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Abstract

The analysis for the first observation and branching fraction measurement of the rare decay
Λ0
b → pKµ+µ− with respect to the control channel Λ0

b → J/ψpK was performed. The
analysis was kept blind in Λ0

b→ pKµ+µ− to avoid potential selection bias as this decay is
unobserved. The data is from proton-proton collisions recorded by the LHCb experiment
in 2011 and 2012, corresponding to an integrated luminosity of 1 fb−1 at 7 TeV and 2 fb−1 at
8 TeV respectively. A corrected yield of (7.83± 0.13± 0.65)× 106 Λ0

b→ J/ψpK candidates
was measured for the full 3 fb−1 and the analysis is currently under review by the LHCb
Collaboration, awaiting approval to un-blind for the branching fraction measurement of
Λ0
b→ pKµ+µ−.



Declaration of the author’s contribution

The technical work in Section 2.3.10 and the analysis in Chapter 3 was carried out by myself.

The technical work involved developing backend and frontend software for the extraction
and analysis of data for the validation of electromagnetic physics simulation at LHCb. The
tools are designed for implementation into a validation and regression testing framework
currently under development at LHCb.

All of the analysis is my own work. It is stated in the text where LHCb tools and software
are used. The concept behind the kinematic weighting procedure and the machinery
for the five dimensional efficiency modelling was developed in collaboration with Michal
Kreps. Nigel Watson, Michal Kreps and members of the LHCb rare decays working group
provided feedback and suggestions throughout the development of the analysis.

1



Acknowledgements
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Chapter 1

Introduction

To date, the Standard Model (SM) of particle physics is the most successful attempt to

describe the nature and behaviour of our universe. The 20th century discoveries of the

strong and weak nuclear interactions completed our knowledge of the existence of at least

four fundamental forces in nature: Electromagnetism, the weak nuclear force, the strong

nuclear force and gravity.

The SM is a quantum field theory which attempts to describe three of these fundamental

forces of nature. This effort began in 1961 with Glashow’s unification of the weak and

electromagnetic interactions [1]. Subsequent developments in the 60’s and 70’s lead to the

Standard Model’s current form, further corroborated by discoveries such as the existence

of the top quark [2] and Higgs boson [3].

Despite the success of the Standard Model in explaining the interactions of matter on a

subnuclear level, there are certain astronomical observations and particle physics anomalies

for which there is no adequate explanation. For instance, there is no mechanism stong

enough to describe the magnitude of the matter-antimatter asymmetry observed in the

universe. We lack a fundamental explanation for the existence of neutrino oscillations or

their finite masses, neither does the SM offer candidate particles of which dark matter
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may be composed. Furthermore it does not explain the homogeneity and isotropy of the

universe, such as a field to drive the proposed explanation for this: cosmic inflation. The

attempts to develop a quantum description of gravity have yet to be fruitful, making it

the only known fundamental force that is not included in the SM at all.

This thesis presents an experimental analysis that can directly probe the SM through

the previously unobserved decay, Λ0
b→ pKµ+µ− using data from the LHCb experiment at

the Large Hadron Collider (LHC), CERN. This decay proceeds through a process known

as a flavour changing neutral current (FCNC). Forbidden at tree level, decays such as

these can be very sensitive to new physics, as new particles may modify the quantum loop

contributions to the amplitude and hence cause observables, such as the rate at which the

process occurs to deviate away from SM predictions. It is possible that studying these

processes may uncover indirect evidence for physics beyond the Standard Model (BSM).

Efforts are ongoing to constrain and challenge the Standard Model in the fields of both

astro and particle physics. The precise measurement of observables associated with these

rare FCNC decays represent an invaluable means by which the predictions of the SM can

be tested.

The Standard Model

The fundamental particles of the SM can be catagorised into quarks, leptons and gauge

bosons. Quarks and leptons are spin 1
2

fermions, and these particles are the constituents

of matter. Interactions between fermions, through the EM, weak and strong forces are

mediated by the spin-1 gauge bosons. The SM is a Quantum Field Theory (QFT) which

describes particles and their interactions in terms of fields, as shown in Table 1.1 below.

The electroweak boson and gluon fields describe the spin-1 gauge bosons of the

electroweak and strong interactions respectively. These gauge interactions are associated
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Ψ Fermion field
W1,W2,W3, B Electroweak boson fields
Gα Gluon field
φ Higgs field

Table 1.1: Quantum fields of the Standard Model.

with the symmetry group,

G = U(1)× SU(2)× SU(3) (1.1)

The unitarity groups, U(N) consist of N ×N matrices ( U groups have determinant

|1|). In the case of of the SU groups, the S denotes ‘special’ meaning the determinant of

the matrices is +1. The manifestation of gauge invariance gives rise to deep symmetries

and conservation laws such as the conservation of electromagnetic charge.

Each group has N2 − 1 generators, as U(1), SU(2) and SU(3) act on their respective

quantum fields to generate the gauge bosons of the standard model. U(1) gives rise to a

single massless boson, the photon, while SU(3) acts on the gluon field producing eight

types of gluon.

SU(2) gives rise to three massless gauge bosons to mediate the weak force, however the

W± and Z bosons are not massless. To reconcile this within the SM picture, the process

of spontaneous symmetry breaking describes how particles, such as the massless gauge

bosons of the weak interaction can acquire mass through interaction with a scalar field,

hence the need for the scalar field φ, and Higgs particle.
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Figure 1.1: The fundamental particles of the Standard Model [4]

1.1 The electromagnetic interaction

The electromagnetic interaction, described in the SM by the theory of quantum electro-

dynamics (QED) [5], concerns the interaction of particles with electromagnetic charge

and is mediated by the photon. The elementary QED vertex shown in Figure 1.2 is

the fundamental interaction from which all QED processes derive, for instance Møller

scattering and electron-positron annihilation (Figure 1.3 and higher-order processes, for

example those shown in Figure 1.4
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Figure 1.2: Elementary interaction vertex in QED where e is any charged particle in the SM.

Figure 1.3: Tree level QED processes

Figure 1.4: Higher order QED diagrams. (a) a box diagram. (b) a vertex correciton.

Feynman diagram calculations of QED processes are in principle straightforward with

respect to QCD, because the inclusion of increasingly higher order diagrams or radiative

photons perturb the calculation to a lesser degree since each QED vertex picks up an



Introduction 18

additional factor of the fine structure constant, α, where1,

α =
e2

~c
≈ 1

137
(1.2)

meaning that QED calculations converge relatively quickly.

1.2 The strong interaction

The strong interaction, described in the SM by Quantum Chromodynamics (QCD) [5], is

the interaction between particles that possess the property of colour charge, specifically

gluons and quarks. The discovery of numerous hadronic states in the 1950’s and 1960’s

preceded QCD and the notion of quarks themselves. In 1963 Gell-Mann and Zweig

proposed the idea of hadrons being composed of three flavours of quarks, but the quantum

number of colour charge was needed to explain how quarks could exist in a bound state

with fully symmetric spin wavefunction and also a symmetric flavour wavefunctions, such

as in baryons without violating the Pauli exclusion principle.

Unlike the electromagnetic charge in QED, in QCD there are three ’colours’ (and

their anti-colours) red, green and blue. This analogy to additive colours is used under

the hypothesis that these bound states of quarks (mesons and baryons) must be colour

singlets, i.e. ’colourless’2. For example, qrqgqb for a baryon and qrqr for a meson. Recent

measurements from LHCb also show evidence of a pentaquark [6] state, where the color

singlet state is achieved by quark combinations of the form qqqq and qqqqq respectively.

The ‘fundamental’ QCD vertex shown in Figure 1.5 demonstrates how the gluon carries

two colour degrees of freedom. Despite this interaction being quite similar to QED, the

1The fine structure constant is a running coupling, and varies with energy scale. The value of 1
137

corresponds to the long distance (low energy) scale limit
2The notion of colour confinement is unambigously observed but a formal proof that this must be the

case has yet to be developed.
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Figure 1.5: Fundamental interaction vertex in QCD, showing a specific colour exchange, however
any combination of colour exchange can occur as long as it is conserved.

fact that gluons carry colour charge introduces a fundamental difference in that they

will in general, self interact. This makes QCD calculations far more complex than QED.

However, vacuum polarisation of virtual gluons has an anti-screening effect, (contrary to

the screening effect that an electromagnetic charge experiences) causing qluons to interact

weakly at higher energies (shorter distances). This means QCD is asymptotically free at

higher energies.

1.3 The weak and electroweak interactions

The weak nuclear force is responsible for flavour change in the SM. It is in fact the

only known mechanism in which flavour change can occur. There are two types of weak

interaction: Charged currents, mediated by the W± bosons through which flavour change

occurs (see Figure 1.6), and neutral currents via the Z boson.

Unlike the gluon and photon, the Z and W bosons are massive at 80.4 GeV/c2 and

91.2 GeV/c2 respectively [7]. Futhermore, the weak force does not conserve parity in

constrast to the EM and strong interactions, due to the involvement of the axial vector

current in weak interactions. EM and strong interactions involve the vector current V µ,

which under a parity inversion (a transformation of spatial coordinates from x→ −x etc)
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Figure 1.6: Charged and neutral currents in the weak interaction, showing quark and leption
flavour change (left) and a neutral Z vertex (right) in which flavour remains unchanged.

becomes −V µ. Contrarily, the axial current Aµ is unchanged under parity inversion and

the weak force is therefore a chiral gauge interaction in which only left handed fermions

(and right handed anti-fermions) interact via the weak force. After violation of the parity

symmetry was observed in 1957 by Wu [8], Landau proposed that the combined operation

of both charge and parity symmetries (CP) as a symmetry group that would be respected

by the weak interaction. However, it was only several years later, in 1964 that CP-violation

was observed also in kaon decays [9]. Four years later the weak and electromagnetic

forces were unified under the ‘electroweak’ force by Salam, Glashow and Weinberg [1].

This unification under a single theory of the electroweak interaction defines four massless

bosons (W1,W2,W3 and B, which through spontaneous symmetry breaking via the Higgs

mechanism are transformed into the massive W± and Z bosons and the massless photon

like so, γ
Z

 =

 cosθW sinθW

−sinθW cosθW


 B

W3

 (1.3)

while,

W± =
1√
2

(W1 ± iW2) (1.4)

therefore existing as two distinct forces, EM and weak, below the so-called unification

energy, O(100 GeV). The angle θW is the weak mixing, or Weingberg angle and relates

the coupling of the weak and EM forces as e = g sin θW , and the Z and W± boson masses
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by MZ = MW

cosθW
at lowest order [5].

1.4 Flavour physics

As shown in Figure 1.6, flavour change occurs through W± mediated interactions, but

only flavour change within the same generation is shown in these Feynman diagrams,

for instance u→ d and µ→ νµ. To date, no evidence has been seen for charged lepton

flavour violation despite it being an active field for searches [10]. Experimental results

demonstrating decays across generations of quarks are very well established however, such

as the decay of the Λ baryon to a pion and proton. The Λ baryon constains a second

generation valence quark (s), while the proton and pion and composed only of the first

generation quarks u and d.

These transitions between quark generations, known as quark mixing, are explained via

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [11] which couples the weak eigenstates

of the three quark generations to the mass eigenstates through a rotation, and describes

the probability of transition bewtween two quark flavours.

The rotation of the mass eigenstates to the weak eigenstates via the CKM matrix is,


d′

s′

b′

 = VCKM


d

s

b

 ≡

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 (1.5)

where the left hand side primed components are the weak eigenstate doublets of down,

strange and bottom type quarks, with the respective mass eigenstate doublets on the right.

The CKM matrix in the middle (VCKM) is a unitary complex matrix where the value

of each |Vij|2 element represents the probability of the transistion i→ j occurring. The
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matrix are currently determined to be [7],

VCKM =


0.97434+0.00011

−0.00012 0.22506± 0.0005 0.00357± 0.00015

0.22492± 0.0005 0.97351± 0.0001 0.0411± 0.0013

0.00875+0.00032
−0.00033 0.0403± 0.001 0.99915± 0.00005

 (1.6)

where it is clear the elements of the leading diagonal, representing transistions within a

single quark generation are close to unity, while off-diagonal elements are much smaller.

Without the CKM matrix, the weak interaction would be ‘universal’ and the coupling

would not depend on the quark generations involved, therefore ‘universality’ of weak

interactions is broken.

As mentioned above, VCKM is a complex unitary matrix and the presence of a complex

phase allows for direct CP violation [12] as this gives a different between the rates for

processes involving particles compared to anti-particles.

The representation above states only the magnitudes of the elements, and a widely used

parametrisation of the CKM matrix is,

VCKM =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

 (1.7)

where s and c denote sines and cosines of three Euler angles (representing rotations in

3D space) , θ12, θ13, θ23, and δ is the aforementioned complex phase. This leads to a very

useful parametrisation introduced by Lincoln Wolfenstein in 1983 [13],
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Figure 1.7: A CKM unitarity triangle [7] from Equation 1.9

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) + ..., (1.8)

where λ = s12, Aλ
2 = s23 and Aλ3(ρ− iη) = s13e

−iδ, and therefore the complex phase, and

all CP violation in the CKM is encoded in the parameter η. Untarity of VCKM imposes

that3,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.9)

which allows the construction of the CKM unitarity triangle, which re-scaled in the

Wolfenstein parametrisation is as shown in Figure 1.7

The parameters of the unitarity triangle (the lengths of the sides, the angles and the

area, which are related to the amount of CP violation in the SM) can be directly measured

at particle physics experiments (see Figure 1.8). Examining whether the triangle closes by

over contraining the values of the angles is an important test of the SM and is sensitive to

3Unitarity requires five other similar conditions that lead to representations as unitarity triangles but
this is the most commonly used.
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Figure 1.8: Latest constraints on the CKM unitarity triangle [16]

New Physics. Much of the experimental work carried out by the LHCb experiment relates

directly to these parameters [14] [15].

As mentioned previously, one of the open puzzles in the SM is the matter-antimatter

asymmetry. The universe initially had a baryon number B = 0 and within the first few

picoseconds of the universe (before the quark epoch), through some mechanism (baryogene-

sis) a large asymmetry was generated. [17]. CP-violation provides a mechanism that would

lead to asymmetry, and is in fact one of the ‘Sakharov conditions’ for baryogenesis [18].

However, if no BSM sources exist, currently the magnitude of CP violation within the

SM seems to be insufficient in explaining the observed asymmetry [19], thus precision
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measurements in the flavour sector are highly motivated.

1.5 Rare FCNC decays

At tree level, flavour change occurs through weak charged currents, however higher

order interactions permit flavour change through loops, which would otherwise require

a neutral current at tree level. These flavour changing neutral currents (FCNCs) are

suppressed through the Glashow-Iliopoulos-Maiani (GIM) mechanism [20] and generally

have a branching fraction of < 10−6. The development of this theory led to the prediction

of the existence of the charm quark [21], at a time when only u, d and s were known

quarks.

Two types of FCNC diagrams are shown in Figure 1.9, the penguin and box diagrams.

Here we see how the loops mediate the change in quark flavour from b → s, and BSM

particles may participate in these loops, either enhancing or suppressing through interfer-

ence, the rate at which the process occurs. In fact, BSM particles such as extra vector-like

quarks can permit FCNC decays to occur at tree level [22]. As the loop participants are

off-shell, FCNC’s are sensitive to NP contributions from particles with an on-shell mass far

beyond that which could be produced directly at a given collider energy. Direct searches

for BSM particles have not yet led to a discovery at the LHC, suggesting that the energy

scale of NP may be beyond what the LHC can directly access [23], which further motivates

indirect searches through rare decays.

To extract useful observables from the physics of b→ s decays, a low energy effective

theory can be constructed as mZ and mW± are much more massive than the b quark.

The Operator Product Expansion (OPE) formalism is used to construct the effective

Hamiltonian [24], in which the sum extends over all relevant operators and are weighted
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Figure 1.9: Penguin and W-box Feynman diagrams of the b→ s flavour changing process.

by complex coefficients,

Heff = −4GF√
2
VtbV

∗
ts

αe
4π

∑
i

Ci(µs)O(µs), (1.10)

where GF and αe are the Fermi and fine structure constants respectively. The Ci are

Wilson coefficients; complex numbers which describe the short distance physics, which

are pertubative. The operators Oi contain the long distance contributions and µs is the

renormalisation [25] scale for which Ci and Oi are evaluated. The relevant operators for

radiative, leptonic and semi-leptonic decays are [26],

O7 =
mb

e
sσµνPRbFµν , O′7 =

mb

e
sσµνPLbFµν ,

O9 = sγµPLblγ
µl, O′9 = sγµPRblγ

µl,

O10 = sγµPLblγ
µγ5l, O′10 = sγµPRblγ

µγ5l,

where mb is the mass of the b quark and Fµν are the electromagnetic field strength

tensors. O′i represents the chirality flipped operators, obtained by replacing PL with PR,

where PR/L = (1 ± γ5)/2. Due to the left-handed nature of the weak interaction, the

corresponding C ′i coefficients experience a suppression on the order of ms/mb. O7 describes
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contributions to radiative and photon mediated decays, i.e. b→ sγ and photon penguins,

while O10 describes contributions to purely leptonic decays such as B0
s → µ+µ−. As for

semi-leptonic decays (b→ sl+l−), they receive contributions4 from O7, O9 and O10 and

the particular contributions dominate depends on the kinematic regime of the decay (see

Section 1.5.1).

In this effective theory formalism the Wilson coefficients can be calculated pertubatively,

are model independent and are measurable observables in FCNC decays. In the SM case,

the Wilson coefficients are determined by requiring the amplitudes from the full SM

electroweak theory are consistent with those obtained by the effective theory, at the weak

scale (µs = MW ). These solutions are then evolved to µ ≈ mb, using the renormalisation

group equations [27]. Any contributions from BSM particles will then be seen as a deviation

from the SM prediction in the relevant Wilson coefficient(s) such that Ci = CSM
i + CNP

i

where NP denotes new physics. The coefficents can be tested through several experimental

observables of FCNC decays, for instance the rate at which the process occurs (branching

fraction) or the angular distributions of the decay.

1.5.1 b→ sl+l− decays

As b → sl+l− decays receive contributions from several Wilson coefficients, they are

powerful probes of the SM. The di-lepton mass squared (q2) dependence of measurements

such as the branching fraction are important to investigate because the relative importance

of the contributions varies with the q2 region under consideration. The q2 distribution for

a b→ sµ+µ− decay can be separated into the following regimes, starting at lowest q2:

• The photon pole: This region, at low q2 is dominated by O7.

• O7-O9 interference: This region resides between the photon pole and the J/ψ

4The corresponding chirality flipped operators also contribute to these types of decays, albeit sup-
pressed.
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Figure 1.10: Representation of the q2 differential decay rate for B0→ K∗0µ+µ− [26].

charmonium resonance and is where O7-O9 interference dominates. This region is

highly sensitive to new physics in the C9 coefficient.

• Narrow cc resonances: This region contains the J/ψ and ψ(2S) charmonium res-

onances, where the muons come from the charmonium decay. As this proceeds

through tree level diagrams they are much higher rate than the non-resonant regimes

of the spectrum.

• Broad cc resonances: At high q2, above the open charm threshold, the production

of broad charm resonances dominates and a local OPE method can be used for

calculations.

Figure 1.10 depicts the differential decay rate in q2 for B0→ K∗0µ+µ− in which these

regions are annotated.
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The decay amplitude of such processes can be calculated using,

〈f |Heff |i〉 =
GF√

2

∑
i

ViCi(µ) 〈i| Oi |f〉 , (1.11)

for a process of i → f . The 〈i| Oi |f〉 are the hadronic form factors, and as they are

generated from the Oi operators they cannot be calculated perturbatively. Techniques

such as lattice QCD [28] and light cone sum rules [29] (often covering different kinematic

regimes) are commonly employed. There is strong motivation to reduce the uncertainties

on the form factors from these calculations as they remain one of the dominant sources of

uncertainties.

The decay Λ0
b→ pKµ+µ− involves a b→ s transition, and is expected to have similar

structure in the q2 differential decay rate, as shown in Figure 1.10.
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The Large Hadron Collider and the

LHCb experiment

The Large Hadron Collider and LHCb experiment are amongst the largest, most complex

and technically challenging scientific instruments ever built. This chapter briefly describes

the design and operation of these two machines, with emphasis on the aspects that are

relevant to the analysis in Chapter 3. Section 2.3.10 describes technical work undertaken

for the simulation software of LHCb.
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2.1 The accelerator complex

Figure 2.1: Diagram of the full accelerator complex at CERN. [30]

The Large Hadron Collider (LHC) [31] is located in Geneva, Switzerland at the

CERN laboratory. Currently the LHC is the world’s largest particle physics experiment,

consisting of a ∼27km storage ring, supported by the smaller accelerators; the Proton

Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Superproton Synchrotron

(SPS) and several linear accelerators.

The LHC collides beams of protons1 at four interaction points along the 27km ring.

Exploiting these interaction points are the four large experiments, ATLAS [32], CMS [33],

1Beams of lead ions as well as proton-lead ion collisions are also performed
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Alice [34] and LHCb [35], along with smaller experiments TOTEM [36], LHCf [37] and

MoEDAL [38].

A schematic view of CERN’s full accelerator complex is shown in Figure 2.1.

The LHC is designed to collide protons at a centre of mass energy of 14 TeV. In 2011

the LHC operated at half the design energy, colliding protons at 7 TeV, while in 2012

this was increased to 8 TeV. The data collected by the LHCb experiment during this

period of Run 1 are analysed in Section 3 for the first observation and branching fraction

measurement of Λ0
b→ pKµ+µ− decays.

2.1.1 Beam preparation and injection

The protons are initially acquired through the ionisation of hydrogen gas, after which they

are accelerated to 50 MeV along the LINAC2 linear accelerator and injected into the PSB.

The PSB ring consists of four vertically stacked beamlines of ∼157m circumference. This

simultaneous storage and acceleration of four proton beam injections from LINAC2 allows

the 628m circumference PS to be filled from a single combined injection of the four PSB

beams. The PS accepts the PSB beam at 1.6 GeV and accelerates them to 25 GeV before

injection into the SPS. The ∼7km long SPS ramps the beam to LHC injection energy

of 450 GeV. The SPS nominally works on an injection cycle time on the order of a few

tens of seconds, filling the LHC with proton bunch trains. Each bunch in the LHC has a

population of ∼ 1.1− 1.4× 1011 protons and the machine is filled with a maximum of 2808

proton bunches out of a possible 3564 configurations in the LHC. Design specifications give

a bunch spacing of 25ns but during Run 12 the LHC ran with a nominal bunch spacing of

50ns and an increased bunch density [39].

2Run 1 of the LHC lasted between 2009 and 2013. For brevity, unless states otherwise, Run 1 will be
used in this report to specifically mean the main proton-proton physics portion of Run 1 from 2011-2012
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Maximum bunch population of the LHC is less than the total number of ‘RF buckets’ they

can fill to account for the rise time in the beam dump’s kicker magnet - leaving an ”abort

gap” of 3µs.

2.2 The Large Hadron Collider

The LHC consists of a ring of 1232 superconducting dipole magnets [40] that are designed

to operate at a field strength of 8.33T to achieve the bending power required at the nominal

beam energies of 7 TeV each. The design bunch crossing frequency, fb is 40MHz, with

a peak instantaneous luminosity of 1 × 1034cm2s−1. However, during Run 1, the LHC

achieved peak stable luminosities of 1.26× 1033cm2s−1 [41] and 7.7× 1033cm2s−1 in 2011

and 2012 respectively3. These relatively high luminosities for the 7 and 8 TeV runs were

achieved due to the higher proton bunch density.

2.3 The LHCb Spectrometer

The LHCb experiment, shown schematically in Figure 2.2 resides in France, at point

8 of the LHC. It is designed primarily to study CP-violation and rare decays in the

beauty and charm sector. At the LHC, b and c quarks are produced primarily at low

angles from the beam and in abundance. At 7 TeV, the charm production cross-section4

σccpT<8GeV/c,2.0<y<4.5 is measured to be (1419± 193)µb [42], while the σ(pp→ bbX) cross

section is (284± 69)µb [43]

3As detailed in Section 2.3, these luminosity values are not the nominal luminosities at the interaction
point of LHCb due to the lumi-levelling technique

4y denotes rapidity as defined in Equation 2.1
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Figure 2.2: Schematic view of the LHCb detector [35]

LHCb is built as a single forward-arm spectrometer, covering a geometric acceptance

of 10-400mrad from the beam, the reason for which is apparent in Figure 2.3, which shows

Monte-Carlo simulation of bb production at LHCb. The red band in this figure represents

the detector’s geometric acceptance. This acceptance corresponds to a pseudorapidity of

2 < η < 5.

In special relativity, rapidity, y, is the hyperbolic angle that relates two frames of

reference in relative motion. In particle physics it is often preferable to express rapidity

relative to the beam axis, as,

y =
1

2
ln

(
E + pz
E − pz

)
, (2.1)

where E is the particle’s energy, and pz is its momentum component parallel to the beam

axis. In the high energy limit where p ≈ E, the expression can be simplified to what is

called pseudorapidity,

y ≈ η = − ln

[
tan

(
θ

2

)]
, (2.2)

where θ is the angle between the particle and the beam axis.
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Figure 2.3: Monte-Carlo simulation of bb production at LHCb, with LHCb acceptance region in
red. [44]

LHCb operates a luminosity-levelling technique using a controllable transverse beam

offset [45]. This ensures a stable luminosity is achieved, rather than decaying throughout

the physics run. At 4× 1032cm−2s−1, the luminosity is also significantly lower than the

nominal luminosity used at ATLAS and CMS, and this keeps the number of interactions

per bunch crossing (‘pileup’) close to one (∼1.3). This relatively low beam pile-up increases

the lifetime of the subdetectors, specifically the VELO which has sensitive silicon tracking

sensors 8mm from the interaction point during stable physics data taking conditions. It is

also optimal for several LHCb systems for which performance decreases under conditions

of high particle and primary vertex multiplicity.

As LHCb is not a hermetic detector, covering only a few hundred mrad on a single
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side of the interaction point it somewhat resembles the design and operation of a fixed

target experiment. Consequently, similar terminology is also used. ‘Downstream’ refers to

further away from the interaction point towards the rear of the detector, while ‘upstream’

refers to closer to the interaction point. They are used as relative terms, for instance

the the magnet is downstream of the VELO but upstream of the calorimeters. A right

handed coordinate system is used, where the z direction travels along the beam pipe from

upstream to downstream in the positive direction. The y axis is vertical from the base to

the top of the detector, and the x direction is from right to left along the horizontal plane

when looking downstream.

The detector consists of a large dipole magnet and several tracking systems for track

reconstruction and momentum measurements of charged particles, two ring imaging

cherenkov (RICH) detectors for particle identification, electromagnetic and hadronic

calorimeters and muon detection systems for the identification of muons. These all

surround a suspended beryllium beam pipe which is conically tapered with the smallest

end closest to the interaction point. The data acquired from the readout electronics

of LHCb are passed through a three tier trigger system consisting of a pure hardware

trigger, L0, and two software triggers Hlt1 and Hlt2 which select potentially interesting

events in real-time to store to disk. This data is further processed offline into specific

‘data lines’ in a process known as ’stripping’ before finally being made available for offline

analysis. In addition to the online and offline data analysis software infrastructure, a

complex system of simulation software which uses Monte-Carlo (MC) techniques is used

to simulate collision events, particle decays and material interactions within the detector.

The hardware and software triggers, as well as the stripping process, are also simulated.

The simulation infrastructure is paramount for the determination of quantities such as

detection efficiencies, but also in accurate reconstruction of particle tracks, which depends

on good modelling of material interactions in the detector.
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The main components of the hardware and software are described in detail below.

2.3.1 Vertex locator

The vertex locator (VELO) [46] is a retractable array of 25 silicon detector stations

which resides in a vacuum and surrounds the interaction point of LHCb. The VELO

is a crucial component in LHCb’s ‘b-tagging’ technique [47]. Correctly identifying the

flavour of reconstructed b-hadrons at production is required for measurements such as

time dependant CP asymmetries and b-oscillations. Furthermore, the high resolution

reconstruction of primary and secondary vertices offered by the VELO facilitates high

precision lifetime measurements.

The VELO is also able to measure the Impact Parameter (IP) to a high precision. The

IP is defined as the distance of closest approach of the measured track from the primary

vertex (the proton collision point). This measurement is crucial for the suppression of

background from prompt particles, i.e. particles produced at the PV. The vast majority of

particles produced at LHCb are prompt, while many particles of interest such as B and D

mesons have a measurable decay length in the VELO. Therefore prompt background can

be suppressed by cuts to the IP. IP resolution along the x-axis as a function of transverse

momentum is shown in Figure 2.4

Each VELO station consists of two semi-circular halves (see Figure 2.5) of radial (r) and

angular (φ) f 300µm silicon strip sensors, with pitch that varies linearly between 38µm

and 102µm from the inner radius of 8.2 mm to the outer radius of 42mm. Combining the

information from these types of sensor allow high resolution tracking of charged particles

from the primary vertex. Each semi-circular element is mounted to a carbon fibre paddle

and during beam injection and setup, the VELO is withdrawn by 29mm in the horizontal

plane. During collisions for physics data taking, the VELO modules move inwards to form

circular detector planes surrounding the interaction point.
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(a) (b)

Figure 2.4: (a): Visualisation of tracks from a simulated event in the VELO. [48]. (b) IPx as a
function of pT. [49]

The stations extend from 17.5cm upstream of the interaction point to 75cm downstream.

Having information on ‘backwards’ tracks is useful for the reconstruction of primary vertices,

hence the upstream extension. The centres of the stations leave an 0.8cm hole for the

passage of the beam, and this proximity of the sensors to the beam is limited in part due

the irradiation the modules receive at such close distances, as well as RF pickup from the

beams.

RF interference between the beams and the VELO can significantly perturb the beams

themselves as well as interfere with the performance of the VELO. For this reason, sheets

of corrugated aluminium ∼0.25 mm thick separate the VELO sensors from the beam. This

RF foil, along with wake field suppressors, minimises RF interference as well as separates

the primary LHC vacuum from that of the VELO’s vacuum vessel. This vacuum isolation

protects the primary vacuum of the LHC from out-gassing of the detector’s components.
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(a) Single VELO module. (b) VELO stations and enclosure

Figure 2.5: Photographs of VELO subdetector. The RF foil is visible at the bottom of the
enclosure [50]

2.3.2 RICH 1 and RICH 2

There are two RICH detectors (RICH 1 and RICH 2) at LHCb [51], which are designed

to provide particle identification over a momentum range of 1-100 GeV/c [52]. The first

RICH detector is directly downstream of the VELO, while the larger RICH 2 is after the

bending magnet and tracking stations.

Ring imaging Cherenkov detectors exploit the phenomenon of Cherenkov radiation to

identify charged particles that traverse the transparent refractive medium, or ’radiator’

inside the detector. When a charged particle traverses the radiator faster than the phase

velocity of light in the medium, photons are emitted as a coherent wavefront as shown in

Figure 2.6. The relationship between velocity and angle is cos θ = 1
nβ

where β = v
c
.

In a RICH detector, these shock waves are focused and projected as a ring onto the

photomultiplier tubes. Pattern recognition algorithms are used to infer the Cherenkov

angle, and this process involves several different approaches [53].

In RICH 1, there are two radiators. The first, a 5cm thick block of aerogel provides

K+ identification for particle momenta above 2 GeV/c and π-K separation up to 10 GeV/c,

while an 85cm long region of C4F10 gas provides further π-K separation up to 50 GeV/c.
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Figure 2.6: Geometry of Cherenkov radiation showing the shock front in red, and the angle with
respect to the particle’s velocity vector.

(a) Without RICH information. (b) With RICH information.

Figure 2.7: Invariant mass for B → h+h− decays with signal channel of B0 → π+π− in turqoise,
and various background components: B0 → Kπ red dash-dotted line, B0 → 3-body orange
dash-dotted line, B0

s → Kπ brown line, Λ0
b → pK purple line and Λ0

b → pπ green line). (b) shows
the powerful background suppression achieved when information from the RICH system is used
for particle identification [54].

RICH 2 on the other hand has a single 167cm thick radiator of CF4 gas and provides

π-K separation from 50–100 GeV/c and beyond. The benefit of the RICH information is

illustrated in Figure 2.7.
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2.3.3 Bending Magnet

LHCb has a single, iron yoke dipole magnet with a bending power,
∫
Bdl, of 4 Tm over a

10 m track length between the VELO and the final tracking station. This provides the

tracking system with the ability to measure the momentum of charged particles through

their deflection with a resolution of 0.3–0.6%. The magnetic field is orientated vertically,

giving a horizontal bending plane and as the magnet is a conventional magnet, it facilitates

fast ramping and periodic inversion of the field polarity. This can be extremely useful in the

cancellation of systematic effects and detection asymmetries, especially in measurements

related to CP-violation.

As shown in Figure 2.8, a 1450 ton iron yoke surrounds two trapezoidal coils. The shape

of the magnet gap between the coils follows the angular acceptance of the downstream

detector systems, ensuring all particles within the acceptance of LHCb are not obstructed

by the magnet yoke or coils. The warm magnet is watercooled and operates at a current

of ∼50 kA, dissipating ∼ 4.2 MW.
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Figure 2.8: Schematic of the LHCb magnet, from the wider aperture end and looking upstream.
This displays the wedge-shaped geometry of the coils and the inside of the yoke to match the
angular acceptance of LHCb. [55]

2.3.4 Tracking systems

The main tracking system (Figure 2.9) is composed of four rectangular stations, the

Tracker Turicensis (TT) between RICH 1 and the magnet, and three other stations (T1-

Figure 2.9: Left: Schematic of the tracking stations cut-away quadrant. Silicon modules od the
TT and IT are shown in purple and straw tube modules in turquoise. Right: Tracker stations T1
shown retracted and in relation to the dipole magnet and beam pipe. [56]
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T3) between the magnet and RICH 2. The TT is a silicon microstrip detector which

provides momentum information at trigger level and also provides tracking for particles

originating from decays outside of the VELO sensitive volume (downstream tracks) or

low momentum tracks that are bent out of the detector’s acceptance before reaching the

downstream trackers (upstream tracks). The downstream stations, T1-T3 each consist

of two parts, the Inner Track (IT) and the Outer Tracker (OT). The IT form a ’cross

shape’ close to the beam pipe where particle multiplicity and track density is high, and is

composed of silicon microstrip sensors. The rest of each station is composed of straw tube

detectors and is collectively called the OT. Further away from the beam pipe, particle fluxes

are lower while tracks are bent more due to their lower longitudinal momentum. Therefore,

the resolution offered by straw tubes over silicon microstrips is sufficient, especially since

silicon microstrip technology is far more expensive per m2 of sensor. Performance results

from data taken in 2012 show that the TT and IT deliver, respectively, 99.8% and 99.9%

hit efficiencies and hit resolutions of 53.4 µm and 53.9 µm. The OT offers 205 µm hit

resolution and a 99.2% single cell hit efficiency. [56]

As mentioned in the description of the TT, at LHCb tracks that traverse the TT and

stations T1-T3 are defined as either ’long’ or ’downstream’ (abbreviated to LL and DD

when in decay pairs) depending on where the tracks originate in the detector. Relatively

long-lived particles, for instance the Λ baryon, can have a decay length on the order of

a metre, giving rise to charged tracks originating downstream of the VELO. Since this

can give rise to differences in the measurements between long and downstream tracks,

for instance momentum resolution, the long and downstream categories of tracks are

often analysed separately to ensure optimal use of the data. The diagram in Figure 2.10

illustrates long and downstream tracks in relation to the tracking system and magnetic

field of the dipole.
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Figure 2.10: Diagram detailing the definition of upstream, downstream and long tracks in relation
to the tracking system and magnetic field [56] . Also depicted are T and VELO tracks. T tracks
are only present in the T1-T3 stations. These usually originate from secondary interactions but
must be considered in the RICH pattern recognition algorithms since they can enter RICH 2.
VELO track information is used mainly for the reconstruction of primary vertices. [35].

2.3.5 Calorimetry

The LHCb calorimeter is composed of four subdetectors; the Preshower detector (PS),

Scintillating Pad detector (SPD), Electromagnetic calorimeter (ECAL) and Hadronic

calorimeter (HCAL). In addition to performing energy measurements, the calorimeter

system has to reject the large background from inelastic pp collisions (at a rejection level

of ∼99%) by triggering on electrons of high transverse energy, ET. There is also an large

neutral and charged pion background which is suppressed by the PS and SPD systems.
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Figure 2.11: Projection of the SPD, PS and ECAL segmentations (left) and HCAL segmentation
(right). Only the top right quadrants are shown, with the beam pipe in the bottom left. [35]

The SPD determines whether the traversing particle is charged or neutral, while the PS

differentiates between electrons and photons, information that is primarily useful for the

trigger in suppressing these pion backgrounds.

Both of these detectors use scintillating pads separated by a thin lead converter sheet.

The ECAL and HCAL both use ’shashlik’ technology in which each module consists of

alternating layers of scintillator and lead (ECAL) or iron (HCAL) plates. All four detectors

use multi-anode photomultipliers to detect the scintillation photons. In a similar design

to the tracking stations, the calorimeter systems are segmented to offer varying degrees

of granularity. The hit density varies by two orders of magnitude across the surface of

the calorimeters, with the highest densities closest to the beam pipe, therefore all four

calorimeter systems are segmented in the fashion displayed in Figure 2.11.

The energy resolution of the ECAL was measured using test beams [57]. The perfor-

mance depends on the modules are tested, but a resolution of around

σ(E)

E
≈ 9%√

E
⊕ 8%⊕ 0.003 GeV

E
, (2.3)

was measured. The three percentages correspond to the stochastic, constant and noise
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terms. While for the HCAL this was measured to be,

σ(E)

E
=

(69± 5)%√
E

⊕ (9± 2)%, (2.4)

where in both cases, E is in GeV.

2.3.6 Muon systems

Muon triggering and identification is crucial for extracting interesting physics from the

collisions at the LHC. The last main section of LHCb is composed of five muon detector

stations (Figure 2.12). Four of the muon stations (M2–M5) are downstream of the HCAL,

and separated by 80cm thick iron filter plates while one muon station (M1) occupies

the space between RICH 2 and the calorimeters. Information from M1 is used primarily

for the L0 trigger, in particular for transverse momentum measurements at the L0 level,

when combined with information from the downstream stations. The M2-M5 stations are

used for both triggering and reconstruction. The muon system selects muons with a high

efficiency of ∼95%.

M1–M5 are composed of modules of Multi-Wire Proportional Chambers (MWPC)

apart from the inner section of M1 which uses Triple-GEM (Gas Electron Multiplier)

detectors due to the high particle flux. The MWPC sections are divided into projective

regions around the beam pipe like the tracker stations and calorimeters that scale with

particle flux. All these regions are composed of MWPC chambers but the number of

’logical pads’ per chamber scales in the ratio 1:2:4:8 to increase granularity close to the

beam pipe. This division of chambers into logical pads is shown in Figure 2.13

MWPC’s consist of an array of wires held at high voltage between two conductive

plates. The space between the two plates is filled with a gas mixture which is ionised by the

passage of charged particles such as the muons. The placement of the iron filters between
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Figure 2.12: Left: Side view of the five muon stations showing the iron filters and acceptances of
the different station regions. Each consecutive station and its regions are scaled in size to follow
the acceptance of LHCb. Right: front view of a station showing the different regions. Side A
and C close to be hermetic along the central axis but can be opened for maintenence. [58]

the muon stations is to remove background charged particles since the boosted muons that

LHCb is interested in are highly penetrative; if they are inside the detector’s acceptance,

nominally they will traverse the filters and stations, decaying far downstream of the entire

detector. In the muon stations of LHCb, the 30 µm thick gold-plated tunsgten wires of

the MWPC’s are spaced 2 mm apart with a gas gap of 5 mm and operated at a voltage of

∼2.6 kV. The gas is a mixture of argon, carbon dioxide and CF4 with a ratio of 40/55/5.

the physical principle behind detection is same as with the straw tubes of the OT. The

main difference in design is having an array of wires inside each gas chamber rather than

individual wires inside conductive gas filled straws. The electric field between the wires

and plates causes charge carriers liberated by the traversing muon to drift to the wires

and plates, producing an electrical signal in the wires.

GEM detectors, such as the ones used in the M1 station use a similar principle, except

the field is produced by small conductive rings around holes in polymer foils [59]. These

holes can be thought as ’pixels’ on the polymer. Electrons from ionisation in the gas
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Figure 2.13: Left: Top right quadrant of station M1 showing the division into chambers (the
horizontal rectangles) and regions (R1–R4.) Right: Division of chambers into logical pads for
each type of region. The vertical alignment of the rectangular pads gives higher granularity in
the bending plane. [58]

gap are drawn into the holes where they initiate an electron avalanche and therefore a

detectable signal. The ability to fabricate these holes with spaces on the order of µm

allows a precise hit resolution to be achieved. In the centre of the M1 station there are

12 GEM detectors which use the same gas mixture as the MWPC’s but with a ratio of

45/15/40.

The x–y spatial resolution varies from σx× σy = 4× 10(mm2) for the innermost region

of M1, to σx× σy = 150× 180(mm2) for the outer most region of M5 [58]. Note the higher

spatial resolution in the bending plane.

2.3.7 Trigger

The trigger system [60] [61] is required to massively throttle the raw data rate coming from

the LHCb readout systems in a way that is heavily biased towards potentially ’interesting’

events. Expressly, it must perform online selection of events to reject background and
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select these possibly interesting events with a high efficiency in real-time. At nominal

operation, there are 40 million bunch crossings a second (15 million with Run 1’s 50 ns

bunch spacing) inside the VELO, with an average of 1–2 pp collisions per crossing. To

store all of this data for offline processing is not feasible with current technology, so a

hardware first level trigger (L0) is used to decrease this rate to ∼1 MHz, while the two

tiers of software triggers, High Level Trigger 1 (Hlt1) and High Level Trigger 2 (Hlt2),

decrease the write-to-disk rate to a manageable 3 kHz.

The algorithms used, especially in the higher level triggers are many and varied therefore

only a general description of the trigger system is given below.

L0 trigger

The L0 trigger is composed of three independent triggers: The L0-Muon trigger, L0-

Calorimeter trigger and the L0-PileUp trigger. The latter is used only for measurement

of the luminosity, while the other two select potentially interesting events to pass to the

higher level triggers.

The L0-Muon processors select events that contain muons by searching for hits in the

five muon stations corresponding to particles with the highest pT and the second highest

pT in an event. The hits must form a straight line pointing towards the interaction point.

If this largest pT passes a set threshold in L0 then the muon candidate is selected by

the LOMuon line. If pT1 × pT2, (where pT1 and pT2 are the highest and second highest

muon transverse momenta respectively) passes this threshold, the candidate is selected by

L0DiMuon.

The L0-Calorimeter processors analyse the ET of clusters in the calorimeter systems for

the selection of hadron and photon candidates. For the selection of hadron candidates, the

trigger looks at the highest ET cluster in the HCAL; any ECAL cluster directly upstream

may be matched to this and they are selected as a hadron candidate by the L0Hadron
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line if the sum of these ET’s passes the threshold. If the highest ET cluster in the ECAL

has hits in the PS directly in front of this cluster, but no hits in the SPD, L0 fires as an

L0Photon candidate. Alternatively, if there are hits in the SPD as well, L0 fires on the

L0Electron line.

High level trigger

The high level triggers run on PC farms, reducing background and overall event rate to

disk to a few kHz. For Hlt1 trigger lines which do not require muons to be present, tracks

in the VELO are used to find the smallest IP’s. Quality criteria are imposed, based on the

number of hits associated with the track relative to number of expected hits. For the

muon lines, namely events that trigger L0Muon or L0DiMuon, a search window is defined

in muon station M3. The size of this window is determined by the expected size of the

multiple scattering effect in the vertical, non-bending plane and by the expected deflection

of a 6 GeV muon in the bending-plane, as 6 GeV is the minimum cut off for selected

muons. If the extrapolated VELO track falls within this window, corresponding hits are

searched for in M2, M4 and M5. A linear fit is then performed on this extrapolation and

the requirement of χ2/nDOF < 20 is imposed to select the track as a muon candidate.

Hlt2 employs one of the two offline track reconstruction algorithms to fully reconstruct

tracks while the inclusive b-decay topological lines perform partial reconstruction of b

hadrons, covering all b-hadrons with at least two charged particles in the final state and a

displaced decay vertex. There are also several exclusive lines dedicated to perform a full

reconstruction of b and c decays.
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2.3.8 Particle Identification

The VELO, RICH, tracking, calorimeter and muon systems all play a roll in identifying

particles5. The combined information from the RICH detectors, calorimeters and muon

stations is used to identify charged particles; electrons, muons, pions, kaons and protons.

The ECAL is used to identify neutral pions and photons.

The RICH detectors identify particles using the techniques described in Section 2.3.2.

Muons are identified by extrapolating the tracks with a momentum of 3 GeV/c or more

into the muon stations; muons with momentum less than 3 GeV/c would not arrive at the

muon stations. Hits are then searched for in the muon stations in the regions in which they

are expected. A cut is applied to the number of stations with which there are hits and this

cut varies with track momentum. A log-likelihood between muon and pion hypotheses is

also generated for the track.

Electron identification is performed in the ECAL by comparing the ECAL cluster

centre with the expected centre from track extrapolation. Energy deposition in the PS

and HCAL along the extraploated track is also used to improve electron identification.

Bremsstrahlung photons are also considered. If the electron emits bremsstrahlung radiation

before the magnet, the electron will be deflected sideways by the magnetic field while the

photons will not, and produce a separate trackless hit cluster in the ECAL. These cluster

energies are recombined with electron clusters by extrapolating back the photon cluster to

see if it matches the electron track before the magnet.

Photons themselves are identified by clusters in the ECAL and their separation from

tracks, as well as hit information in the SPD. Clusters in the ECAL separated by a given

distance from any tracks identified as photons, while photons from secondary interactions

with the detector material after the magnet are identified by corresponding hits in the

5Mainly the RICH, calorimeter and muon systems play a roll in particle identification, but parameters
from the VELO and tracking systems are also used as training variables in the generation of global particle
ID’s using multivariate techniques.
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SPD.

Neutral pions are reconstructed and identified by pairs of photon hits in the ECAL,

from π0 → γγ. However, pions with sufficiently high pT will be seen as two merged photon

clusters. Algorithms are used to identify these merged clusters [56].

Global particle ID

The information from these particle identification techniques described above is merged

into a single log likelihood variable by adding the log likelihood from each subdetector

linearly. Each likelihood is relative to the pion hypothesis. A particle ID and therefore mass

hypothesis can then be assigned by performing cuts on combinations of these likelihoods.

The global identification is capable of distinguishing protons, pions, kaons, electrons and

muons with high efficiency and relatively low contamination. For example, during Run 1, a

requirement on the log likelihoods of ∆logL(K − π) > 0 gives a ∼95% kaon identification

efficiency with 10% mis-id rate. Alternatively ∆logL(K − π) > 5 gives a efficiency and

mis-id rate of 85% and 3% respectively [62]6.

An additional technique to assign a particle ID based on multivariate techniques

in which the above information is used. This also includes the correlations between

subdetectors and further information such as track quality χ2 etc from the tracking system

as training variables in a multi-layer perceptron neural network (trained using simulated

events). This is used to assign a Bayesian probability for each particle type, to each track.

These are called probNN variables and are used extensively in the analysis described in

chapter 3.

6For tracks between 2 and 100 GeV/c
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2.3.9 Simulation

LHCb employs several software packages to describe the behaviour of particles which

are all contained in the in-house simulation framework, Gauss [63]. The pp collisions

are generated with Pythia [64]. The decays of the particles that are produced are

described the EvtGen software [65]. Final state radiation of the decay is generated with

Photos [66]. When simulating data at ’reconstruction (reco) level, where the simulated

data replicates observed data as closely as possible, the material interactions with the

detector have to be modelled along with the online and offline processing such as trigger,

stripping and reconstruction software. A highly detailed geometric model of LHCb is

constructed in the simulation software and describes the materials and their densities

as well as the geometry. Interaction with this material is simulated with the Geant4

package [67] [68].

Accurate and precise modelling of the detector materials and these interactions is

crucial for good track reconstruction and accurately simulated data. For this reason,

Geant4 and its usage within Gauss regularly undergo validation testing, especially after

patches, changes or version upgrades have been implemented. Section 2.3.10 describes my

contribution to the simulation validation development at LHCb.

2.3.10 Electromagnetic physics simulation at LHCb

The Geant4 package is widely used across many research diciplines for the purpose of

modelling the interaction of particles with materials. Geometric models representing objects

such as detector systems, detector infrastructure, solid and gaseous volumes are described,

with the corresponding material properties assigned. Due to its wide range of applications,

Geant4 supplies numerous model plug-ins and options known as physics lists. There is

no ‘one-size-fits-all’ modelling of the interaction behaviour when dealing with a plethora of

electromagnetic and hadronic interactions across energy ranges that span several orders of
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magnitude, therefore several specialised physics lists are supplied in which different physics

models and configurations are used. There are some complementary models that deal with

the same types of interactions but cover different energetic regimes, while in some cases

there also exists competing models to describe the same type of interactions but where one

model may have advantages over the other in certain applications or depending on whether

the priority is speed or accuracy. It is a crucial aspect of Gauss development to perform

regression testing, compare available physics lists and options and validate production

versions of Gauss whenever the implmentation of Geant4 is updated or changed. It is also

worthwhile to perform these validation tests on a periodic basis to ensure any unexpected

changes that affect material interactions are likely to be detected.

Several components of the testing and validation of EM physics interactions are

performed in a simulation of the VELO detector. In this environment, there exists only

the VELO silicon, beam pipe and beam pipe support strictures in a configuration identical

to LHCb during data taking. Instead of proton-proton collisions being simulated at the

interaction point, particle emitters (particle guns) fire mono-energetic charged particles

downstream through the VELO. In these tests the particles are fired from the emitter

within 0 and 0.39 mrad of the z-axis. The simulation is performed within the full Gauss

framework to test both Geant4 and its implementation in Gauss. The interactions of the

particles with the VELO silicon are probed by extracting the energy deposition dE/dx

where the particle has a path length through the silicon of 300 ± 10µm, as the VELO

silicon is 300µm thick.

Additionally, photon information is captured, such as the number of photons emitted

for each track, and each photon’s energy. This is to look primarily at the bremsstrahlung

radiation emitted by the particles as they traverse the material.

The packages EmGaussMoni (derived from the pre-existing VeloGaussMoni tool) and

BremVeloCheck were developed for Gauss in order to extract the energy loss and
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bremsstrahlung information from the simulation.

2.3.11 VELO Energy Deposits

The dE/dx behaviour follows a skewed Landau distribution characterised by the most

probable value (MPV) at which the distribution peaks, as well as the peak’s full width

at half maximum (FWHM). These two values are estimated for several types of charged

particles across a range of energies. The MPV and FWHM values and are plotted as a

function of βγ where γ is the Lorentz factor and β is the ratio of the particle velocity to

the speed of light, allowing all particles and energies to be compared on a single graph.

The chosen energy values and resulting βγ values are displayed in Table 2.1.

Energy(GeV) βγe± βγµ± βγπ±

0.1 195.695 0.943396 0.714286

0.2 391.389 1.88679 1.42857

0.4 782.779 3.77358 2.85714

1 1956.95 9.43396 7.14286

5 9784.74 47.1698 35.7143

10 19569.5 94.3396 71.4286

17 32876.7 158.491 120

50 97847.4 471.698 357.143

100 195695 943.396 714.286

120 234834 1132.08 857.143

168 328767 1584.91 1200

Table 2.1: Considered particle gun energies and the corresponding βγ values for each particle
species.
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Eleven particle gun energies, from 0.1 to 168 GeV are used for the simulation of electons,

muons and charged pions. For each case the respective anti-particles are also simulated.

These energies and particles cover a large range of βγ in which the distributions of

each particle overlap, with pions and muons covering the low βγ regime, and electrons

accessing high βγ. Due to the smearing of the energy distributions, a simple Landau fit is

inappropriate. The MPV of the Landau distributions from each simulation is estimated

using a parabolic fit to the peak while the FWHM is estimated using linear interpolation.

An example of one of the dE/dx distributions is shown in Figure 2.14, alongside the

simulated hits in the x-y plane of the VELO.
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Figure 2.14: (a) Energy deposited in 300µm of silicon for 120 GeV electrons. (b) Hit map of the
electrons in the Velo silicon.

Figure 2.15 shows the dE/dx behaviour across a large βγ for anti-muons in copper.

For thin material layers, the MPV and FMHWM can be estimated using the Bethe-Bloch

relation [7], with the consideration of density effects. The MPV is described by,

∆p = ξ

[
ln

2mc2β2γ2

I
+ ln

4πNAr
2
emec

2Z

2IA

]
+ j − β2 − δ(βγ), (2.5)
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and the FWHM is,

ξ =
4πNAr

2
emec

2Z

2A
, (2.6)

where the parameters are defined in Table 2.2.

Parameter Description
me Electron mass
NA Avogadro’s number
re Vlassical electron radius
Z Atomic number of material
A Atomic mass of material
I Mean excitation energy
j 2.00 [7]

δ(βγ) density effect correction

Table 2.2: Bethe-Bloch equation parameters.

In the situation where the validation tests are required, but there is no change to which

physics lists are used in LHCb, the same physics lists from each version are compared,

along with theoretical estimates using Equations 2.5 and 2.6. In such cases where, for

example, the viability of a new physics list available in Geant4 is to be tested, the results

from each available list are compared with each other, alongside the theoretical estimate.

The estimates calculated from Equations 2.5 and 2.6 are not expected to have perfect

agreement with the results from the physics lists as the simulation contains much more

detailed modelling than the analytical ξ and ∆p values, but it is included as a ‘sanity check.’

These tools are designed to be implemented into the LHCb performance and regression

testing (LHCbPR) [69] software. LHCbPR allows for systematic extraction and comparison

of results, with planned features that allow automatic running of jobs and validation of
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Figure 2.15: dE/dx MPV as a function of βγ for µ+ in copper [7]. In this case, the Bethe
approximation is valid for βγ values of ∼ 0.1–1000 (indicated by the vertical bands), within
which lies the minimum ionisation energy. The minimum ionisation energy is used as a validation
parameter in these EM physics simulation tests.

the output. The full simulation validation procedures of physics simulation at LHCb are

extensive and consists of numerous stages. The dE/dx and bremsstrahlung tests described

here are the second stage, (the first being stand-alone testing in Geant4) and they are

designed to be relatively fast, repeatable and systematic so that they can be run frequently

and automatically. For this reason, choices have been made such as to parametrise the

dE/dx distributions with parabolic fits to the peak and linear interpolation for the FWHM

so that the tests are quick and require minimal oversight. They provide results designed

for visual inspection in which any discrepencies can be investigated further with a more

sensitive and diverse set of tests.

The physics lists relevant to LHCb are all based on the ‘EM Standard’ list (EmStd)

and consist of EM Standard Option1 (EmOpt1), EM Standard Option3 (EmOpt3) as well

as two other lists, EmLHCb and EmNoCuts. EmStd, EmOpt1 and EmOpt3 are ‘off the shelf’
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Geant4 physics lists, the properties of which can be found for Geant4 v9.4, v9.5 and

v9.6 in [70]. EmLHCb and EmNoCuts however are private LHCb lists, based off the EmOpt1

list but with modifications to production cuts. The details of how these lists differ are

shown in Table 2.3.

By default, in EmOpt1, production cuts are applied to the bremsstrahlung, ionisation

and e+e− pair production processes. However, production cuts can also be applied

to the photoelectric effect, Compton scattering and gamma conversion (set internally

with the SetApplyCuts() method). In Table 2.3, EmNoCuts is split into EmNoCutsOld

and EmNoCutsNew. This is due to the Geant4 Collaboration recommending that with

the upgrade from Geant4 v9.5 to v9.6, LHCb updates the EmNoCuts list to the latest

configuration of EmOpt1, in which there are changes to the multiple scattering models. In

LHCb nomenclature, ‘Sim06b’ refers to the simulation version in which Geant4 v9.4 is

used, while ‘Sim07’ uses v9.5 and ‘Sim09’ uses v9.678.

Physics List e+/e- Multiple Scattering Model Other Properties

EmOpt1

UrbanMsc93<100MeV
WentzelVI>100MeV
fMinimal Step Limit
Also Uses G4CoulombScattering

opt.SetPolarAngleLimit(CLHEP::pi)

opt.SetApplyCuts(true)

EmOpt3
UrbanMsc95

SetStepLimitType(fUseDistanceToBoundary)

SetRangeFactor(0.01)

opt.SetPolarAngleLimit(CLHEP::pi)

EmStd
UrbanMsc95 <100MeV
WentzelVI>100MeV
Also uses G4CoulombScattering

opt.SetPolarAngleLimit(CLHEP::pi)

EmNoCutsOld
UrbanMsc95

fMinimal Step Limit
opt.SetPolarAngleLimit(0.2)

EmNoCutsNew

UrbanMsc93<100MeV
WentzelVI>100MeV
fMinimal Step Limit
Also Uses G4CoulombScattering

opt.SetPolarAngleLimit(CLHEP::pi)

EmLHCb

UrbanMsc93<100MeV
WentzelVI>100MeV
fMinimal Step Limit
Also Uses G4CoulombScattering

opt.SetPolarAngleLimit(CLHEP::pi)

SetApplyCuts(true)

Table 2.3: A table summarising relavant properties of the electromagnetic physics lists for LHCb.
These properties are all for Geant4 v9.6 except for EmNoCutsOld which is from v9.5 and is used
as a reference when comparing to v9.6.

7Sim08 also used Geant4 v9.5, so no validation tests were performed with these tools.
8Full version numbers are 4.9.5.p02 and 4.9.6.p04. v9.4 and v9.5 are used here for brevity.
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For the upgrade between Geant4 v9.4 and v9.5, the dE/dx tests were performed

on pre-existing centralised productions of particle gun event simulations and the data

was extracted from these using the aforementioned EmGaussMoni tool. These results are

presented in Section 2.3.11. For the subsequent upgrade from v9.5 to v9.6, a new set of

analysis tools was developed, facilitating the production of specialised MC samples by

the end user for these validation tests. Furthermore, between the upgrade from v9.5 and

v9.6, the BremVeloCheck tool was developed for the additional test on bremsstrahlung

radiation. Therefore, these tests are only performed for the validation of v9.6. The results

of the Geant4 v9.6 validation studies are presented in Section 2.3.11

Geant4 v9.4 vs v9.5 results

Overall there is good agreement between the lists within v9.5, and consistency between

v9.4 and v9.5 with EmNoCuts, however there are two exceptions. For EmOpt3 there are

not enough hit statistics between 290 and 310µm to evaluate the distributions. This is

unsurprising due to the difference in step size used in EmOpt3 with respect to the other

lists. Therefore, the consistency of EmOpt3 with others is evaluated for path lengths greater

than 300µm, resulting in significantly more hits, and shows consistency with theory and

other models. The results for x > 300 microns is shown in figures 2.22 and 2.23.

EmNoCuts shows some fluctuations in the FWHM at high βγ from the expectation for

electrons. The MPV however, is consistent across the full βγ range, and the behaviour of

the more critical muons and pions is consistent. These results can be seen in Figures 2.18

and 2.19. One possible reason for the deviations in EmNoCuts electrons for v9.5 is due to

the accuracy limitations of the linear interpolation method used to estimate the FWHM.

Figures 2.16 and 2.17 present a comparison between the energy loss distributions of 1 GeV

electrons in v9.4 and v9.5 EmNoCuts, which corresponds to v9.5 βγ point with the largest

deviation, and it is clear they are actually highly consistent.
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Figures 2.20 and 2.21 show the comparison of the lists in Geant4 v9.5 that were con-

sidered. EmOpt3 is omitted due to insufficient statistics. EmOpt3 is included in Figures 2.22

and 2.23 for a path length cut greater than 300µm only.
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Figure 2.16: Deposited energy for 1GeV electrons, comparing Sim07 and Sim06b EmNoCuts.
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Figure 2.17: Magnification of distributions in figure 2.16.
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Figure 2.18: MPV comparison for v9.4 vs v9.5 EmNoCuts, x ≈ 300µm.
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Figure 2.19: MPV/FWHM comparison for v9.4 vs v9.5 EmNoCuts, x ≈ 300µm.
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Figure 2.20: MPV comparison for v9.5 physics lists, x ≈ 300µm.



The Large Hadron Collider and the LHCb experiment 66

Figure 2.21: MPV/FWHM comparison for v9.5 physics lists, x ≈ 300µm.
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Figure 2.22: MPV comparison for v9.5 physics lists, x > 300µm.
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Figure 2.23: MPV/FWHM comparison for v9.5 physics lists, x > 300µm.

Geant4 v9.5 vs v9.6 results

The same series of tests was performed with the validation of Geant4 v9.6, in which the

results from v9.5 EmNoCuts were used as a reference, and these are shown in Figures 2.24-

2.27. The dE/dx tests showed good consistency between v9.5 and v9.6. The limiting

factor in many of the comparisons is the small size of the centrally produced v9.5 sample,

causing fluctuations in the muon comparison. The BremVeloCheck tool was prototyped in

the v9.6 validation studies and the results are included in Table 2.4 for completeness.
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Figure 2.24: MPV comparison for v9.6 EmNoCuts and ratio with v9.5 EmNoCuts (bottom).
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Figure 2.25: MPV comparison for v9.6 EmOpt1 and ratio with v9.5 EmNoCuts (bottom).
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Figure 2.26: FWHM comparison for v9.6 EmNoCuts and ratio with v9.5 EmNoCuts (bottom).
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List Mean Energy mean no. per track
EmNoCutsOld 1.431 5.00
EmOpt1 1.538 5.26
EmOpt2 1.555 5.28
EmLHCb 1.548 5.29
EmNoCutsNew 1.437 5.07

Table 2.4: Photon multiplicity and mean photon energy per track from 1 GeV electrons. Physics
lists are v9.6

Figure 2.27: MPV comparison for v9.6 EmOpt1 and ratio with v9.5 EmNoCuts (bottom).
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Summary

A set of tools has been developed for systematic validation and testing of EM physics for

LHCb, specifically for energy loss and bremsstrahlung radiation in the VELO silicon. In

the latest validation run, a comparison of the various electromagnetic physics lists available

in Geant4 v9.6 have been compared in detail and cross-checked with v9.5 within the

Gauss framework. Previously, the dEdx tool was also used to validate the update from

Geant4 v9.4 to v9.5, and after further investigation of apparent disparities that became

apparent from the studies, it is clear there is little difference in the dE/dx behaviour of

these lists in silicon. The FWHM discrepancies in v9.5 EmNoCuts presentand a m an area

for further study, and more accurate methods to determine the FWHM could be considered.

Future plans

Development of the validation tools will continue within the University of Birmingham

LHCb group. The front-end of the EM validation software handles the submission of

simulation jobs, analysis of the output files and the generation of figures and numerical

results. It is developed in pure python code to allow seamless integration into LHCbPR,

which employs the python web framework, Django. In LHCbPR, the tools will be run

periodically and in future versions, automatically. Developing meaningful numerical

comparisons for the minimum ionisation energy, mean bremsstrahlung photon energy

and multiplicity would be practical for automatic comparison between simulation run

conditions in LHCbPR.



Chapter 3

First observation and branching

fraction measurement of the decay

Λ0b→ pKµ+µ−

3.1 Introduction

The rare decay Λ0
b→ pKµ+µ− is a flavour changing neutral current decay, in which the

quark level transition, b→ sµ+µ− occurs through the SM processes of electroweak penguin

and W box decays, as described in Section 1. This makes it sensitive to new physics.

Figure 3.1 depicts the feynman diagrams for possible penguin and box decays.

There is much interest around the decays of Λ0
b particles due to several factors. As a

baryon, the Λ0
b has non-zero spin, and can be used to probe the helicity structure of the

underlying Hamiltonian [71,72]. The existence of a di-quark spectator system compared to

the single spectator in similar meson decays means the hadronic physics is very different.

Information gained from studying these decays may aid the treatment of hadronic physics

in both the meson and baryon sectors
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(a) (b)

Figure 3.1: Penguin (a) and w-box (b) diagrams for the Λ0
b → pKµ+µ− decay via a b → s

transition.

In this particular decay, the relatively high mass system of the final state hadrons

restricts the Λ0
b to cascade down through numerous Λ∗ resonances. The structure of the

pK mass spectrum is not well known and Λ0
b→ pKµ+µ− decays provide an opportunity

for further study. The branching fraction measurement is performed in q2, the square

of the dimuon invariant mass, this allows comparison with theoretical predictions and

parameters of the effective Hamiltonian. It is important to note that the high hadronic

mass allows one to probe the lower q2 range, below the J/ψ resonance. This region can

have high sensitivity to new physics and offers complimentary measurements to rare Λ0
b

decays that proceed via the ground state Λ0 baryon, which are distributed in the higher

q2 range.

3.1.1 Signal blinding

As the total and q2-differential branching fractions of Λ0
b → pKµ+µ− have not been

measured to date, signal candidates in the data sample are blinded to reduce the potential
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bias in the selection procedure. All variables related to the analysis are blinded in the

pK−µ+µ− mass window between 5.5 and 5.7 GeV/c2. Furthermore the signal shape, i.e.

the overall fit shape within the blinding region and χ2 value of the full fit, remains obscured.

This analysis is currently under review by the LHCb Collaboration, after which unblinding

and publication of the results will quickly follow.

The branching fraction of the resonant Λ0
b→ J/ψpK was recently measured by the

LHCb Collaboration as (3.17± 0.04± 0.07± 0.34+0.45
−0.28)× 10−4 [73], where the uncertainties

are statistical, systematic, and due to the knowledge of the normalisation channel B0 →

J/ψK∗(892)0 and the relative production rate of Λ0
b to B0 (fΛ0

b
/fd). We use this decay as

a control channel, performing the branching ratio measurement of,

B(Λ0
b→ pKµ+µ−)

B(Λ0
b→ J/ψpK)

(3.1)

to control systematic uncertainties belonging to both decays. The resonant mode, Λ0
b→

J/ψpK is also used to study kinematic distributions in data, to evaluate quantitatively

the impact of possible mismodelling of data by simulation, and to investigate peaking

backgrounds.

Measuring the branching fraction of Λ0
b → pKµ+µ− comes with several challenges.

Currently, theoretical descriptions of the decay are not well developed. In Λ0
b→ J/ψpK,

the proton and kaon come predominantly through Λ0
b → (Λ∗ → pK) of which there are

numerous Λ∗ states. Predictions for Λ0
b → Λ∗l+l− for several of these states have been

calculated [74] but without detailed knowledge of the decay structure and amplitudes,

these cannot be easily transformed into a prediction of B(Λ0
b → pKµ+µ−). With the

lack of predictions, the MC samples of Λ0
b→ pKµ+µ− (and Λ0

b→ J/ψpK) are produced

with a phase-space model only and will not correctly describe the real decay structure,

and as the analysis is blind, MC cannot be corrected for data-MC discrepencies either.
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These challenges are tackled by performing an event by event correction of the observed

signal candidates in data using a multi-dimensional efficiency model, while the production

kinematics of the Λ0
b are corrected using a technique that is independent of the Λ0

b

kinematics in Λ0
b→ pKµ+µ− and Λ0

b→ J/ψpK.

3.2 Simulation and Software

Monte Carlo samples are used in this analysis to evaluate efficiencies, to develop candidate

selections as well as understand the shapes and yields of the signal, control channel and

peaking backgrounds reconstructed under the Λ0
b→ J/ψpK or Λ0

b→ pKµ+µ− hypotheses.

The official LHCb samples used are listed in Table 3.1. The Λ0
b→ ψ̃pK sample involves a

Sample Model
Λ0
b→ pKµ+µ− phase space

Λ0
b→ J/ψpK phase space

B0→ J/ψK0
S w. radiative

B0
s → J/ψφ w. radiative

B0 → Kπµµ phase space
B0
s → KKµµ w. transition form factors [75]

Λ0
b→ ψ̃pK custom

Table 3.1: Simulated samples used in this analysis

custom model that generates a high-q2 pseudo-resonance, which is forced to decay into two

muons. This is to avoid imprecise efficiency modelling at high q2 that would otherwise arise

from the small population of such candidates. The q2 distributions of both phase-space

Λ0
b → pKµ+µ− decays alone, and of the combination of phase space decays with the

pseudo-resonance sample, are shown in Figure 3.2.

This sample is only used to construct the efficiency model introduced in Section 3.8.

The unphysical q2 distribution can be used for this purpose because the method largely

removes the dependence of the calculated selection efficiency on the shape of the mass
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Figure 3.2: Distribution of q2 in phase-space Λ0
b→ pKµ+µ− MC (left) and the same sample

combined with the pseudo-resonance sample, Λ0
b→ ψ̃pK (right)

distributions.

Specific packages used

Several LHCb-specific and third party software packages are used in this analysis. The

n-tuples of candidates are created using DaVinci [76]. For geometric acceptance studies,

generator level1 MC is produced privately for Λ0
b→ pKµ+µ−, Λ0

b→ J/ψpK and Λ0
b→ ψ̃pK

where events in a ‘forward’ 2π hemisphere are generated. These use the same parameters

and models as the official productions and are produced using Gauss [77]. For the particle

identification studies (Section 3.6.1), Urania with the PIDCalib package [78] is used. The

kinematic weighting procedure (Section 3.2.1) uses the python analysis tool Bender [79].

For the neural network selection, the Phi-T software NeuroBayes [80] is used.

3.2.1 Monte Carlo weighting

The MC samples are generated under the phase-space hypothesis, and it is clear from

Figure 3.3 that there are kinematic discrepancies between Λ0
b→ J/ψpK data and MC.

These may give rise to inaccurate evaluations of the efficiency for both the kinematic and

1Simulation without any modelling of the material interactions, resolution or acceptance of the LHCb
detector.
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neural network selections. Due to correlations between kinematic variables, evaluating the

efficiency as a function of q2 alone cannot be assumed to be correct.

The two main causes of disagreement between MC and data are the modelling of the

production of the Λ0
b baryon in MC, and the structure of the decay to the final state.

The efficiency is parametrised in five kinematic dimensions as described in Section 3.6, to

reduce dependence of the integrated efficiency on the simulated decay model.

Simulated, generator-level samples of B0→ J/ψK0
S and Λ0

b→ J/ψpK decays, and the

measured ratio of production rates of Λ0
b and B0, are used to correct potential discrepancies

in the production kinematics of Λ0
b baryons.

The channel B0→ J/ψK0
S is used because it is a relatively clean channel in data and

as it is described accurately in MC with a fixed decay structure. We do however, re-weight

the B0→ J/ψK0
S for the small data-MC discrepancy. Figure 3.4 shows a comparison of

B0→ J/ψK0
S data and MC, illustrating a reasonable level of agreement. Each event in

the generator level B0→ J/ψK0
S MC is re-weighted by the ratio of data to MC after both

reconstruction and selection have been carried out. This is done by parameterising the

pT and η distributions using kernel density estimation PDFs and evaluating the ratio of

PDFs at the given pT and η of the generator level MC event.

The procedure to correct the Λ0
b production kinematics is as follows: We determine for

each Λ0
b MC event, the values of fΛ0

b
/fd (pT) (and fΛ0

b
/fd(η)) as measured by LHCb [81] and

form an event-by-event weight by taking the product of this with the ratio of B0→ J/ψK0
S

and Λ0
b→ J/ψpK kinematics at the given point in pT (η). More explicitly, this ratio is

calculated by taking the PDFs corresponding to the pT (η) distributions of B0→ J/ψK0
S

and Λ0
b→ J/ψpK at generator level and evaluating them at the pT (η) value of the given

Λ0
b , and we take the ratio of these values. This gives two separate expressions, one for pT

and one for η. We correct simply by the product of these two expressions as the correlation

is unmeasured in [81].
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Figure 3.3: Data-MC comparison for Λ0
b→ J/ψpK, PID selection of h ProbNNh > 0.8 applied

for each hadron species, h.

This gives the complete expression for the event-by-event weight of a candidate with

transverse momentum, pTi and pseudo-rapidity, ηi,

wi =
fΛ0

b

fd
(pTi) ·

PDFB0→J/ψK0
S(pTi)

PDFΛ0
b→J/ψpK(pTi)

·
fΛ0

b

fd
(ηi)

PDFB0→J/ψK0
S(ηi)

PDFΛ0
b→J/ψpK(ηi)

, (3.2)

where PDFB0→J/ψK0
S(pTi) represents the normalised PDF of the B0→ J/ψK0

S , evaluated at

the transverse momentum value of the Λ0
b candidate at generator level, pTi, and similarly

for the corresponding PDF of the Λ0
b→ J/ψpK(pTi) and for their equivalent PDFs as a

function of η.

For the value of fΛ0
b
/fd as a function of pT and η, we take values according to the
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Figure 3.4: pT and η MC-data comparison for B0 using the B0 → J/ψK0
S channel. MC is

reweighted by data
MC

expressions shown in Equations 3.3 and 3.4. We normalise each weight to preserve
N∑
i=0

(wi) ≡ N , where N is the total number of candidates in the sample. The kinematic

re-weighting is performed on MC candidates after stripping selection, and when applied to

Λ0
b→ J/ψpK MC gives the best overall agreement with Λ0

b→ J/ψpK candidates in data.

The B0→ J/ψK0
S candidates, which have background substracted using the sPlot

technique [82] are used to characterise the kinematics of the B0 mesons produced at LHCb.
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With loose selection to reduce excessive kinematic bias, we thus know the distributions of

pseudorapidity and transverse momentum for the B0 mesons. In [81], the behaviour of

fΛ0
b
/fd as a function of pseudo-rapidity and transverse momentum is found to be,

fΛ0
b

fd
(η) =

S︷ ︸︸ ︷(
0.834+0.064

−0.067
)[(

0.464± 0.003+0.008
−0.010

)
+
(
0.081± 0.005+0.013

−0.009
)
× (η − 3.198)

]
,

(3.3)

fΛ0
b

fd
(pT) =

S︷ ︸︸ ︷(
0.834+0.064

−0.067
)[

(0.181± 0.018± 0.026) (3.4)

+ exp
{(
−0.391± 0.023+0.069

−0.067
)

+ (−0.095± 0.007± 0.014)× pT( GeV)
}]
,

where S is a constant scale factor. This enables us to relate the kinematics of the Λ0
b to

the kinematics of the B0 through the pT and η dependent fΛ0
b
/fd relationships. These

distributions are shown in Figure 3.5, taken from Ref. [81].

This method is also used to evaluate the ratio of B0 and Λ0
b generator-level kinematics

in the calculation of the event weight (Equations 3.3 and 3.4).

The loose cuts presented in Table 3.2 are applied to the B0 MC and data samples to

ensure a sufficiently pure sample of B0→ J/ψK0
S candidates is obtained in data, without

significantly biasing the kinematics of the B0. Only LL tracks are selected while the

trigger and stripping selections remain the same as those used for Λ0
b→ pKµ+µ− and

Λ0
b→ J/ψpK decays (Tables 3.3 and 3.5). The samples used for this correspond to 29 472

(post-reconstruction and stripping) MC events, 20 000 generator level events, and 5870 B0

candidates in data.
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Figure 3.5: (Included from Ref. [81] for completeness.) Hadronic fΛ0
b
/fd vs. pT (a) and η (b)

dependencies, where the data points and blue fit functions are scaled by the factor S, the red
lines indicate the upper and lower bounds of the total uncertainty on S. The uncertainties on
the vertical axes are the combined statistical and systematic errors of efficiency-corrected yields.
The uncertainties on the horizontal axes are the standard error on the mean (and are too small
to be visible).

Particle Variable Requirement
B0 Mass 5.17 < m < 5.4 GeV
Daughter hadrons Track type 3

Mass < 5.05 GeV

Table 3.2: Cuts to B0 candidates after stripping
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3.2.2 Model validation

Candidate Λ0
b→ J/ψpK decays in data are used to evaluate the result of re-weighting the

MC kinematics.

As this procedure is only correcting for MC discrepancies in the production kinematics

of the Λ0
b baryon, we do not expect perfect agreement between data and the re-weighted

MC as these samples are generated using a generic phase-space model, and we anticipate

significant differences in the decay structure. Figure 3.7 shows the Λ0
b pT for a small slice

in the pK mass around the Λ(1520) resonance. There is a small improvement in the

description of data by simulation, as expected when considering a restricted mass interval.
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Figure 3.6: Comparison of 2012 data with both weighted and default simulation for Λ0
b→ J/ψpK

candidates, as a function of Λ0
b (a) momenta, and (b) pT.



First observation and branching fraction measurement of the decay Λ0
b→ pKµ+µ− 86

0 10000 20000 30000
0

50
100
150
200
250
300
350
400
450

Lb PT

phase-space MC

weighted phase-space MC

s-weighted data

MeV

Figure 3.7: Comparison of Λ0
b baryon pT in 2012 data with both weighted and default simulation,

for candidates in which the invariant mass of the pK is in the interval 1450–1600 MeV/c2.
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3.3 Selection

We analyse data collected by LHCb in 2011 and 2012 corresponding to approximately 3 fb−1

in total, with 1 fb−1 collected in 2011 and the further 2 fb−1 in 2012. The DIMUON dataset

is used, run through the stripping line B2XMuMu. Stripping versions 20r1 and 20 are used

for the 2011 and 2012 data sets respectively, in which the stripping selection is the same in

both versions. We use the same stripping selection for Λ0
b→ pKµ+µ− and Λ0

b→ J/ψpK

samples, the requirements of which are listed in Table 3.3. The Λ0
b → pKµ+µ− and

Λ0
b→ J/ψpK channels have almost identical selection criteria to reduce systematic effects.

The two channels are distinguished from each other by their q2 values.

We search for Λ0
b→ pKµ+µ− in the q2 range of 0.1–17.5 GeV2/c4 and select decays in

the pK−µ+µ− final state, predominantly proceeding through through the J/ψ and ψ(2S)

cc states. We also restrict the pK− invariant mass to be below 4.6 GeV/c2. This exludes a

small region of phase space where it is difficult to parameterise efficiency as our simulation

does not produce sufficiently many events.

For Λ0
b→ pKµ+µ− decays, candidates with q2 values in the regions q2 : [8.0, 11.0] GeV2

and q2 : [12.5, 15.0] GeV2 are rejected to veto resonant J/ψ and ψ(2S) modes. For

Λ0
b→ J/ψpK, the J/ψ mode is exclusively selected within the q2 : [8.0, 11.0] GeV2 window.

We consider the rare decay q2 region in five bins: three below the J/ψ exclusion

with the boundaries [0.1, 2.0, 4.0, 8.0] GeV2/c4, one between the J/ψ and ψ(2S) from

[11.0–12.5] GeV2/c4 and one above the ψ(2S) at [15–17.5] GeV2/c4.

Additionally, the pre-selection criteria listed in Table 3.4 are applied after stripping.

The decision to reject low pT protons is a result of preliminary studies into the separation

of signal and background in kinematic variables, and was investigated with a multi-layer

perceptron (MLP) neural network (NeuroBayes). A Λ0
b→ pKµ+µ− MC sample was used

for signal, and for background, the upper side-band of data from the B2XMuMu stripping

line, with no further cuts applied to either sample. This allows a clear visualisation on
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Subject Variable Requirement
Global SPD hits < 600
Tracks χ2/nDof < 5.0

Ghost probability < 0.4
min PV IPχ2 > 9

Λb Mass 4.6 < m < 7.0 GeV
BDIRA > 0.999968
IP χ2 < 9.0
FD χ2 > 100.0

Vtx χ2/DOF < 8.0
Muons PIDmu > −3

isMuon True
IP χ2 > 16.0

Dimuon Vtx χ2/DOF < 9.0
Mass < 7.1 GeV

Table 3.3: Summary of stripping requirements in B2XMuMu

Particle Variable Requirement
Λb Vtx χ2/DOF < 5.0
Proton pT > 500 MeV
Dimuon q2 < 17.5 GeV2

Table 3.4: Post-stripping selection criteria.

the separation of signal and background, as seen by the NN. The separation in proton

pT can be seen in Figure 3.8. The trigger selection used is shown in Table 3.5 and we

require ‘trigger on signal’ (TOS), meaning the the trigger has fired on a reconstructed

signal candidate.

3.3.1 PID selection

The particle identification system of LHCb is used to suppress peaking backgrounds that

appear through the misidentification of one or more of final state particles. The studies

conducted in Section 3.4 suggest that both B0→ J/ψK∗0 and B0
s → J/ψφ decays are

present in the post-stripping selection of Λ0
b→ J/ψpK candidates.
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Figure 3.8: Signal-background separation in proton pT, after stripping with signal in red and
background in black.

Trigger Level Lines
L0 L0MuonDecision TOS

L0DiMuonDecision TOS
Hlt1 Hlt1DiMuonHighMassDecision TOS

Hlt1MuTrackDecision TOS
Hlt1TrackAllL0Decision TOS
Hlt1TrackMuonDecision TOS

Hlt2 Hlt2Topo2BodyBBDTDecision TOS
Hlt2Topo3BodyBBDTDecision TOS
Hlt2Topo4BodyBBDTDecision TOS

Hlt2TopoMu2BodyBBDTDecision TOS
Hlt2TopoMu3BodyBBDTDecision TOS
Hlt2TopoMu4BodyBBDTDecision TOS

Hlt2SingleMuonDecision TOS
Hlt2DiMuonDetachedDecision TOS

Table 3.5: Summary of trigger lines used by the analysis.

The B0→ J/ψK∗0 decays in which K∗ →K+π− may be selected as signal decays

through misidentification of the pion as a proton, or through double misidentification

of the pion as a kaon and the kaon as a proton. B0
s → J/ψφ, in which φ →K+K−

can have one of the kaons misidentified as a proton, while Λ0
b → J/ψpK itself can be

mis-reconstructed through the double misidentification of the proton and kaon as each

other. We therefore expect the decays of B0→ K∗0µ+µ−, B0
s →φµ+µ− and Λ0

b→ pKµ+µ−

with the same misidentification of the final state hadrons to appear in the selection of
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Λ0
b→ pKµ+µ− candidates.

The final PID cuts were chosen after conducting several studies into their effectiveness.

From the neural network studies noted previously, we see that there is an abundance

of pions in the combinatorial background, leading to significant π → p misidentification.

Therefore a cut of p probNNpi < 0.7 was chosen to suppress this.

Symmetric cuts on the proton and kaon ProbNN variables are then applied to mainly

suppress background from p→ K and K → p mis-identifications, as shown in Table 3.6.

Particle cut
p ProbNNp > 0.2 & ProbNNK < 0.8 & ProbNNpi < 0.7

K ProbNNK > 0.2 & ProbNNp < 0.8

Table 3.6: Chosen PID variable cuts for Λ0
b→ pKµ+µ−

3.3.2 Multivariate selection

Finally, a multivariate analysis is used to discriminate between signal candidates and

combinatorial background. This is achieved with a NeuroBayes neural network. We

classify a signal and background sample for the network training. The signal sample is a

selection of truth-matched Λ0
b→ pKµ+µ− events consisting of 12500 candidates, and a

background sample of comparable size. The MC sample includes simulation of detector and

trigger, and event reconstruction. We apply all the selection criteria described above. For

the background sample, we take events from data after the full Λ0
b→ pKµ+µ− selection,

with the additional criteria of m(pK−µ+µ−) > 6 GeV/c2. This is to give a pure background

sample from the high mass side-band.

We do not include PID variables in the training due to the discrepancies between MC

and data for the PID variables. The multivariate selection for Λ0
b→ pKµ+µ− is performed

on Λ0
b→ pKµ+µ− MC with stripping and pre-selection cuts applied without any additional
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cuts applied to the q2 mass window. The MC is truth-matched via the BKGCAT2 variable

and requiring the true ID’s of all particles. The data sample has the same pre-selection

applied but with the additional high mass side-band cut of 6 GeV/c2 as mentioned above.

Due to the kinematic MC-data disagreements, the MC sample is weighted via the

process explained in Section 3.2.1 before performing the training. This process only

accounts for the production kinematics of the Λ0
b baryon, with the 5-D parameterisation of

mass and angular variables accounting for the decay structure (see Section 3.8). The NN

output weight for signal and background samples, as well as signal purity as a function of

NN cut are shown in Figure 3.9. The rankings of each variable are shown in Table 3.7.  Phi-T  
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Figure 3.9: (a) NN output for signal (red) and background (black) samples. (Fainter lines for
pre-boosted output). (b) Signal purity as a function of NN cut

Variables 9–12 are automatically pruned by NeuroBayes and only the first eight are

used. The comparison between MC and data for Λ0
b→ J/ψpK for these eight variables

are shown in Figure 3.12

Applying the network assigns a weight between −1 and +1 to each candidate, depending

on how signal-like it is perceived to be. To optimise the cut on this weight at which we

select candidates, we scan the variable in increments of 0.01 and evaluate the Punzi figure

of merit, ε√
B+a/2

[83], where ε and B are the signal efficiency and the expected number of

background decays, and a is the target significance; a value of a = 5 is used. This is an

2categorises MC candiates into signal, full reconstructed background, partially reconstructed back-
ground, etc.
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Input rank id added isolated lost
Λ0
b end vertex χ2 1 6 82.23 82.23 4.49

min(µ χ2
IP) 2 12 46.65 70.58 14.22

proton pT 3 4 39.04 57.54 31.60
kaon pT 4 3 36.49 60.69 20.64
Λ0
b χ

2
IP 5 8 30.96 63.83 25.52

kaon χ2
IP 6 11 19.39 73.88 14.57

max(µ χ2
IP) 7 13 12.29 64.89 3.44

proton χ2
IP 8 10 8.70 51.51 7.85

Λ0
b Dec. Tree Fit χ2 9 2 1.94 81.77 1.98

Λ0
b DIRA 10 5 1.77 74.21 1.76

dimuon end vtx χ2 11 7 0.11 31.48 0.12
dimuon χ2

IP 12 9 0.07 66.72 0.07

Table 3.7: Summary of inputs to the neural network. Rank gives internal ranking of the input
according to NeuroBayes (based on adds column). The column ‘id’ is the index of variables
used in the correlation matrix, as shown in Fig. 3.10 ‘Added’ shows the correlation significance
added by that particular variable. ‘Isolated’ is the power provided by the given variable alone
and loss shows how much information is lost when removing this particular variable.

appropriate figure of merit because it does not depend on the signal to background ratio

to determine the optimal working point for the selection, given there are no measurements

or predictions for the Λ0
b→ J/ψpK or Λ0

b→ pKµ+µ− production rates. The results of

the optimisation can be seen in Figure 3.11, from which the requirement on the neural

network response of 0.91 was chosen.



First observation and branching fraction measurement of the decay Λ0
b→ pKµ+µ− 94

cut
0 0.2 0.4 0.6 0.8 1

σ
P

un
zi

 F
O

M
 fo

r 
5

0

20

40

60

80

100

120

310×
Neural Net ResponseNeural Net Response

Figure 3.11: Figure of merit as a function of neural network response. Despite the large
uncertainty on the figure of merit when the cut is tight, we choose the cut from the peak at 0.91.
The fluctuations at higher cut values are a result of insufficient candidates remaining in the side
band sample with which to perform a stable fit.
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Figure 3.12: Comparison between MC and data of the variables used in the training on the neural
network for Λ0

b→ J/ψpK. We split the muon χ2 variables into minimum and maximum values
for each event. For these comparison plots, the µ+ and µ− variables are shown individually
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3.4 Peaking Backgrounds

To investigate which decays happen to be mis-reconstructed and contribute to the back-

ground of Λ0
b → J/ψpK and Λ0

b → pKµ+µ−, we select a sub-sample of the data using

the Λ0
b→ J/ψpK selection in q2. We then search for peaks in the mass spectrum of the

reconstructed final state system under various combinations of mass hypotheses of the

individual final state particles. When exchanging the mass of reconstructed proton tracks

with the kaon mass, a peak around the nominal B0
s mass is clearly visible. Similarly, with

[p→ π] or [p→ K,K → π] reflections, we see peaking at the B0 mass. It is clear there

is a significant contribution from B0
s → KKµµ and B0 → Kπµµ decays, primarily from

B0 → J/ψK∗ and B0
s → J/ψφ, with their respective non-resonant modes assumed to also

be present in the Λ0
b→ pKµ+µ− due to the identical final states and similar kinemat-

ics. Additionally, the double reflection [p→ K,K → p] will result in mis-reconstructed

Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ−. Figure 3.13 shows a sample of the Λ0
b→ J/ψpK data

sample with pre-selection applied, under different mass hypotheses.

We also check for the possibility of partially constructed Λ0
b → Λ+

c µν decays in

Λ0
b → pKµ+µ− where the Λ+

c decays to pKπ and the pion is misidentified as a muon.

This is done by swapping one of the muon mass hypotheses for a pion in a blinded data

sample with the Λ0
b→ pKµ+µ− selection applied and seeing if a peak at MΛ+

c
(2.29 GeV)

is observed in the pKπµ mass interval in the combined upper and lower mass side-band of

pKµµ. We can see a clear contribution to the background from the Λ+
c in Figure 3.14,

but looking at where these candidates lie in the pKµµ mass frame (Figure 3.15), it is

clear that they lie far from the Λ0
b and we expect the contribution to be negligible, thus

no further PID selections or mass cuts are considered necessary for Λ+
c suppression. We

rely predominantly on the PID selection to reduce contamination from misidentified final

states and good modelling in the yield extraction fit of the significant B0
s pollution that

remains (Section 3.5) rather than further suppression by mass dependent cuts.
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Figure 3.13: The invariant mass of the mother particle under different hypotheses for the final
state hadrons, imposing m(pK−µ+µ−) > 6 GeV/c2.
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Figure 3.14: Combined lower and upper mass side-band of blinded Λ0
b→ pKµ+µ− data under

the pKπµ hypothesis, showing partially reconstructed Λ0
b → Λ+

c µν decays
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Figure 3.15: Two dimensional mass plot showing the location of the Λ+
c peak in M (pKµµ)

For Λ0
b→ J/ψpK, the pollution from B0 and Λ0

b→ J/ψpK with double reflection is

negligible due to the powerful suppression from the PID selection on mis-reconstructed

B0 events (1.7 % efficiency) and a combination of relatively good PID suppression (14%

efficiency) and shifting of the peak far below the Λ0
b peak for the Λ0

b→ J/ψpK double reflec-

tion. The high mass tail of the double reflection remains under the correctly reconstructed

Λ0
b→ J/ψpK peak and this is included in the fits.

3.5 Yield Extraction

Yields are determined using unbinned extended maximum likelihood fits, which have the

form

L = e−(NS+NB+Npbkg) × 1

N

N∏
i=1

[NSPS(mi) +NBPB(mi) +NpbkgPpbkg(mi)], (3.5)
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where NS represents the number of signal candidates, while NB and Npbkg correspond

to the numbers of candidates from combinatorial and peaking backgrounds, respectively.

Each P (mi) is the corresponding probability density function. The Λ0
b → J/ψpK and

Λ0
b→ pKµ+µ− mass peaks are described by the sum of two Crystal Ball (DCB) functions

that share common means (m) and tail parameters (σ and n) but have independent widths.

A single Crystal Ball function is described in [84], consists of a Gaussian peak and

power-law tail of slope n. The threshold between the Gaussian and power law tail is

determined by a parameter α.

The RooFit package [85] is used to fit the Λ0
b mass spectrum in the rare and normal-

isation selections. In the nominal fit, we constrain the shapes of the B0
s and Λ0

b double

reflection from their shapes in mis-reconstructed MC. The full selection is applied to all

samples from which the shapes are obtained. However due to the poor modelling of the

PID variables, when fits are performed on MC to extract shape parameters, we perform

fits without the PID selection while evaluating fit model systematics (Section 3.9.4). For

extracting the Λ0
b→ J/ψpK yield, fits are performed separately on the 2011 and 2012 data

sets.

In the Λ0
b→ J/ψpK case, the combinatorial background contribution is modelled using

a Chebyshev polynomial of order three, while for Λ0
b→ pKµ+µ− an exponential function

is used.

3.5.1 Modelling peaking backgrounds

B0
s appears to be the dominant peaking background due to the relatively large p →K

reflection probability. Taking the side-band defined as m(pK−µ+µ−) > 5.8 GeV/c2 but in

the invariant mass m(K+K−µ+µ−) we expect mis-reconstructed B0
s → J/ψφ decays from

p →K reflections to peak at the nominal B0
s mass. We can then extract the yield of B0

s in

the side-band with DCB fits to the now ’correctly’ reconstructed B0
s peak and a Chebyshev
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polynomial fit for the combinatorial background. This is shown in Figure 3.16. We fix all

the parameters except the yield of the now correctly reconstructed B0
s candidates in the

sideband fit to those obtained from a fit to B0
s→ J/ψφ MC (see Figure 3.19)

The B0
s mass distribution when reconstructed under the Λ0

b hypothesis is also modelled

in simulation with a separate DCB (see Figure 3.20). This fixes the shape under the

Λ0
b → J/ψpK fit and also allows the yield of B0

s candidates in the Λ0
b → J/ψpK fit

mass window to be calculated. More explicitly, we can express the integral of the mis-

reconstructed B0
s mass distribution in the Λ0

b hypothesis as

I ≡
∫ mc

ma

f(mΛ0
b
)B0

s
dmΛ0

b
≡
∫ mb

ma

f(mΛ0
b
)B0

s
dmΛ0

b
+

∫ mc

mb

f(mΛ0
b
)B0

s
dmΛ0

b
, (3.6)

where ma and mc define the full fit range for the extraction of the Λ0
b→ J/ψpK yield and

mb is the side-band cut. Therefore, after extracting the side-band yield Nsb from the fit

we can estimate a total B0
s yield, NB0

s
from,

NB0
s

= Nsb ×
∫ mc

ma
f(mΛ0

b
)B0

s
dmΛ0

b∫ mc

mb
f(mΛ0

b
)B0

s
dmΛ0

b

, (3.7)

where in this case ma = 5.4 GeV/c2, mb = 5.8 GeV/c2 and mc = 6.2 GeV/c2. This

allows us to fix the yield of B0
s candidates using the mis-reconstruced B0

s shape from

MC (Figure 3.20) and the yield of B0
s extracted from the high mass side-band in data

(Figure 3.16) For this reason, we extend the mass window of the nominal Λ0
b→ J/ψpK

fit into the high mass side-band. The full fits to the Λ0
b→ J/ψpK mass can be seen in

Figure 3.17 (2011 data) and Figure 3.18 (2012 data). The fit parameters are shown in

Tables 3.8 and Tables 3.9, while yield and description summaries are in Tables 3.10 and

3.11.

The Λ0
b→ J/ψpK decays under double reflection is also included in the fit. The peak
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Figure 3.16: B0
s fit in Λ0

b→ J/ψpK side-band [5.7:6.0] GeV to fix yield, for 2011 (a) and 2012 (b)

is shifted into the lower mass side-band with the high mass tail contributing to the fit

region. We fix the shape (exponential) from a fit to MC candidates and scale the yield by

the ratio of integrals, in the same manner as we do for B0
s (eqn. 3.7), but constrain the

yield in the fit region, NpK swap, to be,

NpK swap = Nsigε
pK swap
PID ffit (3.8)

where ffit is the fraction of the shape expected to be in the fit region, Nsig is the signal yield

of Λ0
b→ J/ψpK and εpK swap

PID is the double reflection efficiency (14%) which we evaluate

using PIDCalib. This leaves only 399 expected candidates under the full fit region (2011

and 2012 combined).

We expect a negligible contribution from B0 modes as no significant contribution is

seen in the high mass side-band under the single and double mis-identifications required

for B0 to pollute the signal, which has only a 1.4% efficiency, and so this background

shape is not included in the nominal fit. For systematic studies we add a background

shape with floating yield and all other parameters constrained to a Crystal Ball fit on

mis-reconstructed B0 MC.
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Figure 3.17: Fit to Λ0
b→ J/ψpK 2011 data, together with the contributions in the fit for B0

s (red
dotted line), B0 (green dotted line). The corresponding yields are presented in Table 3.8.

For the nominal fit, we constrain only the tail/slope parameters of the Λ0
b→ J/ψpK

shape to that obtained from MC as there is a noticeable discrepancy in width and mean

mass. In the nominal fit, we leave mean mass and Gaussian widths of the signal DCB

floating. All fits to MC for Λ0
b→ J/ψpK are shown in Figures 3.19-3.20

Using the fit models in Figures 3.17 and 3.18, two further fits to the data are

performed with all parameters (except yields) fixed from these nominal fits, enabling us to

generate signal weights (s-weights) with the sPlot technique. Using the models described

in Section 3.8, the Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− yields can be corrected event by event
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Figure 3.18: Fit to Λ0
b→ J/ψpK 2012 data, together with the contributions in the fit for B0

s (red
dotted line), B0 (green dotted line). The corresponding yields are presented in Table 3.9.

for acceptance effects, detector and selection efficiency. This gives a corrected yield of

N =
n∑
i=0

swi
εi
, (3.9)

where swi and εi are the s-weight and absolute efficiency, evaluated for the ith event.
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Figure 3.19: (a) Fit to Λ0
b→ J/ψpK MC sample. (b) Fit to B0

s → J/ψφ MC under correct mass
hypotheses.
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parameter value

Combinatorial background

ccomb0 −0.739± 0.035

ccomb1 −0.62± 0.04

ccomb2 0.40± 0.04

Ncomb 3526± 127

B0
s background

σB
0
s 89.1(±3.1)

αB
0
s −0.4430(±0.0000)

mB0
s 5690.0(±1.1)

nB
0
s 2.8458(±0.8256)

NB0
s 3226.8013 (fixed)

Λ0
b→ J/ψpK double reflection

bswap 0.0035(±0.0002)

N swap 123.9839 (fixed)

Λ0
b→ J/ψpK signal

αΛ
0
b 1.76(±0.25)

α
Λ0
b

2 2.23(±0.17)

mΛ0
b 5624.0± 0.3

nΛ
0
b 2.50(±1.63)

n
Λ0
b

2 0.034(±0.844)

NΛ0
b 7426± 129

χ2/NDOF 1.2

Table 3.8: Fit parameters for Λ0
b→ J/ψpK components on 2011 data. Brackets on uncertainties

denote parameter that is fixed to MC fit with uncertainty from MC fit.
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parameter value

Combinatorial background

ccomb0 −0.799± 0.022

ccomb1 −0.6150± 0.0001

ccomb2 0.47± 0.03

Ncomb 9129.0± 183

B0
s background

σB
0
s 89.1± 3.0

αB
0
s −0.4430(±0.0000)

mB0
s 5690.0(±1.1)

nB
0
s 2.85(±0.83)

NB0
s 8489.5185 (fixed)

Λ0
b→ J/ψpK double reflection

bswap 0.0035(±0.0002)

N swap 276.5531 (fixed)

Λ0
b→ J/ψpK signal

αΛ
0
b 1.76(±0.24)

α
Λ0
b

2 2.22(±0.17)

mΛ0
b 5623.8± 0.2

nΛ
0
b 2.50(±1.63)

n
Λ0
b

2 0.03(±0.84)

NΛ0
b 16299.0± 183

χ2/NDOF 1.9

Table 3.9: Fit parameters for Λ0
b→ J/ψpK components on 2012 data. Brackets on uncertainties

denote parameter that is fixed to MC fit with uncertainty from MC fit.

component shape yield 2011 yield 2012 total yield
Λ0
b→ J/ψpK DCB 7426 16299 23725

B0
s→ J/ψφ CB 3227 8489 11716

Λ0
b→ J/ψpK (refl.) Exponential 122 277 399

combinatorial Chebyshev O(3) 3526 9129 12655

Table 3.10: Fit model and yields obtained in data for Λ0
b→ J/ψpK candidates for the full fit

range
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Figure 3.20: (a) Fit to B0
s → J/ψφ MC misreconstructed as Λ0

b→ J/ψpK. (b)Fit to Λ0
b→ J/ψpK

under double hadron reflection

component Summary
Λ0
b→ J/ψpK Mass, widths, yield free floating. Other parameters fixed to MC

B0
s→ J/ψφ All shape parameters fixed to MC. Yield fixed from side-band B0

s fit
Λ0
b→ J/ψpK (refl.) Shape fixed to MC. Yield fixed using PID mis-id efficiency

combinatorial All parameters floating

Table 3.11: Summarised description of fits in the nominal Λ0
b→ J/ψpK fits.
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3.6 Efficiency

At generator level, the phase-space MC is flat in all angular variables and the mass

distributions of q2 and m(pK) are described by just the kinematics of a four body decay.

The efficiency is not flat in angle and mass distributions and there is also significant

correlation between them. Therefore we attempt to describe the efficiency in a way that

minimises dependence on the decay structure of the MC sample used to estimate the

efficiency.

Figure 3.21: Characteristic decay angles of Λ0
b→ pKµ+µ−.

The decay structure of Λ0
b→ pKµ+µ− can be described using three angles3, q2 and

m(pK). The angles, shown in Figure 3.21 are the characteristic decay angles of the

daughter hadrons and dimuons. θL is the angle between the negative muon and the Λ0
b in

the dimuon rest frame, θB is the angle between the proton and the Λ0
b in the rest frame of

the pK system, and ∆φ is the angle between these two decay planes.

3This is assuming negligible production polarisation of the Λ0
b . Measurements of the production

polarisation at LHCb show the polarisation to be consistent with zero [86]



First observation and branching fraction measurement of the decay Λ0
b→ pKµ+µ− 109

The chosen method for efficiency modelling that has been implemented still requires

us to know the integrated detection efficiencies evaluated on the phase-space MC samples.

To gain a more complete understanding of the behaviour of the efficiencies, we examine

the efficiency for each component of Equation 3.10 in bins of q2, and present the results

in Section 3.6.1. For the actual efficiency correction, we use the efficiency model de-

scribed in Section 3.8, normalised by the phase-space efficiency (see Section 3.8.4). Other

parametrisation techniques that were considered are discussed in sections 3.7.1 and 3.7.2.

All three modelling techniques aim to parameterise the distortions of the five variables

due to detector acceptance and selection. Despite the Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ−

decays in MC being governed only by phase-space kinematics, they populate the full

physically allowed phase-space. Therefore, if we are able to evaluate the efficiency bias at

any given point in the 5D angle-mass space, the observed Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ−

candidates in data can be corrected for this bias.

3.6.1 Efficiency components

The integrated efficiency can be written as

ε = ε(geo) · ε(sel + reco|geom) · ε(trig|sel + reco) · ε(PID|trig)ε(NN |PID), (3.10)

where ε(geo) is the efficiency to have the final state contained within the geometric

acceptance of the LHCb detector. The selection term refers to the reconstruction, stripping

and selection efficiency and is calculated for events within the geometric acceptance of

LHCb. ε(trig|sel) is the trigger efficiency, evaluated for the events that satisfy the offline

selection process. ε(PID|trig) refers to the efficiency to identify correctly the hadrons in

the final state, and is calculated with respect to the events passing the trigger. The final

term is the efficiency of the multivariate selection using a neural network.
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Geometry

The geometric acceptance is evaluated using generator level Monte Carlo samples with

events produced in the forward hemisphere only. All daughter particles are then required

to be within the LHCb angular acceptance of between 10 and 400 mrad. Before weighting

the events the acceptance is given by ε(geo) = Npass/Ngen. For this evaluation we used

106 generated events.

Reconstruction and Stripping

The reconstruction and stripping selection includes the efficiency to reconstruct correctly

signal events. The efficiency of the stripping selection shown in Table 3.3, while that of

the pre-selection criteria are given in Table 3.4

Trigger

Trigger lines are simulated in the Monte Carlo and the efficiency evaluated by applying the

TOS requirement and comparing the number of reconstructed candidates after stripping

with those that also pass the TOS selection.

Particle identification

The PID efficiency depends on the kinematics of the particle traversing the particle

identification systems. The PIDCalib package is used to evaluate PID efficiency using

calibration samples from data. A binning is chosen in momentum, P and pseudorapidity, η

to ensure both sufficiently many events in the calibration samples and also a relatively even

population distribution across the bins in the Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− MC test

samples. Combined efficiencies for the correct identification of both hadrons are evaluated

with PIDCalib by comparing each event’s daughter hadrons to the efficiency in the bin

corresponding to the hadron’s momentum and η in MC. These results are then combined
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to produce event weights corresponding to the multi-track PID efficiency, and we perform

an event by event weighting of the MC from the PID efficiency bins in P and η. The
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Figure 3.22: Phase-space MC kinematics for the proton (top) and kaon (bottom) in Λ0
b →

pKµ+µ−.

PID efficiency is evaluated separately for both of the magnet polarities and also for the

2011 and 2012 data, to account for potential variation in the PID performance with time.

Figure 3.23 shows how the efficiency, integrated over q2, changes with each running period.

The PID efficiency for all four sets of magnet polarity and run period are presented in

Tables 3.12–3.15, while the efficiencies for Λ0
b→ J/ψpK are presented in Table 3.16. The

uncertainty quoted is statistical only and determined by the size of the calibration and

MC samples in each of the pT and η bins. This does not include the (typically larger)

effect of binning, which are taken into account in the evaluation of the PID systematic

uncertainty, as summarised in Section 3.9.2.
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q2 ( GeV/c2) PID Efficiency (%) Uncertainty
0.1-2.0 77.934 0.045
2.0-4.0 77.488 0.048
4.0-6.0 76.557 0.055
6.0-8.0 75.334 0.069
11.0-12.5 71.510 0.017
15.0-17.5 68.39 0.058
Integrated 76.397 0.024

Table 3.12: PID efficiency for Λ0
b→ pKµ+µ−’MagUp’ polarity, 2011

q2 ( GeV/c2) PID Efficiency (%) Uncertainty
0.1-2.0 76.871 0.027
2.0-4.0 79.368 0.029
4.0-6.0 75.381 0.033
6.0-8.0 74.230 0.041
11.0-12.5 69.670 0.100
15.0-17.5 66.880 0.400
Integrated 75.258 0.015

Table 3.13: PID efficiency for Λ0
b→ pKµ+µ−’MagDown’ polarity, 2011

q2 ( GeV/c2) PID Efficiency (%) Uncertainty
0.1-2.0 79.650 0.021
2.0-4.0 79.325 0.022
4.0-6.0 78.449 0.025
6.0-8.0 77.019 0.031
11.0-12.5 74.121 0.078
15.0-17.5 70.970 0.290
Integrated 78.264 0.011

Table 3.14: PID efficiency for Λ0
b→ pKµ+µ−’MagUp’ polarity, 2012

q2 ( GeV/c2) PID Efficiency (%) Uncertainty
0.1-2.0 80.937 0.021
2.0-4.0 80.722 0.022
4.0-6.0 79.995 0.025
6.0-8.0 78.882 0.031
11.0-12.5 75.104 0.079
15.0-17.5 72.58 0.330
Integrated 79.749 0.011

Table 3.15: PID efficiency for Λ0
b→ pKµ+µ−’MagDown’ polarity, 2012
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Run ( GeV/c2) PID Efficiency (%) Uncertainty
2011 MagUp 71.944 0.011
2011 MagDown 71.620 0.011
2012 MagUp 74.417 0.011
2012 MagDown 75.605 0.011

Table 3.16: PID efficiencies for Λ0
b→ J/ψpK

Run
2011 MagUp 2011 MagDown 2012 MagUp 2012 MagDown
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Figure 3.23: PID efficiency for each magnet polarity in 2011 and 2012, showing ∼ 5% variation
over all runs. The bar thickness corresponds to the uncertainty on the efficiency due to the
statistics of the calibration and MC samples
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3.7 Multi-dimensional density estimation

Parameterising the full detector and selection efficiency in the five dimensions of cos θL,

cos θB, ∆φ, m(pK) and q2 is non-trivial. Finite MC statistics can cause issues with

accuracy, especially at the phase-space boundaries.

Investigations were carried out into the viability of several different non-parametric

modelling techniques, which included relative kernel density estimation, supervised training

of a neural network and density estimation with orthogonal (Legendre) polynomials.

Each method was found to have its merits as well as disadvantages. Ultimately the

method of density estimation using Legendre polynomials is used for yield correction

of Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− candidates for the branching fraction measurement,

however a discussion of all three methods is presented below.

3.7.1 Four dimensional relative kernel density estimation

Kernel density estimation can be used to estimate the true distribution (PDFtrue) that is

characterised by a random variable, for instance x = (x1, x2, ...xn). The kernel (K(x)) is

typically a weighting function that has an integral of 1, and can be used to generate an

estimation (PDFKDE), of PDFtrue as [87],

PDFKDE(x) =
1

N

N∑
i=1

K(x− xi). (3.11)

A kernel function is generated for each data point with the PDFKDE being the normalised

sum of these.Figure 3.24 shows a simple example of KDE using Gaussian kernels.

A free parameter in K(x) is the bandwidth. A large bandwidth is ideal for data with

limited statistics due to the distribution smoothing, however this can cause fine structures

to be smeared away, or lead to mis-modelling of sharp boundaries as shown in Figure 3.25.

On the contrary if the bandwidth is too narrow, this can cause ‘over-parametrisation’ of
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Figure 3.24: Simple one dimensional KDE example using a Gaussian kernel.

Figure 3.25: True and KDE PDF’s for uniform (a), linear (b) and linear+Gaussian (c) distributions
without boundary corrections. [88]

statistical fluctuations.

For the parametrisation of Λ0
b→ pKµ+µ−, the LHCb MeerKat [88] package is used

which employs a boundary correction technique. MeerKat uses the Epanechnikov kernel
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defined as,

K(x) =


3
4σ

(
1− x2

σ2

)
, for x ≥ (−σ, σ)

0 otherwise

(3.12)

The boundary correction technique is to create a corrected PDF PDFcorr(x) which

incorporates an approximation function F (x) which is equal to 1 for x ≥ X and zero

elsewhere,

PDFcorr(x) =


1
N

N∑
i=1

K(x−xi)

(U⊗K)(x)
x ≥ X

0 otherwise

(3.13)

This approximation function, which can be factorised 1D KDE’s, analystical descriptions

of phase-space coverage, a top hat function etc. allows the boundaries and fine structures

to be accurately parameterised as relative fluctuations to the approximation function.

The variables cos θL, cos θB, ∆φ and m(pK) are used to construct a four dimensional

relative kernel density parameterisation in each q2 bin. The choice to bin in q2 rather than

incorporate it as a fifth dimension is due to CPU time considerations. At four dimensions

the process takes O(1day) on a typical desktop machine, and does not increase linearly

with extra dimensionality. However, each parameterisation in q2 can be run in parallel.

The quality of the fit is evaluated by comparing toy Monte-Carlo events created from

the kernel PDF to an independent sample of simulated events. This is done in 24 bins of

the 4D space and the χ2 of the difference between simulated and PDF events with respect

to a fit of y=1 is used as the figure of merit. These results are shown in Figure 3.26. In

these plots, the four dimensions are unfolded into one by scanning through each of the 24

bins of the model and the MC and the integrals of those bins compared, imposing that

the integrals over the entire phase space of MC and model are equal.

Overall, the modelling is of exceptional quality. However, the desired technique to
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incorporate systematic uncertainty estimations on MC statistics, PID weighting, kinematic

weighting and Λ0
b lifetime uncertainty require that toy MC experiments be run in which

uncertainties on each of these sources are used to randomly vary each individual event

weight before being applied to MC used to generate the efficiency parameterisation, each

of which is applied to data to recalculate the corrected yields. This requires the very

computationally intensive model generation to be run O(1000)×N sources ×N q2bins times,

where N sources is the number of sources of uncertainty being considered and N q2bins is the

number of q2 bins. This is unfeasible and other methods for estimating the systematic

uncertainties would have to be investigated.
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Figure 3.26: PDF quality evaluation after full selection for six q2 bins. These share the same bin
boundaries as the five standard bins defined in 3.3 but with a split bin for finer granularity.
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3.7.2 Efficiency estimation with a Neural Network weighting

method

The viability of the the same NeuroBayes framework used for the selection of Λ0
b→

J/ψpK and Λ0
b→ pKµ+µ− candidates (section 3.3.2) in performing multi-dimensional

density estimation for event-by-event efficiency correction is investigated. Instead of using

the neural network as a classifier to discriminate between signal and background candidates,

the network is trained on the five variables of cos θL, cos θB, ∆φ, m(pK) and q2 for two MC

samples (A and B) of Λ0
b→ pKµ+µ− candidates. Sample A is a set of MC-truth generator

level events in which no selection is performed, while sample B is a set of reconstructed

events passed through full detector simulation and the full Λ0
b→ pKµ+µ− selection. The

output weight, usually used to discriminate between signal and background is rescaled

from -1–+1 to 0–1, where it akin to corresponds to a Bayesian probability. Weighting the

generator level sample event by event should reproduce the kinematic biasing caused by

the reconstruction and selection, including their correlations. It can therefore be treated

as an efficiency correction weight. The integrated efficiency is still required in order to

correctly normalise. This is because the weight may reproduce the relative changes in the

kinematic phase-space, but has an arbitrary mean which depends largely on the relative

sizes of the two training samples.

The normalisation is found by scaling the efficiency weights to give the integrated

phase-space efficiency, i.e,

εphsp ≡
Nobs

Ngen

= I ·

n∑
i=1

wi

n
(3.14)

where Ngen is the number of generated candidates, Nobs is the number of those which

are observed after the full selection, I is the normalisation quantity to be found, wi is the

weight for the ith candidate and n is the total number of weighted candidates. The results
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are shown in Table 3.17

Component Value Uncertainty
εphsp 0.0368 0.0004
Mean weight 0.496 0.001
Correction factor 0.0742 0.0007

Table 3.17: Values for the integrated phase-space MC efficiency, mean weight and corresponding
correction factor.

The quality of the modelling is evaluated by applying the trained neural network to a

sample of generator level MC. This has the effect of weighting each event by the efficiency,

as determined by the neural network, for the point in the kinematic phase space in which

that particular event lies. If the modelling is of good quality, the weighted generator level

sample will appear kinematically similar to an MC sample in which the full LHCb detector,

reconstruction and trigger is simulated, and full selection applied. Figure 3.27 displays the

comparison of the weighted generator level events with an MC sample passed through full

simulation and selection, as well as the original unweighted generator level. The results

are projected into the five, one dimensional components of the kinematic phase-space and

this gives a visual representation of how well the biases are modelled. Figure 3.28 instead

displays the 5D phase-space unfolded into one dimension using the same technique as with

the relative kernel density estimation technique. The angular variables are folded over

into positive values and binned into two equal bins. The two masses are binned into three

approximately equal bins, where the boundaries are chosen to ensure sufficient statistics

in each.

From figure 3.27 we can see that this method attempts to approximate the acceptance

effects, but the quality is far from what is achieved with the relative KDE technique.

The advantage of this method is that it is ∼two orders of magnitude faster than with

using KDE’s, but the degree of accuracy is not sufficient for efficiency correction of the

Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− yields.
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Figure 3.27: 1D projections from 5D phase-space. Blue: Unweighted generator level. Red: full
selection sample. Black: weighted generator level. Scaling of 0.8 on unweighted generator level
for visual clarity
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Figure 3.28: Test of efficiency modelling, showing very large discrepencies. The statistical errors
are too small to see in all but the highest q2 bins (bin 58 - 64).
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3.8 Density estimation with Legendre polynomials

The following method is used for the final efficiency correction model for both Λ0
b→ J/ψpK

and Λ0
b→ pKµ+µ−. The parametrisation is constructed using Legendre polynomials.

Taking the one dimensional case of wishing to parameterise the efficiency in only the

variable variable cos θL,

ε(cos θL) =
∑
i

ciPi(cos θL), (3.15)

where ci are coefficients that need to be found and Pi are Legendre polynomials, with i

denoting the order of the polynomial. Legendre polynomials are orthogonal, satisfying the

condition, ∫ +1

−1
Pn(cos θL)Pm(cos θL)d cos θL =

2

2n+ 1
δmn, (3.16)

where δmn is the Kronecker delta. To calculate the coefficients, ci, we must first calculate

the normalised moments,

Mi =
1

Nevents

=
Nevents∑

j

Pj cos θLj
≡ 1

N

∫ +1

−1
ε(cos θL)Pi(cos θL)d cos θL (3.17)

where Nevents is the total number of events in the sample used to generate the model,

and the normalisation constant N =
∫ +1

−1 ε(cos θL)d cos θL. Therefore, we can see from

substituting Equation 3.15 into Equation 3.17 and using the orthogonality condition, that

N = 2c0.

The coefficients ci can be evaluated from the normalised moments by expanding

Equation 3.15,

Mi =
1

2c0

2

2j + 1
δijcj =

1

c0

ci
2i+ 1

, (3.18)

which gives,

ci = c0Mi(2i+ 1), (3.19)
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with c0 being a free parameter that controls the overall normalisation of the model. For

simplicity we choose c0 = 1/2 to give a normalisation of unity.

Elaborating this into the five dimensional case for Λ0
b→ pKµ+µ−, it takes the form,

ε
(
cos θL, cos θB,∆φ,m(pK), q2

)
=

∑
i,j,k,l,m=0

ci,j,k,l,mPi (cos(θL))Pj (cos(θB))

· Pk (∆φ′)Pl (m(pK)′)Pm
(
(q2)′

)
,

(3.20)

where the primed variables, ∆φ′, m(pK)′ and (q2)′ have been transformed to between -1

and +1 to preserve orthogonality. The sum runs up to chosen order in each of the orders of

each Legendre polynomial. Such parametrisation includes correlations amongst variables

and thus fully parametrises all dependencies. The coefficients ci,j,k,l,m are given as

cijklm = c0Mijklm(2i+ 1)(2j + 1)(2k + 1)(2l + 1)(2m+ 1), (3.21)

with Mijlkm calculated using the method of moments as

Mijlkm =
1

Nevts

∑
events

Pi (cos(θL))Pj (cos(θB)) · Pk (∆φ′)Pl (m(pK)′)Pm
(
(q2)′

)
(3.22)

3.8.1 Efficiency modelling for Λ0
b → J/ψpK− decay

For Λ0
b→ J/ψpK, the model takes the same form but is performed in four dimensions by

treating q2 as δ-function and integrating over q2 as the J/ψ has very narrow width and

signal is distributed over narrow q2 interval.

As this method describes only the shapes of the distributions of variables in MC, it is

only valid under the assumption that they are flat at generator level. The angular variables

are flat in the generator level MC but with distribution in q2 and m (pK)2 governed by the

phase-space kinematics. Therefore, we model the distributions of both generator level and
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selected candidates using the method of moments and correct using the true phase-space

distributions in 1D (m(pK)). The model is then parametrising only the relative difference

between the true and observed variables. We choose Legendre polynomial orders for each

variable as shown in Table 3.18.

Variable order
O (∆ (φ)) 8
O (cos (θL)) 2
O (cos (θB)) 2

O
(
m (pK)2

)
8

Table 3.18: Order of the Legendre polynomial for the different variables driving the Λ0
b→ J/ψpK

efficiency model

3.8.2 Efficiency modelling for Λ0
b → pK−µ+µ− decay

For Λ0
b→ pKµ+µ−, the case is more complicated. The inclusion of q2 creates a two dimen-

sional mass space that needs to corrected by the inverse of the phase-space distribution,

and which is sparsely populated towards the boundaries. A full parameterisation across

the whole distribution requires going to high orders of polynomial and with so few events

at the edges of the phase space, such a high order model begins to oscillate below zero at

these points. Before developing the final model, several methods were investigated in an

attempt to suppress negative weighting:

• Division of the phase space into two dimensional bins of m(pK) and q2.

• Generating factorised one dimensional Legendre polynomial models of the variables

before performing the full 5D parameterisation. Similar to the use of approximation

functions in the relative KDE model.

• Generate toy MC’s where the MC is resampled and the efficiency model regenerated

on each resampled set. The distributions of each moment are extracted, and moments
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within ασ of zero are killed, where σ is the standard deviation of the moment’s

distribution and α is scaled to minimise the number of negative weights

Ultimately, all methods saw improvement and the final model uses a combination of all of

the above excluding the killing of moments as these toys revealed that the majority of the

negative efficiency weights do not come from small moments with high uncertainties, but

from strong oscillations below zero.

For the full Λ0
b→ pKµ+µ− efficiency model we firstly derive two parameterisations, one

to cover a q2 range of 0.3 GeV2/c4 to maximum q2, and one for the q2 region between 0.1

and 0.3 GeV2/c4. For each of the two models, the variables are parameterised assuming

factorisation into lower dimensional spaces. This allows the strong distortions of the

variables to be described by simpler expressions before the 5D model of Equation 3.20

incorporates correlations using fewer orders of polynomials. A analytically determined four

body phase-space factor is used to weight the 2D m(pk)−−q2 space to be flat and this

weighted distribution is used in the calculation of the moments. To transform m(pK−)

and q2 into the range −1 and 1, m(pK−) is first transformed based on the full m(pK)

range. Then for each event, for q2 we set maximum based on the value of m(pK−). This

avoids empty regions in the phase-space. Details on this method are specified in Appendix

.3.

Analytic functions are used to parametrise the angular variables in one dimensional

projections, while Legendre polynomials up to order 10 are used to parameterise m(pK)

between the q2 range of 0.05–17.6 GeV2/c4.

We then parameterise the 3D angular space and 2D mass space separately with Legendre

polynomials before finally performing the full 5D parameterisation of Equation 3.20. Each

step is done on the sample corrected from the last step, so the final efficiency model is the

product of each step.
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Figure 3.29: One dimensional distributions of Λ0
b→ pKµ+µ− MC events with full selection in

q2 > 0.2 GeV2/c4 region with the 1-dimensional parametrisation of the efficiency overlayed. The
lower q2 boundary is extended down to 0.2 GeV2/c4 to avoid boundary effects by overlapping
with the low q2 model.

For the model in q2 > 0.3 GeV2/c4, the three angular projections are parametrised by,

ε(∆φ) =1 + 0.07308 cos(2∆φ), (3.23)

ε(cos (θL)) =1− 0.29(cos θL)2, (3.24)

ε(cos (θB)) =1− 0.17(cos θB)2. (3.25)

These are superimposed over fully selected MC events (Figure 3.29), weighted for PID

efficiencies and corrected for the Λ0
b production kinematics. The 1-dimensional angular
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Figure 3.30: One dimensional distributions of Λ0
b→ pKµ+µ− MC events with full selection in

the q2 < 0.8 GeV2/c4 region, with the 1-dimensional parametrisation of the efficiency overlayed.

projections for q2 < 0.3 GeV2/c4 are parameterised by,

ε(∆φ) =1 + 0.0307 cos(2∆φ), (3.26)

ε(cos (θL)) =1 + 0.101(cos θL)2 − 1.05(cos θL)4, (3.27)

ε(cos (θB)) =1− 0.036(cos θB)2. (3.28)

Shown in Figure 3.30 overlayed on fully selected MC events with PID and kinematic

weightings. The parameterisation of ∆φ requires a high order of polynomials. Performing

the one dimensional projections significantly lowers this order requiremnt in the full 5D

model.

The 2D m(pK−)−q2 parameterisation uses Legendre polynomials up to order 8 and 5 in

m(pK−) and q2 respectively. The 3D angular parameterisation uses Legendre polynomials
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up to second order in all three angles. The final 5D correction uses Legendre polynomials

up to second order in all 5 variables.

3.8.3 Efficiency Model Validation

The efficiency model is tested in a similar way to the Λ0
b→ J/ψpK model. MC candidates

with the full selection as well as PID and kinematic correction weights applied, is weighted

by the inverse of the efficiency from the full parametrisation. If the model correctly

describes the non-trivial dependencies, they will be removed, leaving flat distributions,

assuming they are flat at generator level. Comparison of these distributions with a line

of zero gradient are shown for Λ0
b → pK−µ+µ− in Figure 3.31. The χ2/ndf for the cos θL

is 96.378/99, 122.91/99 for cos θB projection and 97.4077/99 for the ∆φ projection. We

therefore determine these to be sufficiently flat.

The m(pK−)-q2 distribution is also reasonably uniform, with significant fluctuations

at some boundary areas due to the small bin size, chosen to decrease possible edge effects

on the region.

Similar plots for the Λ0
b→ J/ψpK decay are shown in Figure 3.32, which shows good

modelling of the variables. The boundary behaviour is mainly due to binning effects.
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Figure 3.31: Validation of the efficiency model on fully reconstructed and selected MC, weighted
by inverse of the efficiency model. We expect the distributions to be uniformly flat.
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Figure 3.32: 1D validation checks on Λ0
b→ J/ψpK model, where an MC of selected Λ0

b→ J/ψpK
events is corrected by the efficiency weight. Satisfactory modelling of the observables should give
flat distributions when efficiency corrected.
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3.8.4 Model Normalisation

As these efficiency models for Λ0
b → J/ψpK and Λ0

b → pKµ+µ− correct only for the

relative difference, we must correctly normalise it using the absolute phase-space efficiency

calculated from MC. The phase-space efficiency, εphsp is,

εphsp =
N observed

N generated
, (3.29)

for an MC sample, and the observed yields on Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− (N)can

be corrected for efficiency to N corr by the ratio of the phase space efficiency and average

model efficiency,

N corr =
∑
i

sWi

εi
α, (3.30)

where εi is the per correction from the model and,

α =
1

εphsp

n∑
i=0

εi
n
. (3.31)

The phase-space efficiencies and normalisation for each year and magnet polarity are

shown in Table 3.19. All MC samples used have the kinematic re-weighting applied.

Year/polarity εphsptot normalisation factor
2011 MagDown 0.00340± 0.00008 0.00348± 0.00008
2011 MagUp 0.00340± 0.00008 0.00348± 0.00008
2012 MagDown 0.00339± 0.00007 0.00346± 0.00008
2012 MagUp 0.00334± 0.00007 0.00341± 0.00007

Table 3.19: Phase space efficiencies for Λ0
b→ J/ψpK with corresponding efficiency normalisation

factor
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3.9 Uncertainties

Statistical uncertainties

For the statistical uncertainty, the procedure is a somewhat similar to what is used in [89].

We have the uncertainty on the corrected yield, N corrected which is simply,

σ
(
N corrected

)
=

√√√√ n∑
i

(
sWi

εi

)2

, (3.32)

where sWi and εi are the s-weight and efficiency correction respectively, for the

ith candidate. However, the s-weights are extracted from a fit where only the yields

are floated, and the rest of the parameters fixed to their values from the nominal fit.

We must also take into account the statistical uncertainty coming from the nominal fit itself.

To evaluate this, we perform toy MC experiments where all floating parameters of

the fit are varied within their (Gaussian) uncertainties taking into account correlations

between the parameters. This can be evaluated without refitting the distributions in data

using Cholesky matrix decomposition. Taking our correlation matrix for the fit parameters,

C, we can write this as the lower triangular matrix and its conjugate transpose,

C = LLᵀ (3.33)

where a vector of correlated random variables, v can be obtained by using the vector of

uncorrelated random variables u and the lower triangular matrix,

Lu = v. (3.34)

Specifically, for each toy iteration we generate a vector of random variables from the fit
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parameters but with zero mean, perform the product in Equation 3.34 to obtain a vector

of correlated random variables and then extract the random variable corresponding to

N sig from v. We also offset by the nominal value of N sig to obtain a Gaussian distribution

with mean N sig.

We perform Gaussian fits to these distributions, which are obtained individually for

the 2011 and 2012 datasets, and take the standard deviation as the contribution to

the statistical uncertainty from the nominal fit. A full statistical uncertainty on the

corrected yield is then the quadrature sum of this uncertainty with the uncertainty from

(Equation 3.32) scaled by the efficiency. This gives,

σ
(
N corrected

)
=

√√√√∑
i

(
wi
εi

)2

+

(
σfitstat(N)

N corrected

N

)2

(3.35)

where σfitstat(N) is the standard deviation obtained from the Cholesky toy MC’s. The

distributions from the toys are shown in Figure 3.33, while the matrices C and L are

shown in the Appenxix, Figures 2-5
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Figure 3.33: Covariant fluctuations on Λ0
b→ J/ψpK yield extracted from fits to 2011 (a) and

2012 (b) data
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3.9.1 Systematic uncertainties

Several potential sources of systematic effects that could influence the efficiency determina-

tion are considered. These include the uncertainty on the measured lifetime of the Λ0
b , the

finite size of the MC samples used to calculate efficiencies, the stability of the efficiency

modelling method (Section 3.8), the kinematic correction procedure (Section 3.2.1), the

statistical distributions of MC and calibration samples as well as binning effects in the

evaluation of PID efficiency, and in the choice of fit models for yield extraction (Section 3.5)

Systematic uncertainties from processes that involve event-by-event weighting, e.g. PID

and kinematic re-weighting, are evaluated using toy Monte Carlo within the bootstrapping

process described in detail in Section 3.9.3. The MC candidates from which the acceptance

models are generated are re-sampled 1000 times and a new model generated for each

re-sample. The corrected yield is calculated with each iteration and so allows us to

study directly systematic effects on the measured branching fraction associated with the

modelling and the sample size.

Within this process we can also incorporate the lifetime, PID and kinematic systematics

by selecting a different model for each of these for each bootstrapping iteration. These

models are themselves generated with toy MC methods, for instance, the various kinematic

models are generated by randomly fluctuating the parameters of the fΛ0
b
/fd functions

under the assumption that they follow a Gaussian distribution.

3.9.2 Investigations on phase-space MC

The relative magnitudes of the individual systematic uncertainties as well as their con-

tributions in each stage of the selection is not particularly discernible with the methods

proposed in section 3.9.3 for the evaluation of the total uncertainty on the yields. Thus,

we investigate each source individually in bins of q2
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Monte Carlo statistics

We propagate the statistical uncertainty on the MC samples used in the efficiency calcu-

lations to give an uncertainty on the efficiency. The results from this are presented in

Table 3.20.

q2 ( GeV/c2) Efficiency Uncertainty
0.1-2.0 0.03385 0.00057
2.0-4.0 0.04517 0.00069
4.0-6.0 0.05333 0.00086
6.0-8.0 0.05792 0.00110
8.0-11.0 0.06032 0.00127
11.0-12.5 0.05790 0.00270
12.5-15.0 0.05440 0.00334
15.0-17.5 0.04276 0.00945

Table 3.20: Systematic uncertainty from finite size of MC samples for full selection relative to
candidates within geometric acceptance of LHCb.

Particle identification

The calibration data and MC samples are binned into relatively large bins in pT and η

where the change in efficiency across the bin boundaries may not necessarily be gradual.

To account for the uncertainty on the PID efficiency arising from this, we vary the binning

by take the binning scheme chosen in section 3.6.1 and merge adjacent bins. The PID

efficiency is recalulated with this new scheme, and the one σ uncertainty taken to be the

difference between the efficiencies from the two different binnings. This is combined with

the uncertainty from sample statistics per bin, giving our full PID systematic to be,

σ
(
εtotalPID

)
=

√[
εαPID − ε

β
PID

]2
+ σ (εαPID)2, (3.36)

where εαPID and εβPID refer to efficiencies from the original and merged binning schemes

respectively. The efficiency in pT and η for the merged binning can be seen in Figure 3.34.
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Tables 6 - 9 present the efficiencies for both binnings, the resulting uncertainties and total

systematic error in bins of q2.
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Figure 3.34: PID efficiency in merged bins for the proton (a) and kaon (b) in Λ0
b→ pKµ+µ−.

3.9.3 Systematic uncertainties evaluated with Monte Carlo toys

The systematic uncertainties related to the various MC weighting procedures are evaluated

with toys, in which a different weighting model is chosen for each iteration and the efficiency

model is regenerated with the new weights. In general, the creation of a new weighting

model involves randomly varying any parameters in the weighting model that have known

uncertainties. For instance, in the case of the kinematic re-weighting, in each toy iteration

the experimentally measured [81] values that describe the fΛ0
b
/fd functions are randomly

varied to generate a new kinematic weighting model.

The weighting procedures for which we perform these toys are:

• The systematic uncertainty on the multi-dimensional efficiency models

• The re-weighting of Λ0
b production kinematics.

• The application of PID efficiency via event by event weighting.

• The evaluation of the systematic effect of the Λ0
b lifetime uncertainty
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For each of these cases we perform 1000 toys. The systematic uncertainty for each

case is determined by recalculating the branching ratio every iteration, by correcting the

observed yields of Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− using the regenerated efficiency model.

The procedure for each case is described below. Figures 3.37-3.39 show the distributions

from these toys on s-weights from the yield extraction fits. εmodel refers to the weights that

each toy model produces.

As this method requires a set of real Λ0
b→ pKµ+µ− candidates, it will be performed

once the Λ0
b→ pKµ+µ− set is unblinded. However, the procedure is carried out on the

Λ0
b→ J/ψpK candidates, and the uncertainties on the corrected Λ0

b→ J/ψpK yield are

presented.

Efficiency model

The sensitivity of the efficiency model’s stability to the statistical size of the MC samples

used to generate it is determined using a bootstrapping technique. The MC samples used

to generate the model are re-sampled into new sets each iteration. With bootstrapping,

sampling with replacement is explicitly allowed, and in this case, the size of the re-sampled

sets is determined by a Poisson law with a mean equal to the original sample size. The

results of these toys on Λ0
b→ J/ψpK can be seen in Figure 3.38.

Kinematic weighting

The uncertainties on the parameters in Equations 3.4 and 3.3 are propagated to an

uncertainty on the kinematic weight. These weights are then randomly fluctuated in the

toy MC experiment, reapplied to the efficiency model and the efficiency recalculated to

determine the systematic on the efficiency deriving from the fΛ0
b
/fd functions’ uncertainties.

All uncertainties are assumed to be Gaussian, and the results are displayed in Figure 3.35.
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Particle identification

For the PID we evaluate the proton and kaon ID efficiencies for each candidate using the

efficiency tables produced by PIDCalib, which bin the estimated single track efficiencies

in momentum and pseudorapidity. We use the values from the fine binned histograms as

the mean of a Gaussian and the Gaussian’s sigma value is calculated using equation 3.36,

where εαPID and εβPID are taken from the bins corresponding to the track’s momentum

and pseudorapidity, for the fine binned and course binned histograms respectively. A

random value is chosen from the Gaussians for each bin to generate new, fluctuated PID

histograms for each iteration of the toy MC. The distributions from the toys can be seen

in Figure 3.36

Lifetime uncertainty

We take the uncertainty (σ(τlhcb)) on the recent measurement performed by LHCb of

the Λ0
b lifetime (τlhcb) and fluctuate the lifetime by the uncertainty for each toy iteration,

re-weighting the MC sample by

τΛ
0
b = exp

{
− τ i

τlhcb ± σ(τlhcb)

}
(3.37)

where the measured value, τlhcb = 1.482± 0.018± 0.012 ps [90]. The results of the toys

can be seen in Figure 3.37
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Figure 3.35: Toy MCs on efficiency model for Λ0
b→ J/ψpK to evaluate systematic uncertainty

from kinematic weighting.
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Figure 3.36: Toy MCs on efficiency model for Λ0
b→ J/ψpK to evaluate systematic uncertainty

from PID weighting.
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Figure 3.37: Toy MCs on efficiency model for Λ0
b→ J/ψpK to evaluate systematic uncertainty

from Λ0
b lifetime.
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Figure 3.38: Bootstrapping toy MCs to evaluate systematic uncertainty from signal MC statistics
for the generation of the Λ0

b→ J/ψpK efficiency model.
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Figure 3.39: Combined systematic uncertainties from toy MC’s on Λ0
b→ J/ψpK efficiency model.
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3.9.4 Fit model

We investigate several sources of potential systematic, to account for differences in modelling

of widths, background shape and level.

The default fit for Λ0
b → pKµ+µ− data will consist of a: DCB with yield free, central

value constrained to that from Λ0
b→ pKµ+µ− MC, with an additive offset determined by

comparison of data/MC for Λ0
b→ J/ψpK; the width is constrained to Λ0

b→ pKµ+µ− MC,

with multiplicative scaling applied from comparison of data/MC for Λ0
b→ J/ψpK. The

cut-off and slope parameters for the DCB tails are fixed according to Λ0
b→ pKµ+µ− MC.

The cases considered for the Λ0
b→ J/ψpK fit are:

• Case one: Signal pdf where only the tail parameters are fixed.

• Case two: Changing of the Chebyshev polynomial used to model the combinatorial

background from order three to order five.

• Case three: Modelling the B0
s background shape without applying PID cuts. This is

to account for any biasing of the shape from mis-modelling of the PID variables in

MC.

• Case four: Changing the B0
s pdf from a single Crystal Ball to a double.

• Case five: Removing the Λ0
b→ J/ψpK proton-kaon double reflection background

component

• Case six: Adding a background component for B0→ J/ψK∗0

For the Λ0
b→ pKµ+µ− decays, the default background parametrisation is an exponential

function, with contributions from B0
s → KKµµ (shape parametrised according to MC

using a Crystal Ball) and a much smaller component from B0 → Kπµµ (shape fixed also
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parametrised using a Crystal Ball). For the latter two components, their relative yields in

the fit are fixed by their relative efficiencies obtained from simulation.

The Λ0
b→ pKµ+µ− channel is still blinded and the systematics cannot be evaluated

yet. Possible cases for the evaluation of Λ0
b→ pKµ+µ− fit model systematics are:

• Case one: Fixing the Λ0
b mass from the result obtained by the Λ0

b→ J/ψpK fit rather

than letting it float.

• Case two: Changing the signal pdf from a DCB to a double Gaussian.

• Case three: Replacing the exponential function to model the combinatorial back-

ground with a polynomial.

• Case four: Removing PID requirements on MC for modelling B0
s background shape.

In table 3.21 we detail the results from each Λ0
b→ J/ψpK case and how it differs from

the nominal fit.

Case Relative uncertainty Description
2011 2012

1 4.98% 1.77% All but tail parameters floating in signal pdf
2 0.98% 2.75% Combinatorial changed to Chebyshev order five
3 11.5% 7.16% PID requirements removed on B0

s

4 1.52% 6.96% B0
s pdf changed to DCB

5 0.05% 0.02% pK swap shape removed
6 < 10−2% < 10−2% B0 shape added
total 12.6% 10.5%

Table 3.21: Fit systematics for Λ0
b→ J/ψpK. These are added in quadrature to estimate the

total contribution.
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3.10 Results

3.10.1 Λ0
b→ J/ψpK corrected yield

The systematic effects associated with Λ0
b lifetime, particle identification, kinematic weight-

ing and efficiency model are evaluated event by event and propagated through to the yields

of Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ− via the aforementioned toy MC’s and bootstrapping

(Section 3.9.3). These uncertainties are combined in quadrature with the statistical uncer-

tainty on the model normalisation (Section 3.8.4) and from the systematic uncertainties

relating to the choices of fit models and parameter constraints (Section 3.9.4). Our total

systematic uncertainty is therefore,

σsys =
√∑

σ2
toys + σ2

fitsys + σ2
effnorm, (3.38)

where
∑
σ2
toys sums over the uncertainty squared for each weighting toy, σ2

fitsys is the

total fit model systematic and σ2
effnorm is the statistical uncertainty on the efficiency

model normalisation. We use relative errors in this calculation, which gives us a total

systematic uncertainty of 8.28% on the combined 2011 and 2012 Λ0
b→ J/ψpK yield.

Section 3.9 details the calculation of the statistical uncertainty, which, on the combined

2011 and 2012 data is 1.68%. This gives a total corrected Λ0
b→ J/ψpK yield of

N corrected
Λ0
b→J/ψpK

= (7.83± 0.131± 0.648)× 106 (3.39)

3.11 Post Unblinding Strategy

• After the mass window of the Λ0
b with the Λ0

b→ pKµ+µ− selection is unblinded,

the branching fraction of Λ0
b→ pKµ+µ− will be measured by extracting the Λ0

b→
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pKµ+µ− efficiency corrected yield using the same methods used for Λ0
b→ J/ψpK.

As mentioned in 3.8, a five dimension efficiency model is used, with the inclusion of

q2.

• Using s-weighted candidates from the fits to Λ0
b→ J/ψpK and Λ0

b→ pKµ+µ−, the

relative differential branching fraction will be measured as,

dB (Λ0
b→ pKµ+µ−) /dq2

B (Λ0
b→ J/ψpK)

=
N corrected
pKµ+µ−

N corrected
J/ψpK

1

∆q2
, (3.40)

where ∆q2 is the width of q2 interval and N corrected for each channel is,

N corrected =
∑
i

wi
εi

(3.41)

where wi and εi is the s-weight and efficiency correction weight for the candidate

respectively.

• The un-blinding will enable us to evaluate the systematic uncertainty from the fit

model, using the method for calculating uncertainties for N corrected
J/ψpK , which is detailed

in section 3.9. When performing the calculation, all the relevant variations will be

done simultaneously on Λ0
b → pK−µ+µ− and Λ0

b → J/ψpK− decays and the effect

of variation on the relative branching fraction will be estimated.

• The signal significance in each of the q2 bins will be estimated using Wilk’s theorem,

where the fits with and without the signal will be compared. In these fits, the mass

of the signal peak will be fixed to what the measured value in in the Λ0
b→ J/ψpK fit,

while the widths will be fixed to the values determined from MC and scaled by the

ratio of the widths in data and MC for Λ0
b→ J/ψpK. The systematic uncertainties

will be incorporated by a Gaussian convolved with the likelihood.
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• In q2 bins where we see significant signal, the background subtracted candidates

(using s-weighting) will be corrected for efficiency using the efficiency model and

used to measure the branching fraction.

• The q2 distribution is unknown, and although we expect to see Λ0
b→ pKµ+µ− there

may be q2 bins where no significant signal is obvserved. If this is the case then

the upper limit will be calculated by intergrating the profile likelihood. However,

efficiency correction cannot be performed in this case however and instead the phase

space efficiency evaluated for that particular q2 interval will be used. The systematic

uncertainties will be incorporated by convolving the profile likelihood with a Gaussian

of appropriate width.



Chapter 4

Conclusions

An analysis for the first observation and branching fraction measurement of the rare FCNC

decay Λ0
b→ pKµ+µ− has been performed using data collected at the LHCb experiment

corresponding to an integrated luminosity of 3 fb−1. The analysis awaits approval from

the LHCb Collaboration to unblind so that
BR(Λ0

b→pKµ
+µ−)

B(Λ0
b→J/ψpK)

can be measured.

The measurement is normalised to the control channel Λ0
b→ J/ψpK, and candidates

from both of these decays are corrected by multidimensional efficiency models to account

for the unknown decay structure of Λ0
b → pKµ+µ−. In anticipation of unblinding, an

efficiency corrected yield of Λ0
b→ J/ψpK candidates has been measured, corresponding to

(7.83± 0.131± 0.648)× 106 Λ0
b→ J/ψpK decays.

It is hoped that the measurement of this decay will motivate the development of a

more complete theoretical description, along with predictions for observables related to

Λ0
b→ pKµ+µ−. A parallel analysis of the CP asymmetry of Λ0

b→ pKµ+µ− at LHCb is

also to be published soon. The analysis for the search for Λ0
b → pπµ+µ− is currently under

review and a measurement of B(Λ0
b → pπµ+µ−) along with BR(Λ0

b→ pKµ+µ−) opens up

interesting aspects for the measurement of Vtd/Vts [91].
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Appendices

.1 Matrices for Cholesky toys

Number Parameter
1 ccomb0

2 ccomb1

3 ccomb2

4 msig

5 Ncomb

6 N sig

7 σsig2

8 σsig

Table 1: Map of parameter number to name for Λ0
b→ J/ψpK.

Parameter 1 2 3 4 5 6 7 8
1 1. -0.205 0.243 -0.024 0.172 -0.015 -0.055 -0.014
2 -0.205 1. -0.401 0.037 -0.195 0.131 0.187 0.094
3 0.243 -0.401 1. 0.001 0.404 -0.381 -0.368 -0.262
4 -0.024 0.037 0.001 1. 0.006 0.007 0.02 -0.055
5 0.172 -0.195 0.404 0.006 1. -0.571 -0.54 -0.375
6 -0.015 0.131 -0.381 0.007 -0.571 1. 0.519 0.367
7 -0.055 0.187 -0.368 0.02 -0.54 0.519 1. 0.33
8 -0.014 0.094 -0.262 -0.055 -0.375 0.367 0.33 1.

Table 2: Covariance matrix for Λ0
b→ J/ψpK yield extraction fit to 2011 data
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Parameter 1 2 3 4 5 6 7 8
1 1. 0. 0. 0. 0. 0. 0. 0.
2 -0.205 0.979 0. 0. 0. 0. 0. 0.
3 0.243 -0.359 0.901 0. 0. 0. 0. 0.
4 -0.024 0.033 0.021 0.999 0. 0. 0. 0.
5 0.172 -0.163 0.337 0.009 0.911 0. 0. 0.
6 -0.015 0.131 -0.367 0.01 -0.465 0.795 0. 0.
7 -0.055 0.18 -0.322 0.019 -0.431 0.221 0.791 0.
8 -0.014 0.093 -0.25 -0.053 -0.299 0.156 0.088 0.897

Table 3: Lower triangular matrix from the Cholesky decomposition of the Λ0
b→ J/ψpK 2011 fit

parameter covariance matrix shown in table 2

Parameter 1 2 3 4 5 6 7 8
1 1. -0.001 0.314 -0.015 0.248 -0.072 -0.141 -0.019
2 -0.001 1. -0.002 0. -0.001 0.001 0.002 0.
3 0.314 -0.002 1. 0.008 0.292 -0.321 -0.35 -0.149
4 -0.015 0. 0.008 1. 0.008 0.011 0.032 -0.07
5 0.248 -0.001 0.292 0.008 1. -0.501 -0.467 -0.238
6 -0.072 0.001 -0.321 0.011 -0.501 1. 0.495 0.243
7 -0.141 0.002 -0.35 0.032 -0.467 0.495 1. 0.072
8 -0.019 0. -0.149 -0.07 -0.238 0.243 0.072 1.

Table 4: Covariance matrix for Λ0
b→ J/ψpK yield extraction fit to 2012 data

Parameter 1 2 3 4 5 6 7 8
1 1. 0. 0. 0. 0. 0. 0. 0.
2 -0.001 1. 0. 0. 0. 0. 0. 0.
3 0.314 -0.002 0.949 0. 0. 0. 0. 0.
4 -0.015 -0. 0.013 1. 0. 0. 0. 0.
5 0.248 -0.001 0.226 0.009 0.942 0. 0. 0.
6 -0.072 0.001 -0.314 0.014 -0.438 0.839 0. 0.
7 -0.141 0.002 -0.322 0.034 -0.382 0.257 0.814 0.
8 -0.019 -0. -0.151 -0.068 -0.211 0.123 -0.109 0.949

Table 5: Lower triangular matrix from the Cholesky decomposition of the Λ0
b→ J/ψpK 2012 fit

parameter covariance matrix shown in table 4

.2 Tables for systematic checks
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q2 ( GeV/c2) εαPID (%) σ (εαPID) (%) εβPID (%) σ
(
εβPID

)
(%) σ

(
εtotalPID

)
(%)

0.1-2 77.934 0.045 78.763 0.019 0.83
2-4 77.488 0.048 78.298 0.021 0.81
4-6 76.557 0.055 77.639 0.024 1.08
6-8 75.334 0.069 76.640 0.029 1.31
11-12.5 71.51 0.017 73.454 0.074 1.94
15-17.5 68.39 0.058 72.37 0.29 3.98
Integrated 76.397 0.024 77.513 0.010 1.12

Table 6: PID efficiencies and uncertainties for Λ0
b→ pKµ+µ− ‘MagUp’ polarity, 2011

q2 ( GeV/c2) εαPID (%) σ (εαPID) (%) εβPID (%) σ
(
εβPID

)
(%) σ

(
εtotalPID

)
(%)

0.1-2 76.871 0.027 78.448 0.015 1.58
2-4 79.368 0.029 78.030 0.016 1.34
4-6 75.381 0.033 77.212 0.018 1.83
6-8 74.230 0.041 76.320 0.023 2.09
11-12.5 69.670 0.100 72.856 0.057 3.19
15-17.5 66.880 0.400 71.17 0.25 4.31
Integrated 75.258 0.015 77.1587 0.0081 1.90

Table 7: PID efficiencies and uncertainties for Λ0
b→ pKµ+µ− ‘MagDown’ polarity, 2011

q2 ( GeV/c2) εαPID (%) σ (εαPID) (%) εβPID (%) σ
(
εβPID

)
(%) σ

(
εtotalPID

)
(%)

0.1-2 79.650 0.021 80.752 0.011 1.10
2-4 79.325 0.022 80.509 0.012 1.18
4-6 78.449 0.025 79.862 0.014 1.41
6-8 77.019 0.031 78.787 0.017 1.77
11-12.5 74.121 0.078 76.360 0.043 2.24
15-17.5 70.970 0.290 73.89 0.016 2.93
Integrated 78.264 0.011 79.6773 0.0060 1.41

Table 8: PID efficiencies and uncertainties for Λ0
b→ pKµ+µ− ‘MagUp’ polarity, 2012
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q2 ( GeV/c2) εαPID (%) σ (εαPID) (%) εβPID (%) σ
(
εβPID

)
(%) σ

(
εtotalPID

)
(%)

0.1-2 80.937 0.021 81.942 0.011 1.01
2-4 80.722 0.022 81.769 0.012 1.05
4-6 79.995 0.025 81.236 0.014 1.24
6-8 78.882 0.031 80.421 0.017 1.54
11-12.5 75.104 0.079 77.621 0.044 2.52
15-17.5 72.58 0.330 75.40 0.19 2.84
Integrated 79.749 0.011 81.0331 0.0060 1.28

Table 9: PID efficiencies and uncertainties for Λ0
b→ pKµ+µ− ‘MagDown’ polarity, 2012

q2 ( GeV/c2) Efficiency Uncertainty(%)
0.1-2 0.07688 2.58
2-4 0.09032 2.26
4-6 0.09626 2.08
6-8 0.09726 2.03
8-11 0.09593 2.10
11-12.5 0.08881 2.30
12.5-15 0.08173 2.42
15-17.5 0.06517 2.98

Table 10: Λ0
b lifetime systematic uncertainty as a percentage of efficiency for reconstructed

candidates passing stripping and pre-selection, relative to candidates within the geometric
acceptance of LHCb

q2 ( GeV/c2) Efficiency Uncertainty(%)
0.1-2 0.5351 0.04
2-4 0.6039 0.05
4-6 0.6723 0.08
6-8 0.7297 0.09
8-11 0.7809 0.09
11-12.5 0.8225 0.1
12.5-15 0.8573 0.1
15-17.5 0.8653 0.1

Table 11: Λ0
b lifetime systematic uncertainty as a percentage of efficiency for TOS candidates

relative to reconstructed candidates that pass stripping and pre-selection. LHCb
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.3 Generator level decay distribution in efficiency

parametrisation

The efficiency for Λ0
b→ pKµ+µ− is parameterised in a multidimensional space and fully

determines the kinematics of the decay, using an expansion in legendre polynomials. This
method assumes that all variables of the model were generated in with flat distributions in
MC. In the phase-space MC for four-body Λ0

b→ pKµ+µ− this is the case for the anglular
distributions, but not for the two mass variables m(pK) and q2.

In order to make the parameterisation method valid, an analytical approach is used
to generate weights to correct the two dimensional mass space of q2 and m(pK) to be
uniform. Starting with the genereral expression to describe a multi-body phase-space [7],
the m(pK), q2 distribution is described by,

dΓ

dm(pK−)dq2
= |p1||p3||qJ |

where |p1| is the magnitude of proton’s 3-momentum in the pK rest frame, |p3| is the mag-
nitude muon’s 3-momentum in dimuon rest frame and |qJ | is the 3-momentum magnitude
of the dimuon system in the rest frame of the Λ0

b . These are related to m(pK−) and q2 as,

|p1| =
[(
m(pK−)2 − (mp +mK)2

) (
m(pK−)2 − (mp −mK)2

)]1/2
2m(pK−)

,

|p3| =
[(
q2 − (2mµ)2

)
(q2)

]1/2
2
√
q2

,

|qJ | =

[(
m(Λ0

b)
2 −

(
m(pK−) +

√
q2
)2)(

m(Λ0
b)

2 −
(
m(pK−)−

√
q2
)2)]1/2

2m(Λ0
b)

.

Weighting events by 1/dΓ/(dm(pK−)dq2) will produce a uniform distribution in
m(pK−)-q2. The variables m(pK) and q2 also need to be transformed to between -1
and +1, while preserving the uniformity. This is done by multiplying the phase-space
distribution weight by the length of the allowed q2 interval.
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