoods having a more complex cellular structure 

than softwoods, their inter-vessel pitting is less specialised (Hacke et al., 2004). Figure 2.13 

compares the difference in hardwood (angiosperm) and softwood (gymnosperm) pit structure 

and highlights clear differences. Where inter-vessel pit membranes are generally homogenous 

in porosity and thickness, the margo-torus pit membrane in inter-tracheid is not. The margo 
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provides a thin and porous membrane allowing for water flow and preventing air movement, 

with the thick torus providing the final barrier to air movement. The inter-vessel pits do not 

have a torus, and thus sealing the pit depends completely on capillary forces, these pores are 

therefore smaller in size than the softwood margo (Cǒté, 1963). Thus, even though the 

hardwood pits may be more susceptible to blockage due to their small size, the thick torus 

found in softwoods can cause similar problems. Aspiration is common among softwoods, this 

is where the torus seals one of the pit apertures, subsequently blocking the pathway through 

the pit (Shusheng et al., 1994). This can make non-porous woods such as Scots Pine (H) 

difficult to impregnate with preservatives, therefore the impregnation of water into the non-

porous matrix may also be hindered.  

Although softwoods have larger pores in the margo membrane relative to the narrow hardwood 

pores. The conductivity of these pits may be limited by shorter lumen lengths found in the 

softwood tracheid’s, which may jeopardise overall wood conductivity. Due to the lumen’s 

being longer in hardwood structures any direct effects of small pores in the pit membrane are 

redundant. Consequently, if with time several softwood pits became blocked or damaged, the 

overall effect on conductivity may be greater than that felt by hardwood samples subjected to 

the same damage.  

2.4.1.4.1 Epoxy resin for 2-D impregnation 

As stated in Section 2.3.2, two coats of epoxy resin were painted on either end of every wood 

sample treated with scCO2. Epoxy resin was applied because of the understanding that it would 

limit the diffusion of scCO2 and water to a 2-D interface. An almost identical procedure had 

been successfully employed by Acda et al. (2001) for the SCF impregnation of various wood 

samples with a biocide.  

However, the levels of hydration achieved by all the wood samples treated with scCO2 may 

have been limited by the application of epoxy resin. Although, longitudinal diffusion into the 

wood will have still been possible, the resin will have blocked some of the longitudinal 

pathways into the wood sample, possibly limiting the maximum hydration levels possible in 

the individual wood species. This may be especially relevant in the hardwood samples as it has 

been stated that longitudinal permeability can be up to 10 – 15 times higher than radial 

permeability (Panshin and Zeeuw, 1980). Therefore, in future work it may be interesting to 

measure difference in hydration levels achieved by 3-D diffusion, in comparison to 2-D 
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diffusion and see if the hardwood achieved greater increases in moisture content relative to 

softwood.  

The ratio of side grain to end grain should also be considered at this point as this will vary 

between ring-porous, diffuse-porous and non-porous wood types. Obviously, the application 

of epoxy resin will limit some of, if not all the end grain features of the wood samples and their 

ability to absorb water. Therefore, the side grain of the wood sample may have an influencing 

factor in the overall water absorption of the wood sample. The primary cell types in both 

hardwoods and softwoods are orientated along the grain, through which movement is quite 

rapid. Across the grain however, paths for movement are much more limited. Here the water 

must “move through the relatively small pit openings between axial cells, or along the 

transversely orientated ray cells”(Walker, 2006), thus the movement fluids across the grain is 

dependent on the size, number and condition of the pit opening. It is known that the ray cells 

in Pine species have large opening between cells, therefore allowing a greater ease of 

movement across the grain than woods with small openings. This evidence suggests that the 

Scots Pine (H) sample may be less impeded in water absorption than the other hardwood 

samples with smaller openings between cells.   

2.4.1.5 Cellulose, hemicellulose and lignin content 

Although the structure and composition of cell walls in wood varies hugely, cellulose 

((C6H10O5)n) composition accounts for approximately 35 – 50% of dry weight (Chen, 2014). 

Cellulose is extremely hygroscopic and is therefore known to absorb rather than dissolve large 

quantities of water. In the water sorption process the hydrogen bonds between the cellulose 

molecules are replaced by several new hydrogen bonds between the cellulose and water 

molecules, with some cellulose-cellulose  hydrogen bonds remaining (Pettersen, 1984). The 

free hydroxyls found in the amorphous section of the cellulose polymer are high in density and 

held in a set position, hydroxyls in the crystalline region of cellulose are too compact within 

the polymer chain for water molecules to penetrate (Howsmon, 1949). When water is absorbed 

onto the amorphous hydroxyls, swelling occurs and the water absorbed is known as bound 

water. It is expected (Section 1.5.6, Chapter 1) that the water absorbed by the wood samples 

treated with scCO2 will be bound water, free water is formed only when the cell walls are 

saturated and the water absorbed fills the cell cavities. The possible presence of bound water 

is discussed later in the DRIFT spectroscopy study (Section 3.2.3.4, Chapter 3). 
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Figure 2.14 D-glucose units in a cellulose linear polymer. Circled are the three hydroxyl 

groups on one D-glucose unit that are free for water sorption in the amorphous region. 

Cellulose, and its ability to absorb water in the cell wall, therefore has a significant effect on 

the levels of hydration achieved by wood.  The availability of the hydroxyl sites on the 

amorphous cellulose structure is also of significance. Figure 2.14 highlights the three available 

hydroxyl groups on each D-glucose unit of cellulose. In this instance, historic samples may be 

at a disadvantage in achieving high NMC, damage to the cell wall over time may cause integral 

damage to the cellulose polymer chain and the hydroxyl groups, therefore hindering ability to 

absorb water.  

The bonding between cellulose, hemicellulose and lignin should also be considered at this point 

as there may be factors that inhibit the ability of a wood species to absorb water into the cell 

wall. Despite considerable research in recent years  into the relationship and interactions 

between wood polymers, the knowledge in this field remains incomplete (Srndovic, 2011), 

though it is known that these polymer structures are arranged hierarchically in the wood cell 

walls. Hemicellulose influences the pattern of aggregation of the cellulose microfibrils and 

provides the pattern for lignin assembly. Consequently, hemicellulose mainly interacts with the 

cellulose fibrils forming non-covalently bonded hydrogen bonds, whilst hemicellulose and 

lignin form covalent bonds (Srndovic, 2011, Kerr and Goring, 1975). A model of the fibrillar 

formations of cellulose embedded in the amorphous matrix of hemicellulose and lignin is 

illustrated in Figure 2.15. Cellulose fibrils dictate the orientation of both hemicellulose and 

lignin, although less is known about lignin orientation except that it can differ between hard 

and softwood species. As indicated in Figure 2.15 hemicellulose is orientated in parallel with 

the cellulose fibrils. Some of the hemicellulose will extend into the matrix and covalently bond 

with lignin but the majority will coat, and be attached to the cellulose fibril.  
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 Figure 2.15 An illustrative model of the microscopic structure of wood indicating the 

cellulose, hemicellulose and lignin hierarchy. Illustration taken from (Ilnicka and 

Lukaszewicz, 2015).  

Some assumptions may be drawn about how the hierarchy, bonding and orientation of 

cellulose, hemicellulose and lignin may affect the ability of historic and modern, hardwood and 

softwood to absorb water. It may be assumed that due to the lack of conclusive investigations 

into the relationship between these complex plant-based polymers (Yang et al., 2006), that we 

are unable to make specialised distinctions between the different wood species and their water 

sorption mechanics. However, it may be possible to draw some conclusions from the damage 

to the historic samples through abiotic and/or biodeterioration, and the subsequent damage to 

the cellulose fibrils and surrounding matrix. 

The historic wood samples used in this work are classified as dry rather than waterlogged wood. 

It is expected that they will have been subjected to one or both following deteriorative processes 

(Blanchette et al., 1991): 

• Biodeterioration – rot caused by insects and/or pests, this may not be visually identified 

but can cause the decomposition and eventually the complete mechanical failure of 

wood structures. 

• Abiotic deterioration – caused by long exposure to changing weather conditions and 

hence constantly changing factors of light, heat, moisture, pollutants and general wear 
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and tear. Heat exposure below 100oC can cause depolymerisation in the wood 

structure. 

Although Maple (H) and White Oak (H) consistently achieved high levels of stabilised NMC, 

Scots Pine (H) and Keruing (H) achieved some of the lowest NMC out of the whole sample 

set. It should be said that the Scots Pine (H) sample was the most visibly aged of the historic 

wood samples, and it is therefore unsurprising that it achieved low levels of NMC. As described 

above it is most likely that abiotic deterioration has occurred over 100+ years causing some 

depolymerisation and breakdown of the woody fibres. As a tropical hardwood, Keruing (H), 

may have a greater natural resistance to deteriorative processes as it is more durable than the 

softwood, Scots Pine (H). Although it is unknown whether the historic wood samples were 

taken from the heartwood or sapwood of the tree, it is interesting that White Oak (H) achieved 

consistently high levels of NMC alongside White Oak (M). White Oak is known to be a species 

whose heartwood is naturally resistant to decay, whereas pine species are known to be naturally 

slightly or completely non-resistant to decay (Knapic et al., 2006).   

As stated in Section 1.5.5.1 (Chapter 1), one of the primary functions of lignin is to bind 

cellulose and hemicellulose together. Softwoods are known to consist of 26% - 32% lignin and 

tropical hardwoods around 30% lignin, whilst temperate hardwoods are composed of 

approximately 20% - 25% lignin (Santos et al., 2012). The lower composition of lignin found 

in temperate hardwood could be a factor in the woods ability to absorb water. If there is less 

lignin to bind the hemicellulose and cellulose together, then there may be a higher availability 

of hydroxyl sites on the cellulose chain free to absorb water via hydrogen bonding. Therefore, 

assumptions can be made between the inconsistent hydration results of both Scots Pine (H) and 

Zebrano (M) and the lower percentage of lignin present in their softwood and tropical 

hardwood structures. Consequently, there seems to be a negative correlation between the 

percentage composition of lignin known to be in the wood structure and the stabilised NMC 

achieved by the treated wood samples, as indicated by the hydration profiles for both Zebrano 

(M) and Scots Pine (H). A study by Huang el al. (2016) found that in both hardwoods and 

softwoods hemicellulose rather than cellulose changed in conjunction with lignin structure and 

amount (Huang et al., 2016) Therefore, it could be the case that with higher quantities of lignin, 

there are less free hydroxyl sites on the amorphous cellulose because of changes made to the 

hemicellulose via lignin interactions.  
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Chapter 3: Microstructural and Macrostructural Results and Discussion 

 

3.1 Introduction 

 

This chapter looks at the microstructural and macrostructural properties of the wood sample 

set via imaging, spectroscopic and mechanical analysis. By corroborating and combining the 

analytical techniques the author can look to answer two key questions. Primarily, does the 

applied supercritical treatment cause any damage to the internal and/or external structure of the 

wood samples and secondly, what type of water (bound or free), if any, is being absorbed into 

the wood structure? 

 

DRIFT spectroscopy encompasses the bulk of the spectroscopic studies carried out for this 

study. It was found that DRIFT spectroscopy gave the most feature rich spectra and was 

therefore deemed the most suitable spectroscopic technique for the analysis of the wood sample 

set, pre-and post-treatment. Attention is paid to the ratios calculated for OH/CH and 

OH/“Cellulose” peak areas in the hope that a greater level of understanding may be achieved 

as regards the relationship between wood species, treatment type and levels of water 

absorbance. Additional microscopic and macroscopic techniques were carried out to further 

diagnose this complex relationship to varying degrees of success. SEM and light microscopy 

were looked at in conjunction with one another to try and establish any pre-existing damage 

and damage that may have been caused during supercritical hydration. These imaging 

techniques were also used to further characterise the wood sample set.  Analysis of the MOR 

of the wood samples post-treatment were most encouraging and provided valuable information 

that may help to establish future work with scCO2. 
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3.2 Microstructural analysis 

3.2.1 Scanning electron microscopy (SEM) 

It was hoped that SEM images would help us to monitor any changes in the internal structure 

of the wood samples that may be caused during the SCF treatments. The wood samples 

underwent SEM before and after treatment with scCO2(PURE) to be able to make structural 

comparisons. However, several issues were raised after a review of the method for sample 

preparation and on analysis of the SEM images. The main issues raised included the following: 

• It would be interesting to analyse the internal matrix of the wood samples rather than 

the external surface. The wood samples therefore had to be split with a high level of 

force causing additional damage to the structure.   

• It was assumed that the historic samples may have lost some mechanical strength over 

time. Therefore, due to the level of force applied to split the wood samples, the historic 

samples may have been at a greater disadvantage then the modern wood samples in 

being able to show the true extent of any damage caused by the scCO2 treatment. 

• The SEM analysis required samples to be placed in a vacuum, therefore drying out any 

samples that had been previously treated with scCO2(PURE).  

 

Considering the issues outlined above, it was decided that only the four modern wood samples; 

Maple (M), White Oak (M), Red Oak (M) and Zebrano (M), would be prepared and processed 

for SEM imagery.  All the samples undergoing SEM had been oven-dried prior to preparation 

as this was a standard experimental procedure for both the treated and untreated samples. 

Experts would suggest that this is not best practise of wood preparation for SEM, and oven-

dried samples would not normally be suitable for the analysis as some level of damage will be 

induced by the oven-drying method. However, it was assumed that the induced damage would 

be consistent among all wood samples as they had all been subject to the same drying 

conditions. The oven dried samples were therefore prepared for SEM. The preparation of the 

samples required a natural “fracture” to provide a cross-section of the wood. This type of 

fracture was difficult to achieve as the 0.06 ×0.01 ×0.01 m wood samples had initially been 

selected for their uniformity and therefore lack of fracture or damage. Thus, to induce a fracture 

the samples were clamped and a force was applied until it was possible to break the samples 

by hand along the grain. This type of force would have most likely have caused damage to the 

internal structure of the wood (Figure 2.13), which in turn could lead to disingenuous 

conclusions when looking for structural changes in the wood samples. It should also be noted 
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that due to the variability in density in the wood samples, the force applied to cause fracture 

was inconsistent.   

It became clear that comparison between the images produced by SEM would be difficult to 

compare in isolation. Figure 3.1 illustrates the damage caused to the wood fibres around the 

area that the force was applied to split the samples. However, some of the SEM images were 

more successful than others and it was possible to see some of the main features common to 

hardwood structures on the 200 x magnification images (Figure 3.2). It was hard to make direct 

comparisons between identical wood species due to the damage induced in the preparation of 

samples. 

Figure 3.1 A SEM image at a magnification of 200x, indicating the damage caused to 

Maple (M) caused by manually splitting the wood samples in preparation for SEM 

analysis.  
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Figure 3.2 An annotated SEM image at a magnification of 200 x and a resolution of 20 

μm to show the key features of a hardwood structure; vessels, pits and fibres.  The White 

Oak (M) sample has been treated with scCO2(PURE). 

 

Figure 3.3 A SEM image at a magnification of 50 x and resolution 100 μm, White Oak 

(M) treated with scCO2(PURE). 

VESSEL PITS FIBRES 
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Figure 3.4 A SEM image at a magnification of 50 x and resolution 100 μm, of Maple (M) 

treated with scCO2(PURE). 

The SEM images were successful in part; several clear, readable high resolution images of four 

different modern wood samples were produced (Figure 3.3 and Figure 3.4). These images in 

isolation may not provide much useful evidence of any damage caused to the internal wood 

structure of the wood samples. However, it may be that these images in collaboration with the 

images produced by light microscopy on the surface and interior of the wood samples can 

provide a better understanding of the microstructure of the wood samples before and after SCF 

treatment.  

3.2.2 Light Microscopy 

Light microscopy was carried out on the internal and external surfaces of three historic wood 

and two modern samples, before and after they were treated with scCO2(PURE). The three historic 

wood samples were White Oak (H), Maple (H) and Scots Pine (H) and the two modern wood 

samples were Maple (M) and Zebrano (M). Light microscopy images of heat damaged samples 

are also presented. White Oak (H), Maple (H), Scots Pine (H), Maple (M) and Zebrano (M) 

were all subject to heat damage after the oven setting was placed at 80oC rather than 40oC for 
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a treatment with scCO2(PURE). All images were taken at a magnification of 40 x, with and across 

the grain of the wood sample. Original sized images are found in the Appendix (Appendix 5). 

White Oak (H)  

                                                 

 

 

 

(i)                                          (iii)                                                  (v) 

 

                                                  

 

 

(ii)                                          (iv)                                                   (vi) 

Figure 3.5. Six light microscopy images at a 40 x magnification of a White Oak (H) 

sample; (i) untreated exterior, (ii) untreated interior, (iii) treated exterior, (iv) treated 

interior (v) treated and heat damaged exterior (vi) treated and heat damaged. 
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Maple (H) 

 

 

 

 

(i)                                         (iii)                                                  (v) 

 

 

 

 

(ii)                                         (iv)                                                  (vi) 

Figure 3.6. Six light microscopy images at a 40 x magnification of a Maple (H) sample; 

(i) untreated exterior, (ii) untreated interior, (iii) treated exterior, (iv) treated interior 

(v) treated and heat damaged exterior (vi) treated and heat damaged. 
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Scots Pine (H)  

 

 

 

 

 

 

(i)                                         (iii)                                                (v) 

 

 

 

 

 

 

(ii)                                        (iv)                                                  (vi) 

Figure 3.7. Six light microscopy images at a 40 x magnification of a Scots Pine (H) 

sample; (i) untreated exterior, (ii) untreated interior, (iii) treated exterior, (iv) treated 

interior (v) treated and heat damaged exterior (vi) treated and heat damaged. 
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Maple (M) 

 

 

 

 

(i)                                          (iii)                                                  (v) 

 

 

 

 

(ii)                                         (iv)                                                   (vi) 

Figure 3.8. Six light microscopy images at a 40 x magnification of a Maple (M) 

sample;(i) untreated exterior, (ii) untreated interior, (iii) treated exterior, (iv) treated 

interior (v) treated and heat damaged exterior (vi) treated and heat damaged. 
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Zebrano (M)  

 

 

 

 

(i)                                        (iii)                                                   (v) 

 

 

 

 

(ii)                                        (iv)                                                    (vi) 

Figure 3.9. Six light microscopy images at a 40 x magnification of a Zebrano (M) 

sample;(i) untreated exterior, (ii) untreated interior, (iii) treated exterior, (iv) treated 

interior (v) treated and heat damaged exterior (vi) treated and heat damaged. 

The images produced by light microscopy of the six historic and modern wood samples are 

very interesting. It was encouraging to see that on both the interior and exterior of the six wood 

samples analysed, there are no significant differences in appearance pre-and post-treatment 

with scCO2(PURE). Not only does this suggest that the wood samples are not being damaged by 

the supercritical treatment, but they are also visually unchanged. A conservator would need to 

be strongly assured of this information before they carried out a treatment on any wooden 

object. The microscopy images also confirm and provide further insight to the characterisation 

and structure of the different wood species. The images are only taken at a magnitude of 40 x, 

however some main characteristic features can still be seen. On both the tangential exterior 

surfaces of the Maple (H/M) samples an even distribution of ray flecks can be seen (Figure 3.6, 

Figure 3.8), confirming the diffuse-porous composition of the hardwood (Table 2.5). In the 

three interior images of White Oak (H) (Figure 3.5), the large earlywood pores associated with 

a ring-porous structure, are clearly visible. For Scots Pine (H) the medium sized resin canals 

can be seen in the interior image of the treated sample, whilst the medium, open structure and 

straight grain typically associated with Scots Pine (H) can be seen on all the exterior images 

(Figure 3.7). Finally, the interior images of Zebrano (M) identify medium sized pores in no 
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specific arrangement and a wavy grain distribution (Figure 3.9). Although SEM images were 

not useful for assessing any possible damage caused by the supercritical treatment, they can 

still be looked at in collaboration with light microscopy images which may provide further 

wood character evidence. 

It is useful to compare the images taken pre and post treatment to the images of the samples 

that were subject to heat damage in the oven during a treatment with scCO2(PURE). The exterior 

of the heat damaged samples of Maple (M/H), Pine (H) and Zebrano (M) are darker in colour 

to their respected untreated and treated samples.  It is likely that the colour change seen on the 

damaged samples has been caused by the wood fibres starting to char in the oven. The interior 

image of the damaged Scots Pine (H) sample shows the migration of the natural resin in the 

structure, caused by the increased heat of the oven. It is encouraging that this migration is not 

seen in the untreated or treated Scot Pine (H) sample, however the presence of this natural resin 

within the softwood structure may be a consideration as to why Scots Pine (H) samples 

consistently achieved low levels of NMC.  

3.2.3 Preliminary spectroscopy studies  

Feasibility studies for spectroscopic techniques were carried out to see whether in principle it 

may be possible to quantify the degree of water content and other constituents of wood present 

in a treated sample and untreated sample. Accepting the limitation that the analyses were 

performed on the surface of the wood and therefore would be on a relative scale. It would be 

expected that the interior constitution of the samples may differ from the exterior. For these 

feasibility studies Scots Pine (H) and Maple (M) samples were treated with scCO2(PURE), these 

were known as the ‘treated’ samples. Samples that that had been oven-dried to a constant mass 

were also tested, these were known as the ‘untreated’ wood samples. The spectroscopic 

techniques used were Attenuated Total Reflectance- Fourier Transform Infrared (ATR-FTIR), 

Diffuse Reflectance Infrared Fourier Transform (DRIFT) and Fourier Transform Near Infrared 

Raman spectroscopy (FT-NIR Raman). Methods were followed as per Section 2.3.6. The 

spectra of each method were analysed to see which gave the most information rich description 

for the wood samples provided (Lindon et al., 2016). These were then looked at separately 

within a more detailed study (Section 3.2.3.4). 
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3.2.3.1 ATR-FTIR 

 

Scots Pine (H) 

The ATR-FTIR spectra for treated and untreated Scots Pine (H) samples is shown in Figure 

3.10 below, the spectrum has been annotated to highlight the main bands and vibrations 

associated with the wood samples. The broad band observed around 3200 cm-1, associated with 

OH stretches, is similar for the treated sample compared to the untreated sample. This band 

derives from a series of hydroxyl containing species, including water; variation in the 

proportions of these species will give an apparent shift in the band maximum. In principle, it 

may represent the nature of binding for water, as different proportions of the contributing 

species will change the overall peak position and shape. No shift in the band position suggests 

that there is little or no difference in water content between the two samples.  The biggest peaks 

observed in the region 1150 – 1050 cm-1 are due to CO stretching vibrations of cellulose and 

hemicellulose (Lindon et al., 2016). The areas of the peaks at around 3360 cm-1 and 2930 cm-

1 can broadly be thought of as proportional to the amount of hydroxyl OH (i.e. including water) 

and CH groups respectively (Lindon et al., 2016).  Likewise, the area of the peaks in the 1150 

– 1050 cm-1 band are indicative of the amount of cellulose (Lindon et al., 2016). Areas of other 

peaks may represent degree of treatment or the quantity of cellulose, hemicellulose and lignin 

present. Therefore, in theory, it may be possible to quantify the degree of water content and 

other constituents of the wood, at least on a relative scale. It is found that for this spectrum, the 

OH/CH area ratio appears approximately the same for the two samples. 

 

Maple (M) 

The ATR-FTIR spectra for treated and untreated Maple (M) samples is shown in Figure 3.11 

below. The broad band observed around 3200 cm-1, associated with OH stretches, is slightly 

shifted towards lower wavenumbers for the treated sample compared to the untreated one. 

Although this shift is very small, it is spectroscopically real. Again, this band derives from a 

series of hydroxyl containing species, including water; variation in the proportions of these 

species gives an apparent shift in the band maximum and may represent the nature of binding 

for water. The biggest peaks observed in the region 1150 - 1050 cm-1 are due to CO stretching 

vibrations of cellulose and hemicellulose, as such it could be suggested that if these peaks are 

very similar for each sample then the supercritical hydration treatment is causing no damage. 

For this study these largest vibrations are not of particular use when we are looking to quantify 
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the water present in the samples, however they could be useful if individual characterisation of 

the wood species were required. 
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Figure 3.10. An annotated ATR-FTIR spectra of the untreated Scots Pine (H) (blue 

spectrum) and treated Scots Pine (H) (magenta spectrum) samples. 
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Figure 3.11. An ATR-FTIR spectra of the untreated Maple (M) (blue spectrum) and the 

treated Maple (M) (magenta spectrum) samples. 

 

3.2.3.2 DRIFT 

Scots Pine (H) 

The DRIFT spectra for treated and untreated Scots Pine (H) samples are shown in Figure 3.12 

below, the spectrum has been annotated to highlight the main bands and vibrations associated 

with the wood samples. Compared to the ATR-FTIR spectra, it can be seen that the DRIFT 

spectra are more information rich. The diffuse reflectance approach seems therefore more 

promising for future analysis.  Interestingly, features in the 3600 - 5000 cm-1 region have 

become apparent. The spectra of both the treated and untreated Scots Pine (H) samples look 

very similar to each other. There are no significant differences that are apparent other than a 

general wavelength independent shift associated with the overall reflectivity of the surface.  

 

Maple (M) 

The DRIFT spectra for treated and untreated Maple (M) samples are shown in Figure 3.13 

below. Similarly, to the Scots Pine (H) spectrum (Figure 2.17), it can be seen that the DRIFT 

spectra are more spectral feature-rich than the comparative ATR-FTIR produced spectra.  The 

DRIFT spectra of both the treated and untreated Maple (M) samples look similar, however 
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some differences are observed. Notably, the broad band observed around 3200 cm-1, associated 

with OH stretches, is slightly shifted towards lower wavenumbers for the treated sample 

compared to the untreated one.  The cellulose derived bands on the two spectra are also 

significantly different.  

 

A subtle difference in cellulose associated bands may be an indication as to the type of wood 

being tested. Maple (M) is a hardwood and Scots Pine (H) is a softwood, hence both wood 

samples are composed of different quantities of cellulose that are arranged in different 

formations with hemicellulose and lignin. Consequently, with the correct interpretation of the 

fingerprint region (Section 2.3.6, Chapter 2) observed with DRIFT spectroscopy, detailed 

characterisation of the wood species treated in this chapter may be possible in collaboration 

with other micro-structural analytical techniques. In theory, it is possible to subtract one 

spectrum from another i.e. Scots Pine (H) blue spectrum can be subtracted from the Scots Pine 

(H) magenta spectrum (Figure 3.12). Any differences in the two spectra where features have 

been lost or grown would be apparent on an otherwise straight line. However, it is important 

to remember that all the surfaces of all the individual wood samples would have shown some 

natural variability and therefore reflectivity. These natural differences could be confused for 

real changes in samples that were not actually applicable.  
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Figure 3.12. A DRIFT spectra of the untreated Scots Pine (H) (blue spectrum) and treated 

Scots Pine (H) (magenta spectrum) samples. 
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Figure 3.13. A DRIFT spectra of untreated Maple (M) (blue spectra) and treated Maple 

(M) (magenta spectra) samples. 

Fingerprint Region OH stretches 

3600 – 5000 cm-1 

now visible on 

DRIFT spectra 



 

98 
 

 

3.2.3.3 FT-NIR Raman Spectroscopy 

Scots Pine (H) 

The Raman spectrum of treated and untreated Scots Pine (H) samples is shown in Figure 3.14 

below. While characteristic signals are observed in the spectra, the signal-to-noise ratio is 

poorer than with FTIR, limiting the quantitative accuracy. Moreover, it is likely that the laser 

of the Raman instrument is partially drying the sample during measurement which could affect 

MC (Bumbrah and Sharma, 2016). However, it should be noted that Raman spectroscopy has 

been successfully used to characterise wood and pulp fibres (Agarwal, 2008). 

 

Maple (M) 

The Raman spectrum of treated and untreated Maple (M) samples is shown in Figure 3.15 

below. Again, while characteristic signals are observed the signal-to-noise ratio is poorer than 

with FTIR, limiting the quantitative accuracy.  Nonetheless, it is better than that for the Scots 

Pine (H) samples described above. Moreover, it should be remembered that it is likely that the 

laser of the Raman instrument is partially drying the sample during measurement. 
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Figure 3.14. A Raman spectra to show the untreated Scots Pine (H) (blue spectrum) and 

treated Scots Pine (H) (magenta spectrum) samples. 
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Figure 3.15. A Raman spectra of the untreated Maple (M) (blue spectrum) and treated 

Maple (M) (magenta spectrum) samples. 

From the spectra observed it seems that the most promising vibrational spectroscopy method 

employed was infrared by diffuse reflectance (DRIFT) it gave the most information rich spectra 

for interpretation, with a low signal to noise ratio considering the natural variability of the wood 

sample surface. This technique can be applied to freshly sectioned portions of wood rather than 

powder, either with or across the grain, allowing the probing of internal levels of constituents 

compared to those on the established outer surfaces (Section 2.3.6.2, Chapter 2). The DRIFT 

spectra produced in this study indicated that, in theory, it may be possible to quantify the water 

present absorbed on the surface of the wood samples. This technique also highlighted 

differences in the fingerprint region, for hardwood and softwood samples that are interpreted 

correctly, the region may be able to provide further insight into how different wood species 

react to the supercritical treatment.  

 

3.2.3.4 DRIFT spectroscopy study 

Preliminary studies (Section 3.2.3) on untreated and treated wood samples with ATR-FTIR, 

DRIFT and Raman spectroscopy showed that in principle, it might be possible to quantify the 
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degree of water content and other constituents of the wood. This should at least be possible on 

a relative scale but with the caveat that these analyses were performed on the surface of each 

wood sample.  It is certainly plausible that the interior constitution may vary from this.  The 

most promising technique was found to be DRIFT spectroscopy (Figure 3.12, Figure 3.13).  

Therefore, an additional study using only DRIFT spectroscopy was carried out to see if any 

additional information could be gained from the modern wood samples White Oak (M), Red 

Oak (M), Maple (M) and Zebrano (M).  

Four supercritical treatment types were chosen for the wood undergoing DRIFT analysis. These 

included scCO2(PURE), scCO2(MeOH) with MeOH at 2.5 mol% and 5.0 mol% as well as an 

additional treatment of scCO2(MeOH) with MeOH at 10.0 mol%. It should be noted here that the 

treatment with MeOH at 10.0 mol% requires a temperature of 51oC to reach supercritical 

conditions. However, because all the supercritical treatments were carried out at the higher 

pressure of 20 MPa, this will have ensured that the treatment with MeOH at 10.0 mol%, was 

well within the supercritical region even though the temperature remained at 50oC. Untreated 

oven-dried wood samples and wood samples soaked for 24 hours in distilled water were also 

analysed, these were termed ‘oven-dried’ and ‘soaked’ respectively. The same method for 

DRIFT spectroscopy was followed as outlined in Section 2.3.6.2. 

 

For the all the wood samples that underwent DRIFT analysis the four-individual species all 

gave broadly similar spectra (Figure 3.16, Figure 3.17, Figure 3.18 and Figure 3.19). The 

annotated Figure 3.12 highlights the key features seen in the spectra that each modern wood 

sample produced. We can see that the broad band typically associated with OH stretches is 

observed at aproximately 3490 cm-1 for the oven-dried Red Oak (M) sample, as mentioned in 

Section 3.2.3.2. This band derives from a series of hydroxyl containing species, including 

water; variation in the proportions of these species will give apparent shift in the band 

maximum. In part, it may represent the nature of binding for water. It was assumed that the 

water absorbed into the wood during the supercritical treatment will be bound water (Section 

2.4.1.5). Additionally, during soaking samples will initially absorb bound water and then once 

the cell walls become saturated, water will be absorbed into the cell cavities as free water. The 

soaked wood samples will then be saturated with water. The presence of free water is likely to 

cause a shift of the OH stretch observed towards the lower wavenumbers. A shift may also be 

observed for the samples treated with scCO2 that have absorbed higher levels of bound water, 

but no free water.  For the soaked sample in Figure 3.19 the OH band is observed at around 
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3470 cm-1. As for all the wood spectra obtained in this study, the bands observed in the region 

around 2900 cm-1 are associated with CH groups, as found in most of the organic molecular 

components. The bands in the region 2200-2300cm-1 are associated with atmospheric and 

absorbed CO2 (Lindon et al., 2016). The other bands in the spectra are associated with the 

principal constituents of wood, namely cellulose, hemicellulose and lignin.  Chiefly the bands 

originating from cellulose are often partially hidden or limited in the fingerprint region (400 – 

1800 cm-1), this is due mainly to the physical arrangement of hemicellulose around the cellulose 

as described in Section 2.4.1.5. Comparisons between the fingerprint region of Figure 3.17 and 

Figure 3.19 for White Oak (M) and Red Oak (M) respectively, show many similarities in the 

vibrations. This is to be expected as the arrangement of hemicellulose and cellulose will be 

very similar in these two hardwood species.  

 

It may be noted that the spectra have features at above 4000 cm-1, shoulders in the band at 3600 

cm-1 and features in the 1900 - 2200 cm-1 region as well as a complex series of peaks in the 

fingerprint region. These are related to the detailed composition and physical state of the woods 

and would provide further information for the characterisation. Likewise, it can be seen that 

there is an apparent shift in the baseline level of the samples with treatment. This is associated 

with the general reflectivity and roughness of the surfaces and is again a characteristic of their 

nature. It is apparent that treatment of the woods affects the surface physically. 
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Figure 3.16. DRIFT spectra of the different treated Maple (M) samples; Oven-dried 

(magenta), scCO2(MeOH) with MeOH at 2.5 mol% (red), scCO2(MeOH) with MeOH  5.0 

mol% (green), scCO2(MeOH) with MeOH at 10.0 mol% (black) and soaked (gold). The 

fingerprint region and atmospheric/absorbed CO2 peaks have been annotated.  
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Figure 3.17. DRIFT spectra of the different treated White Oak (M) samples; Oven-dried 

(magenta), scCO2(MeOH) with MeOH at 2.5 mol% (red), scCO2(MeOH) with MeOH  5.0 

mol% (green), scCO2(MeOH) with MeOH  at 10.0 mol% (black) and soaked (gold). 
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Figure 3.18. DRIFT spectra of the different treated Zebrano (M) samples; Oven-dried 

(magenta), scCO2(MeOH) with MeOH at 2.5 mol% (red), scCO2(MeOH) with MeOH  5.0 

mol% (green), scCO2(MeOH) with MeOH  at 10.0 mol% (black) and soaked (gold). 

 

Figure 3.19. DRIFT spectra of the different treated Red Oak (M) samples; Oven-dried 

(magenta), scCO2(MeOH) with MeOH at 2.5 mol% (red), scCO2(MeOH) with MeOH  5.0 

mol% (green), scCO2(MeOH) with MeOH  at 10.0 mol% (black) and soaked (gold). 
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O-H/C-H and O-H/“Cellulose” Ratios 

OH/CH and OH/“Cellulose” peak ratios were calculated using in-house software at Chiralabs 

Ltd (Oxford, UK) (Table 3.1). The areas of the peaks at about 3460 cm-1 and 2930 cm-1 can 

broadly be thought of as proportional to the amount of hydroxyl OH (i.e. including water) and 

CH groups respectively; the latter being a broad guide as to the “quantity” of fibrous wood. 

The ratios of these areas were calculated for each of the samples and are plotted in Figure 3.20, 

Figure 3.21, Figure 3.22 and Figure 3.23 versus treatment and wood type respectively. As 

expected the soaked samples were observed to have consistently a higher OH/CH ratio 

compared to the other samples; in contrast, the oven-dried samples have the lowest ratio of 

OH/CH for each wood. However, the type of water absorbed in the wood is not indicated here. 

The wood samples that have been soaked for 24 hours were saturated with water and will 

therefore comprise of free and bound water in the wood matrix. The oven-dried samples will 

contain very minimal water and would only be expected to have small amount of bound water 

left in the cell walls. It is therefore not unexpected that the ratios of the samples treated with 

scCO2 resemble more closely the ratios of the oven-dried samples, rather than the soaked 

samples. As discussed in Section 2.4.1.5 it has been assumed that, due to the relatively low 

levels of NMC achieved by the wood samples treated with scCO2 with and without a co-

solvent, that only bound water will be present in the cell walls of these samples. Free water is 

only present once the fibre saturation point (FSP) is reached and MC levels of approximately 

28% are achieved. 

 

From a conservation viewpoint, a MC of 28% or greater would be harmful to the wood samples. 

Long term damage of the wood may be caused by the swelling of the structure and the loss of 

mechanical strength via the breakdown of microfibrils may also occur. Even though only low 

levels of hydration are achieved via scCO2 treatments, when considering an application with 

conservation departments this argument suggests that the supercritical hydration of the wood 

samples is preferential to soaking the wood samples in distilled water until they become 

saturated. Overtime saturated wood will start to deteriorate as hydrolysis causes the cellulose 

fibrils to breakdown and leave only lignin to support the wood structure (Section 1.3.2, Chapter 

1). 
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Wood Type 

(Modern) 

Wood Treatment Type Peak Area Ratio 

3460/2930 cm-1 

(OH/CH) 

Peak Area Ratio 

3460/4020 cm-1 

(OH/‘Cellulose’) 

Maple Oven-dried 9.36 7.94 

White Oak 9.02 6.28 

Zebrano  12.75 5.19 

Red Oak 10.85 4.89 

Maple 2.5 mol% co-solvent 10.46 8.12 

White Oak 16.17 6.68 

Zebrano  14.78 4.95 

Red Oak 12.40 7.31 

Maple 5.0 mol% co-solvent 9.42 9.00 

White Oak 9.69 9.32 

Zebrano  14.93 6.43 

Red Oak 12.16 7.30 

Maple 10.0 mol% co-solvent 9.64 1.14 

White Oak 10.99 8.93 

Zebrano  16.01 7.08 

Red Oak 12.50 7.02 

Maple Soaked 15.92 11.08 

White Oak 23.59 8.63 

Zebrano  16.22 8.44 

Red Oak 19.51 7.99 

Table 3.1. Peak area ratios (OH/CH and OH/‘Cellulose’) for five different wood 

treatment types and four different modern wood types.  
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Figure 3.20. OH/CH peak areas (around 3460 & 2930 cm-1 respectively) in DRIFT spectra 

obtained for Maple, White Oak, Zebrano and Red Oak having undergone the five 

different treatments: oven-dried (blue), 2.5 mol% MeOH (red), 5.0 mol% MeOH (green), 

10.0 mol% MeOH (magenta) and soaked (orange). Each bar represents the overall mean 

from calculated ratio areas ± one standard error of the mean. 

 

Figure 3.20 seems to show a general trend for the treated wood samples that shows an 

increasing ratio with increasing co-solvent percentage, however some outliers are noticed; 

specifically, the ratio for sample of White Oak (M) treated with scCO2(MeOH), with MeOH at 

2.5 mol%, seems anomalously high. It is encouraging that the trend seen here supports the 

theory that by increasing MeOH concentration, there is an increased affinity in between scCO2 

and water, which in turn increases the quantity of water absorbed by the wood samples. This 

theory is also supported by the NMC analysed in Section 2.4.1. It is interesting that in Figure 

3.20 Zebrano (M) is shown to have consistently higher ratios of OH/CH from oven-dried all 

the way through to soaked. These ratios indicate higher levels of surface water absorption, in 

comparison to the three other wood species. However, the NMC data shows that Zebrano was 

the poorest wood species in the sample set at retaining water, and achieved no significant 

results. Therefore, these ratios suggest that although Zebrano (M) is able to absorb water into 

the surface level cells it seems unable to penetrate further into the wood matrix and retain water 

at a greater depth. This may also be due to the higher quantity of lignin known to be in tropical 

hardwood matrices in comparison to hardwood matrices. The lignin may form an arrangement 
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that makes it harder for the water molecules to hydrogen bond with the free hydroxyl sites on 

the cellulose polymer.  

Figure 3.21. OH/CH peak areas (around 3460 & 2930 cm-1 respectively) in DRIFT spectra 

obtained for Maple (blue), White Oak (red), Zebrano (green) and Red Oak (magenta) 

having undergone the five different treatments: oven-dried, 2.5 mol% MeOH, 5.0 mol% 

MeOH, 10.0 mol% MeOH and soaked. Each bar represents the overall mean from 

calculated ratio areas ± one standard error of the mean. 

 

An alternative approach is to consider the band at 4020 cm-1 as representative of cellulose & 

hemicellulose levels and calculate the peak area ratio of hydroxyls (around 3460 cm-1) relative 

to this, as shown in Figure 3.22 and Figure 3.23. As can be seen, there are some trends similar 

to those seen for the OH/CH ratio data. There is a general trend observed for each of the four 

woods the OH/“Cellulose” ratio increases with increasing levels of hydration, achieved either 

by increasing the concentration MeOH or by soaking the samples. The ratio increases as with 

increasing levels of water there is more chance that hydrogen bonds will be formed between 

the hydroxyls on the cellulose chain and the water molecules. Here Zebrano (M) consistently 

has the lowest OH/“Cellulose” ratios suggesting that minimal hydrogen bonds have been 

formed between OH and cellulose hydroxyls. Anomalous cases are seen in the White Oak (M) 

samples that have been soaked and undergone treatment with 2.5 mol% MeOH. It is known 

that White Oak (M) along with the other hardwood samples, responded well to the supercritical 

hydration treatment achieving some of the highest levels of NMC. However, it is certainly 
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surprising that the ratio of both OH/CH and OH/ “Cellulose” is so high for White Oak (M) 

treated with 2.5 mol% MeOH. This may be due to a combination of the White Oak (M) samples 

responding well the supercritical hydration treatment and some internal variability in the White 

Oak (M) samples tested in this DRIFT spectroscopy study that have allowed for unusual levels 

of hydration. Additional samples should be tested in future studies to fully understand the 

anomalies found here.  

Figure 3.22. OH/˝Cellulose˝ peak areas (around 3460 & 4020 cm-1 respectively) in DRIFT 

spectra obtained for Maple (blue), White Oak (red), Zebrano (green) and Red Oak 

(magenta) having undergone the five different treatments: oven-dried, 2.5 mol% MeOH, 

5.0 mol% MeOH, 10.0 mol% MeOH and soaked. Each bar represents the overall mean 

from calculated ratio areas ± one standard error of the mean. 
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Figure 3.23. OH/˝Cellulose˝ peak areas (around 3460 & 4020 cm-1 respectively) in DRIFT 

spectra obtained for Maple, White Oak, Zebrano and Red Oak having undergone the five 

different treatments: oven-dried (blue), 2.5 mol% MeOH (red), 5.0 mol% MeOH (green), 

10.0 mol% MeOH (magenta) and soaked (orange). Each bar represents the overall mean 

from calculated ratio areas ± one standard error of the mean. 

 

In summary, it can be said that this approach with DRIFT spectroscopy gave a reasonable 

degree of success. It is suggested that the likely chemical and physical processes of the 

treatments on the different wood species should be considered in relationship to the observed 

spectra. Additional features related to composition may be profitably considered in order to 

create an in-depth characterisation of the wood species in the sample set. 
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3.3 Macrostructural analysis 

3.3.1. Macrostructural hypotheses 

The following hypotheses were made regarding the macrostructural properties of Maple (H/M), 

White Oak (H/M), Red Oak (M), Zebrano (M), Keruing (H) and Scots Pine (H): 

• As per Section 1.5.4 (Chapter 1), the tropical hardwoods Keruing (H) and Zebrano 

(M), will be the strongest woods and Scots Pine (H) will be the weakest wood. The 

strengths of the hardwoods Maple (H/M), White Oak (H/M), and Red Oak (M) will lie 

in between the strongest and weakest strength values. 

• The historic wood in the sample set is more than 100 years old. It is expected that all 

the historic wood samples will have been exposed to biodeterioration and/or abiotic 

deterioration at some point during that time. Consequently, historic wood samples will 

be less strong than modern wood samples.  

• The hydration treatments with scCO2(PURE) and scCO2(MeOH) will maintain the strength 

of all of the wood samples, as demonstrated by previous studies carried out by Smith 

et al. (1992) and Morrell et al. (1996). 

 

3.3.2 Three-point bend test 

To accurately assess the strength of wood, the terms of stress and strain must be understood. 

Stress is defined as the amount of force or load acting on a unit of area and strain is the 

deformation per unit of original length. Strength is often defined as the ability to resist applied 

stress and is also synonymous with the resistance of the material (Hoadley, 2000). The 

relationship between stress and strain is therefore of primary concern when considering the 

strength of wood. For each of the wood samples tested a stress/strain graph was plotted with 

load vs deformation (Figure 2.6, Figure 2.7), the proportional relationship depicted between 

stress and strain is defined in Hooke’s Law.  Hooke’s Law is important as it states that wood 

is elastic up to a proportional limit, therefore strain is recoverable upon the removal of stress. 

The strength values for the wood sample set were all calculated from values within the wood 

species elastic limit (Figure 2.6). As Hooke’s Law states, within the elastic limit stress and 

strain are directly proportional, here the relative gradient of the graph is equal to Young’s 

Modulus or MOE. Therefore, the steeper the gradient, the higher the value of MOE and the 

stiffer the wood. Furthermore the higher the value of MOE, the lower the deformation under a 

given load. Values beyond the proportional limit were not used in the strength calculations 
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because as the wood is compacted more and more and resistance to the load increases, no useful 

maximum load is reached. The strength values calculated are therefore representative of the 

fibre strength at the proportional limit (FSPL).  

The three-point bend test carried out is static and therefore representative of the bending that 

occurs on a centre-loaded, simple supported beam (Figure 2.5, Section 2.3.7). Here the bending 

caused by the load will shorten or compress the upper surface of the wood fibres through 

compression and lengthen or stretch the wood fibres on the lower surface through tension. 

These tension and compression stresses together are known as bending stresses or FSPL. The 

flexure formula calculation for maximum bending stress or MOR has been shown in Section 

2.3.7, Equation 2.6 and Equation 2.7 respectively. Therefore the ‘strength’ values that are 

referred to for the rest of this Section are referring to the bending strength (MOR) of wood, and 

thus the woods ability to resist a load against axial tension and compression. 

The main factors that affect the ability of wood to resist a load are as follows (Green, 2001): 

• Type, direction, and duration of loading 

• Moisture content and temperature 

• Variability of the wood  

By addressing each of these factors in turn, it may be possible to gain a greater understanding 

into the complex relationship between the impregnation of the different wood species using 

scCO2, and the resulting mechanical behaviours of the samples, which are discussed in the 

following Section 3.3.2.1. 

Type, direction, and duration of loading 

The orthotropic nature of wood means that the resulting mechanical properties are independent 

in the direction of the three mutually perpendicular axis: radial, longitudinal and tangential 

axis. The tangential and radial directions are referred to as being perpendicular to, or against 

the grain, whilst the longitudinal direction is parallel or with the grain. Grain direction is 

important because the mechanical properties of the wood are more pronounced parallel to the 

grain (Greer, 2008). The strength values shown here are perpendicular to the grain, therefore 

they will be lower than values that would be calculated for compression parallel to the grain 

(Hoadley, 2000). The strength values obtained from the three-point bend test were only under 

load for 40 seconds, therefore only giving insight into the short-term load ability of the wood 

samples. The compressional tests performed will not take into consideration the time dependant 
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deformation that occurs in wood, called creep. However, the objects that may be subject to 

treatments with scCO2 are limited by the maximum size of the pressurised cell. Therefore, 

larger items that are more likely to experience creep such as wooden furniture or architecture 

would never be considered for any of the suggested supercritical hydration treatments.  

Moisture content and temperature 

Pre-treatment, all the wood samples were tested after they had been oven-dried to a constant 

mass. Post-treatment the wood samples were tested at 504 hours, once all the samples had 

reached a constant NMC. As the MC of wood decreases below the FSP, the strength of wood 

will increase. FSPL in compression perpendicular to the grain is approximately tripled from 

the MC of green to the MC of oven-dried wood (Hoadley, 2000). All samples were oven-dried 

to a constant mass prior to treatment with scCO2. Therefore, any damage caused through high 

oven temperatures has been assumed constant for all the wood samples and is therefore 

negligible. During the compressional test the wood samples were exposed to no dramatic 

variations in temperature and lab conditions were monitored throughout the tests. 

Variability of wood 

Density and the average specific gravity of wood species provides the best indicator as to the 

woods strength. Within the wood sample set there is considerable variation in the values of 

specific gravity (Table 2.3). Within each individual wood sample there will also be 

considerable variation in specific gravity values due to density variation associated with the 

wood cell structure, these variations cannot be predicted. Density in softwoods and ring-porous 

hardwoods can in part be predicted by the growth rates of early and latewood. On the other 

hand there is no relationship between density and growth rates in diffuse-porous hardwoods 

(Section 2.4.1.4). In summary, the variability in individual clear wood samples is very difficult 

to predict. 

It may be easier to predict differences in the wood densities of the historic and modern wood 

samples. Although all the wood samples were chosen for their uniformity and lack of defects, 

it is most likely that the historic wood samples have defects internally that may not be visible 

to the human eye and thus cause variations in the wood sample density. Previous research has 

shown that there are often structural changes that occur in wood that has been exposed to 

degradation over time (Christensen et al., 2006).  
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3.3.2.1 Bending strength of the wood samples pre-and post scCO2 treatment 

As described, the mechanics related to wood as an anisotropic, heterogenous material are very 

complex. However the pre-treatment strengths of the individual wood samples were as 

expected (Rowell, 2012) (Section 1.5.5, Chapter 1); the tropical hardwoods Zebrano (M) and 

Keruing (H) are shown to be the strongest samples, followed by the hardwoods Maple (H/M), 

White Oak (H/M) and Red Oak (H), and finally Scots Pine (H), the only softwood. Scots Pine 

(H) is by far the weakest at approximately 100 MPa, this Scots Pine (H) sample is also a historic 

wood thus making it even weaker than normal due to exposure to deteriorative processes over 

time. Zebrano (M) is the strongest wood of the samples, with a pre-treatment strength of about 

800 MPa, it is also a modern wood sample and therefore has had little exposure to any 

deterioration processes. The difference in the strength values presented by Scots Pine (H) and 

Zebrano (M), can in the major part be attributed to the density of the species. Density is the 

single most important factor when predicting the strength of a specific wood. Zebrano (M) has 

a basic specific gravity of 0.67 and Scots Pine (H) has basic specific gravity of 0.39 (Rowell, 

2012). Specific gravity, also known as the density index, is the ratio of the density of a 

substance to the standard density of a substance (e.g. water). In reality, both the specific gravity 

values of the Zebrano (M) and Scots Pine (H) samples will be lower than these because they 

have both been oven dried and now have a relatively low moisture content. 

Of the hardwoods, Maple (H/M) is shown to be slightly stronger than White Oak (H/M) and 

Red Oak (M). The pre-treatment strength values show that the species of the wood is more of 

an influencing factor on strength than the age of the wood (Table 3.2). However, it can also be 

seen that of the species that have comparative historic and modern samples e.g. Maple (M/H), 

the modern sample is always stronger than the historic sample.  As hypothesised, the historic 

wood samples have been adversely affected by degradation processes that have damaged the 

structural integrity of the wood samples (Gerhards, 1982).  
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Wood Species MOR of samples/ MPa Wood Type 

Zebrano (M) 

Keruing (H) 

791 

718 

Tropical Hardwood 

Maple (M) 

Maple (H) 

White Oak (M) 

Red Oak (M) 

White Oak (H) 

640 

634 

528 

519 

514 

 

 

Hardwood 

Scots Pine (H) 110 Softwood 

Table 3.2. A table to show oven-dried wood samples in decreasing order of mean strength 

prior to treatment with scCO2(PURE) and scCO2(CH3OH). Strength values have been stated 

to an accuracy of 3 significant figures. N.B. MOR is defined here as the Modulus of 

Rupture. 

 

Wood MOR 

oven-

dried/MPa 

MOR 

scCO2(PURE)/MPa 

MOR 

scCO2(MeOH) 

2.5mol%/MPa 

MOR 

scCO2(MeOH) 

5.0mol%/MPa 

Maple (M) 640 738 684 675 

White Oak 

(M) 

528 715 659 625 

Red Oak (M) 521 743 717 600 

Zebrano (M) 791 970 958 900 

Maple (H) 634 605 562 444 

White Oak 

(H) 

514 633 574 524 

Scots Pine (H) 110 272 181 151 

Keruing (H) 718 845 776 767 

Table 3.3. A table to show the calculated mean bending strength (MOR) values of wood 

species that have been treated with scCO2(PURE) and scCO2(MeOH) in comparison to the 

untreated oven-dried samples. Strength values have been stated to an accuracy of 3 

significant figures. A plot to test whether there is a mathematical correlation between 

NMC and MOR is presented in Appendix 5, Figure 1. 

 

The effect of SCF treatments on the bending strength and stiffness in Pine sapwood samples 

has been investigated by Smith, Demessie et al (1992). Mechanical tests indicated that the 

treated and untreated samples were not significantly different in MOE or MOR, therefore 

suggesting that SCF treatments are not damaging to the internal wood structure. Acda, Morrell 

et al (1996) have also previously reported that SCF treatments have had no negative effects on 

the MOR, MOE or dimensional stability of wood-based composites, SCF impregnation seemed 

not to adversely affect mechanical properties. Importantly, it should be noted that wood-based 
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composites are manmade and thus they are specially designed to be structurally different to 

naturally cut lumber to meet the demands of modern consumer. Therefore, the suggested 

property improvements may not be seen in wood species that have not been modified. Given 

the previous results for the mechanical testing of wood treated with SCF’s (Morrell et al., 1993, 

Sahle-Demessie, 1994), it seems positive that the samples tested in this study either maintained 

or increased in MOR or bending strength post treatment both with scCO2(PURE) and scCO2(MeOH) 

(Table 3.3). The wood samples that maintained but did not improve in strength statistically 

gave no significant results in Student t Test (Section 2.3.8).  Keruing (H) gave no significant 

results for any of the supercritical treatments, therefore maintaining its original strength pre-

treatment. Maple (M) and White Oak (H) gave significant results with scCO2(PURE) but not with 

scCO2(MeOH), Red Oak (M) gave all significant results except for the supercritical treatment 

with 5.0mol% MeOH. The remaining woods in the sample set all gave significant results.  

A general trend was observed from the strength data which showed a negative correlation 

between the percentage concentration of the MeOH and the resulting strength of the wood 

samples (Figure 3.24, Figure 3.25, Figure 3.26, Figure 3.27, Figure 3.28, Figure 3.29, Figure 

3.30, Figure 3.31). As the percentage concentration of MeOH was increased towards 5.0 mol%, 

the strength of the wood samples decreased. However, none of strength values for samples 

treated with 5.0 mol% scCO2(MeOH) decreased below the initial strength of the corresponding 

untreated wood sample; nonetheless it was lower than if the wood had just been treated with 

scCO2(PURE) (Table 3.3). As shown by hydration profile Figure 2.12, it is known that with 

increasing MeOH concentration, increasing levels of NMC are achieved by the treated wood 

samples. Increasing the overall moisture content  of the wood decreases its stiffness, strength 

and brittleness (Greer, 2008) due to water forming hydrogen bonds with the cellulose hydroxyl 

sites, thereby increasing  the surface area of the cell walls and altering its configuration.  Hence, 

the decreasing strength of the samples positively affirms the assumption that scCO2 is 

successfully hydrating the wood sample structure to a certain degree.  

This trend also raises an interesting point as to the correct selection of supercritical treatment 

for the wood samples, especially when considering the method for applications within 

conservation departments. The strength data suggests that a “happy medium” should be found 

between co-solvent addition and concentration, the levels of hydration achieved and the 

strength maintained or increased by the wood species, it also suggests that there may not be 

one supercritical treatment suitable for each wood species. The author had wanted to 

investigate the addition of 10.0 mol% MeOH to the scCO2 solvent stream. However, from a 
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conservation viewpoint, treating wood samples with scCO2(MeOH), with MeOH at 10.0 mol%, 

does not seem sensible. If the same wood species that have been used in this study, are treated 

with 10.0 mol% MeOH then it can be assumed that the samples are likely to attain higher 

stabilised NMC than the mean NMC achieved in this study. It can therefore also be assumed 

that the samples are also likely to be weaker than their original, untreated state. Given that 

conservators seek to maintain or increase the strength and/or stability of an object, any one of 

the supercritical treatments investigated here would be more suitable than a treatment with 10.0 

mol% MeOH. 

 

Figure 3.24. A comparison of the mean strength values for Maple (M) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 
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Figure 3.25. A comparison of the mean strength values for White Oak (M) samples pre 

and post treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall 

mean from three independent sets of measurements ± one standard error of the mean. 

 

 

Figure 3.26. A comparison of the mean strength values for Red Oak (M) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 

 

 

Figure 3.27. A comparison of the mean strength values for Zebrano (M) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 
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Figure 3.28. A comparison of the mean strength values for Maple (H) samples pre and 

post treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean 

from three independent sets of measurements ± one standard error of the mean. 

 

 

Figure 3.29. A comparison of the mean strength values for White Oak (H) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 
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Figure 3.30. A comparison of the mean strength values for Scots Pine (H) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 

 

 

Figure 3.31. A comparison of the mean strength values for Keruing (H) pre and post 

treatment with scCO2(PURE) or scCO2(MeOH). Each bar represents the overall mean from 

three independent sets of measurements ± one standard error of the mean. 

Figure 3.28 highlights Maple (H) as the only sample of both the historic and modern wood to 

show a decrease in strength, post scCO2 treatment. The addition of 5.0 mol% co-solvent is 

shown to decrease the strength of Maple (H) by the biggest margin, whilst scCO2(PURE) only 

decreases the strength by a small amount. It may be possible in the case of Maple (H) that an 

extraction has taken place via the supercritical solvent stream, alongside the supercritical 

hydration. The Maple (H) samples were collected as off-cuts from Oxford Violins, a violin 
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makers and dealer who specialise in restoration. Restorers at Oxford Violins had stated that the 

off-cuts may contain consolidants from prior restoration work and that these were likely to 

include low molecular weight organic waxes or resins. As mentioned in Section 1.1.3 (Chapter 

1), scCO2 has a very low solvating ability with highly polar compounds. However, it is 

generally accepted that if a compound dissolves in hexane, a short chain hydrocarbon, then it 

will dissolve in scCO2, due to their similar solvating abilities (Subramaniam et al., (1997)). 

This rule works well for low molar mass compounds such as organic waxes and resins. 

Increasing the concentration of MeOH will have increased the level of extraction experienced 

by the Maple (H), hence as the MeOH concentration increases, the strength of the maple 

decreases. For future work, it may be beneficial to carry out spectroscopic analyses of the 

Maple (H) samples pre and post treatment, to see if it is possible to identify the waxes and/or 

resins that are being extracted by scCO2. Natural deterioration over time could be an alternative 

explanation to the decrease in strength shown by Maple (H), however it does seem unusual that 

no other historic samples have shown the same trend.  Nonetheless, natural degradation with 

age is an important factor to keep in mind when dealing with historic materials and high 

pressure supercritical systems, it is especially important when considering this mechanism for 

applications within conservation departments. 

In general, the historic samples gave fewer significant results than the modern samples. 

However, the softwood Scots Pine (H) gave significant results for all the supercritical 

treatments. This is very encouraging because Scots Pine (H), had some of the lowest stabilised 

NMC of the whole sample set and gave no significant results for NMC (Section 2.4.1.2, Section 

2.4.1.3). Given the low level NMC achieved by Scots Pine (H), it could be proposed that the 

scCO2 is the responsible for the increased strength of the samples, rather than addition of water. 

scCO2 is known to swell polymer chains (Section 1.2.2.1, Chapter 1). The low viscosity and 

very low surface tension of scCO2 allows CO2 to penetrate the amorphous regions of the 

polymer matrix easily, causing swelling and sorption of CO2 (Üzer et al., 2006). Cellulose, 

hemicellulose and lignin form a series of complex matrix of organic polymers in wood. In the 

case of Scots Pine (H) it is feasible that penetration of scCO2 into the organic amorphous 

polymer matrix in the wood samples occurred. This may cause the degraded cellulose, 

hemicellulose and lignin microfibril bundles to swell and expand, subsequently stabilising the 

wood sample structure and giving seemingly improved levels of strength. 

Supercritical impregnation with CO2 requires pressures above 7.2 MPa to reach the critical 

point. For the duration of the supercritical experiments the pressure was held at 20 MPa, to 
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ensure that the scCO2 was at a high density. It is therefore important that particular attention 

was paid to the pressurisation and venting of a SCF system in order to minimise any damage 

that could be caused to the samples. Having studied the internal pressure development and 

deformation during SCF impregnation on wood-based materials, Oberdorfer et al (2004) state 

that for solid wood, pressure differences between the surface and the interior of the wood 

tended to be higher than for that of wood composites. Yet, unless flow directions were restricted 

and pressure was rapidly increased then the pressure differences weren’t high enough to cause 

structural damage. As described in section 2.3.2 half the samples tested during this study were 

>100 years old. It is inevitable that the historic wood samples will have been subjected to 

chemical and physical degradation over time (Table 2.8), causing loss of structural integrity 

and the blocking of natural pathways including vessels, tyloses and pits. Due to the fragility of 

these samples a depressurisation study (Section 2.3.1.1) was carried out to make sure that the 

most suitable procedure was followed. Due to the care taken depressurising the cell and the 

conclusions made from the microstructural studies (Section 3.2), it can be assumed that in 

general no additional damage was caused internally to the wood samples via unsafe 

depressurisation. However, Maple (H) may again prove to be the exception to the rule here. 
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Chapter 4: A Feasibility Study for the Cleaning and Characterisation of 

Historic Leather Samples with Supercritical Carbon Dioxide 

 

ABSTRACT 

This chapter describes two feasibility studies for the treatment of historic leather samples with 

supercritical carbon dioxide (scCO2(PURE)). In the first study six samples from three different 

leather sources were selected; three of the samples were treated with scCO2(PURE) in the 

presence of water for cleaning effects, the remaining three samples were left untreated. The 

comparative treated and untreated leather samples were analysed with Diffuse Reflectance 

Fourier Transform Infra-red Absorption Spectroscopy (DRIFT). The spectra obtained showed 

an inherent variance between the different leather pairs. The application of the method was 

shown to be descriptive of the different leather samples and the treatment type. It is suggested 

that this type of descriptive spectra may be useful within conservation departments for the 

characterisation of historic leather samples with unknown origins. Due to the reflective surfaces 

caused by coatings present on three of the leather samples, Reststrahlen band effects with 

DRIFT spectroscopy caused some of the spectra produced to be difficult to analyse.  

In the second feasibility study a historic leather book spine was analysed using Scanning 

Electron Microscopy Energy Dispersive Spectroscopy (SEM-EDS) to look for any changes in 

elemental composition on the surface of the sample. The leather spine was subject to SEM-

EDS pre-and post-treatment with scCO2(PURE). Water was not added to the solvent stream to 

establish if scCO2(PURE) was an effect cleaning solvent by itself. Even though no substantial 

changes in elemental composition were observed, there was evidence to suggest that treatment 

via scCO2 with the addition of water may have more of a ‘cleaning’ effect on historic leather 

samples.  

Finally, it was suggested that a collaborative approach using DRIFT spectroscopy and 

SEM/EDS may be useful for creating individual character profiles for materials of diverse 

origin, such as leather, which may then help conservators to create a viable action plan for 

suitable conservation methods.  

Keywords: Supercritical Fluids, Supercritical Carbon Dioxide, Leather, DRIFT Spectroscopy, 

SEM-EDS, Leather Conservation  
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4.1 Introduction 

. Detailed theory of supercritical fluids and their applications are found in Section 1.1,1.2, 

Chapter 1. Carbon dioxide (CO2) is the most commonly used solvent in SCF technologies and 

is the most applicable for uses within conservation as outlined in Section 1.1.2, Chapter 1.  

There are several established technologies that use supercritical fluid extraction methods with 

scCO2 as a solvent for cleaning. As a non-polar molecule, scCO2 is particularly good as 

extracting non-polar, hydrophobic contaminants. As such scCO2 behaves as a lipophilic solvent 

and will extract light oils and higher molecular weight materials e.g. waxes, paraffin’s, lipids 

and resins (Reverchon, 1997). The addition of a co-solvent is needed to remove polar molecules 

effectively. The process is effective from a technical viewpoint and is superior to other methods 

when samples are composed of an intricate geometry, or when samples are water and or heat 

sensitive (Mchardy et al., 1993). Therefore, the process may be applicable for use within 

existing conservation practises. 

Leather can be made from the skin of any animal and is often manufactured in a variety of 

ways (Section 1.6, Chapter 1). Cattle, sheep, pig and goat are the most commonly used animal 

skins. To make these skins into a flexible and durable leather product the dermis layer of the 

skin (Figure 1.15, Chapter 1) must be prepared and preserved via a tanning process, this layer 

of the skin consists mainly of collagen fibres. Each animal skin will be made up of a different 

collagen composition, therefore giving leather a unique appearance attributed to different 

animal species and even different individual animals from the same species (Dirksen, 1997). 

Historically, there have been a number methods for tanning leather to create a supple and 

durable product (Malea et al., 2010), the two main methods are vegetable and mineral tanning. 

Vegetable tanning is the most traditional method of the two, tanners use tannins derived from 

plant sources, such as oak bark, to produce a naturally coloured, strong leather. It is most likely 

that the historic leather samples used in this study were vegetable tanned. If the historic leather 

samples had been mineral tanned they would likely have gone through an alum tanning method 

rather than chromium tanning, which is a method that has only been used since the 1880’s 

(Calnan and Haines, 1991). 

 

Traditionally, tanning methods used a variety of harmful chemicals that can subsequently react 

with pollutants in the air and cause leather to degrade rapidly (Dirksen, 1997). In the most 

extreme cases the leather will be subject to acidic degradation by red rot. The complete removal 



 

124 
 

or reduction of these degradative constituents via a wet cleaning method is not commonly used 

within conservation practices. Instead, preventative conservation methods are preferred; by 

placing the degraded leather in a controlled environment conservators can minimise chemical 

disintegration without causing further damage via wet cleaning. Therefore, the development of 

a cleaning method that aims to stop, rather than halt, the degradation process and leaves the 

leather unharmed, may be of use within conservation departments. Previous work has shown 

that there may be a role for SCFs and more specifically scCO2, within existing conservation 

practices. These have included the deacidification of books and paper and the removal of 

harmful pesticides from ethnographic objects and other fragile museum artefacts (Français et 

al., 1997, Tello, 2006). Therefore, it is feasible that the known cleaning properties of scCO2, 

as stated above, may be harnessed to create a safe and effective cleaning method for historic 

materials.  

 

It is the case that with many materials and objects found with museum collections there is also 

a wealth of information available to conservators that relates to the objects composition, age 

and origin. For these objects and/or materials there are a variety of established methods that 

are employed by conservation professionals to help clean, and preserve the objects for 

continued public enjoyment (Richmond, 2009). Although these approaches are usually very 

effective, sometimes conservators may require more tailor-made methods of conservation. A 

lack of information, especially for complex media such as leather and wood, may be 

problematic if the materials have been subject to degradation over time. Therefore, the ability 

to create an individual character profile for materials for such materials may be use to 

conservators, who are in most cases overwhelmed with a huge variety of problems to solve on 

a diverse range of media.  

 

The main aim of the work presented in this chapter is to evaluate, via DRIFT spectroscopy, the 

treatment of historic leather samples with scCO2, in the presence of water. Additionally, a 

twofold evaluation, via SEM/EDS, of a historic leather book spine that has been treated with 

scCO2(PURE), is described. This work is carried out to examine whether it is feasible to ‘clean’ 

a book spine with the scCO2(PURE), where the term clean is referring to the extraction or 

reduction of any chemical elements that may be accelerating degradation and limiting the long-

term preservation historic leather. Secondly, it is anticipated that analysis with SEM-EDS may 

be able to provide information as to the type and abundance of chemical species present on the 

surface of the historic leather samples, which in turn can be interpreted by conservators to 
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deduce an optimal method for preservation. Furthermore, it may be used collaboratively with 

DRIFT to create material profiles for difficult to identify materials, conservators may then 

initiate effective action plans. Leather has been chosen as the test material because it is prolific 

within museum collections as a damaged and degraded material. 

 

It should be noted that in Chapter 2 novelty was found in hydrating historic and modern wood 

samples with scCO2(PURE)/scCO2(MeOH) in the presence of water. In the feasibility studies carried 

out in this chapter novelty is found in the attempts to clean historic leather samples, of unknown 

origin, with scCO2(PURE) both in the presence of water and without water. It is not contradictory 

to suggest that a solvent stream of scCO2(PURE) in the presence of water may be able to clean a 

material in one instance and hydrate a material in another instance, it may even be possible for 

both processes to happen simultaneously. As such, the wood samples subject to treatment in 

Chapter 2 may have also been subject to cleaning via the scCO2 solvent stream, but this was 

not a property that was chosen to be analysed. Additionally, the leather samples treated in this 

chapter may have higher levels of hydration post treatment with scCO2, but again this is not a 

property that will be analysed here.  

4.2 Materials and Methods 

4.2.1 Materials 

The leather samples were selected and collected from the Leather Conservation Centre 

(Northampton, UK). All the leather samples were kept under ambient conditions until they 

were treated with scCO2. CO2 (liquid withdrawal) was supplied by Air Liquide (Paris, France).  

4.2.2 Leather preparation and characterisation 

The leather samples were taken from three larger leather pieces. Two samples were cut with 

scissors, or torn along existing fractures from each leather piece, so that treated and untreated 

samples were in a comparative pair. The origins of all the larger leather piece were unknown. 

However, they were all classed as ‘historic’ samples by a leather conservation professional, as 

they were deemed to be some 100 or more years old. It is also expected, but not certain, that 

these samples were vegetable tanned. The leather samples were kept in atmospheric conditions 

until they were treated, or underwent DRIFT analysis.  
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The leather book spine had become unattached from its original binding to the cover of a book. 

This sample was also classed as historic as it was known the book had been published in 1913, 

therefore the minimum age the leather is 104 years. 

4.2.3 Supercritical carbon dioxide treatment  

A schematic illustration of the supercritical treatment rig is shown in Figure 4.1, this is the 

same rig configuration as shown in Figure 2.1, Chapter 2 except that a 2 L pressure vessel has 

been used instead of a 25 mL pressure vessel. For treatment with scCO2(PURE), the three leather 

samples were placed on a stainless-steel grate raised up from the base of the 2 L cell. Tissue 

saturated with distilled water was added into the hydration cell and sealed, the oven was then 

heated to 50oC. For the treatment with scCO2(PURE), not in the presence of water, the leather 

book spine was placed vertically on the stainless-steel grate and the hydration cell was left 

empty.CO2 was pulled from the supply cylinder via a dessicator tube before it was cooled to a 

liquid state (to allow for efficient pumping) and compressed to the desired pressure by a Thar 

high pressure P-series pump. Once the desired temperature (50oC) and pressure (20 MPa) had 

been achieved the entry valve (MV1) into the oven was opened and the system was held at 

static pressure for 60 minutes. The pressure was controlled and monitored throughout the 

experiment using the computer (Thar Technologies Inc., Pittsburgh, PA, USA), whilst the oven 

temperature was monitored using a temperature probe (K Type thermocouple input probe) and 

digital monitor (TC305K Digital handheld thermometer). At the end of every experiment, the 

pump was turned off and the entry value into the oven (MV2) was closed whilst the exit value 

(MV2) was opened into a fume hood to allow for slow depressurisation over 60 minutes. 
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Figure 4.1. A schematic illustration of the supercritical hydration rig as constructed by 

the author. Key: V1 = CO2 inlet valve; DT = dessicator tube; HE1 = refrigerated heat 

exchanger (cooling); P1,2,3 = pressure gauges; V2 = pump inlet valve; PUMP1 = 

pneumatic liquid CO2 pump; PRV = safety pressure release valve; NRV1 = non-return 

valve; MV1,2 = micrometering valves, PV1 = hydration pressure vessel, PV2 = reaction 

pressure vessel (with additional stainless steel grate); ABPR = automated back pressure 

regulator; BPR = back pressure relief valve. 

For the duration of the time post-SCF treatment the three treated leather samples (Figure 4.3, 

Figure 4.5, Figure 4.7) were kept in individual, nitrogen flushed containers until they 

underwent analysis with DRIFT spectroscopy. Post-SCF treatment the leather book spine 

(Figure 4.8) was kept in a sealed plastic bag, until it underwent analysis with SEM-EDS. 

 

4.2.4 DRIFT spectroscopy 

The aim of the study was to investigate the sensitivity of the DRIFT spectroscopy technique to 

three pairs of treated and untreated leather samples. There are minimal prior investigations 

using DRIFT spectroscopy on either modern or historic leather samples presented in the 

literature (Section 1.7.3, Chapter 1). However, there are many feature rich DRIFT spectra 

produced from organic materials that deem leather a suitable material for this type of analysis 
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(Pandey and Theagarajan, 1997, Kaiser et al., 1997). All spectroscopic analysis was carried out 

at Chiralabs Limited (Oxford, UK). 

 

Three untreated leather samples and the corresponding treated leather samples were analysed 

using DRIFT spectroscopy. The front and back of each leather samples were analysed, due to 

the presence of different coatings on the front side of the samples (Figure 4.2, Figure 4.3, Figure 

4.4, Figure 4.5, Figure 4.6, Figure 4.7). It was anticipated that the coatings may interfere with 

the spectra and therefore each side was analysed and compared, with the need for some spectra 

to be disregarded. Each sample was placed on the holder of a Diffuse Reflectance (DRIFT) 

optics attachment and presented such that a rough flat face was illuminated. 

Figure 4.2. Two photographs showing the front (coated) and back of the untreated leather 

sample A. 

 

 

 

 

 

 

 

Figure 4.3. Two photographs showing the front (coated) and back of the treated leather 

sample B. 
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Figure 4.4. Two photographs showing the front (coated) and back of the untreated leather 

sample C. 

 

 

 

 

 

 

Figure 4.5. Two photographs showing the front (coated) and back of the treated leather 

sample D.  

 

 

 

 

 

 

 

 

Figure 4.6. Two photographs showing the front (coated) and back of the untreated leather 

sample E. 
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Figure 4.7. Two photographs showing the front (coated) and back of the treated leather 

samples F. 

4.2.5 SEM-EDS for elemental composition 

SEM-EDS analysis was used to provide evidence as to whether there were any changes in 

elemental composition, on the leather book spine caused by treatment with scCO2(PURE). 

Therefore, the leather book spine was analysed by SEM-EDS, pre-and post-treatment, to give 

microscopic imaging with spatially delineated elemental composition. All spectroscopic 

analysis was carried out at Chiralabs Limited (Oxford, UK). The leather spine was analysed 

without processing, it was mounted atop an aluminium SEM stub via an adhesive carbon disc. 

The spine was then analysed at three different areas that could be returned to pre-and post-

treatment, these areas are marked by red circles on Figure 4.8 below. The areas are taken to be 

representative of the dark leather, the damaged leather and the gold embossing that is found at 

various points on the leather book spine.  
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Figure 4.8. A photograph of the leather book spine treated with scCO2(PURE). The areas 

analysed with SEM-EDS are marked with three red circles; dark leather, damaged 

leather and gold embossing. 
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4.3 Results and Discussion 

4.3.1 Supercritical carbon dioxide treatment 

The observations recorded in Table 4.1 were made following the scCO2 treatment of the three 

historic leather samples in Figure 4.3, Figure 4.5 and Figure 4.7. From these initial 

observations, it seems likely that the treatment of historic leather samples with scCO2 in the 

presence of water, is not damaging to the integrity of the leather. It may also be possible that 

the leather samples are being hydrated to a certain degree; indicated by the darker colour of the 

leather samples immediately after depressurisation of the system. However further studies of a 

higher number of treated leathers would need to be carried out to see if the hydration of the 

leather is viable. At this point it is difficult to assess whether the leather samples post-treatment 

are more clean than the leather samples post-treatment.  

Leather Sample Observations post scCO2(PURE) treatment 

Figure 4.3 

B 

The leather sample appeared darker in colour due to the presence of 

water and the possible hydration of the sample.  

There seems to be no loss of material. 

The coating on the front of the sample is more visible and has 

become lighter in colour, perhaps due to the cleaning effects of 

scCO2 and/or the presence of water.  

Figure 4.5 

D 

The sample appears mostly unchanged. The black coating remained 

intact and there has been no change of colour. 

The leather that is uncoated appears darker in colour due to the 

presence of water and the possible rehydration of the sample. 

There seems to be no loss of material.  

Figure 4.7 

F 

The leather is darker in colour due to the presence of water and the 

possible hydration of the sample. 

There has been no loss of the delicate coating and the colours of the 

coating have been maintained. 

Table 4.1. Observations made by the author immediately after the leather samples had 

been treated with scCO2(PURE) in the presence of water. 

It is plausible that by comparing the DRIFT analysis of the treated and untreated leather 

samples, then suggestions may be made as to whether there have been significant changes in 

the leather composition post-treatment. These changes may be representative of the removal or 

reduction of a damaging extractive, thereby indicating that the leather has become more clean.  

In future work, it may also be helpful to use scCO2 with the addition of a co-solvent e.g. 

methanol (MeOH). Although scCO2(PURE) is good a removing non-polar molecules such as 

waxes and resins, the addition of a co-solvent would improve the effectiveness of treatment 

especially if polar molecules needed to be extracted. Conservators already apply a solution of 
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water and ethanol as a wet cleaning method for leather, thus scCO2(MeOH) may provide a more 

effective alternative. 

4.3.2 DRIFT spectroscopy 

Three untreated leather samples and the corresponding treated leather samples were analysed 

with DRIFT spectroscopy. The spectra produced for the three pairs of treated and untreated 

leather samples were found to be different, as shown in the Figures 4.9 - 4.14. The variability 

was particularly noticeable for the band attributed to the OH group, which seemed to change 

position and intensity for samples from the same source. This may be due to different levels of 

hydration between the samples caused by the presence of water in the scCO2(PURE) solvent 

stream. The inherent variance between the sample pairs makes the application of the 

methodology descriptive of the nature of leather and its treatment, which may prove of value. 

There are also other additional features in the spectra that are related to the composition of the 

leather samples and may be profitably considered as a more detailed characterisation.  

Leather samples: A (Figure 4.2), B(Figure 4.3) 

As shown in Figure 4.9 the DRIFT spectra for the leather A shows some characteristic bands. 

The broad band observed at ca. 3460 cm-1 is associated with OH stretches (Lindon et al., 2016). 

This band derives from a series of hydroxyl containing species, including water; variation in 

the proportions of these species will give apparent shift in the band maximum. In principle, it 

may represent the nature of binding for water. For leather B (Figure 4.10) this band is shifted 

slightly to the left at 3475 cm-1.  The bands observed in the region around 2900 cm-1 are 

associated with CH groups (Lindon et al., 2016), as found in most of the organic molecular 

components; these bands are less well defined for leather B in comparison to leather A. The 

bands in the region 2200 – 2300 cm-1 are associated with atmospheric and absorbed CO2, and 

are clear on both the spectra. The other bands in the spectra are associated with the principal 

constituents of leather. 
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Figure 4.9. DRIFT spectra for the untreated leather sample A: coated side (magenta), 

matt side (red). Annotated Reststrahlen effect. 

 

Figure 4.10.  DRIFT spectra for the treated leather sample B: coated side (magenta), 

matt side (red). Annotated Reststrahlen effect. 
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The shiny coated surface present on the front of leather A and leather B has caused some 

Restrahlen band effects, therefore some of the infrared bands are completely reversed (Figure 

4.9, Figure 4.10). This phenomenon is often observed for reflective surfaces and is a sign of 

the occurrence of a different type of infrared reflectance called specular reflectance coupled 

with absorbance, which is undesirable when performing DRIFT. Consequently, it is best to 

analyse the DRIFT spectrum for the matt surface (red spectra) of both the leather samples.  

Leather samples: C (Figure 4.4), D (Figure 4.5) 

The DRIFT spectra produced for the untreated leather C are more consistent than the spectra 

for the untreated leather A as can be seen in Figure 4.11. Although both the leathers C and 

leather A present numerous characteristic bands, the big broad band from the OH region is now 

centred at 3340 cm-1 for leather C. It is shifted towards lower wavenumber compared to the 

leather A. Spectra D (Figure 4.12), similarly to the spectra for B, shows signs of specular 

reflectance. It is therefore best to analyse the only matt surface spectra (red) of leather D.  This 

spectrum, and both the spectra for leather C show less well defined bands in the region around 

which are 2900 cm-1 associated with CH groups. The bands in the region 2200 - 2300 cm-1 

which are associated with atmospheric and absorbed CO2 and bands that are associated with 

the other constituents of leather are also observed for these spectra.  
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Figure 4.11. DRIFT spectra for the treated leather sample C: coated side (magenta), 

matt side (red). 

Figure 4.12. DRIFT spectra for the treated leather sample D: coated side (magenta), 

matt side (red). 
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Leather samples: E (Figure 4.6), F(Figure 4.7) 

The two DRIFT spectra for sample E are consistent with each other, as shown in Figure 4.13.  

They both present numerous characteristic bands. The big broad band from the OH region 

seems to be made up by at least two bands: one centred at 3440 cm-1 and another centred at 

3340 cm-1. In contrast to leathers C and D the bands associated with CH groups that are 

observed in the region around 2900 cm-1 are now well defined for leather E and leather F. The 

bands in the region 2200 - 2300 cm-1 are associated with atmospheric and absorbed CO2. The 

other bands in the spectra are associated with the principal constituents of leather e.g. collagen 

proteins. As seen in Figure 4.14, the DRIFT spectrum for leather F of the coated side (magenta) 

once again shows some signs of specular reflectance (complete inversion of some infrared 

bands apparent in the region 2800 – 3000 cm-1). As a result, it is best to disregard this spectrum, 

and use the matt side (red) spectra as a fingerprint of the treated leather samples. For leather 

sample F the broad band associated with OH stretches has shifted to the slightly higher wave 

numbers at ca. 3345 cm-1, in comparison to leather E. 

 

 

Figure 4.13. DRIFT spectra for the treated leather sample E: coated side (magenta), 

matt side (red). 
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Figure 4.14. DRIFT spectra for the treated leather sample F: coated side (magenta), 

matt side (red). 

Comparison of untreated and treated leathers: A, B: C, D: E, F 

For both the untreated and treated leather samples the spectra show common features but are 

found to be not identical. Notably there is an inherent variation in the position of the broad 

band attributed usually to OH (and NH) groups above 3000 cm-1. This inherent variance 

between untreated samples makes the application of the methodology descriptive of the nature 

of the leather, which may prove of value. Direct comparisons in spectra can be made from the 

corresponding pairs of treated and untreated leathers shown in Figure 4.15. 

It may be noted that the spectra have features at above 4000 cm-1, shoulders in the band at 3600 

cm-1 and features in the 1900 – 2200 cm-1 region as well as a complex series of peaks in the 

fingerprint region. These are related to the detailed composition and physical state of the 

leathers and would provide further information for the characterisation. Likewise, there is an 

apparent shift in the baseline level of the samples independent of the sample being treated or 

not. This is associated with the general reflectivity and roughness of the surfaces and is again 

a characteristic of the nature of the samples.  
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Figure 4.15. DRIFT spectra of the matt brown sides of different untreated leathers 

[leather A (magenta), leather C (red) and leather E (green)] and treated leathers [leather 

B (blue), leather D (black), and leather F (gold)]. 

4.3.3 SEM-EDS 

4.3.3.1 SEM images 

Figure 4.16 below depicts the SEM images of the book spine pre-and post-treatment for the 

areas marked in the Figure 4.8.  It is not possible to compare individual features because the 

positioning of the image was not completely identical for each sample pre-and post-treatment. 

However, comments can be made about the general structure of the surfaces. The general 

physical structure of the three areas do not appear to have undergone any major changes pre-

and post-treatment. This is not surprising as it is likely that the cleaning effect of scCO2(PURE) 

has been minimal; perhaps due to the short length of the treatment or the absence of water 

and/or a co-solvent. Although the scCO2 treatment has not caused any changes to the surface 

of the leather it has also not caused any damage to the sample.  Given that that the scCO2(PURE) 

treatments seems not to be harming the historic leather, in future work it may be useful to carry 

SEM-EDS analysis on leather samples that have been treated with scCO2(co-solvent) in the 

presence of water. This modified supercritical treatment is likely to prove more effective.  
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 In general, it can be seen that the dark leather areas appear more smooth than the damaged tan 

areas, which give a more fibrous appearance. It should also be noted that the gold embossing 

for the post-treatment SEM image is in poor focus, this may be due to movement or loss of 

gold during the scCO2 treatment. However, the loss is not to a statistically definitive degree 

and is more likely to be caused from an instrumental issue regarding the inclusion of some 

leather in the analysis volume. Before it is possible to suggest these treatments for use within 

conservation departments, it would be necessary to prove to conservators that there is no loss 

of material during the supercritical treatment.  
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Pre-treatment  Post-treatment  

  

Damaged tan leather  Damaged tan leather  
  

  

Dark leather  Dark leather  
  

  

Gold embossing  Gold embossing  
  

Figure 4.16. SEM images of the book spine pre-and post-treatment for three different 

areas of the spine: damaged tan leather, dark leather, gold embossing. 
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4.3.3.2 Elemental analysis 

SEM-EDS is formally a semi-quantitative technique unless the methodology has been 

specifically calibrated for the sample under study. Nonetheless, it typically gives reproducible 

data of reasonable accuracy, especially in comparative investigations. Table 4.2 below 

summarises the elemental analysis of samples, averaged over the areas imaged; for the gold 

embossing, only the embossing was analysed and not the surrounding leather. 

For the dark leather and the tan leather Table 4.2 shows that there are no significant changes in 

the elemental composition of either of those areas after the treatment with scCO2(PURE). The 

gold is seen to contain copper and silver, consistent with typical gold impurities.   The apparent 

reduction in the gold content in the gold embossing post-treatment may suggest a modicum of 

gold loss on treatment, but this is not statistically significant and would need to be repeated 

with other samples.  It is plausible that is simply due to the vagaries of depth penetration of the 

analysis method and hence the amount of leather unavoidably included in the volume probed. 

This is consistent with the concomitant increase in carbon and oxygen content.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 (next page). Comparison of SEM-EDS elemental analysis of pre-and post-

treatment book spine (mean ± standard deviation across imaged areas).a: With respect to 

total detected, values quoted to least significant figure; elements not listed are either not 

detectable (“N/D”) by the technique (inc. H, He, Li) or below detection limit (“<dl”); in 

the case here dl~0.01% in the area observed. b: Bromine levels may be confounded in the 

presence of Aluminium and vice versa.  
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Element  

Estimated Composition (%w/w) a  

Tan Leather  Dark Leather Gold Embossing 

Pre-

treatment  
[xlem183-2]  

Post-

treatment  
[xlem186-3]  

Pre-

treatment  
[xlem183-1]  

Post-

treatment  
[xlem186-2]  

Pre-

treatment  
[xlem183-3]  

Post-

treatment  
[xlem186-1]  

H, He, Li, 

Be  

N/D  N/D  N/D  N/D  N/D  N/D  

Boron  <dl  <dl  <dl  <dl  <dl  <dl  

Carbon  52 ±4  52 ±5  47 ±2  48 ±3  15 ±2  21 ±3  

Nitrogen  10.8 ±0.2  11.2 ±0.1  7.5 ±0.2  8.0 ±0.04  3±1  4 ±1  

Oxygen  34 ±1  34 ±1  38 ±1  38 ±1  14 ±2  16 ±2  

Fluorine  0.03 ± 0.03  0.03 ± 0.04 <dl  <dl  <dl  <dl  

Neon  <dl  <dl  <dl  <dl  <dl  <dl  

Sodium  0.12 ± 0.01  0.09 ± 0.02  0.32 ± 0.01  0.43 ± 0.03  <dl  <dl  

Magnesium  <dl  <dl  0.16 ± 0.01  0.21 ± 0.02  <dl  <dl  

Aluminium 
b  

<dl  <dl  0.29 ±0.03  0.30 ±0.02  0.2 ±0.1  0.07 ±0.08  

Silicon  0.03 ±0.01  0.02 ±0.02  0.67 ±0.07  0.62 ±0.05  <dl  <dl  

Phosphorus  <dl  <dl  0.02 ±0.01  0.05 ±0.01  <dl  <dl  

Sulphur  2.3 ±0.2  2.0 ±0.2  2.2 ±0.2  1.9 ±0.1  <dl  <dl  

Chlorine  0.05 ±0.01  0.04 ±0.01  0.05 ±0.01  0.06 ±0.01  <dl  <dl  

Argon  <dl  <dl  <dl  <dl  <dl  <dl  

Potassium  0.13 ±0.03  0.08 ±0.01  0.52 ±0.06  0.53 ±0.05  0.27 ±0.07  0.6 ±0.1  

Calcium  0.19 ±0.02  0.17 ±0.01  1.03 ±0.04  0.97 ±0.02  0.41 ±0.08  0.8 ±0.3  

Scandium  <dl  <dl  <dl  <dl  <dl  <dl  

Titanium  <dl  <dl  <dl  <dl  <dl  <dl  

Vanadium  <dl  <dl  <dl  <dl  <dl  <dl  

Chromium  <dl  <dl  <dl  <dl  <dl  <dl  

Manganese  <dl  <dl  <dl  <dl  <dl  <dl  

Iron  0.15 ±0.02  0.13 ±0.01  1.1 ±0.2  0.83 ±0.06  <dl  <dl  

Cobalt  <dl  <dl  <dl  <dl  <dl  <dl  

Nickel  <dl  <dl  <dl  <dl  <dl  <dl  

Copper  <dl  <dl  <dl  <dl  1.2 ±0.3  1.5 ±0.2  

Zinc  <dl  <dl  <dl  <dl  <dl  <dl  

Gallium  <dl  <dl  <dl  <dl  <dl  <dl  

Germanium  <dl  <dl  <dl  <dl  <dl  <dl  

Arsenic  <dl  <dl  <dl  <dl  <dl  <dl  

Selenium  <dl  <dl  <dl  <dl  <dl  <dl  

Bromine b  <dl  <dl  <dl  <dl  <dl  <dl  

Krypton  <dl  <dl  <dl  <dl  <dl  <dl  

….  
            

Silver  <dl  <dl  <dl  <dl  0.9 ±0.5  2 ±1  

Tin  0.05 ±0.05  0.03 ±0.03  0.3 ±0.2  0.2 ±0.2  <dl  <dl  

Barium  <dl  0.01 ±0.02  0.12 ±0.02  0.02 ±0.02  <dl  <dl  

Gold  <dl  <dl  <dl  <dl  64 ±6  54 ±18  

 



 

144 
 

Chapter 5: Overall Conclusions with Suggestions for Future Work 

 

5.1 Overall conclusions 

The main achievements and conclusions of this work have been discussed below, with 

reference to the aims outlined in Section 1.8, Chapter 1. 

Supercritical hydration  

• Design, construct and optimise process equipment for supercritical hydration, using 

scCO2 as the fluid of choice, and additionally to investigate co-solvent addition and 

changes in experimental process parameters. 

• Investigate supercritical hydration as a method for the addition of water to wood 

samples, including historic and modern, hardwood and softwood. 

From Figure 2.12 (Section 2.4.1.3, Chapter 2) a general trend is observed; increasing the 

concentration of MeOH (co-solvent) increases the levels of NMC achieved by all the wood 

species in the sample set. This trend had been predicted in the hypothesis outlined in Section 

2.4.1.1. The hypothesis also stated that the modern wood samples would achieve higher 

stabilised NMC than the historic wood samples. This has been proved not to be the case with 

the historic and modern wood samples treated in this study. It was found here that both White 

Oak (H) and Maple (H) achieved some of the highest stabilised NMC of the sample set. 

Evidence so far suggests that the temperate hardwoods are more consistent in their ability to 

retain water, additionally suggesting that wood type rather than wood age is more of an 

influencing factor on the absorbance levels of water. Even though the hardwoods may initially 

have a lower uptake of water molecules is seems they can retain a consistently higher NMC. 

Statistically this is supported by White Oak (H), Maple (H) and Red Oak (M) all giving 

significant results with 5.0 mol% MeOH, Maple (H) also gave significant results with 2.5 mol% 

MeOH. Due to the unpredictable nature of Scots Pine (H) and its reaction to the SCF treatments 

it would be interesting to investigate a greater number of softwood species undergoing scCO2 

treatment. As discussed, it is most likely that the impregnation and subsequent absorption of 

water into the wood matrix is influenced by a combination of macrostructural and 

microstructural features, which can vary between individual the wood samples. Cell 

composition, pit and pore arrangement and age are the main factors that should be considered 

when selecting a wood species for treatment with scCO2 in the presence of water.  
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Microstructural analysis  

• Assess, via microstructural analytical techniques, the extent of any damage caused 

during the supercritical hydration treatments. 

In this instance, light microscopy has proved to be the most useful of the two imaging analyses. 

It has been suggested that SEM, in collaboration with the interior and exterior light microscopy 

images, may confirm or provide additional evidence on wood sample characterisation. 

However, SEM, as a standalone analysis cannot be used to assess whether the wood samples 

have been subject to any additional damage during the supercritical hydration treatment due to 

the erratic and damaging sample preparation method. The images produced by light 

microscopy of the untreated and treated wood samples suggest that no damage is being caused 

to the interior or the exterior of the samples. In comparison with the wood samples that were 

known to be heat damaged, the treated and untreated wood samples have undergone no colour 

changes and depict none of the characteristic features of damage.  

The DRIFT spectroscopy studies were reasonably successful with significant trends being 

identified. All the DRIFT spectra for the four modern wood samples showed bands associated 

with OH groups (ca. 3490 cm-1) and CH groups (ca. 2900 cm-1). Bands associated with the 

principle constituents of wood, namely cellulose, hemicellulose and lignin were known to be 

partially hidden or limited to the fingerprint region of the spectra (ca. 400 – 1800 cm-1) for 

DRIFT spectroscopy. The calculated OH/CH and OH/“cellulose” ratios gave insight as to the 

possible interactions associated with the hydroxyl groups and the fibrous wood constituents. 

The ratios also gave supporting evidence for relationship between co-solvent concentration and 

NMC.  

Macrostructural analysis 

• Asses, via macrostructural analytical techniques, the extent of any damage caused 

during the supercritical hydration treatments. 

• Investigate the potential of the supercritical hydration mechanism to maintain or 

increase the MOR of the wood samples.  

To draw conclusions from the significance of the bending strength (MOR) and Young’s 

Modulus values, they must be looked at in conjunction with the NMC data highlighted in 

hydration profiles shown in Section 2.4.1.2 and Section 2.4.1.3. These have shown that 

increasing the co-solvent percentage in turn increases the stabilised NMC of all the wood 
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samples. Increasing the overall moisture content of the wood decreases its stiffness and strength 

(Greer, 2008) due to water forming cellulose-water bonds, thereby altering the cell wall 

structure and increasing its surface area. The decreasing strength values shown in Table 3.3 

positively affirms the assumption that scCO2 is successfully hydrating the oven dried wood 

samples to a certain degree.  

Apart from Maple (H) (Figure 3.28) all the wood samples increased in MOR after treatment 

with scCO2. However, if these results are looked at in conjunction with the NMC data it seems 

that some woods are more suited to the supercritical treatments, than others. The supercritical 

treatment conditions of 20 MPa and 50oC for 45 minutes were constant throughout all the 

studies listed in this Chapter. Under these conditions, it was concluded in Section 2.4.1.4 and 

Section 2.4.1.5 that temperate hardwoods are the most suitable for treatment via scCO2(MeOH). 

The three-point bend tests carried out here have provided evidence that these temperate 

hardwoods have not only been stabilised but have also increased in MOR. In the case of Scots 

Pine (H), it is likely that the increase in MOR is due to the scCO2 causing swelling of the 

amorphous cellulose polymers, rather than increased levels of NMC. 

Maple (H) displays the possibility of SFE taking place alongside the supercritical hydration of 

the wood samples, which may be an area of concern for conservators. Having said that, the 

removal of waxy consolidants can be beneficial to conservators. The waxy residues can migrate 

towards the surface of the material attracting dirt and causing changes in colour. Therefore, 

stabilisation or at least the cleaning of a material, may be achieved by extracting the waxy 

residues and replacing them with a more suitable consolidant.  

• Present findings to conservation professionals at cultural heritage conferences and 

symposiums to assess the suitability of the supercritical hydration technique as a 

standalone, or collaborative method in art conservation. Compare this novel process 

with conventional methods of wood hydration used in conservation departments. 

Findings have been presented at conferences in both the UK and USA, as shown in the 

Publications section at the beginning of this thesis. It was found that some conservators had 

concerns regarding the methodology developed here. The main issues raised were associated 

with fragile materials being placed and sealed in a high pressure vessel, away from human 

contact. However, it was explained that several precautions had been taken to avoid the 

development of pressure differentials, which may cause damage to fragile materials. As such, 

conservators could see the benefit of an interventive methodology that stabilised and 
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strengthened dry wood via hydration. Currently, preventative methods are most commonly 

applied when dealing with dry wood. These mainly involve controlling the environment in 

which the wood samples are kept, thus appealing to their hygroscopic nature. However, the 

interventive methodology developed in this thesis may be used as a complimentary treatment 

to be used alongside these preventative methods, and not to replace them. The hydration levels 

achieved by the application of supercritical hydration may be maintained, and prolonged by 

the additional storage of the wood in a carefully controlled environment. Hence, wood samples 

may maintain an increased level of stabilisation for a longer period of time.  

Feasibility studies for historic leather  

• In a feasibility study to investigate other historic media, asses the additional 

applications of scCO2 technology for use in conservation departments. 

The feasibility studies described for the treatment of leather samples using scCO2(PURE) in the 

presence of water, have both shown positive results. It seems reasonable to suggest that the 

treatment was not harmful to the three historic leather samples and it was suggested that a 

degree of hydration may also be taking place. Further studies with a larger number of historic 

samples need to be carried out to establish the effectiveness of scCO2 as a cleaning solvent for 

historic leather. The DRIFT analysis of the treated and untreated leather samples provided an 

insight into the characterisation of the three leather pairs of which the origins were unknown. 

It is also possible that the DRIFT spectroscopy showed the presence of water in the leather 

post- treatment. However, this was not conclusive and more samples would need to be analysed 

to see if this was statistically definitive. It should be noted that some spectra had to be 

disregarded due to the presence of Rastrahlen band effects caused by the reflective surfaces of 

the different coatings on the front of the leather samples. Therefore, in the future, care must be 

taken when selecting suitable leather samples for characterisation by DRIFT spectroscopy. 

The scCO2(PURE) treatment and SEM-EDS analysis of the leather book spine provided 

beneficial evidence towards two areas of interest; cleaning and characterisation. The SEM 

images showed that there were no major physical changes to the surface of the spine post-

treatment with scCO2(PURE). Thus, it can also be suggested that the scCO2(PURE) caused no 

physical damage to the surface of the leather spine and could therefore be optimised in future 

studies as a non-toxic cleaning solvent in conservation techniques. Improvements may be made 

as to the efficiency of the scCO2 solvent stream with the addition of a suitable co-solvent, 

thereby increasing the affinity of CO2 with polar molecules. Alternatively, it may be possible 
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to create an analytical protocol using both DRIFT spectroscopy techniques and SEM-EDS 

techniques to create a character profile for deteriorated leather that can then be used by 

conservators to create an action plan for necessary to stabilisation of the material. 

5.2 Suggestions for future work 

Based on the experimental findings presented throughout this thesis, the following topics are 

suggested as the most promising areas for future work: 

Investigation of supercritical hydration with different co-solvents to aid the levels of hydration 

achieved by the wood samples, without causing damage to the structure 

The use of methanol as a co-solvent improved the levels of NMC achieved by the historic and 

modern wood samples. However, the increased hydration levels in turn compromised the 

maximum MOR that the wood samples achieved. Hence, increasing the co-solvent 

concentration, increased the stabilised NMC of the wood samples. However, a higher NMC 

decreases the overall MOR of the wood samples as water species weaken the wood cell walls. 

As such, it was suggested that a ‘happy medium’ should be found when choosing between co-

solvent concentration, and the desired levels of MOR increase. Therefore, it would be 

interesting to investigate whether different co-solvents offer better levels of hydration with 

similar or improved responses in MOR. The varying affinities between different co-solvents 

and scCO2 may increase the hydration ability of the scCO2 solvent stream. 

Hydrating additional wood species, specifically softwood species. 

Scots Pine (H) was the only softwood in the sample set. However, it gave some interesting 

results that would have been better justified alongside additional softwood species. Instead, 

some assumptions were made as to why Scots Pine (H) achieved low levels of hydration in 

comparison to the temperate hardwoods. Incorporating additional softwood species for 

investigation via supercritical hydration, may give further evidence as to why softwood species 

were unable to achieve higher levels of hydration. Modern and historic softwood species should 

be investigated.  

Further DRIFT analysis to determine specific interactions.  

The DRIFT spectroscopy study was successful, however some questions remained and 

assumptions have been made. Further DRIFT analysis with a greater number of wood samples, 

could be used to confirm the presence of any specific interactions caused by the supercritical 
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hydration treatment. Specifically, OH/ “Cellulose’ and OH/CH interactions may be 

determined, as well as additional features related to wood composition.  

If evidence of specific interactions that occur during the supercritical hydration of wood can 

be collected and linked to the levels of hydration achieved, then there may be a potential to 

tune the existing mechanism for individual samples depending on the levels of hydration 

required, or for specific wood species and/or types. In addition to DRIFT techniques, there may 

be value in applying addition analytical techniques to the wood samples prior to treatment as 

this may further elucidate information about the sample. This approach would be particularly 

useful within a conservation setting where information about historic materials/media is often 

sparse. 

Comparative studies for the humidification of historic materials. 

It may be interesting to carry out studies that investigate modern conservation hydration 

techniques used on historic materials, in direct comparison to the supercritical hydration 

technique suggested here. Preventative conservation methods most commonly use humidity 

cabinets to maintain stable moisture levels in collections, therefore initial studies should 

primarily look at these such methods in detail.  

Expand on the feasibility studies with historic leather samples. Further studies may include the 

cleaning of historic leather and/or the removal of consolidant waxes and resins. 

The feasibility studies carried out in Chapter 4 show the potential for additional conservation 

treatments via scCO2. The studies have shown that the cleaning of historic leather with scCO2 

may provide greatest scope for success in the future.  Certainly, investigations carried out by 

Sousa et al. (2007) on the cleaning of historic textiles suggest that scCO2 may be harnessed as 

a very effective cleaning solvent for soiled leather samples. However, many modifications need 

to be made to the existing scCO2 cleaning method already suggested. It will be necessary to 

investigate the addition of a co-solvent to scCO2 solvent stream, as it is likely that this will 

increase the levels of cleaning achieved. It may also be more helpful to know the exact origin 

and use of the leather samples that are to undergo cleaning, thus allowing for precautions to be 

taken as regards material fragility and possible extractives. 

Leather conservators are increasingly concerned with the damage caused by the application of 

waxy resins and oils to the surface of many leather objects and coverings in the past. These 

oils, or wax based consolidants were previously applied to leathers in an attempt to maintain 
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suppleness and avoid cracking. However, a number of problems faced by leather conservators 

are now associated with the application of these ‘projective’ consolidants e.g. migration of dirt 

and dust.  It is well known that scCO2 acts as lipophilic solvent and will extract light oils and 

higher molecular weight materials e.g. resins. Mechanical data for Maple (H) (Section 3.3.2.1, 

Chapter 3) has suggested that oil or wax based resins previously applied as a consolidant, have 

been extracted by the scCO2. It would be interesting to investigate the removal of previously 

applied waxes and oils from leather samples via a scCO2 solvent stream, as a solution to a 

problem facing many leather conservators today. Polymers and scCO2 in contemporary 

conservation practices. 

Both Scots Pine (H) and Maple (H) samples investigated in this thesis have given examples of 

why it may be possible to apply scCO2 treatments to problems facing contemporary art 

conservators. The increase in MOR for Scots Pine (H), suggested that scCO2 may be swelling 

the natural wood polymer matrix and inducing a seemingly increased level of strength (Section 

3.3.2.1, Chapter 3). Whilst Maple (H) provided an example of the scCO2 ability to extract oil 

or wax based molecules. 

scCO2 is known to swell and expand several polymeric materials that are used in contemporary 

art, specifically polyurethane (PUR) foams. This property can be used to the advantage of 

conservators who are either looking to extract or impregnate degrading polymers as a means 

of increasing material stabilisation. Extraction of degradation materials and/or monomer 

residues, and the impregnation of organic UV absorbers, monomers and amino silanes or 

acrylates are all feasible via a scCO2 solvent stream. 
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Appendix 

Appendix 1 

Wood 

sample 

Mass (g) 

 Week 1 Week 2 Week 4 Week 8 Week 

12 

Week 

16 

Week 

20 

Oven-dried 1.699 1.724 1.731 1.738 1.742 1.745 1.752 

Treated 1 2.109 2.100 2.087 2.076 2.070 2.068 2.066 

Treated 2 1.993 1.981 1.963 1.959 1.955 1.951 1.951 

Treated 3 2.006 1.988 1.976 1.951 1.943 1.939 1.938 

Figure 1a. Table showing the mass data for control wood samples that were kept in a low 

humidity desiccator with silica gel for 48 weeks. Data from week 1 to week 20. 

Wood 

sample 

Mass (g) 

 Week 24 Week 

28 

Week 

32 

Week 

36 

Week 

40 

Week 

44 

Week 

48 

Oven-dried 1.752 1.752 1.752 1.752 1.753 1.753 1.753 

Treated 1 2.065 2.065 2.065 2.064 2.064 2.065 2.065 

Treated 2 1.951 1.951 1.954 1.952 1.952 1.952 1.953 

Treated 3 1.935 1.935 1.936 1.936 1.936 1.936 1.936 

Figure 1b. Table showing the mass data for the control wood samples that were kept in a 

low humidity desiccator with silica gel for 48 weeks. Data from week 24 to week 48.  

Appendix 2 

Experiment Number Temperature 15 minute intervals (oC) 

 15 minutes 30 minutes 45 minutes 

1 50.77 50.59 50.23 

2 50.96 50.45 40.42 

3 50.74 51.02 50.85 

4 50.63 50.60 50.42 

5 50.89 50.76 50.71 

6 50.22 50.22 50.21 

7 50.65 50.45 50.54 

8 50.99 51.00 50.92 

9 51.02 50.86 5.79 

10 50.67 50.52 50.55 

Figure 2a. Table to show typical temperature recordings in the oven for a supercritical 

hydration experiment. Experiments were 45 minutes long and recordings were taken 

every 15 minutes. 
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Appendix 3 

 

Figure 1. A mass loss profile for wood samples weighed over 8,064 hours (48 weeks). The 

wood samples have been treated with scCO2(PURE) in the presence of water for 45 minutes. 

Each point represents the overall mean from five independent sets of measurements ± 

one standard error of the mean. 
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Appendix 4 

 

 

Figure 3a. A SEM image at a magnification of 200 x and resolution 10 μm, Zebrano (M) 

treated with scCO2(PURE). 

 

 

 

 

 

 

 

 



 

162 
 

 

Figure 3b. A SEM image at a magnification of 200 x and resolution 10 μm, Zebrano (M) 

treated with scCO2(PURE). 
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Figure 3c. A SEM image at a magnification of 50 x and resolution 100 μm, White Oak 

(M) treated with scCO2(PURE). 
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Figure 3d. A SEM image at a magnification of 50 x and resolution 100 μm, Red Oak (M) 

treated with scCO2(PURE). 
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Figure 3e. A SEM image at a magnification of 50 x and resolution 100 μm, White Oak 

(M) treated with scCO2(PURE). 
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Figure 3f. A SEM image at a magnification of 50 x and resolution 100 μm, White Oak (M) 

treated with scCO2(PURE). 
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Figure 3g. A SEM image at a magnification of 50 x and resolution 100 μm, Maple (M) 

treated with scCO2(PURE). 
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Figure 4a. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) untreated exterior 
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Figure 4b. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) untreated interior 

 

 

 

 

 

 

 

 

 

 

 

Figure 4c. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) treated exterior 
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Figure 4d. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) treated interior 

 

 

 

 

 

 

 

 

 

 

 

Figure 4e. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) damaged exterior 
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Figure 4f. Original size light microscopy image at a 40 x magnification of a White Oak 

(H) damaged interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4g. Original size light microscopy image at a 40 x magnification of a Maple (H) 

untreated exterior. 
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Figure 4h. Original size light microscopy image at a 40 x magnification of a Maple (H) 

treated interior. 

 

 

 

 

 

 

 

 

 

 

Figure 4i. Original size light microscopy image at a 40 x magnification of a Maple (H) 

treated exterior 
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 Figure 4j. Original size light microscopy image at a 40 x magnification of a Maple (H) 

treated interior. 

 

 

 

 

 

 

 

 

 

 

Figure 4k. Original size light microscopy image at a 40 x magnification of a Maple (H) 

damaged exterior. 
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Figure 4l. Original size light microscopy image at a 40 x magnification of a Maple (H) 

damaged interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4m. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) untreated exterior. 
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Figure 4n. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) untreated interior. 

 

 

 

 

 

 

 

 

 

 

Figure 4n. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) treated exterior. 
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Figure 4o. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) treated interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4p. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) damaged exterior. 

 

 

 

 

 

 



 

176 
 

 

 

 

 

 

 

 

 

 

 

Figure 4p. Original size light microscopy image at a 40 x magnification of a Scots Pine 

(H) damaged interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4q. Original size light microscopy image at a 40 x magnification of a Maple (M) 

untreated exterior. 
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Figure 4r. Original size light microscopy image at a 40 x magnification of a Maple (M) 

untreated interior. 

 

 

 

 

 

 

 

 

 

 

Figure 4s. Original size light microscopy image at a 40 x magnification of a Maple (M) 

treated exterior. 
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Figure 4t. Original size light microscopy image at a 40 x magnification of a Maple (M) 

treated interior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4u. Original size light microscopy image at a 40 x magnification of a Maple (M) 

damaged exterior. 
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Figure 4v. Original size light microscopy image at a 40 x magnification of a Maple (M) 

damaged interior. 
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Figure 4w. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

untreated exterior. 

 

 

 

 

 

 

 

 

 

 

Figure 4x. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

untreated interior. 
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Figure 4y. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

treated exterior. 

 

 

 

 

 

 

 

 

 

 

Figure 4z. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

treated interior. 
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Figure 4aa. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

damaged exterior. 

 

 

 

 

 

 

 

 

 

 

Figure 4ab. Original size light microscopy image at a 40 x magnification of a Zebrano (M) 

damaged interior. 
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Appendix 5 

 

Figure 1. A plot to test if there is a mathematical correlation between the normalised 

moisture content (NMC) and the mean strength (MOR) of the wood samples treated 

with scCO2(PURE) and scCO2(MeOH) with MeOH at 5.0 mol% Values of NMC and MOR 

were measured at 504 hours.  
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