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Abstract

Electroencephalography (EEG) is the prevalent technique for monitoring brain func-

tion. It employs a set of electrodes on the scalp to measure the electrical activity of the

brain. EEG is mainly used by researchers to study the brain’s responses to a specific stim-

ulus - the event-related potentials (ERPs). Different types of unwanted signals, which are

known as artefacts, usually mix with the EEG at any point during the recording process.

As the amplitudes of the EEG and ERPs are very small (in the order of microvolts), they

can be buried in the artefacts which have very high amplitudes in the order of millivolts.

Therefore, contamination of EEG activity by the artefacts can degrade the quality of the

EEG recording and may cause error in EEG/ERP signal interpretation.

Several EEG artefact removal methods already exist in the literature and these previ-

ous studies have concentrated on manual or automatic detection of either one or, of a few

types of EEG artefacts. Among the proposed methods, Independent Component Analysis

(ICA) based techniques are commonly applied to successfully detect the artefacts.

Different types of ICA algorithms have been developed, which aim to estimate the

individual sources of a linearly mixed signal. However, the estimation criterion differs

across various ICA algorithms, which may deliver different results. Additionally, the

estimated sources are not labelled by the ICA algorithms. Therefore, a criterion to select

the proper ICA algorithm, with the aim of source separation and a method to label

different types of artefacts, to clean the EEG signal for extracting the ERP information

is required.

This thesis therefore contributes to the systematic comparison of commonly applied

ICA algorithms, to be employed for automatically detecting and removing various types of

artefacts mixed with EEG and furthermore to improve the extraction of ERP information.

In this context, the thesis tackles three major problems, namely: (i) the problem of

selecting the optimum data preparation steps, applied prior to ICA and the ICA algorithm



variant for better source separation; (ii) the state of the art-of-the-art method for the

detection of only a few types of commonly occurring artefacts, during EEG recording;

(iii) weak performance of the conventional ERP classification methods.

To deal with these problems, a literature review was carried out associated to each step.

A wide range of signal processing was performed in MATLAB, which is computationally

fast and easy to implement with the EEGLAB plug-in, to analyse the EEG data. The

proposed methods were evaluated using EEG data collected from ten healthy subjects.

The first body of work outlined in this thesis proposes a pipeline to select an ICA

algorithm variant that is most suitable for separating the artefactual sources from the

EEG mixture. The criteria to compare different ICA algorithms are selected based on the

independence and physiological plausibility of the components. Also, 24 pre-processing

conditions are proposed by combining 5 commonly used data pre-processing steps. The

results highlight the importance of selecting the data pre-processing condition, before ICA

decomposition, rather than a type of ICA algorithm itself.

The proposed signal processing chain is the first of its kind and offers the possibility

of selecting a data preparation condition based on the output of ICA algorithms’ decom-

position that may be employed in different EEG studies. In this thesis, a pre-processing

condition and an ICA algorithm variant are selected based on their suitability for sepa-

ration of the desired artefacts from non-artefact sources.

The optimum data preparation condition and ICA algorithm variant are consequently

adapted for employing in an automated ICA-based EEG artefact removal method. A

set of temporal, spatial and frequential features are proposed to automatically detect the

commonly occurring EEG artefacts. The proposed artefact removal method compares

favourably with the state-of-the-art ADJUST method [1] and detected five types of EEG

artefacts successfully, with the balanced accuracy above 95%.

The proposed method is further improved by detecting one of the prominent EEG

artefacts, blink, by means of combining the epoch-based and regression-based Sparse

Component Analysis (SCA) methods. Simulated data is used to evaluate and compare



the proposed method with a recent study [2]. The result demonstrates an almost 2%

improvement in terms of residual variance.

Finally, the ERP classification rate is improved by proposing an ICA-based method

which does not require any artefact removal. The proposed method outperforms the recur-

sive backward channel elimination method which is used to select a number of channels,

including higher ERP information, from the artefact-free data; and compares favourably

with the state-of-the-art xDAWN [3] for ERP classification. Using the proposed method,

a rejection of the artefacts that may contain EEG information is no longer required; hence

more ERP information is extracted.
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“Knowledge and science are the cof-

fers and caches to the treasures of

Perfection; and the only access to

them is to ask and question.”

Imam Ali al-Rida (PBUH)

1
INTRODUCTION

The recording of the brain’s electrical potentials or Electroencephalography (EEG), as it

is known in a scientific context, is widely used by clinicians, neurologists and researchers in

monitoring and evaluating the brain’s function; and for diagnosis and treatment of mental

issues and brain disorders [4,5]. The term Electroencephalography refers to the recording

of the brain’s activity through a set of electrodes which are placed on the scalp [6]. The

neurons’ firing creates a flow of current in the brain which causes a voltage fluctuation

that can be measured - the EEG potential. If the corresponding activities in the brain

are happening in response to a stimulus (sensory, motor or cognitive), the measured EEG

potential is called the event-related potential (ERP). A subject’s brain in different states

of consciousness (sleeping, waking, etc.) can generate EEG signals that seemingly vary in
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characteristics such as amplitude and frequency [7].

A common ERP paradigm is the flashing checkerboard used in clinical applications

to measure the visual cortex response [8]. Extracting the ERP responses buried in the

EEG data is a crucial task in the analysis of brain information. In addition to the

clinical application, there is an increased interest in employing EEG-ERP paradigms to

understand brain function and develop brain control interfaces in the field of Human-

Computer Interaction (HCI) and assistive technologies [9,10]. Impeding in this interest is

the fact that EEG recordings are attenuated and contaminated by unwanted artefactual

electrical signals originating from physiological and non-physiological sources [11]. To

avoid misinterpretation of EEG data or the brain’s responses to different stimuli, it is

desirable to improve the signal-to-noise ratio (SNR) of EEG data by removing the EEG

artefacts. Usually, the non-physiological artefacts are removed using linear filtering, or

data preparation steps performed according to the specific experimental data. However,

it is not possible to effectively remove physiological artefacts by simple filtering as the

frequency bands of the recorded EEG signal and the artefacts overlap.

Different approaches have been proposed to reject or reduce physiological artefacts

in EEG signals. The earliest approaches rejected artefacts by simply discarding tempo-

ral segments of multichannel EEG contaminated by artefacts [12, 13] resulting in a great

amount of information loss. More recently, artefact reduction methods have been adopted

to reduce EEG information loss. Independent Component Analysis (ICA) is one popular

and successful EEG artefact reduction method which belongs to the Blind Source Separa-

tion (BSS) technique [14]. ICA assumes that EEG is a multivariate signal of independent

cerebral and non-cerebral sources whose distributions do not follow the Gaussian distri-

bution. An ICA decomposition via an estimated un-mixing matrix creates Independent

Components (ICs), each representing a source signal. By removing the ICs identified as

artefactual sources and recombining the remaining ICs by inverting the un-mixing ma-

trix, the cleaned EEG signal is reconstructed, potentially improving ERP classification

accuracy.
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There are various ICA algorithms which estimate the ICs in different ways. One

active topic of the research is to systematically compare the performance of different

ICA algorithms in source separation and select the best performing algorithm. However,

assessing the effect of different data preparation steps (e.g. segmenting the continuous

data prior to ICA) on the performance of the ICA decompositions has not received a great

deal of attention. Although all the ICA algorithms potentially separate brain sources

from artefactual sources, they do not provide information about labelling the ICs. Thus,

labelling the artefactual sources is essential prior to artefact removal. Another active

topic of research is to automatically label the artefactual sources to be removed from the

data; in order to increase the SNR of EEG data or ERP detection reliability [12,15]. This

thesis, therefore, is mainly interested in extracting more ERP information reliably, by

investigating the optimum signal pre-processing chain and ICA algorithm variant to be

employed for the automatic detection of EEG artefacts.

1.1 Aims and Scope of the Thesis

The ultimate goal of this research is to effectively use ICA for EEG signal processing. In

order to reach this goal, the following steps have to be taken:

• Evaluating the effect of data pre-processing steps on the performance of ICA algo-

rithms.

• Assessing the source separation of different ICA algorithms which employ different

metrics to estimate independent components.

• Effective use of source separation of ICA to increase the SNR of the signal.

Based on the aims of the thesis, first the performance of different ICA algorithms based

on the independence and physiological plausibility of the estimated sources are systemat-

ically compared. Furthermore, the influence of different data pre-processing steps, prior

to ICA decomposition, on the performance of ICA algorithms are evaluated and assessed.
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Therefore, the optimum type of ICA algorithm with respect to the type of the given

pre-processed data and the decomposition quality can be selected for source separation.

Secondly, an ICA-based method is proposed to automatically detect the common EEG

artefacts, namely: blink, saccade, muscle, heartbeat and focal, reliably. The accuracy of

ERP classification calculated from the cleaned data by removing the artefacts using the

proposed method is then evaluated. Methods for removing one of the prominent artefacts

in EEG data, blink, are improved by proposing two approaches which preserve more ERP

information that are buried in the EEG signal and reduce the amount of data loss with the

aim of improving ERP classification rate. The thesis also further improved the accuracy of

ERP classification by proposing the automatic ICA-based method which does not require

any artefact removal.

This study has raised the following research questions:

• Is there any difference between the performance of various ICA algorithms?

• What is the influence of different data pre-processing steps on the performance of

ICA algorithms?

• What is the optimum type of ICA algorithm for source separation with respect to

the type of the given pre-processed data?

• How can ICA be used to remove all the common EEG artefacts reliably and how is

it compared to the existing state-of-the-art ADJUST method?

• Given the blink as the most prominent artefact in EEG data, how can it be effectively

removed from the EEG while ERP information within EEG is preserved?

• How can ICA be effectively employed to enhance ERP classification?
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1.2 Major Contributions

The research introduced in this thesis provides original contributions to EEG signal pro-

cessing to enhance ERP classification rate and to improve the SNR of EEG data via the

optimised use of ICA. The major contributions can be summarised as follows:

• Providing a pipeline to effectively select the pre-processing steps and ICA algorithm

variant for optimum source separability;

– systematic evaluation of the ICA algorithms for source separation based on the

independence and physiological plausibility of the recovered sources;

– assessment of the effect of all common pre-processing steps (24 different con-

ditions) on the performance of the most commonly used ICA algorithms (via

960 different ICA decompositions).

• Proposal of a fully automated artefact IC removal method to detect and remove the

common artefacts that occur in normal EEG recordings, including: blink, saccade,

electrocardiogram (ECG), muscle and focal artefacts;

– proposing a set of spatial, temporal and frequential features to discriminate

different artefact ICs, based on the characteristics of different artefacts;

– proposing a two-layered artefact classification algorithm, for labelling artefact

ICs and artefact segments within different ICs;

– building a ground truth by labelling more than 640 ICA decompositions by

two individual experts.

• Improvement of ICA-based blink artefact removal, by proposing a Sparse Compo-

nent Analysis (SCA) based method to detect and regress out the impact of the blink

artefacts within the blink ICs and keeping the EEG information within those blink

ICs intact.
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• Improvement of the ERP response classification via using ERP response sources as a

new representation of EEG data and extracting ERP features from the automatically

detected ERP sources;

– proposing a set of spatial, temporal and frequential features to discriminate

sources including ERP responses ( task-related ICs) from all other activity

sources;

– proposing a fully automated ERP response IC labelling method.

The statistical analysis of the results plays an important role in research studies and

helps researchers to make inferences about the data and evaluate the certainty or uncer-

tainty of the methods. The absence of statistical analysis does not guarantee the validity

and reliability of the research findings; as the interpretation of the findings and the ob-

tained relationships of the results may not be correct or meaningful and could be simply

chance occurrences. Thus, the full reliability of the findings depend upon a robust sta-

tistical assessment of the methods. Therefore, in order to ensure the reliability of the

proposed methods and obtained results, the Analysis of Variance statistical test, which

is one the most commonly used tests in statistics, is applied to all of the findings of this

research.

This thesis is organised in seven chapters. Following this chapter, the necessary back-

ground is provided in Chapter 2 and the main contributions of the research are presented

in Chapter 3 to Chapter 6, followed by the conclusion in Chapter 7. Each chapter is

started by an introduction section which includes the related existing works and litera-

ture review followed by a discussion of their shortcomings. Subsequently, the proposed

methods are introduced and the obtained results are discussed. The chapters end with

an overview section which concludes and summarises the associated chapter. Figure 1.1

illustrates a block diagram of the thesis structure. A summary of the information provided

in each chapter is given below:
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Figure 1.1: Block diagram of the thesis structure.

1.3 Thesis Structure

Chapter 2 - Background

In this chapter, the background required to understand the EEG concept is provided.

It begins with a brief historical background of EEG; the anatomy and physiology of the

brain; the process of EEG generation and the basic concepts of EEG recording. Then, the

common and conventional EEG pre-processing steps are given followed by an introduction

of the different types of EEG artefacts. Furthermore, the conventional EEG artefact

removal methods are generally discussed and the most recent and commonly used method,

ICA, which is employed in this thesis is explained in more details. Next, ICA principles,

the commonly used ICA algorithms and the application of ICA to EEG are outlined.

Finally, this chapter ends with a discussion on the application of EEG.

7



Chapter 3 - Systematic Comparison of ICA Algorithms

This chapter provides the pipeline for selecting the optimum ICA algorithm with the aim

of removing artefacts from the EEG data. The effect of different data preparation and pre-

processing on the performance of ICA algorithms is assessed. Based on the assessment, the

optimum pre-ICA processing chain and ICA algorithm variant is introduced and employed

for the rest of this research to detect and remove artefacts from EEG data.

Chapter 4 - Automatic ICA-Based EEG Artefact Removal

In this chapter, an automatic EEG artefact removal method, based on ICA, is proposed to

remove several types of EEG artefacts as a post-ICA processing step. The EEG datasets

are decomposed into independent components by ICA. For each type of artefact, a joint

set of temporal, spatial and frequential features representing artefact characteristics is

extracted. Then, the desired artefacts are detected and removed, based on a two-layered

artefact classification algorithm.

An ERP classification method is employed to evaluate the cleaned reconstructed data,

after detecting and removing artefacts by the proposed method and the existing state-of-

the-art ADJUST method [1] relative to the ground truth and raw data.

Chapter 5 - Enhanced Blink Artefact Removal via Sparse Com-

ponent Analysis

In this chapter, the blink artefact is considered as an important and most contributed

artefact to EEG data, and two methods are developed to further improve the proposed

blink artefact removal method in Chapter 4. Both methods are based on detecting the

segments of blink IC in which the blink occurred, to either reject or eliminate the effect

of blinking. The first method removes the effect of blink by setting the ample point of

the blink segments to zero. In the second method, the effect of blink is eliminated by

regressing out the blink peak in the blink segments. Real and simulated data are used to
8



evaluate the performance of the proposed methods; and also to compare these methods

to the recently developed method, DEFL [2].

Chapter 6 - ICA-Based Event-Related Potential Classification

In this chapter, the ERP classification rate is improved by means of two methods. First,

the recursive backward channel elimination method is applied to the cleaned EEG in order

to select the optimum set of channels that provide the highest ERP classification rate.

Furthermore, the result is compared to the ERP classification rate obtained in Chapter

4, where the ERP channels were selected by a human-based method.

Second, an automated ICA-based Event-Related Potential classification method is

proposed in which the ERP is not classified from EEG channels. This way, instead of

the conventional use of ICA to detect and remove artefactual sources to obtain cleaned

data, the ERP is merely calculated from the task-related sources. The task-related ICs

are automatically detected by extracting a set of features based on the visual stimulation

paradigm in this experiment. The result of ERP classification from task-related ICs

is compared to the state-of-the-art xDAWN algorithm [3], which has been reported to

enhance ERP classification.

Chapter 7 - Conclusion

In the final chapter of this dissertation, a summary of the results and achievements in the

thesis are provided, along with the conclusion and future trends of the work.

1.4 List of Publications

The list of publications of the author is as follows:

• Zakeri Z, Assecondi S, Bagshaw AP, Arvanitis TN. Influence of signal preprocessing

on ICA-based EEG decomposition. In XIII Mediterranean Conference on Medical
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and Biological Engineering and Computing 2014 (pp. 734-737). Springer Interna-

tional Publishing.

• Zakeri Z, Samadi MR, Cooke N, Jancovic P. Automatic ERP classification in EEG

recordings from task-related independent components. In 2016 IEEE-EMBS Inter-

national Conference on Biomedical and Health Informatics (BHI) 2016 Feb 24 (pp.

288-291). IEEE.

• Haji Samadi MR, Zakeri Z, Cooke N. VOG-enhanced ICA for removing blink and

eye-movement artefacts from EEG. In 2016 IEEE-EMBS International Conference

on Biomedical and Health Informatics (BHI) 2016 Feb 24 (pp. 603-606). IEEE.

• Zakeri Z, Cooke N, Jancovic P. An Effective ICA-Based Processing Chain For Au-

tomatic Artefact Removal In EEG. In: International Journal of Psychophysiology

[under revision].

1.5 Summary

This chapter provides a brief introduction to this research, its aims and scopes and its

contributions, including a brief summary of each chapter of the thesis, followed by the list

of publications of the author.
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“Teach others your knowledge and

learn knowledge of others so you will

bring your knowledge to perfection

and learn something which you do

not know.”

Imam Hassan ibn Ali (PBUH)

2
BACKGROUND

2.1 EEG Historical Background

The discovery of the potential of EEG goes back to 1877 as a result of research con-

ducted by the physician Richard Caton (1842-1926) on the exposed brains of rabbits and

monkeys [16]. However, it was not until 1912 that the first measurements and demonstra-

tion of electrical activity were performed by Vladimir Pravdich-Neminsky in the brain of

dogs [17]. Eight years later, in 1920, the German neuropsychiatrist Hans Berger (1873-

1941) revealed the first recordings of the electrical activities of a human’s brain and re-

ported the results on photographic paper. He used the German word ′electroenkephalogram′

to name these recordings; a term which later was altered to electroencephalogram or
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EEG. He also realised that recorded brain signals vary with the individual’s state of

consciousness from relaxation to alertness [18].

In 1935, Gibbs et al. described the characteristic form of spike waves, which started

the field of clinical electroencephalography [19]. Subsequently, in 1936, Gibbs and Jasper

reported the interictal spikes as the focal signature of epilepsy [20, 21]. After World

War II, the researchers tended to develop different methods of detection, purification and

classification of brain signals that enabled them to diagnose abnormal signals. In the

1950s, English physician William Grey Walter developed EEG topography that allowed

for the mapping of electrical activity across the surface of the brain; this topography was

used in psychiatry until the 1980s. From 1990 to 2000, different techniques such as Blind

Source Separations (BSS) [22–27] and Independent Component Analysis ICA [28–30] were

developed to process EEG signals .

Presently, ERP is widely used in cognitive neuroscience research. Since over the ensu-

ing decades, EEG has proved to be useful in both scientific and clinical applications [7].

Furthermore, the processing and analysing of the EEG signals for a better understanding

and interpretation of these signals has also gained importance. As the recorded EEG data

on the scalp is usually contaminated by various artefacts, which are typically comparable

with or of higher amplitudes than the desired brain signal [11], EEG interpretation may

be impaired by the presence of these artefacts [31], resulting in misdiagnosis in patients

in clinical applications. Therefore, in order to maintain clean and clinically meaningful

cerebral activity, improving the EEG signal-to-noise ratio (SNR) via artefact removal is

in demand.

In this chapter, a short introduction of the physical anatomy of the human brain and

the underlying mechanism of EEG signal generation are given. Additionally, the basics of

EEG measurement and pre-processing and application of EEG signals are discussed. The

chapter concludes with introducing the common EEG artefacts and methods employed to

remove their effects from EEG recordings.
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Figure 2.1: Anatomical division of the brain in to four brain lobes of frontal, parietal,
occipital and temporal. The central sulcus, which separates the frontal and parietal lobes,
and the spinal cord, are also shown. The figure is adopted from [32]

2.2 Anatomy and Physiology of the Brain

To gain a better understanding of how an EEG signal is generated, it is important to

realise the neuronal functions of the brain as well as the underlying mechanism of the

EEG.

The Nervous System (NS) is composed of nerve cells (neurons) and glial cells (neu-

roglia) that control and respond to the interaction between the human body and its

external environment [11]. The NS has two major divisions: the Central Nerve System

(CNS) and the Peripheral Nerve System (PNS). The CNS comprises the brain and spinal

cord and controls most functions of the body by receiving information from the PNS and

processing and sending it back. The human brain is the most important organ in the

CNS, which anatomically is divided into different regions, known as the frontal, parietal,

occipital and temporal lobes and the central sulcus (Figure 2.1) [11]. Each lobe performs

a specific function. The frontal lobe is associated with skills of planning and decision

making, control of movement and mood. The parietal lobe is involved in processing the

somatic information derived from external stimuli, namely perception of stimuli. The

occipital lobe is responsible for the perception and elaboration of visual stimuli (visual

processing). The temporal lobe deals with hearing and, through its deep structures (amyg-

daloid nuclei and hippocampus), with learning, memory and emotion (i.e. the perception

13



Figure 2.2: Schematic structure of a neuron. The figure is adopted from [11]

and recognition of auditory stimuli, memory, and speech). The centralsulcus separates

the parietal lobe from the frontal lobe.

The brain consists of billions of neurons connected to each other. The neurons’ struc-

ture and behaviour are described below.

2.2.1 Neuronal Activity

Neurons are the core components of the nervous system in charge of receiving and trans-

mitting electrochemical nerve impulses. In response to physical and chemical stimuli,

neurons perform their specialised tasks of conducting electrochemical signals and releas-

ing chemicals that govern different body processes. Neurons’ activities and nutrition are

supported by glial cells. Neurons exist in a variety of shapes and sizes with specialised

characteristics that enable them to transmit nerve impulses. They can be categorised by

function as [33]: sensory neurons, motor neurons, communication neurons and computa-

tion neurons. However, they share the same structure comprising dendrites, the cell body

(Soma) and axon, as shown in Figure 2.2. A neuron usually has just one single axon but

can have several dendrites. Dendrites are the branching fibres extended from the soma

responsible for carrying the received signals from other nerve cells towards their corre-

sponding soma. The soma is the central part of the neuron that contains the nucleus of the

cell (Figure 2.2) and is responsible for metabolic reactions of the neuron. It processes the

incoming signals from the dendrites and decides whether a signal has to be transmitted
14



to the axon. In this case, a neuron is said to fire the signals in the form of electrochemical

impulses called action potential or spikes that propagates along the axon [7, 11]. The

axon is a slender projection of a neuron that conducts the signals away from the soma to

other neurons, muscles and glands via the axon’s terminal. The transmission of impulses

from one neuron to another happens through an interface called a synapse. A synapse

is a physiological connection between the axon’s terminal of a presynaptic neuron and

dendrites of the postsynaptic neuron, forming a cleft. Small rounded swellings at the

axon terminal release chemicals called neurotransmitters which ease the transmission of

impulses through the synapse. As a result, nerve impulses are sent from the axon of one

neuron to dendrites of another through synaptic junctions and the received signals by the

dendrites are transmitted to the soma and carried away via the axon.

2.2.2 Action Potentials

Different concentrations of the ions and cations between two opposite sides of a neuron,

known as intra-cellular and extra-cellular environments, result in a potential difference of

about −70 mV to −80 mV across the membrane of the neuron at the rest state, known

as the resting potential [11]. The concentration of sodium (Na+) and chloride (Cl−)

ions are higher in the extra-cellular compared to the intra-cellular and the concentrations

of potassium (K+) ions are more in the intra-cellular; as a result of which the intra-

cellular and extra-cellular gain negative and positive voltages, respectively. In the case

of activation of a neuron by an action potential, the neurotransmitter will be released

at the synaptic side of the presynaptic neuron [11]. On the other side of the synapsis,

the postsynaptic neuron has many receptors on its membrane which are sensitive to the

neurotransmitter. The released neurotransmitter in contact with the receptors changes the

permeability of the membrane for charged ions and allows the potential of the postsynaptic

neuron at rest to change.

Neurotransmitters can affect the postsynaptic membrane in two ways: excitatory or

inhibitory. In the excitatory effect, the ion channels on the membrane are open and allow
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Figure 2.3: Changes of the membrane potential in a neuron, from [34].

the positively charged Na+ ions to flow across the neuron. As a result, the potential of

the intra-cellular becomes more positive than the extra-cellular. This is called depolar-

isation of the intra-cellular site or Excitatory-Post-Synaptic-Potential (EPSP) [11]. In

consequence, the potential difference between extra- and intra-cellular is increased and

reaches to about −40 mV (Figure 2.3). If the depolarisation is large enough to hit a given

threshold (about 15 mV higher than the resting potential), the action potential is gen-

erated within the soma that stimulates all points along the axon to constitute the nerve

impulse. In other words, the action potential moves rapidly along the axon and transmits

the nerve impulse from one neuron to the next through the synapse. Therefore, for a

very short time, the cross membrane potential difference is reversed (the intra-cellular

is positive while the extra-cellular is negative). If neurotransmitters have an inhibitory

effect, the ion channels are open and allow the positively charged K+ ions to flow out to

the extra-cellular site and carry a positive charge out of the postsynaptic neuron. This

results in the repolarisation of the membrane; so that again the intra-cellular and extra-

cellular potentials become negative and positive, respectively and the membrane resumes

its previous polarisation (Figure 2.3). This effect is known as Inhibitory-Post-Synaptic-

Potential (IPSP) and results in hyperpolarisation of the intra-cellular site such that the

intra-cellular potential becomes more negative than the extra-cellular, until eventually the

cross-membrane potential overshoots to nearly −90 mV [11]. After the sodium-potassium
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exchange and the membrane overshooting, the membrane returns to its normal resting

potential. For the next few milliseconds after an action potential, the membrane cannot

be stimulated and undergo another action potential. This brief period of time is called

the refractory period of the membrane [11]. There are many synapses from different

presynaptic neurons in contact with one postsynaptic neuron. So, all the EPSP and IPSP

signals are summed up in the soma and the action potential is generated when a net de-

polarisation of the intra-cellular site at the soma reaches a certain threshold. The neuron

fires, the action potential is generated and propagates along the axon, it arrives at the end

of a presynaptic neuron and causes the release of the neurotransmitter into the synaptic

cleft to reach the dendrites of the postsynaptic neuron.

2.3 EEG Generation

As mentioned previously, Electroencephalography (EEG) is the measurement of the elec-

trical activity of the brain using electrodes placed on the scalp. The electrical activity of

neurons comes from action potentials and Post-Synaptic-Potentials (PSPs). Action po-

tentials are a rapid series of discrete voltage spikes that travel down from the beginning of

the axon at the soma to the axon terminals where neurotransmitters are released. PSPs,

on the other hand, are voltages that are restricted to the soma and dendrites and do not

flow through the axon. They occur when neurotransmitters are in contact with receptors

on the membrane of the postsynaptic neuron and the cross-membrane potential changes

by the exchange of intra- and extra-cellular ions. However, although the amplitude of

PSPs is smaller than action potentials, it is more likely that EEG recording reflects PSPs

rather than action potentials due to their longer duration which makes it possible to de-

tect and measure the integrated PSPs of neighbouring neurons on the scalp, unlike the

action potentials.

Pyramidal neurons are special types of neurons that are suggested to be the main

generators of EEG. These types of neurons have a triangular (pyramidal) shaped soma,
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a single axon and long parallel dendrites (called apical dendrites) which are oriented

orthogonally to the cortex [35]. The neighbouring pyramidal neurons in the cerebral cortex

have parallel dendrite trees and orthogonal direction to the surface. Pyramidal neurons

are polarised at the resting state, in the same way that was mentioned in section 2.2.1.

By receiving an action potential at the axon terminals, the excitatory neurotransmitter

is released in the cleft. The neurotransmitter in contact with apical dendrites causes a

current flow into the neuron, due to the flow of positive ions in the cell membrane which

depolarised the membrane potential at the soma. Consequently, by the outward flow of the

positive ions, another current flows out of the membrane to keep the equilibrium, which

makes the neuron a tiny dipole [7]. This current produces an electric field that extends to

the scalp. The electric potentials generated by a single neuron is too small to be picked

up by the electrodes on the scalp or they can be cancelled out by electrical activity of

neighbouring neurons with opposite polarity. If thousands or millions of neurons in one or

more cortical patches with similar synaptic stimuli (excitatory or inhibitory) align in the

same direction and fire together, they can generate a measurable potential, of the order

of µV , at the scalp [7]. A group of simultaneously active pyramidal neurons in a small

patch of the cortex that produces potentials can be modelled as an equivalent dipole on

macroscopic level [36].

2.4 EEG Recording

To record an EEG signal, a set of electrodes are placed over the scalp with the aid of a

conductive gel in order to boost the scalp conductivity and to enhance the contact between

the electrodes and the skin [37]; how many electrodes to use and where exactly to place

them depends on the application. However, it is essential for any protocol to be viably

reproducible in different laboratories to allow the comparison of results and also over time

in the case of long-term monitoring studies. To make this possible, the 10−20 system

has been introduced by Jasper et al. [38]. The 10−20 refers to the distance between
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Figure 2.4: The 10-20 international electrode placement; a) and b) represent the three
dimensional view of of the electrode placement on the scalp.

the electrodes as 10% or 20% of the distance between given anatomical landmarks. The

electrodes are labelled by the initial of their corresponding lobe and their position is then

labelled by an increasing odd (left) or even (right) number (Figure 2.4). The American

EEG society has introduced an extended setup [11]. Some applications may use extra

electrodes or only a subset of them.

As the potential is a differential quantity where its value in each point has to be mea-

sured with reference to another point, the same principle is used in EEG recordings; that

is the potential difference needs to be measured between each electrode and a reference

point. Therefore, EEG or potential difference measurements are not valid unless a ref-

erence point (electrode) is defined. A reference point can be assigned per electrode or it

can be commonly assigned for all electrodes [37,39]. The former is called bipolarmontage

which represents measuring the potential difference between an adjacent pair of electrodes

at each channel (a pair of electrodes usually make up a channel).

In the latter, each channel represents the potential difference between a certain elec-

trode on the scalp and the assigned reference electrode (referential montag). The reference

electrode is usually placed at a different position to the recording electrodes, like ear lobes.

Also the reference can be the average of all the recording electrodes’ signals (average ref-
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erence montage). Furthermore, each channel can represent the difference between an

electrode and a weighted average of the surrounding electrodes (Laplacian montage) [39].

The EEG is measured by placing electrodes on the scalp (non-invasive EEG) or on

the cortex (invasive EEG) [7]. In the case of invasive EEG, because the microelectrodes

are placed directly on the cortex and so are closer to the brain compared to the scalp

electrodes, the amplitude of the signal is higher than scalp EEG and as a result, the

signal is less contaminated by artefacts [40]. In non-invasive EEG, the electrical field

produced by synchronous active pyramidal neurons are varied by their passage to the

scalp and mixed linearly on the scalp [5]. The cerebral fluid, skull and the skin constitute

a conductive medium. As mentioned previously, EEG sources inside the brain which

generate potentials, can be considered as an equivalent dipole. When a dipole is placed

inside the homogeneous conductive medium with infinite extent, the current flow in the

medium and the generated potential measured at each point is proportional to the inverse

of the squared distance between the dipole and the point of measurement. If the medium

is inhomogeneous, in addition to the inverse square of the distance, a factor related to the

conductivity of different materials will also be considered. The head conductive volume

has different biological tissues with different conductivity [11]. The produced current by

a dipole is conducted through the head volume among different brain tissues towards

measurement sensors. Due to the variations in conductivity of brain tissues, the potential

field will be distorted and attenuated. When the potential field reaches the scalp surface,

the dispersion of the field occurs and they spread all over the head volume surface because

of the lower conductivity of the scalp in comparison to other brain tissues. Therefore,

the recorded far-field potentials that are conveyed by volume conduction to the scalp

electrodes are relatively smooth and is mixed linearly at the recording site. This is called

non-invasive EEG, which measures the mixed and smoother far-field potentials by using

electrodes placed on the scalp [7,41]. Each channel (a recoding electrode and the reference)

is connected to a differential amplifier (Figure 2.5); since the EEG signals have very weak

amplitude, in the order of microvolts (µV s) and need to be amplified. Therefore, the
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Figure 2.5: A differential amplifier of the EEG recording connected to each channel.

measured continuous analogue signal of each channel is then amplified and high-pass

filtered (to reduce noise) through an analogue filter. The continuous analogue signal is

then digitised and converted into a series of discrete samples by means of an analogue-

to-digital converter to be stored in a computer for further analysis. The digitisation

consists of sampling and quantization of the signal. The channels of the analogue signal

are sampled at a fixed time interval (sampling interval) such that the sampling frequency

must be at least twice the maximum frequency present in the signal to fulfil the Nyquist

sampling theorem [42]. The sampling frequency determines the temporal resolution of the

EEG and the voltage resolution is determined by the quantization step.

Once the data have been recorded, they are generally pre-processed in order to reduce

the effect of artefacts and increase the signal to noise ratio without losing information [43].

Several steps are usually applied to the raw EEG, for further processing of the data, but the

application of a particular method depends on the kind of data that is being processed,

how noisy it is and what techniques will be used in the subsequent processing stages.

Nonetheless, digital filtering and re-sampling of the recorded signal are two common initial

stages in EEG data pre-processing.

The EEG signal is usually recorded at a high sampling rate (e.g. up to 20kHz for

different research applications) which increases the required memory for storage in and

decreases the speed of evaluation and computation. Therefore, the measured EEG is

down-sampled to smaller frequencies to reduce the computational and storage costs. It

is important to mention that it is essential to down-sample the data after filtering with
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regards to the Nyquist sampling theorem.

Digital filtering is another stage in EEG data pre-processing to extract signals within

a predefined frequency band of interest. Applying a filter to the data presupposes that the

information carried by signals will be mostly preserved, to the benefit of attenuating other

frequency components which are not desired. Normally EEG data is band-pass filtered

to reduce the slow drifts and high frequency artefacts. It is also common to use a 50Hz

or 60Hz notch filter to eliminate power line interference. Filtering is widely carried out

by using Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) linear filters

[44]. IIR filters are usually more computationally efficient than FIR filters, but with the

inconvenience of introducing non-linear frequency-dependent phase delays and hence some

non-equal delays in the temporal domain at all frequencies; which is unacceptable for EEG

signal analysis where timing and phase measurements are crucial. FIR filters delay signals

in the time domain equally at all frequencies, which can be conveniently compensated for

by applying the filter twice: once forward and once backward on the EEG time series [45];

which results in a zero-phase shift.

Electrical signals in the EEG that are originated from a non-cerebral origin are called

artefacts. After the above pre-processing steps, removing the well-defined artefacts, such

as eye movements and muscle activity, is often desired in EEG signal processing [19,

128]. At many points during the recording of the EEG data, the signal is likely to be

contaminated by artefacts typically with the same amplitude as the desired brain signal

or higher [11]. Artefacts are undesirable signals that may affect the signal of interest

which can lead to misinterpretation of EEG analysis. It is, therefore, important to be

able to identify common artefacts before interpreting the recorded signals. Artefacts can

be divided into two categories [39,46]: physiological and non-physiological. Physiological

artefacts are generated by sources inside the subject itself, like those generated by eye

movement (i.e. blink and saccade artefacts) and muscle movement. Non-physiological

artefacts originate from sources outside the human body, which is the case in instrumen-

tation artefacts. While transferring from the scalp electrodes to the recording device,
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the EEG signal can be corrupted by the strong fields of alternating current (AC) power

supplies. A significant rise in the impedance of an active electrode between the ground

of the amplifier and the electrode causes the ground to act as an active electrode; which

consequently produces the 50 Hz (in Europe) or 60 Hz (in the USA) mains artefact [11].

Moreover, electrode and equipment-related artefacts such as impedance change due to

electrode displacement and may also compromise the quality of the data. In Chapter 4,

the common artefacts in EEG data are discussed in detail; the intention is to detect and

remove these from the data.

In addition to the above common pre-processing steps, there are a few more pre-

processing stages such as segmenting the data into epochs and removing the baseline,

which are discussed in Chapter 3.

2.5 EEG Artefact Removal

Artefacts can be handled by either avoidance, rejection or removal. To avoid artefacts, in

many studies the subjects are instructed to suppress limb movement, eye movement and

blinking. However, artefact occurrence is inevitable because movements and blinks can

be involuntary, especially in children and elderly people [47, 48]. Several techniques have

been proposed to remove artefacts from EEG recording to improve the signal-to-noise

ratio(SNR). One of the basic approaches is the epoch-based method in which the whole

temporal segments of EEG contaminated by artefacts are rejected. However this way, a

large amount of useful cerebral information in the EEG is also discarded, especially when

the artefacts occur frequently [12,13].

To prevent losing whole EEG segments when removing artefacts, methods which re-

move them while preserving the underlying neural activity, are employed. Regression-

based methods emerged in the time [49, 50] and frequency domains [51, 52] and are the

most common type of artefact removal methods in EEG studies. They require additional

reference noise channels (e.g. Electrooculography-EOG) so that the activity measured at
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a reference channel is subtracted from the EEG channels. However, regression methods

cannot be used to remove all artefact types. The fact is that a reliable reference channel

for a specific type cannot always be realised due to the artefact source being spatially

dispersed, e.g. power line noise and muscle movement. Another weakness of regression

methods is that bidirectional contamination of brain signal and artefact sources, the same

as removing whole temporal segments, will risk the removal of relevant neural informa-

tion [53,54].

An alternative successful artefact removal method is based on blind source separation

(BSS) techniques that can recover the source signals from a mixture of multichannel EEG

recordings. The process of estimating the source signals is without prior knowledge of

the sources and their mixing process. As a result, the estimated sources may correspond

to artefact or cerebral activities. Once the source signals associated to the artefact are

detected and removed, the cleaned EEG data can be obtained.

Recently, methods based on the concept of BSS, have been widely employed in order

to separate neural activity from different artefacts in spontaneous EEG data [37,55–57].

The rest of this thesis concentrates on the BSS method and its principles. Among dif-

ferent BSS algorithms, the most widely used and effective algorithm, Independent Com-

ponent Analysis (ICA) is described, with the aim of comparison (covered in Chapter 3)

followed by the application of ICA to EEG.

2.6 Blind Source Separation

BSS was first initiated in 1982 from a discussion between neuroscientists Bernard Ans,

Jeanny Herault and Christian Jutten with Jean-Pierre Roll about modelling the biological

problem of motion decoding in muscle contraction [58] to separate sources correspond-

ing to the angular position and velocity of a moving joint. In 1986 Jutten and Herault

presented an algorithm to separate two mixed independent source signals based on neu-

ral networks [22, 59] (using the search method). In 1994, Comon formulated BSS and
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introduced a BSS algorithm, Independent Component Analysis (ICA), based on min-

imisation of mutual information between the sources [60]. A year after, in 1995, Bell

and Sejnowski proposed the Infomax ICA based on a maximum entropy approach [23].

This algorithm was further refined by Amari and his colleagues using the natural gradi-

ent [61,62]. The originally proposed algorithm by Bell and Sejnowski (1995) was only able

to separate super-Gaussian sources. To overcome this limitation, Lee et al. [63] developed

the Extended-Infomax algorithm which was able to simultaneously separate both sub-

and super-Gaussian sources.

A few years later, Hyvärinen and Oja presented the fixed-point or FastICA algo-

rithm [64], which has contributed to the application of ICA to large-scale problems due to

its computational efficiency. Another recent algorithm has been proposed by Palmer et al.

and is called the Adaptive Mixture of Independent Component Analysers (AMICA) [65],

which is based on the modelling of each source component as a sum of extended Gaussians.

Up to now, a large number of ICA algorithms have been proposed which cover research

areas such as EEG, speech and digital image processing [14]. However, in this thesis only

the EEG signal and the application of ICA to EEG signal processing are considered.

2.6.1 Blind Source Separation Principles

Blind Source Separation (BSS) is a statistical approach to recover and estimate the source

signals (components) from a set of observations. It assumes that the mixture signal

is generated by uncorrelated sources. The BSS method has been developed for a so-

called ’cocktail party problem’ in which individual speech is found from mixtures recorded

simultaneously by several microphones located at different positions in a room. The term

blind refers to the fact that in the BBS approach very little is known about the nature

of the source signals and the mixing process. In the concept of an EEG signal, a single

scalp electrode records a mixture of signals from different sources in the brain when the

individual sources of the mixed signal are desired [66]. The individual source signals can

be obtained by the BSS approach in such a way that BSS tries to estimate the optimal
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set of uncorrelated brain sources that best represent the measured signal, while little is

known about their mixing process. BSS appears to be suitable for artefact rejection in

which a subset of sources that generates artefacts is likely to be removed and the EEG is

reconstructed by the remaining sources. A BSS model can be formulated as follows:

X(t) = A× S(t) (2.1)

Where X(t) represents the observed mixed data matrix (m × n); the EEG data matrix

time course, with m and n equal to the number of sensors and sample points, respectively;

A is the unknown mixing matrix of the dimension m×m; S(t) represents a m×n matrix

of the time series of sources. Since the A and S(t) are unknown, an assumption on the

number of sources has been made, in addition to the un-correlation of the sources. The

number of sources are considered to be known in such a way that it should not be more

than the number of sensors. It can be equal or less than the number of scalp sensors. If it

is assumed to be more than the number of sensors, the signal sources are under-determined

and cannot be estimated by BSS due to the imperfect knowledge about sources and the

mixing process [67,68].

In order to estimate sources, the un-mixing matrix, W = A−1 has to be estimated to

recover the time series of sources in such a way that:

Ŝ(t) = W ×X(t) (2.2)

The un-mixing matrix W is also known as a topography matrix in which the columns

represent the contribution of each source to the EEG data. When the estimated sources

are recovered, the unwanted (i.e. noise) sources can be removed and the clean EEG data,
ˆX(t), can then be reconstructed by backprojecting the remaining set of sources. This can

be done by using the new mixing matrix Â which is obtained by setting the columns of
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the corresponding unwanted sources in matrix A to zero:

X̂(t) = Â× S(t) (2.3)

Several BSS algorithms have been developed which employ different assumptions to

estimate the un-mixing matrix W and sources S(t). In this research, one of the most

widely used BBS-based algorithms, ICA, is selected and its principles are described next.

2.6.2 Independent Component Analysis

ICA is a BSS technique that employs higher order statistics to estimate the constitutive

source signals of linearly mixed signals. The estimated sources by ICA are assumed to

be statistically independent; which do not provide any information about each other [14].

Statistically, independent sources are uncorrelated; however, the reverse statement is not

necessarily correct. For example, if X is a continuous random variable uniformly dis-

tributed on [−1, 1] (i.e. X ∼ U(−1, 1)) and Y = X2, then X and Y are uncorrelated;

however, they are not independent, as a particular value of Y can be produced by only

one or two values of X. In EEG context, ICA assumes that the reading at each elec-

trode is a linear mixture of independent physiological activities (independent sources);

and it attempts to estimate the original sources corresponding to different physiological

processes.

Prior to applying ICA to decompose EEG data, the ICA principles and assump-

tions [69], regarding the nature and characteristics of the EEG signal, are discussed in the

following section:

Linear representation - ICA assumes that the observed data is generated from a linear

combination of a number of independent sources. In the context of the EEG signal, the

potential fields are linearly mixed on the scalp by the head conductive volume (section 2.4).

Instantaneous mixing model - The time delays that may occur in the mixing of the

sources of the mixed signal are neglected by ICA. This is often called an instantaneous
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mixing model. In EEG recording, there is a delay between the transmissions of the

generated signal from the sources to the measurement sites on the scalp (i.e. electrode lo-

cations). The EEG electrodes are relatively close to each other and the propagation speed

are relatively high compared to the signal frequency and sampling frequency. Therefore,

it can be assumed that the source signals are measured at the same time as they have

been emitted from the sources, which is called instantaneous EEG recording [11].

Spatial stationarity - The estimated sources by ICA are assumed to have spatially

stationary location. This assumption is plausible for constitutive sources of EEG data,

as the EEG sources are assumed to be generated from independent activities of neurons

in a small number of spatially stationary brain networks (spatially-fixed cortical patches)

which fire together and generate EEG potential [7].

Independence - The original sources should be statistically independent to be able to

be estimated by ICA, which means that the sources do not contain any information about

each other. Based on the Central Limit Theorem (CLT) [70], the distribution of the

linear summation of a large enough number of independent random variables approaches

a Gaussian distribution. The ICA method can be seen as the reverse process of the CLT

with the assumption of independence and non-Gaussianity of the sources [60]. Aligned

with this theorem, since the number of neurons is very large, the mean of all the EEG

activity sources also tends to have Gaussian distribution. Neurons work like independent

oscillators and can generate oscillatory potentials. These potentials are added together

and can be detected and measured by electrodes on the scalp. The EEG signal is a mixture

of both brain and non-brain sources. The EEG non-brain sources have non-Gaussian

distribution; most of the non-brain sources have super-Gaussian distribution (i.e. blink

and ECG sources) [71] and the main sub-Gaussian source in EEG is the 50 Hz power

line signal [72]. The sources associated to the response of the stimuli and the epileptic

spikes can be extracted by ICA due to their spiky activation pattern and non-Gaussian

distribution. Thus, this assumption is plausible for EEG data to separate artefactual

sources from the mixed EEG signal. Therefore, if S(t) from equation 2.1 is assumed to
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be a set of independent sources, the observed mixed signal X(t) will be more Gaussian

than each source from S(t), by the CLT. A single independent source is a linear mixture

of X(t) given by the weights in the un-mixing matrix W . The process of finding the un-

mixing matrix W is an optimisation process that maximizes the non-Gaussianity (with

minimal Gaussian properties) of independent sources S, such that sources are maximally

independent [73].

There are several ICA algorithms developed to estimate the optimised un-mixing ma-

trix W , which employ different metrics to quantify the non-Gaussianity of the ICs.

The estimated source signals could be associated with either cerebral or artefactual

activities. Despite source separation, ICA does not label the estimated sources. Usually,

the estimated sources by ICA are labelled manually by visual inspection. Once the sources

are labelled, the artefact-free EEG can be reconstructed by removing the artefactual

sources from the data.

ICA Algorithms

In the previous section, it was highlighted that different ICA algorithms employ different

criteria to maximise the non-Gaussianity of ICs. Nevertheless, two initial steps of centring

and whitening (or sphering) are usually taken to simplify the ICA algorithms before

estimating the un-mixing matrix W .

Centring: the mean of the observed signal X is subtracted from the signal itself. So

the observed signal has zero mean by the centring process.

Whitening: whitening is a simple and standard procedure to reduce the complexity of

the ICA problem by a linear change of the coordinate of the mixed data. Then applying

ICA only means “rotating” this representation back to the original axis space. Thus one

can say that whitening solves half of the problem of ICA. From a mathematical point of

view, whitening is a linear transformation in which the components of the measured data

X become uncorrelated and their variances are equal to one (unity). It can be obtained

by linear transformation of data X by linearly multiplying it with a matrix V , so that the
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new vector z is obtained which is the whitened data:

z = V X (2.4)

Such a transformation may be estimated by Principle Component Analysis (PCA); the

covariance matrix of the observed data is formed by taking the covariance between every

point of the measured data X. The Eigen decomposition is performed. Therefore, the

whitening matrix can be obtained in such a way that it transforms the covariance matrix

into an identity matrix and the whitened data is achieved.

After the above two steps, the uncorrelated data with zero mean and unit variance un-

dergoes further transformation by different ICA to estimate the sources as independently

as possible.

All ICA algorithms are based on the same fundamental approach to find an un-mixing

matrixW in such a way that the non-Gaussianity of sources S(t) is maximised resulting in

maximising the independence of S(t). The process of findingW is an optimisation process

to maximise the non-Gaussianity of the estimated sources. However, different criteria have

been employed by different types of ICA algorithms to estimate sources as independently

as possible [11]. The most commonly used ICA algorithms namely: AMICA, Infomax,

Extended-Infomax and FastICA are considered in this research and are explained below.

The FastICA algorithm was introduced by A. Hyvarinen in 1999 [64]; it provides a

fast iterative algorithm. It is based on the CLT and attempts to separate underlying

sources from the given measurement set based on maximising their non-Gaussianity as

a measure of statistical independence. FastICA uses this fact by building up a weight

matrix column-by-column, where each column maximizes the non-Gaussianity of the cor-

responding component.

Non-Gaussianity can be measured by kurtosis or negentropy [74]. Kurtosis measures
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the peakedness of a distribution. It can be calculated by:

kurt(y) = E{y4} − 3E{y2}2 (2.5)

where, E{. . . } is the expectation operator. When y is normalised, its variance is equal

to one, E{y2} = 1; so, the kurtosis (kurt(y)) is simplified to E{y4} − 3. (For a variable

y with unit variance, kurt(y) = E{y4} − 3, which is simply a normalised version of the

fourth moment E{y4}.)

If the kurtosis is zero the distribution is Gaussian. The distribution of all non-Gaussian

variables have non-zero kurtosis; if it is positive, the distribution is super-Gaussian which

is spikier than a Gaussian distribution and if it is negative, the distribution is sub-Gaussian

which is flatter than Gaussian. Therefore, in ICA the absolute value or square of kurtosis

can be used as a measure of non-Gaussianity. However, kurtosis is sensitive to the outliers

in the dataset and is more influenced by values in the tails of the distribution, than in the

centre of the distribution, which may be erroneous or irrelevant observations. Therefore

it is not a robust measure of non-Gaussianity [75].

Negentropy (differential entropy) measures the distance from the Gaussian distribu-

tion. An important property of a Gaussian distribution is that it has maximum entropy

among all distributions with the same variance. Therefore, non-Gaussian distributions

have less entropy than Gaussian distribution and the more distance from Gaussianity

yields more non-Gaussianity. Negentropy is defined as the difference between the entropy

of a Gaussian random variable ygaussi and the entropy of y:

J(y) = H(ygaussi)−H(y) (2.6)

where J is the differential entropy (negentropy) and H is the entropy of a distribution,
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which is given by

H(y) = −
∫
f(y) log(f(y))dy (2.7)

where f(y) is the density function of y. Negentropy is almost always greater than zero

and is zero only if the signal is Gaussian. Because Gaussian random variables have the

largest entropy, H among all random variables with the same variance [76], maximizing

J(y) leads to the separation of independent source signals.

The problem in using negentropy is that it is computationally difficult to calculate

and requires estimation of the probability density function of the sources (f(y)). Several

entropy approximations are introduced in the literature, which are beyond the scope of

this research. In [77–79], there is an exhaustive list of entropy approximations in detail.

Infomax was developed by Bell and Sejnowski [23] to estimate the independent sources

with super-Gaussian distributions [63], using the information-maximization principle.

This ICA algorithm identifies the un-mixing matrix W in such a way that the joint

entropy of the estimated sources is maximised; so that the mutual information among

the sources is minimised, resulting in maximally independent and non-Gaussian sources.

Mutual information measures the dependence of variables. It tells how much informa-

tion a variable gives about the other. Mutual information is explored in more depth in

Chapter 3 section 3.3.1.

Mutual information can also be thought of as a reduction in uncertainty about a vari-

able. A high level of mutual information specifies a large reduction in uncertainty; while

a low level of mutual information specifies a small reduction. Zero mutual information

means the variables are independent. Mutual information is defined in terms of entropy

which is a measure of uncertainty. The minimisation of entropy equals minimising the mu-

tual information. Since non-Gaussians have less entropy than Gaussians, minimising the

entropy, which results in minimising the mutual information, is equivalent to minimizing

Gaussianity.
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Extended-Infomax is an extension of the Infomax ICA algorithm that brings the abil-

ity of estimating sources with sub-Gaussian distributions to Infomax. It preserves the

Infomax architecture, while considering both sub- and super-Gaussian distributions to

estimate sources. Therefore, it may be slower than the original Infomax algorithm, which

does not consider sources with sub-Gaussian distribution [80].

The AMICA algorithm was proposed by Palmer et al. [81]; that uses a generalised

Gaussian scale mixture model [80, 82, 83] to flexibly model the density of each source

signal as a sum of sub- or super-Gaussians. In order to estimate the independent sources,

the non-Gaussianity of the sources is maximised by maximising the likelihood of the

data; which is equivalent to mutual information minimisation used in the Infomax ICA

algorithm [84]. This algorithm segments the data in an unsupervised manner by using

an expectation maximisation (EM) algorithm [85, 86]. An EM algorithm is a statistical

estimation to model the density of data based on maximisation of likelihood [84]. It

has an adaptive approach in which the models in the mixture compete with each other

to fit the data. This allows modelling of non-stationarity in the source structure by

allowing different models to account for different time periods [65]. Similar to Extended-

Infomax, AMICA is also able to estimate sources with both sub- and super-Gaussian

distributions [87].

2.6.3 Application of ICA to EEG

ICA can be applied to EEG data to reveal the information associated to the brain activities

which are hidden in the observed mixture of the EEG signal. In this manner, EEG can

be decomposed into artefact and non-artefact sources. The artefact sources can then be

detected either manually [88–91] or automatically [1,92] and removed from the data. Thus,

the cleaned and artefact-free EEG can be reconstructed by backprojecting the remaining

non-artefact sources [12, 93–97].

Another application of ICA to EEG concerns feature extraction [75], where the inde-

pendent components estimated by ICA are used as a new representation of the data, from
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which the meaningful features can be extracted from their time series and power spec-

tra. ICA has been successfully employed to extract features for detection of Alzheimer’s

disease [98], epilepsy seizures [99] and epileptic spikes [100].

2.7 EEG Applications

EEG provides high temporal resolution in the range of milliseconds and low spatial reso-

lution of a few centimetres, depending on the number of electrodes [11, 46]. As the EEG

can provide a non-invasive measure of the brain activity with high temporal resolution, it

has been widely used in different areas such as clinical and scientific research.

EEG waves have been extensively studied and analysed in recent years as a way of

understanding brain activities and also as an objective approach to recording brain stim-

ulation. EEG signals are composed of different oscillations, named rhythms [37]. The

identification of specific rhythms or features in the EEG is a way to quantitatively di-

agnose brain disorders. In healthy subjects, brain activity in specific frequency bands is

related to the state of consciousness or sleep. These frequency bands are called delta (δ),

theta (θ), alpha (α), beta (β) and gamma (γ) -bands respectively. The δ-band (0.5-4 Hz)

is associated with deep sleep; the θ-band (4-7.5 Hz) appears during the transition from

consciousness to drowsiness and it is related to the level of arousal; the α-band (7.5-13

Hz), mainly visible in the occipital region, indicates a relaxed state of awareness with-

out attention; the β-band (13-26 Hz) is a waking rhythm associated with attention and

concentration; the γ-band (above 26 Hz) contributes to some brain diseases as well as to

event-related synchronization. These rhythms are illustrated in Figure 2.6. Variations in

the main EEG rhythms or abnormal patterns may be related to diseases, such as epilepsy

or mental disorders.

Analysis of the evoked brain response to a specific stimulus is a common application

of EEG which is known as Event-Related Potential (ERP) analysis. ERPs represent the

electrical activity of the brain specifically associated to a given external stimulus. They are
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Figure 2.6: Illustration of the brain rhythms: delta (δ), theta (θ), alpha (α), beta (β)
and gamma (γ), from [101].

commonly used in psychological or neurological sciences to probe cognitive functions [102].

A typical ERP experiment is shown in Figure 2.7.

In an ERP experiment, a subject is presented with stimuli that are related to the

cognitive function of interest and the subject’s EEG is recorded (Figure 2.7 (a)). A single

response is called a trial (Figure 2.7 (b)). The amplitude of ERPs (10 µ V) is much smaller

than EEG recordings (100 µ V). This activity is extracted from the EEG by synchronous

averaging of single trials, triggered by the stimulus time. In this manner, background

stochastic activity is averaged out while the event-related component is highlighted. The

number of trials to be averaged depends on the original signal-to-noise ratio of the data and

the ERP component of interest. However, it can be proved that the factor of improvement

of the signal-to-noise ratio is equal to the square root of the number of trials over which

averaging has happened. The single trials are obtained by segmenting the EEG around
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Figure 2.7: A typical ERP experiment; a) One channel EEG data recorded during the
presentation of the stimulus (s); b) Segmenting the EEG data into epochs based on
stimulus onset; c) Averaging the data epochs to obtain the averaged ERP.

the stimulus time, in a time window that depends on the process under investigation.

The resulting average usually contains peaks and troughs, commonly called components,

with respect to a baseline, i.e. brain electrical activity at rest (Figure 2.7 (c)). The trials

are usually plotted with a negative voltage upward, by convention. The peaks are named
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by a letter, N (negative) or P (positive), according to their polarity and a number that

indicates a precise latency, in milliseconds, or the component’s ordinal position. Due to

the correspondence between a peak and a specific stage of the cognitive processes arisen

by the stimulus, amplitude and latency of these peaks (i.e. the time interval between

the stimulus onset and the peak) may provide convenient measures for tracking practical

neuronal mechanisms. The absence of some peaks or significant changes in amplitude

and latency with respect to a normal population may depict particular brain pathology or

dysfunction. The ERPs, averaged separately for each condition present in the experiment,

are then compared and tested for significant differences.

2.8 Summary

In this chapter the basic concepts of EEG generation and brain electrical activity were

discussed, followed by the application of EEG data. Different artefact types can affect

the quality of EEG data and make it difficult to be interpreted and analysed. Various

methods, either artefact rejection or artefact removal methods, exist to remove artefacts

from EEG data. The most recent successful EEG artefact removal method is the BSS-

based method, ICA, which unlike artefact rejection methods can remove the artefacts while

preserving the underlying neural activity. In this thesis, ICA algorithms are considered

to be employed for EEG artefact removal; they are described in the following chapter.
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“Seek Knowledge and adorn it with

forbearance and dignity.”

Imam Ja’far al-Sadiq (PBUH)

3
SYSTEMATIC COMPARISON OF ICA

ALGORITHMS

3.1 Introduction

ICA has been widely used for the analysis of EEG data and separating the brain and non-

brain sources (commonly known as artefacts) from the EEG mixture [14,23,103,104]. ICA

estimates the independent components (ICs) by maximising their non-Gaussianity [73,105,

106]. Various ICA algorithms employ different metrics to quantify the non-Gaussianity of

the ICs resulting in components that may differ across algorithms [11,104]. Consequently,

the systematic evaluation of the ICA algorithm variants to find the best performing al-
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gorithm for source separation, is an active topic of research. Some ICA algorithms have

been compared based on the independence of estimated ICs in ocular artefact removal from

EEG [107]. The performance of ICA algorithms in separating and removing different types

of artefact such as EOG and ECG from EEG data has also been evaluated [96, 108,109].

Delorme et al. [110] assessed the ability of ICA algorithms in separating the stereotyped

artefact sources from brain sources using higher order statistics.

Ilavennila et al. [111] compared the quality of source separation based on the non-

Gaussianity of estimated sources and the percentage of variance accounted for in the data

among four ICA algorithms, along with their computational demands.

The effect of removing the linear trend of data epochs on the reliability of the estimated

sources by ICA is also assessed by Groppe et al. [112]. Furthermore, the independence

and physiological plausibility of the estimated sources by several types of ICA algorithms

have recently been evaluated by Delorme et al. [104]. Korats et al. [113] compared the

performance of ICA algorithms in terms of using different initialisation steps (whitening

and sphering) of the ICs estimation and different lengths of data undergoing ICA decom-

position. The performance of two ICA algorithms in effective EOG artefact separation

and removal has also been compared by Kusumandari et al. [96].

However, the effect of various pre-processing steps on the output of different ICA

algorithms has not yet received a great deal of attention [114]. As the initial step after

recording the raw EEG data is to pre-process and prepare it for further analysis, it is

crucial to select the data pre-processing chain and apply it to the raw data prior to ICA

decomposition (pre-ICA processing).

In this chapter, the decomposition results of the most commonly applied ICA algo-

rithms, namely AMICA, Extended-Infomax, Infomax and FastICA are compared. These

ICA algorithms are most aligned with the purpose of this research which is separating

artefactual components, such as eye artefacts, from EEG activities. Also, the effect of sev-

eral pre-processing steps prior to ICA on the ICA source separation quality is assessed. In

total, 24 EEG data pre-processing conditions have been examined and the independence
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Figure 3.1: Experimental design of the visual stimulation.

and physiological plausibility of the recovered components have been assessed. The pro-

cessing times of the best performing algorithm across different pre-processing conditions

were also evaluated. Finally, the optimum pre-ICA processing chain and ICA algorithm

variant for better source separation is reported.

3.2 Materials and Method

3.2.1 Data Acquisition and Pre-processing

EEG data recordings were obtained from ten healthy subjects who attended to a visual

stimuli paradigm. As illustrated in Figure 3.1, each trial was started with a presentation

of either high contrast (distinct) or low contrast (blurred) checkerboard (t = 0). After

500 ms (t = 500ms), the checkerboard was phase-reversed and was presented for another

500 ms. Usually, the repeated stimulus presentation on the fixed time intervals may lead

to a decrease in the amplitude of subjects’ brain responses recorded in the EEG - an

effect known as habituation [115]. In order to avoid habituation, the inter-trial interval

was randomised between 1.5 − 2.5 s (mean 2 s). During each recording session, 100

high contrast (S1) and 100 low contrast (S2) stimuli were presented randomly over an

approximate duration of 10 minutes. Each of 10 subjects attended at one session, resulted

in collecting a total of 2000 trials (10 subjects × 200 trials). Subjects were asked to avoid

moving their eyes and body as much as possible.

The data was collected using 64 channels (connected to a BrainAmp MR-Plus Am-

plifier, BrainProducts, Gilching, Germany) with current limiting safety resistors of 5kΩ

at the amplifier input and in each electrode. The EEG cap including 62 scalp electrodes
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following the standard 10− 20 system [38] was used along with one EOG and one ECG

electrodes, which were attached below the left eye and 2 cm below the left collarbone,

respectively. The datasets were recorded at sampling rate of 5 kHz and the impedance at

all recording electrodes was less than 20kΩ [116].

It could be beneficial if there was the possibility of collecting different EEG datasets

with more complex paradigms for the aim of this research. However, due to the lack of

resources, we had to employ the described EEG dataset which is collected at the school of

Psychology and shared with the Electronics department at the university of Birmingham.

As an initial pre-processing step, raw EEG data was first band-pass filtered at 0.016−

100Hz [117]. The value of the low cut-off frequency of the filter is the same as the low cut-

off frequency of the high-pass filter (0.016Hz) in the AC amplifier of the EEG equipment

which filters out the DC components and non-neural potential (i.e. skin potentials) [118].

Thus, as the data was kept intact at this stage, the same low cut-off as the AC am-

plifier was chosen. Generally, EEG signals are not extended beyond 100Hz in normal

EEG-analysis [119]. Therefore, the high cut-off frequency of 100Hz was selected for the

band-pass filter. In the next step, the EEG data was down-sampled to 250Hz to reduce

computational and storage cost. The sampling frequency of 250Hz was selected in order

to fulfil the Nyquist theorem and to ensure the sampling rate is at least twice the highest

frequency component [46,120].

The beginning and end parts of the data that do not include any stimuli are removed.

If electrodes are periodically noisy, it is not necessary to exclude them. This type of noise

can originate from the gross movements of the subjects’ body during EEG recording,

which can bury the low amplitude signals of interest. Thus, the fragments of data which

contain substantial noise with high frequency and high amplitude waves are intended to be

deleted [1, 104]. This is done by segmenting the data into 500 ms windows and removing

the fragments in which at least one of the channels exceeds the identified threshold ±200

µV.

Before entering ICA decomposition, the pre-processed data undergo further processing
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steps, which are a combination of the following [114]:

• ExG: the non-EEG channels (ECG and EOG) are included (withExG) or excluded

(w/o ExG) from further analysis;

• FILTER: the EEG data are further band-pass filtered at 0.16 − 40Hz (Filtered

(40HzBandwidth)) or no additional filter is applied (Not Filtered (100Hz Band-

width));

• SEGMENTATION: the EEG data is segmented (Epoched) into epochs (100ms be-

fore and 900ms after stimulus onset) or continuous data is used (Continuous) for

ICA decomposition;

• EPOCH MEAN REMOVAL: in the case of epoched data, the mean values across

the epoch are removed (Mean Removal) or not removed (No Mean Removal) before

ICA decomposition. Based on the study performed by Groppe et al. [112], removing

the epoch mean leads to more reliable sources, thus, it is recommended rather than

removing the pre-stimulus baseline.

• BAD-CHANNEL REMOVAL: the bad-channels are removed from the data (Bad-

Channels Removal) or not removed (No Bad-Channels Removal).

More discussion on each of these pre-processing steps is provided in the following sections.

Continuous and epoched EEG data

EEG data is collected continuously and can be analysed and processed as either continuous

(Figure 3.2) or epoched data (Figure 3.3). Segmenting the signal into time-locked epochs

to the stimulus onset is desired in studying the brain response to the presentation of a

specific stimulus type [7]. Also, it has been reported that segmentation can divide the

non-stationary EEG signal into pseudo-stationary segments [37, 121,122].

A signal is non-stationary if the statistical characteristics of it change over time (in

other words, if the signal is time-variant). Due to the fact that the state of the brain
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Figure 3.2: A sample of continuous EEG data; red lines depict the stimulus; S1 onset in
the data.

Figure 3.3: A sample of epoched EEG data based on stimulus onset S1.

varies over time, such as changes in the physiological state (e.g. different stages of sleep)

or pathological changes (e.g. epileptic seizures), the multichannel EEG signals can also be

considered as non-stationary. Since the scalp electrodes measure the mixed signal coming

from different neurons, each transmits a signal with different intensity. Also, a single

non-stationary source can make the whole mixed signal appear non-stationary even if the

rest of the sources are stationary [123]. However, the EEG signal can be assumed to be

stationary only within short intervals of time. This assumption holds during a normal
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brain condition in which the subject is in a particular state [124].

Therefore, EEG signal segmentation into epochs is suggested as a pre-processing step

that can improve the non-stationarity of the EEG signal and reduce the noise [125–128],

while resulting in some data sample points loss. The process of selecting specific time

intervals of EEG data time-locked to the stimulus and discarding all other samples is

called epoching (segmenting). Normally, the time interval of the epochs starts from tens

of milliseconds before and hundreds of milliseconds after stimulus onset, respectively. The

pre-stimulus and post-stimulus intervals are selected in such a way that the baseline (i.e.

resting) EEG and the brain response to the stimulus are captured, respectively.

In contrast, the continuous EEG data could be of interest, rather than the epoched

data, in order to prevent information loss, especially in clinical environments and for

monitoring epileptic seizures [129–134].

In this research, the effect of both continuous and epoched EEG data on the ICA

decomposition are analysed. The epoched data is obtained by segmenting the continuous

EEG data from 100ms before to 900ms after stimulus onset.

Baseline Correction

In the case of the epoched data, there could be baseline level differences between the

data epochs. The presence of the baseline (DC) level differences in the data could lead

to misinterpretation in EEG data analysis. Baseline correction is another option in the

pre-processing steps which removes the DC component due to overall voltage offset from

the waveform in each epoch. Therefore, it would be beneficial to have a time interval

where there is no obvious stimulus-related brain activity (pre-stimulus interval); and any

shifts from the baseline can be assumed as artefact contamination in the data. There are

two major baseline correction methods for each epoch in every EEG channel:

• subtracting the mean signal over pre-stimulus interval, from the signal at all time

points [135,136].
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Figure 3.4: Not filtered EEG data (left) versus band-pass filtered EEG data with high
cut-off frequency of 40Hz (right).

• subtracting the mean signal over the whole epoch interval, from the signal at all

time points.

The latter method is used in this study for baseline correction, since Groppe et al. [112]

demonstrated that removing the whole epoch mean rather than the pre-stimulus mean,

before ICA decomposition, leads to less data discontinuity. Thus it considerably improves

the reliability of ICA decomposition by blocking the generation of high amplitude and

high frequency noise. The effect of both baseline corrected epoched data and no-baseline

corrected epoched data on the ICA decomposition is evaluated.

Filtering

Normally EEG data is band-pass filtered to reduce the slow drifts and high frequency

artefacts (Figure 3.4). Commonly, the EEG activities below 40Hz are used in clinical

applications and EEG/ERP studies [1, 92,137,138]. Additionally, in order to analyse the

brain function during mental and motor activities, a high cut-off frequency up to 100Hz

is used for EEG band-pass filtering [139–142]. In this experiment, two band-pass filters
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Figure 3.5: A sample of potential distribution of an EEG bad channel and a fitted normal
distribution. The kurtosis value of the bad channel is also provided with respect to the
kurtosis of normal distribution which is zero.

of 100 order Hamming-window based linear-phase FIR filters with a passband frequency

of 0.16Hz to 40Hz and 100Hz are used for filtering out the undesired frequencies.

Bad channel removal

Multi-channel EEG data often have some channels known as bad-channels (i.e. channels

with low SNR). Bad-channels can result from a poor connection between electrodes and

the scalp and usually are characterised with: higher variability than other channels in time

and a stronger deviation from a Gaussian distribution (Figure 3.5). They can be identified

by the outlying values of their statistics (e.g. kurtosis) relative to the normal distribution.

Since the EEG mixtures typically have near zero kurtosis values [143], the electrodes at

which the resulting potential values exceed a pre-defined value (e.g. kurtosis value more

than 5 [144–147]) are considered as bad channels (Figure 3.6) and are removed from the

data. Although the kurtosis is known to be sensitive to outliers, bad-channel removal is

done on EEG channels (not ECG and EOG channels) after slight cleaning of the data by

removing the gross movements. Therefore, the effect of outliers on the kurtosis can be

reduced.

Several researchers recommend removing bad-channels prior to ICA [143, 148–151],

46



Figure 3.6: Marked bad channels in the EEG data whose kurtosis value exceeds the
threshold.

because ICA decomposition might be biased by bad-channels leading to a reduction in

degrees of freedom assigned to decomposition of other source signals such as cerebral

activities. However, ICA can be applied to EEG data without bad-channel removal to

separate brain and non-brain sources [12,104,152,153]. In this study, both cases in which

bad channels are excluded and included for ICA decomposition are considered.

Excluding EOG and ECG

Some studies suggest that heart rate variability and eye movements have a relationship

with cognition [154–157]. Therefore, in some EEG recording setups, extra EOG and ECG

channels are available parallel to the EEG in order to measure the electrical potentials

produced by eye movements and heartbeats, respectively. However, EOG and ECG chan-

nels are not always included in ICA decomposition along with EEG scalp channels. Some

researchers state that including the EOG and ECG channels for ICA decomposition is
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not necessary for isolating the eye and heartbeat activities due to their independence

from the brain activities [158–161]. In contrast, EOG and ECG channels are suggested

to be included in the ICA decomposition to improve the identification and separation of

eye-related and ECG artefacts due to the extra information provided by these additional

channels [162–167]. Thus, both the inclusion and exclusion of EOG and ECG channels in

ICA decomposition will be assessed.

The combination of the above 5 pre-processing steps resulted in a total of 24 different

pre-processing categories (conditions). The hierarchy in Figure 3.8 (a) illustrates the

obtained pre-processing conditions. Each condition was individually applied to the data

of a single subject described in section 3.2.1 and resulted in 240 different pre-processed

datasets (i.e. 10 subjects × 24 conditions). Consequently, the four ICA algorithms were

applied to all 240 pre-processed datasets. In the first 12 pre-processing conditions, where

the bad channels are not removed, each dataset was decomposed into either 62 or 64

independent components by ICA depending on the existence or non-existence of the EOG

and ECG channels in the data. However, using the pre-processing conditions of C13 to

C24, the datasets were decomposed into fewer independent components compared to the

first 12 pre-processing conditions as the number of channels are reduced by removing the

bad channels from the data. In total, 37284 independent components were obtained by

applying the four pre-selected ICA algorithms to all 240 pre-processed datasets.

3.3 ICA Performance Evaluation

ICA algorithm variants are assessed based on two criteria - the independence, and phys-

iological plausibility of the estimated ICs. To assess independence, Mutual Information

Reduction (MIR) and Pairwise Mutual Information (PMI) are considered [104]. MIR

measures the total amount of Mutual Information (MI) reduced in the data when EEG

channels are decomposed into ICs. PMI considers the pairwise dependencies between ICs’

time series and measures the amount of information that each IC gives about the other
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ICs. The larger MIR and lower PMI values specify the desirable higher independence of

the estimated sources.

To assess physiological plausibility, sources are assumed to have dipolar behaviour in

the far-field at the scalp electrodes’ distance. Dipolarity is measured by fitting a dipole

for each IC using the method proposed by Delorme et al. [104]. The higher the numbers

of ICs that can be fitted by a dipole, the more biologically plausible the ICs are.

One can use simulated data to evaluate the performance of ICA algorithms and to find

out how well the known original sources (based on the ground truth) are estimated by the

different algorithms. However, the ultimate goal of this study is to assess the performance

of ICA algorithms in separating independent sources which correspond to sources mostly

from biological origins, when ICA is applied to real data (in which there is no ground

truth). Therefore, the described evaluation measures are selected in such a way that the

performance of ICA algorithms can be measured based on independence and at the same

time, physiological plausibility of the ICA decompositions, when ICA is applied to real

data.

3.3.1 Independence of Sources

As described in section 2.6.2, one of the ICA assumptions on the times series of components

extracted from the mixed EEG signal is statistical independence of those components. Two

mutual information-based measures of MIR and PMI proposed by Delorme et al. [104],

are considered to assess the independence of the estimated EEG sources for each type of

ICA algorithm.

Mutual Information Reduction

Mutual Information (MI) is a measure of independence of random variables and determines

how much information one random variable provides about another. It is a non-negative

quantity and is equal to zero if variables are independent [14]. It can be considered as the

reduction in uncertainty of one random variable based on knowledge of another. Higher MI
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reduction indicates a large reduction in uncertainty, whereas lower MI reduction implies

a small reduction in uncertainty. The mutual information between two random variables

X and Y is defined as the difference between the sum of individual (marginal) entropies

of X and Y , taking away the joint entropy of X and Y [106]:

I(X;Y ) = h(X) + h(Y )− h(X, Y ) (3.1)

Correspondingly, the mutual information between components of random vector Y =

[y1; y2; ...; yn] is defined as:

I(y1; y2; ...; yn) = h(y1) + h(y2) + ....− h(Y ) (3.2)

As discussed in section 2.6.2, MI has been used as a criterion for ICA transformations

that involves estimating the un-mixing matrix, W , such that the mutual information of

the transformed components, Y , is minimised.

Y (t) = W ×X(t) (3.3)

where X(t) is the data matrix; W is an un-mixing matrix; and Y (t) is the ICA component

activation time series.

The entropy of the continuous vector variable Y is given by [104]:

h(Y ) = log|detW |+ h(X) (3.4)

So the mutual information of the transformed data I(Y (t)) is defined by:

I(Y ) = h(y1) + h(y2) + ....+ h(yn)− h(Y )

= h(y1) + h(y2) + ....+ h(yn)− log|detW | − h(X)
(3.5)

where, h(X) is the joint entropy of data X and is independent of W . The mutual
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information of the data matrix X(t) is the same as mutual information of the transformed

data Y (t) minus the term including the determinant of W :

I(X) = h(x1) + h(x2) + ...+ h(xn)− h(X) (3.6)

To compare the results of ICA decompositions, the total reduction of mutual informa-

tion (MIR) when moving from the sensor space (EEG channels) to the source space (ICs)

is calculated. The reduction in mutual information is defined by:

MIR =I(X)− I(Y ) = h(x1) + h(x2) + ...+ h(xn)− h(X)

− [h(y1) + h(y2) + ...+ h(yn)− log|detW | − h(X)]

=h(x1) + h(x2) + ...+ h(xn)− [h(y1) + h(y2) + ...+

h(yn)] + log|detW |

(3.7)

MIR measures the total amount of Mutual Information (MI) reduced in the data when

EEG channels are decomposed into ICs. A larger MIR indicates a greater reduction of

statistical dependencies between EEG channels and therefore higher independence of the

components.

Pair-wise Mutual Information

According to the ICA principals, the estimated sources by ICA are assumed to be statisti-

cally mutually independent. It is also known that minimisation of mutual information can

be interpreted as maximisation of independence of the components. Therefore, Pair-wise

Mutual Information (PMI) between estimated sources by each algorithm can be used as

the criterion for assessing the performance of different ICA algorithms. PMI measures the

amount of mutual information between each pair of the estimated components’ time series

(resulting from different ICA algorithms). It considers only the pair-wise dependencies by

estimating two dimensional joint densities. The PMI value is always non-negative (unless

bias correction is applied) and it is zero only if the variables are independent. In fact,
51



the highest value of PMI represents more dependencies between the estimated sources by

each ICA algorithm.

PMI can be considered as a portion of MIR measurement that considers multicompo-

nent dependencies. Actually, MIR measures the overall mutual information reduced from

the set of recorded data channels after applying ICA. Since the components are assumed

to be more independent than channels, a big reduction in overall mutual information

by applying ICA may result in more independent sources. However, PMI measures the

amount of independence of the source pairs and does not include higher order dependence.

Therefore, the amount of information each component gives about the others can be ob-

tained using PMI. This information should be zero if components are really independent.

However, practically it is not zero but very close to zero; that means the brain and non-

brain sources are not perfectly independent. Nevertheless, the lowest PMI value should

be better, since it identifies less dependence between the components.

The PMI between two random variables xi and xj is defined as a difference between

the sum of the individual entropies and the joint entropy of xi and xj.

[M ]ij = I(xj;xj) = h(xi) + h(xj)− h(xi, xj) (3.8)

M is a square matrix in which the diagonal values represent the PMI between one

source and itself and the off-diagonal values represent the PMI between each source and

other sources. Thus, the average of the off-diagonal values in matrix M is calculated as

the total PMI between component time courses. The result is reported as an average

across subjects for each ICA algorithm. The lower the PMI, the more independent the

components. The MI estimation can be inflated by an expected amount, known as bias,

which could result in a negative MI value after bias correction (i.e. subtracting the bias

value) [168]. In this study, the mutual information for both MIR and PMI estimates is

bias-corrected.
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3.3.2 Biological Plausibility

The sources estimated by ICA are supposed to be biologically plausible, in addition to

being independent. As mentioned in section 2.3, a neuron has a fixed location in the

brain and the average of a group of neurons in a small cortical patch can be modelled as

an equivalent dipole. The potentials generated by equivalent dipoles are summed linearly

on the surface of the head volume conduction. Thus, EEG sources estimated by ICA

are expected to be spatially localized and appear dipolar in the far-field at the scalp

electrodes’ distance.

The estimated sources by ICA are assumed to be temporally independent; that means

their scalp maps each should represent only one dipole when it is backprojected to the

scalp. The better the dipole fit the less spurious the activity in the component map.

Delorme et al. [104] suggested that dipolarity of ICA decompositions can be assessed by

calculating the percentage the returned components that best fit with a single dipole to the

scalp with less than 5% residual variance. The spherical four-shell model head is used to

localise a best-fitting single equivalent dipole for each component. This involves scanning

possible positions and orientations of the dipoles in a 3D grid. Then, an optimisation

algorithm is performed to obtain the best position and orientation of a single dipole, which

most resembles the observed scalp distribution of a component with a lower amount of

residual variance.

In the dipole fitting procedure, the EOG and ECG channels are excluded, as they have

non-brain source originations that represent the activity of the eye and heart outside of the

brain volume conductor. Delorem et al. [104] demonstrated that, with more independent

components, more dipoles can be obtained. Figure 3.7 shows exemplar scalp maps for

four components which are estimated by AMICA with the percent of residual variance

from the projection of the best-fitting equivalent dipole.

Equivalent dipole modelling

Different source localisation and dipole fitting algorithms exist in the literature [169–
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Figure 3.7: Example of component scalp maps resembling the equivalent current dipole,
the percentages of residual variance are presented for each IC scalp map.

171]. In this research the state-of-the-art DIPFIT algorithm [172] is employed, as sug-

gested in [104]. For each ICA decomposition of each subject within each pre-processing

condition, a best-fitting single equivalent dipole, corresponding to each returned com-

ponent, is localised using a single equivalent dipole in a best-fitting spherical four-shell

model head using the DIPFIT plug-in (version 1.02) in the EEGLAB toolbox (version

4.515) [172]. The DIPFIT plug-in performs source localization by fitting an equivalent

current dipole model using a non-linear optimization technique, proposed by Scherg et

al. [173] using a 4-shell spherical model described by Kavanagk et al. [174]. The bilateral

contribution of ICs is neglected in equivalent dipole fitting.

3.3.3 Statistical Analysis

In order to compare the performances of different ICA algorithms and evaluate the effect

of various data pre-processing steps on their performance, a repeated measure analysis of

variance (ANOVA) is employed [175].

For each evaluation measure (i.e. MIR, PMI or Dipolarity), a repeated measure

ANOVA with within-subject factors of ICA algorithm with 4 levels (AMICA/Extended-

Infomax/Infomax/fastICA); bad-channel removal and filtering with 2 levels each (ap-

plied/not applied); segmentation with 3 levels (continuous/epoched with mean-removal/

epoched with no-mean-removal); and including ExG with 2 levels (included/not included)

is performed, separately. So the overall ANOVA design for each evaluation measure has

96 within-subject measurements (i.e. 4 × 2 × 2 × 3 × 2) for N=10 subjects. The level

selected to indicate the statistical significance was at p < 0.05. Pairwise comparisons with
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Bonferroni correction [176] were performed to find the main factor effects. The outcomes

of the ANOVA are reported in terms of p-value, F-value and partial effect size (η2). The

results of the pairwise comparisons are reported in terms of mean difference, standard

error (std. error) and p-value. All the statistical analyses were carried out with IBM

SPSS Statistics [177].

3.4 Result Analysis

The performance of ICA the algorithms through different pre-processing conditions is

evaluated and compared in terms of MIR, PMI and dipolarity of the estimated sources

(Figure 3.8). Additionally, the effect of pre-processing conditions on the processing time

of the best performing ICA algorithm for source separation is assessed (Figure 3.9).

3.4.1 Pre-processing Conditions, Independence and Dipolarity

of Sources

Figure 3.8 illustrates the effect of different pre-processing steps applied to the raw data,

on the performance of different ICA algorithms in terms of MIR, PMI and dipolarity; the

larger the MIR and dipolarity, and the lower the PMI, the better the ICA decompositions.

The repeated measure ANOVA revealed that the effect of the ICA algorithm factor is

statistically significant in terms of all the three measures (i.e. MIR [F (3, 27) = 354.402,

p < 0.001, η2 = 0.975]; PMI [F (3, 27) = 73.546, p < 0.001, η2 = 0.891]; and dipolarity

[F (3, 27) = 34.493, p < 0.001, η2 = 0.793]). The pairwise post test showed that there

is a significant difference between the performance of all the pairs of the ICA algorithms

for all three evaluation measures, except pair of Infomax and Extended-Infomax (p = 1)

dipolarity. Also, the difference between the performance of Infomax and FastICA for PMI

is marginally significant (p = 0.052); the PMI value for Infomax is larger than fastICA

(mean difference = 0.006, std. error = 0.002). According to the pairwise comparison,

AMICA performed significantly better than the other three algorithms in terms of MIR
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and dipolarity, while significantly better performance in terms of PMI is obtained by

Extended-Infomax. Tables A.1, A.2 and A.3 in Appendix A shows the results of the

pairwise comparisons between pairs of ICA algorithms for MIR, PMI and dipolarity,

respectively.

When considering the pre-processing factors, removing the bad channels significantly

impacts on MIR and dipolarity. The MIR value for bad-channel removal is significantly

lower than no-bad-channel removal [F (1, 9) = 11.521, p = 0.008, η2 = 0.561, mean

difference = 4.242, std. error = 1.250]. The reason of this is that the MI of all the EEG

channels is lower, resulting in a smaller reduction in MI going from the EEG channel

space to the IC space. By itself, this does not necessarily indicate a worse performance

and this indication is supported by the universal albeit non-significant decrease in PMI

(p = 0.477).

Dipolarity of the bad-channel removal is significantly larger than no-bad-channel re-

moval [F (1, 9) = 30.323, p < 0.001, η2 = 0.771, mean difference = 1.463, std. error =

0.266]. The reason for this is that bad channels are non-stereotyped and cannot be fitted

with a single dipole. The results echo the findings in [104]; which suggest that the more

independent the EEG sources, the more they are dipolar.

The pre-processing factor of filtering significantly impacts on PMI and dipolarity,

while it fails to become significant in terms of MIR (p = 0.513). PMI and dipolarity

for filtering are significantly larger than not filtering; [for PMI: F (1, 9) = 332.193, p <

0.001, η2 = 0.974, mean difference = 0.223, std. error = 0.012] and [for dipolarity: F

(1, 9) = 47.517, p < 0.001, η2 = 0.841, mean difference = 4.636, std. error = 0.673].

Filtering the data (0.16 − 40Hz) can remove the slow drifts and high frequency noise,

which can occupy degrees of freedom in ICA space and introduce common information

between recovered components. Therefore, the PMI values between estimated sources

become higher when the data is not filtered. Consequently, the number of dipolar sources

decreases as independence of the sources is decreased.

The segmentation factor significantly impacts on the performance of ICA algorithms
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in terms of PMI [F (2, 18) = 284.745, p < 0.001, η2 = 0.969] and dipolarity [F (2,

18) = 24.005, p < 0.001, η2 = 0.727] without affecting MIR (p = 0.108). The pairwise

post test revealed that the PMI value for epoch no-mean-removal is significantly lower

than for continuous (mean difference = 0.180, std. error = 0.008, p < 0.001) and epoch

mean-removal (mean difference = 0.166, std. error = 0.009, p < 0.001). However, the

difference between continuous and epoch mean-removal is insignificant in terms of PMI

(p = 0.331). For dipolarity, the epoch mean-removal is significantly smaller than both

continuous (mean difference = 1.926, std. error = 0.211, p < 0.001) and epoch no-mean-

removal (mean difference = 3.470, std. error = 0.582, p = 0.001). The difference between

continuous and epoch no-mean-removal is insignificant in terms of dipolarity (p = 0.097).

The result suggests that in general the performance of ICA algorithms is affected by

removing data segments which may be assumed to have non-cerebral information. When

the data segments are removed by epoch no-mean-removal, the performance of the ICA

algorithms can be improved to extract latent independent components from the EEG

data. This may increase the accuracy of the estimated components’ activities and scalp

topographies [112]. Therefore, the independence criterion and physiological plausibility

of the estimated sources improved when non-cerebral segments are removed in the epoch

no-mean-removal.

When ECG and EOG channels are included, MIR is significantly larger than when

ECG and EOG channels are excluded [F (1, 9) = 22.316, p = 0.001, η2 = 0.713, mean

difference = 1.174, std. error = 249], while PMI and dipolarity have not been affected

(p = 0.507 and p = 0.075, respectively). The reason for this is that the extra channels

of ECG and EOG can provide more information for characterizing eye movement and

heart-beat artefacts in the EEG data; thus improving EEG source separation.

Overall, AMICA performed significantly better than the other algorithms in most

cases. Regarding the pre-processing factors of bad-channel removal, filtering, epoching

the data and including ECG and EOG channels, considerably improved the performance

of the ICA algorithms. However, removing the bad channels and epoching the data may
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raise the risk of losing useful information within the removed channels and segments of

the data.

3.4.2 Processing Time

In many studies, EEG signal processing delay is taken as an important evaluation measure

of a system, especially in the case of real-time applications [178–180]. The aim of this

research is to optimally use ICA for EEG signal processing; the pre-processing employed

in this research is based on ICA. In section 3.4.1 it was demonstrated that the AMICA

algorithm outperformed the other three ICA algorithms in terms of independence and

biological plausibility of the estimated sources. Therefore, for further analysis, the effect

of different pre-processing conditions on the processing time taken by only the optimum

performing ICA algorithm (i.e. AMICA) to estimate the ICs is investigated.

In order to show the computational complexity and time required of the AMICA

algorithm, the average CPU time required for the AMICA algorithm for source separation

is obtained in all the predefined pre-processing conditions. The reported performance was

carried out on a Linux worker machine running Scientific Linux 6.6 equipped with dual-

Processor 8-core (16 cores) 64-bit 2.2 GHz Intel Sandy Bridge E5-2660 and 32 GB of

memory. The MATLAB process was run as a single process on the worker node and no

other applications were loaded on the machine.

To assess the effect of different pre-processing steps on the processing time of AMICA, a

repeated measure ANOVA with within-subject factors of bad-channel removal and filtering

with 2 levels each (applied/not applied); segmentation with 3 levels (continuous/epoched

with mean-removal/ epoched with no mean-removal); and including ExG with 2 levels

(included/not included) is applied. The overall ANOVA design has 24 within subject

measurements (i.e. 2 × 2 × 3 × 2) for N=10 subjects. The level selected to indicate

the statistical significance was at p < 0.05. Pairwise comparisons with the Bonferroni

correction were performed to find main the factor effects.

Figure 3.9 illustrates the processing time of the AMICA algorithm, across different
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Figure 3.9: Processing time of AMICA algorithms through different pre-processing con-
ditions, which are applied to data prior to ICA.

pre-processing conditions, averaged over 10 subjects. The AMICA processing time ranges

from 975 s to 5185 s depending on the pre-processing conditions. The outcome of the

ANOVA test revealed that all the pre-processing factors impact on the processing time of

AMICA significantly. The AMICA processing time for bad-channel removal is significantly

lower than by not removing the bad channels [F (1, 9) = 3797.020, p < 0.001, η2 = 0.998,

mean difference = 347.988, std. error = 5.647]. The reason for this is that the dimension

of the data input to the ICA is reduced by removing the bad channels, thus increasing

the speed of the ICA’s decomposition.

The AMICA processing time for filtering is significantly lower than when not filtering

[F (1, 9) = 5298.359, p < 0.001, η2 = 0.998, mean difference = 280.291, std. error =

3.851]. Filtering the data can remove the slow drifts and high frequency noise, which

can occupy degrees of freedom in ICA space; thus AMICA can converge faster in source

separation.
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The segmentation factor has a significant impact on the AMICA processing time [F

(2, 18) = 125213.501, p < 0.001, η2 = 1]. The outcome of the pairwise post test revealed

that the AMICA processing time for epoch mean-removal is significantly lower than both

epoch no-mean-removal (mean difference = 257.922, std. error = 4.781, p < 0.001) and

continuous (mean difference = 2738.396, std. error = 7.772,p < 0.001). Also, the AM-

ICA processing time for no-mean-removal is significantly lower than continuous (mean

difference = 2480.474, std. error = 7.772). The reason is similar to bad-channel removal;

where epoching the data decreases the length of the data input to the ICA and leads to

faster ICA decomposition. Also, similar to filtering, removing the epoch mean eliminates

the DC component (slow drift) in the epoched data and thus increases the speed of ICA

decomposition by increasing the degrees of freedom in the ICA space.

Surprisingly, when the two EOG and ECG channels are included and the data dimen-

sion is increased, the processing time of the AMICA becomes significantly lower than when

ECG and EOG channels are excluded [F (1, 9) = 5316.289, p < 0.001, η2 = 0.998, mean

difference = 473.815, std. error = 6.498]. This result is in contrast with those obtained for

bad-channel removal where the processing time significantly decreased by decreasing the

number of EEG channels. However, the result is complementary to the results obtained

in section 3.4.1 in which including ECG and EOG channels in the EEG data improved

the performance of ICA algorithms by providing more information for characterising eye

movement and ECG sources. This suggests that AMICA benefits more from extra sources

of information (EOG and ECG channels) from the potential activities which exist in the

recording of most EEG channels, rather than from those artefacts which only affect a

small number of EEG channels (bad channels).

It can be concluded that removing the bad channels, filtering, epoch mean-removal

and including ECG and EOG channels in the data significantly improve the processing

time of AMICA for source separation.
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Figure 3.10: Block diagram of the obtained optimum pre-processing steps, where the raw
EEG signal X(t) is band-pass filtered at 0.16Hz − 40Hz, and concatenated with ECG
and EOG channels. Then the AMICA algorithm is employed to separate the independent
sources, S(t).

3.5 Summary

In this chapter, a pipeline is proposed to effectively select the pre-ICA processing steps and

ICA algorithm variant for optimum source separability. Although in most EEG studies

selecting the type of ICA algorithm is of concern, in this study it is demonstrated that the

reliability of the estimated sources by ICA is considerably dependent on both the type of

ICA algorithm and the type of pre-processing of the given data to the ICA algorithms.

Overall, among the algorithms, AMICA significantly performed better than the others

in most cases. Regarding the different pre-processing factors, bad channel removal, filter-

ing, epoch no-mean-removal and including ECG and EOG channels in the data improved

the performance of the ICA algorithms significantly. However, in considering the entire

EEG signal processing chain and the requirement to automatically label ICs for artefact

removal, removing bad channels and epoching the data reduce EEG data size and risk

data sparsity by potentially reducing the number of training instances for artefact detec-

tion. In other words, bad channels and the removed segments may actually be useful for

identifying artefact sources and may include either cerebral information or information

useful for artefact detection. Thus, in order to prevent information loss, it is preferable to

keep bad channels and to not epoch the data (i.e. to use continuous data), in this study.

The induced artefacts by bad channels into the EEG data are addressed and detected as
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a focal artefact in the next chapter section 4.2.1. Therefore, based on the obtained results

and the scope of this study, which is EEG artefact detection, the pre-processing condition

C8 (Figure 3.10) - ExG, filtered and continuous and no-bad-channel removal is selected

as the optimum pre-processing chain to prepare the raw EEG channel mixture for source

separation using the ICA variant AMICA. The dataset described in section 3.2.1, under

condition C8 pre-processing steps and the AMICA algorithm are employed for the rest of

this thesis.
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“Precision, accuracy and pondering

in wisdom and sciences, will nourish

and develop a person’s brain.”

Imam Ja’far al-Sadiq (PBUH)

4
AUTOMATIC ICA-BASED EEG

ARTEFACT REMOVAL

4.1 Introduction

In Chapter 3, the performance of the four commonly used ICA algorithms were assessed

from the perspective of separating artefactual and non-artefactual sources. Accordingly,

the optimum data pre-ICA processing chain (condition 8) and the ICA algorithm variant

(AMICA) were selected to prepare the recorded raw EEG data for better source separa-

tion. Therefore, the EEG datasets underwent the selected pre-processing steps and the 64

EEG channels of each subject were decomposed into 64 ICs. Nonetheless, the estimated
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Table 4.1: The automatic ICA-based EEG artefact removal methods in the literature

Author Year Type of artefact Type of feature
Irene Winkler [53] 2011 General artefacts Frequential, spatial and

temporal
Andrea Mognon [1] 2011 Blink, vertical and hori-

zontal eye movement and
generic discontinuity

Spatial and temporal

Wanzeng Kong [182] 2013 Blink Correlation and power
distribution

Raymundo Cassani [187] 2014 Ocular, muscle spectral, amplitude mod-
ulation rate of change,
coherence, and phase,
autocorrelation

Irene Winkler [188] 2014 Ocular, muscle, loose
electrodes

Several types of tempo-
ral, frequential and spa-
tial features

T. Radüntz [92] 2015 General Image features
Laura Frolich [189] 2015 Ocular, ECG, muscle Frequential, spatial and

temporal

sources were not yet labelled and specified as artefact and non-artefact sources. One can

manually label the ICs, however, artefactual ICs manual identification and labelling can

be time-consuming and subjective. Several attempts have been made to automatically

detect specific types of artefactual ICs, especially ocular [164,181,182] and muscular arte-

facts [110, 150, 183]. Artefactual ICs are typically identified by extracting different tem-

poral, spatial or frequential features representing artefact characteristics [1, 99,184,185].

Similar to regression methods (described in Chapter2 section 2.5), some studies use ref-

erence channels (e.g. simultaneous recording of EOG/ECG along with EEG), and label

the IC as an artefact if it highly correlates with the reference channel [162,186]. Table 4.1

lists some other studies that proposed an automatic ICA-based artefact removal method.

The state-of-the-art ICA-based artefact removal method, ADJUST, uses a combina-

tion of temporal and spatial features to automatically detect three types of eye-related

artefact and a generic discontinuity artefact [1]. However, ADJUST does not detect other

prevalent artefacts such as muscle activities and ECG.
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In this chapter, all the possible artefacts that can occur in normal EEG recordings

are considered: Blink, Saccade, ECG, Muscle and Focal. It was the intention to au-

tomatically detect the highlighted artefacts and remove them from the data based on

a two-layered artefact classification algorithm. The EEG datasets first undergo the ob-

tained optimum pre-processing chain (condition 8) and are decomposed by the AMICA

algorithm. Then, in the post-ICA processing step, the artefactual segments within each

IC are detected by extracting a joint set of temporal, spatial and frequential features

representing artefact characteristics. For each artefact type, a binary classification model

is implemented to detect it. Finally, based on empirically obtained threshold ranges an

entire component is tagged as an artefact and the cleaned EEG can be reconstructed by

removing the detected artefacts.

Although ICA algorithms have been introduced in the last two decades and have

been applied to EEG to identify artefactual ICs, the existing automatic IC labelling

methods can only detect limited artefact types and they consider the whole IC as an

artefact. Knowing that in the EEG recording of each subject, the number of artefact ICs

(e.g. blink) are considerably less than other activity sources, this may result in wrong

detection of neural sources as artefact, due to lack of enough training instances for artefact

IC classification. In the proposed method, this issue is addressed, and the number of

training samples are increased by dividing each IC into multiple segments and classifying

the obtained segments. Therefore, the ICs with the most number of artefactual segments

are labelled as the artefact ICs. This way, the extra option of classifying artefactual

segments rather than the whole ICs, is also provided. It is known that, the ICA algorithms

do not perfectly separate artefact and non-artefact sources and there could be cerebral

information in the estimated artefact sources; thus, removing whole artefact ICs could

raise the risk of losing useful neural information. The proposed segment classification

option may reduce this risk in the desired applications. Additionally, as the system

employs a separate binary classifier for each individual IC, there exist an option to only

remove the artefacts of interest from the data.
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The performance of the proposed method is evaluated and compared with the state-

of-the-art ADJUST method in terms of accuracy of the artefact detection based on visual

inspection, improvement in Signal-to-Noise Ratio (SNR), percentage of artefacts’ energy

removed and changes in the ERP classification accuracy.

4.2 Methodology

As mentioned earlier, the AMICA algorithm is used to decompose the 64 EEG channels

from each subject into 64 ICs. Each of the decomposed ICs can be either artefact or non-

artefact. For each type of artefact, a combination of frequential, temporal and/or spatial

features are extracted. A binary classification model utilising a feature set extracted from

the segments discriminates individual artefactual sources from cerebral sources.

4.2.1 Feature Extraction

Defining an informative feature set associated with each artefact class plays a crucial role

in artefact detection. Different combinations of feature types in temporal, spatial and

frequential domains were assessed to detect and discriminate blink, saccade, ECG, muscle

and focal artefacts. The highest classification accuracy obtained when a combination of

all three types of feature domains were empirically assessed. A knowledge-based approach

to the feature selection is followed, based on the characteristics of each artefact type in

temporal, frequential and spatial domains [190]. Temporal and frequential features are

extracted from the segments; whereas spatial features are obtained via the ICA un-mixing

matrix W in equation 2.2. Henceforth, the selected features for each type of artefact can

be defined as follows:

Eye related artefacts

In terms of electrical potential, the eye is considered as a single dipole with a positive

pole at the cornea and negative pole at the retina. The upward and downward eye
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Figure 4.1: A sample of typical blink artefact; the high amplitude voltages generated by
blinking over time (a); higher spectral power below 5Hz (b); and the effect of blinking on
electrodes positioned in frontal area on the scalp (c).

movements produce positive and negative pulses, respectively. Moreover, the left and

right eye movements generate a negative and positive potential difference at the outer

and inner canthi (corners) of the eye, correspondingly. In addition to eye movements

(saccade), eyelid closure (blink) generates potential changes which are described below

separately.

• Blink artefact: Eye blinks produce rapid and high amplitude voltages, prominently

on electrodes positioned in the frontal area of the scalp. The spectrum of the blink

artefact is dominated by low frequencies [191].

Temporal features: Blink ICs have spiky activation patterns over time (Figure 4.1

(a)). The distribution of activation amplitudes is asymmetric having either positive

or negative skewness.

Hence, the absolute value of skewness, that serves as blink’s temporal feature, |S|,

is defined as follows:

|S| =
∣∣∣∣∣E
[(
S − µS
σS

)3]∣∣∣∣∣ (4.1)

where E is the expectation operator; µS is the mean; and σS is the standard deviation

of component S. Figure 4.2 illustrates the distribution of a manually detected blink

IC that skews from a normal distribution due to its spiky activation over time.

Spatial features: The topography of the eye blink IC has a typical projection pattern

on electrodes positioned around the eyes and in the frontal sites (Figure 4.1 (c)).
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Figure 4.2: Example of a blink IC histogram with a negative skewness of −9.97 compared
to the fitted normal distribution which has skewness of 0. The blink IC was manually
labelled by two independent experts who visually inspected the datasets employed in this
research.

The blink impact decreases from frontal to posterior sites. The spatial distribution

of the blink artefact is symmetric in the frontal site with a similar sign of the

topography weights across both left and right eye areas. For spatial features, the

scalp map is divided into 10 areas corresponding to the brain lobes on the left and

right hemisphere of the brain (Figure 4.3) and the averaged topography weights of

the electrodes in each area is considered as a feature.

The electrodes located on the vertex (i.e. AFz,Fz,Cz,CPz,Pz,POz,Oz) are con-

sidered in both left and right regions in calculating averaged topography weights.

For example, FR (i.e. Frontal-Right) is the spatial feature matching the averaged

topography weights of the electrodes in the frontal lobe in the right hemisphere of

the brain; and is calculated as below:

FR = 1
N

(aFp2 + aAFz + aAF4 + aAF8 + aFz + aF2 + aF4

+ aF6 + aF8 + aFC2 + aFC4 + aFC6 + aFT8)
(4.2)
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Figure 4.3: The subdivisions of the scalp map according to the brain lobes, to be used for
spatial feature extraction to detect artefactual ICs; LF: left frontal, RF: right frontal, LC:
left central, RC: right central, LT: left temporal, RT: right temporal, LP: left parietal,
RP: right parietal, LO: left occipital, RO: right occipital.

where, a... is the topography weight of the electrodes and N is the number of the

electrodes in each of the 10 areas (which is 13 in the example). Since ICA does not

provide the original sign of the estimated sources and signs of the weights, the blink

topography weights in the frontal area could be either positive or negative. To take

this into account, all blink ICs are considered to have a positive sign in this method.

If the sign of the ICs’ weights in the left frontal site (i.e. FL) are negative, the

10 averaged topography weights are multiplied by −1 and their sign is inverted to

positive. Let A ∈ {FR,FL,CR, TR,CL, TL, PR, PL,OR,OL},

A =


A if FL ≥ 0

−A if FL < 0
(4.3)

where A is the averaged topography weights of a region of the brain.

Frequential features: Blink artefacts have a high spectral power below 5Hz (Fig-

ure 4.1 (b)). The power spectral density (PSD) of the ICs, between 0Hz and 39Hz,

is estimated using Welch method [192] with 1second hamming windows and 25%

overlap [193]. The frequency contents of 1 to 39Hz in 1Hz bins are considered as

frequential features.
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Figure 4.4: A sample of saccade artefact; the high amplitude voltage, produced by
horizontal eye movement, over time which decays slowly (a), higher spectral power below
5Hz power (b) and the symmetric distribution of saccadic potentials over left and right
frontal area (c).

Totally, 1 temporal, 10 spatial and 39 frequential features are concatenated to create

a feature vector of 50 features for blink artefact detection.

• Saccade artefact: Saccade artefacts generate high amplitude fluctuations in the

frontal area, as does the blink artefact. However, the amplitude changes are slower

than with the blink artefact (Figure 4.4 (a)). The distribution of saccadic poten-

tials over left and right frontal channels is typically symmetric with different signs

(Figure 4.4 (c)). Like the blink artefact, saccade artefacts have a higher spectral

power below 5Hz than other frequencies (Figure 4.4 (b)). Temporal, spatial and

frequential features extracted for saccade component detection are the same as blink

components.

Muscular artefacts

Muscle artefacts can be caused by physiological actions such as clenching of jaw mus-

cles, chewing and swallowing which commonly generate muscle activities in temporalis

muscles. These artefacts are high frequency activities almost above 20Hz and are mostly

concentrated around few electrodes [194], which are mostly positioned in temporal regions

(Figure 4.5 (c)).

Spatial features: As the muscle sources are mainly concentrated around a few nearby

electrodes (Figure 4.5 (b)), in the topography weight matrix, the weights of a few elec-

trodes are significantly higher than other electrodes. Thus, the columns of the topography
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Figure 4.5: A sample of muscle artefact; high frequency activation of muscle IC over time
a); higher spectral power above 20Hz b); and the concentrated activity of the muscle
artefact around a few electrodes on the scalp c).

weight matrix are sorted in descending order and the first 10 maximum weights are se-

lected. Even if the concentration of the muscle activity is spread across 10 electrodes,

the method is able to consider those muscle sources. The final spatial feature vector Fsp

consists of the selected weights, (a1, a2, . . . , a10), to the power of 1, 2, 3 and 4:

Fsp =
(
(a1

1 a
1
2 . . . a

1
10) (a2

1 a
2
2 . . . a

2
10) . . . (a4

1 a
4
2 . . . a

4
10)
)

(4.4)

The weights are exponentiated to expand the gap between the affected weights by muscle

activity and other types of activities. The reason for using different exponentiated weights

is to non-linearly increase the dimension of features [195] to increase the performance of

the classifier in discriminating the muscle sources from non-muscle sources. When higher

powers (greater than 4) are employed, the small weight values in the range of 0 to 1

tend towards zero. Therefore, due to the curse of dimensionality and to prevent loss of

information, the higher powers, greater than 4, are not selected. As a common strategy,

the optimal number of features is determined by testing the classifier with a different

combination of features [196].

Frequential feature: The frequential features of the muscle activity are the same as

those for blink.

A single feature vector of 79 features is created by concatenating 40 spatial and 39

frequential features to detect sources associated to the muscle artefact.
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Figure 4.6: A sample of focal artefact; the amplitude fluctuations over time due to
displacement of electrodes on the scalp a); the low frequency rhythms b); and topography
c).

Focal artefact

Focal artefacts are the components that correspond to the sudden amplitude fluctuations

in a single channel (Figure 4.6). This type of artefact can be generated by impedance

fluctuations due to the poor contact of electrodes to the scalp, electrode displacement

or electronic device interference [197]. Since the scalp map of the brain sources have

smooth distributions, the sources with the distribution concentrated over a single channel

(Figure 4.6 (a)) are likely to be artefacts [1]. The 40 spatial features of the muscle activity

are considered as a feature vector for the focal artefact.

ECG artefact

Being placed on or near a blood vessel, an electrode can pick up an undesirable signal due

to the expansion and contraction of the vessel, which is known as an ECG artefact and is

normally measured by a cardiograph [95]. ECG artefacts introduce a repeating pattern of

peaks conventionally named as QRS complex [198]; this includes a large amplitude peak,

R. The impulses repeat about once per second, comparable to a normal resting heart rate

of 60−90bpm. The ECG signal has been reported to have higher power spectrum at lower

frequencies (below 50Hz - Figure 4.7 (b)) [199].

Temporal features: According to the spiky activation of the ECG component in the

time domain (Figure 4.7 (a)), the absolute value of the skewness is calculated as a temporal

feature for the ECG artefact. The pattern of the QRS complex in the ECG time series
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Figure 4.7: A sample of ECG artefact component; a repeating pattern of peaks generated
by heart beats over time (a) and higher power spectrum at low frequencies (b).

Figure 4.8: The ECG time series segments marked from 200 ms before and 300 ms after
the R peaks (a) and a sample of the averaged QRS complex as a temporal feature of the
ECG artefact (b).

is considered as another temporal feature. The R peak amplitude and latency, within

the QRS complex (Figure 4.8 (b)), are determined using a peak detection procedure

proposed by Billauer [200]. According to the method, peaks (local maxima) are detected

based on their neighbouring valleys (local minima). The first 5 R peaks within the first

6 seconds of the components’ time series are selected and averaged within 200ms before

and 300ms after the QRS peak (Figure 4.8 (a)). In order to reduce dimensionality of

the features and generalise the proposed ECG artefact detection method with EEG data

recorded at different sampling rates, the averaged QRS complex is resampled from 250Hz

to 100Hz with a rational factor of 2/5. The obtained 50 sample points are used as features

(Figure 4.8 (b)).

Frequential features: the frequential features of the ECG artefact are the same as blink

and muscle frequential features.

Altogether, 51 temporal and 39 frequential features are concatenated to form a single

feature vector of 90 features for ECG source detection.
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4.2.2 Feature Normalisation

In order to eliminate the effect of scaling due to various EEG recording apparatus and

the subjects’ physiological variability, all feature vectors (extracted from segments) in

time, frequency and spatial domains are normalised to a range between 0 and 1. For N

dimensional feature vector F = (f1, f2, . . . , fN), normalisation is done by dividing each

feature’s value by the magnitude of the feature’s vector [201].

‖F‖ =

√√√√ N∑
i=1

f 2
i (4.5)

Fnormalisd = F

‖F‖
(4.6)

where Fnormalisd is the normalised feature vector and ‖F‖ is the Euclidean length of

the N dimensional feature vector F .

4.2.3 Artefact Classification

The main objective of this chapter is to detect and remove the ICs associated with specific

artefacts. There are two levels of classification performed to achieve this: segment− level

and IC − level.

Segment Level Classification

In segment-level classification, components are epoched into 30 seconds segments and

features are extracted from each segment rather than the whole IC. In this manner, it is

possible to only remove the artefactual segments instead of the whole IC, thus retaining

potentially valuable EEG information in the system which could be otherwise discarded.

This also increases the amount of training data available potentially improving classifier

robustness. The average pre-processed data durations are approximately 7 minutes. For

each IC, 15 segments each of 30 seconds, are considered with no overlap. The total amount

75



of segments for each dataset is 960 segments (64 ICs ×15 segments). The length of the

selected segments, 30 seconds, ensures that in each segment at least one occurrence of the

desired artefact is present; for example, the average male and female blinking rate is once

every 5 to 6 seconds [202, 203]. The extracted features then serve as the inputs to the

Naive Bayes (NB) classifier [204].

The Naive Bayes classifier (NB classifier) is a simple probabilistic generative classifier

with the (naive) assumption that features are independent. It assumes that absence or

presence of a particular feature of a class does not imply any information about absence or

presence of any other feature. An NB classifier is not sensitive to irrelevant features, so can

be robust with respect to noise [205]. Also, in contrast to more advanced classifiers such

as Support Vector Machines (SVM), it does not need exhaustive parameter optimisation,

can be trained quickly and requires a small amount of training data to estimate the

class parameters [206–208]. Generally, a Bayesian classifier works in such a way that

it assumes the observation feature vector is generative, considering a parametric model

whose parameters are estimated from supervised training data. Each class is modelled

by a normal distribution using the mean and standard deviation of training instances

in that class. The class with highest probability is assigned to a given (test) feature

vector sequence. For each of k outcomes, it assigns the class Ck with maximum posterior

probability, to a given (test) feature vector sequence V = (v1, v2, ..., vn) representing n

features.

c∗ = arg max
i

P (Ck | v1, v2, ..., vn)

= arg max
i

P (v1, v2, ..., vn | Ck)P (Ck)
P (v1, v2, ..., vn)

= arg max
i

n∏
j=1

P (vj | Ck)P (Ck)

(4.7)

where P (vj | Ck) is the probability of the attribute V = vh given the class Ck and P (Ck) is

the number of training samples belonging to class Ck. The described classifier is employed

76



to distinguish artefactual from non-artefactual segments. Each type of artefact is treated

individually with an NB classifier.

Source (IC) Classification

Artefactual ICs are detected based on the outcome of the segment classification. Each of

64 ICs consists of 15 segments with the length of 30 seconds from which, for each type

of artefact individually, the features are extracted and classified by NB. The NB classifier

allocates two probability values (posterior-probability) to each segment, indicating the

likelihood of a segment belonging to artefact or non-artefact classes. For each IC, the

probabilities of its corresponding 15 segments belonging to artefacts are added in order to

create a score for that IC. The ICs can obtain a score between 0 and 15. ICs scoring higher

than a specified threshold are identified as artefacts. Therefore, even if all 15 segments

of an artefactual IC are not detected correctly, the whole IC could be detected as an

artefact, based on the score obtained for that IC. The optimum value of the threshold is

determined empirically by generating a Receiver Operator Curve (ROC) (see section 4.3.3

and Figure 4.10).

Figure 4.11 shows the distribution of IC scores of a subject for different types of

artefacts.

4.3 Evaluation Criteria

With the aim of validation and having a ground truth, first, all of the artefactual ICs are

manually labelled. Next the proposed artefact classification method is evaluated using

several metrics: - True Positive Rate, True Negative Rate, Balanced Accuracy, Receiver

Operator Curve (ROC), Signal to Noise Ratio, Relative Variance (RV) and the accuracy

of Event Related Potential (ERP) classification.
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4.3.1 Visual Inspection

For the ground truth, the ICs were manually labelled in a blind procedure by two inde-

pendent experts who were familiar with EEG analysis and decomposition by ICA. Each

expert visualised a total of 640 ICs by inspecting the IC time series of the average length of

7 minutes, IC topographies and power spectrum, via an EEGLAB software package [172].

Each expert was asked to label the 5 classes of artefact. The ground truth, including

202 ICs, was created by considering the ’in-common’ voted artefactual ICs between both

experts’ classification. The level of agreement between classifications performed by the

two experts was 97.5% on all artefacts. In total, 10 ECG, 10 blink, 10 saccade, 40 muscle

and 132 focal ICs were classified among the 640 ICs presented to the experts.

4.3.2 Balanced Accuracy

To evaluate the proposed artefact classification method, True Positive Rate (TPR) and

True Negative Rate (TNR) are selected. TPR and TNR are used, because in addition to

the importance of correct artefactual segments/ICs’ detection for cleaning EEG data, the

accuracy of the method in detecting the non-artefactual segments/ICs is also important.

The non-artefactual sources may contain cerebral information, so miss-detection and re-

moval of non-artefactual sources may result in losing useful cerebral information. TPR

(sensitivity) and TNR (specificity) are calculated based on the confusion matrix [209]:

Sensitivity = TP

TP + FN
(4.8)

Specificity = TN

TN + FP
(4.9)

where, TP and FP are respectively, the number of true artefacts and non-artefacts

identified as an artefact. Also, TN and FN are respectively, the number of true non-

artefacts and artefacts identified as a non-artefact. Additionally, due to imbalanced
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classes, one can suggest the use of weighted accuracy, where the important class is weighted

more than the other class. However, in this experiment the importance level of both the

artefact and non-artefact classes is the same (i.e. wrong detection of artefact and non-

artefact sources may lead to keeping artefact sources in the data and to losing cerebral

information, respectively). Therefore, Balanced Accuracy (BA) is selected as an addi-

tional measure, which is the average of sensitivity and specificity and unaffected by class

skew [210]:

BalancedAccuracy = (Sensitivity + Specificity)
2 (4.10)

The BA is calculated for each subject and each type of artefact separately. The

method’s BA for each artefact is obtained by averaging BA over all subjects.

4.3.3 Receiver Operator Curve

The Receiver Operator Curve (ROC) is a plot of TPR against 1−TNR; it indicates the

robustness of the binary classifier to changes in its parameters, specifically the threshold

value of the classifier’s decision boundary. Changing the threshold of the classifier results

in various TPR and TNR values which are illustrated as the ROC. The area under the

ROC curve (AUC) is an important value as it demonstrates the overall classification

accuracy of a binary classifier. The AUC value ranges from 0.5 for an uninformative

model to 1 for perfect discriminating ability of the evaluated classifier [211].

4.3.4 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is calculated using the following method. After removing

the artefactual ICs which are labelled as artefacts in the ground truth, the reconstructed

cleaned data, EEGGT , is taken as the original signal, Signal = EEGGT . Similarly, the

identified artefactual ICs by the proposed method are removed from the data and the

new cleaned data is obtained, EEGsys. The difference between these two cleaned data
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is considered as the noise signal, Noise = EEGGT − EEGsys. The power of the signal,

PSignal, and noise PNoise, is calculated for each channel;

SNRsysi
= PSignali
PNoisei

=
P(EEGGTi

)

P(EEGGTi
−EEGsysi )

; i = 1, 2, 3, ..., N (4.11)

where, N is the number of EEG channels and SNRsysi
is the SNR obtained for the ith

channel after the proposed artefact removal method is applied. In the experiment here

there are 62 EEG channels and two ECG and EOG channels; thus, in this case N = 62.

The system’s total SNR, SNRsys, is obtained by calculating the average of the pairwise

ratio between the signal and noise of all the EEG channels.

SNRsys = 1
N

N∑
i=1

SNRsysi
(4.12)

The same procedure is applied when the difference between cleaned (by visual inspection)

and raw data is considered as noise (i.e. Noise = EEGGT −EEGraw). The obtained new

SNR is subtracted from the system SNR and a differential SNR, SNRDiff , is obtained.

SNRDiff = SNRsys − SNRraw (4.13)

The larger SNRDiff the better the performance of the proposed method. If the value of

SNRDiff is less than zero (negative differential SNR), it represents deterioration in the

quality of the EEG data.

4.3.5 Relative Variance

The Relative Variance (RV) represents the ratio between the variance of the ICs’ time

series that are correctly labelled as an artefact by the proposed method and the variance

of artefactual ICs labelled in the ground truth. The RV is calculated for each type of

artefact separately (e.g. RV of detected eye-related artefacts) and all artefacts together
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(i.e. RV of all types of artefacts):

RV =

∑
i ∈ CorrectICs

vi∑
i ∈ GT

vi
(4.14)

where, vi indicates the variance of the time series of the ith component, and CorrectICs

is the list of ICs which are labelled correctly by the proposed method. The underlying

principle of this RV is that the more the variance is explained by the IC, the more it is

important to correctly classify that IC as either artefact or non-artefact. The amount

of variance explained by sources which are incorrectly classified as an artefact are also

considered, relative to the total variance of all ICs. This indicates the importance of

non-artefactual sources, which are detected as an artefact and the amount of information

they provide in the data. This measure is similar to that used by Mognon et al. [1] with

the difference that it considers the variance accounted for by the labelled artefactual ICs

in the ground truth, not all the ICs in the data.

4.3.6 Event-related Potential Classification

Another metric to evaluate the performance of the method for artefactual segment and

component removal, is ERP detection accuracy. The efficiency of the method in recon-

structing artefact-free EEG data is assessed by calculating the ERP detection accuracy.

The method used for single trial ERP detection by Ghaderi [210] is employed to evalu-

ate the performance of the proposed method in detecting and removing the artefactual

components. The ERP is calculated for 4 channels by the human-based channel selec-

tion method: O1, O2, P7 and P8, which are manually selected based on the knowledge

of the activated brain regions with respect to the visually stimulation paradigm in this

research [116].
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Pre-processing

For the ERP analysis the datasets are cleaned by removing the artefactual components

detected by the proposed artefact removal method. After removing the artefactual com-

ponents, the cleaned EEG datasets are reconstructed and band-pass filtered at 0.1−4Hz.

Feature Extraction

The ERP samples 60−500ms after the S1 stimulus onset are considered as target (ERP).

No-target (noERP) samples are extracted from 1060−1500ms after S1 stimulus onset, in

which there is no stimulus response. So 90 ERP and 90 noERP samples with 440ms length

are extracted for each of the 4 selected channels, the mean of each epoch is subtracted

and its variance is normalised to 1. Then, the extracted samples are resampled again from

250Hz to 125Hz which provides 55 features.

ERP Classification

At this stage, the extracted features are used to train an NB classifier for ERP detection.

An NB classifier is allocated for each channel, separately. The posterior probabilities

obtained from the NB classifier for each segment are multiplied over all 4 channels for

both ERP and noERP classes, individually. Segments are labelled according to the class

which has the highest probability.

4.3.7 Cross Validation

A 10−fold cross validation, leave-one-out method, is used for evaluating the performance

of the method for artefactual segment and IC detection as well as for ERP classification.

Under the cross validation assumption, there are 10 iterations (folds); at each iteration

the feature vectors of a fold are taken as testing data and all other feature vectors (9 folds)

are taken as training data. After the last iteration, the desired performance measures are

averaged over all 10 folds.
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The dataset used in this study includes EEG recording of 10 individual subjects. For

artefactual segment and IC classification, the feature vectors extracted from each subject

is taken as a fold. Thus, at each of the 10 iterations, the feature vector of a subject is

taken as a test and the feature vector of the other 9 subjects are taken as training data.

Therefore, the artefact classification method’s BA for each artefact type is obtained by

averaging the obtained BAs at all 10 iterations. The 10−fold cross validation is used for

evaluating the BA of ERP classification for each subject individually. At each fold, the

feature vectors of a single subject were used to create the training and testing datasets

using the leave-one-out method. Thus, the obtained BAs were averaged over all 10 subjects

and the final BA is reported.

4.4 Results Analysis

The accuracies of the method in detecting artefactual segments and ICs, named Pro-

posed_method_Seg and Proposed_method_ICs respectively, are reported and compared

to the state-of-the art ADJUST method, in terms of the BA, SNR, RV and ERP detection

accuracy. The statistical significance of the results is obtained by performing simple t-test

at p<0.05.

4.4.1 Artefact Classification at Segment-Level

Figure 4.9 illustrates the averaged BA of the method in separating artefactual and non-

artefactual segments for each type of artefact. The obtained BA values for all types

of artefacts are greater than 90% (with low variance), except for saccade. The highest

accuracy of the method in the classification of contaminated segments is obtained for

ECG artefacts (averaged BA = 98.09 ± 0.0072%). This could be due to the periodic

characteristic of the ECG waveform that occurs frequently in each 30 second segment of

an ECG IC (Figure 4.7). Therefore, based on the type of the features extracted to detect

ECG, the proposed method could successfully discriminate between ECG and non-ECG
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Figure 4.9: The averaged BA of the proposed method in detecting artefactual segments
classified as blink, ECG, muscle, focal and saccade. The error bars represent variance
across subjects.

segments. The segments contaminated by blink and muscle activities are also detected

with high BA (almost 95%). The remarkable characteristics of blink artefact (periodic

waveform with strong peaks and specific spectral pattern) and muscle artefact (spectral

and spatial topography patterns) and the appropriateness of the extracted features could

distinguish between blink and non-blink, muscle and non-muscle segments. The BA for

detection of focal segments from non-focal segments in the data is lower than BA for

muscle and blink segments. The prevalent characteristics of the focal artefact is its spatial

pattern; while blink and muscle artefacts have specific distinguishable patterns in the time

and frequency domains. Nevertheless, the proposed method could successfully detect

ECG, blink, muscle and focal artefacts with above 90% accuracy and low between-person

variations. In contrast, the classification of saccadic segments obtained the lowest BA and

highest variance (averaged BA= 86.74 ± 0.0313%) among the other four artefacts. The

reason for this could be rare occurrence of saccadic activities in the data (within saccade

sources). The experiment was performed under controlled conditions and similarly to

common EEG recordings, the participants were asked to avoid eye movements as much as

possible during EEG acquisition. However, saccadic eye movements occurred rarely and

involuntary in the data. Consequently, all 30 second segments of the saccade ICs do not

contain the saccadic peak in the time domain and the BA value and the between subject

variation for saccade is lower and higher than for other types of artefacts, respectively.

Despite the fact that all contaminated segments by each type of artefact are not detected
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Table 4.2: The threshold ranges including the highest value of BA obtained for classifica-
tion of each type of artefact, according to the ROC curve in Figure 4.10; and the optimum
single threshold value associated to the highest BA selected for each type of artefact.

Blink ECG Muscle Focal Saccade
Optimum
Threshold (%)

50 70 35 75 6

Threshold
Range (%)

33.2 to 53.3 60.1 to 73.4 33.1 to 36.7 74.1 to 75.5 5.6 to 6.6

BA Values (%) 100.00 ±0 99.92
±6.3×10−6

97.29
±5.84×10−4

96.18
±0.001

95.64
±0.003

perfectly (100%), the proposed method performs effectively in the separation of artefactual

and non-artefactual segments.

4.4.2 Artefact Classification at IC-Level

Figure 4.10 shows the TPR and TNR of IC classification for different values of threshold

applied on ICs’ scores. As the value of the threshold increases from 0 to 100, TPR

decreases gradually while TNR increases. The perfect ROC curve displays 100% TPR

and TNR; or AUC = 1. The AUC obtained for blink is equal to 1, while for ECG

AUC = 0.99, close to perfect. The obtained AUC for muscle, focal and saccade are

still relatively high, AUC = 0.98, 0.96, 0.97, respectively. The graph is produced with no

interpolation with a very high density of data point

Table 4.2 shows the optimum classifier threshold values for the highest possible BA

obtained. The BA is 100% for blink (while the lowest BA is for saccade (95.64%). All

artefact types are detected correctly with BA values above 95% and low between-person

variance (instances of the detected artefacts can be found in Appendix B). The threshold

range for each type of artefact represents the system’s reliability and stability in which

the highest BA remains the same. The optimum thresholds are selected based on the

ROC curves, with highest values of TPR and TNR.

The results of the BA (Table 4.2) and ROC curves (Figure 4.10) show the improve-

ment of all BA values for artefactual IC detection relative to the artefactual segment
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Figure 4.10: ROC curves showing the TPR and TNR of the proposed method in blink,
ECG, muscle, focal and saccade IC classification, when different thresholds are used for
artefactual IC detection. The threshold values varied between 0 to 1, with 0.001 steps.
The ROC curve associated to ECG artefact superimposed on the blink ROC curve.

classification.

Figure 4.11 shows the distribution of IC scores of all 10 subjects for the blink artefact.

The red line represents a specific threshold value for blink IC detection. The ICs whose

scores are above the threshold (to the right side of the red line) are detected as an artefact.

The distribution of IC scores for other types of artefacts can be found in Appendix C.

Generally, the proposed method could identify the artefactual ICs associated with each

type of artefact with high BA (above 95%) and AUC (above 0.96). The between-subject

variation for each type of artefact is negligible, which shows the method’s stability for

artefact detection.

Despite other ICA-based artefact removal methods that have used only a single thresh-

old for separating artefacts and non-artefacts, the proposed method also introduced a

threshold range in which the highest BA values remain the same. This may refer to the

reliability of the method when applied to other datasets. It also suggests easier estimation
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Figure 4.11: The distribution of IC scores for all subjects are shown for blink artefact.
The ICs are labelled and classified as an artefact if their scores are above the threshold
value (red solid line).

of a threshold that has near optimum performance for a wide range of values. It is shown

that the artefact type with a higher BA has a larger threshold range, representing more

stability of the method in detecting the corresponding artefact type.

4.4.3 Comparison with ADJUST

Figure 4.12 illustrates the BA for the three artefact types (blink, saccade and focal arte-

facts) held in common, individually, all types of artefacts in each method and all the

three communal artefacts together. In this experiment there is only one blink compo-

nent in each subject’s recording, which are detected by the proposed method successfully.

Similarly, the ADJUST method detected most of the blink artefacts (BA= 99.28%). For

saccade ICs, the ADJUST BA is 4.85% lower (statistically insignificant) than the pro-

posed method’s BA with a larger between-person variation. This refers to the weakness

of ADJUST method in detection of some saccade ICs, where there exists more than one

saccade IC in the data of a single subject. There are several components associated to

focal artefacts in each data which are relatively more than blink and saccade ICs. Some

focal ICs are not detected by ADJUST and it achieved 34.46% lower BA than the proposed

method for focal artefacts, which is statistically significant (p = 0.0001). The between-
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Figure 4.12: BA of the proposed method (Proposed_method_IC) in detecting the arte-
factual components compared with ADJUST; individual artefacts held in common by the
proposed method and ADJUST, all types of artefacts in each method, and all communal
artefactual components in both methods.

Table 4.3: Comparing the proposed method (Proposed_method_IC) and ADJUST based
on the explained variance by the true detected artefactual ICs, relative to the ground truth
(True Acceptance - TA) and the percentage of the variance thrown away by removing the
detected ICs as an artefact from the data using the proposed method and ADJUST (False
Acceptance - FA). The best results are highlighted in bold.

Blink ECG Muscle Focal Saccade All Artefacts
TA FA TA FA TA FA TA FA TA FA TA FA

Proposed_method_IC
(RV%) 100 0 100 2.70 100 3.01 95.31 2.69 98.58 3.83 97.39 4.36

ADJUST (RV %) 100 13.62 — — — — 30.31 3.09 86.38 0.84 54.38 4.86

subject variation obtained by ADJUST is larger than the proposed method in most cases

except for blink detection. The performance of the ADJUST method decreased when the

number of artefactual sources is increased in the data. In the case of all types of arte-

facts and communal artefacts, the ADJUST BA is significantly lower than the proposed

method (p = 0.0001). This could be due to the unsuccessful detection of focal artefacts

by the ADJUST method.

Table 4.3 represents the averaged percentage of the variance accounted for (RV) by

the artefacts labelled by this method and ADJUST relative to the ground truth, for each

individual type of artefact and all artefacts together. It is more important to correctly

classify ICs with larger RV (contribution). On one hand, if the ICs with large RV are
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artefacts, they contaminate the data, so they should be correctly labelled and their effect

should be removed from the data. On the other hand, if the ICs with large RV are

non-artefact or cerebral, keeping these sources in the data is crucial in order to prevent

information loss.

The aim of comparing both methods is to assess their ability and performance in

detecting all defined types of artefact. The proposed method obtains 100% of the explained

variance by blink, ECG and muscle sources; 98% of the explained variance by saccade;

and 95% by focal artefacts, relative to the ground truth’s sources. ADJUST detects

100% of the explained variance by blink sources. However, the explained variance by the

saccade sources correctly labelled (True Acceptance - TA) by ADJUST is significantly

lower (almost 12%, p = 0.02) than by the proposed method (98.58%). The RV obtained

for the true focal sources detected by ADJUST is the lowest (30%), which is significantly

lower than the proposed method (p = 0.0001). When considering all types of artefacts

together, the explained variance of the correctly labelled artefactual sources detected

by the proposed method is 97.39%; which is significantly higher than ADJUST (43%,

p = 0.0001). The proposed method detected almost all the artefactual ICs and the ICs

with a high level of contribution (RV) correctly, in both cases of the individual artefact

types and all artefacts which are labelled in the ground truth. However, the explained

variance of the artefactual ICs detected by the ADJUST method is significantly lower than

by the proposed method (p = 0.0001), relative to the ground truth in cases of saccade,

focal and all artefacts; as all these artefact sources could not be detected by ADJUST

and their variance remained in the data.

Regarding the non-artefactual sources which are classified as an artefact (False Ac-

ceptance) by the proposed method and by ADJUST, the explained variance obtained for

both methods is almost the same (approximately 4%) for all artefacts together. However,

different RVs are obtained when individual artefacts are considered. Using the proposed

method, the largest amount of information loss is attained for incorrectly detected sac-

cade sources (about 4%) and then for muscle and focal sources (about 3%). The residual
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Figure 4.13: The averaged BA of the ERP classification for the Raw, cleaned data when
removing artefacts labelled in the ground truth (Ground truth), by the proposed method
(Proposed_method_IC and Proposed_method_Seg) and ADJUST method.

variance accounted for by the incorrectly detected ECG sources by the proposed method

is less than 3%, which is unlikely removed from the data by removing those sources. How-

ever, the residual variance for incorrectly detected blink sources is zero as there were no

non-blink sources detected as blink by the proposed method.

When ADJUST is applied, about 13% of data information would be lost for incorrect

blink detection. The RV for incorrectly detected saccade sources by ADJUST is about 3%

less than by the proposed method; while for focal artefact it is similar (approximately 3%).

Figure 4.13 depicts the BA of ERP detection for no artefact removal (Raw), in contrast

with the same results using the ground truth, ADJUST, and the proposed method (i.e.

segment removal and IC removal). Removing artefacts in the ground truth resulted in the

highest ERP detection rate (67.98%), as shown in the figure; which can confirm the valid

labelling of artefactual ICs in the ground truth. The ERP classification BA obtained by

removing the whole artefactual ICs detected by the proposed method (67.37%) is improved

insignificantly compared to the raw data, but lower than the ground truth (p>0.05). The

reason is that although artefactual ICs, detected by the proposed method, are removed

from the data some artefacts are not detected correctly and remained in the data. There is

a negligible difference in the performance of the proposed method when only artefactual

segments are removed (67.03%), compared to when whole ICs are removed. This may
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refer to the artefactual segments remaining in the data which were not detected by the

proposed method. The ADJUST method achieved 66.36%, which is insignificantly lower

(p>0.05) than the raw data. This might be due to the remaining artefactual ICs and

incorrectly removed cerebral information from the data. This is not elicited in the BA

values obtained in artefactual IC detection, because the number of non-artefactual ICs

is more than the artefactual ICs in these experiments. However, it can be confirmed

by the obtained result in the SNR evaluation. The SNR is increased by 8.60 dB when

removing the artefacts detected by the proposed method; while it is reduced by 9.96 dB

when detected artefacts by the ADJUST method are removed from the data.

Generally, the differences between BA values of the ERP classification calculated from

the cleaned data by removing artefacts labelled in the ground truth, the proposed method

and ADJUST, presented in Figure 4.13, are statistically insignificant.

4.5 Summary

In this chapter, a fully automated EEG artefact labelling method is proposed to maximise

the performance of the EEG signal processing chain. The proposed method (Figure 4.14)

detects the common artefact types in EEG data (blink, saccade, muscle, ECG and fo-

cal) with balanced accuracies above 95% and low between-person variation. The method

identifies not only the artefactual components but also the segments contaminated by

artefacts. Whilst other ICA-based artefact removal methods determine a single linear

threshold for artefact classification, a range of thresholds with high BA are introduced to

cover all artefact types, which can suggest the reliability of the method. This may poten-

tially assist in generalising the proposed method with other EEG applications. Although

the proposed artefact removal method showed a good performance in the classification of

artefactual segments and improved ERP classification rate, compared to the ADJUST, it

did not performed as well as the whole IC classification. This could be due to the imper-

fect labelling of the artefactual segments in the gold standard. In the gold standard, the
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Figure 4.14: Block diagram of the proposed automatic artefact detection method. First,
the ICs are segmented and the features (described in section 4.2.1) are extracted from
each segment. Then, the segments are classified into artefact and non-artefact. Based on
the result of this classification, artefact ICs are scored and detected. Finally, the detected
artefact ICs are removed and the cleaned EEG, X ′ , is reconstructed.

label of all segments within each artefact IC is the same as the corresponding artefact IC.

However, in the case some artefacts such as saccade, there could be only a few saccadic

segment and all the other segments are non-saccade. Thus, considering all the segments

as saccade could misguide the artefact segment classifier, and decrease the reliability of

artefact segment classification.

Overall, the proposed method compares favourably with the state-of-the-art ADJUST

method in terms of percentage of correctly classified artefactual ICs, removing the variance

explained by artefacts from the data, the SNR of the cleaned data and ERP classification.

The main reason for the good performance is the consideration of data pre-processing

conditions on the ICA source decomposition and artefact detection, coupled with the

knowledge driven from the feature selection method with artefact features in time, fre-

quency and spatial domains proposed.
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“There is no knowledge and science

like pondering and thought; and

there is no prosperity and advance-

ment like knowledge and science.”

Imam Ali ibn Abi Talib (PBUH)

5
ENHANCED BLINK ARTEFACT

REMOVAL VIA SPARSE SIGNAL

COMPONENT ANALYSIS

5.1 Introduction

In Chapter 4, the common EEG artefacts, including blink, were automatically detected

using ICA. Then, according to the conventional use of ICA, the entire ICs which identified

as artefacts were removed to obtain the cleaned EEG data. Among the EEG artefacts,

blink has been reported to be considerably more significant than the others [1,50,212–217],
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and some studies are mainly targeted at blink artefact removal from the EEG data [162,

218–223]. This is due to the fact that, eyelids can be considered as one of the closest

muscles to the scalp and, as mentioned in section 4.2.1, eyelid closure (i.e. blinking)

produces tremendous amplitude in the EEG signal [224]. Additionally, the occurrence of

the blinks in the EEG recordings is inevitable and subjects could not completely avoid

blinking.

Conventional artefact removal methods were discussed in Chapter 2 section 2.5 and

their advantages and disadvantages were outlined. Among those methods, ICA has been

successfully employed to remove the blink artefact. However, its performance is not

impeccable due to bidirectional interference of blink IC and EEG [185, 214], which leads

to the loss of some useful cerebral information when the whole artefactual sources are

removed.

The epoch-based method, as a basic approach to remove artefacts, has been used in

several studies [225–229] to reject the epochs of multichannel EEG data that are con-

taminated by blink artefacts, by setting a predefined threshold value [224, 230]. The

epoch-based method requires the detection of epochs contaminated by blink artefacts

by calculating either some statistical measures such as kurtosis [143, 231] or correlation

between EEG channels and the reference EOG channel [232,233]. However, a major draw-

back of epoch-based methods is the great loss of brain information which are buried in

the rejected epochs.

Recently, Sameni et al. [2] demonstrated the separation of the ocular artefact was

improved based on generalised eigenvalue decomposition in an iterative procedure. In

this method, named DEFL, the EOG reference channel is used to detect the EOG and

non-EOG segments in the EEG data by calculating the power of the signal within a

moving window. Using generalised eigenvalue decomposition and wavelet denoising, the

effect of blinking is reduced in an iterative procedure up to a satisfactory level.

In this chapter, the proposed artefact removal method (presented in Chapter 4) is

further improved when targeting only blink as a major artefact contaminating the EEG
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data. In contrast to the conventional use of ICA, where it is desirable to detect and

remove the whole artefactual sources, only the blink segments of the blink ICs need to

be removed for the blink artefact enhancement. Inspired by the DEFL method and by

combining ICA and the epoch-based method mentioned in section 2.5, two methods are

proposed to further enhance the blink artefact removal. As a consequence, the information

loss both by ICA, due to the bidirectional interference of the blink IC and EEG, and by the

epoch-based method, due to the rejection of the contaminated segments of multichannel

EEG, is minimised. To this aim, first the blink ICs are detected automatically by the

method proposed in Chapter 4. Then, in contrast to the conventional epoch-based method

which is applied to multichannel EEG, the epochs including blinking are detected within

the blink IC. Finally, the effect of blinking in the detected epochs is eliminated by means

of two methods: time masking, and regression-based Sparse Component Analysis (SCA);

then the cleaned EEG data is reconstructed. Two sets of simulated and real data are

used to evaluate the proposed artefact removal approaches. The results of both proposed

methods are compared to the DEFL method in terms of the normalised residual variance

and BA of the ERP classification.

5.2 Methodology

In this section, two methods for blink artefact removal are presented. In both the pro-

posed methods, first the AMICA ICA algorithm is applied to the EEG data to separate

sources corresponding to the blink artefact from non-blink sources. The blink ICs are

then detected by the automated artefact removal method proposed in Chapter 4, which

was called Proposed_method_IC. Within the blink ICs, the data segments in which blinks

occurred are detected by estimating the signal power within a sliding window. According

to the first method, called Time Masking, the sample points of the blink segments in

the blink ICs are set to zero and all other samples are kept intact. The cleaned EEG

data is then reconstructed. In the second method, the blink signals estimated by SCA
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Figure 5.1: Diagram of the proposed methods for removing the blink artefact from the
data.

are regressed out from the blink segments. Finally, the obtained results are reported and

compared with the employed DEFL method. The proposed methods are overviewed as a

digram in Figure 5.1.

5.2.1 Blink Segment Detection

According to the previous studies [162,234,235], blinking produces large amplitude peaks

in the data with a duration of less than 500ms [220,236]. In order to detect blink segments

(i.e. the intervals that blinks occurred in the data), the average power of the blink ICs’

samples is calculated over a 500ms moving window, which is shifted over a sample at a

time, after removing the mean of the signal. This method is similar to that in the DEFL

method:

P (t) = 1
L

L
2∑

l=−L
2

blink(t+ l)2 (5.1)

Where L is the discretised length of the moving window defined as:

L = window length× sampling frequency (5.2)

The lower boundary of the blink segments is considered as the time that the calculated

power, P (t), exceeds a predefined threshold. Similarly, the upper boundary is when P (t)
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Figure 5.2: Sample of blink IC time series a), and the averaged power of the blink IC, red
signal, to detect blink segments, blue squares b). The dashed line represents the threshold
to separate blink and non-blink segments.

drops below the threshold value. The optimum threshold value is selected to be 50µV as

previous studies have shown that the blink has a minimum amplitude of 55µV [237]. As

a measure of percussion, any detected segments smaller than 50ms are not recognised as

blink regarding the fact that typical blink duration is normally longer than 50ms [220,236].

Figure 5.2 shows a sample of a blink IC time series (Figure 5.2 (a)) and the averaged

power calculated to detect the segments including blink (Figure 5.2 (b)).

5.2.2 Method-1: Time Masking

In the epoch-based method, rejecting the contaminated epochs of data result in consid-

erable loss in the amount of data available for analysis, especially when the blinks occur

frequently in the data [238,239]. Time masking works in a similar way; however, instead

of rejecting EEG channels, the contaminated segments of the blink IC are nullified. The

motivation comes from the fact that, on the one hand, EEG is a sum of the weighted
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source signals of the brain which is collected at each electrode site on the scalp. There-

fore, rejecting a segment of the multichannel EEG data can be regarded as the loss of a

mixture of source signals of the brain. On the other hand, the BSS and ICA algorithms

are aimed to separate the constitutive EEG sources. Thus, rejecting a segment of an IC

(e.g. blink IC) may leads to nullifying the specific source signal of interest in that IC.

However, the source separation by the BSS and ICA is reported to be imperfect [240,241],

which implies that the sources identified as artefacts (i.e. blink) may include both cere-

bral and non-cerebral information. Accordingly, in contrast to the typical application of

ICA, where the entire blink ICs are being removed, it is suggested to only remove the

blink segments and the EEG activity in all other segments, which may include cerebral

information, is kept intact.

The time masking procedure is applied as follows:

Si(t) =


0 if t = tblink

Si(t) otherwise
(5.3)

Where, Si(t) is the ith source identified as blink, and tblink is the time samples (within

blink segments) where blinking occurred in the data.

5.2.3 Method-2: Regression-Based SCA

In the time masking method, the blink segments were completely removed by setting the

samples to zero. Here, the blink artefact removal is further developed by only removing

the effect of artefacts arising by blinking within the blink segments.

In this method, SCA is applied on the detected blink segments, described in sec-

tion 5.2.1, to decompose the signals in the blink segment into blink and non-blink wave-

forms (signals). Then, the effect of blinking is removed by regressing out the SCA esti-

mated blink waveform. In this section, first the principles of SCA are given followed by

its implementation in this study.
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Sparse Component Analysis

SCA belongs to the BSS family which utilises sparse representation to decompose the ob-

servation signals into multiple sources [242,243]. The concept of SCA was first introduced

by Lewicki and Sejnowski [82], since then SCA has become a research hotspot.

Despite ICA, the main advantage of SCA is that it can deal with the under-determined

problem, where the number of sources is more than the sensors [244–246]. Also, if under-

lying sources have Gaussian distribution or are dependent, they can be estimated by the

SCA method. Therefore, in this study SCA can be used to decompose the blink segment

in to blink and non-blink waveforms.

Based on the BSS equation outlined in section 2.1, the aim of SCA is to estimate the

mixing matrix A and to extract sources S under the sparsity condition of the sources;

which implies most samples in the source signals are nearly zero and just a few samples

have significant values. Several definitions have been made on the sparsity of a vector;

such as the iteration optimisation approach [247] that iteratively finds an optimal solution.

Based on this approach, the source matrix S of the SCA model X = AS, is assumed as

a linear mixture of a small set of predetermined signals from a much larger set of signals,

called a dictionary [248,249]:

Φ = (φγ : γ ∈ Γ) (5.4)

Where Φ represents the dictionary and φγ is an individual waveform in that dictionary.

Using this dictionary, the decomposition of a signal S of length N can be expressed as

follows:

S =
∑
γ∈Γ

αγφγ (5.5)

Where αγ is an unknown weight and φγ is a waveform in the dictionary.

In practice the SCA algorithm may not decompose the original signal precisely [250].

Therefore, an approximate decomposition, by considering a noise R, can be defined as
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follows:

S =
∑
γ∈Γ

αγφγ +R = Φα +R (5.6)

Where R represents some residual error vector for the decomposition process and it should

be as small as possible or below a specified threshold.

To measure the sparsity of the signal, the l1 norm, ‖...‖1, is employed in this study

[251]:

‖α‖1 =
N∑
i=1
|αi| (5.7)

The principle of the method is to find the source waveforms, which lead to the sparsest

solution (i.e. the lowest l1 norm), by an optimisation process such that the residual error

is minimised:

min ‖α‖1 subject to ‖Φα− S‖2 ≤ ε (5.8)

Where ε is a user specified parameter (minimum error).

Artefact Removal

For sparse decomposition, the source signals contributing to the mixed signal within the

blink IC should be predetermined and modelled. It is assumed that the signals within the

blink segments are blink and non-blink (e.g. cerebral) sources which are linearly mixed.

A DC drift is also considered for the mixed signal within the blink segment, which causes

it to be shifted. The shape of the blink signal (peak) is similar to a Gaussian distribution

and so it can be modelled by a set of Gaussian waveforms [252].

DC drift is characterised with a low frequency dominance, and can be modelled by a

set of low-frequency sine and cosine waveforms [253]. The non-blink signal (cerebral) can

be considered as an additive noise to the blink signal, and can be modelled by an identity

matrix to reflect and fit to the remaining data. Therefore, the mixed signal within the

blink segments can be decomposed into three types of parameterised waveforms.

The above predetermined source signals, φγ, form the dictionary Φ (Equation 5.4). At
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each iteration a sum of the weighted source signals in the dictionary is obtained and the

residual error in Equation 5.4 is calculated. The optimum estimation of the sources is

achieved when the sparsest solution leads to the minimum error.

Once the sources are estimated, the blink signal waveform is regressed out, by sub-

tracting the Gaussian model of the blink from the blink segments. The blink artefact-free

data is then obtained by backprojecting the remaining signals. In this manner, the EEG

activity within the blink segments is preserved.

5.3 Evaluation

The performance of the proposed blink artefact removal methods, time masking and

regression-based SCA, are evaluated by means of the simulated and real data. The eval-

uating performance measures are described in section 5.3.3.

5.3.1 Simulated Data

The simulated data contains both normal ongoing EEG activity and the blink arte-

fact. First, the normal EEG is generated based on Multivariate Autoregressive model

(MVAR) [254] as employed in [2]. Then, the EOG signal, which contains blink peaks, is

simulated by mixing a set of Gaussian waveforms. Finally, the normal EEG and blink

waveform are combined to generate the simulated EEG contaminated with the blink arte-

fact. Details of the generating normal EEG and blink artefacts are given in the following

sections.

Ongoing EEG Activity

Using the MVAR model, the ongoing EEG activity can be represented as the weighted

linear combination of a previous EEG observation plus a random uncorrelated input:

EEG(t) = −
p∑
i=1

AiEEG(t− i) + e(t) (5.9)
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Figure 5.3: A sample of 9 channel EEG data generated by MVAR model with order of
p = 8, within 5s time interval.

Where, EEG(t) is a n-dimensional discrete (sampled) EEG signal, recorded at n

channels, at time t, and e(t) is a n-dimensional vector of unknown uncorrelated random

variables with mean of zero, randomly selected from the uniform distribution U(−1,+1).

A(i), for i = 1, ..., p is the n × n matrix of auto-regression coefficients, which are

randomly selected from the uniform distribution U(−0.25,+0.25) (i.e for all i, A(i) ∼

U(−0.25,+0.25)) [255]. The value of p represents the order of the MVAR model, which

refers to the number of preceding EEG samples to be combined to generate each sample of

the ongoing EEG activity. The output of the MVAR model is assumed to be artefact-free

normal EEG data.

Figure 5.3 depicts an instance of 5s of EEG data with 9 channels (n = 9) outputted

from an 8 order (p = 8) MVAR model with 250Hz sampling rate. The output of MVAR

is considered as being similar to normal ongoing EEG data. The real EEG recording is

a mixture of different activities originating from cerebral and non-cerebral sources, which

can be separated by ICA. However, as the main focus of this experiment is to remove the

effect of only the blink artefact segments within the blink IC estimated by ICA, it is not
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Figure 5.4: The simulated blink modelled by two Gaussian waveforms a); and the repe-
tition of blinking every 5 seconds to generate a blink signal b).

necessary to consider all other possible sources of activities of the real EEG data in the

simulated EEG. The sampling rate and order of the MVAR model is selected according

to the suggestions in [2].

Blink Artefact Signal

Amixture of two Gaussian waveforms is used to model the blink peak with unity amplitude

and a duration of about 400ms (Figure 5.4 (a)), as the typical blink duration is reported

to be less than 500ms [236]. The simulated blinking is then repeated every 5 seconds

(based on the normal blinking rate reported in section 4.2.3) to generate a blink signal

(Figure 5.4 (b)). In real EEG data the changes in the blink amplitude may be more

abrupt which may not be perfectly fitted by a Guassian waveform, or there may be cases

where there are large temporal variations to the periods of the repeated blinks. In the

simulated blink model of this study, those cases are neglected.

The amplitude of a typical blink artefact could be several times larger than the brain

scalp potentials [213]. However, the amplitude of the real eye blink usually varies due to

factors such as eye dryness and fatigue [48]. Therefore, a scale parameter, β, is also needed

to adjust the blink amplitude relative to the EEG amplitude. Hence, the parameter β is

tuned in a way that the ratio of the power of the artefact-free EEG signal to the power
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of the blink artefact signal varies between −50dB and 0dB with 5dB step [2]:

SNR = 10 log
(

EEG

β × blink

)
(5.10)

Where blink is the simulated blink signal. The 0dB SNR refers to the case where the

amplitudes of the EEG and blink signal are similar, while the 50dB SNR represents the

largest blink amplitude relative to the EEG.

Multichannel EEG Contaminated with Blink Artefact

In order to mix the blink artefact and EEG and to generate a simulated multichannel

EEG contaminated with blink artefact, a set of weights are required to show the effect

of blink on the EEG channels. The blink artefact affects the EEG channels with regards

to the distance between EEG channels and eyes (i.e. the frontal channels are impacted

most by eye blinks). The weights are generated based on the method proposed by Gouy-

Pailler [256]. For EEG data with n channels, n weights, ki (i = 1 · · ·n), are randomly

extracted from the normal distribution N(1, 0.3) (i.e. for all i, ki ∼ N(1, 0.3)). Therefore,

the simulated EEG and blink signals are mixed, and artificial EEG contaminated by the

blink artefact is generated, as follows:

x(t) = EEG(t) + β(k1...kn)T EOG(t). (5.11)

Where EEG(t) is the normal artefact-free EEG generated by the MVAR model, β is

the parameter to tune the power ratio between blink and EEG between −50dB and 0dB,

and EOG(t) is the simulated blink segment.

Figure 5.5 shows the simulated 9 channel EEG data, x(t); the normal EEG data, (i.e.

EEG(t)) is generated by an 8-order MVAR model and the blink artefact is added to the

EEG data with SNR values equal to 0dB (Figure 5.5 (a)) and −30dB (Figure 5.5 (b)),

respectively. As evident from the figure, when SNR= 0dB the amplitude of the blink

artefact signal is very small and the effect of the blink artefact is not strong compared to
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Figure 5.5: The effect of the blink artefact on the EEG channels, with SNR equal to: a)
0dB and b) −30dB.

the −30dB SNR, where the blink artefact had a large affect on the EEG.

5.3.2 Real Data

As in the previous chapters, the same data described in section 3.2.1 is used to evaluate

the proposed artefact removal method.
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5.3.3 Evaluation Measures

To assess the performance of the proposed methods using the simulated data, the measure

of normalised residual variance on each channel [2] is used;

η = var(ε(t))
var(EEG(t)) (5.12)

where,

ε(t) = EEG(t)− EEGc(t) (5.13)

Where var(.) denotes variance; EEG(t) is the artefact-free EEG signal; EEGc(t) is

the EEG signal cleaned by the proposed methods and ε(t) is the cleaning error.

The objective is to make the value of ε(t) as small as possible. Therefore, the lower the

η, the better the artefact removal is performed. In order to obtain the normalised residual

variance of a multichannel EEG data, the normalised residual variance is calculated for

each channel and added together.

In order to evaluate the performance of the proposed methods using the real EEG data,

the ERP classification rate is calculated based on the method employed in section 4.3.6.

5.4 Results Analysis

In this section, the two proposed methods for removing blink artefacts from EEG data

are applied to real and simulated data. The obtained results are then compared to the

results of when the DEFL method and the proposed artefact removal method proposed

in Chapter 4 (Proposed_method_IC), has been applied to the data. The statistical

significance of the results is obtained by performing simple t-test at p<0.05.
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Figure 5.6: The normalised residual variance obtained for time masking, regression-based
SCA, DEFL and the Proposed_method_IC blink artefact removal methods, for different
SNR values. The shaded area around the graph lines represents the error bars of the
averaged normalised residual variance across subjects.

5.4.1 Simulated Data

Figure 5.6 shows the residual variance obtained by four different approaches: removing

the whole blink IC using the Proposed_method_IC, removing the blink segments by time

masking and the regression-based SCA methods, and eliminating the blink artefact from

the EEG channels using the DEFL method.

For each method, the residual variances are plotted versus different SNR values from

which the simulated data is generated. For each SNR value, 100 different 9-channel

simulated EEG data are randomly generated and the average residual variance is reported.

As shown in the figure, when the entire blink IC is removed by means of the Pro-

posed_method_IC, the average residual variance obtained is approximately 11% asso-

ciated with removing one IC from the 9 channel EEG data, which is equal to 1
9 of the
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total energy of the simulated data. It is also notable that the variance in this technique

is significantly higher compared to the other techniques. This shows the uncertainty of

the ICA in removing the simulated blinks with small amplitude from the data. As the

blinking does not occur continuously at all times in the EEG data, removing the whole

blink IC may result in non-blink information loss. Therefore, a large amount of signal

energy is lost. This can be confirmed by comparing it to the result obtained by the time

masking method in which only blink segments are removed from the blink IC. On average

the outcome is significantly improved by 10% to 1.09% (p = 0.01).

The result is a further improvement from less than 1% to 0.35% by the regression-based

SCA where only the impact of the blink artefacts are removed from blink segments within

blink ICs, compared to the time masking method. The reason for the poor performance

of the time masking method compared to the regression-based SCA is that there are still

some EEG data combined with the blink signal in the blink segments; by removing the

whole blink segment those EEG data are also lost.

However, the obtained results of both proposed methods are improved compared to

the DEFL method. This might have happened because of the ability of ICA in source

separation, in that most blink activities could be separated in the blink sources. Thus, by

considering the blink segments in only blink ICs, more blink signal can be thrown away

from the data, while more non-blink signals in the data can be saved.

The best performance is achieved by the regression-based SCA method, as evident from

the results; in which the effect of the blink artefact is regressed out from automatically

detected blink segments of the blink ICs. This is followed by the time masking method in

which the amplitude of the blink segments within the blink ICs is set to zero. The worst

results are obtained by the conventional method in which the amplitude of the whole blink

IC (or its corresponding weights in the weight matrix) is set to zero.
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Figure 5.7: Blink artefact correction by the time masking, the regression-based SCA and
Proposed_method_IC methods are compared at a frontal channel of the raw EEG, which
includes blinking (Raw).

5.4.2 Real Data

Figure 5.7 shows the effect of the blink artefact on a frontal channel of the raw EEG,

compared to the associated cleaned channel by the proposed blink correction methods:

time masking, regression-based SCA, and Proposed_method_IC where the whole blink

IC is removed.

As illustrated in the figure, all three methods removed the effect of blinking with

relatively good performance. However, outside the blink peak, the cleaned data by the

time masking and regression-based SCA methods are more similar to the original raw

data, than the cleaned data by the Proposed_method_IC. This proves more EEG data

preservation by the first two methods than by removing the whole blink IC. There exist a

difference between the cleaned data by time masking and regression-based SCA methods,

however this difference is not obvious in the figure.

Figure 5.8 shows a fragment of multichannel EEG data including the EOG channel,

which is contaminated by blink artefact; and Figure 5.9 illustrates the same segment

of data, in which the effect of blink artefact is eliminated by the regression-based SCA
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method.

Figure 5.8: A fragment of multichannel EEG data contaminated by blink artefact. The
highlighted segment of data shows the effect of blinking within EOG channel, on other
channels of data.
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Figure 5.9: A fragment of multichannel EEG data cleaned by the regression-based SCA
method. The highlighted segment of data shows the effect of blinking within EOG chan-
nel, on other channels of data, after performing regression-based SCA to remove blink
artefatcs.
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Table 5.1: Comparison of the blink artefact correction methods: the proposed automated
artefact removal method ’Proposed_method_IC’, time masking, regression-based SCA
and DEFL methods, in terms of balanced accuracy and standard deviation calculated for
ERP classification.

Proposed_method_IC Time masking regression-based
SCA

DEFL

BA (%) 66.32 ± 0.61 68.36 ± 0.65 68.36 ± 0.65 67.88 ± 0.51

Table 5.1 shows the accuracy of ERP classification for the real cleaned data after re-

moving the blink artefact by different methods. Based on the results, the time masking

and regression-based SCA methods performed the same and achieved the highest results

(BA = 68.36%), followed by the DEFL method (BA = 67.88%). The worst performance

was obtained when the whole blink IC was removed from the data. However, the ob-

tained ERP classification BAs are almost similar and their difference is not statistically

significant (P > 0.05). The reason is that based on the datasets used in this research,

almost none of the blinks occurred within the ERP target segments. Therefore, the ERP

classification rate may not be affected significantly by the existence or the removing of the

blink artefacts. This can be confirmed by the results presented in Figure 4.13, where the

difference between the raw and other artefact-free datasets is statistically insignificant in

terms of ERP classification accuracy. Therefore, ERP may not be a good evaluation cri-

terion here for comparing the performance of various artefact removal methods employed

in this study. However, they can be compared in terms of the residual variance reported

in section 5.3.3.

Generally, the proposed ICA-based methods improved the SNR and ERP classification

results when compared to the conventional ICA-based artefact removal methods, which

remove the whole artefactual ICs. Additionally, the proposed methods outperformed

the DEFL method (however statistically insignificant) in terms of residual variance for

simulated data and ERP classification BA for real data.
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5.5 Summary

Following on from the proposed ICA-based artefact removal method in the previous chap-

ter, the blink artefact removal is further improved by proposing a SCA-based method in

this chapter. The aim was to remove blinking from the blink IC and within the preselected

segments. As the blink IC separated by ICA is not a pure blink source and contained

other source signals, the amount of non-blink signal discarded from the data is minimised

resulting in a higher residual variance. However, this improvement was not achieved in

terms of ERP classification, as the employed datasets in this research mostly do not in-

clude blinking within the ERP target intervals. Accordingly, the ERP classification rate is

not affected significantly by removing blinking. The performances of the proposed meth-

ods were compared to the recently related study that claimed to enhance blink artefact

detection. Based on the results obtained in terms of the residual variance, the proposed

methods performed better and the blink artefact removal was further improved.
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“Knowledge and science are the fruit

of paradise; in times of threat it is

one’s ally, in exile it keeps one com-

pany, and in solitude it is one’s inti-

mate friend and companion.”

Imam Muhammad al-Baqir

(PBUH)

6
ICA-BASED EVENT-RELATED

POTENTIAL CLASSIFICATION

6.1 Introduction

Prior to this point of the research, with the purpose of getting a better interpretation of

the brain’s responses and underlying neuronal processes, the artefact-contaminated EEG,

recorded during an ERP stimulation paradigm, underwent a pre- and post-ICA processing

chain. In Chapter 4, an EEG artefact removal method was proposed and the ERP features

were extracted from the cleaned EEG data. In Chapter 5, the proposed artefact removal

method was further improved by means of the optimised blink artefact removal method,
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resulting in a larger SNR. However, it did not affect the ERP classification rate.

As mentioned in Chapter 2, ERPs are electric potentials produced in the brain in

response to a particular internal or external stimuli [257]. Based on the type of stimulus,

various regions of the brain are activated and respond to that specific stimulus. These

brain responses can be collected during EEG recordings to understand the underlying

brain function.

As a result of the volume conduction of different layers of the brain, including the

scalp and skull, the EEG signal is attenuated and spread over the scalp (section 2.4). This

may suggest that more channels placed on the scalp can provide more ERP information.

However, using an excessive number of channels causes an issue known as “the curse of

dimensionality” that leads to poor performance of the ERP classification [258]. Thus,

optimum channel selection can play a crucial role in ERP studies. Several studies have

reported that optimised channel selection can improve the ERP classification rate [258–

264].

Conventionally, the ERP features are extracted from the relevant EEG channels lo-

cated on a certain region of the scalp relative to the type of stimuli, by human-based

methods. This mainly relies on prior knowledge about the type of stimuli in the ex-

perimental paradigm or in the empirical findings in the previous literature. However,

this leads to a fixed subset of channels that can endanger the performance of the ERP

classification, as the optimal ERP channel subset is highly subject dependant and can

vary between subjects [260, 265]. Also, Blankertz et al. [266] reported that it does not

necessarily yield optimum ERP classification rate compared to using all EEG channels.

More advanced methods assess individual channel effectiveness in a discriminative

manner such as recursive backward channel elimination [263], which is derived from the

recursive feature elimination method proposed by Guyon et al. [267]. These techniques

suffer from expensive computational cost and are time-consuming. Besides, other common

methods for channel selection are established based on a spatial filter [268, 269]. The

state-of-the-art xDAWN algorithm [3,270] reported an enhancement in the ERP response
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using a spatial filter, yielding better ERP classification accuracy. However, the xDAWN

algorithm has one main drawback: it requires some prior knowledge about the stimuli

and subjective configuration of the filter dimension itself.

In this chapter, ERP response classification is enhanced; first, an iterative backward

channel elimination method is employed to select the informative EEG channels contain-

ing more ERP information. The result is compared to the human-based channel selection

method used in Chapter 4 section 4.3.6. Then, an ICA-based approach is proposed to

further improve the ERP classification rate. In contrast to the conventional ICA-based

methods, where ICA is used for separation and removal of the artefactual sources con-

taminating the EEG data, an ICA-based method is proposed here to automatically detect

the sources with most ERP information (ERP task-related ICs) based on their temporal,

spatial and frequential characteristics. The detected task-related ICs are considered as the

observation vectors for ERP analysis and all other ICs are discarded. In this approach, the

task-related ICs are used for ERP feature extraction; and discarding all non-task-related

ICs leads to a considerable reduction in the dimensionality of the ERP features.

The proposed method is used for classification of ERP responses within the data

described in Chapter 3 section 3.2.1. The reliability of the ERP classification accuracy,

obtained by the proposed ICA-based method, is compared with that obtained by means

of the state-of-the-art algorithm, xDAWN.

6.2 Methodology

This section first presents the channel selection method “recursive channel elimination”,

which iteratively eliminates channels with the least ERP information and selects the

optimum set of channels leading to the highest ERP classification accuracy. The aim

of using “recursive channel elimination” method is to demonstrate the importance of

employing a channel selection method and to show how the appropriate channel selection

impacts ERP classification result.
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Secondly, an ICA-based ERP classification method is proposed, which employs the

AMICA algorithm to decompose EEG data into sources containing ERP responses (task-

related ICs) and the sources without ERP responses (non-task-related ICs). The task-

related ICs are automatically detected based on the two layered source classification al-

gorithm employed in Chapter 4 section 4.2.3. Then, the ERP features (described in

section 4.3.6) are extracted from the detected task-related ICs, which are a new repre-

sentation of the most relevant ERP response sources. Next, the extracted features are

entered into an NB classifier for ERP classification. With this method, applying an opti-

mum channel selection algorithm and employing an efficient artefact removal method are

no longer needed. Additionally, the dimensionality of the data is significantly reduced.

6.2.1 Recursive Backward Channel Elimination

In order to select the optimum set of task-relevant channels with the largest amount of

ERP information, first all the EEG artefacts are cleaned using the ground truth described

in section 4.3.1, then the recursive backward channel elimination method is employed.

The recursive backward elimination is a prominent approach to single out k channels of

n channels. The algorithm was initially introduced as a feature selection strategy in the

same frame of reference as recursive feature elimination [267] and can easily be applied to

channel selection situation [271].

It starts with a complete set of n EEG channels input to the ERP classification method.

The idea is to evaluate the ERP classification accuracy of all possible combinations of

channels’ subsets of size n− 1. It is assumed that the subset with most amount of ERP

information leads to the maximum ERP classification accuracy. Therefore, the channel

subset with highest ERP classification accuracy is considered as the input for the next

iteration and the nth excluded channel in that subset is eliminated for the rest of the

evaluation. The excluded channel in each iteration represents the least contribution to

the ERP; thus introducing the minimum impact on ERP classification accuracy. This

process is performed continually until all the n channels are eliminated. Then, among all
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Figure 6.1: Block diagram of the proposed two-stage ICA-based ERP classification
method.

iterations a channel subset associated with the highest ERP classification is considered as

the optimum channel subset.

6.2.2 ICA-based ERP Classification

In this section, an ERP classification method is proposed which is based on extracting

features from the task-related sources estimated by ICA. In the previous section 6.2.1,

the recursive backward channel elimination method was used to select the optimum EEG

channels encompassing most ERP information from the artefact-free data. However, in

the current proposed method, ICA is used to separate task-related sources from all other

sources of activity within the EEG observations; and the sources encompassing most ERP

information are selected, prior to the ERP feature extraction [272]. Figure 6.1 illustrates

the proposed ICA-based ERP classification approach. It consists of two classification

stages; Automatic task-related IC detection and ERP classification. In the first stage, the

task-related ICs are obtained by automatically labelling ICA decomposition according

to their characteristics in time, frequency and spatial domains. In the second stage, a

feature vector is extracted from the labelled task-related ICs and used as an input for

ERP classification.

6.2.3 Stage 1: Automatic Task-related IC Detection

In the first stage, the full-length EEG channel signals are decomposed into ICs by the

ICA algorithm variant AMICA [65], which has been reported to give better performance

over other ICA algorithms for separating EEG sources [104, 114]. A knowledge-based

approach to the feature selection is followed, based on the characteristics of the expected
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Figure 6.2: An example of spiky activation of a task-related IC over time (a), higher
spectral power in low frequency contents (b) and the activated region of scalp, occipital
lobe, in response to the stimulus (c).

task-related components in temporal, frequential and spatial domains. For example, based

on the visual stimulation used in this research, large amplitude deflection is expected to

occur in EEG channels placed over the visual cortex, after stimulation. Therefore, ICs with

spiky activation in time and prominent activation in the occipital lobe can be considered

as task-related components in this experiment. The task-related ICs are distinguished

from all other ICs using the following classification procedure:

1) A set of temporal, spatial and frequential features are extracted from 7 seconds

epochs of all the ICs’ time series. The length of the selected segments, 7 seconds, is

selected regarding the experimental paradigm of the data and ensures that in each segment

at least one occurrence of a full stimulus response period is presented. Within each IC

of an approximate length of 7 minutes, 60 segments are considered, each of the length

of 7 seconds, with no overlaps. The total amount of segments for each dataset is 3840

segments (64 ICs × 60 segments).

• Temporal features: The task-related IC has a spiky activation over time, 100ms

after S1 stimuli onset (Figure 6.2 (a)). Therefore, the distribution of task-related

ICs does not follow a Gaussian distribution. Because ICA does not guarantee signs
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of the estimated ICs, the absolute values of the skewness and kurtosis are considered

as temporal features.

• Spatial features: The topography of the task-related IC has a projection pattern

on the electrodes positioned in the occipitoparietal lobes (Figure 6.2 (c)). The

averaged topography weights of the electrodes, estimated by ICA decomposition,

placed in frontal, central, temporal and occipitoparietal lobes, are exponentiated

to the power of 1, 2 and 3 and used as spatial features, representing the spatial

characteristic of the task-related sources. Similarly to the muscle artefact detection

described in Chapter 4 section 4.2.1, the number of features is increased non-linearly

by using the combination of different exponentiated weights which can enhance

the performance of a classifier in discriminating the task-related sources from non-

task-related sources. The topography weights are exponentiated to expand the gap

between the affected weights by task-related cerebral activity and other types of

activities. When higher powers (greater than 3) are employed, the small weight

values in the range 0 to 1 are inclined to be zero. Therefore, due to the curse of

dimensionality and to prevent the loss of information, the higher powers, greater

than 3, are not selected.

• Frequential features: Based on the stimulus paradigm in this research, the higher

spectral power of the task-related IC is observed in low frequency contents (Fig-

ure 6.2 (b)). The power spectrum of ICs is estimated by the Welch method [192].

The estimated frequency contents from 1Hz to 39Hz are considered as spectral

features.

2) The extracted features are then served as the input to the NB classifier to de-

tect task-related segments within the task-related sources. Consequently, similar to sec-

tion 4.2.3, task-related sources are detected based on the outcome of the segment clas-

sification. First, the ICs’ scores are obtained by the summation of the probabilities of

corresponding 60 segments belonging to a task-related class. Secondly, the ICs scoring
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higher than a specified threshold (determined empirically) are labelled as task-related

sources.

6.2.4 Stage 2: ERP Classification

The ERP classification method is similar to that described in section 4.3.6. Once task-

related ICs are detected, the amplitude of their samples is considered as an ERP feature.

The samples from 60− 500ms after the S1 stimuli onset are considered as target (ERP)

instances. No-target (noERP) instances are extracted from 1060− 1500ms after S1 stim-

ulus onset, in which there is no stimulus response. The extracted samples are resampled

from 250Hz to 125Hz, to reduce processing and storage cost, which provides 55 features.

Feature vectors are generated by concatenating the extracted 55 samples of ERP and

no-ERP from each channel and used to train the classifier models for ERP detection.

6.2.5 xDAWN Algorithm

The spatial filtering algorithm advanced by Rivet et al. [270], namely xDAWN, attempts

to define an estimation of the subspace of pseudo channels which contains ERPs. It

employs a Bayesian linear discriminant analysis and attempts to maximize the Signal to

Signal plus Noise Ratio (SSNR) to enhance the quality of the estimated signals [270].

In order to apply the xDAWN algorithm to the data, OpenVibe software which is

developed by Renard et al. [273] is employed in this study. The xDAWN algorithm should

first be trained by defining the stimulus response interval. For this purpose, EEG data

fragments from 70ms to 500ms after stimulus onset (S1) are given. Then, the optimum

number of output channels has to be set. In the original research by Cecotti et al. [260],

xDAWN succeeded in reducing the number of channels from 32 to 10 with nearly the same

classification success rate of 94%; and to 5 channels with a similar performance of 92%.

In this experiment, the EEG is recorded using 62 scalp electrodes. Therefore, a similar

dimension reduction evaluation by xDAWN is carried out in this training.
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6.3 Evaluation

The proposed task-IC detection method is validated by comparing it to the ground truth,

which is created by manual labelling of the task-related ICs by two experts. The perfor-

mance measures of sensitivity, specificity and BA (described in section 4.3.2) are used to

evaluate the performance of the task-related IC detection and ERP classification methods.

The EEG recordings of 10 individual subjects used in Chapter 3 section 3.2.1 and the

10−fold cross validation technique explained in section 4.3.7, are also employed in this

chapter. For task-related IC classification, the feature vectors extracted from each subject

are taken as a fold. Thus, at each of the 10 iterations, the feature vector of a subject

are taken as a test and the feature vector of the other 9 subjects are taken as training

data. Therefore, the task-related IC classification system’s BA for each artefact type is

obtained by averaging the obtained BAs at all 10 iterations. For ERP classification, the

10-fold cross validation is used for evaluating the BA of ERP classification for each subject

individually. Therefore, the obtained BAs are averaged over all 10 subjects and the final

BA is reported.

6.3.1 Visual Inspection

A ground truth for task-related ICs is created. All ICs were manually labelled as task-

related or non-task-related by visualising IC time courses, topographies and the power

spectrum, using the EEGLAB software package [172]. ICs were labelled in a blind proce-

dure, by two independent experts who were familiar with EEG analysis and ICA decompo-

sitions. The ground truth (GT), including 20 task-related ICs, was created by considering

the in common voted task-related ICs between both experts’ classification. The level of

agreement between classifications performed by the two experts was 100.00%.
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Figure 6.3: The ERP classification rates obtained by the recursive backward elimination
method for each set of channels at each iteration. The cleaned data is obtained by
removing the artefacts labelled in the ground truth. The shaded area around the graph
line represents the error bars of the averaged ERP classification accuracy across subjects.

6.4 Results Analysis

The recursive channel elimination method is employed to enhance the ERP classification

accuracy. The result is then compared to the human-based channel selection used for

ERP classification in section 4.4.3. Also, the accuracy of the proposed ICA-based ERP

classification method is compared with the state-of-the-art channel selection algorithm,

xDAWN and the outcome is reported in terms of BA. The statistical significance of the

results is obtained by performing simple t-test at p<0.05.

6.4.1 Recursive Backward Channel Elimination

Figure 6.3 illustrates the averaged BA of the ERP classification obtained from all possible

channel combinations, selected by the recursive channel elimination method. The method

is applied on the cleaned (artefact-free) EEG data.

The ERP classification accuracy obtained by using all 62 EEG channels is shown in

the figure (left side). The number of used channels for the ERP classification is reduced
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by one when moving from left to right until it reaches the last channel.

As shown in the figure, the ERP classification accuracy is improved when the irrelevant

ERP channels are removed from the data in each iteration. This can confirm the improve-

ment of the ERP classification accuracy by selecting the most relevant ERP channels, thus,

avoiding the curse of dimensionality. However, there is a significant reduction (p = 0.0001)

in ERP classification accuracy when the iteration reached the last few remaining channels

in the data (right side). This is due to removing the highly informative channels to the

ERP, which leads to poor performance of the ERP classification. Therefore, selecting all

the highly informative channels contributing to the ERP is desirable. According to the

obtained results, the highest ERP classification accuracy is achieved when 7 channels are

used (BA = 73.94% ± 0.39). For the aim of comparison between the human-based and

the recursive backward elimination methods, in addition to the optimum 7 channels, the

4 best channels were used as well, on the grounds that the human-based channel selection

method (in section 4.3.6) used 4 channels for the ERP classification.

Figure 6.4 compares the results of the ERP classification accuracy obtained from the

4 channel subsets selected by the human-based method with those obtained from 4 and

7 channels by the recursive backward elimination method; when applied to the raw data,

cleaned data by removing artefacts in the ground truth and by the Proposed_method_IC.

As illustrated in the figure, the ERP classification accuracy obtained by the recursive back-

ward elimination method is improved by approximately 5% and 4% using the optimum

7 and 4 channels, respectively, compared to the human-based method for the raw and

cleaned data by the ground truth and the Proposed_method_IC. The results confirm the

benefit of using the channel selection method, for improving the ERP classification rate,

over the human-based method, in which using a fixed subset of channels may raise an

error due to the inter-subject variations. However, there can be a potential risk of inflated

false positive rates (Type-1 error rates) in the recursive backward channel elimination

method as; after each iteration the channels are selected based on the result of the ERP

classification.
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Figure 6.4: Comparison of ERP classification rates calculated using channels selected by
different channel selection methods; human-based (Old 4chns), recursive backward elim-
ination method (New 4chns and New 7chns), for the raw, and cleaned data by removing
artefacts in ground truth and by Proposed_method_IC.

6.4.2 Task IC Classification

Regarding the task-related IC classification stages, first the task-related segments are clas-

sified. Based on the extracted features for detecting task-related segments, the averaged

BA value of 90.94% ± 0.0413 is obtained. Then, similar to section 4.2.3 the optimum

threshold value for the highest possible BA is obtained for task IC classification. The

averaged highest BA value of 95.6% ± 5.3 within the threshold range of 58.2 to 73.1 is

obtained for task-related IC classification. Figure 6.5 shows the number of task-related

ICs detected for each participant. At least one task-related IC is detected in all cases

enabling ERP classification for each dataset.

Table 6.1 represents the sensitivity, specificity and BA of task-related IC classifica-

tion. The averaged obtained sensitivity is 96.6%. Only one task-related IC of a single

subject (subject 7) is not detected correctly. The averaged specificity over all subjects
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Figure 6.5: Number of task-related ICs, for each participant, detected automatically by
the proposed method.

Subjects Sensitivity(%) Specificity(%) BA(%)
1 100 85.7 92.8
2 100 96.8 98.4
3 100 98.4 99.2
4 100 91.9 95.9
5 100 96.7 98.4
6 100 95.3 97.6
7 66.7 96.7 81.7
8 100 90.5 95.2
9 100 98.4 99.2
10 100 95.2 97.6

Mean 96.6 94.6 95.6
std 10.5 4.1 5.3

Table 6.1: Performance of task-related IC classification for all participants, measured by
sensitivity, specificity and balanced accuracy (BA).

(94.6%) and the imperfect individual specificity associated to each subject indicate the

incorrect detection of at least one non-task IC as a task IC for each single subject’s dataset

(Appendix D). The obtained averaged BA of 95.6% across all participants indicates the

reliability of the proposed system in task-related IC detection.
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Subjects GroundTaskIC-ERP(%) AutoTaskIC-ERP(%)
1 96.1 97.2
2 93.9 93.9
3 82.8 81.7
4 72.2 75.0
5 88.8 88.2
6 89.3 89.4
7 76.7 70.0
8 62.8 73.9
9 86.1 86.1
10 87.8 88.9

Mean 83.6 84.4
Std 10.3 9.0

Table 6.2: Accuracy of ERP classification for the cleaned data obtained by the proposed
automated task-IC detection (AutoTaskIC-ERP) compared with the cleaned data by the
task-ICs in the ground truths (GroundTaskIC-ERP).

6.4.3 ERP Classification from Task ICs

Table 6.2 summarises the obtained ERP classification accuracies when ERP features are

extracted from the task-related ICs labelled in the ground truth (GroundTaskIC-ERP)

and compares them by the extraction of ERP features from the task-ICs automatically

detected using the proposed IC labelling method (AutoTaskIC-ERP). As the table illus-

trates, the averaged and individual ERP information detected by both AutoTaskIC-ERP

and GroundTaskIC-ERP are almost the same. However, GroundTaskIC-ERP outper-

formed AutoTaskIC-ERP for subject 7; this is due to one out of three task-related ICs in

this data not being detected correctly by AutoTaskIC-ERP. Therefore, the ERP informa-

tion associated to this non-detected task-related IC is missed. Also, the obtained ERP

classification accuracy by GroundTaskIC-ERP for subject 8 decreased compared to by

AutoTaskIC-ERP. This might be due to the task-related ICs which are not detected visu-

ally by experts in the ground truth, whereas they are detected by the proposed automatic

task-related IC detection method.

Although the proposed method could not perfectly detect task-related ICs (aver-
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aged BA= 95.6%), it achieved approximately the same ERP classification BA as the

GroundTaskIC-ERP.

Overall, the accuracy of ERP classification obtained from task-related ICs is signifi-

cantly improved (p=0.0023) by almost 11%, compared to that obtained by using the ERP

relevant channels selected either by human-based or by the recursive backward channel

elimination methods (Figure 6.4). This ERP enhancement could be due to losing some

ERP information in the cleaned EEG data, when the artefactual sources are completely

removed. Also, there could be an error in the selection of the ERP channels by the

human-based technique, because there are variations between subjects and the channels

containing ERP information may vary from subject to subject. Additionally, due to the

volume conduction of the scalp and spread of the potentials, there might be other channels

located close to the expected channels on the scalp that may include ERP information as

well.

6.4.4 Comparison with xDAWN

The performance of the proposed ICA-based ERP classification method has been com-

pared to the state-of-the-art xDAWN algorithm which is used to project the data channels

into estimated signal subspace. First, the ERP classification by the NB classifier was

assessed using the xDAWN algorithm with different dimensions (channels). Then, the

optimum number of channels associated with the best performance of the NB classifier

was selected and compared to the task-related IC ERP classification in terms of BA.

Figure 6.6 represents the performance of the NB classifier in ERP classification, when

a different number of channels are used in xDAWN algorithm.

The variation of ERP classification rates by reducing the number of xDAWN channels

from 62 to 2 is statistically insignificant. However, the ERP classification rate drops

significantly (p=0.0019) by approximately 20%, in the case of a single channel. The best

ERP classification rate is obtained when 8 channels are selected (BA = 82.46%). However,

with the aim of obtaining a high performance of the ERP classification rate with the least
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Figure 6.6: ERP classification rate (BA) for different number of channels selected by the
xDAWN algorithm.

Figure 6.7: Comparison of the ERP classification rate (BA) using the 3 channels selected
by xDAWN algorithm and task-related ICs.

number of channels, selecting 3 xDAWN channels is a safe choice, where the accuracy is

insignificantly reduced by only about 1.7% compared to 8 channels.

Figure 6.7 shows the averaged ERP classification BA (averaged over 10 subjects) ob-

tained by three xDAWN channels and the task-related ICs detected by the proposed
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ICA-based method. Comparing the obtained results, the proposed method outperformed

xDAWN and achieved a 3.72% higher ERP classification rate (BA=84.4%), albeit statis-

tically insignificant. The reason may be attributed to the performance of ICA in source

separation, in which most of the ERP response information are estimated and decomposed

into task-related sources. Therefore, the task-related sources can be considered as a new

representation of the most relevant ERP information.

6.5 Summary

In this chapter, an automatic ICA-based ERP detection method, called AutoTaskIC-ERP

is proposed which utilises temporal, spatial and frequential features from task related ICs

for ERP detection rather than features extracted from the cleaned EEG signal channels.

Using the proposed method, rejecting the artefactual ICs that may contain EEG infor-

mation is no longer required and the detected task-ICs are directly fed into the ERP

classifier.

The performance of the ERP classification is enhanced using an iterative backward

channel elimination method, compared to the classical human-based channel selection for

ERP classification. Both the state-of-the-art method xDAWN and the proposed ICA-

based method improved the accuracy of ERP classification significantly, compared to the

classical or iterative backward channel elimination techniques; while the proposed method

scored the highest accuracy with the value of 84.4%.

In conclusion, using both the proposed method and the-state-of-art xDAWN shows

that by projecting the data into a spatial subspace, either ICs or pseudo channels, provide

more reliable ERP classification compared to the EEG channel space. Meanwhile, the

proposed ICA-based method out performed the xDAWN algorithm and further improved

the accuracy of ERP classification. It is also confirmed that cleaning the data by removing

the artefacts cannot compete with these techniques.
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“Human experiences have no end

and the knowledge of a wise man

always increases through his expe-

riences.”

Imam Ali ibn Abi Talib (PBUH)

7
CONCLUSION

This thesis intends to propose an EEG signal processing chain, based on ICA, to improve

the SNR of artefact contaminated EEG data and effectively extract ERP information.

On the path to this goal, several research questions were formed. In order to answer

these questions, first, the performance of the most commonly used ICA algorithms were

systematically assessed over a range of pre-processing conditions applied to the data.

The reliability of ICA decompositions was determined as highly dependent on the data

pre-processing steps applied to the data in addition to the choice of the ICA algorithm.

AMICA applied to the bandpass filtered continuous EEG data was shown to be the

most effective combination of pre-processing conditions and ICA algorithm, for this study.

Additionally, it was demonstrated that including extra sources of information about ECG

131



and EOG activities can improve the quality of ICA source separation and significantly

decrease the processing time of AMICA algorithm.

Afterwards, a fully automated ICA-based artefact removal method was proposed to

detect and remove all the common EEG artefacts, including blink, saccade, heartbeat,

muscle and focal artefacts. A set of temporal, spatial and frequential features, representing

artefact characteristics, is extracted to distinguish ICs corresponding to the artefacts from

all other EEG activities. Then, the desired artefacts are detected and removed, based on a

two-layered artefact classification algorithm. The proposed method successfully detected

the common EEG artefacts with balanced-accuracy above 95%.

In the next step, the artefact removal process was further improved, by only removing

the effect of blinking from the parts of the detected blink ICs, where blinking occurs.

This process was performed by means of two methods; zeroing the blink segments and

regressing out the blinking effect which was estimated by SCA. Both of the methods were

shown to be successful in removing the effect of blink artefacts from real and simulated

EEG data.

Finally, in contrast to the previous works, where the ERP classification rate and the

SNR of the EEG signals were improved by detecting and removing artefactual ICs, an ICA-

based method was proposed to improve the accuracy of ERP classification by detecting the

ICs corresponding to the subject’s response to the stimulation tasks. The task-related ICs

were used as the sources of ERP information and feature extraction. Consequently, the

channel selection and artefact removal issues are addressed. Using the proposed method,

the task-related ICs were accurately detected, and the ERP classification accuracy was

significantly improved.

The performance of all the proposed methods in this thesis were compared to the

associated state-of-art methods at each step; and the results showed a better performance

by means of the proposed methods in this thesis. The validity and reliability of all the

proposed methods in this research are assessed by performing the statistical test on the

reported findings.
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This research might be of interest to clinicians, neurologists or researchers dealing with

EEG data. As the EEG data is usually contaminated with different types of artefacts,

the proposed pre-processing chain, the ICA-based automated artefact removal and ERP

classification methods can be beneficial as a guideline to prepare the recorded raw EEG

signal for extracting the latent cerebral activities present in the EEG data.

7.1 Summary of Findings

In this study, first the reliability of the ICA decompositions, estimated by various ICA

algorithms was assessed, when 24 different data preparation steps were introduced and

performed prior to ICA. It is showed that in addition to the choice of the ICA algorithm

the reliability of the estimated sources by ICA is highly dependent on the type of pre-

processing conditions applied to the data before ICA. Overall, the AMICA algorithm

applied to the filtered and continuous EEG data integrated with EOG and ECG channels,

was suggested as the most effective ICA-based processing chain to remove EEG artefacts.

By employing the most effective combination of the pre-processing conditions and the

ICA algorithm, a fully automated method was proposed to detect and remove segments

and ICs corresponding to the most common EEG artefacts. The proposed method could

correctly identify the common EEG artefacts with balanced accuracy above 95% and

low between-person variations. When the results were compared to the state-of-the-art

artefact removal method (ADJUST), the improvement in the performance of the proposed

method in terms of SNR and ERP classification rate was shown.

Among all EEG artefacts, blink is the main source of artefact as it is characterised

by a large amplitude that inevitably occurs and introduces serious distortion in the data.

Therefore, in the next step of this research, the proposed artefact removal method was

further improved, by optimising removal of the blink artefact. The blink artefacts were

removed by regressing out the blink segments using a hybrid of ICA and SCA. According

to the obtained results, the proposed method performed well in removing blink artefacts,
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while keeping the ongoing EEG data intact. Using the simulated data, there was 10%

improvement in the obtained residual variance when only blink segments were removed

from the blink IC rather than the whole IC. The method was also compared to the

recently proposed method (DEFL) and showed favourably better performance. Finally,

it was demonstrated that the ERP classification rate is highly dependent on, artefact

removal, channel selection procedure and dimensionality of the ERP features. These

aspects were addressed by proposing an automated method, based on ICA, to reliably

detect ICs corresponding to the ERP responses; and extract ERP features from those

ICs. Using the proposed method, the ERP classification rate is further improved by

16%, to 84.4%. Additionally, the proposed method showed better performance when it

was compared to the advanced channel selection method xDAWN. This way, it was also

demonstrated that ICA could be more beneficial for ERP classification, when it is used

to extract ERP features rather than to remove artefacts.

7.2 Future Research Directions

This work mainly focused on improving the quality and usability of EEG data by reducing

the noise level via optimised use of the BSS method ICA, and introducing the optimum

pre- and post-ICA processing methods to improve ERP classification rate and SNR of EEG

data. At the same time, the research outlined in this thesis raises further developments

that future work can address; some of which are pointed out in the following:

• Expanding the proposed pre-processing pipeline, prior to source separation, to com-

pare the performance of all ICA and BSS algorithms.

• Generalising the proposed artefact classification, blink artefact removal, task-related

IC detection and ERP classification methods to other types of EEG datasets recorded

with various EEG apparatus and experimental paradigms, collected from different

subjects.
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• Using larger data pool size from more subjects in order to assess consistency of the

proposed methods.

• Improving the performance of artefact segment classification by labelling the seg-

ments of all ICs in which the specific artefact occurs, rather than labelling all seg-

ments within their corresponding IC as artefact.

• Requesting more experts to label the segments and ICs for the ground truth.

• Detecting the gradient and ballistocardiogram (BCG) artefacts for EEG data recorded

inside MRI scanner.

• Improving the performance of artefact and task-related IC detection by using more

advanced classification methods such as Support Vector Machines (SVM).

• Developing the regression-based SCA method proposed in Chapter 5, to detect and

reduce the effect of all common EEG artefacts occurred at specific time intervals.

• Improving the ERP classification rate by employing more advanced feature sets and

classifier.

• Using Deep Neural Networks to learn suitable features rather than rely on the

knowledge-driven approach outlined in the research.

• Optimising algorithm and implementation of the proposed methods for real-time

applications.

• Using the eye movement and heartbeat information coming from ECG and EOG

channels, to optimise the ICA source estimation and proposing an ICA algorithm

constraint to ECG and EOG information.

The ultimate goal of all the above works is to improve the accuracy of ERP classifi-

cation and SNR of EEG data and increase the usability of the information within EEG

recordings, either for clinical applications or brain-computer interactions.
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Appendices
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“There is no capital more useful

than intellect and wisdom, and there

is no indigence more injurious than

ignorance and unawareness.”

Imam Ali ibn Abi Talib (PBUH)

A
Pairwise comparison of the ICA algorithms in

terms MIR, PMI and dipolarity

The performances of the ICA algorithms are compared pairwise. The outcomes are re-

ported in terms of mean difference, std. error and p-value for MIR, PMI and dipolarity,

separately.
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Table A.1: Pairwise comparison of the ICA algorithms in terms of MIR.

I J
Mean Difference

(I-J)
Standard Error
(Std. Error)

p-value

AMICA Extended-Infomax 1.351 0.077 p<0.001
AMICA Infomax 0.620 0.043 p<0.001
AMICA FastICA 2.795 0.128 p<0.001

Extended-Infomax Infomax -0.731 0.70 p<0.001
Extended-Infomax FastICA 1.443 0.094 p<0.001

Infomax FastICA 2.175 0.106 p<0.001

Table A.2: Pairwise comparison of the ICA algorithms in terms of PMI.

I J
Mean Difference

(I-J)
Standard Error
(Std. Error)

p-value

AMICA Extended-Infomax 0.044 0.004 p<0.001
AMICA Infomax 0.024 0.003 p<0.001
AMICA FastICA 0.030 0.004 p<0.001

Extended-Infomax Infomax -0.020 0.002 p<0.001
Extended-Infomax FastICA -0.14 0.001 p<0.001

Infomax FastICA 0.006 0.002 p=0.052

Table A.3: Pairwise comparison of the ICA algorithms in terms of the mean percentage
of dipolar sources.

I J
Mean Difference

(I-J)
Standard Error
(Std. Error)

p-value

AMICA Extended-Infomax 1.658 0.206 p<0.001
AMICA Infomax 1.575 0.242 p=0.001
AMICA FastICA 4.664 0.683 p<0.001

Extended-Infomax Infomax -0.084 0.208 p=0.99
Extended-Infomax FastICA 3.006 0.582 p=0.004

Infomax FastICA 3.089 0.610 p=0.004
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“Increase of experiences, increases

the wisdom of mankind.”

Imam Hussain ibn Ali (PBUH)

B
Automatic Artefact Detection

Figure B.1 shows the scalp map of artefactual sources of a typical multichannel EEG data,

which are estimated by AMICA algorithm and are automatically labelled as artefacts by

the proposed system. The detected artefacts are as follow: ECG (a), blink (b), saccade

(c), muscle (f, g,k,l) and focal (d,e,h,i,j,m).

139



Figure B.1: Artefact ICs, automatically labelled by the proposed method in Chapter 4.
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“Receiving education nurtures hu-

man wisdom.”

Imam Hussain ibn Ali (PBUH)

C
Distribution of Artefactual ICs

Figure C.1 illustrates the distribution of IC scores of all 10 subjects for different types

of artefacts. The red lines represent a specific threshold value, for each type of artefact

separately. The ICs whose scores are above the threshold (to the right side of the red

line) are detected as an artefact.
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Figure C.1: The distribution of IC scores for all subjects are shown for a) ECG, b)Muscle,
c)Focal and d)Saccade artefacts.
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“To whatever extent a person’s

knowledge increases, his attention

will be turned more towards his

soul.”

Imam Ali ibn Abi Talib (PBUH)

D
Task-Related IC Detection

Figure D.1 illustrates the fragment of the multichannel EEG data decomposed into ICs by

AMICA algorithm. The task-related IC is detected by the ICA-based proposed method

in Chapter 6 correctly (red signal). The green signals are the EEG sources which are

detected as task-related ICs incorrectly, by the proposed method.
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Figure D.1: The time series of the multichannel EEG data decomposed by AMICA
algorithm, including the correctly and incorrectly detected task-related ICs, red signal
and green signals, respectively.
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