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Abstract

This thesis focusses on two models (inactive and active) for fibre-reinforced viscous flows,

examples of which may be found in numerous industrial and biological applications.

In chapters 2-4 we consider Ericksen’s model for a transversely isotropic fluid, which

treats suspensions of non-motile particles as a continuum with an evolving preferred di-

rection; this model describes fibrous materials as diverse as extracellular matrix, textile

tufts and cellulose microfibers. Linear stability analyses of transversely isotropic viscous

fluid between two rotating co-axial cylinders and two horizontal boundaries of different

temperatures are undertaken in chapters 3 and 4 respectively. In both cases, the inclusion

of transversely isotropic effects delays the onset of instability.

In chapter 5 we describe a framework commonly used to model active suspensions,

which has been applied to suspensions of self-propelling bacteria, algae and sperm, and

artificial swimmers. Through linking this model for an active suspension with that for

a transversely isotropic fluid, we identify previously neglected components of the stress

tensor that significantly alter the rheology. In chapter 6 we examine the linear stability of

isotropic and nearly-aligned suspensions of elongated particles, before giving a summary

of our findings in chapter 7.



Acknowledgements

I would like to thank my supervisors Dr Rosemary Dyson and Dr David Smith for their

help and encouragement during my time at the University of Birmingham.

I would also like to thank EPSRC for funding my doctoral studies, as well as U21 and

the IMA for funding my research trip to visit Dr Edward Green and Dr Richard Clarke

at the University of Adelaide and the University of Auckland respectively.

I would like to thank the University of Birmingham postgraduate students who have

made my time as a PhD student so enjoyable. Particular thanks go to Gemma Cupples

and Dr Meurig Gallagher for helpful discussions about my research.

Last but not least, I would like to thank my wife Sarah for her understanding and

positivity over the last few years. My parents, Andrea and Chris, receive my deepest

gratitude for the unwavering support of my studies. Without them I would have never

got this far.



CONTENTS

List of Publications v

1 Introduction 1

2 Transversely isotropic fluids 8

2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Transversely isotropic stress tensor . . . . . . . . . . . . . . . . . . 9

2.1.2 Kinematic equation for fibre evolution . . . . . . . . . . . . . . . . 10

2.2 Interpreting the parameters of the transversely isotropic model . . . . . . . 13

2.3 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Capillary viscometry . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Dilute regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Semi-dilute regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Linear Taylor-Couette stability of a transversely isotropic fluid 26

3.1 Governing equations and steady state solution . . . . . . . . . . . . . . . . 28

3.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Numerical solution method . . . . . . . . . . . . . . . . . . . . . . . 37



3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Linear Rayleigh-Bénard stability of a transversely isotropic fluid 48

4.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Kinematic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Normal mode solutions . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Numerical solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Chebyshev differentiation matrix . . . . . . . . . . . . . . . . . . . 63

4.3.2 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.5 Numerical convergence study . . . . . . . . . . . . . . . . . . . . . 68

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Forms of critical curves . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Fundamental connections between models of active suspensions and

transversely isotropic fluids 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Active stress contribution . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Influence of non-spherical particles on the bulk stress . . . . . . . . 98



5.3 Aligned suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Linear stability of isotropic and nearly-aligned suspensions of elongated

particles 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Governing equation for concentration field . . . . . . . . . . . . . . 106

6.2.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Linear stability of a nearly-aligned suspension . . . . . . . . . . . . . . . . 108

6.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.3 Plane-wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Linear stability of an isotropic suspension . . . . . . . . . . . . . . . . . . . 120

6.4.1 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 Plane wave perturbations . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusions 134

7.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendices 143

A Boussinesq approximation 144

A.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



A.3 Heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.4 Condensed form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B Eliminating pressure from the conservation of momentum equation for

the transversely isotropic Rayleigh-Bénard problem 154

C Deriving an equation for concentration of a self-motile suspension with

translational Brownian motion 157

D Deriving an equation for the director field of a self-motile suspension

with translational Brownian motion 159

E Deriving a dispersion relation for a suspension of self-motile nearly-

aligned particles 161



LIST OF PUBLICATIONS

1. C. R. Holloway, R. J. Dyson, and D. J. Smith. Linear Taylor-Couette stability of

a transversely isotropic fluid. Proc. R. Soc. Lond. A, 471(2178) : 20150141, 2015.

ISSN 1364− 5021.

2. C. R. Holloway, G.Cupples, D.J. Smith, J. E. F. Green, R. J. Clarke, and R. J.

Dyson. Fundamental connection between models of active suspensions and trans-

versely isotropic fluids. arXiv preprint arXiv:1608.01451 (2016).

Chapters 2 and 3 have been published as 1, whilst chapter 5 is available as 2. Chapters

4 and 6 are in preparation as two manuscripts.



LIST OF FIGURES

1.1 Scanning electron microscopy image of collagen gel [2], showing the fibrous

microstructure of the material. Image is licensed under CC BY-SA 3.0. . . 2

1.2 A Couette device where Taylor vortices (fluid doughnuts) are visible [87].

Image is licensed under CC BY-SA 4.0. . . . . . . . . . . . . . . . . . . . . 3

1.3 Hexagonal patterns appearing which signify the occurrence of convection

currents in a solution of gold paint dissolved in acetone [89]. Image is

licensed under CC BY-SA 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Observations of collective bacteria motion by Sokolov et al. [78]. Bacteria

images for (a) dilute naL
2 = 1.7 and (b) concentrated naL

2 = 5.6 suspen-

sions, where na is the number of bacteria per unit area and L is the cell

length. Vector fields for (c) velocity and (d) orientation of bacteria for the

configuration shown in image (b). The vector and orientation fields are

different as the bacteria are affected by the background flow, caused by

their collective motions. Copyright (2007) by the American Physical Society. 6

2.1 A schematic diagram showing the advection of a short section of fibre over

a small time step δt∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A schematic diagram of the two-dimensional deformations in the plane of

fibres considered in equations (2.14), (2.15), and (2.16), where the fibres

are aligned in the x∗-direction. Sub-figures (a) and (b) show an extensional

flow orthogonal and parallel to the fibre direction respectively, whilst (c)

shows a shear flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



2.3 Schematic diagram of laminar flow in a straight capillary tube. The fluid

enters the tube with a volumetric flow rate Q∗, the cylinder has radius ζ∗.

The pressure drop ∆P ∗ is measured over a known length ∆L∗. . . . . . . . 15

2.4 Functional dependence of (a) µ∗/µ̄∗, (b) µ∗
2/µ̄

∗, (c) µ∗
3/µ̄

∗, and (d) α0, on

the aspect ratio of the fibres (r) in a dilute regime. Reproduced from

Lipscomb [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Schematic diagram of aligned fibres intersecting a unit plane perpendicular

to their direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 A schematic diagram of a Couette device containing a fibre-laden fluid.

The inner and outer cylinders have radii R∗
1 and R∗

2. The outer cylinder is

fixed, whilst the inner cylinder rotates with angular velocity ω∗. . . . . . . 26

3.2 Steady state velocity as a function of radius. (a) The steady state velocity

as a function of r, for a gap ratio η = 0.5 and angular velocity Ω = 100.

(b) A schematic diagram showing how this flow profile appears through a

cross-section of the cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Marginal stability curves for different viscosity parameters µ2 and µ3 tak-

ing η = 0.5. Both Figures show the curves of the least eigenvalue Tl(k).

(a) The marginal stability curves for changes in anisotropic extensional

viscosity µ2, where the arrow indicates the direction of increase (µ2 =

0, 250, 500, 750, 1000, µ3 = 0). (b) Marginal stability curves where the

anisotropic shear viscosity µ3 also varies, arrows again show the direction

of increasing µ2, (µ2 = 0, 250, 500, 750, 1000). . . . . . . . . . . . . . . . . . 40

3.4 Critical wave-number (kc) for changes in the anisotropic extensional vis-

cosity µ2, and anisotropic shear viscosity µ3 taking η = 0.5, note that

qualitatively similar results are obtained for all gap widths considered. (a)

Critical wave-number for increases in µ3, where the arrow indicates increas-

ing µ2 (µ2 = 0, 250, 500, 750, 1000). (b) Critical wave-number for increases

in µ2, where the arrow indicates increasing µ3 (µ3 = 0, 250, 500, 750, 1000). 42



3.5 Critical Taylor number (Tc) for changes in the anisotropic extensional vis-

cosity (µ2), and the anisotropic shear viscosity (µ3) taking η = 0.5. (a) Crit-

ical Taylor number for increases in µ3, where the arrow indicates increasing

µ2 (µ2 = 0, 250, 500, 750, 1000). (b) Critical Taylor number for increases in

µ2, where the arrow indicates increasing µ3 (µ3 = 0, 250, 500, 750, 1000). . 43

3.6 Examining how changes in the gap ratio (η), for different values µ2 and

µ3 affect the critical wave-number (kc) and critical angular velocity of the

inner cylinder (Ωc). (a) Shows the effect on kc for varying η, µ2, and µ3,

where the arrows show the direction of increasing µ2 (µ2 = 0, 500, 1000).

(b) Shows the effect upon Ωc for varying η, µ2, and µ3, where the arrow

shows the direction of increasing µ2 (µ2 = 0, 500, 1000). . . . . . . . . . . 43

3.7 Qualitative dependence of maximum achievable LD signal on gap width.

(a) Critical average shear rate ⟨erθ⟩c at the critical angular velocity of the

inner cylinder. (b) Hypothesised saturating relationship between average

shear stress and alignment A(⟨erθ⟩), based on Figure 3 in McLachlan et

al. [59]. (c) Critical average shear rate multiplied by dimensionless gap

thickness (1 − η) ⟨erθ⟩c, indicating the hypothetical magnitude of signal

in the regime where alignment and shear stress are linearly related. (d)

Hypothesised signal calculated from the saturating function A indicating

the magnitude of signal in the saturating regime. We note the indicative

signal we propose is the simplest that could be chosen, however other forms

of this relation may apply. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 A schematic diagram of the Rayleigh-Bénard setup. The lower and upper

boundaries are located at z∗ = 0 and z∗ = d∗ at temperatures T ∗
0 and T ∗

1 .

The leading order preferred direction is given by the angle θ(0). . . . . . . 48



4.2 Maximum relative error in wave-number (ER
k ) and Rayleigh number (ER

R)

for changes in the number of Chebyshev polynomials (N), and iterative

stopping parameters for the critical wave-number (kTol) and critical Rayleigh

number (RTol). (a) Relative error in wave-number for increases in N and

RTol for kTol = 10−5, where the arrow indicates increasing N . (b) Relative

error in wave-number for increases in N and kTol for RTol = 10−5, where

the arrow indicates increasing N . (c) Relative error in Rayleigh number

for increases in N and RTol for kTol = 10−5, where the arrow indicates

increasing N . (d) Relative error in Rayleigh number for increases in N and

kTol for RTol = 10−5, where the arrow indicates increasing N . . . . . . . . . 70

4.3 Critical wave-number (kc) for changes in the anisotropic extensional vis-

cosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction

in the fluid at steady state (θ(0)) when both boundaries are rigid. In each

subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000)

for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100, and (d) µ3 = 1000. . . . . . . . . 72

4.4 Critical wave-number (kc) for changes in the anisotropic extensional vis-

cosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction

in the fluid at steady state (θ(0)) when both boundaries are free. In each

subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000)

for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100, and (d) µ3 = 1000. . . . . . . . . 73

4.5 Critical wave-number (kc) for changes in the anisotropic extensional viscos-

ity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction in

the fluid at steady state (θ(0)) when the bottom boundary is rigid and the

top boundary is free. In each subfigure the arrows indicate increasing µ2

(µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100,

and (d) µ3 = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



4.6 Critical Rayleigh number (Rc) for changes in the anisotropic extensional

viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direc-

tion in the fluid at steady state (θ(0)) when both boundaries are rigid. In

each subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000)

for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100, and (d) µ3 = 1000. . . . . . . . . 76

4.7 Critical Rayleigh number (Rc) for changes in the anisotropic extensional

viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direc-

tion in the fluid at steady state (θ(0)) when both boundaries are free. In each

subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000)

for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100, and (d) µ3 = 1000. . . . . . . . . 78

4.8 Critical Rayleigh number (Rc) for changes in the anisotropic extensional

viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred di-

rection in the fluid at steady state (θ(0)) when the bottom boundary is

rigid and the top boundary is free. In each subfigure the arrows indicate

increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10,

(c) µ3 = 100, and (d) µ3 = 1000. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Relative changes to the critical wave-number (kc), described by the fit-

ted equation (4.98), for changes in the anisotropic extensional (µ2) and

anisotropic shear (µ3) viscosities for the three different boundary types. In

each subfigure the dashed and solid lines represent µ3 = 50 and µ3 = 1000

respectively, with the black, blue and red lines representing rigid-rigid,

rigid-free and free-free boundary pairs respectively. (a) The relative mag-

nitude of cos 4θ(0) (f1(e
−f5µ2−1)/(f2+µ3)kn), and (b) the relative decrease

to kc (f3µ2/(f4 + µ3)kN), where kN is the critical wave-number of a New-

tonian fluid for each boundary type. . . . . . . . . . . . . . . . . . . . . . . 82



4.10 Comparison of fitted curves with data points for the critical wave-number

kc. The fit for (a) µ3 = 50 and (b) µ3 = 1000, where black, blue and red

correspond to rigid-rigid, rigid-free and free-free boundary pairs and circles

represent data points. We choose θ(0) = 0 so that we represent the largest

error between the fitted curves and the data. . . . . . . . . . . . . . . . . . 83

4.11 Relative changes to the critical Rayleigh number (Rc), described by the

fitted equation (4.99), for changes in the anisotropic extensional (µ2) and

anisotropic shear (µ3) viscosities for different boundary types. In each sub-

figure the dashed and solid lines represent µ3 = 100 and µ3 = 1000 respec-

tively, with the black, blue and red lines representing rigid-rigid, rigid-free

and free-free boundary pairs respectively. (a) The relative magnitude of

cos 4θ(0) ((−g1/(µ3 + 1) + g2)µ2/RN) and (b) the relative increase to Rc

((−g3/(µ
1/2
3 + 1) + g4)µ2/RN), where RN is the critical Rayleigh number

of a Newtonian fluid for each boundary type. . . . . . . . . . . . . . . . . . 84

4.12 Comparison of fitted curves with data points for the critical Rayleigh num-

ber Rc. The fit for (a) µ3 = 50 and (b) µ3 = 1000, where black, blue and

red correspond to rigid-rigid, rigid-free and free-free boundary pairs and

circles represent data points. We choose θ(0) = 0 so that we represent the

largest error between the fitted curves and the data. . . . . . . . . . . . . . 84

5.1 A schematic diagram showing the coordinate system used to model the

particle distribution function N∗. The particle’s position in space is given

by the vector x∗ = (x∗, y∗, z∗) and its orientation is given by the unit vector

p̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Schematic diagram showing the position of the Stokeslets and their direc-

tion to form the stresslet for a (a) puller and (b) pusher. . . . . . . . . . . 94

6.1 Schematic diagram to illustrate the different particle shapes when (a) α0 =

0.75, (b) α0 = 0.85 and (c) α0 = 0.95. . . . . . . . . . . . . . . . . . . . . . 106



6.2 Schematic diagrams of (a) an aligned suspension and (b) an isotropic sus-

pension of rod-like particles . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 The real part of the growth rate (R(s)) for changes in the volume fraction

ϕ = 0, 0.1, 0.2, where the arrow indicates the direction of increase, shape

parameter α0 = 0.85 and wave direction (a) θ = π/8, (b) θ = π/4 and (c)

θ = 3π/8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 The real part of the growth rate (R(s)) for changes in the volume fraction

ϕ = 0, 0.1, 0.2, where the arrow indicates the direction of increase, shape

parameter α0 = 0.85 and wave magnitude (a) k = 0, (b) k = 0.1 and (c)

k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 The real part of the growth rate (R(s)) for changes in the shape parameter

α0 = 0.75, 0.85, 0.95, where the arrow indicates the direction of increase,

volume fraction ϕ = 0.1 and wave magnitude (a) k = 0, (b) k = 0.1 and

(c) k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 The real part of the growth rate (R(s)) for changes in the shape parameter

α0 = 0.75, 0.85, 0.95, where the arrow indicates the direction of increase,

volume fraction ϕ = 0.1 and wave direction (a) θ = π/8, (b) θ = π/4 and

(c) θ = 3π/8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 A visualisation of the convergence of Newton’s method to find the roots

of the nonlinear dispersion relation, where λ̃ = x + iy. The darker the

colour the faster the convergence, whilst each colour is a different root.

Convergence for (a) k = 1/8, (b) k = 1/4, (c) k = 3/8 and (d) k = 5/8. . . 127

6.8 The real part of the dispersion relation for changing volume fraction ϕ =

0, 0.05, 0.1, where the arrow shows the direction of increase, for fixed shape

parameters (a) α0 = 0.75, (b) α0 = 0.85, (c) α0 = 0.95. . . . . . . . . . . . 129

6.9 The imaginary part of the dispersion relation for changing volume fraction

ϕ = 0, 0.05, 0.1, where the arrow shows the direction of increase, for fixed

shape parameters (a) α0 = 0.75, (b) α0 = 0.85, (c) α0 = 0.95. . . . . . . . . 130



LIST OF TABLES

4.1 The parameter values from curve fitting for the critical wave-number given

in equation (4.98) for the different combinations of boundary conditions. . 81

4.2 The parameter values from curve fitting for the critical Rayleigh number

in equation (4.99) for the different combinations of boundary conditions. . 83



CHAPTER 1

INTRODUCTION

This thesis is concerned with modelling suspensions of elongated particles in a solvent

fluid. We consider two types of particle, ‘active’ and ‘passive’ ; particles are termed active

if they can propel themselves through the fluid, and passive if they have no mechanism

of self-propulsion, reorienting due to the background flow and hydrodynamic interactions

only. Our aim is to investigate how the rheological changes, induced by the presence

of elongated particles in solution, alter the stability characteristics of well-known flow

regimes; as well as identifying when these important properties have been neglected in

the existing literature.

Fluids containing suspensions of particles are found in numerous industrial and bio-

logical applications. Examples involving passive particles include (but are not limited to)

solutions of DNA [57], fibrous proteins of the cytoskeleton [16, 47], synthetic bio-nanofibres

[59], extracellular matrix [23, 29] and plant cell walls [22]. When the suspension is active,

the particle we model may represent micro-organisms that are capable of self-propulsion,

such as self-propelling bacteria or spermatozoa; these suspensions exhibit phenomena such

as collective behaviour [35, 42, 45, 49, 65, 66, 72] and, as observed recently, superfluidity

[55]. Collections of artificial swimmers may also exhibit the properties of active matter

[21, 28, 39, 64, 91].

We will give a detailed literature review at the beginning of each chapter, so each chap-

ter is as self-contained as possible, we do however provide a brief overview and motivation
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Figure 1.1: Scanning electron microscopy image of collagen gel [2], showing the fibrous
microstructure of the material. Image is licensed under CC BY-SA 3.0.

of each chapter here.

In chapter 2 we describe Ericksen’s model for a transversely isotropic fluid. This model

has been used to model many biological situations, such as the influence of extra-cellular

matrix anisotropy and cell-matrix interaction on tissue architecture [23] or the mechanical

behaviour of biological gels (such as collagen gels) which have a fibrous microstructure [29]

(figure 1.1). Tufts of textile fibres undergoing the carding process have also been treated

as a transversely isotropic material [52]. In this thesis we apply Ericksen’s model to sus-

pensions of elongated particles/fibres. The presence of these fibres can significantly alter

the rheology of the fluid, and hence must be incorporated in any modelling undertaken.

A transversely isotropic model treats these suspensions as a continuum with an evolv-

ing preferred direction, through a modified stress tensor incorporating four viscosity-like

parameters. These parameters intuitively correspond to an isotropic viscosity, an active

component, and anisotropic extensional and shear viscosities.

In chapter 3 we consider the axisymmetric linear Taylor-Couette stability of a trans-

versely isotropic viscous fluid, contained between two rotating co-axial cylinders, and

determine the critical wave and Taylor numbers for varying gap width and inner cylinder

velocity (assuming the outer cylinder is fixed). The critical Taylor number corresponds

to the highest angular velocity of the inner cylinder for which a given experimental setup

remains stable, and the flow is laminar. As the angular velocity is increased above the
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Figure 1.2: A Couette device where Taylor vortices (fluid doughnuts) are visible [87].
Image is licensed under CC BY-SA 4.0.

critical Taylor number the first fluid instability to occur is the appearance of Taylor vor-

tices (‘fluid doughnuts’, Figure 1.2); the critical wave-number corresponds to the height

of these doughnuts. Through the inclusion of transversely isotropic effects, the onset of

instability is delayed, increasing the range of stable operating regimes. This effect is felt

most strongly through the incorporation of the anisotropic shear viscosity, although the

anisotropic extensional viscosity also contributes. The changes to the rheology induced

by the presence of the fibres therefore significantly alters the dynamics of the system,

and hence should not be neglected. This problem is both interesting theoretically, as

a canonical example from traditional fluid mechanics, as well as practically, as Couette

devices are used, in combination with linear dichroism spectroscopy, to analyse long bio-

logical molecules in suspension. Flow linear dichroism is particularly useful for particles

with high aspect ratio; one current area of interest is exploiting flow linear dichroism for

pathogen detection [63].

In chapter 4 we examine the linear Rayleigh-Bénard stability of a transversely isotropic
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Figure 1.3: Hexagonal patterns appearing which signify the occurrence of convection
currents in a solution of gold paint dissolved in acetone [89]. Image is licensed under CC
BY-SA 3.0.

fluid. Here the fluid is contained between two infinite horizontal planes of different tem-

peratures, which may be a combination of either rigid or free; we determine the critical

wave and Rayleigh numbers for a variety of steady state preferred directions and boundary

types. Rayleigh-Bénard convection was first observed experimentally by Bénard [8] who

melted wax in a metal dish which was heated from below. Bénard noticed that once the

base of the dish was heated above a certain temperature hexagonal patterns developed

on the surface of the wax, and it was this observation that allowed him to deduce the

presence of convection currents in the wax below (figure 1.3). The appearance of the con-

vection current is related to the change in density across the fluid layer, which is in turn

due to the temperature difference between the bottom and top boundaries; instability

will only occur if the lower boundary is warmer than the upper [20]. Rayleigh [67] was

the first to form a mathematical model of this experiment, using equations for the energy

and state of an infinite layer of fluid, bounded by two stationary horizontal boundaries of

different constant uniform temperatures. The governing equations are stated under the

Boussinesq approximations, where the full model for a compressible fluid, which should be

used as density is not constant, may be simplified. The Boussinesq approximations state

the fluctuations in density which appear result from thermal (as opposed to pressure)

effects, and in the equations for conservation of mass and momentum, density variations
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may be neglected except when they are coupled to the gravitational acceleration in the

buoyancy force. Spiegel & Veronis [81] show, through a self-consistent approximation, the

conditions under which the Boussinesq approximations are valid. We show this in Ap-

pendix A. Rayleigh was able to determine the critical wave and Rayleigh numbers when

both boundaries were ‘free’, however to determine the critical values of other combina-

tions of boundary types (rigid-rigid and rigid-free) numerical techniques are required [18].

The critical Rayleigh number corresponds to the largest temperature difference between

the two boundaries for which a given experimental setup will remain stable. Once the

Rayleigh number increases above the critical value convection currents appear, where the

width of the convection currents correspond to the critical wave-number. When the fluid

is transversely isotropic, a steady state exists when the fluid is stationary, and there is a

single constant preferred direction. Through the inclusion of transversely isotropic effects,

we find the onset of instability is delayed. Similarly to chapter 3, the anisotropic shear

viscosity has a significant impact on the critical Rayleigh number, with the anisotropic

extensional viscosity contributing less. Increases in the anisotropic extensional viscosity

give a greater dependance of the critical wave and Rayleigh numbers on the steady state

preferred direction.

In chapter 5 we introduce a continuum model for an active fluid, and identify the

fundamental connection between models of active suspensions and transversely isotropic

fluids. Suspensions of self-motile, elongated particles are a topic of significant current

interest, exemplifying a form of ‘active matter.’ Examples include self-propelling bac-

teria, algae and sperm, and artificial swimmers; with suspensions of these cells able to

exhibit phenomena such as collective behaviour (figure 1.4 [78]). The continuum model

we describe couples a Fokker-Planck equation, for a particle distribution function, to a

pair of Cauchy momentum equations, for the background fluid velocity. Current models

take account of the isotropic and active stresses, but by making fundamental connections

between active suspensions and Ericksen’s model for a transversely isotropic fluid, we

reveal previously neglected components of the stress tensor that significantly alter the
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Figure 1.4: Observations of collective bacteria motion by Sokolov et al. [78]. Bacteria
images for (a) dilute naL

2 = 1.7 and (b) concentrated naL
2 = 5.6 suspensions, where

na is the number of bacteria per unit area and L is the cell length. Vector fields for (c)
velocity and (d) orientation of bacteria for the configuration shown in image (b). The
vector and orientation fields are different as the bacteria are affected by the background
flow, caused by their collective motions. Copyright (2007) by the American Physical
Society.

rheology; these components correspond to the anisotropic extensional and shear viscosi-

ties, representing the interactions between non-spherical particles with the surrounding

fluid.

In chapter 6 we analyse the linear stability of isotropic and nearly-aligned suspensions

of elongated particles, when there is no background flow. These systems are interesting

because they appear commonly in nature, such as large-scale colonies of bacteria [35, 66],

as well as having technological applications, where artificial micro-swimmers are designed

to perform various functions [21, 28]; therefore understanding the underlying mechanics

of these physical systems is important. We consider plane wave perturbations to the

base state, to determine the dispersion relations for dilute suspensions of particles; these
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relations describe how a perturbation, with a given wave-number and direction, will grow

or decay in time. When the suspension is dilute, the inclusion of anisotropic effects does

not alter the physical properties of the fluid or particles required for instability to occur,

however they do alter the rate at which perturbations grow and the range of wave-numbers

which are unstable.
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CHAPTER 2

TRANSVERSELY ISOTROPIC FLUIDS

Fibre-laden fluids are found in numerous industrial and biological contexts, including

solutions of DNA [57], fibrous proteins of the cytoskeleton [16, 47], synthetic bio-nanofibres

[59], extracellular matrix [29, 23] and plant cell walls [22]. The presence of fibres can

significantly alter the rheology and thus their effects must be taken into account. These

suspensions can be modelled as a class of anisotropic fluids, for which there is a single

preferred direction, and all properties of the fluid are identical normal to this direction.

Fluids which exhibit these properties are termed transversely isotropic.

To examine the behaviour of a transversely isotropic fluid, we must define an appro-

priate constitutive law. We use the constitutive equation derived by Ericksen [24], the

simplest form of stress tensor that is linearly dependent upon strain rate and obeys the

required invariances to have a single preferred direction (i.e. a is physically indistinguish-

able from −a and the tensor remains of the same form after a coordinate transform) .

This model introduces four viscosity-like parameters describing the anisotropic behaviour

of the material, along with a preferred direction that evolves according to a kinematic

equation. This equation involves a parameter α0 which may be linked to certain prop-

erties of the fluid. When α0 > 1 Ericksen’s model has not been shown to represent any

physical situation, however in the range 0 < α0 < 1, α0 can be related to the shape of the
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fibres by the relation

α0 =
r2 − 1

r2 + 1
, (2.1)

where r = r∗1/r
∗
2 is the aspect ratio, r∗1 the major axis and r∗2 the minor axis of the fibre.

These particles exhibit time-periodic behaviour and hence no steady state is achievable

when Brownian effects are neglected, as shown by Jeffery [43]. Green and Friedman [29]

derived a kinematic equation corresponding to α0 = 1; this limit of Jeffery’s model for

fibres which have a large aspect ratio [22] does exhibit steady state alignment. The four

viscosity-like parameters intuitively correspond to an isotropic solvent viscosity, a tension

due to the presence of fibres, and anisotropic extensional and shear viscosities.

2.1 Governing equations

Here, and in the following, stars denote dimensional variables and parameters. Mass

conservation and momentum balance leads to the generalised Navier-Stokes equations

∇∗
x · u∗ = 0, (2.2)

ρ∗
(
∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗
)

= ∇∗
x · σ∗, (2.3)

where ρ∗ is the constant density of the fluid, u∗ is velocity, ∇x the gradient operator in

Cartesian space, t∗ is time, and σ∗ is a transversely isotropic stress tensor that must be

specified.

2.1.1 Transversely isotropic stress tensor

Ericksen’s stress tensor requires a single preferred direction of the fibres, given by the

unit vector a, which may vary with both position and time [24]. This is the most general

symmetric form of the stress tensor which is linear in rate of strain and where the direction
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of the fibres is physically indistinguishable. By neglecting that fibres may rotate about

the axis a, the stress tensor is given as

σ∗ =− p∗I + 2µ∗e∗ + µ∗
1aa+ µ∗

2aaaa : e+ 2µ∗
3 (aa · e+ e∗ · aa) , (2.4)

where p∗ is the pressure, e∗ = (∇∗
xu

∗ + ∇∗
xu

∗T )/2 is the rate-of-strain tensor, I is the

identity tensor, and µ∗, µ∗
2, and µ∗

3 are viscosities, whilst µ∗
1 is a stress. The physics

underlying this stress tensor will be discussed in section 2.2, however, for now we proceed

under the assumption that this is a valid model for a transversely-isotropic fluid.

Ericksen’s stress tensor is derived under the assumptions that the unit vector a is

invariant under the transformation a → −a, that the fluid is incompressible, and that

the resulting tensor should be linear in rate of strain. The stress tensor should also be

invariant under orthogonal coordinate transforms, i.e. given an orthogonal transformation

tij which takes x∗
i into x∗′

i = tijx
∗
j [62]

σ∗′
ij = tiαtjβσ

∗
αβ. (2.5)

2.1.2 Kinematic equation for fibre evolution

A kinematic equation is required to explain how the preferred direction of the fibres evolves

in reference to the flow, depending on their physical properties. Ericksen’s evolution

equation for a based on the appropriate invariances and linear dependence upon ∇∗
xu

∗ is

∂a

∂t∗
+ (u∗ ·∇x)a− ω∗ · a = α0 (e

∗ · a− e : aaa) . (2.6)

The vorticity tensor ω∗ = [∇∗
xu

∗ − (∇∗
xu

∗)T ]/2, and α0 is a constant which describes the

properties of the fibres in suspension [24].

We consider a special case of this condition (corresponding to α0 = 1) that is applicable

for fibres with large aspect ratio, by following the derivation of Green & Friedman [29] by
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x∗ + u∗(x∗)δt∗

α∗′

x∗ +α∗ + u∗(x∗ +α∗)δt∗

u∗(x)∗

u∗(x∗ +α∗)

x∗

α∗

x∗ +α∗

1
Figure 2.1: A schematic diagram showing the advection of a short section of fibre over a
small time step δt∗.

considering how a short section of fibre is advected by a flow u∗. Consider the setup shown

in Figure 2.1, where a fibre initially located between the points x∗ and x∗+α∗ is advected

by the flow for some small time step δt∗, so the fibre is located between x∗ + u∗(x∗)δt∗

and x∗ +α∗ + u∗ (x∗ +α∗) δt∗ after advection. This allows us to write:

α∗′ = α∗ + u∗ (x∗ +α∗) δt∗ − u∗(x∗)δt∗, (2.7)

where α∗ describes the initial length and direction of the fibre, and α∗′ the position and

length after it has been advected. Now, using a Taylor Series expansion

u∗(x∗ +α∗) = u∗(x∗) + (α ·∇∗
x)u

∗(x∗) +O
(
|α∗|2

)
, (2.8)

and as we consider only a short section of fibre (|α∗| small), equation (2.7) may be written

as

α∗′ −α∗

δt∗
= (α∗ ·∇∗

x)u
∗(x∗), (2.9)
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where we have neglected small terms. Taking the limit δt∗ → 0 in equation (2.9) gives

∂α∗

∂t∗
+ (u∗ ·∇∗

x)α
∗ = (α∗ ·∇∗

x)u
∗, (2.10)

where the left hand side of equation (2.9) has become a convective derivative. Since

our primary interest will be in the direction of the fibres and not their length, we define

α∗ = ξ∗a, where ξ∗ is a scalar which describes the length of the section of fibre and a is

the unit vector for the fibre direction. Substituting this expression for α∗ into equation

(2.10) yields

∂a

∂t∗
+ (u∗ ·∇∗

x)a+
ξ̇∗

ξ∗
a = (a ·∇∗

x)u
∗, (2.11)

where ξ̇∗/ξ∗ is the fractional rate of extension of the material in the fibre direction. By

taking the scalar product of equation (2.11) with a and exploiting that a is a unit vector,

we find

ξ̇∗

ξ∗
= a ·

[
(a ·∇∗

x)u
∗] , (2.12)

and the fractional rate of extension from equation (2.11) may be eliminated to give

∂a

∂t∗
+ (u∗ ·∇∗

x)a+ aaa : ∇∗
xu

∗ = (a ·∇∗
x)u

∗. (2.13)

Note since |a| = 1, the model encodes only the local alignment direction of fibres and not

their length. This result generalizes Jeffery’s treatment of the motion of long ellipsoidal

particles [43], which align in the direction of the principal rate of strain [22].
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2.2 Interpreting the parameters of the transversely

isotropic model

We may interpret each of the parameters in equation (2.4) physically. By setting µ∗
1 =

µ∗
2 = µ∗

3 = 0, the stress tensor for an incompressible isotropic fluid is recovered, with

viscosity µ∗. The parameter µ∗ is the isotropic component of the solvent viscosity, modified

by the volume fraction of fibres [22]. Observe that the third term in equation (2.4) is

independent of strain rate and only related to a. Therefore µ∗
1 implies the existence of a

stress in the fluid even if it is instantaneously at rest, and can be interpreted as a tension

in the fibre direction [29].

The parameters µ∗
2 and µ∗

3 may be interpreted by considering two-dimensional de-

formations in the plane of the fibres, where the active stress in the fibres is zero i.e.

µ∗
1 = 0. In each case we assume the fibres are aligned horizontally in the x∗-direction

of the (x∗, y∗)-Cartesian plane, i.e. a = (1, 0). We note the following examples are not

physically realistic as they do not conserve mass, however we believe they are important

as a tool for understanding the constituent properties of the stress tensor. Schematic

representations of the three deformations we consider are shown in Figure 2.2.

The first deformation to consider is an extensional flow perpendicular to the fibre

direction, represented by the velocity vector u∗ = (0, v∗(y)); the stress tensor under these

assumptions is given by

σ∗ = −p∗I + 2µ∗dv
∗

dy∗
ŷŷ, (2.14)

where ŷ is the unit vector in the y∗-direction (Figure 2.2(a)). Therefore, the extensional

viscosity perpendicular to the fibre direction is µ∗
⊥ = µ∗. The second deformation is

given by the extensional flow parallel to the fibre direction, with corresponding velocity

u∗ = (u∗(x), 0) and stress tensor

σ∗ = −p∗I + (2µ∗ + µ∗
2 + 4µ∗

3)
∂u∗

∂x∗ x̂x̂, (2.15)
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(a) (b) (c)

1Figure 2.2: A schematic diagram of the two-dimensional deformations in the plane of
fibres considered in equations (2.14), (2.15), and (2.16), where the fibres are aligned in
the x∗-direction. Sub-figures (a) and (b) show an extensional flow orthogonal and parallel
to the fibre direction respectively, whilst (c) shows a shear flow.

where x̂ is the unit vector in the x∗-direction (Figure 2.2(b)). The extensional viscosity

parallel to the fibre direction is µ∗
|| = µ∗+(µ∗

2+4µ∗
3)/2. The final deformation we consider

is given by a shear flow u∗ = (u∗(y), v∗(x)) (Figure 2.2(c)), in this case the stress tensor

is

σ∗ = −pI + (µ∗ + µ∗
3)

∂u∗

∂y∗
x̂ŷ, (2.16)

and the shear viscosity is µ∗
s = µ∗+µ∗

3. By comparing the three different viscosities µ∗
⊥, µ

∗
||

and µ∗
s, observe µ∗

2 contributes only to µ∗
|| while µ∗

3 distinguishes µ∗
⊥ from µ∗

s. Therefore,

we interpret µ∗
2 as the anisotropic extensional viscosity and µ∗

3 as the anisotropic shear

viscosity [29, 22, 70].

2.3 Parameter values

In order to use this model in practice it is necessary to estimate the rheological parameters

of the fluid, however data are required on these parameters in bio-molecular suspensions

of interest. In this section we propose how capillary viscometry may be used to determine

the shear viscosity (µ∗
s) of a transversely isotropic fluid (section 2.3.1), examine how

Batchelor’s analysis of statistically homogeneous suspensions of dilute rods [6] may be

used to estimate all of the viscosity-like parameters (µ∗, µ∗
2, µ

∗
3), when the transversely
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1

∆P ∗ over ∆L∗

Q∗ 2ζ∗

1

z∗
r∗

θ

1
Figure 2.3: Schematic diagram of laminar flow in a straight capillary tube. The fluid
enters the tube with a volumetric flow rate Q∗, the cylinder has radius ζ∗. The pressure
drop ∆P ∗ is measured over a known length ∆L∗.

isotropic fluid represents a dilute suspension of rod-like particles (section 2.3.2), and

finally investigate how Batchelor’s analysis of the extensional flow of aligned rods [7]

may be used to relax the diluteness assumption in section 2.3.2, determining the value

of the anisotropic extensional viscosity µ∗
2 in this case (section 2.3.3). We do not discuss

the parameter µ∗
1 here, as it corresponds to active behaviour, instead we investigate its

meaning in chapter 5 which focusses on active fluids.

2.3.1 Capillary viscometry

A viscometer is a device which is used to measure the flow parameters of a fluid. We will

describe the application of a standard viscometer, the capillary viscometer, which could

be used to find estimates of the shear viscosity µ∗
s = µ∗ + µ∗

3.

We model the flow inside a capillary viscometer (figure 2.3) as flow down a cylindrical

pipe. When the fluid is Newtonian capillary viscometers rely upon the application of

Poiseuille’s law, which relates the volumetric flow rate Q∗, the pressure difference ∆P ∗

over some length ∆L∗, and the radius of the pipe ζ∗, to find the shear viscosity of the

fluid [4]. We therefore form an equation, similar to Poiseuille’s Law, for the steady flow

of a transversely isotropic fluid down a cylindrical pipe.

We adopt a cylindrical coordinate system where the z∗-axis is coincident with the

centre line of the pipe, the radius of the pipe is r∗, and the azimuthal angle is given by

θ. We assume the velocity of the pipe is purely in the z∗-direction and only a function of

the radius, the pressure in the pipe is a function of z∗ only, and the fibres align purely in
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the z∗-direction, i.e.

u∗ = (0, 0, w∗(r∗)), p∗ = p∗(z∗), a = (0, 0, 1). (2.17)

Under these assumptions the stress tensor (2.4) becomes

σ∗ = −p∗I +


0 0 (µ∗ + µ∗

3)
dw∗

dr∗

0 0 0

(µ∗ + µ∗
3)

dw∗

dr∗
0 0

 . (2.18)

To find the anisotropic shear viscosity we solve the Stokes equations

∇x · σ∗ = ∇xp
∗, (2.19)

⇐⇒
(
µ∗ + µ∗

3

r∗

)
d

dr∗

(
r∗
dw∗

dr∗

)
=

dp∗

dz∗
. (2.20)

Multiplying equation (2.20) by r∗ and integrating with respect to r∗ gives

(µ∗ + µ∗
3) r

∗dw
∗

dr∗
=

r∗2

2

dp∗

dz∗
+ C1, (2.21)

where C1 is a constant. Dividing equation (2.21) by r∗ and integrating gives

(µ∗ + µ∗
3)w

∗ =
r∗2

4

dp∗

dz∗
+ C1 ln r

∗ + C2. (2.22)

Since w∗ needs to be finite at r = 0, the constant C1 = 0. Assuming there is no-slip at

the cylinder walls, i.e. w∗ = 0 at r∗ = ζ∗ gives

(µ∗ + µ∗
3)w

∗ =
1

4

dp∗

dz∗
(
r∗2 − ζ∗2

)
. (2.23)
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As we assume the pressure decreases linearly across the length of the pipe, we have

dp∗

dz∗
= −∆P ∗

∆L∗ , (2.24)

substituting this into equation (2.23) gives

(µ∗ + µ∗
3)w

∗ =
∆P ∗ (ζ∗2 − r∗2

)
4∆L∗ . (2.25)

The total volume of fluid that flows through the viscometer, per unit time, is given by

the volumetric flow rate,

Q∗ =

∫ ζ∗

r∗=0

∫ 2π

θ=0

w∗r∗ dθ dr∗, (2.26)

=

∫ ζ∗

r∗=0

2π
∆P ∗ (ζ∗2r∗ − r∗3

)
4 (µ∗ + µ∗

3)∆L∗ dr∗, (2.27)

=
πζ∗4∆P ∗

8 (µ∗ + µ∗
3)∆L∗ . (2.28)

Rearranging equation (2.28) yields

µ∗
s = µ∗ + µ∗

3 =
πζ∗4∆P ∗

8Q∗∆L∗ , (2.29)

where every parameter on the right hand side of equation (2.29) is known. Capillary

viscometry may therefore be used to calculate the value of the shear viscosity µ∗
s in terms

of the cylinder radius of the viscometer, the pressure difference across the length of the

viscometer and also the volumetric flow rate. This analysis holds for any fluid that may

be described as transversely isotropic.

2.3.2 Dilute regime

We now discuss how physical arguments may be used to determine the viscosity-like pa-

rameters when the transversely isotropic fluid represents a dilute suspension of elongated
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particles [6], to do this we follow Lipscomb et al. [54].

First note the bulk stress of a dilute suspension of axisymmetric ellipsoids may be

written

σ∗
B = −P ∗I + 2µ̄∗e∗ + ϕ

∑
σ∗

p, (2.30)

where P ∗ is the pressure, I is the identity tensor, ϕ is the volume fraction of included

fibrous material, σ∗
p is the stress acting on the surface of the ellipsoid, and the sum is

carried out over all particles. This relation is only valid if the suspension is dilute i.e.

nr∗31 ≪ 1, where n is the fibre number density and r∗1 is the fibre half-length [75]. The

stress acting on the surface of the ellipsoid was calculated by Jeffery [43]. Jeffery assumed

the flow far from the ellipsoid is steady and homogeneous, motion is sufficiently slow so

that inertial forces are negligible and the particle translates with the velocity of the fluid.

Under these assumptions Jeffery determined the velocity and pressure fields surrounding

the particle, and hence the stress acting on the surface of the ellipsoid:

σ∗
p =

8µ̄∗

r∗1r
∗2
2


e∗11/6B

′′
0 e∗12/2B

′
0(4r

∗2
1 + r∗22 ) e∗13/2B

′
0(4r

∗2
1 + r∗22 )

e∗12/2B
′
0(4r

∗2
1 + r∗22 ) ∆∗

22 e∗23/4A
′
0r

∗2
2

e∗13/2B
′
0(4r

∗2
1 + r∗22 ) e∗23/4A

′
0r

∗2
2 ∆∗

33

 ,

(2.31)

∆∗
22 = e∗22/4A

′
0r

∗2
2 + e∗11(B

′′
0 − A′′

0)/12r
∗2
2 B′′

0A
′
0,

∆∗
33 = e∗33/4A

′
0r

∗2
2 + e∗11(B

′′
0 − A′′

0)/12r
∗2
2 B′′

0A
′
0.

Here A′
0, A

′′
0, B

′
0, and B′′

0 are elliptic integrals, which were evaluated by Giesekus [26], and
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are given as follows

A′
0 =

r2
(
3γ + 2r2 − 5

)
4 r∗1 r

∗4
2 (r2 − 1)2

, B′
0 =

(
−3r2γ + r2 + 2

)
r∗1r

∗4
2 (r2 − 1)2

, (2.32)

A′′
0 =

r2
[(
1− r2

)
γ + 2r2 + 1

]
4r∗1r

∗2
2 (r2 − 1)2

, B′′
0 =

r2
[(
2r2 + 1

)
γ − 3

]
r∗1r

∗2
2 (r2 − 1)2

, (2.33)

where r = r∗1/r
∗
2 is the fibre aspect ratio, r∗2 is the minor axis of the particle and γ is

defined by

γ =
1

2r(r2 − 1)1/2
log

[
r + (r2 − 1)1/2

r − (r2 − 1)1/2

]
for r > 1, (2.34)

γ =
1

r(1− r2)1/2
tan−1

[
(1− r2)1/2

r

]
for r < 1. (2.35)

Now the constitutive equations (2.4) and (2.6) proposed by Ericksen [24] may be

equated with Jeffery’s model by transforming the constitutive equations of Ericksen into

the coordinate system used by Jeffery; this may be achieved by choosing a = (1, 0, 0)

as the unique axis of a single ellipsoid of revolution, and α0 = (r2 − 1)/(r2 + 1) as the

shape parameter. In this coordinate system the transversely isotropic stress tensor (2.4)

becomes

σ∗ =


−p∗ + µ∗

1 + (2µ∗ + µ∗
2 + 4µ∗

3)e
∗
11 2(µ∗ + µ∗

3)e
∗
12 2(µ∗ + µ∗

3)e
∗
13

2(µ∗ + µ∗
3)e

∗
12 −p∗ + 2µ∗e∗22 µ∗e∗23

2(µ∗ + µ∗
3)e

∗
13 µ∗e∗23 −p∗ + 2µ∗e∗33

 . (2.36)

Equating equation (2.31) with equation (2.36) gives the viscosity-like parameters

µ∗ = µ̄∗/2r∗1r
∗4
2 A′

0,

µ∗
1 = 0,

µ∗
2 = µ̄∗ [1/r∗1r∗42 A′

0 + 1A′′
0/r

∗
1r

∗4
2 B′′

0A
′
0 − 4/(2r∗1r

∗2
2 B′

0(4r
∗2
1 + r∗22 ))

]
,

µ∗
3 = µ̄∗ [1/(r∗1r∗22 B′

0(4r
∗2
1 + r∗22 ))− 1/2r∗1r

∗4
2 A′

0

]
.

(2.37)
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1Figure 2.4: Functional dependence of (a) µ∗/µ̄∗, (b) µ∗
2/µ̄

∗, (c) µ∗
3/µ̄

∗, and (d) α0, on the
aspect ratio of the fibres (r) in a dilute regime. Reproduced from Lipscomb [54].

Here µ∗
1 = 0 as Batchelor’s theory corresponds to passive suspensions of particles, hence

the active component of Ericksen’s stress tensor is zero. In Figure 2.4 we plot the func-

tional dependence of µ∗/µ̄∗, µ∗
2/µ̄

∗, µ∗
3/µ̄

∗, and α0 on the aspect ratio for 0 < r < ∞.

We now examine the limit of the fibre aspect ratio r → ∞, this corresponds to an

infinitely long fibre. In this limit, equations (2.37) reduce to

µ∗ = 2µ̄∗, µ∗
2 =

µ̄∗r2

log(r)
, µ∗

1 = µ∗
3 = 0. (2.38)
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and the stress tensor (2.4) becomes

σ∗ =− p∗I + 4µ̄∗e∗ +
µ̄∗r2

log(r)
aaaa : e. (2.39)

Equation (2.39) represents a limit of the transversely isotropic stress tensor corresponding

to a dilute suspension of infinitely long particles. However, this dilute limit requires rods

to be very widely spaced, and will not be valid in many real-world applications. For this

regime to hold we require nr∗31 ≪ 1, which when the aspect ratio of the fibres is large will

only hold for extremely small volume fractions of fibres. Although this theory is limited,

it does allow us to see that elongated particles will make a much greater contribution to

the stress than spherical particles that are a similar size. This is due to the final term in

equation (2.39) which would be zero for a suspension of spherical particles.

2.3.3 Semi-dilute regime

Next we consider how the assumptions on diluteness may be relaxed to gain information

on the parameters in the model. Following authors such as Dyson and Jensen [22], we

apply the work of Batchelor [7] who considered a suspension of rigid elongated particles

suspended in a Newtonian fluid, undergoing a pure straining motion in the x∗-direction,

where each particle is free to translate and rotate with the surrounding fluid and is small

enough so that inertia may be neglected.

Consider n particles of length 2r∗1 aligned in the x∗-direction of a unit volume. Then

n is the number density of particles and the average number of particles that intersect

a plane normal to the x∗-axis is 2nr∗1 (figure 2.5) [5]. Therefore, the average distance

between neighbouring intersections is a length of order

h∗ = (2nr∗1)
−1/2 . (2.40)

The ratio r∗1/h
∗ may be used to describe the relative important of interactions between the
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x∗y∗

z∗

1
Figure 2.5: Schematic diagram of aligned fibres intersecting a unit plane perpendicular
to their direction.

particles. In a dilute suspension (section 2.3.2) the spacing between the particles must be

much greater than their length i.e. r∗1/h
∗ ≪ 1. Another regime that may be considered is

the semi-dilute regime, where the length of the particles is much greater than the spacing

between the particles, which is itself much larger than the particles radius, i.e.

r∗2 ≪ h∗ ≪ r∗1. (2.41)

This corresponds to nr∗31 ≫ 1 and ϕ ≪ 1 [75].

In the semi-dilute regime, the fluid surrounding the particles must move in the gap

between the particles. As the lateral spacing between particles is small when compared

with the particle length, the spatial gradients of fluid velocity in the x∗-direction are small

relative to those in the y∗- and z∗-directions; also the difference between the local and

average velocities is a vector approximately in the x∗-direction. The x∗-component of the

velocity vector of the fluid surrounding the particles may therefore be written as

∂2u∗

∂y∗2
+

∂2u∗

∂z∗2
= 0, (2.42)
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where inertial forces are negligible between adjoining particles.

Batchelor [5] showed that this is the governing equation for a fluid surrounding an

elongated particle within a distance from the particle that is small compared to its length.

Since it is assumed h∗ ≪ r∗1 the surrounding fluid always satisfies this condition and

equation (2.42) holds everywhere in the surrounding fluid.

The problem must be closed by choosing appropriate boundary conditions on u∗, which

are formulated by assuming there is no-slip on the particles’ surfaces. This allows for the

force per unit particle length exerted on the surrounding fluid to be given as

F ∗ =
−2πµ̄∗e∗11x

∗

log(h∗/r∗2)
, (2.43)

where e∗11 is the rate of extension in the x∗-direction of the surrounding fluid.

In the case of a transversely isotropic fluid (i.e. a fluid with a preferred direction a)

the bulk stress due to the presence of the particles may be approximated as

σ∗
p = −aa

V ∗

∑
r∗21

∫ 1

−1

a · F ∗s ds, (2.44)

where the summation is over the many particles in a volume V ∗, in which conditions are

statistically homogeneous, and F ∗ is the force per unit length exerted by the particle on

the surrounding fluid at station s (where sr∗1 denotes the distance along the particle’s axis

from its centre).

Substituting equation (2.43) into equation (2.44) allows for the evaluation of the par-

ticle stress

σ∗
p = (x̂ x̂) µ̄∗e∗11

4π

3V ∗

∑ r∗31
log(h∗/r∗2)

, (2.45)

where x̂ is a unit vector in the x∗ direction [7]. Now using the volume of an ellipsoid to
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be 4πr∗1r
∗2
2 /3, we may rewrite equation (2.45) to give

σ∗
p = (x̂ x̂) µ̄∗e∗11

∑
ϕ

r2

log(h∗/r∗2)
, (2.46)

where r = r∗1/r
∗
2 is the aspect ratio.

We may now compare this result to the transversely isotropic stress tensor in a similar

way to that described in section 2.3.2. The equation for the bulk stress given in equation

(2.30) is still valid, and so we again notice that we must equate the particle stress (equation

(2.45)) with the transformed constitutive equations of Ericksen (equation (2.36)). This

allows us to interpret the anisotropic extensional viscosity (modulo a logarithmic factor

log(h∗/r∗2)) as

µ∗
2 ∝ µ̄∗ϕr2, (2.47)

where µ̄∗ is the solvent viscosity, ϕ is the volume fraction of fibres, and r is the fibre aspect

ratio. Therefore, as the fibre’s aspect ratio is extremely large the anisotropic extensional

viscosity may be much larger than the solvent viscosity, even for relatively small volume

fractions of fibres [22]. We also expect the anisotropic shear viscosity is different in the

semi-dilute regime to the dilute regime, however we are not aware of any existing literature

which describes the value of the anisotropic shear viscosity in a semi-dilute regime.

2.4 Summary

In this chapter we have presented Ericksen’s model for a transversely isotropic fluid, and

discussed both new and established theories for choosing the parameters of the model.

However, due to uncertainty in these parameters, we will present results for a wide range of

parameters in the remainder of this thesis. The model consists of conservation of mass and

momentum statements (equations (2.2) and (2.3)), a constitutive equation (2.4) relating

the stress in the fluid to the preferred direction (a) and rate-of-strain tensor (e), and the
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kinematic equation (2.13) which describes the evolution of the preferred direction. This

model must be closed with appropriate boundary conditions.

In section 2.1, the conservation of mass and momentum statements, along with the

transversely-isotropic stress tensor, are taken from Ericksen [24]. We follow the derivation

of Green and Friedman [29] to derive the kinematic condition, corresponding to infinitely

long fibres. In section 2.2 we describe the physical interpretation of the anisotropic vis-

cosities, following the literature, however we are the first to show the justification for the

definition of the anisotropic extensional and shear viscosities. In section 2.3 we are the

first to suggest the use of capillary viscometry to determine the anisotropic shear viscosity.

However, the determination of parameter values in dilute and semi-dilute regimes follows

Lipscomb et al. [54] and Batchelor [7] respectively.

We will use this model to examine the linear Taylor-Couette and Rayleigh-Bénard

stability of a transversely isotropic fluid in chapters 3 and 4 respectively. In chapter 5

we link this model to that of an active fluid, in particular the importance of including

the anisotropic extensional and shear viscosities in the constitutive relation for stress of

an active fluid is identified. This link also allows for other important physical effects,

such as dispersion about the preferred direction, to be included in Ericksen’s model,

as well as identifying how a simple modification to the kinematic equation (2.6) allows

Ericksen’s model to capture the behaviour of a uniform suspension of perfectly-aligned

active swimmers, we examine a simple case of this in chapter 6.
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CHAPTER 3

LINEAR TAYLOR-COUETTE STABILITY OF A
TRANSVERSELY ISOTROPIC FLUID

We consider the linear stability of transversely isotropic fluids within a Couette device [14]

(two rotating co-axial cylinders, as shown in Figure 3.1), to an axisymmetric perturba-

tion. This flow setup is pertinent to flow linear dichroism, a technique used for analysing

long biological molecules in suspension; it is also a canonical example in traditional fluid

mechanics for the stability analysis of viscous flows (see Acheson [1]).

Figure 3.1: A schematic diagram of a Couette device containing a fibre-laden fluid. The
inner and outer cylinders have radii R∗

1 and R∗
2. The outer cylinder is fixed, whilst the

inner cylinder rotates with angular velocity ω∗.

At low angular velocity, the flow of a Newtonian fluid is laminar and purely azimuthal.

Taylor [85] examined the stability of this flow both experimentally and analytically, under

the assumption of small gap width (relative to the outer cylinder’s radius). As angular

velocity is increased the flow loses stability and gives way to axisymmetric Taylor vortices;
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these can be visualised as a stack of fluid doughnuts. This is the first in a sequence of

instabilities leading to turbulence as angular velocity is increased further. Using linear

stability analysis, Taylor established a condition on the angular velocities of the rotating

cylinders and kinematic viscosity of the fluid. The assumption of small gap width has

since been relaxed via numerical techniques, see for example Dominguez et al. [18].

Linear dichroism (LD) spectroscopy is a technique for studying the structure of bio-

molecules; this technique exploits the difference in absorption of horizontally and vertically

polarised light by a horizontally aligned sample. Flow LD works with bio-molecules in

suspension and produces alignment through an applied shear flow [15] such as Couette [57,

69] or channel flow [59]. The method is particularly useful for particles with high aspect

ratio, such as DNA [34], protein fibres [16, 56, 77], and photosynthetic pigment-protein

complexes [25]; one current area of interest is exploiting flow LD for pathogen detection

[63]. The requirement to maximise signal production leads to a trade-off however; large

shear rates produce higher degrees of fibre alignment (and hence improved signal to noise

ratio), but increasing the inner cylinder angular velocity too high leads to a fluid instability

which destroys all signal. Stability of Couette flow of a fibre-laden fluid is therefore of

practical as well as theoretical interest.

Leslie [53] extended Taylor’s analysis to a transversely isotropic fluid, still assuming a

small gap width, taking |α0| > 1, and setting the active parameter µ1 = 0. Leslie’s analysis

focused upon the effect of α0, as opposed to the different viscosity-like parameters, on the

onset of instability. Wan and Lin [88] expanded on Leslie’s study to consider finite gap

widths, and the effect of extensional anisotropic viscosity. However, they neglected the

effects of anisotropy in the shear viscosity and assume that the fibres instantaneously

align with the streamlines.

Motivated by the linear dichroism applications discussed above, in which we are con-

sidering very long and thin molecules within a Couette device with a non-small gap width

(relative to the outer cylinder’s radius), we will work with α0 = 1, finite gap width,

and retain all four viscosity-like parameters (including the active µ1 term). Defining
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α0 = (r2 − 1)/(r2 + 1) in the range 0 < α0 < 1, we observe α0 = 1 corresponds to fibres

with an infinite aspect ratio. We consider the stability of an axisymmetric perturbation

since, by analogy with the isotropic case, we suggest this will be the first instability to

arise.

We briefly discuss the equations and derive the steady state of the transversely isotropic

model (section 3.1), and then undertake a linear stability analysis, leading to an eigenvalue

problem which is solved numerically (section 3.2). The effect of variations in viscosity-

like parameters and gap width on the marginal stability curves is considered (section 3.3),

whilst we conclude with discussion of the results in section 3.4.

3.1 Governing equations and steady state solution

The governing equations consist of conservation of mass and momentum statements (equa-

tions (2.2) and (2.3)) in terms of the fluid velocity u∗, constant fluid density ρ∗ and time

t∗. To capture the extra stress generated by the inclusion of elongated particles in the

solution, we adopt the constitutive relation for stress proposed by Ericksen [24] (equation

(2.4)), which is the simplest form of the stress tensor that is linear in strain rate and

obeys all of the required invariances [22]. This relation introduces a single preferred di-

rection, a within the fluid, we model the evolution of this direction using equation (2.13)

proposed by Green & Friedman [29], which is a special case of the relation proposed by

Ericksen (corresponding to α0 = 1 in equation (2.6)). Due to the physical dimensions of

the system, we adopt a cylindrical coordinate system with radial, azimuthal, and axial

components (r∗, θ, z∗), where the components of velocity are (u∗, v∗, w∗).
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3.1.1 Boundary conditions

We take the inner and outer cylinders to have radii R∗
1 and R∗

2 respectively, and apply

no-slip boundary conditions

u∗ = (0, R∗
1ω

∗, 0) at r∗ = R∗
1,

u∗ = 0 at r∗ = R∗
2,

(3.1)

such that the outer cylinder remains fixed, whilst the inner cylinder rotates with an-

gular velocity ω∗, see Figure 3.1. In the remainder of this chapter we will look for an

axisymmetric solution which automatically satisfies the required periodicity conditions.

3.1.2 Non-dimensionalisation

We non-dimensionalise the model by scaling the independent and dependent variables via:

t∗ =
ρ∗R∗2

2

µ∗ t, u∗ =
µ∗

ρ∗R∗
2

u, (r∗, z∗) = R∗
2(r, z), (p∗,σ∗) =

µ∗2

ρ∗R∗2
2

(p,σ), (3.2)

where variables without asterisks denote dimensionless quantities, as chosen in [13, 18, 60].

The incompressibility condition (2.2) and the kinematic equation (2.13) remain un-

changed by this scaling,

∇x · u = 0, (3.3)

∂a

∂t
+ (u ·∇x)a+ aaa : ∇xu = (a ·∇x)u. (3.4)

The momentum balance (2.3) becomes

∂u

∂t
+ (u ·∇x)u = (∇x · σ) . (3.5)
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Non-dimensionalising the stress tensor (2.4) yields the dimensionless stress tensor

σ =− p I + 2 e+ µ1 aa+ µ2 aaaa : e+ 2µ3 (aa · e+ e · aa) , (3.6)

where the following non-dimensional parameters have been introduced

µ1 =
µ∗
1ρ

∗R∗2
2

µ∗2 , µ2 =
µ∗
2

µ∗ , µ3 =
µ∗
3

µ∗ . (3.7)

Here µ1 is the ratio of the effects of tension in the fibres to the transverse shear viscosity,

whilst µ2 and µ3 are the ratios of the extensional viscosity and shear viscosity in the fibre

direction to the transverse shear viscosity respectively [29].

Finally, the boundary conditions (3.1), in dimensionless form, are

u = (0, ηΩ, 0) at r = η,

u = 0 at r = 1,

(3.8)

where η = R∗
1/R

∗
2 is the gap ratio, and Ω = ρ∗R∗2

2 ω∗/µ∗ is the non-dimensional rotational

velocity of the inner cylinder; this is equivalent to a Reynolds number. The model consists

of three governing equations (3.3)-(3.5) for u, p, and a, subject to constitutive law (3.6)

and boundary conditions (3.8).

3.1.3 Steady state

Assuming axisymmetry and treating the cylinders as infinitely long, we look for a steady

state solution that only depends on r. Taking the fluid velocity and fibres to align purely

in the azimuthal direction we make the ansatz

u(0) = (0, V (0)(r), 0), a(0) = (0, 1, 0), p = P (0)(r). (3.9)
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Under these assumptions, equations (3.3) and (3.4) are automatically satisfied and the

momentum equation (3.5) is reduced to a pair of non-trivial equations

dP (0)(r)

dr
= −µ1

r
+

(
V (0)

)2
r

, (3.10)

0 = (1 + µ3)

(
d2V (0)

dr2
+

1

r

dV (0)

dr
− V (0)

r

)
. (3.11)

Using the no-slip boundary conditions (3.8) at the cylinder walls, we solve to find

V (0)(r) =
β

2

(
1

r
− r

)
,

P (0)(r) = −µ1 log(r) +
β2

8

(
r2 − 1

r2
− 4 log(r)

)
+ p0,

(3.12)

where β = 2η2Ω/(1 − η2), and p0 is some arbitrary pressure constant. We note the

inclusion of an additional logarithmic term in the pressure equation, when compared with

the Newtonian case. This term represents the extra stress induced by the active nature

of the material. The velocity profile is shown in Figure 3.2.
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Figure 3.2: Steady state velocity as a function of radius. (a) The steady state velocity as
a function of r, for a gap ratio η = 0.5 and angular velocity Ω = 100. (b) A schematic
diagram showing how this flow profile appears through a cross-section of the cylinders.
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3.2 Stability

3.2.1 Linear stability analysis

We consider the stability of solution (3.12) to an axisymmetric perturbation, such that

u(r, z, t) = u(0)(r, z, t) + ϵu(1)(r, z, t) +O
(
ϵ2
)
, (3.13)

a(r, z, t) = a(0)(r, z, t) + ϵa(1)(r, z, t) +O
(
ϵ2
)
, (3.14)

where 0 < ϵ ≪ 1. Since a is a unit vector

|a| = a(0) · a(0) + 2ϵ
(
a(0) · a(1)

)
+O

(
ϵ2
)
= 1, (3.15)

must hold. Therefore the θ component of the alignment vector aθ must be zero. Using

the steady state solution (3.12) the velocity and director fields must take the form

u =
(
ϵ u(1) +O

(
ϵ2
)
, V (0)(r) + ϵ v(1) +O

(
ϵ2
)
, ϵ w(1) +O

(
ϵ2
))

, (3.16)

a =
(
ϵ a(1)r +O

(
ϵ2
)
, 1 +O

(
ϵ2
)
, ϵ a(1)z +O

(
ϵ2
))

. (3.17)

The incompressibility condition (3.3) (becomes at next order)

1

r

∂

∂r

(
ru(1)

)
+

∂w(1)

∂z
= 0. (3.18)
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In order to calculate the momentum balance (3.5) we must first calculate the components

of the stress tensor (3.6):

σrr = −p(1) + 2
∂u(1)

∂r
+ 2µ3a

(1)
r r

d

dr

(
V (0)

r

)
, (3.19)

σθθ = −p(1) +
1

r
(2 + µ2 + 4µ3)u

(1) + (µ2 + 2µ3) a
(1)
r r

d

dr

(
V (0)

r

)
, (3.20)

σzz = −p(1) + 2
∂w(1)

∂z
, (3.21)

σrθ = (1 + µ3) r
∂

∂r

(
v(1)

r

)
+ µ1a

(1)
r , (3.22)

σrz =

(
∂u(1)

∂z
+

∂w(1)

∂r

)
+ µ3a

(1)
z r

d

dr

(
V (0)

r

)
, (3.23)

σθz = (1 + µ3)
∂v(1)

∂z
+ µ1a

(1)
z . (3.24)

The components of the momentum balance (3.5) therefore take the form (at next order)

∂u(1)

∂t
− 2

V (0)v(1)

r
= − ∂p(1)

∂r
+

∂2u(1)

∂r2
+

1

r

∂u(1)

∂r
− u(1)

r2
+

∂2u(1)

∂z2

−µ2

u(1)

r2
+ a(1)r r

d

dr

(
V (0)

r

)
+2µ3

 ∂

∂r

a(1)r r
d

dr

(
V (0)

r

)− 2
u(1)

r2
+ r

d

dr

(
V (0)

r

)
∂a

(1)
z

∂z

 ,

(3.25)

∂v(1)

∂t
+

u(1)

r

d

dr

(
rV (0)

)
= (1 + µ3)

{
∂2v(1)

∂r2
+

1

r

∂v(1)

∂r
− v(1)

r2
+

∂v(1)

∂z

}

+ µ1

{
∂a

(1)
r

∂r
+

∂a
(1)
z

∂z

}
,

(3.26)

∂w(1)

∂t
= − ∂p(1)

∂z
+

∂2w(1)

∂r2
+

1

r

∂w(1)

∂r
+

∂2w(1)

∂z2

+ 2
µ3

r

∂

∂r

a(1)z r2
d

dr

(
V (0)

r

) .

(3.27)
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Finally, the kinematic equation (3.4) (gives at next order)

∂a
(1)
r

∂t
= 0, (3.28)

∂a
(1)
z

∂t
= 0. (3.29)

Therefore corrections to the director field do not appear at O(ε), but may occur at higher

order. Also, by inspecting the system (3.18), (3.25)-(3.29), we see that the tension in the

fibres (µ1) plays no role in determining the stability of the perturbation. We set a(1) = 0,

upon which the components of the momentum balance (3.25)-(3.32) reduce to

∂u(1)

∂t
− 2

V (0)v(1)

r
= − ∂p(1)

∂r
+

1

r

∂u(1)

∂r
− (1 + µ2 + 4µ3)

u(1)

r2
+

∂2u(1)

∂r2
+

∂2u(1)

∂z2
,

(3.30)

∂v(1)

∂t
+

u(1)

r

d

dr

(
rV (0)

)
= (1 + µ3)

(
∂2v(1)

∂r2
+

1

r

∂v(1)

∂r
− v(1)

r2
+

∂v(1)

∂z

)
, (3.31)

∂w(1)

∂t
= − ∂p(1)

∂z
+

∂2w(1)

∂r2
+

1

r

∂w(1)

∂r
+

∂2w(1)

∂z2
. (3.32)

We propose the solution takes the form

u(1) = u′(r)est cos(kz), v(1) = v′(r)est cos(kz),

w(1) = w′(r)est sin(kz), p(1) = p′(r)est cos(kz),
(3.33)

where k is the wave-number and s is the growth rate. Using this ansatz the components

of the momentum equations (3.25)-(3.32) become

su′ − 2V (0)v′

r
= − dp′

dr
+

d2u′

dr2
+

1

r

du′

dr
− (1 + µ2 + 4µ3)

u′

r2
− k2u′, (3.34)

sv′ +
u′

r

∂

∂r

(
rV (0)

)
= (1 + µ3)

(
d2v′

dr2
+

1

r

dv′

dr
− v′

r2
− k2v′

)
(3.35)

sw′ = kp′ +
d2w′

dr2
+

1

r

dw′

dr
− k2w′, (3.36)
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with the incompressibility condition (3.18) becoming

du′

dr
+

u′

r
+ kw′ = 0. (3.37)

Now adopting the convention D = d/ dr and D̂ = d/ dr + 1/r, equations (3.34)-(3.37)

become

(
D̂D − k2 − (1 + µ2 + 4µ3)

r2
− s

)
u′ + 2

V (0)v′

r
=

dp′

dr
, (3.38)

(1 + µ3)
(
DD̂ − k2 − s

)
v′ = u′

(
dV (0)

dr
+

v′

r

)
, (3.39)

(
D̂D − k2 − s

)
w′ = −kp′, (3.40)

D̂u′ + kw′ = 0. (3.41)

We may reduce our system of equations (3.38)-(3.41) as we have four equations in three

unknowns. To do this substitute the incompressibility condition (3.41) into the w′ com-

ponent of the conservation of momentum equations (3.40)

(
D̂D − k2 − s

)
D̂u′ = k2p′. (3.42)

Substituting equation (3.42) into equation (3.38) we may eliminate pressure

k2

(
D̂D − k2 − 1 + µ2 + 4µ3

r2
− s

)
u′ +

2V (0)v′k2

r
= D

(
D̂D − k2 − s

)
D̂u′. (3.43)

Now using

D̂D = DD̂ +
1

r2
, (3.44)
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equation (3.43) may be rewritten as

[(
DD̂ − k2 − s

)(
DD̂ − k2

)
− k2 (µ2 + 4µ3)

r2

]
u′ =

2V (0)v′k2

r
. (3.45)

Substituting for the steady state velocity V (0) in equations (3.39) and (3.45) gives the

pair of equations

[(
DD̂ − k2 − s

)(
DD̂ − k2

)
+

k2 (µ2 + 4µ3)

r2

]
u′ = βk2

(
1

r2
− 1

)
v′,

(
DD̂ − k2 − s

)
v′ = − β

1 + µ3

u′,

(3.46)

Recall that µ2 + 4µ3 represents the enhancement to the anisotropic extensional viscosity

versus that perpendicular to fibres and 1+µ3 represents the shear viscosity of the fluid in

the fibre direction, enhanced by the presence of fibres. Equations (3.46) must be solved

subject to the boundary conditions (3.8) rewritten as

u′ = Du′ = v′ = 0 at r = η, 1. (3.47)

Following the same convention as Dominguez-Lerma et al. [18], we present our results

in terms of the Taylor number T , which may be related to β and the physical parameters

via

T =
(1− η)5(1 + η)

2η2
β2 =

2(R∗
2 −R∗

1)
3R∗2

1

R∗4
2 (R∗

1 +R∗
2)

Ω2. (3.48)

For a rotating fluid the Taylor number relates the importance of inertial to viscous effects

and is proportional to the angular velocity [46]. The Taylor number represents an eigen-

value of the problem (3.46), i.e. for a given dimensionless axial wave-number k, there will

be non-trivial solution u′, v′ to the problem (3.46) only for certain values of T . There will

be some least eigenvalue Tl(k) corresponding to each particular wave-number k, and it is

the least of these values over all k that we seek. This minimum value is often termed the

critical Taylor number (Tc), and is used to determine the physical conditions under which

36



instability first occurs [1].

3.2.2 Numerical solution method

To determine the marginal stability curve we set s = 0 in equations (3.46), and calculate

the minimum eigenvalue β of the resulting differential system, for a range of wavelengths

k. We find the critical wavelength kc, eigenvalue βc and Taylor number Tc for variations

in the non-dimensional parameters η, µ2, and µ3. When T is greater than the critical

value Tc (or equivalently β is greater than the critical value βc), instability will occur.

These critical values depend on the mechanical and geometric properties of the system,

along with the angular velocity of the inner cylinder, and determine whether a given

experimental set up will display instability. These instabilities occur in the form of fluid

doughnuts, spaced with wavelength kc.

We solve the boundary value problem (3.46)-(3.47) numerically using a shooting

method [18, 19, 68]. Three independent solutions (u1, v1), (u2, v2) and (u3, v3) to equations

(3.46) are found, which satisfy the respective initial value problems (IVP1-3) at r = η

(c.f. [19]),

Boundary Conditions Extended Conditions

IVP1 : u1 = v1 = Du1 = 0, Dv1 = 1, D2u1 = 0, D3u1 = 0, (3.49)

IVP2 : u2 = v2 = Du2 = 0, Dv2 = 0, D2u2 = 1, D3u2 = 0, (3.50)

IVP3 : u3 = v3 = Du3 = 0, Dv3 = 0, D2u3 = 0, D3u3 = 1. (3.51)

Here the boundary conditions in IVP1-3 are equivalent to the boundary conditions (3.47)

at r = η, whilst the extended conditions in IVP1-3 are chosen to form a basis of solutions.
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Hence we may express

u′ = C1u1 + C2u2 + C3u3,

v′ = C1v1 + C2v2 + C3v3, (3.52)

Du′ = C1Du1 + C2Du2 + C3Du3,

where constants C1, C2 and C3 are chosen to satisfy the boundary conditions (3.47) at

r = 1. The existence of non-zero solutions of the linear system (3.52) requires

∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

Du1 Du2 Du3

∣∣∣∣∣∣∣∣∣∣
= 0, (3.53)

at r = 1 [18, 19]. In practice we solve equations (3.46) as a system of first order ordinary

differential equations for six variables Y1-Y6,

dY1

dr
= Y2, (3.54)

dY2

dr
= Y3, (3.55)

dy3
dr

= Y4, (3.56)

dY4

dr
= −2

r
Y4 +

3

r2
Y3 −

3

r3
Y2 +

3

r4
Y1,−2k2

(
Y3 +

Y2

r
− Y1

r2

)
−

(
k4 − k2(µ2 + 4µ3)

r2

)
Y1 + k2β

(
1

r2
− 1

)
Y5,

(3.57)

dY5

dr
= Y6, (3.58)

dY6

dr
= −Y6

r
+

Y5

r2
+ k2Y5 −

βY1

1 + µ3

, (3.59)
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where

Y1 = u′, Y2 =
du′

dr
, (3.60)

Y3 =
d2u′

dr2
, Y4 =

d3u′

dr3
, (3.61)

Y5 = v′, Y6 =
dv′

dr
. (3.62)

This numerical procedure is implemented in MATLAB. The inbuilt function ODE45

is used to find the solution of the initial value problem, for a given set of parameters

(µ2, µ3, η) and guess βG. The correct value of β, which gives the zero determinant de-

scribed in equation (3.53), is then determined using FZERO, which calculates the deter-

minant related to various values of βG until the determinant is less than 2.2× 10−6. This

critical value of β is then stored with the value of the wave number to allow the marginal

stability curves to be plotted. The minimum of each marginal stability curve is then

calculated using FMINSEARCH, which is an iterative method that is said to converge

when the change in critical wave and Taylor numbers between successive iterations are

both less than 10× 10−4.

To validate our numerical procedure, we compared our results with those of Dominguez

et al. [18] for the Newtonian case, i.e. µ2 = µ3 = 0 and found agreement of the critical

values to within 0.1%. To accommodate uncertainty in parameter values, we have per-

formed an extensive parameter search for a wide range of gap ratios and viscosities from 0

to 1000 times the isotropic component of viscosity. Results were calculated in intervals of

10 for the viscosity parameters µ2 and µ3 (similar behaviour was observed for viscosities

below 100 when calculated in intervals of 0.1, however the data are not presented here),

and 0.025 for the gap ratio η; data are available from the University of Birmingham

institutional repository.
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3.3 Results

We first determine the marginal stability curves Tl(k); for any value of k, an experimental

setup satisfying T < Tl(k) is stable for that wavelength, whereas if T lies above Tl(k) the

system is unstable. We calculate these curves for a range of non-dimensional parameters

representing the gap ratio η, the anisotropic extensional viscosity µ2, and the anisotropic

shear viscosity µ3. The effect of tension in the fibre direction µ1 was not varied, because

this parameter does not affect the stability of the perturbation at this order. We deter-

mine the critical wave and Taylor numbers for each tuple of non-dimensional parameters

(η, µ2, µ3) by finding the wave-number at which Tl(k) is minimal. Provided that the Tay-

lor number for a given experiment lies below this critical value, the system will be stable

for all wavelengths.
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Figure 3.3: Marginal stability curves for different viscosity parameters µ2 and µ3 taking
η = 0.5. Both Figures show the curves of the least eigenvalue Tl(k). (a) The marginal
stability curves for changes in anisotropic extensional viscosity µ2, where the arrow indi-
cates the direction of increase (µ2 = 0, 250, 500, 750, 1000, µ3 = 0). (b) Marginal stability
curves where the anisotropic shear viscosity µ3 also varies, arrows again show the direction
of increasing µ2, (µ2 = 0, 250, 500, 750, 1000).

Increasing the anisotropic extensional viscosity (µ2), whilst neglecting anisotropic

shear viscosity (µ3 = 0), leads to more concave marginal stability curves, along with

40



higher Taylor numbers for the corresponding wave-number (figure 3.3(a)), i.e. instabil-

ity is suppressed. Raising the anisotropic shear viscosity also leads to more concave

marginal stability curves and higher Taylor numbers for corresponding wave-numbers

(figure 3.3(b)). Instability is also suppressed as µ3 increases, however for commensurate

increases in the anisotropic extensional and shear viscosities the marginal stability curves

are substantially different. Increases in the shear viscosity increase convexity and Taylor

numbers far more than increases in the extensional viscosity. Greater suppression of the

instability is obtained for increases in µ3 compared to µ2. The marginal stability curves

shown in figure 3.3 were computed by first choosing the minimum wave number of interest

and calculating the corresponding critical Taylor number. The wave number is then in-

cremented and corresponding critical Taylor number calculated and stored until the new

critical Taylor number is greater than the first, upon which the numerical procedure is

terminated. We have also verified the marginal stability curves have only one turning

point for a representative sample of the parameter values and wider range of the wave

number k.

Figure 3.4 shows the critical wavelength kc as a function of µ3 for selected values of

µ2, and as a function of µ2 for selected values of µ3. The critical wave-number kc is a

decreasing function of each parameter i.e. the fluid doughnuts which appear have longer

wavelength, however increases in µ3 cause a larger reduction to kc than corresponding

increases in µ2.

Similar results are plotted in Figure 3.5 for Tc as a function of µ2 and µ3. Increasing

either µ2 or µ3 leads to a higher critical Taylor number (greater suppression of instabil-

ity). However, again the dependence of the critical Taylor number on the anisotropic

extensional viscosity µ2 is much weaker than that on the anisotropic shear viscosity µ3.

Finally, we consider the effect of the gap width parameter η. Decreasing the gap

between the cylinders (increasing η) leads to an increase in the critical wave-number kc

(i.e. larger fluid doughnuts are formed). The change in the critical wave-number due to

µ2 and µ3 is greater when the gap between the cylinders is large (small η), than when the
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Figure 3.4: Critical wave-number (kc) for changes in the anisotropic extensional viscos-
ity µ2, and anisotropic shear viscosity µ3 taking η = 0.5, note that qualitatively sim-
ilar results are obtained for all gap widths considered. (a) Critical wave-number for
increases in µ3, where the arrow indicates increasing µ2 (µ2 = 0, 250, 500, 750, 1000).
(b) Critical wave-number for increases in µ2, where the arrow indicates increasing µ3

(µ3 = 0, 250, 500, 750, 1000).

gap width is small (large η) as shown in Figure 3.6(a).

Rather than look at the effect of η directly on the critical Taylor number (which itself

contains η), we instead consider the critical value of the angular velocity of the inner

cylinder, Ωc. Increasing η (decreasing the inter-cylinder gap) decreases the critical angular

velocity Ωc, until η approaches approximately 0.8, whereupon the critical angular velocity

increases again Figure 3.6(b). This therefore describes the minimum of the marginal

stability curves, which if the aim is to find the maximum achievable inner cylinder velocity

where the fluid remains linearly stable is the worst operating regime. However, we discuss

the dependence of the achievable linear dichroism signal in relation to the critical angular

velocity in the next section, in conjunction with other effects.
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Figure 3.5: Critical Taylor number (Tc) for changes in the anisotropic extensional viscosity
(µ2), and the anisotropic shear viscosity (µ3) taking η = 0.5. (a) Critical Taylor number
for increases in µ3, where the arrow indicates increasing µ2 (µ2 = 0, 250, 500, 750, 1000).
(b) Critical Taylor number for increases in µ2, where the arrow indicates increasing µ3

(µ3 = 0, 250, 500, 750, 1000).
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Figure 3.6: Examining how changes in the gap ratio (η), for different values µ2 and µ3

affect the critical wave-number (kc) and critical angular velocity of the inner cylinder (Ωc).
(a) Shows the effect on kc for varying η, µ2, and µ3, where the arrows show the direction
of increasing µ2 (µ2 = 0, 500, 1000). (b) Shows the effect upon Ωc for varying η, µ2, and
µ3, where the arrow shows the direction of increasing µ2 (µ2 = 0, 500, 1000).
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3.4 Discussion

In this chapter we extended the work of Taylor and others [85, 18, 68, 19] to study

the axisymmetric linear stability of a transversely isotropic viscous fluid, contained in

a Couette device. Similarly to Leslie [53], we utilised the stress tensor and kinematic

equation first proposed by Ericksen [24] to model a transversely isotropic fluid. However,

we chose an alternative case of the kinematic equation which corresponds to fibres with

a large aspect ratio, this was motivated by considering long slender fibres that align in

shear flow. Numerically we presented results for a range of gap ratios from 0.2 to 0.975;

in typical applications this ratio is approximately 0.82 [57].

The parameter µ3, which describes the ratio of the shear viscosity in the fibre direction

to the transverse shear viscosity, is much more important in determining the stability of

the flow than µ2, which describes the ratio of the extensional viscosity to the transverse

shear viscosity. While our results agree with those of Wan and Lin [88] in the effect of µ2,

we find that µ3 has a more significant effect and therefore must be included. Although

the tension in the fibres, µ1, was retained within the calculations, it does not influence

the final stability analysis.

For values of the gap ratio less than 0.8, i.e. for a large gap width (relative to the

outer cylinder’s radius) between the cylinders, the critical angular velocity of the inner

cylinder is a decreasing function of the gap ratio. However for larger values of the gap

ratio, i.e. a narrow gap width, the critical angular velocity increases as viscous effects

dominate over the inertial effects giving rise to instability; more energy is then needed for

the perturbation to become unstable.

Understanding the stability of fibre-laden fluids in Couette devices is relevant to flow

linear dichroism (LD) spectroscopy [57]. Maximising the shear rate, whilst still remaining

in the stable flow regime, produces the strongest fibre alignment and hence signal. By

considering the rheological changes induced by the presence of fibres, we showed that the

critical angular velocity of the inner cylinder at the onset of instability is much higher

than previously thought. Exploiting this understanding may enable stronger signals to
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be recovered from the use of LD Couette devices across a range of fibre types.
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Figure 3.7: Qualitative dependence of maximum achievable LD signal on gap width. (a)
Critical average shear rate ⟨erθ⟩c at the critical angular velocity of the inner cylinder. (b)
Hypothesised saturating relationship between average shear stress and alignmentA(⟨erθ⟩),
based on Figure 3 in McLachlan et al. [59]. (c) Critical average shear rate multiplied by
dimensionless gap thickness (1−η) ⟨erθ⟩c, indicating the hypothetical magnitude of signal
in the regime where alignment and shear stress are linearly related. (d) Hypothesised
signal calculated from the saturating function A indicating the magnitude of signal in the
saturating regime. We note the indicative signal we propose is the simplest that could be
chosen, however other forms of this relation may apply.

It is instructive to consider how our results on critical angular velocity may relate

to the strength of shear-induced alignment, and hence LD signal. To do this we must

consider the dependence of average shear rate on signal, and the production of signal as
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polarised light passes through the depth of fluid (figure 3.7). In Figure 3.7(a) we consider

the average shear rate

⟨erθ⟩ =
1

1− η

∫ 1

η

erθr dr, (3.63)

at the critical angular velocity Ωc. Alignment is an increasing function of shear rate [59]

and hence higher alignment should be obtained for narrower gap widths (relative to the

cylinder ratio). This alignment function A could be linear in average shear rate or could

be a saturating function, as shown in Figure 3.7(b), depending on the experimental setup

[59]. Conversely a narrower gap width provides less sample to interact with incident

light producing a weaker signal for a given alignment. Thus the interplay of these two

effects must be taken into consideration, as shown in Figure 3.7(c,d). We see that in the

saturating regime an optimal gap width may be determined (observe the local maxima

in Figure 3.7(d)), this optimum is a feature of incorporating the mechanical properties of

the fibres and the precise location will depend on the functional form of A as appropriate

to the experiment in question.

In order to use this model in practice it is necessary to estimate the rheological pa-

rameters of the fluid, the most crucial being µ∗ and µ∗
3, however data are required on

these parameters in bio-molecular suspensions of interest. These could be determined

from standard rheological techniques such as Couette or capillary viscometry, such as

those described in Barnes et al. [4]. Our linear stability analysis could then be used to

determine the other relevant parameter µ∗
2, by fitting to experimental data on the onset

of instability. Alternatively, as shown in section 2.3.3, Batchelor’s analysis of extensional

flow of aligned rods [7] can be interpreted to identify that µ∗
2 ∝ µ̄ ϕ r̂2 (modulo a logarith-

mic factor) where µ̄ is the solvent viscosity, ϕ(≪ 1) is the volume fraction of fibres and

r̂(≫ 1) is the fibre aspect ratio [22].

In future work we will consider the instability of a non-symmetric perturbation to the

steady state, in addition to the dispersion of fibres about the average direction. Through

the link identified in chapter 5, between Ericksen’s transversely isotropic fluid and an

active fluid, the framework needed to investigate the dispersion of fibres about the average
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direction has been established. We also aim to include the effect of entanglement between

individual fibres and establish how this may change the stability of the flow.

In this chapter we adopted the conservation of mass and momentum statements, along

with the transversely-isotropic stress tensor, of Ericksen [24] and couple this to the kine-

matic condition derived by Green and Friedman [29]. This is the first time this model

has been used to analyse the linear Taylor-Couette stability of a transversely-isotropic

fluid. However, Leslie [53] and Wan and Lin [88] have applied the model described by

Ericksen [24]; we extend the work of Leslie by considering large gap width and the work

of Wan and Lin by considering non-zero anisotropic shear viscosity. We are the first to

use a transversely-isotropic model in the context of flow-linear dichroism, and therefore

our results add new insight into this research area.

In this chapter we have used the transversely isotropic fluid model proposed in chapter

2 to examine the linear Taylor-Couette stability of a transversely isotropic fluid. In chapter

4 we will perform a similar stability analysis of a canonical example in fluid mechanics

Rayleigh-Bénard convection.
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CHAPTER 4

LINEAR RAYLEIGH-BÉNARD STABILITY OF A
TRANSVERSELY ISOTROPIC FLUID

Rayleigh-Bénard convection is a canonical example in traditional fluid mechanics for the

stability analysis of viscous flows; we extend this analysis to transversely isotropic fluids.

We consider the linear stability of a transversely isotropic fluid contained between two

infinitely-long horizontal boundaries of different temperatures (as shown in Figure 4.1)

to a small arbitrary perturbation. Three different combinations of boundary types are

considered, (1) both boundaries are rigid (2) both free and (3) the bottom boundary is

rigid and the top is free. One application of our theory is to fibre-laden fluids, however it

holds for any fluid which may be described as transversely isotropic.

Rayleigh-Bénard convection was first observed experimentally by Bénard [8] who

melted wax in a metal dish which was heated from below. Bénard noticed that once

the base of the dish was heated above a certain temperature hexagonal patterns devel-

oped on the surface of the wax, and it was this observation that allowed him to deduce

T ∗ = T ∗
1

z∗ = d∗

T ∗ = T ∗
0

z∗ = 0

θ(0)

1Figure 4.1: A schematic diagram of the Rayleigh-Bénard setup. The lower and upper
boundaries are located at z∗ = 0 and z∗ = d∗ at temperatures T ∗

0 and T ∗
1 . The leading

order preferred direction is given by the angle θ(0).
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the presence of convection currents in the wax below [20]. Other important examples of

thermally driven flows can be found in the atmosphere [32], in the oceans [58], in buildings

[41], and in metal production processes [11], with more examples discussed in the detailed

review of Ahlers et al. [3].

Rayleigh [67] was the first to form a mathematical model of this experiment, using

equations for the energy and state of an infinite layer of fluid, bounded by two station-

ary horizontal boundaries of different constant uniform temperatures. The governing

equations are stated under the Boussinesq approximations, where the full model for a

compressible fluid, which should be used as density is not constant, may be simplified.

The Boussinesq approximations state the fluctuations in density which appear result from

thermal (as opposed to pressure) effects, and in the equations for conservation of mass

and momentum, density variations may be neglected except when they are coupled to the

gravitational acceleration in the buoyancy force. Spiegel & Veronis [81] show, through a

self-consistent approximation, the conditions under which the Boussinesq approximations

are valid. We show this in Appendix A.

Under the Boussinesq approximations, the model is composed of the incompressible

Navier-Stokes equations,

∇∗
x · u∗ = 0, (4.1)

ρ∗0

(
∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗
)

= −∇xp
∗ + µ̄∗∇∗2

x u∗ − ρ∗g∗ẑ, (4.2)

where the body-force term describing the buoyancy of the fluid is related to the variable

density ρ∗ and the acceleration due to gravity g∗, u∗ is the fluid velocity, p∗ pressure, t∗

time, µ̄∗ shear viscosity, and ρ∗0 the density at temperature T ∗
0 of the lower boundary; an

advection-diffusion equation for temperature,

∂T ∗

∂t∗
+ (u∗ ·∇∗

x)T
∗ = κ∗∇∗2

x T ∗, (4.3)

where κ∗ is the coefficient of thermometric conductivity [13], and a constitutive relation
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for density

ρ∗ = ρ∗0
(
1− α∗ (T ∗ − T ∗

0 )
)
, (4.4)

which is a linear function of temperature and independent of pressure [20]. Here α∗

is the coefficient of volume expansion. By using the Boussinnesq approximation, the

only place variable density appears in the governing equations is in the body force term

describing buoyancy; it is this term that drives instability. Modelling the fluid in this way

is applicable when variations in temperature are small, as variations of the thermodynamic

properties (i.e. viscosity, thermal diffusivity and density) will also be small. To see this,

observe for a fluid that is stationary at steady state, the acceleration of the fluid is

much less than the acceleration due to gravity, so the thermodynamic properties may

be considered constant in terms only related to the movement of the fluid. However,

the buoyancy term contains a product between the acceleration due to gravity and the

fluid density, and there is no guarantee this term will be smaller than other terms in the

governing equation, and so the density can not be assumed constant in this term [13, 20].

These governing equations are analysed using normal modes, where a wave-number and

growth parameter are introduced.

Rayleigh [67] was able to solve the problem explicitly when the two boundaries were

free with zero tangential stress; this has been simulated in experiments by replacing

the bottom boundary with a layer of much less viscous fluid (leaving the top boundary

free) [27]. The surface tension between the two fluids will be negligible providing the

dimensionless capillary number, which represents the relative effect of viscous forces versus

surface tension, is large. To determine the conditions where instability occurs for other

combinations of boundary types, numerical techniques are required [20].

We briefly discuss the equations and derive the steady state of the transversely isotropic

model (section 4.1), and then undertake a linear stability analysis, leading to an eigenvalue

problem which is solved numerically (sections 4.2-4.3). The effect of variations in viscosity-
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like parameters and the steady state preferred direction on the marginal stability curves

is considered (section 4.4), we conclude with discussion of the results in section 4.5.

4.1 Governing equations

We adopt a two dimensional Cartesian coordinate system (x∗, z∗), and velocity vector u∗ =

(u∗, w∗). Here, and in the following, stars denote dimensional variables and parameters.

In formulating our governing equations we make use of the Boussinesq approximation [13],

treating the density as constant in all terms except for the term describing the external

force on the fluid due to gravity. The analysis performed in Appendix A will follow

similarly, as the viscosity coefficients are assume to be constant. Mass conservation and

momentum balance leads to the generalized Navier-Stokes equations

∇∗
x · u∗ = 0, (4.5)

ρ∗0

(
∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗
)

= −∇∗
xp

∗ +∇∗
x · σ∗ − ρ∗g∗ẑ, (4.6)

where ρ∗0 is the density at temperature T ∗
0 of the lower boundary, ρ∗ is the variable density

of the fluid, t∗ is time, p∗ is the pressure, g∗ is the acceleration due to gravity, ẑ is the

unit vector in the z∗-direction, and σ∗ is the transversely isotropic stress tensor proposed

by Ericksen (equation (2.4)). Ericksen’s stress tensor incorporates the single preferred

direction a, which may vary in both position and time. We model the evolution of this

direction via the kinematic equation proposed by Green and Friedman [29] (equation

(2.13)), this is a special case of the equation proposed by Ericksen [24] corresponding to

α0 = 1 in equation (2.6). We assume there is no active beahviour i.e. µ1 = 0, therefore

the stress tensor (2.4) is given by

σ∗ = 2µ∗e∗ + µ∗
2aaaa : e+ 2µ∗

3 (aa · e+ e · aa) . (4.7)
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We assume that the temperature and density of the fluid are governed by equations (4.3)

and (4.4) respectively, where we have assumed both quantities are independent of the

presence of fibres.

4.1.1 Boundary conditions

We consider a transversely isotropic fluid which is contained between two boundaries at

z∗ = 0 and z∗ = d∗. We will consider a mixture of two types of bounding surfaces; for both

types of surface we assume perfect conduction of heat and that the normal component of

velocity is zero, i.e.

T ∗ = T ∗
0 and w∗ = 0, at z∗ = 0,

T ∗ = T ∗
1 and w∗ = 0, at z∗ = d∗.

(4.8)

The distinction between the types of bounding surfaces is then made through the final

two boundary conditions. If the surface is rigid we impose no-slip boundary conditions,

if the surface is free we impose zero-lateral stress, i.e.

u∗ = 0 on a rigid surface,

∂u∗

∂x∗ = 0 on a free surface.
(4.9)

Results will be presented from three groups of boundary conditions: when both surfaces

are rigid, both surfaces are free, and when the bottom surface is rigid and the top surface

is free.
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4.1.2 Non-dimensionalisation

The model is non-dimensionalised by scaling the independent and dependent variables

via:

x∗ = d∗x, t∗ =
d∗2

κ∗ t, u∗ =
κ∗

d∗
u, (4.10)

T ∗ = β∗d∗T, (p∗,σ∗) =
ρ∗0κ

∗2

d∗2
(p,σ), ρ∗ = ρ∗0ρ, (4.11)

where variables without asterisks denote dimensionless quantities, and β∗ is the transverse

temperature gradient, as chosen in Drazin [20], i.e. β∗ = (T ∗
0 − T ∗

1 )/d
∗. The incompress-

ibility condition (4.5) and the kinematic equation (2.13) remain unchanged by this scaling,

∇x · u = 0, (4.12)

∂a

∂t
+ (u ·∇x)a+ aaa : ∇xu = (a ·∇x)u. (4.13)

The momentum balance (4.6) becomes

∂u

∂t
+ (u ·∇x)u = −∇xp+∇x · σ − RP

B
ρẑ, (4.14)

where we have introduced the following dimensionless parameters

B = α∗β∗d∗, R =
α∗β∗d∗4g∗ρ∗0

κµ∗ , P =
µ∗

ρ∗0κ
∗ . (4.15)

The Rayleigh number R is a dimensionless parameter relating the stabilising effects of

molecular diffusion of momentum to the destabilising effects of buoyancy [20, 46, 84], and

the Prandtl number P relates the kinematic viscosity of the fluid to its thermal conduc-

tivity [13]. Small values of the Prandtl number indicate heat diffuses quickly compared

to the fluid velocity, with the converse true for large values of P . Non-dimensionalising
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the stress tensor (4.7) yields the dimensionless stress tensor

σ =P
(
2 e+ µ2 aaaa : e+ 2µ3 (aa · e+ e · aa)

)
, (4.16)

where the non-dimensional rate of strain tensor, e = (∇xu+∇xu
T )/2, and the following

non-dimensional parameters have been introduced

µ2 =
µ∗
2

µ∗ , µ3 =
µ∗
3

µ∗ . (4.17)

Here µ2 and µ3 are the ratios of the extensional viscosity and shear viscosity in the fibre

direction to the transverse shear viscosity, respectively [29, 38].

The constitutive equation (4.4) for variable density is non-dimensionalised to give

ρ = 1 + B (T0 − T ) , (4.18)

where T0 = T ∗
0 /β

∗d∗ and equation (4.3), which governs the temperature distribution,

becomes

∂T

∂t
+ (u ·∇x)T = ∇2

xT. (4.19)

Finally, the boundary conditions (4.8) and (4.9), in dimensionless form, are

T = T0, and w = 0, at z = 0,

T = T1, and w = 0, at z = 1,

(4.20)

where T1 = T ∗
1 /β

∗d∗. The distinction between the type of surface is given by

u = 0 on a rigid surface,

∂u

∂x
= 0 on a free surface.

(4.21)

The model consists of four governing equations (4.12), (4.13), (4.14), (4.19) for u,
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a, p and T , respectively, subject to constitutive laws (4.16) and (4.18) with boundary

conditions (4.20) and(4.21).

4.1.3 Steady state

Assuming the parallel boundaries are infinitely long in the x-direction, we look for a

steady state solution where the fluid is stationary and the preferred direction in the

fluid is described by the constant angle θ(0) to the x-axis (Figure 4.1), i.e. u(0) = 0 and

a(0) = (cos θ(0), sin θ(0)). When the fluid velocity is stationary the steady state equation

for temperature is

∇2
xT

(0) = 0. (4.22)

Solving equation (4.22) subject to the boundary conditions (4.20) gives

T (0) = (T1 − T0) z + T0. (4.23)

Noting that T1 − T0 = −1, equation (4.23) is rewritten as

T (0) = T0 − z. (4.24)

Substituting this solution for temperature into the constitutive relation for density (4.18)

gives the steady state density distribution

ρ(0) = 1 + B z. (4.25)

As there is no spatial variation in the fibre orientation field and the fluid is stationary the

momentum balance (4.16) is reduced to

∇xp = −RP
B

ρ(0)ẑ. (4.26)

55



The components of equation (4.26) are therefore

∂p(0)

∂x
= 0, (4.27)

∂p(0)

∂z
= −RP

B
ρ(0). (4.28)

From equation (4.27) it is clear pressure is a function of z only. Substituting the density

solution (4.25) into equation (4.28) gives

dp(0)

dz
= −RP

B
(1 + B z) , (4.29)

⇔ p(0) = p0 −
RP
B

(
z +

B z2

2

)
, (4.30)

where p0 is some arbitrary pressure constant. Therefore the steady state is given by

u(0) = 0, p(0) = p0 −
RP
B

(
z +

B z2

2

)
, (4.31)

T (0) = T0 − z, ρ(0) = 1 + B z. (4.32)

4.2 Stability

We now examine the linear stability of the steady state described by equations (4.31)-

(4.32), for the three different combinations of boundary types. We derive the first-order

perturbation equations for an arbitrary perturbation, which are transformed into a gen-

eralised eigenvalue problem by assuming the solution takes the form of normal modes.
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4.2.1 Linear stability analysis

We consider the stability of the steady state solution to a perturbation,

u(x, z, t) = εu(1)(x, z, t) +O
(
ε2
)
, (4.33)

p(r, z, t) = p(0) + εp(1)(x, z, t) +O
(
ε2
)
, (4.34)

T (x, z, t) = T (0) + εT (1)(x, z, t) +O
(
ε2
)
, (4.35)

θ(x, z, t) = θ(0) + εθ(1)(x, z, t) +O
(
ε2
)
. (4.36)

where 0 < ε ≪ 1. We have proposed a perturbation to the fibre orientation angle θ(0)

and not the alignment vector a directly, therefore we must identify the form of a. First

consider

a =
(
cos
(
θ(x, z, t)

)
, sin

(
θ(x, z, t

))
, (4.37)

note this vector is clearly a unit vector as required. Taylor-expanding cos θ and sin θ

about θ = θ(0), gives

cos(θ) = cos θ(0) − (θ − θ(0)) sin θ(0) − 1

2
(θ − θ(0))2 cos θ(0) + · · · , (4.38)

sin(θ) = sin θ(0) + (θ − θ(0)) cos θ(0) − 1

2
(θ − θ(0))2 sin θ(0) + · · · . (4.39)

Now describe the general angle θ as a small perturbation from the uniform steady state

angle θ(0), i.e. θ = θ(0) + εθ(1) as in equation (4.36), equations (4.38) and (4.39) may be

rewritten as

cos(θ) = cos θ(0) − εθ(1) sin θ(0) + · · · , (4.40)

sin(θ) = sin θ(0) + εθ(1) cos θ(0) + · · · , (4.41)
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so a takes the form

a =
(
cos θ(0) − εθ(1) sin θ(0), sin θ(0) + εθ(1) cos θ(0)

)
+O

(
ε2
)
. (4.42)

Using the ansatz given in equations (4.33)-(4.36) and (4.42) we may state the following

governing equations at first order. The incompressibility condition (4.12) becomes (at next

order)

∇x · u(1) = 0, (4.43)

with conservation of momentum (4.14) given by

∂u(1)

∂t
= −∇xp

(1) +∇x · σ(1) − RP
B

ρ(1)ẑ. (4.44)

The first order constitutive relations for stress (4.16) and fluid density (4.18) are given by

σ(1) = P
(
2e(1) + µ2a

(0)a(0)a(0)a(0) : e(1) + 2µ3

(
a(0)a(0) · e(1) + e(1) · a(0)a(0)

))
,

(4.45)

ρ(1) = −BT (1), (4.46)

where e(1) = (∇xu
(1) + (∇xu

(1))T )/2 is the first order rate-of-strain tensor. Notice equa-

tions (4.43)-(4.46) are independent of the first order alignment vector

a(1) =
(
−θ(1) sin θ(0), θ(1) cos θ(0)

)
, (4.47)

which is in turn governed by

∂a(1)

∂t
+ a(0)a(0)a(0) : ∇xu

(1) =
(
a(0) ·∇x

)
u(1). (4.48)
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Finally, the equation governing temperature at next order is

∂T (1)

∂t
− w(1) = ∇2

xT
(1). (4.49)

The boundary conditions become homogeneous at first order, and are given by

w(1) = u(1) = T (1) = 0 on a rigid surface, (4.50)

w(1) =
∂u(1)

∂x
= T (1) = 0 on a free surface. (4.51)

The components of the stress tensor (equation (4.45)) are

σ(1)
xx = P

(
2e(1)xx + µ2 cos

2 θ(0)A(1)
e + 2µ3

(
2 e(1)xx cos2 θ(0) + e(1)xy sin 2θ(0)

))
, (4.52)

σ(1)
xy = P

(
2e(1)xy +

µ2

2
A(1)

e sin 2θ(0) + 2µ3

(
e(1)xy + e(1)xz cos 2θ(0)

))
, (4.53)

σ(1)
zz = P

(
2e(1)zz + µ2 A

(1)
e sin2 θ(0) + 2µ3

(
e(1)xz sin 2θ(0) + 2 e(1)zz sin2 θ(0)

))
, (4.54)

where we have substituted the leading order alignment vector a(0) = (cos θ(0), sin θ(0)) and

defined

A(1)
e = e(1)xx cos 2θ(0) + e(1)xz sin 2θ(0). (4.55)

The pressure is eliminated from the momentum equation (4.44) (appendix B), and com-
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ponents of stress are substituted to give

1

P
∇2

x

∂u(1)

∂t
=

(
1 + µ2

sin2 2θ(0)

4
+ µ3

)
∇4

xu
(1)

+ µ2

sin 4θ(0)

2

(
∂4u(1)

∂x∂z3
− ∂4u(1)

∂x3∂z

)
+ cos 4θ(0)

∂4u(1)

∂x2∂z2

 ,

(4.56)

1

P
∇2

x

∂w(1)

∂t
=

(
1 + µ2

sin2 2θ(0)

4
+ µ3

)
∇4

xw
(1) +R ∂2T (1)

∂x2

+ µ2

sin 4θ(0)

2

(
∂4w(1)

∂x∂z3
− ∂4w(1)

∂x3∂z

)
+ cos 4θ(0)

∂4w(1)

∂x2∂z2

 .

(4.57)

4.2.2 Kinematic equation

We may rewrite the components of the kinematic equation (4.48) in terms of θ(0) and θ(1):

− sin θ(0)
∂θ(1)

∂t
+ cos θ(0)A(1)

u = cos θ(0)
∂u(1)

∂x
+ sin θ(0)

∂u(1)

∂z
, (4.58)

cos θ(0)
∂θ(1)

∂t
+ sin θ(0)A(1)

u = cos θ(0)
∂w(1)

∂x
+ sin θ(0)

∂w(1)

∂z
, (4.59)

where A(1)
u = cos 2θ(0)

∂u(1)

∂x
+

sin 2θ(0)

2

(
∂u(1)

∂z
+

∂w(1)

∂x

)
. (4.60)

We simplify this set of equations to a single equation (coupled with |a| = 1). Multiplying

equation (4.58) by cos θ(0) and equation (4.59) by sin θ(0) gives

−sin 2θ(0)

2

∂θ(1)

∂t
+ cos2 θ(0)A(1)

u = cos2 θ(0)
∂u(1)

∂x
+

sin 2θ(0)

2

∂u(1)

∂z
, (4.61)

sin 2θ(0)

2

∂θ(1)

∂t
+ sin2 θ(0)A(1)

u =
sin 2θ(0)

2

∂w(1)

∂x
+ sin2 θ(0)

∂w(1)

∂z
. (4.62)

Summing equation (4.61) and (4.62) gives

A(1)
u = cos 2θ(0)

∂u(1)

∂x
+

sin 2θ(0)

2

(
∂u(1)

∂z
+

∂w(1)

∂x

)
, (4.63)
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which is true by definition (4.60), and is therefore always satisfied. Multiplying equation

(4.58) by sin θ(0) and equation (4.59) by cos θ(0)

− sin2 θ(0)
∂θ(1)

∂t
+

sin 2θ(0)

2
A(1)

u =
sin 2θ(0)

2

∂u(1)

∂x
+ sin2 θ(0)

∂u(1)

∂z
, (4.64)

cos2 θ(0)
∂θ(1)

∂t
+

sin 2θ(0)

2
A(1)

u = cos2 θ(0)
∂w(1)

∂x
+

sin 2θ(0)

2

∂w(1)

∂z
. (4.65)

Subtracting equation (4.64) from equation (4.65) gives

∂θ(1)

∂t
= cos2 θ(0)

∂w(1)

∂x
− sin2 θ(0)

∂u(1)

∂z
− sin 2θ(0)

∂u(1)

∂x
, (4.66)

Notice equations (4.56), (4.57) and (4.66) are decoupled, and so we may solve the stabil-

ity problem by considering only equations (4.49) and (4.57) with appropriate boundary

conditions on w(1) and T (1). The x-component of velocity and alignment angle may then

be calculated from the solution for w(1).

4.2.3 Normal mode solutions

We propose the solution to equations (4.49) and (4.57) takes the form

w(1) = w′(z)est+ikx, T (1) = T ′(z)est+ikx, (4.67)

where k is the wave-number and s is the growth rate. Using this ansatz, equations (4.49)

and (4.57) become

[(
1 + µ2

sin2 2θ(0)

4
+ µ3

)(
D2 − k2

)2
+ µ2

(
i
sin 4θ(0)

2

(
kD3 − k3D

)
− cos 4θ(0)k2D2

)]
w′

−Rk2T ′ =
s

P
(
D2 − k2

)
w′,

(4.68)

w′ +
[
D2 − k2

]
T ′ = sT ′, (4.69)
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where we have adopted the convention D = d/ dz. Equations (4.68) and (4.69) form an

eigenvalue problem which must be solved subject to the boundary conditions (4.20) and

(4.21) rewritten as

w′ = Dw′ = T ′ = 0 on a rigid surface,

w′ = D2w′ = T ′ = 0 on a free surface.

(4.70)

The growth rate s represents an eigenvalue to equations (4.68) and (4.69), i.e. for a

given dimensionless wave-number k there will be non-trivial solutions (w′, T ′) to equations

(4.68) and (4.69) only for certain values of s. We establish for each wave-number k

the maximum Rayleigh number Rl(k) such that the real part of all eigenvalues s are

negative, i.e. the largest Rayleigh number such that the perturbation is stable and any

disturbance decays to zero. The minimum of Rl(k) is of particular interest, and is termed

the critical Rayleigh number (Rc), it is used to determine the physical conditions under

which instability first occurs [1, 20, 46]. If for a given experimental setup R < Rc then

any perturbation decays exponentially to zero. The corresponding value of k at Rc is also

of interest, it describes the period of the convection currents and is termed the critical

wave-number (kc).

4.3 Numerical solution method

In order to determine the marginal stability curves Rl(k) we must solve for the velocity

w′ and temperature T ′ in equations (4.68) and (4.69). We do this using a Chebyshev

collocation method. The Chebyshev collocation method is a spectral method that is

capable of achieving ten digits of accuracy, where a finite difference or finite element

method may only achieve two or three [86].
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We use the N + 1 Chebyshev points

zi = cos

(
iπ

N

)
, i = 0, 1, . . . , N, (4.71)

to construct the Nth order interpolating polynomials Pw and P T to w′ and T ′ respectively.

These polynomials are constructed as Lagrange polynomials

P i
j (z) =

1

Aj

N∏
k=0
k ̸=j

(z − zk) , Aj =
N∏
k=0
k ̸=j

(
zj − zk

)
, i = w, T. (4.72)

As there are N+1 collocation points for each Nth order polynomial, both polynomials are

uniquely determined. Notice that the Chebyshev points are defined on an interval [−1, 1]

and so we must translate our coordinate system by using the substitution Z = 2z − 1.

The eigenvalue equations (4.68) and (4.69) are now given by

[(
1 + µ2

sin2 2θ(0)

4
+ µ3

)(
4D2 − k2

)2
+µ2

(
i sin 4θ(0)

(
4kD3 − k3D

)
− 2 cos 4θ(0)k2D2

)]
w′ −Rk2T ′ =

s

P
(
4D2 − k2

)
w′,

(4.73)

w′ +
[
4D2 − k2

]
T ′ = sT ′. (4.74)

4.3.1 Chebyshev differentiation matrix

We wish to construct the derivative of both the velocity and temperature to solve the

eigenvalue problem defined by the equations (4.73) and (4.74). We assume the derivative

of each of these variables, at the Chebyshev points zi, is equal to the derivative of the

Lagrange polynomial, i.e.

dwi

dz
=

dPw(zi)

dz
,

dTi

dz
=

dP T (zi)

dz
. (4.75)
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As this operation is linear, it may be represented by matrix multiplication [86],

dwi

dz
= (DN)ij wj,

dTi

dz
= (DN)ij Tj, (4.76)

where DN is the (N + 1)× (N + 1) Chebyshev differentiation matrix.

The components of the Chebyshev differentiation matrix are given [86]

D00 =
2N2 + 1

6
, DNN = −2N2 + 1

6
, (4.77)

Djj =
−xj

2(1− x2
j)
, j = 1, . . . , N − 1, (4.78)

Dij =
ci(−1)i+j

cj(xi − xj)
, i ̸= j i, j = 1, . . . , N − 1, (4.79)

where

ci =

 2 i = 0 or N,

1 otherwise.
(4.80)

To compute higher derivatives, simply apply the differentiation matrices repeatedly

[86], for example

d2

dz2
=

d

dz

(
d

dz

)
= DijDjk. (4.81)

These Chebyshev matrices a computed using the m file cheb.m [86].

4.3.2 Eigenvalue problem

Using the Chebyshev differentiation matrix D the linear operators on w′ and T ′ in equa-

tions (4.73) and (4.74) may be approximated. This allows us to form the generalised

matrix eigenvalue problem

Ax = sBx, (4.82)
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where s is the growth rate and eigenvalue of the problem, A and B are matrices which

are discrete representations of the linear operators which act on w′ and T ′, and the vector

x contains the coefficients of the Lagrange polynomials which approximate w′ and T ′ at

the Chebyshev points (equivalently the values of w′ and T ′ at the Chebyshev points) [86].

The matrices A and B are given as

A =

 A11 −Rk2I

I 4D2 − k2I

 , (4.83)

B =

 1
P

(
4D2 − k2I

)
0

0 I

 , (4.84)

where 0 is an (N +1)× (N +1) matrix of zeros, I is the (N +1)× (N +1) identity matrix

and

A11 =

(
1 + µ2

sin2 2θ(0)

4
+ µ3

)(
16D4 − 16k2D2 + k4I

)2
+ µ2

(
i sin 4θ(0)

(
4kD3 − k3D

)
− 2 cos 4θ(0)k2D2

)
. (4.85)

We construct the matrices A and B in MATLAB for each tuple of parameters θ(0), µ2

and µ3. However, the matrices are not full rank as we must apply boundary conditions

to close the problem.

4.3.3 Boundary conditions

We adapt a method described by Hoepffner [37] to apply appropriate boundary conditions.

This method reduces the solution space to only consider interpolants which satisfy the

boundary conditions

T ′ = w′ = 0 and Dw′ = 0 or D2w′ = 0 at z = −1, 1. (4.86)
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We begin by expressing all six boundary conditions in a matrix C, where each row

of C corresponds to a boundary condition. We apply the Dirichlet conditions by setting

the corresponding element on the boundary to be zero, i.e. the first row of C, which

corresponds to w = 0 at z = 1 will be (1, 0, . . . , 0). We apply the derivative conditions

by applying the appropriate derivative to the second or penultimate elements of w This

allows us to write our homogeneous boundary conditions as

C x = 0. (4.87)

We decompose the vector of unknowns x, into the elements we wish to keep (xk),

and the elements we wish to remove (xr). The elements we remove correspond to the

elements the boundary conditions are applied to, i.e. x1, x2, xN , xN+1, xN+2, and x2(N+1).

We reorder x in equation (4.87) to give

(
Ck,Cr

) xk

xr

 = 0. (4.88)

By expanding equation (4.88)

Ckxk +Crxr = 0, (4.89)

⇒ xr = − (Cr)−1Ckxk. (4.90)

the removed components xr are expressed as a function of the components that are

retained (xk). We now use equation (4.90) to implement the boundary conditions on

equation (4.82). To do this, we reorder x as we did in equation (4.87) as well as the

matrices A and B to give

 Akk Akr

Ark Arr


 xk

xr

 = s

 Bkk Bkr

Brk Brr


 xk

xr

 . (4.91)
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As we are only interested in determining the elements of xk, we reduce equation (4.91) to

Akkxk +Akrxr = sBkkxk +Bkrxr. (4.92)

Using equation (4.90) this system of equations may be written in terms of xk only

(
Akk +AkrG

)
xk = s

(
Bkk +BkrG

)
xk, (4.93)

where G = − (Cr)−1Ck. Equation (4.93) constitutes a full-rank generalised matrix eigen-

value problem.

We may therefore construct the matrices Akk +AkrG and Bkk +BkrG in MATLAB,

and compute the eigenvalue s for a range of parameters (θ(0), µ2, µ3) and Rayleigh number

R using the inbuilt eigenvalue solver eig; this solver employs the QZ-algorithm. We then

determine the Rayleigh number for which the eigenvalue is zero using the MATLAB

function fzero, i.e. disturbances neither grow nor decay and fminsearch to determine the

critical wave and Rayleigh numbers.

4.3.4 Eigenvalue problem

We use the QZ-algorithm [61] to solve the generalised eigenvalue problem (4.82), how-

ever to improve the convergence characteristics of this iterative method we apply a pre-

conditioner matrix L to matrices A and B. We choose a diagonal pre-conditioner consist-

ing of the maximum value of A in each row. To determine the marginal stability curves

Rl(k) for each set of parameters θ(0), µ2 and µ3 we therefore solve the system

LAx = sLBx, (4.94)

to find the maximum value of R for which all eigenvalues s are negative. As the Prandtl

number (P) only appears in combination with the growth rate s, we do not consider

variations in P as we are interested in the marginal stability curves where s = 0.
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We determine the minimum of each marginal stability curve, to find the critical

Rayleigh number (Rc) and corresponding critical wave-number (kc), using the simplex

search method of Lagarias et al. [48]. This is an iterative direct search method that does

not use numerical or analytical gradients; the stopping condition was specified as a change

in the critical wave-number and critical Rayleigh number of less than 10−5.

To accommodate uncertainty in parameter values, we have performed an extensive

parameter search for a wide range of steady state preferred directions (0 ⩽ θ(0) ⩽ π/2)

and viscosities (0 ⩽ µ2, µ3 ⩽ 1000). Notice that the solution is periodic in the steady

state preferred direction with period π/2.

To validate our numerical procedure we compared our results with those of Dominguez-

Lerma et al. [18] and Rayleigh [67] for the Newtonian case, i.e. µ2 = µ3 = 0. When both

boundaries are free, our numerical approximation of the Rayleigh number is within 10−12

of the known analytical result 27π4/4. When both boundaries are rigid our numerical

approximation of the Rayleigh number is within 10−7 of that found by Dominguez-Lerma

et al. [18]. A numerical convergence study was performed for non-zero µ2, µ3 and θ(0).

4.3.5 Numerical convergence study

To control the accuracy of our numerical simulations we can change three parameters,

N , kTol and RTol, these parameters were varied until the truncation error in the spectral

method and the truncation error associated with the iterative process for finding the

minimum of the marginal stability curves were all less than 10−5. The order of the

Chebyshev polynomials (N) is chosen to give accurate approximations to the marginal

stability curves. The remaining two parameters, kTol and RTol, are used in the iterative

process to find the minimum of each of these curves, i.e. the critical wave and Rayleigh

numbers. The iterative process used to find the minimum of these curves is terminated

when successive iterations have a change in the critical wave and Rayleigh numbers of

less than kTol and RTol respectively.

To find the optimum combination of parameters we considered the following parameter
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sets

θ(0) = 0,
π

20
,
2π

20
,
3π

20
. . . ,

π

2
, (4.95)

µ2 = µ3 = 0, 10, 100, 200, 400, 600, 800, 1000,

kTol = 10−3, 10−4, 10−5, 5× 10−6, 10−6, (4.96)

RTol = 10−3, 10−4, 10−5, 5× 10−6, (4.97)

N = 10, 15, 20, . . . , 40.

We assumed that the most accurate critical wave and Rayleigh numbers are given when

N = 40, kTol = 10−6 and RTol = 5 × 10−6, and used these to calculate estimates of

the absolute and relative error of our results for each tuple of parameters N , kTol and

RTol. We found that for our choice of parameters, N = 30 and kTol = RTol = 10−5, the

maximum absolute error in the critical wave-number and critical Rayleigh numbers were

of order 10−5, which led to relative errors of order 10−6 for the critical wave-number and

10−11 for the critical Rayleigh number. The maximum relative errors for the range of

parameters we investigated are shown in Figure 4.2.

4.4 Results

We first determine the marginal stability curves Rl(k); for any value of k, an experimental

set-up satisfying R < Rl(k) is stable for that wavelength, whereas if R lies above Rl(k)

the system is unstable. We calculate these curves for a range of non-dimensional param-

eters representing the steady state preferred direction θ(0), the anisotropic extensional

viscosity µ2 and the anisotropic shear viscosity µ3 for different combinations of bound-

ary conditions. We determine the critical wave and Rayleigh numbers for each tuple of

non-dimensional parameters (θ(0), µ2 and µ3) by finding the wave-number at which Rl(k)

is minimal. Provided that the Rayleigh number for a given experiment lies below this

critical value, the system will be stable to small perturbations for all wavelengths and the
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Figure 4.2: Maximum relative error in wave-number (ER
k ) and Rayleigh number (ER

R) for
changes in the number of Chebyshev polynomials (N), and iterative stopping parameters
for the critical wave-number (kTol) and critical Rayleigh number (RTol). (a) Relative
error in wave-number for increases in N and RTol for kTol = 10−5, where the arrow
indicates increasing N . (b) Relative error in wave-number for increases in N and kTol

for RTol = 10−5, where the arrow indicates increasing N . (c) Relative error in Rayleigh
number for increases in N and RTol for kTol = 10−5, where the arrow indicates increasing
N . (d) Relative error in Rayleigh number for increases in N and kTol for RTol = 10−5,
where the arrow indicates increasing N .
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fluid will be motionless.

Figure 4.3 shows the critical wave-number (kc) as a function of the steady state pre-

ferred direction (θ(0)), for selected values of the anisotropic extensional (µ2) and shear

(µ3) viscosities, when both boundaries are rigid. The critical wave-number is related to

the width of a convection cell; increases in kc reduce the width of the convection cell.

Notice that Figures 4.3(a)-(d) are symmetric about θ(0) = π/4, where the maximum of

kc is achieved. In Figure 4.3(a) we examine the effect of the anisotropic extensional vis-

cosity when the anisotropic shear viscosity is zero. The horizontal line corresponds to the

Newtonian/isotropic case, and hence there is no dependence on the fibre direction θ(0).

As µ2 is increased, the limiting form of the critical curve between π/8 ⩽ θ(0) ⩽ 3π/8

is quickly approached, with changes to µ2 above 100 having only a small effect. In the

ranges 0 ⩽ θ(0) ⩽ π/8 and 3π/8 ⩽ θ(0) ⩽ π/2, the changes to the critical wave-number

occur much more slowly with respect to µ2, with a local minimum occurring for values of

µ2 above 250 around θ(0) = 0.1 and θ(0) = 1.5. The impact of changing the anisotropic

extensional viscosity on the wave-number is therefore dependent on the steady state fi-

bre direction. If the fibres are aligned near horizontal or vertical, the wave-number is

decreased and the width of the convection cell increased; if the fibre direction bisects

horizontal and vertical at steady state, then the wave-number increases and hence the

width of the convection cell decreases. Observing how the critical curves change between

Figures 4.3(a)-(d) allows us to identify the impact of the anisotropic shear viscosity µ3.

As µ3 is increased it dampens changes to the critical wave-number caused by changes in

µ2, nearly removing the dependence on θ(0) completely in Figure 4.3(d) where µ3 = 1000.

Similar results are obtained when both boundaries are free (figure 4.4), but where the

critical wave-number of a Newtonian fluid (kN) is smaller.

Figure 4.5 shows kc as a function of θ(0) for selected values of µ2 and µ3 when the

lower boundary is rigid and the top free, and shows a more intricate dependence on

the tuple of parameters (θ(0), µ2, µ3) than when upper and lower boundaries match. In

Figure 4.5(a) the horizontal line corresponds to the Newtonian/isotropic case, and hence
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1Figure 4.3: Critical wave-number (kc) for changes in the anisotropic extensional viscos-
ity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid at
steady state (θ(0)) when both boundaries are rigid. In each subfigure the arrows indicate
increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100,
and (d) µ3 = 1000.
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1Figure 4.4: Critical wave-number (kc) for changes in the anisotropic extensional viscosity
(µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid at steady
state (θ(0)) when both boundaries are free. In each subfigure the arrows indicate increasing
µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100, and (d)
µ3 = 1000.
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1Figure 4.5: Critical wave-number (kc) for changes in the anisotropic extensional viscosity
(µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid at steady
state (θ(0)) when the bottom boundary is rigid and the top boundary is free. In each
subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0,
(b) µ3 = 10, (c) µ3 = 100, and (d) µ3 = 1000.
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has no dependence upon θ(0) as expected. As µ2 is increased the critical curves become

more complex, in the range 0 ⩽ θ(0) ⩽ π/8 and 3π/8 ⩽ θ(0) ⩽ π/2 similar behaviour is

observed to when both boundaries are the same; with the appearance of a local maximum

at θ(0) = 0, π/2 and a global minimum for values of θ(0) = 0.1, 1.4. However, for θ(0)

between π/8 and π/4 an extra mode is introduced compared with the matching boundary

cases, but this variation becomes small for values of µ2 larger than 100. We again identify

from Figures 4.5(a)-(d) µ3 dampens the change in the critical wave-number due to µ2,

eventually removing the dependence on θ(0) (figure 4.5(d)).

Figure 4.6 shows the critical Rayleigh number (Rc) as a function of θ(0) for changes

in µ2 and µ3 when both boundaries are rigid. Figure 4.6(a) shows the change in Rc when

the anisotropic shear viscosity is negligible, i.e. when µ3 = 0. The smallest horizontal

line corresponds to the Newtonian case, and has no dependance on θ(0) as expected. For

µ2 ≲ 100 this horizontal line is simply translated to higher values of Rc, with little to

no dependance on θ(0). As µ2 is increased further the shape of the critical curves change

dramatically. Global minima occur at θ(0) ≈ 0.3, 1.2, local maxima occur at θ(0) = 0, π/2,

and the global maximum at θ(0) = π/4; the difference between the global minimum and

maximum is approximately 104 for µ2 = 1000. Therefore when the anisotropic extensional

viscosity is large and the anisotropic shear viscosity is negligible the steady state is most

unstable for steady state fibre orientations near horizontal or vertical, with the most

stable case when the steady state direction bisects the horizontal and vertical directions.

Examining Figures 4.6(a)-(d) allows us identify how the anisotropic shear viscosity affects

the stability of the steady state. We observe that increasing µ3 increasesRc, hence making

the steady state more stable. However, the increase to Rc is not uniform for different

values of θ(0). This is most easily seen by noting when µ2 = 1000 and µ3 = 0 the most

stable value of θ(0) = π/4, but as µ3 is increased to 1000 this becomes the most unstable

value. Therefore increasing the anisotropic shear viscosity has the most stabilising effect

for values of the steady state fibre orientation near horizontal and vertical, and a much

lesser effect when the steady state direction bisects the horizontal and vertical directions.
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1Figure 4.6: Critical Rayleigh number (Rc) for changes in the anisotropic extensional
viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid
at steady state (θ(0)) when both boundaries are rigid. In each subfigure the arrows indicate
increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100,
and (d) µ3 = 1000.
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However, increases in the anisotropic shear viscosity always stabilise the steady state for

all choices of anisotropic extensional viscosity and steady state preferred directions.

Figure 4.7 shows the dependence of Rc on θ(0) for selected values of µ2 and µ3 when

both boundaries are free. In Figure 4.7(a) µ3 = 0 and the Newtonian case is represented by

the lowest horizontal line. As µ2 is increased a global maximum occurs at θ(0) = 0 and π/2

and global minimum at θ(0) = π/4, where Rc does not increase from the critical Rayleigh

number for the Newtonian/isotropic case (Rc ≈ RN). When the fibres are oriented

near horizontal or vertical, increasing the anisotropic extensional viscosity increases the

threshold at which instability occurs, but when the steady state preferred direction bisects

the horizontal and vertical directions there is little change to the stability threshold with

change to the anisotropic extensional viscosity. Figures 4.7(a)-(d) show that as µ3 is

increased, Rc increases regularly, smoothing out the points of inflection that occur for

small values of µ2. Therefore, increasing µ3 stabilises the steady state for all values of

θ(0) and µ2. Changes in anisotropic shear viscosity affect the magnitude of the critical

Rayleigh number much more than changes to the anisotropic extensional viscosity.

Figure 4.8 shows the dependance of Rc on θ(0) for selected values of µ2 and µ3, when

the lower boundary is rigid and the upper free. In Figure 4.8(a) we recover the Newto-

nian/isotropic case, represented by the lowest horizontal line, and examine how µ2 affects

Rc when µ3 = 0. As µ2 is increased Rc increases but not uniformly with respect to θ(0).

Global maxima occur at θ(0) = 0, π/2, local maxima at θ(0) ≈ π/8, 3π/8, local minima

at θ(0) ≈ π/16, 7π/16 and the global minimum at θ(0) = π/4. Therefore increasing the

anisotropic extensional viscosity increases the stability threshold most when, at steady

state, the fibres are either horizontal or vertical, and least when they are directed at an

angle π/4 radians. As µ3 increases Rc is increased, with the local maxima and min-

ima becoming less pronounced, disappearing completely once µ3 ≳ 100, this is identified

by comparing Figures 4.8(a)-(d). Again, changes in µ3 affect Rc far more than similar

changes to µ2. Therefore increases in the anisotropic shear viscosity stabilise the steady

state, with the most stabilisation occurring when the fibres are orientated horizontally or
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1Figure 4.7: Critical Rayleigh number (Rc) for changes in the anisotropic extensional
viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid
at steady state (θ(0)) when both boundaries are free. In each subfigure the arrows indicate
increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a) µ3 = 0, (b) µ3 = 10, (c) µ3 = 100,
and (d) µ3 = 1000.
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viscosity (µ2), the anisotropic shear viscosity (µ3), and the preferred direction in the fluid
at steady state (θ(0)) when the bottom boundary is rigid and the top boundary is free.
In each subfigure the arrows indicate increasing µ2 (µ2 = 0, 10, 100, 250, 500, 1000) for (a)
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vertically at steady state, and least when they bisect the horizontal and vertical directions.

Comparing Figures 4.3-4.8 allows us to examine the effect of the boundary conditions

on the critical wave and critical Rayleigh numbers. Using Figures 4.3 and 4.4 we identify

when the top and bottom boundaries are the same the curves for the critical wave-number

take the same form, but with lower critical wave-numbers for the free-free boundaries

than the rigid-rigid case. When the boundaries are mixed, and the anisotropic shear

viscosity is negligible, two additional modes occur between π/8 ⩽ θ(0) ⩽ 3π/8. However,

variation between the critical curves is small for medium - large values of the anisotropic

extensional viscosity and all changes are dampened as the anisotropic shear viscosity is

increased, similarly to the matching boundary case. Therefore, in all cases, the anisotropic

extensional viscosity gives rise to variations in the critical wave-number with respect to

the steady state preferred direction, which are dampened by increases in the anisotropic

shear viscosity.

Comparing Figures 4.6-4.8 allows us to compare how the different boundary conditions

affect the critical Rayleigh number. Similarly to the Newtonian/isotropic case the most

stable pair of boundaries are rigid-rigid, with the most unstable free-free. In all boundary

pairs increasing either the anisotropic extensional or shear viscosities increases the critical

Rayleigh number, however changes in the anisotropic shear viscosity affect the stability

threshold much more than equivalent changes to the anisotropic extensional viscosity.

We notice in Figures 4.6-4.8 the critical wave and Rayleigh numbers are the same for

θ(0) and π/2− θ(0), i.e. the material has the same stability characteristics when the pre-

ferred direction, at steady state, is horizontal or vertical, and alterations to either state

cause similar changes to the stability. When the transversely-isotropic material is inter-

preted as a suspension of elongated particles, then this may be explained by noting purely

horizontal or vertical particles will give rise to no rotational and only translational motion

of the particles, when the fluid starts to move; therefore, the stability characteristics of

these states should be similar. Changes to the steady state preferred direction by similar

amounts should therefore give rise to similar changes in stability, as the same amount of
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rotational motion of the particles will be introduced.

4.4.1 Forms of critical curves

Examining Figures 4.3-4.8 we notice, for medium to large values of the anisotropic shear

viscosity, the critical curves are continuous with no sharp extrema (i.e. we expect the

rate of change, of the critical values with θ(0), to be continuous also). We therefore fit an

analytic function to the sampled data, minimising the maximum absolute error between

function and data. We do this for the critical wave-number using the simplex search

method of Lagarias et al. [48] and for the critical Rayleigh number we use the nonlinear

least squares method.

We assume the critical wave-number takes the empirical form (µ3 > 40)

kc ≈
f1(e

−f5µ2 − 1)

f2 + µ3

cos(4θ(0))− f3µ2

f4 + µ3

+ kN , (4.98)

where kN is the critical wave-number for a Newtonian fluid. From this curve fitting we

confirm that as µ3 becomes large the critical wave-number will tend to the Newtonian

value, as µ3 appears in the denominator of the first two terms in equation (4.98). It is

also clear that when µ2 = 0 the critical wave-number kc does not depend on θ(0) or µ3

and takes the same value as in the Newtonian case.

Boundary Type f1 f2 f3 f4 f5
rigid-rigid 175.9 107.3 12.8× 10−3 50.8 1.7× 10−3

rigid-free 91.1 67.7 5.3× 10−3 33.8 3.8× 10−3

free-free 284.4 259.5 3.7× 10−3 19.5 1.5× 10−3

Table 4.1: The parameter values from curve fitting for the critical wave-number given in
equation (4.98) for the different combinations of boundary conditions.

Figure 4.9 shows how each term of equation (4.98) contributes to kc. From Figure

4.9(a) we identify for small values of µ2 and µ3 the magnitude of the first term in equation

(4.98) is largest when the combination of boundaries is rigid-free. However, as µ2 is

increased (µ3 still small) the highest variation of kc, with respect to θ(0), occurs for the
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1Figure 4.9: Relative changes to the critical wave-number (kc), described by the fitted
equation (4.98), for changes in the anisotropic extensional (µ2) and anisotropic shear
(µ3) viscosities for the three different boundary types. In each subfigure the dashed and
solid lines represent µ3 = 50 and µ3 = 1000 respectively, with the black, blue and red
lines representing rigid-rigid, rigid-free and free-free boundary pairs respectively. (a) The
relative magnitude of cos 4θ(0) (f1(e

−f5µ2 − 1)/(f2 + µ3)kn), and (b) the relative decrease
to kc (f3µ2/(f4 + µ3)kN), where kN is the critical wave-number of a Newtonian fluid for
each boundary type.

free-free boundary pair. As µ3 is increased the amplitude of the cos 4θ(0) term decreases

and the free-free boundary pair causes the largest variation of kc with respect to θ(0).

Figure 4.9(b) shows how kc decreases relative to kN with changes in µ2, µ3 and boundary

types. We see for all values of µ2 and µ3 the rigid-free and free-free boundary pairs

reduce the critical wave-number similarly, however the biggest reduction occurs when

both boundaries are rigid. As µ3 is increased the reduction to kc decreases. Figure 4.10

shows a comparison between the sampled data and fitted function, and illustrates the fit

captures most of the information from the data.

We assume that the critical Rayleigh number takes the form (µ3 > 100)

Rc ≈
(

−g1
µ3 + 1

+ g2

)
µ2 cos(4θ

(0)) +

(
−g3

µ
1/2
3 + 1

+ g4

)
µ2 + (g5µ3 + g6) . (4.99)

The magnitude of the first term in equation (4.99) is shown in Figure 4.11(a), we observe

for µ2 positive Rc will always depend on θ(0). Figure 4.11(a) also implies when both
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choose θ(0) = 0 so that we represent the largest error between the fitted curves and the
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boundaries are free the biggest fluctuations in Rc with respect to θ(0) occur, with the

smallest fluctuations occurring when both boundaries are rigid. The increase to the

critical wave-number with µ2 and µ3, described by the second term in equation (4.99),

does not change with different combinations of boundary conditions (figure 4.11). The

final constant g6 is approximately equal to the critical Rayleigh number, for each respective

boundary pair. Figure 4.12 shows both the analytic function and fitted data. We observe

in both cases the fitted function underestimates the value of Rc, with the fit being closer

for smaller values of Rc.

Boundary Type g1 g2 g3 g4 g5 g6
rigid-rigid 448.4 25.2 431.6 221.4 1440.8 1706.4
rigid-free 388.8 57.3 238.5 141.3 796.0 1099.9
free-free 247.5 64.1 156.1 84.2 521.1 657.0

Table 4.2: The parameter values from curve fitting for the critical Rayleigh number in
equation (4.99) for the different combinations of boundary conditions.
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4.5 Discussion

In this chapter, we extended the work of Rayleigh to study the linear stability of a

transversely isotropic viscous fluid, contained between two horizontal boundaries which

are either rigid or free and of different temperatures. We used the stress tensor first

proposed by Ericksen [24], with µ1 = 0, and a kinematic equation corresponding to fibres

of a large aspect ratio to model a transversely isotropic fluid. Numerically, we presented

results for a range of steady state preferred directions from 0 to π/2, this is equivalent to

the full possible range of directions as the governing equations have a period of π/2.

Similarly to chapter 3 the parameter µ3, which describes the ratio of the shear viscosity

in the preferred direction to the transverse shear direction, is much more important in

determining the stability of the flow than µ2, which describes the ratio of the extensional

viscosity to the transverse shear viscosity. How the value of this pair of parameters

impacts upon the stability of the flow also depends on θ(0), which describes the constant

steady state preferred direction, as well as the type of boundary at the bottom and top

of the fluid. Similarly to a Newtonian fluid, the most stable pair of boundaries are rigid-

rigid, where the temperature difference between the two boundaries required to induce

instability is the largest; the least stable boundary pair is free-free.

The rheological parameters µ2 and µ3 also have an impact on the critical wave-number

kc, which describes the width of the convection cells. We find for steady state preferred

directions near horizontal or vertical, the width of the convection cell increases with the

anisotropic extensional viscosity, when compared to a Newtonian fluid, and decreases when

the preferred direction bisects the horizontal and vertical boundaries. The anisotropic

shear viscosity dampens any changes to the critical wave-number caused by increases in the

anisotropic extensional viscosity. If the anisotropic shear viscosity is large enough (µ3 ⩾

500) then there is very little change to the critical wave-number, and hence convection

cell size, with changes to the anisotropic extensional viscosity or steady state preferred

direction.

To use this model in practice we must estimate the parameters of the model. Some
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of the non-dimensional parameter groups are trivial to estimate, such as the Rayleigh

number, however how parameters such as the anisotropic extensional and shear viscosities

should be chosen is less clear. The methods that may be used to ascertain these parameter

values are discussed in section 2.3.

The analysis we have undertaken in this chapter shows the stability characteristics of

a transversely isotropic fluid are significantly different from those of a Newtonian fluid.

Therefore when the fluid exhibits a preferred direction, such as a fibre-laden fluid, these

effects should be taken into account.

In future work we will change the domain of our problem to consider a closed box,

which is much more physically realistic, as well as considering the full nonlinear three-

dimensional problem. Through the link identified in chapter 5, between active fluids and

Ericksen’s model for a transversely isotropic fluid, we will consider the linear stability

of a suspension of swimming particles by considering non-zero µ1 and modifying the

kinematic equation to include particle swimming. We will also use this link to examine

how dispersion about the preferred direction alters our results, as it is unlikely that there

will be zero dispersion about the preferred direction.

We adopt the conservation of mass and momentum statements, along with the transversely-

isotropic stress tensor, of Ericksen [24] and couple this to the kinematic condition derived

by Green and Friedman [29]. This is the first time the linear Rayleigh-Bénard stability

of a transversely-isotropic fluid has been considered. To our knowledge this is also the

first time a Chebyshev collocation method has been used to find the linear stability of a

transversely-isotropic fluid.

In this chapter we have applied the model of Ericksen’s transversely isotropic fluid

described in chapter 2 to examine the linear Rayleigh-Bénard stability of a transversely

isotropic fluid. As reported in chapter 3, the parameter which describes the anisotropic

shear viscosity is much more important in determining the stability than the parameter

related to the anisotropic extensional viscosity. We have therefore shown, through two

canonical examples, when there is a preferred direction in the fluid, the stability charac-
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teristics are significantly different from those of a Newtonian fluid, therefore transversely

isotropic effects must be taken into account.
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CHAPTER 5

FUNDAMENTAL CONNECTIONS BETWEEN
MODELS OF ACTIVE SUSPENSIONS AND
TRANSVERSELY ISOTROPIC FLUIDS

5.1 Introduction

Fluids containing suspensions of particles are found in numerous industrial and biolog-

ical applications. Examples involving passive particles are discussed in chapters 2-4

and include (but are not limited to) solutions of DNA [57], fibrous proteins of the cy-

toskeleton [16, 47], synthetic bio-nanofibres [59], extracellular matrix [29] and plant cell

walls [22]. Suspensions comprising self-propelling bacteria or other micro-organisms are

termed active [74]; these suspensions exhibit phenomena such as collective behaviour

[35, 42, 45, 49, 65, 66, 72] and, as observed recently, superfluidity [55]. Collections of

artificial swimmers may also exhibit the properties of active matter [21, 28, 39, 64, 91]. In

order to understand these phenomena, it is vital to develop tractable and accurate con-

tinuum theories that capture the essential physics of suspensions of self-motile particles.

There are many different models that have been proposed to model suspensions of

active particles in a solvent fluid. Two classes of model exist, particle based models, which

model each particle separately, and continuum models, which model the suspension as a

complex fluid. In this thesis we focus on a nonlinear continuum model, however we first

give a brief summary of other models which model each particle separately.
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Modelling each particle separately is extremely computationally expensive, however

some significant progress has been made towards understanding the large-scale dynamics

exhibited by suspensions of active swimmers. Hernandez-Ortiz et al. [33] developed a

‘minimal’ model of the swimmers, that captured the leading order far-field hydrodynamics,

while keeping the structure of each swimmer simple. Each swimmer was a modelled as

a rigid neutrally buoyant dumbbell, composed of two beads which are connected by a

rigid rod. All drag forces act on these two beads with a ‘phantom’ flagellum providing

a constant propulsive force on the particle and an equal and opposite force on the fluid.

By coupling many of these particles together, through hydrodynamic interactions, the

authors were able to reproduce experimental features such as correlated motions at high

concentrations of swimmers. This dumbbell model has been generalised by Haines et al.

[30, 31] to include a spheroidal body shape. It is also possible to describe the propulsion

of the particle through a ‘squirmer’ model, such as that developed by Blake [9].

In this chapter we link active suspension models of solutions containing swimming mi-

croorganisms, such as those proposed by Pedley & Kessler [65] and Simha & Ramaswamy

[76], with the mathematically simpler (inactive) transversely isotropic fluid first described

by Ericksen [24], commonly used to describe fibre-reinforced media [29, 22, 23, 52, 38].

Ericksen’s model consists of mass and momentum conservation equations together with

an evolution equation for the fibre director field. The stress tensor depends on the fibre

orientation and linearly on the rate of strain; it takes the simplest form that satisfies the

required invariances.

By linking these models of active and inactive suspensions, we are able to determine the

empirical parameters of the transversely isotropic model in terms of fundamental physical

quantities relating to particle geometry, volume fraction and solute viscosity; furthermore

we propose a modification to the kinematic equation which allows for the inclusion of

swimming particles. At the same time, the connection between the two models reveals

the importance of non-isotropic terms in the stress tensor when the suspended particles

are elongated. These terms are known to influence the dynamics of fibre-laden flows
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[70, 40, 80, 38] and yet are neglected in existing models of active suspensions of rod-like

bacteria [73, 76, 82, 45].

The structure of this chapter is as follows: first we model the active particle position

and direction distribution with a Fokker-Planck equation, making a standard phenomeno-

logical argument for the translational and rotational fluxes [73]. The background flow is

subject to conservation of mass and momentum, with the constitutive relation for stress

modified to include the interaction of the particles with the surrounding fluid, as well as

isotropic and active stress contributions. Current models take account of these isotropic

and active contributions to the stress, but neglect the influence of non-spherical parti-

cles on the bulk stress; it has been shown by Hinch & Leal [36] that this contribution

is important for elongated particles [65]. Next we show that the active description of a

uniformly-distributed, perfectly-aligned suspension is equivalent to Ericksen’s model with

a modified director evolution equation. This link enables a connection to be made between

the parameters of Ericksen’s model to fundamental physical quantities.

5.2 Governing equations

Consider a collection of particles suspended in a viscous, Newtonian fluid. The density

of particles is sufficiently dilute that particles do not interact directly, only through their

influence on the fluid. Each particle is modelled as a prolate spheroid with major axis r∗1,

minor axis r∗2, aspect ratio r = r∗1/r
∗
2, and shape parameter α0 = (r2 − 1)/(r2 + 1). The

particle number density in physical and orientational space is denoted N∗(x∗, p̂, t∗) where

x∗ denotes the particle position, p̂ is orientation and t∗ is time [17], visualised in Figure

5.1. This function is defined as

1

V ∗

∫
V ∗

∫
S

N∗(x∗, p̂, t∗) dp̂ dx∗ = n∗
d, (5.1)
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Figure 5.1: A schematic diagram showing the coordinate system used to model the particle
distribution function N∗. The particle’s position in space is given by the vector x∗ =
(x∗, y∗, z∗) and its orientation is given by the unit vector p̂.

where V ∗ is the volume of the spatial domain, S is the surface of the unit sphere in

orientational space and n∗
d is the mean number density of particles in the suspension. The

local particle director and concentration fields a(x∗, t∗) = ⟨p̂⟩ and c∗ are defined such

that

a = ⟨p̂⟩(x∗, t∗) =
1

c∗(x∗, t∗)

∫
S

p̂N∗(x∗, p̂, t∗) dp̂, (5.2)

c∗(x∗, t∗) =

∫
S

N∗(x∗, p̂, t∗) dp̂. (5.3)

The bracket operator is defined over other quantities similarly.

The particle distribution function is assumed to be governed by a Fokker-Planck equa-

tion [74], giving a conservation law for N∗:

∂N∗

∂t∗
+∇∗

x · (U ∗N∗) +∇p · (Ω∗N∗) = 0, (5.4)

where ∇∗
x denotes the gradient operator in physical space and ∇p denotes the gradient

operator on the unit sphere in orientation space. The particle translational velocity U ∗

is represented by the linear combination of the particle swimming velocity relative to a
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background flow U∗
s p̂ and the local fluid velocity u∗:

U ∗ = U∗
s p̂+ u∗, (5.5)

where we have neglected translational diffusion [72, 74].

Jeffery’s equation [43] models the angular velocity of the particle as

Ω∗ = (I − p̂ p̂) ·
[
(α0e

∗ + ω∗) · p̂
]
, (5.6)

where the rate-of-strain tensor e∗ = (∇∗
xu

∗+∇∗
xu

∗T )/2, the vorticity tensor ω∗ = (∇∗
xu

∗−

∇∗
xu

∗T )/2 and the identity tensor is denoted I. In equations (5.5) and (5.6) we follow

ref. [72] and neglect angular diffusion.

Finally, the fluid velocity u∗(x∗, t∗) is governed by the Cauchy momentum equations

ρ∗
Du∗

Dt∗
= ∇∗

x · σ∗,

∇∗
x · u∗ = 0, (5.7)

where ρ∗ is the fluid density and σ∗ is the stress tensor, which must be prescribed by a

constitutive law. Although the fluid containing the particles is assumed to be Newtonian

and isotropic, the presence of the particles will induce anisotropic behaviour.

5.2.1 Stress tensor

Most models currently found in the literature take account of the isotropic (σ∗I) and

active (σ∗S) contributions to the stress, but neglect the anisotropic contribution of the

particles σ∗P . We therefore follow Pedley & Kessler [65], via refs. [6, 36], and take an

expression for the stress tensor of the form

σ∗ = σ∗I + σ∗S + σ∗P . (5.8)
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The isotropic component takes the form

σ∗I = −p̄∗ I + 2 µ̄∗ e∗, (5.9)

where p̄∗ is the hydrostatic pressure and µ̄∗ is the solvent viscosity.

5.2.2 Active stress contribution

Active behaviour of force-free Stokesian swimmers is modelled by an equal and opposite

propulsive force/drag pair acting along, and infinitesimally displaced in, the ±p̂ direction.

To derive the corresponding stress term, consider the Stokes flow equations

∇x · u∗ = 0, (5.10)

∇x · σ∗d = F ∗δ (x∗ − y∗) , (5.11)

where y∗ is the position of the Stokeslet, x∗ is the displacement from this position, δ is

the three-dimensional Dirac delta function, F ∗δ (x∗ − y∗) represents a point force at the

position of the Stokeslet and the constitutive relation for stress is

σ∗d = p̄∗ I + µ̄∗
(
∇∗

xu
∗ +∇∗

xu
∗T
)
. (5.12)

Equations (5.11) are coupled to the far field conditions

|u∗|, p̄∗ → 0 as r∗d → ∞, (5.13)

where r∗
d = x∗ − y∗ and r∗d = |r∗

d|. The solution of equations (5.11) is [6]

u∗
S(r

∗
d) = F ∗ · S

∗(r∗
d)

8πµ̄∗ , (5.14)

p̄∗(r∗
d) =

F ∗ · r∗
d

4πr∗3d
, (5.15)
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Figure 5.2: Schematic diagram showing the position of the Stokeslets and their direction
to form the stresslet for a (a) puller and (b) pusher.

where

S∗ =

(
I

r∗d
+

r∗
d r

∗
d

r∗3d

)
, (5.16)

is the ‘Oseen tensor’ or ‘Stokeslet’ [44]. The velocity field associated with a single Stokeslet

acting in the p̂ direction is therefore given by

u∗
S(r

∗
d) =

F ∗

8πµ̄∗ p̂ ·

(
I

r∗d
+

r∗
d r

∗
d

r∗3d

)
, (5.17)

where F ∗ is the force magnitude in the p̂ direction (F ∗ = F ∗p̂). We assume the swimmer

may be approximated by two point sources a distance ε apart acting in opposite directions

(figure 5.2). When the forces act towards each other, the swimmer is a ‘puller’ (cells

which are pulled forward, e.g. the biflagellated algae Chlamydomonas [50]) whilst when

the forces act in opposite directions the cell is a pusher such as the bacteria Escherichia

coli or Bacillus subtilis [50]. The velocity field of the resulting force pair is given by

(assuming a puller to give a positive sign)

u∗(r∗
d) =

1

ε

(
−u∗

S

(
r∗
d −

ε

2
p̂

)
+ u∗

S

(
r∗
d +

ε

2
p̂

))
, (5.18)

where the point forces are rescaled depending on the distance between the Stokeslets to

maintain the strength of the resulting streslet. Using Taylor’s theorem gives

u∗ =
1

ε

(
−
[
u(r∗

d)−
ε

2

(
p̂ ·∇y

)
u∗

S + · · ·
]
+

[
u∗(r∗

d) +
ε

2

(
p̂ ·∇y

)
u∗

S(r
∗
d) + · · ·

])
(5.19)
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Hence, assuming ε → 0 and neglecting higher order terms

u∗ =
F ∗

8πµ̄∗ p̂ ·∇∗
y

(
I

r∗d
+

r∗
d r

∗
d

r∗3d

)
· p̂. (5.20)

We note the derivative of r∗d may be calculated

∇∗
y

(
1

r∗d

)
= ∇∗

y

[(
(x∗ − y∗) · (x∗ − y∗)

)1/2]
, (5.21)

=
−1

2

(
(x∗ − y∗) · (x∗ − y∗)

)−3/2 (−2(x∗ − y∗)
)
, (5.22)

=
r∗
d

r∗3d
. (5.23)

The velocity field (5.20) is therefore simplified as follows:

u∗ =
F ∗

8πµ̄∗

(
I r∗

d

r∗3d
+

3 r∗
d r

∗
d r

∗
d

r∗5d
− I r∗

d + r∗
d I

r∗3d

)
: p̂ p̂, (5.24)

=
F ∗

8πµ̄∗

(
r∗
d

r∗3d
p̂ p̂+

3r∗
d r

∗
d r

∗
d

r∗5d
: p̂ p̂− p̂

r∗3d
· p̂ p̂+

r∗
d

r∗3d
p̂ · p̂

)
. (5.25)

Using that p̂ is a unit vector, and I : r∗
d r

∗
d = r∗2d , equation (5.25) may be further simplified

u∗ =
3F ∗r∗

d r
∗
d r

∗
d

8πµ̄∗r∗5d
:

(
p̂ p̂− I

3

)
, (5.26)

which is the form of a symmetric stokes dipole (‘stresslet’) with tensorial strength pro-

portional to (p̂ p̂− I/3). The pressure field may be found similarly,

p̄(r∗
d) = F ∗p̂ ·∇y

(
r∗
d · p̂

4πr∗3d

)
, (5.27)

=
3F ∗r∗

d r
∗
d

4πr∗5d
:

(
p̂ p̂− I

3

)
. (5.28)
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The stress generated by the swimmer is found using equation (5.12)

σ∗d
il =

3F ∗

8π

(
p̂j p̂k −

δjk
3

)(
− 2

r∗j r
∗
k

r∗5d
δil −

10r∗i r
∗
j r

∗
kr

∗
l

r∗7d

+
r∗i r

∗
j δkl + r∗i r

∗
kδjl + r∗j r

∗
kδil + r∗j r

∗
kδil + r∗j r

∗
l δik + r∗kr

∗
l δij

r∗5d

)
, (5.29)

=
3F ∗

4π

(
p̂j p̂k −

δjk
3

)(
r∗j
(
r∗i δkl + r∗l δik

)
r∗5d

−
5r∗i r

∗
j r

∗
kr

∗
l

r∗7d

)
, (5.30)

where r∗i = (r∗
d)i. Equation (5.30) can be rewritten in vector form

σd =
3F ∗

4π

(
p̂ p̂− I

3

)
:

(
r∗
d

(
r∗
d I + I r∗

d

)
r∗5d

− 5r∗
d r

∗
d r

∗
d r

∗
d

r∗7d

)
. (5.31)

To calculate the total contribution to the stress, assume the effective stress in the

suspension is the ensemble average of the stress distribution in all realisations of the

suspension. The formal expression for the effective stress is [6, 44]

σ∗eff =
1

V ∗

∫
V ∗

σd∗ dV ∗, (5.32)

=
1

V ∗

∫
V ∗−

∑
V ∗
c

−p̄∗I + 2µ̄∗e∗ dV ∗ +
∑
n

∫
V ∗
c

σd dV ∗
c , (5.33)

where the volume integral has been decomposed into the portion where the constitutive

relations for the fluid (V ∗ −
∑

V ∗
c ) and particle (V ∗

c ) hold respectively. By noting

σ∗d = ∇∗
x ·
(
σ∗dx∗

)
−
(
∇∗

x · σ∗d
)
x∗, (5.34)

and ∇∗
x · σ∗d = 0 for force free particles. The effective stress is therefore

σ∗eff =
1

V ∗

∫
V ∗−

∑
V ∗
c

−p̄∗I + 2µ̄∗e∗ dV ∗ +
∑
n

∫
S∗
c

σ∗d · n̂x∗ dS∗
c , (5.35)

where the final term represents the surface tractions of the swimmer on the surface S∗
c ,

n is the number of particles in the volume of interest and n̂ is the unit normal to the
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particles’ surface. The integral of the rate of strain tensor e∗ may be evaluated as

∫
V ∗−

∑
V ∗
c

2e∗ dV ∗ =

∫
V ∗

2e∗ dV ∗ −
∑
n

∫
V ∗
c

∇∗
xu

∗ +∇∗
xu

∗T dV ∗, (5.36)

=

∫
V ∗

2e∗ dV ∗ −
∑
n

∫
S∗
c

u∗ n̂+ n̂ u∗ dS∗
c , (5.37)

where we have used the identity [1]

∫
V ∗

∇xF
∗ dV ∗ =

∫
S∗

F ∗ n̂ dS∗. (5.38)

Combining these results together, the effective stress is

σ∗eff = −p∗effI + 2µ∗
∫
V ∗

e∗ dV ∗ + σ∗e, (5.39)

where p∗eff is the effective pressure, containing all isotropic parts of the effective stress,

and the particle contribution is

σ∗e =
1

V ∗

∑
n

∫
S∗
c

σ∗d · n̂ x∗ − µ∗ (u∗ n̂+ n̂ u∗) dS∗
c . (5.40)

For rigid particles, the velocity at the particle surface is a rigid body motion so the velocity

terms in the integral vanish identically [44]

σ∗e =
1

V ∗

∑
n

∫
S∗
c

σ∗d · n̂ x∗ dS∗
c . (5.41)

Substituting for σ∗d from equation (5.31) gives

σ∗e =
3F ∗

4πV ∗

∑
n

(
p̂ p̂− I

3

)
:

∫
S∗
c

(
r∗
d

(
r∗
d I + I r∗

d

)
r∗5d

− 5r∗
d r

∗
d r

∗
d r

∗
d

r∗7d

)
· n̂ x∗ dS∗

c . (5.42)
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We note the integral

Aiabk =

∫
Sc

(
r∗a
(
r∗i δbk + r∗kδib

)
r∗5d

− 5r∗i r
∗
ar

∗
br

∗
k

r∗7d

)
nkxj dSc (5.43)

is isotropic, and therefore takes the form

Aiabk = λ1δiaδbj + λ2δibδaj + λ3δijδab. (5.44)

Substituting this form into equation (5.42) yields

σ∗e = α∗
1

∑
n

(
p̂p̂− I

3

)
, (5.45)

where α∗
1 = 3F ∗(λ1 + λ2)/4πV

∗ is a parameter, which could be positive or negative,

quantifying the active stresslet strength.. Equations (5.41) and (5.45) give the macroscopic

stress for a specific case of a particle suspension (when transversely-isotropic effects are

neglected). However we wish to visualise all possible suspensions; therefore we integrate

σ∗e over all possible particle directions to give the contribution to the stress due to active

swimming as

σ∗S = α∗
1

∫
S

(
p̂ p̂− I

3

)
N dp̂, (5.46)

= α∗
1 c

∗
⟨
p̂ p̂− I

3

⟩
. (5.47)

5.2.3 Influence of non-spherical particles on the bulk stress

The components of the stress tensor that arise from the presence of suspended particles

in the solvent take the form [6, 36]

σ∗P = 4 c∗ µ̄∗ V ∗
c

[
α2 e

∗ : ⟨pppp⟩+ α3

(
e∗ · ⟨pp⟩+ ⟨pp⟩ · e∗)+ α4e

∗ + α5I e∗ : ⟨pp⟩

]
,

(5.48)
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where V ∗
c is the particle volume and αi (i = 2 . . . 5) are constants.

The full model thus consists of a normalisation condition for N∗ (5.1), where N∗ is

governed by the Fokker-Planck equation (5.4), with fluxes (5.5) and (5.6). The fluid

velocity obeys conservation of mass and momentum (5.7), with a constitutive relation for

stress given by equations (5.8), (5.9), (5.47) and (5.48).

5.3 Aligned suspension

In the following we drop the stars which denote dimensional quantities for convenience.

Consider a uniform suspension c(x, t) = nd which is perfectly aligned, with director field

a(x, t); the particle distribution function is then of the form

N (x, p̂, t) = nd δ (p̂− a) , (5.49)

where δ denotes the Dirac delta function [73]. In this case we need only consider how the

average direction of the particles a evolves, and not the full distribution function N .

To derive an evolution equation for a, we multiply equation (5.4) by p̂ and integrate

over p̂ to give [73]

nd
∂

∂t

∫
S

p̂ δ (p̂− a) dp̂+ ndUs∇x ·
∫
S

p̂ p̂ δ (p̂− a) dp̂+ nd∇x ·
(
u

∫
S

p̂ δ (p̂− a) dp̂

)
− nd

∫
S

(I − p̂ p̂) ·
[
(α0e+ ω) · p̂

]
δ (p̂− a) dp̂ = 0, (5.50)

where we have made use of the integration by parts formula

∫
S

p̂∇p · (fN) dp̂ = −
∫
S

fN dp̂. (5.51)

Evaluating each of these integrals in turn gives

∂a

∂t
+ (Us a+ u) ·∇x a− ω · a = α0 (e · a− e : aaa) . (5.52)

99



The fibre evolution equation (2.6) of Ericksen [24] for a passive transversely isotropic

fluid can then be recovered by setting the swimming speed to zero (Us = 0).

The governing equations for the background flow (equations (5.7)) remain unchanged,

however the stress tensor is now given by

σ = −p I + 2µ e+ µ1 aa + µ2 aaaa : e+ 2µ3 (aa · e+ e · aa ) , (5.53)

where the pressure has been modified such that,

p = p̄+
ndα1

3
− 4 µ̄ ϕ α5 aa : e, (5.54)

and the viscosity-like parameters are given by

µ = µ̄ (1 + 2ϕα4) ,

µ2 = 4 µ̄ ϕ α2,

µ3 = 2 µ̄ ϕ α3. (5.55)

The parameters µ, µ2 and µ3 are the viscosity-like parameters of Ericksen’s model (section

2.3) and ϕ = ndVc is the volume fraction of the particles. Linking these models allows for

these parameters to be approximated from Jeffery [43] (via [6, 10, 51, 65, 44]), given by

µ = µ̄

(
1 +

2ϕ

I1

)
,

µ2 =
4ϕµ̄

I1

(
1 +

L1

L2

− 2
I1
I2

)
,

µ3 =
4ϕµ̄

I1

(
I1
I2

− 1

)
. (5.56)

The quantities I1, I2, L1 and L2 are ellipsoidal integrals, given in terms of the aspect ratio
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r:

I1 =

∫ ∞

0

2r

(r2 + λ)1/2 (1 + λ)3
dλ =

r2
(
2r2 − 5 + 3γ

)
2 (r2 − 1)2

,

I2 =

∫ ∞

0

r
(
r2 + 1

)
(r2 + λ)3/2 (1 + λ)2

dλ =

(
r2 + 1

) (
r2 + 2− 3r2γ

)
(r2 − 1)2

,

L1 =

∫ ∞

0

rλ

(r2 + λ)1/2 (1 + λ)3
dλ =

r2
[
2r2 + 1− γ

(
4r2 − 1

)]
4 (r2 − 1)2

,

L2 =

∫ ∞

0

rλ

(r2 + λ)3/2 (1 + λ)2
dλ = I1 − 2L1,

where γ =
cosh−1 r

r (r2 − 1)1/2
. (5.57)

These results agree with those found by Lipscomb et al. [54], discussed in section 2.3, and

are valid when the suspension is dilute.

Linking models of passive and active suspensions allows us to identify that the param-

eter µ1 is directly related to the strength of the active stresslet α1,

µ1 = nd α1, (5.58)

which has not been identified before. Therefore Ericksen’s model for a transversely

isotropic fluid may be used to model actively motile ‘fibres’, with a simple modification

to the kinematic equation.

We have therefore recovered, from a general model for an active suspension of elongated

particles, the model for a transversely isotropic fluid proposed by Ericksen [24], with a

modification to the fibre evolution equation. By analogy with recent findings in the

transversely isotropic field [22, 23, 38] as well as chapters 3 and 4, this suggests that

the terms which have often been neglected from equation (5.48) will have a significant

impact on the dynamics of suspensions of active elongated particles via the rheological

parameters µ2 and µ3 [73, 76, 82].
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5.4 Conclusion

We have linked models of active suspensions of elongated motile particles to the trans-

versely isotropic fluid proposed by Ericksen [24], using a Fokker-Planck equation for the

particle distribution function and the stress tensor of Pedley & Kessler [65], which in-

cludes the influence of non-spherical particles on the bulk stress. Under the assumption

that the suspension is of spatially-uniform volume fraction and has perfect but perhaps

spatially-varying alignment, Ericksen’s four viscosity-like parameters may be determined

in terms of fundamental physical quantities. These quantities include the active stresslet,

particle aspect ratio, particle volume, mean number density of the particles and solvent

viscosity. This linkage yields a physical basis for inferring these crucial mechanical pa-

rameters used in models such as [23, 29, 38]. The shear-independent term parameterised

by µ1 is found to model active behaviour. The transversely isotropic fluid of Ericksen may

therefore be used to model actively motile ‘fibres’ by a simple modification to the fibre

evolution equation. Linking these two frameworks provides a basis to extend Ericksen’s

model to include effects such as dispersion about the preferred direction.

Our modification to Ericksen’s model can be considered as the simplest describing

an orientated active suspension and including transversely isotropic effects; more refined

approaches take into account fibre-dispersion formulated via the Q-tensor which is defined

as the nematic moment ⟨p̂ p̂− I/3⟩ [12, 90].

For models of near-spherical algae it is reasonable to assume that these non-isotropic

stress terms have a small influence, justifying their neglect [65]. However, this near-

spherical limit of the model has also been used to give insight into the dynamics of

elongated rod-like bacterial suspensions [73, 76, 82]. The non-isotropic terms have been

shown to have a significant effect on the system’s emergent properties and flow stability

within the transversely isotropic fluid research literature [23, 29, 38]; these terms therefore

seem likely to have implications for earlier analysis of the critical concentration threshold

and wavelengths of emergent patterns in active suspensions [71, 73, 82, 83]. Indeed (and

perhaps somewhat paradoxically) in some bacterial suspension models, the additional
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stress terms are invoked a posteriori to determine the extent to which a fluid’s rheology

is affected by the suspended particles [71, 74] but which are not taken into account when

calculating the velocity field. Hydrodynamic effects associated with elongated active

particles are important, and should be taken into account from the outset in future work.

In this chapter we show how models for active suspensions, described by Pedley and

Kessler [65] and Simha and Ramaswamy [76], may be linked to the mathematically simpler

model of Ericksen [24]. We do this by choosing the form of the distribution function for a

perfectly aligned uniform suspension proposed by Saintillan and Shelley [72]. We believe

this is the first time these models have been linked in this way. We note however that

Pedley and Kessler build upon the work of Batchelor [6]. It has been shown by Lipscomb

et al. [54] that the stress tensor proposed by Batchelor for a uniform aligned passive

suspensions is equivalent to that of Ericksen, when the active behaviour of the material

is neglected. Hence the parameter values for µ2 and µ3 in a dilute suspension have been

previously identified by Lipscomb et al. [54]. However, through the link we propose we

are able to identify a new physical interpretation of the µ1 parameter, and also propose a

simple modification to Ericksen’s model to include swimming particles.

Active suspensions and transversely isotropic fluids are both biologically-relevant and

physically-fascinating states of matter. Linking these two fields of research enables knowl-

edge transfer, enabling extension of the transversely isotropic model (chapter 2) and iden-

tifying important components of the active suspension model which have previously been

neglected. This link provides a framework to extend the results found in chapters 3 and

4 to include dispersion about the average direction. In chapter 6 we will investigate the

linear stability of the uniformly distributed, perfectly aligned, suspension identified in this

chapter to a plane wave perturbation.
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CHAPTER 6

LINEAR STABILITY OF ISOTROPIC AND
NEARLY-ALIGNED SUSPENSIONS OF

ELONGATED PARTICLES

6.1 Introduction

In this chapter we examine the linear stability of suspensions of elongated particles, with

zero background flow, in two distinct cases; when the particles are nearly aligned and when

the suspension is isotropic, i.e. when particles have nearly zero dispersion at each point

in space, and when the particles are perfectly randomly orientated. The particles may

be either ‘active’, i.e. the particles can propel themselves through the fluid, or ‘passive’,

i.e. the particles have no mechanism of self-propulsion, reorienting due to the background

flow and hydrodynamic interactions only. To model these suspensions we follow a similar

analysis to Saintillan & Shelley [72, 73], however we instead choose the model proposed by

Pedley & Kessler [65], where the anisotropic terms (described in chapter 5) are included.

These interactions are important in passive suspensions of rod-like particles, but their

inclusion in active suspensions has previously been neglected. This chapter therefore

focusses on the effect the extra particle stress, due to hydrodynamic interactions, has on

the stability of isotropic and nearly-aligned suspensions of rod-like bacteria.

In section 6.2 we begin by stating the governing equations we adopt to model a sus-

pension of rod-like particles. These equations constitute a Fokker-Planck equation, which
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describes the evolution of a particle’s orientation and position [45], coupled to conserva-

tion of mass and momentum equations for the background flow, where the constitutive

relation for stress is adopted from Pedley and Kessler [65]. We conclude this section by

non-dimensionalising our governing equations and variables. In section 6.3 we examine

the linear stability of a nearly-aligned suspension of rod-like particles. Similarly to ref.

[73] we propose a base state where the particles are perfectly aligned at each point in

space with no background flow; this allows us to split the distribution function into a

pair of equations for the particles’ concentration and director fields. By considering plane

wave perturbations to the base state, we find a dispersion relation and visualise the de-

pendence of the growth parameter on the wave-number, wave-angle, shape parameter and

volume fraction of particles. In section 6.4 we use the governing equations proposed in

section 6.2 and through the form of the distribution function we consider an isotropic

base state. Following Saintillan & Shelley [73] we examine the linear stability of this

base state to plane wave perturbations, and find the corresponding dispersion relation

for the growth parameter; we visualise the dependence of the growth parameter on the

wave-number, shape parameter and volume fraction of particles. Finally in section 6.5 we

give a summary of our findings.

6.2 Governing equations

We adopt the model proposed in Chapter 5, and consider a collection of particles sus-

pended in a viscous, Newtonian fluid. The density of particles is sufficiently dilute that

particles do not interact directly, only through their influence on the fluid. Each par-

ticle is modelled as a prolate spheroid with major axis r∗1, minor axis r∗2, aspect ratio

r = r∗1/r
∗
2, and shape parameter α0 = (r2 − 1)/(r2 + 1). The particle number density

in physical and orientational space is denoted N∗(x∗, p̂, t) where x∗ denotes the particle

position, p̂ is orientation and t∗ is time [17], visualised in Figure 5.1. This function is

defined in equation (5.1) and governed by the Fokker-Planck equation (5.4), where the
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(a) (b) (c)

1Figure 6.1: Schematic diagram to illustrate the different particle shapes when (a) α0 =
0.75, (b) α0 = 0.85 and (c) α0 = 0.95.

constitutive equations for the translational and rotational velocities are given in equations

(5.5) and (5.6) respectively. The local particle director and concentration fields a = ⟨p̂⟩

and c∗ are defined in equations (5.2) and (5.3). The background flow u∗ is modelled using

the Cauchy momentum equations (5.7), with a constitutive relation for stress defined in

equations (5.8), (5.9), (5.47) and (5.48).

6.2.1 Governing equation for concentration field

The local particle director (a = ⟨p̂⟩) and concentration fields (c∗) are defined such that

a = ⟨p̂⟩(x∗, t∗) =
1

c∗(x∗, t∗)

∫
S

p̂N∗(x∗, p̂, t∗) dp̂, (6.1)

c∗(x∗, t∗) =

∫
S

N∗(x∗, p̂, t∗) dp̂. (6.2)

To derive a governing equation for the concentration field c∗(x∗, t∗) we integrate equation

(5.4) over p̂ and substitute for the translational flux velocity U (equation (5.5)) to give

[73]

∂c∗

∂t∗
+ u∗ ·∇∗

xc
∗ = −U∗

s∇∗
x · (c∗a) , (6.3)

where U∗
s the particle swimming speed. A detailed derivation is shown in appendix C.

Equation (6.3) is an advection-diffusion equation for the local concentration field c∗, with

a source term −U∗
s∇∗

x · (c∗a).
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6.2.2 Non-dimensionalisation

The governing equations are made dimensionless using the following scaling [73]:

u∗ = U∗
su, x∗ =

x

n∗
dr

∗2
1

, t∗ =
t

n∗
dr

∗2
1 U∗

s

,

p∗ = µ∗U∗
sn

∗
dr

∗2
1 p, N∗ = n∗

dN, c∗ = n∗
dc, (6.4)

where n∗
d is the mean number density of particles in the suspension. Note that n∗

dr
∗2
1 =

f1V
∗
e /r

2
2V

∗, where V ∗
e = 4πMr∗1r

∗2
2 /3 is the volume taken up by the total number of

swimming particles (M) in a volume V ∗.

The particle distribution function is now defined as (equation (5.1))

1

V

∫
V

∫
S

N(x, p̂, t) dp̂ dx = 1, (6.5)

and governed by (equation (5.4))

∂N

∂t
= −∇x · (UN)−∇p · (ΩN) , (6.6)

where the non-dimensional translational and rotational velocities of the particles are given

by (equation (5.5) and (5.6))

U = p̂+ u, (6.7)

Ω = (I − p̂ p̂) ·
[
(α0e+ ω) · p̂

]
. (6.8)

Here e = (∇xu+∇xu
T )/2 is the rate-of-strain tensor and ω = (∇xu−∇xu

T )/2 is the

vorticity tensor.
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The local particle director and concentration fields (equations (6.1) and (6.2)) are

a(x, t) = ⟨p̂⟩ = 1

c(x, t)

∫
S

p̂N(x, p̂, t) dp̂, (6.9)

c(x, t) =

∫
S

N(x, p̂, t) dp̂, (6.10)

where the concentration field is governed by (equation (6.3))

∂c

∂t
+ u ·∇xc = −∇x · (ca) . (6.11)

Finally, the momentum and continuity equations (5.7) simplify as

∇x · σ = 0, ∇x · u = 0, (6.12)

where inertia has been neglected and the constitutive relation for stress is given by

σ = −p I + 2 e+ α1

∫
S

(
p̂ p̂− I

3

)
N dp̂+ 4ϕ

{
α2e :

∫
S

p̂ p̂ p̂ p̂N dp̂

+ α3

(
e ·
∫
S

p̂ p̂N dp̂+

∫
S

p̂ p̂N dp̂ · e
)
+ α4e

∫
S

N dp̂+ α5e :

∫
S

p̂ p̂N dp̂ I

}
(6.13)

Here ϕ = n∗
d V

∗
c is the volume fraction of particles in solution and α1 = σ∗

1/µ̄
∗U∗

s r
∗2
1 is the

non-dimensional stresslet strength.

6.3 Linear stability of a nearly-aligned suspension

We first consider the case when the particles are perfectly aligned at each point x and

the background flow is zero to leading order, a schematic diagram is given in Figure 6.2.

This situation may arise when a flow, that orientates the particles, is turned off.
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Figure 6.2: Schematic diagrams of (a) an aligned suspension and (b) an isotropic suspen-
sion of rod-like particles

6.3.1 Governing equations

For a nearly-aligned suspension the distribution function takes the form

N(x, p̂, t) = c(x, t)δ
(
p̂− a(x, t)

)
, (6.14)

where δ denotes the Dirac delta function [73]. This is similar to the form of the distribution

function chosen in chapter 5, but with non-uniform concentration. In this case we may

reduce the evolution equation for the full distribution function (N) to a pair of equations

for the concentration and director fields. The equation for concentration (equation (6.11))

is given by

∂c

∂t
+∇x ·

[
(a+ u) c

]
= 0. (6.15)

To derive the evolution equation for the director field a, multiply equation (6.6) by p̂ and

integrate over p̂ to give [73],

∂a

∂t
= − (a+ u) ·∇xa+ (I − aa) ·

[
(α0e+ ω) · a

]
, (6.16)

where we have assumed the concentration is non-zero everywhere. A detailed derivation

is shown in appendix D.
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The governing equations for the background flow velocity remains unchanged (equa-

tions (6.12)), however the stress tensor is now given by

σ = −p I + 2 e+ α1 c(x, t)

(
aa− I

3

)
+ 4ϕ c(x, t)

(
α2e : aaaa+ α3 (e · aa+ aa · e) + α4e+ α5e : aaI

)
.

(6.17)

If the particles are uniformly distributed (c(x, t) = 1), then this framework corresponds

to Ericksen’s model for a transversely isotropic fluid [24] when the swimming velocity

is zero (chapter 5). In line with this literature we define α2 and α3 as the anisotropic

extensional and shear viscosities respectively, and note that α4 and α5 may be combined

with the solvent viscosity and hydrostatic pressure respectively.

The model consists of governing equations for the concentration (equation (6.15))

and director (equation (6.16)) fields of the particles, as well as conservation of mass and

momentum statements for the fluid velocity (equation (6.12)), where the constitutive

relation for stress is given by equation (6.17).

6.3.2 Linear stability analysis

Using the equations described in section 6.3, we analyse the linear stability of a suspension

of particles aligned in the ẑ-direction (a(0) = ẑ). A base state exists when the fluid is

motionless (u(0) = 0), the bacteria are uniformly distributed (c(0) = 1), and the pressure

is constant (p(0) = p0, where p0 is some arbitrary pressure). We consider the stability of

this state by considering the perturbation

c(x, t) = 1 + εc(1)(x, t), a = ẑ + εa(1)(x, t),

u(x) = εu(1)(x), p(x) = p0 + εp(1)(x),
(6.18)
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where |ε| ≪ 1. We require a(1) · ẑ = 0, so that a remains a unit vector to order ε2. To

see this, observe that since a is a unit vector,

(
ẑ + εa(1)

)
·
(
ẑ + εa(1)

)
= 1, (6.19)

ẑ · ẑ + 2ε
(
a(1) · ẑ

)
+O

(
ε2
)
= 1. (6.20)

Collecting at leading and first orders gives the required result.

Expanding equations (6.15) and (6.16), and retaining only terms of order ε only, we

find [73]

∂c(1)

∂t
+ ẑ ·∇xc

(1) +∇x · a(1) = 0, (6.21)

∂a(1)

∂t
+ ẑ ·∇xa

(1) = (I − ẑ ẑ) ·
(
α0e

(1) + ω(1)
)
· ẑ, (6.22)

where e(1) = (∇xu
(1) +∇xu

(1)T )/2 and ω(1) = (∇xu
(1) −∇xu

(1)T )/2. The momentum

equations are given at order ϵ by

−µ∇2
xu

(1) +∇xq
(1) = ∇x · σ(1), ∇x · u(1) = 0, (6.23)

where µ = 1 + 2ϕα4 is the enhanced shear viscosity due to the presence of the particles,

q(1) = p(1)−α1c
(1)/3−4ϕα5e

(1) : ẑẑ is the effective pressure, and the constitutive relation

for stress is given by

σ(1) = α1

(
a(1)ẑ + ẑa(1) + c(1)ẑẑ

)
+ 4ϕ

{
α2e

(1) : ẑẑẑẑ + α3

(
e(1) · ẑẑ + ẑẑ · e(1)

)}
.

(6.24)
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6.3.3 Plane-wave solutions

We seek plane-wave solutions of the form

c(1) = c′(k)eik·x+st, a(1) = a′(k)eik·x+st,

q(1) = q′(k)eik·x+st, u(1) = u′(k)eik·x+st, (6.25)

where k is the wave vector and s the growth rate. Under this ansatz the equations for

the first order concentration and alignment field (equations (6.21) and (6.22)) are given

by

(s+ iẑ · k) c′ = −ik · a′, (6.26)

(s+ iẑ · k)a′ = (I − ẑ ẑ) ·
(
α0e

′ + ω′) · ẑ, (6.27)

where e′ = i(ku′ + u′ k)/2 and ω′ = i(ku′ − u′ k)/2, whilst the conservation of mass

and momentum equations become

µk2u′ + ikq′ = ik · σ′, k · u′ = 0. (6.28)

The constitutive relation for stress is now given by

σ′ = α1

(
a′ẑ + ẑa′ + c′ẑẑ

)
+ 4ϕ

{
α2e

′ : ẑẑẑẑ + α3

(
e′ · ẑẑ + ẑẑ · e′)} . (6.29)

The effective pressure may be eliminated as follows: take the divergence of the conserva-

tion of momentum equation (6.28)

µk2
(
k · u′)− k2q′ = −k2k̂ · σ′ · k̂, (6.30)
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where k̂ = k/|k| is the unit vector in the k direction. Applying incompressibility and

dividing by −k2, equation (6.30) becomes

q′ = k̂ · σ′ · k̂. (6.31)

Substituting this expression for the effective pressure into equation (6.28) yields

µk2u′ =
(
I − k̂ k̂

)
· σ′ · k, (6.32)

as σ′ is symmetric. Utilising the constitutive relation for stress (6.29), the velocity is

governed by

(
1 +

2ϕα3

µ

(
k̂ · ẑ

)2)
u′+

2ϕ

µ

(
u′ · ẑ

)(
2α2

(
k̂ · ẑ

)2
+ α3

)(
ẑ −

(
k̂ · ẑ

)
k̂

)
=

iα1

µk2

(
I − k̂k̂

)
·
(
a′ẑ + ẑ a′ + c′ẑ ẑ

)
· k.

(6.33)

The velocity is only non-zero if the wave vector k lies in the (ẑ,a′) plane, we observe this

via contradiction. Suppose k does not lie in the (ẑ,a′) plane, then k · ẑ = k · a′ = 0 and

equation (6.33) becomes

u+
2ϕα3

µ
ẑ (u · ẑ) = 0. (6.34)

Clearly the x and y components of velocity are zero, with the z component (w) given by

(
1 +

2ϕα3

µ

)
w = 0. (6.35)

As ϕ, α3 and µ are all positive quantities, equation (6.35) only holds if w = 0. Therefore

if k does not lie in the (ẑ,a′) plane the velocity is zero. We have shown by contradiction

that the velocity is only non-zero if k lies in the (ẑ,a′) plane.

Similarly to Saintillan & Shelley [73], we assume without loss of generality that k lies

in this plane and define θ as the angle between k and ẑ: k = k(cos θ ẑ + sin θ a′/a′)
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(where a′ = |a′|). Assuming this form for the wave-vector, the concentration equation

(6.26) becomes

λc′ = −i k a′ sin θ, (6.36)

where λ = s + ik cos θ. We may also derive expressions for the components of velocity;

conservation of momentum (6.33) gives

(1 + 2ϕα3 cos
2 θ

µ

)
ua −

ϕuz sin 2θ

µ

(
2α2 cos

2 θ + α3

) a′

a′

+

(1 + 2ϕα3 cos
2 θ

µ

)
+

2ϕ

µ

(
2α2 cos

2 θ + α3

) (
1− cos2 θ

)uzẑ

=
iα1

µk

[(
a′ cos θ cos 2θ − c′ sin θ cos2 θ

) a′

a′
+
(
−a′ sin θ cos 2θ − c′ cos θ sin2 θ

)
ẑ

]
, (6.37)

where ua and uz are the a′/a′ and ẑ components of velocity respectively. Combining the

ẑ component of equation (6.37) with equation (6.36), to eliminate c′, gives

λu′
z =

iα1a
′

k(µ+ 2A1)

(
−λ sin θ cos 2θ − ik

2
sin 2θ sin2 θ

)
, (6.38)

where A1 = ϕ(2α2 cos
2 θ + α3). The a′/a′ component of equation (6.37) gives

(µ+ 2A2)λua − A1λuz sin 2θ =
iα1a

′

k

(
λ cos θ cos 2θ +

ik

4
sin2 2θ

)
, (6.39)

where A2 = ϕα3 cos
2 θ. Substituting uz from equation (6.38) into equation (6.39) gives

the a′ component of velocity

λu′
a =

iα1(µ+ 2A1 cos
2 θ)a′

k(µ+ 2A1)(µ+ 2A2)

(
λ cos θ cos 2θ +

ik sin2 2θ

4

)
. (6.40)

Finally, the evolution equation for a′(k) is found by substituting the rate-of-strain and
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vorticity tensors into equation (6.22), to give

λa′ =
i

2

(
(α0 + 1)uakz + (α0 − 1)uzka

)
. (6.41)

Substitution of the velocity components (6.38) and (6.40) leads to the dispersion relation

λ2 +
α1

2

(
A3 (α0 + 1) cos2 θ − A4 (α0 − 1) sin2 θ

)(
λ cos 2θ +

ik

2
sin θ sin 2θ

)
= 0, (6.42)

where

A3 =
µ+ 2A1 cos

2 θ

(µ+ 2A1)(µ+ 2A2)
=

µ+ 2ϕ cos2 θ(2α2 cos
2 θ + α3)

(µ+ 2ϕ(2α2 cos2 θ + α3))(µ+ 2ϕα3 cos2 θ)
, (6.43)

A4 =
1

µ+ 2A1

=
1

µ+ 2ϕ(2α2 cos2 θ + α3)
. (6.44)

This is an eigenvalue problem for the growth rate s (via λ), the solution for which is

obtained as

λ± =
1

2
f(θ) cos 2θ

[
1±

(
1 +

2ik sin θ sin 2θ

f(θ) cos2 2θ

)1/2
]
, (6.45)

s± =
1

2
f(θ) cos 2θ

[
1±

(
1 +

2ik sin θ sin 2θ

f(θ) cos2 2θ

)1/2
]
− ik cos θ, (6.46)

where

f(θ) = −α1

2

(
A3(α0 + 1) cos2 θ − A4(α0 − 1) sin2 θ

)
. (6.47)

As the volume fraction (ϕ) only appears in front of the anisotropic terms in equation

(6.29), the solution of the eigenvalue problem derived by Saintillan & Shelley [72] is

recovered by setting ϕ = 0.
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1 1Figure 6.3: The real part of the growth rate (R(s)) for changes in the volume fraction
ϕ = 0, 0.1, 0.2, where the arrow indicates the direction of increase, shape parameter
α0 = 0.85 and wave direction (a) θ = π/8, (b) θ = π/4 and (c) θ = 3π/8.
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Figure 6.5: The real part of the growth rate (R(s)) for changes in the shape parameter
α0 = 0.75, 0.85, 0.95, where the arrow indicates the direction of increase, volume fraction
ϕ = 0.1 and wave magnitude (a) k = 0, (b) k = 0.1 and (c) k = 1.
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Figure 6.6: The real part of the growth rate (R(s)) for changes in the shape parameter
α0 = 0.75, 0.85, 0.95, where the arrow indicates the direction of increase, volume fraction
ϕ = 0.1 and wave direction (a) θ = π/8, (b) θ = π/4 and (c) θ = 3π/8.
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6.3.4 Results

For k > 0 we observe in Figure 6.3 there is always a positive growth rate; therefore,

aligned suspensions are always unstable to concentration and orientation perturbations.

This agrees with the results presented by Saintillan & Shelley [72, 73] which correspond

to ϕ = 0 (the black line in Figures 6.3-6.4). However, we predict the perturbations will

grow more slowly as the volume fraction of particles is increased. This theory predicts the

growth rate will increase with k, however if diffusion were included it would dampen and

stabilize high-wave-number fluctuations [73]. From Figure 6.4 we note the largest change

to the growth rate, with respect to change in volume fraction, occurs when the wave angle

θ ∈ [0, π/8], and the least for θ = π/4. Therefore the inclusion of the extra stress σP has

the greatest effect when the wave acts in a similar direction to the alignment of the fibres.

From Figures 6.5 and 6.6 we identify that changes in the shape parameter α0 have only

a small effect on the predicted growth rates. A schematic diagram showing the difference

between the particle shapes α0 = 0.75, 0.85, 0.95 is shown in Figure 6.1.

6.4 Linear stability of an isotropic suspension

We now examine how a suspension of particles, which are randomly orientated, behave

when they are perturbed; to do this we perturb a uniform isotropic steady state where

the background fluid is stationary:

u = εu(1)(x, p̂, t), N =
1

4π

[
1 + εN (1)(x, p̂, t)

]
. (6.48)
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6.4.1 Linear stability analysis

When the perturbation (6.48) is adopted, the flux velocities (equations (6.7) and (6.8))

become

U = p̂+ εu(1), (6.49)

Ω = (I − p̂ p̂) ·
[
α0ε

(
e(1) + ω(1)

)
· p̂
]
, (6.50)

where e(1) = (∇xu
(1) + ∇xu

(1)T )/2 is the rate-of-strain tensor and ω(1) = (∇xu
(1) −

∇xu
(1)T )/2 is the vorticity tensor, at order ε. The translational velocity of the particle

may be simplified by evaluating ⟨p̂⟩(0), ⟨p̂ p̂⟩(0) and c(0). The first moment of p̂ is given

by

⟨p̂⟩(0) = 1

4π

∫
S

p̂ dp̂. (6.51)

Writing the particle director in spherical coordinates, p̂ = (sin θ cosχ, sin θ sinχ, cos θ),

χ ∈ [0, 2π) and θ ∈ [0, π],

1

4π

∫
S

p̂ dp̂ =
1

4π

∫ π

χ=0

∫ 2π

θ=0

(sin θ cosχ, sin θ sinχ, cos θ) dθ dχ,

=
1

4π

∫ π

χ=0

(
[− cos θ cosχ]2πθ=0 , [− cos θ cosχ]2πθ=0 , [sin θ]

2π
θ=0

)
dχ,

= 0. (6.52)

To calculate the second moment of p̂ notice the integral is isotropic, i.e. there are no

special directions involved either in the domain of integration or in the integrand [79], to

give

⟨p̂ p̂⟩(0) = 1

4π

∫
S

p̂ p̂ dp̂ = λI, (6.53)
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where λ is a constant that must be found. Writing equation (6.53) in index notation

1

4π

∫
S

p̂ip̂j dp̂ = λδij. (6.54)

Using the summation convention p̂ip̂i = 1 (since p̂ is a unit vector) and δii = 3 (as we are

working in Cartesian space with three dimensions),

λ =
1

12π

∫
S

dp̂ =
1

3
. (6.55)

The second moment of p̂, to leading order, is therefore

⟨p̂ p̂⟩(0) = I

3
. (6.56)

Substituting the flux velocities (6.49) and (6.50) into the Fokker-Planck equation (6.6)

gives

1

4π

∂

∂t

(
1 + εN (1)

)
=− 1

4π
∇x ·

[(
p̂+ εu(1)

)(
1 + εN (1)

)]
− 1

4π
∇p ·

[
(I − p̂ p̂) ·

(
α0e

(1) + ω(1)
)
· p̂
(
1 + εN (1)

)]
. (6.57)

Equation (6.57) may be simplified by noting the rate-of-strain and vorticity tensors are

zero at leading order and the fluid is incompressible,

∂N (1)

∂t
=−∇x ·

(
p̂N (1)

)
−∇p ·

[
(I − p̂ p̂) ·

(
α0e

(1) + ω(1)
)
· p̂
]
. (6.58)
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The final term of equation (6.58) may be simplified further, to see this we use index

notation

∇p ·

[
(I − p̂ p̂) ·

(
α0e

(1) + ω(1)
)
· p̂

]
=

∂

∂p̂i

[(
δij − p̂i p̂j

) (
α0e

(1)
jk + ω

(1)
jk

)
pk

]
,

=−
(
α0e

(1)
ik + ω

(1)
ik

) ∂p̂k
∂p̂i

+ α0e
(1)
jk

∂

∂p̂i

(
p̂ip̂j p̂k

)
+

∂

∂pi

(
p̂i

[
p̂j p̂kω

(1)
jk

])
.

(6.59)

The first term in equation (6.59) is zero due to the incompressibility condition (6.12) and

also that the vorticity tensor is traceless, i.e.

(
α0e

(1)
ik + ω

(1)
ik

) ∂p̂k
∂p̂i

=
(
α0e

(1)
ik + ω

(1)
ik

)
δki, (6.60)

= α0e
(1)
ii + ω

(1)
ii , (6.61)

= α0
∂u

(1)
i

∂xi

+
1

2

(
∂u

(1)
i

∂xi

− ∂u
(1)
i

∂xi

)
, (6.62)

= 0. (6.63)

The final term is also zero, to see this we write the vorticity tensor in terms of velocity

gradients and simplify:

2p̂j p̂kωjk =
∂u

(1)
j

∂xk

p̂j p̂k −
∂u

(1)
k

∂xj

p̂j p̂k, (6.64)

=
∂u

(1)
j

∂xk

p̂j p̂k −
∂u

(1)
j

∂xk

p̂kp̂j, (6.65)

= 0. (6.66)
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Therefore equation (6.59) is given by

∇p ·

[
(I − p̂ p̂) ·

(
α0e

(1) + ω(1)
)
· p̂

]
= α0e

(1)
jk

∂

∂p̂i

(
p̂ip̂j p̂k

)
,

= α0e
(1)
jk

[
p̂ip̂jδki + p̂ip̂kδji + p̂j p̂kδii

]
, (6.67)

= α0e
(1)
jk

[
p̂j p̂k + p̂j p̂k + 3p̂j p̂k

]
= 5α0e

(1) : p̂ p̂. (6.68)

Substituting equation (6.68) into equation (6.59) gives the first order Fokker-Planck equa-

tion

∂N (1)

∂t
= −p̂ ·∇xN

(1) + 5α0p̂ p̂ : e(1)︸ ︷︷ ︸
(∗)

. (6.69)

We note the final term (∗) differs from Saintillan & Shelley [73], due to an error made

when calculating δii in equation (6.67). We find δii = 3 not 1, as we sum over all indices

in Cartesian space.

To calculate the constitutive equation for stress we must evaluate the fourth-order

moment of p̂ at leading order; to do this we note the integral is isotropic and so must

have the following form [23, 79]

Pijkl = ⟨p̂ip̂j p̂kp̂l⟩(0) = λ1δijδkl + λ2δikδjl + λ3δilδjk, (6.70)

Furthermore, since Pijkl = Pikjl = Piljk, we deduce that

λ1 = λ2 = λ3 = λ∗. (6.71)

Equation (6.70) is therefore given by

⟨p̂ip̂j p̂kp̂l⟩(0) = λ∗ (δijδkl + δikδjl + δilδjk
)
. (6.72)
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To evaluate this integral we utilise that p̂ is a unit vector and evaluate Piikl to find λ∗

⟨p̂kp̂l⟩(0) = λ∗ (δiiδkl + δikδil + δilδik) . (6.73)

Substituting for the known value for the second moment of p̂ (given in equation (6.56))

λ∗ =
1

15
. (6.74)

Using this value for λ∗ we may evaluate

e(1) :

∫
S

p̂ p̂ p̂ p̂ dp̂ =
ekl
15

(
δijδkl + δikδjl + δilδjk

)
, (6.75)

which upon applying the incompressibility condition (6.12) gives

e(1) :

∫
S

p̂ p̂ p̂ p̂ dp̂ =
2

15
e(1). (6.76)

The flow velocity (6.12) becomes

∇x · u = 0, −µ̃∇2
xu

(1) +∇xp
(1) =

α1

4π

∫
S

(
p̂ p̂− I

3

)
N (1) dp̂, (6.77)

where µ̃ = 1 + 4ϕ(2α2/15 + 2α3/3 + α4). We note equation (6.77) is identical to that

presented by Saintillan & Shelley [72, 73] by setting ϕ = 0 and δii = 3 not 1. An equation

for pressure, which is independent of velocity, may be found by taking the divergence of

equation (6.77)

−µ̃∇2
x

(
∇x · u(1)

)
+∇2

xp
(1) = ∇x · σS, (6.78)

where

σS =
α1

4π

∫
S

(
p̂ p̂− I

3

)
N (1) dp̂. (6.79)
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Applying the incompressibility condition (6.12) yields

∇2
xp

(1) = ∇x · σS. (6.80)

6.4.2 Plane wave perturbations

Consider plane wave perturbations

N (1) = Ñ(k, p̂)eik·x+st, u(1) = ũ(k)eik·x+st, p(1) = p̃(k)eik·x+st, (6.81)

where k is the wave vector and s is the growth rate.

A dispersion relation for the growth parameter s is derived by substituting the ansatz

(6.81) into equations (6.77) and (6.80), eliminating the pressure p̃ and obtaining an eigen-

value relation. By noting this eigenvalue relation is invariant under rotation we choose

k̂ = ẑ without loss of generality, after evaluating the arising surface integrals we have [73]

5iα0α1

4kµ̃

2λ̃3 − 4

3
λ̃+

(
λ̃4 − λ̃2

)
log

(
λ̃− 1

λ̃+ 1

) = 1, (6.82)

where λ̃ = −i s and k = |k|. A detailed derivation is shown in appendix E. Equation

(6.82) is a dispersion relation for the growth rate s (via λ̃) and may be solved numerically

using Newton’s method.

6.4.3 Numerical method

We use Newton’s method to solve for λ̃, and hence the growth parameter s, in equation

(6.82). Convergence of this method is not guaranteed and is dependent on the initial

guess, as shown in Figure 6.7; here each colour represents the root an initial guess will

converge to, whilst the intensity of the colour describes how quickly the method converges

to the root. To calculate the dispersion curves in Figures 6.8 and 6.9 we use a line of
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Figure 6.7: A visualisation of the convergence of Newton’s method to find the roots of
the nonlinear dispersion relation, where λ̃ = x + iy. The darker the colour the faster
the convergence, whilst each colour is a different root. Convergence for (a) k = 1/8, (b)
k = 1/4, (c) k = 3/8 and (d) k = 5/8.

initial points such that R(λ̃) ∈ [−3, 3] and I(λ̃) = −0.25.

6.4.4 Results

The long-wave behaviour of the dispersion relation may be found by expanding equation

(6.82) for |k| ≪ 1,

s3 +
α0α1

3µ̃
s2 − α0α1k

2

7µ̃
+O

(
k3
)
= 0. (6.83)
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Assuming the solution takes the form s = s0 + s2k
2 + O(k3) the long-wave solution of

equation (6.82) is

s = −α0α1

3µ̃
+

9µ̃

7α0α1

k2 +O
(
k3
)
, (6.84)

along with the trivial solution s = 0; this agrees with the numerical results

Figure 6.8 and 6.9 show the real and imaginary parts of the growth parameter s,

respectively, as a function of wave-number k for selected values of the shape parameter

α0 and volume fraction ϕ. We observe for small wave numbers the growth rate is real and

positive when α1 < 0, therefore small wave-number disturbances will grow exponentially

in suspensions of pushers. For higher wave-numbers the two branches of the growth

parameter become a complex conjugate pair with R(s) > 0 for α1 < 0, this implies

that any disturbances will grow and also oscillate, when the particles in suspension are

pushers. Pushers are cells which are pushed from behind and include most flagellated

bacteria, e.g. Escherichia coli and Bacillus subtilis [50]. Once the real part of the growth

parameter becomes zero, the dynamics are no longer described by an eigenfunction, and

any disturbances become dampened for wave-numbers larger than this [73]. This is the

behaviour observed by Saintillan & Shelley [72, 73]

As the volume fraction is increased the growth rate decreases for corresponding wave-

numbers, but will oscillate more as the imaginary part of s increases. We observe that the

plot of the dispersion relation takes the same form, becoming dampened as ϕ increases.

This means a smaller range of wave-numbers will become unstable for each particle size.

6.5 Summary

In this chapter we have extended the work of Saintillan & Shelley [72, 73] to study how

the inclusion of the stress between elongated particles and the solvent fluid affects the

linear stability of aligned and isotropic suspensions of elongated particles. Similarly to
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1Figure 6.8: The real part of the dispersion relation for changing volume fraction ϕ =

0, 0.05, 0.1, where the arrow shows the direction of increase, for fixed shape parameters
(a) α0 = 0.75, (b) α0 = 0.85, (c) α0 = 0.95.
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Saintillan & Shelley [72, 73] we adopt the Fokker-Planck equation to model the particle

distribution function, which describes the probability a particle at point x is directed in

direction p̂, using phenomenological arguments for the translational and rotational flux

velocities. We couple this equation to a pair of modified Stokes equations, where we utilise

the constitutive relation for stress proposed by Pedley & Kessler [65]. This relation for

stress consists of three components, the isotropic and active components were included

in the model adopted by Saintillan & Shelley, however they neglect the anisotropic stress

generated due to the interactions between elongated particles and the surrounding fluid.

The active component arises by considering the addition to the bulk stress caused by

force-free Stokesian swimmers. This gives rise to the active stresslet strength, α1, which

is positive when the swimmer is a ‘puller’ (cells which are pulled forward, e.g. the biflag-

ellated algae Chlamydomonas [50]) and negative when it is a ‘pusher’ such as the bacteria

Escherichia coli or Bacillus subtilis [50].

We examined the linear stability of the active suspension in two special cases; the

first when the particles are uniformly distributed and perfectly aligned, and the second

when the particles are completely randomly orientated (an isotropic suspension). We

find, in both cases, the results of Saintillan & Shelley [72, 73] are a limit of the model

we use, corresponding to zero volume fraction in our model (subject to an error in their

calculation).

To investigate the linear stability of an aligned suspension we first found a base state

when the particle distribution function is a delta function and the surrounding fluid is

stationary. We showed in chapter 5 this corresponds to Ericksen’s model for a transversely

isotropic fluid. We then assume the perturbation to the base state is of the form of a

plane wave, and note the first order velocity is only non-zero when the wave-vector lies

in the (ẑ,a′)-plane. Here ẑ is the direction of the base state alignment whilst a′ is the

alignment of the first order perturbation. This allows us to find the dispersion relation

in terms of the wave-angle θ and wave-number k, where the wave-vector is given by

k = k(cos θẑ + sin θa′/a′). Using the dispersion relation we identify perturbations are
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unstable for suspensions of both pusher and puller particles. Similarly to Saintillan &

Shelley [72, 73] we predict an increase in growth rate with wave-number, so the most

unstable wave-number is the largest. However, it should be expected diffusion would

dampen these high wave-number fluctuations if it was included. When the extra stress

between elongated particles and the fluid is included, we find the condition upon when

instability occurs remains unchanged, however we do predict smaller growth rates for

corresponding wave-number as the volume fraction of particles is increased.

When the suspension is initially randomly orientated, termed isotropic, the base state

corresponds to a constant particle distribution function and zero fluid velocity. This leads

to isotropic integrals for the first, second and fourth moments of the distribution function,

which may be evaluated analytically. Hence, by following a similar method to Saintillan &

Shelley [72, 73] we ascertain a dispersion relation for the growth rate. We find, for a sus-

pension of pushers, low wave number perturbations (k ∈ [0, 0.15]) grow exponentially with

no oscillations, whilst medium wave-number (k ∈ [0.15, 0.6]) perturbations oscillate and

grow more slowly. Once the wave-number is large enough perturbations are dampened.

The inclusion of the extra stress due to interactions between elongated particles and the

surrounding fluid simply decreases the growth rate for corresponding wave-numbers as the

volume fraction of particles is increased. This leads to a smaller range of wave-numbers

when the perturbation is unstable.

In this chapter we adopt the governing equations of Simha and Ramaswamy [76],

where we include the transversely-isotropic effects identified by Batchelor [6]. We follow

the analysis of Saintillan and Shelley [73] to determine the linear stability of both nearly

aligned and isotropic suspensions of particles. The linear stability analysis we carry

out has not been completed before, and therefore the understanding of the effect of the

anisotropic parameters µ2 and µ3 on the stability characteristics of the fluid is novel.

However, we note in the case of the isotropic suspension the anisotropic viscosities may

be combined with the isotropic component of viscosity µ, and therefore the subsequent

linear stability analysis does not differ from that performed by Saintillan and Shelley [73].
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In future work we will consider the numerical solution to the full nonlinear model.

This will allow the extra nonlinear terms in the stress tensor to be expressed as well

as allowing us to introduce a more realistic confined geometry. The model we adopt is

also only valid when direct interactions between the particles are negligible, and occur

through the fluid velocity only. We would like to incorporate direct interactions between

the particles that allow us to study a more concentrated suspension.

133



CHAPTER 7

CONCLUSIONS

In this thesis we have discussed both transversely isotropic passive and active fluids, with

a particular focus on suspensions of elongated particles. In this chapter we summarise our

results, discuss the impact our work has on current research and real-world applications,

concluding with some further work which could be carried out.

In chapters 2 and 5 we present models for transversely isotropic and active fluids

respectively, identifying the fundamental connection between these two models in chapter

5. Throughout we have applied our findings to suspensions of elongated particles/fibres,

such as solutions of DNA and sperm, highlighting the importance of understanding the

behaviour of the models we have adopted. In chapters 3 and 4 we examined the linear

stability of the Taylor-Couette and Rayleigh-Bénard flow of a transversely isotropic fluid

respectively; here we interpreted our results in the framework of passive suspensions

of fibres such as DNA and other large biomolecules in suspension. In chapter 6 we

investigated the linear stability of aligned and isotropic suspensions of active elongated

particles; this has applications to self-propelling bacteria, and other micro-organisms,

which are are known to exhibit collective behaviour.
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7.1 Summary of findings

In chapter 2 we introduce Ericksen’s model for a transversely isotropic fluid, this is the

simplest model of a transversely isotropic fluid where the constitutive relation for stress

is linear in strain rate and has all the required invariances. This model allows us to treat

suspensions of elongated particles/fibres as a continuum with an evolving preferred di-

rection (a), through a modified stress tensor incorporating four viscosity-like parameters.

We show the parameters may be interpreted physically as the isotropic component of

viscosity modified by the volume fraction of fibres (µ∗), an active component (µ∗
1) and

also anisotropic extensional (µ∗
2) and shear (µ∗

3) viscosities. Due to uncertainty in the pa-

rameter values we have examined a large range of parameters when presenting our results

in chapters 3 and 4.

In chapter 3 we investigated the linear Taylor-Couette stability of a transversely

isotropic fluid. This was motivated by applications to flow linear dichroism, an exper-

imental technique used to determine the structure of biological molecules, particularly

useful for molecules which have a high aspect ratio.

We adopted the model proposed in chapter 2 and closed it with appropriate boundary

conditions; these conditions were the inner cylinder rotates whilst the outer remains fixed.

Non-dimensionalising the model led to the introduction of five non-dimensional parameter

groups, these were the gap ratio of the inner to outer cylinder radii η; a non-dimensional

rotational velocity of the inner cylinder Ω, equivalent to a Reynolds number; a ratio of the

tension in the fibres to the transverse shear viscosity µ1; and the ratios of the extensional

and shear viscosities in the fibre direction to the transverse shear viscosity, µ2 and µ3

respectively.

After non-dimensionalising the model, we found a steady state where the velocity

profile differs from the Newtonian case only by a constant factor, due to the presence of

fibres in the solution, and the fibres are aligned in the azimuthal direction. Determining

the stability of this regime is important to flow linear dichroism as a trade-off exists; as

the flow velocity is increased, the fibres become more aligned due to shear and hence
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flow linear dichroism signal will increase, however if the velocity becomes too high then

instability will occur, and all signal will be destroyed.

Drawing parallels with existing research in to the linear Taylor-Couette stability of

fluids [18, 19, 68, 85], we assumed the first instability to occur would be axisymmetric.

This corresponds to the appearance of ‘fluid doughnuts ’ or ‘fluid-rolls ’. Assuming this

form for the perturbation, we found the first-order stability equations and assumed the

solution could be expressed as normal modes; here a growth parameter (s) and wave-

number (k) were introduced. The growth parameter indicates whether a perturbation

will grow or decay exponentially in time, whilst the wave-number is related to the size

of the fluid doughnuts that appear. After substituting the normal mode solutions into

the first order equations it was clear the fibre direction was unperturbed, and the tension

in the fibres µ1 played no role in determining the stability of the perturbation (at this

order). It is also interesting to note the enhancement to the extensional viscosity versus

that perpendicular to the fibres (µ2 + 4µ3) appears in the governing equation for the

radial velocity, while the shear viscosity of the fluid in the fibre direction appears in the

governing equation for the azimuthal velocity.

Solving the resulting eigenvalue problem numerically, we determined the critical wave

and Taylor numbers for a wide range of η, µ2 and µ3. The Taylor number relates the

importance of inertial to viscous effects, and is proportional to angular velocity [46].

Through comparison of the critical values for different combinations of parameters η, µ2

and µ3, we identify some key results. The parameter µ3, which describes the ratio of

the shear viscosity in the fibre direction to the transverse shear viscosity, is much more

important in determining the stability of the flow than µ2, which describes the ratio of

the extensional viscosity to the transverse shear viscosity. While our results agree with

those of Wan and Lin [88] in the effect of µ2, we find that µ3 has a more significant effect

and therefore must be included.

For values of the gap ratio less than 0.8, i.e. for a large gap width (relative to the

outer cylinder’s radius) between the cylinders, the critical angular velocity of the inner
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cylinder is a decreasing function of the gap ratio. However for larger values of the gap

ratio, i.e. a narrow gap width, the critical angular velocity increases as viscous effects

dominate over the inertial effects giving rise to instability; more energy is then needed for

the perturbation to become unstable.

These results have a direct impact on flow linear dichroism spectroscopy, in a Couette

device. By considering the rheological changes induced by the presence of fibres, we

showed that the critical angular velocity of the inner cylinder at the onset of instability is

much higher than previously thought. Hence the maximum shear rate is also increased.

Exploiting this understanding may enable stronger signals to be recovered from the use

of flow linear dichroism Couette devices across a range of fibre types. Relating our results

on the critical angular velocity to the strength of shear-induced alignment allows us to

propose the dimensions of an optimal device design, related to the mechanical properties

of the fibres. An optimal device design exists due to the trade-off between higher shear-

induced alignment of fibres in a narrow gap, and higher amount of sample to interact with

incident light in a wide gap.

In chapter 4 we investigate the linear Rayleigh-Bénard stability of a transversely

isotropic fluid. This is a canonical example in traditional fluid mechanics for the stability

analysis of viscous flows, investigation into this topic was motivated by the appearance

of convection currents in fibrous materials, as well as temperature variations in Couette

devices.

We first extended the equations proposed in chapter 2 to include variable density

and temperature. To do this we made use of the Boussinesq approximation, where the

variable density is modelled as a linear function of temperature. The model is closed with

appropriate boundary conditions for velocity and temperature, consisting of two possible

types of boundary: rigid and free.

By non-dimensionalising the model we formed five non-dimensional parameter groups.

These are the Prandtl (P) and Rayleigh numbers (R), as well as the three viscosity-like

parameters µ1, µ2 and µ3 identified in the Taylor-Couette analysis. The Prandtl number
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relates the kinematic viscosity of the fluid to its thermal conductivity, while the Rayleigh

number relates the stabilising effects of the molecular diffusion of momentum to the

destabilising effects of buoyancy.

We found a steady state exists when the fluid is stationary, the preferred direction

of the fluid is constant and both density and temperature vary linearly with height z.

Perturbing this state, and assuming the solution of the resulting first order equations may

be represented by normal modes, the kinematic equation decouples from the governing

equations for velocity and temperature, and so may be solved for separately, although it

does not affect the stability problem.

The resulting system is solved for different combinations of the steady state preferred

direction (θ(0)), µ2 and µ3. The parameter µ3 is again more important in determining the

stability of the flow than µ2. The impact changes in θ(0) have on the stability of the steady

state velocity are dependent on both the boundary type and the anisotropic viscosities.

For values of µ3 ≳ 100 the Rayleigh number’s dependence on the steady state preferred

direction is approximately cos 4θ(0). The amplitude of these fluctuations increases with

µ2, and while the dependence of the Rayleigh number on θ(0) occurs for all combinations

of boundaries, oscillations are greatest when both boundaries are free. Increasing the

anisotropic shear viscosity does not have a large effect on the dependence of the Rayleigh

number on the cos 4θ(0) mode, but does dampen higher modes that exist for small values

of µ3.

From our analysis we are also able to predict how the size of the convection cells

changes with the non-dimensional parameters, this relates to changes in the dimensionless

wave-number k. Fluctuations to the wave-number with θ(0) only occur when µ2 ̸= 0, with

the dependence on θ(0) being approximately cos 4θ(0). The amplitude of these fluctuations

increases with µ2, but is dampened much more quickly by increases in µ3. For large values

of µ3 the wave-number is approximately the same as the Newtonian value, with little to

no dependence on θ(0).

We are therefore able to conclude the inclusion of fibrous material in a solvent fluid
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changes the stability characteristics of the Rayleigh-Bénard problem significantly. The

introduction of a preferred direction in the fluid changes both the onset of stability and

the size of convection cells which occur, therefore the rheological effects induced by the

presence of fibres must be taken into account.

In chapter 5 we introduce a model for active particle suspensions, originally proposed

by Pedley & Kessler [65]. These suspensions may represent suspensions of self-propelling

bacteria or other micro-organisms which exhibit phenomena such as collective behaviour

and superfluidity. There are also technological applications of this type of suspension,

such as collections of artificial swimmers.

Pedley & Kessler’s [65] original application of their model was to near-spherical algae,

in this case it is reasonable to assume the stress generated due to interactions between the

fluid and particles will be small, justifying it’s neglect [65]. However, this near-spherical

limit of the model has also been used to give insight into the dynamics of elongated rod-

like bacterial suspensions [72, 73, 82]. The stress due to interactions between elongated

particles and fluid has been shown to have a significant effect on the system’s emergent

properties and flow stability within the transversely isotropic fluid research literature,

as highlighted in chapters 2-4 and references [22, 23, 29]; these terms therefore seem

likely to have implication for earlier analysis of the critical concentration threshold and

wavelengths of emergent patterns in active suspensions [71, 73, 82, 83].

When the suspension is of spatially-uniform volume fraction and has perfect but per-

haps spatially varying alignment, the active suspension model is equivalent to Ericksen’s

model of a transversely isotropic fluid. This highlights the important of the stress due to

interactions between the fluid and elongated particles, commonly neglected in the current

literature.

The transversely isotropic fluid of Ericksen may be used to model actively motile

‘fibres’ by a simple modification to the fibre evolution equation. Linking these two frame-

works provides a basis to extend Ericksen’s model to include effects such as dispersion

about the preferred direction. Our modification to Ericksen’s model can be considered
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as the simplest describing an orientated active suspension and including transversely

isotropic effects; more refined approaches take into account fibre-dispersion formulated

via the Q-tensor which is defined as the nematic moment ⟨p̂ p̂− I/3⟩ [12, 90].

In chapter 6 we adopt the governing equations proposed in chapter 5, for an active fluid,

to examine the linear stability of isotropic and nearly-aligned suspensions of elongated

particles. Studying these special cases provides preliminary information on the behaviour

of full nonlinear simulations, and hence the underlying biological application.

To consider the linear stability of an aligned suspension we split the Fokker-Planck

equation, governing the particle distribution, into two equations for the concentration

and director fields of the particles. The governing equations, for an aligned suspension

of active particles, therefore consisted of modified Navier-Stokes equations for the fluid

velocity, where the constitutive relation for stress includes the isotropic, active, and fluid-

particle interaction terms; coupled with equations for the concentration and director fields.

The base state of these equations is given when the particles are perfectly aligned in the ẑ

direction, the fluid is motionless, pressure is constant, and the dimensionless concentration

c = 1. The stability of this steady state is examined by considering a perturbation to

each of the independent variables.

Assuming the solution of the first order equations takes the form of plane waves, and

identifying that the velocity is only non-zero if the wave-vector lies in the (a, ẑ)-plane,

we derive a dispersion relation for the growth rate s. This dispersion relation is identical

to that of Saintillan & Shelley [73] when the parameter representing volume fraction

of particles is set to zero in our model; this is equivalent to setting the extra particle

stress to zero. The dispersion relation implies the suspension is unstable for both pusher

and puller particles, this agrees with the findings of Saintillan & Shelley [73]. However,

the extra stress does lead to smaller growth rates for corresponding wave-numbers as the

volume fraction is increased, although the condition upon when instability occurs remains

unchanged.

Next we considered the linear stability of a randomly-orientated (isotropic) suspension
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of particles. The governing equations consisted of the full Fokker-Planck equation, coupled

to the Cauchy momentum equations. A base state of these equations exists when the fluid

is motionless and the non-dimensional particle distribution function is given by N = 1/4π.

Perturbing the base state and assuming the solution may be expressed in terms of plane

waves, we were able to derive a dispersion relation, which we solved using Newton’s

method.

We found for a suspension of pushers, low wave number perturbations grow exponen-

tially with no oscillations, whilst medium wave-number perturbation oscillate and grow

more slowly. Once the wave-number is large enough perturbations are dampened. The

inclusion of the extra stress due to interactions between elongated particles and the sur-

rounding fluid decreases the growth rate for corresponding wave-numbers as the volume

fraction of particles is increased. This also leads to a smaller range of wave-numbers for

which a perturbation is unstable.

For both aligned and isotropic suspensions, we have only considered when the sus-

pension is dilute, as the parameter values are known in this case. It is likely that as the

concentration of particles is increased the inclusion of the extra stress term will become

more important.

7.2 Future work

To extend our analysis of the linear Taylor-Couette stability of a transversely isotropic

fluid, we will consider the instability of a non-symmetric perturbation to the steady state,

in addition to incorporating the dispersion of fibres about the average direction. We also

aim to include the effect of entanglement between individual fibres and establish how

this may change the stability of the flow. Studying the entanglement between fibres has

applications to pathogen detection in flow linear dichroism, where proteins which bind

to pathogens in a sample are attached to fibres, changing the degree of alignment of the

fibres. The stability analysis undertaken to examine the linear Rayleigh-Bénard stability
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of a transversely isotropic fluid may be extended similarly, as well as considering the

full three-dimensional problem in a closed box. Incorporating active behaviour is also of

interest.

We will examine how the inclusion of the anisotropic viscosities affects the solution of

the full nonlinear model for an active suspensions of elongated particles. This will allow

the extra nonlinear terms in the stress tensor to be expressed as well as allowing us to

investigate different flow-regimes and introduce a more realistic confined geometry. In

formulating the model for an active suspension, we have neglected interesting effects such

as gravitational fields and temperature variations, which we aim to include in future.

The model we adopt is also only valid when direct interactions between the particles

are negligible, and interactions occur through the fluid velocity only. We would like to

incorporate these direct interactions between the particles to allow us to study a more

concentrated suspension. One of the key improvements we aim to make to both the

transversely isotropic and active models is the identification of parameter values in a

semi-dilute regime, this will allow more physically realistic results to be calculated using

the continuum model we have described.

Transversely isotropic fluids and active suspensions are both ubiquitous within indus-

trial and biological contexts, it is therefore important to gain a better understanding of

the underlying mechanics of these fascinating states of matter. We hope the research

carried out in this thesis provides new insight into this interesting and captivating area

of research.
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APPENDIX A

BOUSSINESQ APPROXIMATION

This appendix follows Spiegel & Veronis [81] to determine the conditions under which a

compressible fluid may be represented using the Boussinesq approximation.

A.1 Equations

The equations governing the thermal convection of a compressible Newtonian fluid are

given by conservation of mass, momentum and energy statements:

∂ρ∗

∂t∗
+ (u∗ ·∇∗

x) ρ
∗ + ρ∗ (∇∗

x · u∗) = 0, (A.1)

∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗ = − 1

ρ∗
∇∗

xp
∗ − g∗ẑ +

µ̄∗

ρ∗
∇∗2

x u∗

+
µ̄∗

3 ρ∗
∇∗

x (∇∗
x · u∗) , (A.2)

C∗
V

[
∂T ∗

∂t∗
+ (u∗ ·∇∗

x)T
∗
]
+

p∗

ρ∗
(∇∗

x · u∗) =
κ∗
C

ρ∗
∇∗2

x T ∗ +
µ̄∗

ρ∗
∇∗

x ·
(
(u∗ ·∇∗

x)u
∗)

− 2µ̄∗

3ρ∗
(∇∗

x · u∗)2 . (A.3)

Here ρ∗ is the variable density, t∗ time, u∗ velocity, ∇∗
x is the gradient operator in x∗, p∗

pressure, g∗ acceleration due to gravity, ẑ the unit vector in the z-direction, µ̄∗ dynamic

shear viscosity (assumed constant), C∗
V the specific heat capacity at constant volume, T ∗

temperature, κ∗
C the (constant) thermal conductivity and we neglect the radiation source
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and viscous dissipation.

The equation of state for a homogeneous system is of the form

ρ∗ = ρ∗(p∗, T ∗), (A.4)

i.e. the variable density relies on the pressure and temperature of the fluid only.

Let f ∗ represent any one of the state variables: density (ρ∗), temperature (T ∗), or

pressure (p∗). These may be expressed in terms of the constant space average f ∗
0 of f ∗,

the variation in the absence of motion f̄ ∗, and the fluctuation resulting from motion f̃ ∗,

i.e.

f(x∗, y∗, z∗, t∗)∗ = f ∗
0 + f̄ ∗(z∗) + f̃ ∗(x∗, y∗, z∗, t∗). (A.5)

We assume f ∗
0 and f̄ ∗ to be independent of t∗ as the boundary conditions do not depend

on time. We may also introduce the scale heights,

H̄∗
f =

∣∣∣∣∣ 1f ∗
0

df̄ ∗

dz∗

∣∣∣∣∣
−1

. (A.6)

We apply the basic approximation that the fluid is confined to a layer whose thickness,

h∗, which is much less than the smallest scale height, H̄∗
f . Therefore, throughout the fluid

we have

h∗ ≪ H̄∗. (A.7)

where H̄∗ = (H̄∗
f )min. In particular this condition implies

h∗

H̄∗
ρ

≪ 1. (A.8)

Integrating equation (A.8) across the level of minimum to the level of maximum density
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within the layer gives

∆ρ∗0
ρ∗0

≡ ε̄ ≪ 1, (A.9)

where ∆ρ∗0 is the maximum variation of ρ∗0 accross the layer.

We Taylor expand equation (A.4) for ρ∗ about p∗ = p∗0 and T ∗ = T ∗
0 to give

ρ∗ =ρ∗ (ρ∗0, T
∗
0 ) + [p∗ − p∗0]

∂ρ∗

∂p∗
(ρ∗0, T

∗
0 ) + [T ∗ − T ∗

0 ]
∂ρ∗

∂T ∗ (ρ
∗
0, T

∗
0 )

+
1

2

{
[p∗ − p∗0]

2 ∂
2ρ∗

∂p∗2
(ρ∗0, T

∗
0 ) + 2 [p∗ − p∗0] [T

∗ − T ∗
0 ]

∂2ρ∗

∂p∗∂T ∗ (ρ
∗
0, T

∗
0 )

+ [T ∗ − T ∗
0 ]

∂2ρ∗

∂T ∗2 (ρ
∗
0, T

∗
0 ) + · · ·

} (A.10)

Now denoting

ρ∗0 = ρ∗ (ρ∗0, T
∗
0 ) , K∗

0 =
1

ρ∗0

∂ρ∗

∂p∗
(ρ∗0, T

∗
0 ) , a∗0 = − 1

ρ∗0

∂ρ∗

∂T ∗ (ρ
∗
0, T

∗
0 ) , (A.11)

and

(
1

ρ∗
∂2ρ∗

∂p∗2

)
0

=
1

ρ∗0

∂2ρ∗

∂p∗2
(ρ∗0, T

∗
0 ) etc., (A.12)

equation (A.10) becomes

ρ∗ =ρ∗0

{
1 +K∗

0 (p
∗ − p∗0)− a∗0 (T

∗ − T ∗
0 ) +

1

2

(
1

ρ∗
∂2ρ∗

∂p∗2

)
0

(p∗ − p∗0)
2

+

(
1

ρ∗
∂2ρ∗

∂p∗∂T ∗

)
0

(p∗ − p∗0) (T
∗ − T ∗

0 ) +
1

2

(
1

ρ∗
∂2ρ∗

∂T ∗2

)
0

(T ∗ − T ∗
0 )

2 + · · ·

}
.

(A.13)

If the fluid is an ideal gas, i.e. we neglect the (usually) small corrections required by
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variation in mean molecular weight and by the effect of the radiation pressure, then

ρ∗ =
p∗

R∗ T ∗ , (A.14)

where R∗ is the ideal gas constant. Under this assumption, we have

(
1

ρ∗
∂ρ∗

∂p∗

)
0

=

(
R∗T ∗

0

p∗0

)(
1

R∗T ∗
0

)
=

1

p∗0
, (A.15)

−
(

1

ρ∗
∂ρ∗

∂T ∗

)
0

=

(
R∗T ∗

0

p∗0

)(
p∗

R∗T ∗2
0

)
=

1

T ∗
0

, (A.16)(
1

ρ∗
∂2ρ∗

∂p∗2

)
0

= 0, (A.17)(
1
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∂T ∗2

)
0

=

(
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)(
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1
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, (A.18)(
1

ρ∗
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)
0
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(
R∗T ∗
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p∗0

)(
− 1

R∗T ∗2
0
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= − 1

p∗0T
∗
0

. (A.19)

Substituting these expressions in to equation (A.13) gives

ρ∗ = ρ∗0

[
1− T ∗ − T ∗

0

T ∗
0

+
p∗ − p∗0

p∗0
+

(
T ∗ − T ∗

0

T ∗
0

)2

+

(
p∗ − p∗0

p∗0

)(
T ∗ − T ∗

0

T ∗
0

)
+ · · ·

]
.

(A.20)

From equation (A.7) we identify

(
T ∗ − T ∗

0

T ∗
0

)2

= O
(
ε̄2
)
,

(
p∗ − p∗0

p∗0

)(
T ∗ − T ∗

0

T ∗
0

)
= O

(
ε̄2
)
. (A.21)

Hence,

ρ∗ − ρ∗0
ρ∗0

= −T ∗ − T ∗
0

T ∗
0

+
p∗ − p∗0

p∗0
, (A.22)
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to O(ε̄). We may therefore write

ρ̄∗ = ρ∗0
(
K∗

0 p̄
∗ − α∗T̄ ∗) , (A.23)

ρ̃∗ = ρ∗0

(
K∗

0 p̃
∗ − α∗T̃ ∗

)
, (A.24)

where K∗
0 and α∗ are the adverse pressure and temperature gradients respectively.

A.2 Equations of motion

In the absence of motion equation (A.2) becomes

dp̄∗

dz∗
= −gρ∗0 − gρ̄∗, (A.25)

where we have the relation (A.5). Now accounting for an infinitesimal velocity (at most

O(ε̄)) and using equation (A.25)

(ρ∗0 + ρ̄∗ + ρ̃∗)

(
∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗
)

= −∇∗
xp̃

∗ − g∗ρ̃∗ẑ +
µ∗

ρ∗0
(ρ∗0 + ρ̄∗ + ρ̃∗)∇∗2

x u

+
µ∗

3ρ∗0
(ρ∗0 + ρ̄∗ + ρ̃∗)∇∗

x (∇∗
x · u∗) .

(A.26)

This may be rewritten using the assumption (A.9),

ρ∗0

(
1 +

ε̄ρ̄∗

∆ρ̄∗
+

ε̄ρ̃∗

∆ρ̄∗

)(
∂u∗

∂t
+ (u∗ ·∇∗

x)u
∗
)

= −∇∗
xp̃

∗ − g∗ρ̃∗ẑ

+
µ∗

ρ∗0

(
1 +

ε̄ρ̄∗

∆ρ̄∗
+

ε̄ρ̃∗

∆ρ̄∗

)
∇∗2

x u∗ +
µ∗

3ρ∗0

(
1 +

ε̄ρ̄∗

∆ρ̄∗
+

ε̄ρ̃∗

∆ρ̄∗

)
∇∗

x (∇∗
x · u∗)

(A.27)
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Using equation (A.5) we may rewrite the conservation of mass equation as

(
1 +

ρ̄∗

ρ∗0
+

ρ̃∗

ρ∗0

)
(∇∗

x · u∗) = −

[
∂ρ̃∗

∂t∗
+ (u∗ ·∇∗

x)

(
ρ̄∗

ρ∗0
+

ρ̃∗

ρ∗0

)]
. (A.28)

The assumption (A.9) gives

∇∗
x · u∗ +

(
ε̄
ρ̄∗

∆ρ̄∗
+ ε̄

ρ̃∗

ρ∗0

)
(∇∗

x · u∗) = −
(

∂

∂t∗
+ u∗ ·∇∗

x

)(
ε̄
ρ̄∗

∆ρ̄∗
+ ε̄

ρ̃∗

ρ∗0

)
, (A.29)

which upon assuming the velocity perturbations occur at most O(ε̄) gives

∇∗
x · u∗ = −

(
∂

∂t∗
+ u∗ ·∇∗

x

)(
ε̄
ρ̄∗

∆ρ̄∗
+ ε̄

ρ̃∗

ρ∗0

)
+O

(
ε̄2
)
. (A.30)

Hence, the conservation of mass and momentum equations (A.30) and (A.27) may be

rewritten (upto O(ε̄)) as

∇∗
x · u∗ = 0, (A.31)

∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗ = − 1

ρ∗0
∇∗

xp̃
∗ − ε̄

g∗ ρ̃∗

∆ρ̄∗
ẑ +

µ∗

ρ∗0
∇∗2

x u∗. (A.32)

In equation (A.32) we have retained the ε̄g∗ρ̃∗/∆ρ̄∗ẑ term, as for convection problems

we must assume the acceleration due to gravity is much larger than the characteristic

acceleration; therefore this term may not be small, even though it is multiplied by ε̄. The

z∗-component of equation (A.32) is given by

∂w∗

∂t∗
+ (u∗ ·∇∗

x)w = − 1

ρ∗0

∂p̃∗

∂z
− ε̄

g∗ρ̃∗

∆ρ̄∗
+

µ∗

ρ∗0
∇∗2

x w∗, (A.33)

where w∗ is the z∗-component of velocity. Using the relation for the fluctuation in density

(A.24) gives

∂w∗

∂t∗
+ (u∗ ·∇∗

x)w
∗ = − 1

ρ∗0

(
∂p̃∗

∂z∗
+

1

H∗ p̃
∗
)
+

g∗T̃ ∗

T ∗
0

+
µ∗

ρ∗0
∇∗2

x w∗, (A.34)
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where

H∗ =
p∗0
gρ∗0

. (A.35)

The quantity H∗ is the thickness of a layer with uniform density and pressure varying

from p∗0 at the bottom to zero at the top. Using the conservation of momentum equation

(A.25) for a motionless fluid

H∗
(
dp̄∗

dz∗
+ g∗ρ̄∗

)
= −p∗0, (A.36)

H∗ +
ρ̄∗p∗0

ρ∗0
dp̄∗

dz

= −H∗
p , (A.37)

⇒ H∗ = −H∗
p +O (ε) . (A.38)

Now, since

∂p̃∗

∂z∗
≥ p̃∗

h∗ , (A.39)

this implies p̃∗/H∗ is negligible compared to
∂p̃∗

∂z∗
as h∗ ≪ H∗. Therefore equation (A.32)

becomes

∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗ = − 1

ρ∗0
∇∗

xp̃
∗ + g∗α∗T̃ ∗ẑ +

µ∗

ρ∗0
∇∗2

x u∗. (A.40)

A direct consequence of the contribution of p̃∗ being small compared to that of the tem-

perature fluctuation T̃ ∗ is that we can rewrite equation (A.24) as

ρ̃∗

ρ∗0
= − T̃ ∗

T ∗
0

= −α∗T̃ ∗. (A.41)
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A.3 Heat equation

In the absence of motion, the heat equation (A.3) becomes

kC∇∗2
x T̄ ∗ = 0. (A.42)

The equation for the temperature fluctuation is therefore given by

ρ∗0C
∗
V

(
∂T̃ ∗

∂t
+ (u∗ ·∇∗

x)T

)
+ p∗ (∇∗

x · u∗) = kC∇∗2
x T̃ ∗. (A.43)

The term p∗(∇∗
x · u∗) is retained here as it is of the same order as the other terms in the

equation. This may be observed by noting p̄∗/p∗0 = O(h/H) and
∣∣p̃∗/p∗0∣∣ = O(∆p̄∗/p∗0).

Hence p = p∗0 +O(h/H).

It is possible to simplify equation (A.43) by making the following steps. Multiply

equation (A.30) by p∗ and noting δρ̄∗ = ερ∗0, to give

p∗∇∗
x · u∗ = −p∗0

(
∂

∂t
+ u∗ ·∇∗

x

)(
ρ∗

ρ∗0
+

ρ̃∗

ρ∗0

)
+O

(
h∗

H∗

)
, (A.44)

where we have used p∗ = p∗0 + O(h∗/H∗). Substituting for ρ̄∗ from equation (A.23) and

ρ̃∗ from equation (A.41) allows us to rewrite equation as

p∗∇∗
x · u∗ = p∗0

(
∂

∂t
+ u∗ ·∇∗

x

)(
T̄ ∗ + T̃ ∗

T ∗
0

− p̄∗

p∗0

)
+O

(
h∗

H∗

)
. (A.45)

Now using equation (A.25)

(
∂

∂t
+ u∗ ·∇∗

x

)
p̄∗

p∗0
=

w∗

p∗0

dp̄∗

dz
= −w∗ g∗ ρ∗0

p∗0
+O(h∗/H∗), (A.46)

where we have used w∗ g∗ ρ̄∗/p∗0 = O(h∗/H∗). Therefore equation (A.44) becomes

p∗∇∗
x · u∗ = p∗0

(
∂

∂t∗
+ u∗ ·∇∗

x

)(
T̄ ∗ + T̃ ∗

T ∗
0

)
+ w∗g∗ρ∗0 +O

(
h∗

H∗

)
. (A.47)
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Equation (A.43) may therefore be rewritten as

ρ∗0C
∗
p

(
∂T̃ ∗

∂t∗
+ u∗ ·∇∗

xT
∗

)
+ w∗g∗ρ∗0 = k∗∇∗2

x T̃ ∗, (A.48)

where C∗
p = C∗

V + p∗0/(ρ
∗
0T

∗
0 ) is the specific heat capacity at constant pressure. This

equation may be simplified by neglecting the nonlinear terms to give

(
∂

∂t∗
+ u∗ ·∇∗

x

)
T̃ ∗ + w∗

(
dT̄ ∗

dz∗
+

g∗

C∗
p

)
= K∗∇∗2

x T̃ ∗, (A.49)

where −g∗/C∗
p is the adiabatic gradient and

K∗ =
k∗
C

ρ∗0C
∗
p

, (A.50)

is the thermal diffusivity.

A.4 Condensed form

The conservation of mass equation is already in the simplest form, i.e.

∇∗
x · u∗ = 0. (A.51)

However we aim to write more condensed forms of the conservation of momentum and

conservation of energy equations. We may write an equation for the density as

ρ∗ = ρ∗0
(
1− α∗ (T ∗ − T ∗

0 )
)
, (A.52)

where we have combined together equations (A.23) and (A.41) and neglected terms of

O(h∗/H∗) (i.e. K∗
0 p̄

∗ and K∗
0 p̃

∗). This allows us to write the conservation of momentum
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equation as

∂u∗

∂t∗
+ (u∗ ·∇∗

x)u
∗ = − 1

ρ∗0
∇∗

xp
∗ +

µ∗

ρ∗0
∇∗2

x u∗ − ρ∗

ρ∗0
g∗ẑ, (A.53)

where ρ∗ is defined in equation (A.52). Now (assuming the adiabatic gradient is small)

the conservation of energy equation is given by

∂T ∗

∂t∗
+ (u∗ ·∇∗

x)T
∗ = K∗∇∗2

x T ∗. (A.54)
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APPENDIX B

ELIMINATING PRESSURE FROM THE
CONSERVATION OF MOMENTUM EQUATION

FOR THE TRANSVERSELY ISOTROPIC
RAYLEIGH-BÉNARD PROBLEM

To eliminate pressure from the momentum equation (4.44), we apply the following steps

(in three-dimensions). Apply the operator

ϵijk
∂

∂xj

(B.1)

to the k-th component of equation (4.44), where ϵijk is the Levi-Civita symbol or alter-

nating tensor, to give

∂

∂t

(
ϵijk

∂u
(1)
k

∂xj

)
=

∂

∂xa

(
ϵijk

∂σ
(1)
ka

∂xj

)
− gd3

κ2
ϵijk

∂ρ(1)

∂xj

ẑk. (B.2)

Applying the curl operator again gives

∂

∂t

(
ϵijkϵklm

∂2u
(1)
m

∂xj∂xl

)
=

∂

∂xa

(
ϵijkϵklm

∂2σ
(1)
ma

∂xj∂xl

)
− gd3

κ2
ϵijkϵklm

∂2ρ(1)

∂xj∂xl

ẑm. (B.3)

Making use of the identity

ϵijkϵklm = δilδjm − δimδjl, (B.4)
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equation (B.3) may be rewritten

∂

∂t

 ∂2u
(1)
j

∂xj∂xi

− ∂2u
(1)
i

∂xj∂xj

 =
∂

∂xa

(
∂2σja

∂xi∂xj

− ∂2σia

∂xj∂xj

)
− gd3

κ2

(
∂2ρ

∂xj∂xi

ẑj −
∂2ρ

∂xj∂xj

ẑi

)
,

(B.5)

which upon applying the incompressibility condition (4.12) becomes

∂

∂t

(
∂2ui

∂xj∂xj

)
=

∂

∂xa

 ∂2σ
(1)
ia

∂xj∂xj

−
∂2σ

(1)
ja

∂xi∂xj

+
gd3

κ2

(
∂2ρ(1)

∂xj∂xi

ẑj −
∂2ρ(1)

∂xj∂xj

ẑi

)
, (B.6)

Taking the dot product of equation (B.6) with x̂i, ŷi and ẑi in turn gives the x, y and z

components of equation (B.6) respectively:

∂

∂t

(
∂2u(1)

∂xj∂xj

)
=

∂

∂xa

 ∂2σ
(1)
xa

∂xj∂xj

−
∂2σ

(1)
ja

∂x∂xj

 , (B.7)

∂

∂t

(
∂2v(1)

∂xj∂xj

)
=

∂

∂xa

 ∂2σ
(1)
ya

∂xj∂xj

−
∂2σ

(1)
ja

∂y∂xj

 , (B.8)

∂

∂t

(
∂2w(1)

∂xj∂xj

)
=

∂

∂xa

 ∂2σ
(1)
za

∂xj∂xj

−
∂2σ

(1)
ja

∂z∂xj

+
gd3

κ2

(
∂2ρ(1)

∂z2
− ∂2ρ(1)

∂xj∂xj

)
. (B.9)
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Equations (B.7)-(B.9) can be expanded to give

∂

∂t
∇2

xu
(1) = ∇2

x

(
∂σ

(1)
xx

∂x
+

∂σ
(1)
xy

∂y
+

∂σ
(1)
xz

∂z

)
(B.10)

− ∂

∂x

∂2σ
(1)
xx

∂x2
+

∂2σ
(1)
yy

∂y2
+

∂2σ
(1)
zz

∂z2
+ 2

(
∂2σ

(1)
xz

∂x∂z
+

∂2σ
(1)
xy

∂x∂y
+

∂2σ
(1)
yz

∂y∂z

)
∂

∂t
∇2

xv
(1) = ∇2

x

(
∂σ

(1)
yx

∂x
+

∂σ
(1)
yy

∂y
+

∂σ
(1)
yz

∂z

)
(B.11)

− ∂

∂y

∂2σ
(1)
xx

∂x2
+

∂2σ
(1)
yy

∂y2
+

∂2σ
(1)
zz

∂z2
+ 2

(
∂2σ

(1)
xz

∂x∂z
+

∂2σ
(1)
xy

∂x∂y
+

∂2σ
(1)
yz

∂y∂z

)
∂

∂t
∇2

xw
(1) = ∇2

x

(
∂σ

(1)
zx

∂x
+

∂σ
(1)
zy

∂y
+

∂σ
(1)
zz

∂z

)
(B.12)

− ∂

∂z

∂2σ
(1)
xx

∂x2
+

∂2σ
(1)
yy

∂y2
+

∂2σ
(1)
zz

∂z2
+ 2

(
∂2σ

(1)
xz

∂x∂z
+

∂2σ
(1)
xy

∂x∂y
+

∂2σ
(1)
yz

∂y∂z

)
+

gd3

κ2

(
∂2ρ(1)

∂z2
− ∂2ρ(1)

∂xj∂xj

)
,

where v(1) is the y-component of velocity. Setting v(1) = 0 and assuming all y-derivatives

are zero, we recover the two-dimensional equations

∂

∂t
∇2

xu = ∇2
x

(
∂σxx

∂x
+

∂σxz

∂z

)
− ∂γ

∂x
, (B.13)

∂

∂t
∇2

xw = ∇2
x

(
∂σxz

∂x
+

∂σzz

∂z

)
− ∂γ

∂z
+

gd3

κ2

(
∂2ρ

∂z2
− ∂2ρ

∂xj∂xj

)
, (B.14)

where γ =
∂2σxx

∂x2
+ 2

∂2σxz

∂x∂z
+

∂2σzz

∂z2
. (B.15)
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APPENDIX C

DERIVING AN EQUATION FOR
CONCENTRATION OF A SELF-MOTILE
SUSPENSION WITH TRANSLATIONAL

BROWNIAN MOTION

To derive a governing equation for the concentration field c∗(x∗, t∗) integrate equation

(5.4) over p̂ and substitute for the translational flux velocity U (equation (5.5)) to give

[73]

∂

∂t

∫
S

N dp̂ =−∇x ·
(∫

S

Usp̂N dp̂+

∫
S

uN dp̂

)
−
∫
S

∇p · (ΩN) dp̂,

=− Us∇x ·
∫
S

N dp̂

(
1∫

S
N dp̂

∫
S

p̂N dp̂

)
−∇x ·

(
u

∫
S

N dp̂

)
−
∫
S

∇p · (ΩN) dp̂. (C.1)

Here, we have rearranged the equation so that spatial derivatives are performed outside

the surface integrals. We observe the final term in equation (C.1) is zero by setting

F (x, θ, χ) = ΩN , where θ and χ are the azimuthal and axial components of the spherical

coordinate system which describes the orientation of the particles, and noting

∫
S

∇p · F sin θ dθ dχ = 3

∫
VS

∇p · F r2 sin θ dr dθ dχ. (C.2)
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Here S is the surface and VS the volume of a unit sphere, we may apply Green’s theorem

to equation (C.2) to give

∫
VS

∇p · F r2 sin θ dr dθ dχ =

∫
S

F · r̂ dθ dχ. (C.3)

Since F ∈ span{x̂, θ̂, χ̂}, where θ̂ and χ̂ are the unit vectors for θ and χ respectively,

∫
S

F · r̂ dθ dχ = 0. (C.4)

Combining equations (6.1), (6.2) and (C.1) the governing equation for the concentra-

tion field is [73]:

∂c∗

∂t∗
+ u∗ ·∇∗

xc
∗ = −U∗

s∇∗
x · (c∗a) , (C.5)

where we have made use of the incompressibility condition (5.7). Equation (6.3) is

an advection-diffusion equation for the local concentration field c∗, with a source term

−U∗
s∇∗

x · (c∗a).
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APPENDIX D

DERIVING AN EQUATION FOR THE DIRECTOR
FIELD OF A SELF-MOTILE SUSPENSION WITH

TRANSLATIONAL BROWNIAN MOTION

To derive the evolution equation for the director field a, multiply equation (6.6) by p̂ and

integrate over p̂ to give [73]

∫
S

p̂
∂N

∂t
dp̂ =

∫
S

−p̂∇x · (UN)− p̂∇p · (ΩN) dp̂. (D.1)

Substituting for the translation flux velocity U from equation (6.7) and making use of

the integration by parts formula

∫
S

p̂∇p · (ΩN) dp̂ = −
∫
S

ΩN dp̂, (D.2)

equation (D.1) becomes

∫
S

p̂
∂N

∂t
dp̂ =−∇x ·

∫
S

p̂ p̂N + p̂uN p̂

+

∫
S

(I − p̂ p̂) ·
[
(α0e+ ω) · p̂

]
N dp̂. (D.3)
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The integrals in equation (D.3) may be evaluated using the assumed form of the distri-

bution function in equation (6.14),

c
∂a

∂t
+ a

∂c

∂t
=− a∇x ·

(
ca (a+ u)

)
− c (a+ u) ·∇xa

+ c (I − aa) ·
[
(α0e+ ω) · a

]
. (D.4)

Finally, the evolution equation for a is found by eliminating c using equation (6.15) and

assuming the concentration is non-zero everywhere

∂a

∂t
= − (a+ u) ·∇xa+ (I − aa) ·

[
(α0e+ ω) · a

]
. (D.5)
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APPENDIX E

DERIVING A DISPERSION RELATION FOR A
SUSPENSION OF SELF-MOTILE
NEARLY-ALIGNED PARTICLES

In this section we follow Saintillan & Shelley [72, 73] to derive a dispersion relation for s.

Substituting the ansatz (6.81) into equations (6.77) and (6.80) gives

ik · u = 0, (E.1)

µ̃k2ũ+ ikp̃ = ik · σ̃S, (E.2)

p̃ = k̂ · σ̃S · k̂, (E.3)

where k̂ = k/|k| and

σ̃S =
α1

4π

∫
S

(
p̂ p̂− I

3

)
Ñ dp̂. (E.4)

Substituting equation (E.3) into equation (E.2) allows us to eliminate pressure

µ̃k2ũ+ ik
(
k̂ · σ̃S · k̂

)
= iI · σ̃S · k, (E.5)

⇒ ũ =
i

kµ̃

(
I − k̂ k̂

)
· σ̃S · k̂. (E.6)
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Using equation (E.6) the rate-of-strain tensor is

ẽ =
i

2
(ku+ uk) , (E.7)

=
−1

µ̃

(
k̂
(
I − k̂ k̂

)
· σS · k̂

)
. (E.8)

Substituting for the active stress σS from equation (E.4) gives

ẽ =
−α1

4πµ̃

(
k̂
(
I − k̂ k̂

)
·
∫
S

p̂′ p̂′ − I

3
Ñ dp̂′ · k̂

)
, (E.9)

using that k̂ is a unit vector gives

ẽ =
−α1

4πµ̃

(
k̂
(
I − k̂ k̂

)
·
∫
S

p̂′
(
p̂′ · k̂

)
Ñ dp̂′

)
. (E.10)

To write this in a more compact form we introduce the vector

F
(
Ñ
)
=
(
I − k̂ k̂

)
·
∫
S

p̂′
(
p̂′ · k̂

)
Ñ dp̂′, (E.11)

such that

ẽ =
−α1

4πµ̃
k̂ F

(
Ñ
)
. (E.12)

Substituting the ansatz (equation (6.81)) and the rate of strain tensor (equation (E.12))

into the Fokker-Planck equation (6.69) gives

Ñ =
−5α0α1

(
k̂ · p̂

)
4πµ̃

(
s+ i(k · p̂)

) p̂ · F (Ñ). (E.13)

To obtain an eigenvalue relation, apply F to both sides of equation (E.13)

F (Ñ) =
−5α0α1

4πµ̃

∫
S

(k̂ · p̂)2(I − k̂ k̂) · p̂ p̂ · F (Ñ)

s+ i(k · p̂)
dp̂. (E.14)
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Observing that equation (E.14) is invariant under rotation (in Cartesian space) we may

choose k̂ = ẑ without loss of generality. Substituting this condition into equation (E.11)

F (Ñ) = (x̂ x̂+ ŷ ŷ) ·
∫
S

p̂′ (p̂′ · ẑ
)
Ñ dp̂′, (E.15)

we observe F must lie in the x-y plane. Using this we may rewrite equation (E.15) as

F (Ñ) =
−5α0α1

4πµ̃

∫
S

(ẑ · p̂′) (x̂ x̂+ ŷ ŷ) · p̂′ p̂′ ·
(
Fxx̂+ Fyŷ

)
s+ ik (ẑ · p̂′)

dp̂′, (E.16)

where Fx and Fy are the x and y components of F respectively. To evaluate equation

(E.14) write the director field in spherical coordinates (p̂ = (sin θ cosχ, sin θ sinχ, cos θ),

χ ∈ [0, 2π) and θ ∈ [0, π])

F (Ñ) =
−5α0α1

4πµ̃

∫ π

θ=0

∫ 2π

χ=0

cos2 θ (sin θ cosχx̂+ sin θ sinχŷ)

s+ ik cos θ

×
(
sin θ cosχFx + sin θ sinχFy

)
sin θ dχ dθ, (E.17)

=
−5α0α1

4πµ̃

∫ π

θ=0

cos2 θ sin3 θ

s+ ik cos θ

×

(∫ 2π

χ=0

(
cos2 χFx +

1

2
sin 2χFy

)
x̂+

(
1

2
sin 2χFx + sin2 χFy

)
ŷ dχ

)
dθ.

(E.18)

Evaluating the inner integral with respect to χ, noting F is independent of χ and θ

(equation (E.15)), yields

F (Ñ) =
−5α0α1F (Ñ)

4µ̃

∫ π

θ=0

cos2 θ sin3 θ

s+ ik cos θ
dθ. (E.19)

This integral may be solved using the substitution

tan
θ

2
= t, (E.20)
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where we state explicitly

sin θ =
2t

t2 + 1
, cos θ =

1− t2

1 + t2
,

∂θ

∂t
=

2

t2 + 1
. (E.21)

Using equation (E.20), the eigenvalue relation (E.19) becomes

F (Ñ) =
−20α0 α1F (Ñ)

µ̃

∫ ∞

0

t3

(1− t2)3(λ̃(1 + t2)− (1− t2))
dt, (E.22)

where λ̃ = −i(s+DTk
2). Evaluating the integral gives

F (Ñ) =
5iα0α1F (Ñ)

4kµ̃

2λ̃3 − 4

3
λ̃+

(
λ̃4 − λ̃2

)
log

(
λ̃− 1

λ̃+ 1

) . (E.23)

Now, either F (Ñ) = 0, or

5iα0α1

4kµ̃

2λ̃3 − 4

3
λ̃+

(
λ̃4 − λ̃2

)
log

(
λ̃− 1

λ̃+ 1

) = 1. (E.24)
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