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Abstract 
 

Cooking fume have been found to be a significant component of ambient particulate matter 

and also to contribute to high concentrations of aerosol indoors.  As several studies have linked 

exposure of individuals to cooking emissions with adverse health effects, the need to further 

understand the composition of this source of particulate matter is essential.  It has also been 

identified that there is a gap in literature for existing cooking profiles in the UK with the few 

existing ones being generated a long period ago in different geographical locations, with none 

obtained locally to the UK.  

This study was concerned with gaining further insights into the chemical composition of 

aerosol generated from typical styles of cooking and the understanding of trends of the 

formation of particles among different culinary methods. Cooking source profile for African, 

Chinese, Western and Indian styles was obtained   in a specially designed laboratory based 

kitchen. These profiles were used as input in a Chemical Mass Balance model where ambient 

data collected in Birmingham, UK were analysed in order to apportion the quantity of organic 

matter from cooking sources in the location sampled. 

 Measurements of particulate matter were also collected while cooking in a real kitchen in order 

to quantify magnitude of particulate matter emissions in a household setting generated from 

cooking.  

 It was found that cooking generated a significant mass of aerosol with the particle sizes largely 

within the respirable size range. Also the major groups of chemical compounds which were 

identified from cooking included alkanes, acids, Polycyclic Aromatic Hydrocarbons, 

glycerides and sterols. The Chinese style of cooking was found to generate the highest 

concentration of particles with PM mass of 21.61µg/m3. African style cooking had the lowest 
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total concentration when compared to all other styles. The main group of compounds released 

during Indian and western style alkanes with PAH having the highest concentration when the 

total  emitted compounds for African cooking was analysed  (6.83 µg/m3). High concentrations 

of monoglycerides were observed in Western and Chinese cooking, 10.33µg/m3and 

11.52µg/m3 respectively. 

Stir frying and grilling were found to generate the highest particulate matter concentration 

compared with stewing. Cooking involving the use of meat was found to generate more 

particles. The profiles of compounds emitted in the real kitchen were similar to those of the 

trailer. 

The source profile from cooking (a range of marker compounds attributed to cooking) obtained 

from the study were found to correlate well with each other with Indian and Western profiles 

exhibiting the highest correlation. When used for the CMB model runs, these two profiles 

provided the best output with the model runs apportioning 16% of the  Organic Carbon to be 

from cooking, with traffic, wood smoke and soil debris contributing 44%, 18% and 24% 

respectively.  

The cooking experiments involved only rice chicken and potatoes, future work can include 

additional ingredients and other cooking styles. 
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CHAPTER 1 - Introduction and literature review. 

 

This chapter gives a general introduction of particulate matter and cooking aerosols. The 

research aims and objectives are also discussed. 

 

This chapter contains some sections of verbatim text adapted from the following review article 

published as part of this PhD: 

Abdullahi, L, Delgado Saborit, JM & Harrison, RM 2013, 'Emissions and indoor 

concentrations of particulate matter and its specific chemical components from cooking: A 

review' Atmospheric Environment, vol 71, pp. 260- 294. 

 

1.1 Particulate matter 

 

Particulate matter (PM) is defined as the mass of a mixture of solid particles and liquid droplets 

of various sizes (range from a few nanometres to tens of micrometres) suspended in a volume 

of air which represent a broad class of chemically and physically diverse substances. Particulate 

matter is classified according to its size, thus PM10 is defined as the concentration of particulate 

matter with aerodynamic diameter of 10 micrometres or less, while PM2.5 is defined as the 

concentration of particulate matter that has aerodynamic diameter of 2.5 micrometres or less. 

The average human hair is about 30 times larger than a large fine particle as hair is about 70 

micrometers in diameter as illustrated in Figure 1(USEPA, 2013). 

Particulate matter consists of components that are released directly from a source (primary PM) 

or are formed by chemical reactions in the atmosphere (secondary PM). It comes from natural 

and man-made sources and consists of a range of chemical compounds which can be useful for 

the identification of the source. 
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Figure 1  Particulate matter size (USEPA, 2015). 

Primary PM is released from sources which include road transport (tyres and brake wear, 

engine combustion, road dust), industrial, commercial and domestic burning of fuels and also 

dust from these activities and natural sources (sea spray and dust). It generally consists of 

sodium chloride (from sea salt), trace metals (from metallurgical and mechanical abrasion 

processes - include lead, cadmium, nickel, chromium, zinc and manganese); elemental and 

organic carbon (from high temperature combustion of fuels and it consists of several individual 

components such as polycyclic aromatic hydrocarbons (PAH), alkenes, aldehydes) and mineral 

dust (coarse dust from quarrying construction and wind- include aluminium, silicon, iron and 

calcium). 

Particle mass and number are generally the important metrics used to represent PM 

concentrations in exposure assessment (Harrison et al., 2010). Particle surface area is another 

metric of interest as it has been found that for the same mass of particles, the particle number 
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and surface area increase with decrease in particle size (Harrison et al., 2000).  This has been 

observed in some toxicological studies such as Oberdorster, 2000, where it was found that 

particles become more toxic per unit mass as their size decreases. 

 Generally concentrations of PM are represented in terms of mass, number or volume, with 

mass being the most commonly used parameter. The use of mass is greatly for uniformity and 

comparability as the epidemiological studies from which the air quality standards are derived 

have used mass as the measure of particle concentration (Shi et al., 2001). 

Particles are described using size distribution consisting typically of 4 modes which are: 

 Nucleation (particle diameter less than 10 nm) 

 Aitken (particle diameter between 10 and 100 nm) 

  Accumulation (particle diameter between 100 nm and 2 µm)  

  Coarse (particle diameter more than 2 µm). 

For classification using the minimum in the mass size distribution particles are classed as:  

 Fine particles consists of Nucleation, Aitken and accumulation mode;  

 the Ultrafine particles consists of nucleation and Aitken modes and  

 the Coarse particles consist of particles with diameters above 1 μm (Colbeck and 

Lazaridis, 2010). 

Generally speaking and for regulatory purposes (using the fixed size cut off of 2.5 µm) particles 

with aerodynamic diameters less than 2.5μm are classified as fine particles and particles with 

aerodynamic diameters more than 2.5 μm are classified as coarse particles. 

Fine and coarse particles generally differ due to their formation mechanisms, sources, chemical 

composition, and removal processes (Harrison et al, 2001).   Fine particles are emitted during 

combustion processes or secondary aerosol formation while coarse particles are generated due 

to abrasion and mechanical processes (fugitive dusts from industrial sources, tyre-wear debris, 

re-suspended soils and street dusts, sea salts, pollen and fungi spores). 
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Processes such as condensation, evaporation and coagulation lead to changes in the size and 

composition of particulate matter in the atmosphere. 

Condensation can occur with gaseous vapours whereby they combine with existing small 

nuclei (condensation nuclei) to form aerosols which can then grow in size by colliding and 

sticking together through the process known as coagulation. Particles can also be formed by 

nucleation which is the process where gases interact and combine with other molecules. Figure 

2 offers a schematic representation of a typical size distribution for atmospheric particles, 

indicating some formation pathways. 

 

 

Figure 2  Schematic representation of a typical size distribution for atmospheric particles, indicating some 

formation pathways, (DEFRA, 2004). 
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The different fractions can exist in the atmosphere for varied periods ranging from minutes to 

weeks depending not only on the particle size but on other conditions such as the weather. 

Generally the particle size distributions can be used to identify particle sources which will help 

to understand the health implication of different source types which can aid in policy making 

and choices for abatement options. 

For instance from monitoring data and various studies there has been a general decline of total 

emission of primary PM10 observed in the UK which has been mostly due to improvement in 

technology and change to cleaner fuel for general combustion in industries, domestic heating, 

energy production and road transport. Emissions inventory of PM10 from the UK have actually 

shown that domestic and commercial emissions have declined with emissions of PM10 falling 

from 263 kilotonnes (54% of total emission) in 1970 to 17.9 kilotonnes (20.9%) in 2012 (NAEI, 

2014). Even with this observed decrease in concentrations, the UK residential sources have 

still been found to represent a high percentage (13%) of the national primary, man-made 

emissions of PM2.5 (Sniffer, 2010). Generally the concentration of PM in urban areas still 

remains a challenge for compliance with EU standards.  

1.2 Health effects and legislations for PM 

 

The identified effects of particles upon human health include premature mortality, increased 

hospital admissions, allergic reactions, lung dysfunction, cardiovascular diseases and in severe 

cases, death (Department of Health, 2006, Health Effects Institute, 2003, Pope et al., 1995, 

Dockery et al., 1993).  Aerosol particles have actually been identified to be efficient transport 

mediums for carcinogenic compounds into human lungs (Siegmann and Sattler, 1996). Health 

problems of greater severity are mainly observed in susceptible groups (which include children, 

the elderly and people with pre-existing heart and lung diseases) and are also linked with 

personal exposure over long periods of time to PM. Exposure to PM has been found to trigger, 
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or in some cases increase the severity of chronic obstructive pulmonary 

diseases(COPD)(MacNee and Donaldson, 2003), short term exposure to particulate matter has 

resulted in aggravations of respiratory symptoms and decline in lung function (Hoek et al., 

1998). Fatality can also occur when pulmonary inflammations from reaction to exposure to PM 

lead to cardiovascular effects such as systematic inflammation resulting in an imbalance of 

coagulation factors leading to in the interference of the heart rhythm(Donaldson et al., 2005). 

Epidemiological studies have shown a link between exposure to ambient particulate matter and 

adverse health effects (ABBEY et al., 1999, Cifuentes et al., 2000, Dockery et al., 1993, 

Wichmann and Peters, 2000)however it has been unclear as to which components or size 

fractions of the airborne particles is largely responsible for exerting the observed toxic effect. 

Recently, however, a study by Atkinson et al., 2010 considering daily concentrations of 

particulate mass, number concentrations and particle composition against information on death 

and hospital admissions over a period of time using a Poisson regression time series model 

found that respiratory outcomes were mainly caused by non-primary PM2.5 and other secondary 

pollutants, while admissions and mortality were associated with particle number 

concentrations. They showed that specific mixtures of particle air pollution may be relevant to 

specific diseases. Their study so far provides the best information available on the importance 

of PM mass measures to public health even though it was based upon data from a single 

monitoring site. 

The Committee on Medical Effects of Air Pollution (COMEAP) published a report in 2010 

which indicated that approximately 4 million life years would be saved or an increase in life 

expectancy of 20 days in people born in 2008 for each 1 μg m–3 decrease in PM2.5 concentration 

over the lifetime of the current population of England and Wales. COMEAP stated that in 2015 

that 30,000 deaths in the UK could be attributable to exposure to PM2.5 (which is about 23% of 

all respiratory deaths) and about 130,000 emergency admissions to hospital. which was more 
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than figures for passive smoking and car accidents (COMEAP,2016). The World Health 

Organisation rank PM as the 13th leading cause of mortality worldwide and estimate that 

approximately 800,000 premature deaths are contributed by PM each year (Morgan et al, 2016). 

 

Ultrafine particles are small enough to penetrate into the lungs and potentially transfer into 

tissues to cause physiological damage based on their chemical complexity (Schwartz et al., 

1996, Cifuentes et al., 2000). The smaller particles that penetrate deeper into the tissues, deposit 

in the air sacs and can cause inflammation. This can result in the change of the clotting 

properties of the blood leading to increase in the chances of heart attacks (Pope CA III, 2006). 

The schematic representation of deposition location in the human respiratory tract is shown in 

Figure 3. 

 

Figure 3  Particulate matter size and deposition in the human body BENSON (2012). 

 

In 2000, researchers Jaques and Kim carried out measurement of total deposition fraction of 

ultrafine aerosols in a small group of young healthy adults (11 in number) and revealed that 

regardless of breathing patterns, the deposition fraction increased as particle size decreased 

(Jaques and Kim, 2000). Regardless of the study size, their findings were consistent with the 
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respiratory tract deposition models proposed by the International Commission on Radiological 

Protection (ICRP) and the U.S. National Council on Radiation Protection and Measurements 

(NCRP), where sub-micrometer aerosols were found to have larger deposition efficiency in the 

respiratory tract, especially the alveolar region (James et al., 1991, Phalen et al., 1991). The 

bronchial and alveolar deposition fractions was found as  0.03 and 0.16, respectively  for 2 µm 

aerosols and this fraction increased to 0.06 and 0.28, respectively, for 0.06 µm sized aerosols.  

The Chemical properties of aerosols have also been found to be important characteristics as 

they influence the behaviour of the particles after deposition in the respiratory tract through 

volatility and solubility. It was found that acidic particles can be irritants when inhaled; PAHs 

(polycyclic aromatic hydrocarbons) are potentially carcinogenic and also any trace metals 

delivered to the lungs on fine particles may catalyse production of tissue-damaging oxidants 

(Dreher et al., 1997, Ghio et al., 1996, Hoek et al., 1998).  Hoek et al., (2000) actually found 

association of fine particles with total mortality based on presence of sulphate, nitrate and black 

smoke. Svedhal et al, (2013) found that inhalation of cooking fumes slightly alters the 

expression of inflammatory reactions in the bronchial mucosa and its subsequent systemic 

inflammatory response in blood biomarkers after short-term exposure to moderate 

concentrations of cooking fumes. Recently Yu et al., 2015 showed that there is an incremental 

lifetime cancer risk resulting from exposure to the household air pollution from cooking is 

higher than the acceptable level of 10−6 making it a serious health concerns. In as much as the 

chemical composition is important, the inhalation of PM causes irritation to the respiratory 

tract when it is exposed to it. 

In toxicological and controlled human exposure studies, several physical, biological and 

chemical characteristics of particles have been found to cause cardiopulmonary responses. 

Amongst the characteristics found to be contributing to toxicity in epidemiological and 

controlled exposure studies are metal content, presence of PAHs, other organic components, 
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endotoxin and both small (< 2.5 µm) and extremely small size (< 100 nm). Physical 

characteristics of PM are particle size, surface and number and the smaller the particle, the 

larger is the surface area available for interaction with the respiratory tract, and for adsorption 

of biologically active substances. Organic compounds are common constituents of particles, 

and comprise a substantial portion of ambient PM. Some of these compounds extractable from 

PM (especially PAHs) have been found to exert pro-inflammatory as (Li et al,2000; WHO, 

2003). Some of the PAHs and their nitro-and oxy-derivatives have been shown to be 

mutagenic. There has also been increasing evidence that soluble metals may be an important 

cause of the toxicity of ambient PM. The transition metals are also important components 

concerning PM-induced cardiovascular effects (Clarke et al, 2000). Transition metals 

potentiate the inflammatory effect of ultrafine particles (Wilson et al, 2002). However, it has 

not been established that the small metal quantities associated with ambient PM in most 

environments are sufficient to cause health effects. 

1.2.1  Legislation 

 

Early epidemiological studies in USA identified PM10 as an important pollutant metric related   

health effects and it was considered so until further advancement in research identified the 

smaller particles within PM10 (PM2.5)as being the most significant in relation to health 

outcomes (SNIFFER, 2010).  Experts are still debating onto which fraction is primarily 

responsible for the health outcomes (size or a non-mass metric) (AQEG, 2012, Harrison et al., 

2012).  

Various governments have long since established emission standards for PM10 such as United 

States Environmental Protection Agency (USEPA), European Union (EU), UK Department for 

Environment Food and Rural Affairs (DEFRA); due to its negative impact on human health 

and poor visibility.  
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Initially the Air Quality Strategy for England, Scotland, Wales and Northern Ireland (AQS) set 

the PM10 annual mean of 40 μg m-3   and 50 μg m-3 for 24 hour mean: not to be exceeded more 

than 35 times a year. This was to be reduced to annual mean of 20 μg m-3 and 50 μg m-3 for 24 

hour mean: not to be exceeded more than 7 times a year in the UK by the end of 2010 (APEG, 

1999). The Air Quality Expert Group (AQEG) independently drew conclusions, in their report 

on UK particulate matter in 2005, that the European Union(EU) annual mean limit value set 

for 2005 would be met nearly everywhere, and concluded that there was likely to be substantial 

exceedences of 20 μg m-3 near to major roads in 2010(DEFRA, 2007, AQEG, 2005). The 

objective was then reviewed and not changed, due to the observation that PM10 annual and 24-

hour mean values were expected to continue to exceed their specified limits well after their 

target achievement date at the end of 2010, and full compliance of the objectives across the 

whole country was not expected even after 2020(DEFRA, 2007, AQEG, 2005).  

Evidence from studies about PM2.5 and findings about the more chronic effect of long term 

exposure to PM, as well as the recognition of the absence of a threshold value for exposure to 

PM2.5 lead to attention being given to this pollutant by various agencies, policy makers and 

expert groups in the UK. Defra included PM2.5 into its Air Quality Strategy update in 2007 and 

the European Union introduced PM2.5 standards in its Clean Air for Europe (CAFE) Directive 

in 2008 and this directive was implemented in UK legislation on 11 June 2010.  

Epidemiological studies on large populations have been unable to identify a threshold 

concentration below which ambient PM has no effect on health. It is likely that within any large 

human population, there is such a wide range in susceptibility that some subjects are at risk 

even at the lowest end of the concentration range. Short-term epidemiological studies suggest 

that linear models without a threshold may be appropriate for estimating the effects of PM on 

the types of mortality and morbidity of main interest. This issue has been formally addressed 

in some studies (Daniels et al, 2000; Schwatz et al, 2000; Schwatz et al 2001). Methodological 
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problems such as measurement errors (Schwatz et al, 1990; Zeger et al, 2000) make it difficult 

to precisely pinpoint a threshold if it exists; effects on mortality and morbidity have been 

observed in many studies conducted at exposure levels of current interest. If there is a threshold, 

it is within the lower band of currently observed PM concentrations in Europe. 

Exposure reduction approach was agreed to be the most effective and efficient way to maximise 

health benefits for particulates to ensure an overall reduction in exposure of the general 

population(DEFRA, 2007), which is an approach based on achieving a reduction in the overall 

exposure by the general population instead of concentrating at hot spots only. 

The ability to achieve this exposure reduction target in order to improve human health is limited 

for UK regulators as there still exists a research gap between the understanding of contributions 

from regulated sources of PM2.5 (such as industries and vehicles) and background 

concentrations. A lot of effort is on the way to provide better understanding of the various 

sources, pathways and health effects of PM2.5, and the legislation that can contribute to its 

control(SNIFFER, 2010). 

The EU Air Quality Framework Directive (2008/50/EC) and its sister directives in are currently 

the policy framework in use for the 12 potential air pollutants (which include NO2, carbon 

monoxide and PM) which are known to have a harmful effect on human health. Table 1 lists 

the standards for PM in the UK. 

Another aspect to look into is indoor air where sources of PM have been identified and there is 

inevitable long term exposure by the general population and mainly because the existing 

directives do not apply to indoor air quality and there is no government department responsible 

for the issue of indoor air quality in the UK. Globally the World health Organisation (WHO) 

have set a standard for PM 2.5 of 10 µg/m3 annual mean 25 µg/m3 24-hour mean which is the 

concentrations at which increased mortality responses are expected to be observed due to  air 

pollution from it and this standard is applied to the indoor environment (WHO, 2006). For the 
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mean time this is the standard used and it seems difficult for regulatory air quality legislation 

to be enforced for domestic households but the understanding of emissions from cooking 

practices will be useful to educate the general populace so as to make them of aware of the 

likely risks they are exposed to and enable them can make adequate choices on their cooking, 

ventilation and techniques to reduce those risks.  

Air quality experts have pointed out that there is no recognised threshold below which negative 

health effects are absent as such human health can be affected by either short- and long-term 

exposure to PM2.5 (SNIFFER, 2010). Information of the components of the fraction PM2.5 is 

another important aspect that requires attention.  

Organic compounds are a major constituent of particulate matter and thus the importance of 

identification and measurement of its constituents is important especially the proportion of 

PAHs  which are ubiquitous environmental pollutants and include some of the most 

carcinogenic materials (IARC, 2010). They have been classed by USEPA as probable human 

carcinogens (B-2 pollutants) with evidence from animal studies. The limit for PAH has been 

set by the Occupational Safety and Health Administration (OSHA) for 0.2 mg m-3 (ATSDR, 

1995), also the European union directive has proposed a target value of 1 ng m-3 B[a]P for total 

PM10 fraction content over an average calendar year (EUD, 2004) with suggestion on the 

assessment of the contribution of Benzo[a]pyrene (B[a]P)on ambient air.   

An occupational exposure limit is an upper limit on the acceptable concentration of a hazardous 

substance in workplace air for a particular material or class of materials. It is typically set by 

competent national authorities and enforced by legislation to protect occupational safety and 

health. Occupational standards are standards that ensure the worker is not over exposed to 

harmful and toxic chemicals while at work. Outdoor standards on the other hand are standards 
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that provide an assessment of health effects of air pollution and thresholds for health-harmful 

pollution levels. 

Occupational exposure limits are mainly intended to serve as guides to prevent illness or certain 

symptoms such as eye and nose irritation in industrial atmosphere and they use dose-response 

data which show the health effects of repeated exposure to one specific chemical. Outdoor air 

standards define levels of air quality that are judged necessary to protect public health in areas 

where the general public has access. The occupational standard as well as the ambient standard 

cannot be compared because the levels of exposure to the general public involves varying 

health status and age. Usually ambient air quality standards are substantially lower than 

occupational standards which are based on the time spent at work. Data is not available for 

extended low-level exposures to a combination of contaminants as is the case for indoor air 

quality problems. 

The OSHA (Occupational Safety and Health Administration) occupational exposure standard 

for Particulate matter for respirable dust is 5 mg/m3 and for total particulate matter is 10 mg/m3 

(for grain dust) and 15 mg/m3 (nuisance dust); while the NIOSH(National Institute for 

Occupational Safety and Health) has a standard for total particulate matter (grain dust) of 4 

mg/m3 (Donham, 2002). 
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Table 1 Standard for PM2.5 and PM10(Sniffer 2010)      

 

 

 

 

The UK expert panel recommends 0.25 ng m-3 PAH measures as an annual average using B[a]P 

as an indicator of the PAH mixture. Presently this value is exceeded in areas which emit PAH 

such as urban areas and industrial areas with urban areas having concentrations 1-2 fold higher 

than in rural areas of Europe and up to 3 orders of magnitude higher than Arctic 

Canada(Prevedouros et al., 2004). The EU target value of 1ngm-3 on an annual average has 

also been found to be difficult to meet in the French alpine valleys (Marchand et al., 2004).  

A review by Ravindra et al., in 2008 on PAHs emphasised a need to include all known probable 

carcinogenic PAHs in a new air quality index to ensure adequate protection of human health 

(Ravindra et al., 2008). 

Pollutant   Time Period STANDARD 

TO BE ACHEIVED AND

MAINTAINED THEREAFTER

PM2.5 Annual mean Objective of 25 µg/m3 2020

UK 3 Year running Objective of 15% reduction in 

Annual mean concentrations measured across Betw een 2010 and 2020

urban background sites 

PM10 24-hour mean Objective of 50 µg/m3 2005

not to be exceeded more than 35

times a year 

Annual mean  Objective of 40 µg/m3 2005

Scottish PM2.5 Annual mean  Objective of 12 µg/m3 2020

3-year running Objective of 15% reduction in Betw een 2010 and 2020

annual mean concentrations measured across 

urban background sites 

PM10 24-hour mean Objective of 50 µg/m3 2005

not to be exceeded more than 7

times a year 

Annual mean  Objective of 18 µg/m3 2005

PM2.5 Annual mean  Target value of 25 µg/m3 2010

European Annual mean Limit value of 25 µg/m3 2015

Annual mean Stage 2 indicative limit value of 20 2020

3 year Exposure-reduction target relative to 2020

Average the AEI depending on the 2010 value 

Exposure of the 3 year AEI (ranging from a 0% 

Indicator (AEI) to a 20% reduction)

3 year Exposure-concentration obligation of 2015

Average 20 µg/m3

Exposure 

Indicator (AEI) 

PM10 24hr mean Limit value of 50 µg/m3 2004

not to be exceeded more than 35

times a year 

annual mean Limit value of 40 µg/m3 2004
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1.3 Cooking and Particulate Matter 

In less economically developed countries indoor smoke exposure is a recognized major cause 

of ill health (Kurmi et al., 2008; Pandey et al., 1989; Smith et al., 2000; Smith, 2003). This is 

greatly as a result of the fact that in these developing countries the fuels for heating and cooking 

are primarily biomass fuels such as wood, dried cow dung and charcoal with studies showing 

that high indoor concentrations of PM are generated from biomass or solid fuels (Shrestha and 

Shrestha, 2005). Combustion of these fuel for cooking generally leads to emission of a complex 

mixture of particulate and gaseous species many of which are known health-damaging 

pollutants. Some of these pollutants contribute to high levels of commonly regulated pollutants 

in the ambient environment such as respirable particulate matter (PM), carbon monoxide (CO), 

nitrogen oxides (NOx) and sulphur oxides (SOx). Cookstoves also emit both gas and particulate 

phase polyaromatic hydrocarbonsand oxygenated polycyclic aromatic hydrocarbons that may 

mediate health impacts via the formation of proteins and DNA adducts and generation of 

reactive oxygen species to enhance oxidative stress (4-7).  Combustion of solid fuel in  

inefficient  cookstoves generally results in the production of these variety of health-damaging 

gases and particles (Smith et al. 2009), such as black carbon (BC), organic carbon (OC), 

methane, and carbon monoxide.  As such cooking fuel will generally lead to a larger releases 

of pollutants making the quantity from cooking ingredients or methods very negligible as found 

by Chafe et al in 2014 where an energy supply–driven emissions model (GAINS; Greenhouse 

Gas and Air Pollution Interactions and Synergies) was used along with a source-receptor model 

(TM5-FASST) to estimate the proportion of ambient PM2.5 (APM2.5) produced by households 

and the proportion of household PM2.5 emissions from cooking with solid fuels. Household 

cooking with solid fuels was found to account for 12% of APM2.5 globally with observed 

APM2.5 values of  37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa and South 

Asia having the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3) 
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(Chafe et al; 2014). PM2.5 from cooking constituted more than 10% of APM2.5  in seven regions 

housing 4.4 billion people. They also observed that as the countrys economic status increased 

there was an accompanied decrease in the contribution of household cooking to APM2.5 

signifying the decrease in dependence to inefficient cooking fuels and technologies. They 

estimated that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 

lives and 9.9 million disability-adjusted life years globally in 2010 on the basis of GBD 2010 

(Chafe et al; 2014).  

The important contribution of household fuel use (for heating and cooking) to particulate matter 

emissions has been established in many studies such as in China where residential coal and 

biomass combustion were found to be key source of fine particulate matter (≤ 2.5 μm in 

aerodynamic diameter; PM2.5) which accounted for 47% (4.3 Tg of 9.3 Tg total) and 34% (4.4 

Tg of 13.0 Tg total) of China’s PM2.5 emissions in 1990 and 2005 (Lei et al. 2011). In 2000, 

86% of BC emissions in both India and China was attributed to residential coal and biomass 

use with 96%  and 97% of OC emissions attributed to these fuels in India and China 

respectively (Ohara; 2007).  

About 3 billion people (mainly poor people that live in low- and middle-income countries)   

still cook and heat their homes using solid fuels (i.e. wood, crop wastes, charcoal, coal and 

dung) in open fires and leaky stoves around the world. The indoor smoke can be 100 times 

higher than acceptable levels for fine particles in poorly ventilated dwellings and the exposure 

has been found to particularly high among women and young children, who spend the most 

time near the domestic fireplace (WHO,2014). 

The International Agency for Research on Cancer (IARC) has concluded that emissions from 

household use of coal are a Group 1 carcinogen, whereas those from biomass are Group 2(a), 

a probable carcinogen, with more limited epidemiologic evidence further showing that fuel 

type contributes to the emissions generated during cooking. For lung cancer 25case studies 
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were investigated for household coal use, 7 of which provided cooking-specific estimates. 

Exposure was assessed by fuel type, and lung cancer was confirmed by pathology for most 

cases while for biomass and cancer 14 eligible studies of cooking and/or heating with biomass 

were analysed by IARC to obtain sex-specific estimates and examine exposure-response 

evidence and from these it was determined by fuel type and as with coal, most cases of lung 

cancer were confirmed pathologically (Smith et al., 2014).  

A study by He et al 1991 carried out a quantitative risk assessment of indoor air pollution and 

found that indoor air pollution is the main risk factor in inducing lung cancer in Xuan Wei 

County. They found that the presence of lung cancer in females in that region was statistically 

significantly associated with chronic bronchitis and family history of lung cancer. The results 

also suggested an association of lung cancer with duration of cooking food, but not with passive 

smoking. Studies which are carried out in locations where solid fuels are used have been found 

to have elevated concentrations attributed largely from the combustion of the fuel used for 

cooking rather than from the cooking itself. Measured mean concentrations of 24-hr 

concentration of PM2.5 in using households using solid cook fuels in India was found to  range 

from 163 μg/m3 in the living area to 609 μg/m3 in the kitchen area (Balakrishnan et al., 2013). 

In developed countries, the use of cleaner fuel is more common as such the main contribution 

of exposure of emission from cooking is accounted from compounds derived from the cooking 

of the ingredients itself. This is discussed in further details in section 1.4 as well as shown in 

Table 4, Table 9, Table 5 where a list of various studies showed magnitude and concentrations  

contributed from cooking in countries such as USA,  Taiwan, Switzerland, UK Czech Republic, 

showing that even high clean fuel are used, cooking does provide a change in personal 

dependant on the type of meal cooked or the style of cooking. 

 In such countries combustion of fuel such as coal, wood, peat and gas for cooking or heating, 

and the combustion of tobacco in the form of smoking are the main sources of PM indoors(Lai 
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et al., 2006; Semple et al., 2012). Indoor PAH levels usually range from 1 ng/m3 to 50 ng/m3 

due to tobacco smoke and residential heating with wood, coal, and other materials (WHO, 

1998). Environmental tobacco smoke is a major contributor to air pollution and dust, and 

surfaces remain contaminated long after the smoking has ceased (called third-hand smoke). 

Measurement of PAHs in settled household dust in 132 homes showed that total PAHs were 

990 ng/g in smoking households versus 756 ng/g in nonsmoking households (Hoh et al., 2012). 

Cooking has actually been found to be a very significant particle generating activity indoor and 

this has generated lots of interest (He et al., 2004c, Hildemann et al., 1991a, Nicole., 2014; 

Nolte et al., 1999, Robinson et al., 2006, Rogge et al., 1997, Schauer et al., 1999b). Numerous 

studies that have been carried out around the world have related adverse health effects to 

practices of cooking and also from the products of incomplete combustion. There are very few 

meals that can be eaten without cooking such as salads and sushi. Foods like meats, grains and 

vegetables cannot be eaten raw and have been identified to be prepared using varying culinary 

techniques based on regions of the world it is being prepared. Differences exist spanning from 

the spices used, to differences in fuel type, to cooking duration among other things. 

 Over the years networks of restaurants and cooking kiosks have sprung up all over cities to 

cater for the population of busy people who need to eat during their scheduled days. As a result 

of this emissions from these cooking establishments tend to emit exhausts from the processes 

onto streets and surrounding areas. A clear understanding of what exactly is released into the 

air is important and essential for understanding if there might be any negative health effects as 

a result of these emissions as this an unregulated air pollution source.  

In cases of people who mainly eat freshly prepared homemade food, these meals are mainly 

prepared indoors by themselves or other family members, as such, finding out how much these 

cooking practices also affects indoor air cannot be overemphasized.  
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Household air pollution exposure was linked to 3.5 million deaths with an additional 0.5 

million deaths from ambient/outdoor air pollution resulting from solid fuel use, in the Global 

Burden of Disease/Comparative Risk Assessment Project (GBD 2010) report published in 

2012(Lim et al., 2012). Estimates from the WHO for 2012 (WHO 2014), relying on an updated 

methodology, estimated that the global mortality burden of household air pollution at 4.3 

million people annually. Worldwide more than a million people die from chronic obstructive 

pulmonary disease (COPD) annually due to indoor exposure to smoke which generally contains 

a range of health-damaging pollutants, such as fine particles and carbon monoxide (Hetland et 

al., 2000). The use of solid fuels (biomass and coal) for cooking and heating homes is practised 

by around 3 billion people in open fires and leaky stoves, especially by people with low and 

medium resources in developing countries. As such, poorly ventilated homes can have indoor 

smoke concentrations of respirable particles of more than 100 times the acceptable levels 

(Hetland et al., 2000; Kurmi et al, 2008) with mostly women and young children being exposed 

to these extremely high levels. Extensive literature on the harmful effects of cooking with solid 

fuels have been made over time. The GBD and WHO estimate draws on epidemiological 

literature that links indoor fine particulate matter (PM) emissions from solid fuel combustion 

with acute lower respiratory infections, chronic obstructive pulmonary disease (COPD), lung 

cancer, cataracts and low birth weights (Dherani et al., 2008; Ezzati and Kammen, 2002; Kurmi 

et al., 2010.; Pokhrel et al., 2005; Smith et al., 2004).  The estimates are believed to be 

underestimated as the values exclude the full health impacts of households cooking with 

unprocessed solid fuels on asthma; tuberculosis; childhood nutritional deficiencies, including 

anemia and stunted growth; blindness; maternal depression; cognitive impairment in the young 

and old; upper respiratory, digestive, and cervical cancers. 

 A study of domestic workers in rural Nepal found that they were exposed to average respirable 

dust concentrations of 1400 µg /m3 which is more than the current UK limit for respirable dust 
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(4000 µg/m3 ). High respirable dust concentrations and exposures are thus likely to produce 

respiratory illness to the Homemakers who spend a large proportion of their lives indoors in 

these. Exposure can be controlled by the use of different fuel types and/or the use of flued 

stoves. 

Indoor levels of particles in developed countries are much lower than in developing countries 

and this is generally attributable to the advancement in technology for general household 

activities and also the use of cleaner fuels (such as liquefied petroleum gas, electricity and 

natural gas) for cooking and heating. However, there are still observed risks to health in people 

exposed to indoor air in these locations. Legislation relating to air pollutant exposure in 

developed countries is normally based upon ambient outdoor concentrations, potentially 

leading to inadequate protection of the general public who spend the majority of their time at 

home, offices or other enclosed locations where the concentrations of some pollutants are often 

much higher than ambient levels (Marcazzan et al., 2001). Knowledge of the indoor 

environment is limited and is of great importance as the majority of people have been found to 

spend about 80-90% of their time indoors in many countries (Scapellato et al., 2009, Koistinen 

K.J., 2001, Delgado-Saborit et al., 2011). Also the indoor environments have been found to be 

affected by factors such as the design of the buildings, insulation and ventilation in order to 

ensure an adequately controlled environment for thermal comfort, which can also affect level 

of individual exposure (Tan et al., 2012). The level of exposure from cooking emission are 

generally affected by certain factors which can include things like the fuel type used, cooking 

techniques, home ventilation, ingredients used during food preparation and kitchen location. 

The general population is exposed to cooking-related risk regardless of race, age, wealth and 

cultural food preferences as cooking is an important aspect of human culture (Kim et al., 2011). 

There is generally a big gender difference for exposure to cooking in many countries as women 

tend to do most of the cooking and by this children are similarly exposed as a good number of 
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them are with their mothers during cooking and these group of people tend to spend longer 

periods of time at home (Balakrishnan et al., 2015). As such women have been found to 

experience higher personal exposure levels than men and therefore higher relative risk to 

develop adverse health outcomes due to their greater involvement in daily cooking activities 

(Smith et al 2014). Evidence from several countries shows that female cooks are exposed to 

significantly higher particulate matter emissions than men, up to four times men’s levels in 

Kenya and up to double the level of men in South Asia studies (Dasgupta et al., 2006; 

Balakrishnan et al., 2004; Ezzati & Kammen., 2002; Smith et al., 2007). With some studies 

from Senegal, Ghana, and Peru, demonstrating evidence of greater incidence of respiratory 

illness and eye disease in women in solid fuel-using households based on self-reported 

household data (in Peru respiratory illness symptoms were30% in women and 22% in men; in 

Ghana 74% in women and 13% in men) (Adrianzen, 2011; Bensch & Peters, 2012; Odoi, 2010); 

The processes used in cooking such as frying, roasting, grilling, boiling and broiling contribute 

to pollutant emissions and are affected by ingredients, recipes and procedures, fuel types, 

temperature and extraction/ventilation equipment (Zhang et al., 2010).  Table 2 summarises the 

cooking styles, ingredients and oils used for some common cultural culinary techniques. 

Cooking contributes particles to outdoor as well as indoor air.  Commercial cooking emissions 

may have contributed to the exceedance of the Federal PM2.5 air quality standards in certain 

regions such as Pittsburgh, Pennsylvania, where meat charbroiling was shown to contribute to 

carbonaceous PM by Cabada et al. (2002). Commercial cooking has been identified to be an 

important contributor to secondary organic aerosols (SOA) condensation of gaseous organic 

emissions following photochemical processes), organic carbon(OC) and elemental carbon(EC) 

in the urban environment (Roe et al., 2005). Rogge et al. (1991) reported that 21% of the 

primary fine organic aerosols in the Los Angeles area in the 1980s were generated by 

charbroiling and meat cooking activities which was in agreement with previous studies in the 
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area (Hildemann et al., 1991b).  A similar study in 1997 Denver Colorado, the Northern Front 

Range Air Quality Study (NFRAQS), found that meat cooking contributed about 15% of pm2.5 

organic aerosol concentrations (Watson et al., 1998). 

 Recently a study  in New York City (NYC) using a High-Resolution Time-of-Flight Aerosol 

Mass Spectrometer (HR-ToF-AMS) identified that cooking and traffic were two distinct and 

mass-equivalent Primary Organic Aerosol  sources, contributing 30% of the total Organic 

Aerosol (OA) mass collectively during the period (Sun et al., 2011). The average mass 

concentration of Cooking OA was 1.02 μg m−3 which was higher than the mass concentration 

of Hydrocarbon like OA (0.91 μg m−3), which was surprising as the sampling site was actually 

close to two major highways (<1 mile), giving a clear indication that cooking activities were 

an important source of primary particles in NYC.  

 A prior air quality campaign at Beijing in 2008  found that 24.4% of total organic mass was 

similarly attributed to cooking related organic aerosols, with a similar use of a HR-ToF-AMS 

(Huang et al., 2010) . 

Measurement of particle number and size distribution of particles generated during cooking 

has been carried out in various studies to provide a better understanding of characteristics of 

particles generated during cooking (Abt et al., 2000; Buonanno et al., 2009;Dennekamp et al., 

2001; See and Balasubramanaian., 2006a; Wallace et al., 2004; He et al., 2004a).    

Several studies have shown evidence of adverse effects on human health from cooking 

emissions (Ko et al., 2000, Yu et al., 2006). An association was found between lung cancer and 

oil fumes from Chinese cooking in non smoking Taiwanese women in China by Ko et al., 

(2000). Lung cancer risk was found to be increased with the number of meals per day to about 

threefold for women who cooked these meals each day. They ascribed this finding mainly to 

the frying of ingredients in oil in Chinese cooking, which produces plenty oil fumes to which 

the cooks were exposed. Higher risk of occurrence was observed in women who wait until the 
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oil reached a high temperature before cooking the foods and those that do not make use of a 

fume extractor.   

Table 2  General cultural styles of cooking and common ingredients, oils and spices used 

during cooking. 

 
COOKING 

STYLE 

METHOD INGREDIENTS OIL SPICES 

Chinese Stir fry, 

simmer, 

steam roast 

stew 

MAIN- Meat type- 

Pork, sea food, poultry, 

beef, 

Vegetable-cabbage, 

carrots, cucumber, 

broccoli 

OTHERS- Eggs, 

ginger, hot pepper, 

scallion, garlic, rice, 

flour, peanuts, fruits 

Soy beans 

Peanut oil 

Canola oil 

essence of chicken, salt, peanut 

oil, light soy source, sugar  

Western Grill, broil, 

roast, deep 

fry, stew,  

 

MAIN -Meat type-beef, 

chicken 

Vegetables-carrots, 

broccoli,  

OTHERS - milk, flour 

Corn oil, 

vegetable oil 

olive oil,  

Salt, black pepper, garlic, basil, 

parsley 

Fast Food Deep fry, 

stew 

MAIN - Meat type- 

beef, chicken,  

Potatoes 

Vegetable, 

butter, corn oil 

Salt 

African Deep fry, 

boiling, stew 

MAIN- Meat- beef, 

chicken, fish 

Vegetables-spinach  

OTHERS- yam, rice, 

plantain, banana. 

Ground nut oil, 

palm oil, 

vegetable oil 

Thyme, curry 

Indian 

 

Deep fry, 

boiling, stew 

MAIN- Meat- fish and 

chicken 

OTHERS-  rice, flour, 

beans, lentils, pearl 

millet, wheat flour, 

milk, yoghurt, plantain. 

 

 

. 

Vegetable oil, 

peanut oil, 

mustard oil, 

coconut oil, 

sesame oil, 

Chilli pepper, black pepper, 

mustard seed, cumin, turmeric, 

ginger, cardamom, cinnamon, 

clove, garam masala, coriander, 

garlic, mustard seeds, nutmeg, 

mint  

 

Malay Deep fry, 

boiling, stew 

MAIN- Meat-Fish, 

squids, prawns, crabs , 

chicken, beef and 

mutton. 

OTHERS-rice, noodles, 

yoghurt, coconut milk. 

Vegetable oil, 

coconut oil, 

sesame oil, 

Lemongrass, shallots, ginger, 

chillies, garlic, turmeric, lime 

leaves, laksa leaves, wild ginger 

flower buds or torch ginger and 

screwpine leaves, fennel, cumin, 

coriander, cardamom, cloves, 

star anise, mustard seeds,  and 

nutmeg 

 

 

Metayer (2002) also observed an elevated incidence of cancer among non-smoking women 

who had long term exposure to cooking fumes (Metayer et al., 2002). A territorial-wide survey 
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in Hong Kong by To et al., (2007), found that the oil fumes collected from exhausts of 15 

restaurant kitchens sampled, contained carcinogenic compounds such as PAHs and aromatic 

amines and some gas-phase aliphatic hydrocarbons(To et al., 2007). These compounds 

generated from the fumes emitted from the cooking oil combustion during the process of 

stirring or deep-frying can condense on the surfaces of particles. The exposure to carcinogenic 

compounds released from the cooking were likely causes of the high incidence of cancers in 

cooks as identified.  

Another analysis of respiratory illnesses in preschool children in Hong Kong revealed that 

household gas cooking was associated with respiratory illnesses and a dose-response 

relationship was observed between the frequency of gas cooking and occurrence of respiratory 

illnesses in area with relatively low outdoor air pollution. The health impact of gas cooking on 

the respiratory health of the subjects was assumed to also have resulted from the exposure to 

cooking fumes and also nitrogen dioxide (Wong et al., 2004).  

Generally the risk associated with cooking is still poorly understood as such awareness is 

necessary to ensure adequate protection of health for the general public. 

1.4 Emissions from cooking 

Studies of cooking emissions have been carried out in both real life kitchens and in controlled 

environments.  It is assumed that in controlled experimental setups, the measurements are 

influenced mainly by the fuel used and the food being cooked while in actual real life kitchens 

measurement of emissions are influenced by many factors such as room arrangement, building 

materials, outdoor infiltration, other combustion devices, ventilation, and cooking methods 

(Huboyo et al., 2011).  

Visible fumes are generated during the cooking process, which are usually due to 

submicrometer sized particles, which consist of oil droplets, combustion products, steam from 

water in the food being cooked and condensed organic pollutants. The particulate matter (PM) 
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generated is generally within the ultrafine particle (UFP) - which represents particles of 

diameter less than100 nm - and fine PM (PM2.5) size ranges. The physical stirring of food has 

been found to lead to the generation of large aerosols due to the process of splashing of the 

ingredients (Long et al., 2000). The combustion process associated with cooking can lead to 

the formation and  direct emission of ultrafine particles (UFP) to the atmosphere, and hot 

vapours in the cooking fumes may also cool and nucleate to form more UFP (Sioutas et al., 

2005, Lai and Ho, 2008). These particles may contain organic substances, such as polycyclic 

aromatic hydrocarbons (PAH) and heterocyclic amines, adsorbed on their surfaces (Ho et al., 

2002).   

There is a scarcity of national inventories of cooking activities, but an attempt was made by 

Roe et al. (2005) to compile a national emission inventory for commercial cooking in the 

United States as listed in Table 3. For comparison, data for highway vehicles extracted from 

the National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data for the same year 

(Chappell et al., 2003), show that although traffic emits orders of magnitude more CO and 

VOC than cooking, particulate matter emissions from cooking are comparable with those 

emitted from highway vehicles.  This is consistent with a study of Li et al. (2003), who found 

that the emission rates of total PAH from cooking sources in the study city (i.e. emissions from 

both restaurants and home kitchens), were slightly lower than those for traffic sources in a 

representative city of Taiwan (8,973 kg/year for cooking against 13,500 kg/year for traffic). 

Nonetheless, they observed that the emission rate for B[a]Peq toxic equivalent for cooking 

sources was much higher than that from traffic sources (675 kg/year from cooking and 61.4 

kg/year emitted from traffic sources). This indicated that cooking PAH may cause much more 

serious problems than traffic sources in terms of carcinogenic potency (Li et al., 2003).  
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Table 3  National emissions rate (tonnes/year) of criteria pollutants from commercial cooking in the USA 

(Roe et al., 2005) and for highway vehicles (Chappell et al., 2003)  

   

 

Pollutant 
Total 

charbroiling 

Deep 

frying 

Flat 

griddle 

frying 

Clamshell 

griddle 

frying 

Under-fired 

charbroiling 

Conveyorized 

charbroiling 

 

Highway 

vehicles 

VOC 115 1,170 39 940 7,200 2,100 4,400,000 

CO 33,000  1,900  23,700 7,400 48,400,000 

PM2.5 79,300  11,900 910 58,300 8,200 135,000 

PM10 85,500  15,700 1,100 60,300 8,500 192,000 

PAH 

total 
206  41  122 43  

 

1.5 Particle mass concentration 

 

The PTEAM Study (Particle Total Exposure Assessment Methodology) performed in the US, 

reported around 20 µg/m3 higher particle concentrations in houses where cooking took place 

during their monitoring than those house where no cooking occurred (Wallace, 1989). They 

reported that the proportion of PM2.5 and PM10 due to cooking represented 25% for both particle 

sizes. This proportion increased to 65% and 55%, respectively, when considering indoor 

sources alone (Ozkaynak et al., 1996). The subjects selected in the study were found to have 

high PM concentration which was finally attributed to personal cloud made up of PM matter 

from cooking, cleaning or living with a person that smokes. Source apportionment of PTEAM 

ambient and personal exposure samples using a combined receptor model found that cooking 

was the largest contributory source of PM indoors, responsible for about 52.5% of the personal 

exposure samples and 43.2% of residential indoor concentrations (Zhao et al., 2006). After 

1,000 hours of cooking, they also found that the mean PM2.5 personal exposure increased an 

average of 56 µg/m3 while cooking activities took place, and that cooking increased the overall 

24-hours personal exposure about 2.5 µg/m3 in those persons that had cooked during the 

sampling day (Wallace et al., 2006). 
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A study to characterize indoor sources of particles conducted in Boston, USA, made 

measurements of particle size and volume concentration over 6 days in four non-smoking 

households equipped with gas and electric stoves (Abt et al., 2000). The monitoring equipment 

was placed in a single indoor location adjacent to the kitchen and living room and from the 

data obtained, it was found that the highest mean peak mass concentrations were for barbequing 

and sautéing for the PM0.02-0.5 and PM0.7-10 respectively, whilst the lower mean peak 

concentrations were found for frying and oven cooking or toasting for the same size ranges 

respectively  (Abt et al., 2000) as shown  in Table 4 .  

Another US study found that the average PM2.5 concentration due to cooking over 195 cooking 

events was about 5.5 µg/m3 with a standard error of 2.3 µg/m3 (Allen et al., 2004). In Europe, 

a study made a comparison of elderly residents in Amsterdam (47) and Helsinki (37), and found 

that the estimated contribution from cooking ranged from 1.9 µg/m3 for indoor PM2.5 in 

Helsinki to 3.4 µg/m3 for PM2.5 personal exposure concentrations (Brunekreef et al., 2005). 

Rates of emission of aerosol have been reported to vary based on type of appliance used, the 

cooking conditions used and fat content of meat (McDonald et al., 2003).  In an experiment 

where hamburger, steak and chicken were grilled and charbroiled, McDonald et al. (2003) 

found that the PM2.5 emission rate for charbroiling meats ranged between 4.4 to 15 g/kg. The 

largest quantity of PM2.5 was emitted by hamburger (15 g/kg) which had higher fat content 

(30%) and were cooked on a char broiler. These results are consistent with data reported by 

Hildemann et al. (1991a). McDonald et al. (2003) reported that charbroiling produced higher 

concentrations than frying, 12-46 g/kg meat when charbroiling vs. 0.57 g/kg meat when frying. 

They also reported that charbroiling lean meat produced less concentrations of particles in the 

smaller size range (<20 nm) and in the larger size range (>100 nm) than regular meat. 

Similarly, Buonanno et al. (2009) found that gas stoves emitted more particles  than an electric 

stove when frying resulting in higher indoor concentrations when gas stoves were used (60-
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118 µg/m3) than when electric stoves were employed (12-27 µg/m3); and that emission rates 

were considerably affected by the type of food used such as listed in Table 2. Increased 

emissions measured at the source were reported to be a function of increased cooking 

temperature. Foods containing a higher percentage of fat generated higher emission rates than 

those with less fat percentage. They reported higher aerosol mass emission when cooking fatty 

foods resulting in higher indoor concentrations (280-389 µg/m3) than when cooking vegetables 

(78 µg/m3). Particle emission factor varied significantly also with type of oil used. Sunflower 

oil generated the lowest mass emission factors, whilst the highest emissions were from olive 

oil (Buonanno et al., 2009). Glytsos (2010) reported that frying of onions in olive oil in a 

controlled room emitted PM2.5 increasing the indoor concentration in the range of 70 to 

600 µg/m3 (Glytsos et al., 2010). 

 Several studies have found that Asian style cooking emits more particulate matter than 

Western cooking with concentrations of PM2.5 ranging 30 to 1,400 and 20 to 535 μg/m3 as 

reported by various groups (Lee et al., 2001a, Levy et al., 2002, He et al., 2004c) 

A summary of the main studies reporting aerosol concentration emitted from cooking and the 

reported concentrations can be found in Table 4. 

1.6 Particle size distribution 

The size distribution of aerosols emitted from cooking activities has been reported in several 

studies whose methodology and study description is summarised in Table 5 and results are 

compiled in Table 6. Generally some of these studies have shown that indoor particle 

concentrations are substantially affected by cooking activities, cleaning and the movement of 

people (Abt et al., 2000, Diapouli et al., 2011, He et al., 2004a). The largest percentage of the 

measured particles are ultrafine particles (UFP), with modes in the number distribution reported 

generally in the range of 20 to 100 nm as shown in Table 6. 
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He et al. (2004a) studied 15 homes in Australia while cooking was carried out under good and 

poor ventilation for 48 hours. They found that some indoor activities led to an increase in indoor 

particle number concentration of about 1.5-27 times concentrations in comparison with the 

particle number concentration when no indoor source was in operation. They also found an 

emission rate ranging 0.2-4x1012 particles/min and peak submicron number concentrations for 

cooking of 16,000 and 180,000 part/cm3 (He et al., 2004a). 

An investigation of the size distribution of particles emitted from cooking was carried out using 

a scanning mobility particle sizer (SMPS) in a domestic kitchen using five different cooking 

methods, such as steaming, boiling, stir-frying, pan-frying, and deep-frying. Deep-frying was 

found to have the highest particle number concentration, whilst steaming produced the lowest 

particle number concentration. Their observations found that cooking activities using oil 

produce higher concentrations than those using water (See and Balasubramanian, 2006a). They 

reported a 24-fold increase in particle concentration observed between deep frying and 

background concentrations (6.0 × 105 cm-3 compared to background concentrations which were 

2.5 × 104 cm-3) (See and Balasubramanian, 2006a). In another study, they characterised Chinese 

cooking emissions, and found that the average number concentration increased by factor a of 

85 during the cooking periods (7.7x105 part/cm3 compared to 9.1x103 part/cm3 during non- 

cooking hours (See and Balasubramanian, 2006b). 

Yeung and To (2008) examined aerosols generated by commercial food preparation and found 

a lognormal size distribution. Increased cooking temperature resulted in an increased modal 

diameter of aerosols. Higher cooking temperature also increased the normalized number 

concentration sub-micrometer aerosols (between 0.1 and 1.0 µm) (Yeung and To, 2008).   

Siegmann and Sattler (1996) found that diameter and number concentrations of oil droplets 

increased with an increase in temperature. They analysed aerosols from different hot vegetable 

oils and obtained a size distribution with a mean droplet size range of 30 nm at 223oC to 100 
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nm at 256oC.  Particle number concentration increased from 2.25 x 105 part/cm3 to 4.5 x 105 

part/cm3 in the same range of temperatures (Siegmann and Sattler, 1996). 

Dennekamp et al. (2001) studied the generation of ultrafine particles and nitrogen oxides using 

different cooking procedures comparing gas and electric stoves in a laboratory. They found 

higher concentrations of particles in the size range of 15-40nm (and also oxides of nitrogen) 

when cooking on gas (Dennekamp et al., 2001). The smaller particles generated were found to 

grow in size with time during the experiment. The high concentrations of pollutants observed 

were attributed to the absence of ventilation in their laboratory kitchen.  

Frying of onions in olive oil in a controlled room to characterise contributors of particle 

concentrations in indoor environments produced high particle concentrations, ranging between 

9 - 15 × 104 particles cm−3 (Glytsos et al., 2010). High emission of nanoparticles were reported 

during frying (1.15 x 105 part/cm3, mainly 20 nm). However, sometime  after the frying stopped 

(i.e. 45 min later), the number concentration decreased down to 4 x 105 part/cm3 and particles 

become larger leading to a bimodal size distribution indicating a strong coagulation 

effect  (Glytsos et al., 2010), which is consistent with previous studies (Sjaastad et al., 2008, 

Dennekamp et al., 2001). 

A study in an apartment in Taiwan found a range of mode diameters of particles concentrations 

between 30-50nm for domestic cooking processes of scrambling eggs, frying chicken, and 

cooking soup with higher mode diameter for frying chicken (Li et al., 1993). Similarly, in an 

18 month campaign in a four bedroom house consisting of three levels located near Washington 

DC, USA; particles generated from cooking were found to be mainly in the ultrafine range 

(about 90% of total particles), with frying being found to generate more particles than any other 

cooking method (Wallace et al., 2004), consistent with recent studies (Buonanno et al., 2011, 

Huboyo et al., 2011, Hussein et al., 2006).  
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Buonanno et al. (2009) sought to evaluate the influence of temperature, oil, food and stove type 

on particle number, surface area and mass emission factors consequence of cooking with 

different methods such as grilling and frying. They used a Scanning Mobility Particle Sizer 

(SMPS) and Aerodynamic Particle Sizer (APS). They found that frying food with oil using an 

electrical frying pan produced emission factors well below those observed for frying using a 

gas stove. The particle emission factor was also dependent upon the temperature of the stove, 

with values 9 and 4 times higher at the maximum stove power for gas and electric stoves 

respectively (Buonanno et al., 2009), consistent with previous studies of Siegmann and Sattler 

(1996), Dennekamp et al. (2001), Yeung and To (2008) and To and Yeung (2011).  In another 

study by them, they reported high particle indoor concentrations (3 × 104–6 × 105 particles 

cm−3 ) in 14 pizzerias  and  PM1 concentrations of about 10–327 µg m−3 during normal 

ventilation conditions (Buonanno et al., 2010). However most of the particles generated in this 

study are believed to be from the wood burning used to fire the oven, and highlights the high 

particle concentrations that can build up in such microenvironments. In another study, 

Buonanno and colleagues found that frying the same type of food consistently emitted more 

particles than grilling, with a factor of 1.4-1.5 (Buonanno et al., 2011).   

1.7 Organic compounds emitted during cooking  

Cooking involves a wide range of chemical reactions. For instance, many sugars (e.g. 

disaccharides or oligo-saccarides) or carbohydrates undergo hydrolysis when heated with 

water. The hydrolysis reaction breaks down the complex sugar into single ring sugars. If sugars 

are heated further, degradation reactions will occur and the sugar rings will open up to form 

new molecules such as acids and aldehydes. If the temperature is increased sufficiently, the 

degradation products may recombine to form chain-like molecules (Barham, 1950).  In meat 

cooking, fat which occurs as triglyceride (i.e. fatty acids esterified to a glycerol backbone) in 

uncooked meat is hydrolysed or thermally oxidized and produces free glycerol, free fatty acids 
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and mono and diglycerides as shown in Figure 4 (Nolte et al., 1999). The chemical reactions 

that occur between proteins and carbohydrates or sugars during cooking are known as the 

Maillard reactions. These involve initial degradation to amino acids and smaller sugars. The 

acids and aldehydes produced after the opening of the sugar rings react with the amino acids 

to produce a wide range of chemicals (e.g. furanones) (Barham, 1950). 

 

 

 

Figure 4  Break down products of triglycerides (Nolte et al., 1999) 

 

The chemical properties of the aerosols generated during cooking can be measured to further 

provide useful information on the aerosol composition. In most of the studies aimed at 

performing chemical speciation of the cooking aerosol, samples are collected on filters for 

gravimetric determination and to allow subsequent chemical analysis. In some cases, denuders 

are used to collect the vapour phase of semi-volatile components for further analysis. Off-line 

chemical characterisation studies often employ sampling methods which have the potential to 

cause positive artefacts associated with the reaction of trace gases with particles on the filter or 

the filter itself. Negative artefacts may also arise from evaporative loss of semi-volatile 
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components. Strict sampling procedures and guidelines should keep these artefacts to a 

minimum (Harrison and Yin, 2005). 

Table 7 gives details of key studies that have sampled and subsequently analysed the chemical 

composition of aerosols from cooking. Most of the off-line chemical characterisation has been 

done using a GC-MS analytical stage for organic speciation of the cooking emissions, with 

many compounds of interest requiring derivatisation. A summary of specific groups of 

compounds emitted from cooking identified and characterised by these studies appear in Table 

8.  

 

 

 

 

 

 

 

 



 

34 
 

Table 4  Particle mass and number concentration measured in indoor environments close to cooking activities 

 

Reference Location Comment Concentration (µg/m3) Particle Number 

concentration (part/cm3) 

Li et al., 1993 Taiwan Chicken  1.2-2.6 x105 

Siegmann and Sattler, 1996 Switzerland Rapeseed Oil  2.5-4.5 x105 

Abt et al. 2000 US Frying - PM0.02-0.5 29  

Frying – PM0.7-10 19  

Barbequing - PM0.02-0.5 57  

Barbequing - PM0.7-10 12  

Oven cooking - PM0.02-0.5 50  

Oven cooking – PM0.7-10 8  

Sauteing - PM0.02-0.5 42  

Sauteing – PM0.7-10 294  

Toasting - PM0.02-0.5 45  

Toasting – PM0.7-10 8  

Dennekamp et al., 2001 UK Frying vegetables (500 g) – gas stove  1.4 x105 

Frying bacon (4 racers) – gas stove  5.9 x105 

Frying vegetables (500 g) – electric stove  0.11 x105 

Frying bacon (4 racers) – electric stove  1.6 x105 

Bake cake – gas oven  0.9 x105 

Bake cake – electric oven  0.3 x105 

Roast meat and potatoes – gas oven  1.2 x105 

Roast meat and potatoes – electric oven  0.2 x105 

Toast –gas grill  1.4 x105 

Toast – electric grill  1.4 x105 

Lee et al. 2001 

 

China 

 

PM2.5  Chinese hot pot restaurant 81  

PM2.5  Chinese dim sum restaurant 28.7  

Hong Kong PM2.5  Western Canteen 21.9  

Levy et al. 2002 USA PM2.5  food court 200 1.4 x 105 

Wallace et al., 2004 USA Cooking dinner  1.3 x104 

Cooking breakfast  5.7 x103 
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Table 4 Cont. Particle mass and number concentration measured in indoor environments close to cooking activities 

 
Reference Location Comment Concentration (µg/m3) Particle Number 

concentration (part/cm3) 

He et al., 2004a Australia PM2.5  (48h) cooking 37 1.27 x 105 

PM2.5  (48h) cooking pizza 735 1.37 x 105 

PM2.5  (48h) frying 745 1.54 x 105 

PM2.5  (48h) grilling 718 1.61 x 105 

PM2.5  (48h) kettle 13 1.56 x 104 

PM2.5  (48h) microwave 16 1.63 x 104 

PM2.5  (48h) oven 24 6.15 x 104 

PM2.5  (48h) stove 57 1.79 x 105 

PM2.5  (48h) toasting 35 1.14 x 105 

PM2.5   residential kitchen 535.4 2.86 x 104 

He et al., 2004c 

 

China PM2.5 Hunan restaurant 1406  

China PM2.5 Cantonese restaurant 672  

See and Balasubramanian, 

2006a,  See and 

Balasubramanian, 2008 

Singapore PM2.5 Steaming 66 ± 7.6 5.4 x104 

PM2.5 Boiling 81 ± 9.3 6.9 x104 

PM2.5  Stir-Frying 120 ± 13 9.3 x104 

PM2.5  Pan-Frying 130 ± 15 11 x104 

PM2.5  Deep-Frying 190 ± 20 59 x104 

See and Balasubramanian, 

2006b 

Singapore Stir-fry in a wok typical Chinese food 

commercial food stall PM2.5 

286 7.7 x 105 

See et al., 2006 Singapore PM2.5  Chinese stall 202 ± 141  

 PM2.5  Malay stall 245 ± 77  

PM2.5  Indian stall 187 ± 44  

PM2.5  Background 29 ± 8  

Hussein et al., 2006 Czech 

Republic 

Cooking in a stove, frying, oven  0.6-1.8 x105 

Sjaastad et al., 2008 Norway Frying Beefsteak  1.2 x103 (a) 

Yeung and To, 2008 Hong Kong Frying vermicelli with beef  89 x105 

Pan-frying steaks  8.5 x105 

Pan-frying chicken fillets  8.5 x105 

Pan –frying pork chops  8.8 x105 

Hot oil test  6.4 x105 
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Table 4 Cont. Particle mass and number concentration measured in indoor environments close to cooking activities 

 
Reference Location Comment Concentration (µg/m3) Particle Number 

concentration (part/cm3) 

 Buonanno et al., 2009 Italy Grilling in a gas stove at maximum power 

     Cheese 283 1.1 x 105 

     Wurstel sausage 352 1.3 x 105 

     Bacon 389 1.0 x 105 

     Eggplant 78 1.2 x 105 

Frying  50 g of chips in a gas stove at maximum 

power with  

    Olive oil  

118 1.2 x 105 

    Peanut Oil 68 1.2 x 105 

    Sunflower Oil 60 1.1 x 105 

Frying  50 g of chips using an electrical pan with  

    sunflower oil  12 1.4 x 104 

    olive Oil 27 2.6 x 104 

    peanut Oil 13 1.5 x 104 

Buonanno et al., 2010 Italy PM1 range 10-327 
1.1-9.8 x 105 

PM2.5 12-368 

PM10 15-482  

Buonanno et al., 2011 Italy Grilling 100 g cheese  1.8 x105 

Frying 100 g cheese  2.8 x105 

Grilling 100 g bacon  2.0 x105 

Frying 100 g bacon  2.8 x105 

Grilling 100 g pork meat  1.6 x105 

Frying 100 g pork meat  2.3 x105 

Grilling 100 g eggplant  1.6 x105 

Frying 100 g eggplant  2.3 x105 

Grilling 100 g chips  1.5 x105 

Frying 100 g chips  2.3 x105 

Grilling 100 g onion  1.6 x105 

Frying 100 g onion  2.4 x105 

Glytsos et al. 2010 Czech 

Republic 

Frying a slice of onion with olive oil – electric 

griddle 

 1.2 x105 
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Table 4 Cont. Particle mass and number concentration measured in indoor environments close to cooking activities 
 

Reference Location Comment Concentration (µg/m3) Particle Number 

concentration (part/cm3) 

Huboyo et al., 2011 Japan Tofu boiling 22.8 

(1.21-294) 

6.8 x102 (a) 

Tofu frying 41.2 

(1.76-707) 

3.0 x102 (a) 

Chicken boiling 30.8 

(5.36-1,082) 

2.5 x102 (a) 

Chicken frying 101.6 

(1.67-1,366) 

1.1 x102 (a) 

To and Yeung, 2011 Hong Kong Frying vermicelli with beef – gas cooking 

(Domestic kitchen) – PM10 

1,330  

Frying vermicelli with beef – electric cooking 

(Domestic kitchen) – PM10 

1,030  

Pan Frying of meat – gas cooking  

(Domestic kitchen) – PM10 

1,020  

Pan Frying of meat – electric cooking 

(Domestic kitchen) – PM10 

520  

Deep frying of chicken wings – gas cooking  

(Domestic kitchen) – PM10 

890  

Deep frying of chicken wings – electric cooking 

(Domestic kitchen) – PM10 

680  

Deep frying of tofu – gas cooking 

(Commercial kitchen) – PM10 

4,720  

Deep frying of tofu – electric cooking 

(Commercial kitchen) – PM10 

3,980  

Griddle frying of meat – gas cooking 

(Commercial kitchen) – PM10 

2,260  

Griddle frying of meat – electric cooking 

(Commercial kitchen) – PM10 

2,600  

(a) Particles with diameter 0.3 µm <Dp<0.5 µm 
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Table 5  Size distribution studies for cooking aerosols 

 
Study and Country Location and duration Sampling method (a) Food Environmental condition 

Hildemann et al., 

1991a 

 

USA 

Commercial scale kitchen 

 

Sampling port located above the cooking 

surface, below the extractor fan. 

Electrical Aerosol Analyser TSI 

3030 

Meat cooking during frying and 

charbroiling extra-lean and regular 

hamburger meat 

Mechanical ventilation 

Li et al., 1993 

 

Taiwan 

Domestic kitchen with a gas stove 

 

Sampling ports 3m away from the gas stove 

DMA TSI 3932;  

CPC TSI 3022 

scrambling eggs, frying chicken, and 

cooking soup 

Windows and doors were closed 

during measurements 

Siegmann and 

Sattler, 1996 

 

Switzerland 

Laboratory kitchen 

Hot oil at 223, 236 and 256oC. 

SMPS Rapeseed oil Closed window 

Abt et al., 2000a, b  

 

USA 

Domestic kitchen with gas and electric stoves. 

Samples collected over 6-day periods 

 

Equipment located in an indoor location 

adjacent to the kitchen. 

SMPS TSI 3934; 

Electrostatic classifier TSI 3071A; 

CPC TSI 3022a; 

APS TSI 3310A 

Frying, sautéing,  barbequing, oven 

cooking and toasting 

Open doors 

Dennekamp et al., 

2001 

 

UK 

Laboratory kitchen with gas and electric 

stoves 

 

Sampling inlet at face level in front of the 

cooker 

SMPS TSI 3934; 

CPC TSI 3022A 

 

 

Vegetable oil used to stir-fry 500 g 

of vegetables and also 5 rashers of 

bacon 

No ventilation. 

All windows and doors were 

closed. 

Wallace et al., 2004 

 

USA 

Domestic kitchen using gas stove 

 

Measurements performed in the duct of the 

ventilation system. 

DMA Electrostatic classifier TSI 

3071; 

CPC TSI 3010; 

APS TSI 3320; 

Optical particle counter model 500-I 

Climet Instruments 

 

Deep frying (peanut oil) of flour 

tortillas; stir fry (peanut oil) 

vegetables and frying eggs with 

butter. 

No ventilation. 

 

Forced ventilation (recirculation 

of air)  

(a) DMA - Differential Mobility Analyser; SMPS - Scanning mobility particle sizer; APS - Aerodynamic particle sizer;  CPC - Condenser Particle Counter 
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Table 5 Cont. Size distribution studies for cooking aerosols 

 
Study and Country Location and duration Sampling method (a) Food Environmental condition 

Wallace et al., 2006 

 

USA 

Personal and indoor (living room) 

measurements for 7 days in free-style living 

conditions. 

Real time concentrations: 

Personal and indoor sampling using 

optical particle counter (personal 

MIE DataRAM) 

 

Integrated exposure: 

Personal – PEM gravimetric monitor 

Indoor – Harvard impactor monitor 

Normal cooking activities No control on ventilation 

Hussein et al., 2006 

 

Czech Republic 

Domestic kitchen using an electrical stove and 

adjacent living room. 

Continuous measurement for 15 days at 3 min 

intervals 

 

Sampling ports at 1.5m from the ground and 

1m (kitchen) and 5m (adjacent room) from the 

stove. 

SMPS TSI 3934C; 

 

Normal cooking activities (e.g. 

boiling potatoes, soup, rice, pasta, 

frying potatoes or pancakes, toasting 

and baking chicken in the oven. 

Natural ventilation 

See and 

Balasubramanian, 

2006a, b 

 

Singapore  

Domestic kitchen 

 

Inlets located 0.5 m above the gas stove 

SMPS TSI 3034  Steaming, boiling, 

pan-frying, 

stir-frying, 

and deep-frying a pack of 150 g 

plain tofu (soybean curd) using corn 

oil. 

No ventilation.  

All windows and doors were 

closed. 

Sjaastad et al., 2008 

 

Norway 

Laboratory kitchen (19m2) with electric stove 

in the middle of the floor with kitchen hood 

and adjoining room. 

 

Sampling ports 1m above the floor (all 

location) and 1.3 away from the stove (in the 

kitchen). 

Kitchen: 

Particle counter Met One Model 

237B; 

SMPS TSI-3936 

 

Adjoining room : 

Electrostatic classifier TSI-3080 

Ultrafine CPC TSI-2025A 

Frying a beef steak with margarine 

at maximum power. 

Mechanical ventilation. 

(a) DMA - Differential Mobility Analyser; SMPS - Scanning mobility particle sizer; APS - Aerodynamic particle sizer;  CPC - Condenser Particle Counter 
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Table 5 Cont. Size distribution studies for cooking aerosols 

Study and Country Location and duration Sampling method (a) Food Environmental condition 

Yeung and To, 2008 

 

Hong Kong 

Laboratory kitchen (168m3) with gas stove and 

electric griddle. Fume hood installed above 

cooking area. 

 

SMPS TSI 3734; 

Electrostatic classifier TSI 3071A; 

CPC TSI 3022A 

Chinese style – frying vermicelli 

with beef- in gas stove;  

Western style – pan-frying steaks, 

chicken fillets or pork chops - in 

electric griddle and hot oil in electric 

griddle. 

No ventilation 

Buonanno et al., 

2009 

Buonanno et al., 

2011 

 

Italy 

 

Open plan laboratory kitchen (80m2) using gas 

and electrical stoves. 

 

Sampling 2 meters away from the stove for 8-

10 mins. 

SMPS TSI 3936 

APS TSI 3321 

CPC TSI 3775 

Nanometer Aerosol sampler (TSI 

3089) 

Fry and grill different ingredients: 

 

pork meat, eggplant, chips and 

cheese, bacon and oils (olive oil, 

peanut oil and sunflower oil) 

Minimum ventilation - doors and 

windows closed. 

 

Normal ventilation -doors and 

windows closed with mechanical 

ventilation in operation. 

Buonanno et al., 

2010 

 

Italy 

 

15 pizzerias 

 

Sampling 2 meters away from the stove for 8-

10 mins. 

SMPS TSI 3936 

APS TSI 3321 

CPC TSI 3775 

Nanoparticle surface area monitor 

TSI 3550 ; 

PM10, PM2.5 and PM1 measured 

using a DustTrak DRX Aerosol 

Monitor TSI 8534 

Baking pizza Normal commercial kitchen 

ventilation. 

Glytsos et al., 2010 

 

Czech Republic 

Laboratory room (60m3) 

Electric stove 

 

Sampling ports 0.9 m above the floor. 

DustTrak Aerosol Monitor TSI 

8520; 

P-Trak Ultrafine particle counter 

TSI 8525 ; 

GRIMM SMPS+C system -

GRIMM, CPC Model 5.403 and 

Long Vienna DMA. 

Frying half of an onion diced in hot 

olive oil (15 mL). 

Mechanical ventilation using the 

air conditioning system. 

Huboyo et al., 2011 

 

Japan 

 

In a kitchen (8.5 m2) with fumehood and 

adjoining room (3 m2).  

Cooking with single gas stove at medium 

setting. 

 

Sampling ports 1.1m away from the stove (in 

the kitchen) and 5 m away in the adjoining 

room. 

Sioutas cascade Impactor (SKC); 

 

PM2.5 UCB optical particle counter 

(Barkeley Air Monitoring Group 

Frying in sunflower oil and boiling 

400 g of soybean curd (tofu) and 400 

g of chicken  

Ventilation system (standard 

exhaust fan); 

 

Natural ventilation (windows 

opened) 

(a) DMA - Differential Mobility Analyser; SMPS - Scanning mobility particle sizer; APS - Aerodynamic particle sizer;  CPC - Condenser Particle Counter 
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Table 6 Particle diameter mode (i.e. diameter representing highest particle number 

concentration) of  particle number size fraction distribution from cooking activities 

 

Reference Location Comment Diameter (nm) 

Li et al., 1993 Taiwan Frying Chicken 30-50 

Siegmann and Sattler, 

1996 

Switzerland Rapeseed Oil 30-100 

Kleeman et al., 1999 USA Meat charbroiling 180-320 

Abt et al., 2000a,b US Size range 

Increasing diameter during cooking 

Oven cooking event 

20-70 

Wallace et al., 2004 USA Cooking dinner 18-50 

Cooking breakfast 10-50 

Yeung and To, 2008 Hong Kong Frying vermicelli with beef 140 

Pan-frying steaks 150 

Pan-frying chicken fillets 115 

Pan –frying pork chops 102 

Hot oil test 107 

Buonanno et al., 2009 Italy Grilling in a gas stove at maximum power 

     Bacon 50 

     Cheese 40 

    Eggplant 20 

    Wurstel sausage 40 

    50 g of chips fried with sunflower oil  50 

    50 g of chips fried with olive Oil 61 

    50 g of chips fried with peanut Oil 50 

    50 g bacon grilled on a gas stove 60 

Glytsos et al., 2010 Czech 

Republic 

Frying a slice of onion with olive oil 20 – 45 

Buonanno et al., 2011 Italy Frying 100 g mozzarella 80 

Frying 100 g chips 60 

Grilling 100 g bacon 90 

Grilling 100 g eggplant 40 
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Table 7  Sampling, extraction and analysis of emission from cooking. 

STUDY & RESEARCH 

OBJECTIVES 

SAMPLING CONDITIONS SAMPLE 

SUBSTRATE PRE-

TREATMENT 

EXTRACTION PROCEDURE ANALYTICAL METHODOLOGY COMPOUNDS 

ANALYSED 

Rogge et al., 1991 

Characterise  organic 

compound composition 

emitted during meat 

charbroiling 

1.8 µm cyclone upstream of 3 pumps  

Flow rate 9.0-9.6 L/min 

Sampling duration: 70-80 min 

47mm teflon and 

quartz fiber 

Samples were a composite of 15 quartz 

filters  

Extraction: Hexane (two times)  and 

with  benzene:2- propanol  (2:l; three 

times) 

Extraction method: mild sonication 

Final volume reduced to 200-500  µL .   

Derivatization: one aliquot of  the 

extract was derivatized  with 

diazomethane to convert organic acids 

to their methyl ester analogues 

GC/MS 30-m column N-alkanes, branched 

alkanes, alkenes, alkynes,  

ketones,carbonyls,aromatic 

hydrocarbons, lactones, 

amides, saturated and 

unsaturated fatty acids, 

dicarboxylic acids, furans 

amides, steroids. 

Wu et al., 1998 

Determination of 

mutagenic PAH emitted 

from cooking oils 

Personal sampling pump  

Flow rate: 2 l/min 

Sampling duration: 30 min. 

37-mm Grade AA 

glass fiber filter paper 

Extraction with a 200 ml acetone then 

concentrated to 10 ml in a vacuum 

rotary evaporator and evaporated to 

dryness under nitrogen stream. Residue 

was redissolved in 2ml for analysyis.  

HPLC system (LH-20 column 15 mm 

id=190 mm) for PAHS. For detection of 

aminopyrenes a HPLC Hewlett Packard 

1050 was used equipped with a 25-cm 

Nucleosil C column and spectrofluorimeter. 

polycyclic aromatic 

hydrocarbons; 

nitro-polycyclic aromatic 

hydrocarbons  

Schauer et al., 1999a 

Characterise  organic 

compound composition 

emitted during meat 

charbroiling 

 

 

 

Schauer et al., 2002 

Characterise  organic 

compound composition 

emitted during oil 

cooking 

Emissions sampled in the ventilation system of a commercial 

kitchen downstream of the filter and grease extractor. Sampling 

time was 85 min. 

Dilution tunnel: mix exhaust emissions with 25- to 180-fold 

excess of HEPA filtered air. 

1.8 µm AIHL-design cyclone separators upstream of samplers.  

Flow rate in each sampling train was 10 L/min, except sampling 

train a) at 30 L/min and sampling train g) at 0.2 L/min. 

Organic compounds collected using: 

a) 1 XAD coated denuder upstream of 3 quartz filters in 

parallel followed by 2 PUFs in series. 

b) 3 quartz filters followed each by 2 PUFs in series. 

EC/OC collected using: 

c) 2 quartz filters in series  

Mass emissions, trace metals and organic acids collected using: 

d) Teflon filter upstream of two KOH impregnated quartz 

fibre filters  

Mass emissions & soluble ions collected using: 

e) Teflon filter  

VOC collected using: 

f) 6-L SUMA canister downstream of teflon filter e) 

Carbonyls collected using: 

g) DNPH-impregnated C18 cartridges 

Quartz fibre filters 

prebaked at 550ºC for 

12 h 

 

Denuders coated 

following protocol 

described in Gundel et 

al. (1995) 

 

PUF plugs were pre-

cleaned with 4 

successive extractions 

of 

Dichloromethane/acet

one/hexane (2:3:5). 

Solvent was removed 

by compressing the 

PUFs. Plugs were air 

dried in a dark organic 

free room, and stored 

in pre-cleaned glass 

jars at -20oC. 

 

 

 

Quartz fibre filters: 

Extraction: Hexane (two times)  

followed by benzene/2- propanol  (2:l; 

three times) 

Extraction method: mild sonication 

 

Denuders and PUFs: 

Extraction: 

Dichloromethane/acetone/hexane 

(2:3:5) (4 times) 

Extraction method: Manual shaking 

 

In all cases, extracts from each aliquot 

were combined and concentrated to 250 

µL Concentrated extract was split in 

two. 

Derivatisation: one aliquot of the extract 

was derivatised with diazomethane to 

convert organic acids to their methyl 

ester analogues. 

 

C18 cartridges were extracted as 

described in Grosjean et al. (1996) 

 

Teflon filters were extracted in water for 

water-soluble ions. 

 

 

Organic compounds: 

Denuder, filter and PUF extracts (derivatized 

and underivatized aliquots) were analysed by 

GC/MS Hewlett Packard 5890 series fitted 

with a 30m, 0.25 mm inner diameter, 0.25 

µm film thickness HP-1701 capillary 

column. 

 

Total non-methane organic gases and 

individual VOCs (C1-C10) were analysed 

from the SUMA canisters by GC/FID as 

described in Fraser et al. (1997). 

 

Carbonyl collected in the C18 cartridges 

were eluted with 2 mL acetonitrile analysed 

by LC/UV as described by Grosjean et al. 

(1996). 

 

Organic and elemental carbon (EC/OC) as 

described by Birch and Cary (1996). 

 

Trace metals were analysed by XRF. 

 

Soluble ions were analysed by AA and IC. 

N-alkanes, branched 

alkanes, alkenes, alkynes,  

ketones, carbonyls, 

aromatic hydrocarbons, 

lactones, amides, saturated 

and unsaturated fatty acids, 

dicarboxylic acids. 
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Table 7.   Cont. Sampling, extraction and analysis of organic emissions from cooking 

STUDY & 

RESEARCH 

OBJECTIVES 

SAMPLING CONDITIONS SAMPLE 

SUBSTRATE PRE-

TREATMENT 

EXTRACTION PROCEDURE ANALYTICAL METHODOLOGY COMPOUNDS 

ANALYSED 

Svendsen et al., 2002 

Characterise aldehydes 

and fat aerosol collected 

in the breathing zone of 

the cook in fumes from 

commercial restaurants. 

 

Personal exposure sampler with inlets located in the shoulder 

of the cook of 19 commercial kitchens using deep frying 

devices equipped with ventilation hoods.   

Aldehydes were collected a sampling device containing silica 

impregnated with 2,4-dinitrophenyl hydrazine. Flow rate was 

1.5 L/min during 1.5-2.5 hours. 

Fat aerosol collected onto pre-weighted one glass fibre filter 

(Nucleopore AAA). Flow rate, 2 L/min during 65 to 200 mL. 

Total number concentration was measured with TSI 3936 

SMPS used to measure the  

PAHs were collected onto glass fibre filters in a filter holder 

and 2 XAD-2 tubes downstream. Flow rate, 1 L/min during 200 

min. 

None Fat aerosol extracted with 5 mL of 

1,1,2-trichloro-1,2,2-trifluoroetahne. 

 

The aldehydes were reacted with 2,4-

dinitropheynlhydrazin (DNPH) to form 

the corresponding stable hydrazone 

derivatives. The derivatives were 

eluted with HPLC grade acetonitrile. 

 

 

Fat aerosol was determined using a FT-IR 

(Perkin Elmer 1605). 

 

The eluate was injected onto a C18 reverse 

phase column and detected using a UV 

detector operating at 360 nm.  

 

 

 

 

Aldehydes, fat aerosol  

McDonald et al., 2003 

Characterise  organic 

compound emission 

composition emitted 

during charbroiling and 

grilling of chicken and 

beef  

University lab kitchen following commercial standard 

procedures. 

Emissions collected at the end of a residence chamber to allow 

the gas/particle equilibrium.  

2.5 µm cyclone separators upstream of samplers.  

Flow rate in each sampling train was 113 L/min. 

Samples collected on Teflon filter for PM2.5 and elements. 

Samples collected on quartz filters for carbon and ion analysis 

Samples collected on Teflon-impregnated glass fibre (TIGF) 

filter followed by a PUF/XAD-4/PUF sandwich cartridge for 

speciated particle-phase and semi-VOCs. 

CO was measured using non-dispersive infrared analyser. 

 

Quartz fibre filters 

were baked at 900ºC 

for several hours.  

XAD-4 was solvent 

extracted in a Soxhlet 

with methanol 

followed by 

dichloromethane. 

TIGF filters were 

cleaned by sonication 

in CH2Cl2 for 30 min 

followed by another 

30 min sonication in 

methanol. 

PUFs were rinsed with 

distilled water and 

Soxhlet extracted with 

hexane/ether (90:10), 

followed by acetone. 

 

 

 

Half of the quart fibre filter was 

extracted with 10 mL of distilled-

deionised water. 

 

 

 

TIGD filters and PUF/XAD-4/PUF 

sorbent were solvent extracted and 

combined for analysis. 

PM2.5 mass determined by gravimetric 

analysis. 

 

Ionic species determined by ionic 

chromatography. NH4
+ was analysed by 

indolphenol automated colorimetry. Water-

soluble K+ was analysed by atomic 

absorption spectrometry. 

 

Carbon by thermal/optical reflectance. 0.56 

cm2 punch waa analysed for OC/EC by the 

TOR method. 

 

Elements by X-ray fluorescence. 

 

Organics determined with an Agilent 

GCMS ( GC Model 6890plus, MSD Model 

5973N) 

equipped with a 60m x 0.25mm x 0.25 um 

DB5-MS capillary column. 

PM2.5, CO, OC/EC, 

inorganic species, 

elements, lactones, 

sterols, PAHs, 

biphenyls,  

Zhu and Wang, 2003 

Characterise  PAH 

emitted in commercial 

and domestic Chinese 

kitchens 

A sampler was located in a new kitchen 0.5 m from the pan 

(cooking methods) and in the centre of the kitchen (domestic 

and commercial kitchens). In all cases, the sampler was 1.5 m 

above the ground level. All doors and windows were closed 

during cooking. Electric hobs were used for cooking. 

Samples were collected over 100 mins to test different cooking 

methods, and over 2 consecutive days for 12-h (8:00 – 20:00) 

in domestic and commercial kitchens. 

Low noise small samplers (MP-15CF) operated at 1.0 l/min 

equipped with a Whatman glass filter (GFF, 25 mm) collected 

particle bound PAHs and a XAD-2.5 g cartridge collected the 

gaseous PAHs.  

 

Filters were 

combusted overnight 

and sealed in 

aluminium foil. 

 

XAD-2 cartridges 

were pre-extracted in 

dichloromethane and 

methanol for 48 h, 

vacuum-dried in 

desiccators and stored 

in solvent rinsed glass 

jars. 

Extraction by sonication  for 30-min 

with a 20 ml mixture of DCM and 

acetonitrile (3:2). The extract was 

concentrated to 10 ml and 30 μl of 

dimethyl sulfoxide was added. The 

mixture was concentrated under 

nitrogen and 1ml of methanol was 

added. 100 μl were injected for 

analysis. 

HPLC (Hitachi L-7000 series) consisting of 

a precolumn (Supelco, 5C-18, 4.6x 50 mm) 

for PAH condensation and cleanup, a main 

column (Wakosoil, 5C-18, U4:6   250 mm) 

for separation and a fluorescence detector. 

PAHs 

Table 7 Cont. Sampling, extraction and analysis of organic emissions from cooking  
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STUDY & 

RESEARCH 

OBJECTIVES 

SAMPLING CONDITIONS SAMPLE 

SUBSTRATE PRE-

TREATMENT 

EXTRACTION PROCEDURE ANALYTICAL METHODOLOGY COMPOUNDS 

ANALYSED 

Chen and Chen, 2003 

Characterise PAHs in 

fumes during frying of 

chicken. 

Emissions collected on adsorption wool fitted on the cover of 

frying tank (closely tight during sampling) 

Adsorption wool Soxhlet extraction for 20hrs using 

acetone to 1ml then evaporated to 

dryness then residue dissolved in 10 ml 

acetone and stored for GCMS analysis. 

GC/MS equipped with an HP-5MS (30 m x 

0.25 mm i.d., 0.25 um film thickness) 

PAHs 

Li et al., 2003 

Characterise PAHs in 

fumes during cooking of 

different styles 

Emissions collected isokinetically from the exhaust vent in 

commercial kitchens. Three consecutive samples were collected 

at 10L/min for 45 min during the cooking time. 

Particle bound PAHs were collected on a tube-type glass fibre 

thimble (25x90 mm). 

Gaseous PAHs were collected onto a 5-cm polyurethane foam 

(PUF) followed by a 2.5 cm Xad-16 resin cartridge supported by 

a 2.5 cm PUF. 

Samples were kept 

prior and after 

sampling in cleaned 

screw-capped glass 

bottles and jars. 

Samples were extracted in a Soxhlet 

extractor with 1L of mixed solvent n-

hexane/dichloromethane (1:1) for 24 

hours.  

The extract was concentrated, cleaned 

and re-concentrated to 1 or 1.5 mL. 

Hewlet-Packard GC HP 5890A with a Mass 

Spectrometer dector HP 59H72 equipped 

with a HP Ultra 2 50m x 0.32 mm x 0.17 um 

column. 

PAHs 

He et al., 2004b 

Characterise  fumes 

emitted during Chinese 

style cooking  

Samples collected at the exit of the exhaust vent of two 

commercial kitchens. 

Sampling times were 90-120min at lunchtime and dinner. 

Samples collected onto two honeycomb sampler and a three 

stage cascade impactor to collect PM2.5 at 25 L/min. 

One honeycomb contained PTFE filters for particle mass 

determination and and ionic species analysis. 

The second honeycomb and the cascade impactor were loaded 

with quartz filters (Pallflex 2500QAT-UP) for the determination 

of EC/OC and organic speciation. 

Quartz fiber filters 

were baked for 4 hours 

at 500ºC. Pre- and 

post-sampling filters 

were stored in pre-

cleaned 250 mL glass 

jars with 3-5 mL of 

methylene chloride to 

prevent microbial 

growth. Sampled 

filters stored in the 

freezer. 

Samples extracted with 

dichloromethane (3 times) and 

methanol (2 times) for 20 min using a 

mild ultrasound bath.  

Reduced to 5 mL with rotary 

evaporation and further concentrated to 

1ml under a N2 stream and split into 

three fractions. 

Two fractions were derivatised with 

BF3/CH3OH  and bis-(trimethylsilyl) 

trifluoroacetamide (BSTFA) plus 1% 

trimethylchlorosilane (TMCS) to 

convert organic acids and unmethylated 

compounds to their methyl ester and 

trimethylsilyl derivatives respectively. 

Derivatisation temperatures and times 

were 80oC for 30 min and 85oC for 40 

min respectively.  

PM2.5 mass determined by gravimetric 

analysis. 

 

Ionic species determined by ionic 

chromatography (DX-600, Dionex Corp). 

 

EC/OC determined with the Sunset analyser. 

 

Organics determined with an Agilent GCMS 

( GC Model 6890plus, MSD Model 5973N) 

equipped with a 60m x 0.25mm x 0.25 um 

DB5-MS capillary column. 

N-alkanes,  n-fatty acids 

and dicarboxilic acids; 

PAHs and other 

compounds including 

cholesterol and 

levoglucosan. 

He et al., 2004c 

Characterise  fumes 

emitted during Chinese 

style cooking  

Samples collected at 40-60 cm at leeway from the exhaust vent 

of two commercial kitchens. 

Sampling times were 100-120min at lunchtime, and 45 minutes 

at dinner. 

Samples collected onto quartz fibre filters with a three stage 

cascade impactor (<10um, 10-2.5 um and <2.5 um) at 25 L/min. 

Quartz fiber filters 

were baked for 2 hours 

at 500ºC. Pre- and 

post-sampling filters 

were stored in pre-

cleaned 250 mL glass 

jars with 3-5 mL of 

methylene chloride to 

prevent microbial 

growth. 

Sampled filters were 

stored in the freezer. 

Samples extracted with methylene 

chloride (3 times) for 20 min using a 

mild ultrasound bath.  

Reduced to 5 mL with rotary 

evaporation and further concentrated to 

1ml under a N2 stream.  

 

GC/MS Autosystem XL Gas 

Chromatography coupled with a TurboMass 

Mass spectrometry (Perkin Elmer) equipped 

with a 60m x 0.32mm x 0.25 um fused silica 

capillary column (PE-35MS) 

N-alkanes, n-alkenes, n-

fatty acids; n-alkanal; n-

alkenals; PAHs 
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Table 7.  Cont. Sampling, extraction and analysis of organic emissions from cooking 

STUDY & RESEARCH 

OBJECTIVES 

SAMPLING CONDITIONS SAMPLE 

SUBSTRATE PRE-

TREATMENT 

EXTRACTION PROCEDURE ANALYTICAL METHODOLOGY COMPOUNDS 

ANALYSED 

See et al., 2006; See and 

Balasubrabramanian, 

2006b 

Characterise  PAH and 

metal composition 

emitted during Chinese, 

Malay and Indian style 

commercial cooking 

See and 

Balasubrabramanian, 

2006a, 2008 

Characterise emissions 

from 5 types of cooking 

methods (steaming, 

boiling, stir-frying, pan-

frying and deep- frying ) 

Sample collected at 1.5m above ground level at the opposite site 

of a 4 LPG burners stove in commercial food stalls.( See et al., 

2006; See and Balasubrabramanian, 2006b) 

 

Sample collected at 1.5m above ground level and 0.2 m from a 

2-burner domestic stove with no ventilation. Samples collected 

during cooking activities. (See and Balasubrabramanian, 2006a, 

2008). 

Samples collected for 12 hours during cooking and non-cooking 

activities. 

A MiniVol portable air sampler (Airmetrics) collected PM2.5 at a 

flow rate of 5 L/min onto: 

- 47mm 2 µm PTFE Teflon filter for gravimetric, metals and 

ion analysis. 

- 47mm QMA quartz filters for PAH 

QMA filter was pre-

combusted at 400ºC 

for 24h prior to 

sampling. 

 

 

 

 

No pre-treatment of 

Teflon filter 

PAH 

Microwave extraction using 20mL 

acetone:hexane (1:1) for 20 min at 

150W. Extracts concentrated to 3 mL 

using a rotary evaporator. Further 

concentration to almost dryness with N2 

stream and reconstituted with 1 mL of 

extraction solvent. 

 

Metals 

Microwave extraction as described by 

Swami et al. (2001) 

 

EC/OC 

2 6mm punches of a quartz fibre filter. 

One punch was combusted at 350ºC for 

24h to remove the OC. 

 

PAHs 

Hewlett Packard 6890 series GC/MS fitted 

with a DB-5MS 5%-phenyl-

methylpolysiloxane 30m x 0.2 mm internal 

diameter x 0.25 µm film thickness. 

 

 

 

Metals 

Perkin Elmer ELAN 6100 ICP/MS 

 

EC/OC: 

Both combusted and uncombusted punches 

were analysed for carbon using a 2400 Series 

II CHNS/O analyser (Perkin Elmer) operated 

at the CHN mode with acetanilide as 

calibration standard. 

PAHs 

 

 

 

 

 

 

Metals 

 

 

 

EC/OC 

Zhao et al., 2007 b, c 

Characterise  organic 

compound emission 

composition emitted 

during Chinese and 

Western style cooking 

Emissions sampled at the exhaust vent of the ventilation system 

of commercial kitchens downstream of the filter treatment 

methods.  

Samples collected during rush hour at lunch and dinner times. 

Sampling time was 120 min. 

2 medium-volume samplers at a flow rate of 78 L/min collected 

samples in 90mm quartz fibre filter. 

2 Dustraks (TSI) monitored the relative concentrations of PM2.5 

and PM10. Background PM2.5 was collected in the city using a hi-

volume sampler (Andersen). 

Quartz fiber filters 

were baked at 450ºC 

for 4.5 hours. Prior to 

sampling, filters were 

stored in a freezer. 

Extraction with three successive 

portions of dichoromethane and 

methanol (3:1) for three 15-min in the 

ultrasound bath at room temperature. 

Extracts were filtered and destilled 

under negative pressure to 3-5 mL, 

subsequently concentrated to 1 mL 

under N2 gas stream, and divided in 

three portions: 

Portion 1 – analysed directly in GCMS 

for non polar organic compounds.  

Portion 2 - Derivatized with BSTFA 

plus 1% TMCS at 70ºC for 2 h. This was 

analysed for polar organic compounds. 

Third portion – stored at 4oC as a 

backup. 

Organics 

Agilent 6890plus / MSD model 5973N 

GC/MS using a DB-5MS 60m x 0.25 mm 

internal diameter x 0.25 µm film thickness 

column 

 

EC/OC: 

Carbon analyser Sunset Lab. 

 

N-alkanes, PAHs, N-

alkanals, N-alkanones, 

lactones, amides, 

saturated and unsaturated 

fatty acids, dicarboxylic 

acids, anhydrides, sterols 
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Sjaastad and Svendsen, 

2008; Sjaastad et al., 

2010; Sjaastad and 

Svendsen, 2009 

Characterise PAHs, 

aldehydes and particulate 

matter collected in the 

breathing zone of the 

cook in fumes from 

frying a beefsteak. 

 

 

Model kitchen (19 m2) containing gas or electric hobs and a 

canopy fume hood.  

Personal exposure sampler with inlets located in the shoulder of 

the cook. 

PAHs were collected onto glass fibre filters in a filter holder and 

2 XAD-2 tubes downstream. Flow rate, 1 L/min during 200 min. 

Aldehydes were collected into stainless steel sorbent tubes filled 

with 220 mg Tenax TA. Flow rate, 100 mL/min for 10-200 min. 

Total particles collected onto pre-weighted double Gelman glass 

fibre filters. Flow rate, 2 L/min during 65 to 200 mL. 

Total number concentration was measured with TSI 3936 SMPS. 

None PAH were desorbed in 

dichloromethane. 

 

PAH measured by a commercial laboratory 

following a modified version of AMI L5, 

NIOSH 5515, ISO/CD 12884 and VDI 3873. 

 

Aldehydes measured using an automatic 

thermic desorption unit ATD 400 (Perkin 

Elmer) connected to a GCMS (Focus GC-

DSQ, Thermo Electron Corporation). 

PAH;  aldehydes 
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Table 8 Main identified cooking marker species in the literature 

 

 
COMPOUND ANALYSED SOURCE IN FOOD OTHER SOURCES IN THE 

ENVIRONMENT 

Unsaturated fatty acids 

Oleic acid- 9-octadecenoic acid-meat tracer, canola oil 

(Schauer et al, 2002) 

Linoleic acid- 9,12-octadecadienoic acid 

Palmitoleic acid- 9-hexadecenoic acid meat cooking 

(Zhao, 2007a; Robinson et al, 2006) 

Combustion of triglycerides and phospholipids 

from seed oil, vegetable oil, fats of animals and 

meet cooking (Robinson et al, 2006) 

Biomass smoke, motor vehicle exhaust and road 

dust (Robinson et al., 2006) 

Saturated Fatty Acids 

hexanoic acid  

octanoic acid  

nonanoic acid-from seed oil (Schauer et al, 2002) 

hexadecanoic acid, palmitic acid, (Robinson et al, 2006) 

Combustion of triglycerides and phospholipids 

from seed oil, vegetable oil and fats of animals. 

The acids are formed directly from the 

pyrolysis of their glycerol ester precursor 

analogues (nonanoic acid formed from the 

breakdown of oleic acid present in seed oil 

(Schauer et al, 2002) 

Palmitic acid are emitted also from biomass 

smoke, motor vehicle exhaust, road tire dust 

(Robinson et al, 2006), tyre dust cigarette smoke, 

roofing asphalts and fuel combustion (Nolte et al., 

1999) 

Dicarboxylic Acids-C4-C8 

hexanedioic acid – from meat cooking and seed oil 

octanedioic acid – from seed oil 

nonanedioic acid, tetradecanoic acid, octadecadienoic 

acid from soybeans oil 

(Schauer et al, 2002) 

Products of dialdehydes formed during auto 

oxidation of unsaturated lipids. Produced from 

meat cooking (C4-C8 high concentrations for 

hexaneoic acid) and heating of seed oil (C8 

higher concentrations) (Zhao, 2007a). 

 

Polycyclic Aromatic Hydrocarbons 

pyrene  

chrysene –seed oil and meat cooking (Zhao, 2007a) 

benzo[a]pyrene  

 

Incomplete combustion of organic substance 

(cooking materials such as meat, vegetables, 

oil) 

House heating 

Cigarette smoking (Kleeman et al., 2008). 

Heavier PAH (coronene, benzo[ghi]perylene, 

indeno[1,2,3-cd]pyrene) are emitted from motor 

vehicles and retene from biomass burning 

(Brinkman et al., 2009) 

Molecular bio markers 

 Monosaccharide Anhydrides- from breakdown of 

cellulose during cooking (Zhao, 2007a) 

Galactosan  

Mannosan  

levoglucosan  

 

 

 Sterols 

-sitosterol –present in animal and vegetable body 

tissue (Zhao, 2007a). 

Cholesterol – from meat cooking (Zhao, 2007a; 

Robinson et al, 2006) 

stigmasterol 

 

From the organic compounds of biological 

origin which have restricted occurrence and 

molecular stability so can be detected in body 

tissues. Plant lipid membranes and waxes.  

For Chinese food the average ratio of 

levoglucosan/(mannosan+galactosan) is 12  

(Zhao, 2007a). 

 

Levoglucosan is released from wood burning. 

(Kleeman et al., 2008; Zhao et al., 

2007a 

 

 

 

 

 

 

Cholesterol produced from cigarette, debris of 

plant and road dust (Zhao et al., 2007a; Robinson 

et al., 2006; Nolte et al., 1999). 

N Alkanes C23-C31 

C23-C31  from cooking material/contents (Zhao, 2007a) 

 

From cooking material/contents (Zhao, 2007a) From motor vehicles (Brinkman et al., 2009) 

Lactones C7-C18 

From food cooking (Zhao, 2007a; Schauer et al., 2002). 

5-propyldihydro-2(3H) furanone (Schauer et al, 2002) 

5-dodecyldihydro-2(3H) furanone (Schauer et al, 2002) 

Meat charbroiling and food cooking (Schauer 

et al, 2002) 

 

Alkanals and alkanones C9-C15  

from cooking oil 

Nonanal (Zhao, 2007a) 

2-pentadecanone- from soybean oil and seed oil 

(Schauer et al, 2002)  

2-nonanone 

2-undecanone 

2-pentadecanone 

Combustion of triglycerides in oil (Zhao, 

2007a). 

From the decomposition of unsaturated fatty 

acids (oleic acid) (Schauer et al, 2002) 

 

 

 

Inorganic elements and ions 

From meat cooking 

Aluminium (Schauer et al, 1999a) 

Silicon (Schauer et al, 1999a) 

Phosphorus (Schauer et al, 1999a) 

 

Sulphur (Schauer et al, 2002; Schauer et al, 1999a) 

 

Chlorine (Schauer et al, 1999a) 

Potassium (Schauer et al, 1999a) 

Sodium (Schauer et al, 2002; Schauer et al, 1999a) 

Nitrate (Schauer et al, 2002; Schauer et al, 1999a ) 

From meat, vegetables and sauces  

(Schauer et al, 2002) 

 

From soil, motor vehicles, cigarettes and biomass 

burning (Brinkman et al., 2009) 
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1.8 Effect of cooking styles and ingredients on organic compound emission profiles  

Research has identified that different cooking styles emit different profiles of compounds.  The 

differences have been attributed to factors such as cooking processes and ingredients 

(Hildemann et al., 1991a, Rogge et al., 1997, Schauer et al., 1999a, He et al., 2004a). Western 

fast food cooking involves frying with beef and chicken as the main cooking method and meats 

consumed. Chinese cooking practice on the other hand generally involves the use of pork, 

poultry, seafood as well as vegetables during cooking as listed in Table 2. Chemical 

composition variations are thus expected to be observed for various different cooking 

operations. For instance, nonanedioic acid has been identified as the most abundant 

dicarboxylic acid in Chinese cooking and hexanedioic acid for meat cooking (He et al., 2004d, 

Rogge et al., 1991, Zhao et al., 2007b). Sitosterol and monosaccaride anhydrides have been 

attributed to vegetables used in Chinese cooking as they were not observed in meat cooking 

processes. These differences in chemical composition need to be considered for selection of 

molecular markers, which will be useful to assess the contribution of cooking to atmospheric 

particulate organic matter (POM) (Rogge et al., 1991, He et al., 2004c, Zhao et al., 2007b, Zhao 

et al., 2007a). Figure 2 shows Marker-to-OC ratios of meat cooking profiles using profiles from 

Rogge at al. (1991), Watson et al. (1998) and Schauer et al. (1999a;  Schauer et al., 2002). 

These source profiles and species are usually included in models by normalising emissions 

with OC or PM2.5. 

Higher fat contents in cooking ingredients have been found to produce more fatty acids 

compared with the low fat content ingredients in the same cooking operation (Zhao et al., 

2007a, Zhao et al., 2007b, Rogge et al., 1991). This is generally observed also when Chinese 

cooking is compared with Western style fast food; the latter having higher concentrations of 

fatty acids, indicating the high proportion of ingredients with higher fat content. Animal and 
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vegetable fats are rich in high concentrations of normal fatty acids with even carbon numbers 

from C4 to C34 as triglycerides and phospholipids (Zhao et al., 2007a). 

In a experiment comparing grilling and charbroiling different types of meat, grilling was found 

to emit less organic compounds than charbroiling, which yielded about 5 times more PAH (i.e. 

30-50 mg/kg for charbroiling vs. <10 mg/kg for grilling), 10 times more lactones (i.e. 7-30 

mg/kg for charbroiling vs. 2-4 mg/kg for grilling) and 20 times more cholesterol (i.e. 1-8 mg/kg 

for charbroiling vs. 0.04-0.2 mg/kg for grilling) (McDonald et al., 2003) . 

When different types of meat were grilled in a shed, Mohr et al. (2009) reported large 

differences of emissions with increasing emissions as the fat content increased, even when the 

meats were cooked in the same manner. This is qualitatively consistent with earlier studies 

(McDonald et al., 2003, Rogge et al., 1991). Rogge et al. (1991) reported that generally grilling 

of meat led to the higher production of aerosols made of fatty acids. This was attributed to the 

oil and grease droplets falling into the gas flame or onto the heat source where they would 

vaporize and renucleate and grow into small particles. 

Zhao et al. (2007a) investigated the chemical composition of particulate organic matter from 

Western fast food cooking and identified tetradecanoic acid, hexadecanoic acid, octadecanoic 

acid, 9-octadecanoic acid, nonanal, levoglucosan, hexanedioic acid and nonanedioic acid as 

potential tracers with saturated and unsaturated fatty acids accounting for 78% of total 

quantified compounds. When they analysed the chemical composition of aerosol from Chinese 

cooking, they identified also a dominant homologue of fatty acids with its concentration being 

about 73-85% of the quantified compounds.  They also identified levoglucosan and β-sitosterol 

as well as a clear pattern of n-alkanes which were taken as an indication of vegetables 

consumed in the Chinese cooking process (Zhao, 2007b). The concentration of quantified 

compounds per unit of particulate organic matter in Western cooking was found to be much 

higher than that in Chinese cooking (Zhao, 2007a). The candidate organic tracers that they 
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found to distinguish emissions of Western cooking from Chinese cooking in Ghanzou (China) 

are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, 

mannosan, galactosan, nonanal and lactones (Zhao, 2007b).  Table 9 shows clearly from their 

findings that the Chinese cooking made a much greater contribution of PAHs to particulate 

organic matter than Western fast food with 2,855 ng/mg of particulate organic matter in 

Chinese cooking as against 40 ng/mg in Western cooking.  

Nolte et al. (1999) analysed meat cooking smoke and found that 1-palmitin and 2-palmitin were 

the most abundant compounds observed with significant emissions of 1-stearin and 1-olein 

monoglycerides and cholesterol (Nolte et al., 1999). Similar to what was observed with 

emissions of particulate number and particulate matter mass, higher concentrations of organic 

pollutants were observed to be emitted during oil-based cooking methods compared to 

steaming and boiling which were water-based (See and Balasubramanian, 2008). Also an 

analysis of commonly used cooking fuels in Hong Kong identified that gas cooking produced 

higher concentrations of PM10, organic material and total volatile organic compounds during 

cooking by stir frying, pan frying and deep frying in domestic settings (To and Yeung, 2011). 

Higher concentrations of pollutants were observed in commercial kitchens compared to 

domestic kitchens probably due to the volume of food cooked or methods of cooking used. In 

the commercial restaurant, broiling of meat was found to produce higher concentrations of PM 

and VOC especially for electric broiling of meat compared to gas broiling. This was attributed 

to a larger contact area for the beef on the electric broiler compared to the gas broiler leading 

to more intense effect of the heat (To and Yeung, 2011). 

An analysis of occupational exposure to cooking fumes was carried in a laboratory kitchen to 

investigate exposure of cooks to polycyclic aromatic hydrocarbons (PAHs), higher mutagenic 

aldehydes, total particles, and ultrafine particles during cooking (Jorgensen et al., 2013). The 

level of total particles was between 2.2 and 4.2 mg/m3 with statistically significant higher 

amount of ultrafine particles generated when a gas stove was used compared with frying on an 

electric stove. The gas flame was also observed to release particles but not enough to contribute 
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to the difference observed between the two fuel types. The amount of total PAH observed was 

of 270–300 ng/m3 air when fresh bacon pan fried with a high concentration of retene observed 

to when smoked bacon was fried. Another laboratory experiment by Sjaastad, et al, in 2010 

where they looked at exposure to PAH, mutagenic aldehydes, and particles during the frying 

of beefsteak on a gas stove and on an electric stove using different types of vegetable frying 

fat showed somewhat higher levels of naphthalene which was the only PAH found in all the 

samples in the study by Jorgnsen et al,2013.  

In a recent study analysing frying found that deep-frying generated more PAHs and 

benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) than any other frying method and 

this was attributed to the volumes of edible oil used in deep frying and also the high oil 

temperatures relative to other frying methods (Yao et al., 2015). Total B[a]P concentration of 

deep-frying was found to be 2.2-fold larger than that of  regular frying with rapeseed oil 

producing high PAH emission than soybean, peanut, and olive oil.  

 

 

 

Table 9 Concentrations of organic compounds from western-style fast food and from Chinese cooking 

(ng/mg of particulate organic matter) (Zhao et al., 2007b,c) 

Organic compounds  

  
Western-style fast food cooking Chinese cooking 

n-Alkanes 3860 1880 

Polycyclic aromatic hydrocarbons 40 2860 

n-Alkanones 22700 2440 

n-Alkanals 29200 3440 

Lactones 13300 2140 

Amides 4690 531 

Saturated fatty acids 374700 26800 

Unsaturated fatty acids 93300 29030 

Dicarboxylic acids 57900 2050 
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Monosaccharide anhydrides 97 314 

Sterols 487 1680 

 

1.9 Research aims and objectives. 

Cooking has been identified as a source of primary organic aerosol but it is still not a thoroughly 

understood source of primary organic aerosol. Generally a scarcity of literature has been 

identified on cooking, with the few studies available being from different geographical 

locations and restricted to only the cooking styles of the selected locations. Not much work has 

been carried out analysing emissions from different styles and methods of cooking during the 

same study period. This study will attempt to address these gap. 

The aim of the research is to assess the emission profiles from various culinary techniques and 

also to use the emission profile for source apportionment. 

Specific objectives are: 

1. Examine the chemical composition of particulate organic matter in particulate matter 

emitted during different  cooking styles.  

2. Identify and characterise organic tracer species from different cooking styles that will 

be useful in factor analysis for source apportionment (source profile).  

3. Use personal monitoring of people while cooking in their kitchens using a range of 

ingredients to assess exposures.  

4. Apply source profile developed in source apportionment to determine and quantify 

contribution of cooking to particulate matter in a built up area.  

This thesis will analyse particulate matter emission from cooking using various types of 

cooking methods- Chinese, Indian, western and African styles. 
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1.10 Hypothesis 

Chinese cooking style is associated with a higher quantity of emission of organic compounds 

as compared to Indian, African and Western style of cooking.  

1.11 Data Analysis 

Microsoft Excel and SPSS 21.0 were used for data analysis. Receptor modelling was 

performed using the USEPA CMB Model 8.2. Details of the CMB model are described 

elsewhere (chapter 5). 

1.12 Thesis organisation and structure 

The thesis chapters shall be organized as follows: 

Chapter 2- Methodology -Sampling design and chemical analysis. 

Chapter 3- Source profile-Trailer sampling. 

Chapter 4- Ambient samples- Real kitchen 

Chapter 5- CMB- Using profile obtained as input to analyse existing data to apportion 

contribution from cooking 

Chapter 6- Conclusion  

Chapter 7- Recommendation and future directions. 
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CHAPTER 2 -Methodology -Sampling design and chemical 

analysis. 

Overview 

This chapter highlights sampling methods, locations and chemical analysis carried out on 

samples collected. 

2.1 Sampling locations 

2.1.1 Trailer kitchen design- 

2.1.1.1 Overview 

Different culinary techniques listed in Table 10  were used to cook chicken in the laboratory 

trailer kitchen and PM samples for cooking-related emissions were collected on 47 mm filters 

(Teflon and quartz fibre) from the exhaust of a designed kitchen. In this kitchen no interference 

exist form any other activities. Chicken was used as the standard ingredient in order to reduce 

variation between various cooking styles. The style of cooking was selected based on  existing 

literature of studies that have been carried out on cooking experiments listed in chapter 1 (there 

is a good volume of a few studies that have been done on Chinese, Western and Indian cooking 

but none of African style of cooking) . Another factor for choosing style of cooking was 

because of the diverse population of  Birmingham,, so randomly cooking styles were selected 

The design of the trailer kitchen consisted of a 70 cm baumatic chimney hood with an extraction 

capacity of 500 m3/hr. with no grease filters or baffles in the hood the exhaust flow was 

measured using an anemometer AVM 07 to determine and confirm the flow rate of the extractor 

fan. The anemometer was placed at the face of the exit of the duct pipe to determine the velocity 

of air from the extractor which was multiplied with the area of the duct. 

3 anemometer readings were taken and the average value of the velocity was 12.5m/s. 
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Area of the duct- width x height (from Table 11) = 0.011m2 

Therefore velocity of air extracted by the hood=12.5 x 0.011=0.1375m3/sec=495m3/hr. 

The flow rate was found unaffected and lie within 495 and 500m3/hr without the filters/ baffles.  

 The work table height (counter on which cooker would be placed)  table was 870 mm from 

the floor  and 40mm wide for the gas and electric hob to be placed on it. Depending on what 

heat source was to be used on a particular sampling day (electric hobs or gas hob) which was 

placed on the work table constructed with an average thickness height of 40 mm making total 

height from ground to cooking surface 910mm. The work table was constructed with 

dimensions 870 mm height by 600 mm by 680 mm. The distance from fume source to face of 

hood was about 61cm from the cooking source.  

The particles were collected on quartz fibre filters directly from downstream of the extractor 

pipe system of the ventilation system above the heat source where cooking exercises was taking 

place for sampling. The sampling times were between 45–90 min per sample with 6 samples 

taken for every cooking style. Pump of 30 L/min was used attached to filters.  

Table 10 Cooking styles and food option selected. 

Cooking style  Dish Method  

Chinese  Chicken kun pao with rice Stir fry 

 

Western 

 

Chicken, eggs and chips Deep fry  

 

Indian Chicken tikka masala with rice Stew 

 

African 

 

Chicken in tomatoes stew with rice and 

plantain 

Deep frying, stew 

 

2.1.1.2 Dimension for sampling setup 

To ensure a laminar flow during sampling, it is important to determine the point to sample from 

along the extractor exhaust duct. 
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Table 11  Dimension of extractor duct  

 
Length(l) Width (w) Height (h) l*w(m2 ) w*h(m2 ) h*l(m2 ) total(m2 ) total surface 

area (m2 ) 

1.7 0.2 0.055 0.34 0.011 0.0935 0.4445 0.889 

 

Total surface area of duct -a=2((l&w)+(w*h)+(l*h)) 

 

area cross section=width*height=0.011 

 

flow rate= velocity *area……………………………(flow rate for hood -500m3/hr) 

 

therefore              500m3/hr= velocity*0.011 

                  

vel=45454.55m/hr   

 

 

Sampling pump 

 

flow rate=30l/min=1.8m3/hr 

 

area(area of sampling pipe)=flow rate/ velocity of hood  

 

area=1. 8m3/hr *45454.55m/hr=3.96E-05m2 

 

area of a circle (cross sect area) is=πr^2 (r=radius of pipe) 

0.0000396= πr^2 

r= 0.003549003m=> diameter =2*r=0.007m=0.7cm=7mm 

Location of Sampling Port  

“To ensure laminar flow, sampling ports shall be located at least 8 times chimney diameter 

down stream and 2 times up stream from any flow disturbance”(CPCB, 2007). 

The equivalent diameter (De) for a rectangular cross section, such as the hood, shall be 

calculated by using following equation to determine location and distances to place sampling 

port.  

𝐷𝑒 =
2𝐿𝑊

𝐿 + 𝑊
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 Where L =Length in m, W= width in m. 

From table De= 0.086275m  

Sampling point=minimunm 8*equivalent diameter=0.0863*8=0.69m=69cm from source 

From other side (outside)=2* equivalent diameter =0.0863*2=0.1726=17cm from the vent. 

Diagram of the kitchen setup is shown in Figure 5. Figure 6 and Figure 7 are pictures taken in 

the trailer showing the setup. 

 

 

Trailer kitchen setup (for source profile) 

 

Figure 5   Trailer setup 

Heat source gas/electric 

Work top filter 

filter 
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2.1.1.3  Ingredients and recipe for cooking 

RECIPES. 

Below are details of steps taken to cook the various foods. 

Table 12 Cooking style and ingredients 

S/N COOKING 

STYLE 

Method  INGREDIENTS Oil spices DURATION 

(Minutes) 

1 CHINESE 

(kung pao chicken) 

Stir fry 

 

Meat -chicken 

Vegetable- green bell 

peppers, 

celery, Chinese 

cabbage, water 

chestnuts, and carrots 

OTHER-roasted 

peanuts,chopped, 

sliced, or diced red bell 

peppers, rice and chili 

peppers. 

Peanut oil 

 

essence of 

chicken, salt, 

peanut oil, 

light soy 

sauce 

45 

2 WESTERN 

(Chicken, eggs and 

chips) 

Deep fry  

 

Meat- chicken  

Other- potatoes , eggs 

Sun-

flower oil 

Salt 30 

3 INDIAN FOOD 

(chicken tikka 

masala) 

Stew Meat type- chicken,  

Other –Rice, lemon 

juice, yogurt, garlic, 

tomatoes, chilli, cream. 

Mustard 

oil 

Cardamom, 

turmeric, 

garam 

masala,  cinn

amon 

60 

4 AFRICAN 

(Nigerian chicken 

stew and plaintain) 

Deep 

frying, 

stew 

Meat- chicken 

Others- rice, plantain, 

chilli, onion 

Ground 

nut oil 

Thyme, curry 60 

 

Quantity of ingredients used in the study. 

STYLE AFRICAN CHINESE WESTERN INDIAN 

INGREDIENTS Chicken-1kg, Onion-

100g, Rice-400g, 

Tomatoes-1.4kg, 

Plaintain-500g, Chili-

100g, Ginger-5g, Bell 

pepper-150g 

 

Chicken-1kg, Onion-

100g, Rice-400g, 

Tomatoes-1.4kg, Stir 

fry vegetables-350g, 

Peanuts-20g, Ginger 

5g 

 

Chicken-1kg, eggs-

4pieces, potatoes- 

600g 

Chicken-1kg, Onion-

100g, Rice-400g, 

Tomatoes-1.4kg, 

Ginger-5g, Yogurt-

150g, Cardomin pods-

8pieces, Bell pepper-

150g,  ginger 5g. 

  

http://en.wikipedia.org/wiki/Celery
http://en.wikipedia.org/wiki/Chinese_cabbage
http://en.wikipedia.org/wiki/Chinese_cabbage
http://en.wikipedia.org/wiki/Water_chestnuts
http://en.wikipedia.org/wiki/Water_chestnuts
http://en.wikipedia.org/wiki/Carrot
http://en.wikipedia.org/wiki/Bell_pepper
http://en.wikipedia.org/wiki/Bell_pepper
http://en.wikipedia.org/wiki/Chili_pepper
http://en.wikipedia.org/wiki/Chili_pepper
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HEAT SETTING USED FOR ALL COOKING –180OC and later 2000C 

Indian chicken masala 

http://www.bbc.co.uk/food/recipes/chickentikkamasala_67780.pdf 

1. The chicken was cut into bite-size pieces and mixed with tandoori paste and yoghurt 

and left marinate in a non-metallic dish for some time while stirring occasionally. 

2. Oil was heated in a deep frying pan, and when very hot cinnamon, cardamom pods and 

onion were added. These were fried for about 5-6 minutes until they began to brown, 

then ginger, garlic, cumin, coriander, turmeric and cayenne pepper were added. 

3. After the spices were cooked for about a minute the chicken and marinade were added 

and fried for 3-4 minutes, then tinned tomatoes, chicken stock or water, garam masala, 

lemon juice and salt were added. The curry was then left to a simmer and cook on a low 

heat for about 30 minutes.  

4. Rice was boiled after the curry was ready. 

 

Chinese Kung pao 

 (http://www.tastebook.com/recipes/1944936-Kung-Pao-Chicken): 

1. The chicken meat were cut into small cubes and rinsed in water and marinated with the 

ingredients above for 30 minutes. 

2. The sauce ingredients were then mixed in a small bowl and set aside. 

3. The wok was heated up with one tablespoon cooking oil in it and the marinated chicken 

was stir-fried until they were 70% cook. When fried the chicken was set aside. 

4. The wok was cleaned and 2 tablespoons of cooking oil was added into it until it smoked. 

5. Ginger and garlic slices were added to the wok and stir fried then dried red chillies were 

added. 

6. The dried red chillies were stir fried until aromatic and smell spicy then the chicken 

meat was added. 

7. Roasted peanuts were then added and stir frying continued. 
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8. The sauce was then added and stirred continuously until the chicken meat was coated 

with the sauce. 

9. The scallions were then added and stirred evenly. 

10. Rice was boiled. 

 

Nigerian chicken stew  

http://www.ihiagwa.com/cusines.htm 

1. The chicken was washed and cut into 10-12 pieces 

2. The chicken was seasoned with salt add the sliced onions thyme curry and cooked for 

30-40 minutes until tender.  

3. Oil was heated up in a pan and the chicken was fried until brown but not too dry. In 

another pot, oil was heated up and ground onions, chillies and tomatoes were heated for 

20minutes until fairly dry. 

4.  Tomato puree was added to the oil. This was stirred thoroughly and later the fried 

chicken pieces were added. 

5.  The tomatoes were allowed to cook and simmer gently for another 10 minutes while 

stirring frequently. 

6. Excessive oil that rises to the top were drained off.  

7. Rice water and plaintains were fried in oil. 
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Figure 6   Frying plaintain in trailer kitchen 

 

 

Figure 7 Trailer kitchen setup 

Sample size was obtained using the DSS RESEARCH TOOL software online, 

https://www.dssresearch.com/knowledgecenter/toolkitcalculators/samplesizecalculators.aspx. 

 Concentrations of compounds obtained from previous studies are used to calculate the 

minimum sample size. For instance based on previous studies of cooking (He et al, 2004; See 

et al, 2006; Zhao et al 2007), we expect an average concentration of 278ng/mg of POM and a 

standard deviation of 68 for  nonacosane for cooking Western style and an average 



 

62 
 

concentration of 258ng/mg of POM and a standard deviation of 60 for  the same compound for 

cooking Chinese style. The sample size calculation considering an independent t-test required 

2 samples to detect any significant differences at a confidence level of 0.05 and a statistical 

power of 90%. Our suggested sample size (6 samples) hence would allow to detect differences 

between these two different cooking styles. This was carried out for several other compounds 

and between 1 and 2 samples were the number obtained. 

Summary of samples from trailer- 

Trailer sampling- 6 for each cooking style-(one Teflon and quartz fibre filter) using gas 

6 for each cooking style-(one Teflon and quartz fibre filter) using electricity 

Pump used were calibrated with a gilibrator and the sampling flow was checked daily 

before and after every sampling exercise using a rotameter to ensure the flow rate. 

 

Pumps used 

 Cooking source- Diaphragm vacuum pump D7 DE Parallel 30l/min (attached to an 

adjustable flow meter of 30L/min) 

 Personal monitoring- 182170B: APEX Lite (Standard) pump 

 Microenvironment- Universal PCXR4 personal or area air sampling pump features a 5 

to 5000 ml/min  

Rotameter- 

 Skc field rotameter cat no-320-4A5(0.4-5 L/min) 

 SKC Field rotameter  cat no-320-530(3-30L/min) 

 Gilian Gilibrator-2 NIOSH Primary Standard Air Flow Calibrator 

Cylone 

 Personal monitoring at 3l/min to collect PM2.5 with URG Teflon coated aluminium 

cyclone. 

 For microenvironment monitoring a flow of 16.7l/min was use to collect PM 2.5. 
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2.1.2 Real kitchen sampling 

Sampling was carried out in the kitchen of a residential house in Birmingham, with no other 

activities occurring during the cooking exercise in order to minimize the influence of emission 

from other indoor PM sources. The sampling took place between July and August 2014 and in 

October 2014.  The kitchen was about 9meters by 4meters and had a four-burner gas stove 

connected to the city gas supply system. The sampling instrument was placed on an elevated 

platform with its port facing the burner ( located 0.5 m from the pan and 1.5 m above the 

ground). Sampling was carried out with all the windows and door closed. Apart from the 

investigator, no other person was in the house during the course of the sampling. The kitchen 

was ventilated between each cooking experiment by opening the window. The cooking 

duration was about 40-70 minutes, with samples collected via two PM2.5 partisol inlet that 

operated at 16L/min (1 with Teflon filter- for gravimetric analysis and 1with a quartz fibre 

filter-for organic analysis) 

After the sampling campaign the filters were stored in air tight metal tins and placed in the 

freezer of -22oC. 

Summary of samples collected- 

 Real kitchen samples- August campaign-  

 Ambient samples during cooking 6 for each cooking style-(one Teflon and  quartz fibre 

filter) 

              9 set of samples from grilling and cooking with ventilation (one Teflon and quartz 

fibre filter) 

 Micro environment 8 hrs and 16hours- quartz fibre filters for 10 days 

 24 hours Personal monitoring during cooking (one Teflon and one quartz fibre filter) 

 Personal monitoring during no cooking – (total suspended particles and PM2.5 and 

quartz fibre filters) 
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 Real kitchen samples- October sampling 

 Micro environment- Two (2) PM2.5 partisol inlet to operate at 16.7 L/min (SAMPLE 

FOR 8HOURS DURING COOKING)- 

                        1 with Teflon filter- for gravimetric analysis 

                 1-quartz fibre filter-for organic composition 

 

 Personal monitoring-      

   3LPM-PM2.5(TEFLON) with cyclone 

   3LPM PM2.5 Quartz fibre filter for organic analysis 

 

 Cooking source sample placed near the cooker-during each dish(about 60mins) with 

two (2) PM2.5 partisol inlet to operate at 16L/min- 

                        1 with Teflon filter- for gravimetric analysis 

              1-quartz fibre filter-for organic analysis 

 
A 

 

 
B 

Figure 8  Sampling in home kitchen with extractor fan off ,A. without size selective inlet, B. with PM2.5 inlet 

 

 

 

 

 
Cyclone for sampling pm2.5 while 

cooking in kitchen 
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Figure 9   Personal monitor pump  

 

 

 

 

 

 

 

 

 

In the kitchen the following instruments were used for sample collection 

• Personal sampler pumps for  24hr personal exposure (1 teflon and 1 quartz fiber 

filter) 

• Air sampling pumps for taking samples while cooking (1 teflon and 1 quartz fiber 

filter) 

• Microenvironment sampling pump for taking 24 hour samples of the kitchen in two 

parts-a. during cooking activities and b. after cooking. 

The food options cooked during the sampling was the same as that cooked in the trailer 

kitchen listed in Table 12.  

 

Filter holders 
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Figure 10  Sampling  in kitchen while grilling chicken. 

COOK OFF PROJECT- A sampling campaign prroject between the University of 

Birmingham and University of Manchester (Cook off project) was carried out between 20th 

March 2012 and 22nd March 2012 where foods were cooked in the designed trailer laboratory 

kitchen described above. Different types of oils were also fried in glass beads to simulate the 

cooking process and emissions only associated to oils were analysed. During these cooking 

experiments, the Aerosol mass Spectrophotometer was collecting samples from the duct of 

the extractor pipe and anal 

2.1.2.1 The Scanning Mobility Particle Sizers  

The instrument, as shown in Figure 11, comprises of a TSI 3080 electrostatic classifier, a TSI 

3081 differential mobility analyzer (long DMA) linked to a TSI 3022A condensation particle 

counter (CPC). 

The particles entering the system are neutralized (using a radioactive source  such as 85Kr) such 

that they have a Fuchs equilibrium charge distribution and then, enter the Differential Mobility 

Analyser (DMA)  where the aerosol is classified according to electrical mobility, with only 

particles of a narrow range of mobility exiting through the output slit. This monodisperse 
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distribution then goes to the Condensation Particle Counter which determines the particle 

concentration at that size.  

 

 

Figure 11 Schematic of SMPS (TSI, 2010) 

2.1.2.2 The Differential Mobility Analyser (DMA) (TSI 3081) 

The Differential Mobility Analyser (DMA) ,Figure 13 , contains an outer, grounded cylinder 

and an inner cylindrical electrode that is connected to a negative power supply. The electric 

field between the two concentric cylinders separates the particles according to their electrical 

mobility which is inversely related to the particle size. Particles with negative charge are 

repelled towards and deposited on the outer wall. Particles with neutral charge exit with the 

excess air. Particles with positive charge move rapidly towards the negatively-charged center 

electrode. Only particles within a narrow range of electrical mobility have the correct trajectory 

to pass through an open slit near the DMA exit. The electrical mobility of these selected 

particles is a function of flow rates, geometric parameters and the voltage of the center 

electrode. 
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2.1.2.3 The Condensation particle counter (TSI 3022A) 

The Condensation particle counter, Figure 12, determines the total particle number 

concentrations by the growing of detected particles to larger sizes achieved by the condensation 

of supersaturated vapour (butanol). These particles are then counted using an optical laser 

detector. The TSI model 3025A can count particles of sizes >3 nm, and the model 3022A 

particles >7 nm and maximum detectable concentration is 105 cm-3 and107 cm-3 respectively. 

The CPC TSI 3025 operates with continuous aerosol flow which is saturated with butanol in a 

slightly heated saturator chamber and then the aerosol passes to the condenser where the 

temperature of the butanol-aerosol mixture is decreased by 17-27°C. The butanol become 

supersaturated and condense onto the particles, which grow to droplets of several µm in 

diameter, and are focused in a nozzle and introduced into a counting optic which is able to 

count every single particle.   

 

 

Figure 12 Schematic of CPC by TSI  
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Figure 13  Schematic of DMA 

 

2.1.3  Stratford Road Birmingham 

 

The site is an urban roadside location located at the junction of Highgate Road (Balti 

Triangle) Figure 15.  The area consists of numerous restaurants as shown in the map 

mainly of Indian cuisine. 

 

Figure 14  Samplers kept in cabin owned by Birmingham city council with inlets placed on the roof of the cabin. 
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                                                                                                                Map data © 2014: Google                                                                                                          

 

Figure 15 Stratford road map showing location of samplers in cabin owned by Birmingham city council 

and neighbouring restaurants.  (Map data 2014: Google) 

 

 

  

Stratford Road monitoring site 
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Figure 16  Hi-volume sampler and partisol sampler 

 

2.1.3.1 Digitel high volume aerosol sampler  

Digitel high-volume sampler (model DHA-80 Digitel Elektronik),Figure 17 and Figure 18,  

automatic air sampler for the collection of aerosol samples (PM2.5). The instrument uses the 

filtration/impaction method for collection of samples. During the sampling period the digitel 

operated at about 500 L min-1 collecting PM2.5 on 150 mm quartz fiber filters held in holders. 

The instrument  automatically switches and loads new filters after 24hours of sampling from 

filters placed in its inbuilt filter cassette stock (autosampling).  

Analysis on filters collected- Organic and elemental carbon, Organic compound analysis.  
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Figure 17 Hi-volume schematic unit of a Digitel high-volume sampler (Enviro Technology Services Plc, n.d) 

 
 
Figure 18  Hi-volume sampler unit of a Digitel high-volume sampler (Enviro Technology Services Plc, n.d) 

2.1.3.2 Partisol dichotomous sequential air sampler  

 

A Partisol-Plus dichotomous sequential sampler (Model 2025), Figure 19 and Figure 20, was 

used  for 24-hour sampling of PM2.5 and PM 2.5-10 on PTFE filters of diameter 47 mm. The 

Partisol  air sampler  splits a PM10 sample stream into PM2.5 and PM 2.5-10 fractions with a 
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virtual impactor (Rupprecht & Patashnick Inc., 2001). The instrument consists of four 

cartridges each with a capacity of 16 cassettes containing the 47 mm filters. The two cartridges 

automatically supply the loaded 47mm filters for sampling while the remaining two cartridges 

store the exposed filters. The volumetric flowrate of the Partisol is 16.7 L min-1 for fine PM, 

and 1.7 L min-1 for coarse PM. 

 

 

 

 
 
Figure 19 Partisol 2025 sampler  (Rupprecht & Patashnick Inc., 2001) 
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Figure 20  Partisol 2025 flow schematics (Rupprecht & Patashnick Inc., 2001) 

The samples collected on filters undergo gravimetric determination and subsequent chemical 

analysis. Inert filters(filters made with chemically inert materials) such as Teflon and quartz 

fiber filters are used due to their nature as they will not present any interference to components 

collected on them. Teflon filters have low background levels of many analytes and are thus 

useful in low volume sampling applications. 

Filter based method of measurement has the potential for positive and negative artefacts as 

possibility exists for the reaction of trace gases with particles on the filter or the filter itself 

resulting on positive artefact and also there could be some evaporative loss of semi-volatile 

components resulting in negative artefacts. The set out procedures and guidelines have to be 

followed strictly to keep these artefacts to the barest minimum. 

After the particles are collected on the filters they are extracted with organic solvents  followed 

by the quantification of organic compound concentration using  gas  chromatography/mass 

spectrometry  (GC-MS). 
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2.2 Filter Preparation  

Filters used 

 QM-A quartz fibre  Whatman 47mm 

 PTFE membrane 47mm, Whatman 

 

The quartz fibre filters were heated in a box furnace at filters were prebaked at 550oC for 5 

hours in to reduce blank carbon levels and then packed using aluminium foil and stored in a 

freezer at -20º C awaiting sampling.  

PTFE filters were weighed before and after sampling using a Sartorius Model MC5 

microbalance (sensitivity- 1 μg). Before weighing, all filters were equilibrated in humidity (35-

45% relative humidity) and temperature (20±1oC) controlled windowless room for 24 hours 

before weighing commenced (Yin and Harrison, 2004). An ionizing blower and an α-particle 

source (210Po) were used to reduce the effects of static electricity on the filter. Each filter was 

weighed three times and both positive and negative weights were recorded. Average weights 

were calculated using the arithmetic mean of the six recorded values.  

Before the sampling episodes the filter holders are cleaned with distilled and deionized water 

and wrapped in clean foil immediately. After sampling exposed filters are placed in aluminium 

tins and wrapped in foil paper sealed in polyethene bags and stored in the freezer. The filters 

were weighed in the weighing room (after sampling) without 24hr exposure to prevent loss of 

volatile species collected from the sampling. 

The quartz fibre filter samples were analysed for organic species, prior to extraction the filters 

were spiked with isotopically labeled internal standards for quantification, including 

octacosane-d58, hexatriacontane-d74, dibenz(ah)anthracene-d14, aaa-20R-cholestane-d4,  

heptadecanoic acid-d33, levoglucosan-U13C6 and cholesterol-2,2,3,4,4,6-d6. After extraction 

the samples were analysed using a gas chromatography mass spectrometry system (GC–MS) 

from Agilent Technologies (GC – 6890N plus MSD – 5973N) fitted with a HP-5MS column 
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(30 m, 0.25 mm diameter, 0.25 μm thickness). The extraction method was based 

upon(Sheesley et al., 2004) , acid derivatisation upon (Podlech, 1998) and (Aldai et al., 

2005) and levoglucosan and cholesterol derivatisation upon(Yue and Fraser, 2004) (Yin et al., 

2010) 

Gravimetric analysis:-To determine the mass of particulate matter collected on teflon during 

sampling, the difference between the mass of the filter before and after sampling mass was 

calculated. PTFE filters were used for gravimetric analysis since they are not prone to 

absorption of ambient water vapour (Dikken, 2013). 

Blank filters- 

Blanks filters (which are filters that were prepared with the sampling filters and placed in a 

filter holder but not exposed or sampled upon) were taken along to the sampling location and 

collected during the sampling exercises with one blank filter collected for every 6 samples 

taken. Laboratory blanks (unused filter not taken to the field) were also collected. The blank 

field and laboratory filters were analysed with the sample batches, which included gravimetric 

analysis as well as other analysis such as organic extraction, OC/EC runs and XRF analysis 

and the samples were blank corrected.  

2.3 Organic analysis. 

GC–MS can analyse of polar compounds, such as sterols, dicarboxylic acids and fatty acids, 

involves derivatization procedure which results in the conversion of the organic acids to their 

esters, to reduce their polarity and increase the instrument response.  This is generally labour 

intensive and time consuming as the methods need sample preparation such as extraction, 

concentration and pre-separation(Li et al., 2009). 
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2.3.1 Clean up procedures 

 Glassware-The glassware used were washed and rinsed with deionized distilled water 

then heated in the oven at 520oC for two hour. After they were allowed to cool down 

they were rinsed three times with dichloromethane before use.  

 Each filter sample was then spiked with 50 µl of 10ppm internal standard mix-all (with 

composition listed as below). 

      Internal standards mix-all (ISALL) 

1. octacosane-d58 (n-alkanes) 

2. dibenz(ah)anthracene-14 (pahs) 

3. heptadecanoic acid-d33 (fatty acids) 

4. cholesterol-2,2,3,4,4,6-d6 (cholesterol) 

5. Methyl-beta-D-xylopyranoside (levoglucosan) 

6. aaa-20R-cholestane-d4 (hopanes)  

 

2.3.2 Mild sonication 

The filters were extracted at room temperature (25oC) with 30 ml aliquots of DCM 

(dichloromethane, HPLC grade) twice and 30 ml aliquots of methanol (twice) under mild 

ultrasonic agitation for 15 minutes for each aliquot.   

The extracts were combined and transferred to a turbo evaporator tube for concentration after 

the sonication. Three washes were done on the flask containing the filters after the second 

aliquot extract of each solvent, each using 2 pipettes full, with DCM and methanol respectively.  
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2.3.3 Concentration 

The combined extract was reduced in volume to approximately 5 ml using the turbo evaporator 

equipment (at temperature 30oC and pressure 0.5 bar for about 50 mins for DCM evaporation, 

and at 45oC and 1.0 bar for about 100 mins for methanol evaporation).  

The extract left  was then transferred to a 10 ml clean calibrated graduated finger glass vial 

through a clean glass pipette column packed with glass wool and anhydrous Na2SO4 (1.0g) (the 

packed column was pre-rinsed with 2 pipettes of DCM before use). The turbo tube was washed 

four times with 2 pipettes DCM and 2 pipettes of methanol after the transfer into the 10ml glass 

vial. The packed column was then rinsed 2 times with DCM and methanol.   

The sample was then concentrated under a nitrogen flow and during the blow down process 

additional DCM was added to prevent DCM depletion. The final extraction volume was 500 

µl and 100 µl each of the concentrated solution was then poured into 5 different GCMS vials, 

covered tightly, sealed with paraffin tape and stored in the freezer at -18oC. 

2.3.4 Derivitization of extracts. 

2.3.4.1 PROCEDURE FOR ORGANIC ACID METHYLATION. 

2.0M trimethylsilyldiazomethane (TMS-DM) in diethyl ether was used to derivatise acids. 100 

µl (10 pipette drops) of standard solution was placed into a 2 ml clean glass vial and 100 µl (10 

pipette drops) of methanol was added followed by addition of 150 µl (15 pipette drops) of 2.0M 

TMS-DM reagent.  With the vial open, it was shaken well and placed in a preheated dry heater 

bath at 40oC for 10 minutes and then left at room temperature for another 50 minutes.  The 

solution was then blown down to near dryness using nitrogen blower (making sure the product 

solution was not dried completely). 100 µl (10 pipette drops) of n-hexane was then added and 
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shaken well and transferred to a 100 µl GC vial followed by three washes (3 pipettes) then 

concentrated down to 100 µl (original volume) before being subjected to GC analysis.  

2.3.4.2 PROCEDURE FOR DERIVATISATION OF STEROLS. 

Samples derivatised using the procedure below to convert the sterols to their trimethyl silyl 

ether. 

N,O-Bis(trimethylsilyl)trifluoroacetamide plus 1% trimethylchlorosilane (BSTFA-TMCS) 

was used to derivatise cholesterol, levoglucosan, stigmesterol and their standards.  The 

procedure followed was 100 µl (10 pipette drops) of standard solution was transferred to a GC-

MS vial and concentrated down to near dryness (ensuring that the solution was not dried 

completely).  100 µl (10 pipette drops) of BSTFA-TMCS (99%:1%) was then added to the 

vials containing the samples.  The vials were then capped and heated on a dry heater block at 

80oC for 1 hour. Then the vials were allowed to cool in a desiccator for 1 hour and subsequently 

subjected immediately to GC-MS analysis. 

2.4 GCMS analysis 

The organic compounds contained in extracts were analysed using a Gas Chromatography 

Mass Spectrometer (GCMS).  

Principle of the GCMS- Based on the difference in the chemical properties of 

different molecules contained  extracts, molecules separate as the sample travels the 

length of the GCMS column. Different retention time of molecules lead to them being 

eluted at different times from the gas chromatograph allowing the mass spectrometer 

downstream to capture, ionize, accelerate, deflect, and detect the ionized molecules 

separately. The mass spectrometer breaks each molecule into ionized fragments and 

fragments are detected by their mass to charge ratio. The compounds are identified in 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Ion
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the sample when identifying mass spectrum appear at characteristic retention times in 

the GC-MS analysis of the sample. 

Prior to extraction of the quartz fibre filter samples, the filters were spiked with isotopically 

labeled internal standards for quantification, including octacosane-d58, hexatriacontane-d74, , 

dibenz(ah)anthracene-d14, aaa-20R-cholestane-d4,  heptadecanoic acid-d33, , levoglucosan-

U13C6 and cholesterol-2,2,3,4,4,6-d6. After extraction the samples were analysed using a gas 

chromatography mass spectrometry system (GC–MS) from Agilent Technologies (GC – 

6890N plus MSD – 5973N) fitted with a HP-5MS column (30 m, 0.25 mm diameter, 0.25 μm 

thickness). The extraction method was based upon(Sheesley et al., 2004) , acid derivatisation 

upon (Podlech, 1998) and (Aldai et al., 2005) and levoglucosan and cholesterol derivatisation 

upon(Yue and Fraser, 2004,Yin et al., 2010).    

Preparation of the standards purchased which were used for calibration of the GCMS as well 

as internal standards for the cooking sample collected. Below are a list of tables of the 

compounds which were analysed for with the GCMS (Table 13), standards purchased, and the 

initial stock concentrations prepared. 

Table 13   Compounds for analysis(Linstrom and Mallard, 2012) 

 
Compound molecular 

mass 

Target  

ion 

qualifier 

1 

qualifier 

2 

qualifier 

3 

formula 

N-Alkanes g/mol m/z m/z m/z m/z   

n-tetradecane  198 57 43 71 85 C14H30 

n-pentadecane 212 57 43 71 85 C14H30 

n-hexadecane  226 57 43 71 85 C16H34 

n-heptadecane 241 57 43 71 85 C17H36 

n-octadecane  255 57 43 71 85 C18H38 

n-nonadecane 269 57 43 71 85 C19H40 

n-eicosane  283 57 43 71 85 C20H42 

n-heneicosane 297 57 43 71 85 C21H44 

n-docosane  311 57 43 71 85 C22H46 

n-tricosane  325 57 43 71 85 C23H48 

n-tetracosane  339 57 71 43 85 C24H50 

n-pentacosane  353 57 71 43 85 C25H52 
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n-hexacosane  367 57 71 43 85 C26H54 

n-heptacosane  381 57 43 71 85 C27H56 

n-octacosane  395 57 71 43 85 C28H58 

n-nonacosane  409 57 71 43 85 C29H60 

n-triacontane  423 57 71 85 43 C30H62 

n-hentriacontane  437 57 43 71 85 C31H64 

n-tritriacontane  465 57 71 43 85 C33H68 

Polycyclic Aromatic 

Hydrocarbons 

            

benzo[ghi]fluoranthene  226 226 113 224   C18H10 

chrysene  229 228 226 229   C18H12 

benzo[b]fluoranthene  252 252 253 250   C20H12 

benzo[k]fluoranthene  252 252 253 250   C20H12 

benzo[a]fluoranthene  252 252       C20H12 

benzo[b]pyrene  252 252       C20H12 

benzo[a]pyrene  252 252 253 250   C20H12 

perylene  252 252 253 250 126 C20H12 

indeno[1,2,3-c,d]pyrene  276 276 277 274   C22H12 

benzo[ghi]pyrene  276 276         

coronene 300 300 301 298   C24H12 

acephenanthrylene 202 202       C16H10 

benzo[e]pyrene 252 252 250 253   C20H12 

Benzo[a]anthracene 228 228 226 229   C18H12 

N-Alkanoic acids     (methyl ester)    

hexanoic acid  116 60 73 41   C6H12O2 

heptanoic acid  130 60 73 41 43 C7H14O2 

octanoic acid  144 60 73 43   C8H16O2 

nonanoic acid  158 60 73 57 41 C9H18O2 

decanoic acid  172 60 73 41 43 C10H20O2 

undecanoic acid  186 60 73 43 41 C11H22O2 

dodecanoic acid  200 73 60 43   C12H24O2 

tridecanoic acid  214 73 60 43   C13H26O2 

tetradecanoic acid (myristic acid)  228 73 60 43   C14H28O2 

pentadecanoic acid  242 73 43 60   C15H30O2 

hexadecanoic acid (palmitic acid)  256 43 73 60   C16H32O2 

heptadecanoic acid  271 73 60 57 43 C17H34O2 

octadecanoic acid (stearic acid)  285 43 73 60 57 C18H36O2 

nonadecanoic acid  299 43 73 57 60 C19H38O2 

eicosanoic acid  313 43 57 73   C20H40O2 

docosanoic acid  341 340 57 73   C22H44O2 

tetracosanoic acid  369 43 57 73   C24H48O2 

Unsaturated Fatty Acids    (methyl ester)     

9-hexadecenoic acid (palmitoleic 

acid)  

254 55 41 69   C16H30O2 

9,12-octadecadienoic acid (Linoleic 

acid)  

280 67 81 55 41 C18H32O2 
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9-octadecenoic acid (oleic acid)  282 69 83     C18H34O2 

Dicarboxylic Acids     (methyl ester)     

butanedioic acid  118 55 45 74   C4H6O4 

pentanedioic acid  132 86 42 44   C5H8O4 

hexanedioic acid  146 100 43 60 41 C6H10O4 

heptanedioic acid  160 55 60 83   C7H12O4 

octanedioic acid  174 138 69 97 60 C8H14O4 

nonanedioic acid  188 55 41 60   C9H16O4 

decanedioic acid  202 98 55 60 41 C10H18O4 

undecanedioic acid  216 98 84 55   C11H20O4 

Monosaccharide Anhydrides 

 

   (trimethyl silyl ether)   

levoglucosan  162 204 217 333   C6H10O5 

Sterols             

cholesterol  387 43 55 57   C27H46O 

Other Compounds             

benzoic acid  122 105 122 77   C7H6O2 

 

2.4.1 Standard preparations.  

 

The standard solutions were prepared using the stock standard solutions Listed in table A, 

below, (of 2-0.1mg/ml for the various deuterated standards.  

As a first step, 10ppm (10,000pg/µl) of each standard was prepared in 1000ul solution using 

the following formula:  

C1V1=C2V2………..(1) 

WHERE  

C represents the concentration of solution 1(before) and 2(after) dilution. 

V represents volume of standard 1(before) and 2(after) dilution 

Using formula 1 table 2  

Table A. Internal standard and recovery standard stock used. 
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 Using formula 1, the spiking standard consisting of the deuterated compounds with 

concentration of 5000 and 10000pg/µl was prepared. The volume, V2 of each stock 

standards A,D,G,H,I,J to be measured and made up to 1000µl was calculated. The final 

standard prepared shall be used for spiking of filters before extraction. 

Spiking standard - To be spiked on the filter. 

10ppm IS1, IS2, IS3, IS4 & IS5 (1ml) preparation

IS Level ID Compound VOL. IS Stock VOL. Final Concentration

New Standard Name STOCK Stock Solution Volume (ul)SOLVENT Volume (ul) pg/uL

IS1 ISA octacosane-d58 10 Isooctane (990) 10,000    

IS2 ISD dibenz(ah)anthracene-d14 100 Toluene (900) 10,000    

IS3 ISG heptadecanoic acid-d33 10 Methanol (990) 10,000    

IS4 ISH Methyl-beta-D-xylopyranoside 10 Methanol (980) 10,000    

ISI cholesterol-2,2,3,4,4,6-d6 10 10,000    

IS5 ISB 2-Nonanone-1,1,1,3,3-d5 98 atom % D 10 Methanol (990) 10,000    

RECOVERY STANDARD SOLN  X p-terphenyl-d14 5 isooctane (995) 10,000    

        

STOCK 

CONCENTRATION   

ID Compound Abreviation solvent mg/mL pg/µL 

ISA octacosane-d58 Oct d58 Isooctane 1 1000000 

ISD dibenz(ah)anthracene-d14 D(ah)A d14 Toluene 0.1 100000 

ISG heptadecanoic acid-d33 HepDea d33 Isooctane 1 1000000 

ISH 

Methyl-beta-D-

xylopyranoside MXP Methanol 1 1000000 

ISI cholesterol-2,2,3,4,4,6-d6 Chol d6 Methanol 1 1000000 

RECOVERY 

STANDARD p-terphenyl-d14 PTPd14 Isooctane 2 2000000 
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The working standard for calibration of the GCMS were prepared so that the concentration of 

compounds will be from 5000pg/µl-0pg/µl (5000, 2000, 1000, 500, 200,50,20 and 0) recovery 

standard concentration of 1000 pg/µl and internal standard concentration of 500pg/µl for 

alkanes , hopanes and PAHs and 1000pg/µl for acids and sterols. 

  

2.4.2 GCMS calibration  

Natural standards were prepared with a range of concentrations ranging from 0 to 5000pg/µl, 

and calibration curves were prepared for the range of compounds. 

CALIBRATION CURVE. 

A calibration curve is a plot of the response ratio (STD natural response against the 

corresponding deuterated STD response) against the amount ratio (ratio of concentration of 

standard eg- 0-10,000 pg/µL to concentration of internal standard 1000pg/µl). 

Methyl β-D-xylopyranoside was used as the internal standard for Levoglucosan and it is 

observed from the structure that there is no deuterium in the compound.  The reason for 

selection of this compound as the internal standard for levoglucosan is as a result of their similar 

breakdown products from silyation. Levoglucosan (1,6-anhydro-β-D-glucopyranose, CAS 

number 498-07-7) is typically characterized by its base peak at m/z 204 and by m/z 217 and/or 

Stock solution Conc 10/5ppm VoL of IS STOCK Solution (ul) DCM+METHANOLTOTAL VOL ISALL (ul) Final concentration

compounds v2 pg/ul

ISA octacosane-d58 5 905 1000 5,000      

ISD dibenz(ah)anthracene-d14 50 5,000      

ISG heptadecanoic acid-d33 10 10,000    

ISH Methyl-beta-D-xylopyranoside 10 10,000    

ISI cholesterol-2,2,3,4,4,6-d6 10 10,000    

ISJ 2-Nonanone-1,1,1,3,3-d5 98 atom % D 10 10,000    
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m/z 333 in mass fragmentograms of derivatized (silylated) samples while derivatized (silylated) 

Methyl β-D-xylopyranoside (CAS Number 612-05-5) are by its base peak at m/z 217, 204. The 

mass spectrum of levoglucosan trimethylsilyl ether exhibits only a small molecular ion (m/z 

378) with fragments due to loss of CH5Si (m/z 333), C6H17OSi2 (m/z 217) and C7H18OSi2 (m/z 

204, base peak) while that of Methyl β-D-xylopyranoside is similar but at m/z 217 and 204 

showing they break down similarly during derivatisation (Simoneit and Elias, 2001). The GC 

elution order is the factor that differentiates these compounds.  

 

STRUCTURE FOR Methyl β-D-xylopyranoside- 

As the only Methyl β-D-xylopyranoside present in the sample shall be that introduced during 

spiking, this standard can be used to quantify the amount of levoglucosan present in the samples 

analysed. 

Calibration curve 

  

 

 

          RESPONSE RATIO 

 

 

                                             AMOUNT RATIO 
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As the calibration standard for the compound (0-G) are run in the GCMS, each produces a 

response for the compound investigated which is compared to its corresponding deuterated 

standard response producing a response ratio. This is then plot against its corresponding 

amount ratio to produce the calibration curve. 

Linear regression is carried out on the plot to establish the equation that best describes the 

linear relationship between instrument response and analyte level. The relationship is described 

by the equation of the line, i.e., y = mx + c, where m is the gradient of the line and c is its 

intercept with the y-axis. Where the instrument response is (y) and analyte level is (x) (LGC, 

2003). The correlation coefficient, r (and the related parameters r2) is a measure of the strength 

of the degree of correlation between the y and x values and the closer the r2  is to 1, the stronger 

the correlation. 

GCMS system used was Agilent GC- 6890N plus MSD-5973N fitted with a HP-5MS -30 m, 

0.25 mm diameter, 0.25 µm thickness column.  

 

CALIBRATION OF STEROLS. 

Calibration standards 0-G are prepared from natural standard of sterols with concentrations 

ranging from 0 pg/µL to 25000 pg/µL with concentration of internal standard and recovery 

standards of 1000 pg/µL. 

These varying concentrations are derivatised using the procedure below to convert the sterols 

to their trimethyl silyl ether, which is then analysed to produce a calibration curve. 

PROCEDURE FOR DERIVATISATION OF STEROLS. 

N,O-Bis(trimethylsilyl)trifluoroacetamide plus 1% trimethylchlorosilane (BSTFA-TMCS) 

was used to derivatise cholesterol, levoglucosan, stigmesterol and their standards.  The 
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procedure followed was 100 µl (10 pipette drops) of standard solution was transferred to a GC-

MS vial and concentrated down to near dryness (ensuring that the solution was not dried 

completely).  100 µl (10 pipette drops) of BSTFA-TMCS (99%:1%) was then added to the 

vials containing the samples.  The vials were then capped and heated on a dry heater block at 

80oC for 1 hour. Then the vials are allowed to cool in a desiccator for 1 hour and subsequently 

subjected immediately to GC-MS analysis. 

 

ACIDS CALIBRATION CURVES 

Natural standards for acids were then prepared with a range of concentrations ranging from 0 

to 10000pg/µl, with known concentration of internal standard (1000pg/µl) and recovery 

standards (1000pg/µl). These levels of concentrated solution were derivatised and then run on 

the GCMS and the calibration graphs were plotted.   

PROCEDURE FOR ORGANIC ACID METHYLATION. 

2.0M trimethylsilyldiazomethane (TMS-DM) in diethyl ether was used to derivatise acids. 

100 µl (10 pipette drops) of standard solution was placed into a 2 ml clean glass vial and 

100 µl (10 pipette drops) of methanol was added followed by addition of 150 µl (15 pipette 

drops) of 2.0M TMS-DM reagent.  With the vial open, it was shaken well and placed in a 

preheated dry heater bath at 40oC for 10 minutes and then left at room temperature for 

another 50 minutes.  The solution was then blown down to near dryness using nitrogen 

blower (making sure the product solution was not dried completely). 100 µl (10 pipette 

drops) of n-hexane was then added and shaken well and transferred to a 100 µl GC vial 

followed by three washes (3 pipettes) then concentrated down to 100 µl (original volume) 

before being subjected to GC analysis.  
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MONOGYCERIDE CALIBRATION CURVES. 

 

Similar to other sets of compounds, calibration standards 0-G are prepared from natural 

standard of monoglycerides with concentrations ranging from 0=0 pg/µL to G=25000 pg/µL 

with concentration of internal standard and recovery standards of 1000 pg/µL. 

These varying concentrations were derivatised using the procedure used above to convert 

sterols to their trimethyl silyl ether. The derivatised standards were then analysed to produce 

calibration curves. 

DEFINITIONS 

Detection limits. 

 The instrument detection limit (IDL) is defined as the amount of pollutant that gives a 

signal to noise ratio of 3 : 1, was determined by calculating the signal to noise ratio for 

the pollutant in the lowest calibration standard (Harrad, 2005). It is the lowest analyte 

concentration for feasible instrument detection. 

𝐼𝐷𝐿 = 𝐶𝑜𝑛𝑐 ×
3

𝑆𝑁𝑅
 

 

Where IDL=instrument detection limit 

           Conc=concentration of target pollutant in calibration standard  

            SNR=signal to noise ratio obtained for that pollutant. 
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 The limit of quantification has been defined as the lowest concentration at which the 

analyte can not only be reliably detected but at which some predefined goals for bias 

and imprecision are met(Armbruster and Pry, 2008). 

                          Limit of quantification = 10*standard deviation of blank ..…(1) 

 The method detection limit is the minimum concentration of a substance that can be 

measured and reported with 99-percent confidence that the analyte concentration is 

greater than zero. It usually considers errors that could arise due to all the steps of the 

analysis. 

                           Method Detection limit= 3*standard deviation of blank ..…..(2) 

The IDL for the GCMS instrument was carried out and for the compound was found to be as 

shown in Table 14. 

Table 14 Instrument detection limit 

Compound IDL (pg/ul) 

Alkanes   

Tetracosane 4.1 

Pentacosane 5.4 

Hexacosane 4.5 

Heptacosane 4.7 

Octacosane 6.3 

Nonacosane 7.3 

Triacontane 9.0 

Hentriacontane 10.5 

Dotriacontane 8.5 

Tritriacontane 10.7 

Tetratriacontane 13.0 

Pentatriacontane 13.3 

Polycyclic Aromatic Hydrocarbons   

Benzo[b]fluoranthene 1.9 

Benzo[k]fluoranthene 7.2 

Benzo[e]pyrene 1.4 

Benzo[a]pyrene 7.0 

Perylene 2.4 

Indeno[123-cd]pyrene 2.0 

Dibenzo[a,i]phenanthrene  2.5 

Picene 6.4 

Benzo[ghi]perylene 1.8 

Coronene 2.3 

Sterols   

levoglucosan 0.9 

cholesterol 2.4 

stigmasterol 2.0 

Monoglycerides   
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1-Monopalmitin 8.3 

1-Monostearin 13.0 

1-Monomyristin 9.1 

1-Monoolein 16.7 

 

 

 

 Concentrations of compounds  

Concentration of the various compounds was calculated using the following formula: 

 This was calculated using formula 5; 

C =
CNAT × Vex

Vins
… … … … … … … … … … … … … … … … … (3) 

Where 

Conc=concentration in sample 

CNAT =concentration of native compound in the sample (conc from GCMS)  

Vex =final volume of extract used for analysis 

Vins =Instrument sampling volume 

 

 

     SPIKED FILTER FOR PAH AND ALKANES 

5 blank filter papers were prepared and extracted as described above, after being spiked with 

50µl of 1000pg/µl natural standard solution. The extracts were subjected to GCMS analysis 

and the concentrations obtained are presented in Table 15. 

 INTERNAL STANDARD RECOVERIES- was determined by using the ratio of 

internal standard peak areas and recovery determination standard peak areas in the 

samples and in the calibration standard. The average of values obtained from running 

calibration standard D (for both PAH and Alkanes). 

 

((
𝐴𝐼𝑆

𝐴 𝑅𝐷𝑆
) 𝑆 ∗ (

𝐴𝑅𝐷𝑆

𝐴𝐼𝑆
) 𝑆𝑇𝐷 ∗ (

𝐶𝐼𝑆

𝐶 𝑅𝐷𝑆
) 𝑆 ∗ (

𝐶𝑅𝐷𝑆

𝐶𝐼𝑆
) 𝑆𝑇𝐷) ∗ 100…………(4) 
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WHERE- 

(
𝐴𝐼𝑆

𝐴 𝑅𝐷𝑆
) 𝑆 --IS RATIO OF INTERNAL STANDARD PEAK AREA TO RECOVERY 

DETERMINATION STD PEAK AREA IN SAMPLE. 

(
𝐴𝑅𝐷𝑆

𝐴𝐼𝑆
) 𝑆𝑇𝐷--IS RATIO OF RECOVERY DETERMINATION STD PEAK AREA TO 

INTERNAL STANDARD PEAK AREA TO IN THE CALIBRATION STANDARD. 

(
𝐶𝐼𝑆

𝐶 𝑅𝐷𝑆
) 𝑆-- IS RATIO OF CONCENTRATION OF RECOVERY DETERMINATION STD 

TO CONCENTRATION OF INTERNAL STANDARD IN SAMPLE. 

(
𝐶𝑅𝐷𝑆

𝐶𝐼𝑆
) 𝑆𝑇𝐷 --IS RATIO OF CONCENTRATION OF INTERNAL STANDARD TO 

CONCENTRATION OF RECOVERY DETERMINATION STD IN CALIBRATION 

STANDARD. 

For the natural standards prepared, as the final volume was 250µl and 50µl of the solutions 

were spiked on the filter, the concentration in the final extract is therefore 200pg/µl for the 

1000pg/µl solutions. 

Table 15  Spiked filter extract concentrations. 

 

WHERE PRECISION =((STANDARD DEVIATION/ MEAN)*100 

SS1 SS2 SS3 SS4 SS5 AVERAGE STD DEV PRECISION %REC

ALKANES

Tetracosane 306.53 311.44 265.38 294.14 309.48 297.4 19.1 6.4 149

Pentacosane 271.49 269.85 240.85 262.04 249.65 258.8 13.2 5.1 129

Hexacosane 308.66 278.64 280.84 264.43 273.13 281.1 16.6 5.9 141

Heptacosane 325.71 259.17 269.93 263.68 255.48 274.8 29.0 10.5 137

Octacosane 326.78 240.57 270.98 257.05 251.94 269.5 33.9 12.6 135

Nonacosane 341.64 254.12 264.42 243.82 250.5 270.9 40.2 14.9 135

Triacotane 325.38 227.62 242.79 209.98 213.42 243.8 47.4 19.4 122

Hentriacotane 333.16 206.59 217.43 207.72 198.8 232.7 56.5 24.3 116

Dotriacotane 329.47 136.9 184.92 159.96 155.97 193.4 77.9 40.3 97

Tritriacotane 231.76 112.47 142.39 126.83 142.17 151.1 46.8 30.9 76

Pentatriacotane 30.4 29.99 36.98 26.15 25.3 29.8 4.6 15.5 15

PAHs

Benzo[b]fluoranthene 151.32 131.01 126.87 131.91 144.26 135.3 10.3 7.6 68

Benzo[k]fluoranthene 235.69 207.45 215.74 224.08 261.01 220.7 20.8 9.4 110

Benzo[e]pyrene 165.67 157.3 159.28 166.47 183.08 162.2 10.2 6.3 81

Benzo[a]pyrene 162.71 155.97 159.95 155.65 183.86 158.6 11.7 7.4 79

Perylene 169.07 176.61 168.52 165.62 179.71 170.0 6.0 3.5 85

Indeno[123-cd]pyrene 162.36 156.67 172.84 159.93 175.38 163.0 8.2 5.0 81

Dibenz[ah]anthracene 223.04 202.08 193.83 232.17 177.29 212.8 22.1 10.4 106

Picene 236.5 230.46 234.22 262.38 243.15 240.9 12.6 5.2 120

Benzo[ghi]perylene 159.16 161.82 180.57 166.72 161.84 167.1 8.6 5.1 84

Coronene 165.73 177.73 183.05 199.87 188.85 181.6 12.7 7.0 91

CONC pg/ul

CONC pg/ul
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To obtain the internal standard recoveries, natural standard D with a concentration of 500pg/µl 

for both PAHs and Alkanes was used. This standard was run 5 times to obtain average response 

for all the compounds, internal standard and recovery standard. This was used with equation 1, 

in section 2.2 to obtain the internal standard recoveries. 

They ranged between 100 and 73%. 0 shows the average and standard deviation of the 

concentrations obtained, the standard deviation was found to be between 22 and 6 for PAHS 

and much larger for alkanes(13-77). 
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Table 16  PAH internal standard and natural standard recovery calculated. 

 

1000PG/UL

SS1

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS %IS RECOVERY % Nat Standard Recovery

Benzo[b]fluoranthene p-Terphenyl-d14           388315 28038 183120.6 45121.8 89.5 73.3

Benzo[k]fluoranthene Dibenz[ah]anthracene-d14 55905 45082 29470.4 74628 71.2

Benzo[e]pyrene 39597 81905 57.0

Benzo[a]pyrene 7047 26026.8 31.9

Perylene 11952 43289 32.6

Indeno[123-cd]pyrene 16253 34794.2 55.1

Dibenz[ah]anthracene 23278 34490.6 79.6

Picene 5142 8308.8 73.0

Benzo[ghi]perylene 17763 35674.8 58.7

Coronene 34846 59607.6 68.9

SS2

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Benzo[b]fluoranthene p-Terphenyl-d14           340732 22577 183120.6 45121.8 101.3 67.2

Benzo[k]fluoranthene Dibenz[ah]anthracene-d14 55568 35677 29470.4 74628 64.2

Benzo[e]pyrene 36195 81905 59.4

Benzo[a]pyrene 5340 26026.8 27.6

Perylene 14226 43289 44.2

Indeno[123-cd]pyrene 15067 34794.2 58.2

Dibenz[ah]anthracene 19112 34490.6 74.5

Picene 4779 8308.8 77.3

Benzo[ghi]perylene 18168 35674.8 68.4

Coronene 37135 59607.6 83.7

SS3

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Benzo[b]fluoranthene p-Terphenyl-d14           254314 14676 183120.6 45121.8 92.7 58.6

Benzo[k]fluoranthene Dibenz[ah]anthracene-d14 37933 26184 29470.4 74628 63.2

Benzo[e]pyrene 25218 81905 55.4

Benzo[a]pyrene 4316 26026.8 29.9

Perylene 7993 43289 33.2

Indeno[123-cd]pyrene 12397 34794.2 64.1

Dibenz[ah]anthracene 11965 34490.6 62.4

Picene 3404 8308.8 73.7

Benzo[ghi]perylene 14864 35674.8 75.0

Coronene 26106 59607.6 78.8

SS4

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Benzo[b]fluoranthene p-Terphenyl-d14           288033 16509 183120.6 45121.8 86.8 58.2

Benzo[k]fluoranthene Dibenz[ah]anthracene-d14 40215 29712 29470.4 74628 63.3

Benzo[e]pyrene 28703 81905 55.7

Benzo[a]pyrene 3807 26026.8 23.2

Perylene 7820 43289 28.7

Indeno[123-cd]pyrene 11356 34794.2 51.9

Dibenz[ah]anthracene 18014 34490.6 83.0

Picene 4730 8308.8 90.5

Benzo[ghi]perylene 13829 35674.8 61.6

Coronene 30211 59607.6 80.6

SS5

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Benzo[b]fluoranthene p-Terphenyl-d14           206303 12859 183120.6 45121.8 82.7 63.2

Benzo[k]fluoranthene Dibenz[ah]anthracene-d14 27450 26180 29470.4 74628 77.8

Benzo[e]pyrene 22692 81905 61.5

Benzo[a]pyrene 6039 26026.8 51.5

Perylene 7505 43289 38.5

Indeno[123-cd]pyrene 9211 34794.2 58.7

Dibenz[ah]anthracene 7089 34490.6 45.6

Picene 2706 8308.8 72.3

Benzo[ghi]perylene 8976 35674.8 55.8

Coronene 19487 59607.6 72.5

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)
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Table 17 Alkane internal standard and natural standard recovery calculated. 

 

 

1000PG/UL

SS1

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS %IS RECOVERY % Nat Standard Recovery

Tetracosane p-Terphenyl-d14           126690 6650 198028.8 22666.4 87.0 34.6

Pentacosane Octacosane-d58 8052 4801 14460.8 20406.6 27.7

Hexacosane 5450 17674.6 36.4

Heptacosane 6268 18257.2 40.5

Octacosane 5916 16447.8 42.4

Nonacosane 5963 14558.6 48.3

Triacotane 4948 12149 48.0

Hentriacotane 5022 12444.6 47.6

Dotriacotane 4476 10389.8 50.8

Tritriacotane 2857 8294 40.6

Pentatriacotane 1399 6032.8 27.3

SS2

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Tetracosane p-Terphenyl-d14           167718 8355 198028.8 22666.4 80.4 49.5

Pentacosane Octacosane-d58 9841 5794 14460.8 20406.6 38.1

Hexacosane 5555 17674.6 42.2

Heptacosane 5129 18257.2 37.7

Octacosane 4360 16447.8 35.6

Nonacosane 4764 14558.6 44.0

Triacotane 3882 12149 42.9

Hentriacotane 3435 12444.6 37.1

Dotriacotane 2337 10389.8 30.2

Tritriacotane 2031 8294 32.9

Pentatriacotane 1707 6032.8

SS3

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Tetracosane p-Terphenyl-d14           178650 6513 198028.8 22666.4 78.9 51.7

Pentacosane Octacosane-d58 10299 4694 14460.8 20406.6 41.4

Hexacosane 5897 17674.6 60.1

Heptacosane 5796 18257.2 57.1

Octacosane 5622 16447.8 61.5

Nonacosane 5297 14558.6 65.5

Triacotane 4414 12149 65.4

Hentriacotane 3837 12444.6 55.5

Dotriacotane 3264 10389.8 56.6

Tritriacotane 2509 8294 54.5

Pentatriacotane 1842 6032.8

SS4

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Tetracosane p-Terphenyl-d14           202711 9692 198028.8 22666.4 85.3 68.0

Pentacosane Octacosane-d58 12624 6980 14460.8 20406.6 54.4

Hexacosane 6454 17674.6 58.0

Heptacosane 6800 18257.2 59.2

Octacosane 6297 16447.8 60.9

Nonacosane 5731 14558.6 62.6

Triacotane 4478 12149 58.6

Hentriacotane 4438 12444.6 56.7

Dotriacotane 3480 10389.8 53.2

Tritriacotane 2831 8294 54.3

Pentatriacotane 2153 6032.8

SS5

Target Compounds IS Name IS RESP Cmpd Resp Average Resp IS Average Resp NS

Tetracosane p-Terphenyl-d14           165684 8566 198028.8 22666.4 84.3 83.9

Pentacosane Octacosane-d58 10200 5061 14460.8 20406.6 55.0

Hexacosane 5547 17674.6 69.6

Heptacosane 5171 18257.2 62.9

Octacosane 4912 16447.8 66.3

Nonacosane 4830 14558.6 73.6

Triacotane 3697 12149 67.5

Hentriacotane 3388 12444.6 60.4

Dotriacotane 2744 10389.8 58.6

Tritriacotane 2482 8294 66.4

Pentatriacotane 1398 6032.8

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)

Average Response of Standards (from vials)
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Table 18  GC/MS Analysis programme for alkane and PAH. 

n-alkanes 

 HP-5MS Column (30 m, 0.25 mm Diameter, 

0.25 m film thickness) 

GC Conditions   

   Injector Temperature (oC) 300 

   GC/MS Interface Temperature (oC) 300 

   Initial Oven Temperature (oC) 65 

   Initial Oven Hold Time (min) 5 

   Oven Temperature Ramp Rate 1 (oC/min) 10 

   Oven Temperature end 1 (oC) 250 

   Oven Hold Time 1 (min) 0 

   Oven Temperature Ramp Rate 2 (oC/min) 5 

   Final Oven Temperature (oC) 300 

   Final Oven Temperature Hold Time (min)  26.5 

   Carrier Gas  Helium 

   Carrier Gas Flow rate (ml/min) 1.0 

   Injection Mode Splitless 

MS Conditions  

   Solvent Delay (min) 10  

   Data Collection Mode  SIM 

   Ion Monitored 57, 66, 71, 82, 85, 98 

   Dwell time 60 ms 

 

PAH 1 

 HP-5MS Column, (30 m, 0.25 mm Diameter, 

0.25 m film thickness) 

GC Conditions   

   Injector Temperature (oC) 300 

   GC/MS Interface Temperature (oC) 300 

   Initial Oven Temperature (oC) 65 

   Initial Oven Hold Time (min) 2 

   Oven Temperature Ramp Rate 1 (oC/min) 10 

   Oven Temperature end 1 (oC) 150 

   Oven Hold Time 1 (min) 0 

   Oven Temperature Ramp Rate 2 (oC/min) 4 

   Final Oven Temperature (oC) 300 

   Final Oven Temperature Hold Time (min)  30 

   Carrier Gas  Helium 

   Carrier Gas Flow rate (ml/min) 1.0 

   Injection Mode Splitless 

MS Conditions  

   Solvent Delay (min) 10  

   Data Collection Mode  SIM 

   Ion Monitored (three groups) 1 (250, 252), 2 (274, 276, 278, 292), 3 (300) 

   Dwell time 1 (100 ms), 2 (80 ms), 3 (100 ms) 
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2.5 OC/EC Analysis- 

A Sunset Laboratory Thermal-Optical Carbon Aerosol Analyzer was used to analyse for 

organic and elemental carbon concentration. The instrument uses thermal desorption in 

combination with optical transmission of laser light through the sample to speciate carbon 

collected on a quartz fibre filter (Sunset Laboratory Inc., 2000). 1cm2 punch from the quartz 

filter sample were used to analyse for the elemental, organic and total carbon using the 

EUSAAR2 (European Supersites for Atmospheric Aerosol Research) protocol for the 

measurement of carbon (Cavalli et al., 2010). 

In a helium atmosphere, the temperature of the oven is increased to 700°C to remove the 

organic carbon from the sample which is converted to carbon dioxide as it passes to the 

manganese dioxide oxidizing oven. The carbon dioxide then mixes with hydrogen, over a 

heated nickel catalyst and it is converted to methane, which is measured using a flame 

ionization detector (FID). A second temperature ramp from 550 °C to 850 °C is then initialized 

with a helium/oxygen atmosphere in the oven. During this time the elemental carbon from the 

sample and pyrolysis products are oxidized and carried through the system and measured 

(Dall'Osto et al., 2011).  

A fraction of collected organic carbon may be charred and pyrolized into EC during the initial 

heating process of the non oxidizing run and this could result in the report of less OC and more 

EC than actually present in a given sample. To correct for this problem, a tunable diode laser 

is used to determine the absorbance of the sample throughout the heating ramp cycle. The 

absorbance increases as OC is pyrolized to EC and decreases as EC and the pyrolized OC are 

desorbed during the second heating cycle. The point at which the laser absorbance returns to 

its initial value is considered the split point between OC and EC for quantification. Any carbon 

measured before the split is assigned as thermal OC, and any carbon measured after the split is 
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assigned as thermal EC(Bauer et al., 2009). Thermal EC and thermal OC are usually simply 

referred to as EC and OC. 

The overall carbon response is based on a multi-point external calibration. The external 

methane standard is calibrated against an external multipoint calibration. The external methane 

standard is run at the end of every sample. This known amount is used to normalize the response 

factor for each sample. The software determines an initial FID response baseline prior to the 

desorption. The area at each point along the thermogram curve minus the baseline is multiplied 

against the calibration response to determine the carbon. The data are summed over the range 

to yield the total carbon results. 

Instrument calibration was done with solutions of sucrose standard which were prepared (4.20 

µg/µl, 0.42 µg/µl and 0.21 µg/µl). 1 cm2 of clean unexposed filter paper was punched using a 

puncher on a clean aluminium foil surface and pinched loose with a paper clip. 10 µl of the 

standard was dropped on the filter cut out and allowed to dry for about30 minutes. Then the 

instrument was used and run using the operating procedure for the “SUNSET THERMAL-

OPTICAL CARBON ANALYSER” instrument should be followed - 

The powers for both instruments and computer were switched on and then the gases (Air, 

Helium, Helium/Oxygen, Hydrogen and Helium/Methane) were switched on and gas pressures 

set.  

The programme for the carbon analyser was started on the computer and it was ensured that 

gas flows were set within the expected ranges and hydrogen was set last. The machine was then 

allowed to stand for about 30 minutes.  

 A file from the PAR folder was selected and a name entered for the raw data file, the sample 

ID and analyst names and size of punch area (1 cm2 in my case.) 
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The instrument was then allowed to be ready for running (indicated by the green bar at the 

bottom of the screen which shows ‘safe to put a new sample’). To place the sample the quartz 

door to the front of the oven was opened and the punched out sample, for analysis, was placed 

on the boat of the OC/EC spoon using twisters, and replaced in by sliding the spoon gently 

until it stopped. This was followed by the door being closed and tightened with the metal clip 

followed by clicking the “start analysis” button for the analysis of the sample. 

This procedure was repeated for the 3 concentrations to ensure the instrument is working 

efficiently. 

When the instrument was calibrated and found to be working accurately, blank and filter 

samples were then run where 1 cm2 of the filter paper to be analysed were punched using the 

puncher on a clean aluminium foil surface and pinched loose with a paper clip. 

 For the analysis of samples stored in the freezer the samples were brought out in the stored 

wrapping (plastic bags and foil wrapping) and allowed to stand for some time to allow the filter 

to reach room temperature. The foil paper casing was carefully opened to prevent exposure of 

filter to moisture. 

The instrument was turned on and used as described above in the explanation of the SOP for 

the “SUNSET THERMAL-OPTICAL CARBON ANALYSER”. 
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CHAPTER 3- Cooking Source profile. 
This chapter presents concentration of particulate matter collected from cooking source in a controlled 

environment. The aim of the sampling was to characterize the emissions from various cooking styles 

and compare them among themselves as well as compare them with the limited existing profiles 

available. 

This chapter contains some sections of verbatim text adapted from the following review article 

published as part of this PhD: 

Abdullahi, L, Delgado Saborit, JM & Harrison, RM 2013, 'Emissions and indoor 

concentrations of particulate matter and its specific chemical components from cooking: A 

review' Atmospheric Environment, vol 71, pp. 260- 294. 

3.1 Introduction 

With the identification that food cooking is one of the major sources of pollution in the indoor 

environment as well it being an important source of the fine organic aerosol in urban 

environments, a better understanding of what is emitted during the process is important. 

Some studies have characterised emissions from cooking in both  controlled environments , 

involving cooking experiments, and also in real-world residential and commercial kitchens 

where measurements were taken (Li et al., 2003, Rogge et al., 1993, He et al., 2004c, Schauer 

et al., 1999a, Lee et al., 2001b, Robinson et al., 2006, Rogge et al., 1991). When sampling  in 

controlled experimental setups it is assumed that the measurements are influenced mainly by 

the fuel used and the food being cooked while in actual real life kitchens measurement of 

emissions are influenced by many factors such as room arrangement, building materials, 

outdoor infiltration, other combustion devices, ventilation, and cooking methods(Huboyo et 

al., 2011) . There is a need for both types of microenvironments so as to have a neutral 

representation of what actually is emitted from the food and also have a representation of what 

the population is actually being exposed to in their daily lives 

In the investigations by Rogge et al., 1991, Robinson et al., 2006 and He et al., 2004 they were 

mainly focused on the determination of semi-volatile organic compounds as well as the 
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speciation of organic aerosols released from the cooking being carried out and in the end 

Robinson et al., 2006 strongly suggested the use of organic molecular organic tracers such as n-

hexadecanoic (palmitic) acid, n-octadecanoic (stearic) acid, 9-hexadecenoic (palmitoleic) acid, 

9-octadecenoic (oleic) acid, and cholesterol as source contribution estimates for food cooking. 

However these studies were limited to only specific cooking styles as well as they were carried 

out in different parts of the world : Rogge et al., 1993a in Los Angeles, He et al., 2004 in China, 

Schauer et al., 1999, Lee et al., 2001, Robinson et al., 2006 Pittsburgh, Pennsylvania, Li et al 

2003 in Southern Taiwan. 

Different cooking methods and fuels are used for the preparation of food around the world 

which affect the particle emissions as well as the physical and chemical properties of the 

particles generated (See and Balasubramanian, 2008, Lee et al., 2001b).   PM2.5 concentration 

were found to be low , medium and high when the cooking method were predominantly 

steaming , boiling and frying respectively by Lee et al., 2001 where samples were taken in a 

Korean barbeque restaurant(frying), a Chinese hot pot restaurant (boiling) and a Chinese dim 

sum restaurant (steaming). See and Balasubramanian, 2008 similarly found that deep-frying 

gave rise to the largest amount of PM2.5 and most chemical components, followed by pan-

frying, stir-frying, boiling, and steaming.  As such the concentration of cooking can vary based 

on these parameters such as cooking method and ingredients and may as well be unique for 

every region of the world. 

He et al also collected samples from two Chinese restaurants with predominately two cooking 

styles; Hunan and Cantonese cooking (He et al., 2004).  The samples were similarly collected 

through the overhead exhaust hood at the exit of the exhaust duct. The samples were taken at 

lunchtime and supper in the evening for each restaurant. The Cantonese Style involved mainly 

frying, stewing or braising of food. Schauer et al., 2001 collected samples when cooking was 

carried out using a large institutional-scale deep fryer and a large industrial-scale electric grill 
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where commercially distributed food products were being prepared.  Soya beans and canola oil 

were used to stir fry vegetables while hydrogenated soybean oil were used to deep fry chips. 

Samples were collected downstream from the grease extractors located in the ventilation 

system above the appliances (Schauer et al., 2001). 

None of the reported research so far was conducted in the UK and none involved the 

experiments on various cooking styles being carried out by the same researcher in the same 

location over the same period. 

The aims of this chapter are 

 Characterization of the chemical composition of PM from cooking emissions. 

 Preparation of cooking source profiles for various cooking styles. 

3.2 Sampling and analytical methods. 

Samples were taken from the laboratory trailer kitchen (a controlled environment) described 

in Chapter 2 and the filters collected were analysed using methods described in chapter 2. 

The quartz filter samples were used to analyse OC and EC using the carbon analyser and GC-

MS was used to analyse for  PAHs, alkanes, Acids, Hopanes, Sterols and glycerides. 

The PTFE filter samples were used to obtain gravimetric concentrations of PM. 

The following sections include the analysis of the results obtained from the laboratory 

analysis of samples collected. These data are compared with data obtained from previous 

studies on cooking emissions in Table 19, which involved similar sampling techniques and 

analysis.  For instance Zhao et al., 2007c collected samples from commercial restaurant using 

two medium-volume samplers, located on the roof, to collect PM2.5 on quartz fibre filters. 

The samples were collected directly from the exit of exhaust during the periods of lunch and 

supper for 2 hours for each sample. In this study the Western-style fast food used frying 
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techniques and beef and chicken were the main ingredient while at the Chinese restaurants 

the main ingredients for cooking were pork, poultry, beef, seafood, vegetables. 

Differences in cooking time for each cooking style generally existed ranging from 40 mins 

for western cooking to 1 hour for Chinese, Indian and African cooking but the time 

differences were about the same (range of 45 mins to 60 mins ) so an assumption was made 

that the differences in time was not significant considering that calculation will be made 

based on the sample times to obtain the sample volume. 
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Table 19  Studies on emissions from cooking 

STUDY  SAMPLING CONDITIONS 

Schauer et al., 1999a 

Characterise  organic compound composition emitted during 

meat charbroiling 

 

 

 

Schauer et al., 2002 

Characterise  organic compound composition emitted during oil 

cooking 

Emissions sampled in the ventilation system of a commercial kitchen downstream of the filter and grease extractor. Sampling time was 85 min. 

Dilution tunnel: mix exhaust emissions with 25- to 180-fold excess of HEPA filtered air. 

1.8 µm AIHL-design cyclone separators upstream of samplers.  

Flow rate in each sampling train was 10 L/min, except sampling train a) at 30 L/min and sampling train g) at 0.2 L/min. 

Organic compounds collected using: 

a) 1 XAD coated denuder upstream of 3 quartz filters in parallel followed by 2 PUFs in series. 

b) 3 quartz filters followed each by 2 PUFs in series. 

EC/OC collected using: 

c) 2 quartz filters in series  

Mass emissions, trace metals and organic acids collected using: 

d) Teflon filter upstream of two KOH impregnated quartz fibre filters  

Mass emissions & soluble ions collected using: 

e) Teflon filter  

VOC collected using: 

f) 6-L SUMA canister downstream of teflon filter e) 

Carbonyls collected using: 

g) DNPH-impregnated C18 cartridges 

Svendsen et al., 2002 

Characterise aldehydes and fat aerosol collected in the breathing 

zone of the cook in fumes from commercial restaurants. 

 

Personal exposure sampler with inlets located in the shoulder of the cook of 19 commercial kitchens using deep frying devices equipped with ventilation 

hoods.   

Aldehydes were collected a sampling device containing silica impregnated with 2,4-dinitrophenyl hydrazine. Flow rate was 1.5 L/min during 1.5-2.5 hours. 

Fat aerosol collected onto pre-weighted one glass fibre filter (Nucleopore AAA). Flow rate, 2 L/min during 65 to 200 mL. 

Total number concentration was measured with TSI 3936 SMPS used to measure the  

PAHs were collected onto glass fibre filters in a filter holder and 2 XAD-2 tubes downstream. Flow rate, 1 L/min during 200 min. 

McDonald et al., 2003 

Characterise  organic compound emission composition emitted 

during charbroiling and grilling of chicken and beef  

University lab kitchen following commercial standard procedures. 

Emissions collected at the end of a residence chamber to allow the gas/particle equilibrium.  

2.5 µm cyclone separators upstream of samplers.  

Flow rate in each sampling train was 113 L/min. 

Samples collected on Teflon filter for PM2.5 and elements. 

Samples collected on quartz filters for carbon and ion analysis 

Samples collected on Teflon-impregnated glass fibre (TIGF) filter followed by a PUF/XAD-4/PUF sandwich cartridge for speciated particle-phase and semi-

VOCs. 

CO was measured using non-dispersive infrared analyser. 

Zhu and Wang, 2003 

Characterise  PAH emitted in commercial and domestic Chinese 

kitchens 

A sampler was located in a new kitchen 0.5 m from the pan (cooking methods) and in the centre of the kitchen (domestic and commercial kitchens). In all 

cases, the sampler was 1.5 m above the ground level. All doors and windows were closed during cooking. Electric hobs were used for cooking. 

Samples were collected over 100 mins to test different cooking methods, and over 2 consecutive days for 12-h (8:00 – 20:00) in domestic and commercial 

kitchens. 

Low noise small samplers (MP-15CF) operated at 1.0 l/min equipped with a Whatman glass filter (GFF, 25 mm) collected particle bound PAHs and a XAD-

2.5 g cartridge collected the gaseous PAHs.  

Chen and Chen, 2003 

Characterise PAHs in fumes during frying of chicken. 

Emissions collected on adsorption wool fitted on the cover of frying tank (closely tight during sampling) 

Li et al., 2003 

Characterise PAHs in fumes during cooking of different styles 

Emissions collected isokinetically from the exhaust vent in commercial kitchens. Three consecutive samples were collected at 10L/min for 45 min during the 

cooking time. 

Particle bound PAHs were collected on a tube-type glass fibre thimble (25x90 mm). 

Gaseous PAHs were collected onto a 5-cm polyurethane foam (PUF) followed by a 2.5 cm Xad-16 resin cartridge supported by a 2.5 cm PUF. 

He et al., 2004b 

Characterise  fumes emitted during Chinese style cooking  

Samples collected at the exit of the exhaust vent of two commercial kitchens. 

Sampling times were 90-120min at lunchtime and dinner. 

Samples collected onto two honeycomb sampler and a three stage cascade impactor to collect PM2.5 at 25 L/min. 
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One honeycomb contained PTFE filters for particle mass determination and and ionic species analysis. 

The second honeycomb and the cascade impactor were loaded with quartz filters (Pallflex 2500QAT-UP) for the determination of EC/OC and organic 

speciation. 

He et al., 2004c 

Characterise  fumes emitted during Chinese style cooking  

Samples collected at 40-60 cm at leeway from the exhaust vent of two commercial kitchens. 

Sampling times were 100-120min at lunchtime, and 45 minutes at dinner. 

Samples collected onto quartz fibre filters with a three stage cascade impactor (<10um, 10-2.5 um and <2.5 um) at 25 L/min. 

See et al., 2006; See and Balasubrabramanian, 2006b 

Characterise  PAH and metal composition emitted during 

Chinese, Malay and Indian style commercial cooking 

See and Balasubrabramanian, 2006a, 2008 

Characterise emissions from 5 types of cooking methods 

(steaming, boiling, stir-frying, pan-frying and deep- frying ) 

Sample collected at 1.5m above ground level at the opposite site of a 4 LPG burners stove in commercial food stalls.( See et al., 2006; See and 

Balasubrabramanian, 2006b) 

 

Sample collected at 1.5m above ground level and 0.2 m from a 2-burner domestic stove with no ventilation. Samples collected during cooking activities. (See 

and Balasubrabramanian, 2006a, 2008). 

Samples collected for 12 hours during cooking and non-cooking activities. 

A MiniVol portable air sampler (Airmetrics) collected PM2.5 at a flow rate of 5 L/min onto: 

- 47mm 2 µm PTFE Teflon filter for gravimetric, metals and ion analysis. 

- 47mm QMA quartz filters for PAH 

Zhao et al., 2007a, b 

Characterise  organic compound emission composition emitted 

during Chinese and Western style cooking 

Emissions sampled at the exhaust vent of the ventilation system of commercial kitchens downstream of the filter treatment methods.  

Samples collected during rush hour at lunch and dinner times. Sampling time was 120 min. 

2 medium-volume samplers at a flow rate of 78 L/min collected samples in 90mm quartz fibre filter. 

2 Dustraks (TSI) monitored the relative concentrations of PM2.5 and PM10. Background PM2.5 was collected in the city using a hi-volume sampler (Andersen). 

Sjaastad and Svendsen, 2008; Sjaastad et al., 2010; Sjaastad 

and Svendsen, 2009 

Characterise PAHs, aldehydes and particulate matter collected in 

the breathing zone of the cook in fumes from frying a beefsteak. 

 

 

Model kitchen (19 m2) containing gas or electric hobs and a canopy fume hood.  

Personal exposure sampler with inlets located in the shoulder of the cook. 

PAHs were collected onto glass fibre filters in a filter holder and 2 XAD-2 tubes downstream. Flow rate, 1 L/min during 200 min. 

Aldehydes were collected into stainless steel sorbent tubes filled with 220 mg Tenax TA. Flow rate, 100 mL/min for 10-200 min. 

Total particles collected onto pre-weighted double Gelman glass fibre filters. Flow rate, 2 L/min during 65 to 200 mL. 

Total number concentration was measured with TSI 3936 SMPS. 

Hildemann et al., 1991a 

 

Commercial scale kitchen -Sampling port located above the cooking surface, below the extractor fan. 

Li et al., 1993 Domestic kitchen with a gas stove Sampling ports 3m away from the gas stove 

Abt et al., 2000a, b  

 

Domestic kitchen with gas and electric stoves. Samples collected over 6-day periods Equipment located in an indoor location adjacent to the kitchen. 

Dennekamp et al., 2001 Laboratory kitchen with gas and electric stoves Sampling inlet at face level in front of the cooker 

Wallace et al., 2004 Domestic kitchen using gas stove Measurements performed in the duct of the ventilation system. 

Wallace et al., 2006 Personal and indoor (living room) measurements for 7 days in free-style living conditions. 

Hussein et al., 2006 

 

Domestic kitchen using an electrical stove and adjacent living room.Continuous measurement for 15 days at 3 min intervals Sampling ports at 1.5m from the 

ground and 1m (kitchen) and 5m (adjacent room) from the stove. 

Yeung and To, 2008 Laboratory kitchen (168m3) with gas stove and electric griddle. Fume hood installed above cooking area. 

Buonanno et al., 2009 

Buonanno et al., 2011 

Open plan laboratory kitchen (80m2) using gas and electrical stoves. Sampling 2 meters away from the stove for 8-10 mins. 

Buonanno et al., 2010 15 pizzerias Sampling 2 meters away from the stove for 8-10 mins. 

Glytsos et al., 2010 Laboratory room (60m3) Electric stove Sampling ports 0.9 m above the floor. 
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3.3 Gravimetric concentration. 

 

Figure 21  Particulate matter Concentration at cooking source using gas (µg/m3) 

High concentrations of PM are observed in Figure 21 for Chinese cooking with a range of between 

244 µg/m3 and 467 µg/m3. Indian style cooking is found to release less PM concentration of all the 

cooking styles with concentrations as low as 67 ug/m3 in Table 20 and Figure 22;  See et al 2006 

had similar concentration at their sampling point in a commercial food stall where Chinese food 

was being made. They found that PM concentration was 312.4 ug/m3 which lies within the range 

of concentration obtained in this study. He et al measured slightly higher concentrations of PM in 

China 1406.3 ug/m3 and 672 ug/m3 at exits of exhaust duct of Hunan and Cantonese restaurants 

respectively. The process of stir frying involved in Chinese cooking  leads to oil, meat and other 

ingredients to be able to reach very high temperatures leading to high breakdown of these food 

resulting in large amount of particle generated compared to other cooking styles. 

The next cooking method to release higher concentration of PM is the western style cooking which 

like the Chinese cooking is based on frying in oil.  

Similar concentrations were observed for Indian and African and cooking which both involved 

some frying, stewing and boiling. Indian cooking emitted a range of 67-102 ug/m3 while African 

cooking had concentration between 70-99 ug/m3.  
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Cooking with oil is likely to generate more particles than boiling of water and this is attributed to 

the higher temperature needed to boil oil as against water; for instance corn oil has a boiling point 

of 245°C  while water has a boiling point of 100°C (Sjaastad, 2010). This physical property enables 

the oil droplets generated during cooking to exist as particles as against the less volatile water 

droplets (Sjaastad, 2010).  As compared to oil cooking, the boiling of water leads to the generation 

of steam resulting in higher humidity in the kitchen resulting in the hydroscopic growth of particles 

(Wallace and Howard-Reed 2002) and water vapour condensing on UFP forming larger particles 

(See and Balasubramanian 2006a; Sjaastad, 2010). 

The one-way analysis of variance (ANOVA) is used to determine whether there are any statistically 

significant differences between the means of the various PM concentrations for the different 

cooking styles.  The results showed that there was significant difference between all the means sig 

(0.001) 

 

Table 20  Concentration of PM emitted from cooking source using gas (µg/m3) 

 

  AVERAGE 
STD 
DEV 

 AFRICAN 80.6 12.3 

CHINESE 367.8 82.5 

INDIAN 82.4 12.7 

WESTERN  141.3 17.2 
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Figure 22  figure showing concentration of PM emitted from cooking source using gas (with error 

bars) 

 

 

 

Figure 23  Particulate matter Concentration at cooking source cooking with electric (µg/m3) 

Figure 23 show the PM concentration at the trailer (TC-TRAILER COOKING) for the various 

cooking styles. Generally the concentrations generated are slightly higher during cooking with 

electric with a range of 80-900µg/m3 compared to the range of 60-460µg/m3 gotten when cooking 

with gas. 
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Table 21  Concentration of PM emitted from cooking source using electric (µg/m3) 

 

  AVERAGE STD CEV 

ELEC TC AFR 176.6 83.4 

ELEC-TC CHINESE 469.3 263.4 

ELEC-TC IND  99.3 18.6 

ELEC-TC WEST 119.7 27.8 

 

When Table 21 and Table 20 are compared it is seen that the Chinese cooking style emits the 

highest concentration of PM. African and western style cooking 

 

3.4 Concentration of compound emitted from various cooking styles. 

Table 22,Table 23,Table 24, Figure 24 and Figure 25 are tables and figures that present the 

concentrations of organic compounds that were obtained from the analysis of filters collected in the 

trailer kitchen. 

Alkanes 

In this study higher concentrations of heptacosane were observed at the cooking source for Indian 

cooking with low concentration of tetratriacontane 2.71 µg/m3 and 0.18 µg/m3 respectively. This 

was the trend observed for all the cooking types with African generally emitting less concentrations 

(heptacosane 0.41 µg/m3 and tetratriacotane 0.07 µg/m3), highest concentrations were observed in 

Indian cooking followed by western style cooking then Chinese cooking. A very high concentration 

of 2.88µg/m3 was observed for tritriacotane in Chinese cooking, with Indian African and Western 

style cooking emitting  0.89 µg/m3,0.4 µg/m3,1.11 µg/m3 of the same alkane. 

Similarly in previous studies the distribution of n-alkanes emitted from Chinese restaurants have 

generally been observed to be substantially different from the distribution from meat cooking 

(Rogge et al., 1991; Schauer et al., 1999a; He et al., 2004b) and similar to alkane patterns from 

http://www.sciencedirect.com/science/article/pii/S1352231004007782#bib18
http://www.sciencedirect.com/science/article/pii/S1352231004007782#bib21
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frying vegetables in seed oils (Schauer et al., 1999a; Schauer et al., 2002). Emission of n-alkanes 

from cooking consisted of a negligible fraction of the total quantified organic mass emitted and is 

dependent on the cooking conditions (Rogge et al., 1991; He at al., 2004b)as seen in Table 26.  

Hildemann et al., (1991a) reported that the n-alkane concentration release rate increased from frying 

to charbroiling of meat with extra lean meat releasing less compounds than regular meat 

(Hildemann et al., 1991a). This was similar to observations by Rogge et al., (1991), where 

charbroiling was found to produce three times the mass of n-alkanes than frying of meat (16 mg/kg 

of charbroiling meat as against 5.5 mg/kg of frying meat). Rogge et al. (1991) also observed that 

charbroiling regular meat released four times the mass compared to extra lean meat (thus affected 

by fat content of meat). In this study the n alkane concentration for Indian and African cooking are 

found to be a more significant fraction of the total organic mass as seen in Table 25.  

Similar to previous studies by Zhao et al in 2007 where Western style fast food cooking had been 

observed to emit double the concentration of n-alkanes per mg particulate organic matter (POM) 

compared to Chinese cooking, concentration of alkanes is less in Chinese style cooking in this 

study. The n-alkanes have a Cmax at Pentacosane(C25) for western fast food (Zhao et al., 2007a) and 

meat cooking (Rogge et al., 1991). Chinese cooking exhibits a Cmax at Nonacosane or 

Hentriacontane (C29 or C31) taken as an indication of the presence of vegetables during cooking 

operations. In this study Indian cooking had a Cmax at Heptacosane(C27), Western at 

Hexacosane(C26), African at Nonacosane(C29) and Chinese at Tritriacotane(C33). 

PAH 

During Chinese and Indian cooking highest concentration of PAH was for dibenz(ah)anthacene 

1.96 µg/m3  and 0.96 µg/m3respectively. For western cooking highest concentration were found for 

benzo(b)fluoranthene 1.50 µg/m3. Generally African food was found to release lower 

concentrations of PAH than the other cooking styles. 

http://www.sciencedirect.com/science/article/pii/S1352231004007782#bib22
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A similar trend was observed when Chinese cooking and Indian cooking were compared:  higher 

PAH concentrations were observed for Chinese cooking due to stir frying and higher cooking 

temperature, whilst the Indian cooking style generated the lower PAH concentrations. Indian 

cooking emitted large amounts of volatile PAH with lower molecular weight like naphthalene, 

fluoranthene and phenanthrene attributed to low temperature cooking, such as simmering (See et 

al., 2006). Chinese cooking, on the other hand, was found to emit higher molecular weight PAHs 

such as benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene. These trends were 

attributed to the cooking methods employed in each type of cooking from the amount of food 

cooked, the amount and type of oil used, to the  temperatures reached during cooking, and cooking 

time (See et al., 2006).   

The effect of the cooking method was also examined by See and Balasubramanian (2008), who 

found that techniques that involve the use of oil at high temperatures, such as stir frying, pan-frying 

and deep-frying, released higher amount of PAH compared with those that involve the use of water, 

such as boiling and steaming. This is consistent with work of Schauer et al. (2002). Higher 

quantities of oil are generally used in stir frying, commonly used in Malay and Chinese cooking, 

than simmering which is the most common technique used for preparation of Indian dishes. In 

addition, high temperature frying was found to lead to production of higher molecular weight PAHs, 

while low temperature cooking results in formation of more low molecular weight PAHs (See et 

al., 2006). McDonald et al. (2003) compared the PAH emissions from charbroiling and grilling 

meat and found that PAH emissions from charbroiling were about 3–5 times more than when food 

was grilled. This was attributed to the contact of  the lipid material dripping from the meat (during 

cooking) onto the cooking appliance. Thus, the higher PAH concentrations observed during 

charbroiling were due to the direct access of lipids onto the hot flame compared to the cooler griddle 

surface used in grilling (McDonald et al., 2003).  

The emission of PAHs in cooking fumes, not only is related to the cooking method, but also to the 

cooking ingredients. Schauer et al. (1999a; 2002) studied the emissions of cooking fumes for 
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charbroiling hamburger meat (1999a) and frying vegetables (2002). They found that cooking meat 

produced far greater PAH concentrations than frying vegetables. Zhu and Wang (2003) studied the 

emissions of low and high fat food using different cooking methods. The frying of low fat foods 

was observed to lead to the generation of more PAH than the broiling. This was not the case for 

high fat food which exhibited the reverse with higher concentration of PAH detected when the food 

was broiled (Zhu and Wang, 2003). This was illustrated when low fat fish produced a higher level 

of PAH when fried than when broiled, and pork chops produced higher PAH when broiled than 

when fried.  

Acid 

Higher acid concentrations were observed in Chinese cooking with 9-Octadecenoic acid being the 

acid with highest concentration for this style of cooking (6.49 µg/m3). High concentrations of 

hexadecanoic acid were also observed in Chinese and all other cooking styles with concentration 

of 4.22 µg/m3, 2.03 µg/m3,1.23 µg/m3 and 0.84 µg/m3 for Chinese, African, western and Indian 

cooking respectively. 

Due to the fact that meat and oils used in cooking contain fats made up of saturated and unsaturated 

fatty acid esters of glycerol, chemical processes that typically occur during high temperature 

treatment of food are the degradation of sugars, pyrolysis of proteins and amino acids and the 

degradation of fats (Svendsen et al., 2002). The cooking process leads to production of free fatty 

acids, free glycerol and mono- and diglycerides (Nolte et al., 1999).  

In previous studies by Zhao et al ,Western fast food cooking found that the quantified saturated 

fatty acids observed a range from C6 to C20 with distinct even to odd carbon preference and a 

predominance of palmitic acid (Zhao et al., 2007a). Chinese cooking was found to emit C6-C24 fatty 

acids with a similar even to odd carbon preference and palmitic acid preference similar to meat 

cooking (Rogge et al., 1991; He et al., 2004b) and seed oil cooking (Schauer et al., 2002). The most 

common unsaturated fatty acids observed were oleic acid and linoleic acid for Chinese cooking 
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(Zhao et al., 2007b; He et al., 2004b). The most prominent organic compound released from 

American cooking is oleic acid (Rogge et al., 1991; Schauer et al., 1999a; Schauer et al., 2002;  He 

et al., 2004b). 

The concentration of emitted saturated fatty acids in Western fast food was found to be 13 times 

higher than in Chinese cooking while unsaturated fatty acid concentrations were only two times 

higher, attributed to ingredients and cooking temperature. High concentrations of nonanoic acid 

emissions are observed in both Chinese and Western style fast food cooking with a higher ratio of 

nonanoic acid to other acids (C8-C10) in Western style fast food.  Schauer et al. (1999a;  Schauer et 

al., 2002) compared the emissions of fatty acids from different ingredients, such as meat and 

vegetables. They found that charbroiling hamburger meat released more fatty acids than frying 

vegetables. They also found that stir frying released more fatty acids than deep frying. 

Aldehydes  

A recent IARC monograph reported that cooking, in particular frying, generates substantial 

amounts of certain gaseous pollutants such as formaldehyde (IARC, 2006), acetaldehyde (IARC, 

1999), acrylamide (IARC, 1994) and acrolein (IARC, 1995). These compounds have not been 

studied in this study and so no comparism can be done at this point. However hereunder describes 

the main results found in the literature about aldehydes. 

Concentration distributions have been found to be similar for Western and Chinese style cooking 

for most of the aldehydes, except for nonanal, which is one order of magnitude higher in Western 

cooking (Zhao et al., 2007b).  

Similar to what was observed for other organic species, the type of ingredient cooked is also key in 

the release of aldehyde emissions during cooking. The studies of Schauer et al. (1999a;  Schauer et 

al., 2002) show that charbroiling hamburger meat emits more aldehydes than frying vegetables. 



 

113 
 

Sjaastad et al. (2010) used a model kitchen similar to a Western European restaurant to assess if 

higher mutagenic aldehydes were emitted during the frying of beefsteak on an electric or gas 

stove with margarine or soya bean oil as the frying fat oil. It was found that mutagenic aldehydes 

were detected in the breathing zone of cooks in the range of non-detectable to 61.80 µg/m3 (Sjaastad 

et al., 2010). They also found that higher exposures to these components were more pronounced 

when frying on a gas stove instead of an electric stove which may cause adverse health effects 

especially for people occupationally exposed to these fumes (Sjaastad et al., 2010). An earlier study 

of Sjaastad and Svendsen (2008) had involved the frying of beef steak using margarine, rapeseed 

oil, soybean oil or virgin olive oil as frying fat in similar conditions as a regular Norwegian home 

(in terms of ventilation conditions and frying procedure).They recorded mutagenic aldehyde 

concentrations ranging from non-detectable to 25.33 µg/m3 (Sjaastad and Svendsen, 2008). They 

also observed statistically significantly higher levels of mutagenic aldehydes and particles when 

margarine was used as the cooking fat compared to the other oil. 

Generally it was found that there was a shortage of literature on characterisation of emissions from 

cooking using electric stove with most studies reporting mainly particulate matter mass and not the 

organic composition.  In this study, a look at the emissions of compounds emitted at the trailer 

kitchen(cooking source) using an electric hob was made and the concentrations were reported in 

Table 29, Table 30, Table 31 and Table 32 for the various cooking styles. It was observed that 

compared to the gas cooking concentrations were higher than when electric hob was used, for 

instance the average concentration of glycerides cooking Indian food was 0.8µg/m3 when cooking 

with gas as against 0.45µg/m3 when using electric. Acid concentrations also showed a similar trend 

with average concentration of the group of acids of 0.42µg/m3 total emitted from gas cooking 

against 0.2µg/m3 when electric source of heat was used. For Chinese cooking 1.35µg/m3of total 

acid as compared to 0.24µg/m3 emitted when electric was used. 

Similar to cooking with gas it was observed that emission during Chinese cooking produced higher 

concentration of compounds, followed by western style cooking then Indian and finally African. 

http://www.ncbi.nlm.nih.gov/pubmed/20164502
http://www.ncbi.nlm.nih.gov/pubmed/20164502
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Total concentration for the various cooking methods for glyceride, sterol and acid respectively were 

found to be; Chinese (0.8, 0.3 and 1µg/m3), western (0.7,0.3 and 0.2µg/m3) Indian (0.5,0.2 and 

0.2µg/m3) and African(0.2,0.1 and 0.8µg/m3) showing the trend of total concentration. 

 

 

Table 22  Chemical composition of PM emitted from cooking source µg/m3 using gas 

ALKANES  INDIAN  WESTERN AFRICAN CHINESE 

Tetracosane 0.67 0.50 0.63 1.28 

Pentacosane 0.90 0.62 0.41 0.66 

Hexacosane 1.40 1.93 0.49 0.75 

Heptacosane 2.71 1.78 0.41 0.87 

Octacosane 1.09 1.03 0.38 0.90 

Nonacosane 1.22 1.31 0.59 1.33 

Triacotane 0.98 0.96 0.35 0.99 

Hentriacotane 0.92 0.88 0.34 1.30 

Dotriacotane 0.81 0.77 0.30 0.94 

Tritriacotane 0.89 1.11 0.40 2.88 

Tetratriacotane 0.18 0.16 0.07 0.18 

Pentatriacotane 0.64 0.61 0.29 0.90 

          

PAH         

Benzo[b]fluoranthene 0.54 1.50 0.27 0.90 

Benzo[k]fluoranthene 0.32 0.11 0.11 0.35 

Benzo[e]pyrene 0.07 0.10 0.14 0.67 

Benzo[a]pyrene 0.85 0.97 0.38 1.47 

Perylene 0.61 0.76 0.20 1.70 

Indeno[123-cd]pyrene 0.68 1.37 0.32 0.97 

Dibenz[ah]anthracene 0.96 1.44 0.44 1.96 

Picene 0.42 0.68 0.48 0.67 

Benzo[ghi]perylene 0.75 1.28 0.23 1.66 

Coronene 0.14 1.09 0.33 2.39 

          

1-Monomyristin 0.93 2.64 0.29 2.25 

1-Monopalmitin 0.70 2.90 0.24 3.84 

1-Monoolein 0.80 3.23 0.53 3.37 

1-Monostearin 0.95 1.56 0.42 2.05 

          

Levoglucosan 1.04 0.78 0.31 1.18 

Cholesterol 0.14 0.16 0.06 0.15 

undecanoic 0.24 1.47 0.13 0.77 

octanedioic 0.14 0.83 0.20 1.63 

dodecanoic 0.54 0.52 0.26 0.83 

nonanedioic 0.13 0.18 0.46 0.58 

tridecanoic 0.10 0.45 0.02 0.11 

tetradecanoic 0.19 0.67 0.10 0.30 

pentadecanoic 0.45 0.42 0.15 0.45 
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Hexadecanoic 0.84 1.23 2.03 4.22 

heptadecanoic 0.01 0.04 0.01 0.03 

9,12-Octadecadienoic 0.95 1.11 0.97 4.11 

9-Octadecenoic 2.32 2.24 1.96 6.49 

Octadecanoic 0.38 0.23 0.48 1.81 

nonadecanoic 0.02 0.02 0.01 0.04 

eicosanoic 0.02 0.02 0.01 0.06 

docosanoic 0.28 0.38 0.02 0.09 

tetracosanoic 0.05 0.07 0.02 0.08 
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Figure 24   Concentration of compound (Alkane and PAH) emitted at cooking source (µg/m3) 
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Figure 25  Concentration of compounds (sterol, glyceride and acid) emitted at cooking source (µg/m3) 
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Table 23  Concentrations of compounds (Alkane and PAH) emitted at cooking source (µg/m3) 

 
(µg/m3) INDIAN  WESTERN AFRICAN CHINESE 

ALKANES average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX 

Tetracosane 0.67 0.06 0.61 0.63 0.67 0.72 0.74 0.50 0.14 0.36 0.44 0.44 0.50 0.74 0.63 0.34 0.24 0.27 0.86 0.87 0.91 1.28 1.39 0.33 0.42 0.87 1.10 3.70 

Pentacosane 0.90 0.24 0.67 0.74 0.86 1.03 1.20 0.62 0.47 0.16 0.41 0.56 0.58 1.41 0.41 0.10 0.31 0.32 0.39 0.49 0.54 0.66 0.23 0.43 0.44 0.68 0.82 0.94 

Hexacosane 1.40 0.76 0.45 1.07 1.43 1.77 2.29 1.93 0.93 0.68 1.39 1.94 2.65 2.99 0.49 0.18 0.30 0.32 0.52 0.62 0.71 0.75 0.35 0.51 0.53 0.65 0.69 1.37 

Heptacosane 2.71 1.76 1.48 1.82 2.01 2.89 5.32 1.78 0.76 0.69 1.51 1.75 2.26 2.70 0.41 0.07 0.33 0.34 0.42 0.46 0.49 0.87 0.14 0.71 0.81 0.83 0.91 1.08 

Octacosane 1.09 0.18 0.93 0.96 1.07 1.21 1.30 1.03 0.36 0.70 0.84 0.95 1.00 1.64 0.38 0.03 0.36 0.37 0.37 0.40 0.42 0.90 0.07 0.81 0.87 0.91 0.92 0.98 

Nonacosane 1.22 0.32 0.92 0.97 1.20 1.46 1.57 1.31 0.78 0.83 0.98 1.01 1.03 2.71 0.59 0.08 0.49 0.55 0.57 0.66 0.68 1.33 0.30 1.08 1.20 1.21 1.34 1.84 

Triacotane 0.98 0.17 0.82 0.85 0.99 1.12 1.13 0.96 0.27 0.74 0.83 0.88 0.92 1.43 0.35 0.04 0.31 0.32 0.34 0.38 0.40 0.99 0.12 0.88 0.91 0.94 1.04 1.17 

Hentriacotane 0.92 0.13 0.80 0.81 0.92 1.03 1.03 0.88 0.17 0.73 0.82 0.82 0.84 1.18 0.34 0.04 0.30 0.31 0.32 0.38 0.39 1.30 0.35 0.82 1.16 1.26 1.53 1.73 

Dotriacotane 0.81 0.08 0.73 0.73 0.80 0.88 0.88 0.77 0.14 0.62 0.73 0.75 0.76 1.00 0.30 0.04 0.26 0.28 0.28 0.33 0.34 0.94 0.15 0.79 0.86 0.88 1.02 1.16 

Tritriacotane 0.89 0.07 0.82 0.84 0.89 0.95 0.97 1.11 0.74 0.73 0.74 0.81 0.84 2.42 0.40 0.05 0.36 0.36 0.38 0.42 0.48 2.88 0.58 2.27 2.54 2.76 3.03 3.78 

Tetratriacotane 0.18 0.01 0.17 0.17 0.17 0.18 0.19 0.16 0.01 0.15 0.15 0.16 0.16 0.17 0.07 0.01 0.06 0.07 0.07 0.08 0.09 0.18 0.02 0.16 0.17 0.18 0.19 0.21 

Pentatriacotane 0.64 0.04 0.61 0.61 0.63 0.65 0.69 0.61 0.05 0.56 0.57 0.61 0.62 0.68 0.29 0.05 0.22 0.25 0.32 0.32 0.33 0.90 0.32 0.66 0.68 0.68 1.25 1.25 

PAH                                                         

Benzo[b]fluoranthene 0.54 0.44 0.15 0.16 0.53 0.91 0.96 1.50 0.99 0.13 0.82 1.80 2.27 2.47 0.27 0.18 0.07 0.11 0.32 0.35 0.50 0.90 0.47 0.27 0.77 0.83 1.07 1.58 

Benzo[k]fluoranthene 0.32 0.29 0.07 0.07 0.29 0.54 0.63 0.11 0.05 0.07 0.07 0.07 0.16 0.16 0.11 0.04 0.07 0.07 0.11 0.13 0.18 0.35 0.50 0.07 0.07 0.07 0.31 1.22 

Benzo[e]pyrene 0.07 0.12 0.01 0.01 0.01 0.07 0.26 0.10 0.18 0.01 0.01 0.02 0.03 0.43 0.14 0.20 0.01 0.01 0.01 0.20 0.48 0.67 0.76 0.01 0.01 0.34 1.48 1.51 

Benzo[a]pyrene 0.85 0.76 0.35 0.36 0.55 1.03 1.96 0.97 0.65 0.31 0.54 0.88 1.13 1.99 0.38 0.22 0.15 0.26 0.27 0.58 0.65 1.47 0.96 0.69 1.05 1.22 1.26 3.14 

Perylene 0.61 0.74 0.07 0.08 0.35 0.88 1.64 0.76 0.72 0.06 0.13 0.83 0.94 1.84 0.20 0.10 0.03 0.23 0.25 0.26 0.26 1.70 1.27 0.28 1.03 1.10 2.93 3.14 

Indeno[123-

cd]pyrene 

0.68 0.46 0.27 0.29 0.69 1.09 1.09 1.37 0.97 0.24 0.44 1.85 1.92 2.40 0.32 0.15 0.12 0.21 0.35 0.42 0.48 0.97 0.26 0.58 0.92 0.99 1.12 1.26 

Dibenz[ah]anthracene 0.96 0.46 0.55 0.58 0.94 1.32 1.42 1.44 0.75 0.49 1.10 1.47 1.60 2.55 0.44 0.17 0.24 0.36 0.37 0.57 0.67 1.96 0.60 1.12 1.56 2.22 2.34 2.56 

Picene 0.42 0.42 0.06 0.06 0.38 0.74 0.86 0.68 0.35 0.06 0.75 0.79 0.87 0.94 0.48 0.39 0.06 0.38 0.39 0.46 1.12 0.67 0.19 0.42 0.54 0.69 0.78 0.92 

Benzo[ghi]perylene 0.75 0.52 0.30 0.32 0.69 1.12 1.31 1.28 1.21 0.27 0.55 0.89 1.40 3.31 0.23 0.07 0.13 0.19 0.23 0.30 0.31 1.66 0.90 0.49 1.28 1.55 2.08 2.90 

Coronene 0.14 0.14 0.02 0.02 0.10 0.22 0.32 1.09 1.12 0.02 0.36 0.65 1.63 2.79 0.33 0.38 0.02 0.18 0.20 0.26 1.00 2.39 1.70 0.14 1.89 2.18 2.89 4.84 
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Table 24  Concentrations of compounds (glyceride, sterol and acid) emitted at cooking source (µg/m3)  

 
  GAS INDIAN(n=5) GAS AFR( n=5) GAS WEST (n=4) GAS CHINESE (n=4) 

  average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX average std 

dev 

MIN 25PER 50 75 MAX 

GLYCERIDE                                                         

1-Monomyristin 0.93 0.50 0.39 0.55 0.81 1.45 1.47 0.29 0.17 0.12 0.17 0.25 0.36 0.55 2.64 1.73 1.23 1.33 1.61 4.27 4.76 2.25 1.97 0.57 0.60 2.09 2.62 5.38 

1-Monopalmitin 0.70 0.33 0.38 0.48 0.57 0.92 1.16 0.24 0.12 0.11 0.16 0.19 0.37 0.37 2.90 2.74 0.86 1.33 2.17 2.46 7.66 3.84 5.46 0.93 1.30 1.33 2.08 13.58 

1-Monoolein 0.80 0.45 0.44 0.51 0.67 0.82 1.55 0.53 0.41 0.19 0.19 0.51 0.53 1.21 3.23 2.81 0.78 0.85 2.07 5.76 6.71 3.37 4.59 1.01 1.23 1.41 1.62 11.58 

1-Monostearin 0.95 0.62 0.40 0.52 0.73 1.18 1.93 0.42 0.26 0.16 0.16 0.42 0.59 0.76 1.56 0.26 1.10 1.62 1.66 1.70 1.73 2.05 2.18 0.58 0.58 1.29 2.00 5.82 

                                                          

STEROL                                                         

Levoglucosan 1.04 0.24 0.72 0.98 0.99 1.12 1.39 0.31 0.14 0.19 0.20 0.23 0.41 0.49 0.78 0.36 0.38 0.56 0.66 0.99 1.29 1.18 0.61 0.57 0.90 1.08 1.17 2.19 

Cholesterol 0.14 0.01 0.13 0.14 0.14 0.15 0.16 0.06 0.02 0.05 0.05 0.06 0.08 0.09 0.16 0.05 0.12 0.13 0.15 0.15 0.25 0.15 0.01 0.14 0.15 0.15 0.16 0.17 

ACID                                                         

undecanoic 0.24 0.19 0.11 0.13 0.13 0.27 0.56 0.13 0.14 0.01 0.02 0.07 0.19 0.35 1.47 1.59 0.01 0.13 1.51 2.84 2.84 0.77 1.16 0.16 0.21 0.30 0.32 2.84 

octanedioic 0.14 0.11 0.02 0.11 0.12 0.13 0.31 0.20 0.33 0.01 0.02 0.06 0.11 0.78 0.83 0.73 0.12 0.25 0.87 1.46 1.46 1.63 1.92 0.06 0.14 0.67 2.91 4.37 

dodecanoic 0.54 0.03 0.51 0.51 0.51 0.57 0.57 0.26 0.36 0.02 0.05 0.13 0.21 0.90 0.52 0.40 0.31 0.31 0.34 0.55 1.12 0.83 1.12 0.14 0.24 0.36 0.57 2.81 

nonanedioic 0.13 0.15 0.04 0.05 0.08 0.08 0.39 0.46 0.57 0.02 0.02 0.09 0.99 1.17 0.18 0.13 0.07 0.08 0.15 0.25 0.33 0.58 0.44 0.02 0.20 0.78 0.89 1.00 

tridecanoic 0.10 0.06 0.00 0.06 0.14 0.14 0.14 0.02 0.03 0.00 0.00 0.02 0.03 0.07 0.45 0.67 0.01 0.03 0.18 0.60 1.43 0.11 0.20 0.01 0.02 0.03 0.04 0.47 

tetradecanoic 0.19 0.12 0.08 0.10 0.14 0.28 0.34 0.10 0.17 0.01 0.01 0.02 0.04 0.40 0.67 1.03 0.07 0.11 0.20 0.76 2.21 0.30 0.29 0.04 0.08 0.16 0.57 0.63 

pentadecanoic 0.45 0.17 0.17 0.44 0.52 0.53 0.59 0.15 0.13 0.03 0.08 0.13 0.14 0.38 0.42 0.28 0.21 0.25 0.32 0.49 0.82 0.45 0.31 0.07 0.23 0.51 0.61 0.84 

Hexadecanoic 0.84 1.56 0.00 0.15 0.21 0.22 3.63 2.03 2.68 0.01 0.03 0.18 4.68 5.24 1.23 1.27 0.15 0.18 1.05 2.11 2.68 4.22 7.23 0.19 0.20 0.73 3.00 16.98 

heptadecanoic 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.05 0.11 0.03 0.02 0.01 0.02 0.03 0.03 0.07 

9,12-Octadecadienoic 0.95 1.22 0.01 0.09 0.11 2.09 2.46 0.97 1.32 0.02 0.04 0.05 1.91 2.82 1.11 1.51 0.10 0.30 0.49 1.30 3.35 4.11 7.88 0.52 0.57 0.59 0.65 18.20 

9-Octadecenoic 2.32 2.15 0.36 0.69 1.37 3.91 5.25 1.96 2.67 0.01 0.05 0.11 3.97 5.63 2.24 2.54 0.89 0.94 1.01 2.30 6.04 6.49 8.54 0.69 1.93 2.36 6.14 21.34 

Octadecanoic 0.38 0.35 0.00 0.11 0.30 0.75 0.76 0.48 0.27 0.01 0.58 0.58 0.58 0.66 0.23 0.25 0.02 0.02 0.23 0.44 0.44 1.81 2.37 0.02 0.06 0.46 3.15 5.37 

nonadecanoic 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.03 0.02 0.02 0.02 0.07 0.07 

eicosanoic 0.02 0.02 0.01 0.01 0.01 0.03 0.04 0.01 0.01 0.00 0.00 0.01 0.02 0.03 0.02 0.01 0.00 0.01 0.01 0.02 0.03 0.06 0.03 0.03 0.04 0.06 0.08 0.11 

docosanoic 0.28 0.28 0.04 0.08 0.10 0.53 0.64 0.02 0.02 0.01 0.01 0.02 0.02 0.05 0.38 0.44 0.04 0.18 0.24 0.44 1.03 0.09 0.04 0.05 0.08 0.08 0.11 0.15 

tetracosanoic 0.05 0.00 0.04 0.05 0.05 0.05 0.05 0.02 0.01 0.01 0.02 0.02 0.03 0.03 0.07 0.03 0.05 0.05 0.07 0.08 0.11 0.08 0.03 0.06 0.06 0.07 0.07 0.14 
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Table 25  Indian style cooking concentration (µg/m3) using gas. 

  GAS INDIAN(n=5) 

                

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

Compounds               

1-Monomyristin 0.93 0.50 0.39 0.55 0.81 1.45 1.47 

1-Monopalmitin 0.70 0.33 0.38 0.48 0.57 0.92 1.16 

1-Monoolein 0.80 0.45 0.44 0.51 0.67 0.82 1.55 

1-Monostearin 0.95 0.62 0.40 0.52 0.73 1.18 1.93 

STEROL               

Levoglucosan 1.04 0.24 0.72 0.98 0.99 1.12 1.39 

Cholesterol 0.14 0.01 0.13 0.14 0.14 0.15 0.16 

ACID               

undecanoic 0.24 0.19 0.11 0.13 0.13 0.27 0.56 

octanedioic 0.14 0.11 0.02 0.11 0.12 0.13 0.31 

dodecanoic 0.54 0.03 0.51 0.51 0.51 0.57 0.57 

nonanedioic 0.13 0.15 0.04 0.05 0.08 0.08 0.39 

tridecanoic 0.10 0.06 0.00 0.06 0.14 0.14 0.14 

tetradecanoic 0.19 0.12 0.08 0.10 0.14 0.28 0.34 

pentadecanoic 0.45 0.17 0.17 0.44 0.52 0.53 0.59 

Hexadecanoic 0.84 1.56 0.00 0.15 0.21 0.22 3.63 

heptadecanoic 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

9,12-Octadecadienoic 0.95 1.22 0.01 0.09 0.11 2.09 2.46 

9-Octadecenoic 2.32 2.15 0.36 0.69 1.37 3.91 5.25 

Octadecanoic 0.38 0.35 0.00 0.11 0.30 0.75 0.76 

nonadecanoic 0.02 0.01 0.01 0.01 0.01 0.02 0.03 

eicosanoic 0.02 0.02 0.01 0.01 0.01 0.03 0.04 

docosanoic 0.28 0.28 0.04 0.08 0.10 0.53 0.64 

tetracosanoic 0.05 0.00 0.04 0.05 0.05 0.05 0.05 

 GAS INDIAN(n=4) 
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 average std dev MIN 25PER 50 75 MAX 

ALKANES               

Tetracosane 0.67 0.06 0.61 0.63 0.67 0.72 0.74 

Pentacosane 0.90 0.24 0.67 0.74 0.86 1.03 1.20 

Hexacosane 1.40 0.76 0.45 1.07 1.43 1.77 2.29 

Heptacosane 2.71 1.76 1.48 1.82 2.01 2.89 5.32 

Octacosane 1.09 0.18 0.93 0.96 1.07 1.21 1.30 

Nonacosane 1.22 0.32 0.92 0.97 1.20 1.46 1.57 

Triacotane 0.98 0.17 0.82 0.85 0.99 1.12 1.13 

Hentriacotane 0.92 0.13 0.80 0.81 0.92 1.03 1.03 

Dotriacotane 0.81 0.08 0.73 0.73 0.80 0.88 0.88 

Tritriacotane 0.89 0.07 0.82 0.84 0.89 0.95 0.97 

Tetratriacotane 0.18 0.01 0.17 0.17 0.17 0.18 0.19 

Pentatriacotane 0.64 0.04 0.61 0.61 0.63 0.65 0.69 

PAH               

Benzo[b]fluoranthene 0.54 0.44 0.15 0.16 0.53 0.91 0.96 

Benzo[k]fluoranthene 0.32 0.29 0.07 0.07 0.29 0.54 0.63 

Benzo[e]pyrene 0.07 0.12 0.01 0.01 0.01 0.07 0.26 

Benzo[a]pyrene 0.85 0.76 0.35 0.36 0.55 1.03 1.96 

Perylene 0.61 0.74 0.07 0.08 0.35 0.88 1.64 

Indeno[123-cd]pyrene 0.68 0.46 0.27 0.29 0.69 1.09 1.09 

Dibenz[ah]anthracene 0.96 0.46 0.55 0.58 0.94 1.32 1.42 

Picene 0.42 0.42 0.06 0.06 0.38 0.74 0.86 

Benzo[ghi]perylene 0.75 0.52 0.30 0.32 0.69 1.12 1.31 

Coronene 0.14 0.14 0.02 0.02 0.10 0.22 0.32 
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Table 26  Chinese style cooking concentration (µg/m3) using gas. 

 

  GAS CHINESE (n=4) 

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

1-Monomyristin 2.25 1.97 0.57 0.60 2.09 2.62 5.38 

1-Monopalmitin 3.84 5.46 0.93 1.30 1.33 2.08 13.58 

1-Monoolein 3.37 4.59 1.01 1.23 1.41 1.62 11.58 

1-Monostearin 2.05 2.18 0.58 0.58 1.29 2.00 5.82 

STEROL               

Levoglucosan 1.18 0.61 0.57 0.90 1.08 1.17 2.19 

Cholesterol 0.15 0.01 0.14 0.15 0.15 0.16 0.17 

ACID               

undecanoic 0.77 1.16 0.16 0.21 0.30 0.32 2.84 

octanedioic 1.63 1.92 0.06 0.14 0.67 2.91 4.37 

dodecanoic 0.83 1.12 0.14 0.24 0.36 0.57 2.81 

nonanedioic 0.58 0.44 0.02 0.20 0.78 0.89 1.00 

tridecanoic 0.11 0.20 0.01 0.02 0.03 0.04 0.47 

tetradecanoic 0.30 0.29 0.04 0.08 0.16 0.57 0.63 

pentadecanoic 0.45 0.31 0.07 0.23 0.51 0.61 0.84 

Hexadecanoic 4.22 7.23 0.19 0.20 0.73 3.00 16.98 

heptadecanoic 0.03 0.02 0.01 0.02 0.03 0.03 0.07 

9,12-Octadecadienoic 4.11 7.88 0.52 0.57 0.59 0.65 18.20 

9-Octadecenoic 6.49 8.54 0.69 1.93 2.36 6.14 21.34 

Octadecanoic 1.81 2.37 0.02 0.06 0.46 3.15 5.37 

nonadecanoic 0.04 0.03 0.02 0.02 0.02 0.07 0.07 

eicosanoic 0.06 0.03 0.03 0.04 0.06 0.08 0.11 

docosanoic 0.09 0.04 0.05 0.08 0.08 0.11 0.15 

tetracosanoic 0.08 0.03 0.06 0.06 0.07 0.07 0.14 

  GAS CHINESE (n=5) 

  average std dev MIN 25PER 50 75 MAX 

ALKANES               

Tetracosane 1.28 1.39 0.33 0.42 0.87 1.10 3.70 

Pentacosane 0.66 0.23 0.43 0.44 0.68 0.82 0.94 
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Hexacosane 0.75 0.35 0.51 0.53 0.65 0.69 1.37 

Heptacosane 0.87 0.14 0.71 0.81 0.83 0.91 1.08 

Octacosane 0.90 0.07 0.81 0.87 0.91 0.92 0.98 

Nonacosane 1.33 0.30 1.08 1.20 1.21 1.34 1.84 

Triacotane 0.99 0.12 0.88 0.91 0.94 1.04 1.17 

Hentriacotane 1.30 0.35 0.82 1.16 1.26 1.53 1.73 

Dotriacotane 0.94 0.15 0.79 0.86 0.88 1.02 1.16 

Tritriacotane 2.88 0.58 2.27 2.54 2.76 3.03 3.78 

Tetratriacotane 0.18 0.02 0.16 0.17 0.18 0.19 0.21 

Pentatriacotane 0.90 0.32 0.66 0.68 0.68 1.25 1.25 

PAH               

Benzo[b]fluoranthene 0.90 0.47 0.27 0.77 0.83 1.07 1.58 

Benzo[k]fluoranthene 0.35 0.50 0.07 0.07 0.07 0.31 1.22 

Benzo[e]pyrene 0.67 0.76 0.01 0.01 0.34 1.48 1.51 

Benzo[a]pyrene 1.47 0.96 0.69 1.05 1.22 1.26 3.14 

Perylene 1.70 1.27 0.28 1.03 1.10 2.93 3.14 

Indeno[123-cd]pyrene 0.97 0.26 0.58 0.92 0.99 1.12 1.26 

Dibenz[ah]anthracene 1.96 0.60 1.12 1.56 2.22 2.34 2.56 

Picene 0.67 0.19 0.42 0.54 0.69 0.78 0.92 

Benzo[ghi]perylene 1.66 0.90 0.49 1.28 1.55 2.08 2.90 

Coronene 1.47 0.96 0.69 1.05 1.22 1.26 3.14 
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Table 27  African style cooking concentration (µg/m3) using gas 

  GAS AFR( n=5) 

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

1-Monomyristin 0.29 0.17 0.12 0.17 0.25 0.36 0.55 

1-Monopalmitin 0.24 0.12 0.11 0.16 0.19 0.37 0.37 

1-Monoolein 0.53 0.41 0.19 0.19 0.51 0.53 1.21 

1-Monostearin 0.42 0.26 0.16 0.16 0.42 0.59 0.76 

STEROL               

Levoglucosan 0.31 0.14 0.19 0.20 0.23 0.41 0.49 

Cholesterol 0.06 0.02 0.05 0.05 0.06 0.08 0.09 

ACID               

undecanoic 0.13 0.14 0.01 0.02 0.07 0.19 0.35 

octanedioic 0.20 0.33 0.01 0.02 0.06 0.11 0.78 

dodecanoic 0.26 0.36 0.02 0.05 0.13 0.21 0.90 

nonanedioic 0.46 0.57 0.02 0.02 0.09 0.99 1.17 

tridecanoic 0.02 0.03 0.00 0.00 0.02 0.03 0.07 

tetradecanoic 0.10 0.17 0.01 0.01 0.02 0.04 0.40 

pentadecanoic 0.15 0.13 0.03 0.08 0.13 0.14 0.38 

Hexadecanoic 2.03 2.68 0.01 0.03 0.18 4.68 5.24 

heptadecanoic 0.01 0.01 0.00 0.00 0.01 0.02 0.03 

9,12-Octadecadienoic 0.97 1.32 0.02 0.04 0.05 1.91 2.82 

9-Octadecenoic 1.96 2.67 0.01 0.05 0.11 3.97 5.63 

Octadecanoic 0.48 0.27 0.01 0.58 0.58 0.58 0.66 

nonadecanoic 0.01 0.01 0.00 0.01 0.01 0.01 0.02 

eicosanoic 0.01 0.01 0.00 0.00 0.01 0.02 0.03 

docosanoic 0.02 0.02 0.01 0.01 0.02 0.02 0.05 

tetracosanoic 0.02 0.01 0.01 0.02 0.02 0.03 0.03 

  GAS AFR( n=5) 

  average std dev MIN 25PER 50 75 MAX 

ALKANES               

Tetracosane 0.63 0.34 0.24 0.27 0.86 0.87 0.91 

Pentacosane 0.41 0.10 0.31 0.32 0.39 0.49 0.54 

Hexacosane 0.49 0.18 0.30 0.32 0.52 0.62 0.71 
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Heptacosane 0.41 0.07 0.33 0.34 0.42 0.46 0.49 

Octacosane 0.38 0.03 0.36 0.37 0.37 0.40 0.42 

Nonacosane 0.59 0.08 0.49 0.55 0.57 0.66 0.68 

Triacotane 0.35 0.04 0.31 0.32 0.34 0.38 0.40 

Hentriacotane 0.34 0.04 0.30 0.31 0.32 0.38 0.39 

Dotriacotane 0.30 0.04 0.26 0.28 0.28 0.33 0.34 

Tritriacotane 0.40 0.05 0.36 0.36 0.38 0.42 0.48 

Tetratriacotane 0.07 0.01 0.06 0.07 0.07 0.08 0.09 

Pentatriacotane 0.29 0.05 0.22 0.25 0.32 0.32 0.33 

PAH               

Benzo[b]fluoranthene 0.27 0.18 0.07 0.11 0.32 0.35 0.50 

Benzo[k]fluoranthene 0.11 0.04 0.07 0.07 0.11 0.13 0.18 

Benzo[e]pyrene 0.14 0.20 0.01 0.01 0.01 0.20 0.48 

Benzo[a]pyrene 0.38 0.22 0.15 0.26 0.27 0.58 0.65 

Perylene 0.20 0.10 0.03 0.23 0.25 0.26 0.26 

Indeno[123-cd]pyrene 0.32 0.15 0.12 0.21 0.35 0.42 0.48 

Dibenz[ah]anthracene 0.44 0.17 0.24 0.36 0.37 0.57 0.67 

Picene 0.48 0.39 0.06 0.38 0.39 0.46 1.12 

Benzo[ghi]perylene 0.23 0.07 0.13 0.19 0.23 0.30 0.31 

Coronene 0.33 0.38 0.02 0.18 0.20 0.26 1.00 
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Table 28   Western style cooking concentration(µg/m3) using gas 

 

  GAS WEST (n=4) 

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

1-Monomyristin 2.64 1.73 1.23 1.33 1.61 4.27 4.76 

1-Monopalmitin 2.90 2.74 0.86 1.33 2.17 2.46 7.66 

1-Monoolein 3.23 2.81 0.78 0.85 2.07 5.76 6.71 

1-Monostearin 1.56 0.26 1.10 1.62 1.66 1.70 1.73 

STEROL               

Levoglucosan 0.78 0.36 0.38 0.56 0.66 0.99 1.29 

Cholesterol 0.16 0.05 0.12 0.13 0.15 0.15 0.25 

ACID               

undecanoic 1.47 1.59 0.01 0.13 1.51 2.84 2.84 

octanedioic 0.83 0.73 0.12 0.25 0.87 1.46 1.46 

dodecanoic 0.52 0.40 0.31 0.31 0.34 0.55 1.12 

nonanedioic 0.18 0.13 0.07 0.08 0.15 0.25 0.33 

tridecanoic 0.45 0.67 0.01 0.03 0.18 0.60 1.43 

tetradecanoic 0.67 1.03 0.07 0.11 0.20 0.76 2.21 

pentadecanoic 0.42 0.28 0.21 0.25 0.32 0.49 0.82 

Hexadecanoic 1.23 1.27 0.15 0.18 1.05 2.11 2.68 

heptadecanoic 0.04 0.05 0.00 0.01 0.02 0.05 0.11 

9,12-Octadecadienoic 1.11 1.51 0.10 0.30 0.49 1.30 3.35 

9-Octadecenoic 2.24 2.54 0.89 0.94 1.01 2.30 6.04 

Octadecanoic 0.23 0.25 0.02 0.02 0.23 0.44 0.44 

nonadecanoic 0.02 0.01 0.01 0.02 0.02 0.02 0.03 

eicosanoic 0.02 0.01 0.00 0.01 0.01 0.02 0.03 

docosanoic 0.38 0.44 0.04 0.18 0.24 0.44 1.03 

tetracosanoic 0.07 0.03 0.05 0.05 0.07 0.08 0.11 

  GAS WEST (n=5) 

  average std dev MIN 25PER 50 75 MAX 

ALKANES               

Tetracosane 0.50 0.14 0.36 0.44 0.44 0.50 0.74 

Pentacosane 0.62 0.47 0.16 0.41 0.56 0.58 1.41 
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Hexacosane 1.93 0.93 0.68 1.39 1.94 2.65 2.99 

Heptacosane 1.78 0.76 0.69 1.51 1.75 2.26 2.70 

Octacosane 1.03 0.36 0.70 0.84 0.95 1.00 1.64 

Nonacosane 1.31 0.78 0.83 0.98 1.01 1.03 2.71 

Triacotane 0.96 0.27 0.74 0.83 0.88 0.92 1.43 

Hentriacotane 0.88 0.17 0.73 0.82 0.82 0.84 1.18 

Dotriacotane 0.77 0.14 0.62 0.73 0.75 0.76 1.00 

Tritriacotane 1.11 0.74 0.73 0.74 0.81 0.84 2.42 

Tetratriacotane 0.16 0.01 0.15 0.15 0.16 0.16 0.17 

Pentatriacotane 0.61 0.05 0.56 0.57 0.61 0.62 0.68 

PAH               

Benzo[b]fluoranthene 1.50 0.99 0.13 0.82 1.80 2.27 2.47 

Benzo[k]fluoranthene 0.11 0.05 0.07 0.07 0.07 0.16 0.16 

Benzo[e]pyrene 0.10 0.18 0.01 0.01 0.02 0.03 0.43 

Benzo[a]pyrene 0.97 0.65 0.31 0.54 0.88 1.13 1.99 

Perylene 0.76 0.72 0.06 0.13 0.83 0.94 1.84 

Indeno[123-cd]pyrene 1.37 0.97 0.24 0.44 1.85 1.92 2.40 

Dibenz[ah]anthracene 1.44 0.75 0.49 1.10 1.47 1.60 2.55 

Picene 0.68 0.35 0.06 0.75 0.79 0.87 0.94 

Benzo[ghi]perylene 1.28 1.21 0.27 0.55 0.89 1.40 3.31 

Coronene 1.09 1.12 0.02 0.36 0.65 1.63 2.79 
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Table 29 Average concentrations of compounds emitted at source Indian cooking styles using electric (µg/m3). 

  ELEC-TC IND(n=4) 

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

1-Monomyristin 0.43 0.06 0.35 0.42 0.45 0.46 0.48 

1-Monopalmitin 0.51 0.12 0.36 0.47 0.51 0.55 0.66 

1-Monoolein 0.46 0.06 0.40 0.40 0.45 0.51 0.52 

1-Monostearin 0.52 0.16 0.32 0.45 0.54 0.62 0.69 

STEROL               

Levoglucosan 0.19 0.04 0.15 0.16 0.18 0.21 0.24 

Cholesterol 0.14 0.02 0.12 0.14 0.14 0.15 0.17 

ACID               

undecanoic 0.35 0.25 0.13 0.13 0.35 0.56 0.56 

octanedioic 0.13 0.01 0.12 0.12 0.13 0.13 0.13 

dodecanoic 0.41 0.24 0.05 0.40 0.51 0.53 0.57 

nonanedioic 0.05 0.01 0.04 0.04 0.05 0.05 0.05 

tridecanoic 0.07 0.06 0.00 0.05 0.06 0.08 0.14 

tetradecanoic 0.15 0.09 0.10 0.10 0.10 0.15 0.28 

pentadecanoic 0.31 0.26 0.03 0.13 0.30 0.48 0.59 

Hexadecanoic 0.35 0.16 0.22 0.23 0.31 0.42 0.55 

heptadecanoic 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

9,12-

Octadecadienoic 

0.25 0.15 0.09 0.17 0.22 0.30 0.45 

9-Octadecenoic 0.29 0.27 0.02 0.18 0.23 0.34 0.67 

Octadecanoic 1.13 1.23 0.11 0.59 0.75 1.30 2.91 

nonadecanoic 0.03 0.00 0.03 0.03 0.03 0.03 0.03 

eicosanoic 0.01 0.00 0.01 0.01 0.01 0.01 0.01 

docosanoic 0.02 0.00 0.02 0.02 0.02 0.02 0.03 

tetracosanoic 0.04 0.00 0.03 0.03 0.03 0.04 0.04 
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Table 30 Average concentrations of compounds emitted at source African cooking styles using electric (µg/m3). 

 

  ELEC AFR (n=4) 

  average std dev MIN 25PER 50 75 MAX 

GLYCERIDE               

1-Monomyristin 0.22 0.04 0.18 0.20 0.21 0.23 0.27 

1-Monopalmitin 0.22 0.01 0.20 0.21 0.22 0.23 0.23 

1-Monoolein 0.24 0.05 0.19 0.21 0.23 0.26 0.31 

1-Monostearin 0.22 0.06 0.17 0.18 0.21 0.25 0.30 

STEROL               

Levoglucosan 0.11 0.02 0.08 0.09 0.11 0.12 0.13 

Cholesterol 0.08 0.02 0.06 0.07 0.08 0.10 0.11 

ACID               

undecanoic 0.08 0.00 0.08 0.08 0.08 0.08 0.08 

octanedioic 0.12 0.01 0.11 0.11 0.12 0.13 0.13 

dodecanoic 0.07 0.04 0.05 0.05 0.05 0.07 0.13 

nonanedioic 0.28 0.48 0.02 0.02 0.06 0.32 0.99 

tridecanoic 0.03 0.03 0.00 0.01 0.02 0.04 0.07 

tetradecanoic 0.03 0.02 0.01 0.01 0.03 0.04 0.06 

pentadecanoic 0.08 0.07 0.00 0.06 0.08 0.10 0.17 

Hexadecanoic 0.29 0.10 0.15 0.26 0.30 0.32 0.40 

heptadecanoic 0.04 0.03 0.02 0.02 0.04 0.07 0.07 

9,12-

Octadecadienoic 

7.83 15.19 0.16 0.20 0.28 7.91 30.61 

9-Octadecenoic 2.45 4.32 0.06 0.22 0.40 2.63 8.92 

Octadecanoic 0.74 1.45 0.02 0.02 0.02 0.74 2.91 

nonadecanoic 0.03 0.01 0.02 0.02 0.03 0.03 0.03 

eicosanoic 0.42 0.27 0.01 0.42 0.55 0.55 0.55 

docosanoic 0.02 0.01 0.01 0.01 0.01 0.02 0.03 

tetracosanoic 0.03 0.03 0.02 0.02 0.02 0.03 0.08 
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Table 31 Average concentrations of compounds emitted at source using Western cooking styles using electric (µg/m3). 

 

  ELEC WEST (n=4) 

  average std dev MIN 25PER 50 75 MAX 

                

GLYCERIDE               

1-Monomyristin 0.69 0.30 0.35 0.51 0.69 0.87 1.03 

1-Monopalmitin 0.73 0.39 0.36 0.43 0.69 0.99 1.20 

1-Monoolein 0.69 0.46 0.35 0.46 0.52 0.75 1.37 

1-Monostearin 0.64 0.52 0.29 0.39 0.43 0.68 1.41 

STEROL               

Levoglucosan 0.37 0.44 0.11 0.12 0.17 0.41 1.03 

Cholesterol 0.19 0.09 0.11 0.12 0.16 0.23 0.31 

ACID               

undecanoic 0.38 0.05 0.35 0.35 0.36 0.39 0.45 

octanedioic 0.07 0.00 0.06 0.06 0.07 0.07 0.07 

dodecanoic 0.47 0.49 0.05 0.05 0.47 0.90 0.90 

nonanedioic 0.30 0.58 0.02 0.02 0.02 0.30 1.17 

tridecanoic 0.03 0.03 0.00 0.01 0.02 0.04 0.07 

tetradecanoic 0.11 0.19 0.01 0.02 0.02 0.12 0.40 

pentadecanoic 0.14 0.17 0.02 0.02 0.07 0.19 0.38 

Hexadecanoic 0.17 0.10 0.03 0.14 0.21 0.24 0.24 

heptadecanoic 0.11 0.08 0.02 0.07 0.09 0.12 0.22 

9,12-

Octadecadienoic 

0.18 0.16 0.10 0.10 0.10 0.18 0.41 

9-Octadecenoic 1.22 1.86 0.09 0.12 0.41 1.51 3.97 

Octadecanoic 0.62 0.05 0.58 0.58 0.62 0.66 0.66 

nonadecanoic 0.01 0.00 0.01 0.01 0.01 0.01 0.01 

eicosanoic 0.02 0.00 0.02 0.02 0.02 0.02 0.02 

docosanoic 0.02 0.01 0.02 0.02 0.02 0.02 0.03 

tetracosanoic 0.04 0.01 0.03 0.04 0.04 0.05 0.05 
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Table 32 Average concentrations of compounds emitted at source Chinese cooking styles using electric (µg/m3). 

 

  ELECT CHIN (n=4 sterol)) (n=3 acids) 

  average std dev MIN 25PER 50 75 MAX 

                

GLYCERIDE               

1-Monomyristin 0.63 0.22 0.44 0.52 0.57 0.68 0.95 

1-Monopalmitin 0.80 0.37 0.36 0.64 0.79 0.95 1.26 

1-Monoolein 0.88 0.48 0.46 0.55 0.76 1.08 1.53 

1-Monostearin 0.76 0.35 0.40 0.53 0.71 0.94 1.21 

                

STEROL               

Levoglucosan 0.42 0.20 0.28 0.28 0.35 0.49 0.69 

Cholesterol 0.21 0.07 0.16 0.17 0.18 0.21 0.31 

ACID               

undecanoic 2.97 0.23 2.84 2.84 2.84 3.04 3.24 

octanedioic               

dodecanoic               

nonanedioic               

tridecanoic               

tetradecanoic               

pentadecanoic 0.03 0.01 0.03 0.03 0.03 0.03 0.04 

Hexadecanoic 0.89 0.44 0.47 0.66 0.85 1.10 1.35 

heptadecanoic               

9,12-

Octadecadienoic 

1.94 0.85 0.97 1.63 2.29 2.42 2.55 

9-Octadecenoic 1.45 1.15 0.12 1.12 2.11 2.11 2.11 

Octadecanoic 2.00 2.93 0.16 0.31 0.46 2.92 5.37 

nonadecanoic               

eicosanoic 0.03 0.02 0.01 0.02 0.03 0.04 0.04 

docosanoic 0.03 0.01 0.03 0.03 0.04 0.04 0.04 

tetracosanoic 0.06 0.01 0.05 0.06 0.06 0.06 0.06 
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An analysis of the various source profiles against themselves to observe how they relate with each 

other is presented below in Table 33.  The reason for this analysis is to determine if the various 

cooking styles profiles obtained differ greatly from one another, this knowledge would be useful to 

know if a single profile can represent all cooking styles considered. This could be beneficial 

knowledge for source input in modelling and this would provide more insight to the accuracy of 

general conclusions drawn from selecting a single profile to represent all possible cooking methods. 

The Spearman’s rank correlation analysis for the various groups of compounds against the different 

types of cooking is analysed; Western and Indian cooking are observed to have a strong correlation 

for alkanes with rs values of 0.902. Chinese cooking and Indian cooking are the least correlated or 

similar in terms of alkane with rs of 0.021.  

For PAH concentration it is observed that the Indian and western style of cooking are the most 

correlated even though the degree of correlation is much less than in the case of alkanes (0.61).  

The Chinese cooking PAH concentrations are found to have an rs value of 0.5 when compared with 

Indian cooking similar to the correlation of Chinese and African cooking. 

The correlation analysis of acids for all cooking styles yields very good rs values for all the profiles, 

ranging between 0.8 (Western and Indian) and 0.9 (Indian and Chinese). 

When the correlations of all compounds groups are considered together, the most similar profiles 

are the Western and Indian profiles (with rs values of 0.9, 0.6 and 0.8 for Alkanes, PAH and acid 

respectively). Chinese and Indian profiles have weak correlation in terms of alkane and PAH 

compounds but have high correlation in terms of the concentration of acids (0.02, 0.5 and 0.9 

respectively) as such will be considered having the weakest correlation considering all 

compounds. 
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African cooking have low correlation with Chinese and Indian profiles for alkanes (0.21 and 0.5) 

and for PAH the rs values are higher but still correlation level is quite low (0.51 and 0.5 

respectively).  

Western cooking appears to be the profile that correlates the best with all the profiles with only a 

weak correlation with Chinese alkane concentration (0.2). All other values fall within the range 

0.5-0.8 considering all group of compounds (alkanes, PAH and acids): example rs values of 0.77 

Western and Indian acid,0.71 western and African acid, 0.81 western and Chinese acid, PAH – 

0.61 Western And Indian, 0.52 Western and African, 0.62 Western and Chinese  

Table 33  Correlation of various groups of compounds among the different cooking styles. 

ALKANE 

Correlations 

  INDIAN  WESTERN AFRICAN CHINESE 

Spearman's rho 

 INDIAN 

Correlation Coefficient 1.000 .902** .510 .021 

Sig. (2-tailed) . .000 .090 .948 

N 12 12 12 12 

 WESTERN 

Correlation Coefficient .902** 1.000 .441 .189 

Sig. (2-tailed) .000 . .152 .557 

N 12 12 12 12 

AFRICAN 

Correlation Coefficient .510 .441 1.000 .210 

Sig. (2-tailed) .090 .152 . .513 

N 12 12 12 12 

CHINESE 

Correlation Coefficient .021 .189 .210 1.000 

Sig. (2-tailed) .948 .557 .513 . 

N 12 12 12 12 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

PAH 
Correlations 

 INDIAN WESTERN AFRICAN CHINESE 

Spearman's rho 

INDIAN 

Correlation Coefficient 1.000 .608* .483 .490 

Sig. (2-tailed) . .036 .112 .106 

N 12 12 12 12 

WESTERN 

Correlation Coefficient .608* 1.000 .524 .623* 

Sig. (2-tailed) .036 . .080 .030 

N 12 12 12 12 

AFRICAN 

Correlation Coefficient .483 .524 1.000 .508 

Sig. (2-tailed) .112 .080 . .092 

N 12 12 12 12 

CHINESE 

Correlation Coefficient .490 .623* .508 1.000 

Sig. (2-tailed) .106 .030 .092 . 

N 12 12 12 12 

*. Correlation is significant at the 0.05 level (2-tailed). 
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ACID 
Correlations 

 INDIAN WESTERN AFRICAN CHINESE 

Spearman's rho 

INDIAN 

Correlation Coefficient 1.000 .770** .856** .870** 

Sig. (2-tailed) . .000 .000 .000 

N 16 16 16 16 

WESTERN 

Correlation Coefficient .770** 1.000 .708** .811** 

Sig. (2-tailed) .000 . .002 .000 

N 16 16 16 16 

AFRICAN 

Correlation Coefficient .856** .708** 1.000 .965** 

Sig. (2-tailed) .000 .002 . .000 

N 16 16 16 16 

CHINESE 

Correlation Coefficient .870** .811** .965** 1.000 

Sig. (2-tailed) .000 .000 .000 . 

N 16 16 16 16 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

ANOVA was carried out for the concentrations across the group using the four types of cooking. It  

was found that the means were significantly different with a sig (0.001 ) 

3.5 Diagnostic ratio and cooking. 

Diagnostic ratio is a binary ratio method for source identification which involves comparing ratios 

of pairs of frequently found compounds emitted to distinguish between different known sources. It 

is usually used with caution as it is often difficult to discriminate between some sources and also 

its interpretation depends on the ratio considered and profile chosen so it can vary in presence of 

highly reactive compounds and thus can introduce bias.  

Some studies have shown similar diagnostic ratio for different sources for example PAH ratio 

between 0.4 and 0.5 for FLU/(FLU + PYR) may indicate possible sources such as cement 

production, fertiliser production, diesel combustion, metal manufacturing, and road dust, while 

another diagnostic ratio from the same data set may show a strong variation for a particular 

source,  BbF/BkF = 2.5–2.9 for aluminium smelter emissions (Alam et al., 2013; Manoli et al, 

2004). It has also been identified that variation in atmospheric processes and combustion conditions 

affect the emission and degradation of individual compounds as such can affect ratios obtained by 

these compounds (Katsoyiannis et al. 2011). This makes these ratios reliability questionable 

however this is minimised by selection of compounds with similar physicochemical properties. 

Atmospheric processes can hinder these diagnostic ratios as individual PAH compounds have 
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different atmospheric lifetimes and reactivities (Atkinson and Arey, 2007; Arey, 1998; (Alam et 

al., 2013). 

 Most diagnostic ratios involve pairs of compounds with the same molar mass and similar 

physicochemical properties so should undergo similar environmental fate processes. The PAH 

emission profile for a given source depends on the processes producing the PAHs (Manoli et al., 

2004). During processes like wood burning which involve low temperature, low molecular weight 

PAHs are usually formed while high temperature combustion eg.  burning of fuels in engines, result 

in the emission of higher molecular weight PAH compounds (Mostert et al., 2010). 

 At high temperatures organic compounds are cracked to reactive radicals, which react to form 

stable PAHs during pyrosynthesis. The formed PAHs are less alkylated and their molecules  and 

contain more aromatic rings than petrogenic PAHs (Hwang et al., 2003). PAH diagnostic ratios 

have been used to distinguish diesel and gasoline combustion emission (Ravindra et al., 2008), 

different crude oil processing products and biomass burning processes, including bush, savanna and 

grass fires (Yunker et al., 2002; Galarneau, 2008; Tobiszewski and Namieśnik, 2012). Table 34 A. 

and B  presents the diagnostic ratio of various PAHs for different combustion sources from some 

previous studies and Table 34 C from this study. 

Plots of concentrations of different markers against each other to see how well correlated they are 

as shown in Figure 26 , has been a useful tool to determine diagnostic ratios.  Robinson et al., (2006) 

made plots of various ambient species, they focused on only five important markers for cooking; 

n-hexadecanoic (palmitic) acid, n-octadecanoic (stearic) acid, 9-hexadecenoic (palmitoleic) acid, 

9-octadecenoic (oleic) acid, and cholesterol. Oleic and palmitoleic acid concentrations as well as 

stearic and palmitic acid concentrations which were well correlated with a slope of one implying a 

single dominant  source for the alkenoic acids only a slight correlation was observed between 

cholesterol and palmitic acid but the scatter was comparable to measurement uncertainty so the 

sources could have been the same. Saturated and unsaturated acid however when plotted against 

http://www.sciencedirect.com/science/article/pii/S1352231013003324#bib6
http://www.sciencedirect.com/science/article/pii/S1352231013003324#bib63
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib55
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib55
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib62
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib36
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib77
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib105
http://www.sciencedirect.com/science/article/pii/S0269749111006051?np=y#bib31
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themselves showed no correlation (palmitic acid against palmitoleic acid) (Robinson et al., 2006). 

It was concluded that these acids had different dominant sources it was assumed they were 

chemically stable. Ratio –ratio plots aid in the inference of potential source profiles, these plots 

should be examined using different ratio species and different combinations of source specific 

markers to develop a good understanding of ambient data and source profiles. Robinson et al., 2006 

made some of such plots of acids (two alkanoinc and alkenoic ) normalised by cholesterol and 

observed a good correlations in ambient data by displaying well organised ratio to ratio plots. 

Normalisation is a general approach to reduce the anomalies in large data sets. Scatters along the 

diagonals of the plots can be attributed to measurement uncertainty or the variability of emissions 

of species. The reference specie used to normalise the concentrations of the two target species 

affects the exact organisation of data in a ratio-ratio plot and by changing this reference specie does 

not alter the likely conclusion about the source profile combination (Robinson et al., 2006). The 

change however causes the location of both the source profiles and ambient data in the plots to 

shift. Cholesterol has been found to be a good reference for food cooking markers and so was 

generally used. 

Diagnostic ratios for PAHs, such as BeP/(BeP + BaP), IND/(IND + BghiP), Cor/BeP and 

BghiP/BeP can be useful in the investigation of their origins  and so aid in the identification of the 

possible emission sources in air samples. See et al., (2006) used this technique in combination with 

other statistical methods and it is discussed. The ratios were also calculated to provide insight on 

the origins as well as markers or tracers of pollution source. The ratios of Phe/(ant+Phe) (structural 

isomers of molecular weight MW=178), Flt/(Flt+Pyr)(MW=202), BaA/(BaA+Chr)(MW=228) and 

Ind/(Ind+BPe)(MW=276) were evaluated based on mean concentrations (See et al 2008). These 

ratios are useful to compare, determine and confirm the PAHs measured are from cooking sources 

as other common sources of PAH exist. Table 34 shows some diagnostic ratios obtained for culinary 

techniques and from vehicle emissions. Miguel and Pereira in 1989 found that generally PAHs from 
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petroleum source had ratios of  FLU/(FLU+PYR)  < 0.2, while 0.4–0.5 for combustion of fuel (tail 

gas from vehicles) and > 0.5 for grass, wood and coal combustion  Sheesley et al.,(2003) found that 

FLU/(FLU+PYR) ratios for PAHs from the burning of rice straw in Asia was 0.51 while in a 

Chinese tunnel mean ratio of FLU/(FLU+PYR) was about 0.4(Sheesley et al., 2003). The 

FLU/(FLU+PYR) ratio of 0.53 was obtained in China and was attributed to the burning of 

bituminous coal by (Liu et al., 2009), it was also found that the FLU/(FLU+PYR) ratios of 0.40 to 

0.58 was obtained in the study by Gu et al., (2010) with PAHs in PM2.5 obtained in urban Shanghai 

being observed to be from mixed sources of coal/biomass burning and vehicle emissions(Gu et al., 

2010). In Table 34 (C) the diagnostic ratio, from this study,of various PAHs for the four cooking 

styles  IND(IND+BghiP are very similar for all the cooking styles.  BghiP/BeP is high for Indian 

and Western style cooking and lower in the African and Chinese cooking profile. 

Comparism of diagnostic ratios of Table 34 A and B ( ratios obtained for culinary techniques and 

from vehicle emissions from literature) show that ratios from See et al. (2006) and See and 

Balasubramanian (2008) are relatively unaffected by type of cooking and there is some overlap in 

cooking ratios with those from traffic, making quantitative differentiation impossible.  

Some size resolved source apportionment studies have used molecular marker to organic carbon 

ratios for chemical signature for source contribution identifications and good tracers have been 

identified for molecular markers with similar size distribution for EC and OC (Kleeman et al. 

2008).The calculation of correlation coefficient (R2) of concentrations of two species can be 

analysed for similarity of the size distributions. Kleeman et al., 2008 found that the size distribution 

for cholesterol was highly correlated (R2>0.9) with both OC and EC size distribution further 

confirming that cholesterol can serve as an appropriate tracer for meat cooking contributions. The 

most abundant PAH measured in emission from meat cooking was phenanthrene with small 

concentrations of fluoranthene and pyrene, however higher ambient concentrations of these were 

observed from other sources such as diesel engines (Kleeman et al., 2008).  
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The diagnostic ratios plotted against each other in Figure 27 shows that across the cooking profiles 

there exists a clearer difference for ratios of Corene/BeP and BghiP/BeP.  BeP/BeP+BaP) and are 

very similar for all the cooking styles IND(IND+BghiP). 

Table 35 shows the diagnostic ratio for selected acids for this study. It also shows these ratios 

obtained from literature. A similar trend is observed across all the ratio of acids however higher 

values are obtained for oleic to steric acid ratio in this study as compares to previous studies a ratio 

of 9.5 is obtained for western style cooking.  

When analysing the diagnostic ratio for acid across various studies including data from this study, 

in Table 35 Figure 27 and Figure 28, oleic/linoleic acids ratio as well as oleic/stearic acid ratios 

were observed to differ across the concentrations analysed with good correlation for cholesteral/ 

palmitic acid and stearic /palmitic acid. Oleic/linoleic ratio was highest for Indian cooking (2.43) 

and lowest for Chinese cooking (1.58). oleic/stearic acid ratios were generally higher compared to 

other diagnostic ratios with western cooking having the highest value of 9.75  followed by Indian 

cooking and 4.05 bring the ratio for African cooking. The lowest ratio for oleic to stearic acid was 

observed for Chinese style cooking with a value of 3.58. 
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Figure 26 Marker to OC ratio for meat cooking profiles (Robinson et al., 2006) 
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Table 34   Comparison of diagnostic ratios of PAHs from A. traffic (past studies), B. Cooking(past studies) and C. this study 

A. 

 

B. 

 

C. 

  INDIAN  WESTERN AFRICAN CHINESE 

BeP/BeP+BaP) 0.08 0.10 0.27 0.31 

IND(IND+BghiP) 0.48 0.52 0.58 0.37 

Cor/Bep 1.84 10.45 2.31 3.55 

BghiP/BeP 10.02 12.31 1.63 2.47 

(Gu etal 2010)
Mantis et 

al., 2005.

Shangai TRAFFIC PETROLEUM GRASS
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urban dust coal 
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Coal 

combustio
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Vehicula

r 

emission

Wood 

combustion

Coal 

combusti

on

Vehicula

r 

emission

Wood 

combusti

on

Phe/(Phe+Ant)

 Flu/(Flu+Pyr) 0.52 0.4-.5       <0.2     >0.5

>0.5 0.4-0.5 >0.5

BaA/(BaA+CHR) 0.27
0.2–0.35 >0.35 <0.2 >0.35

0.2-0.25 0.3-0.35 0.55-0.6 0.43

 Ind/(Ind+Bpe)

BeP/(BaP+BeP) 0.63

Ant/(Ant+Phe) 0.13
<0.1 >0.1 <0.1 >0.1

IcP/(IcP+BgP) 0.45
<0.2 0.2–0.5 >0.5

BaP/(BaP+BeP)
0.2-0.4

BaP/BghiP 0.9-6.6 0.3-0.44

Zencak et al., 2007. Wu et al., 2007.
Pies et al., 2008Yunker et al., 2002Akyüz and Çabuk, 

2010
(Miguel and Pereira, 1989) (combustion)

 Sofowote et al. (2010)

CHINESE MALAY INDIAN CHINESE, HUNAN CHINESE, CANTONESE CHINESE CHINESE CHINESE CHINESE STEAMING BOILING STIR-FRY PAN-FRY DEEP-FRY

PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 TSP and gas TSP and gas TSP and gas TSP and gas PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 

Phe/(Phe+Ant) 0.21 0.28 0.21 0.96 1 0.51 0.41 0.37 0.51 0.96 0.96 0.94 0.94 0.95

 Flu/(Flu+Pyr) 0.32 0.38 0.43 0.44 0.36 0.18 0.19 0.23 0.23 0.51 0.52 0.56 0.55 0.53

BaA/(BaA+CHR) 0.4 0.32 0.5 0.51 0.47 0.74 0.18 0.22 0.38 0.31 0.34 0.28 0.29 0.28

 Ind/(Ind+Bpe) 0.43 0.38 0.39 – 0.19 – – – – 0.54 0.52 0.45 0.46 0.44

Zhu and Wang, 2003 See and Balasubramanian, 2008COOKING(See et al(2006) He et al., 2004
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Figure 27  Diagnostic ratio of profiles PAH 
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Table 35 Diagnostic ratios of acids. 

 

 

 

 

 

 

 

 

 

          mg/kg meat mg/kg meat ug/kg meat   

using PROFILE(ug/ug OC) GAS WEST GAS AFR GAS CHINE GAS IND 
rogge frying 
burger 

rogge charbroil 
burger 

schauer 
potatoes 

schaur 
charbroil 

oleic/linol 2.08 2.04 0.82 2.34     1.11 6.69 

chole/palmitic 0.14 0.05 0.06 0.12 0.50 0.32   0.02 

stearic/palmitic 0.17 0.37 0.62 0.35 0.61 0.67 0.48 0.59 

oleic/stear 9.57 2.35 2.63 5.99 1.16 1.46 2.29 2.21 

using CONCENTRATION 
(ug/m3)  WESTERN AFRICAN CHINESE  INDIAN         

oleic/linol 2.02 2.02 1.58 2.43         

chole/palmitic 0.13 0.03 0.04 0.17         

stearic/palmitic 0.19 0.24 0.43 0.45         

oleic/stear 9.75 4.05 3.58 6.05         
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Figure 28  Diagnostic ratio of acids 
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3.6 Total compounds emitted. 

Analysis of the total concentrations across the group of compounds presented in Table 36showed that 

generally Chinese cooking style emitted the highest concentration of compounds across the entire range 

of cooking techniques. Acids were the most prominent compounds released during Chinese cooking 

with total concentration of 21.61µg/m3.  African style cooking had the lowest total concentration when 

compared to all other styles with a concentration of 0.37µg/m3 of total sterol emitted compared to1.34 

µg/m3 from Chinese style cooking (which was observed to emit the highest total concentration of 

sterols). For Indian and western style cooking  the most prominent set of compounds released were 

alkanes whereas similar to observation for Chinese cooking,  PAH were the highest total  emitted 

compounds for African cooking  (6.83 µg/m3). High concentrations of monoglycerides were observed 

in Western and Chinese cooking, 10.33µg/m3and 11.52µg/m3 respectively. Table 36 and the pie chart 

below represent the average concentrations emitted from cooking styles. 

Figure 30 shows pie charts for total concentration of compounds emitted from cooking from Western, 

Chinese and Hunan style cooking (A,B,C respectively). For Chinese cooking by Zhao et al., 2007  

highest total concentration emitted were for alkanes and PAH collectively accounting for about 75% of 

the total concentration. For the western style cooking a larger percentage was represented by alkanes 

than in Chinese cooking and a smaller fraction for PAH. In these studies the percentage for acid is much 

less than in the present study. However for the hunan style cooking in (C ) high concentration of acid, 

a lot higher fraction than was reported by He et al., 2004. 
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Table 36  Total concentrations of compounds (alkane, PAH, sterol, glyceride and acids) at 

cooking source (µg/m3) 

 

 (µg/m3)  INDIAN  WESTERN AFRICAN CHINESE 

 Total n-ALKANES 12.41 11.66 4.67 12.99 

 Total PAH 5.35 9.31 2.92 12.74 

 Total  ACID 6.65 9.87 6.83 21.61 

 Total STEROLS 1.18 0.94 0.37 1.34 

 Total  MONOGLYCERIDE 3.38 10.33 1.48 11.52 

 

 

 

 

Figure 29  Pie chart of total concentration of compounds from cooking source (µg/m3)
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A. TOTAL CONCENTRATION OF COMPOUNDS –WESTERN COOKING PROFILE ZHAO ET AL., 
2007. 

 

 

B. TOTAL CONCENTRATION OF COMPOUNDS –CHINESE COOKING PROFILE ZHAO ET AL., 
2007. 

 
 

 
C. TOTAL CONCENTRATION OF COMPOUNDS –HUNAN COOKING He et Al 

 
Figure 30  He et al., 2004 and Zhao et  al., 2007 comparism of total concentration of compounds emitted 
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Figure 30 shows pie charts for total concentration of compounds emitted from cooking from 

Western, Chinese and Hunan style cooking (A,B,C respectively). For Chinese cooking by Zhao 

et al., 2007, highest total concentrations emitted were for alkanes and PAH collectively 

accounting for about 75% of the total concentration. For the western style cooking a larger 

percentage was represented by alkanes than in Chinese cooking and a smaller fraction for PAH. 

In these studies the percentage for acid is much less than in the present study. However for the 

hunan style cooking in (C ) high concentration of acid, a lot higher fraction than was reported 

by He et al., 2004. 

3.7 Cooking profiles 

Individual source profiles were made up of the average and standard deviation of species 

abundances for all individual profiles within a group. Source profiles in this case were prepared 

with respect to OC for cooking with gas source as this was identified as the most frequently 

used heat source in restaurants. 

Below Table 37 is a list of cooking profiles µg/ µg of OC. 

 

 

 

 

 

 

 

 



 

148 
 

Table 37  Source profile of cooking µg/ µg of OC –with Gas. 

  WEST ARF CHI IND   WEST ARF CHI IND 

EC 2.66E-03 1.21E-03 3.19E-03 3.79E-03 DODE 7.49E-03 3.06E-03 5.46E-03 9.45E-03 

ECU 1.00E-08 1.00E-08 1.00E-08 1.00E-08 DODEU 5.61E-03 2.51E-03 6.83E-03 3.18E-03 

LEVOG 1.17E-02 6.14E-03 5.25E-03 1.75E-02 NONDIA 2.28E-03 1.01E-02 2.18E-03 2.03E-03 

LEVOGU 6.26E-03 4.08E-03 2.67E-03 3.62E-03 NONDIAU 1.25E-03 1.33E-02 2.03E-03 1.96E-03 

CHOL 2.30E-03 1.17E-03 8.02E-04 2.47E-03 TRI 6.10E-03 3.65E-04 1.27E-04 1.53E-03 

CHOLU 3.18E-04 4.09E-02 2.37E-02 5.90E-02 TRIU 9.54E-03 3.12E-04 1.14E-04 8.46E-04 

PICENE 2.56E-03 1.09E-03 1.29E-03 2.27E-03 TETDE 9.69E-03 9.43E-04 1.61E-03 3.32E-03 

PICENEU 1.61E-03 1.26E-03 4.18E-04 2.72E-03 TETDEU 1.46E-02 1.16E-03 1.72E-03 2.43E-03 

BZBFLU 2.17E-03 6.29E-04 5.68E-04 8.90E-04 PENT 6.07E-03 2.81E-03 1.81E-03 7.90E-03 

BZBFLUU 1.46E-03 5.79E-04 2.62E-04 7.93E-04 PENTU 4.03E-03 2.40E-03 1.07E-03 3.71E-03 

BZKFLU 1.57E-04 2.48E-04 2.15E-04 5.25E-04 HEP 5.57E-04 2.32E-04 1.45E-04 1.85E-04 

BZKFLUU 6.82E-05 1.92E-04 3.08E-04 4.91E-04 HEPU 7.17E-04 1.89E-04 6.97E-05 6.10E-05 

BZEPYR 1.58E-04 4.02E-04 4.55E-04 1.43E-04 NONA 2.49E-04 1.75E-04 1.79E-04 2.88E-04 

BZEPYRU 3.08E-04 5.97E-04 4.65E-04 2.47E-04 NONAU 4.59E-05 1.06E-04 1.51E-04 2.29E-04 

INDPYR 1.98E-03 5.87E-04 5.68E-04 1.12E-03 EICO 2.09E-04 2.94E-04 4.13E-04 3.75E-04 

INDPYRU 1.49E-03 3.82E-04 1.91E-04 8.74E-04 EICOU 1.92E-04 3.59E-04 2.96E-04 1.85E-04 

BZGHPL 1.68E-03 4.95E-04 1.05E-03 1.24E-03 DOCO 6.01E-03 5.13E-04 4.70E-04 5.07E-03 

BZGHPLU 1.22E-03 3.58E-04 5.30E-04 1.04E-03 DOCOU 6.94E-03 5.40E-04 1.49E-04 5.53E-03 

PALMTA 1.70E-02 2.59E-02 1.40E-02 1.99E-02 TETCO 1.04E-03 4.10E-04 3.96E-04 8.35E-04 

PALMTAU 1.88E-02 3.77E-02 2.33E-02 3.92E-02 TETCOU 4.30E-04 2.19E-04 3.73E-05 2.56E-04 

LINOLA 1.32E-02 1.12E-02 2.75E-02 1.77E-02 MONMY 3.71E-02 6.10E-03 1.23E-02 1.59E-02 

LINOLAU 1.53E-02 1.47E-02 4.87E-02 2.35E-02 MONMYU 2.21E-02 5.79E-03 1.29E-02 9.00E-03 

OLA 2.75E-02 2.28E-02 2.27E-02 4.14E-02 MONPA 4.46E-02 4.71E-03 2.79E-02 1.24E-02 

OLAU 2.44E-02 3.03E-02 2.61E-02 4.03E-02 MONPAU 4.60E-02 3.69E-03 4.40E-02 7.02E-03 

STEARA 2.87E-03 9.70E-03 8.64E-03 6.91E-03 MONOL 4.42E-02 1.21E-02 2.42E-02 1.48E-02 

STEARAU 3.08E-03 7.35E-03 9.78E-03 7.57E-03 MONOLU 3.64E-02 1.38E-02 3.72E-02 1.07E-02 

UNDEC 2.30E-02 1.71E-03 1.35E-03 4.70E-03 MONSTE 2.31E-02 9.50E-03 1.51E-02 1.58E-02 

UNDECU 2.56E-02 1.26E-03 6.75E-04 5.17E-03 MONSTEU 5.10E-03 9.33E-03 1.71E-02 8.97E-03 

OCTA 1.28E-02 3.49E-03 5.37E-03 2.12E-03           

OCTAU 1.20E-02 5.52E-03 7.42E-03 1.39E-03           

 

COMPARABILITY AMONG THE SOURCE PROFILES 

Kong et al 2011 have successfully used a self-normalizing statistic called Coefficient of 

divergence (CD) to calculate the degree of similarity between source profiles using the 

following formula (Wongphatarakul al., 1998) even though the formula was formally only used 

to understand the degree of similarity between PM observations across different sites 

(Wongphatarakul al., 1998). CD values range from 0 to 1 with values closer to zero indicating 

a higher degree of similarity while values closer to one indicating concentrations are different. 
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CD𝑗𝑘 = √
1

𝑝
∑ (

𝑥𝑖𝑗  -𝑥𝑖𝑘  

𝑥𝑖𝑗  +𝑥𝑖𝑘  
)

2𝑝

𝑑=1

 

Where  

CD is the coefficient of divergence 

xij is the concentration of species i in profile j  

xik is the concentration of species i in profile k  

p is the number of species investigated. 

Using the profiles in the table above the Coefficient of Divergence were calculated and 

presented in Table 38 below which shows that the highest similarities in profiles are observed 

between Chinese and African profile with a CD of 0.27. African and Western profiles are the 

profiles that are least similar with a CD value of 0.47. 

Table 38 Coefficient of divergence for cooking profiles 

  Western African Indian Chinese 

west 0 0.47 0.31 0.45 

african   0 0.39 0.27 

indian     0 0.41 

chinese       0 

 

Plots of the source profiles in µg/µg of organic carbon (OC) are made and are shown in  Figure 

31 (a-f). The values of r2 range from (0.62- 0.85). The highest r2 value was found for the African 

and Chinese regression (f) with a value of 0.85.  R2 value is lowest for Western and African 

profiles when compared with each other (0.62). Thus a goodness of fit exists for the African 

and Chinese profiles when compared with each other and are thus the most similar. 
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a. Western /Indian 

 

b. Western/African 

 

 

c. Western/Chinese 
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d. Indian/ Chinese 

 

e. African /Indian 

 

f. Chinese/ African 

 
Figure 31  Plots of cooking profiles (µg/µg of OC) against each other (with R2 values) 
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An analysis of the profiles of Western style and Chinese style cooking against themselves for 

a study by Zhao et al., 2007c( 

 

 

 

Figure 32 A) and the present study ( 
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Figure 32 B) present plots that show a better correlation between the two cooking styles in this 

study than previously observed by Zhao. Higher correlation is seen between the two profiles 

especially for alkanes, acids and glycerides. In  

 

 

 

Figure 32B, both profiles are found to have similar concentration of acids as such these can 

serve as good markers for cooking (hexadecanoic acid, 9,12-octadecadienoic, 1-monoolein, 1-

monostearin). 9-octadecanoic acid acid and tetradecanoic acid is seen to lie away from the 

trendline for the cooking profiles so may not be a good representative for both profiles.  

ANOVA- Analysis of variance was carried out for the cooking profiles 

 MEAN SQ SUMMARY OF SQ df 

AFRICAN 0.167 7.18 43 

INDIAN 0.31 13.3 43 
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CHINESE 1.81 77.9 43 

WESTERN 0.53 25.7 43 

 

Using ANOVA- There was a statistically significant difference between groups as determined 

by one-way ANOVA p = .038. A Tukey post hoc test revealed that the concentration emitted 

from African cooking was statistically significantly lower than Indian cooking and western 

style cooking with Chinese cooking having the highest mean concentrations. 

 

 

 

 

A. Zhao et al, 2007c 

 

 

B. This study 
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Figure 32  Analysis of profile for Chinese and Western cooking in A. China by Zhao et el, 2007c; and B. in this 

study. 

 

3.8 Discussion of AMS Results from Manchester Birmingham campaign 

The measurements for this study were conducted as part of a Project between the University of 

Birmingham and University of Manchester (Cook off project). The aim of the sampling was to 

understand clearly the signature output for cooking from the Aerosol mass Spectrophotometer. 

 

Sampling was carried out between 20th March 2012 and 22nd March 2012 where foods were 

cooked in the designed laboratory kitchen described in chapter 2. Different types of oils were 

fried in glass beads to simulate the cooking process and emissions only associated to oils. 

During these cooking experiments, the Aerosol mass Spectrophotometer, operated by D.E. 

Young (from the University of Manchester), was taking samples in the exhaust duct to analyse 

for the organic loading during cooking. Data of the AMS has been provided by D.E. Young, 

and is displayed in Figure 33, Figure 34, Figure 35 and Figure 36. While the AMS samples 
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were being collected, PM samples were collected from the duct of the trailer on Teflon filters 

for gravimetric analysis. 

 

Below in Table 39 is a list of foods that were cooked and the time the cooking took place during 

the sampling. In between each cooking experiment the laboratory kitchen was ventilated. 

From the output of the AMS, the non-refractory mass concentrations during the sampling 

period generally show that organics are the dominant fraction.  

On day 1 it was observed that mass loading was high especially during the periods that meat 

was being grilled, followed by the grilling of vegetables. Grilling of sea food was found to emit 

the least amount of organic. Generally grilling was found to lead to the largest quantity of 

organics with concentration of about 4500 µg/m3. 

On day 2 the shallow frying of chicken was found to emit the largest mass loading in the AMS 

with less emissions during deep frying of chicken, chips and samosa and the lowest observed 

concentration was observed during deep frying of fish and chips. 

Stir frying of food was observed to result in the release of high organics especially for Chinese 

stir frying with chicken, less concentration was observed for stir frying with sea food even 

though the loading was quite significantly high. Lower concentration was observed for Indian 

stir fry/stewing method. This high concentration can be attributed to the physical stirring of the 

ingredients during grilling and frying found to lead aerosols due to the process of splashing of 

the ingredients (Long et al., 2000). 

Analysis of all the AMS data for the sampling days showed that grilling and stir frying of meat 

and chicken lead to the largest quantity of organics (~ 4500 µg/m3). Stewing of tikka masala 

emitted less organics with a maximum quantity of 900 µg/m3, with the least amount of organic 

loading for deep frying (fish and chips were as low as 320 µg/m3 while chicken frying had a 

maximum load of 600 µg/m3). It was interesting to find that grilling of seafood lead to lower 
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mass loading (1000 µg/m3) than other grilling processes involving ingredients like meat and 

vegetables.  

It was observed in Figure 33 that during grilling the diameter representing the highest particle 

number concentration were within the range of the diameter 35nm-60nm which was within the 

range of diameters observed in previous studies in Table 6 where the range of particles 

generated from cooking were found to lie between 20-100nm. Buonanno et al in 2011 found 

the particle diameter mode for grilling of bacon to be 50nm and eggplant 40nm. In this study 

grilling of meat was found to produce particles of 40nm while particles generated during 

seafood grilling were about 35nm in size with larger particles of about 60nm diameter emitted 

during grilling of vegetable.  Larger concentrations of particles were emitted during the grilling 

of meat, 2.5x106particles/cm3 as compared to 1.6x106particles/cm3 and 

1.26x106particles/cm3for grilling of seafood and vegetables respectively. 

In Figure 34 a much smaller particle size was emitted during frying with particles of diameter 

between 15 to 25nm generated during this cooking method. Larger particle sizes were 

generated during shallow frying than when deep frying. It was noted that for shallow frying, 

grilling and stir frying the particles generated were of similar size of about 25nm diameter, this 

could be due to the similar process whereby the ingredients are exposed to heat directly and so 

undergo similar breakdown procedures. The largest particle size from analysis of the data was 

generated during the grilling of vegetables. The concentration of particles was much higher on 

day 2 during frying with the shallow frying of vegetables and chicken having the highest value 

of 9x106particles//cm3, deep frying of fish and chips 4x106particles/cm3and deep frying of 

plantain and samosa and chicken 6x106particles/cm3. These findings are consistent to what was 

observed in studies by Wallace et al., 2004, Buonanno et al., 2011, Huboyo et al., 2011a, 

Hussein et al., 2006 where higher concentration of particles were generated for frying than all 

cooking methods as discussed earlier in Section 1.6. 
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On day 3 the stir frying of seafood and chicken generated similar size particles of about 25nm 

diameter as seen in Figure 35. Stir frying/ stew of Indian tikka masala generated mainly 

particles of about 15nm and the concentration was lower than other cooking methods with 

about 450x103particles/cm3. The concentration for stir frying of chicken and seafood were 

2.5x106particles/cm3 and 3.5x106particles/cm3. 

Similar to observations by previous studies the lowest particle number concentration was 

observed for cooking activities involving water (Indian stewing with boiled rice) and highest 

concentration for frying however shallow frying of chicken and vegetables emitted more 

particles than deep frying in this study slightly different from what was observed by See and 

Balasubramanian in 2006. In their study deep frying produced higher number concentration 

than pan frying (59x104particles/cm3 and 11x104particles/cm3 respectively) 

Figure 37 shows the gravimetric weight obtained from filter exposure during the various 

cooking experiments. It was observed that the concentration trend are similar to that from the 

SMPS with high concentrations observed during grilling of meat(1000 µg/m3) and  shallow 

frying of chicken eggs and vegetables (750µg/m3). From the filters stir frying generally resulted 

higher PM concentration (750-320 µg/m3) than deep frying(110-80 µg/m3). The stewing of 

Indian tikka masala with rice was observed to have emitted similar concentration with deep 

frying and stew food grilling of 100 µg/m3. 

Figure 36 shows AMS and SMPS data obtained from the frying of different cooking oils in 

glass beads. Supermarket vegetable oil and sunflower oil are observed to have similar 

concentrations and particle mode diameters, on the SMPS the total number count was 

4x106particles/cm3 and 2.5x106particles/cm3 respectively with mode diameter of 50nm with 

AMS concentration of 12 x103µg/m3 for both oils. Chinese stir fry oil and olive oil had mode 

at 30nm and another peak at 100nm with concentration of 16x103particles/cm3 and 

20x103particles/cm3. Olive oil was found to have the highest mass loading concentration 
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among the oils analysed with a peak concentration of 1.4 x103µg/m3. Previously in cooking 

studies (Table 6), particle mode diameters correspond with what was observed in this study. 

Yeung and To, 2008 reported a mode diameter of 107nm for hot oil analysis, Siegmann and 

Sattler, 1996  fried rapeseed oil and obtained a mode diameter between30-100 while Glytsos 

et al., 2010 fried a slice of onion in olive oil and the mode diameter found was 20-45nm. 

A study to characterize indoor sources of particles conducted in Boston, USA, made 

measurements of particle size and volume concentration over 6 days in four non-smoking 

households equipped with gas and electric stoves (Abt et al., 2000). It was found that the 

highest mean peak mass concentrations were for barbequing and sautéing for the PM0.02-0.5 and 

PM0.7-10 respectively, whilst the lower mean peak concentrations were found for frying and 

oven cooking or toasting for the same size ranges respectively (Abt et al., 2000). When 

comparism is made with the present study similar size particles was obtained for grilling as for 

the barbeque. 

 

 

 

 

 

Table 39  Schedule of cooking activities during COOK OFF experiment. 

 

  MORNING 

 

VENTILATION 

 1 HOUR 

AFTERNOONa 

 

VENTILATION 

ONE HOUR 

AFTERNOONb 

 

Grilling 

20/3/2012 

meat   Sea food   vegetables 
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Frying 

21/3/2012 

Deep fry 

chips and 

fish 

  Deep fry 

plaintain, 

chicken and 

pastries 

  Shallow fry 

chicken and 

vegetables 

Stir fry 

and stew  

22/3/2012 

Stir fry sea 

food with 

fried rice 

  Stir fried meat 

and fried rice 

  Chicken tikka 

masala and rice 
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Day 1 grilling 

 

Figure 33 AMS and SMPS data on day 1- GRILLING of meat, seafood and vegetables. Data provided by D.E. Young. 
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Day 2 deep and shallow fry 

 

Figure 34 AMS and SMPS data on day 2- FRYING –deep frying and shallow frying. Data provided by D.E. Young. 
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Day3- Stir fry 

 

Figure 35 AMS and SMPS data on day 3- STIR FRY of seafood, chicken and STEWING. Data provided by D.E. Young. 
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Day3 B- Oils 

  

                                                                               

 

Figure 36 AMS and SMPS data on day 3- FRYING OF OIL IN GLASS BEADS. Data provided by D.E. Young. 
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Figure 37 Gravimetric concentration of PM during Cook Off. 
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3.9 Conclusion 

PM samples were collected and analysed in a designed trailer kitchen located in the University 

of Birmingham while cooking of chicken and rice and potatoes was carried out using different 

styles of cooking and different fuel sources.  The samples were analysed to determine the 

gravimetric contribution to Particulate matter from the various cooking styles. 

 It was observed that electric cooking generally resulted in higher concentrations of Particulate 

matter than when cooking with gas. Higher concentrations of PM were emitted when cooking 

using the Chinese curlinary technique.    

The samples were analysed for their organic composition with Acids being the most prominent 

compounds released during Chinese cooking with total concentration of 21.61µg/m3.  African 

style cooking had the lowest total concentration when compared to all other styles with a 

concentration of 0.37µg/m3 of total sterol emitted compared to1.34 µg/m3 from Chinese style 

cooking. The main group of compounds released during Indian and western style alkanes with  

PAH having the highest concentration when the total  emitted compounds for African cooking 

was analysed  (6.83 µg/m3). High concentrations of monoglycerides were observed in Western 

and Chinese cooking, 10.33µg/m3and 11.52µg/m3 respectively. 

The particulate matter mitted from cooking were analyse with an AMS and it was found that 

grilling and stir frying of meat and chicken lead to the largest quantity of organics (~ 4500 

µg/m3). Stewing of tikka masala emitted less organics with a maximum quantity of 900 µg/m3, 

with the least amount of organic loading for deep frying (fish and chips were as low as 320 

µg/m3 while chicken frying had a maximum load of 600 µg/m3). This signified that high 

temperature and direct exposure to ingredients to heat in shallow frying can lead to a greater 

degradation of food ingredients and larger particle generation. It was also found that lowest 

particle number concentration was observed for cooking activities involving water (Indian 

stewing with boiled rice) and highest concentration for frying with shallow frying of chicken 

and vegetables emitting more particles than deep frying. 

With all these observations it can be concluded that generally Chinese cooking results in higher 

concentration of PM and this can be highly attributed to the fact that a lot of shallow frying is 

involved for the curlinary technique. 
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CHAPTER 4-Real kitchen sampling. 
 

This chapter presents concentration of particulate matter collected from cooking in a kitchen 

located in a real home. The aim of the sampling was to quantify the emissions from various 

cooking styles in a real domestic kitchen. 

This chapter contains some sections of verbatim text adapted from the following review article 

published as part of this PhD: 

Abdullahi, L, Delgado Saborit, JM & Harrison, RM 2013, 'Emissions and indoor 

concentrations of particulate matter and its specific chemical components from cooking: A 

review' Atmospheric Environment, vol 71, pp. 260- 294. 

 

4.1 Introduction 

It has been found that a significant part of human exposure to PM occurs indoors as that is 

where people are found to spend most of their time (Klepeis et al., 2001, Jenkins et al., 1992, 

Hasheminassab et al., 2014). Up to 80% of people’s time is spent indoors (with people in USA 

and Germany found to spent up to86% of their time indoors) resulting in a lot of emphasis 

being placed on the understanding of indoor activities that generate PM. With cooking being 

identified as one of the important sources of PM2.5 indoors (Wallace, 2006, Buonanno et al., 

2013, Gao et al., 2015, Wan et al., 2011), it is essential to understand its composition, behaviour 

and how it relates to personal exposure.  Measurements taken in a real life kitchen will give an 

idea of concentrations of compounds emitted during cooking . Several researchers have tried 

to analyse such concentrations with  measurements taken  from  residential kitchens(Morawska 

et al., 2003, He et al., 2004b, He et al., 2004a) and commercial restaurants(Lee et al., 2001b, 

See and Balasubramanian, 2006b). Generally these measurements have been made in countries 

such as Norway, USA, China, Hong Kong, Japan, Italy, Singapore and Australia and have 

analysed only a specific type of cooking in each experiment. 
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A range of organic and inorganic compounds have been found to be emitted during cooking 

processes; some of which have been identified as possible carcinogens (PAHs) (Abdullahi et 

al., 2013, See and Balasubramanian, 2006b, Li et al., 1994). High concentrations of these 

compounds can cause harm to people exposed to them such as cooks and other individuals 

exposed to the cooking fumes (occupants of the buildings such as children waiting by their 

parent while meals are prepared, or individuals watching TV in an open plan living room, or 

the old grandparent keeping warm in the room adjacent to the kitchen). Respiratory diseases 

have been positively linked with exposure to cooking generated particles (Wang et al., 1996, 

Gao et al., 1987, Koo and Ho, 1996) with a three-fold increase observed for risk of lung cancer 

in women with increased number of meals cooked per day (Ko et al., 2000).  Ko et al (2000) 

found that the risk for lung cancer was higher in women that would wait for cooking oil to emit 

fumes before they started cooking. 

4.2 Methodology 

The sampling took place between July and August 2014 and in October 2014.  Sampling was 

carried out in the kitchen of a residential house in Birmingham, with no other activities 

occurring during the cooking exercise in order to minimize the influence of emission from 

other indoor PM sources. The kitchen was about 9 meters by 4 meters and had a four-burner 

gas stove connected to the city gas supply system. The sampling instrument was placed on an 

elevated platform, as shown in Figure 8, with its port facing the burner (located 0.5 m from the 

pan and 1.5 m above the ground). Sampling was carried out with all the windows and door 

closed. Apart from the investigator, no other person was in the house during the course of the 

sampling. The kitchen was ventilated between each cooking experiment by opening the 

window. The cooking duration was about 40-70 minutes, with samples collected via two PM2.5 

partisol inlets that operated at 16L/min (1 with Teflon filter- for gravimetric analysis and 1with 

a quartz fibre filter-for organic analysis). After the sampling campaign the filters were stored 
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in air tight metal tins and placed in the freezer at -22oC.  The same type of meals prepared in 

the trailer were prepared in the real kitchen. 

 

4.2.1 Analytical method 

The Teflon filters collected were weighed before and after sampling for particulate mass 

concentrations using a Sartorius model MC5 microbalance, with a measurement limit of ±1 μg. 

Prior to sampling all Teflon filters were equilibrated for 24 hours in the weighing room which 

had a relative humidity of around 35% and a temperature of 20 ± 2 °C, the filters were then 

weighed and labelled (Yin et al., 2010). After sampling the filters were weighed in the weighing 

room without 24hr exposure to prevent loss of volatile species collected from the sampling. 

The quartz fibre filter samples were analysed for organic species as described in chapter 2. 

Organic and elemental carbon analysis were carried out using the Sunset Laboratory Thermal-

Optical Carbon Aerosol Analyzer as described in chapter 2.  

4.3 Gravimetric concentration of emission from cooking in kitchen 

The gravimetric concentrations measured from cooking in the kitchen are shown in Figure 38, 

Western cooking emitted an average of 223.5 µg/m3with concentrations ranging from 171.2-

275.9 µg/m3, Indian cooking emission average 183.2 µg/m3 with a range of 148.9-241.1 µg/m3, 

Chinese cooking 1009.5 µg/m3with a range of 732.4 µg/m3 to 1152.1 µg/m3, African had 

average PM2.5 concentration of 185.3 µg/m3 and a range of 145.6 µg/m3-268.1 µg/m3. 

It was therefore observed from these findings that Chinese cooking emits a higher 

concentration of PM2.5 than the other food cooking styles evaluated. The Western style cooking 

emit less than the Chinese cooking and was observed to be the next higher concentration of 

PM2.5 with similar concentration emitted during Indian and African style cooking. This showed 

a similar trend to what was observed in the trailer however it was found that the concentrations 

were about three fold more in the real kitchen (Chinese 1000µg/m3 in kitchen and 370µg/m3 at 
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cooking source). In the real kitchen there was no use of air extractor and no ventilation during 

sampling while in the trailer samples were collected in the duct of the extractor hood while the 

extractor was working. The idea behind taking samples in the duct and at a calculated distance 

was to obtain representative PM which had not undergone coagulation and condensation. In 

the real kitchen it could be assumed that due to the fact that samples were collected near the 

cooking point with all the heat and steam generated, more particles were collected in the general 

microenvironment. It was interesting to see that the trend was consistent for the cooking styles 

as was observed in the trailer in Table 20. 

Similar to the finding in this research, a study by See and Balasubramanian (2006b) found that 

PM2.5 mass concentration inside a food stall exceeded the 24 h standard by at least 400% during 

cooking hours suggesting that potential health risks exist in the Chinese food stall during 

cooking hours. The primary standards set are generally meant to protect public health with an 

adequate safety margin 

Some studies have found low concentration of PM2.5 for instance a study in the US found that 

the average PM2.5 concentration due to cooking over 195 cooking events was about 5.5 µg/m3 

with a standard error of 2.3 µg/m3 (Allen et al., 2004) , while in Europe, a study made involving 

the comparison of elderly residential homes in Amsterdam (47) and Helsinki (37), found that 

the estimated contribution from cooking ranged from 1.9 µg/m3 for indoor PM2.5 in Helsinki 

to 3.4 µg/m3 for PM2.5 personal exposure concentrations (Brunekreef et al., 2005). 

 Generally the rates of emission of aerosol have been reported to vary based on type of 

appliance used, the cooking conditions used and fat content of meat (McDonald et al., 2003).  

In an experiment where hamburger, steak and chicken were grilled and charbroiled, McDonald 

et al. (2003) found that the PM2.5 emission rate for charbroiling meats ranged between 4.4 to 

15 g/kg. The largest quantity of PM2.5 was emitted by hamburger (15 g/kg) which had higher 
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fat content (30%) and were cooked on a char broiler. These results are consistent with data 

reported by Hildemann et al. (1991a). McDonald et al. (2003) reported that charbroiling 

produced higher concentrations than frying, 12-46 g/kg meat when charbroiling vs. 0.57 g/kg 

meat when frying. They also reported that charbroiling lean meat produced less concentrations 

of particles in the smaller size range (<20 nm) and in the larger size range (>100 nm) than 

regular meat. In this study it was found that stir frying in Chinese cooking produced higher 

concentrations of PM2.5 than deep frying and stewing in Western and African and Indian style 

cooking. 

Increased emissions measured at the source were reported to be a function of increased cooking 

temperature. Foods containing a higher percentage of fat generated higher emission rates than 

those with less fat percentage. They reported higher aerosol mass emission when cooking fatty 

foods (280-389 µg/m3) than when cooking vegetables (78 µg/m3). Particle emission factor 

varied significantly also with type of oil used. Sunflower oil generated the lowest mass 

emission factors, whilst the highest emissions were from olive oil (Buonanno et al., 2009). 

Glytsos (2010) reported that frying of onions in olive oil in a controlled room emitted PM2.5 in 

the range of 70 to 600 µg/m3 (Glytsos et al., 2010). 

See and Balasubramanian (2006b) investigated the physical and chemical properties of 

emissions from a Chinese food stall in Singapore while food was stir fried in a wok using a gas 

stove, and at two different and distinct times (See and Balasubramanian, 2006b). The mass 

concentration of particles (PM2.5) measured in the food stall at the opposite site of a 4-LPG 

burner stove increased from 26.7 μg/m3 during non-cooking hours to 312.4 μg/m3 during 

cooking hours (increased by a factor of 12).  

Analysis of various cooking methods which included steaming, boiling, stir-frying, pan-frying 

and deep-frying  revealed that the largest amount of particulate matter measured at 20 cm from 
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the cooker was generated during deep frying (PM2.5190 μg/m3 ) and the lowest concentration 

was observed during steaming (PM2.572 μg/m3) (See and Balasubramanian, 2008). Both studies 

have indicated that cooking with oil contributes to the production of more particles than 

cooking with water, which is consistent with the work of He et al. (2004a). In another study, 

See et al. (2006) made a comparison of emissions from Chinese, Indian and Malay food stalls 

and reported that the highest mass concentrations of PM2.5 were found in the Malay stall (245.3 

μg/m3), whilst the lowest were measured in the Indian stall (186.9 μg/m3) (See et al., 2006).  

 Similar to findings in this study several studies have found that Asian style cooking emits more 

particulate matter than Western cooking with concentrations of PM2.5 ranging 30 to 1,400 and 

20 to 535 μg/m3 as reported by various groups (Lee et al., 2001b; Levy et al., 2002; He et al., 

2004b). 

In California, a study was carried out in a test kitchen in a domestic setting where stationary 

samplers were positioned in the breathing zone of the cook to measure for UFP and PM2.5 

(Fortmann et al. 2001). It was found that the average PM concentrations when minced beef was 

pan fried with the ventilation system on and off were; 144 and 102 μg/m3 (PM2.5) and; 207 and 

144 μg/m3 (PM10) respectively. Bacon was pan fried on a gas stove and was found to emit more 

PM2.5 than on an electric stove; 482 μg/m3 and 207 μg/m3 respectively. Sampling was 

conducted in the nearby living room at the same time as cooking and higher concentration of 

PM2.5 were observed when bacon was pan fried than when minced beef was fried, with 261 

μg/m3 and 7.8 μg/m3 respectively (Fortmann et al. 2001, Sjaastad, 2010). 

A summary of the studies discussed above is presented in Table 40. 
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Figure 38  Gravimetric concentrations of PM2.5 in real kitchen for 4 different cooking styles n=6 (µg/m3) 
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Figure 39  Gravimetric concentrations of PM from personal monitoring of cook in real kitchen (µg/m3) 

 

Figure 39 shows the concentration of PM obtained from personal monitoring of the cook for 

on a few of the days of sampling. The personal monitoring was carried out for 24 hours on days 

cooking activities took place. High concentrations are observed on the day that grilling was 

involved with a concentration of 120µg/m3 on the day that grilling was carried out with Indian 

cooking. High PM concentrations were found on the das that Chinese cooking took place , 

consistent to all our findings of high loading  of pm during Chinese cooking. 

There is how ever an issue that as the sampler was worn for 24 hours there could be other 

factors that could affect the concentrations obtained as the cook goes about her daily chores. It 

is interesting to observe the trend is consistent with all the findings of the study.
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Table 40  Concentration from previous studies 
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Reference Location Comment Concentration (µg/m3) 

Abt et al. 2000 US Frying - PM0.02-0.5 29 

Frying – PM0.7-10 19 

Barbequing - PM0.02-0.5 57 

Barbequing - PM0.7-10 12 

Oven cooking - PM0.02-0.5 50 

Oven cooking – PM0.7-10 8 

Sauteing - PM0.02-0.5 42 

Sauteing – PM0.7-10 294 

Toasting - PM0.02-0.5 45 

Toasting – PM0.7-10 8 

Lee et al. 2001 

 

China 

 

PM2.5  Chinese hot pot restaurant 81 

PM2.5  Chinese dim sum restaurant 28.7 

Hong Kong PM2.5  Western Canteen 21.9 

Levy et al. 2002 USA PM2.5  food court 200 

Wallace et al., 2004 USA Cooking dinner  

Cooking breakfast  

He et al., 2004a Australia PM2.5  (48h) cooking 37 

PM2.5  (48h) cooking pizza 735 

PM2.5  (48h) frying 745 

PM2.5  (48h) grilling 718 

PM2.5  (48h) kettle 13 

PM2.5  (48h) microwave 16 

PM2.5  (48h) oven 24 

PM2.5  (48h) stove 57 

PM2.5  (48h) toasting 35 

PM2.5   residential kitchen 535.4 

He et al., 2004c 

 

China PM2.5 Hunan restaurant 1406 

China PM2.5 Cantonese restaurant 672 

See and Balasubramanian, 2006a,  See and Balasubramanian, 2008 Singapore PM2.5 Steaming 66 ± 7.6 

PM2.5 Boiling 81 ± 9.3 

PM2.5  Stir-Frying 120 ± 13 

PM2.5  Pan-Frying 130 ± 15 

PM2.5  Deep-Frying 190 ± 20 

See and Balasubramanian, 2006b Singapore Stir-fry in a wok typical Chinese food commercial food stall PM2.5 286 

See et al., 2006 Singapore PM2.5  Chinese stall 202 ± 141 

 PM2.5  Malay stall 245 ± 77 

PM2.5  Indian stall 187 ± 44 

PM2.5  Background 29 ± 8 

 Buonanno et al., 2009 Italy Grilling in a gas stove at maximum power 

     Cheese 283 

     Wurstel sausage 352 

     Bacon 389 

     Eggplant 78 
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Frying  50 g of chips in a gas stove at maximum power with  

    Olive oil  

118 

    Peanut Oil 68 

    Sunflower Oil 60 

Frying  50 g of chips using an electrical pan with  

    sunflower oil  12 

    olive Oil 27 

    peanut Oil 13 

Buonanno et al., 2010 Italy PM1 range 10-327 

PM2.5 12-368 

PM10 15-482 

Glytsos et al. 2010 Czech Republic Frying a slice of onion with olive oil – electric griddle  

Huboyo et al., 2011 Japan Tofu boiling 22.8 

(1.21-294) 

Tofu frying 41.2 

(1.76-707) 

Chicken boiling 30.8 

(5.36-1,082) 

Chicken frying 101.6 

(1.67-1,366) 

To and Yeung, 2011 Hong Kong Frying vermicelli with beef – gas cooking (Domestic kitchen) – PM10 1,330 

Frying vermicelli with beef – electric cooking 

(Domestic kitchen) – PM10 

1,030 

Pan Frying of meat – gas cooking  

(Domestic kitchen) – PM10 

1,020 

Pan Frying of meat – electric cooking 

(Domestic kitchen) – PM10 

520 

Deep frying of chicken wings – gas cooking  

(Domestic kitchen) – PM10 

890 

Deep frying of chicken wings – electric cooking 

(Domestic kitchen) – PM10 

680 

Deep frying of tofu – gas cooking 

(Commercial kitchen) – PM10 

4,720 

Deep frying of tofu – electric cooking 

(Commercial kitchen) – PM10 

3,980 

Griddle frying of meat – gas cooking 

(Commercial kitchen) – PM10 

2,260 

Griddle frying of meat – electric cooking 

(Commercial kitchen) – PM10 

2,600 
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4.3.1 Concentration of organic compounds emitted from cooking in real kitchen. 

Concentration of compounds when analysed are generally higher for Chinese cooking as 

observed for the PM2.5 concentration as illustrated and shown Figure 40, Figure 41, Table 41 

and Table 42.   

PAHs- 

The highest concentrations of PAH emitted were observed across all food cooking styles for 

dibenz(a,h)anthracene with the lowest concentration displayed by benzo(e)pyrene of 0.04 

ng/m3  with Indian cooking having very high concentration (0.69 ng/m3 ) of this compound 

compared to other cooking styles.  

Vainiotalo and Matveinen (1993) measured PAHs at the breathing zone of selected people 

working at five different kitchens where frying of meat was carried out. Sampling was 

conducted at 250-300oC and for periods of 30 mins to 3 hours. Low concentration of PAH such 

as  fluorene, phenanthrene, anthracene, pyrene, benzo[a]fluorene, chrysene, BaP and BghiP 

were detected in some samples in the range of 0.02-2.3 μg/m3, and concentration of 

Naphthalene was found to be 1.6-25.6 μg/m3 (Sjastaad, 2010).   

See et al in 2006 also sampled cooks working in kitchens cooking Chinese, Malay and Indian 

food and found that the average particulate concentrations of naphthalene were 1.9, 2.8 and 3.9 

ng/m3 of respectively with BaP and acenaphthylene concentrations of 5.6, 16.0, 0.9 and 2.4, 

5.6, 2.7 ng/m3 respectively (See et al. 2006, Sjastaad, 2010 ).  BaP concentrations were higher 

during Chinese cooking than for Indian cooking but in the present study its concentration were 

quite similar for all cooking methods with values of between 0.4- 0.6 ng/m3. 

Chen et al. (2007) compared the cooking emissions from Chinese, Western and Western fast 

food restaurants and reported that the total particulate phase PAH percentage in Chinese 
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cooking was the highest , in this study where Indian cooking is additionally analysed it was 

observed that the highest concentration of PAH was emitted during Indian cooking followed 

by Chinese style cooking. Zhu et al. (2009) indicated that particulate phase PAHs (PPAH) were 

predominantly absorbed on PM2.5 with a 59-97% total particulate phase proportion. Particle 

size distribution analysis (Saito et al., 2014) showed that almost all PPAHs are concentrated 

on particles with diameters of <0.43 μm(Gao et al., 2015). Lu et al. (2011) reported that total 

concentration of 8 PAHs could range from 7.1 to 320 ng/m3 and from 0.15 to 35 ng/m3 in 

residential environments in China and Japan, respectively(Lu et al., 2011). The findings from 

this study are similar to what was observed in the Japanese residential environment but are 

generally slightly lower (0.25-2.06 ng/m3). 

Generally the lower concentration observed in the present study compared to some of the 

studies mentioned is due to the fact that they were carried out in commercial restaurants in 

most of the other studies.  

Acids- 

9-Octadecenoic acid was found to have the highest concentration of acid emitted during 

cooking with highest concentration released during western style cooking 5.62µg/m3 (as 

observed in Table 42 and Figure 43). 9,12-Octadecadienoic acid is the next dominant acid that 

was measured with highest concentration observed during African style cooking with a 

concentration of 7.73 µg/m3. In terms of acids concentration it was found to have higher 

concentrations measured across all the species during western style cooking (deep frying). All 

the cooking styles are found to have a similar  concentration of hexadecanoic acid except 

African style. 

Sterols- 

Figure 42 and Table 42 show the range of sterols and glycerides measured during cooking in 

the kitchen. The glycerides emitted were in the range of 0.7-1.4 µg/m3 with generally higher 
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concentration of 1-monoolein for all the cooking styles. Levoglucosan concentrations were 

within 1.1 to 2.3 µg/m3 with the highest concentration observed during Chinese cooking 

probably owing to the higher amount of vegetables used in this cooking style. Similarly highest 

concentration of cholesterol (0.45 µg/m3) was observed during Chinese style cooking. 

Alkanes- 

Figure 41 and Table 41 show the alkanes measured in the kitchen concentration. Nonacosane 

(C29) to tritriacontane (C33) were generally elevated across all cooking styles with a similar 

trend across all cooking styles for most compounds except for nonacosane and tritriacontane 

where chinese cooking was found to have high concentration (2.3ng/m3 and 3.7 ng/m3) while 

the other cooking styles had concentration of about 1ng/m3 of nonacosane and 1.2 of 

tritriacontane 

 

 

 

Figure 40  Concentration of compounds (PAH) emitted in real kitchen (ng/m3) 
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Figure 41  Concentration of compound (ALKANE) emitted in real kitchen (ng/m3) 
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Table 41  Concentration of PAH and Alkane emitted in real kitchen (ng/m3) 

  INDIAN KITCHEN(n=6) WESTERN KITCHEN(n=6) AFRICAN KITCHEN(n=5) CHINESE KITCHEN(n=6) 

PAH average std dev MIN 25% 50% 75% MAX average std dev MIN 25% 50% 75% MAX average std dev MIN 25% 50% 75% MAX average std dev MIN 25% 50% 75% MAX 

Benzo[b]fluoranthene 1.16 0.92 0.45 0.62 0.45 1.57 2.74 1.07 0.56 0.34 0.60 0.34 1.45 1.58 0.42 0.23 0.21 0.29 0.35 0.44 0.79 1.09 0.43 0.57 0.75 0.57 1.35 1.68 

Benzo[k]fluoranthene 0.80 1.36 0.07 0.09 0.07 0.68 3.51 0.26 0.26 0.07 0.07 0.07 0.47 0.62 0.16 0.11 0.07 0.07 0.15 0.19 0.33 0.25 0.21 0.07 0.07 0.07 0.39 0.56 

Benzo[e]pyrene 0.69 1.05 0.01 0.04 0.01 0.96 2.62 0.04 0.06 0.01 0.01 0.01 0.01 0.15 0.04 0.02 0.01 0.01 0.05 0.05 0.05 0.15 0.13 0.01 0.06 0.01 0.21 0.35 

Benzo[a]pyrene 0.60 0.44 0.31 0.38 0.31 0.54 1.48 0.50 0.28 0.20 0.27 0.20 0.72 0.85 0.51 0.35 0.11 0.21 0.54 0.78 0.93 0.48 0.16 0.24 0.39 0.24 0.60 0.67 

Perylene 1.61 1.61 0.51 0.56 0.51 2.48 4.18 0.97 0.43 0.52 0.58 0.52 1.17 1.57 0.63 0.56 0.20 0.24 0.56 0.58 1.57 1.03 0.31 0.53 0.90 0.53 1.23 1.37 

Indeno[123-cd]pyrene 1.47 1.10 0.69 0.83 0.69 1.58 3.58 1.28 0.49 0.41 1.40 0.41 1.52 1.61 1.10 0.74 0.25 0.67 0.86 1.69 2.03 1.68 0.46 1.08 1.44 1.08 1.88 2.30 

Dibenz[ah]anthracene 2.80 2.81 1.07 1.33 1.07 2.61 8.39 1.61 0.51 0.85 1.54 0.85 1.87 2.25 1.17 0.60 0.45 0.74 1.14 1.74 1.80 2.06 0.56 1.25 1.75 1.25 2.33 2.84 

Picene 0.78 0.26 0.48 0.58 0.48 0.90 1.18 0.97 0.50 0.42 0.56 0.42 1.32 1.60 0.72 0.29 0.43 0.45 0.72 0.90 1.10 1.05 0.39 0.50 0.93 0.50 1.11 1.70 

Benzo[ghi]perylene 0.95 0.83 0.29 0.47 0.29 0.96 2.57 0.33 0.13 0.16 0.23 0.16 0.42 0.47 0.40 0.35 0.15 0.21 0.26 0.37 1.00 0.66 0.30 0.29 0.46 0.29 0.80 1.13 

Coronene 0.47 0.52 0.12 0.16 0.12 0.46 1.37 0.32 0.29 0.01 0.11 0.01 0.52 0.63 0.32 0.29 0.00 0.09 0.28 0.53 0.69 0.51 0.24 0.18 0.40 0.18 0.63 0.88 

ALKANES                                                         

Tetracosane 0.16 0.03 0.11 0.14 0.15 0.17 0.21 0.16 0.04 0.12 0.14 0.14 0.16 0.23 0.14 0.01 0.13 0.14 0.14 0.14 0.15 0.36 0.14 0.20 0.27 0.34 0.47 0.55 

Pentacosane 0.31 0.06 0.25 0.27 0.28 0.35 0.39 0.28 0.06 0.24 0.25 0.27 0.30 0.39 0.25 0.02 0.23 0.25 0.26 0.26 0.28 0.53 0.13 0.36 0.44 0.53 0.61 0.70 

Hexacosane 0.46 0.08 0.39 0.41 0.44 0.51 0.59 0.40 0.06 0.34 0.37 0.39 0.41 0.51 0.32 0.03 0.29 0.30 0.30 0.33 0.36 0.63 0.15 0.46 0.50 0.61 0.76 0.81 

Heptacosane 0.65 0.12 0.56 0.56 0.58 0.72 0.83 0.58 0.08 0.49 0.54 0.57 0.59 0.72 0.45 0.05 0.37 0.44 0.47 0.48 0.50 1.14 0.22 0.83 1.04 1.10 1.31 1.40 

Octacosane 0.86 0.14 0.75 0.76 0.78 0.96 1.04 0.77 0.10 0.69 0.73 0.75 0.77 0.96 0.54 0.06 0.43 0.54 0.55 0.57 0.61 1.06 0.22 0.79 0.92 1.02 1.21 1.36 

Nonacosane 1.17 0.21 0.96 1.03 1.08 1.29 1.49 1.17 0.20 0.92 1.01 1.22 1.26 1.45 0.78 0.11 0.62 0.77 0.80 0.82 0.91 2.37 0.38 1.79 2.22 2.37 2.51 2.95 

Triacotane 1.01 0.17 0.85 0.89 0.94 1.15 1.23 0.92 0.11 0.81 0.86 0.90 0.92 1.12 0.62 0.08 0.49 0.63 0.63 0.65 0.72 1.23 0.18 0.98 1.12 1.22 1.35 1.48 

Hentriacotane 1.15 0.17 0.97 1.05 1.08 1.29 1.38 1.03 0.12 0.90 0.95 1.01 1.05 1.25 0.74 0.11 0.57 0.73 0.74 0.75 0.88 2.16 0.48 1.48 1.97 2.13 2.35 2.90 

Dotriacotane 1.08 0.16 0.90 0.97 1.04 1.23 1.29 0.95 0.12 0.80 0.84 0.97 1.03 1.11 0.64 0.09 0.51 0.65 0.65 0.66 0.76 1.21 0.21 0.97 1.05 1.19 1.34 1.51 

Tritriacotane 1.34 0.18 1.14 1.20 1.32 1.47 1.57 1.32 0.25 0.99 1.14 1.34 1.43 1.69 0.87 0.18 0.63 0.82 0.82 1.00 1.10 3.66 2.69 1.17 1.41 3.22 5.31 7.53 

Tetratriacotane 0.25 0.13 0.00 0.26 0.29 0.33 0.35 0.24 0.03 0.21 0.22 0.24 0.24 0.30 0.17 0.02 0.13 0.16 0.17 0.17 0.20 0.30 0.04 0.26 0.27 0.30 0.31 0.38 

Pentatriacotane 0.95 0.49 0.00 0.93 1.08 1.28 1.31 0.89 0.11 0.78 0.81 0.88 0.92 1.09 0.61 0.09 0.46 0.58 0.61 0.64 0.72 1.17 0.17 1.01 1.07 1.15 1.19 1.49 
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Table 42   Average concentrations of  acids and sterols emitted in kitchen (µg/m3)  

µg/m3 INDIAN KITCHEN(n=6) WESTERN KITCHEN(n=6) AFRICAN KITCHEN(n=5) CHINESE KITCHEN(n=6) 

  average std dev MIN 0.25 0.5 0.75 MAX average std dev MIN 0.25 0.5 0.75 MAX average std dev MIN 0.25 0.5 0.75 MAX average std dev MIN 0.25 0.5 0.75 MAX 

Undecanoic 0.54 0.11 0.46 0.48 0.50 0.58 0.67 0.97 0.58 0.49 0.62 0.79 1.14 1.81 0.35 0.03 0.33 0.33 0.34 0.36 0.39 0.27 0.25 0.10 0.10 0.15 0.30 0.75 

Octanedioic 0.32   0.32 0.32 0.32 0.32 0.32 2.43 2.08 0.07 1.67 3.27 3.62 3.96 0.04   0.04 0.04 0.04 0.04 0.04 0.25 0.18 0.09 0.13 0.16 0.37 0.52 

Dodecanoic               1.83 1.72 0.54 0.86 1.18 2.48 3.78               0.14 0.10 0.00 0.06 0.17 0.19 0.27 

Nonanedioic               0.44 0.22 0.28 0.36 0.44 0.51 0.59 0.23 0.04 0.20 0.20 0.20 0.20 0.25 0.10 0.08 0.00 0.05 0.10 0.12 0.23 

Tridecanoic 0.19 0.24 0.06 0.06 0.06 0.26 0.46 0.45 0.72 0.03 0.09 0.12 0.49 1.53 0.22 0.21 0.08 0.37 0.37 0.37 0.37 0.44 #DIV/0! 0.44 0.44 0.44 0.44 0.44 

tetradecanoic 0.13 0.03 0.11 0.12 0.12 0.14 0.17 1.14 1.85 0.04 0.19 0.20 0.87 4.41 0.17 0.04 0.14 0.14 0.17 0.18 0.20 0.19 0.07 0.11 0.16 0.17 0.21 0.31 

pentadecanoic 0.43 0.18 0.10 0.42 0.49 0.54 0.57 2.11 2.32 0.16 0.69 1.03 3.10 6.06 0.23 0.10 0.06 0.25 0.25 0.26 0.31 0.61 0.16 0.40 0.52 0.61 0.70 0.82 

Hexadecanoic 2.31 1.07 0.90 1.45 2.91 3.04 3.11 2.77 1.54 1.29 1.53 2.27 4.01 4.78 1.19 2.15 0.05 0.16 0.32 0.41 5.02 3.93 4.97 0.05 0.81 1.08 7.44 11.06 

heptadecanoic 0.14 0.12 0.01 0.05 0.13 0.21 0.31 0.08 0.12 0.00 0.03 0.04 0.09 0.26 0.15 0.14 0.01 0.05 0.10 0.26 0.33 0.31 0.71 0.01 0.01 0.01 0.04 1.76 

9,12-
Octadecadienoic 

0.57 0.57 0.12 0.20 0.42 0.62 1.65 5.62 10.74 0.20 0.27 0.63 3.79 27.25 3.30 4.74 0.02 0.05 0.73 4.68 11.04 4.04 7.70 0.06 0.42 0.84 2.12 19.65 

9-Octadecenoic 2.62 2.14 0.02 0.97 2.83 3.81 5.57 2.93 3.17 0.23 0.92 1.24 5.28 7.41 7.73 1.82 6.27 6.70 7.02 7.81 10.82 5.11 5.08 1.15 1.64 2.83 7.40 13.68 

Octadecanoic 0.38 0.42 0.01 0.04 0.29 0.56 1.08 2.82 4.38 0.10 0.39 0.93 3.37 9.34 0.92 0.31 0.51 0.83 0.92 0.99 1.37 2.21 1.71 0.01 0.78 2.88 3.31 3.98 

nonadecanoic 1.61 2.35 0.00 0.08 0.15 3.39 4.83 0.06 0.06 0.01 0.02 0.04 0.09 0.16 0.16 0.11 0.01 0.09 0.18 0.22 0.28 0.26 0.43 0.03 0.07 0.11 0.13 1.15 

Eicosanoic 0.77 0.70 0.10 0.15 0.69 1.40 1.50 0.40 0.56 0.05 0.09 0.22 0.32 1.51 0.87 1.28 0.06 0.15 0.34 0.69 3.13 1.26 1.49 0.22 0.33 0.38 2.02 3.71 

Docosanoic 0.27 0.51 0.06 0.06 0.06 0.06 1.31 0.14 0.16 0.02 0.06 0.07 0.14 0.44 0.75 0.64 0.06 0.09 0.90 1.31 1.37 2.12 4.77 0.04 0.15 0.21 0.28 11.85 

tetracosanoic 0.06 0.04 0.00 0.02 0.07 0.08 0.10 0.10 0.04 0.06 0.08 0.09 0.13 0.15 0.05 0.03 0.03 0.04 0.06 0.06 0.09 0.12 0.04 0.08 0.09 0.11 0.13 0.18 

          

1-Monomyristin 1.00 0.62 0.55 0.58 0.70 1.26 2.06 0.82 0.32 0.52 0.62 0.73 0.91 1.41 1.03 0.92 0.32 0.46 0.71 1.09 2.59 1.20 0.28 0.81 1.13 1.18 1.22 1.70 

1-Monopalmitin 1.36 1.16 0.65 0.71 0.89 1.28 3.66 1.12 1.02 0.54 0.69 0.70 0.84 3.18 0.68 0.49 0.39 0.42 0.48 0.56 1.54 1.09 0.37 0.66 0.77 1.12 1.33 1.57 

1-Monoolein 1.14 0.73 0.56 0.81 0.85 1.12 2.58 1.47 0.46 1.08 1.21 1.33 1.52 2.35 1.23 0.50 0.48 0.49 1.05 1.43 1.52 1.10 0.35 0.71 0.79 1.12 1.31 1.58 

1-Monostearin 1.10 0.62 0.66 0.71 0.89 1.11 2.30 1.28 0.60 0.82 0.84 0.96 1.78 2.05 1.39 0.51 0.42 0.56 0.89 1.30 1.63 0.81 0.16 0.64 0.66 0.81 0.95 0.99 

                                                          

Levoglucosan 1.10 0.62 0.66 0.71 0.89 1.11 2.30 1.70 0.43 1.36 1.44 1.51 1.80 2.49 1.19 0.42 0.79 0.96 1.02 1.31 1.86 2.28 0.45 1.70 1.97 2.24 2.66 2.80 

Cholesterol 0.22 0.03 0.19 0.20 0.21 0.24 0.27 0.25 0.07 0.17 0.21 0.26 0.27 0.36 0.14 0.02 0.12 0.14 0.14 0.14 0.17 0.43 0.17 0.19 0.35 0.42 0.53 0.66 
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Figure 42  Concentration of sterol and glyceride emitted in real kitchen (µg/m3)  

 

 

 
Figure 43  Concentration of acids emitted in real kitchen (µg/m3)  

Analysis of compounds emitted from the different cooking styles in Table 43, where a 

Spearman’s rank correlation was run for the set of compounds against themselves across 

different cooking methods. Alkane compound concentration across all culinary techniques 

were well correlated with the highest correlation being between the African and western style 

as seen in Table 43A. Alkane compounds emitted from Chinese and Indian are significant but 

have the lowest correlation compared to the others with a value of 0.97. 
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In Table 43 B, acid concentrations were observed to show a different trend across the cooking 

methods with the highest correlation between African and Chinese cooking style with an rs 

value of 0.7 (p≤0.01). The lowest correlation was found between Indian and Western cooking 

(rs value of 0.41). 

Rs value of 0.912 for African and Western cooking shows that the two cooking methods 

emissions were highly correlated with Chinese and Indian cooking in the kitchen found to also 

have good correlation for PAH with an rs value of 0.8. African and Indian PAH concentrations 

were observed to have the least correlation across all styles of cooking with an rs value of 0.69. 

A correlation analysis of the cooking styles concentrations against the cooking profile 

concentrations obtained in chapter 3 are presented in Table 43(D), it was found that all the 

profiles are correlated with rs values of between 0.52 -0.6 for all cooking styles against their 

respective profile concentration with African, Chinese, Western and Indian style having rs 

values of 0.6, 0.52, 0.6 and 0.6 respectively.  

These show that the profiles and concentrations are correlated at 99% significance related but 

with rs value of 0.6 as such all have the chance of giving similar output when used in a CMB 

model. 

Table 43  Correlation analysis of compounds emitted in kitchen 

C. ALKANES 

 
Correlations 

 INDIAN WESTERN AFRICAN CHINESE 

Spearman's rho INDIAN 

Correlation Coefficient 1.000 1.000** 1.000** .979** 

Sig. (2-tailed) . . . .000 

N 12 12 12 12 
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WESTERN 

Correlation Coefficient 1.000** 1.000 1.000** .979** 

Sig. (2-tailed) . . . .000 

N 12 12 12 12 

AFRICAN 

Correlation Coefficient 1.000** 1.000** 1.000 .979** 

Sig. (2-tailed) . . . .000 

N 12 12 12 12 

CHINESE 

Correlation Coefficient .979** .979** .979** 1.000 

Sig. (2-tailed) .000 .000 .000 . 

N 12 12 12 12 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

D. ACIDS 

Correlations 

 INDIAN WESTERN AFRICAN CHINESE 

Spearman's rho 

INDIAN 

Correlation Coefficient 1.000 .407 .675** .644* 

Sig. (2-tailed) . .149 .008 .013 

N 14 14 14 14 

WESTERN 

Correlation Coefficient .407 1.000 .625* .529* 

Sig. (2-tailed) .149 . .013 .035 

N 14 16 15 16 

AFRICAN 

Correlation Coefficient .675** .625* 1.000 .854** 

Sig. (2-tailed) .008 .013 . .000 

N 14 15 15 15 

CHINESE 

Correlation Coefficient .644* .529* .854** 1.000 

Sig. (2-tailed) .013 .035 .000 . 

N 14 16 15 16 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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E. PAH 

Correlations 

 INDIAN WESTERN AFRICAN CHINESE 

Spearman's rho 

INDIAN 

Correlation Coefficient 1.000 .829** .687* .790** 

Sig. (2-tailed) . .003 .028 .007 

N 10 10 10 10 

WESTERN 

Correlation Coefficient .829** 1.000 .912** .863** 

Sig. (2-tailed) .003 . .000 .001 

N 10 10 10 10 

AFRICAN 

Correlation Coefficient .687* .912** 1.000 .867** 

Sig. (2-tailed) .028 .000 . .001 

N 10 10 10 10 

CHINESE 

Correlation Coefficient .790** .863** .867** 1.000 

Sig. (2-tailed) .007 .001 .001 . 

N 10 10 10 10 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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F. ALL COMPOUNDS AGAINST SOURCE  PROFILE CONCENTRATION  
 

 AFRICAN AFRIKIT INDIAN WESTERN CHINESE INDIANKIT WESTKIT CHIKIT 

Spearman's rho 

AFRICAN 

Correlation Coefficient 1.000 .557** .718** .579** .688** .450** .506** .520** 

Sig. (2-tailed) . .000 .000 .000 .000 .003 .000 .000 

N 44 43 44 44 44 42 44 44 

AFRIKIT 

Correlation Coefficient .557** 1.000 .618** .583** .653** .685** .678** .872** 

Sig. (2-tailed) .000 . .000 .000 .000 .000 .000 .000 

N 43 43 43 43 43 42 43 43 

INDIAN 

Correlation Coefficient .718** .618** 1.000 .734** .615** .551** .471** .649** 

Sig. (2-tailed) .000 .000 . .000 .000 .000 .001 .000 

N 44 43 44 44 44 42 44 44 

WESTERN 

Correlation Coefficient .579** .583** .734** 1.000 .740** .564** .520** .473** 

Sig. (2-tailed) .000 .000 .000 . .000 .000 .000 .001 

N 44 43 44 44 44 42 44 44 

CHINESE 

Correlation Coefficient .688** .653** .615** .740** 1.000 .534** .642** .587** 

Sig. (2-tailed) .000 .000 .000 .000 . .000 .000 .000 

N 44 43 44 44 44 42 44 44 

INDIANKIT 

Correlation Coefficient .450** .685** .551** .564** .534** 1.000 .545** .645** 

Sig. (2-tailed) .003 .000 .000 .000 .000 . .000 .000 

N 42 42 42 42 42 42 42 42 

WESTKIT 

Correlation Coefficient .506** .678** .471** .520** .642** .545** 1.000 .525** 

Sig. (2-tailed) .000 .000 .001 .000 .000 .000 . .000 

N 44 43 44 44 44 42 44 44 

CHIKIT 

Correlation Coefficient .520** .872** .649** .473** .587** .645** .525** 1.000 

Sig. (2-tailed) .000 .000 .000 .001 .000 .000 .000 . 

N 44 43 44 44 44 42 44 44 

**. Correlation is significant at the 0.01 level (2-tailed). 
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The correlation shows of that the compounds and profiles are well correlated with rs values of 

between 0.52 -0.6 for all cooking styles against their respective profile concentration with 

African, Chinese, Western and Indian style having rs values of 0.6, 0.52, 0.6 and 0.6 

respectively. These show that the profiles and concentrations are correlated at 99% significance 

related but with rs value of 0.6 as such all have the chance of giving similar output when used 

in a CMB model. 

Anova of the profiles showed that they are not significantly different with sig range-0.045-

0.07.  

 

4.4 Conclusion 

 

Cooking was carried out in a real kitchen located in a regular house.  The cooking was carried 

out without the use of an extractor fan and using gas as the energy source. Analysis of the filters 

that were collected after the sampling exercise higher gravimetric concentration during Chinese 

cooking consistent with findings in Chapter 3.  Higher concentrations were found for 9-

octadecenoic acid, levogluosan, tritricontane and dibenz{a,h}anthracene when the organic 

compounds collected on filters were analysed. This shows that these species could serve as 

good marker species for cooking. The analysis of samples collected from personal monitoring 

showed that the cook was exposed to higher concentration of PM on the days cooking of 

Chinese food was done. This further shows that Chinese cooking emits more organic matter 

than other cooking styles. 

 

 

 

 

 
 

 



 

190 
 

CHAPTER 5- Chemical mass balance model (CMB) modelling 
 

This chapter contains some sections of verbatim text adapted from the following review article 

published as part of this PhD: 

Abdullahi, L, Delgado Saborit, JM & Harrison, RM 2013, 'Emissions and indoor 

concentrations of particulate matter and its specific chemical components from cooking: A 

review' Atmospheric Environment, vol 71, pp. 260- 294. 

5.1 Introduction 

Information about certain sources of  PM2.5 have been found to be unavailable or weak such as 

solid fuel burning smoke (Harrison et al., 2012), cooking aerosol(Allan et al., 2010), abrasion 

particles from road vehicles (Thorpe and Harrison, 2008; Pant and Harrison, 2013) and 

secondary organic fractions(Yin et al., 2015).   

For better understanding of various emission sources and their potential to emit ambient PM, 

the Air Quality expert group has recommended further analysis of these sources(AQEG, 2012).  

The information would be useful to the government and will be able to better forecast and 

thereby effectively plan and control emissions from these sources.  

In previous studies, the source profiles generally used in CMB models include charbroiled meat 

cooking, gasoline vehicle emissions, diesel truck emissions and paved road dust (Hildemann 

et al., 1991a; Schauer et al., 1999a; Schauer et al., 1999b; Fraser et al., 2002) and for vegetative 

detritus and natural gas combustion (Rogge et al., 1993a; Rogge et al., 1993b). These profiles 

are mainly obtained from studies in the United States such as Texas and Los Angeles (Zheng 

et al., 2002; Fraser et al., 2003).  However, the use of source profiles from locations other than 

the area of study might introduce uncertainty in the apportionment of some source contributions 

(e.g. road dust; soil). 

 A review by Lin et al., 2010 has also identified the need for more specified organic compound 

markers for some PM sources such as non-meat cooking particle emissions, paved roads, 
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fugitive dust, biogenic, and agriculture emissions as well as a source contributions library for 

particular locations, for use in CMB models. 

Mass balance models that have been applied in indoor environments have usually taken into 

consideration various combustion related activities like home heating and cooking; and also 

activities such as cleaning and infiltration of outdoor air resulting in a contribution from 

outdoor sources (Millar et al., 2010). CMB analyses have made use of different combinations 

of source profiles for the estimation of the contribution of food cooking emissions to ambient 

particle concentrations. Several food cooking source profiles have been published (Rogge et 

al., 1991; Nolte et al., 1999; Schauer et al., 1999a; Rogge, 2000; Schauer and Cass, 2000; Chow 

et al., 2004; Robinson et al., 2006). These cooking profiles contain speciated organic data with 

a range of emission composition and rates mainly dependent on cooking technique and food 

type. The use of source profiles and fitting species require that the model must include all major 

sources and the species should be conserved during transport from source to receptor (Watson 

et al., 1998; Robinson et al., 2006). Organic molecular markers such as oleic acid, cholesterol 

and palmitic acids are used to estimate the contribution of food cooking emission to primary 

organic aerosol (Rogge et al., 1991; Schauer et al., 1999a; Robinson et al., 2006).   

Using the chemical mass balance model to apportion for the sources of PM2.5   in a city has 

been exemplified by Schauer et al. (1996). They found that the organic carbon mass 

contribution of PM due to meat cooking was about 23% in Los Angeles, which was comparable 

to findings by Hildemann et al. (1991b) and Rogge et al. (1991) in earlier studies. The CMB 

approach was also used to find that meat cooking contributed between 20% and 75% to ambient 

concentrations of four ring PAHs measured in residential areas (Venkataraman and 

Friedlander, 1994). 

Robinson et al. (2006) made use of the basic set of source classes and compounds developed 

by Schauer et al. (1996) and Schauer et al. (2000).  The CMB analysis included source profiles 
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of eight source classes: diesel vehicles, gasoline vehicles, road dust, biomass combustion, 

cooking emissions, coke production, vegetative detritus and cigarettes. However, Robinson et 

al. (2006) reported that a large systematic bias was generally observed in CMB models due to 

differences in species and source profile marker to organic carbon ratios. The ambient ratio of 

palmitic acid to oleic acid was higher than expected from other published literature, reflecting 

problems presented by source profile variability. This signified that the CMB could not fit both 

the acids simultaneously, even though ambient concentrations showed a strong correlation 

indicating they were from the same source. The use of the two alkanoic acids as fitting species 

in the model in addition to other cooking markers however provided a better model for source 

contribution estimates, further highlighting the importance of molecular markers in source 

apportionment analysis. The model apportioned 320 ± 140 ng /m3 (10% of the study average 

ambient organic carbon) to food cooking emissions. 

Several other studies have illustrated the importance that cooking is a source contributing to 

organic aerosol (Ham and Kleeman, 2011, Wang et al., 2009, Hildemann et al.,1991b and 

Rogge et al.,1991). The studies have also identified that in order to reduce particle pollution, 

especially in populated metropolitan areas, efforts should focus on controlling cooking as well 

as other particle sources such as traffic emissions. 

There has not been much analysis focused on the chemical characterization of PM from 

cooking in the UK with the only published receptor modelling studies using CMB  using non-

local source profiles(Yin et al., 2015, Yin et al., 2010).  

Therefore with the source profiles developed in Chapter 3 and sampling data obtained from 

sampling at Stratford Road Birmingham, model runs are made here to analyse the effectiveness 

of the profiles to apportion the various pollution sources at the sampling location. 
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5.2 Description of CMB model 

 Source apportionment is defined as a method used to quantify the contribution that different 

airborne particulate matter sources make to their concentrations at receptor locations in the 

atmosphere (Kleeman, 2003). Source apportionment models attempt to re-construct the 

impacts of emissions sources based on ambient data registered at monitoring sites (Hopke and 

Song, 1997, Viana et al., 2008and Watson et al., 2002).  There are three main methods of source 

apportionment which include the evaluation of monitoring data;  receptor modelling which is 

based on the statistical evaluation of PM chemical data acquired at receptor sites and emission 

inventories or dispersion models (Viana et al., 2008).  

 The monitoring data technique of source apportionment involves the basic numerical analysis 

of measured data and evaluating how concentrations vary with time, meteorology, pollution 

contribution source (Lenschow et al., 2001, Escudero et al., 2007). The use of emission 

inventories and dispersion models involves the simulation of   aerosol emission, formation, 

transport and deposition(Eldering and Cass, 1996). Receptor modelling on the other hand uses 

the principle that mass and species conservation can be assumed and a mass balance analysis 

can be used to characterise particulate air pollutant sources to quantify the contribution of each 

source to a particular pollutant (Hopke et al., 2006).    

The chemical composition at receptor sites and source emissions are what are used as 

information in receptor models to understand the observed ambient concentrations and 

apportion the mass to different emission sources (Henry et al., 1984; Gordon, 1988; Hopke, 

1991).  

Traditionally there are two main receptor model techniques, Chemical Mass Balance (CMB) 

(Schauer et al., 1996; Watson, 1984) and multivariate statistical methods such as PMF (Hopke, 

2003)(Viana et al., 2008). Other types of receptor models include Principal Component 

http://www.sciencedirect.com/science/article/pii/S0021850208001018#bib42
http://www.sciencedirect.com/science/article/pii/S0021850208001018#bib42
http://www.sciencedirect.com/science/article/pii/S0021850208001018#bib136
http://www.sciencedirect.com/science/article/pii/S0021850208001018#bib41
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Analysis (PCA), Multilinear Engine (ME), and UNMIX and hybrid models such as 

Constrained Physical Receptor Model (COPREM) (Watson et al., 2002; Viana et al., 2008).  

 

The common principles for the receptor models are:  

  assumption of constant source signature from the sources to the receptor, 

  the optimization of linear  combinations of different sources in order to 

minimize the difference between calculated values and experimental values. 

Generally CMB is used when the sources are clearly defined and quantified and PMF and 

UNMIX are used when the sources are unknown (Clarke et al., 2012, Lee et al., 2008). 

CMB uses measured fingerprints of source emissions (source profiles) to reconstruct 

atmospheric concentrations of chemical species (Friedlander,1973 and Yin et al., 2010).   The 

input for the model consists of source profiles for various primary pollution sources and 

ambient measurement concentrations with their uncertainty; the final output provides 

approximations of contribution of each source identified at the measured location to the total 

mass measured (Pant et al., 2014). 

The CMB model assumes that ambient concentrations are a linear sum of contributions of the 

known sources of pollution, as such source composition contributions for all contributing 

sources is essential to obtain relate the measured concentrations of compounds of the location 

(Pant and Harrison, 2012).  

This model requires chemical source profiles which describe the specific chemical composition 

of emitted particles as input in order to quantify those sources within the data and apportion for 

the sources in the atmosphere. Source profile and fitting specie selection for CMB analysis is 
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a sensitive process which requires careful consideration as the profiles must be adequately 

different for all the sources included in the model to ensure proper apportionment at the 

receptor.  The source emissions in the profile should not interact with each other during 

transport and also their chemical and physical properties should be practically constant during 

their transport from source to receptor (Chow and Watson, 2002). Some sources do not have 

existing source signatures or ones specific to the location being studied. In such cases profiles 

are borrowed from other cities with similar pollution sources, which may not represent the 

source of emissions in the sampling area of interest perfectly (Lee et al., 2008b; Pant and 

Harrison, 2012). Similarly when source profiles are too similar, the CMB model yields large 

uncertainties in source contributions (Chow and Watson, 2002). Generally the species used in 

most CMB models are from the source profiles available through the USEPA Speciate 

database. The source profiles consist of both organic and inorganic aerosol constituents 

(Schauer and Cass, 2000).   

Table 44 Comparison between CMB and multivariate models (extracted from Pant, 

2014)  

CMB Model Multivariate Models 

i] A key prerequisite is detailed information 

about the sources/emission inventories as 

well as source profiles  

[ii] Only one sample is required  

[iii] Does not apportion the secondary 

aerosols  

[iv] Cannot take into account the time 

variation of the pollutant concentration or 

source emission  

[v] Only non-reactive, stable tracer species 

can be used  

[vi] Near collinearity among source profiles 

can result in negative source contributions 

[i] Qualitative information about the 

potential sources is enough, useful for areas 

where detailed emission inventories are not 

available and source profiles are not required  

[ii] Require large numbers of samples  

[iii] Unable to account for spatial and 

temporal correlation between emissions (e.g. 

motor vehicle and road dust) or source 

identified may contain more than one source  

[iv] Often unable to produce a fine resolution 

of the sources  

[v] Some of the models allow negative 

contributions to sources which is physically 

impossible (e.g. PCA)  

[vi] Information like meteorological data, 

particle size etc can be incorporated in the 

analysis  
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Model output definitions (USEPA, 1997, Watson et al., 1998, Cooperenv, 2014)- 

This section includes technical descriptions of the model output definitions, and hence, the text 

is copied verbatim from the authors Watson et al., 1998 and Cooperenv, 2014 as well as from 

the report on “Chemical mass balance receptor model version 8(CMB8)” published by the 

USEPA (1997). 

Source Contribution Estimate- Contribution from the source type of the profile being used to 

the profile normalizing component. 

Standard Error – “The uncertainty of the source contribution estimate (SCE), expressed as one 

standard deviation of the most probable SCE. The STD ERR is obtained from the uncertainty 

estimates of the receptor data and source profiles through the effective variance least-squares 

calculations. STD ERR is dependent on the uncertainties of the input data and the degree of 

similarity of the source profiles used for the model run”.  

 CHI SQUARE is “the square root of the sum of the squares of the RATIO R/U that correspond 

to fitting species divided by the degree of freedom. The uncertainties of the calculated species 

concentrations affects its value. A large CHI SQUARE (>4.0) means that one or more of the 

calculated species concentrations differs from the measured concentrations by several 

uncertainty intervals”. 

 “R-SQUARE Variance in ambient species concentrations explained by the calculated species 

concentrations. A low R SQUARE indicates that the selected source profiles have not 

accounted for the variance in the selected receptor concentrations”.  

Percent Mass is “the sum of SCE divided by the total mass or concentration. A value 

approaching 100% is desired however a value near 100% can be an indication that there is a 

problem as a poor fit can force a high %MASS”.  
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5.3 Stratford Road concentration  

Restaurants near sampling site: 

Restaurants included a range of Italian, Chinese and Pakistani restaurants, with some-

sandwich, pizza and kebab shop; - Indian Balti restaurant and curry houses; Steak house and 

some bakeries. Some of the restaurant distances from the sampling point are listed below in 

Table 45 and shown in the map in Figure 44. There is a general mix of different types or 

restaurants near the monitoring site ranging from Indian, Chinese, kebab houses, bakeries, 

pizza shops as well as sandwich shops. From Table 45, it was observed that Caspian pizza and 

Subway were the nearest restaurants to the sampling site (10 meters) but Subway was found to 

be just a sandwich shop with no proper cooking taking place in the store. In Caspian pizza on 

the other hand, frying of meat and chips and baking of pizza were among the cooking practices 

found to be taking place in store. The other restaurants nearest to the monitoring site from the 

map in Figure 44 (about 150 meters radius) were mainly Indian restaurants with; Osmani, 

Junaids kebab, Shahi Nan kebab being the nearest restaurants. The various steak houses and 

kebab shops (chicken hut(150 meters away), Yaqubs steak house(128meters) would have a lot 

of frying and grilling of meat and chips among other cooking methods during the time of 

operation of the restaurants.  

From this analysis, it was observed that the predominant cooking style taking place in Stratford 

road area was the Indian and western style cooking (involving frying of chips, meat, chicken 

or fish). 

An analysis of the PM samples collected at the location went further to confirm and show that 

these were the main cooking methods used by neighbouring restaurants. 
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 Table 45  Restaurants and distance from sampling site at Stratford Road 

NAME TYPE DISTANCE(meters) 

Subway SANDWICH 10 

Caspian pizza PIZZA AND KEBAB 10 

Osmani INDIAN 73 

Junaid's Kebab House INDIAN KEBAB 78 

Shahi Nan Kebab INDIAN 105 

Babekhyber restaurant & takeaway AFGHAN, INDIAN 115 

Sher khan INDIAN 115 

The minar  INDIAN 115 

Yaqub contemporary steak house  PIZZA AND STEAK HOUSE 128 

Lahore Karachi Chinese  CHINESE AND PAKISTAN 138 

Khan saab kitchen INDIAN 148 

Chicken hut WESTERN 150 

Peri peri original  INDIAN 150 

Taste of Pakistan INDIAN 300 

Gateway to kyber  INDIAN 300 

Rangin –persian restaurant  PERSIAN 300 

Greggs bakery BAKERY 300 

Taste of Pakistan INDIAN 300 

Pasta di piazza la favourite  ITALIAN AND ASIAN  450 

Al frash INDIAN BALTI 450 

Shahabs INDIAN BALTI 450 

 

 

Map data © 2014: Google 

 

Figure 44  Map of Stratford Road showing restaurants and sample site. (Map data 2014: Google) 

Sampling site 
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A dichotomous Partisol 2025 sampler and a Digitel DHA-80 sampler were collocated at the 

monitoring site for the purpose of gravimetric determination of the PM2.5 mass concentration 

and organic analysis. The Stratford Road monitoring site is an urban roadside site, located on 

the kerb about 1meter of the road. The sampling interval was 24 hours daily from 12pm to 

12pm between the 9th and 19th of December, 2014 and 9th and 19th of January, 2015. The 

Partisol sampler was used to collect samples onto 47 mm PTFE filters used for gravimetric and 

metal analyses while the Digitel was used for collecting also 24 h fine particles on 150 mm 

diameter quartz fibre filters, which were analysed for organic molecular markers, total organic 

carbon (OC), elemental carbon (EC), 

The Partisol PTFE filters collected were conditioned and weighed in a controlled environment 

room (20 ± 2 ◦C and 35–45 % RH) before and after exposure to obtain the gravimetric mass of 

PM2.5. After gravimetric analysis, those samples were analysed for elements Fe, Si and Al using 

a Bruker S8 Tiger WD-XRF (X-ray Fluorescence Spectrometer) instrument. 

The Digitel PM2.5 samples on quartz filters were analysed for OC and EC by Sunset Laboratory 

thermal-optical OC / EC analyser and organic markers by GC-MS. 

From the sampling period, data from 13 days was used for the CMB model runs due to the 

availability of their subsequent element analysis data (the XRF Analysis was out sourced and 

was expensive so 13 days were choosen to represent the sampling campaign) an effort was 

made to represent and cover the sampling period . 

5.4 Organic compounds 

Concentrations of levoglucosan were between 9 to 65 ng m−3 with an average value of 22 ng 

m−3 for the sampling period at sampling site as shown in Table 46. It was observed that 

individual hopane concentrations were between 0.04 to 0.11 ng m−3  and PAH concentration 

were between 0.07 to 0.33 ng m−3, these concentrations were similar to measured concentration 
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at the UK West Midlands urban background monitoring site, EROS, (levoglucosan 9.2 ng m−3 

; hopanes: 0.08– 0.18 ng m−3 ; PAHs: 0.06–0.27 ng m−3 ) in 2007–2008(Yin et al., 2010). 

Higher levels were found in winter 2012 for levoglucosan (73.9 and 94.5 ng m−3 ), hopanes 

(0.25–0.50 and 0.079–0.36 ng m−3 ) and PAHs (0.10–0.67 and 0.044-0.51 ng m−3 ) in Southeast 

England North Kensington sites and Harwell (Yin et al., 2015) than during the present sampling 

campaign at Stratford Road. 

Alkane concentration in this study were between 0.23-0.37 ng m−3 which were low but similar 

to findings in 2012 in London (0.58–2.1 and 1.2–3.7 ng m−3 for NK and HAR). Alkane 

concentration were higher in winter periods in Birmingham 2008 at EROS (Elms road 

observatory site) (0.73–1.9 ng m−3 ) and CPSS (Churchill pumping station site) (0.47–1.7 ng 

m−3 ) (Harrison and Yin, 2010). 
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  09/12/2014 10/12/2014 11/12/2014 12/12/2014 13/12/2014 14/12/2014 15/12/2014 16/12/2014 17/12/2014 18/12/2014 09/01/2015 10/01/2015 11/01/2015 12/01/2015 13/01/2015 14/01/2015 15/01/2015 17/01/2015 18/01/2015 

Tetracosane 0.85 0.96 0.80 0.41 0.90 0.56 1.00 0.74 0.47 0.39 0.48 0.34 0.46 0.72 0.73 0.50 1.41 1.26 1.75 

Pentacosane 2.15 1.12 0.79 0.76 1.02 1.96 1.23 0.93 0.62 0.26 0.41 0.29 0.45 0.96 0.78 0.67 0.42 1.26 1.95 

Hexacosane 1.23 0.53 1.61 0.85 1.04 2.99 1.12 0.77 0.43 0.90 1.28 0.53 8.69 0.83 0.74 0.59 1.09 0.63 1.80 

Heptacosane 1.08 1.38 1.67 0.88 1.09 1.96 1.07 0.66 0.50 0.39 0.45 0.48 0.43 0.81 0.70 0.60 1.11 0.84 1.59 

Octacosane 1.43 1.37 1.50 0.70 0.68 4.06 0.80 0.48 0.47 0.52 0.48 0.53 0.53 0.63 0.56 0.53 1.85 0.64 1.22 

Nonacosane 1.90 1.44 1.93 0.83 0.91 2.48 0.95 0.63 0.65 0.63 0.66 0.95 0.63 0.80 0.73 0.74 1.21 0.81 1.07 

Triacontane 2.40 1.09 2.25 0.72 0.61 3.22 0.67 0.59 0.58 0.60 0.61 0.81 0.67 0.62 0.61 0.59 1.99 0.60 0.84 

Hentriacontane 2.63 1.40 2.02 0.64 0.76 2.17 0.86 0.65 0.63 0.64 0.71 0.68 0.61 0.75 0.70 0.70 1.93 0.75 0.99 

Dotriacontane 2.34 1.49 2.20 0.77 0.58 3.81 0.65 0.58 0.59 0.63 0.63 0.65 0.59 0.61 0.57 0.59 1.90 0.63 0.69 

Tritriacontane 3.39 2.36 2.82 0.75 0.73 3.65 0.86 0.69 0.70 0.76 0.80 0.92 0.68 0.72 0.67 0.68 2.33 0.73 0.75 

Tetratriacontane 0.19 0.16 0.21 0.14 0.14 0.19 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.22 0.14 0.14 

Pentatriacontane 3.50 1.55 1.11 0.67 0.59 3.74 0.58 0.59 0.55 0.65 0.59 0.75 0.58 0.55 0.53 0.51 2.82 0.55 0.58 

Levoglucosan 5.72 18.80 6.20 55.81 12.03 12.88 10.25 8.91 9.06 33.03 65.02 6.77 21.26 17.24 36.13 37.62 12.72 12.87 50.02 

Cholesterol 1.29 1.11 1.32 1.31 1.47 1.49 1.24 1.32 1.15 1.14 1.12 1.16 1.13 1.20 1.14 1.19 1.42 1.17 1.29 

17a(H)-22,29,30-
Trisnorhopane 0.14 0.14 0.23 0.18 0.18 0.13 0.17 0.15 0.12 0.13 0.14 0.13 0.13 0.17 0.14 0.13 0.26 0.16 0.22 

17b(H),21a(H)-30-
norhopane 0.15 0.16 0.24 0.29 0.22 0.16 0.29 0.19 0.16 0.16 0.16 0.13 0.14 0.25 0.20 0.22 0.45 0.23 0.40 

17a(H),21b(H)-
Hopane 0.28 0.21 0.42 0.37 0.30 0.20 0.26 0.20 0.18 0.14 0.17 0.16 0.17 0.32 0.27 0.25 1.33 0.23 0.44 

Picene 1.50 1.08 0.96 0.98 0.93 0.69 0.93 1.25 0.42 0.97 0.89 0.75 0.54 0.52 1.03 0.00 1.04 1.27 1.42 

Benzo[b]fluoranthene 0.71 0.82 0.55 0.89 1.49 0.26 1.24 1.33 0.41 1.01 0.95 0.60 1.29 0.39 0.97 0.00 0.85 0.96 0.77 

Benzo[k]fluoranthene 0.47 0.08 0.05 0.19 0.57 0.27 0.09 0.21 0.40 0.57 0.34 0.20 0.38 0.48 0.14 0.00 0.23 0.65 0.07 

Benzo[e]pyrene 0.46 1.20 0.00 0.45 0.44 0.03 1.97 0.86 0.37 0.34 0.04 0.02 0.46 1.43 0.12 0.00 0.03 0.66 2.30 

Indeno[123-
cd]pyrene 1.06 0.87 0.64 0.97 1.21 0.81 0.85 0.82 0.88 1.36 0.96 0.84 0.30 0.90 0.37 0.00 1.21 1.95 0.89 

Benzo[ghi]perylene 0.78 0.67 0.83 1.45 1.31 1.12 1.02 1.06 1.02 1.02 1.65 1.02 0.87 0.58 0.66 0.00 1.39 1.59 0.53 

Hexadecanoic 19.63   1.92 12.45 20.43 12.68 23.91   35.03 8.15   27.88 13.55 52.99 9.70 7.98 5.11   18.40 

9,12-
Octadecadienoic 0.58 0.30 0.11 0.22 0.14 0.20 0.51   0.83 0.35 0.20 0.19 0.28 3.65 0.33 0.31 0.15 0.07 0.54 

9-Octadecenoic 5.31       6.08           0.00 18.17     0.16 5.26 2.82     

Octadecanoic 10.67   1.43 6.50 7.90 7.45 19.23   19.29 9.38   24.15 1.42   0.85 6.85 4.07   12.73 

docosanoic 0.50 0.72 0.29 0.76 0.87 0.52 1.04 0.51 1.14 1.01 0.48 0.73 0.97 1.39 1.52 0.76 0.40 0.97 1.30 

tetracosanoic 0.40 1.34 0.57 1.16 1.33 1.15 1.74 1.29 2.17 1.50 1.22 1.47 1.67 1.81 2.23 1.66 0.52 1.20 1.79 

1-Monomyristin 17.09 8.03 3.43 2.88 7.52 9.58 5.11 33.25 6.67 4.22 4.31 11.58 3.17 7.04 2.90 9.26 9.46 7.64 2.91 
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Table 46  Daily concentration Statford road ng m−3

1-Monopalmitin 19.00 4.63 3.51 2.77 6.20 20.79 6.01 10.40 14.13 15.18 2.99 22.40 3.15 9.86 2.76 7.45 26.46 8.23 2.79 

1-Monoolein 18.78 3.17 5.43 3.13 4.92 28.39 7.55 67.47 12.69 9.10 3.23 24.02 3.33 6.54 3.13 8.01 14.18 21.31 3.16 

1-Monostearin 34.26 3.61 5.61 2.82 3.76 16.50 6.57 15.87 28.28 8.22 2.95 31.78 3.01 7.00 2.82 6.39 6.46 10.18 2.85 
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Figure 45  Stratford Road concentrations 

 

A significant fraction of PM2.5 atmospheric particles is characterized by carbonaceous content, 

about 21-78% of their mass (Na et al., 2004, Querol et al., 2004, Yu et al., 2004). 

Elemental carbon (EC) is produced from the burning of carbonaceous matter while Organic 

carbon (OC) may be emitted directly in the particulate phase or formed reactions in the 
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atmosphere (Jones and Harrison, 2005; Saylor et al., 2006). EC has been found to be a good 

indicator of  urban emissions from road transport (Gelencsér et al., 2007) 

Table 47 represents the data for the OC/EC analysis as well as the gravimetric PM2.5 

concentration for the sampling days at Stratford Road. It was observed that on some days the 

PM2.5 data obtained were unduly low and the error sources are not known for instance on 

15/01/2015. The data for these days have still been analysed in the CMB model and have no 

implication on the general model run as each day is analysed independently. 

 

 

Table 47  OC/EC and PM2.5  

  OC(ug/m3) EC(ug/m3) total  PM2.5 (gravimetric) EC/OC 

10/12/2014 1.6 0.9 2.5 6.6 0.6 

11/12/2014 1.6 1.1 2.7 9.0 0.6 

13/12/2014 3.4 1.6 5.0 7.6 0.5 

14/12/2014 1.4 0.9 2.3 7.0 0.6 

15/12/2014 2.9 2.0 4.9 7.5 0.7 

16/12/2014 1.7 1.1 2.8 8.9 0.7 

17/12/2014 1.7 1.2 2.9 7.0 0.7 

18/12/2014 1.4 0.8 2.2 5.3 0.6 

09/01/2015 1.2 0.4 1.6 3.5 0.3 

13/01/2015 3.6 1.6 5.3 4.7 0.4 

14/01/2015 2.3 1.2 3.4 7.9 0.5 

15/01/2015 4.7 1.3 6.0 7.0 0.3 

18/01/2015 3.6 2.4 5.9 8.0 0.7 
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Table 48  Source profiles 

  WEST ARF CHI IND   WEST ARF CHI IND 

EC 2.66E-03 1.21E-03 3.19E-03 3.79E-03 DODE 7.49E-03 3.06E-03 5.46E-03 9.45E-03 

ECU 1.00E-08 1.00E-08 1.00E-08 1.00E-08 DODEU 5.61E-03 2.51E-03 6.83E-03 3.18E-03 

LEVOG 1.17E-02 6.14E-03 5.25E-03 1.75E-02 NONDIA 2.28E-03 1.01E-02 2.18E-03 2.03E-03 

LEVOGU 6.26E-03 4.08E-03 2.67E-03 3.62E-03 NONDIAU 1.25E-03 1.33E-02 2.03E-03 1.96E-03 

CHOL 2.30E-03 1.17E-03 8.02E-04 2.47E-03 TRI 6.10E-03 3.65E-04 1.27E-04 1.53E-03 

CHOLU 3.18E-04 4.09E-02 2.37E-02 5.90E-02 TRIU 9.54E-03 3.12E-04 1.14E-04 8.46E-04 

PICENE 2.56E-03 1.09E-03 1.29E-03 2.27E-03 TETDE 9.69E-03 9.43E-04 1.61E-03 3.32E-03 

PICENEU 1.61E-03 1.26E-03 4.18E-04 2.72E-03 TETDEU 1.46E-02 1.16E-03 1.72E-03 2.43E-03 

BZBFLU 2.17E-03 6.29E-04 5.68E-04 8.90E-04 PENT 6.07E-03 2.81E-03 1.81E-03 7.90E-03 

BZBFLUU 1.46E-03 5.79E-04 2.62E-04 7.93E-04 PENTU 4.03E-03 2.40E-03 1.07E-03 3.71E-03 

BZKFLU 1.57E-04 2.48E-04 2.15E-04 5.25E-04 HEP 5.57E-04 2.32E-04 1.45E-04 1.85E-04 

BZKFLUU 6.82E-05 1.92E-04 3.08E-04 4.91E-04 HEPU 7.17E-04 1.89E-04 6.97E-05 6.10E-05 

BZEPYR 1.58E-04 4.02E-04 4.55E-04 1.43E-04 NONA 2.49E-04 1.75E-04 1.79E-04 2.88E-04 

BZEPYRU 3.08E-04 5.97E-04 4.65E-04 2.47E-04 NONAU 4.59E-05 1.06E-04 1.51E-04 2.29E-04 

INDPYR 1.98E-03 5.87E-04 5.68E-04 1.12E-03 EICO 2.09E-04 2.94E-04 4.13E-04 3.75E-04 

INDPYRU 1.49E-03 3.82E-04 1.91E-04 8.74E-04 EICOU 1.92E-04 3.59E-04 2.96E-04 1.85E-04 

BZGHPL 1.68E-03 4.95E-04 1.05E-03 1.24E-03 DOCO 6.01E-03 5.13E-04 4.70E-04 5.07E-03 

BZGHPLU 1.22E-03 3.58E-04 5.30E-04 1.04E-03 DOCOU 6.94E-03 5.40E-04 1.49E-04 5.53E-03 

PALMTA 1.70E-02 2.59E-02 1.40E-02 1.99E-02 TETCO 1.04E-03 4.10E-04 3.96E-04 8.35E-04 

PALMTAU 1.88E-02 3.77E-02 2.33E-02 3.92E-02 TETCOU 4.30E-04 2.19E-04 3.73E-05 2.56E-04 

LINOLA 1.32E-02 1.12E-02 2.75E-02 1.77E-02 MONMY 3.71E-02 6.10E-03 1.23E-02 1.59E-02 

LINOLAU 1.53E-02 1.47E-02 4.87E-02 2.35E-02 MONMYU 2.21E-02 5.79E-03 1.29E-02 9.00E-03 

OLA 2.75E-02 2.28E-02 2.27E-02 4.14E-02 MONPA 4.46E-02 4.71E-03 2.79E-02 1.24E-02 

OLAU 2.44E-02 3.03E-02 2.61E-02 4.03E-02 MONPAU 4.60E-02 3.69E-03 4.40E-02 7.02E-03 

STEARA 2.87E-03 9.70E-03 8.64E-03 6.91E-03 MONOL 4.42E-02 1.21E-02 2.42E-02 1.48E-02 

STEARAU 3.08E-03 7.35E-03 9.78E-03 7.57E-03 MONOLU 3.64E-02 1.38E-02 3.72E-02 1.07E-02 

UNDEC 2.30E-02 1.71E-03 1.35E-03 4.70E-03 MONSTE 2.31E-02 9.50E-03 1.51E-02 1.58E-02 

UNDECU 2.56E-02 1.26E-03 6.75E-04 5.17E-03 MONSTEU 5.10E-03 9.33E-03 1.71E-02 8.97E-03 

OCTA 1.28E-02 3.49E-03 5.37E-03 2.12E-03           

OCTAU 1.20E-02 5.52E-03 7.42E-03 1.39E-03           

5.5 Model results 

 

The CMB 8.2 model from USEPA was used for the estimation of source contribution to PM 

2.5.  The source profiles included in the model were; vegetative detritus (Rogge et al., 1993a), 

natural gas combustion (Rogge et al., 1993b), wood smoke/biomass burning (Fine et al., 2004; 

Sheesley et al., 2007), dust/soil (Sheesley et al., 2007), coal combustion (Zhang et al., 2008). 

A single traffic source profile was used for the model run, which was generated from a twin 

site measurement from London by Pant et al.,(2014) as it provided a better representation of 

the UK fleet and the older source profiles tended to overestimate the emissions from traffic 

(Yin et al., 2010; Pant et al., 2014).  The source profile obtained from this study has been used 
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for the CMB modelling in order to obtain a better estimate and apportionment of the cooking 

profiles. As four different profiles have been obtained which represent different cooking styles 

and methods, the idea was to see how the model output would differ for the different cooking 

profiles. 

The fitting species used in the model for this study included elemental carbon, silicon, 

aluminium, levoglucosan, C25-C35 alkanes, 17a(H)- 22,29,30-trinorhopane, 17a(H)-21b(H)-

hopane, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, indeno(1,2,3-cd) 

pyrene, benzo(ghi)perylene, picene, n-hexadecanoic acid, n-octadecanoic acid, 9-octadecenoic 

acid, 9,12-octadecadienoic acid, 1-Monopalmitin,1-Monostearin, 1-Monomyristin and 1-

Monoolein .  

The model run output was evaluated using certain parameters which include, goodness- of fit 

parameters- r2 and chi2 with acceptance of an r2 value between 0.8-1.0 and a chi-square value 

less than 4. Profiles with a negative source contribution were removed from subsequent runs, 

also the ratio of the source contribution estimate and standard error ( tstat ) a value below 1 

indicates the source is not significant and is below detection limit Species selected for use in 

the model included those with calculated and measured concentration ratio(C/M) between 

0.75-1.5, species with ratio of signed difference between calculated and measured 

concentration R/U ratio  between -2- +2. The markers for the different sources were monitored 

to identify the influential species for each source type and cross-validated with published 

marker data using the MPIN matrix (modified pseudo inverse normalized) matrix in the CMB 

model runs output. The influential species have values between 0.5 to 1in the MPIN 

matrix.(USEPA, 1997). 
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Table 49  Key markers used for the sources (based on MPIN matrix) 

Source  Key Marker (value of 1.00)   

Wood Smoke Levoglucosan 

Road dust Si 

Traffic Benzo(ghi)perylene/ EC/Hopanes 

Cooking Cholesterol 

 

Table 50 Source contribution estimate for average concentration at Stratford road 

(µg/m3). 

A. SCE PM2.5 

  SCE PM2.5 

  Woodsmoke DIRT/soil TRAFFIC COOK 

WEST  0.17 0.15 0.55 0.10 

INDIAN 0.16 0.15 0.55 0.10 

CHINESE 0.17 0.15 0.55 0.10 

AFRICAN 0.17 0.15 0.55 0.10 

 

B. SCE OC 

  SCE OC 

  Woodsmoke DIRT/soil TRAFFIC COOK 

WEST  0.14 0.20 0.33 0.13 

INDIAN 0.14 0.20 0.33 0.12 

CHINESE 0.15 0.20 0.33 0.13 

AFRICAN 0.14 0.20 0.33 0.12 

 

 

 

 

 



 

208 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

WEST INDIAN CHINESE AFRICAN

SC
E 

o
f 

O
C

(u
g/

m
3

)

COOKING PROFILE PROFILE USED

Source contribution estimate (average 
concentration of sampling period 

COOK

TRAFFIC

DIRT/soil

woodsmk

 

Figure 46  Average source contribution for average sampling period at Stratford road 
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Figure 47  Average source contribution for average sampling period at Stratford road with other sources  
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Figure 48  Source contribution using western cooking profile 

 

Figure 49 Source contribution using Indian cooking profile 
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Figure 50 Source contribution using Chinese cooking profile 

 

Figure 51  Source contribution using African cooking profile 
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WEIGHT PERCENT APPORTIONED BY MODEL 

Table 51 Percentage mass of organic carbon apportioned by CMB 

   % MASS  

DATE WEST  INDIAN CHINESE AFRICAN 

1012 42 39.6   43.7 

1112 42.5 39   43.3 

1312 24.6 22.9 23.5 25.3 

1412 48.6 49.5 51.2 69.2 

1512 28.6 27.2 27.9 30.3 

1612 42.5 51.9 51   

1712 49.4 50.3 51 63.2 

1812 53.2 51.8 53.7 59.8 

901 78.7 75.4   80 

1301 25.3 24   25.5 

1401 37 35.4 35.7 39.6 

1501 16.7 16.4 16.4 16.5 

1801 44.4 44.6 44.8 44.6 

                  average   34.8 34.3 34.9 34.8 

 
Table 52  Daily percent of OC apportioned to source using the various cooking profiles 

 
 
 
Table 53  Daily percent apportioned to source using the various cooking profiles (from 

average concentration) 

  Percentage 

  Woodsmoke DIRT/soil TRAFFIC COOK 

WEST  17 24 44 16 

INDIAN 17 24 45 15 

CHINESE 18 24 44 15 

AFRICAN 17 24 44 15 

DATE woodsmk DIRT/soil TRAFFIC COOK woodsmk DIRT/soil TRAFFIC COOK woodsmk DIRT/soil TRAFFIC COOK woodsmk DIRT/soil TRAFFIC COOK

1012 18 24 39 19 19 26 44 11 18 25 41 16

1112 5 30 45 20 5 33 50 11 5 30 46 19

1312 9 25 47 19 10 27 51 12 9 28 52 11 8 26 48 17

1412 7 18 29 46 11 24 39 26 10 25 40 25 11 25 41 23

1512 7 18 56 19 8 19 61 12 8 20 62 10 7 19 59 15

1612 6 23 38 34 2 22 37 38 7 27 45 21

1712 4 31 32 33 7 38 39 16 5 38 40 17 6 39 40 14

1812 26 19 31 24 30 21 34 15 30 22 36 13 29 21 35 15

901 46 26 16 13 48 27 17 8 46 26 16 12

1301 27 16 45 12 28 17 48 7 26 16 46 12

1401 27 16 37 19 31 18 41 10 30 18 41 10 29 17 40 14

1501 11 27 46 17 11 27 46 16 9 27 46 17 10 26 46 18

1801 29 14 45 11 29 14 45 11 29 15 46 11 28 14 44 14

CHINESE PROFILE- percentage INDIAN PROFILE- percentage WESTERN PROFILE- percentageAFRICAN PROFILE- percentage
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5.6 Discussion and analysis of model runs 

Four  primary pollution sources were apportioned using the average concentration data at 

Stratford Road that contribute on average 38 % of the particulate organic carbon including 

traffic, wood smoke burning, food cooking and road dust/soil (model output). The range of 

total particulate organic matter between the various days was between 17% and 80% as seen 

in Table 53. 

 Table 53 represents the percentage of the various contributing sources attributed to the average 

PM2.5 concentration of samples collected during the sampling period, run on the model using 

the various source profiles (the 4 profiles Indian, Western, Chinese and African). For the 

average concentration, vehicle exhaust and wood smoke emissions contributed about 45% and 

17 % of organic carbon at Stratford Road with food cooking contributing 16% of the organic 

carbon apportioned. It is observed from this table that across the average, all profiles give 

similar estimates for estimation of the various sources for instance all attribute 24% to dirt and 

soil and also 17% to wood smoke. 

A closer look at Table 52 shows that on different days there are slight variations in the model 

outputs on different days when different profiles are used though generally there trends are 

quite similar. For instance on the 17th of December 2014 cooking was estimated to attribute 33, 

16,17 and 14% using the African , Chinese, Indian and Western cooking profile respectively 

as input in the model run. 

The model input included the different range of cooking profile which included Indian, African, 

Chinese and Western profiles with a general observation of similar apportionment 

concentrations across the various sources being consistent between runs for the different 

cooking profiles. 
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On average a larger contribution of organic carbon was accounted for when the African 

cooking profile was used, with the Chinese and Indian profile providing similar organic carbon 

contribution through the sampling period. The source contribution estimates from the various 

pollution sources were 0.35 µg m−3 for traffic, 0.1 µg m−3 for food cooking, 0.15 µg m−3 for 

wood smoke and 0.2µgm-3 for dust and soil as shown in Table 50. Figure 47 shows other which 

accounts for other sources of PM which include secondary organic carbon.  

Results of the model runs using the various profiles are shown in Figure 48, Figure 49,Figure 

50 and Figure 51. From these it is observed that Indian and Chinese profiles apportioned a 

higher concentration of OC to cooking on the 16th of December, and it is observed that the 

African profile leads to a general over estimation of apportionment from cooking compared to 

all other profiles used. Traffic apportionment was found to be highest across all profiles on the 

15th of December 2014 and 13th of January 2015. On the 9th of January it was observed that a 

higher proportion of OC was apportioned to wood smoke as compared to all other days. 

On the days there are not data plots the model found colinearity among two or more of the 

fitting species as such model wouldn’t run. This was mainly observed for Chinese and African 

profiles. 

Generally when analyzing all the data and the chi square and r square values in Table 54, the 

Indian profile show as the best fit for the model runs. The profiles that have best fits are the 

Indian and Western cooking style profile as observed in Figure 48 to Figure 51. They are also 

able to run well on all the days as against the African and Chinese profiles. In chapter 3 a good 

correlation was observed between Indian and Western profiles and it is interesting to observe 

that these are the profiles that provide consistent results and that give the best fit compared to 

the other cooking profiles. Generally the amount estimated for the various sources does not 

vary much among the different profiles but the performance across the various options is clear. 
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This consistent result could be due to the fact that generally the profiles have similar marker 

compositions and are found to correlate. Also Stratford road has been shown to be located near 

mainly Indian and Western restaurants as such the predominant profiles would be those with 

the most similar composition. 

The MPIN matrix was consistent for the different profiles with cholesterol being the species 

the model used to apportion for cooking Table 49. 

On the days of sampling the model has estimated in Table 50 that about 0.16 µg/m3 of PM2.5 

was from wood smoke, while 0.15 µg/m3, 0.55µg/m3 and 0.1 µg/m3 were from soil and debris, 

traffic and cooking respectively. Figure 47 shows the plot of total PM2.5 with the blue section 

signifying the composition of OC which has not been apportioned by the model and a large 

amount of it is assumed to consist of secondary organic carbon. 

An analysis of previous studies provides insight to the data of the CMB.  In Berlin using PMF, 

similar source contributions to OC were observed during the winter months (6.3–32.2 %) as 

observed at Stratford Road. Other previous studies had found fine particulate matter (PM 2.5) 

comprised of organic matter with concentration of around 25–31 % in the UK West Midlands 

(Harrison et al., 2004), 21–33 % in Ireland (Yin et al., 2005), 27–47 % in Australia (Chan et 

al., 1997), 38–47 % in France (Bressi et al., 2013) at sites within and outside Europe, and 50 

% in Michigan, USA (Pancras et al., 2013). 

Yin et al. analysed two sites in Birmingham in 2010 and identified primary sources found to 

contribute about 56–85 % on average to fine-particulate organic carbon which included wood 

smoke, vegetative detritus, natural gas combustion, coal combustion vehicular emissions 

(diesel engines, gasoline engines, smoking engines), and road dust/soil. The emissions from 

vehicle exhaust was found to contribute about 57 % of the fine OC, 14 % attributed to other 

known sources and about 34 % linked to unexplained OC (secondary organic compounds). 



 

215 
 

They further carried out a study in Southeast England at urban background and rural sites in 

order to obtain updated and extended information. The samples were analysed with additional 

markers for food cooking and secondary biogenic aerosols allowing for estimation of the 

concentration from these additional sources. The CMB model apportioned seven primary 

sources which explained 53 % and 56 % of the organic carbon (OC) at the urban background 

and rural sites. The sources apportioned were traffic, wood smoke, food cooking, coal 

combustion, vegetative detritus, natural gas and dust/soil, when the  source tracers for 

secondary biogenic aerosol was added to the model run a higher proportion  of organic carbon 

was accounted (79 %)(Yin et al., 2015). A good mass closure was observed by Yin et al as they 

included data for inorganic salts, secondary biogenics and sea salt with 81 % (92 % with the 

addition of the secondary biogenic source) at the urban background site. Vehicle exhaust was 

found to be 21 % of the OC and wood smoke 15 %) with food cooking emissions 11 % of OC 

apportioned. This was similar to the output from the CMB runs using the cooking profiles as 

observed in Table 53 however the cooking percentage apportioned to cooking was slightly 

higher (16%) when the new cooking profiles are used. 

At a heavily polluted urban site in central California, molecular marker CMB was carried out 

on ultrafine airborne particulate matter. Meat cooking was identified to account for 33-67% of 

the PM0.1 at the urban site compared to diesel engines which accounted for 15-21%. At a rural 

site meat cooking contributed 22-26% of the PM0.1 OC, and diesel engines accounted for 8-9% 

(Ham and Kleeman, 2011). As regards the organic carbon of the larger PM1.8 particles, meat 

cooking contributed less to the PM at the rural site than diesel engines; while at the urban site 

the contribution from meat was still higher than from diesel engines. Lower OC contributions 

were estimated compared to the measured concentrations, which implies an unidentified 

contribution of either secondary organic aerosol (SOA) or oxidized primary organic aerosol 
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(POA). They estimated that meat cooking led to 0.01-0.025 µg/m3 of PM0.1 (Ham and Kleeman, 

2011). In the present study 0.1 µg/m3 of PM2.5 is estimated to be from cooking. 

In the south-eastern United States, particle phase organic compounds were used in a CMB 

model and the results indicated that wood smoke, meat cooking and gasoline powered motor 

vehicles contributed to PM2.5 organic carbon concentrations in the range of 25-66%, 5-12% 

and 0-10% respectively, with minor contributions from paved road dust and vegetative debris 

(Zheng et al., 2002). Between 2003 and 2004, Zheng et al. (2002) sampled again four sites of 

the Carbonaceous Aerosol Characterization Experiment (CACHE) and used CMB and carbon 

isotope analysis to further understand variability of organic components and source 

contributions to fine organic carbon and PM2.5 in the south-eastern United States. Meat cooking 

was again identified as a primary emission source of OC along with eight other sources 

including wood combustion (which was the most dominant source, 14-23%), gasoline engine 

exhaust, diesel engine exhaust, vegetative debris, cigarette smoke, road dust and natural gas 

exhaust (Zheng et al., 2006).  

Meat cooking operations were also identified as one of the sources of ambient fine particulate 

matter in Houston Texas with a contribution of between 0.9-1.3 µg/m3 at urban sites and 0.7 

µg/m3 at a background sites (Fraser et al., 2003). This is much higher than the 0.1 µg/m3 

obtained from this study but it is good to note that the profile used was from meat cooking and  

so the profile was quite different to the ones generated (the new profiles were chosen to 

replicate real cooking with common food choice)  

CMB analysis of organic molecular marker data in Pittsburgh Pennsylvania also identified 

cooking as an anthropogenic source of organic aerosol and PM2.5  and found that secondary 

organic aerosols were actually the major components of organic carbon (OC) in Pittsburgh in 
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all seasons, whilst primary sources affected ambient concentrations only occasionally 

(Subramanian et al., 2007).  

In Atlanta meat cooking was among the major contributors of fine OC identified with a range 

of 7-68% (average 36%) in summer periods and 1-14% (average 5%) during the winter months. 

Gasoline and diesel exhaust contributed 21% and 20% respectively to OC during the summer 

and 33% to 4% during the winter, with wood combustion being an additional source during 

that period contributing an average of 50% of OC probably due to use of wood for heating of 

houses in winter and the festive period.  

Lee et al. (2008a) used CMB and UNIMIX receptor models to apportion sources of PM2.5 

aerosols collected between March 2001 and February 2001 in Korea. The CMB results 

identified diesel vehicle exhaust as the major contributor to PM (33%), with meat cooking 

contributing 12% of the PM2.5 mass measured. Other sources identified were secondary 

sulphate (15%), secondary organic carbon (9%), urban dust, Asian dust, biomass burning, sea 

salt, residual oil combustion, gasoline vehicle exhaust, automobile lead and unknown 

components (Lee et al., 2008a). The UNIMIX on the other hand only identified seven PM2.5 

sources and apportioned 30% of the mass to diesel vehicles, 17% to secondary sulphate, 15% 

from biomass burning, secondary nitrate (13%), gasoline vehicle, secondary organic carbon 

and Asian dust, but not cooking sources. In Beijing (China), cooking was among the seven 

emission sources of particulate organic matter identified (Wang et al., 2009). Like other studies, 

the other sources included gasoline /diesel vehicles and vegetative burning in addition to coal 

burning in this case. The CMB model established that contribution from cooking was actually 

higher during the summer, whilst the biomass burning contribution was the highest during the 

winter (Wang et al., 2009). 
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An analysis of all the previous studies provide an insight that the profiles generated provide 

consistent result with food cooking found to contribute about 16% of PM2.5 concentrations. 

Harrad et al (2003) have used carbon preference indices (CPI) values as useful indicators of 

the relative contributions to atmospheric concentrations of n-alkanes, n-alkanoic acids, and n-

alkanols arising from fossil fuel (e.g. traffic) and biogenic emissions (Harrad et al 2003). For n-

alkanes, CPI values are expressed as the ratio of the sum of odd carbon number n-alkanes to 

the sum of even carbon number n-alkanes. Conversely, for n-alkanols and n-alkanoic acids, 

CPI values are the ratio of the sum of even carbon number compounds to the sum of odd carbon 

number compounds.  

The CPI value for alkanes for the sampling period of this study (winter) at Stratford road was 

1.44 (C25-C35). Harrrad et al 2003 had CPI values of 1.4 (site a- busy road) and 1.24  (site B-

background site)  during  autumn and winter period (choosen period similar to present study). 

The CPI values calculated by their study was for C21-C34. The CPI VALUS FOR  lkanoic 

acid obtained from Stratford road was 2.2 (even carbon nmbr compounds to odd carbon number 

compounds).  Previous study by Harrad et al had vaues of 3.07 and 3.16 at sites A and B 

respectively. The values obtained at this study are   similar to figures gotten at site A which is 

similar site to  stratford road site with  traffic being a contributing source (petrogenic source) .
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Table 54   R2 and chi 2 values for various CMB model runs. 

C. Value for daily CMB runs 

 

D. Average value for all the days run on the model against cooking profile used. 

  Average for all the model runs 

COOKING PROFILE NAME     WEST  INDIAN CHINESE AFRICAN 

 R SQUARE  0.8 0.8 0.8 0.8 

 CHI SQUARE  0.1 0.1 0.1 0.1 

DATE

NAME    WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN

 R SQUARE 0.82 0.82 0.82 0.71 0.71 0.71 0.74 0.73 0.73 0.73 0.78 0.77 0.77 0.77 0.67 0.67 0.67 0.67 0.73 0.72 0.72

 CHI SQUARE 0.07 0.08 0.09 0.08 0.08 0.09 0.1 0.1 0.09 0.11 0.08 0.08 0.07 0.09 0.12 0.12 0.11 0.13 0.09 0.09 0.08

DATE

NAME    WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN

 R SQUARE 0.74 0.74 0.74 0.73 0.88 0.88 0.88 0.88 0.94 0.94 0.94 0.84 0.84 0.84 0.86 0.86 0.86 0.86 0.76 0.75 0.75 0.75

 CHI SQUARE 0.08 0.08 0.08 0.09 0.08 0.07 0.07 0.08 0.05 0.05 0.05 0.12 0.11 0.12 0.1 0.09 0.1 0.1 0.09 0.09 0.09 0.09

DATE

NAME    WEST INDIAN CHINESE AFRICAN WEST INDIAN CHINESE AFRICAN

 R SQUARE 0.87 0.87 0.87 0.87 0.83 0.83 0.82 0.82

 CHI SQUARE 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.09

1612

1501

1512

1712 1812 901 1301 1401

1012 1112 1312 1412

1801 average 
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5.7 CONCLUSION 

Co-linearity between the profiles obtained was found such that each was used in a separate run 

of the model, rather than attempting to include more than one at a time. The population of the 

area was found to be culturally diverse, with a substantial community with ethnic origins in the 

Indian sub-continent.  It may also be seen from Figure 44 that the restaurants in the locality 

serve a variety of cuisine, with Indian restaurants being the most common.   

Concentrations of organic carbon were apportioned in the model, with four primary sources 

showing a good fit:  woodsmoke, dirt/soil, traffic and cooking aerosol.  The criterion used for 

model fitting were the chi-squared and r2 values, the ratio of the source contribution and 

standard error (tstat), and the ratio of calculated to measured concentration.  The contributions 

of the four sources according to the cooking style used in the model appear in and show little 

sensitivity to the input source profile for cooking.  There is a large unaccounted mass of OC, 

labelled in the figure as “other”, which we believe is comprised mainly of secondary organic 

carbon, which is known to make a substantial contribution to OC at UK sites (Harrison and 

Yin, 2008;Yin et al., 2010;  Pio et al., 2011). 

Average values of chi -squared and r2 for the model fits appear in Table 54, and show no 

significant difference for the compositional profiles tested.  Examination of results for 

individual days showed differences not only between the day-to-day apportionment to sources 

but also the source contribution estimates obtained when using different source profiles for 

cooking.  However, variations in the model fit as revealed by chi -squared and r2 values within 

a day according to source profile were fairly minor Table 54.  The day with greatest variation 

showed a range of r2 for the different cooking styles of 0.01, whereas the variation between 

days (of 0.67 to 0.94) was far greater.  Similarly there was more day-to-day variation in chi -

squared than in the within-day values for cooking styles. 
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The measured concentration for PM2.5 on the days of sampling averaged 6.9  1.6 (s.d.) µg m-

3 as shown in Table 47.  This was a period of unusually clean air for the time of year.  The 

annual mean for the nearest AURN (national network) station of Acocks Green for PM2.5 was 

12 µg m-3 in 2014 and 9 µg m-3 in 2015.  The mean concentration of organic carbon apportioned 

to cooking aerosol was 0.12 µg m-3 (using the Indian and African cooking source profiles) and 

0.13 µg m-3 (from the Western and Chinese profiles).  This converts to 0.21-0.23 µg m-3 organic 

matter, equivalent to the mass of cooking aerosol particles, contributing 3.0-3.3% of PM2.5 

mass.  This figure compares with a mean mass concentration of OC of 0.39 µg m-3, equivalent 

to 0.69 µg m-3 of cooking aerosol, comprising 4.4% of PM2.5 measured at North Kensington, 

London by Yin et al. (2015) using a CMB model.  The Stratford Road, Birmingham samples 

showed an average contribution from road traffic of 0.37 µg m-3 to OC concentrations, 

equivalent to 0.64 µg m-3 (9.3%) of PM2.5.  This compares with 0.73 µg m-3 of OC, equivalent 

to 1.26 µg m-3 (8.0%) of PM2.5 at London, North Kensington.  These results thus appear very 

consistent when allowing for the relatively clean air period which was sampled at Stratford 

Road, Birmingham. 

 

AMS measurements of cooking aerosol have been used by Ots et al. (2016) to estimate a source 

strength, from which concentrations across the UK have been modelled.  Their model predicts 

a mean concentration of COA in 2012 of 0.5 µg m-3 for the model grid cell showing highest 

concentration ( Abdullahi et al, 2017).  The annual mean PM2.5 at Birmingham, Acocks Green 

in 2012 was 11 µg m-3.  If the cooking aerosol estimated for Stratford Road by CMB is scaled 

by 11/6.9 to make it equivalent to mean annual conditions for 2012, the concentration is 0.35 

µg m-3 (taking the mean from all cooking styles).  Given the results of comparison of AMS and 

CMB by Yin et al. (2105) and the possible over-estimation of COA by AMS by a factor of up 
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to two, discussed in detail by Ots et al. (2016), the scaled concentration of 0.35 µg m-3 compares 

well with the model estimate of 0.5 µg m-3 ( Abdullahi et al, 2017).   

Generally the analysis and the comparison of data obtained from this study with earlier 

measurements from London (Yin et al., 2015) and with the model results of Ots et al. (2016) 

show a strong consistency ( Abdullahi et al, 2017).   This suggests that in recent years in major 

UK cities, cooking aerosol represents about 3-4% of measured PM2.5.  The comparison with 

the numerical model results of Ots et al. (2016) is again suggestive of an over-estimation of 

COA by the AMS-PMF technique relative to the CMB model results. 

The main objective of this section was to compare the estimates of cooking aerosol from the 

CMB model using source profiles typical of our different cooking styles: Indian, Chinese, 

Western and African.  Despite some differences in the profiles, the CMB model results from 

each profile are very similar.  This may be because in a multi-ethnic cosmopolitan city such as 

Birmingham no one cooking style is dominant, or because there is sufficient colinearity in the 

profiles that each leads to a similar estimate, whatever the predominant source of the cooking.  

The evidence from a survey of local restaurants is that they cater for a very wide range of 

cuisine, which seems likely to be a dominant factor in this case. 
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CHAPTER 6 Conclusion Recommendation and future directions. 
 

 

This thesis presents results of characterisation of PM emissions from cooking with different 

culinary methods which included Indian, African, Chinese and western style of cooking. 

During this study rice chicken and potatoes were the major ingredients used as they were found 

to be the staple food of the large diverse population located in the study area, Birmingham. 

Measurements were taken in a controlled environment where no other particulate matter source 

was present. A kitchen was designed in a trailer located on the University of Birmingham 

campus where cooking experiments were conducted and particulate matter samples were 

collected on filters which were placed in the duct of the fume extractor system located above 

the location where the cooking exercise were taking place. The main food ingredient cooked 

were similar for all the cooking styles (rice and chicken) with the main difference across the 

various cooking methods being the methods used to cook as well as ingredients used in the 

preparation such as spices, oils, peppers.  

 It was generally observed that the Chinese style of cooking had the highest concentration of 

PM emissions and this was attributed to the stir frying of ingredients involved in the cooking 

method. The general order observed for concentration of PM generated from cooking was 

Chinese, Western, Indian and African and by cooking method, it was found that stir frying 

generated most particles followed by deep frying and finally stewing (Indian and African 

cooking was mainly done with a small amount of frying and boiling of the tomatoes used for 

the Tikka masala and chicken tomatoe stew). The compounds mainly generated from cooking 

were the glycerides with African cooking emitting the least concentration of these species 

compared to other culinary methods. 
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Higher concentrations of heptacosane were observed at the cooking source for Indian cooking 

with low concentration of tetratriacontane 2.71 µg/m3 and 0.18 µg/m3 respectively which was 

the trend observed for all the cooking types with African generally emitting less concentrations 

(heptacosane 0.41 µg/m3 and tetratriacotane 0.07 µg/m3), highest concentrations were observed 

in Indian cooking followed by western style cooking then Chinese cooking. A very high 

concentration of 2.88µg/m3 was observed for tritriacotane in Chinese cooking, with Indian 

African and Western style cooking emitting f0.89 µg/m3,0.4 µg/m3,1.11 µg/m3 of the same 

alkane. This was similar to what was observed in previous studies where the distribution of n-

alkanes emitted from Chinese restaurants were generally observed to be substantially different 

from the distribution from meat cooking (Rogge et al., 1991; Schauer et al., 1999a; He et al., 

2004b) and similar to alkane patterns from frying vegetables in seed oils (Schauer et al., 1999a; 

Schauer et al., 2002). Emission of n-alkanes from cooking consisted of a negligible fraction of 

the total quantified organic mass emitted and was dependent on the cooking conditions (Rogge 

et al., 1991; He at al., 2004b).  Hildemann et al., (1991a) reported that the n-alkane 

concentration release rate increased from frying to charbroiling of meat with extra lean meat 

releasing less compounds than regular meat (Hildemann et al., 1991a). This was similar to 

observations by Rogge et al., (1991), where charbroiling was found to produce three times the 

mass of n-alkanes than frying of meat (16 mg/kg of charbroiling meat as against 5.5 mg/kg of 

frying meat). Rogge et al. (1991) also observed that charbroiling regular meat released four 

times the mass compared to extra lean meat (thus affected by fat content of meat). In this study 

the n alkane concentration for Indian and African cooking are found to be a more significant 

fraction of the total organic mass as seen in Table 25.  

Similar to previous studies by Zhao et al in 2007 where Western style fast food cooking had 

been observed to emit double the concentration of n-alkanes per mg particulate organic matter 

(POM) compared to Chinese cooking, concentration of alkanes is less in Chinese style cooking 
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in this study. The n-alkanes have a Cmax at Pentacosane(C25) for western fast food (Zhao et 

al., 2007a) and meat cooking (Rogge et al., 1991). Chinese cooking exhibits a Cmax at 

Nonacosane or Hentriacontane (C29 or C31) taken as an indication of the presence of 

vegetables during cooking operations. In this study Indian cooking had a Cmax at 

Heptacosane(C27), Western at Hexacosane(C26), African at Nonacosane(C29) and Chinese at 

Tritriacotane(C33). 

Another trend that was observed was that during Chinese and Indian cooking highest 

concentration of PAH was for dibenz(ah)anthacene 1.96 µg/m3  and 0.96 µg/m3respectively. 

For western cooking highest concentration were found for benzo(b)fluoranthene 1.50 µg/m3. 

Generally African food was found to release lower concentrations of PAH than the other 

cooking styles. 

When Chinese cooking and Indian cooking were compared:  higher PAH concentrations were 

observed for Chinese cooking due to stir frying and higher cooking temperature, whilst the 

Indian cooking style generated the lower PAH concentrations. Indian cooking emitted large 

amounts of volatile PAH with lower molecular weight like naphthalene, fluoranthene and 

phenanthrene attributed to low temperature cooking, such as simmering (See et al., 2006). 

Chinese cooking, on the other hand, was found to emit higher molecular weight PAHs such as 

benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene. These trends were 

attributed to the cooking methods employed in each type of cooking from the amount of food 

cooked, the amount and type of oil used, to the temperatures reached during cooking, and 

cooking time (See et al., 2006).   

The effect of the cooking method was also examined by See and Balasubramanian (2008), who 

found that techniques that involve the use of oil at high temperatures, such as stir frying, pan-

frying and deep-frying, released higher amount of PAH compared with those that involve the 
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use of water, such as boiling and steaming. This is consistent with work of Schauer et al. (2002). 

Higher quantities of oil are generally used in stir frying, commonly used in Malay and Chinese 

cooking, than simmering which is the most common technique used for preparation of Indian 

dishes. In addition, high temperature frying was found to lead to production of higher molecular 

weight PAHs, while low temperature cooking results in formation of more low molecular 

weight PAHs (See et al., 2006). McDonald et al. (2003) compared the PAH emissions from 

charbroiling and grilling meat and found that PAH emissions from charbroiling were about 3–

5 times more than when food was grilled. This was attributed to the contact of  the lipid material 

dripping from the meat (during cooking) onto the cooking appliance. Thus, the higher PAH 

concentrations observed during charbroiling were due to the direct access of lipids onto the hot 

flame compared to the cooler griddle surface used in grilling (McDonald et al., 2003).  

Higher acid concentrations were also observed in Chinese cooking with 9-Octadecenoic acid 

being the acid with highest concentration for this style of cooking (6.49 µg/m3). High 

concentrations of hexadecanoic acid were also observed in Chinese and all other cooking styles 

with concentration of 4.22 µg/m3, 2.03 µg/m3,1.23 µg/m3 and 0.84 µg/m3 for Chinese, African, 

western and Indian cooking respectively.  It is important to note that some of the variance 

observed between the different cooking styles could be attributed to the diffents ingredients 

used for the diffent cooking styes and themajor method of cooking employed by each cooking 

method as the study was carried out using basically a single meal type of chicken and rice 

across all curlinary techniques. 

In previous studies by Zhao et al ,Western fast food cooking found that the quantified saturated 

fatty acids observed a range from C6 to C20 with distinct even to odd carbon preference and a 

predominance of palmitic acid (Zhao et al., 2007a). Chinese cooking was found to emit C6-

C24 fatty acids with a similar even to odd carbon preference and palmitic acid preference 

similar to meat cooking (Rogge et al., 1991; He et al., 2004b) and seed oil cooking (Schauer et 
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al., 2002). The most common unsaturated fatty acids observed were oleic acid and linoleic acid 

for Chinese cooking (Zhao et al., 2007b; He et al., 2004b). The most prominent organic 

compound released from American cooking is oleic acid (Rogge et al., 1991; Schauer et al., 

1999a; Schauer et al., 2002;  He et al., 2004b). 

The concentration of emitted saturated fatty acids in Western fast food was found to be 13 

times higher than in Chinese cooking while unsaturated fatty acid concentrations were only 

two times higher, attributed to ingredients and cooking temperature. High concentrations of 

nonanoic acid emissions are observed in both Chinese and Western style fast food cooking 

with a higher ratio of nonanoic acid to other acids (C8-C10) in Western style fast food.  Schauer 

et al. (1999a;  Schauer et al., 2002) compared the emissions of fatty acids from different 

ingredients, such as meat and vegetables. They found that charbroiling hamburger meat 

released more fatty acids than frying vegetables. They also found that stir frying released more 

fatty acids than deep frying. 

An analysis of the profiles generated showed that the Indian and western profiles were the most 

correlated and Chinese and Indian had the weakest correlation, this went on to be observed in 

the model performance of Indian and Western profiles in the CMB model runs where the best 

fits were gotten when either of these profiles was used. 

The hypothesis that was stated in chapter one that Chinese cooking emits more particulate 

matter has been clearly proven in chapters 3 and 4 where higher concentrations were observed 

on periods where Chinese cooking was adopted. 

Cooking with the use of gas as the source of heat generally lead to higher concentration of 

organic compound emitted as was observed in the trailer where both gas and electric were both 

used. The emissions of compounds emitted at the trailer kitchen(cooking source) using an 

electric hob was made and the concentrations measured when food was prepared with the 
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various cooking styles. It was observed that concentrations were higher than when electric hob 

was used compared to when gas was used for cooking, the average concentration of glycerides 

cooking Indian food was 0.8µg/m3 when cooking with gas as against 0.45µg/m3 when using 

electric. Acid concentrations also showed a similar trend with average concentration of the 

group of acids of 0.42µg/m3 total emitted from gas cooking against 0.2µg/m3 when electric 

source of heat was used. For Chinese cooking 1.35µg/m3of total acid as compared to 0.24µg/m3 

emitted when electric was used. 

Similar to cooking with gas it was observed that emission during Chinese cooking produced 

higher concentration of compounds, followed by western style cooking then Indian and finally 

African. Total concentration for the various cooking methods for glyceride, sterol and acid 

respectively were found to be; Chinese (0.8, 0.3 and 1µg/m3), western (0.7,0.3 and 0.2µg/m3) 

Indian (0.5,0.2 and 0.2µg/m3) and African(0.2,0.1 and 0.8µg/m3) showing the trend of total 

concentration. 

 

 Indian cooking had higher concentrations of Alkanes than all other cooking styles with a 

maximum of 2.71µg/m3 of heptacosane. For PAH, dibenzo(ah)anthracene was the most 

prevalent for all four cooking styles. It was found that Chinese cooking led to the release of a 

higher concentration of PAHs and acids than other styles. The acid with highest concentration 

for all methods of cooking was hexadecanoic acid.  

Particles of mode diameter of particles generated from cooking were found to be largely within 

the respirable size range, between 15-90nm, with the larger particles generated for cooking 

methods that involved more water than oil (during stewing). With the use of the AMS it was 

found that cooking leads to a significant organic loading with grilling as well as stir frying 

found to have high mass loadings on the instrument. Deep frying was found to lead to a large 
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number of particles (of smaller diameter than grilling and stir frying) with low AMS mass 

loading. Cooking with meat (beef or chicken) especially grilling and frying, was observed to 

lead to higher particles generated than cooking with sea food or vegetables. Water based 

cooking was found to emit less particles than oil based cooking, with stir frying emitting more 

PM than deep frying. 

An analysis of concentration of PM collected in a real everyday kitchen revealed a similar 

trend, in terms of generated particle concentration, when meals similar to those cooked in the 

trailer kitchen was made but the micro environment concentrations were higher than that of the 

samples collected in the duct of the controlled environment kitchen. This was mainly attributed 

to the lack of ventilation in the real kitchen. When the concentration of compounds were 

compared with each other it was found that there was a good correlation for alkane among all 

cooking methods, African and Chinese had highest correlation for acid compound group and 

PAH compounds correlations were good but lowest in the combination of African and Indian 

method. The correlation analysis of the kitchen concentrations with their respective source 

profile concentrations found a good correlation. 

The source profiles were used in the CMB model, 0.2µg/m3 of OC was estimated to be the 

general concentration of PM from cooking sources at Stratford Road. The profiles that provided 

the models the best consistently were the Indian and western profiles. This was consistent with 

what was expected as these were the predominant styles of cooking at the location. The CMB 

model runs apportioned 16% of the total apportioned Organic Carbon to be from cooking, with 

traffic, wood smoke and soil debris contributing 44%, 18% and 24% respectively. When the 

cooking aerosol estimated for Stratford Road by CMB is scaled to make it equivalent to mean 

annual conditions for 2012, the concentration is 0.35 µg m-3 (taking the mean from all cooking 

styles).  Given the results of comparison of AMS and CMB by Yin et al. (2105) and resulting 

in the scaled concentration of 0.35 µg m-3 comparing well with the model estimate of 0.5 µg 
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m-3. Generally the analysis and the comparison of data obtained from this study with earlier 

measurements from London (Yin et al., 2015) and with the model results of Ots et al. (2016) 

show a strong consistency.  This suggests that in recent years in major UK cities, cooking 

aerosol represents about 3-4% of measured PM2.5.   

 

With these source profiles generated that represent the geographical location and local 

emissions, an updated estimation for cooking generated particulate matter contribution to 

ambient concentrations  can be made used as inputs for receptor modelling representing a cost 

and time-effective alternative for effective control measures. 

Policy implications of the research findings include increased monitoring of commercial 

settings where food is cooked. This can be further effective by the enforcement of fixing 

exhaust hoods in such locations and ensuring they are used properly. This could go a long way 

to ensure control of emission from restaurants both indoors and into the ambient air. Also as 

regulations cannot really be set for individuals to follow in their personal home, with these 

information, education can be provide to individuals to ensure they are able to be aware of what 

their cooking choices contribute to their exposure to compounds such as PAHs and they are 

able to make informed choices on how to limit or control exposure of PM from cooking. Some 

of the choices that people can adopt are to reduce open grilling and stir frying, boil more food, 

use extractor fans to direct the particulate out of the houses. 

 

As a next step, the following research is recommended so as to aid in a better understanding of 

cooking emissions for the establishment of effective control measures to reduce health effects 

associated and linked with exposure from cooking in homes and cities in the UK and other 

parts of the world.  
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 Analysis and identification of the effects of personal exposure to particulate emissions 

from cooking. Further monitoring of individuals including cooks (over work period and 

times when they are not cooking) to obtain an idea as to what they are exposed to with 

analysis of biomarkers.  

 The source profile concentrations were emissions measured in the exhaust duct of a 

capture hood that had the filters removed and so it would be good to obtain the 

emissions profile in the duct with filters were in place. 

 Determining of organic source profile for cooking using other type of ingredients such 

as beef and sea food. 

 Sampling in an area of where there is a wider mix of restaurants and use the data as 

input for a detailed CMB-based receptor modelling analysis will be undertaken to 

quantify source contributions using Indian profiles modelling with the source profiles 

obtained from this study. 

 Sampling in kitchens of restaurants where larger quantity food is cooked and where 

mostly exhaust passed to the ambient air to have a better idea of concentration of 

emissions from cooking. This will give a better understanding of what cooks and the 

general public are exposed to as restaurants are all over cities and people do spend a 

good amount of time in restaurants on days the patronize these establishments. 

 Collaboration with the AMS whereby filter samples will be taken concurrently with the 

instrument and analysis of the filters for organics to determine exact concentrations 

obtained at same time with the instrument. 
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 Microenvironment measurements in nearby rooms near kitchens where cooking take 

place to analyze and characterize the PM generated. 

 An analysis of more cooking styles, such as Mexican, Italian among others, would 

provide further insight to emissions from the different types of restaurants that exist in 

various cities in the UK. 
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