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Abstract 

Adipose secreted cytokines are thought to contribute to pro-inflammatory state seen 

commonly in obese individuals, providing a potential metabolic link between obesity 

and osteoarthritis.  The aim of this study is to further our understanding of the role of 

adipokines within OA by examining the serum and joint fluid adipokine expression 

profiles in relation to disease severity, BMI, and joint tissue turnover markers.  The 

result of this study show that subchondral bone from overweight/obese hip OA 

patients exhibited reduced trabecular thickness, increased bone surface/bone 

volume ratio and an increase in the type I collagen α1/α2 ratio, compared to normal-

weight hip OA patients. The serum concentration of resistin was higher in 

overweight/obese OA patients, compared to normal-weight OA patients (12740 vs 

9818pg/mL respectively; p<0.05). Stimulation of normal-weight bone explant with 

recombinant resistin resulted in a 2.4 fold increase in type I collagen α1/α2 ratio 

(1.6:1 vs 3.8:1, p<0.01). Stimulation of primary OA osteoblasts with resistin increased 

Wnt signalling activation, osteoblast metabolic activity, and bone nodule formation.  

In addition, visfatin was elevated in the synovial fluid and in isolated synovial 

fibroblasts of obese hip OA patients compared to normal-weight patients. In cartilage, 

visfatin increased the production of 15 pro-inflammatory cytokines and chemokines, 

with significant increases in IL-6, CCL4, MCP-1 and in CCL20 compared to the 

media only control (>7 fold, 20-fold, 4-fold and 7-fold respectively).  Visfatin 

significantly increased in catabolic proteases including MMP-1 (4-fold), MMP-2 (3-

fold), MMP-3 (3-fold), MMP-7 (2.2-fold), MMP-8 (1.3-fold), MMP-9 (1.2-fold), MMP-10 

(1.5-fold), and MMP-13 (5-fold) and localised to areas of cartilage damage. 

Targeted inhibition of adipokine signalling could therefore be a rewarding strategy for 

developing a novel therapeutic.  
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1.1 General Introduction 

The World Health Organization has characterized obesity as reaching epidemic 

proportions globally, with over 1 billion individuals being overweight, and 300 million 

of those clinically obese [1].  In England alone, obesity has increased from 14.9% of 

the population in 1993, to 25.6% in 2014 [2].  Should this trend continue, this figure is 

set to rise to 55% of the population affected by obesity by 2050 [3].  Excessive weight 

is associated with a number of other health detriments including hypertension, stroke, 

diabetes, and arthritis.  Increases in these co-morbidities in ageing populations will 

result in a substantial burden on the economic costs to the healthcare system, in an 

era of already exponential medical expenditure. 

With improved sanitation, socio-economic developments and medical advances, life 

expectancy has steadily increased.  In fact, from 2015 to 2020, the number of 

individuals over the age of 65, 85, and 100 is set to rise by 12%, 18% and 40% 

respectively.  This is in comparison to the 3% increase in the general population [4].  

Yet despite the improvement in living conditions and subsequent lifespan, demands 

on a healthcare system supported by a relatively smaller tax paying population may 

prove to be the most challenging of this century. 

While life expectancy continues to increase, healthy life expectancy has had little 

improvement, with only an additional 0.3 and 0.6 years gained since 2000-2011 in 

healthy life expectancy in males and females respectively.  From 2005 to 2012, UK 

women have gained 1.3 years in life expectancy, yet only 0.1 years additional healthy 

life years [5].  This suggests that the extra years of life gained are spent in ill health 

and disability. 
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In the Global Burden of Disease Study 2010, osteoarthritis (OA) accounted for 2.2% 

of years lived with disability (YLD).  Critically, OA was found to be the fastest growing 

major health concern with an increase of 64% between 1990-2010 (Figure 1.1) [6], 

not only contributing to burden on the healthcare system, but also to personal burden 

experienced by individuals with symptomatic OA.  For example, OA pain significantly 

impacts the lives of OA patients, through the inability to perform everyday tasks [7], 

reduced independence [8], insomnia [9], and personal stress [10].  The aim of an OA 

therapeutic is therefore to provide pain relief as well as to prevent disease 

progression and restore joint function.  However, the development of such 

therapeutics has proved highly challenging, in part due to the heterogeneity of OA 

[11], and due to the source of OA pain remaining elusive [12, 13].  Thus many 

patients with OA will take over-the-counter analgesic medications, including topical 

creams, paracetamol (acetaminophen) and non-steroidal anti-inflammatory drugs 

(NSAIDs), such as Ibuprofen.  These medications often provide only limited pain 

relief, particularly for patients with advanced disease, and critically, they do not 

prevent disease progression.  Furthermore, toxicity has been demonstrated with 

prolonged high doses of paracetamol, and therefore despite being the primary 

therapeutic subscribed by clinicians, it is prescribed with caution [14].   
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Figure 1.1 Ranking of chronic disorders associated with YLD between 1990 and 

2010, demonstrating the increased burden of osteoarthritis in healthy life 

expectancy.  

Pink boxes = communicable, maternal, neonatal, and nutritional disorders; blue 

boxes = Non communicable disorders; and green boxes = Injury.  

 

Some NSAIDs, such as selective COX2 inhibitors, have demonstrated promising 

disease modifying capabilities in clinical studies.  However the side effects are less 

desirable, for example heart failure, persistent headaches, stomach ulcers and 

anaemia [15].  Therefore a great unmet clinical need remains for more effective OA 

therapeutics, particularly those that can prevent disease progression.  Without such 

medications, the recent OARSI guidelines [16] suggest a more holistic approach to 
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OA treatment, including acupuncture, weight loss, and increased patient/doctor 

communication as treatment for patients with symptomatic OA [16].   

Arguably one of the most important, and most modifiable risk factors associated with 

OA is obesity.  Adipose tissue expansion with obesity can result from both 

hypertrophy (increased adipocyte size), and hyperplasia (increase in adipocyte 

number), both of which are impacted by genetics and dietary intake.  Adipocyte 

hypertrophy is defined as an adaptive response to nutrient excess in adulthood, thus 

protecting other organs from lipotoxicity [17].  In lean humans, the increase in 

adipocyte size is essential to maintain a homeostatic response to over-feeding [18], 

however in obesity it is understood that a hypertrophic threshold may be surpassed, 

adipocyte buffering capacity is exceeded, and lipid is deposited in peripheral tissues 

[19].  Further in obese, adipocyte hypertrophy can result in inadequate oxygenation 

of the adipose tissue due to a number of factors including ineffective O2 diffusion [17], 

increased O2 consumption of adipose tissue [20] and decreased capillary density 

[21].  This hypoxic state may result in altered adipose tissue function including 

reduced adipogenic differentiation [22], altered glucose homeostasis and 

inflammatory cytokine [23, 24] 

Historically, adipocyte hypertrophy was regarded as the only route whereby fat mass 

increased in obese adults however recent evidence has demonstrated a role for 

adipocyte hyperplasia in regulating fat mass in adult obesity.  Adipocyte hyperplasia 

consists of two stages, namely; pre-adipocyte proliferation and pre-adipocyte 

differentiation.  Contrary to the role of adipocyte hypertrophy, adipocyte hyperplasia 

is thought to have a protective role over the development of metabolic disorders 

associated with adipocyte hypertrophy.  Using 14C tracer analysis, average adipocyte 

half-life was determined as 8.3 years, with over 10% of adipocytes renewed annually 
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in adulthood [25].  Furthermore, the total cell number remains stable throughout 

different BMI categories [25]. This infers that propagation of precursor cells into 

mature lipid filled adipocytes occurs at the same rate of adipocyte apoptosis.  This is 

particularly relevant to obesity where a higher rate of apoptotic cell death results in 

increase adipocyte cell turnover [26] therefore a greater number of small adipocytes 

exist to offset the increasing lipid content in these individuals.    

As adipose tissue expansion occurs with progressive obesity, so too does the 

release of a plethora of bioactive molecules and cytokines referred to as ‘adipokines’ 

into the systemic circulation. Accordingly, this adipokine release has been 

mechanistically linked to metabolic complications and the metabolic syndrome [27]. 

Adipokines are pleiotropic molecules that contribute to the low-level pro-inflammatory 

state seen commonly in obese individuals [28, 29].  Several hundred adipokines have 

so far been identified, including adiponectin, leptin, resistin, and visfatin [30].  Being 

secreted into the circulation (although not always exclusively derived from adipose 

tissue), it is not surprising that the circulatory concentrations of several adipokines 

correlate with body fat mass, and are often associated with anthropometric measures 

such as BMI and W:H ratio.  Furthermore, studies have demonstrated a 

“normalization” of adipokine profiles following weight loss which is associated with 

the normalization of metabolic indices, suggestive of adipokines being key mediators 

of metabolic health [31-33]. 

In addition to fat mass percentage, adipose tissue distribution can also play a 

significant role in metabolic complications and inflammation.  There are number of fat 

depots in the human body including; intra-abdominal (omental or visceral fat), lower 

body (gluteal, subcutaneous and intramuscular fat), and upper body (subcutaneous 
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fat) [34].  The amount of visceral fat in relation to peripheral tissue obesity can have a 

significant impact on the development of metabolic disorders, with an increase in 

atherosclerosis, diabetes and hypertension disease risk with an increasing ratio of 

central to peripheral adiposity [35, 36]et al., .  This association between fat depots 

and metabolic dysfunction may be due to the fat depot specific expression of 

adipokines.  For example, IL6 has previously been shown to have increased 

expression in visceral fat tissue [37] and omental fat tissue [38] compared with 

subcutaneous adipose tissue.  Adiponectin expression has been shown to be 

increased in omental tissue compared with subcutaneous [39], however leptin 

expression shows the opposite with higher expression identified in subcutaneous 

tissue compared to omental [40]. 

In the last 10 years, adipokines have received much interest in relation to OA joint 

pathophysiology, demonstrating important roles in maintaining cartilage and bone 

health [28].  Adipokine biology is now considered to be a key biological effect area for 

identifying and developing new OA drugs.  Therefore, examining the expression and 

function of adipokines in cartilage, bone, and adipose tissue from patients with OA, 

and understanding the key signalling mechanisms, may identify new targets for 

therapeutic modification, which mediate adipokine signalling pathways and modulate 

pathological processes within the OA joint.   

The overarching aims of this thesis are two-fold: firstly to determine the relationship 

between adipokine profiles and markers of joint pathology and OA disease severity 

across different patient populations with OA. Secondly is to further our understanding 

of the role of adipokines in OA by determining the functional effect of adipokine 

stimulation on cartilage and bone pathology.  Ultimately, such studies will aid in the 
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identification of novel targets for therapeutic modulation to prevent OA disease 

development. 

 

1.2 Anatomy of the synovial joint 

In this study, we have focused on the hip and knee joints; therefore we shall focus 

upon the anatomic structure of these two synovial joints herein.  The coxofemoral 

(hip) joint is a ball-and-socket type articulation of the femur and the acetabulum cup 

of the pelvic bone [41], and joins the upper and lower parts of the body.  The femoral 

head is a spherical structure with a small depression at the site of the Ligamentum 

Teres attachment.  In contrast, the knee joint is a modified hinge joint comprising of 

the tibia, femur and patella, allowing flexion and extension [42].  Unlike the hip joint, it 

allows only a minimal amount of medial and lateral rotation.  The strength and 

stability of the knee joint depend almost entirely upon the ligaments and muscles 

surrounding the joint, and fibrocartilaginous crescents known as menisci serve as 

shock absorbers to joint loading [43] 

Synovial joints articulate within a fluid-filled cavity, which lubricates the joint and 

allows for a wide range of movement with reduced friction.    Synovial joints consist of 

distinguishable features including; articular cartilage, a synovial cavity, an articular 

capsule, synovial fluid and fatty pads.  The hip and knee joint anatomy have many 

similarities.  Each have an outer articular capsule important to passive and active 

joint stability via its proprioceptive nerve endings [44] and a synovium responsible for 

joint fluid production, cartilage nutrition, and modulation of immune cells in response 

to bacteria or fragment material [45].  It is able to adapt to environmental stress 

through thickening, vascularisation, villi formation and inflammatory cell infiltration 
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[45].  Furthermore, to allow for smooth articulation, both the knee and hip joint 

articulating bones are covered by layers of articular cartilage tissue. 

The hip and the knee anatomy are thought to differ in their intracapsular fat pads 

termed the fossa fat pad (hip) and infrapatellar fat pad (IPFP, knee).   The IPFP has 

received a lot of attention with regards to its role in knee disease pathologies [46], 

and has been defined as pro-inflammatory, releasing TNFα, FGF and IL6 [47], and 

adipokines adiponectin, leptin and chemerin [29, 48].  However total IPFP area in 

patients with OA has been reported to be negatively associated with osteophytes, 

bone marrow lesions, knee pain and JSN, suggesting it may have a protective role in 

the development of OA [49].  Contrary to the IPFP, the fossa fat pad has received 

very little attention in terms of its role in the pathogenesis of hip disorders, perhaps 

because of its much smaller size and relative inactivity compared to the IPFP [50]. 

 

1.2.1 Zonal articular cartilage organization 

Articular cartilage is a highly specialized tissue, which covers the epiphyseal ends of 

diarthrodial (synovial) joints.  It is principally designed to allow for smooth joint 

movement across the range of motion.  Morphologically, articular cartilage can be 

separated into distinct zones, each with a different function and cellular organisation.  

Namely, the superficial zone, the transitional zone and the deep zone (Figure 1.2). 

 According to Fox et al., (2009), the superficial zone, situated immediately under the 

articular surface, contains parallel collagen fibres and phenotypically flattened 

individual chondrocyte cells.  These chondrocyte  cells are embedded within a matrix 

of high collagen and low proteoglycan concentration, and in culture secrete less 

collagen and proteoglycans compared to chondrocytes cultured from the other 
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cartilage zones [52]. It is thought the dense, parallel collagen fibres are responsible 

for the greater tensile strength and resistance of shear stress generated during 

articulation [53-55].  Maintenance of the superficial layer is believed to be integral to 

cartilage health [53], since disruption precedes any gross structural damage in the 

cartilage matrix.  

In the transitional zone the collagen fibres exist obliquely, proteoglycan content 

increases, and the chondrocytes exhibit a more rounded morphology.  In comparison 

to the superficial zone, water and collagen content are both reduced.  This zone 

contributes to over 40% of the total cartilage volume, and provides resistance to 

compressive forces [53].     

The deep zone of cartilage extends through to the calcified cartilage interface 

(termed the tidemark), with collagen fibres formed perpendicular to the articular 

surface extending into the tidemark, and chondrocytes arranged in a columnar 

structure.  Due to the arrangement of the collagen fibres, the deep zone provides the 

greatest resistance to compressive forces.  It also has the highest proteoglycan 

content, along with the lowest water content [51].  
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Figure 1.2. Zonal articular cartilage organization adapted from the American 

Academy of Orthopaedic Surgeons [56].  

A. A cross-sectional diagram of the cellular organisation of healthy articular cartilage 

zones. B. A cross-sectional diagram of the collagen fibre architecture throughout 

healthy articular cartilage zones. 

 

1.2.2 Regional organisation of extracellular matrix 

In addition to the zonal organization of articular cartilage, the extracellular matrix 

(ECM) surrounding chondrocytes is divided into three distinct regions; the 

pericellular, territorial, and interterritorial regions.  The pericelluar region refers to the 

narrow layer of matrix that immediately surrounds the chondrocyte cell [51, 57, 58] 

which together  is referred to as a chondron [59].  This region is abundant with 

fibronectin, prostaglandins [60-64] and collagen Type II, but is distinguished by its 

expression of collagen type VI surrounding the chondrocyte cell [65].  The role of the 
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pericellular region is not fully established, however recent evidence suggests it may 

play a significant role in signal transduction during load bearing [59, 66, 67].    

The territorial region is a mesh of fine collagen fibrils, which surround and adhere to 

the pericellular matrix [68-70] in a ‘basket-like’ formation.  This formation of collagen 

fibrils is thought to provide structural support and protection for the chondrocytes 

during compressive loads.   With increasing space from the chondrocyte cell, the 

collagen fibrils begin to widen in diameter and orientate into a more parallel fibril 

alignment, marking the beginning of the inter-territorial matrix region [52]. 

The inter-territorial matrix region forms the majority of the ECM, and consists of wide-

diameter collagen fibrils arranged randomly according to their location within the 

articular cartilage zones.   This zone contains an abundance of proteoglycans, 

collagen oligomeric matrix protein (COMP), and type II collagen, and maintains the 

tensile stiffness and strength of the ECM [52, 59, 71]. 
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Figure 1.3. Protein components of the extracellular matrix of articular cartilage 

[72].  

Healthy articular cartilage matrix is arranged according to the distance from the cell, 

with collagens and collagen proteins differing in each zone. Abbreviations: CILP-1, 

cartilage intermediate layer protein 1; COMP, cartilage oligomeric matrix protein; CS, 

chondroitin sulfate; KS, keratin sulfate; PRELP, proline-arginine-rich end leucine-rich 

repeat protein. 

 

1.2.3 The chondrocyte 

Chondrocytes are the only cell found in articular cartilage [73].  Despite contributing 

to a mere 5-10% of total cartilage volume, chondrocyte cells play an integral role in 
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epiphyseal growth and the maintenance of cartilage ECM integrity [74].  A 

chondrocyte’s life cycle consists of proliferation, differentiation, maturation, and 

ultimately apoptosis; any biochemical or genetic deregulation of these processes can 

alter the form and integrity of the surrounding cartilage tissue [75].  During foetal 

development, chondrocytes are metabolically active proliferative cells, providing the 

template for the development of several tissue structures.  However in adult life, the 

chondrocytes are restrained to a fixed distribution, and their function alter from that of 

supporting growth to providing strength and structural support.  

Though often described as quiescent cells, they are intracellularly active, producing 

and organising the key structural components required to maintain a state of dynamic 

equilibrium with the matrix volume, including; proteoglycans such as aggrecan and 

decorin, collagen, elastin, and fibronectin (Table 1.1) [76].   
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Table 1.1. Extracellular matrix components of articular cartilage. 

Proteoglycans Structural Proteins Glycosaminoglycans Collagens 

Aggrecan 

Versican 

COMP 

Thrombospondin -1 

Chondroitin sulfate 

Keratin sulfate 

Collagen II 

Collagen III 

Link Protein Thrombospondin -3 Heparin sulfate Collagen VI 

Biglycan Matrilin -1 Hyaluronan Collagen IX 

Decorin Matrilin -3  Collagen X 

Epiphycan 

Fibromodulin 

Lumican 

Perlecan 

Lubricin 

 

CILP 

C-type Lectin 

Fibronectin 

PRELP 

Chondroadherin 

Tenascin C 

Fibrillin 

Elastin 

 Collagen XI 

Collagen XII 

Collagen XIV 

Prostaglandins and proteins of the articular cartilage extracellular matrix [77, 78] 

Abbreviations:  CILP, cartilage intermediate layer protein; COMP, cartilage 

oligomeric matrix protein; PRELP, proline- and arginine-rich end leucine-rich repeat 

protein.  

 

The location of chondrocytes within articular cartilage largely determines their 

function and pathology.  Unlike chondrocytes in other zones, these superficial zone 

chondrocytes produce proteoglycan-4 (PRG-4), which complexes with hyaluronic 

acid and aids joint lubrication [79].  However, they also synthesise less aggrecan 

proteoglycan and collagen compared to chondrocytes from other cartilage zones.  

This arrangement of cells and matrix and specific chondrocyte phenotype results in 

this zone exhibiting a high water content and resistance to shear and compressive 

stresses [51]. 
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The transitional and radial zone chondrocytes adopt a more spherical morphology, 

and exhibit a much higher concentration of endoplasmic reticulum and Golgi 

membranes than chondrocytes from other cartilage zones.  In the deep zone, the 

chondrocytes align to form columns, perpendicular to the articular cartilage surface. 

This alignment, combined with the higher concentration of proteoglycan and larger-

diameter collagen fibrils make the radial zone more suitable for resisting compressive 

forces (Figure 1.2).  

 

1.2.4 Extracellular Matrix 

The ECM consists primarily of collagen type II fibres, and proteoglycans including 

aggrecan, which are linked through collagen binding proteins such as COMP and 

chondroadherin [80]. 

 

1.2.4.1 Collagen 

Collagen accounts for approximately 60% of cartilage dry weight, 90% of which is 

solely collagen type II [51].  The remaining 10% is composed of collagens I, IV, V, VI, 

IX and XI [51].  Structurally, collagen consists of three parallel polypeptide strands, 

which form a tightly packed helical conformation resulting in a glycine at every third 

residue [81].  The most abundant triplet sequence within collagen consists of a 

proline, glycine and a hydroxyproline which allows for hydrogen bonds to stabilise the 

length of the molecule [82].  It is this structure which provides mechanical strength 

and stability to the ECM [51]. 
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1.2.4.2 Proteoglycans 

Proteoglycans are highly glycosylated proteins which are abundantly expressed 

within cartilage ECM.  Proteoglycan structure consists of a core protein, to which one 

or more glycosaminoglycan chains are covalently bound [83].  There are a number of 

proteoglycans found in articular cartilage, including decorin, biglycan, and the most 

abundant, aggrecan [51].  Aggrecan is a unique proteoglycan consisting of over 100 

keratin and chondroitin sulfate chains, which form large proteoglycan aggregates 

through the interaction with link proteins and hyaluronan [83].  Conversely, non-

aggregating proteoglycans interact with surrounding collagen proteins.  

Proteoglycans bind water molecules and repel other molecules of a negative charge.  

Through binding water, the proteoglycans maintain the osmotic properties of articular 

cartilage and confer resistance to compressive loads [51]. 

 

1.2.5 Bone  

Adult human bones are divided into four categories; long (such as the femur, tibiae 

and fibulae bones), short (such as the carpals and tarsals), flat (such as the skull, 

mandible and sternum) and irregular (such as the coccyx, hyoid and sacrum bone) 

[84, 85].  As well as permitting movement via the muscular system, bones protect 

vital organs, serve as a reservoir for cytokine and growth factors, and maintain 

mineral and acid base balance [85, 86]. 
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Figure 1.4. The anatomic structure of long bone.   

A.  Gross structure of long bone detailing epiphysis and diaphysis areas of long 

bone. B. Spongy bone with vascularisation. C. Compact bone with yellow bone 

marrow core. (Copyright© 2004 Pearson Education Inc. publishing as Benjamin 

Cummings). 

 

Bone is a highly vascularized tissue (Figure 1.4), and is best described as having a 

hierarchical structural organization.  This structure consists of five components 

spanning the macrostructure to the sub-nanostructure; cortical and trabecular bone, 

osteons, lamellae, collagen fibre, and bone mineral crystals and collagen molecules.   

In bone macrostructure there are two distinct morphological types of bone; dense 

cortical bone and “spongy” trabecular bone.  Overall, the human skeleton is 
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composed of 80% cortical bone to 20% trabecular bone, but the proportion varies 

depending on the bone and the skeletal site [87]. The femur has a 50:50 ratio of 

cortical to trabecular bone, and consists of both an epiphysis (an end), and a 

diaphysis (a shaft) (Figure 1.4A).  The diaphysis of the femur is dense cortical bone, 

surrounding a yellow bone marrow core interspersed with honeycomb-like trabecular 

rods and plates (Figure 1.4C).   

At the nanostructure and sub-nanostructure scale, collagenous fibres and molecules 

are predominant (85-90% of bone proteins) with collagen type I being the main form 

present within mature bone, and collagen III, V and X expressed to a lower degree.  

Non-collagenous proteins such as serum albumin, glycosaminoglycans and 

glycoproteins contribute to the remaining 10-15% of total bone protein.  Finally, bone 

is composed of approximately 50-70% mineral, most of which is hydroxyapatite 

crystals [88]. Mineral provides structural rigidity and compressive strength to bone, 

and non-collagenase proteins such as osteonectin, osteocalcin and osteopontin may 

play a significant role in regulating the size and orientation of the hydroxyapatite 

crystals within the bone.  Therefore, modulation of any of these proteins may play a 

significant role in altering bone structure and strength at a sub-nanostructure scale, 

which could ultimately result in pathological macrostructural and mechanical bone 

alterations. 

 

1.2.6 Osteoblasts and osteoclasts 

Maintaining bone strength and stiffness is determined by bone material composition 

and the dynamic relationship between bone forming and bone resorption cells; 

known as osteoblasts and osteoclasts respectively.  Located along the bone surface, 

osteoblasts contribute to approximately 5% of total bone cells [89], and exhibit 
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characteristics typical to high protein content producing cells, including an abundance 

of Golgi apparatus and endoplasmic reticulum, and a high concentration of secretory 

vesicles [90]. 

Osteoblasts are derived from mesenchyme stem cells (MSCs) [91], which follow a 

temporal stepwise expression of genes specific to early osteoblastogenesis, 

including bone morphogenetic proteins (BMPs) and Wingless pathway (Wnt) 

members [92].  The expression of these genes drive MSCs to a 

chondro/osteoprogenitor cell type, defined by the expression of Runt-related 

transcription factor (Runx2), distal-less homeobox 5 (dlx5) and osterix (osx) [92, 93], 

all of which are crucial for osteoblast differentiation.  Importantly, Runx2 is a master 

regulator of osteoblast differentiation, as demonstrated in Runx2 null mice who 

exhibit arrested osteoblast differentiation [92-94], and is essential to the expression 

of osteoblast-related genes including; COL1A1, BGLAP, OSN and ALP [95].  

Following differentiation, osteoprogenitors undergo a proliferative state, 

demonstrated by an increase in alkaline phosphatase (ALP) activity, reflective of the 

increased biosynthetic activity of pre-osteoblasts [90].  Upon maturation of pre-

osteoblasts to osteoblasts, the morphology changes to become cuboidal in shape, 

and they actively secrete bone matrix proteins, including collagen type I, bone 

sialoprotein and osteocalcin [93, 96-98].  These mature osteoblasts deposit organic 

matrix through the secretion of collagenous and non-collagenous proteins and 

proteoglycans, and subsequently mineralize the bone matrix (osteoid), through the 

synthesis of hydroxyapatite crystals [99].   

Prior to osteoid mineralization, a proportion of mature osteoblasts (20%) become 

embedded within their secreted osteoid matrix.  These cells are referred to as osteoid 

osteocytes or pre-osteocytes [100].  As the osteoid is mineralized, the cells become 
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permanently embedded within the bone matrix, resulting in cellular aggregation and 

the development of cellular processes to allow communication of osteocytes deep 

within the bone matrix with cells located on the bone matrix surface [100].  

Osteocytes are referred to as mechanosensors, because of their ability to sense 

bone stresses and communicate with osteoblasts and osteoclasts on the bone 

surface to modulate their activity and alter bone remodelling.  Recent evidence would 

suggest that this communication between osteocytes with osteoblasts and 

osteoclasts is through the release of signalling factors including RANKL, sclerostin, 

NO and IGF-1 [101-103]. 

Osteoclasts are predominantly derived from mononuclear monocyte-macrophage 

precursor cells from bone marrow [85].  Osteoclastogenesis is reliant upon the 

secretion of two cytokines; macrophage colony-stimulating factor (M-CSF) and 

Receptor activator of nuclear factor kappa-B ligand (RANKL), from bone marrow 

stromal cells and osteoblasts [104].  Importantly, the production of osteoclasts is 

dependent on the activity of osteoblasts via the osteoblast expression of 

osteoprotegerin (OPG), which serves as a decoy to RANKL, thus limiting the binding 

of RANKL to its receptor RANK [105].  Therefore, the ratio of RANKL and OPG is 

critical in determining the proliferation and differentiation of osteoclast precursor cells, 

and ultimately regulates bone remodelling [106].  Furthermore, inflammatory 

mediators such as TNFα, TGF-β and IL6 [107], vitamin D3 [108] and parathyroid 

hormone (PTH) have also been shown to increase osteoclast formation [109, 110].  

Osteoclast formation via RANKL and the co-stimulation of DNAX-activating protein 

(DAP12) and Fc receptor γ chain (FcRγ) leads to the activation of nuclear factor of 

activated T cells cytoplasmic 1 (NFAT1c) and nuclear factor kappa B activator protein 

1 [111], which in turn activate genes essential for pre-osteoclast differentiation 
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including; tartrate-resistant acid phosphatase (TRAcP), cathepsin-K, β3-integrin and 

matrix metalloproteinase (MMP) 9 [112]. 
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1.2.7 Bone remodelling 

Bone remodelling relies on the dynamic equilibrium of osteoblast and osteoclast cell 

activity to maintain a constant bone mass, while also repairing microfractured bone 

and maintaining calcium homeostasis [113].  Bone remodelling consists of four 

phases; activation, resorption, reverse and formation.  In the activation stage, stimuli 

such as micro-fractures, factors released into the microenvironment (including IGF-1, 

TNF-α, and IL6), and alterations in bone loading as sensed by the osteocytes 

activate the quiescent osteoblasts lining the bone matrix surface.  These cells 

subsequently increase their RANKL expression, and activate the RANK receptor on 

pre-osteoclasts, causing differentiation towards a multinucleated osteoclast 

formation.  Upon differentiation, osteoclasts become polarized and adhere to the 

bone surface to begin the resorption phase.  During the resorption phase, osteoclasts 

secrete hydrogen ions [114] and lysosomal enzymes (including TRAP, cathepsin K 

and MMP-9) [115] resulting in acidification and digestion of the bone mineral matrix 

and the formation of resorption pits [85].  To conclude the resorption phase, 

osteoclasts undergo apoptosis to prevent excess bone resorption (Rucci, 2008).  The 

reversal phase begins the transition from bone resorption to bone formation, through 

generating an osteogenic environment at sites of resorption, though the signalling 

mechanism surrounding this phase remain unclear.  One theory suggests 

macrophage-like reversal cells remove matrix debris from the site of resorption [116],  

Following the reversal phase, osteoblasts are recruited to the resorption pit through 

the secretion of growth factors including BMPs, FGFs and TGFs.  Once recruited, 

osteoblasts begin to produce new, osteoid bone matrix, which is subsequently 

mineralized, therefore completing the bone remodelling process.  
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1.3 Osteoarthritis 

OA is a leading cause of joint degeneration, pain and disability in the world, with over 

8.75 million individuals in the UK over the age of 45 years seeking treatment. 

Typically defined as a disease of articular cartilage degeneration and joint space 

narrowing, many patients experience limited movement, and are unable to perform 

everyday tasks [76].  Furthermore, with OA disease prevalence increasing with age, 

these figures are set to worsen given the ageing population.  Within a clinical setting, 

the diagnosis of OA relies on radiographic images and a scoring system originally 

developed by Kellgren and Lawrence (1957) which defines radiographic indices of 

OA (such as joint space narrowing and osteophytosis) into a scale of increasing 

severity (Table 1.2) [117].  

Currently, approved therapeutics for OA patients primarily provide pain relief and as 

such can also help to improve joint mobility in patients with painful joints.  For 

example, non-steroidal anti-inflammatory drugs (NSAIDs) such as 

Paracetamol/Acetaminophen are often prescribed as a first line of treatment by 

clinicians.  However, in part due to the heterogeneity of OA, determining the source 

of pain is difficult [118] and therefore these analgesic medications are often largely 

ineffective and of limited therapeutic benefit for patients.  Some NSAIDs such as 

COX2 inhibitors, have demonstrated analgesic efficacy and also promising disease 

modifying capabilities in the clinic.  However the side effects reported are less 

desirable, including increased risk of heart failure, persistent headaches, stomach 

ulcers and anaemia [15], leading to the termination of these clinical studies.  Indeed, 

toxicity has even been reported with long-term use of paracetamol and is thus is 

prescribed with caution [14].  Therefore, despite the high prevalence of OA within the 
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UK alone, there remains a high unmet clinical need to develop a clinically safe 

Disease Modifying OA Drug (DMOAD).   

To identify potentially novel targets with disease modifying efficacy requires a better 

understanding of the complex multi-pathophysiology of the OA joint and the key 

molecular signalling pathways that underpin it.  In addition, given the heterogeneity of 

OA, it also requires an understanding of how this differs across different OA patient 

cohorts.  Thus, this research project, which aims to determine the expression of 

adipokines across different OA patient cohorts and to determine the functional role of 

adipokines in joint tissue, is highly pertinent. 

 

Table 1.2. Kellgren and Lawrence Grading Scale 

Grade Description 

0 No observed pathological indices of OA. 

1 
Doubtful narrowing of joint space and possible early development of 

osteophytes, 

2 Osteophytes and joint space narrowing. 

3 
Moderate osteophytes and definite narrowing of joint space. Some 

subchondral bone sclerosis and deformity. 

4 
Large osteophytes, marked joint space narrowing, severe sclerosis and 

bone contour deformity. 
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1.3.1 OA Pathology  

Importantly, OA is now widely considered to be a heterogeneous disorder, that 

affects all tissues that encompass the joint, including the articular cartilage, 

subchondral bone, synovium and skeletal muscle [119](Figure 1.5).   

 

Figure 1.5. The heterogeneity of OA.  

OA is a disease encompassing the whole joint including the articular cartilage, 

synovium, subchondral bone and muscle, and is heterogeneous in nature. 

 

1.3.1.1 OA and Cartilage Degradation 

In a steady state, chondrocytes are quiescent and maintain the ECM which 

comprises of collagen proteins (including collagen type II, IV, IX, and XI) and 

interlaced proteoglycans, including aggrecans.  However, under mechanical or 

biochemical stress, chondrocytes can undergo a phenotypic alteration, involving 

cellular proliferation, overt hypertrophy (marked by the up-regulation of collagen X) 
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and the production of matrix degrading enzymes and matrix remodelling proteins.  In 

addition, calcification of chondrocytes results in an advanced tidemark and vascular 

intrusion from the subchondral bone [120]. 

Cartilage matrix degrading enzymes include the MMP family and the disintegrin and 

metalloproteinase with thrombospondin motifs aggrecanases (ADAMTS) family of 

proteins.  Specifically, MMP-1, MMP-3 and MMP-13 have been implicated in OA 

disease progression since they specifically degrade collagen type II and activate 

aggrecanases such as ADAMTS4 and ADAMTS5, which degrade aggrecan 

proteoglycan.   According to Goldring (2012), collagen is normally protected from 

MMP1 and MMP-13-induced degradation by the ‘proteoglycan coating’.  The removal 

of the proteoglycan coating and subsequent collagen network degradation is believed 

therefore to mark the beginning of irreversible cartilage degradation. Furthermore, 

with the degradation of cartilage matrix proteins, protein fragments are produced 

which may interact with receptors of inflammatory cytokines, matrix-degrading 

proteinases, and chemokines to augment further matrix destruction [121]. 

 

1.3.1.2 OA and subchondral bone degeneration 

Traditionally seen as a disease of cartilage degeneration, recent research has 

demonstrated that remodelling to the subchondral bone tissue occurs in OA, and 

these changes precede and may drive cartilage degeneration [122, 123].  

Specifically, in the Dunkin Hartley guinea pig, an outbred Pirbright strain of guinea 

pig derived from the short haired English guinea pig, widely utilised as a model of 

spontaneous OA development, histological modifications were detected in 

subchondral bone at 3 months of age despite no cartilage histological alterations 

[124].   
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In OA, subchondral bone undergoes a number of pathological modulations, including 

bone marrow lesion (BML) formation, increased subchondral bone volume despite 

reduced bone mineral density (Figure 1.6), sclerotic bone formation, osteophyte 

formation and cortical bone thickening [125-129].  It is believed that these alterations 

are likely to result in weaker bones, with a reduced capacity to absorb and reduce 

forces transmitted through the joint during daily activities [130]. 

 

 

Figure 1.6. Pathological alterations of subchondral bone in OA.  

A. Micro CT scan indicates a higher bone volume and thickened trabecular in OA.  B. 

Goldner stain (orange stain) shows areas of under-mineralised bone in OA 

subchondral bone when compared to the control [131]. 

 

The notion that subchondral bone alterations precede cartilage degeneration has led 

to research aimed at better understanding the role subchondral bone in OA.  In OA, 

subchondral bone has been shown to exhibit increased metabolism of collagen type 
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I, altered fibril cross-linking and subsequently hypomineralisation [132]. Furthermore, 

there is a reported phenotypic shift in the ratio of collagen type I homo/heterotrimer in 

OA subchondral bone, suggestive of a change in osteoblast phenotype [133]. 

Typically, collagen type I is a heterotrimer which consists of two α1 chains to every 

α2 chain (Figure 1.7), however it is the α2 chain which provides the structural 

integrity of the collagen molecule [134]. In a brittle bone disease mouse model, 

represented by an Col1a2 (oim) mutation and therefore a replacement of the α2 

chain with an α1 chain to form a homotrimer, there was shown to be an increase in 

water content and a subsequent loss of the lateral packing of the collagen fibrils 

[135]. Such changes in the structural components of bone have been purported to 

affect bone biomechanics, and be a key contributory factor to anatomical and gait 

alterations within the joint.  

 

  

Figure 1.7. Collagen type I is a heterotrimer, composed of two identicalα1 

protein chains (blue) and one α2 chain (green).   

The carboxyl terminal ends direct the assembly of the collagen type I heterotrimer 

structure [136]. 

 

Type I collagen trimer Carboxyl 
terminal ends 
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Alterations in the structural integrity of subchondral bone during OA has a significant 

impact on cartilage degradation [129]. For example, the thickening of the 

subchondral plate during OA is associated with a thinning of the cartilage layer [137, 

138], and bone cysts and bone marrow lesions are directly associated with areas of 

cartilage deformation [139, 140]. 

 

1.4 Synovitis and Osteoarthritis 

Synovitis is defined as inflammation of the synovial joint lining.  Synovitis has been 

demonstrated to precede radiographic indices of OA disease including osteophyte 

formation and bone sclerosis [141].  Indeed, histological studies indicate that 

synovitis is present in 50% of patients in the early stages of OA, and in nearly all 

patients in the later stages of OA [142].  Despite this, OA has been largely 

overlooked as an inflammatory disease due to the relatively non-inflammatory OA 

joint phenotype compared to that of rheumatoid arthritis (RA) joints.  While there is no 

definitive hypothesis for the cause of synovitis, the most widely accepted hypothesis 

is that cartilage breakdown fragments serve as foreign bodies within the joint space, 

thus stimulating the release of inflammatory mediators into the synovial fluid.  

However, a more recent hypothesis suggests that the synovial tissue can initiate an 

OA disease process through an increased cellular infiltrate of macrophages and T-

cells [143-145].  This hypothesis is supported by MRI, immunohistochemical and 

ultrasonography studies, which have all demonstrated synovitis in early OA,  

Furthermore, Benito et al., (2005) found an increased mononuclear cell infiltration 

and over expression of inflammatory mediators (TNFα and IL1β) in early OA synovial 

tissue samples [146]. 
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In 2013, Sokolove and Lepus identified a stepwise increase in the levels of 

inflammatory mediators from normal plasma, to OA serum, to OA synovial fluid, to 

RA serum, through to RA synovial fluid (Figure 1.8) [147].  Although RA synovial fluid 

and plasma samples display a significant inflammatory profile, the heat map also 

reveals a greater inflammatory profile in the OA samples compared with the normal 

plasma.  The presence of these pro-inflammatory mediators can initiate a vicious 

cycle, through the activation of MMP production from articular cartilage resulting in 

further degradation of cartilage, which stimulates the inflammatory response from 

synovial cells.  Further, inflammatory mediators are able to stimulate further synthesis 

of inflammatory cytokines and MMPs from the synovial cells [148]. 
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Figure 1.8.  The inflammatory profile of osteoarthritis and rheumatoid arthritis 

serum and synovial fluid compared with healthy sera [147].   

Samples from individual patients are listed along the top of the heatmap, with 

cytokines identified to the right of the heatmap.  Cytokine concentrations were 

determined using a multiplex bead based immunoassay. 

 

 

1.4.1 Cytokines and OA 

There are a number of inflammatory mediators which have been identified as being 

modulated in an OA population.  Among the pro-inflammatory cytokines found to be 

elevated in OA, perhaps most notable is IL1β, which has been purported to be a 

driver of OA pathology [149] by mediating damage to articular cartilage tissue [150-
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152].  Formed as a precursor protein in the cytosol (pro–IL1β), intracellular 

proteolysis by Caspase I converts pro-IL1β into its active form, which is then released 

into the extracellular space.  IL1β can be synthesised by chondrocytes, osteoblasts, 

synovial fibroblasts and mononuclear cells [153-157]. In OA patients, IL1β is found in 

its active form in cartilage, synovial fluid, subchondral bone and synovium, and has 

been shown to blunt chondrocyte synthesis pathways and stimulate further 

production of pro-inflammatory cytokines, MMPs and prostaglandins. Increased 

amounts of IL1β have been reported in synovial fluid of both knee OA and ACL 

patients, compared to healthy individuals [158-161], and in the synovial membrane its 

expression has been found to correlate with OA grade [162].  IL1β, along with IL1α 

and IL1Ra, binds to the IL1R1 receptor [163], which is significantly increased in 

cartilage surface chondrocytes and synovial fibroblasts in patients with OA [164, 

165].  Upon binding with the receptor, IL1R1 forms a heterodimer complex with IL1 

receptor accessory protein, leading to subsequent activation of the NFκB [166], p38 

MAPK, and c-Jun N-terminal kinase (JNK) pathways  [166, 167].  The activation of 

these pathways results in the synthesis of cytokines and chemokines including TNFα, 

IL6, IL8, and CCL5 [168-171].  Furthermore, in terms of cartilage health, IL1β inhibits 

the ability of chondrocytes to synthesise key structural components of articular 

cartilage matrix, including collagen type II and aggrecan [172, 173].  Finally, IL1β has 

been demonstrated to increase expression and secretion of MMP-1, 3, and 13 [174, 

175] while also upregulating aggrecanase ADAMTS4 [176].  

Through inhibiting the cartilage restorative capacity of chondrocytes, and up-

regulating ECM degradation enzymes, IL1β clearly demonstrates a significant role in 

the pathological progression of inflammation-mediated OA. 
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Another cytokine thought to be significant in the pathological progression of OA 

disease is TNFα. TNFα binds to receptors TNFR1 and TNFR2, with TNFR1 

seemingly having the greatest impact in cartilage degradation due its ability to bind 

both the membrane and soluble form of TNFα [177], and the differing downstream 

signalling pathways associated with each receptor.  Binding of TNFα to either 

receptor results in activation of the NFκB [178, 179] and MAPK [180-182] pathway, 

thus initiating the transcription of a number of target genes associated with OA 

development. 

TNFα has been reported to be elevated in the synovial membrane, synovial fluid, 

subchondral bone and cartilage, in OA compared to non-OA individuals [162, 183-

187].  Stimulation of porcine metacarpal articular cartilage with TNFα has been 

shown to reduce proteoglycan synthesis and collagen type II synthesis [188, 189].  In 

rodent models of traumatic joint injury, expression of TNFα is induced [190] and 

correlates to joint space narrowing (JSN) [191]. Furthermore, overproduction of TNFα 

induces NO production [192, 193], aggrecanase ADAMTS4 [194],  and the 

expression of MMPs -1, -3 and -13 [195], whilst TNFα receptor antagonists block NO 

production in ex vivo human cartilage tissue [196].  Elevated secretion of IL1β and 

TNFα in OA chondrocytes, osteoblasts and adipocytes is known to promote an 

increase in IL6 expression and secretion [169, 197-199].   

IL6 signalling requires binding to either the membrane-bound or soluble form of IL 

receptor (mIL6-R and sIL6-R respectively), and complexed with either the 

membrane-bound or soluble receptor β-subunit gp130 (mgp130 and sgp130 

respectively) [200, 201].  Binding of the IL6 ligand to IL6R complexed with the 

sgp130 form inhibits the signalling of the IL6 pathway, however binding of the IL6 

ligand to IL6R complexed with mgp130 leads to signal transduction to the cell and 
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subsequent STAT3 activation, MAPK phosphorylation, and PI3K/AKT pathway 

activation [202, 203].   

Both IL6 and s-IL6R  have  been shown to be up-regulated in synovial fluid and 

serum from OA patients, compared to individuals without OA [204].  However, the 

role of IL6 in OA has remained controversial in current literature.  While some 

literature suggests that IL6 plays a synergistic role to IL1β and TNFα through 

reduced collagen synthesis and increased matrix degradation enzyme expression 

[205, 206], other studies have demonstrated a protective role of IL6 in cartilage 

health.  In particular, IL6 KO mice demonstrated advanced degenerative joint disease 

when compared to their WT littermates [207].   

 

1.5 Metzincins and OA 

The metzincin family consists of several groups of calcium and zinc-dependent, 

enzymatic proteins responsible for regulating cellular and extracellular matrix 

interactions.  The most notable groups of enzymes secreted by cells within the joint 

and implicated in OA disease progression are the matrix metalloproteinases (MMPs) 

and the disintegrin metalloproteinase with thrombospondin type I like repeats 

(ADAMTSs) [208]. 

 

1.5.1 MMPs and OA 

MMPs are a group of enzymes able to cleave proteins encompassed within the 

extracellular matrix.  These proteases were first discovered by Gross and Lapiere 
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(1962) where they demonstrated secreted collagenase activity from metamorphosing 

tadpole tail cultures [209].   

MMPs are classified into either secreted, or membrane anchored MMPs and further 

sub-classified into substrate specificities including collagenases (MMP-1, -3, -13 and 

-18), gelatinases (MMP-2 and MMP-9), matrilysins (MMP-7 and MMP-26), 

metalloelastase (MMP-12), stromelysins (MMP-3, -10, and -11) and membrane 

anchored (MMP-14, -15, -16, -17, -24, and -25), with further unclassified MMPs [210].   

MMPs have been identified as a major contributor to the catalytic breakdown of 

cartilage in OA [211, 212].  In particular, MMP-1, -3, -9 and -13 mRNA have been 

detected in human OA cartilage [212, 213], and a subsequent increase in type II 

collagen breakdown in areas of increased collagenase protein expression [214].  

Recently, evidence has implicated chondrocytes, and their dynamic response to pro-

inflammatory cytokines, in mediating MMP expression [215-217] however little is 

known with regards to how adipokines may alter MMP expression, and which MMPs 

will be modulated. 

 

1.5.2 ADAMTSs and OA 

Proteoglycans are highly glycosylated proteins which provide the viscoelastic 

properties to cartilage through their highly negative charge and thus the ability to hold 

large amounts of water molecules within the cartilage tissue [176].  Aggrecan is one 

of the major proteoglycan molecules found in cartilage [218], and is one of the first 

proteins in cartilage to be modulated and degraded prior to cartilage volume loss 

[219]. 
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ADAMTSs are the main enzyme family responsible for cleavage of the aggrecan 

molecule during early onset of OA.  In OA cartilage and synovial fluid, cleavage 

fragments of aggrecan and its associated core protein have been detected [220].  

While there are 19 members of the ADAMTS family, 5 have been demonstrated to 

play a functional role in cartilage degradation [221-223].  However, of these 5, 

ADAMTS4 and ADAMTS5 have received the most attention.  For example, it has 

been previously reported that ADAMTS4 and ADAMTS5 siRNA-mediated gene 

silencing in human cartilage tissue was shown to ablate cytokine stimulated 

aggrecan loss [224]. Furthermore, deletion of ADAMTS4 and 5 expression in animal 

models have demonstrated a reduction in proteoglycan degradation and OA severity 

[225-227].  

 

1.6 OA risk factors 

Risk factors associated with the progression of OA can be divided into genetic, 

systemic, or mechanical factors.  The genetic risk of OA development is quite 

complex as it does not follow the pattern of Mendelian inheritance [228] however 

systemic factors such as age and obesity, and mechanical factors including acute 

injury, are much more established.  Historically, increased mechanical stress was 

considered the fundamental cause of higher prevalence of OA in obese individuals, 

due to chondrocytes responding to mechanical loads with increased MMP and 

aggrecanase expression.  However, more recently this view has been challenged, 

due in part to the recognition that OA is a disease of the whole joint, but also 

because of our increasing understanding of adipose tissue as an endocrine organ 

and the distal inflammatory effects attributed to adipose-secreted cytokines and 

associated “metabolic syndrome” disorders. 
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1.6.1 Gender and OA 

Gender is identified as a significant risk factor of OA.  Indeed, the prevalence of hip 

and knee OA in the female population is higher than that of males (13% vs. 8%, and 

20% vs 17% respectively) [229].  Furthermore, the prevalence of erosive and 

symptomatic hand OA is much higher in females compared to their age matched 

male counterparts (9.9% vs. 3.3% and 15.9% vs. 8.2%) [230].  

Notably, there are several previous studies that are indicative of sexual dimorphism 

in hip OA.  In particular, Maillefert and colleagues (2003) performed a longitudinal 

prospective follow-up study in a large cohort of patients, and found that females 

exhibited a greater incidence of poly-articular OA, and had more rapid structural 

progression with a more severe symptomatic disease [231].  Currently, the 

mechanism for the sexual dimorphism apparent in OA is not established.  However, 

importantly, the higher incidence of multi-joint OA in females with hip OA suggests a 

potential systemic driver of OA which may not be present (to the same degree) in 

males [231].  Thus hormonal factors have been suggested to play a role in the sexual 

dimorphism seen in hip OA.  For example, in 2006, researchers demonstrated a 

lower prevalence of hip OA in females on hormone replacement therapy (HRT) [232].  

However, research into this area remains limited, and other researchers have found 

HRT ineffective in preventing OA associated knee pain [233].  

Another factor that may explain the sexual dimorphism in OA is obesity, which is a 

known risk factor for OA (Figure 1.9).  Indeed, it has been reported that the 

association between central adiposity and hip OA is stronger in females than in 

males [234], indicative of a gender difference in the metabolic/obesity-related risk of 

OA.  
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Figure 1.9.  UK percentage prevalence of hip OA (total) in males and females of 

different BMIs.   

UW=underweight; NW=normal weight; OW=overweight; OB=obese [229]. 

 

1.6.2 Obesity and OA 

For many years, obesity (BMI>30kg/m2) has been recognised as a significant risk 

factor of OA.  In fact, in 1988 the National Health and Nutrition Examination Survey 

(HANES I) concluded that obese females were nearly four times more likely to 

experience OA symptoms than non-obese females, and male obese individuals were 

nearly five times more likely to develop OA symptoms than their normal weight 

counterparts [235]. 
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Intuitively, early reports investigating how obesity correlates with the prevalence of 

OA focused upon the increased mechanical loading on the joint, and thus the 

destruction of the extracellular matrix of articular cartilage [236].  However, there has 

since been significant evidence to suggest a systemic inflammatory effect of obesity, 

for example the increased prevalence of hand OA [237], a non-weight bearing joint 

and thus not subjected to increased mechanical load.  In addition, loss of adiposity, 

as opposed to loss of body weight, is associated with the relief of OA symptoms 

[238], concluding that metabolic dysfunction and inflammation require further 

investigation. 

Importantly, white adipose tissue (WAT) is no longer considered merely an energy 

storage tissue, but instead is defined as a dynamic endocrine organ that maintains 

energy, and inflammatory and insulin-sensitivity homeostasis. Ouchi and colleagues 

confirmed that adipose tissue secreted cytokines termed ‘adipokines’ which 

contribute to the low-level pro-inflammatory state seen commonly in obese 

individuals [28, 29, 239].   

Secreted into the circulation (although not always exclusively derived from adipose 

tissue), it is not surprising that adipokine serum profiles  generally correlate with body 

fat mass, and are often associated with anthropometric measures such as BMI and 

W:H ratio.  Furthermore, studies have demonstrated a “normalization” of adipokine 

profiles following weight loss which is associated with the normalization of metabolic 

indices, suggestive of adipokines being key mediators of metabolic health [31-33].  

Thus, adipokines have been mechanistically linked to metabolic syndrome disorders 

[27], and have provided a metabolic link between obesity and osteoarthritis.   
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1.7 Adipokines and osteoarthritis 

Several hundred adipokines have so far been identified, [30], and in the last 10 

years, their role in relation to OA joint pathophysiology has received much attention 

[28].  A number of adipokines have been implicated in connecting obesity, 

osteoarthritis and inflammation.  This thesis will detail the key adipokines that have 

been investigated in joint degradation, namely adiponectin, leptin, visfatin, and 

resistin. 

 

1.7.1 Adiponectin and Osteoarthritis 

Adiponectin, or AdipoQ, constitutes approximately 0.01% of the total circulating 

plasma proteins [240].  It is synthesised by adipose tissue, and exerts its mechanism 

by binding to two known receptors: AdipoR1 and AdipoR2.  Adiponectin exhibits 

insulin sensitizing properties while also regulating glucose and fatty acid metabolism 

via the activation of AMPK, Ca2+, and PPAR-α transduction pathways [241, 242]. 

It is known that serum adiponectin concentrations are inversely correlated with body 

weight.  However, the specific role of adiponectin in OA disease progression remains 

unclear.  For example, Chen et al., suggested that adiponectin plays a protective role 

in maintaining cartilage integrity due to a marked increase in Tissue Inhibitor of 

Metalloproteinase-2 (TIMP-2), and a down-regulation of the pro-degradative MMP-13 

at both the mRNA and protein level [243].  Conversely, Lago and colleagues (2008)  

demonstrated an increase in pro-inflammatory cytokine and MMP production (namely 

IL6, MMP-3, MMP-13 and MCP-1) following the stimulation of chondrocytes with 

adiponectin [244], and Kang et al., (2010) reported an increase in collagen type II 

neopeptide following stimulation of cartilage explants [245].  Moreover, Filkova et al., 
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(2009) found higher adiponectin expression levels in erosive hand OA when 

compared with non-erosive hand OA, which the authors suggest could indicate an 

ECM degradative role of adiponectin [246]. 

De Boer et al., (2012) found that circulatory levels of adiponectin were markedly 

increased in end-stage OA patients, when compared with a control population 

without signs of OA [247].  Furthermore, adiponectin was negatively associated with 

BMI in female patients, and showed a trend towards correlating with synovial joint 

inflammation.  The authors therefore suggested that adiponectin may play an 

important role in the development of inflammation within the OA joint.  

 

1.7.2 Leptin and Osteoarthritis 

Originally discovered in white adipocytes, leptin is a 16kDa protein product of the ob 

gene, which is known to regulate energy metabolism and appetite suppression [248].  

In obese individuals, circulating levels of leptin and its soluble receptor (s-Ob-R) are 

known to be increased [249].  In OA, higher circulatory concentrations of leptin have 

been observed in individuals with OA, when compared to non-OA controls [250-252].  

However, the role of leptin and its receptor requires further elucidation, since both 

protective and disease-promoting effects of leptin have been reported.  For example, 

exogenous injections of leptin into the knee joint of rats increased the expression of 

the insulin-like growth factor (IGF-1), and transforming growth factor-β (TGF-β) [253], 

suggesting that leptin performs a protective role in OA disease progression.  In 

addition, Dumond et al., (2003) demonstrated an increase in chondrocyte 

proliferation, and increased proteoglycan and collagen synthesis in the presence of 

leptin [253].   
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In contrast, using isolated primary human chondrocytes, Hui et al., (2013) discovered 

that leptin alone, and in synergy with IL1β, induced the expression of MMP-1 and 

MMP-13 with activation of p38, ERK, PI3K and Akt pathways [254]. Furthermore, 

through the use of selective inhibitors of the aforementioned transduction pathways, 

Hui et al., demonstrated a decrease in cartilage collagen release, typically induced by 

leptin.  Leptin has also been demonstrated to increase the production of multiple 

inflammatory mediators including IL1β, IL6, IL8 and prostaglandin E2 [255], a major 

contributor to inflammatory pain.  In rats, Bao et al., (2009) demonstrated an increase 

in gene expression of ADAMTS-4 and ADAMTS-5 aggrecanases following 

exogenous leptin treatment [256]. 

It has been proposed that leptin per se is detrimental to cartilage; however recent 

evidence suggests the effect of leptin may be more complex.  Berry et al., found 

sOB-Rb to be associated with a reduction in the cartilage synthesis biomarker 

PIIANP, an increased cartilage defect score, and cartilage volume loss [257].  This 

suggests a biphasic response whereby at lower concentrations, leptin assumes a 

protective role over cartilage degradation, and excess levels have a detrimental 

effect.  In short, leptin may both synthesise and degrade articular cartilage, thus 

further understanding into the mechanism of leptin in OA disease progression is 

warranted.  

 

1.7.3 Resistin and Osteoarthritis 

As its name alludes to, the dimeric protein resistin was first recognised as inducing 

murine insulin resistance [258] and belongs to the FIZZ (or Found in inflammatory 

zone) family of proteins.  In recent years, resistin has received growing interest, 

particularly for its role in the inflammatory response in tissues including the heart, 
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lungs, neutrophils and synovium.  In reference to OA, Bokarewa and colleagues 

[259] demonstrated that intra-articular administration of recombinant resistin into 

mouse joints, resulted in degeneration of cartilage and  the induction of pro-

inflammatory cytokine release (IL1, IL6 and TNFα).  Furthermore, resistin could be 

detected in the local environment of inflamed joints. 

Ex-vivo experiments have also found recombinant resistin exhibits pro-inflammatory 

qualities.  Lee et al., (2009) discovered that stimulation of human cartilage explants 

with recombinant resistin inhibited proteoglycan synthesis [260].  In addition, mouse 

femoral head cultures had increased PGE2 production and proteoglycan degradation 

following treatment with recombinant resistin [260].  However, these experiments 

were conducted using an injury-induced OA model, which may induce alternate 

signalling mechanisms as those differentially regulated in obesity-induced OA. 

Several studies on the association between the incidence of OA and circulatory 

levels of resistin have been reported.  However these studies are not in agreement, 

with some authors reporting elevation of resistin with OA, whilst other studies have 

either shown no association or an inverse relationship [261-264].  Furthermore, a 

study by Gomez et al., (2009) found no association between resistin serum levels 

and cartilage volume loss [265].  

 

1.7.4 Visfatin/NAMPT and Osteoarthritis 

Visfatin is a highly conserved protein which is expressed throughout many tissue 

types.  Originally defined as a pre-B cell colony enhancing factor [266], visfatin has 

received great attention in recent years for numerous potential roles, including; 

catalysing the conversion of nicotinamide and phosphoribosyl-pyrophosphates to 

nicotinamide mononucleotide [267], an insulin mimetic [268] and growth factor [269], 
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and as an inflammatory cytokine able to induce TNFα, IL6 and IL1β [270].  

Interestingly, the original paper defining visfatin and an insulin mimetic through 

binding and activating the insulin receptor and lowering plasma glucose levels in 

mice [268] has since been retracted due to the inability of other laboratories to repeat 

this finding.  

 

Visfatin is termed an ‘adipokine-enzyme’ due to its enzymatic nature when in a 

homodimeric conformation [271], and is secreted independently from the golgi 

apparatus and the endoplasmic reticulum from visceral adipose tissue [272].   

As a secreted protein, visfatin exists in an intracellular (iVisfatin) and extracellular 

(eVisfatin) form.  eVisfatin has received a lot of attention in the current literature due 

to elevated expression and its potential contribution to a number of pathological 

conditions associated with ageing including diabetes [273] and obesity [274-277].  

Although the biosynthesis of nicotinamide adenine dinucleotide is well established as 

one of the functional roles of iVisfatin, the pathophysiological relevance and the 

functional consequence of elevated levels of eVisfatin in disease states remains 

unknown.  This is further impacted by the current limited understanding of the signal 

transduction mechanism for eVisfatin, since a visfatin receptor has not yet been 

identified (Figure 1.10).   
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Figure 1.10.  Potential roles of iVisfatin and eVisfatin in mammalian cells. As a 

secreted protein, visfatin exists in an intracellular (iVisfatin) and extracellular 

(eVisfatin) form.  

 iVisfatin, as shown in red, is integral to NAD biosynthesis however there is some 

suggestion that iVisfatin may also stimulate proinflammatory cytokine production, 

though the mechanisms are so far unknown.  Alternatively, eVisfatin may drive 

proinflammation in articular cartilage, however the cellular entry and signal 

transduction of visfatin is so far unknown.  

 

Studies by Gosset et al., (2008) suggest that visfatin plays a role in mediating human 

articular cartilage degradation (Figure 1.11) [278].  Firstly, visfatin expression was 

increased in human chondrocytes upon stimulation with IL1β.  Visfatin was also 

deemed by the authors to be a potent inducer of PGE2 production, through increased 

mPGES-1 and decreased 15-PGDH synthesis.  Furthermore, treatment of human 
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chondrocytes with recombinant visfatin led to an increased expression of several 

matrix proteases including MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and 

decreased aggrecan mRNA expression. 

 

 

Figure 1.11 Gosset et al., (2008) demonstrate the hypothetical role of visfatin in 

driving the pro-inflammatory and catabolic pathogenesis of OA though the 

synthesis of MMPs aggrecanases, and PGE2.   

Gosset et al., (2008) noted an increase in visfatin expression in human chondrocytes 

upon stimulation with IL1β which subsequently induced PGE2 production and several 

matrix proteases including MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5. 
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The notion that visfatin may be a catabolic mediator of OA disease progression  was 

further supported by Laiguillon et al., (2014) who examined human tissular visfatin 

expression and activity in relation to OA.  Of note, all tissues within the OA joint 

(synovium, subchondral bone, and cartilage) expressed and secreted visfatin in its 

enzymatically active form, with significantly higher quantities from the synovium [271].  

Following recombinant visfatin stimulation, OA chondrocytes and osteoblasts 

significantly increased expression of IL6, MCP-1, and keratinocyte chemoattractant.  

This effect however was blocked with pre-treatment with FK866, a pharmacologic 

NAMPT competitive inhibitor which binds to the active site of a visfatin homodimer.  

However, neither the expression of visfatin across different OA patient cohorts (of 

varying BMI) nor its functional effect on human articular cartilage has been reported. 

 

1.8 Hypothesis 

Growing evidence would suggest that adipokines provide a systemic functional link 

between obesity and the increased prevalence of multi-joint OA.  However, functional 

studies using intact human hip cartilage and bone tissue to determine the role of 

adipokines in mediating OA pathology are currently lacking.  In particular, no studies 

have reported the functional role of adipokines on cartilage and bone tissue from 

patients with hip OA.  Furthermore, no studies have reported on the joint tissue 

expression and serum profile of adipokines in patients with hip OA, or how this differs 

with gender and varying adiposity.   

 

1.9 Aims of this thesis 

The aims of this thesis are therefore; 
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(1) To determine how the expression profile of adipokines in the serum and joint 

tissues in patients with hip OA varies with joint damage severity and the degree of 

adiposity. 

(2)  To determine the relationship between adipokine expression and markers of joint 

remodelling and severity in patients with hip OA. 

(3) To determine the functional roles of various adipokines in modulating hip cartilage 

and bone OA pathology using human ex vivo tissue and primary cells. 

(4) To understand the signalling mechanisms surrounding adipokine stimulation and 

cartilage and bone deformations in human OA tissue. 

 

Ultimately, determining the functional role of adipokines in hip OA pathology, and 

profiling their expression in the serum and joint tissue across different hip OA patient 

populations could lead to the identification of a patient group amenable to an 

adipokine-targeted therapeutic. 
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2.1 Ethical Approval 

Ethical approval was granted by the University of Birmingham, UK Research Ethics 

committee (NRES RG_13-148; NRES ES-14-1044).  Participants were recruited on a 

volunteer basis, after being fully-informed of the study requirements by the clinical 

research staff of collaborating hospitals.  Hip OA and knee OA samples were 

obtained from patients with age 45-80 years undergoing elective total hip joint 

replacement surgery (K and L grade 3-4) at The Royal Orthopaedic Hospital, 

Birmingham (UK) or the Russell Halls Hospital, Dudley (UK).  Non-OA samples were 

obtained from neck of femur fracture (NOF#) patients who were also undergoing total 

hip replacement or hemiarthroplasty. All patients provided informed consent prior to 

sample collection.  Patients who exhibited secondary causes of OA were excluded 

from this study.  Secondary causes for patients with hip OA include, but are not 

limited to; developmental dysplasia, avascular necrosis, Perthes disease, slipped 

upper femoral epiphysis, and previous acetabular or femoral neck fractures.  

Secondary causes of knee OA include malalignment due to a previous knee, tibia, or 

femur fracture, significant ligament injury and avascular necrosis.  Secondary causes 

of OA were determined through the use of radiographic x-rays taken during the pre-

operative consultation.  NOF# patients were excluded from this study if they exhibited 

any of the following: Presence of inflammatory arthritis, evidence of hand 

osteoarthritis, or evidence of knee or hip OA.   All patients receiving/received 

immunosuppressive therapy for inflammatory conditions or cancer, oral steroid 

treatment, and patients who have received an intra-articular steroid injection within 6 

months were also excluded from this study. 
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2.2 Pre-operative consultation and blood sample collection 

During the pre-operative consultation a history of the patient’s previous and current 

occupations and injuries were recorded to control for any mechanical stress that 

could have contributed to the development of OA.  Participant’s hands were 

inspected for evidence of hand OA and blood pressure was determined.   

Patients removed heavy clothing and footwear for anthropometric data collection.  

Weight and body composition were recorded using Tanita Bioimpedance scales (BC-

420MA, Amsterdam, NL) to the nearest 0.1kg, and height was recorded to the 

nearest 1.0cm using a stadiometer.  BMIs were calculated by dividing weight (kg) by 

height (m) squared.  As a marker of central adiposity, waist:hip ratios (WHR) were 

calculated by measuring the circumference of the narrowest part of the torso as 

viewed from the anterior aspect, and dividing by the circumference of the widest part 

of the buttocks above the gluteal fold, using a tape measure. 

Fasted blood samples were collected in a vacutainer containing a clot activator by a 

qualified phlebotomist.  Blood samples were centrifuged at 3000xg for 10 min, and 

serum samples aliquoted into cryovials and stored in a -80°C freezer. 

 

2.3 Primary Cell Culture 

For the isolation of human primary hip chondrocytes, articular cartilage was excised 

from the femoral head subchondral bone using a sterile scalpel blade. Excised 

cartilage slices were digested in 2mg/mL, sterile filtered collagenase Clostridium 

Histolyticum, Type 1A (Sigma Aldrich, USA), for 4 hrs at 37°C on a rotator.  The 

cartilage-collagenase solution was strained using a 70µm cell strainer and 
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centrifuged at 400xG for 5 min.  The cell pellet was washed in primary chondrocyte 

growth media (section 2.3.1), plated, and incubated in a humidified atmosphere of 

37°C and 5% CO2 in chondrocyte growth media.   

For human primary hip osteoblast cultures, subchondral bone chips were cut from 

the femoral head using a Friedman Rongeur, and washed three times in DMEM 

(section 2.3.1) containing 100U/mL penicillin streptomycin to remove excess fat, 

blood, marrow, and connective tissue. Small bone chips (~<3mm3) were placed into a 

25cm2 vented flask with osteoblast differentiation media (section 2.3.1).  Bone chips 

were cultured in a humidified atmosphere of 37°C and 5% CO2 and left for 5 days 

before the initial media change.  Following 5 days, differentiation media was changed 

every 3 days, and bone chips were removed once primary osteoblast cell coverage 

reached approximately 30% confluency.   

For human synovial fibroblasts, synovium tissue was washed and diced into 

approximately 2mm squares.  Three pieces of synovium tissue were added to a 

25cm2 vented flask and incubated in synovial fibroblast media in a humidified 

atmosphere of 37°C and 5% CO2. Media was changed every 3 days, and synovium 

samples were removed from the flasks when cell outgrowth reached approximately 

40% confluency.   

To maintain the phenotype of human primary cells as much as possible, cultures 

were maintained for a maximum of 5 passages. To passage, adherent cells were 

washed with sterile phosphate buffered saline (PBS), coated with Trypsin-EDTA 

(0.25%, phenol red) and incubated in humidified atmosphere of 37°C and 5% CO2 for 

5-15 min until cells had detached.  Trypsin was then inhibited with the addition of 

growth media, and cells were passaged, cryogenically stored, or counted using a 
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Countess II (ThermoFisher, USA) and plated in a known cell density for experimental 

use. 

To cryogenically store primary chondrocytes and primary osteoblasts, trypsinized 

cells were centrifuged at 400xG for 5 min.  Cells were resuspended in 1mL/cryovial of 

Cryo-SFM (Promo-Cell, Germany), placed in a cell freezing container (Nalgene®, Mr 

Frosty, Thermo Scientific, USA) and stored in a -80°C freezer for 24 hours to achieve 

the -1°C cooling rate.  For long-term storage, cells were transferred to liquid nitrogen 

(LN2). 

 

2.3.1 Cell Culture Media 

Primary chondrocyte growth media 

Dulbecco’s Modified Eagle Medium (DMEM) – High Glucose (D6546, Sigma, USA) 

10% Fetal Bovine Serum (FBS), qualified E.U. –approved, South America origin 

(10270106, GIBCO, UK) 

100 Units/mL Penicillin/streptomycin (15070-063, GIBCO, UK). 

 2mM L-Glutamine, G7513 (Sigma, USA) 

1% Minimum Essential Medium (MEM) Non-essential amino acids, (11140050, 

GIBCO, UK). 

 

Primary chondrocytes stimulation media 

Dulbecco’s Modified Eagle Medium (DMEM) – High Glucose (D6546, Sigma, USA) 

0.1% Fetal Bovine Serum (FBS), qualified E.U. –approved, South America origin 

(10270106, GIBCO, UK) 

100 Units/mL Penicillin/streptomycin (15070-063, GIBCO, UK). 

 2mM L-Glutamine, G7513 (Sigma, USA) 
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1% Minimum Essential Medium (MEM) Non-essential amino acids, (11140050, 

GIBCO, UK). 

 

Primary Osteoblast Differentiation Media 

Dulbecco’s Modified Eagle Medium (DMEM) – High Glucose (D6546, Sigma, USA) 

10% Fetal Bovine Serum (FBS), qualified E.U. –approved, South America origin 

(10270106, GIBCO, UK) 

100 Units/mL Penicillin/streptomycin (15070-063, GIBCO, UK). 

 2mM L-Glutamine, G7513 (Sigma, USA) 

1% Minimum Essential Medium (MEM) Non-essential amino acids, (11140050, 

GIBCO, UK). 

β-glycerophosphate disodium salt hydrate (2mM), (G9422, Sigma, USA). 

L-Ascorbic acid (50µg/ml), (A4403, Sigma, USA). 

 Dexamethasone (10nM), (D4902, Sigma, USA) 

 

Primary osteoblast stimulation media 

Dulbecco’s Modified Eagle Medium (DMEM) – High Glucose (D6546, Sigma, USA) 

0.1% Fetal Bovine Serum (FBS), qualified E.U. –approved, South America origin 

(10270106, GIBCO, UK) 

100 Units/mL Penicillin/streptomycin (15070-063, GIBCO, UK). 

 2mM L-Glutamine, (G7513, Sigma, USA). 

1% Minimum Essential Medium (MEM) Non-essential amino acids, (11140050, 

GIBCO, UK). 

β-glycerophosphate disodium salt hydrate (2mM), (G9422, Sigma, USA). 

L-Ascorbic acid (50µg/ml) (A4403, Sigma, USA). 
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 Dexamethasone (10nM) (D4902, Sigma, USA) 

 

Synovial fibroblast growth media 

Roswell Park Memorial Institute-1640 (RPMI-1640) medium (R0883, Sigma, USA). 

10% Fetal Bovine Serum (FBS), qualified E.U. –approved, South America origin 

(10270106, GIBCO, UK) 

100 Units/mL Penicillin/streptomycin (15070-063, GIBCO, UK). 

 2mM L-Glutamine, G7513 (Sigma, USA) 

1% Minimum Essential Medium (MEM) Non-essential amino acids, (11140050, 

GIBCO, UK). 

1% Sodium Pyruvate (100nM, S8636, Sigma, USA). 

 

2.4 Explants  

Full-thickness hip articular cartilage was excised from the femoral head using a 

sterile scalpel. Explants of 3mm diameter were cut using a cork-borer from the 

articular cartilage, and placed into a 96 well tissue culture plate containing 

chondrocyte growth media (section 2.3.1).  Explants were cultured for at least 1 week 

prior to their experimental use to prevent bias from cutting, and media was changed 

every 3 days.  Human femoral head subchondral bone chips were also cultured in 

24-well plates for adipokine stimulation, with each well containing a matched bone 

weight. 
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Figure 2.1: Explants of articular cartilage cut using a cork borer and cultured in 

a 96 well plate in chondrocyte growth media.   

The white dashed arrows show the location of the cartilage explants within the well. 

 

2.5 Tissue protein preps 

Joint tissue including cartilage, synovium, and subchondral bone was isolated from 

the femoral heads, diced, and frozen in LN2 for long-term storage.  For protein 

preparation, joint tissue was powdered using a Spex Sample Prep 6770 Freezer mill 

(Stanmore, UK) following a protocol of 1min pre-cooling and a 50 sec cycle of 15 

counts per second.  Frozen powdered cartilage and synovium tissue was re-

suspended in RIPA buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium 

deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) containing protease inhibitor cocktail 

(PIC) and homogenized on ice for 1 min using a TissueRuptor (QIAGEN).  Frozen 

powdered bone tissue was resuspended in Urea lysis buffer (8M Urea, 2M Thiorurea, 

5% SDS, 50mM Tris pH 7) containing PIC and homogenized for 1 min on ice, and 
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then sonicated for 1 min in 10 sec pulses at 70% magnitude using a Vibracell 

sonicator (Sonics, USA).  

Following homogenization, samples were centrifuged for 20 min at 16900xg at 4°C.  

The supernatant was aliquoted and stored at -80°C.  Samples resuspended in RIPA 

buffer were quantified using the standard bicinchoninic acid assay (BCA) assay 

protocol (Pierce, UK). Samples resuspended in Urea lysis buffer were quantified 

using the standard QUBIT protein assay kit (Thermo Scientific, UK). 

To denature proteins for western blotting, samples were diluted in sterile H2O and 4x 

laemmli sample buffer (8% SDS, 20% β-mercaptoethanol, 40% glycerol, 0.008% 

bromophenol blue, 0.25M Tris HCl, pH6.8) and heated at 100°C for 5 min. 

 

2.6 Western Blotting 

Following protein sample preparation, samples were then loaded on to a 16% 

(Resistin) or 12% (all other proteins) SDS PAGE gel, along with a molecular weight 

marker (Biorad, UK).  The gels were run at 150 volts for between 1.5 to 2 hr, and 

then transferred to methanol activated 0.45µ polyvinylidene difluoride (PVDF, Biorad, 

UK) membrane for 1.5 hr.  Following the transfer, specific binding was blocked 

through the incubation of the PVDF membrane in 3% bovine serum albumin 

(BSA)/TBS-T (Tris-buffered saline+0.1% tween 20 (Sigma USA)) for 1 hr at RT on 

the orbital shaker.  Primary antibody incubation was performed overnight in 3% 

BSA/TBS-T at 4°C.  The primary antibodies used within this study are listed in Table 

2.1.  Following primary antibody incubation, the PVDF membrane was washed 3x5 

min washes in TBS-T before incubation with the secondary antibody for 1 hr at RT.  

The secondary antibodies used for western blotting within this study are stated in 

Table 2.2. Following 3x5 min washes in TBST, blots were incubated in enhanced 
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chemiluminescence (ECL) solution (ECL Prime, Amersham, USA) for 3 min, and 

visualised using the BioRad ChemiDoc technology (BioRad). 

Table 2.1. Primary antibodies 

Target Species Dilution Clone/ 

reference 

Purification Company 

α-Leptin Rabbit 1:1000 PA1-052 Affinity Purified Pierce, UK 

α-Adiponectin Rabbit 1:1000 PA1-054 Affinity Purified Pierce, UK 

α-Visfatin Rabbit 1:5000 PA1-1045 Affinity Purified Pierce, UK 

α-Leptin Receptor Rabbit 1:1000 PA1-053 Affinity Purified Pierce, UK 

α-Resistin Rabbit 1:4000 PA1-1049 Affinity Purified Pierce, UK 

α-Nucleobindin-2 Rabbit 1:1000 PA5-34526 Affinity Purified Pierce, UK 

α-Chemerin Mouse 1:1000 Ab72965 Affinity Purified Abcam, UK 

α-Actin Mouse 1:2000 AC-40 Ascites fluid Sigma, USA 

 

Table 2.2. Secondary antibodies 

Target Species Dilution 
Clone/ 

reference 
Purification Type Company 

α-

mouse 

IgG 

Sheep 1:10000 NA931V Purified 

Horse 

radish 

peroxidase 

(HRP) 

NEB (USA) 

α-

Rabbit 

IgG 

Sheep 1:10000 NA9340V Purified HRP NEB (USA) 
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To confirm equal loading of proteins, PVDF membranes were stripped with a harsh 

stripping buffer (0.8% 2-mercaptoethanol, 0.5% SDS, 62.5mM Tris HCl pH6.8).  

Membranes were incubated in harsh stripping buffer at 50°C for 30 min with gentle 

agitation, and then washed in 3x5min TBS-T.  Following the washes, the membrane 

was blocked in 3% BSA/TBS-T for 1 hr at RT, and primary antibody incubation was 

repeated with α-actin. 

 

2.7 Recombinant protein 

Unless otherwise stated, the properties of the recombinant proteins are stated in 

Table 2.3.  Where possible, the same batch of recombinant protein was aliquoted 

and utilised for all experiments detailed in this thesis (leptin and EGFR).  When it was 

not possible to use the same batch throughout all the experiments, the activity of 

each batch was compared by stimulating human primary chondrocyte cells and 

measuring IL6 secretion (resistin, visfatin, and IL1β).  Prior to stimulation, cells and 

explants were cultured in primary chondrocyte or primary osteoblast stimulation 

media for 1hr in a humidified atmosphere of 37°C in 5% CO2.  Recombinant proteins 

were diluted in primary chondrocyte or primary osteoblast stimulation media and 

added to cells or explants for 24 hr unless otherwise stated.  Following the 24 hr 

stimulation, media supernatant was removed and aliquoted for subsequent 

cytokine/chemokine analysis, and explants were snap frozen.  Cells were then either 

harvested for subsequent RNA or protein analysis. 

 

 



Page | 60 
 

Table 2.3 Recombinant proteins used in this study 

rProtein Source Concentration Sequence Company 
Catalogue 

Number 

Resistin E.Coli 500ng/mL 
Full length (aa 15-

110) 

Cambridge 

Bioscience 

GFH107-

25 

Visfatin E.Coli 500ng/mL 

Full length (aa 1-

491) and N-term 

His-Tag 

Cambridge 

Bioscience 
4907-50 

Leptin E.Coli 100ng/mL 
Full length (aa 1-

146) 

Cambridge 

Bioscience 

GFH37-

1000 

IL1β E.Coli 1ng/mL 
Unknown (153 aa 

residues) 
Sigma 

I9401-

5UG 

EGFR E.Coli 2.5ug/mL 
Unknown (53 aa 

residues) 

Cambridge 

Bioscience 

228-

10360-2 

 

 

2.8 Adipokine, cytokine and chemokine Luminex 

To determine cytokine and chemokine concentrations in serum and synovial fluids, 

multiplex technology (Luminex® Screening Assay, R&D Systems) was performed. In 

the case of synovial fluid samples, in order to improve intra-assay variation, samples 

were treated with 2mg/mL hyaluronidase as previously described by Jaydev et al., 

(2012).  Thus, synovial fluid samples were diluted 1:1 in 4mg/mL hyaluronidase for 

1hr at RT on a shaker.  Following incubation, samples were centrifuged at 1000 g for 

5 min, and the resulting hyaluronidase-treated supernatant was used for the assay. 
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Multi-plex analysis was performed according to the manufacturer’s instructions.  In 

brief, 50 µl of a 1x antibody magnetic bead stock ((Adipokine; limit of detection 

(LOD), intra-assay variation (%)) Adiponectin; 148pg/mL, 10.32%, Serpin E1; 

0.67pg/mL, 17.2%, Aggrecan; 249pg/mL, 5.12%, Amphiregulin; 131pg/mL, 11.62%, 

CCL11; 14.6pg/mL, 5.98%, CCL2; 9.9pg/mL, 9.6%, CCL3; 16.2pg/mL, 9.33%, 

CCL20; 3.39pg/mL, 10.01%, Chemerin; 69pg/mL, 9.68%, CXCL10; 1.18pg/mL, 

6.99%, Dkk1; 50.9pg/mL, 5.78%, Galectin-1; 632pg/mL, 6%, gp130; 11.2pg/mL, 

13.34%, IL1β; 0.8pg/mL, 7.5%, IL10; 1.6pg/mL, 11.53%, IL15; 1.01pg/mL, 12.76%, 

IL7; 0.41pg/mL, 14.42%, Visfatin; 2243pg/mL, 4.24%, TNFα; 1.2pg/mL, 8.04%, 

Galectin-3; 1.68pg/mL, 12.4%, IL6; 1.6pg/mL, 5.66%, CCL4; 5.8pg/mL, 9.43%, 

FABP4; 95.7pg/mL, 9.08%, LIF; 9.31pg/mL, 14.14%, Leptin; 10.2pg/mL, 11.94%, 

Resistin; 3.04pg/mL, 8.25%, and MMP-1; 35pg/mL, 8.7%, -2; 450pg/mL, 7.9%, -3; 

116pg/mL, 6.0%, -7; 5.4pg/mL, 7.0%, -8; 1.5pg/mL, 6.1%, -9; 24pg/mL, 5.0%, -10; 

1.6pg/mL, 6.1%, -12; 1.0pg/mL, 7.9%, -13; 4.9pg/mL, 5.0%) was added to each well 

of a 96 well plate. 50 µl of standard solution or pre-diluted serum or hyaluronidase-

treated synovial fluid was then added to relevant wells and the plate was sealed with 

foil and incubated for 2 hr at RT on an orbital shaker (speed 800±50 rpm). Post 

incubation, the plate was washed 3x with wash buffer and 50 µl of a biotinylated 

antibody added to all wells. Following a 1 hr incubation at RT on an orbital shaker 

(speed 800±50 rpm), the plate was washed 3x and 50 µl of diluted streptavidin-PE 

added to all wells. After a further 30 min incubation in the dark on an orbital shaker 

(speed 800±50 rpm), the plate was washed 3x and 100 µl of wash solution added to 

all wells. Cytokine and chemokine concentrations were then analysed using a 

Luminex® 200™ instrument (Luminex® Corporation, Austin, Texas, USA). 
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2.9 Proseek cytokine analysis of cartilage explant supernatants 

The concentration of cytokine and chemokines secreted from stimulated explants 

was determined using the Proseek Multiplex Inflammation Kit (Olink, Sweden).  

Proseek Multiplex technology provides rapid, high throughput screening of human 

inflammatory protein biomarkers, yet requires only a small amount of sample (1uL) 

per panel.  Due to our limited sample availability, this method proved to be the most 

effective.  The Proseek technology utilizes Proximity Extension Assay (PEA) 

technology (Figure 2.2).  In this proximity assay, target proteins are recognized by 

antibody pairs with DNA oligonucleotide conjugates.  Once bound to the target 

protein, the antibody-oligonucleotide conjugates anneal and extend to form an 

amplifiable reporter DNA template via real-time PCR.  

 

Figure 2.2. Proseek PEA technology procedure.   

In this proximity assay, target proteins are recognized by antibody pairs with DNA 

oligonucleotide conjugates.  Once bound to the target protein, the antibody-

oligonucleotide conjugates anneal and extend to form an amplifiable reporter DNA 

template via real-time PCR. 
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The Proseek Multiplex inflammation kit was performed as per manufacturer’s 

instructions.  Briefly, 3uL incubation mix containing probe set A and set B were 

incubated with 1uL of cartilage explant tissue culture supernatants and plate controls 

overnight at 4°C.  After 24 hr, 96uL of extension mix (High Purity Water, PEA 

solution, PEA enzyme, PCR polymerase) was added to the Incubation Plate and run 

in the thermal cycler using manufacturer’s PEA program (50°C 20 min, 95°C 5 min, 

(95°C 30 s, 54°C 1 min, 60°C 1 min) x 17, 10°C hold). 7.2uL of Detection Mix 

(Detection solution, high purity water, detection enzyme, PCR polymerase) was 

added to the Sample plate and 2.8uL was removed from the Incubation plate before 

being combined with the detection mix in the Sample plate. Finally 5uL from the 

Primer plate was combined with 5uL from the Sample plate into the primed Dynamic 

Array IFC.  The chip was then loaded in the Fluidigm IFC Controller HX as per the 

manufacturer’s instructions (50°C 120 s, 70°C 1800s, 25°C 600s, 95°C 300s, 95°C 

15s, 60°C 60s).  LOD ranged from 0.7 and 2.4 NPX across the protein biomarker 

panel and intra-assay variability was an average of 12.6% CV.  Data was converted 

from NPX (Normalized protein expression) values to linear values using the excel 

software provided by Olink. 

 

2.10 ELISA 

ELISAs were performed using pre-validated kits from commercial sources.  Cartilage 

formation was assessed by measuring serum N-terminal type IIA collagen N-

propeptide (PIIANP, LOD 1.1ng/mL, CV 6.60%) (Millipore, USA).  Fragments of 

cartilage oligomeric matrix protein (COMP) were also measured by ELISA (LOD 
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0.2ng/mL, CV 4.8%, RnD Systems, USA). Bone resorption was determined using an 

ELISA to cross linked C-telopeptide of Type 1 collagen (CTX-1, 0.1ng/mL, CV 6%, 

Elabscience®, CN).  Procollagen 1 C-terminal Propeptide (PICP) ELISA was also 

used to investigate the extent of bone formation (0.04ng/mL, CV 10%, Elabscience®, 

CN). The protocol for the ELISA was carried out according to manufacturer’s 

instructions.   Recombinant protein standards were assayed in duplicate, and sample 

concentrations were determined using the standard curve generated.  All ELISAs 

were quantified on a Synergy-2 microplate reader (BioTek, Bedfordshire, UK) 

immediately following the addition of stop solution (2N H2SO4) and extrapolated using 

GraphPad Prism® software v5 (GraphPad software, La Jolla, USA) 

 

2.11 DMMB assay of explant tissue culture supernatants 

Sulfated glycosaminoglycan (sGAG) from cartilage explant supernatants was 

measured as an indicator of aggrecan degradation via a dimethylmethylene blue 

(DMMB) assay [280].  The DMMB assay was originally developed by Farndale and 

colleagues in 1986, followed by modification by Riley in 1994.  To quantify the 

amount of sGAG in tissue culture supernatants, a standard curve of shark chondroitin 

sulphate C (C4384, Sigma) was used ranging from 0-50ug/mL in chondrocyte tissue 

culture media.  40uL of standards and samples were added to a clean 96 well plate 

and combined with 250uL DMMB assay reagent (50uM 1,19 Dimethyl methylene 

blue (DMMB, 341088, Sigma), 40mM NaCl, 40mM Glycine, 1.2N HCl).  The 

absorbance was read at 540nm on a 96 well plate reader (Biotek Elx808) (Intra-

assay CV 4.68%). 
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2.12 Immunohistochemistry 

The femoral heads were decalcified in 5% formic acid at room temperature and 

embedded into paraffin. Slides were dewaxed and rehydrated in xylenes and ethanol 

series, and washed in PBS. Samples were heated as free-floating sections in 10 mM 

sodium citrate (pH 8.5, 60 min, 80°C) with gentle agitation prior to staining.   Free 

floating sections were blocked in 10% v/v goat serum in phosphate buffer and 0.3% 

Triton-X 100 and incubated overnight at 4°C in primary antibodies.  All primary 

antibodies were used at their optimal concentrations, which were determined 

empirically, and are detailed in Table 2.4.  Sections were then incubated in Alexa-

conjugated secondary antibodies and DAPI (4083, CST, USA) for 1 hr. and mounted 

with Prolong® Gold Antifade mountant (Life Technologies, UK). Images were 

obtained using a Zeiss Axiovert UV confocal microscope and Zeiss Zen 2010 

software.  H and E staining was performed on de-paraffinized and rehydrated 

sections.  Sections were stained in Mayer Hematoxylin (Sigma, UK) for 8 min before 

standard washing procedure.  Sections were then counterstained in eosin Y (Sigma, 

UK) solution for 45 s and washed via standard washing procedures. 
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Table 2.4. Primary and Secondary antibodies used in IHC staining of human OA 

femoral heads. 

Antibody Species Dilution Clone/Reference Purification Company 

α-Visfatin Rabbit 1:2500 PA1-1045 
Affinity 

Purified 
Pierce, UK 

α-NFkB Mouse 1:500 SC-8008 
Affinity 

purified 

Santa Cruz, 

USA 

α-MMP-13 Mouse 1:1000 11365013 
Affinity 

purified 

Thermo 

Scientific, 

USA 

α-mouse 

IgG1 Alexa 

Fluor® 488 

Goat 1:1000 A-21121 
Affinity 

Purified 

Thermo 

Scientific UK 

α-Rabbit H+L 

Alexa Fluor® 

555 

Goat 1:1000 A21428 
Affinity 

Purified 
Pierce, UK 

 

2.13 Immunocytochemistry of β-Catenin in osteoblasts 

Osteoblasts were plated in a 24 well plate for 24 hr prior to resistin stimulation (as 

previously stated).  Following stimulation, media was aspirated and cells were 

washed 2x with ice cold PBS.  Ice cold 4% paraformaldehyde was added to each 

well and incubated for 20 min with gentle rocking.  Cells were then washed 3x with 

PBS before incubation for 1 hr in vehicle (10% goat serum in PBS and 0.1% Triton X-

100).  Cells were then incubated in vehicle containing primary β-Catenin antibody 

(AB6302, Abcam, UK) overnight.  Following primary antibody incubation, cells were 
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washed 3x in PBS and incubated in vehicle and secondary antibody (α-Rabbit H+L,  

Alexa Fluor ® 555, Pierce, UK) for 1 hr with the addition of DAPI (4083, CST, USA).  

Cells were washed 3x with PBS before mounting with Prolong® Diamond Antifade 

Mountant (Thermofisher) before being visualised on a Leica DM6000 microscope. 

 

2.14 Collagen Type I quantification 

Collagen type I quantification was performed as previously described by Bailey et al., 

[281]. Briefly, 150mg of powdered bone was washed in PBS (Sigma, UK) and 

centrifuged for 5 min at 1620xg.  Bone powder was then washed 3x with acetone to 

remove bone fat, and air dried.  The pellets were then resuspended in decalcifying 

buffer (10% (w/v) EDTA, 30mM TRIZMA base and 4M guanidine hydrochloride at pH 

7.5) and placed on a rotator at 4°C. After one week, the decalcifying buffer was 

refreshed and the samples were placed back on the rotator in 4°C for a second week 

to remove mineral and non-collagenase proteins from the powdered bone sample. 

Decalcified bone samples were centrifuged at 4500xg for 10 min, with the insoluble 

fraction being retained.  The powder pellet was washed 3x in ddH₂O, and 

resuspended in pepsin solution (0.5M acetic acid and 0.5% w/w pepsin (based upon 

original bone weight), P6887, Sigma) and rotated at 4°C for 24 hr. After 24 hr, the 

remaining pellet was combined with fresh pepsin solution and incubated at 4°C for a 

further 24 hr.  Following pepsin incubation, the centrifuged pellet was discarded and 

pooled supernatants were freeze dried and analysed by SDS PAGE gel 

electrophoresis. Freeze-dried samples were resolved in urea lysis buffer (previously 

described in section 2.5), to a concentration of 2.5 µg/µl.  A total of 12.5 µg protein (5 

µl) was loaded into each well on a 7.5% polyacrylamide gel and bands were detected 
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using coomassie blue stain (0.1% w/v Coomassie Brilliant Blue (Biorad), 50% 

methanol, 10% glacial acetic acid) and visualized using Biorad Chemidoc 

Technology. 

 

2.15 Alizarin red staining 

Primary human hip osteoblasts were seeded at 6x103 cells per well in a 24 well plate 

and treated with or without adipokine stimulation as described previously.  After 14 

days, cells were stained with alizarin red solution in order to quantify the degree of 

mineralisation following the formation of bone nodules. Briefly, cells were incubated 

in alizarin red staining solution (0.5% Alizarin Red (Sigma, UK) in 1% ammonia 

solution at pH 4.5) for 10min at RT and washed with PBS to remove excess stain.  

Cells were then incubated in 10% cetyl pyridinium chloride (Sigma, UK) for 10 min at 

RT. The supernatant was collected from each well and diluted 1:10 with the 10% 

cetyl pyridinium chloride and read at OD550nm on a microplate Reader (Biotek, 

Elx808). 

 

2.16 Alkaline Phosphatase activity 

Alkaline phosphatase catalyses p-Nitrophenyl phosphate (pNPP) + H2O to form p-

nitrophenol + Pi, resulting in colorimetric reaction, which can be read at 405nm 

optical density.  Stock Alkaline Phosphatase (ALP) (Human placenta, P3895, Sigma) 

was diluted to 100Units/mL in 1mM MgCl2 (P2670, Sigma) and stored at -20°C.  For 

standard preparation, ALP was diluted to 0.3unit/mL in 1mM MgCl2 and serially 

diluted 1:2 in RIPA diluent (0.2x RIPA buffer, 1mM MgCl2).  Human osteoblasts were 

seeded at 6x103 cells per well in a 24 well plate and treated with or without adipokine 
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stimulation as described previously.  Osteoblasts were lysed in RIPA buffer diluent 

and diluted 1:5 with 1mM MgCl2.  From the diluted osteoblast lysates, 10uL was 

combined with 100uL of ALP substrate (solution containing pNPP, P7998, Sigma) 

and incubated at 37°C for 15 min.  The reaction was stopped with the addition of 

0.1N NaOH and read immediately at 405nm (Biotek, ELx808). ALP concentrations 

calculated from the standard curve were corrected for dilution factor (LOD 0.004 

units/mL, CV 7.5%). 

 

2.17 NAD activity assay 

Primary human hip chondrocytes (6x103 cells per well) were plated in an opaque 

white-walled 96 well tissue culture plate (Corning®  3917) and treated with NAMPT 

small molecule inhibitors SB57 or SB58 for 1 hr (1uM, 10nM and 0.1nM) prior to co-

incubation with recombinant visfatin (500ng/mL) for 24 hr in a humidified atmosphere 

of 37°C and 5% CO2.  NAD/NADH glo assay™ (Promega Corporation, USA) detects 

oxidised and reduced nicotinamide adenine dinucleotides.  The assay was used as 

per the manufacturer’s instructions.  Briefly, 25uL of NAD/NADH glo™ detection 

reagent (Luciferin Detection Reagent, Reductase, Reductase Substrate, NAD cycling 

Enzyme, NAD Cycling Substrate) was added to each well containing 25uL of 

chondrocyte growth media.  The plate was agitated for 5 min and incubated at RT for 

a further 60 min.  Luminescence was recorded at 30 and 60 min using a luminometer 

(Centro LB 960, Berthold Technologies, Germany). 
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2.18 Gene Expression Analysis 

2.18.1 RNA Extraction 

RNA was isolated from powdered tissue samples and primary cells using a standard 

TRIzol® Reagent extraction method as detailed by the manufacturer.  Briefly, 1mL of 

TRIzol® Reagent was added to 50-100mg of powdered tissue, or 10cm2 of culture 

dish surface area, and the sample was sonicated for 6x10s bursts at 70% amplitude.  

Following sonication, samples were centrifuged at 12000g for 5 min to remove the 

extracellular matrix containing pellet.  Supernatants were combined with chloroform 

and centrifuged at 12,000g for 10 min for phase separation.  The RNA-containing 

aqueous phase was then diluted in 5 vol of isopropanol and incubated overnight at -

20°C to precipitate the RNA.   The precipitated RNA was then pelleted by 

centrifugation at 12,000g for 10 min.  Finally the pellet was washed in 75% ethanol, 

air dried, resuspended in RNAse free water, and stored at -80°C until required. RNA 

samples were quantified using a Nanodrop (NanoDrop 2000, ThermoScientific, 

U.S.A) and 260/280 ratios were considered acceptable for subsequent qRT-PCR 

analysis when >1.7. 

 

2.18.2 qRT-PCR 

Forward and reverse custom primers were generated (Primer Design, UK) for qRT-

PCR using SYBR green detection. Primers used within this thesis are detailed in 

Table 2.6.  All assays were performed on a 384 white opaque plates.  The 5uL 

reaction was set up as follows; 2uL RNA quantified at 5ng/uL, 2.5uL 2x Precision 

OneStepPLUS qRT-PCR MasterMix (Primerdesign, UK), 0.25uL forward and reverse 

primer mix, 0.25uL RNAse free H2O.  The one-step amplification protocol was 40 
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cycles as follows; reverse transcription for 10min at 55°C, enzyme activation for 2min 

at 95°C, denaturation for 10s at 95°C, data collection for 60s at 60°C (Lightcycler® 

480 system, Roche, DE).  ΔΔCt was calculated using the following calculation; ratio = 

2ΔCt target (control – treated)/ 2ΔCt reference (control – treated) [282].  To calculate percentage of gene 

expression knockdown, the following formula was used; %KD= (1-ΔΔCt) x100. 

For WNT pathway gene expression analysis, a RT2 profiler WNT signalling PCR 

array was used (Qiagen, Manchester, UK).  Each reaction was 10uL and the 

mastermix was set up as follows; 102uL RNA quantified at 5ng/uL, 650uL 2x 

Precision OneStepPLUS qRT-PCR MasterMix (Primerdesign, UK), 548uL RNAse 

free H2O.  The protocol for amplification was the same as stated above, as were the 

methods of analysis.  All data was normalised to the expression of the housekeeping 

genes GAPDH, ACTB and RPLP. 
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Table 2.5 Custom Primers for RT-PCR assays 

Gene Symbol Sequence Tm GC% 

BDKRB1 

5’-
TGCCAACATTTATCATCTCCATCT-3’ 

3’-GCCCAAGACAAACACCAGAT-5’ 

57.2 

56.4 

37.5 

50 

BDKRB2 

5’-CACACTGCGGACCTCCAT -3’ 

3’-CCCTCAATCCTTACACAAATTCAC 
-5’ 

56.7 

57 

61.1 

41.7 

GAPDH UNKNOWN UNKNOWN UNKNOWN 

ACTIN UNKNOWN UNKNOWN UNKNOWN 

 

BDKRB1 and BDKRB2 primers were chosen by PrimerDesign Ltd, UK based on their 

specificity and selectivity to the BDKRB receptor sequence.  Primer melting 

temperatures were within the optimal range (56.4-57.2°C) to avoid secondary 

annealing and GC content ranged from 37.5-61.1%.  Prior to sending, analysis of 

primer/primer interactions and folding analysis is performed.  Laboratory tests such 

as melt analysis are performed to ensure a single product is produced.  As such 

Primer Design Ltd. UK guarantees a minimum 95% PCR efficiency. 

 

2.19 IPA analysis 

Pathway and gene network analysis was performed using the pathway analysis 

software application “Ingenuity Pathway Analysis” (www.ingenuity.com).  Individual 

protein nodal networks were developed using the “grow” tool to identify direct 

relationships.   Each protein was “grown” to a maximum of 10 nodes.  Path explorer 

was then used to identify direct and indirect pathway links between protein nodal 

networks and the pathology networks.   These novel “protein/pathology network” 
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pathway maps were then overlaid with gene data in order to evaluate the degree of 

likely network modulation in an established in vitro model of OA. 

 

2.20 Proliferation Assay 

Proliferation was determined using the CellTiter 96® Aqueous One Solution Cell 

Proliferation Assay kit (Promega, USA), as per the manufacturer’s instructions.  MTS 

tetrazolium compound is reduced by cells to formazan which allows a colorimetric 

quantitation of the tissue culture supernatant.  The quantity of formazan is directly 

proportional to the number of cells/well.  Briefly, media was aspirated from each well 

of a 96 well plate, and fresh media was added (100uL).  CellTiter 96® Aqueous One 

Solution Reagent (20uL) was added to each well, and the cells were incubated for 4 

hr in a humidified atmosphere of 37°C and 5% CO2.  Following the 4 hr incubation, 

absorbance was recorded at 490nm (Biotek, ELx808). 

 

2.21 Determining cellular metabolic respiration 

Osteoblasts were seeded at a density of 6x103 cells in XFe24-well cell culture 

microplates (Seahorse Bioscience, North Billerica, MA).  Cells were then incubated in 

a humidified atmosphere of 37°C and 5% CO2 for 24 h prior to adipokine stimulation. 

Following 24 h, cells were treated with recombinant adipokines (see Table 2.4) for 

either 24 h or 2 weeks. Prior to the assay, cells were placed in 600 µl of Seahorse XF 

Base Medium (pH 7.4, 10% FBS, 4.6g/L glucose, 2mM β-glycerophosphate disodium 

salt hydrate, 10mM Dexamethasone) pre-warmed to 37°C. The plate was then 

transferred to a non-CO2 incubator for 1 hr. Following calibration, oxygen 

consumption rate (OCR), extracellular acidification rate (ECAR) and proton 
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production measurements were performed for basal respiration. Upon completion of 

the assay, cells were collected in lysis buffer (RIPA buffer; 0.4% protease inhibitor 

cocktail) and centrifuged for 10 min at 8,000 g and the supernatant was removed for 

protein determination. Protein concentration was determined using the BCA protein 

assay (Pierce, UK). OCR was reported relative to protein content (pmol/min/µg). 

 

 

2.22 Micro-CT sample preparation 

Femoral heads were cut into approximately 1cm3 cubes by the Royal Orthopaedic 

Hospital pathology service (University of Birmingham).  Cubes were cut from the 

most medial aspect of the femoral head, as depicted in Figure 2.2.  Bone cubes were 

washed 3x in acetone to de-fat the bone sample before being allowed to air dry prior 

to micro-CT scanning. 

 

2.22.1 Micro-CT scanning 

The scanner used to determine the gross structural parameters of bone tissue was a 

Bruker Sky scan 1172 (Bruker Skyscan 1172, e2v technologies plc, Chelmsford, UK).  

Samples were placed on a 68mm sample holder, with the axis of the femur 

perpendicular to the scanning plane. Sample resolution size was set to 9.87um, with 

an exposure time of 200ms and a rotation step of 0.4°, and no filter was applied.  The 

flat field correction was determined for the first sample, and then maintained 

throughout all subsequent samples in order to reduce variations due to camera pixel 

sensitivity.  Approximately 800 scan slices were collected with 60% beam hardening 

correction and a ring artefact correction of 5, and reconstructed using the NRecon 

software version 1.6.2 (SkyScan, e2v technologies plc, Chelmsford, UK).  
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2.22.2 Micro-CT reconstruction and analysis 

Post alignment of each image was minor at 0±1.  The reconstruction settings were 

maintained for all samples (Smoothing = 2, smoothing kernel = 0, reconstruction 

duration per slice 0.18s).  One hundred slices immediately below the cortical bone 

layer were isolated and assayed for quantitative analysis. Regions of interest were 

drawn within the bone area (as shown in Figure 2.3) for each sample.  Adaptive 

thresholding was performed (Settings; round kernel, radius 4, constant 0, background 

dark, pre-threshold on, lower grey threshold 69, upper grey threshold 255), and white 

speckles were removed (<20 voxels).  Finally a despeckle sweep of the 3D space 

was used to correct for image irregularities and images were analysed using CTVol 

software (SkyScan, e2v technologies plc, Chelmsford, UK). 

 

 

Figure 2.3. Representation of the region of interest selected from the trabecular 

bone area for micro-CT analysis. 

 



Page | 76 
 

2.23 Receptor identification screen 

In order to identify candidate receptors for visfatin, a binding screen of His-tagged 

recombinant visfatin against >2000 human membrane proteins (representing 

approximately 65% of the total known) was performed using the Retrogenix Cell 

Microarray platform (Retrogenix, Macclesfield, UK).  In brief, binding conditions were 

optimised for binding of His-tagged recombinant proteins, based on a prior 

Retrogenix screen using a His-tagged EGF protein.  Expression vectors encoding 

each of the human membrane proteins were spotted onto glass slides.  A HEK293 

cell monolayer was cultured over the glass slide resulting in overexpression of each 

of the human membrane proteins via reverse transfection.  In the primary screen, 

slides were incubated with 2.5 ug/ml His-tagged visfatin or His-tagged visfatin 

labelled beads, and interactions were detected using a mouse anti-His antibody 

(Millipore) followed by an Alexa Fluor 647 anti-mouse antibody (Life Technologies). 

Protein ‘hits’ were identified by visual inspection using Image Quant software (GE).  

Following the primary screen, vectors encoding each of the positive hits were 

sequenced and confirmation/specificity screen was done, with each of the positive 

hits re-spotted and re-probed His-tagged visfatin at 2.5ug/mL, His-tagged EGF at 

2.5ug/mL, or an anti His antibody alone, to confirm specificity. 
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Figure 2.4. Retrogenix procedures.   

As stated above, cDNA of potential plasma membrane receptors are spotted onto a 

glass slide for overexpression in HEK293 cells.  His-tagged recombinant protein is 

added to the cultured cells and binding is confirmed through the use of anti-His 

antibodies and Alexa Fluor 647 antibodies.  Specificity is confirmed through the 

absence of binding in secondary only staining or following His tagged EGF binding. 

 

2.24 Transfection of human primary chondrocytes 

Human primary hip chondrocytes were cultured in a 75cm2 flask until cells were at 

80% confluency.  Cells were then trypsinized in Trypsin-EDTA (0.25%, phenol red) 

and incubated in humidified atmosphere of 37°C and 5% CO2 for 5-15 min until 

adherent cells had detached.  Trypsin was then inhibited with the addition of 

chondrocyte growth media.  A small aliquot of media containing cells (10uL) was 

diluted 1:2 with trypan blue and counted using a Countess II (ThermoFisher, USA).  

Cells were centrifuged at 400xg for 5 min and resuspended in 18uL of P3 4D-

Nucleofector™ solution (Lonza) per 2.5x105 cells/transfection at RT.  siRNA was 

diluted in P3 4D-Nucleofector™ solution, combined with the cell suspension at a final 
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concentration of 100uM, and then placed into the Nucleocuvette™ vessels (Lonza).  

Cells were then electroporated using the P3 human primary chondrocyte pre-set 

program (Amaxa 4D Nucleofector, Lonza).  Following electroporation, cells were 

combined with chondrocyte growth media and plated into 96 well plates.  Cells were 

then cultured for 24 hr prior to RNA isolation. 

 

2.25 Data handling and statistical analysis 

All statistical calculations were performed using Graphpad Prism® software (La Jolla, 

U.S).  Descriptive statistics were tabulated to detail patient characteristics (Mean ± 

SD).  Gaussian distribution was confirmed using Kolmogorov-Smirnov test. Data that 

followed a normal distribution was analysed using a paired or unpaired Student’s T-

test to compare between two matched paired or two independent groups 

respectively.  A one-way ANOVA with Tukey Post-Hoc was used to determine 

differences between three or more groups with a repeated measure ANOVA with a 

Tukey post was used to compare matched observations between three or more 

groups.  When there was more than one categorical independent variable, a two-way 

ANOVA was used with a Bonferroni post-hoc. 

To analyse the differences in patient serum profiles, a linear regression analysis was 

used.  In order to perform a linear regression analysis, controlling for age, mean 

arterial pressure (MAP) and BMI, our data was analysed to confirm that it met with 

the assumptions required of regression analysis.  These assumptions included 

independence of observations as determined by a Durbin-Watson score from 1.2-2.5, 

non-multicollinearity as determined with VIF values of 1-10, and normal distribution of 

residuals via P-P plot. 
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To analyse gene expression, and address the skewed linear scale, all samples were 

log transformed prior to statistical analysis.  Data presented in graphs represent the 

mean ± standard error of the mean (SEM) and statistical significance was stated with 

a minimum confidence level of 95% (p<0.05). 
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3.1 Introduction 

The role of inflammation in OA is a controversial subject, as many researchers still 

consider OA to be a non-inflammatory disease.  However more recent evidence 

suggests that inflammation is a key driver of joint pain and tissue damage in OA [147, 

283].  Unfortunately, the use of OA tissues as controls for RA inflammation studies 

has reinforced the notion that OA is a non-inflammatory disease, however studies as 

early as 1959 have demonstrated a heightened concentration of inflammatory 

proteins in the serum and synovial fluid of OA patients when compared to a non-

arthritic population [284].  

OA is a multi-risk factor disorder including age, joint trauma, gender and obesity 

[285].  Obesity is considered a major and preventable risk factor associated with OA 

progression. However, the mechanistic relationship between adiposity and joint 

destruction and risk of OA progression is not fully established.  For many years, joint 

damage was considered a consequence of increased weight-bearing on the hips and 

the knees of obese individuals.  However, the two-fold increase in prevalence of 

hand OA in obese individuals indicates not only a biomechanical factor associated 

with OA but also a potential systemic driver, affecting distal non-weight bearing joints 

such as the hands [286]. 

Importantly, adipose tissue is no longer considered an inert, inactive tissue [287], but 

a metabolically active endocrine organ secreting a plethora of factors including 

chemokines, cytokines and adipokines.  Inflammatory protein release has been 

mechanistically linked to metabolic complications and the metabolic syndrome [27, 

33] by contributing to the low-level pro-inflammatory state seen commonly in obese 

individuals [28]. Critically, whether these inflammation-associated proteins are central 
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regulators of OA disease pathology or purely biomarkers of an inflammatory tissue is 

an important question. 

In this chapter, the aim was to characterise the serum and synovial fluid adipokine 

profiles of hip OA patients and to determine the relationship to adiposity (BMI, W:H 

ratio, fat mass %) and to radiographic indices of joint severity (JSN, KL grade and 

osteophytes). Furthermore, to compare serum adipokine profiles in patients with or 

without hip OA. 

 

3.2 Results 

3.2.1 Population characteristics 

In total, the study included 150 serum samples from patients with end-stage hip OA 

of varying adiposity.  In addition, the study included 24 serum samples from 

individuals without OA (NOF# patients).  The absence of OA was confirmed through 

radiograph scoring by orthopaedic surgeons and visual inspection of the femoral 

head following surgery.  The patient was also observed for evidence of hand OA and 

injury and surgery history was recorded for each patient.  Table 3.1 details the main 

demographics of each group.  Our OA population had significantly higher BMI 

(29.4±5.8 vs. 24.1±3.8 kg/m2 respectively) and mean arterial pressure (MAP) 

(98.8±9.6 vs. 91.2±8.7 mmHg respectively) compared to our non-OA population.  

Furthermore, the OA population was significantly younger than our non-OA control 

patient population (68 ± 8 vs. 75 ± 6 years respectively), all of which are important 

confounders that must be considered for data analysis.  Unfortunately W:H ratio and 

body fat % could only be obtained from our OA cohort due to the delicate nature of 

our non-OA patient cohort (neck of femur fracture) at the time of sample collection. 
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Table 3.1 General population demographics 

 Non OA OA P 

Gender (M/F) 7/17 76/74 - 

Age (yr.) 75±6 68±8 <0.0001 

Height (cm) 164.6±7.6 166.8±9.5 0.203 

Weight (kg) 65.1±10.4 81.9±17.3 <0.0001 

BMI (kg/m2) 24.1±3.8 29.4±5.8 <0.0001 

W:H ratio N/A 0.9±0.09 - 

Body Fat (%) N/A 33.1±12.05 - 

MAP (mmHg) 91.2±8.7 98.8±9.6 0.0008 

 

3.2.2 Comparing the inflammatory profile of non OA and OA patient cohorts. 

In order to determine the profile of inflammatory cytokines and adipokines in the 

serum of patients with hip OA compared to a non-OA population, and identify 

potential systemic drivers of OA, we performed a 25-plex cytokine analysis, using the 

Luminex platform.  Table 3.2 illustrates the mean data obtained from the luminex 

assay.   

The adipokines visfatin, resistin, chemerin and adiponectin were all found to be 

significantly higher in the OA cohort, compared to the non-OA cohort.   Furthermore, 

the concentrations of the cytokines IL7, IL10 and IL15 and the IL6 trans-signalling 

inhibitor, soluble gp130, were all significantly higher in the OA cohort.  In addition, the 

OA serum samples exhibited increased concentrations of the chemokine eotaxin-1 

and WNT inhibitor Dkk1, and significantly lower concentrations of FABP4, aggrecan, 

amphiregulin, and galectin 1, compared to the non-OA NOF# serum samples. 
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Perhaps surprisingly, the serum concentration of the inflammatory cytokines TNFα 

and IL6 were significantly lower in the OA cohort compared to the non-OA cohort.  

However, this could reflect a potentially heightened systemic inflammatory state due 

to fracture trauma in the NOF# patients at the time of sample collection.  Specifically, 

IL6 has been shown to be integral to early fracture healing, with a significant 

reduction in osteoclastogenesis and callus strength in IL6 KO mice at 2 weeks post-

surgery [288].  In addition, TNFα has also been shown to play an important role in 

fracture healing through the recruitment and osteogenic differentiation of 

mesenchymal stem cells (MSCs) [289].  This was further supported by higher serum 

concentrations of the chemokines MIP1α, MCP-1, and MIP1β, which are known 

osteoclast chemoattractants in the NOF# patients compared to the non-OA cohort.   
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Table 3.2. The inflammatory profile of OA and non-OA patient serum  

(pg/mL) Non-OA  OA  P 

TNF  5.5±1.9 4.6±2.1 0.02 

IL10 4.3±2.3 5.3±11.55 0.03 

IL1β 16±23.7 18.7±19.2 0.213 

Dkk1 1141±1292 3140±1640 <0.0001 

MIP1α 744.8±473.1 325.8±263.6 <0.0001 

Galectin 1 106238±66655 45579±30997 0.0005 

Chemerin 3878±3835 7125±4971 0.001 

Eotaxin 88.6±102.9 158.5±162.9 0.002 

gp130 38399±46711 88071±34617 <0.0001 

IP10 123.4±254.7 34.32±57.73 0.807 

MCP1 2692±3056 524.1±1236 <0.0001 

IL7 2.22±1.04 3.54±2 0.0002 

MIP3α 257.2±577.1 81.29±392.8 0.068 

Amphiregulin 622.7±97.65 594.7±213 0.241 

IL15 2.43±1.3 4.15±4.67 0.0006 

Aggrecan 243.1±68.75 225.2±301.7 0.0004 

Resistin 7818±8715 11836±8683 <0.0001 

SerpinE1 157125±57327 142708±64655 0.305 

Adiponectin 1.60x107±1.03x107 1.10x107±6.33x106 0.013 

IL6 23.41±17.58 11.03±62.65 <0.0001 

LIF - - - 

Leptin 16839±17712 25579±33803 0.1197 

FABP4 88567±103164 29754±49008 <0.0001 

MIP1β 211.1±125.4 141.5±71.89 0.0045 
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3.2.3 Age, BMI and MAP contributions to the inflammatory profile of non OA 

and OA patient cohorts. 

As represented in table 3.3, it is important to control for the anthropometric 

differences identified in our cohort populations. In order to perform a linear regression 

analysis, controlling for age, MAP and BMI, our data was analysed to confirm that it 

met with the assumptions required of regression analysis.  These assumptions 

included independence of observations as determined by a Durbin-Watson score 

from 1.2-2.5, non-multicollinearity as determined with VIF values of 1-10, and normal 

distribution of residuals via P-P plot.  Table 3.3 details the regression coefficients (B 

values) following correction with age, MAP and BMI. 
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Table 3.3. The contributions of disease, age, MAP and BMI on serum profiles of 

OA and non-OA patient cohorts. 

(pg/mL) Disease 
p 

value 
Age 

p 
value 

MAP 
p 

value 
BMI p value 

TNF -0.884 0.06 0.01 0.69 -0.01 0.71 0.03 0.37 

IL10 0.25 0.94 -0.53 0.68 0.21 0.06 -0.13 0.53 

IL1β 2.82 0.60 0.17 0.44 -0.88 0.65 0.47 0.15 

Dkk1 1723.6 <0.001 -3.26 0.84 12.88 0.36 21.23 0.36 

MIP1α -375.8 <0.001 -4.41 0.18 -1.79 0.53 -7.34 0.13 

Galectin 1 -52255 <0.001 454.1 0.26 -568.0 0.09 -199.2 0.72 

Chemerin 2658.9 0.018 -12.70 0.78 -31.92 0.42 121.7 0.06 

Eotaxin 64.21 0.08 -1.59 0.30 -0.11 0.93 -2.01 0.36 

gp130 31374.8 0.003 -391.2 0.36 160.73 0.66 667.4 0.28 

IP10 -85.32 0.004 -0.50 0.68 -1.31 0.21 0.75 0.67 

MCP1 -2141.1 <0.001 -7.37 0.67 -2.4 0.87 -9.65 0.70 

IL7 1.12 0.01 -0.07 0.71 0.02 0.15 0.02 0.35 

MIP3α -173.71 0.13 0.93 0.84 3.33 0.41 -2.2 0.75 

Amphiregulin -44.8 0.45 2.99 0.21 -0.94 0.65 8.68 0.01 

IL15 1.44 0.15 -0.01 0.83 0.04 0.27 -0.01 0.94 

Aggrecan -28.4 0.58 -0.09 0.97 -0.17 0.92 -2.73 0.35 

Resistin -1432.6 0.50 74.06 0.39 -124.5 0.09 31.95 0.79 

SerpinE1 -21247 0.18 405.6 0.54 -950.8 0.09 2885.4 0.003 

Adiponectin -4.2x106 0.02 1.3x105 0.07 -2784 0.66 2.1x104 0.84 

IL6 -23.8 0.07 -0.31 0.56 0.98 0.03 -0.90 0.91 

LIF - - - - - - - - 

Leptin 890.8 0.90 264.4 0.39 -448.4 0.09 2209.8 <0.0001 

FABP4 -34069 0.001 228.3 0.56 -1071 0.002 1567.9 0.01 

MIP1β -87.54 <0.001 -0.72 0.46 0.31 0.71 1.02 0.47 
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Table 3.3 demonstrates a significant disease effect on the serum concentrations of 

Dkk1, MIP1α, galectin 1, chemerin, gp130, IP10, MCP-1, IL7, adiponectin, and 

MIP1β.  Age had no significant impact on the serum concentration of any of the 

cytokines or adipokines measured in our patient cohorts, whereas MAP significantly 

increases IL6 and FABP4 serum concentration.  Finally, BMI was positively 

associated with an increase in leptin and FABP4 expression, and a decrease in 

serpinE1 expression. 

 

3.2.4 Serum adipokine and cytokine expression in relation to BMI 

Given the association between adiposity and OA it is important to determine the 

contribution of BMI within the OA patient cohort on the serum adipokine profile.  

Therefore, the 150 patients with hip OA previously referred to in section 3.2.1 who 

were assigned to a BMI category of either NW (<25kg/m2) or OW/OB (>25kg/m2) 

were further analysed   Table 3.4 details the main demographics of each patient 

cohort, when classified as either NW or OW/OB.   
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Table 3.4 Patient demographics for OA patient cohort. 

 NW OW/OB P 

Gender (M/F) 16/22 60/52 - 

Age (yr.) 67±9 69±8 0.385 

Joint (K/H) 7/31 52/61 - 

Hand OA (y/n) 21/11 81/30 - 

Height (cm) 167.5 166.5 0.621 

Weight (kg) 65.5±9.7 87.5±15.6 <0.0001 

BMI (kg/m2) 23.2±1.1 31.5±5.1 <0.0001 

W:H ratio 0.87±0.08 0.93±0.08 0.005 

Body Fat (%) 24.6±10.1 34.8±9.2 <0.0001 

MAP (mmHg) 96.8±9.9 99.4±9.4 0.191 

 

Data was non-parametric; therefore a Mann Whitney-U test was used to compare the 

inflammatory adipokine serum profiles of the two OA patient cohorts.  OW/OB 

individuals had significantly higher concentrations of TNFα (p0.04), galectin 1 

(p=0.04), resistin (p=0.03), serpinE1 (p=0.002), leptin (p<0.0001) and FABP4 

(p=0.003) as shown in Table 3.5.  This data is depicted in graph form in Figure 3.1 A-

F. 
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Table 3.5. The effect of BMI on the serum inflammatory profile in OA 

individuals. 

(pg/mL) NW OW/OB P 

TNFα 4.10±1.67 4.85±2.13 0.04 

IL10 4.28±1.61 4.25±1.74 0.57 

IL1β 12.32±6.47 20.73±21.60 0.22 

Dkk1 3195±1841 3120±1565 0.71 

MIP1α 386.1±306.1 304.9±245.4 0.28 

Galectin 1 39324±32563 47161±29915 0.04 

Chemerin 7036±5563 7156±4780 0.60 

Eotaxin 178.2±196.2 151.8±150.4 0.75 

gp130 83546±40193 89649±32509 0.49 

IP10 28.97±30.85 27.75±18.01 0.34 

MCP1 441.6±685.1 551.1±1371 0.90 

IL7 3.49±1.94 3.56±1.98 1.00 

MIP3α 67.77±182.2 85.92±443.1 0.98 

Amphiregulin 563.6±181.4 585.7±244.3 0.77 

IL15 4.25±5.32 4.48±5.486 0.60 

Aggrecan 231.8±250.4 215.3±317 0.73 

Resistin 9818±7325 13041±9013 0.03 

SerpinE1 114472±67611 152462±60926 0.002 

Adiponectin 9.48x106±6.39x106 1.12x107±5.70x106 0.20 

IL6 2.07±1.45 5.33±10.83 0.26 

LIF - - - 

Leptin 8685±6671 31578±37391 <0.0001 

FABP4 18487±15514 33718±55772 0.003 

MIP1β 130.4±48.68 145.2±77.98 0.59 
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Figure 3.1. Differential serum adipokine and inflammatory profiles in OW/OB 

OA patients compared to NW OA patients.  

Cytokines were measured by Luminex multiplex technology and expressed as 

pg/mL.  OW/OB = overweight/obese; NW = normal weight. 
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Simplicity and ignorance to body composition has led to inaccuracies and bias often 

reported with BMI measures [290].  Therefore, data was also collected using 

bioelectrical impedance scales (Tanita, BC-420MA, Amsterdam, NL) to measure fat 

mass as a proportion of body composition.  In contrast to BMI, when the serum 

inflammatory markers were compared with fat mass, expressed as a percentage of 

total body mass, only serum leptin (p<0.0001) and FABP4 (p=0.001) demonstrated a 

significant  correlation, as shown in Figure 3.2. 
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Figure 3.2. Correlation of systemic Leptin (A) and FABP4 (B) to fat mass 

percentage (%) as measured by bioelectrical impedance.   

Serum cytokines were measured by Luminex multiplex technology. 

 

Recent publications have highlighted the importance of central adiposity on the risk 

of developing obesity-associated disorders [291, 292] and systemic inflammation 

[293].  Therefore, W:H ratio data was collected as a measure of adiposity distribution.  
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Interestingly, serum concentrations of adiponectin and FABP4 were significantly 

negatively associated with W:H ratio, suggesting lower expression levels with 

increasing central adiposity (Figure 3.3).  All other inflammatory markers measured 

had no significant relationship with W:H ratio. 
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Figure 3.3. Correlation of systemic A. Adiponectin and B. FABP4 to W:H ratio. 

Serum cytokines were measured by Luminex multiplex technology. W:H ratio; 

waist:hip ratio. 

 

3.2.5 Serum adipokines and cytokines in relation to joint disease severity. 

During the pre-operative consultations, weight-bearing radiographic images were 

collected in order to determine OA disease severity.  From these radiographic images 

it was possible to ascertain the K and L grade (see Table 1.2) and the joint space as 

markers of disease severity.  Furthermore, multi-joint OA as evident by the presence 

of hand OA was measured in each patient to determine if which cytokines or 

adipokines may be potential systemic drivers of joint degeneration.   
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There were no correlations identified between any of the serum concentrations of the 

cytokines or adipokines with K and L grade, or with the total amount of joint space.  

There was also no association with any of the cytokines or adipokines measured with 

hand OA presence (Appendix Table 3) and no association of cytokine or adipokine 

levels when K and L grade was separated by ≤ Grade 3 compared to Grade 4.  

Unfortunately, due to nature of the samples collected (i.e. end-stage OA), it was not 

possible to compare less severe K and L grades with systemic cytokine and 

adipokine expressions (Appendix Table 1).  Interestingly, there was a significant 

increase in resistin (11113 ± 6759 vs 15256 ± 9148 pg/mL) and amphiregulin (529.3 

± 162 vs 618.9 ± 225) in joints with <1.5mm joint space compared to joints with 

≥1.5mm joint space (Figure 3.4).  All data is detailed in Appendix Table 2. 
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Figure 3.4. Systemic concentrations of adipokines and cytokines in relation to 

joint space narrowing.   

A. Resistin pg/mL; B. Amphiregulin pg/mL. ≥1.5 = greater than or equal to 1.5mm 

joint space; <1.5 = less than 1.5mm. Serum cytokines were measured by Luminex 

multiplex technology. 
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Table 3.6 summarises the serum cytokines or adipokines that were found to be 

significantly different between OA and non-OA individuals, as well as those that were 

significantly different within the OA patient cohort dependent on BMI, fat mass %, 

W:H ratio and joint space.  The cytokines and adipokines found to be significantly 

different in disease were determined in patients where age, MAP, height and BMI 

were controlled.  For cytokines and adipokines differentially expressed according to 

BMI, fat mass %, W:H and joint space, patients were controlled for age,  height and 

MAP only. 

 

Table 3.6. Summary of serum adipokine and cytokines differentially altered in 

OA and NOF# patient populations. 

OA vs. NOF# OA only 

Disease BMI Fat Mass % W:H Joint Space 

Dkk1 

MIP1α 

Galectin 1 

Chemerin 

gp130 

IP10 

MCP1 

IL7 

Adiponectin 

FABP4 

MIP1β 

TNFα 

Galectin 1 

Resistin 

SerpinE1 

Leptin 

FABP4 

 

Leptin 

FABP4 

 

Adiponectin 

FABP4 

Resistin 

Amphiregulin 
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Bone vascularisation is highly important to maintain biological homeostasis and to 

allow the bone to perform its many functions including locomotion, calcium and 

phosphate metabolism, and endocrine molecule synthesis [294].  Blood flow, and its 

subsequent nutrient delivery, is tightly correlated with bone metabolism therefore 

modulating this nutrient delivery can directly impact bone resorption and formation 

[294]. 

 

3.2.6 Synovial fluid adipokines and cytokines expression in relation to BMI. 

Unlike bone, cartilage is an avascular tissue and therefore is not directly impacted by 

the concentrations of nutrients of cytokines in the systemic circulation.  However, 

local cytokine concentrations found in the synovial fluid are likely to impact cartilage 

turnover because nutrients are typically transported to chondrocyte cells via diffusion 

through the matrix from the synovial fluid [295].  Therefore while serum adipokine or 

cytokine levels may impact bone turnover, it is important when considering OA 

cartilage tissue to investigate proteins within the synovial fluid which may be 

impacted by BMI or central adiposity.  Table 3.7 shows a significant increase in 

TNFα, IL7, and leptin, with a significant decrease seen in IL6, and adiponectin in 

synovial fluid from OW/OB individuals compared to their NW counterparts.   
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Table 3.7. The synovial fluid concentrations of adipokines and cytokine in NW 

or OW/OB OA patients at the time of elective joint replacement surgery. 

(pg/mL) NW (n=20) OW/OB (n=52) P 

TNFα 4.34±2.92 5.13±7.87 0.03 

IL10 16.40±9.76 20.67±10.02 0.11 

IL1β 19.22±14.33 23.85±14.11 0.23 

Dkk1 545.7±727.6 608.0±551.4 0.73 

MIP1α 310.5±141.0 291.6±174.9 0.65 

Galectin 1 115791±26364 102113±26375 0.06 

Chemerin 2679±1339 3091±1220 0.24 

Eotaxin 33.91±38.24 33.84±56.38 0.99 

gp130 69361±14308 67543±70860 0.62 

IP10 153.4±171.1 177.7±602.8 0.61 

MCP1 389.3±489.5 602.8±1064 0.25 

IL7 3.34±1.13 4.29±1.47 0.004 

MIP3α 36.62±19.90 29.67±48.26 0.39 

Amphiregulin 1210±611 1324±493 0.46 

IL15 25.09±12.82 31.19±10.38 0.06 

Aggrecan - - - 

Resistin 5614±7664 4806±9589 0.51 

SerpinE1 33720±40188 22806±21045 0.27 

Adiponectin 4.87x106±3.53x106 2.74x106±1.71x106 0.01 

IL6 762.8±920.3 255.8±362 0.03 

LIF - - - 

Leptin 12461±7312 46736±40238 <.0.001 

FABP4 26346±38056 121662±625780 0.28 

MIP1β 114.8±42.2 93.16±44.01 0.10 
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3.3 Discussion. 

The aim of this chapter was to define the serum and synovial fluid inflammatory 

profile of OA disease sufferers and identify candidate cytokines or adipokines that 

may be integral to the progression of joint destruction. A second aim was to identify 

adipokines in patients with hip OA that are differentially expressed in relation to 

anthropometric measures including BMI, W:H ratio, and fat mass %. Identifying those 

inflammatory adipokines and cytokines that are associated with OA disease and 

disease severity, and determining differences in inflammatory profiles between OA 

patients of varying body composition could in the future help to stratify patient 

populations for adipokine-targeted therapeutics. 

In this study, 11 inflammatory adipokines/cytokines were differentially expressed in 

OA patients compared to NOF# patients.  These were Dkk1, MIP1α, Galectin 1, 

chemerin, gp130, IP10, MCP1, IL7, adiponectin, FABP4 and MIP1β.  As known risk 

factors (age, BMI, MAP) were not even across both patient groups, these variables 

were controlled for using generalized linear regression. 

The serum FABP4 data obtained from this study was intriguing.  Although 

concentrations were lower in OA samples compared to NOF# samples (B value = -

34069, p<0.001), there was a significant increase in FABP4 in the OA patient cohort 

with obesity (18487 ± 15514 pg/mL vs. 33718 ± 55772 in NW vs OW/OB 

respectively, p = 0.003), and a positive correlation with fat mass% (R2 = 0.11, 

p<0.0001).  Furthermore, FABP4 was negatively associated with W:H ratio (R2 = 

0.05, p=0.0095).  FABP4 is primarily expressed in adipocytes and macrophages, and 

has a number of roles in metabolic regulation including fatty acid uptake, 

transportation and oxidation [296]. Further, FABP4 activates BMP signalling through 

the downregulation of the leptin like cytokine GDF3 [297].  Levine and Brivanlou 
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(2006), in accordance with others [298, 299], showed increased FABP4 levels are 

associated with BMP-induced bone formation.  The data in this study demonstrates 

a significant increase in circulatory FABP4 levels with obesity in patients with hip 

OA.  This association between adipokines and BMP signalling has previously 

suggested by Witthuhn and Bernlohr (2001) who noted that GDF3 is antagonized 

with obesity, resulting in BMP activation and bone formation [300].  With this, it is 

possible to deduce that adiposity is protective against bone pathologies 

characterised by low bone formation, such as osteoporosis.  To add to the current 

literature, this study showed FABP4 correlated negatively with W:H ratio, 

suggesting that adiposity location is a significant determinant of serum FABP4 

expression. 

In terms of OA disease, an increased FABP4 concentration in NOF# patients 

compared to OA patients seems counterintuitive.  While hip fractures could be a 

consequence of extra-skeletal factors such as poor eyesight and overall frailty, 

osteoporosis is also a significant risk factor to hip fractures with over 50% of 

fractures in women associated with osteoporosis [301].  This must be considered in 

our control population. Lower serum FABP4 in OA patients may also serve as an 

attempt to limit the well-described increase in bone turnover in patients with OA 

[132, 302, 303].  With little published research, this theory requires further study. 

Serum resistin expression was significantly increased in OW/OB patients with OA 

compared to their normal weight counterparts (9818 ± 7325pg/mL and 13041 ± 

9013pg/mL, in NW vs OW/OB respectively).  Furthermore, resistin was significantly 

increased in joints of minimal joint space (11113 ± 6759 pg/mL in ≥1.5mm vs 15256 ± 

9148 pg/mL in <1.5mm) and showed a trend towards increased expression in 

association with K and L grade (p=0.09).   
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Resistin is a dimeric adipokine secreted from adipocytes, macrophages and 

abundantly expressed in bone marrow cells [259], and was first identified as being 

down-regulated in response to the use anti-diabetic thiazolidinediones in mice [258].  

Furthermore, in support of the data in this study, serum resistin was previously shown 

to increase in diet-induced obese mice [258].  

In OA, resistin has remained poorly researched in comparison to the popular 

adipokines such as adiponectin and leptin, and most research is directed towards the 

effect of resistin on cartilage damage.  For example, resistin injected into the joint 

space of healthy mice induced cartilage degeneration and synovial inflammation 

[304], in addition to upregulating catabolic cartilage mediators including MMPs, TNFα 

and IL6 [305].  The role of resistin in mediating cartilage damage was further 

supported recently by Song et al., (2015) who identified a significant association 

between synovial fluid resistin expression and the Noyes score (a scoring system 

based upon four variables: cartilage surface integrity, depth of involvement, lesion 

location, and lesion diameter), K and L grade and WOMAC scores [306].   

While we found no significant difference in resistin levels between NOF# patients and 

OA patient serum samples, there is an association with BMI in OA patient serum and 

joint space, therefore further investigating the role of resistin in modulating the 

pathological progression of OA in obese patient bone is highly relevant. 

In addition to resistin, the adipokines adiponectin and leptin also exhibited interesting 

data in this study.  The role of adiponectin in OA is still debatable, with many 

research studies citing a pro-inflammatory or anti-inflammatory role.  Adiponectin 

represents the highest proportion of adipokines within the circulatory system, and in 

this study there was a significantly decreased expression in OA serum compared with 

NOF# patient serum (B value = -4.2x106, p=0.002), and it was negatively associated 
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with W:H ratio (R2 = 0.07, p=0.0016).  This data indirectly supports previous work by 

Honsawek and Chayanupatkul (2010) who found a negative association of 

adiponectin and joint damage severity, which infers a protective role of adiponectin in 

the pathogenesis of OA [307].  The authors suggested that with reduced circulating 

adiponectin there may be an increased inflammation and joint destruction.  

Therefore, as we have seen in our data, those of a lower serum adiponectin 

expression may be at risk of OA disease.   

Conversely to our data, De Boer et al., (2012) found that serum adiponectin was 

markedly increased in end-stage OA patients, when compared with a control 

population without signs of OA [247].  Furthermore, adiponectin was specifically 

associated with BMI in female patients, and showed a trend towards correlating with 

synovial joint inflammation.  The authors therefore suggested that adiponectin may 

play an important role in the development of inflammation within the OA joint.  In 

comparison to our own study, the OA population within the De Boer et al., study was 

solely those with knee OA, and control patients had recent pain and/or stiffness of 

the knee or hip associated with early OA, but no radiographical signs of OA.  While 

these variables may account for the discrepancy between ours and De Boers 

adiponectin data, particularly as pain in both the hip and knee joint may be a result of 

different bone pathologies, it is possible the assays used to determine adiponectin 

concentrations also exhibit differing affinities for the adiponectin multimeric 

complexes.  This requires further study. 

In addition to serum cytokine levels, this study investigated local cytokine 

concentrations found in the synovial fluid of NW and OW/OB OA patients.  There 

were some limitations encountered within this study including a high standard 

deviation in synovial fluid cytokine samples, typically seen in OA.  While we 
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attempted to limit assay variability through hyaluronidase treatment of samples, 

increasing subject numbers may decrease the standard deviation and allow for more 

subgroup analysis.  Furthermore, due to the difficulties with obtaining synovial fluid in 

end-stage OA, we received synovial fluid from a subset of the patients recruited for 

this study which may be unintentionally skewing the data towards a certain 

population of OA.  Finally, for all patients we received a medical history and current 

medication list at the time of surgery.  We do not consider the time it takes for some 

medications to clear the system and therefore could still be having an effect on the 

serum and synovial fluid levels of cytokines and disease severity.  For example, 

bisphosphonates which are normally used to treat osteoporosis and therefore may be 

a medication used in our NOF# population, can remain in the system for up to 200 

days following treatment [308].  

In this study, there was a significant increase in synovial fluid TNFα, IL7, and leptin, 

with a significant decrease seen in IL6 and adiponectin in NW versus OW/OB 

patients with hip OA.  Perhaps the most notable cytokines increased in synovial fluid 

were IL7 and TNFα.  In RA, IL7 has been shown to increase pro-inflammatory 

cytokine production via the intra-articular CD4+ T cells and antigen-presenting cells. 

In particular, IL7 stimulation of synovial fluid mononuclear cells and synovial fluid 

CD4+ T cells resulted in a significant increase in TNFα production [309].  Despite OA 

being considerably less inflammatory compared with RA, histological analysis, 

ultrasound and MRI imaging have shown evidence of synovitis in OA joints [145] with 

increased cellular infiltration of activated B cells and T lymphocytes.  This is further 

supported by Shen et al., (2011) who demonstrated a role for CD4+ T cells in the 

initiation of anterior cruciate ligament transection induced-OA in a CD4 T cell 

knockout mouse model [310].  In relation to this study data, it is possible that with the 
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increased immune cell infiltration with OA, there is an increase in localised IL7 

cytokine production and subsequent TNFα secretion into the synovial fluid.  This 

ultimately leads to a pro-inflammatory and pro-catabolic state and subsequent tissue 

damage. 
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Chapter 4: The role of 

resistin in altering the 

biochemical composition 

of Collagen Type I in 

obese patients with OA 
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4.1 Introduction 

To date, research into understanding the role of adipokines in OA joint pathology has 

predominantly focussed on the cartilage tissue by determining the effect of 

adipokines on chondrocyte phenotype.  For example, using isolated primary human 

chondrocytes, Hui et al., (2012) discovered that leptin alone, and in synergy with 

IL1β, induced the expression of catabolic factors MMP-1 and MMP-13 with activation 

of p38, ERK, PI3K and Akt pathways [254].    Leptin has also been demonstrated to 

increase the production of inflammatory mediators including IL1β, IL6, IL8 and 

prostaglandin E2 [255].  However, cartilage tissue is avascular and thus is unlikely to 

be directly affected by systemic increases in pathological levels of adipokines.   

 

In contrast, subchondral bone is a highly vascularised tissue, and thus would be 

expected to be influenced by differential concentrations of circulatory adipokines 

reported in over-weight and obese individuals [31, 247, 311].  Despite this, very little 

is currently understood with regards to the effect of obesity on subchondral bone 

composition in patients with OA, or the functional role of adipokines in mediating 

sclerotic OA bone pathology or modulating osteoblast phenotype.  It has previously 

been reported that there is a temporal relationship between serum levels of 

adipokines and biomarkers of bone remodelling in females with knee OA [312], and 

more recently studies have shown that found that adipokines modulate osteoblast 

proliferation [313-315] and differentiation, supporting the concept that adipokines and 

obesity may impact on OA bone pathology.   

 

Importantly, OA subchondral bone has been referred to as “sclerotic”, with reports of 

irregular trabecular architecture [316] abnormal collagen type I composition [281], 
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and dysregulated mineralisation [317].  Therefore, an important part of this chapter 

was to determine whether adiposity affected the architecture and collagen type I 

composition of subchondral bone in patients with OA, and secondly to examine the 

effect of candidate pathological adipokines on the composition of OA bone and on 

the phenotype of primary OA osteoblasts. 

 

4.2 Results 

4.2.1 Profiling the structural composition of OA bone samples from patients 

with differing BMIs 

We first aimed to determine if varying BMI was associated with different molecular 

composition of collagen type I human femoral head bone samples by quantifying the 

relative ratio of α1 and α2 collagen type I chains.  Collagen isolation was confirmed 

by electrophoretic mobility against a molecular weight marker.  There was a 

significant increase in the α1 and α2 ratios in OW/OB patient bone only, with barely a 

detectable increase in normal weight OA bone compared with non-OA fracture neck 

of femur bone samples (Figure 4.1A).   We investigated if gross structural parameters 

were different between NW and OW/OB OA patient bone samples using micro-CT 

technology.  These data revealed that trabecular bone thickness (TbTh.) was 

significantly reduced in OW/OB bone samples compared with NW (0.29 ± 0.02 vs 

0.34 ± 0.03 mm respectively), whereas bone surface/bone volume ratio was 

significantly increased (6.85 ± 0.5 vs 5.91 ± 0.5 1/mm) (Figure 4.1C-F). Other 

parameters measured using micro-CT demonstrated no significant alterations as 

detailed in Table 4.1. 
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Figure 4.1. Comparison of the structural composition of femoral head 

subchondral bone in patients of different BMI cohorts.   

A. A typical coomassie gel of subchondral bone collagen demonstrating the ratios of 

α1/α2 quantities.  Below the coomassie image are the quantified mean α1/α2 ratios 
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for OA patients in different BMI groups. NOF# = fracture neck (n=6), NW = normal 

weight (n=7), OW/OB = overweight/obese (n=13) (*=p<0.05). B. Representation of 

the area from the trabecular bone area for micro-CT analysis. C-F. Micro-CT analysis 

of OA femoral head subchondral bone samples from NW (n=6) and OW/OB patient 

cohorts (n=6).  Patient samples were excluded if a bone cyst was present (*=p<0.05). 

Tb.Th = Trabecular thickness; BS/BV = Bone surface/Bone volume. 

 

Table 4.1.  Micro CT of human OA femoral head subchondral bone. 

PARAMETER NW 

(Mean±SD) 

OB 

(Mean±SD) 

p value 

Tb.Th 0.34 ± 0.03 0.27 ± 0.02 0.02 

Tb.N 1.25 ± 0.12 1.66 ± 0.34 0.14 

Tb.Sp 0.47 ± 0.08 0.41 ± 0.17 0.47 

BS/BV 5.91 ± 0.54 7.54 ± 0.52 0.02 

Micro-CT analysis of OA femoral head subchondral bone samples from NW (n=6) 

and OW/OB patient cohorts (n=6).  Patient samples were excluded if a bone cyst was 

present (*=p<0.05). Tb.Th = Trabecular thickness; BS/BV = Bone surface/Bone 

volume; Tb.Sp. = trabecular separation, TB.N = trabecular number. Data expressed 

as mean ± SD. 

 

4.2.2 Adipokines alter the collagen composition of OA bone  

Following identification of differential collagen formation in OW/OB patients, we 

examined whether adipokines may provide a systemic link to altering bone 

pathology.  In serum, we identified a significant increase in leptin and resistin 
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concentrations in the OW/OB population compared to the NW OA population (31578 

vs 8685pg/mL and 12740 vs 9818pg/mL respectively).  There was no difference in 

circulating visfatin concentrations in OW/OB compared to NW (4410 vs 4467pg/mL).  

 

Figure 4.2. Serum adipokine expression in NW and OW/OB patients with OA.   

Adipokines were measured by Luminex multiplex technology. ***=p<0.0001, 

*=p<0.05. 

 

We then examined the effect of chronic adipokine stimulation on the collagen 

composition phenotype of NW OA bone.  Bone samples were cultured for 4 weeks in 

adipokine-containing media and collagen Type I was isolated.  Resistin was shown to 

be the only adipokine that affected collagen homotrimer formation with a 2.4 fold 

increase (3.8 compared to 1.6 in resistin versus media control culture bone) (Figure 

4.3A).  This was further confirmed with an increase in COL1A1 gene expression 
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(p<0.005) compared to no significant change in COL1A2 gene expression (Figure 

4.3B). 
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Figure 4.3. Resistin pathological alters NW bone collagen composition.  

A. A typical coomassie gel of subchondral bone collagen following 4wk adipokine 

stimulation. The ratios of α1/α2 quantities demonstrate an increase in α1/α2 ratio and 

therefore the increase in homotrimer formation (n=4) (** = p<0.01). B. COL1A1 and 

COL1A2 relative gene expression following acute (24hr) stimulation with resistin 

(n=4) (*=p<0.05). 
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4.2.3 Resistin stimulated osteoblasts exhibited increase alkaline phosphatase 

activity and bone nodule formation. 

Primary osteoblasts were cultured from the subchondral bone tissue of three OA 

patients, and stimulated with recombinant resistin or IL1β for 2 weeks.  Following 2 

weeks of stimulation, there was a significant (p<0.05) increase in alkaline 

phosphatase activity in resistin stimulated osteoblasts (Figure 4.4A) compared to 

non-stimulated cells (0.001 units/mg vs 0.0003 units/mg respectively).  A small 

increase in alkaline phosphatase activity was also observed in those osteoblasts 

stimulated with IL1β (0.0006 units/mg), compared to control (0.0003 units/mg), 

although this did not reach statistical significance (data not shown).     Stimulation of 

osteoblasts with resistin also increased their basal oxygen consumption rate (OCR) 

2.2±2.1 fold (p=0.002, n=10 Figure 4B). Bone nodule formation was significantly 

increased following 4 weeks of resistin stimulation, as depicted by alizarin red 

staining of the calcium containing nodules.  Alizarin stain was quantified with cetyl 

peridium chloride, which showed an increase in bone nodule formation following 

resistin stimulation compared to unstimulated control osteoblasts (0.16 vs 0.26 nm) 

(Figure 4.4C).  Despite increase alkaline phosphatase activity and bone nodule 

formation, we depicted no change in osteoblasts proliferation upon stimulation with 

resistin (Figure 4.4D). 
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Figure 4.4.  Functional impact of resistin on the metabolic activity and bone 

nodule formation of human primary osteoblasts.  

A. Alkaline phosphatase activity of human primary osteoblasts from the femoral 

subchondral bone following 2wk resistin stimulation (n=4) (*=p<0.05) and normalised 

to total protein following cell lysis. B. Oxygen consumption rate fold change following 

24hr stimulation of primary human osteoblast cells with 500ng/mL resistin.  OCR 

values (pmol/min) were normalized to total protein following cell lysis prior to fold 

change calculation. C. Alizarin red staining following 4wk resistin stimulation (n=4).  A 

representative image of alizarin red staining is located above the graph with the 

intensity of alizarin red staining increasing with increased bone nodule formation.  

Alizarin Red staining was quantified using 10% cetyl pyridinium chloride and read at 
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OD540nm on a microplate Reader (Biotek, Elx808). D. Time-course of human primary 

osteoblasts cell proliferation following stimulation with and without resistin (n=4) as 

determined using an MTS assay.  

 

4.2.4 Wnt signalling pathway gene expression is upregulated following 24 

hours of resistin stimulation. 

In an effort to understand the signalling mechanisms behind these resistin-mediated 

changes in bone pathology, we stimulated primary OA osteoblasts for 24 h with 

recombinant resistin and measured 84 canonical Wnt pathway genes by qRT-PCR.  

Of the 84 genes analysed, 14 genes were significantly upregulated >1.4 fold in the 

resistin stimulated cells, compared to unstimulated cells.  Pathway analysis using IPA 

predicted that this pattern of gene expression would lead to an increase in β-catenin 

expression and activity (Table 4.2, Figure 4.5A). This was then confirmed in primary 

osteoblasts where we demonstrated nuclear translocation of β-catenin within 30 min 

of recombinant resistin stimulation (Figure 4.5B), quantified by an increase in the 

percentage of β-catenin staining within the nucleus (10.2 ± 3.9% vs 17.6 ± 8.9% in 

media and resistin stimulated osteoblasts respectively (Figure 4.5C)). 
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Figure 4.5.  Analysis of the Wnt signalling pathway in human primary 

osteoblasts following resistin stimulation.  

A. IPA analysis of Wnt genes upregulated with resistin stimulation and the predicted 

increase in β-catenin expression. Orange arrows = predicted activation, grey arrows 

= effect not predicted.  B. Representative images of nuclear translocation of β-

catenin in human osteoblasts following i) media only ii) 30min of resistin stimulation 

(500ng/mL). Green = α-Actin, Blue = Hoechst, and Red = β-catenin (n=3). C.  

Quantification of nuclear translocation of β-catenin using Image J software.  

Percentage nuclear β-catenin refers to the subset within the area of hoechst staining 
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compared to the whole cell and is an average of 6 images per biological replicate 

(n=3 biological replicates) (*=p<0.05). 

 

Table 4.2. Wnt Signalling pathway genes upregulated following the stimulation 

of primary osteoblasts with recombinant resistin for 24 hours. 

GENE ALIAS FOLD CHANGE p value 

WNT5A Wnt Family Member 5A 1.56 0.004 

WNT2B Wnt Family Member 2B 1.62 0.004 

NFATC1 Nuclear Factor of Activated T-Cells 1.42 0.005 

WNT7B Wnt Family Member 7B 1.94 0.015 

MYC c-Myc 1.71 0.018 

FOSL1 FOS Like Antigen 1 1.50 0.031 

AXIN2 Axis Inhibition protein 2 3.07 0.035 

BOD1 Biorientation of  chromosomes in cell division 1 1.64 0.036 

GSK3β Glycogen Synthase Kinase 3 Beta 1.40 0.038 

PITX2 Paired like Homeodomain 2 3.94 0.038 

TCF7 Transcription Factor 7 1.71 0.039 

FRZB Frizzled-Related Protein 1.76 0.039 

FZD4 Frizzled Class receptor 4 1.75 0.044 

CHSY1 Chondroitin Sulfate Synthase 1 1.62 0.044 

Data expressed is mean fold change, and p values were calculated on log10 

transformed data. 
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4.3 Discussion 

To our knowledge, this is the first study to examine the relationship between 

adiposity and bone collagen type I structure in patients with hip OA, and to identify a 

potential role of resistin in altering the biosynthetic activity of osteoblasts via 

activation of the canonical WNT signalling pathway. 

Collagen structure and alignment is pivotal to the structural integrity of bone [281, 

318], therefore increased proportion of collagen type I homotrimer in OA bone has 

negative mechanical consequences [281].  In 2002 Bailey et al., demonstrated an 

increased in collagen homotrimer content in OA subchondral bone when compared 

to fracture neck of femur patients, resulting in poorly organised collagen matrix, 

reduced mineralisation of the bone, and increased lysine hydroxylation [281]. The 

type I collagen α2 chain is thought to be integral to maintaining the triple helix 

structure of collagen [134], increasing the interaction of the hydrophobic side chains 

and thus limiting water content, and allowing for greater cross-linking of the collagen 

molecules [135].  Furthermore, a study using computational models of murine type I 

collagen fibrils concluded that the homotrimer formation results in a ‘kinking’ of the 

fibril, which provides greater flexibility, smaller bending stiffness, and a smaller 

persistence length [319]. 

In this study, we have demonstrated a modest increase in collagen homotrimer 

content in weight-matched OA bone when compared to the non-OA NOF# bone 

samples.  However, the increase in collagen homotrimer content observed in the OA 

patient samples was accentuated in OW/OB patients compared to NW OA patients, 

suggesting that adiposity may be a primary driver of collagen malformation, leading 

to accentuated sclerotic bone development and OA progression [281].  Structural 
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abnormalities of bone in relation to adiposity were further confirmed via micro-CT.  In 

particular, we have demonstrated an increase in BS/BV ratio in the OW/OB patient 

bone samples, compared to NW samples; an indication of higher rates of bone 

turnover occurring as a result of greater bone surface area [320].  

In terms of OA, modifications in trabecular bone thickness remain controversial.  

Some studies have found OA subchondral bone to have thicker trabeculae [316, 

321], compared to non-OA bone.  Conversely, in this study we have shown a 

decrease in trabecular thickness in the subchondral bone, suggesting more of an 

osteoporotic phenotype than an OA phenotype.  However Buckland-Wright (2004) 

suggested that concurrent with the flattening and deformation of the articular 

cartilage in the knee, comes improved load transmission and reduced mechanical 

stress [125].  The increase in sclerotic bone present within the subchondral plate 

reduces load within the deeper subarticular region and subsequent development of a 

localized osteoporosis.  Therefore, the change in trabecular thickness we have 

observed within our study may in part be due alterations in hip alignment and force 

transduction, and in reference to Buckland-Wright (2004), may be due to excessive 

flattening of the articular cartilage due to the excessive load-bearing evident in 

individuals of greater adiposity.  Further studies to determine trabecular thickness 

across a larger area of the femoral head, together with analysis of cartilage integrity 

and assessments of patient gait prior to elective joint surgery could therefore prove 

informative. 

Critically, since bone is a highly vascularized tissue bone health can be highly 

affected by circulating adipokines as a result of increased adiposity.  As previously 

described in Chapter 3, in the present chapter we analysed the serum concentration 

of a panel of 24 adipokines in 150 patients with OA who were either NW or OW/OB.  
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Notably, in addition to leptin, we found that there was a significant increase in the 

concentration of the adipokine resistin in OW/OB patient serum compared to NW 

serum (p<0.05). The association of resistin to obesity is in support of previous 

research [322, 323] and can therefore provide a systemic driver that may alter bone 

pathologies in OB individuals.   

Resistin has raised significant interest in terms of bone pathology in OA.  Termed 

due to its relationship to insulin resistance in mice [28, 324], resistin is a dimeric 

protein secreted from adipocytes, macrophages and abundantly expressed in bone 

marrow cells [259]. In RA, resistin has been shown to accumulate within inflamed 

joints, and correlates with the degree of inflammation and the expression of 

inflammatory cytokines including TNFα, IL1β and IL6.  Despite these data, very little 

is understood with regards to the role of resistin in driving pathological changes in the 

bone.   

Resistin has been reported to promote MC3T3-E1 preosteoblast proliferation, 

however little is known with regards to human primary osteoblasts and the overall 

impact on bone remodelling or collagen formation. In the present study, we have 

shown that resistin promotes a shift in NW bone towards an OW/OB phenotype, with 

regards to collagen homotrimer formation.  This suggests that resistin may 

accentuate the formation of homotrimer-rich, sclerotic bone in OA patients who are 

overweight or obese.  We also showed an increase in bone nodule formation 

following stimulation of primary human osteoblasts with recombinant resistin for 4 

weeks.  This is counterintuitive to data expressed in recent studies that have shown a 

negative correlation with serum resistin levels and bone mineral density [325, 326].  It 

is important to note however that resistin has been shown to increase cytosolic 

calcium in HSC (human hepatic stellate cells) [327], and that an increase in cytosolic 
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calcium in osteoblasts has been shown to contribute to increased extracellular 

hydroxyapatite formation [328].  We propose therefore that resistin could be 

increasing cytosolic calcium within our primary human osteoblast cells, and thus 

drives the formation of extracellular hydroxyapatite crystals. However this theory 

requires further study.  Furthermore, previous data suggesting serum resistin is 

negatively associated with BMD is based upon correlation data, and correlation does 

not imply causation.   

In accordance with previous research, we observed an increase in alkaline 

phosphatase activity following a 14 day stimulation of osteoblasts with resistin 

(Figure 4.4A) [314]. Alkaline phosphatase was one of the first components 

recognised to be essential in osteogenesis and its role in normal and pathological 

calcification is undeniable [329, 330].  Expressed by mature osteoblasts, alkaline 

phosphatase activity has been shown to be higher in osteoblasts from OA bone, with 

speculation that this may be due to an increased differentiation of pre-osteoblasts 

into a mature osteoblast phenotype [331, 332], though this remains to be elucidated.  

This data further supports the role of resistin in driving bone nodule formation.  With 

no change in proliferation between resistin-stimulated and media-stimulated human 

primary osteoblasts, we have shown that resistin may play a significant role in the 

maturation and osteoid development phase of bone formation, and not in the 

recruitment of osteoblasts to the site of bone formation. 

The WNT pathway is a principal regulatory pathway associated with both alkaline 

phosphatase expression and activity, and osteoblastic differentiation [333, 334].  The 

canonical WNT pathway is initiated through the binding of WNT to the Frizzled 

receptor and low density lipoprotein receptor related protein 5 and 6 (LRP5 and 

LRP6). AXIN then dissociates from GSK3β, allowing for the translocation of β-catenin 
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into the nucleus to bind with TCF/LEF transcription factors, and subsequently 

activate gene transcription from the RunX2 promoter [335, 336].  Confidence in the 

role of the WNT signalling pathway in bone formation emerged through the discovery 

of a high bone mass phenotype in LRP5 gain-of-function mutations, in comparison to 

loss-of-function mutations that lead to an osteoporosis-pseudoglioma syndrome [337, 

338].  Our data demonstrates that resistin causes the translocation of β-catenin to the 

nucleus, via the activation of a number of WNT signalling genes including WNT5A, 

WNT2B, AXIN2 and FZD4, thus supporting our role for resistin in driving bone 

formation.  

The present study has some limitations. Firstly, all samples were obtained from 

patients undergoing total joint replacement and therefore, suffering from advanced 

OA. This means that the data attained using patient samples excludes any patients 

with less severe OA.   Furthermore, due to the cross-sectional design of this study, it 

is only possible to suggest causal relationships, which can only be confirmed with 

longitudinal research.  It is important to note, that despite gene analysis of the WNT 

signalling pathway, there was no attempt to determine if the many SNPs identified 

within the WNT signalling pathway in previous research were present in our primary 

osteoblast samples.  SNPs within any of the measured genes within the signalling 

pathway could directly regulate gene expression and subsequent functional outputs 

including bone nodule formation and osteoblast biosynthetic activity.  For example, it 

has been previously shown that gain of function SNP mutations in the LRP5 Wnt co-

receptor results in an increase in bone mass [339, 340].  In addition, Arg324Gly 

substitution in the FRZB, a gene increased by resistin stimulation, resulted in a loss 

of Wnt antagonism in females with hip OA [341].  Therefore if the primary osteoblast 

cells used within this study had the Arg324Gly substitution in the FRZB, it is possible 
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that the effect we identified with resistin stimulation is exaggerated and not a true 

reflection of the effects of resistin on bone formation, 

Further, as mentioned in chapter 3, for all patients we received a medical history and 

current medication list at the time of surgery.  Due to the vast array of medications 

the patients were receiving, it was not possible to assess each therapeutic for its 

effect on bone metabolism.  Furthermore, we received information of medications at 

the time of surgery, not those that have been received in the years prior to surgery 

which may impact bone turnover including glucocorticoids and thiazide diuretics.  All 

patients that went for surgery were fasted prior to surgery so the fed state of patients 

remained constant throughout, however in our NOF# patients, the time between 

fracture and surgery varied and therefore may provide a source of variability within 

our data.  Though most surgeries were completed within 24 hours of the fracture, 

some resulted in a delay to 72 hours in order to obtain medical clearance.  

To conclude, these data have demonstrated that resistin promotes an increase in the 

biosynthetic activity of human primary osteoblasts resulting in collagen type I 

homotrimer formation.  The data suggests that resistin may affect bone turnover 

through activation of the canonical WNT-signalling pathway and subsequent β-

catenin translocation and gene transcription.  However, further studies are required 

to fully understand the mechanistic role of resistin in affecting the dynamic balance of 

bone maintenance.  In a broader context, given the mounting evidence that bone 

changes precede cartilage alterations [123], establishing adipokines as a link 

between these bone changes and obesity, as well as identifying their role in OA 

pathogenesis, may lead to the development of adipokine-targeted drugs as novel 

DMOADs.  
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Chapter 5: Visfatin 

(NAMPT) drives cartilage 

catabolism leading to 

proteoglycan loss and 

inflammation. 
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5.1 Introduction 

As previously mentioned in Chapter 1 (section 1.7.4), one adipokine that has 

received much attention in recent years with regards to OA is visfatin, a highly 

conserved ubiquitously expressed protein, which was originally defined as a pre-B 

cell colony enhancing factor [266].  Numerous potential roles for visfatin have now 

been proposed including; catalysing the conversion of nicotinamide and 

phosphoribosyl-pyrophosphates to nicotinamide mononucleotide [267], and acting as 

an insulin mimetic [268] a growth factor [269], or as an inflammatory cytokine able to 

induce TNFα, IL6 and IL1β [270].   

Visfatin is termed an ‘adipokine-enzyme’ due to its enzymatic nature when in a 

homodimeric conformation [271], and is secreted independently from the Golgi 

apparatus and the endoplasmic reticulum from visceral adipose tissue [272].  Visfatin 

exists in an intracellular (iVisfatin) and extracellular (eVisfatin) form.  eVisfatin has 

received a lot of attention in current literature due to its elevated expression and 

potential contribution to a number of pathological conditions associated with ageing 

including diabetes [273] and obesity [274-277].  Although the biosynthesis of 

nicotinamide adenine dinucleotide is well established as one of the functional roles of 

iVisfatin, the pathophysiological relevance and the functional consequence of 

elevated levels of eVisfatin in disease states, including in osteoarthritis is not fully 

established.  

Previous studies have shown that visfatin expression is increased in human 

chondrocytes upon stimulation with IL1β and that the stimulation of chondrocytes 

with recombinant visfatin can modulate the expression of matrix proteases, aggrecan 

proteoglycan [278] and the production of IL6 [271].  These studies suggest that 
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visfatin may drive both pro-inflammatory and pro-degradative effects within joint 

cartilage.  However, critically these studies were conducted in isolated chondrocytes 

and not on articular cartilage tissue, where the chondrocytes are embedded within a 

collagen and proteoglycan matrix and thus are of a different phenotype [342-344].    

Currently, there are no studies which have reported the functional effects of visfatin 

on human ex-vivo OA articular cartilage tissue, where effects on the cartilage 

proteoglycan integrity can be observed.  Furthermore, no studies have as yet 

reported on the expression of visfatin in the joint tissues of patients with hip OA, or 

how the joint tissue expression of visfatin in this patient cohort varies with BMI. 

 

The aim of this study was therefore to evaluate the serum and joint tissue expression 

of visfatin in patients with hip OA of varying BMI and to determine the functional role 

of visfatin in articular cartilage from patients with hip OA using a human ex vivo 

cartilage explant model.   



Page | 126 
 

5.2. Participant recruitment and sample collection  

As detailed in section 2.1, patients with hip OA (age 45-80 years) undergoing elective 

total hip joint replacement surgery (K and L grade 3-4) were recruited (Ethical 

approval NRES 14-ES-1440).  For this particular study, serum was collected from 

n=24 hip OA patients who were classified as of normal-weight, over-weight or obese.  

For comparison to non-OA, serum was also collected from normal-weight (n=23), 

over-weight (n=24) and obese (n=22) individuals without OA from the Birmingham 

1000 Elders cohort (NRES 10/H1202/45).  From n=9 patients with hip OA, at the time 

of surgery, the femoral heads were collected and a portion of subcutaneous adipose 

tissue, gluteus maximus skeletal muscle and synovium from around the joint 

collected (Table 5.1).  Furthermore, synovial fluid was aspirated from n=3 OW/OB 

patients and from n=3 NW patients.      
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Table 5.1: Patient characteristics 

 Normal 
weight 

Overweight Obese p= 

No. of Non OA patient # 
(Female %) 

23 (52) 24 (50) 22 (50) - 

OA patient # (Female %) 24 (50) 24 (50) 24 (50) - 

Non OA Male  Age (yr.) 67±4.9 66±3.8 67±5.5 0.78 

OA Male Age (yr.) 67±4.4 67±7.4 60±7.3 0.05 

Non OA Female Age (yr.) 67±4.3 65±6 66±4.1 0.25 

OA Female Age (yr.) 63±4.2 61±10.2 65±8.1 0.8 

Non OA Male BMI (kg/m2) 22±0.7 27±0.3 33±1.4 <0.001 

OA Male BMI (kg/m2) 23±1.3 27±1.5 33±2.7 <0.001 

Non OA Female BMI (kg/m2) 20±0.7 28±0.9 33±2.1 <0.001 

OA Female BMI (kg/m2) 21±0.9 28±1.1 34±2 <0.001 

Non OA Male W:H 0.89±0.08 0.93±0.04 0.95±0.07 0.17 

OA Male W:H 0.90±0.03 0.96±0.07 1.00±0.06 0.001 

Non OA Female W:H 0.77±0.02 0.87±0.07 0.86±0.06 0.001 

OA Female W:H 0.80±0.06 0.86±0.04 0.88±0.06 0.01 

Abbreviation: # = number, W:H = waist to hip ratio, BMI = Body Mass Index. 

 

5.3 Results. 

5.3.1 The serum profile of visfatin in males and females of varying BMI is not 

related to hip OA disease status or to biomarkers of cartilage remodelling.   

Both the non-OA and OA population were divided into three statistically-matched BMI 

groups (normal-weight, overweight and obese).  Before analysis of all study 

participants’ serum samples, we first verified the specificity of the visfatin ELISA kit by 

comparing western blot densitometry values and ng/µL concentrations as determined 

by the ELISA kit (Figure 5.1). 
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Figure 5.1. Verification of the visfatin ELISA kit via western blot of serum 

samples.   

Bar chart represents values quantified by ELISA. Specificity of the visfatin ELISA kit 

was verified by comparing western blot densitometry values and ng/µL 

concentrations as determined by the visfatin ELISA kit. 

   

Serum visfatin levels demonstrated no significant correlation with BMI in either males 

or females without OA (R2=0.09 (95%CI -0.05 to 0.746) and R2=0.00 (95% CI -0.42 

to 0.36) respectively), or with BMI in males with hip OA (R2 = 0.03 (95% CI -0.49 to 

0.14)).  However in females with hip OA, there was a significant correlation of serum 

visfatin expression levels and BMI (R2 = 0.2 (95% CI -0.11 to 0.53) (Figure 5.2). 
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Figure 5.2. The correlation between serum visfatin concentration and BMI in 

patients with or without hip OA.   

Serum visfatin expression levels were determined by ELISA. A. Male control (n=35) 

patients, B. male OA patients (n=36), C. female control patients (n=35), D. female 

OA patients (n=36). *=correlation is significant to p<0.05.  

 

To examine if serum visfatin concentrations were associated with the degree of 

cartilage remodelling, serum biomarkers associated with cartilage degradation 

(COMP) and cartilage synthesis (Type IIA collagen neopeptide; PIIANP) were 

measured.  We found no significant correlation associated between serum visfatin 
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concentrations with either serum COMP or serum PIIANP in any of the patient 

cohorts (Figure 5.3A and 5.3B).  However, serum visfatin concentrations were 

negatively associated with CTX-II and BMI in OA females only (p<0.05) (Figure 5.4).  
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Figure 5.3. Serum concentrations of COMP and PIIANP in males and females 

with hip OA.   

A. Cartilage oligomeric matrix propeptide (COMP) serum concentration and its 

correlation with serum visfatin concentrations in males and females with and without 

hip OA (n=63 control, n=66 OA). B. Type IIA Collagen N-propeptide serum 
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concentration and its correlation with serum visfatin concentrations in males and 

females with and without hip OA. (n=62 control, n=66 OA). 
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Figure 5.4. C-terminal cross-linked telopeptide type II collagen serum 

concentration and its correlation with serum visfatin concentrations.  

A. Male Control patients (n=22); B. Male OA patients (n=16); C. Female Control 

patients (n=14); D. Female OA patients (n=10). * = p<0.05. Visfatin and CTX-II 

concentrations were determined by ELISA. 
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5.3.2 Visfatin is expressed locally by the tissues of the hip OA joint and is 

elevated in the tissues of obese hip OA patients. 

The presence of visfatin, under denaturing conditions, was examined in the synovial 

fluid as well as the tissues that encompass the hip joint, namely cartilage, bone, 

skeletal muscle, synovium and adipose and compared to serum (Figure 5.5A).  

Electrophoretic mobility was confirmed with his-tagged recombinant visfatin.  Notably, 

when compared w/w to cartilage, bone and muscle, visfatin was found to be highly 

expressed in adipose tissue from the hip joint.  Expression of visfatin was 

significantly greater in synovial fibroblasts (0.19 ± 0.05 vs. 1.65 ± 0.22, p=0.02) from 

obese (OB) hip OA patients (n=3), compared to normal weight (NW) hip OA patients 

(n=3; Figure 5.5B and C).  Visfatin expression in adipose tissue displayed significant 

patient variability, but on average also appeared to be greater in OB patients 

compared to NW patients (Figure 5.5B and C).   
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Figure 5.5. The expression of visfatin in hip OA joint tissues.  

A. Expression of visfatin under reducing conditions in serum (S), cartilage (C), bone 

(B), synovium (Sy), synovial fluid (Sy.f), adipose(A), and muscle (M). Recombinant 

visfatin (r.Vis) indicates molecular weight region.   B. Tissue panel of sample western 

blot from normal-weight (NW) and obese (OB) individuals with hip OA.  All samples 

were normalised to µg of total protein loaded and equal loading was confirmed by 

C. 
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ponceau-S staining and actin expression. C. Western blots were analysed using 

Image J software and the densitometry was compared in NW and OB patients. 

 

5.3.3 Visfatin induces the production of matrix metalloproteases in human hip 

OA cartilage. 

Having observed that visfatin is expressed locally by the tissues of the OA joint we 

next examined the effect of stimulating OA cartilage explants with visfatin, compared 

to IL1β, on the production of a panel of MMPs by Luminex.  To this end, for each 

experimental condition, 5 cartilage explants were prepared from each of 9 individual 

femoral head cartilage patient samples.  Visfatin stimulation led to significant 

increases in a number of disease relevant catabolic proteases including MMP-1 (4-

fold), MMP-2 (3-fold), MMP-3 (3-fold), MMP-7 (2.2-fold), MMP-8 (1.3-fold), MMP-9 

(1.2-fold), MMP-10 (1.5-fold), and MMP-13 (5-fold) (Figure 5.6A-D).  Visfatin induced 

the production of MMPs in both NW and OB cartilage, although no significant 

difference was observed between the degree of fold-change induction between NW 

and OB cartilage (Figure 5.6E).  
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Figure 5.6. Visfatin induces the production of cartilage catabolic proteases in 

hip OA cartilage.   

MMP secretion from cartilage explants following visfatin stimulation (500ng/mL) and 

IL1β (1ng/uL) using Luminex technology, and separated into the MMP classification 

(n=9 individual patients (5 explants per patient)). A. Collagenases classification. B. 

Gelatinases classification C. Stromelysins classification, D. Matrilysins and 

Metalloelastase classification. E. MMP3 secretion from NW versus OB patient 

explants following visfatin stimulation (n=4 and n=5 respectively). *=p<0.05, ** = 

p<0.01, ***=p<0.001, significantly different between treatment and control values. 

E
.

C. 
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5.3.4 Visfatin induces the secretion of pro-inflammatory cytokines and 

chemokines in human hip OA cartilage.   

We then examined the functional role of visfatin on human OA cartilage cytokine 

production.  This time, per condition, we prepared 5 cartilage explants from femoral 

head cartilage samples of n=4 individual patients with hip OA and stimulated them 

with or without human recombinant visfatin (500 ng/ml) for 24 h.  The effect of visfatin 

on the production of a panel of 44 known pro-inflammatory cytokines and 

chemokines was determined using Proseek technology.  Following stimulation with 

visfatin there was a notable increase in the production of 15 pro-inflammatory 

cytokines and chemokines, with significant increases in CCL4, MCP-1 and in CCL20 

in the tissue culture supernatant following visfatin stimulation compared to the media 

only control (20-fold, 4-fold and 7-fold  respectively)(Figure 5.7).   
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Figure 5.7. Visfatin induces the production of pro-inflammatory cytokines in hip 

OA cartilage.   

24h cytokine production in tissue culture supernatants following visfatin stimulated 

cartilage explants. Cytokines and chemokines were measured using Proseek 

technology in tissue culture supernatants of media and visfatin (500ng/mL) 

stimulated explants (n=4 individual patients).   
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5.3.5 Visfatin induces greater production of IL6 in obese cartilage compared to 

normal-weight hip OA cartilage. 

We then examined the effect of visfatin stimulation on the production of IL6 by ELISA 

in both NW (n=4) and OB (n=4) cartilage, compared to IL1β stimulation.  Stimulation 

of both NW and OB cartilage for 24 h with visfatin led to a significant production in 

IL6.  However, the fold-change induction in the production of IL6 was significantly 

much greater in OB cartilage explants compared to NW cartilage explants (7-fold vs 

>1500-fold respectively p<0.05) (Figure 5.8).   This increase in IL6 was also shown to 

be independent of bacterial endotoxin contamination within the recombinant protein 

as demonstrated in Appendix 5. 

Figure 5.8. IL6 secretion following visfatin and IL1β stimulation.   

Production of IL6 following visfatin and IL1β stimulation of NW (n=4) and OB (n=4) 

cartilage. N=5 explants from 4 individual patients per BMI group. *=p<0.05, ** = 
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p<0.01, ***=p<0.001, significantly different between treatment and control values.  

†=p<0.01, ‡=p<0.001, significantly different between NW and OB values. 

 

5.3.6 Visfatin stimulates loss of proteoglycan matrix in human hip OA cartilage. 

To determine whether the visfatin-mediated increase in the production of both pro-

inflammatory cytokines and cartilage proteases was associated with cartilage 

proteoglycan degradation we then measured the release of sulfated GAG (sGAG) 

into human cartilage explant culture supernatants as a marker of proteoglycan loss.  

Stimulation of cartilage explants with visfatin for 24 h induced an increase in the 

release of sGAG in both NW and OB cartilage explants, demonstrating that visfatin 

promoted proteoglycan loss (Figure 5.9).  Of note, both basal (non-stimulated) and 

visfatin-stimulated sGAG levels were higher in OB cartilage, compared to NW 

cartilage.  
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Figure 5.9. Visfatin induces proteoglycan loss.   

sGAG secretion into tissue culture supernatants following visfatin stimulation of 

human cartilage explants from normal weight (NW) and obese patients (OB) (n= 4 

individual patients (5 explants per patient) *=p<0.05, significant difference between 

treatment and control values.  † = p<0.05, significantly different between NW and OB 

values. 

 

5.3.7 Visfatin co-localises with MMP13 in areas of cartilage fibrillation. 

Visfatin’s role in cartilage degeneration was further investigated through IHC analysis 

of human hip OA femoral head sections.  Staining for visfatin expression was more 

pronounced in areas of cartilage fibrillation and degeneration, when compared to 

areas of full thickness cartilage located on the same femoral head, as shown in 

Figure 5.10A (i-iv). Furthermore, there was increased expression and co-localization 

of visfatin with MMP-13 in the pericellular extracellular matrix zone surrounding 
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chondrocytes in areas of fibrillation, compared with chondrocytes in full thickness 

cartilage (Figure 5.10B, i-vi). 
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Figure 5.10. Visfatin expression is associated with areas of cartilage damage. 

A. IHC of cartilage on a human femoral head showing full thickness and fibrillated 

cartilage. i. H and E staining of full thickness cartilage. ii fluorescent images of full 

thickness cartilage (α-visfatin – shown in red, α-NFkB shown in green; n=4 individual 

A. 

B. 
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patients).  Solid arrow represents area of smooth cartilage; dotted arrow 

demonstrates low visfatin expression within the pericellular area of chondrocytes. iii H 

and E staining of degraded and fibrillated cartilage (25x magnification). iv fluorescent 

images of degraded and fibrillated cartilage (α-visfatin – shown in red, α-NFkB shown 

in green; n=4 individual patients) (25x magnification). Solid arrow represents area of 

smooth cartilage; dotted arrow demonstrates increased visfatin expression within the 

pericellular area of chondrocytes. B. Co-expression of MMP-13 and visfatin in 

degraded and fibrillated cartilage (63x magnification). i. MMP-13 expression in 

chondrocytes of full thickness cartilage. ii. Visfatin expression in chondrocytes of full 

thickness cartilage. iii. Co-staining of visfatin and MMP-13 in chondrocytes of full 

thickness cartilage. iv. MMP-13 expression in chondrocytes of degraded cartilage. ii 

Visfatin expression in chondrocytes of degraded cartilage. iii Co-staining of visfatin 

and MMP-13 in chondrocytes of degraded cartilage. 
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5.4 Discussion. 

To our knowledge, this study is the first to report increased expression of the pro-

inflammatory mediators CCL4, CCL20 and MCP-1, increased expression of MMP-1, -

2, -3, -7, -8, -9, -10 and -13, and subsequent proteoglycan loss as a functional effect 

of visfatin on human OA ex vivo articular cartilage tissue. Furthermore it is the first to 

show that visfatin is co-expressed with MMP-13 within localised areas of human hip 

OA cartilage fibrillation and wear. 

Visfatin plasma concentrations have previously been reported to correlate with BMI in 

individuals without OA undergoing abdominal surgery [345], albeit no relationship 

was found between visfatin and visceral fat mass, and a third of those recruited had a 

form of glucose intolerance. Importantly, our analyses found no significant correlation 

between serum visfatin levels and BMI in males regardless of OA disease status, or 

between visfatin and BMI in females without hip OA.  However, in contrast to males 

with OA, our data did find a significant positive correlation between serum visfatin 

expression levels and BMI in females with hip OA, suggestive of sexual dimorphism 

in the circulatory levels of visfatin in patients with hip OA disease.  Furthermore we 

noted no correlation between serum visfatin concentrations and visceral fat mass, as 

measured by waist to hip ratio, as previously reported [345]. 

In support for a systemic driver of OA in females, Maillefert et al., (2003) conducted a 

longitudinal study of patients with painful hip OA noting a higher incidence of multi-

joint OA in females with hip OA [231].  However, it is important to note that in our 

study the relative serum concentrations of visfatin were not vastly different between 

all study participants.  Furthermore, we found no positive correlations between 

visfatin and biomarkers of cartilage remodelling. Therefore, it would appear that if 

visfatin signalling activity is elevated in patients with OA disease, it is more likely to 
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be due to either localised increases in visfatin expression, or perhaps elevated 

expression of its unidentified receptor within joint cartilage.  This was demonstrated 

by an increased concentration of visfatin within the synovial fluid of obese individuals 

when compared to normal weight individuals with OA. In addition, visfatin has 

previously been reported to be increased within the synovial fluid of patients with 

knee OA, where its levels positively correlated with biomarkers of cartilage 

degradation [346].   

Previously it has been reported that visfatin is increased within the synovial fluid 

[346], infrapatellar fat pad, serum and osteophytes [347] of patients with knee OA, 

compared to non-OA tissues.  Importantly, we have now shown that visfatin is 

expressed locally by all the tissues of the hip OA joint (including cartilage, bone, 

synovium and adipose) and that visfatin expression is elevated in the synovial fluid 

and synovial fibroblasts of obese hip OA patients compared to normal-weight hip OA 

patients.  Furthermore, our histochemical analysis of OA femoral head sections 

reveals for the first time that visfatin expression is highly localized to areas of 

cartilage fibrillation, where it is co-localized with MMP13 in the pericellular 

extracellular matrix zone surrounding chondrocytes.   

Our studies to examine the functional role of visfatin in human OA patient-derived 

cartilage tissue provide perhaps the most significant findings of this study and 

demonstrate that visfatin induces both pro-inflammatory and pro-degradative effects 

on human hip OA articular cartilage tissue.  Visfatin induced significant increases in 

the production of the collagenases MMP-1, MMP-8 and MMP-13, the gelatinases 

MMP-2 and MMP-9, stromelysins MMP-3 and MMP-10 and matrilysin MMP-7.  Of all 

the collagenases, MMP-1 is most associated with newly formed collagen molecule 

breakdown, suggesting that visfatin may prevent cartilage repair as well as inducing 
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cartilage resorption.   Visfatin also induced a significant increase in the production of 

the gelatinase MMP-9.  Gelatinases have remained largely under-researched in 

osteoarthritis.  However, it was recently suggested that MMP-9 was fundamental to 

the activation of pro-MMP-13 [348], indicating that the partnership between MMP-9 

and MMP-13 accelerated collagenase digestion.  Our finding therefore that visfatin 

induces the production of both MMP-9 and MMP-13 is notable.   

Visfatin stimulation of hip OA cartilage explants also led to increased secretion of 

several pro-inflammatory mediators, suggesting that visfatin induces a marked 

inflammatory response in OA cartilage tissue.  In particular, there was a significant 

increase in the production of IL6, MCP-1, CCL20 and also increased secretion of the 

chemokine ligand CCL4.  Our finding that visfatin induces the production of CCL4 

from articular cartilage is intriguing since it has previously been reported that CCL4 

within OA synovial fluid is responsible for a large proportion of monocyte chemotactic 

activity [349].  This suggests that visfatin activity within the joint could play a key role 

in mediating the movement of monocytes into the synovial fluid contributing towards 

synovitis.   

A key finding was the differential response of normal-weight and obese OA articular 

cartilage tissue to visfatin stimulation, with significantly greater IL6 production 

induced by visfatin in cartilage from obese OA patients.  Pallu and colleagues (2010) 

previously noted a similar phenomenon in isolated cultured chondrocyte in response 

to leptin, where the leptin-mediated expression of TIMP2 and MMP-13 was 

dependent on the BMI of the patients from which the chondrocytes were isolated 

[350].    Furthermore, although in this study we did not measure the effect of visfatin 

on the activity of the aggrecanases (ADAMTS4/ADAMTS5), visfatin stimulation of 

cartilage tissue led to an increase in the release of sGAG, indicative of aggrecan 
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proteoglycan loss and increased activity of the aggrecanases [220].   However, of 

significance, both basal and visfatin-stimulated production of sGAG was greater in 

articular cartilage from obese hip OA patients than in articular cartilage from normal-

weight hip OA patients.  These findings suggest that visfatin may mediate greater 

inflammatory-mediated cartilage damage in obese hip OA patients, than in normal-

weight hip OA patients.  

This study has some limitations.  Firstly, all OA tissues in this study were received 

from patients undergoing joint replacement surgery and were therefore at an 

advanced stage of disease.  The absence of joint tissue from early OA patients 

means we can only speculate into the potential role of visfatin in early OA disease 

initiation.   Conducting functional studies on human joint cartilage from patients with 

early stage OA is inherently difficult due to the inaccessibility of tissue from patients 

not requiring joint surgery.  Secondly, our sample sizes were not large enough to 

draw any definitive conclusions.  Within this study it was not possible to measure the 

gait of the patients.  As gait can alter in OA and therefore change hip cartilage wear 

patterns, the cartilage used within this study may have received little mechanical 

loading and therefore the typical biological processes seen in OA may not be a true 

reflection of cartilage during degeneration and wear.  Furthermore, we are unaware 

of the physical fitness and activity levels of these patients at the point of surgery 

which could alter cartilage health and pain.  Anthropometric indices such as BMI also 

do not allow us to distinguish between patients with large muscle mass and large fat 

mass.    

In conclusion, we have shown that the adipokine visfatin is expressed locally within 

the tissues of the hip OA joint and is co-expressed with MMP-13 in the pericellular 

zones of chondrocytes of fibrillated human OA cartilage tissue. Furthermore, we have 
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shown that visfatin markedly induces both pro-inflammatory and pro-degradative 

effects on human hip OA cartilage tissue, particular in cartilage from obese patients.   

These data suggest that visfatin is a central mediator of cartilage degeneration in 

patients with hip OA.  Targeted inhibition of visfatin signalling within the hip OA joint 

could therefore be a rewarding strategy for developing a novel therapeutic. 
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6.1 Background. 

Visfatin has received a significant amount of attention in current literature due to its 

elevated expression and suggested contribution to a number of pathological 

conditions associated with ageing including diabetes [273], obesity [274-277], and 

osteoarthritis [271, 346, 351].  It exists in a compartmentalized fashion, with 

intracellular visfatin (iVisfatin) contributing to NAD+ biosynthesis through the 

conversion of nicotinamide into nicotinamide mononucleotide (NMN), and allowing 

essential metabolic regulation [352].  Conversely extracellular visfatin (eVisfatin), 

originally isolated and named pre B-cell colony-enhancing factor 1 (PBEF) due to its 

role in B-cell maturation [353], has demonstrated significant cytokinic effects both in 

vitro and in vivo [271, 346, 351].  Specifically in OA, as detailed in the previous 

chapter, visfatin has been shown to increase prostaglandin E2 synthesis [354], IL6 

[351], and IL1Β [278] production from articular chondrocytes, and we have now 

shown that visfatin induces both a pro-inflammatory and pro-degradative effect on 

articular OA cartilage tissue. 

The mechanisms by which visfatin exert these effects remain unclear.  Currently 

there is no secretory signal sequence identified, suggesting that increased eVisfatin 

concentrations occur through cellular apoptosis, and a receptor has yet to be 

identified [355].   

Some researchers believe the cytokinic effect of eVisfatin is achieved indirectly 

through increased NAD+ production. Specifically, following a reduction in intracellular 

NAD+ levels, Van Gool and colleagues measured a subsequent decrease in TNF-

alpha from dendritic cells and macrophages [356].  Of note, cells exhibited no 

synthesis and secretory dysfunction due to the lower NAD+ concentrations as evident 
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by the unaltered secretion of RANTES. Therefore, many researchers hypothesise a 

NAD+ dependent mechanism for altering inflammatory cytokine production and 

secretion.   

It is important to note however that APO866 (FK866), the inhibitor of intracellular 

visfatin used in these studies,  is often reconstituted in dimethyl sulphoxide (DMSO).  

DMSO is considered a exceptional solvent for many polar and non-polar compounds 

[357, 358], but also has significant anti-inflammatory potential at concentrations as 

low as 0.5% due to the supressed expression of prostaglandins and pro-inflammatory 

genes including IL6, CXCL1 and CXCL2 [359].  Indeed, the anti-inflammatory 

properties of DMSO have led to a surge in research focused on the use of DMSO for 

the treatment of inflammatory conditions including rheumatoid arthritis and 

osteoarthritis [360, 361].  Therefore its use in assessing inflammatory responses in 

vitro may be a source of experimental error and bias. 

The quest to determine the visfatin receptor has also been controversial.  In 2005, 

Fukuhara and colleagues defined visfatin as an ‘insulin mimetic’ through binding and 

activating the insulin receptor and lowering plasma glucose levels in mice [268].  

However, 3 years after publication, the Fukuhara lab retracted their publication after 

numerous questions were raised following an investigation of their research, despite 

continuing to stand by their findings.   

The aim of this chapter was firstly to ascertain if the inflammatory response noted in 

chapter 5 was independent of visfatin enzymatic activity.  Secondly, if eVisfatin 

signalling was NAD+ independent, to then identify potential receptor candidates for 

eVisfatin that could provide novel targets for disease modifying therapeutics, without 

affecting essential metabolic regulation by NAD+. 
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6.2 Results 

6.2.1 Does eVisfatin increase NAD+ production and cause a subsequent 

increase in pro-inflammatory cytokines? 

Visfatin exists in two forms, iVisfatin which is the rate limiting enzyme in NAD+ 

production, and eVisfatin which we propose has significant cytokinic effects, 

independent of the intracellular pool.  In order to determine if eVisfatin’s role in 

driving catabolic degradation of cartilage and inflammation is independent of NAD+ 

production, we used both cell-penetrating and non-cell penetrating visfatin inhibitors 

to inhibit iVisfatin and eVisfatin together, or eVisfatin alone.  Inhibitors were 

developed and provided by Dr. Sam Butterworth, School of Pharmacy, University of 

Birmingham.  Table 6.1 details the inhibitors developed by Dr. Sam Butterworth, 

through the adaptation of compounds published by Zheng and colleagues (2013) 

[362]. 
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Table 6.1. Cell penetrating and non-cell penetrating visfatin inhibitors. 

Inhibitor MW Function Structure 

SB57 510.56 Cell penetrating 

 

SB58 720.75 

Non-cell 

penetrating 
 

 

Primary human chondrocytes were pre incubated for 1 hr with inhibitor compounds 

then co-stimulated with inhibitor and recombinant visfatin, and an NAD activity assay 

was performed as detailed in section 2.17 NAD activity assay.  As demonstrated in 

Figure 6.1A, the cell-penetrating compound SB57 significantly decreased NAD 

production after 1800 seconds at 10nM and 1uM (p<0.0001) (Control vs SB57; 

258900 vs. 96432 RLU and 258900 vs. 76725 RLU at 10nM and 1uM respectively).   

This effect was maintained for 3600 seconds (Control vs SB57; 516260 vs. 196084 

RFU and 516260 vs. 156184 RLU at 10nM and 1uM respectively).  There was no 

significant reduction in NAD+ production with the lowest concentration of SB57 

(0.1nM) at any time point.  Conversely, there was no significant change in NAD 

production when using the SB58, non-cell penetrating compound at any 

concentration or time-point (Figure 6.1B).   
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Figure 6.1.  NAD+ production following visfatin and visfatin plus SB inhibitor 

stimulation of chondrocytes.  

Primary human chondrocytes were pre-incubated for 1 hr with inhibitor compounds 

then co-stimulated with inhibitor and recombinant visfatin, and an NAD activity assay 

was performed as detailed in section 2.17 NAD activity assay.  ***=p<0.0001. 
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The addition of recombinant visfatin also had no effect on NAD+ production as shown 

in Figure 6.2, suggestive of an enzymatic independent role of eVisfatin. 
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Figure 6.2. NAD+ production over 2-3600seconds following cell lysis with the 

addition of recombinant visfatin.  

Primary human chondrocytes were incubated with recombinant visfatin, and an NAD 

activity assay was performed as detailed in section 2.17 NAD activity assay.  

 

In order to confirm an NAD+ independent mechanism of cytokine production, IL6 

protein concentration in the tissue culture supernatant was measured.  Recombinant 

visfatin stimulation of human primary chondrocytes significantly increased IL6 

production after 24 hours (96.7 ± 51.5pg/mL vs 245.8 ± 45.75pg/mL in control and 

visfatin stimulated respectively).  With the addition of the SB57 inhibitor, there was a 

small reduction in the visfatin-stimulated IL6 secretion.  However, this was not 

significant and was not in a dose dependent manner (1uM: 160.5 ± 86.3pg/mL. 
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10nM: 150.0 ± 32.2pg/ml. 0.1nM 155.7 ± 55.6pg/mL) (Figure 6.3A).  A similar result 

was noted with the addition of the SB58 inhibitor, though the decrease in visfatin 

stimulated IL6 production was more modest than with the addition of the SB57 

inhibitor (1uM: 187.5 ± 62.3pg/mL. 10nM: 183.9 ± 42.2pg/mL. 0.1nM 212.8 ± 

165.1pg/mL) (Figure 6.3B). 
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Figure 6.3.  IL6 secretion following visfatin and visfatin plus SB inhibitor 

stimulation of chondrocytes.   

A. IL6 secretion from chondrocytes stimulated for 24 hours with 500ng/mL visfatin in 

the presence of the intracellular inhibitor of visfatin, SB57 (n=5, *=p<0.05). B. IL6 

secretion from chondrocytes stimulated for 24 hours with 500ng/mL visfatin in the 

presence of the extracellular inhibitor of visfatin, SB58 (n=5, *=p<0.05). Primary 

human chondrocytes were pre incubated for 1 hr with inhibitor compounds then co-



Page | 159 
 

stimulated with inhibitor and recombinant visfatin for 24 hours prior to an IL6 ELISA 

of tissue culture supernatants. 

 

6.2.2 Identifying potential receptor candidates for eVisfatin 

Our previous data suggests that in human primary chondrocytes visfatin-mediated IL-

6 secretion is independent of intracellular enzymatic NAMPT activity.   It is therefore 

conceivable that visfatin exerts its actions by binding to a receptor on the surface of 

the chondrocytes, which initiates a downstream signalling cascade resulting in 

induction of cytokine and MMP production.  In order to screen for a candidate visfatin 

receptor, a receptor binding screen was performed using Retrogenix target 

deconvolution platform (www.retrogenix.com).  Retrogenix target deconvolution 

technology utilises expression vector arrays, encoding over 70% of known plasma 

membrane receptors, which is spotted on to slides for reverse transfection into 

human cells (HEK293).  The test molecules are applied and specific binging 

confirmed via the appropriate detection system.  Retrogenix technology 

demonstrates a broad coverage of plasma membrane proteins and was therefore 

considered most likely to identify the specific target of visfatin compared to a 

standard protein array, or immunoprecipitation followed by mass spectrometry.   

In the primary screen, more than 2500 known plasma membrane proteins were 

screened for binding with His-tagged visfatin or His-tagged EGF which served as a 

negative control.  Figure 6.4 illustrates the human membrane protein cDNA array in 

HEK293 cells.  zsGreen, encoded within the cDNA library vectors, confirmed 

successful transfection.  As detailed in figure 6.4, transfections were standardized 

across the test ligands and secondary only slides, although individual receptor 
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expression differed.  Interactions were detected using a mouse anti-His antibody 

(Millipore) followed by an Alexa Fluor 647 anti-mouse antibody (Life Technologies).  

Figure 6.4 demonstrates some cross-reactivity between His-Visfatin, His-EGF and 

the no test ligand slides, which must be considered during the data analysis.  In an 

attempt to remedy this cross-reactivity, bead technology was utilised to increase the 

specificity of the assay. 
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Figure 6.4. An example of Retrogenix Cell Microarray technology slides 

utilizing HEK293 cells over-expressing cell membrane receptor proteins.  

HEK293 cells were reverse transfected with cell membrane receptors and samples 

were detected using a mouse anti-His antibody (Millipore) followed by an Alexa Fluor 

647 anti-mouse antibody (Life Technologies).  ZsGreen1 confirmed successful 

transfection. 

A. 

B. 

C. 
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Using recombinant protein tagged bead technology, Retrogenix repeated the first 

screen.  As shown in Figure 6.5, signal intensity was marginally increased in 

comparison to Figure 6.4, however there remained some unspecific binding in the 

His-EGF tagged slides.  Table 6.2 details the findings from the preliminary and 

confirmatory screens using the recombinant and recombinant-bead tagged 

technology. 
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Figure 6.5. An example of Retrogenix Cell Microarray technology utilising 

recombinant protein attached to beads for increased specificity and sensitivity.   

HEK293 cells were reverse transfected with cell membrane receptors and samples 

were detected using a mouse anti-His antibody (Millipore) followed by an Alexa Fluor 

647 anti-mouse antibody (Life Technologies).  ZsGreen1 confirmed successful 

transfection. 
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Table 6.2. Positive hit results from the Retrogenix Cell Microarray technology assays. 
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Primary (P) or Confirmation (C) screen 

P P C C C C C C P P C C C C 

FASLG + + -/+ -/+ + + -/+ -/+ -/+ -/+   +   -/+ 

GPRC5B + + +/++ +/++ +/++ +/++ +/++ +/++ N/A N/A ++ + -/+ ++ 

HCRTR2 -/+ -/+ ++ ++ +/++ +/++ +/++ +/++ N/A N/A +++ +/++ ++ +++ 

GABBR1 -/+ -/+             N/A N/A       -/+ 

CD44 ++/+++ ++/+++ ++/+++ ++/+++ +/++ +/++ ++ ++ +++ +++ +++ +++ ++/+++ +++ 

SDC2 -/+ -/+ + + -/+ -/+ -/+ -/+ N/A N/A     -/+ 
++/++

+ 

CTSB -/+ -/+ + +         N/A N/A       + 

CTSL2 -/+ -/+ -/+ -/+ -/+ -/+ -/+ -/+ N/A N/A -/+   -/+   

CBL + + ++ ++ +/++ +/++ +/++ +/++ + + + -/+   ++ 

GAD2 -/+ -/+ -/+ -/+         N/A N/A +/++ -/+ -/+ -/+ 

KCNJ11 -/+ -/+             N/A N/A         

TSPAN9 -/+ -/+             N/A N/A         

KCNK9 -/+ -/+             -/+ -/+ -/+   + +/++ 

KCNJ12 -/+ -/+             -/+ -/+   -/+ -/+ + 

FADS2 -/+ -/+ N/A N/A         -/+ -/+ +/++ +   + 

LRP8 -/+ -/+             N/A N/A + + + + 

F7 -/+ -/+             -/+ -/+ -/+ -/+ -/+ + 

HNRNPU -/+ -/+         -/+ -/+ N/A N/A -/+   -/+ -/+ 
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Primary (P) or Confirmation (C) screen 

P P C C C C C C P P C C C C 

PODXL2 -/+ -/+ + + + + + + N/A N/A     -/+   

LFNG -/+ -/+             -/+ -/+ -/+       

PLA2G3 -/+ -/+         -/+ -/+ -/+ -/+ -/+       

GPR61 N/A N/A             -/+ -/+         

CD44 -/+ -/+ + + -/+ -/+ -/+ -/+ N/A N/A   -/+ -/+   

SLC7A8 -/+ -/+             -/+ N/A         

QSOX1 -/+ -/+     -/+ -/+ -/+ -/+ N/A N/A +/++ + -/+ ++ 

LRP8 ++ ++     -/+ -/+ -/+ -/+ ++ ++ +/++ + -/+ + 

PEAR1 -/+ -/+             -/+ -/+ +       

SLC2A11 -/+ -/+             -/+ ? +   -/+   

ATP6V1G3 N/A N/A             N/A -/+         

BDKRB1 N/A N/A             N/A N/A +       

BDKRB2 N/A N/A + +         N/A N/A +/++ -/+   + 

BDKRB1 N/A N/A + +         N/A N/A +/++ -/+   + 

BDKRB1 N/A N/A             N/A N/A -/+ -/+   -/+ 

BDKRB1 N/A N/A +/++ +/++ -/+ -/+ -/+ -/+ N/A N/A ++ -/+   ++ 

BDKRB1 N/A N/A -/+ -/+         N/A N/A     N/A -/+ 

BDKRB2 N/A N/A             N/A N/A +       

EGFR N/A N/A     +/++ +/++     N/A N/A         

Negative N/A N/A             N/A N/A         

Negative N/A N/A             N/A N/A         
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Table 6.3 details the positive hits identified during the primary or confirmatory screen 

for our test ligands binding to a known receptor, using both standard and bead 

technology.  While no receptor provided a robust and specific signal for His-tagged 

visfatin binding, there were a number of potential candidate “hits” that could be a 

potential receptor for visfatin.  Specifically, CD44, GAD2, KCNJ11, LFNG, SLC7A8, 

LRP8, PEAR1, BDKRB1 and BDKRB2 all exhibited greater affinity for the His-tagged 

visfatin ligand compared to the His-tagged EGF ligand.   Of note, BDKRB1 and 2 

were identified on numerous occasions as a positive hit for His-tagged visfatin 

ligand. 

 

6.2.3 Confirmation of visfatin receptor identification. 

It is unfeasible to attempt to confirm all identified potential receptors associated with 

the His-visfatin ligand, therefore after an extensive literature search and on the 

strength of the Retrogenix Cell Microarray technology assays, the Bradykinin 

receptors B1 (BDKRB1) and B2 (BDKRB2) were pursued.  Firstly, we considered 

that if either BDRRB1 or BDKRB2 was the receptor for visfatin, that stimulation of 

primary chondrocytes with visfatin might be expected to affect its expression.  

Therefore, primary human OA articular chondrocytes 3 individual hip OA patients 

were either stimulated for 24h with recombinant visfatin (500ng/uL) or left 

unstimulated, and the expression of BDKRB1 and BDKRB2 was determined by qRT-

PCR.  In chondrocytes stimulated with visfatin there was a small down-regulation in 

BDKRB1 expression (0.8 ± 0.5 fold) and a moderate upregulation in BDKRB2 r 

expression (1.5 ± 0.3 fold) compared to un-stimulated chondrocytes.  Although 

neither of these findings reached statistical significance (Figure 6.6) we conducted 
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further studies with BDKRB2 given the greater change in expression observed, 

compared to BDRRB1 
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Figure 6.6 BDKRB1 and BDKRB2 gene expression following 24 hr recombinant 

visfatin stimulation.   

Human primary chondrocytes were stimulated for 24hr with 500ng/mL visfatin (n=3) 

and data expressed as relative mRNA expression compared to the unstimulated, 

media control. 

 

6.2.4 The effect of BDKRB2 knockdown on cytokine secretion. 

In order to determine whether the functional effects of visfatin on chondrocytes were 

mediated via binding and signalling through BDKRB2 we performed loss of function 

(LOF) studies using siRNA.  Firstly, it was necessary to optimise siRNA transfection.  

Three unique siRNA duplexes targeted toward human BDKRB2, or a non-targeting 

control (Origene, U.S.), were transfected into human primary chondrocytes using the 

Nucleofector 4D system (Lonza, U.S.).  Cells were plated for 24hr prior to RNA 
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isolation and qRT-PCR.  BDKRB1 and BDKRB2 gene expression were both 

analysed to ensure there was no compensatory increase in BDKRB1, or off-target 

knockdown effects following BDKRB2 knockdown.   
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Figure 6.7. Bradykinin receptor expression following BDKRB2 knockdown.  

Relative expression of BDKRB2 (A) and BDKRB1 (B) in primary chondrocytes 24h 

after transfection with 3 individual BDKRB1 siRNA duplexes (siBKB2a-c), compared 

to non-targeting control siRNA transfection (NC). Relative expression was 

determined by ΔΔCq, normalised to the house-keeping gene ACTB. 
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BDKRB2 gene expression was significantly decreased with all targeting siRNAs 

(Figure 6.7A). siBKB2a exhibited the greatest knockdown (85 ± 21% knockdown) 

followed by siBKB2b (80.1 ± 27.7% knockdown) and siBKB2c (61.3 ± 17.9% 

knockdown).  However, Figure 6.7B shows a significant increase in BDKRB1 gene 

expression relative to NC gene expression following transfection with siBKB2a (114 

± 24% gene expression compared to NC, p<0.0001).  BDKRB1 expression remained 

unchanged in chondrocytes transfected with either siBKB2b or siBKB2c.  

Based upon these siRNA knockdown data siBKB2b or siBKB2c were used to 

determine whether BDKRB2 knockdown affected the cytokinic functional role of 

visfatin.  Human primary chondrocyte cells transfected with siBKB2b or siBKB2c, or 

with NC siRNA were plated for 24 hr.  Cells were then either stimulated with his-

tagged visfatin (500ng/mL) or cultured in fresh growth media alone for a further 24 

hr.  Total RNA was then isolated from the cells and tissue culture supernatants were 

collected for IL-6 cytokine analysis. 
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Figure 6.8. Bradykinin receptor gene expression following BDKRB2 

knockdown and visfatin stimulation.  

Relative expression of BDKRB2 (A) and BDKRB1 (B) in primary chondrocytes 48hr 

post-transfection, either with or without 24 hr visfatin stimulation, n=3. Transfection 
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was with 2 individual BDKRB1 siRNA duplexes (siBKB2b-c), compared to non-

targeting control siRNA transfection (NC). Relative expression was determined by 

ΔΔCq, normalised to the house-keeping gene ACTB. +/- refer to with or without 

500ng/mL visfatin stimulation. 

 

As noted before, siBKB2b and siBKB2c induced a marked and significant 

knockdown in the expression of BDKRB2, Significantly, Figure 6.8 demonstrates that 

this knockdown was sustained for up to 48h following transfection.  Relative to cells 

transfected with NC siRNA, siBKB2b and siBKB2c knocked down expression of 

BDKRB2 by 45.5 ± 13.1% and 42.9 ± 14.9% respectively in cells left unstimulated.  

There was no significant difference in the degree of BDKRB2 knockdown in cells that 

had been stimulated for 24h with visfatin, compared to those cells that had been 

cultured in growth media alone.  Relative to cells transfected with NC siRNA and 

stimulated with visfatin,   siBKB2b and siBKB2c knocked down BDKRB2 expression 

by 63.1 ± 8.6% and 66.4 ± 6.7% respectively.  Importantly, there was no significant 

effect on the expression of BDKRB1 with either siBKB2b or siBKB2c, regardless of 

whether cells had been stimulated with visfatin (Figure 6.8B).  Therefore, with 

sufficient KD of BDKRB2 in all siRNA cell transfections, without a subsequent 

BDKRB1 compensation or off-target knockdown, tissue culture supernatants were 

collected for IL6 analysis. 

 

 



Page | 173 
 

N
C

N
C

si
B
K
B
2b

si
B
K
B
2b

si
B
K
B
2c

si
B
K
B
2c

0

1

2

3

4

- - -+ + + Visfatin

**

*IL
6
 F

o
ld

 I
n

c
re

a
s
e

 

Figure 6.9. IL6 protein content following BDKRB2 knockdown and visfatin 

stimulation.  

IL6 tissue culture media protein content in BDKRB2 KD cells compared to cells non-

targeting control 48hr post-transfection, either with or without 24 hr visfatin 

stimulation, samples were assayed in triplicate (n=3 biological replicates).  

 

As expected IL6 was induced following 24h stimulation of visfatin in NC-transfected 

cells (1.73 ± 0.19 fold).  However, the effect of visfatin stimulation on cells depleted 

of BDKRB2 gave converse results, with an increase in IL-6 in cells transfected with 

siBKB2b, and no induction of IL-6 in cells transfected siBKB2b (2.85 ± 0.09 fold 

increase (p<0.01) and 0.73 ± 0.09 fold (p<0.05) decrease respectively).   
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6.3 Discussion 

This is the first study to demonstrate that the enzymatic activity of visfatin is not 

necessary to elicit a cytokinic response in human primary articular chondrocytes.  

Through inhibiting iVisfatin and eVisfatin, we demonstrated a reduction in NAD+ 

content without inhibiting the IL6 and MMP-13 response.  While this has not been 

published in chondrocyte cells lines previously, there are a number of studies to 

support the enzymatic/NAD+ independent role of eVisfatin in pro-inflammation.   

Interestingly, one such study by Audrito et al., (2015) demonstrated a role of 

eVisfatin in driving the differentiation of resting monocytes into tumor-supporting M2 

macrophages.  In cancer cell lines, M2 macrophages are responsible for the 

secretion of tumour-promoting cytokines including IL6 and IL8 [363].  The 

researchers noted an enzymatically independent role of eVisfatin activation of the 

signalling pathways (ERK1/2, STAT3 and NFκB) associated with tumour-promoting 

cytokine release through the use of an enzymatically inactive eVisfatin mutant 

(H247E).  This was further supported by Li and colleagues (2008) who demonstrated 

a non-enzymatic, protective role of eVisfatin, preventing ER stress induced apoptosis 

in macrophages.  Through inducing IL6 secretion, eVisfatin is able to activate the 

pro-survival signal transducer STAT3 [364].  Furthermore, this anti-apoptotic role of 

eVisfatin is achieved using the monomeric form, and thus the enzymatically inactive 

form, of eVisfatin.  The authors therefore suggested that although enzymatic activity 

requires dimerization of the protein, the monomer form, which comes from apoptotic 

or necrotic cells during an inflammatory event, may retain cytokine-like activity [364]. 

Contrary to the above, visfatin has been shown to be secreted by synovium, 

cartilage and bone in its dimeric and enzymatically active form and visfatin 
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significantly increased IL6, KCP and MCP1 secretion in chondrocytes [271].  

Furthermore, due to up to a 94% decrease in cytokine expression following FK866 

inhibition of eVisfatin, the authors acknowledged that targeting visfatin activity via 

FK866 can prevent NAD+ synthesis and therefore provide a new therapeutic 

perspective in OA.  However, this and many other studies have been unable to prove 

that the binding of FK866 to the nicotinamide pocket of visfatin does not prevent 

alternative proteins from binding to, or being bound by visfatin.  Furthermore, the 

addition of nicotinamide, a product of visfatin enzymatic activity, to the FK866 

stimulated cells has yet to reverse the inhibition of the cytokinic response.  Finally, in 

this study there was no difference in NAD+ content following visfatin stimulation when 

compared to unstimulated cells, suggesting that NAD+ cannot be associated with the 

pro-inflammatory response. 

The above data supports the notion that eVisfatin could elicit a pro-inflammatory 

response in the absence of enzymatic activity.  As systemic visfatin expression has 

been shown to be elevated in obesity and type II diabetes [365, 366], it was prudent 

to suggest that visfatin may interact with an unknown receptor to initiate a 

downstream signalling cascade and elicit a regulatory response.  In this study, the 

Retrogenix target deconvolution platform identified the genes BDKRB1 and BDKRB2 

as potential receptors for eVisfatin, with BDKRB2 further supported by PCR data 

following visfatin stimulation.   

The kinin system is composed of kininogens which are activated by kallikreins to 

produce two peptides known as bradykinin and kallidin [367].  Bradykinin has 

previously been identified in the regulation of blood pressure and vascular 

permeability, however recent research has implicated bradykinin and in particular the 

bradykinin receptors in OA pathogenesis and pain [367].  Bradykinin has previously 
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been shown to be increased in the synovial fluid of arthritis patients, including those 

with OA [368] [369].  Furthermore, there is constitutive expression of BDKRB2 

throughout the tissues of the joints, in particular in the synovial lining cells and 

fibroblasts [368, 370], and activates synoviocytes and chondrocytes [371], to initiate 

inflammatory pathways and alter tissue homeostasis. 

In this study depletion of BDKRB2 expression in primary chondrocytes using two 

different siRNA duplexes produced converse results on the effect of visfatin-

mediated IL-6 secretion.  Therefore, it was not possible to conclusively determine if 

BDKRB2 plays a role in visfatin signalling. RNA interference is a widely used 

technique, however at times is plagued by ineffectiveness (leading to falsely 

negative data) and non-specificity (leading to falsely positive data).  Evidence would 

suggest that siRNAs in particular are able to affect the translation of off target 

transcripts containing a partially complimentary sequence [372, 373].  Future 

research may therefore benefit from a stable knockdown approach utilising shRNAs, 

or utilising a wider panel of siRNA duplexes. 

While there appears to be no evidence of direct NAMPT and bradykinin receptor 

interaction in published OA literature, there is some suggestion of visfatin mediating 

endothelial dysfunction.  In 2011, Vallejo et al., found that systemic visfatin was able 

to impair the vasorelaxant response to endothelium dependent vasodilators including 

bradykinin without affecting the endothelial independent relaxant properties of the 

vasculature muscle [374].  The authors conclude that visfatin enzymatic activity is 

essential for this inhibitory effect, as proven by the restoration of the relaxant 

properties in human mesenteric arteries with APO866.  However, it is unknown 

whether APO866 causes a conformational change in visfatin structure and prevents 
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its binding to the receptor.  Furthermore, there is no reference to the mechanism by 

which visfatin may prevent bradykinin signalling, for example, it is possible that 

through competitive binding of visfatin to the B2-bradykinin receptor, visfatin is able 

to prevent bradykinin signalling.   

There are limitations to this research. Recombinant visfatin used within this study 

had dimeric confirmation therefore it is assumed to be enzymatically active, however 

this was not confirmed.  Furthermore, B2-bradykinin receptor was selected based 

upon most promising target deconvolution data and based upon previous literature, 

however there were a number of potential hits from the target deconvolution data 

that warrant further investigation.  Furthermore, it was not possible to conclude the 

functional effect of BDKRB2 KD using siRNAs alone as two RNAs directed to 

BDKRB2 exhibited contrary findings.  Finally it is important to consider the potential 

for siRNA to induce an innate cytokine response, as demonstrated by a six fold 

induction of IL6 in U87-CD4+ CCR5+ cells transfected with multiple siRNAs [375]. 
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7. General Discussion. 

OA is the leading cause of joint degeneration, pain and disability in the UK, with over 

8.75 million individuals over the age of 45 years seeking treatment. Characterised as 

a disease of articular cartilage degeneration and subchondral bone remodelling, 

many patients experience limited movement and are unable to perform everyday 

tasks.  Furthermore, with OA disease prevalence increasing with age, these figures 

are set to worsen given the ageing population.  Of preventable risk factors, obesity 

has been defined as having the most significant impact on the progression of OA.  A 

pivotal study published in 2001 was the first to truly illustrate the impact of obesity of 

the progression of OA in the knee. The researchers showed a significant correlation 

of the risk of knee OA with increasing BMI, from men and women over the age of 45 

years.  Surprisingly, of individuals with a BMI of greater than 36, there was a 14-fold 

increase in the risk of knee OA compared to healthy weight-matched individuals 

[377].  This finding supported previous data obtained by Oliveria et al., (1999) who 

examined the effect of obesity on symptomatic OA of the hands, hips and knees in 

134 case control pairs of women aged between 20-89 years [378].  The researchers 

identified body weight and body mass index as predictors of incident OA in all three 

joints, with odds ratios ranging from 3-10.5 in the lower and extreme tertiles. 

The discovery that adipose tissue secretes cytokines (adipokines) has led to the 

current understanding of adipose tissue as an endocrine organ [379]. Adipokine 

release has been mechanistically linked to metabolic complications and the 

metabolic syndrome [27, 33] by contributing to the low-level pro-inflammatory state 

seen commonly in obese individuals [28].  Critically, adipokine signalling is now 

receiving much attention in relation to OA joint pathophysiology largely due to the 

association between obesity and OA [28, 380] in both weight-bearing and non-weight 
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bearing joints (e.g. hands) [381].  Furthermore, differential expression of particular 

adipokines have been reported in OA serum and synovial fluid, which are capable to 

modulating cartilage catabolic and anabolic pathways [380]. 

Current therapeutics of OA focus primarily on pain relief and restoration of joint 

function, however due to the heterogeneity of OA, pain sources can often remain 

elusive.  Despite the high prevalence of OA within the UK alone, there remains an 

unmet clinical need for therapeutics to prevent OA development.  Non-steroidal anti-

inflammatory drugs (NSAIDs) and narcotics demonstrate promising disease-

modifying capabilities, however the side effects are less desirable, for example heart 

failure, persistent headaches, stomach ulcers and anaemia [15].  Acetaminophen 

toxicity has also been demonstrated, despite being the primary therapeutic 

subscribed by clinicians, and is thus is to be prescribed with caution [14].  Most 

recently, OARSI guidelines [16] suggest a more holistic approach to OA treatment, 

including acupuncture, weight loss, and increased patient/doctor communication as 

treatment for patients with symptomatic OA [16]. 

When this project was conceived, there was growing evidence to suggest that 

adipokines could provide a systemic functional link between obesity and the 

increased prevalence of multi-joint OA.  However, any functional studies using intact 

human hip cartilage and bone tissue to determine the role of adipokines in mediating 

OA pathology were lacking.  One aim of this thesis was therefore to determine the 

adipokine expression profile in the serum and joint fluid of OA patients, in 

comparison to non-OA NOF# patients, and to determine their association with joint 

damage and BMI.  Of the 24 proteins screened, 11 proteins were differentially 

expressed in OA patients compared to NOF# identifying candidate cytokines or 

adipokines that may be integral to the progression of joint destruction.  Many of 
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these proteins are associated with, and secreted during, the inflammatory process 

and could potentially provide early diagnostic value to OA. 

In reference to BMI, this study found serum resistin concentration was significantly 

increased with BMI and had a significant association with joint disease severity as 

determined by joint space.  After further investigation, we noted an increase in the 

biosynthetic activity of human primary osteoblasts following resistin stimulation and 

collagen type I homotrimer formation through the activation of the canonical WNT-

signalling pathway and subsequent β-catenin translocation.   

As well as identifying its role in OA pathogenesis, through characterising the role and 

mechanism of resistin in bone turnover, it may be possible to modulate OA and other 

bone pathologies or diseases typified by increased bone formation or WNT/ β-

catenin signalling.  For example, Ankylosing spondylitis (AS), a rheumatic disease 

typified by chronic inflammation that can affect the spine and sacroiliac joints at an 

early age [382, 383].  One indices of AS is the development of bony growths, known 

as syndesmophytes, within spinal ligaments which impact the mobility of the spine 

leading ultimately to spinal fusion [384].  Spinal inflammation has been shown to be 

a key regulator of syndesmophytes development with 3 times the number of 

syndesmophytes on the vertebral edges developing in the presence of inflammation 

at baseline compared with the vertebral edges without inflammation, after 2 years 

[385].  Interestingly, patients with AS have been shown to have elevated levels of 

serum resistin compared to a control population (11.6ng/mL vs. 6.6ng/mL 

respectively), however there was no association between resistin concentration and 

disease severity [386].  As the main feature of AS is new bone formation, there is 

sufficient reason to suggest that increased circulating resistin expression may 
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provide a key link to syndesmophyte development and may provide a new 

therapeutic targets to modify the progression of AS. 

So far, focus has been on the role of resistin in driving adverse disease pathologies, 

however it may be prudent to consider the use of resistin as a therapeutic modulator 

of bone pathologies which are characterised by increased bone resorption.  

Osteoporosis, for example, is characterized by an age associated imbalance of 

osteoclastic and osteoblastic activity and therefore dysregulated bone remodelling 

[387], whereby the degree of bone resorption is higher than bone formation.  

Therefore the aim of therapeutics for osteoporosis is to readjust the balance of bone 

formation and bone resorption.  In this study it has been shown that resistin 

increases biosynthetic activity of osteoblasts, therefore providing a potential for 

recombinant resistin to provide a novel therapeutic for osteoporosis.  Furthermore, it 

has been shown that circulating resistin levels are lower in patients with osteoporosis 

compared with healthy controls [326], therefore it may be possible to utilise 

recombinant resistin systemically without increasing risk of colorectal cancer, AS, or 

osteoarthritis.  

Similarly to resistin, this study found that visfatin expression was increased with BMI, 

however this was shown in synovial fluid, not serum.  It is generally accepted that 

proteins elevated in the synovial fluid are more likely to impact cartilage turnover, 

compared with bone, because nutrients are typically transported to chondrocyte cells 

via diffusion through the matrix from the synovial fluid [295].  Therefore focus was 

placed on understanding the role of visfatin in mediating cartilage pathology in OA 

patients.  Upon further investigation, visfatin was demonstrated to mediate the 

secretion of pro-inflammatory cytokines and chemokines from human cartilage tissue 

including CCL4, CCL20 and MCP-1.  Furthermore, visfatin was shown to be pro-
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degradative with an increased expression of MMP-1, -2, -3, -7, -8, -9, -10 and -13, 

and subsequent proteoglycan.  In support, visfatin was shown to be co-expressed 

with MMP-13 in the pericellular zones of chondrocytes of fibrillated human OA 

cartilage tissue. Therefore with this data it is possible to conclude that visfatin is a 

catabolic mediator of cartilage degeneration in OA.  As well as identifying its role in 

OA cartilage pathogenesis, this study attempted to determine the mechanism by 

which eVisfatin is able to enter the cell and exert is pro-inflammatory effects.  While it 

was not possible to confirm that BDKRB2 was a receptor of visfatin, it was noted that 

visfatin does not need to be enzymatically active to increase IL6 secretion from 

human chondrocytes.   

The concentration of visfatin used within this study was based upon previous 

research and within the physiological limits found within human joint tissue [271].  

Following 24 hr incubation of OA joint tissues within serum free medium, visfatin was 

secreted by all joint tissues (synovium, 628 ± 106 ng/g tissue; subchondral bone, 

195 ± 26 ng/g tissue; cartilage, 152 ± 46 ng/g tissue) [271], and with an estimated 

half-life of 30 hr [388], we estimate that the standard concentration used within this 

study of 500ng/mL is well within that which is seen in vivo.   

Visfatin is known to be expressed in its active form in cartilage, subchondral bone, 

and to a greater extent, synovial membrane suggesting a potential paracrine role of 

visfatin within the joint [271].  The mechanism by which visfatin is able to up-regulate 

MMPs and pro-inflammatory cytokines has not been fully investigated in this study.  

However, Kim et al., (2013) have suggested an indirect relationship between visfatin 

stimulation and subsequent IL6 expression, which is achieved through the activation 

of JAK2/STAT3 [389].  Furthermore it was concluded that IL6 is able to mediate 

visfatin-induced angiogenesis from rat aortic rings.  In terms of OA, this information 
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is notable, as it may be a key mechanism for vascular intrusion from the bone into 

the cartilage of OA patients. 

 

7.1 Weight-loss as a therapeutic for OA disease 

As well as being more prone to OA disease, there is evidence that obese individuals 

have poorer outcomes following joint replacement surgery when compared to their 

normal weight counterparts.  Following a multicentre cohort of over 20,000 primary 

total hip replacements, increased BMI was found to be associated with decreased 

mobility over a 15 year period [390].  Interestingly there was no difference in pain 

experienced by obese individuals when compared to their normal weight 

counterparts.  In the short term, obese individuals have also been shown to have 

increased post-surgical complications, with an increased hazard ratio for surgical site 

infections and dislocations from 3.5 to 4.1 in obese patients compared to the normal 

weight patient group [391].  Therefore therapeutic strategies aimed at improving 

metabolic health and reducing gross adiposity as well as adipokine profiles could be 

beneficial to patients with OA disease. 

Weight loss has previously been shown to have an advantageous effect on 

individuals with OA.  Through a meta-analysis of randomised controlled trials 

(RCTs), a significant improvement in OA-induced disability is achieved with an 

average weight reduction of 5.1% [392].  Interestingly, this degree of weight loss is 

sufficient for significant improvements to comorbidities often associated with OA, 

including high blood pressure and improved glucose tolerance [393].  In terms of 

primary prevention, the Framingham study demonstrated that a 5kg reduction in 

weight over a 10 year period was sufficient to decrease the likelihood of women 
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developing OA by 50% [394].  However this effect was only seen in overweight or 

obese women, with no significant reduction in OA risk in those with a normal weight 

baseline prior to weight loss [394].  However, this was not supported by the 

PRevention of knee Osteoarthritis in Overweight Females (PROOF) study, who 

found no significant effects on knee OA incidence after the prescription of a diet and 

exercise program over 2.5 years [395].  However this may be due to low compliance 

to the diet and physical activity program (28%) and at 2.5 years there was only a -

0.5kg weight loss in both the control and intervention group. 

One mechanism to explain how weight loss may improve symptomatic OA 

progression is due to mechanical factors such as a change in gait pattern or a 

decrease in loading on the joints. For example, for every 0.5kg of body weight lost, 

there is a 2kg reduction in the load exerted through the knee per step [396].  

However Aaboe et al., (2011) confirmed that with weight loss, participants increased 

their self-selected walking speed, thus increasing their joint loading by ~44N/0.1m/s 

speed increment, and counteracted any reduction in joint loads due to the weight 

loss [397].  Therefore, the notion that weight loss reduces forces experienced by the 

weight bearing joints needs further investigation, particularly allowing for natural 

speed selection. 

In addition to the potential reduction in joint loading, weight loss may improve 

symptomatic OA progression indirectly though the modulation of inflammatory 

adipokines.  Though under-researched, some studies have demonstrated an 

alteration in serum adipokine levels in accordance with weight loss and a reduction 

in adiposity.  In 2015, Albadah et al., (2015) investigated the effect of weight loss on 

serum adipokines, and their association with serum osteocalcin, a bone formation 

biomarker, in obese males.  Following a 4-month dietary program, BMI significantly 
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decreased from 39.7 ± 7.6 to 37.8 ± 7.6, as did bone-specific alkaline phosphatase 

and the adipokine resistin [398].  Inversely to weight loss, there was an increase in 

serum adiponectin, yet no adipokines were associated with circulating osteocalcin 

levels.  This data was supported by King et al., (2015) who found that obese patients 

who lost an average of 13% body weight over 12 months had significantly greater 

circulating adiponectin protein content, and significantly lower circulating leptin 

protein content [399].  Furthermore, the increase in adiponectin and leptin was 

associated with a reduction in the loss of cartilage volume, which is reflected by the 

reduction in circulating COMP protein levels [399]. 

The question remains whether weight loss via either dietary or physical activity is a 

viable and effective option for the therapeutic modulation of OA.  In fact, challenging 

OA patients to go beyond the short-term musculoskeletal benefits and focus on the 

long-term behavioural outcomes is one of the main challenges facing clinicians and 

researchers today.  While recent studies have shown that females placed on an 

intermittent fasting diet (5:2 diet) achieve similar levels of weight loss and reductions 

in circulatory levels of the adipokine leptin as those placed on a continuous calorie-

controlled diet [400, 401], it still remains to be seen if this diet is able to be adhered 

to more readily.  As such, bariatric surgery prevalence has dramatically increased in 

the morbidly obese population over the last 10 years [402]. However how 

inflammatory cytokines may be modulated following surgical weight loss remains 

controversial.  Six weeks following bariatric surgery, previous research has shown a 

significant reduction in circulating visfatin concentrations with a dramatic reduction in 

BMI (45 ± 4.7 vs. 39.2 ± 4.6).  Furthermore, increases in the adiponectin serum 

content were reported, suggesting that rapid weight reduction following bariatric 

surgery may improve the metabolic health of patients in the short–term [403].  
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Interestingly, this data is the opposite to that published by Botella-Carretero et al., 

(2008), who found visfatin levels increased following an average 30% baseline body 

weight loss after bariatric surgery [404]. 

Through understanding the interplay between OA and obesity it may be possibly to 

not only to identify and develop novel therapeutics, but also improve the quality of life 

in those OA patients unable to meet the criteria for joint replacement surgery.  For 

example, OA patients who are Class II obese are currently not eligible for surgery.  

Current disparity within research studies may be due to heterogeneous populations 

recruited into each study, therefore it is important to identify the appropriate patient 

group for treatment to maximise success. 

 

7.2 Current clinical therapeutics for adipokine modulation 

There is strong evidence to support the relationship between obesity and OA, 

however this area still requires further research to understand the mechanisms of 

adipose tissue and joint tissue cross-talk.  A number of adipokines have been 

implicated in connecting obesity, osteoarthritis and inflammation.  Therefore, with 

further research it may be possible to develop novel therapeutics that target 

adipokine-mediated signalling pathways. 

The important role of resistin in OA bone pathology has been clearly detailed within 

this thesis (Chapter 4) with an increase in the biosynthetic activity of human primary 

osteoblasts, activation of the canonical WNT-signalling pathway and subsequent β-

catenin translocation and gene transcription.  Currently, therapeutic development 

directed towards resistin is challenging due to the lack of a known receptor.  

However, several cholesterol lowering drugs have shown the potential to lower 
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resistin concentrations.  For example, HMG-CoA reductase inhibitors, also known as 

‘statins’, have shown the greatest potential with Grosso et al., (2014) demonstrating 

a significant reduction in resistin in the plasma of coronary artery disease and 

metabolic syndrome patients treated with simvastatin [405].  Interestingly, there was 

also a significant increase in adiponectin and a significant decrease in leptin plasma 

concentrations following simvastatin treatment. This therefore demonstrates the 

novel ability of statins to reduce circulating adipokines, and provide a potential drug 

repurposing for the treatment of OA.  Further research into the ability to repurpose 

statins into intra-articular injection may be prudent, particularly to offset adipokine-

mediated cartilage degeneration and synovitis. 

In this thesis, visfatin was identified as a key adipokine that is increased in the 

synovial fluid of obese OA patients, and associated with cartilage degeneration and 

inflammation.  However, similarly to resistin, the development of effective 

therapeutics is hampered by the lack of a known receptor.  FK866 is a well 

characterised inhibitor of visfatin, known to competitively bind to the NAD binding site 

with great affinity [406-408], and could potentially provide a novel therapeutic to 

visfatin.  In a collagen induced arthritis mouse model, two doses of 10mg/kg FK866 

daily resulted in a significant decrease in IL6, TNFα, and IL1β, and reduced disease 

severity. 

Another important visfatin inhibitor is CHS 828, a cyanoguanidine compound 

currently in phase II clinical trials for its anti-tumour activity [409-411].  The 

mechanisms by which CHS 828 inhibits visfatin are still unknown. However, there is 

some suggestion of CHS 828 inhibiting NAD synthesis through binding to the NAD 

binding pocket of visfatin [407, 412, 413].  Therefore it shares its active binding site 

with FK866, and can be defined as a competitive inhibitor of visfatin.  
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One of the most widely studied adipokines is leptin, a product of the ob gene, which 

is known to regulate metabolism and appetite [248].  Leptin is increased in OA 

synovial fluid compared to non-OA controls [251].  Recombinant leptin, either alone 

or synergistically with IL-1β, induces MMP-1 and MMP-13 expression in primary 

human chondrocytes [254].  Furthermore, it increases the production of inflammatory 

mediators including IL1β, IL6, IL8 and PGE2 [255]. Due to the pro-inflammatory 

nature of leptin and its potential to drive cartilage catabolism, the recent development 

of peptide-based and antibody-based leptin antagonists could provide an effective 

therapeutic [414, 415]. 

 

7.3 Stratification of obese OA patients for novel therapeutics  

Critically, for the development of novel therapeutics, there are many factors that can 

alter the adipokine concentration in the surrounding joint tissues and circulation.  Co-

morbidities associated with OA are also known to alter the metabolic profile, 

including type II diabetes, cardiovascular disease, hypertension and renal function 

impairment [416], and have also been shown to alter the circulating adipokine profile 

[417-419].  For example, resistin was first identified as a mouse adipocyte gene 

product representing a link between obesity and diabetes [258], and since then has 

been shown to cause a dysregulation of glucose production from the liver, 

subsequently leading to insulin resistance [420, 421].  In humans there is an 

indication of a resistin gene polymorphism that is associated with metabolic 

abnormalities.  Smith and colleagues (2003) identified a G/G genotype of a SNP, -

180C>G, in the promoter of resistin which increases resistin promoter activity within 

adipocytes, and was associated with increased oxidative stress and insulin 
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resistance [422].  Therefore, it would be appropriate to screen co-morbidities and 

potential gene polymorphisms that may alter the adipokine profile in order to have 

the most success in therapeutic intervention, whether through drugs or weight loss. 

One cohort where adipokines may play a central role in recovery and the long-term 

development of OA is in fracture patients. Post traumatic OA is attributed to 12% of 

symptomatic OA of the hip, knee and ankle [423]. Therefore, identification of proteins 

modulated immediately post fracture could provide important insight into the key 

pathways and mechanisms that predispose these individuals to developing OA in 

later life.  To this end, Wei et al., (2008) demonstrated an increase in circulating 

leptin concentrations following fracture in rats, with peak serum leptin concentration 

achieved at 4-weeks post-fracture [424].  In addition, there were a peak number of 

leptin positive cells within the callus region at 8 weeks following the fracture 

incidence.  While the circulating leptin levels returned to near baseline values within 

12 weeks in this study, it is unknown whether local concentrations of leptin were 

modulated in the long-term, and may contribute to joint destruction.  Resistin has 

also shown to be increased both systemically and locally with 1 week following 

traumatic joint injury, and displayed catabolic properties in cartilage turnover 

including the induction of pro-inflammatory cytokine release and proteoglycan 

breakdown as determined by cartilage cultured in resistin-treated monocyte media 

[305].  While this study is limited by its cross-sectional nature, and does not provide 

information on the BMI of patients, it is important to consider the potential impact of 

adipokines in post-traumatic OA patients, independent of BMI state.  

Gender may also be an important factor to consider for trials of particular OA anti-

inflammatory therapeutics.  For example, free levels of leptin have been reported to 
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be higher in the joints of females with knee OA, compared to males [425].  This 

finding could explain why the association between obesity and OA risk is reported to 

be greater in females [234], and suggests that therapeutics targeting leptin signalling 

could be more efficacious in female OA patients.  Furthermore, a longitudinal 

prospective follow-up study found that females exhibited a greater incidence of poly-

articular OA, more rapid structural progression, and a more severe symptomatic 

disease [231]. The higher incidence of multi-joint in females with hip OA could 

indicate the presence of a systemic inflammatory OA driver which is not present to 

the same degree, in males [231].  In addition, the increase in incidence of OA in 

females rises dramatically post-menopause [426, 427].  

This knowledge of the diverse OA patient population necessitates the requirement 

for clear patient stratification in clinical trials. The impact of not selecting the 

appropriate patient population was illustrated by clinical trials with the drug Iressa 

(AstraZeneca), an EGFR-targeted therapy for non-small cell lung cancer patients. 

Iressa originally failed to meet its clinical end point during a PhII trial. However, 

subsequent analysis showed those patients with EGFR mutation [428] had improved 

survival.  Not selecting the appropriate patient population masked the beneficial 

effect of the drug in the original clinical study.  Iressa was eventually approved 5 

years after the original PhIII trial and several large and costly follow-up clinical 

studies [428].  Therefore identifying clinical patient-selection biomarkers such as 

adipokines for clinical trials of OA and obesity therapeutics is highly important to 

achieve success. 
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7.4 Future considerations and conclusion 

The aim of this thesis was to determine the OA adipokine expression profile and how 

the functional roles of adipokines may differ across different OA patient cohorts, 

including patients of varying BMI.  

Numerous studies have examined the effect of adipokines on cartilage tissue 

damage.  However, very few have performed a longitudinal-based study to 

determine the role adipokines have in initiating joint damage.  All patients tissues 

received in this study were from patients undergoing joint replacement surgery and 

were therefore at an advance stage of OA disease.  The lack of patient samples with 

a less severe disease state makes us unable to determine if joint damage precedes 

a heightened adipokine expression or vice versa.  Future research investigating the 

temporal role of adipokines in early OA samples would be advantageous for 

therapeutic development, as well as longitudinal studies to provide invaluable 

evidence to support the role of adipokines in OA disease progression.  However, the 

cost of such studies makes them difficult to implement, and obtaining joint tissues 

from patients with early OA and during progression is clearly difficult.  The Chingford 

1000 Women study have gone to some lengths to address this gap in the research 

through retrospective musculoskeletal data collection that evolved into a prospective 

population based longitudinal cohort of women. 

It is worth noting that during this study we observed patient samples that responded 

to adipokine stimulations (e.g. 50 fold increase in IL6 expression), and other patient 

samples that did not respond or were much less responsive (e.g. 5 fold increase in 

IL6 expression) despite being collected, stimulated and analysed on the same days.  

The study performed by Pallu and colleagues (2010) may provide a potential 

explanation for our responders and non-responders, in which they studied the BMI-
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dependent effect of leptin stimulation in chondrocytes [350].  The authors 

demonstrated an up- regulation of tissue inhibitors of metalloproteinases (TIMPs) 

following leptin stimulation, however this was only present in normal and overweight 

individuals, and decreased as the BMI of the patients increased.  Furthermore, leptin 

induced MMP-13 expression was more sensitive in individuals with greater BMIs, 

with MMP-13 expression detected in the lowest leptin concentrations.  The sensitivity 

to leptin stimulations may be heightened in obese patients because of regular 

exposure to adipokines with the joint.   

Ultimately, through determining both the expression and functional role of adipokines 

in cartilage and bone joint tissue from patients with OA potentially new targets for 

therapeutic modification have previously been identified.  In particular, the findings 

presented in this thesis on the expression and functional role of resistin and visfatin 

suggest that future therapeutic entities designed to modulate their pathological 

signalling pathways in the joint could modify OA disease progression in patients who 

are over-weight or obese.  
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Appendix Table 1. Serum cytokine and adipokine profiles in relation to K and L 

grade. 

pg/mL ≤ Grade 3 (n=33) Grade 4 (n=94) P 

TNFα 4.57±1.29 4.85±2.22 0.45 

IL10 4.56±0.97 5.80±13.54 0.46 

IL1β 20.50±20.24 17.93±16.75 0.55 

Dkk1 3378±1487 3107±1754 0.44 

MIP1α 292.8±232.4 333.7±288.3 0.37 

Galectin 1 46163±29263 45658±33922 0.98 

Chemerin 7262±4126 6111±4346 0.23 

Eotaxin 145.9±135.0 176.1±184.1 0.38 

gp130 88725±34836 81579±35223 0.38 

IP10 27.13±13.11 38.88±70.84 0.17 

MCP1 472.9±920.4 806.7±2088.8 0.43 

IL7 3.87±1.99 3.19±1.61 0.15 

MIP3α 36.92±28.4 109.7±487.5 0.11 

Amphiregulin 530.3±151.5 616.4±226.7 0.07 

IL15 3.98 ±1.09 5.06±5.46 0.14 

Aggrecan 166.9±126.5 245.5±340.6 0.13 

Resistin 13605±4742 16086±8683 0.09 

SerpinE1 146579±72341 139417±63931 0.67 

Adiponectin 1.15 x107±6.73 x106 1.06 x107±5.86 x106 0.55 

IL6 2.32±1.43 5.45±11.77 0.57 

LIF - - - 

Leptin 27768±41003 22023±29084 0.51 

FABP4 20237±12649 29936±36710 0.06 

MIP1β 143.8±52.5 147.2±78.7 0.85 
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Appendix Table 2. Serum cytokine and adipokine profiles in relation to joint 

space. 

pg/mL ≥1.5 (mm) (n=30) <1.5(mm) (n=85) P 

TNFα 4.59±1.33 4.86±2.22 0.44 

IL10 4.71±1.48 5.78±13.7 0.50 

IL1β 17.50±16.42 20.72±20.37 0.38 

Dkk1 3379±1582 3106±1726 0.41 

MIP1α 289.4±238.2 334.9±286.5 0.37 

Galectin 1 42639±29901 46896±33660 0.49 

Chemerin 6294±3628 6451±4534 0.84 

Eotaxin 131.2±134.75 181.2±183.1 0.10 

gp130 88342±35118 81557±35145 0.35 

IP10 26.46±13.54 39.12±70.77 0.10 

MCP1 792.8±2092 477.9±919.6 0.40 

IL7 3.40±1.55 3.34±1.79 0.87 

MIP3α 31.44±27.8 111.5±487.2 0.11 

Amphiregulin 529.2±162.0 618.9±225.0 0.03 

IL15 3.89±1.15 5.12±5.51 0.06 

Aggrecan 159.9±126.0 250.0±343.4 0.06 

Resistin 13159±75207 16239±8543 0.03 

SerpinE1 146052±67484 139598±65714 0.38 

Adiponectin 1.17x107±6.43x106 1.06x107±5.97x106 0.38 

IL6 2.44±1.30 5.51±11.78 0.87 

LIF - - - 

Leptin 28316±40926 21830±29080 0.41 

FABP4 20237±12649 29726±36633 0.20 

MIP1β 146.4±60.2 146.2±77.4 1.00 
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Appendix Table 3.  Serum cytokine and adipokine profiles in relation to hand 

OA. 

pg/mL Non Hand OA (n=40) Hand OA (n=106) P 

TNFα 4.99±2.9 4.5±1.5 0.95 

IL10 4.29±2.04 4.24±1.6 0.76 

IL1β 22.21±22.6 17.23±17.6 0.57 

Dkk1 3260±1998 3068±1522 0.39 

MIP1α 327.1±282.8 325.6±259.6 1.00 

Galectin 1 41723±27788 46925±32731 0.71 

Chemerin 6400±4261 7193±5134 0.54 

Eotaxin 194.3±215.6 124.5±182.7 0.74 

gp130 79898±41052 91191±31559 0.20 

IP10 36.89±75.26 33.7±50.4 0.24 

MCP1 333.7±192.8 602.1±1455 0.76 

IL7 3.63±2.00 3.47±1.93 0.66 

MIP3α 194.77±739.8 39.58±45.3 0.79 

Amphiregulin 583.9±161.4 599.7±233.7 0.77 

IL15 6.2±8.01 3.36±1.7 0.08 

Aggrecan 314.7±475 183.4±157 0.74 

Resistin 14310±6855 14426±8507 0.84 

SerpinE1 142471±64768 142797±65225 0.81 

Adiponectin 1.09x107±6.30 x106 1.14 x107±7.11 x106 0.84 

IL6 6.35±13.2 6.31±11.10 0.19 

LIF - - - 

Leptin 21849±21602 23116±34646 0.52 

FABP4 27460±31704 24296±30345 0.11 

MIP1β 133.9±56.9 138.4±81.93 0.87 
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Appendix Table 4. Wnt signalling pathway gene regulation following the 

stimulation of primary osteoblasts with resistin. 

Gene Fold Change SD p value   Gene Fold Change SD p value 

WNT5A 1.56 0.17 0.00   TCF7L1 1.81 0.40 0.23 

WNT2B 1.62 0.19 0.00   FZD9 2.35 75.22 0.24 

NFATC1 1.42 0.13 0.00   WNT8A 4.29 0.58 0.25 

WNT7B 1.94 0.50 0.01   WNT10A 4.65 1.52 0.25 

MYC 1.71 0.34 0.02   RHOA 1.57 1.14 0.27 

FOSL1 1.50 0.29 0.03   PORCN 1.80 1.62 0.27 

AXIN2 3.07 1.54 0.04   SOX17 3.69 4.77 0.28 

BOD1 1.64 0.40 0.04   WNT4 6.38 5.28 0.28 

GSK3B 1.40 0.25 0.04   FZD1 1.18 3.74 0.28 

PITX2 3.94 2.42 0.04   MTSS1 1.36 0.68 0.29 

TCF7 1.71 0.48 0.04   WNT3A 1.79 1.13 0.30 

FRZB 1.76 0.55 0.04   MTFP1 1.55 3.72 0.32 

FZD4 1.75 0.52 0.04   CALM1 1.23 10.09 0.33 

CHSY1 1.62 0.44 0.04   WNT2 3.35 0.27 0.33 

FZD6 1.46 0.34 0.05   SKP2 1.57 0.54 0.35 

LEF1 1.52 0.36 0.06   VANGL2 25.98 1.36 0.35 

RUVBL1 1.56 0.46 0.06   WIF1 1.46 0.88 0.36 

LRP6 1.96 0.86 0.06   DAAM1 1.86 0.36 0.38 

BTRC 1.63 0.56 0.07   NLK 1.48 4.38 0.39 

WNT5B 1.42 0.41 0.08   LRP5 2.50 0.87 0.39 

WNT11 2.44 0.34 0.09   WNT9A 4.75 49.48 0.39 

EP300 2.81 1.68 0.10   CXADR 2.30 1.60 0.44 

CTNNB1 2.59 1.80 0.10   SFRP1 2.02 1.09 0.45 

AXIN1 1.75 1.79 0.10   HSPA12A 1.37 0.85 0.47 

KREMEN1 3.51 0.68 0.10   NAV2 1.65 0.23 0.47 

MT1A 1.46 2.62 0.11   DKK1 1.85 0.75 0.49 

FGF4 2.51 0.47 0.11   FZD2 1.35 2.03 0.51 

CSNK1A1  1.59 1.49 0.12   MAPK8 1.59 7.34 0.51 

FZD5 4.01 0.68 0.12   CCND1 1.17 1.39 0.54 

DVL1 2.30 2.95 0.13   DKK3 4.18 2.28 0.57 

CTNNBIP1 12.89 1.31 0.14   PRICKLE1 1.27 2.08 0.60 

DVL2 0.86 17.93 0.15   PRMT6 0.95 0.60 0.60 

WNT3 4.64 1.42 0.15   CCND2 3.28 1.36 0.61 

SFRP4 3.97 0.11 0.16   CTBP1  1.54 1.05 0.66 

MMP7 11.09 4.03 0.17   WISP1 0.98 0.58 0.66 

FBXW11 1.31 4.25 0.17   FZD8 2.00 0.97 0.73 

WNT6 9.55 17.78 0.17   FZD3 1.04 0.42 0.85 

NKD1 5.01 0.31 0.17   FZD7 1.19 1.30 0.87 

WNT7A 2.71 14.95 0.19   DAB2 1.02 5.97 0.87 

WNT1 40.12 0.82 0.22   APC 1.32 0.52 0.95 

CYP4V2 1.50 5.76 0.23   JUN 1.16 0.49 0.96 

PPARD 2.21 2.36 0.23   FRAT1 1.90 3.90 0.98 

 

 



Page | 224 
 

Appendix 5 – Confirmation of pro-inflammatory action of visfatin, independent 

of bacterial endotoxin contamination of the recombinant protein. 
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Appendix 5. Secreted IL6 concentration following 24 hr stimulation of 

chondrocytes with recombinant visfatin.   

Chondrocytes were stimulated with recombinant visfatin that had either been 

maintained at 4°C or boiled at 100°C for 10 minutes.*=p<0.05. 
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