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Abstract 

The process of angiogenesis in which new blood vessels form from pre-existing 

vessels, can be intensively studied through the use of in vitro and in vivo models. The 

in vitro co-culture tube formation assay is used to assess the ability of endothelial 

cells to develop into three dimensional tubular structures which mimics the growth of 

capillaries. Different fluorescent labelling techniques were developed and utilised 

alongside confocal microscopy to visualise endothelial tubulogenesis and investigate 

the mechanisms of lumenogenesis. Imaging the actin cytoskeletal organisation by 

expressing the lifeact peptide conjugated to fluorescent proteins revealed that F-actin 

fibres outline lumens within endothelial tubules and enabled clear visualisation of 

filopodia formation.  

Further studies presented in this thesis aimed to develop, test and evaluate 

computational tools for analysing endothelial sprouting from fluorescently labelled 

spheroids generated using the in vitro hanging drop spheroid assay and quantify 

blood vessel formation in the in vivo zebrafish model. The results confirmed that both 

analysis tools were able to rapidly quantify a wide range of angiogenic images and 

generated comparable results to frequently used manual methods. The developed 

computational analysis tools are user friendly and can be used to assess the effects 

of inhibitor compounds and silencing vascular related genes.  
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Chapter One 

Introduction  
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1.1. Project aims 

The main focus of this PhD project was to monitor, manipulate and analyse in detail 

the process of angiogenesis through the development of high resolution fluorescence 

imaging techniques and the generation of useful analysis tools to quantify angiogenic 

images.  

The following aims are presented in the three results chapters in this thesis: 

To utilise and develop fluorescent imaging techniques to study the process of 

endothelial lumen formation within tubules formed in the in vitro co-culture 

tube formation assay  

Confocal imaging was used alongside various fluorescent labelling techniques to 

study and monitor the extension of endothelial cells into three dimensional tubules 

using the co-culture tube formation assay. The intracellular process of lumen 

formation within endothelial tubules was imaged by fluorescently labelling the 

cytoplasm of endothelial cells, staining for apical and basal cell surface markers as 

well as visualising the organisation of the actin cytoskeleton. The endothelial 

lumenogenesis mechanisms were visualised, assessed and quantified in endothelial 

tubules formed using this tube formation assay. 

To design, test and evaluate a computer based analysis tool for quantifying 

endothelial sprouting from fluorescently labelled spheroids produced using the 

in vitro hanging drop spheroid angiogenesis assay 

A computer based analysis tool was specifically designed to permit rapid and 

automated analysis of endothelial sprouting from spheroids generated from the 
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hanging drop spheroid angiogenesis assay. The Spheroid Analysis ImageJ plugin 

was tested and evaluated by applying the analysis method to a wide range of 

endothelial sprouting images generated through a kinase screen using a library of 80 

small molecule kinase inhibitors in the assay. Alongside the hanging drop spheroid 

angiogenesis assay, the scratch wound in vitro angiogenesis assay and the matrigel 

tube formation assay were used to screen and identify important kinases with roles in 

endothelial sprouting, migration and tube formation. The data generated from the 

kinase screen has been represented in analysis heat map tables which enabled easy 

and rapid identification of kinase inhibitors that affected these endothelial processes.  

To generate a computer based analysis method to assess and quantify the 

development of the intersegmental blood vessels in embryonic zebrafish  

Two computer assisted analysis methods using IMARIS and ImageJ software were 

generated which permitted quantification of numerous vascular parameters from 

fluorescent zebrafish images. Normal vascular development was studied by 

monitoring and imaging the formation of the intersegmental blood vessels in fli1-GFP 

zebrafish embryos with time-course confocal imaging. Abnormal vascular 

development was studied by knocking down vascular related genes and the effects 

of inhibitor compounds on vessel development were observed. Both normal and 

abnormal vascular development was assessed and quantified using the computer 

based analysis methods and comparative studies were performed by performing 

manual analysis on the vascular images. 
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1.2. Endothelial cells and their role in vascular development 

1.2.1. Introduction 

The endothelium consists of a single layer of endothelial cells which line the internal 

walls of blood and lymphatic vessels1.  Blood vessels transport oxygen, nutrients and 

hormones to tissues and the lymphatic vessels return interstitial fluid consisting of 

blood plasma and leukocytes from the interstitial space back to the blood vessels2. 

The vascular network contributes to the important physiological processes of tissue 

growth and repair, cell delivery and immunity3. Endothelial cells are highly 

metabolically active cells and disregulation of these cells can cause malignant, 

ischemic, immune and inflammatory disorders3-5. 

1.2.2. The formation of blood vessels 

The de novo formation of blood vessels is initiated from blood islands in the 

developing organism, these are formed from mesodermal derived hemangioblasts 

which either undergo differentiation to produce angioblasts, which are the endothelial 

precursor cells or hematopoietic stem cells6. Upon stimulation from vascular 

endothelial growth factor A (VEGF) signalling through the transmembrane receptor 

tyrosine kinase VEGFR2, the blood islands fuse together to form the first primitive 

plexus of blood vessels in the embryonic organism6,7. The process which generates 

this primitive vascular network is known as vasculogenesis8.  

The primary capillary plexus then undergoes remodelling and stabilisation by the 

attachment of mural cells to the ablumenal endothelial surface, for smaller blood 

vessels such as capillaries this involves the attachment of pericytes and for larger 

vessels it involves the attachment of vascular smooth muscle cells. Once the vessel 
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has been stabilised, the vascular network is expanded through endothelial sprouting, 

intussusception and collateral growth4,9. The process in which new blood vessels 

form from the pre-existing vascular network is known as angiogenesis, a process 

which is predominantly driven by endothelial proliferation8,10.  

The process of angiogenesis is not only critical for supporting embryonic 

development; it also has crucial roles within adult organisms such as aiding the 

multistep process of wound repair. During the proliferative phase of wound healing, 

the normally quiescent endothelial cells are recruited to the site of vascular damage 

and angiogenesis is initiated to sustain the growth of newly formed replacement 

tissue11. Angiogenesis is also a highly active process in female adult organisms, 

since there is a requirement for rapid vessel growth in uterine and placental tissues 

during pregnancy as well as during the female menstrual cycle5,12.  

However, disregulation of endothelial cells can support the progression of 

pathological diseases. Pathological conditions associated with vessel regression or 

reduced vessel growth include ischemia, hypertension and neurodegeneration4. 

Enhanced activation of the angiogenic pathway is associated with atherosclerosis, 

obesity, asthma and inflammatory associated diseases such as arthritis4. 

Angiogenesis also supports tumour growth and metastasis, as tumours are limited to 

1-2 mm in diameter which is equivalent to approximately 1 million cells without the 

infiltration of blood vessels into the hypoxic tumour environment to supply oxygen to 

the tumour cells13.  
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1.2.3. Angiogenic mechanisms 

1.2.3.1. Sprouting angiogenesis 

The process of sprouting angiogenesis is controlled through signalling pathways from 

critical regulatory factors, the pathway can be stimulated by an enhancement of pro-

angiogenic signalling molecules such as VEGF, angiopoietin-2 (ANG-2) and 

chemokines which are released by tumour or inflammatory cells1,14. In response to 

angiogenic stimulation, pericytes detach from the basement membrane and the 

vessel is destabilised through the action of matrix metalloproteinases (MMPs)14. 

There are strong intercellular adhesions between endothelial cells to ensure vessel 

integrity, the cells are connected by junctional proteins of VE-cadherin and claudins, 

however MMP degradation weakens the endothelial contacts causing increased 

vascular permeability and enables endothelial migration14. Particular endothelial cells 

within the vessel become activated and initiate endothelial sprouting which expands 

the vascular network, these endothelial cells are known as tip cells and they direct 

the growth of the newly formed blood vessel1. These dynamic and motile tip cells 

function by extending cytoplasmic projections known as filopodia into the local micro-

environment and respond to chemotropic signals from ephrins and semaphorins 

through receptors on their cell surface thereby sensing gradients of angiogenic 

factors15. The cells located behind the endothelial tip cell in the developing sprout are 

known as endothelial stalk cells and these cells are responsible for elongating the 

sprout via cellular proliferation1. The process of sprouting angiogenesis is outlined in 

figure 1.1. 
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Figure 1.1 Sprouting and intussusception angiogenesis 

In sprouting angiogenesis, 1) two neighbouring blood vessels exist as quiescent 
vessels, 2) a tip cell emerges upon activation of an endothelial cell in one vessel and 
destabilisation of the basement membrane, 3) stalk cells located behind the tip cell 
proliferate to elongate the endothelial sprout, 4) the endothelial sprout forms a 
junction with the neighbouring vessel, forming a complex and interconnecting 
vascular network. 

In intussusception angiogenesis, 1) a blood vessel exists, 2) protrusion of opposing 
sides of the vessel wall come into contact, which is stabilised by basement 
membrane components, collagen and pericytes, 3) the formation of a mature 
translumenal pillar within the vessel, increases the complexity of the vasculature.  
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Signalling from the delta-like-4 (Dll4) and notch pathway determines tip and stalk cell 

fate and determines endothelial behaviour. Dll4 is a membrane bound endothelial 

specific notch ligand which is upregulated on tip cells and binds to the heterodimeric 

notch receptor on adjacent endothelial cells to promote the stalk cell phenotype1,16. 

The stalk cells continue to proliferate and elongate the sprout until the tip cell 

connects with a nearby vessel generating vascular junctions, contributing to vascular 

complexity. Endothelial stalk cells then establish a lumen via the process of 

lumenogenesis, a critical step in angiogenesis which creates a continuous open 

channel encapsulated by endothelial cells which enables blood flow15.  

Tubular lumens are generated either through the rearrangement and morphological 

changes of endothelial cells in which an extracellular space develops into a lumen or 

by the process of pinocytosis and vacuole fusion, in which intracellular vacuoles of 

adjacent cells fuse together to form a continuous lumen17,18. Lumenogenesis allows 

establishment of blood flow which increases the amount of oxygen to the tissue 

thereby causing a reduction in pro-angiogenic signalling and subsequently results in 

quiescent behaviour of the vessel1. Additionally, the integration of the newly formed 

vessel as well as the release of platelet derived growth factor B (PDGFB) from 

endothelial tip cells during this process triggers the attachment of mural cells to the 

endothelial cells thereby stabilising the new vessel1.  

1.2.3.2. Intussusception angiogenesis 

 Another angiogenic mechanism which functions to expand the vascular network in 

organisms is intussusception or splitting angiogenesis. This angiogenic mechanism 

involves the generation of translumenal tissue pillars within mature vessels leading to 

vessel separation, as shown in figure 1.119. The process of intussusception is 
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initiated by protruding endothelial cell walls on opposing sides of the vessel. The 

vascular protrusion leads to intercellular contact within the vessel which is stabilised 

by the formation of basement membrane and the diameter of the vascular pillar 

increases due to the formation of collagen and attachment of pericytes20. The 

establishment of a translumenal vascular pillar increases the complexity of the 

vascular network and occurs comparatively faster than sprouting angiogenesis which 

depends on endothelial proliferation19. 

Both angiogenic mechanisms of sprouting and intussusception are essential post 

vasculogenesis to enhance the complexity and connectivity of the primary vascular 

network to provide an efficient circulatory system. Sprouting angiogenesis is the 

dominant mechanism required to establish newly formed vessels, whereas 

intussusception angiogenesis is crucial for remodelling the vasculature20. Once blood 

flow in the vessels has been established, vascular remodelling is achieved through 

vessel regression and pruning to ensure there is efficient blood transport. Vessels 

which participate in limited blood transport regress through the retraction of 

endothelial cells, in which the endothelial cells either relocate to another vessel or 

undergo apoptosis21.  

1.2.4. Mechanisms of lumen formation 

All developing vessels must undergo the process of lumenogenesis to establish a 

lumen to transport blood and prior to lumen formation the endothelial cells exist as a 

cord of cells tightly connected by cellular junctions. The cellular and molecular 

mechanisms of endothelial lumenogenesis have been widely debated, due to the 

complex morphology of the tubules, the lack of specific apical and basolateral cell 

surface markers as well as the difficulty posed by imaging intracellular structures, 
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many researchers have had difficulty identifying the exact mechanisms behind the 

formation of tubular lumens17. However, there is evidence to support two models of 

endothelial lumen formation; the endothelial cell rearrangement mechanism and the 

vacuole fusion mechanism, these mechanisms may occur under different 

environmental conditions in vivo and in vitro22. 

1.2.4.1. Endothelial cell rearrangement mechanism 

In the first stage of the endothelial cell rearrangement or cord hollowing 

lumenogenesis mechanism, the apical and basolateral endothelial cell surfaces are 

established by cellular polarisation17,23. The apical cell surface is that which interacts 

with the lumen, whereas the basal cell surface is on the ablumenal side24. Following 

the establishment of the apicobasal polarity, junctional proteins are redistributed 

along the endothelial cell surfaces with negatively charged CD34-sialomucins, 

dextran sulphate and glycoprotein podocalyxin redirected to the apical cell 

membrane, a process regulated by VE-cadherin and β1 integrin23. Electrostatic 

repulsion between two apical endothelial surfaces of adjacent cells from the 

negatively charged proteins on these cell membranes drives the initial formation of a 

small extracellular space at the cell-cell contact region25, as shown in figure 1.2. 

Successive expansion of the extracellular space is achieved through repositioning of 

podocalyxin, which recruits F-actin and moesin to the apical cell membrane where 

actomyosin contractility causes cytoskeletal reorganisation and morphological 

rearrangement of the endothelial cells23. Signalling by the Rac1 guanine nucleotide 

exchange factor (GEF) dedicator of cytokinesis 4 (DOCK4) has been identified to be 

necessary for lumen formation through the rearrangement of the endothelial 

cytoskeleton in the cell rearrangement mechanism26. 
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Figure 1.2 Endothelial cell rearrangement mechanism of lumen formation 
In the endothelial cell rearrangement mechanism of endothelial tubular lumen 
formation, 1) VE-cadherin establishes apical and basolateral polarity and there is 
expression of the negatively charged CD34-sialomucins on the cell surfaces of 
neighbouring endothelial cells, 2) the negatively charged apical cell surfaces repel 
each other through electrostatic repulsion and an extracellular space forms between 
the cells, 3) morphological changes driven by cytoskeletal rearrangement between 
the endothelial cells forms the lumen in the extracellular space. 
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The endothelial cell rearrangement mechanism of lumenogenesis has been observed 

in the formation of aortic lumens in mouse embryos, with the diffusion of interstitial 

fluid into the extracellular space causing lumenal expansion25. Similarly Xu et al. 

found evidence which supported this model in murine aortic endothelial cells and 

identified that RAS interacting protein 1 (RASIP1) plays a critical regulatory role 

during this process. Upon silencing of this protein endothelial lumens failed to form27. 

Jin et al. also identified that angioblasts undergo morphological changes from a 

cuboidal shape into an elongated shape to aid lumengenesis in the dorsal aorta (DA) 

in zebrafish embryos at 18 hours post- fertilisation (hpf)28. Additionally, Blum et al. 

imaged the presence and organisation of endothelial junctional proteins within the 

intersegmental blood vessels (ISVs) in developing zebrafish embryos and observed 

that lumens within ISV develop via the endothelial cell rearrangement mechanism29.  

1.2.4.2. Vacuole fusion mechanism 

The alternative endothelial tubular lumen formation mechanism is known as the 

vacuole fusion or cell hollowing mechanism. This process is initiated by integrin 

mediated pinocytosis, in which invaginations of the cell membrane containing 

surrounding fluid enters the endothelial tubule30. Subsequent fusion of small 

intracellular pinocytosed vesicles forms large intracellular vacuoles, these adjacent 

cell vacuoles fuse together causing lumenal expansion30, as shown in figure 1.3. The 

extracellular space is further enlarged by the proteolysis action of membrane type I 

matrix metalloproteinases (MT1-MMP) and there is removal of endothelial junctions 

which causes the extracellular space to become an established tubular lumen 

encapsulated by several endothelial cells31.  
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Figure 1.3 Vacuole fusion mechanism of lumen formation  

In the vacuole fusion mechanism of endothelial tubular lumen formation,1) pinocytotic 
vesicles bringing in surrounding media into the endothelial cells, 2) vesicles fuse to 
create vacuoles, 3) adjacent cell vacuoles fuse creating a lumen as a channel 
throughout the cells. 
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The vacuole fusion mechanism of lumen formation has been the predominant 

mechanism observed within endothelial tubules developed in vitro, particularly within 

tubules formed on extracellular matrices of collagen and fibrin30,32-36. Yang et al. 

identified that the vacuole fusion mechanism was responsible for lumen formation 

within tubules formed in collagen gels by visualising the uptake of the fluorescent dye 

6-carboxyfluorescein into lumenal spaces of tubules35. These reports have identified 

the importance of the Rho family GTPases particularly RhoA, Cdc42 and Rac1 in 

regulating pinocytosis and vacuole fusion, as well as outlining the importance of 

integrin α2β1 for endothelial cell binding to collagen which leads to successive lumen 

formation. Specifically, this lumenogenesis mechanism has been found to be 

dependent on Rac1 and Cdc42 recruitment to the intracellular vacuole surfaces 

within endothelial cells30,34.  

The vacuole fusion mechanism has also been identified to occur in vivo by Kamei et 

al. as high resolution time-lapse two-photon imaging was used to visualise 

intracellular as well as intercellular fusion of vacuoles during the development of the 

ISVs in zebrafish18. ISV development and lumen formation has also been studied by 

Blum et al. as single cell imaging was used to visualise the localisation of junctional 

proteins within developing ISVs29. In this way, Blum et al. observed lateral adhesions 

within these blood vessels which corresponded to overlapping endothelial cells and 

lumen formation via the endothelial cell rearrangement mechanism29. Recent work by 

Gebala et al. also supports the endothelial cell rearrangement mechanism as the 

prevailing mechanism of lumen formation within the ISVs and identified the 

importance of blood flow to drive lumenal expansion through both unicellular and 

multicellular regions of these vessels37. Gebala et al. visualised the formation of 
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inverse blebs at the apical membrane of endothelial cells during the process of 

lumenal expansion within the ISVs and concluded that blood flow is required to form 

these spherical deformations, this mechanism of lumen expansion has been termed 

inverse membrane blebbing37. 

1.2.5. Importance of kinases in angiogenesis 

Protein phosphorylation mediates important eukaryotic signal transduction pathways 

and regulates essential cellular processes including proliferation, differentiation, 

motility and apoptosis38-41. Phosphorylation is a reversible, covalent modification 

which involves the transfer of the γ-phosphate from a purine nucleotide triphosphate 

such as adenosine triphosphate (ATP) to a hydroxyl group on a target protein by the 

action of a kinase; and the removal of the phosphate group from the protein is 

catalysed by a phosphatase41. 

Eukaryotic protein kinases are classified into tyrosine-specific protein kinases, 

serine/threonine-specific protein kinases and dual specificity protein kinases based 

on which specific amino acid residue is targeted for the addition of the γ-phosphate 

group42. Phosphorylation events cause a conformational change in the target protein 

which subsequently results in altered function or localisation of the protein. 

Disregulation or disfunctional kinases contribute to pathological diseases such as 

cancer, cardiovascular disease, diabetes and inflammation and as a result, protein 

kinases have been widely studied as potential targets for therapeutic drugs42-46. 

Currently, the Food and Drug Administration (FDA) has approved thirty inhibitors for 

clinical usage which target and inhibit the action of protein kinases45,47. Most protein 

kinase inhibitors are ATP-competitors therefore they prevent action of the kinase by 

targeting the ATP binding site and blocking the conversion of ATP to adenosine 
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diphosphate (ADP), preventing the release of the γ-phosphate group for the 

phosphorylation reaction. Once bound the inhibitor is surrounded by a hydrophobic 

pocket which inactivates the kinase molecule46,48,49.  

Kinases play important mediatory roles within signalling pathways including 

regulating the angiogenic pathway. Binding of VEGF to the extracellular domain of 

the tyrosine kinase receptors VEGFR1 and VEGFR2 causes auto-phosphorylation of 

the intracellular portion of the receptor50. Auto-phosphorylation of VEGFR2 activates 

the phospholipase C (PLC)- protein kinase C (PKC)- mitogen activated protein 

kinase (MAPK) pathway as well as stimulating other tyrosine and serine/threonine 

kinases which leads to an enhancement of endothelial migration and proliferation and 

promotes new blood vessel growth50,51. Since VEGF signalling is a mediator for the 

‘angiogenic switch’, the receptor tyrosine kinases have been targeted by therapeutic 

inhibitors to prevent tumour angiogenesis, for example sunitinib, sorafenib and 

pazopanib have all been approved as anti-angiogenic therapeutic agents for the 

treatment of kidney cancer51-54. Bevacizumab is a monoclonal antibody that targets 

VEGF to prevent VEGFR2 activation55.  

Another family of receptor tyrosine kinases are the platelet derived growth factor 

receptors α and β (PDGFR). PDGFR is activated through binding of the PDGF ligand 

causing an auto-phosphorylation event of the receptor, enhancing endothelial 

proliferation through binding to SH2 domain containing proteins from 10 different 

protein families50,56. Signalling via PDGFRβ induces VEGF transcription leading to 

activation of the angiogenic pathway, this response is stimulated in sarcomas57. 

Many therapeutic agents which target VEGFR are also known to target PDGFR; 

these include sorafenib, sunitinib, PKC412, SU666857-59. Additionally, PDGFR is 
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highly expressed by pericytes, therapies which block this receptor tyrosine kinase 

have been found to cause detachment of pericytes in tumour vasculature leading to 

vessel destabilisation and prevention of tumour growth45,60-62. Combined therapeutic 

strategies inhibiting both VEGF and PDGF signalling has been identified to further 

disrupt tumour angiogenesis compared with inhibition of VEGF alone62,63. 

Other important kinases which mediate and regulate the angiogenic pathway through 

the control of cellular migration, proliferation and differentiation, include the tyrosine 

kinase epidermal growth factor receptor (EGFR) and serine/threonine kinases 

including mitogen activated protein kinases (MAPK), myosin light chain kinase 

(MLCK), protein kinase A (PKA), protein kinase G (PKG) and protein kinase C 

(PKC)64-66. The different isoforms of PKC become activated through signalling of 

intracellular calcium ions, diacylglycerol (DAG) and phospholipids such as 

phosphatidylserine, this activation event causes PKC to modulate nuclear 

transcriptional events67. Furthermore, PKCα activation has been shown to induce 

VEGF signalling and promote angiogenic activity in endothelial cells68.  

1.3. Actin cytoskeleton organisation 

1.3.1.  Cytoskeleton overview 

The eukaryotic cytoskeleton is a highly dynamic complex network of proteins 

consisting of interconnecting filaments and molecular motors. The three primary 

polymeric filaments of the cytoskeleton are the microtubules, intermediate filaments 

and actin microfilaments, which act to maintain and support cellular integrity and 

organise the positioning of intracellular components69,70.  
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The microfilaments are the smallest of the three cytoskeletal components consisting 

of filamentous actin (F-actin) fibres with diameters approximately 5-7 nm, the actin 

cytoskeleton is highly organised within the endothelium and each fibre is structured 

as an asymmetrical double helix71. Vimentin and keratin are the predominant 

intermediate filaments expressed in endothelial cells, these filaments have diameters 

approximately 10 nm and act to support the structure and shape of the endothelial 

cells72-74. Microtubules are the largest cytoskeletal component with diameters 

approximately 25 nm, these filaments exist as hollow tubes generated from 13 

protofilaments assembled from heterodimers of α and β globular tubulin peptides73. 

The three primary cytoskeletal components self-assemble into an interconnected 

filamentous network associated with motor proteins in the endothelial cytoplasm, 

generating and distributing tensional forces which co-ordinate essential cellular 

processes of motility, trafficking organelles and vesicles and cell division73,75,76.  

1.3.2. Actin dynamics 

Polymerisation of F-actin fibres from globular actin (G-actin) monomers occurs in 

three stages, the polymerisation process begins from nucleation in which a stable 

trimer of G-actin monomers is produced, as shown in figure 1.4. The second stage is 

the elongation phase which causes rapid assembly of the actin filaments through the 

addition of G-actin monomers at the barbed or plus end of the fibre76. ATP bound in 

the centre of the G-actin monomers is hydrolysed to ADP upon attachment to the F-

actin fibre71. The third stage is known as the steady state phase in which actin 

filament treadmilling stably maintains the length of the F-actin fibres. In this stage, G-

actin monomers are added to the barbed end of the actin fibres at the same rate as  
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Figure 1.4 Filamentous actin polymerisation 

Three globular actin (G-actin) monomers combine to form a nucleus in nucleation, 
which activates the elongation process in which G-actin monomers bind together to 
form long fibres known as filamentous actin (F-actin), the elongation process extends 
the length of the fibre. Actin treadmilling maintains the lengths of the F-actin fibres, as 
G-actin assembles at the + end and G-actin monomers disassemble at the – end. 
Upon binding of the monomers, ATP is hydrolysed causing an increase in energy 
and G-monomer dissociate with ADP bound. 



20 
 

the release of the monomers at the pointed or negative end, generating a polarised 

actin fibre77. 

The rate of F-actin polymerisation and remodelling of the actin organisation is 

regulated through associations with actin binding proteins (ABPs). The ABP profilin 

promotes actin polymerisation by binding to monomeric actin and driving the 

exchange of ADP to ATP78. Conversely, the ABP cofilin promotes disassembly of G-

actin monomers at the pointed end of the fibre and remains bound to the monomers 

preventing further polymerisation reactions73,78. ABPs that promote F-actin assembly 

are known as nucleating proteins, of which actin related protein 2/3 complex (Arp2/3) 

is responsible for crosslinking F-actin fibres and branching fibres by 70o, whereas 

formin nucleates unbranched filaments76,79.  

In quiescent endothelial cells, the actin network is organised as a web of polymeric 

semi-flexible fibres crosslinked by Arp2/376,80. A cortical actin rim is situated below 

the plasma membrane with the ends of the F-actin fibres bound to vinculin, which is a 

member of large dynamic protein assemblies known as focal adhesion complexes at 

the cell periphery71,81,82. The focal adhesion complexes consist of transmembrane 

integrin receptors, which connect actin cytoskeleton with the surrounding 

extracellular matrix enabling the cell to adhere to a substrate81. Additionally, the actin 

cytoskeleton can be organised into actin bundles or stress fibres. These stress fibres 

exist as tightly packed polarised filaments which are activated by MLCK and 

generate contractile forces by associating with myosin II and α-actinin, to direct cell 

migration and proliferation71,82.  
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In response to a stimulant such as VEGF or basic fibroblast growth factor (bFGF), 

endothelial cells undergo directed cell migration which is reliant on remodelling the 

actin cytoskeleton. The Rho family of small GTPases including Rac1, RhoA and 

Cdc42 are critical regulators of facilitating actin rearrangement for motility83. Cdc42 

regulates filopodia formation through association with Wilsott– Adrich syndrome 

protein (WASP) and Arp2/315. Filopodia are long cytoplasmic projections on the 

leading edge of the cell which contain tight bundles of parallel F-actin fibres and 

many receptors to sense the local microenvironment for guidance cues15. Through 

activation by p-21 activated kinase (PAK), Rac1 co-ordinates lamellipodia formation 

which involves rapid polymerisation of actin and actin crosslinking by Arp 2/315.  

RhoA mediates the formation of actin stress fibres, whereby 10-30 F-actin fibres are 

linked by α-actinin, fascin, espin and filamin; via activation of Rho associated kinase 

(ROCK) to create thick bundles of actin81,84-86.  

Actomyosin contractility regulates cellular morphology and motility, therefore the 

efficient function of the actin cytoskeleton with continual turnover of signalling 

molecules and focal adhesion proteins is critical for endothelial cells to extend into 

tubular structures6,87. An increase in actomyosin contractility has been detected upon 

endothelial tubule formation in vitro88. This enhancement of actomyosin contractility is 

driven by an increase in myosin light chain (MLC) phosphorylation mediated by 

ROCK89. The increase in contractility is likely to ensure endothelial junctional integrity 

and reduce vascular permeability71. Vascular endothelial cells constantly experience 

shear stress in vivo which induces mechanosignal transduction pathways which in 

turn organises the cytoskeleton and ensures that actin stress fibres are arranged 

parallel to the direction of blood flow in areas of high shear stress90,91.  
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1.3.3. Visualising the actin cytoskeleton 

The organisation and function of the actin cytoskeleton can be studied in fixed or live 

endothelial cells using a variety of different approaches. Visualising the actin 

cytoskeleton often involves the use of fluorescently labelled phalloidin or actin 

specific antibodies, since these techniques can disrupt actin function by preventing 

depolymerisation of the F-actin fibres they are better suited and used to image the 

actin cytoskeleton in fixed cells73,92. Fluorescent conjugates of the toxin phalloidin are 

able to bind with high affinity to single F-actin fibres, enabling visualisation and 

quantitation of the amount of F-actin fibres present in the cells93.  

Visualising the actin organisation in live cells can be achieved by performing 

microinjection of fluorescently labelled actin or carrying out cellular transfections to 

introduce and express fluorescently labelled actin within cells. Using this approach of 

binding large globular fusion proteins directly to actin can adversely affect actin 

function through the interference and attachment of such large proteins to the 

fibres94. Alternatively, the lifeact peptide is able to bind to individual F-actin fibres 

without compromising the function of the actin cytoskeleton, the lifeact peptide is 

currently the smallest known peptide consisting of 17 amino acids that is able to bind 

to F-actin95. When the lifeact peptide is conjugated to fluorescent proteins and 

expressed in eukaryotic cells, the actin cytoskeleton can be visualised using 

fluorescent live cell microscopy techniques95. 
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1.4. Models of angiogenesis  

1.4.1. Overview 

During angiogenesis, endothelial cells must undergo invasion, migration, proliferation 

and differentiation to form three dimensional tubular structures which undergo 

lumenogenesis, whilst interacting with surrounding cells and extracellular matrix 

(ECM) components6. There are many in vitro, ex vivo and in vivo assays which model 

the different aspects of the angiogenic process, a combination of multiple assays are 

typically used to identify compounds that modulate angiogenesis. 

1.4.2. In vitro assays 

1.4.2.1. Cellular viability assays 

Cellular viability assays are used to evaluate the cytotoxic effects of compounds at 

selected concentrations. The assay assesses mitochondrial activity and although it 

produces a readout which should correlate with the number of viable cells, this assay 

can give erroneous results if cellular treatments being examined perturbs 

mitochondrial function. Cell viability assays often use tetrazolium salt reduction, 

resazurin reduction, protease markers, ATP detection or flow cytometry for 

identification purposes96.  

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay uses a 

metabolic tetrazolium salt reduction reaction to assess cell viability. The tetrazolium 

salt is cleaved by lactate dehydrogenase enzymes in mitochondria of viable cells and 

the formation of the formazan salt can be detected at 540 nm using 

spectrophotometry techniques97. Other tetrazolium salts can also be used in the MTT 

assay such as 3'-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-
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nitro)benzene-sulfonic acid hydrate (XTT), 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) or 4-[3-(4-

iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1)98-100.  

1.4.2.2. Cellular migration 

Upon angiogenic stimulation, endothelial cells undergo a migratory response by 

firstly degrading the surrounding ECM to allow for endothelial invasion into the 

perivascular region6. Several in vitro angiogenesis assays can be utilised to evaluate 

the migratory response induced by angiogenic factors, these include the Boyden 

chamber or transfilter assay, the teflon fence assay, phagokinetic track assay and the 

scratch wound assay101.  

In the scratch wound assay, a selected area of adhered endothelial cells is removed 

using a scraping tool from a confluent monolayer of cells. The cells at the edge of the 

scratch initiate directed migration to reform the monolayer due to stimulation from the 

release of cellular content from the damaged cells and the loss of cellular contact102. 

The rate of endothelial migration into the scratch area can be monitored using time 

lapse microscopy and imaging is usually performed using optical microscopy 

techniques such as phase contrast microscopy103. The rate of endothelial migration is 

determined by taking successive images of the same field of view usually over a 12 

hr time period and measuring the distance of cell migration into the scratch area 

using image analysis packages such as ImagePro Premier, Metamorph or 

ImageJ104,105. As well as determining the effect of compounds on the migratory 

response, this assay has been used to study the rearrangement of the cytoskeleton 

during migration as well as the role of specific genes and proteins including the Rho 

family GTPases103,106-109.  
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1.4.2.3. Endothelial sprouting 

The hanging drop spheroid angiogenesis assay is an in vitro angiogenesis assay that 

can be used to study endothelial invasion, migration and proliferation and is also 

commonly used to mimic tumour angiogenesis110-113. In this three dimensional assay, 

endothelial sprouts are rapidly produced as outgrowths from a multicellular 

endothelial mass known as a spheroid, once the spheroid has been embedded into 

an ECM component such as collagen. The end-point of the assay can be captured 

using optical light microscopy, which produces two dimensional images of a three 

dimensional spherical object. However, imaging the assay in this way can produce 

low contrast images of the endothelial sprouts due to light transmittance through the 

thin endothelial cells, contrasted by the densely packed multicellular spheroid which 

has greater light absorbance. Upon firstly reporting the protocol for this assay, Korff 

and Augustin recommended two approaches for analysing the spheroids; the first 

approach suggested was to measure the three longest endothelial sprouts for ten 

spheroids per experimental condition114. The second approach was to calculate a 

cumulative sprouting length by measuring the lengths of all sprouts per spheroid114. 

This particular analysis approach is currently widely used alongside the use of 

microscopy and image analysis software such as the DP-Soft Olympus imaging 

system to aid quantification of the endothelial sprouts115-118. An alternative approach 

for analysing the endothelial sprouting images includes determining the area 

occupied by the endothelial outgrowth119.  

Similar to ex vivo assays which require quantification of vessel outgrowths from the 

implanted or embedded tissue, endothelial sprouts can develop as tight clusters with 

multiple branching points connected to other sprouts, which can be challenging to 
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quantify manually. To overcome this problem, fluorescence labelling of cellular 

components such as the nuclei using Hoechst dye enable computer assisted 

quantification of the number of cells forming outgrowths120. To further enhance image 

contrast in the spheroid assay, fluorescent labelling of the endothelial cells can be 

performed to enable imaging using higher resolution fluorescence microscopy, 

Chung et al. used Calcein AM dye to specifically label viable cells green121.  

1.4.2.4. Matrigel tube formation assay 

Tubulogenesis assays represent the final stages of the angiogenic pathway involving 

cellular differentiation, morphological extension into tubular structures and 

lumenogenesis mimics the growth of smaller blood vessels such as the capillaries122-

124. Tube formation assays are dependent on the presence of ECM components 

surrounding the endothelial cells which promotes endothelial extension into three 

dimensional tubular structures125,126.  

Two dimensional tube formation assays involve plating endothelial cells directly on 

top of ECM components such as fibrin, collagen or onto matrigel which is the 

naturally derived basement membrane extract which is a protein rich mixture 

secreted by Engelbreth–Holm–Swarm (EHS) tumour cells127. Endothelial cells 

undergo attachment and rapidly differentiate to produce tubular networks within 3 hrs 

of being plated, the formation of tubules can be easily assessed for the lengths, 

number, junctions and end points using computerised software127-129. 

1.4.2.5. Co-culture tube formation assay 

The co-culture tube formation assay is another tube formation assay, first outlined by 

Bishop et al. in 1999 it involves culturing endothelial cells with connective stromal 
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cells of fibroblasts or smooth muscle cells for a period of 6 -14 days to stimulate the 

formation of three dimensional endothelial tubules that mimic capillary growth130. The 

endothelial cells are plated directly on top of the stromal cells which closely mimics 

the environment of in vivo endothelial cells, whereby the endothelial cells would be in 

contact with the blood or media and are able to interact with different cell types131. In 

the co-culture tube formation assay using fibroblasts, the fibroblasts secrete ECM 

components which act as a physical scaffold for the endothelial cells thereby 

influencing the development of tubular morphology132. Key ECM components 

secreted by fibroblasts include collagen I, IV, VI, fibronectin, tenascin-C and decorin, 

and endothelial cells use integrin mediated signalling to ensure stable adhesion and 

subsequent elongation into tubules, such as α1β3 integrin signalling to bind to 

collagen IV22,133. Importantly, the fibroblasts must also secrete pro-angiogenic factors 

such as VEGF to promote endothelial migration, fibroblasts secrete VEGF in 

response to being stimulated by bFGF which is supplied in the co-culture 

media134,135.  

Tubulogenesis assays have been used to study factors which influence and regulate 

the process of lumenogenesis. Lumen formation was firstly imaged in the co-culture 

tube formation assay in 1999 using transmission electron microscopy130. Since this 

time, in vitro endothelial lumenogenesis has been frequently studied using 

fluorescence microscopy, lumen formation can be identified within endothelial tubules 

formed via the co-culture tube formation assay by staining for the glycoprotein 

podocalyxin, a member of the CD34-sialomucins which localises to the apical cell 

surface within endothelial tubules undergoing lumenogenesis25,26. Signalling by the 

Rac1 guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 4 (DOCK4) 
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has been proven to be necessary for lumen formation through rearrangement of the 

endothelial cytoskeleton in tubules developed in the co-culture tube formation 

assay26. 

To visualise the formation of endothelial tubular networks, endothelial cells can be 

fluorescently labelled prior to use in the tube formation assay or visualised using 

immunofluorescence with specific antibodies which target endothelial cells136. 

Immunostaining can also be used to image tubular networks, the endothelial specific 

glycoprotein CD31 can be targeted with a primary antibody, followed by a secondary 

antibody conjugated to alkaline phosphatase. The addition of the alkaline 

phosphatase substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium 

(BCIP/NBT) enables visualisation of the endothelial tubules, which can be imaged 

with optical microscopy130. Specifically designed computer software packages such 

as AngioSys and Wimasis WimTube, which are both commercially available, can be 

used to analyse tubular network images. These analysis tools require high contrast 

images therefore post-processing image operations may be required to enhance 

visualisation of the tubular network against the image background. Post-processing 

operations can be performed using tools in the Image Processing Tool Kit in Adobe 

Photoshop CS2137. These image processing operations include binarisation to clearly 

identify the tubules in the image, removing image artefacts and noise pixels using 

Gaussian blurring, filling holes and enhancing the contrast and brightness of the 

image137. 

To analyse the tubular networks, AngioSys and Wimasis perform a series of 

processing operations on the tubular image to identify the numbers, lengths, tubular 

junctions and end-points. The main image processing operations include 
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thresholding which identifies the tubules within the image based on the pixel intensity 

values and skeletonisation which reduces all of the tubules to one pixel in diameter 

which can be rapidly analysed for the desired measurements. The analysis data 

generated by these two analysis tools can be saved as a CSV file which can be 

exported to Microsoft Excel for further quantification.  

Another tubular analysis tool is Leica QWin software, this software has been 

designed to process biological images and provide quantification. Guidolin et al. 

published a series of steps that could be performed using this software to analyse 

phase contrast tubular images, which included using an edge detection filter to 

identify the tubules, prior to thresholding and skeletonisation138. Another approach to 

analyse vascular images is to use plugins downloaded to the public domain Java-

based NIH ImageJ image processing program. The Angiogenesis Analyzer plugin 

can be used to analyse meshed cellular networks and can be applied to phase 

contrast tubular images as well as fluorescently labelled tubular images140. The 

plugin analyses the tubular network by skeletonising the network and the user can 

define the outputs for loops, nodes, branches and extremities, producing 

quantification on a wide number of image parameters139.  

1.4.3. In vivo models of angiogenesis 

1.4.3.1. Zebrafish overview 

Danio rerio, known as zebrafish are tropical freshwater teleost fish which during 

embryogenesis serve as an in vivo vertebrate model for studying angiogenesis. 

Zebrafish reproduce by external fertilisation, producing 100-200 transparent embryos 

per breeding pair140. At two days post-fertilisation (dpf) all internal organs of the 
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zebrafish have formed and at five dpf the larvae hatch and are able to swim to locate 

food, this rapid development and optical properties of the embryos lends itself to 

cardiovascular imaging, silencing genes and testing compounds that affect 

vasculogenesis and angiogenesis141-143. The zebrafish genome has been well 

characterised through the use of forward and reverse genetics which has identified 

vascular related genes with functional orthologues in humans; however, a whole 

genome duplication event occurred in the teleost lineage upon divergence from the 

telepod lineage, this caused gene redundancy which can be a limitation when 

studying this organism144.  

During embryogenesis oxygen diffuses into the developing zebrafish which allows 

the embryo to develop externally145. Passive diffusion of compounds from the 

surrounding embryonic media into the organism can be utilised to investigate the 

effects on vascular and embryonic development. Furthermore, embryonic gene 

expression can be easily modified through injection of phosphorodiamidate 

oligonucleotide morpholino oligomers (MOs) into the centre of the yolk at the one cell 

stage of development146. The MOs consist of around 25 nucleobases connected via 

a non-ionic phosphorodiamidate backbone with 6-membered methylenemorpholine 

rings147. Complementary base pairing of the morpholino bases to the targeted 

ribonucleic acid (RNA) prevents expression of the gene of interest147. There are two 

types of oligonucleotide morpholino that can be used to silence genes in zebrafish: 

those that target and block the process of protein translation by targeting the 5’ 

untranslated region (UTR) of messenger RNA (mRNA) which is situated upstream of 

the start codon thus preventing the ribosome from binding and producing the target 

protein148. The second type of oligonucleotide morpholino interferes with the splicing 
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process and prevents the spliceosome from binding to the target region; therefore 

MO injection causes steric blocking of the ribosome or spliceosome149. To determine 

the localisation of gene expression within zebrafish, in situ hybridisation can be 

performed on the organism as a whole150.  

1.4.3.2. The development of the vasculature in zebrafish 

The rapid embryonic development of zebrafish occurs in seven stages: zygote, 

cleavage, blastula, gastrula, segmentation, pharyngula and hatching151, the 

developmental processes that occur at each stage are outlined in table 1.1. The 

differentiation of blood cells occurs within the segmentation stage of development 

and the flow of blood is established in the later pharyngula stage151. During 

development, the multipotent haematopoietic stem cells migrate medially from the 

lateral mesoderm to form the intermediate cell mass (ICM), these cells differentiate 

into haematopoietic or endothelial cells during the formation of the yolk sac blood 

islands152,153. In situ hybridisation has shown that the expression of the ETS domain 

transcription factor friend leukemia integration 1 (fli1) initially overlaps GATA binding 

protein 2 (gata2) expression in the lateral mesoderm of zebrafish embryos, prior to 

divergence of the expression patterns, leading to fli1 specifically expressed in the 

developing vasculature and gata2 in regions of blood formation154. Investigation into 

the cloche zebrafish mutant revealed that the expression pattern of fli1 is one of the 

earliest genetic markers for angioblast production154. Fli1 gene expression is utilised 

in the transgenic Fli1:eGFPy1 (fli1-GFP) line of zebrafish generated by Lawson and 

Weinstein; these fish express EGFP throughout the vasculature endothelium 

enabling the development and growth of new blood vessels throughout 

embryogenesis to be easily visualised155. Other approaches to image the zebrafish  
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Table 1.1 Stages of embryonic zebrafish development  

Description of the embryonic developmental changes of zebrafish through each of 
the seven stages of development to adult fish, the table was adapted from Kimmel et 
al. (1995)151. 

 

Stage of 
embryonic 

development 
 

Time in hours 
post fertilisation 

(hpf) 

Description of development 

Zygote 
 
 
 

0 - 0.75 The fertilised egg completes the first zygotic 
cell cycle 

Cleavage 
 
 
 

0.75 – 2.15 2 – 7 cell divisions occur synchronously 

Blastula 
 
 
 

2.15 – 5.15 2 more metasynchronous rounds of cell 
division, midblastula transition, epiboly 
begins 

Gastrula 
 
 
 

5.15 – 10 Morphogenetic movements of involution, 
convergence and extension form the 
epiblast, hypoblast and embryonic axis 

Segmentation 
 
 
 

10 – 24 Development of somites, blood cells 
differentiate, pharyngeal arch primordia and 
neuromeres, organogenesis starts, tail 
forms 

Pharyngula 
 
 
 

24 – 48 Body axis straightens from its early 
curvature around the yolk sac, 
pigmentation, blood flow initiated, fins form 

Hatching 
 
 
 

48 - 72 Completion of primary organ systems, 
cartilage development in head, pectoral fin 
develops, hatching occurs 

Early larvae 
 
 
 

72 Inflation of swim bladder, food-seeking and 
active avoidance behaviour 
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vasculature include dye injection or alkaline phosphatase staining; however these 

techniques require fixation of the tissue therefore only a particular time point or end-

point of vascular development can be imaged133.   

The development of the zebrafish vasculature is initiated by angioblast migration to 

the embryonic midline from the lateral plate mesoderm, this gives rise to the first axial 

blood vessels of the zebrafish, the dorsal aorta (DA) and posterior cardinal vein 

(PCV)28,156. Angioblast differentiation into endothelial cells is co-ordinated initially by 

sonic hedgehog signalling, which induces VEGF signalling; this co-ordinated 

signalling promotes delta-like-4 (Dll4) expression in endothelial tip cells causing an 

initiation in endothelial spouting from the DA and promotes notch signalling in 

adjacent endothelial cells which decreases their sprouting behaviour155. 

VEGF and notch signalling tightly regulates the expression of ephrin B2 (EfnB2) in 

arterial angioblasts, whilst venous angioblasts express ephrin B4 (EfnB4) promoting 

ventral migration of these cells156. Repulsive signalling between EfnB2 and EfnB4 

controls the directional endothelial sprouting of these cells during the establishment 

of arterial and ventral vessels156. At approximately 17 hpf, the arterial and venous 

angioblasts differentiate into endothelial cells of arteries and veins and cellular 

junctions between the cells of these blood vessels are established, along with the 

presence of adherens junctions28. The first angiogenic vessels to form in the 

zebrafish are the ISVs at 24 hpf145. The formation of ISVs is stimulated by VEGFA 

signalling as activated endothelial cells sprout bilaterally from the DA; each tip cell 

extends filopodia to direct the vessel growth along the somite boundary and the stalk 

cells located behind the tip cell proliferate to extend the vessel length to 4-6 

endothelial cells per ISV29. As the ISVs approach the neural tube they separate into  
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Figure 1.5 The formation of the intersegmental blood vessels in zebrafish  

At 24 hpf, the endothelial cells begin to sprout from the dorsal aorta and the tip cells 
extend filopodia to undergo pathfinding to direct the growth of the intersegmental 
blood vessels (ISVs). At 30-40 hpf, the ISVs branch to form T junctions and VE-
cadherin becomes expresssed at the cellular junctions and lumen formation also 
begins at the ISVs. At 48 hpf, filopodia formation is inhibited and the dorsal 
longitudinal anastomatic vessel forms to connect the ISVs. There is continuous blood 
flow formation through complete lumenalisation in the ISVs. Figure was adapted from 
Leslie et al. (2007)160. 
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rostral and caudal branches and connect to form the dorsal longitudinal anastomotic 

vessel (DLAV), establishing the primary vessel network within the organism157, 

shown in figure 1.5. The mechanism of lumen formation in the ISVs has been widely 

debated18,29. At around 32 hpf, further angiogenic sprouting occurs from the PCV to 

produce the intersegmental veins and incorporate the lymphatic system, at 48 hpf a 

fully connected and elaborate vascular network is formed157-159.  

The relatively transparent nature of the zebrafish embryo offers great benefits from 

an imaging perspective when studying the zebrafish vascular system141. High image 

contrast can be achieved using the fli1-GFP zebrafish between the fluorescent 

endothelium and the surrounding tissues of the organism by treatment with1-phenyl 

2-thiourea (PTU), which can be added into media surrounding the embryos to 

prevent tyrosinase activity which would cause pigment formation from melanophores 

during melanogenesis161. 

1.4.3.3. Analysis of the zebrafish vasculature 

Fluorescence microscopy can be used to image the developing vascular system of 

fli1-GFP zebrafish and to assess vascular development the ISVs are frequently 

specifically targeted for analysis as these are the first angiogenic vessels to form145.  

Other real-time imaging methods used to study the vascular system include the use 

of laser polarised gases, which dissolve into the blood for magnetic resonance 

imaging and confocal microangiography, which are used in particular to study small 

vessels less than 100 µm in diameter162,163. 

A frequently used approach to analyse the ISVs is to manually classify the ISV 

growth into categories based on the appearance of vascular disruption, such as 
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‘mild’, ‘intermediate’ or ‘severe’ disruption164-167 or this assessment is alternatively 

represented by the number of ISVs that have connected or remain disconnected to 

the DLAV in the trunk and tail regions of the zebrafish168-177. As with other vascular 

images, semi-automated analysis methods using ImageJ or microscopy software 

such as the Nikon Imaging Software (NIS) Elements can be employed to aid the 

measurement calculations for the lengths of the ISVs178. 

As stated by Vogt et al. there is a lack of computer assisted analysis tools that can be 

applied directly to zebrafish vascular images and this often prevents this vertebrate 

model being used in high throughput screening studies179. This group created an 

automated image-based phenotypic analysis tool, whereby the ISVs of zebrafish can 

be quantified using Cognitive Network Technology when imaged using a high content 

reader179. A considerable advantage of this analysis method is its capability of 

analysing embryos in various orientations. Another computer based method reported 

by Tran et al. which analyses the ISVs involves implementing a quantitative 

screening approach using an interactive algorithm created using Discovery-

1/MetaMorph software and the MetaMorph Neurite Outgrowth application drop in; 

this method requires manual identification of the vessels of interest180. An alternative 

method to analyse endothelial cell sprouting from the DA includes the use of image 

registration methods to measure the incremental increase in the vessel lengths with 

time, this method focuses on the ability of the endothelial cells to initiate 

angiogenesis and therefore analysis of vessel connectivity is not required181,182.  In 

addition to providing quantitation, many of the analysis frameworks often give 

excellent visual representations of the vasculature such as representing the 

connecting vasculature as attributed vessel represent graphs (AVRG)183. 
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1.4.3.4. Genes studied using the zebrafish model 

In this project, a computational method was developed as an analysis tool to enable 

rapid quantification of the developed vasculature within zebrafish embryos. To test 

and evaluate the computational method, the analysis approach was applied to 

fluorescent zebrafish images which exhibited both normal and abnormal ISV 

formation. To achieve a range of vascular abnormalities the following genes were 

silenced at the one-cell stage during zebrafish embryogenesis by MO injection: C-

type lectin domain family 14, member A (CLEC14A), endothelial cell-specific 

chemotaxis regulator (ECSCR), epidermal growth factor, latrophilin and seven 

transmembrane domain-containing protein 1 on chromosome 1 (ELTD1), 

roundabout4 (ROBO4), vascular endothelial growth factor A (VEGF), regulator of 

calcineurin 1 (RCAN), ets-1 related protein (ETSRP) and ets related gene (ERG). 

1.4.3.4.1 Vascular endothelial growth factor A (VEGF) 

VEGF has been identified to be one of the most potent angiogenic factors and is 

fundamental throughout embryogenesis to generate a functional vascular system; the 

different VEGF isoforms generated by alternative splicing regulates blood vessel 

development through binding to the tyrosine kinase receptor VEGFR2 present on 

endothelial cell surfaces to induce migration and proliferation1,184-188. In mice, 

disruption of a single VEGF allele causes embryonic lethality between days 11-12188.   

1.4.3.4.2 C-type lectin domain family 14, member A (CLEC14A) 

CLEC14A is a tumour endothelial marker (TEM) that has been found to be expressed 

highly on tumour vasculature compared with normal tissue189; this C-type lectin was 

first identified as a TEM by Mura et al. in 2012. CLEC14A promotes and regulates 

angiogenesis by stimulating filopodia formation, endothelial migration and tube 
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formation189. Mura et al. showed that CLEC14A is initially expressed in the zebrafish 

at 12 hpf and it is specifically expressed within the DA, PCV and ISVs189.  

1.4.3.4.3 Endothelial cell-specific chemotaxis regulator (ECSCR) 

Vascular endothelial cells specifically express ECSCR as a cell surface glycosylated 

type I transmembrane protein, which regulates endothelial cell survival and 

chemotaxis190. Verma et al. showed by real-time polymerase chain reaction (PCR) 

that ecscr expression in zebrafish rapidly increases between 10 and 24 hpf, this 

correlates with the formation of the axial blood vessels and angioblast migration 

within the embryo166.  

1.4.3.4.4 Epidermal growth factor, latrophilin and seven 

transmembrane domain-containing protein 1 on chromosome 1 (ELTD1) 

ELTD1 is an orphan adhesion G-protein coupled receptor191. It has been reported by 

that ELTD1 is a regulator of angiogenesis which is upregulated within tumour 

endothelial cells and silencing the receptor in zebrafish embryos causes impaired 

vessel formation and sprouting191.  

1.4.3.4.5 Roundabout 4 (ROBO4) 

Roundabout (robo) receptors were initially identified as co-ordinators of axon 

guidance in neurons and repulsive signalling is mediated by the binding of slit protein 

ligands to the receptors192. De Smet et al. reported that ROBO4 expression is a 

requirement for the stabilisation of stalk cells during the angiogenic process15. 

ROBO4 is the predominant roundabout receptor that is expressed in the vasculature 

of zebrafish and it is expressed within angioblasts, in the DA, PCV and ISVs193. 

Bedell et al. showed that the injection of the ROBO4 targeted morpholino caused 
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misdirected and truncated ISVs and therefore concluded that ROBO4 was essential 

for directed sprouting of the ISVs193.  

1.4.3.4.6 Regulator of calcineurin 1 (RCAN) 

RCAN was identified by Fuentes et al. in 2000 using the yeast and mammalian two-

hybrid assays to be a binding protein of calcineurin 1, which is a calmodulin binding 

protein and a serine/threonine protein phosphatase194,195. Two RCAN isoforms exist; 

one has the inclusion of exon 1 (RCAN1.1) and the other exon 4 (RCAN1.4), the 

expression of RCAN1.4 is regulated by VEGF and has been shown to be important in 

regulating endothelial migration and upon knock down of RCAN1.4 endothelial cells 

become defective in undergoing tubular morphologies195-197.   

1.4.3.4.7 Ets-1 related protein (ETSRP) and ets related gene (ERG) 

Members of the ets transcription factor family play vital roles in embryonic 

development including vasculogenesis and angiogenesis, two of these transcription 

family members are ETSRP and ERG. ETSRP is firstly expressed at the two somite 

stage in zebrafish embryos correlating with the expression in angioblasts198. Erg is 

closely related and highly homologous to fli1 and zebrafish have only one gene 

responsible for the expression of ERG in the mesoderm during embryonic 

development168,199. Knocking down ETSRP has shown to cause defects in vascular 

development, whereas apparent normal vasculature was observed upon ERG 

silencing168,198. Interestingly, Ellett et al. reported a synergic functional interaction 

between ERG and ETSRP and therefore a double knock down to silence both ERG 

and ETSRP in zebrafish should reduce ISV development compared with silencing 

ETSRP alone168. 
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1.5. Imaging and analysing assays modelling angiogenesis 

1.5.1. Overview 

Imaging and analysis techniques are essential to our understanding of the molecular, 

cellular and functional processes within the angiogenic pathway. Being able to 

identify and assess factors such as the location, quantity, morphology and 

permeability of the vasculature, along with identifying the presence of specific 

vascular markers and determining the effect of compounds on angiogenesis, can 

only be evaluated upon the correct use of high resolution imaging modalities and 

appropriate analysis techniques. To analyse endothelial processes and 

vascularisation from in vitro, ex vivo and in vivo angiogenic images, quantification of 

endothelial migration, proliferation, sprouting or the global tubular network is usually 

assessed. 

1.5.2. Microscopy techniques 

1.5.2.1. Optical light microscopy 

An imaging modality widely used to study biological specimens is the transmitted or 

bright-field light microscope, which is able to image different types of samples due to 

the focussing ability of the long working distance objective lens200. In the brightfield 

imaging system, transillumination light is passed through a condenser lens to focus 

the light rays onto the specimen, light passes through the specimen to the objective 

lens and a magnified image is observed through an eye-piece or as a digital image 

via a charged couple device (CCD)201. This imaging set-up allows for fast image 

acquisition and different biological components within the specimen absorb varying 

amounts of light; this generates image contrast allowing visualisation of different 
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components within the specimen. A similar imaging system is used for phase 

contrast microscopy which produces an image dependent on the proportion of light 

interference from the biological specimen.  

Optical light microscopy techniques can allow for endothelial or vascular 

morphologies to be investigated however, thin biological specimens such as 

endothelial cells absorb only small amounts of light which generates low contrast 

images; this can produce undefined object boundaries within the image which can be 

problematic for analysis procedures. For accurate analysis, clear distinctions 

between the object of interest, background and other biological components are 

required; this is of particular importance for computer assisted analysis methods. In 

optical light microscopy this problem is coupled with low optical imaging resolution. 

Low resolution arises because there is overall illumination of the three dimensional 

specimen, therefore out of focus light contributes to image blurring. To reduce this 

problem, cells or proteins within the specimen can be labelled or stained to enhance 

the signal.  

1.5.2.2. Fluorescence microscopy 

Fluorescence microscopy is an optical microscopy technique and therefore the 

principle set up of image acquisition is similar to that of the brightfield imaging 

system, however the light source is selected at a specific wavelength to excite 

fluorophores from within the specimen known as the excitation wavelength. 

Fluorophores are chemical compounds that emit light upon excitation to higher 

energy states. Electrons from within the fluorophores are excited to higher energy 

states and upon their return to their original energy state release photons of light. The 

emitted light is distinguished from the original excitation light using a spectral  
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Figure 1.6 Imaging set-up of a confocal fluorescence microscope 

The light paths and imaging set-up of a confocal fluorescence microscope are 
shown, whereby the fluorophores from within the specimen are activated by the 
excitation light (blue) from the light source. Light emitted from the fluorophore from 
within the focal plane is refracted by the objective lens (red) and with use of the beam 
splitter is directed to the light detector. Whereas, light emitted from fluorophores 
outside of the focal plane (grey) do not contribute to the image as they are excluded 
by the aperture.  
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emission filter, which along with the dichroic mirror is specifically selected dependent 

on the fluorophore being imaged. To generate images of specimens containing 

multiple fluorophores, successive images for each fluorophore must be acquired and 

combined after image acquisition202,203. Fluorescence microscopy can be applied to 

fixed or live biological specimens and offers a higher signal-to-background ratio in 

comparison to brightfield microscopy204.Confocal fluorescence microscopy such as 

confocal laser scanning microscopy (CLSM) or confocal spinning disk microscopy 

(CSDM) offer significant imaging advantages over conventional epifluorescence 

microscopy, as the presence of an aperture excludes out-of-focus light which is 

emitted from fluorophores which are not present in the imaging focal plane, as shown 

in the confocal microscopy diagram in figure 1.6. Out-of-focus light can contribute to 

high background fluorescence resulting in a low image resolution; only light emitted 

from fluorophores from within the focal plane of the specimen is detected in confocal 

microscopy205,206. To further enhance imaging resolution, a series of single images 

from sequential focal planes can be captured at regular intervals along the z axis 

using confocal microscopy, known as optically sectioning the specimen. The images 

can be combined by compression to give a higher resolution maximum projection 

image of the specimen by improving the signal-to-noise ratio207,208. 

Fluorescence microscopy has proved to be a useful imaging tool for studying and 

understanding the molecular and functional aspects of angiogenesis. Using 

fluorescence microscopy techniques has enabled dynamic tracking of proteins and 

identification of protein and cellular interactions; use of fluorescent proteins has been 

widely used to study tumour angiogenesis and tumour progression by performing 

techniques such as expressing GFP in tumour vessels and RFP in tumour cells 
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permitting non-invasive whole body imaging in mice207-209. Fixing and staining 

angiogenic tissue samples using fluorescently tagged antibodies which target specific 

proteins is currently widely used in angiogenic research, as well as fluorescence 

vascular imaging making use of fluorescent imaging agents and carriers in vivo210-212.  

However, the limitations of using fluorescence microscopy to image the localisation 

of fluorophores include photobleaching which prevents the fluorophores producing a 

fluorescent signal as the electrons become permanently unable to be excited, this 

results in reduced spatial resolution in the acquired image213,214. Fluorophores can 

also exhibit spectral cross-talk between excitation and emission spectra215. Another 

limitation is specimen phototoxicity, when the electrons from within the fluorophores 

are excited they can participate in reactions involving molecular oxygen which 

produces reactive oxygen species (ROS); ROS adversely affects cell viability by 

damaging cellular proteins, lipids and nucleic acids216,217.  
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Chapter Two 

Materials and Methods  
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2.1 Reagents and equipment 

All reagents that were used in this PhD project were of analytical or molecular biology 

grade standard and if not stated otherwise the reagents were purchased from Sigma-

Aldrich. 

For general tissue culture, a CO2 humidified incubator (Sanyo) was used to maintain 

cell lines; it supplied a constant atmosphere of 5% CO2 at 37 oC. For storing and 

growing zebrafish embryos, a 100 l laboratory incubator was used at 28.5 oC 

(Genlab). 

The centrifuges that were commonly used were: for 1.5 ml eppendorf tubes: Heraeus 

Pico 17 Microcentrifuge (Thermo Scientific), maximum speed 17000 x g. For 15 ml – 

50 ml volumes: Heraeus Biofuge Primo (Thermo Scientific), maximum speed 2576 x 

g. 

The contents of solutions that were used are mentioned within the relevant methods 

sections. 
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2.2 Antibodies 

2.2.1 Primary antibodies 

Primary antibodies were used for either immunofluorescence (IF) or 

immunohistochemistry (IHC), the concentrations used are outlined in table 2.1.  

Table 2.1 Primary antibodies 

Antibody Code Company Concentration 

Mouse monoclonal anti-
human CD31 

JC70A 
Dako 
Cytomation 

1.29 µg/ml (IHC) 

Goat polyclonal anti-human 
Podocalyxin 

AF1658 R & D Systems 0.4 µg/ml (IF) 

Rabbit polyclonal anti-
human Collagen IV 

Ab6586 Abcam 0.4 µg/ml (IF) 

 

2.2.2 Secondary antibodies 

Secondary antibodies were used for either immunofluorescence (IF) or 

immunohistochemistry (IHC) and the concentrations used are outlined in table 2.2. 

 
Table 2.2 Secondary antibodies 

Antibody Code Company Concentration 

Alexafluor 488 polyclonal 
donkey anti-rabbit IgG 

A21206 Invitrogen 4 µg/ml (IF) 

Alexafluor 488 polyclonal 
goat anti-mouse IgG 

A11001 Invitrogen 4 µg/ml (IF) 

Alexafluor 594 polyclonal 
goat anti-rabbit IgG 

A11067 Invitrogen 4 µg/ml (IF) 

Alexafluor 594 polyclonal 
goat anti-mouse IgG 

A11020 Invitrogen 4 µg/ml (IF) 

Goat polyclonal Anti-mouse 
IgG conjugated to Alkaline 
Phosphatase 

A4656 Sigma 
Used at 1:500 
(IHC) 

Rhodamine Ulex Europeaus 
Agglutinin I (UEA I) 

RL-1062 
Vector 
Laboratories 

0.02 mg/ml (IF) 
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2.3 Plasmids 

To enable visualisation of endothelial cells or tagged proteins using confocal 

microscopy, human umbilical vein endothelial cells (HUVECs) were transduced with 

plasmids to express the fluorescent proteins GFP or RFP. The plasmids that were 

used are described in table 2.3.  

Table 2.3 Plasmids 

Plasmid Company Use 

psPAX2 Addgene 
 

Lentiviral packaging plasmid 

pMD2G Addgene 
 

Lentiviral envelope plasmid 

pWPI Addgene Lentiviral plasmid used to 
express EGFP to facilitate 
tracking of cells 

pWPXL Addgene Lentiviral plasmid used to 
express EGFP to facilitate 
tracking of cells 

pEGFP-N1-lifeact A gift from Dr. Steve 
Thomas, University of 
Birmingham, UK. 

Contained the lifeact 
sequence between the 
EcoR1 and Age1 restriction 
sites in the multiple cloning 
site (MCS) 

pWPXL-lifeact-RFP 
 

A gift from Prof. Maddy 
Parsons, Kings College 
London, UK. 

Transduced cells expressed 
lifeact-RFP for F-actin 
visualisation 

pWPXL-lifeact-GFP 
 

Produced by Victoria 
Salisbury, University of 
Birmingham, UK. 

Transduced cells expressed 
lifeact-GFP for F-actin 
visualisation 

 

2.4 Inhibitor compounds 

2.4.1 Kinase inhibitor compounds 

The screen-well kinase inhibitor library was supplied by Enzo Life Sciences, code: 

BML-2832, the library contained 80 different small molecule kinase inhibitor 

compounds described in table 2.4. The IC50 values for the compounds were 



49 
 

determined from a combination of supplier’s information and scientific literature, the 

concentration of inhibitors used in the angiogenesis assays were ten times the IC50 

values. 

Table 2.4 Kinase inhibitor compounds 

Compound Target IC50 value 

PD-98059 MEK 55 µM 
U-0126 MEK 70 nM 
SB-203580 P38 MAPK 500 nM 
H-7·2HCl PKA, PKG, MLCK, PKC 6 µM 
H-9·HCl PKA, PKG, MLCK, PKC 70 µM 
Staurosporine Pan-specific 0.88 nM 
AG-494 EGFR, PDGFR 700 nM 
AG-825 HER1-2 350 nM 
Lavendustin A EGFR 11 nM 
RG-1462 EGFR 3 µM 
TYRPHOSTIN 23 EGFR 35 µM 
TYRPHOSTIN 25 EGFR 3 µM 
TYRPHOSTIN 46 EGFR 10 µM 
TYRPHOSTIN 47 EGFR 2.4 µM 
TYRPHOSTIN 51 EGFR 800 nM 
TYRPHOSTIN 1 Negative control 35 µM 
TYRPHOSTIN AG 1288 Tyrosine kinases 21 µM 
TYRPHOSTIN AG 1478 EGFR 3 nM 
TYRPHOSTIN AG 1295 Tyrosine kinases 2.5 µM 
TYRPHOSTIN 9 PDGFR 500 nM 
Hydroxy-2-
naphthalenylmethylphosphon
ic acid (Methylphosphonic 
acid) 

IRK 100 µM 

PKC-412 PKC 50 nM 
Piceatannol Syk 10 µM 
PP1 Src family 170 nM 
AG-490 JAK-2 5 µM 
AG-126 IRAK 50 µM 
AG-370 PDGFR 20 µM 
AG-879 NGFR 40 µM 
LY 294002 PI3-K 1.4 µM 
Wortmannin PI3-K 40 nM 
GF 109203X PKC 20 nM 
Hypericin PKC 3.3 µM 
Ro 31-8220 mesylate PKC 27 nM 
D-erythro-Sphingosine PKC 3 µM 
H-89·2HCl PKA 135 nM 
H-8 PKA, PKG 1.2 µM 
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HA-1004·2HCl PKA, PKG 170 µM 
HA-1077·2HCl PKA, PKG 10.7 µM 
2-Hydroxy-5-(2,5-
dihydroxybenzylamino)benzo
ic acid (Benzoic acid) 

EGFR, CaMK II 200 nM 

KN-62 caMK II 900 nM 
KN-93 caMK II 370 nM 
ML-7·HCl MLCK 700 nM 
ML-9·HCl MLCK 10 µM 
2-Aminopurine P58 PITSLRE β1 341.6 µM 
N9-isopropyl-olomoucine CDK 3 µM 
Olomoucine CDK 3 µM 
Iso-olomoucine Negative control 3 µM 
Roscovitine CDK 700 nM 

5-Iodotubericidin 
ERK2, CK1, CK2 Adenosine 
kinase 

10.9 µM 

LFM-A13 BTK 2.5 µM 
SB-202190 P38 MAPK 30 nM 
PP2 Src family 100 nM 
ZM 336372 cRAF 70 nM 
SU 4312 Flk1 800 nM 
AG-1296 PDGFR 400 nM 
GW 5074 cRAF 9 nM 
Palmitoyl-DL-carnitine PKC 12.59 µM 
Rottlerin PKC delta 100 µM 
Genistein Tyrosine kinases 12 µM 
Daidzein Negative control 12 µM 
Erbstatin analog EGFR 770 nM 
Quercetin·2H2O PI3-K 3.8 µM 
SU1498 Flk1 700 nM 
ZM 449829 JAK-3 20 µM 
BAY 11-7082 IKK pathway 10 µM 
5,6-dichloro-1-β-D-
ribofuranosylbenzimidazole 
(Ribofuranosylbenzimidazole) 

CK 2 10 µM 

2,2',3,3',4,4'-Hexahydroxy-
1,1'-biphenyl-6,6'-dimethanol 
dimethyl ether (Dimethyl 
ether) 

PKC alpha, gamma 50 µM 

SP 600125 JNK 90 nM 
Indirubin GSK-3 beta, CDK5 5 µM 
Indirubin-3'-monooxime GSK-3 beta 190 nM 
Y-27632·2HCl ROCK 3.55 µM 
Kenpaullone GSK-3 beta 230 nM 
Terreic acid BTK 10 µM 
Triciribine Akt pathway 130 nM 
BML-257 Akt 27 µM 
SC-514 IKK2 12 µM 
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BML-259 Cdk5 64 nM 
Apigenin CK-II 30 µM 
BML-265 EGFR 28.8 nM 
Rapamycin mTOR 0.1 nM 
 

2.4.2  Other inhibitor compounds 

All other inhibitor compounds that were used in the assays that model angiogenesis 

are described in table 2.5, along with the inhibitor concentrations that were used. 

Table 2.5 Other inhibitor compounds 

Compound Target Concentration Company 

PF-3758309 

 
P-21 activated 
kinase (PAK) 

1.25 - 5 µM Bioquote Ltd 

IPA-3 P-21 activated 
kinase (PAK) 

2.5 - 10 µM Tocris Bioscience 

Ibrutinib Bruton’s tyrosine 
kinase (BTK) 

5.0 nM - 15 µM 
Stratech Scientific 
Ltd 

AVL-292 

 
Bruton’s tyrosine 
kinase (BTK) 

50 nM 
Stratech Scientific 
Ltd 

Sunitinib Receptor tyrosine 
kinases 

0.1 – 1.0 µM 

Supplied by Dr. Mike 
Cross at the 
University of 
Liverpool, UK. 

 

2.5 Morpholino oligonucleotides 

All morpholino oligonucleotides (MOs) were purchased from Gene Tools. The RNA 

antisense morpholino oligonucleotide sequences were designed to block sites either 

involved in splicing pre-mRNA or by sterically preventing the binding of the 

translation initiation complex. All morpholino oligonucleotide sequences are listed in 

table 2.6. 
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Table 2.6 Zebrafish morpholino oligonucleotide sequences 

Morpholino Oligonucleotide Morpholino Oligonucleotide Sequence from 5’ – 3’ 

VEGFA Morpholino GTATCAAATAAACAACCAAGTTCAT 
VEGFA Mismatch GTAACAATTAAACAACCATGTTGAT 
ROBO4 Morpholino TTTTTTAGCGTACCTATGAGCAGTT 
ROBO4 Mismatch TTTTTTACCCTACGTATGACCACTT 
ECSCR UTR Morpholino GCGTAAGTCCAAATGACGTTCAATC 
ECSCR UTR Mismatch GGCAAACTCGAAATCACCTTCAATC 
ECSCR Splice Morpholino CATCAGTAGAAAACCTACCAAAGGC 
ECSCR Splice Mismatch CATGACTACAAAACCTACGAAACGC 
CLEC14 Morpholino ACCATCAGAAATCCATGTCTGCTC 
CLEC14 Mismatch CCTCTTACCTCAGTTACAATTTATA 
ELTD1 Morpholino CATTGGAGAACTGTGTAAAAACTCC 
ELTD1 Mismatch CATTGCACAACTGTCTAAATAGTCC 
ERG Morpholino CAGACGCCGTCATCTGCACGCTCAG 
ETSRP Morpholino TTGGTACATTTCCATATCTTAAAGT 
ETSRP Mismatch CAGTGAGACCTTAATTCAGTATAAC 
RCAN Morpholino ACTTCATTGTTTTCAGGTGCATGAC 
RCAN Mismatch ACATGATTCTTTTGAGCTGCATGAC 

 

2.6 Cell biology 

2.6.1 Mammalian cell culture 

HUVECs were isolated from umbilical veins of umbilical cords supplied by the tissue 

bank of the Human Biomaterials Resource Centre at the University of Birmingham. 

HUVECs were cultured in complete M199 (cM199) medium which was M199 media 

supplemented with 10% (v/v) foetal calf serum (FCS) (PAA Cell Culture Co.), bovine 

brain extract, 90 µg/ml heparin, 4 mM L-Glutamine, 100 units/ml penicillin and 

streptomycin (Invitrogen). HUVECs were cultured in cM199 media with the addition of 

antibiotics unless HUVECs were used for siRNA-mediated knock down of genes in 

which case HUVECs were cultured in cM199 media without antibiotics. 
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Human embryonic kidney 293T cells (HEK293Ts) and human dermal fibroblasts 

(HDFs) (PromoCell) were cultured in complete Dulbecco’s Modified Eagle’s Medium 

(cDMEM) which was DMEM supplemented with 10% (v/v) FCS (PAA Cell Culture 

Co.), 4 mM L-Glutamine and 100 units/ml penicillin and streptomycin (Invitrogen). All 

mammalian cell media was filtered using 0.22 µm pore filter units (Millipore) and 

stored at 4 oC. Prior to use all mammalian cell media was pre-warmed to 37 oC for 20 

mins in a water bath. 

 

Mammalian cells were cultured using plastic plates (Falcon) and incubated at 37 oC 

in a humidified 5% (v/v) CO2 atmosphere to allow cell proliferation. For plating and 

growing HUVECs, plates were pre-coated with 0.1% (w/v) gelatin in phosphate 

buffered solution (PBS) for 20 mins at 37 oC. For washing mammalian cells, 1x PBS 

solution was made from diluting 10x Dulbecco’s PBS (Life Technologies) with 

distilled water (dH20), which was autoclaved and stored at room temperature. PBS 

was made up to contain 140 mM NaCl, 10 mM Na2PO4, 2.7 mM KCl, 1.76 mM 

KH2PO4 at pH 7.4. 

2.6.2  Passaging and counting cells 

For cell detachment, cultured cells were washed 3 times with PBS before being 

trypsinised with 0.1% (w/v) trypsin-EDTA (Life Technologies) in PBS solution. 6 ml 

media was added to a 10 cm plate for cell collection as the presence of FCS in the 

culture media inhibited trypsin activity. The cell solution was centrifuged at 195 x g for 

5 mins and the cell pellet was re-suspended in media. HUVECs and HDFs were 

passaged 1:3 once a week and HEK293Ts 1:10 twice a week onto 10 cm plates. To 
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count cells, 10 µl cell suspensions were added to a haemocytometer counting 

chamber (Neubauer).  

2.6.3 Storing cells 

For storing cells, cell pellets were resuspended in 10% (v/v) dimethyl sulfoxide 

(DMSO) and 90% (v/v) FCS and the cell solution was gradually frozen to -80 oC. 

Cells were then transferred to liquid nitrogen storage. 

2.6.4 Fluorescently labelling mammalian cells 

2.6.4.1 Fluorescently labelling cells with cytoplasmic dyes 

To provide high resolution images of endothelial tubulogenesis and sprouting, 

endothelial cells were fluorescently labelled with cytoplasmic dyes such as 

CellTracker dyes (Invitrogen) or carboxyfluorescein succinimidyl ester (CFSE) (Life 

Technologies). Alternatively HUVECs were transduced to express a fluorescent 

protein such as GFP or RFP. 

 

CFSE was stored as a 10 mM stock solution in DMSO, dilutions were made in PBS 

and cells were labelled at a final concentration of 5 µM. Harvested HUVECs were 

incubated for 10 mins at 37 oC with the CFSE labelling solution. Two washing steps 

were performed using 5 ml of cM199 and centrifugation at 195 x g for 5 mins. Finally 

the labelled cells were re-suspended in 1 ml cM199. Similarly, HUVECs were labelled 

with CellTracker dyes using a final concentration of 10 µM in PBS and incubated for 

30 mins at 37 oC.  
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2.6.4.2 Lentiviral transduction of HUVECs 

HEK293Ts were used as lentiviral producer cells to produce HUVECs that expressed 

GFP. Lentivirus was produced as follows, 3 x 106 HEK293T cells were plated onto a 

10 cm plate 24 hrs prior to polyethylenimine (PEI) transfection using lentiviral 

plasmids: 3.3 µg psPAX2 (packaging vector), 1.3 µg pMD2G (envelope vector) and 

4.4  µg pWPI or pWPXL (transfer vector) carrying the GFP gene of interest 

(Addgene). The 9 µg plasmid DNA and 36 µl 1 mg/ml PEI was added into 1 ml 

OptiMEM and mixed by low speed vortexing. The transfection media was incubated 

for 10 mins at room temperature before addition drop-wise into the culture media of a 

confluent 10 cm plate of HUVECs. The transfected HEK293T plate was incubated at 

37 oC for 48 hrs then the lentiviral media was collected. 

 

To transduce HUVECs to generate GFP expressing cells, the collected lentiviral 

media was centrifuged at 195 x g for 5 mins and filtered with a 0.45 µm2 pore syringe 

filter (Corning). 90 µg/ml heparin, bovine brain extract and 8 µg/ml polybrene was 

added to the lentiviral media before being added to 1 x 106 seeded HUVECs. The 

lentiviral media remained on the HUVECs for 24 hrs at 37 oC before the media was 

replaced with fresh cM199. 

2.6.5 Fluorescence activated cell scanning (FACS) 

To determine whether cells were fluorescently labelled, a Becton Dickinson 

FACSCalibrature and Becton Dickinson CellQuest Pro software was used to 

measure and analyse the intensity of the fluorescence emission from cells. 

Approximately 3 x 105 cells were placed in 1 ml cell culture media and kept on ice 

prior to analysis.  
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2.6.6 Immunofluorescence 

To study the localisation of endothelial proteins in adhered HUVECs compared with 

the localisation in endothelial tubules, HUVECs were either plated directly onto sterile 

coverslips to form a confluent monolayer or were co-cultured on the coverslips with 

HDFs in the co-culture tube formation assay, as described in section 2.7.1.  

To prepare the coverslips, each coverslip was placed into 1 M HCl for 10 mins on a 

rotating falcon tube holder, rinsed 5 times with ddH20 before being stored in 70% 

(v/v) ethanol. The coverslips were washed 10 times with PBS before seeding cells 

onto them. Pre-coated gelatin coverslips were used for the culture and 

immunofluorescence of HUVECs.  

To fix and stain proteins within endothelial cells, the media from the cultured cells 

was removed using an aspirator, washed 3 times with PBS and fixed for 10 mins 

using 4% (w/v) paraformaldehyde (PFA) in PBS at room temperature. The cells were 

washed 3 times using PBS, neutralised for 10 mins with 50 mM ammonium chloride. 

The cells were washed 3 times with PBS then permeabilised with 0.1% (v/v) triton 

x100 in PBS for 4 mins, then washed again 3 times with PBS. Blocking buffer 

containing 10% (v/v) foetal calf serum (FCS), 3% (w/v) bovine serum albumin (BSA), 

0.1% (v/v) Tween-20, 0.01% (w/v) NaN3 was added to the cells for 1 hr at room 

temperature. The cells were incubated with 50 µl primary antibody in blocking buffer 

for 30-60 mins by manually removing the coverslips from the plates using tweezers. 

The droplets of primary antibody-blocking buffer were pipetted onto parafilm before 

the coverslip was placed onto the droplet. The coverslips were washed 3 times with 

PBS before the cells were incubated with 50 µl secondary antibody in blocking buffer 

solution for 30-60 mins at room temperature. As a marker for endothelial cells, 
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rhodamine labelled Ulex (Vector Laboratories) was added in addition to the 

secondary antibody in blocking buffer.  

The cells were then washed 3 times with PBS and once with dH20 before being 

mounted onto glass slides using 5.5 µl ProLong Gold Antifade reagent with DAPI 

(Invitrogen) or Vectashield mounting medium with or without DAPI (Vector 

Laboratories).  The glass slides were placed in darkness overnight and the coverslip 

was secured in place the following morning with clear nail vanish. Mounted coverslips 

were stored at -20 oC. To study the localisation of endothelial proteins, a Zeiss 780 

Zen confocal microscope was used. 

2.6.6.1 Co-culture staining of podocalyxin and collagen IV 

Apical and basal cell surface markers podocalyxin and collagen IV were stained to 

investigate lumen formation in endothelial tubules formed using the co-culture tube 

formation assay. Cells were plated and cultured on coverslips in wells of a 24 well 

plate. The co-culture media was removed from the wells and washed 3 times with 

PBS, the cells were then fixed using 4% (w/v) PFA in PBS at room temperature for 

20 mins. The cells were permeabilised with 0.1% (v/v) triton x100 in PBS for 20 mins. 

The cells were then blocked with 0.5% (w/v) BSA in PBS for 20 mins at room 

temperature. 200 µl of primary antibody solution of podocalyxin and/or collagen IV in 

blocking buffer was added to the cells and incubated at 4 oC overnight. The following 

morning, the wells were washed 3 times with PBS, each wash lasted 5 mins. The 

secondary antibodies in blocking buffer were added to the cells and incubated for 1 

hr at room temperature. Any unbound antibody was removed by 3 washing steps 

using PBS, before the cells were mounted onto glass slides as described in section 
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2.6.6. The stained endothelial tubules were imaged using a Zeiss 780 Zen confocal 

microscope. 

2.7 Endothelial assays 

2.7.1 Co-culture tube formation assay 

The tube formation assay is an organotypic assay that enables visualisation of the 

endothelial morphological differentiation stages in angiogenesis. The tube formation 

assay can provide information on the stages of cell migration and proliferation and 

allows for assessment of the ability of endothelial cells to develop into three 

dimensional tubules which mimic the appearance of small blood vessels. The 

development of tubules in the co-culture tube formation assay relies on the secretion 

of extracellular matrix (ECM) components by fibroblasts; endothelial cells use the 

matrix as a scaffold to support cellular extension and expansion into tubules125,126.  

To image endothelial tubule growth using confocal microscopy, 6.9 x 104 HDFs were 

plated onto matTek dishes (MatTek Corporation) in cDMEM and incubated at 37 oC 

for 5 days to allow secretion of ECM from the HDFs. Fresh cDMEM media was 

replaced on the fourth day of culture. 6.9 x 104 fluorescently labelled HUVECs in 

cM199 were plated directly on top of HDFs and the media was replaced every other 

day, as outlined in figure 2.1.To perform live-cell imaging of endothelial tubules, the 

co-culture media was removed immediately before imaging and replaced with 

imaging media which contained DMEM that lacked phenol red, supplemented with 

10% (v/v) FCS, 90 µg/ml heparin, 4 mM L-Glutamine, 100 units/ml penicillin and 

streptomycin and bovine brain extract. Endothelial tubules were imaged on a Nikon 

A1R inverted confocal microscope and a Zeiss 780 Zen confocal microscope. 
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Figure 2.1 Procedure for the co-culture tube formation assay 

A) Step-by-step procedure of the co-culture tube formation assay involving the co-
culture of endothelial cells (HUVECs) on top of human dermal fibroblasts (HDFs) to 
form endothelial tubules, B) Schematic diagram of the co-culture tube formation 
assay. Fluorescently labelled endothelial cells are plated directly on top of cultured 
fibroblasts, co-culture stimulates the extension of the endothelial cells into three 
dimensional tubules. Confocal microscopy can be used to visualise the fluorescent 
endothelial tubular network.  

Co-culture tube formation assay procedure: 

Day 1: Plate and culture human dermal fibroblasts (HDFs) 

Day 3: Grow endothelial cells (HUVECs) 

Day 4: Feed HDFs by refreshing cDMEM media 

Day 5: Plate HUVECs directly on top of HDFs 

Day 7: Feed co-culture by refreshing cM199 media 

Day 9: Feed co-culture by refreshing cM199 media 

Day 11: Feed co-culture by refreshing cM199 media 

End point: Fix and stain endothelial tubules or perform live-cellular imaging 

A 

B 



60 
 

The cells were kept on a heated stage at 37 oC throughout imaging and the cell 

media was replaced with cM199 after imaging to continue to culture the cells. 

2.7.1.1 Histological staining of endothelial cells 

Histologically staining endothelial cells was performed to image the extensive 

network of tubules formed in the co-culture tube formation assay and to analyse 

tubule growth and branching. The protocol for co-culturing HUVEC and HDFs to 

develop tubules was performed as described in section 2.7.1 using a 12-well plate 

and 3 x 104 cell densities. After 6 days of co-culture with replacement of media every 

other day, the cells were washed once with 1 ml PBS and fixed for 30 mins with 70% 

(v/v) ethanol cooled to -20 oC. The wells were then washed twice with 1 ml PBS and 

incubated with 400 µl 1.29 µg/ml mouse monoclonal Anti-human CD31 primary 

antibody (Dako) in 1% (w/v) BSA-PBS for 1 hr at 37 oC. Unbound primary antibody 

was removed by washing 3 times with 1 ml PBS. The cells were then incubated for 1 

hr at 37 oC with 400 µl secondary antibody goat polyclonal Anti-mouse IgG 

conjugated to alkaline phosphatase diluted 1:500 in 1% (w/v) BSA in PBS. Cells were 

washed twice with 1 ml PBS and 3 times with 1 ml dH20 before adding 500 µl alkaline 

phosphatase substrate SigmaFAST 5-bromo-4-chloro-3-indolyl phosphate/ nitro blue 

tetrazolium (BCIP/NBT). The SigmaFAST BCIP/NBT had been dissolved in 10 ml 

dH20, the substrate remained on cells for 25 mins at room temperature. The 

phosphatase reaction was stopped by washing with dH20 and the wells were left to 

dry in darkness overnight at room temperature. A Leica MZ16 optical microscope 

was used to image the histological stained endothelial cells.   
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2.7.2 Matrigel tube formation assay 

Natural basement membrane extract matrigel (VWR International) was thawed on ice 

and used immediately once thawed. Prior to the addition of 70 µl of 10 mg/ml 

matrigel to each well of a 12-well plate (Falcon), each well was rinsed with PBS; the 

plate was then incubated at 37 oC for 30 mins to allow the matrigel to solidify. 1.4 x 

105 HUVECs in cM199 medium containing inhibitors if required were plated into each 

well, on top of the solidified matrigel. The plate was incubated at 37 oC, 5% CO2 

atmosphere for 12 hrs to allow endothelial tubular networks to form.  

Images of the tubules were captured using the IncuCyte Imaging system (Essen 

BioScience) 12 hrs after the cells were plated. Four images per condition were 

captured and analysed. The ImageJ plugin Angiogenesis Analyzer was used to 

analyse the tubular images and the mean number of meshes was measured.  

2.7.3  Scratch wound assay 

6 x 103 HUVECs were plated in wells of a 96-well plate, which had been pre-coated 

with gelatin two days prior to scratching.  The cells were maintained at 37 oC in a 5% 

CO2 atmosphere. A scratch in the monolayer of cells was made using the IncuCyte 

scratcher, to remove debris the cells were washed once with PBS. To screen the 

effect of different kinase inhibitors on cell migration, the kinase inhibitors were added 

to the cells in a total volume of 100 µl in cM199. To monitor cell migration, images 

were captured by the IncuCyte Imaging system (Essen BioScience) immediately, 6 

hrs and 12 hrs after the scratch was made. Analysis of scratch wound closure was 

calculated by the IncuCtye software and checked manually. 
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2.7.4 Hanging drop spheroid angiogenesis assay 

Cultured HUVECs were trypsinised and counted as described in section 2.6.2, if 

required the HUVECs were also fluorescently labelled with CFSE as described in 

section 2.6.4.1. Spheroids were formed from 1000 cells and 60 spheroids were 

generated per condition. HUVECs were resuspended in 20% (w/v) methylcellulose 

stock solution in cM199 at 5 x 104 cells/ml. 20 µl of cell solution was pipetted into 

wells of a Nunc 60-well microplate and inverted overnight at 37 oC, 5% CO2 

atmosphere to generate spheroid masses via the hanging drop method, the 

schematic diagram for the assay is shown in figure 2.2. After 24 hrs the spheroids 

were embedded in a collagen matrix, by firstly making a solution of 3.35 mg/ml type I 

collagen from rat tail diluted in 10x DMEM in dH20. 10 µl 5 N sodium hydroxide was 

added to the solution before mixing with a second solution containing 1.2% (w/v) 

methylcellulose solution in cM199.  

The spheroids were collected from the microplate and centrifuged at 195 x g for 5 

mins. The spheroid pellet containing 60 spheroids was resuspended in 200 µl 

collagen solution, which was transferred into a well of a 24-well plate. The cells were 

incubated at 37 oC, 5% CO2 atmosphere for 10 mins before 100 µl cM199 was added 

on top of each well of embedded spheroids. If required, inhibitors were added into the 

100 µl culture media. The plate was placed at 37 oC, 5% CO2 atmosphere for 16 hrs 

before fixing and imaging on a Zeiss 780 Zen confocal microscope or a Leica MZ16 

optical microscope.  

For studying endothelial sprouting, time-course imaging of the spheroids was 

performed using the CellIQ System which captured fluorescence and phase contrast 

images every hour for the duration of 27 hrs. 
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Figure 2.2 Schematic diagram of the hanging drop spheroid angiogenesis 
assay 

1) Suspend HUVECs in cM199 media containing 20% (w/v) methylcellulose and 
pipette 20 µl droplets into a 60-well microplate and invert overnight, 2) at the base of 
the droplet a multicellular spheroid mass forms over the course of 24 hrs, 3) embed 
multiple spheroids in an extracellular matrix of collagen and add cM199 media to the 
embedded spheroids, 4) the spheroids rapidly undergo endothelial sprouting. 

Suspend HUVECs in 20% 
(w/v) methylcellulose 

solution 

 

Create spheroid 
masses using hanging 

drops 

Embed spheroids in an  
ECM component and add cM199 media 

Spheroids produce endothelial sprouts 
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2.7.4.1 Fixing and mounting endothelial spheroids 

Culture media was removed from the wells of embedded spheroids and the 

spheroids were washed 3 times with PBS before 4% (w/v) PFA was added for 30 

mins at room temperature for fixation. The PFA was removed and the embedded 

spheroids were washed 3 times with PBS before curved forceps were used to 

remove the embedded spheroids from the well and were mounted onto a glass slide. 

8-10 µl vectashield mounting medium with DAPI (Vector Laboratories) was added 

before a coverslip was placed over the spheroids and left to set. Imaging of the 

spheroids was carried out using a Zeiss 780 Zen confocal microscope.  

2.7.5  Cell viability assay 

The WST-1 cell proliferation kit (Cayman Chemical) was used to assess the cytotoxic 

effects of inhibitor concentrations on HUVECs. Mitochondrial dehydrogenases of 

viable cells were able to cleave the tetrazolium salt WST-1 to formazan, which was 

detected by measuring the absorbance of light at 450 nm.  

6 x 103 HUVECs were plated in wells of a 96-well plate which had been pre-coated 

with gelatin, inhibitors in cM199 were added to cells in a total volume of 100 µl. Two 

controls were used; control wells either contained 100 µl cM199 without cells or 100 

µl DMSO in cM199 with cells. The 96-well plate was incubated at 37 oC, 5% CO2 

atmosphere for 24 hrs then 10 µl WST-1 was added to each well, excluding the 

media only control wells. The plate was placed onto an orbital shaker for 1 min 

before incubation for 2 hrs at 37 oC. The light absorbance of each well was measured 

at 450 nm by a microcell reader. Four repeats were performed for each inhibitor 

compound and a mean absorbance value was calculated. 
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2.8 Microbiology and cloning 

2.8.1  Cloning procedure 

All cloning reagents of restriction enzymes and their corresponding buffers were 

purchased from New England Biolabs (NEB).  

The lifeact-GFP sequence from the pEGFP-N1 plasmid was inserted into the 

lentiviral pWPXL plasmid; the cloning procedure which was performed is outlined in 

figure 2.3. The lifeact-GFP sequence was amplified from the pEGFP-N1-lifeact 

plasmid using the VS1 forward primer with the sequence 5’-TAGTAGGTTTAAAC 

ACCATGGGCGGTGTCGCAGATTTGATCAAG-3’ and VS2 reverse primer with the 

sequence 5’-CTACTACCCGGGTTATGATCTAGAGTCGCGGCC-3’ to add in the 

SmaI and PmeI restriction enzyme sites to enable both the pWPXL plasmid and the 

lifeact-GFP sequence to be cut using the same restriction enzymes. The amplified 

DNA was then cut with SmaI and PmeI (NEB) and the linearised plasmid and insert 

were purified from gel electrophoresis using the GeneJET Gel Extraction Kit 

(Fermentas). Ligations were set up with a 1:3 ratio of pWPXL:lifeact-GFP insert using 

T4 ligase (NEB). α-select gold chemically competent E.coli were transformed with the 

pWPXL-lifeact-GFP plasmid and the bacterial colonies were expanded in LB broth 

containing 0.1 mg/ml ampicillin. The plasmid was purified from bacterial culture using 

the GeneJET plasmid miniprep kit (Fermentas) and the Qiagen plasmid maxi kit 

(Qiagen). All DNA sequencing was carried out by the Functional Genomics & 

Proteomics Laboratory, School of Biosciences at the University of Birmingham, UK. 

The primers used for sequencing the pEGFP-N1 plasmid were the forward primer: 

MCS N1: PL_MCS_N1 with the sequence 5’-GTCGTAACAACTCCGCCC-3’ and  
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Figure 2.3 Cloning procedure to insert the lifeact-GFP sequence into the 
pWPXL plasmid to replace the original GFP gene 

The lifeact-GFP sequence from pEGFP-N1 was amplified and SmaI and PmeI 
restriction sites were added to the sequence using PCR. The same restriction 
enzymes; SmaI and PmeI were used to digest pWPXL to allow for the insertion of the 
lifeact-GFP insert. The products of the digestion reactions were separated using 
agarose gel electrophoresis and purified to obtain the linearised plasmid and insert. A 
ligation reaction using ligase, the insert and the plasmid generated the new construct 
consisting of the pWPXL plasmid with the lifeact-GFP sequence inserted. The 
construct was introduced into gold E.coli by heat-shock transformation and the 
bacteria were grown on LB agar plates containing ampicillin antibiotic. Selected 
colonies were expanded in LB broth overnight at 37 oC on an orbital shaker. DNA 
mini- and maxi-preparations were performed to extract the plasmid from lysed 
bacteria. A series of restriction digestion reactions and sequencing were performed 
to verify the correct site of insertion and ensure no DNA mutations had taken place. 
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reverse primer: PL_BEFORE_EGFP2 with the sequence 5’-GCTTGCCGTAG 

GTGGCAT-3’.  

To measure DNA concentrations 2 µl of plasmid DNA solution was loaded onto a 

NanoDrop ND-1000 Spectrophotometer (LabTech) for assessment and as a way of 

storing DNA and plasmid constructs, 30 % (v/v) glycerol was mixed in a 1:1 ratio with 

bacterial culture and stored at -80 oC.  

2.8.2 Bacterial culture 

E.coli containing the pEGFP-N1 plasmid was streaked onto Luria Bertani (LB) agar 

plates containing 0.03 mg/ml kanamycin. The bacterial plate was incubated at 37 oC 

overnight. The following day bacterial colonies were grown up in liquid LB broth with 

kanamycin.  

E.coli containing the pWPXL-lifeact-GFP plasmid was streaked onto LB agar plates 

containing 0.1 mg/ml ampicillin antibiotics and E.coli colonies were expanded in LB 

broth containing ampicillin.  

2.8.3 Purification and sequencing of DNA 

The pEGFP-N1 plasmid and the pWPXL-lifeact-GFP plasmid were purified from 

bacterial cultures either by producing small quantities of plasmid using the GeneJET 

plasmid miniprep kit (Fermentas) or via larger size production using the Qiagen 

plasmid maxi kit (Qiagen). For both plasmid production procedures the 

manufacturer’s instructions were followed for the production and purification of DNA.   
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2.8.4 Amplifying the lifeact-GFP insert using polymerase chain reaction 

(PCR) 

To introduce the SmaI and PmeI restriction enzyme sites into the lifeact-GFP 

sequence for subsequent insertion into the pWPXL plasmid, PCR was performed to 

amplify the sequence using specifically designed primers VS1 and VS2 as mentioned 

in section 2.8.1. 

100 µl PCR mix was made up containing: 5 µl pEGFP-N1 plasmid, 1 µl phusion 

enzyme, 1 µl forward primer VS1, 1 µl reverse primer VS2, 2 µl 10 nM 

deoxyribonucleotides (dNTPs), 20 µl 5x HF buffer and 70 µl PCR H20. The PCR 

program was performed as follows: 10 sec initial denaturation at 98 oC, followed by 

30 cycles of denaturation at 98 oC for 10 secs, annealing at 55 oC for 30 secs and 

elongation at 72 oC for 1 minute.  

After PCR, a 10 µl sample of the PCR mix was run in gel electrophoresis on a 1.5% 

(w/v) agarose gel alongside a 1 kb DNA ladder (GeneRuler) to ensure that the 

amplification process was successful. 

2.8.5 DNA separation and purification 

DNA was separated using DNA agarose gel electrophoresis; 1-2% (w/v) agarose 

gels were made from dissolving agarose powder (VWR International) in Tris acetate 

EDTA (TAE) buffer solution. The TAE solution was made up to contain 1 mM EDTA, 

40 mM Tris-base, 18 mM glacial acetic acid. The gels were stained with SYBR Safe 

DNA stain (Invitrogen) to allow for DNA visualisation under ultraviolet (UV) light.  Gels 

were suspended in TAE buffer solution to separate DNA strands which had been 

labelled with 6x loading dye. A 1 kb DNA ladder (Fermentas) was loaded alongside 
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DNA samples to check the sizes of DNA samples. DNA bands were visualised using 

the Gene Genius Bio Imaging System (Syngene). 

DNA bands were manually cut out of the DNA agarose gels using a scalpel and 

extraction of the DNA from the agarose gel was performed following the instruction 

manual of the GeneJET Gel Extraction Kit (Fermentas). 

2.8.6 Restriction digestion reactions of DNA 

Restriction digests were performed to cut the GFP gene out from pWPXL to allow for 

the insertion of the lifeact-GFP sequence. The restriction digest reactions contained  

5 µg plasmid DNA or purified PCR products, 2.5 µl restriction enzyme and 5 µl 10x 

restriction enzyme buffer with 5 µl 10x BSA if required for enzyme activity. The total 

volume of the restriction digestion reactions was scaled between 10–50 µl dependent 

on if the digestion reaction was for diagnostic purposes.  

2.8.7 DNA ligation reaction to create the pWPXL-lifeact-GFP plasmid 

DNA ligation was performed to ligate the lifeact-GFP DNA insert into the linearised 

pWPXL plasmid. The ligation reaction, alongside controls were performed at room 

temperature using 2 µl T4 Ligase (NEB), 2 µl 10x ligase buffer and 150 ng insert, 50 

ng vector in a DNA volume of 16 µl. The total ligation reaction was in 20 µl volume 

solutions, kept at room temperature for 2 hrs.  

2.8.8 Heat-shock transformation 

Heat shock transformation was performed to introduce the pWPXL-lifeact-GFP 

plasmid into competent bacteria. 5 µl plasmid DNA generated by the ligation process 

in section 2.8.7 was added to 50 µl α-select gold chemically competent E.coli. The 

transformation mix containing the bacteria and plasmid DNA was incubated on ice for 
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30 mins before being heat shocked for 30 secs at 42 oC in a water bath. The 

transformation mix was then placed back on ice for 1 min. 100 µl LB was added to 

the transformation mix and was placed at 37 oC in a shaking incubator for 1 hr. The 

transformed bacteria were spread onto LB agar plates containing antibiotics and 

placed in an incubator at 37 oC overnight. 

2.9 Zebrafish methods 

2.9.1 Strains and maintenance of zebrafish 

The in vivo model of angiogenesis that was used in this study was the Danio rerio, 

commonly known as the zebrafish, which is a widely used vertebrate model. The 

stable transgenic line of zebrafish Tg[fli1:EGFP] (fli1-GFP) generated by Weinstein 

and Lawson was used in this study155. The fli1-GFP zebrafish expressed the EGFP 

protein in the vascular endothelium throughout embryogenesis driven by the fli1 

promoter which created the ideal model for studying and visualising the growth and 

development of the vascular system in this organism.   

The fish were maintained at the  

.   

2.9.2 Breeding of transgenic zebrafish and maintenance of embryos 

To achieve vascular imaging of the zebrafish, transgenic fli1-GFP zebrafish were 

bred to produce embryos. Adult female and male zebrafish were placed in a breeding 

tank separated by a divider overnight. The following morning the divider was 

removed and embryos were collected in 1x E3 media which contained 34.8 g NaCl, 

1.6 g KCl, 5.8 g CaCl2, 9.78 g MgCl2, which was kept at 28.5 oC. The 1x E3 media 

was made by diluting a 60x E3 stock solution of E3 media into 1L with dH20, with the 



71 
 

addition of 100 µl 1% methylene blue (Sigma) to prevent fungal infections. A 60x E3 

stock solution was made from dissolving 34.8 g NaCl,1.6 g KCl, 5.8 g CaCl2,9.78 g 

MgCl2 into a total volume of 2 l ddH20. At 24 hpf, the 1x E3 media surrounding the 

zebrafish embryos was changed with 1x E3 media containing 80 µM 1-phenyl 2-

thiourea (PTU) to prevent embryonic pigment formation.  

2.9.3 Morpholino oligonucleotide injections 

Antisense morpholino oligonucleotides were ordered from Gene Tools (USA). The 

morpholino oligonucleotides were reconstituted into ddH20 and were microinjected 

into transgenic fli1-GFP zebrafish embryos at the 1-cell stage of development. The 

concentrations of morpholino oligonucleotide solutions which were used ranged from 

0.2-0.8 ng per embryo. Phenol red was co-injected alongside the morpholino 

oligonucleotide solution to act as a tracer for the injection procedure. Mismatched 

morpholino oligonucleotides were injected into 1-cell stage embryos as controls to 

the gene targeting morpholino oligonucleotide sequences.  

2.10 Imaging and image analysis 

2.10.1  Imaging the zebrafish vasculature 

Prior to imaging the zebrafish embryos, each embryo was manually dechorionated 

using forceps and anesthetised prior to imaging using 1-2 drops of MS-222 in E3 

media to ensure the movement of embryos was minimised. The zebrafish were then 

placed onto MatTek dishes and imaged using a Zeiss 780 Zen microscope. Embryos 

were imaged at varying developmental time points including 24 hpf, 26 hpf, 28 hpf, 

30 hpf, 36 hpf, 48 hpf and 72 hpf.  
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Confocal image sections of the embryonic zebrafish vascular system were 

compressed using Zen 2012 Zeiss microscopy software and the subsequent 

vasculature images were analysed using the developed ImageJ Zebrafish 

Vasculature Analysis Macro or IMARIS software to assess and quantify the numbers 

of vessel segments, junctions, end-points, the total and average vessel lengths. 

2.10.2 Image analysis software 

Optical images of histologically stained endothelial cells were analysed using 

AngioSys Image Analysis software (Cellworks). Fluorescent endothelial spheroid 

images were analysed using the designed Spheroid Analysis ImageJ plugin (National 

Institutes of Health). The matrigel tube formation images were analysed using the 

ImageJ Angiogenesis Analyzer plugin (National Institutes of Health). The scratch 

wound assay images were analysed using the IncuCyte software (Essen 

Bioscience). The Zen 2012 Zeiss microscopy software was used to process and 

generate compressed confocal z-stacks of endothelial tubular images and zebrafish 

vasculature images. The zebrafish vasculature analysis macro was generated using 

ImageJ (National Institutes of Health) to allow for quantification of the zebrafish 

vascular system. The alternative zebrafish vasculature analysis method was created 

using IMARIS x64 7.6.5 software (Bitplane).  

2.10.3 Statistical analysis 

Unless stated otherwise, all assays were performed at least three times with similar 

results.  

GraphPad Prism 6 software was used to statistically analyse data, determine the 

Pearson product moment correlation coefficients (R values) and the coefficient of 
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determination values (r2 values) and plot correlation graphs. The statistical tests 

which were used for the data sets are outlined in the results section, often the non-

parametric Mann-Whitney test was performed on data sets which does not assume a 

normal distribution of the data. To compare two independent data sets an unpaired 

Student’s t-test was performed. The p values were indicated in the results as follows: 

p ≤ 0.0001 as ****, p ≤ 0.001 as ***, p ≤ 0.01 as **, p ≤ 0.05 as *, p > 0.05 as ns for 

non-significant.  

 

 



74 
 

 Chapter Three 

Investigating lumen formation 

within endothelial tubules 
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3.1. Chapter summary 

The aim of this chapter was to utilise and develop various fluorescent imaging 

techniques to study the process of lumenogenesis within endothelial tubules formed 

using the in vitro co-culture tube formation angiogenesis assay. In this chapter, 

different fluorescent imaging approaches are presented which involved labelling the 

endothelial cytoplasm or actin cytoskeleton prior to using the endothelial cells in the 

co-culture tube formation assay to enable tubular imaging using confocal microscopy.  

The structure for this chapter is as follows: section 3.2 chapter introduction, section 

3.3 establishing optimal conditions for the co-culture tube formation assay, section 

3.4 using fluorescent cytoplasmic dyes to study lumen formation, section 3.5 

visualising the uptake of fluorescence media into lumenal spaces of tubules, section 

3.6 staining of tubular apical and basolateral cell surface markers, section 3.7 

expressing the lifeact peptide to outline developing lumens and visualise filopodia 

formation, section 3.8 visualising cellular interactions and lumen formation by using a 

mixture of lifeact-GFP and lifeact-RFP expressing cells, section 3.9 chapter 

discussion.  
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3.2. Chapter introduction 

The development of vascular sprouts during angiogenesis involves endothelial 

invasion, migration and proliferation; the endothelial sprouts continue to elongate 

creating three dimensional tubules which fuse with existing blood vessels to form part 

of an elaborate cardiovascular network14. The newly formed vessels must produce an 

intracellular lumen encapsulated by endothelial cells to enable blood flow. Following 

lumenogenesis, there is re-establishment of the basement membrane and 

attachment of mural cells to stabilise and strengthen the vessel1.  

The co-culture tube formation assay assesses the ability of endothelial cells to 

undergo tubulogenesis126. In this widely used in vitro assay modelling angiogenesis, 

endothelial cells are plated and cultured directly on top of fibroblasts to mimic the 

growth of small blood vessels such as the capillaries130. In this chapter, the co-culture 

tube formation assay was used to establish endothelial tubules and investigate the 

process of lumenogenesis.  

The cellular and molecular mechanisms involved within in vivo and in vitro lumen 

formation have been widely debated by the scientific community and at present there 

is evidence to support two models of endothelial lumenogenesis; the vacuole fusion 

mechanism and the endothelial cell rearrangement mechanism. In the vacuole fusion 

mechanism, small intracellular vesicles fuse together to form vacuoles within the 

endothelial tubules, these large intracellular vacuoles fuse with adjacent cell vacuoles 

creating a large open channel spanning through several endothelial cells32,218. This 

mechanism of lumenogenesis has been supported by Kamei et al. which observed 

vacuole fusion within intersegmental blood vessels (ISVs) in zebrafish18. The second 

mechanism of lumen formation is the endothelial cell rearrangement mechanism, 
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where the lumen develops from an extracellular space between adjacent endothelial 

cells. This process is initiated by cell surface polarisation which establishes apical 

and basolateral surfaces due to interactions of RAS interacting protein 1 (RASIP1) 

and aided by the recruitment of negatively charged dextran sulphate and CD34-

sialomucins which are repositioned to the apical cell surface23. An extracellular space 

is created between the apical surfaces of the cells which is subsequently expanded 

by actomyosin contractility, causing rearrangement of endothelial morphology23. The 

endothelial tubular lumen is further enlarged by the removal of cellular junctions by 

the action of proteolysis mediated by membrane type I matrix metalloproteinases 

(MT1-MMP) allowing an influx of surrounding fluid31. The aortic lumen in mouse 

embryos was found by Strilić et al, 2009 to develop extracellularly, supporting this 

mechanism of lumenogenesis25.  

3.3. Establishing optimal conditions for the co-culture tube formation 

assay 

To study the structure of the endothelial tubules, it was important to establish the 

appropriate co-culture media constituents to achieve optimal growth of the 

endothelial tubules in the co-culture tube formation assay. Typically in our laboratory 

this assay is performed using bovine brain extract as a bFGF containing growth 

supplement, however to determine if the substitution of basic fibroblast growth factor 

(bFGF) with bovine brain extract lead to an enhancement of tubular development, 

endothelial tubular growth in the two conditions was compared. Additionally, VEGF 

was added to the media to determine if there was further enhancement of tubular 

growth when this pro-angiogenic factor was present. 
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In this study, endothelial cells were plated directly on top of fibroblasts and were co-

cultured for six days in M199 media containing FCS, heparin, penicillin and 

streptomycin with either bovine brain extract or 10 ng/ml bFGF, with or without the 

presence of 10 ng/ml VEGF. The co-cultures were fixed and histologically stained on 

the sixth day of co-culture and representative images of the endothelial tubules are 

shown in figure 3.1A. The images of the tubular networks were analysed and tubules 

were quantified using AngioSys software. The number of endothelial tubule junctions 

and mean tubule length were calculated and are shown in figure 3.1B.  

Endothelial tubular growth occurred in all co-culture media conditions tested, 

statistical analysis using an ANOVA test and a Dunnett post-test revealed that there 

were no statistical differences in the growth of the tubules formed in the different 

media constituents. Furthermore, the addition of VEGF to the co-cultures did not 

statistically enhance tubular formation further; this result revealed that the fibroblasts 

must have secreted a high concentration of VEGF into the surrounding media in 

response to being stimulated by bFGF, so the addition of the 10 ng/ml VEGF was not 

enough to cause a further increase in tubule growth. Since no significant statistical 

differences were calculated between the four co-culture media conditions, the 

standard approach of using cM199 with bovine brain extract was used for 

subsequent studies using the co-culture tube formation assay with endothelial cells 

and fibroblasts.  
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Figure 3.1 Both basic fibroblast growth factor and bovine brain extract 
promoted tubule formation and was not enhanced by the addition of VEGF 
 
A) Histologically stained endothelial tubular images formed after six days in co-
culture media containing either bovine brain extract or 10 ng/ml bFGF with or without 
10 ng/ml VEGF, scale: 1 mm. B) Bar charts showed the AngioSys software analysis 
of the tubular images, an ANOVA and Dunnett post-test revealed the p values were 
non-significant between the different media constituents, n = 3 with different cords, 
error bars show the SEM. 
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3.4. Using fluorescent cytoplasmic dyes to study lumen formation 

To visualise at high resolution the three dimensional structure of endothelial tubules, 

confocal microscopy was required to optically section the tubules to obtain image 

slices which can be compressed to enable detailed visualisation of the endothelial 

tubules. The optical image slices were examined individually for the formation of 

lumens within the endothelial tubule and were also used to create three dimensional 

reconstructions to interactively visualise the tubules from all different angles. 

To generate fluorescent tubules, firstly endothelial cells were transduced to express 

cytoplasmic GFP using the lentiviral plasmids pWPI and pWPXL. The fluorescently 

labelled endothelial cells were used in the co-culture tube formation assay to produce 

fluorescent tubules which were imaged after two days of co-culture; images of these 

tubules are shown in figure 3.2A. Limitations of this study were that the GFP 

expressing tubules could only be imaged using epifluorescence microscopy due to 

the relatively low fluorescence emission from these tubules therefore only the overall 

morphology of the tubules was observed. Further structural details of the tubules 

such as filopodia formation or the development of lumens could not be visualised.  

A second fluorescence labelling method involved labelling endothelial cells with 5 µM 

CFSE produced endothelial tubules with higher fluorescence emission than GFP 

expressing tubules. When visualised with confocal microscopy the CFSE labelled 

tubules enabled higher resolution tubular images to be captured, as shown in figure 

3.2C shows the appearance of an endothelial tip cell and a tubular lumen. 
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Figure 3.2 CFSE labelled endothelial cells produced high fluorescence 
emission allowing the structure of endothelial tubules to be imaged with 
confocal microscopy 

A) Epifluorescence images revealed low intensity fluorescence emission from tubules 
expressing GFP via pWPI and pWPXL transduction. B) Epifluorescence image of a 
CFSE labelled tubule. C) Confocal microscopy images of a tip cell and lumen 
formation within CFSE labelled tubules. Endothelial tubules were imaged after 2 days 
of co-culture in the tube formation assay, scale: 100 µm. 
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Figure 3.3 CFSE labelled endothelial cells continued to produce high 
fluorescence emission from cells days after labelling 

Fluorescence Activated Cell Scanning (FACS) plots of the fluorescence emission 
from unlabelled HUVECs (black) and A) GFP expressing HUVECs from pWPI and 
pWPXL transduction (green), B) HUVECs labelled with 5 µM CFSE (orange), FACS 
analysis was performed immediately after labelling and 2, 4 and 6 days after 
labelling. 
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Fluorescence activated cell scanning (FACS) analysis of endothelial cells expressing 

cytoplasmic GFP via pWPI and pWPXL transduction as well as labelling endothelial 

cells with CFSE revealed that the cells were successfully transduced and were 

fluorescently labelled.  The FACS plots analysing the GFP expressing cells and the 

CFSE labelled cells compared with the unlabelled endothelial cell control sample are 

shown in figure 3.3, the shift in the fluorescence emission peak compared with the 

unlabelled endothelial control confirmed that the cells were successfully labelled.  

CFSE passively diffuses into the cellular cytoplasm, where it becomes covalently 

coupled to amines inside the cell through cleavage of the acetate groups by 

intracellular esterases219. Once modified the fluorescent carboxyfluorescein 

succinimidyl ester can stably exist in the cell without leaking out, which permits its 

usage as a cell proliferation dye219. The FACS analysis showed that labelling 

endothelial cells with CFSE produced an intense fluorescence signal immediately 

after labelling compared with the unlabelled endothelial control and the GFP 

expressing endothelial cells. The FACS plot showed that the fluorescence emission 

in CFSE labelled cells remained high for around four days, which was sufficient for 

monitoring the development and growth of the endothelial tubules. Observation of 

tubules in culture showed that the fluorescence emission from the CFSE labelled 

tubules remained relatively high after six days and therefore CFSE proved to be a 

useful fluorescence dye for labelling endothelial cells prior to use in the co-culture 

tube formation assay to monitor tubule growth and development. 

To determine whether CFSE labelling of endothelial cells caused any adverse effects 

on tubule formation, the co-culture tube formation assay was performed using 

endothelial cells that had been labelled with 5 µM CFSE and tubular growth was 
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compared with that of unlabelled endothelial cells. The endothelial cells were co-

cultured with fibroblasts for six days before being fixed and histologically stained; the 

histological tubular images are shown in figure 3.4A. The assay was repeated using 

endothelial cells from three different cords and the images were analysed using 

AngioSys software. Statistical analysis using a Student’s t-test revealed that there 

were no significant differences in tubule formation when using unlabelled or CFSE 

labelled endothelial cells in the co-culture tube formation assay. The bar charts in 

figure 3.4B show quantification of the numbers of tubules, junctions and mean tubule 

length with unlabelled and CFSE labelled tubules.  

Since labelling endothelial cells with CFSE did not significantly affect tubular 

formation, this fluorescence dye was used to determine if endothelial lumenogenesis 

occurred within tubules formed in this assay. CFSE labelled endothelial tubules were 

produced using the co-culture the formation assay and were optically sectioned using 

confocal microscopy at 1 µm intervals to investigate the process of lumen formation. 

As shown in figures 3.5A and 3.5B, developing lumens within CFSE labelled 

endothelial tubules were visualised, the opening and closing of the lumenal space 

can be observed in the sections which confirmed that this intracellular process occurs 

within tubules formed in this assay. This finding was also confirmed by the 

visualisation of an enclosed tubular lumen surrounded by plasma membrane in the 

xyz plane which was generated by the selection of a transverse section across the 

tubule which spanned across the developing lumen, shown in figure 3.5C. 
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Figure 3.4 Labelling endothelial cells with CFSE did not significantly affect 
tubule formation 
 
Unlabelled and 5 µM CFSE labelled endothelial cells were plated on top of fibroblasts 
and co-cultured for six days before being histologically stained. A) Histologically 
stained tubular images, scale bar: 1 mm. B) The histologically stained tubular images 
were analysed using AngioSys software, the bar charts showed the quantification of 
the number of tubules, junctions and mean tubule length formed when using 
unlabelled and CFSE labelled endothelial cells in the tube formation assay. Statistical 
analysis was performed using a Student’s t-test, where the p values were non-
significant for all parameters, n = 3, error bars show the SEM. 
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Figure 3.5 Lumen formation was visualised in CFSE labelled endothelial 
tubules using the co-culture tube formation assay 

Endothelial cells were labelled with 5 µM CFSE and plated directly onto fibroblasts 
and co-cultured for six says prior to optical sectioning using confocal microscopy.    
A) A series of optical sections showed the formation of a lumen within an endothelial 
tubule, optical sections were taken every 1 µm, scale: 50 µm. B) Higher magnification 
images of the developing lumen within the CFSE labelled tubule, scale: 25 µm. C) At 
the position indicated by the red dotted line in the tubular image, a xyz plane was 
generated showing an enclosed tubular lumen surrounded by plasma membrane, 
scale: 25 µm. 
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To acquire mechanistic information about the process of lumen formation in tubules 

formed using the co-culture tube formation assay and determine whether lumens 

were formed via the vacuole fusion process or the endothelial cell rearrangement 

mechanism, a two colour fluorescence labelling approach was taken. CFSE labelling 

of endothelial cells was performed alongside labelling cells with 5 mM CellTracker 

orange, the two sets of fluorescently labelled endothelial cells were mixed prior to 

plating onto the fibroblasts. Two examples of lumen formation are shown in figure 

3.6, the greyscale image revealed the difficulty in imaging and identifying the 

presence of lumens using a single fluorescence channel and the two coloured image 

allowed visualisation of lumens between cells that were labelled with different 

fluorescence dyes.  

Endothelial tubules formed using CFSE labelled endothelial cells and CellTracker 

orange labelled endothelial cells were imaged on the seventh day of co-culture and 

the tubules were imaged using confocal microscopy and visually assessed for the 

presence of lumen formation. 137 endothelial tubules were imaged using two colour 

confocal microscopy, each tubular image was converted to greyscale for visual 

assessment and each tubule was studied for the presence of lumen formation. Upon 

the identification of lumenal formation within an endothelial tubule, the corresponding 

two coloured fluorescence image was examined to determine if the lumen had 

formed via the endothelial cell rearrangement mechanism or the vacuole fusion 

mechanism. There are clear morphological differences in the appearance of lumens 

developed via the two different lumenogenesis mechanisms; the presence of a 

curved and elongated lumen flanked by two endothelial cells was a visual indication 

of the endothelial cell rearrangement mechanism, as shown in the tubular images in  
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Figure 3.6 Evidence of the endothelial cell rearrangement mechanism was 
observed within endothelial tubules formed using cells labelled with CFSE and 
CellTracker orange 

Endothelial cells were labelled with either 5 µM CFSE (green) or 5 mM CellTracker 
orange (orange) and were mixed prior to plating on top of fibroblasts. Imaging was 
performed on the seventh day of co-culture. Greyscale and corresponding coloured 
images of endothelial tubules showed evidence of lumen formation, scale: 100 µm. 
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figure 3.6, where an extracellular space developed into the lumen between adjacent 

endothelial cells, which were often labelled with different coloured fluorescent dyes. 

Whereas, endothelial lumens which form via the vacuole fusion mechanism often 

initially have several small circular lumenal spaces within close proximity showing the 

presence of vacuoles. During lumenal expansion there is vacuole fusion and larger 

irregular shaped lumens can be observed. Upon quantitation of the tubular images, 

74.5% tubules contained lumens, all of these lumens were formed via the endothelial 

cell rearrangement mechanism. The high percentage of tubules containing lumens 

also provided evidence that the co-culture tube formation assay is a suitable assay to 

study the later processes of angiogenesis including endothelial extension into tubules 

and lumen formation. 

3.5. Visualising the uptake of fluorescence media into lumenal spaces 

of tubules 

To provide further evidence that endothelial tubules developed lumens in the co-

culture tube formation assay, red fluorescent dextran tracer was added into the co-

culture media two days prior to imaging CFSE labelled endothelial tubules. The 

tubules were formed over a period of six days and upon imaging the dextran tracer 

was visualised within some stalk cells of the tubules, indicated by the arrows in figure 

3.7.  

The presence of dextran tracer inside the tubules revealed that the tubules were in 

the initial stages of lumen development as the lumenal space was relatively small 

measuring approximately 8 µm. Visualising the endothelial tubules in this way was  

 



90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Tubular lumens take up fluorescent dextran tracer from surrounding 
culture media 

Dextran Texas red fluorescent dye was added to the co-culture media two days prior 
to imaging endothelial tubules labelled with 5 µM CFSE. The red fluorescent tracer 
was taken up into luminal spaces within some stalk cells of endothelial tubules as 
indicated by the arrows, scale: 50 µm. 
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able to confirm that lumens developed within the tubules formed in the co-culture 

tube formation assay. 

3.6. Staining of tubular apical and basolateral cell surface markers 

Prior to lumen formation, the endothelial cells exist as a cord of cells connected by 

cellular junctions. As stated by Herbert and Stainier, the first stage of endothelial 

tubular lumenogenesis involves establishing the apical and basolateral cell surfaces 

via polarisation, this step is followed by the redistribution of junctional proteins and 

the glycoprotein podocalyxin is repositioned to the apical endothelial cell 

membrane23. Podocalyxin is then responsible for the recruitment of F-actin and 

moesin to this surface which aids in expanding the lumen23.  Therefore, podocalyxin 

is an apical cell surface marker for the process of lumenogenesis. 

The ECM secreted by the fibroblasts in the co-culture tube formation assay acts as a 

scaffold for the endothelial cells and therefore plays a critical role in influencing the 

tubular morphology. Collagen I, IV and VI are key components of the basal lamina 

along with other matrix proteins including fibronectin, tenascin-C and decorin22. 

Endothelial cells use α1β3 integrin mediated signalling to adhere to collagen IV 

providing an anchoring mechanism to enable extension and elongation to form 

successful tubules. Collagen IV is a basolateral cell surface marker for the process of 

lumenogenesis. 

In this study, lumen formation was further investigated by staining for the presence 

and localisation of podocalyxin and collagen IV in endothelial tubules on the seventh, 

fourteenth and twenty-first day of co-culture in the co-culture tube formation assay, 

the corresponding images are shown in figure 3.8.  
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Figure 3.8 Lumen formation was confirmed within endothelial tubules by 
staining for apical and basolateral cell surface markers 

Endothelial tubules formed using the co-culture tube formation assay were stained on 
the seventh, fourteenth and twenty-first day of co-culture for the cell surface markers 
podocalyxin and collagen IV. Tubule formation was identified with collagen IV 
staining and lumen formation was identified with podocalyxin staining. The arrows in 
the podocalyxin images indicate which regions of the tubules formed lumens; a 
tubular lumen region was also outlined with a red box and shown at higher 
magnification. The higher magnification podocalyxin stained images shows the 
accumulation of podocalyxin expression on the apical tubular surface during tubular 
formation in the co-culture tube formation assay, scale: 50 µm.  
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Staining for podocalyxin and collagen IV in the investigation of lumen formation 

confirmed that both apical and basal cell surface markers were present on tubules 

from day seven through to twenty-one of co-culture. Collagen IV was imaged on the 

basal surface of the tubules, whereas podocalyxin was imaged on the apical 

surfaces. An advanced tubular network was observed on day twenty-one of co-

culture, which was evident due to the strong staining of collagen IV on the tubules. 

The images of the stained endothelial tubules also revealed that there was an 

increase in the level of apical podocalyxin expression on the tubules from day seven 

to fourteen of co-culture, as shown in the high magnification podocalyxin images in 

figure 3.8. There was a large increase in podocalyxin expression between day seven 

to fourteen, however the level of podocalyxin on day twenty-one appeared to be 

comparable to that of day fourteen. 

The confocal tubular images were quantified for tubule and lumen formation through 

the visualisation of collagen IV and podocalyxin, ten fields of view on days seven, 

fourteen and twenty one of co-culture were assessed. The quantification revealed 

that there was a 60.42% increase in tubule formation from day seven to twenty-one 

of co-culture, as the number of endothelial tubules on day seven was 29, on day 

fourteen was 26 and on day twenty-one was 48. The percentage of tubules 

containing lumens remained high for the duration of the assay with 75.86% tubular 

lumens present on day seven, 73.08% on day fourteen and 68.75% on day twenty-

one.  
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3.7. Expressing the lifeact peptide to outline developing lumens and 

visualise filopodia formation 

F-actin is recruited to the lumen by podocalyxin prior to lumen expansion in 

developing tubules23. Therefore, to visualise the organisation of the actin 

cytoskeleton in endothelial tubules undergoing lumen formation, endothelial cells that 

had been transduced to express the lifeact peptide fused to fluorescent proteins were 

used in the co-culture tube formation assay. 

Endothelial cells were transduced to express the pWPXL-lifeact-GFP or lifeact-RFP 

plasmids and were plated directly onto fibroblasts in the co-culture tube formation 

assay. Live-cell imaging to study the actin dynamics of the tubules was performed to 

visualise the organisation of the actin fibres within the endothelial tubules during co-

culture. 

The confocal image in figure 3.9A shows the actin organisation in an adhered 

endothelial cell; fibrous networks of F-actin fibres were distributed as a web 

throughout the cell and the presence of an actin rim was visualised at the plasma 

membrane which clearly outlined the cellular edges. Using endothelial cells which 

expressed the lifeact peptide conjugated to the fluorescent proteins GFP and RFP in 

the co-culture tube formation assay allowed excellent visualisation of the organisation 

of the actin fibres at the branching points of the tubules, shown in figure 3.9B and 

revealed the F-actin fibres present within the large numbers of filopodia on the 

surface of the tip and stalk cells, shown in figure 3.9C. The F-actin fibres were shown 

to be present in a structurally organised manner along the full length of the tubules 

with thicker actin fibres situated at the tubular edges.  
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Figure 3.9 Expression of the lifeact peptide conjugated to fluorescent proteins 
within endothelial cells enabled the organisation of the actin cytoskeleton to be 
visualised 

A) Confocal image of an endothelial cell which expressed the lifeact-GFP plasmid,   
B) Confocal images of endothelial tubules expressing the lifeact-GFP plasmid,        
C) lifeact-RFP plasmid. Imaging was performed on the sixth day of the co-culture 
tube formation assay, scale: 50 µm. 
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Visualising the lifeact expressing endothelial tubules revealed that the F-actin fibres 

were situated around the endothelial lumens, the lumens predominantly formed 

within stalk cells of the tubules; however as shown in the examples in figures 3.10 

and 3.11, lumens were also observed within tip cells. Imaging the actin filaments 

within the tubule of figure 3.10 revealed that there was a large lumenal space in the 

centre of the tip cell which was close to a vesicle. The optical sections of the tubule 

showed the lumen undergoing expansion by the fusion of vacuoles indicated by the 

irregular shape of the lumen. The xyz planes in figures 3.10B and 3.10C were 

generated from transverse tubular sections and showed that both the developing 

lumen and nearby vacuole were surrounded by plasma membrane. Similarly, the 

developing lumen and nearby vacuole within the tip cell of the tubule, shown in figure 

3.11 were encapsulated by plasma membrane as shown by the xyz planes in figures 

3.11B and 3.11C.  

To further investigate tubular lumen formation, the image pixel intensity values were 

studied and provided further evidence and confirmation that lumens formed within the 

endothelial tubules. An optical slice of a lifeact-GFP expressing tubule shown in 

figure 3.11A was analysed using ImageJ for the greyscale pixel intensity values 

spanning across the tubule as indicated by the yellow line in figure 3.12A. A pixel 

intensity value of zero in the binary image indicated black in colour and signified the 

image background, whereas a value of 255 indicated a colour of white which signified 

the fluorescent tubular object in the image.  

The corresponding pixel intensity plot in figure 3.12A revealed that the lumenal space 

in the tubule correlated with a similar pixel intensity as the background. The lumenal 

area had a measured pixel intensity value of approximately 15-20. The pixel value of  
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Figure 3.10 Expressing lifeact in endothelial tubules allowed developing 
lumens and vacuoles to be visualised 

An endothelial tubule expressing lifeact-GFP was imaged on day six of co-culture. A) 
Optical sections of a lifeact-GFP expressing tubule were taken every 1 µm using 
confocal microscopy, B) at the position indicated from the red dotted line on the 
endothelial tubule image, xyz planes of the developing lumen and C) vacuole were 
generated showing that the lumen and vacuole were surrounded by plasma 
membrane, scale: 50 µm.   
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Figure 3.11 Use of lifeact in endothelial tubules allowed visualisation of lumens 
and filopodia extensions 

An endothelial tubule expressing lifeact-GFP was imaged on day six of co-culture. A) 
Optical sections of a lifeact-GFP expressing tubule were taken every 1 µm using 
confocal microscopy, B) at the position indicated from the red dotted line on the 
endothelial tubule image, xyz planes of the developing lumen and C) vacuole were 
generated showing that the lumen and vacuole were surrounded by plasma 
membrane, scale: 20 µm.  
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Figure 3.12 Lumen formation was confirmed by analysing the image pixel 
intensities and visualising 3D projections of endothelial tubules 

A) An optical section of a tubule was analysed for pixel intensities and the 
corresponding graph was plotted which was calculated based on pixel intensities 
along the yellow line, scale: 20 µm. B) Three dimensional projectional images of the 
compressed confocal optical sections of a lifeact-GFP expressing tubule which was 
rotated to observe the endothelial tubule from different angles. 
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the lumen was slightly higher than the image background intensity value of zero due 

to the presence of the endothelial tubular surface below the lumen as the tubule is 

three dimensional. The intensity plot also revealed that the diameter of the lumen 

was approximately 6 µm. The optical image sections of the tubule were compressed 

and three dimensional reconstructional images of the tubule were generated using 

ImageJ, some examples of the different angles of the projections are shown in figure 

3.12B. The three dimensional reconstructions enabled visualisation of the tubule and 

lumen from all different angles allowing the actin organisation and the structure of the 

tubule to be studied in detail. By selecting different slices to view in this way the 

lumen was clearly observed in the centre of the tubule which was surrounded by the 

endothelial tubular surface which had formed filopodia.  

Expressing the lifeact peptide to visualise the F-actin fibres also proved useful for 

studying the presence of filopodia along with studying lumen formation, comparable 

images visualising endothelial tubular filopodia formation could be achieved by 

staining the endothelial tubules for the expression of the endothelial specific 

glycoprotein CD31. The image in figure 3.13A showed that CD31 was localised on 

the surface of endothelial cells and showed increased expression at cell-cell contacts 

in adhered cells. Visualising the localisation of CD31 in the co-culture assay as 

shown in figure 3.13B revealed that the glycoprotein was expressed on the tip and 

stalk cells of the tubules and provided clear visualisation of endothelial filopodia 

formation. However, to visualise the localisation of this protein, the tubules must be 

fixed and stained therefore expressing the lifeact peptide had the advantage of live 

cell imaging and monitoring the formation of filopodia with the development of the 

tubules.  
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Figure 3.13 Filopodia were clearly observed on endothelial tubules by staining 
for the endothelial specific glycoprotein CD31 

A) Endothelial cells were plated directly onto coverslips and cultured to form a 
confluent monolayer of cells before immunofluorescence was performed to study the 
localisation of the endothelial glycoprotein CD31 (green) , shown to be expressed on 
the surface of the endothelial cells with increased expression at cell-cell contacts. 
Nuclei were stained with DAPI (blue), scale: 50 µm. B) Endothelial cells were 
cultured for seven days with human dermal fibroblasts in the co-culture tube 
formation assay before immunofluorescence was performed. Rhodamine labelled 
ulex (red) was used to selectively bind to endothelial glycoproteins and glycolipids 
allowing the endothelial cells to be clearly distinguished from the fibroblasts in the 
assay, scale: 50 µm. 

CD31 / DAPI CD31 / ULEX / DAPI A B 
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3.8. Visualising cellular interactions and lumen formation by using a 

mixture of lifeact-GFP and lifeact-RFP expressing cells  

Migrating cells extend filopodia to facilitate in directed movement; these long 

cytoplasmic projections not only sense the micro-environment for chemotropic cues 

but they also play a role in aiding cell-cell interactions. To visualise the structure of 

the actin cytoskeleton and the interactions between the endothelial cells during the 

formation of tubules, endothelial cells which expressed pWPXL-lifeact-GFP or lifeact-

RFP were mixed prior to plating on top of fibroblasts in the co-culture tube formation 

assay. 

The image in figure 3.14A shows endothelial tubules consisting of lifeact-GFP and 

lifeact-RFP expressing cells extending filopodia from the tip cells towards the other 

endothelial tubule in close proximity to participate in cellular interactions. Upon 

studying the two coloured optical section images in figure 3.14B it was apparent that 

the tubule was composed of lifeact-GFP and lifeact-RFP endothelial cells undergoing 

lumen formation. The lifeact-GFP cell in the tubule was surrounded by the lifeact-

RFP cells and there were two additional lumenal areas present in the lifeact-GFP 

cell, the lifeact-RFP cell appeared to be underneath the lifeact-GFP cell. The two 

colour fluorescence images of the endothelial tubules provided greater understanding 

of the development of the tubules in comparison to studying one colour images. To 

investigate if the developing lumen within the tubule was surrounded by plasma 

membrane, a transverse section of the tubule spanning the lumenal region was 

selected and a xyz plane was created. The xyz plane shown in figure 3.14C showed 

that the developing lumen was enclosed by plasma membrane.   
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Figure 3.14 Filopodia and developing lumens formed within endothelial tubules 
expressing lifeact-GFP and lifeact-RFP 

Endothelial cells expressing lifeact-GFP and lifeact-RFP were mixed prior to plating 
on top of fibroblasts in the co-culture tube formation assay, the F-actin organisation 
was imaged on the seventh day. A) Greyscale and coloured fluorescence image of 
filopodia extensions from lifeact-GFP and lifeact-RFP HUVECs in a tubule, B) 
Greyscale compressed confocal image of a lifeact-GFP and lifeact-RFP tubule, C) at 
the position indicated from the red dotted line on the endothelial tubule image, a xyz 
plane showed the developing lumen was surrounded by plasma membrane scale: 50 
µm. 
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Using confocal microscopy alongside the expression of the lifeact peptide conjugated 

to the two different fluorescent proteins GFP and RFP enabled the mechanism of 

lumenogenesis within endothelial tubules formed in this assay to be investigated. 

Endothelial tubules formed using either cells expressing lifeact-GFP, lifeact-RFP or a 

mixture of both cell types were imaged on the seventh day of co-culture and twenty 

five tubules per cell type were assessed and quantified for lumen formation. The 

endothelial tubules were imaged using one or two colour confocal microscopy 

dependent on if the tubules consisted of lifeact-GFP, lifeact-RFP or a mixture of the 

two endothelial cell types. The imaged tubules were assessed for the presence of 

lumen formation by converting the coloured fluorescence images to greyscale which 

enabled clear visualisation of the endothelial tubules and lumens. To further study 

lumenogenesis in endothelial tubules formed using a mixture of lifeact-GFP and 

lifeact-RFP expressing cells, the corresponding coloured fluorescence image was 

examined, which permitted greater understanding of how the endothelial cells were 

arranged within the tubules. There were morphological differences of the lumens 

formed using the two different mechanisms, as outlined in the example images in 

figure 3.15. As mentioned previously in section 3.4, the presence of a curved and 

elongated lumen between adjacent endothelial cells showed the endothelial cell 

rearrangement mechanism, whereas circular lumenal spaces showed the presence 

of vacuoles. The tubular images were manually assessed for the presence of lumen 

formation and the observed mechanism of lumenogenesis.  

Quantification of the tubular images revealed that lumenogenesis occurred within the 

tubules that were formed using lifeact-GFP, lifeact-RFP and a mixture of lifeact-GFP 

and lifeact-RFP expressing cells. The highest percentage of lumen formation  
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Figure 3.15 Example images of the endothelial lumenogenesis mechanisms 
observed in tubules which expressed the lifeact peptide conjugated to 
fluorescent proteins 

Example confocal images of endothelial tubules which produced lumens via the 
vacuole fusion and the endothelial cell rearrangement mechanisms. The endothelial 
tubules were produced using the co-culture tube formation assay using lifeact-GFP, 
lifeact-RFP and a mixture of lifeact-GFP and lifeact-RFP expressing endothelial cells 
and imaged on the seventh day of co-culture, scale: 20 μm. 
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Table 3.1 Quantification of the lumenogenesis mechanisms that were observed 
during endothelial tubule formation 

The quantification of lumen formation and the lumenogenesis mechanisms were 
determined by manually assessing tubular images generated from the co-culture 
tube formation assay. Twenty five images for each cell type used in the co-culture 
assay using either lifeact-GFP, lifeact-RFP or a mixture of lifeact-GFP and lifeact-
RFP expressing cells were analysed. The tubular images for each cell type used in 
the assay were taken from three different co-culture assays performed on different 
days and were pooled together to calculate percentage values of tubular lumen 
formation and the observed lumenogenesis mechanism. 

 
Lifeact-GFP 
expressing 

HUVECs 

Lifeact-RFP 
expressing 

HUVECs 

Lifeact-GFP and 
Lifeact-RFP 
expressing 

HUVECs 

Tubules without 
lumen formation 

10 13 12 

Tubules with lumen 
formation 

15 12 13 

Percentage of lumen 
formation 

60.00% 48.00% 52.00% 

Vacuole fusion 
lumenogenesis 
mechanism 

6 3 4 

Endothelial cell 
rearrangement 
lumenogenesis 
mechanism 

9 9 9 

Percentage of 
lumens formed via 
the vacuole fusion 
mechanism 

40.00% 25.00% 30.77% 

Percentage of 
lumens formed via 
the endothelial cell 
rearrangement 
mechanism 

60.00% 75.00% 69.23% 
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occurred in lifeact-GFP expressing tubules, 60.00% of these tubules formed lumens, 

followed by 52.00% for mixed lifeact-GFP and lifeact-RFP tubules and 48.00% for 

lifeact-RFP expressing tubules. Interestingly, both mechanisms of lumen formation 

were observed in tubules using all three cell types; however, as shown in table 3.1, a 

higher percentage of lifeact-GFP expressing tubules formed lumens via the vacuole 

fusion mechanism in comparison to the lifeact-RFP expressing tubules. Whereas, 

more lifeact-RFP expressing tubules formed lumens via the endothelial cell 

rearrangement mechanism compared to the lifeact-GFP expressing tubules. The 

endothelial tubules formed from a mixture of lifeact-GFP and lifeact-RFP expressing 

cells showed percentage values in between those of the individual lifeact-GFP and 

lifeact-RFP expressing tubules. Although overall assessment of the endothelial 

tubules formed using the expression of the lifeact plasmids showed that the 

endothelial cell rearrangement mechanism was the dominant mechanism by which 

lumens developed in tubules formed using the co-culture tube formation assay, with 

75.00% of lifeact-RFP tubular lumens formed using this mechanism, 69.23% of 

lifeact-GFP and lifeact-RFP tubules and 60.00% of lifeact-GFP tubules.  

3.9. Chapter discussion 

The results presented in this chapter confirmed that endothelial tubules formed using 

the co-culture tube formation assay develop lumens during co-culture with 

fibroblasts. In the co-culture tube formation assay, the elongation of the endothelial 

cells and subsequent growth of the tubules is highly dependent on the fibroblasts 

depositing extracellular matrix components, which acts as a suitable scaffold to 
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support the extension of the endothelial cells into tubular structures132. Importantly, 

the fibroblasts must secrete pro-angiogenic factors such as VEGF to promote 

endothelial migration and encourage tubule formation134,135. The fibroblasts secrete 

VEGF in response to being stimulated by bFGF, which was present in the bovine 

brain extract solution within the co-culture media; bFGF also stimulates the growth of 

the endothelial cells as well as the fibroblasts135.  

The fluorescent endothelial labelling techniques presented in this chapter, alongside 

confocal microscopy confirmed that lumens were formed in endothelial tubules 

generated using the co-culture tube formation assay, the techniques revealed clearly 

that lumen formation is initiated in both tip and stalk cells within tubules. The use of 

highly emissive fluorescent dyes and proteins to label the endothelial cells were 

essential for imaging the tubular structure and to distinguish between the endothelial 

cells and the fibroblasts in the co-cultures. Labelling of the endothelial cells prior to 

use in the assay with the cell proliferation dye CFSE achieved high levels of 

fluorescence emission from the cytoplasm of the endothelial tubules for the duration 

of the assay allowing the development of the tubules to be monitored effectively with 

confocal microscopy. CFSE was able to maintain a long cellular retention time due to 

becoming covalently bound to lysine residues inside the endothelial cells220. This 

method of CFSE labelling endothelial tubules was used in conjunction with the 

addition of dextran fluorescence dye into the co-culture media to confirm lumen 

formation via the vacuole fusion mechanism. Using a fluorescence tracer is a 

commonly used method to investigate lumen formation, Yang et al. studied lumen 

formation within endothelial cells on collagen gels by visualising the uptake of 6-

carboxyfluorescein into endothelial lumenal spaces35. Similarly Kamei et al. used 
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carboxyrhodamine and showed that the fluorescence dye was endocytosed in 

endothelial cells cultured in collagen matrices18. The results from this study showing 

the internalisation of dextran fluorescence dye in CFSE labelled tubules was 

consistent with that observed by others that pinocytosis is responsible for the uptake 

of the dye. To investigate this result further, the plasma membrane could be 

fluorescently labelled and visualisation of membrane invaginations at the tubular 

edges with subsequent vesicle and vacuole formation would further support this 

observation.  

The observation of tip cell lumens through imaging the organisation of the tubular 

actin cytoskeleton in this study showed that the process of lumenogenesis is not 

restricted to stalk cells in tubules that form in the co-culture tube formation assay. 

The main function of the tip cells is to sense the microenvironment to guide the 

direction of vascular growth, hence their presence at the front of the endothelial 

sprout, whereas stalk cells are located behind the tip cell to elongate the vessel 

through proliferation and participate in lumenogenesis15. The lumen would 

progressively increase in size as it expands and extend into tip cells; however the 

images in this study showed that lumens also initiate and develop in tip cells in 

tubules formed in the co-culture assay.  

The most useful technique for clearly visualising the presence and morphology of 

endothelial lumens formed in the co-culture tube formation assay was achieved by 

imaging the tubular actin cytoskeleton. Imaging the organisation of the actin 

cytoskeleton was achieved by expressing the lifeact peptide conjugated to the 

fluorescent proteins GFP and RFP alongside using confocal microscopy. It is known 

that F-actin is a major structural component of cells, required to generate mechanical 
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and tensile forces which co-ordinate cellular shape and motility87. The efficient 

function of the actin cytoskeleton is critical for the endothelial cells to undergo 

morphological changes and extend into the complex tubular structures. This new 

technique for imaging endothelial lumens was possible since the 17 amino acid 

lifeact peptide was able to bind to the actin fibres without compromising the formation 

of tubules95. Using this technique enabled excellent visualisation of the actin fibres in 

tip and stalk cells as well as enabling studies of the cytoskeletal organisation at the 

tubular branching points and of the filopodia extensions along the tubular surface. 

Actin fibres were present in filopodia on the surface of both tip and stalk cells, to play 

essential roles in cellular interactions and sensing the local environment for ephrins 

and semaphorins to direct tubular growth14. 

Interestingly, visualising the actin cytoskeleton using lifeact expression showed that 

there were thicker and presumably stronger cables of actin located around the 

developing lumen, revealing that the shape of the lumen appeared to be 

strengthened and supported by the actin cytoskeleton during expansion. Thicker 

actin fibres were also imaged at the tubular edges, which would act to distribute 

contractile forces throughout the endothelial cell to direct motility and extension into 

tubular morphologies. Since the actin fibres outlined the boundary of the lumenal 

spaces within the endothelial cells, it was possible to clearly observe the lumenal 

morphologies. Due to the morphological differences in the lumenal appearance 

developed by the two lumenogenesis mechanisms of lumen formation it was possible 

to visually assess and quantify the lumenogenesis mechanisms observed within the 

tubules.  
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Both the vacuole fusion and endothelial cell rearrangement mechanisms of 

lumenogenesis were visualised in the endothelial tubules and upon assessment of 

the tubular images it was revealed that endothelial lumens generated using the co-

culture tube formation assay formed predominantly from the endothelial cell 

rearrangement mechanism. However, 40.00% of lumens formed within lifeact-GFP 

tubules developed via the vacuole fusion mechanism, 25.00% in lifeact-RFP tubules 

and 30.77% in lifeact-GFP and lifeact-RFP tubules, although it is possible that the 

observed vacuoles were actin formations that would not contribute to the formation of 

a continuous lumen.  Imaging the vacuole fusion mechanism of lumenogenesis was 

not observed using the two colour fluorescence labelling of endothelial cells using 

CFSE and CellTracker orange cytoplasmic dyes. Therefore it could be possible that 

the binding of the lifeact peptide to the individual actin fibres could disrupt the 

dynamic nature of the F-actin fibres and induce cellular stress due to disrupted actin 

cytoskeletal function. Alternatively, the lifeact peptide may alter the mechanisms of 

actin polymerisation and/or branching, so as to influence the mechanism of vacuole 

formation. Furthermore, lentiviral transduction of endothelial cells to express the 

lifeact peptide conjugated to fluorescent proteins could have caused adverse cellular 

effects due to overexpression of the peptide. However, the absence of cellular 

blebbing which is also a visual indication of cellular stress would suggest that 

lumenogenesis via vacuole formation was not simply due to cellular stress. With the 

caveat that the lifeact peptide may affect lumen formation, these data indicate that 

imaging the organisation of the actin cytoskeleton enables better visualisation of the 

intracellular tubular structure compared with labelling the endothelial cytoplasm with 
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fluorescent dyes. Therefore, allowing the intracellular process of lumen formation to 

be studied in greater detail.  

To further investigate whether the process of lifeact binding to the actin fibres or 

transfecting the endothelial cells caused the formation of cellular vacuoles, 

fluorescently labelled phalloidin staining would be performed on the co-cultures and 

the tubular actin cytoskeleton would be imaged and studied for the formation of 

vacuoles. However, due to the presence of the fibroblasts in the co-culture it could be 

challenging to image the endothelial cytoskeleton this way.  

Further work to continue investigating lumen formation within endothelial tubules 

formed using the co-culture tube formation assay, would be to use live-cell time lapse 

confocal microscopy to image at high resolution the process of lumen development 

within endothelial tubules using the established fluorescent techniques presented in 

this chapter. Firstly, lifeact expressing endothelial cells would be used in the co-

culture assay and time lapse microscopy would permit real time visualisation of the 

process of lumenogenesis from the initial stages of tubule formation through to the 

establishment of a stable lumen that extends as an intracellular channel through 

many endothelial cells. Unfortunately, it was not possible to perform time-lapse 

imaging during this project as there was not a suitable microscope that could be used 

for this study. Performing time lapse imaging would provide valuable insights and aid 

the investigation into the mechanisms of lumen formation in endothelial tubules 

formed using this assay. There would however be challenging imaging requirements 

for this study as the same field of view would need to be imaged over the course of 

several weeks to study the development of the same endothelial tubules.  
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4.1. Chapter summary 

The aim of this chapter was to design, test and evaluate a new computer based 

analysis tool for quantifying endothelial sprouting from fluorescently labelled 

spheroids generated using the in vitro hanging drop spheroid angiogenesis assay. To 

test the designed ImageJ Spheroid Analysis plugin, this analysis tool was applied to 

fluorescently labelled spheroid images which expressed a wide range of endothelial 

sprouting phenotypes. The different sprouting phenotypes were generated through a 

kinase inhibitor screen, in which a library of 80 small molecule kinase inhibitors were 

added into the assay and endothelial sprouting was quantified using the plugin. The 

resulting plugin outputs were evaluated and discussed, as well as compared to the 

manual process of measuring the total sprouting length of the spheroids.   

A further aim of this project which is presented in this chapter was to screen kinases 

to identify those which have roles in endothelial sprouting, migration and tube 

formation and this data has been presented in analysis heat map tables to enable 

easy identification of kinase inhibitors which affected these processes. 

The structure for this chapter is as follows: section 4.2 chapter introduction, section 

4.3 presents the computer based analysis tool designed to analyse endothelial 

sprouting, section 4.4 testing and evaluating the computer based analysis tool, 

section 4.5 screening kinases to identify those with roles in sprouting angiogenesis, 

section 4.6 applying the computer based analysis tool to spheroids treated with p-21 

activated kinase (PAK) inhibitors, section 4.7 applying the computer based analysis 

tool to spheroids treated with Bruton’s tyrosine kinase (BTK) inhibitors, section 4.8 

screening kinases to identify those with roles in endothelial migration and tube 

formation, section 4.9 chapter discussion.  
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4.2. Chapter introduction 

In vitro angiogenesis assays are widely used to understand the pathways and 

interactions involved in the formation of new blood vessels and determine the 

effectiveness of pro- or anti-angiogenic agents. Angiogenesis is a complex process 

and at present there is not an individual assay that encompasses all aspects of 

angiogenesis. In vitro angiogenesis assays generally focus on a particular cellular 

process involved in angiogenesis such as endothelial migration, proliferation or tube 

formation; therefore there is a vital requirement to use multiple assays when 

screening compounds to identify and determine which parts of the angiogenic 

process are affected.  

In the initial stages of angiogenesis, endothelial cells degrade the surrounding 

basement membrane and migrate towards an angiogenic stimulus; this process 

involves endothelial invasion, migration and proliferation which can be studied in 

detail using the in vitro hanging drop spheroid angiogenesis assay. In this assay, 

multicellular masses of endothelial cells are generated and embedded into an ECM 

component to produce a three dimensional model of angiogenesis110-113. To 

determine the effect of compounds or identify genes involved in endothelial sprouting 

the resulting lengths or numbers of the spouts can be quantified. In this chapter, the 

ImageJ Spheroid Analysis plugin was used to rapidly analyse these sprouting 

parameters automatically. 

There are many widely used in vitro angiogenesis assays that can be employed to 

study the migratory response of cells; one of these is the scratch wound 

angiogenesis assay in which an area of cells is removed from a confluent monolayer 

of endothelial cells101. Successive images can be taken to monitor the rate of scratch 
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closure through cell migration and the rate or percentage of closure can be 

calculated to determine the effects of angiogenic agents or to identify genes that 

regulate cell migration103,109.  

The final stages of angiogenesis involve cell differentiation and the formation of three 

dimensional tubular structures. The ability of endothelial cells to form these structures 

in the presence of angiogenic compounds can be tested using the matrigel tube 

formation angiogenesis assay128,129. The network of tubules can be easily quantified 

by measuring the number of complete loops formed within the endothelial network 

using an automated ImageJ plugin known as Angiogenesis Analyzer, which is widely 

and freely available and enables the effect of compounds on the angiogenic pathway 

to be easily assessed. 

4.3. Computer based analysis tool designed to analyse endothelial 

sprouting 

The hanging drop spheroid angiogenesis assay is an in vitro assay used to study the 

process of endothelial sprouting. Firstly in this study, time-course imaging was 

performed to monitor the development and formation of endothelial sprouts from the 

spheroids once embedded in type I collagen; this revealed that the multicellular 

spheroids rapidly initiated the process of sprouting angiogenesis. Extensive 

endothelial sprouting was visualised within two hours after the spheroid masses were 

embedded in collagen, as shown in figure 4.1. After the initial stage of extensive 

sprouting, endothelial cell remodelling was observed as shown in the images from 

5.5 hrs to 12.5 hrs after embedding, where many of the highly motile and dynamic 

endothelial cell sprouts underwent retraction whilst other sprouts extended.  
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Figure 4.1 A time lapse experiment demonstrating that endothelial sprouting is 
a dynamic process 

Phase contrast time-lapse images enabled visualisation of the process of endothelial 
sprouting from an endothelial cell spheroid formed using the hanging drop spheroid 
assay over a 27.5 hr time period, scale: 200 µm. 
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Imaging the spheroids 16 hrs after collagen embedding enabled visualisation of a 

stable network of endothelial sprouts formed from the spheroid mass as shown in 

figure 4.1. At this time point, the endothelial cells had formed elongated sprouts 

which connected to nearby sprouts through the formation of branching points. The 

time course study revealed that after 16 hrs, the tip cells started to migrate from the 

stalk cells from within the sprout, which destabilised the endothelial network and 

resulted in disconnected sprouts, an example image at 24 hrs has been shown in 

figure 4.2. Imaging the spheroids at later time points such as at 48 hrs showed that 

all of the tip cells as well as the stalk cells had migrated from the spheroid mass and 

as a result no endothelial sprouts were observed. In conclusion, time-lapse imaging 

of the process of endothelial sprouting revealed that 16 hrs after collagen embedding 

was a suitable time point for imaging the spheroids formed using the hanging drop 

spheroid angiogenesis assay. 

In addition, the images in figure 4.1 and 4.2 revealed the challenge of analysing 

endothelial sprouting from phase contrast or brightfield microscopy images, these 

imaging modalities do not allow for the spheroids to be imaged at high resolution. 

The hanging drop spheroid assay generates three dimensional cellular aggregates 

and endothelial sprouting occurs on all sides and from angles on the spherical 

surface. To improve imaging resolution and enhance the visualisation of the sprouts, 

the endothelial cells were fluorescently labelled with a highly emissive cytoplasmic 

dye CFSE prior to the formation of spheroids and were subsequently imaged by 

taking optical sections with confocal microscopy.  

 



119 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 A stable endothelial sprouting network was observed sixteen hours 
after embedding the spheroids in collagen 

Brightfield light microscopy images of endothelial spheroids formed using the 
hanging drop spheroid angiogenesis assay at 16, 24 and 48 hours after being 
embedded in a collagen I matrix, scale: 200 µm. 
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Initially I determined the analysis requirements and conceptual design of a computer 

based analysis tool that would automatically analyse endothelial sprouting from 

fluorescent spheroid images generated from the in vitro hanging drop spheroid 

angiogenesis assay. The computerised plugin was specifically designed to measure 

a range of sprouting parameters including the total length of the endothelial sprouts 

formed within the image, the number of endothelial sprouting segments that were 

produced, the number of endothelial junctions and the number of end points formed 

by the sprouts. The Java code for the Spheroid Analysis plugin was written by 

Christopher Meah (Physical Sciences of Imaging in the Biomedical Sciences Doctoral 

Training Centre, University of Birmingham) based on fluorescent spheroid images 

that exhibited a normal sprouting phenotype; an example image and the image 

processing steps of the plugin is shown in figure 4.3. One of the aims of this chapter 

was to test the capabilities of the plugin and determine if the computerised analysis 

tool was able to automatically process a wide range of sprouting phenotypes and to 

evaluate the outputs generated by the Spheroid Analysis plugin.  

Figure 4.3 shows the image processing steps performed automatically by the 

Spheroid Analysis plugin. Initially the compressed fluorescent confocal spheroid 

image was loaded into ImageJ where it underwent a series of processing steps. 

Firstly, the fluorescent spheroid image was automatically converted into a binary 

image, binarisation clearly identified the endothelial cellular objects within the image 

and they appeared white in the image, whereas the image background appeared 

black, as shown in step two of figure 4.3. A mask of the binarised image data was 

created which was a visual representation of the endothelial sprouting network. The 

spheroid mass was excluded from the analysis procedure as only the endothelial 
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sprouts were required for analysis, therefore the mask of the spheroid mass was 

excluded at this stage. The remaining mask of the endothelial sprouting network was 

then used to generate two images, one which showed which sprouts were connected 

to the spheroid mass, thereby showing which endothelial cells had elongated into 

sprouts and a separate image showing which sprouts were disconnected from the 

mass, revealing which cells had migrated away from the spheroid, as shown in 

images 4 and 5 of figure 4.3. The mask of the sprouting network including the 

connected and disconnected sprouts was skeletonised using the inbuilt Skeletonize 

(2D/3D) plugin, which eroded the edges of the mask in a series of iterations until all 

of the sprouts were one pixel in diameter. Each pixel within the skeletonised network 

was analysed using the inbuilt Analyze Skeleton plugin (2D/3D). Each pixel was 

analysed according to its neighbouring pixels and was assigned as either a segment, 

junction or end point pixel. A segment pixel was assigned if the pixel had exactly two 

neighbouring pixels within the skeleton, a junction if it had more than two 

neighbouring pixels or an end point if it had zero or one neighbouring pixel. An 

endothelial segment within the skeletonised network was defined as a connected 

region of segment pixels. At the ends of each endothelial segment there was either a 

junction or an end point pixel, therefore endothelial segments were separated by two 

end point pixels, two junctional pixels or one end point and one junctional pixel, see 

figure 7.1 in section 7.1 of the appendix for further information on these parameters.  

The resulting outputs of the analysis procedure by the ImageJ plugin were 

automatically produced in a single table upon completion of analysis. The table of 

analysis included quantification on the following parameters of the total number of 

sprouting segments, endothelial junctions, end points, total sprouting length and  
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Figure 4.3 The ImageJ Spheroid Analysis plugin can be used to analyse 
endothelial sprouting from fluorescent spheroid images 

A) The image processing steps performed by the ImageJ Spheroid Analysis plugin: 
1) Original fluorescent spheroid image, 2) Binarised spheroid image, 3) Mask of the 
endothelial sprouts excluding the spheroid mass, 4) Mask of the sprouts connected  
to the spheroid mass, 5) Mask of the sprouts disconnected  to the spheroid mass, 6) 
Skeletonised spheroid image, scale: 200 µm, B) An image of the analysed network of 
sprouts, the sprouting segments are shown in light blue, the endothelial junctions in 
dark blue, the end points in red, C) Sprouting distribution plot showing the 
fluorescence intensity of the pixels within the image against the distance from the 
spheroid mass. 
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average sprouting length in pixels. In addition to the table of outputs generated by the 

plugin, a final image was produced showing the analysed network overlaid on top of 

the original spheroid image, as shown in figure 4.3B. The sprouting segments were 

shown in the final image in a light blue colour, the pixels that were identified as 

junctions were shown in dark blue and the end point pixels were shown in red. The 

final overlaid image enabled clear visual identification of the endothelial cells that had 

been successfully analysed and allowed determination of how accurate the analysis 

process had been. 

The plugin also allows the user to modify the analysis procedure if required by 

enabling the exact diameter of the spheroid to be inputted prior to the analysis 

procedure. Furthermore, the Spheroid Analysis plugin was able to generate a 

fluorescence intensity profile for the spheroid image shown in figure 4.3C; this 

intensity profile was generated by calculating the number of high fluorescence 

intensity pixels from within concentric ring bands from the spheroid mass until the 

edges of the image were reached. In this way, the fluorescence intensity profile was 

able to give an indication of the spouting distribution in the image.  

4.4. Testing and evaluating the computer based analysis tool 

A library of 80 small molecule kinase inhibitors was used in the hanging drop 

spheroid assay to produce a range of endothelial sprouting phenotypes which could 

be used to test and evaluate the capabilities of the ImageJ Spheroid Analysis plugin. 

The plugin was applied to five fluorescent spheroid images per inhibitor treatment 

and due to the large number of inhibitor molecules used in the assay, the screen was 

performed in 8 batches and corresponding DMSO treated control spheroids were 

imaged for each batch. In this way, the Spheroid Analysis plugin was tested on 
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spheroid images which exhibited a wide range of spouting phenotypes including 

normal sprouting, hyper-sprouting, few sprouts and no sprouts, example images 

have been shown in figure 4.4.  

For the purpose of testing the Spheroid Analysis plugin, all 80 kinase inhibitor 

compounds were used at their selected concentrations, it was possible that some 

inhibitors would induce cytotoxic effects on the endothelial cells and as a result would 

produce few or no endothelial sprouts during the hanging drop spheroid assay. 

However, it was important to test that the plugin would be able to accurately analyse 

these sprouting phenotypes and therefore these compounds were included during 

the evaluation stages of the plugin. As outlined in section 4.8, a cell viability assay 

was performed on a monolayer of endothelial cells and those compounds which 

affected cellular viability were excluded from the scratch wound and matrigel assay 

screen. However, it should be noted that the cell viability assay was performed by 

adding the inhibitor compounds to a monolayer of endothelial cells which could have 

induced higher cytotoxic effects compared to those in the hanging drop spheroid 

assay, whereby the endothelial cells were surrounded and embedded in collagen. 

For example, D-erythro-sphingosine at 3 μM concentration induced hypersprouting in 

the spheroid assay while causing cytotoxicity in the endothelial monolayer at the 

same concentration. 

As shown in the analysed spheroid network images in figure 4.4, the ImageJ plugin 

was able to accurately identify the regions of endothelial spouts within the images. 

The Spheroid Analysis plugin was able to quantify all sprouting phenotypes including 

hyper-sprouting of spheroids, which was of particular interest as such images would  
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Figure 4.4 The Spheroid Analysis ImageJ plugin was capable of analysing a 
range of sprouting morphologies 

Examples of fluorescent spheroid images captured on a confocal microscopy and 
analysed using the ImageJ Spheroid Analysis plugin, The capabilities of the Spheroid 
Analysis ImageJ plugin to analyse endothelial sprouting was tested using fluorescent 
images with a range of different endothelial sprouting morphologies including:  A) no 
sprouts, B) few sprouts, C) many sprouts, scale: 200 µm. 
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be extremely difficult to analyse manually using the frequently used method of 

measuring the lengths of the endothelial sprouts. To determine and verify the 

accuracy of the results generated by the ImageJ plugin, 25 spheroid images were 

manually assessed for the total sprouting length and the number of sprouting 

junctions formed by the spheroids. To manually analyse the total sprouting length, 

the segmented line tool in ImageJ was used to measure the lengths of each 

individual endothelial sprout per spheroid and the total sprouting length was 

calculated using Microsoft Excel. This manual analysis process was able to calculate 

the total sprouting length per spheroid in approximately 3 minutes, although this 

depended on the number of sprouts within the image. To determine the number of 

endothelial junctions formed by the sprouts, the multi-point tool in ImageJ was used 

to count each endothelial junctional region within the image, this tool automatically 

numbered the selected points and the resulting output per spheroid could be 

generated in approximately 1 minute. 

This manual analysis procedure generated results on the parameters of total 

sprouting length and the number of endothelial junctions in approximately 4 minutes. 

In comparison, the ImageJ Spheroid Analysis plugin processed an image 

automatically within 36 seconds, generating quantification on a number of sprouting 

parameters including the number of endothelial sprouting segments, the number of 

sprouting end points and the average sprout length, in addition to producing a 

fluorescence intensity plot for the image.  

Twenty five spheroid images were analysed using the manual analysis procedure 

and the ImageJ plugin and the outputs from both methods were compared, the 

graphs showing the relationship between the two sets of results is shown in the plots  
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Figure 4.5 A linear relationship was calculated upon measuring the total 
sprouting length using the ImageJ plugin and manual analysis of spheroids  

Twenty five fluorescent spheroid images from the kinase screen were analysed for 
the total sprouting length and number of endothelial junctions formed in the images 
using a manual analysis approach and the computerised ImageJ Spheroid Analysis 
plugin. The correlations between the two data sets were determined by calculating an 
r2 value, whereby a result of 1.0 indicates an entirely linear relationship and 0.0 
indicates there is no linear relationship. 
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in figure 4.5. The r2 values for the parameters of total sprouting length and the 

number of endothelial junctions were calculated to determine if there was a linear 

relationship between the data generated by the two analysis methods. The plots in 

figure 4.5 showed that a linear relationship was determined for the total sprouting 

length, with an r2 value of 0.978, where a value of 1.0 indicates an entirely linear 

relationship. The high r2 value confirmed that the results generated by the ImageJ 

plugin for the total sprouting length were comparable to those generated by the 

manual analysis method. The plot showed that as the sprouting length increased; the 

manual analysis method calculated slightly smaller lengths than the ImageJ method; 

which was likely to have been due to the difficulty in manually analysing complex 

sprouting networks by individually outlining each endothelial sprout within the image.   

The graph for the number of endothelial junctions shown in figure 4.5 revealed that 

the manual analysis method consistently measured fewer numbers of junctions 

compared with the results generated by the ImageJ method; this relationship was 

confirmed with an r2 value of 0.727. The ImageJ plugin used a highly sensitive 

algorithm to assess each individual pixel within the image, in this way this method 

was able to identify single pixels as junctions; therefore junctional pixels which were 

very close to one another would have been classified as multiple junctional pixels by 

the ImageJ method, whereas the manual analysis approach would identify such 

regions as a single junction. The manual analysis method of counting the number of 

junctions became more challenging as the endothelial sprouting network became 

more elaborate. The higher level of detection achieved by the ImageJ plugin enabled 

the images to be studied in greater detail than by using the manual method.  
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In conclusion, it was found that the image outputs were generated 6.7 times faster by 

the ImageJ Spheroid Analysis plugin in comparison to the manual analysis method 

and that the results of the Spheroid Analysis plugin were comparable to the manual 

method for determining the total sprouting length. The ImageJ analysis method 

achieved a greater level of sensitivity and detection therefore higher numbers of 

junctions were also measured using the ImageJ plugin. Upon studying the images of 

the analysed sprouting network generated by the plugin, it was confirmed that the 

plugin results were accurate and that this automated analysis method could be used 

to rapidly quantify endothelial sprouting of fluorescently labelled spheroids.  

The ImageJ Spheroid Analysis plugin was able to record quantitative information on 

different endothelial sprouting parameters, which included the total and average 

sprouting lengths, the numbers of endothelial sprouting segments, junctions and end-

points. All of the parameters were measured independently; however the average 

sprouting length was derived from the measurements of the total sprouting length 

and the number of sprouting segments. To investigate how the generated outputs for 

each parameter measured by the plugin related to the other parameters and to 

identify any correlations between these measured parameters, the spheroid images 

from the kinase inhibitor screen were analysed using the Spheroid Analysis plugin 

and the Pearson product moment correlation coefficients (R) and p values from a 

Students t-test were calculated.   

The R and p values for the parameters have been shown in table 4.1; the results 

revealed that all of the correlations between each parameter were highly significant, 

with the highest correlation calculated between the number of sprouts and the 

number of end points with the highest R value of 0.983 and a p value of <1.0 x 10-30.  
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Table 4.1. Significant correlations were identified between the different 
parameters measured using the Spheroid Analysis plugin.  

The Pearson product moment correlation coefficient (R) values and p values from a 
Student’s t-test were calculated to determine correlations between the parameters of 
the number of sprouting segments, number of endothelial junctions, number of end 
points, total and average sprout lengths measured using the ImageJ Spheroid 
Analysis plugin. The correlation values were calculated using the mean values for the 
8 DMSO controls and 80 small molecule inhibitor compounds used in the hanging 
drop spheroid angiogenesis assay in the kinase screen.  
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This high correlation was closely followed by the correlation between the total 

sprouting length and the number of endothelial junctions as well as the average 

sprouting length with an R value of 0.945 and 0.942 respectively and p values of <1.0 

x 10-30. These strong correlations suggested as expected that as the complexity of 

the endothelial sprouting network increased, a greater number of sprouts and sprout 

length, junctions and end points were detected. The lowest correlation was 

calculated between the number of sprouts and the average sprout length with an R 

value of 0.667 and p value of 1.277 x 10-12, this result was highly significant indicating 

that all parameters measured by the plugin would be useful and can be used to 

assess endothelial sprouting. Correlation graphs were plotted using the data 

generated by the ImageJ Spheroid Analysis plugin for the hanging drop spheroid 

images studying the effect of the different kinase inhibitors, to give a visual 

representation of the correlation between the different parameters measured within 

the images. The mean value for each inhibitor and control images were plotted to 

study each parameter individually against the other parameters. A line of best fit was 

plotted onto the graphs to give an indication of the degree of correlation between the 

two parameters. The correlation plots in figures 4.6 and 4.7 showed that a range of 

sprouting phenotypes were assessed using the plugin, however there were more 

images which expressed a low endothelial sprouting phenotype, this result was 

expected since kinases play essential roles in cellular processes such as 

proliferation, differentiation and migration therefore inhibiting them was likely to affect 

endothelial sprouting.  

Figure 4.6 showed the most significant correlations that were measured between the 

parameters, with the highest correlation observed between the number of sprouting  
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Figure 4.6 The highest correlation was calculated between the number of 
endothelial segments and end points 

Correlation graphs were plotted using the mean values generated by the ImageJ 
Spheroid Analysis plugin from the kinase screen; each point represents an inhibitor 
from the screen performed using the hanging drop spheroid angiogenesis assay. The 
Pearson product moment correlation coefficient (R) values and p values from a two 
tailed t-test were calculated and statistical differences have been shown **** 
indicates p ≤ 0.0001. 
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Figure 4.7 The smallest correlation was determined between the number of 
segments and the average sprout length 

Correlation graphs were plotted using the mean values generated by the ImageJ 
Spheroid Analysis plugin from the kinase screen; each point represents an inhibitor 
from the screen performed using the hanging drop spheroid angiogenesis assay. The 
Pearson product moment correlation coefficient (R) values and p values from a two 
tailed t-test were calculated and statistical differences have been shown **** 
indicates p ≤ 0.0001. 
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segments and the number of end points, these parameters directly correlated to each 

other until approximately 70 segments were measured, at higher numbers of 

segments there was greater variation in the numbers of end points detected. Strong 

correlations were also observed between the total sprouting length and the numbers 

of endothelial junctions, end points and average sprouting length which suggested 

that as the stalk cells elongated to expand the endothelial network, there was 

detection of the enhancement in the sprout lengths and connectivity of the sprouts.  

The smallest correlation between the parameters was calculated between the 

average sprout length and the number of segments, as shown in figure 4.7. A high 

degree of variability between these parameters was observed; however the general 

trend for this plot was that as increased numbers of endothelial segments were 

detected in the images, the average sprout length also increased. The strong 

correlation results identified in this study revealed that the parameters of total and 

average sprouting length, the numbers of segments, junctions and end points would 

all provide informative data on the sprouting phenotype formed by the spheroids 

generated in the hanging drop spheroid angiogenesis assay.  

4.5. Screening kinases to identify those with roles in sprouting 

angiogenesis 

Protein kinases play essential roles in the regulation, activation and localisation of 

many cellular proteins involved in signalling cascades through the action of adding a 

phosphate group on to target substrate proteins.  A library of small molecule kinase 

inhibitor compounds were added into the hanging drop spheroid angiogenesis assay 

to identify the effects the kinase inhibitors had on the processes on endothelial 
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sprouting. In this way, a wide range of spheroid images showing different sprouting 

phenotypes were generated and used to test the capabilities of the Spheroid Analysis 

plugin as previously described in section 4.4. Using this approach, the quantitative 

results generated by the Spheroid Analysis plugin on the total and average vessel 

length, the numbers of sprouting segments, junctions and end points could be used 

to identify important kinases with roles in angiogenic processes.   

Example images of the spheroids have been shown in figure 4.8 and revealed that 

the spheroids which formed in the presence of DMSO developed elongated 

endothelial sprouts with various junctions that lead to further connections with other 

sprouts.  In comparison, treatment with the various inhibitor compounds resulted in 

the formation of many spheroids with fewer or no endothelial sprouts produced from 

the spheroid mass, as previously outlined in the correlation graphs in figures 4.6 and 

4.7. Example images of the spheroids generated in this assay have been shown in 

figure 4.8, the addition of 14 μM LY 294002 which inhibited phosphoinositide 3-

kinase (PI3K) caused complete absence of endothelial sprouting, whereas the 

addition of 7 μM AG-494 or 30 μM RG-1462 through targeting epithelial growth factor 

receptor kinase (EGFR) reduced endothelial sprouting compared with the DMSO 

treated control.   

The ImageJ Spheroid Analysis plugin was used to analyse the effects of the inhibitor 

compounds on endothelial sprouting. Bar charts of the results generated on the 

parameters of total and average sprouting length and the numbers of segments, 

junctions and end points for eight inhibitor compounds are shown in figure 4.9, with 

the bar charts for all of the tested compounds shown in the appendix. The bar charts 

in figure 4.9 revealed that a similar and consistent pattern of results was observed  
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Figure 4.8 The hanging drop spheroid angiogenesis assay can be used to 
screen different inhibitors and determine their effects on sprouting 
angiogenesis 

HUVECs were labelled with 5 µM CFSE prior to use in the hanging drop spheroid 
angiogenesis assay, the spheroids were treated with different kinase inhibitors or 
DMSO as the control and confocal images were taken 16 hrs after embedding the 
spheroids in collagen, scale: 200 µm. 

DMSO Control 

Inhibitor: RG-1462 Inhibitor: AG-494 

Inhibitor: LY 294002  
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Figure 4.9 ImageJ Spheroid Analysis results for inhibiting kinases in the 
hanging drop spheroid angiogenesis assay 

The ImageJ Spheroid Analysis plugin was used to analyse fluorescent spheroid 
images generated by the hanging drop spheroid angiogenesis assay with confocal 
imaging 16 hrs after collagen embedding. The effect of adding the kinase inhibitors 
U-0126, SB-203580, staurosporine, AG-494, AG-825, H-7.2HCl, lavendustin A and 
RG-1462 on the total and average sprouting length, the number of sprouting 
segments, junctions and end points was determined.  Statistical analysis was 
performed using the Mann-Whitney test, n=5 spheroids, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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between the different parameters measured from the fluorescent spheroid images for 

the various inhibitor compounds. Measuring the total sprouting length, average 

sprouting length and the number of junctions in the spheroid images caused the 

highest degree of difference between the control and inhibitor images, therefore 

allowing easy identification of the effect of the inhibitor on endothelial sprouting. 

Along with identifying a high degree of difference between the control and inhibitor 

images, measuring the total sprouting length would give a global understanding of 

the extent of endothelial sprouting. Whereas, measuring the number of junctions 

would provide informative information on the endothelial connectivity and complexity 

of the sprouting network that had developed. Therefore, these two parameters are 

the most useful parameters, determining the average sprouting length could also be 

considered, however this parameter was derived from the measurements of total 

sprouting length and the number of segments. 

Smaller differences between the control and inhibitor images were observed upon 

measuring the number of sprouting segments and the number of end points. 

Studying these parameters could provide additional information on sprouting 

morphology however migrated cells were often identified as small sprouting 

segments with several end points, therefore studying these parameters alone would 

not necessarily be informative on sprouting morphology, except for extreme sprouting 

phenotypes such as no sprouts or hyper-sprouting, where there are large and 

apparent differences in the number of segments or end points. 

To identify the kinase inhibitors which affected endothelial sprouting, a heat map 

table was generated shown in table 4.2, which enabled easy visualisation and 

determination of the effects on the different aspects of sprouting measured by the 
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plugin. The results in table 4.2 revealed that many of the inhibitor compounds 

reduced sprouting compared to the control spheroids, as indicated by the orange and 

red colours in the table. In general, if a reduced sprouting phenotype was observed 

due to the addition of a kinase inhibitor compound, the plugin generated results that 

indicated this phenotype in all of the sprouting parameters that were measured within 

the image.  

Interestingly, the heat map table identified two compounds which caused an increase 

in sprouting detected by three parameters which suggested hyper-sprouting of these 

spheroids. A significant increase in the connectivity of the endothelial sprouts was 

detected by measuring the number of junctions within these images for both of the 

compounds, as indicated by the dark green colour in the table. The first was a pan-

specific kinase inhibitor staurosporine; the plugin also identified increased numbers 

of segments and end points for the treatment with this compound. The second 

inhibitor was D-erythro-sphingosine which targeted protein kinase C (PKC), in 

addition to the increased number of endothelial junctions formed by the treatment of 

this molecule, enhanced numbers of end points and extended total sprouting length 

were measured, in comparison to the control images. As outlined by the previous 

results, measuring the number of end points within the spheroid images was useful 

for the identification of hyper-sprouting phenotypes.  
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Table 4.2 Heat map table showing the effect of kinase inhibitors on the process 
of sprouting angiogenesis 

The ImageJ Spheroid Analysis plugin was used to quantify the total and average 
sprouting length, numbers of segments, junctions and end points from spheroid 
images to study the effect of kinase inhibitors on endothelial sprouting. The hanging 
drop spheroid assay was performed with the addition of each inhibitor at a 
concentration value ten times its IC50 value. The IC50 values for all inhibitors can be 
found in table 2.4 on page 49. Five spheroids per inhibitor were analysed and 
normalised to the corresponding controls. Each percentage boundary was plotted in 
a different colour to reflect the result, red (0-40% of control), orange (41-80%), yellow 
(81-120%), light green (121-160%), dark green (161-200%). The compounds in grey 
were used at concentrations which did not pass the cell viability assay. 
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PD-98059 MEK 
   

  

U-0126 MEK 
   

  

SB-203580 P38 MAPK 
   

  

H-7·2HCl PKA, PKG, MLCK, PKC 
   

  

H-9·HCl PKA, PKG, MLCK, PKC 
   

  

Staurosporine Pan-specific 

   
  

AG-494 EGFR, PDGFR 

   
  

AG-825 HER1-2 

   
  

Lavendustin A EGFR 

   
  

RG-1462 EGFR 

   

  

TYRPHOSTIN 23 EGFR 

   

  

TYRPHOSTIN 25 EGFR 

   

  

TYRPHOSTIN 46 EGFR 

   

  

TYRPHOSTIN 47 EGFR 

   

  

TYRPHOSTIN 51 EGFR 

   

  

TYRPHOSTIN 1 Negative control 

   

  

  0-40% Highly below control 

  41-80% Below control 

  81-120% Similar to control 

  121-160% Above control 

  161-200% Highly above control 
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TYRPHOSTIN AG 1288 Tyrosine kinases 

   

  

TYRPHOSTIN AG 1478 EGFR 

   

  

TYRPHOSTIN AG 1295 Tyrosine kinases 

   

  

TYRPHOSTIN 9 PDGFR 

   

  

Methyl-phosphonic acid IRK 

   

  

PKC-412 PKC 

   

  

Piceatannol Syk 

   

  

PP1 Src family 

   

  

AG-490 JAK-2 

   

  

AG-126 IRAK 

   

  

AG-370 PDGFR 

   

  

AG-879 NGFR 

   

  

LY 294002 PI 3-K 

   

  

Wortmannin PI 3-K 

   

  

GF 109203X PKC 

   

  

Hypericin PKC 
   

  

Ro 31-8220 mesylate PKC 

   

  

D-erythro-Sphingosine PKC 

   

  

H-89·2HCl PKA 

   

  

H-8 PKA, PKG 

   

  

HA-1004·2HCl PKA, PKG 

   

  

HA-1077·2HCl PKA, PKG 

   

  

Benzoic acid EGFR, CaMK II 

   

  

KN-62 caMK II 

   

  

KN-93 caMK II 

   

  

ML-7·HCl MLCK 

   

  

ML-9·HCl MLCK 

   

  

2-Aminopurine P58 PITSLRE β1 

   

  

N9-isopropyl-olomoucine CDK 

   

  

Olomoucine CDK 

   

  

Iso-olomoucine Negative control 

   

  

Roscovitine CDK 

   

  

5-Iodotubericidin 
ERK2, CK1/2, adenosine 

kinase 
   

  

LFM-A13 BTK 
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SB-202190 P38 MAPK 

   

  

PP2 Src family 

   

  

ZM 336372 cRAF 

   

  

SU 4312 Flk1 

   

  

AG-1296 PDGFR 

   

  

GW 5074 cRAF 

   

  

Palmitoyl-DL-carnitine PKC 

   

  

Rottlerin PKC delta 

   

  

Genistein Tyrosine kinases 

   

  

Daidzein Negative control 

   

  

Erbstatin analog EGFR 

   

  

Quercetin·2H2O PI 3-K 

   

  

SU1498 Flk1 

   

  

ZM 449829 JAK-3 

   

  

BAY 11-7082 IKK pathway 

   

  

Ribofuranosylbenzimidazole CK II 

   

  

Dimethanol dimethyl ether PKC α, γ 

   

  

SP 600125 JNK 

   

  

Indirubin GSK-3 β, CDK5 

   

  

Indirubin-3'-monooxime GSK-3 β 

   

  

Y-27632·2HCl ROCK 

   

  

Kenpaullone GSK-3 β 

   

  

Terreic acid BTK 

   

  

Triciribine Akt 

   

  

BML-257 Akt 

   

  

SC-514 KK2 

   

  

BML-259 Cdk5 

   

  

Apigenin CK-II 

   

  

BML-265 EGFR 

   

  

Rapamycin mTOR 
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4.6. Applying the computer based analysis tool to spheroids treated 

with p-21 activated kinase (PAK) inhibitors 

P-21 activated kinases (PAKs) consist of a six membered family of enzymes which 

have biological roles in controlling cellular movement and motility as well as 

regulating the organisation of the actin cytoskeleton222. To determine if PAKs have a 

role in sprouting angiogenesis, two PAK inhibitors PF-3758309 and IPA-3 were 

added into the culture media of the hanging drop spheroid angiogenesis assay and 

the spheroids were imaged 16 hours after collagen embedding. Endothelial sprouting 

was analysed using the ImageJ Spheroid Analysis plugin.  

The quantitative results generated by the Spheroid Analysis plugin revealed that the 

addition of 1.25 µM and 5.0 µM PF-3758309 into the spheroid assay caused a 

significant reduction in endothelial sprouting compared with the DMSO control 

treated spheroids, as shown in the spheroid images and bar charts of analysis in 

figure 4.10. A similar pattern of results was observed for the different sprouting 

parameters; the most significant reductions were detected in the numbers of 

junctions and the total length of the endothelial sprouts with treatment using PF-

3758309. PF-3758309 is a pan-specific inhibitor of PAKs and therefore inhibited all 

PAK isoforms.  The analysis results in figure 4.10 also showed that treatment with 

varying concentrations of IPA-3 resulted in comparable sprouting to the DMSO 

controls; since IPA-3 is highly specific for PAK1, this sprouting result revealed that 

PAK1 is not required to produce endothelial sprouts in this assay.  
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Figure 4.10 P-21 activated kinase (PAK) inhibitor PF-3758309 significantly 
reduced endothelial sprouting 

Fluorescent endothelial spheroids were formed using the hanging drop spheroid 
angiogenesis assay and treated with either DMSO or a PAK inhibitor. A) Confocal 
images of the spheroids 16 hrs after collagen embedding, scale: 200 µm, B) Analysis 
of the spheroid images performed using the Spheroid Analysis plugin. Statistical 
analysis was performed using the Mann-Whitney test, n=5 spheroids, ** indicates p ≤ 
0.01 and * indicates p ≤ 0.05. The error bars are the SEM. 
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4.7. Applying the computer based analysis tool to spheroids treated 

with Bruton’s tyrosine kinase (BTK) inhibitors 

Bruton’s tyrosine kinase (BTK) and bone marrow kinase in chromosome X (BMX) are 

members of the Tec family of non-receptor protein tyrosine kinases223. BTK plays 

crucial roles in many signal transduction cascades within B lineage lymphoid cells 

regulating cell survival, differentiation and adhesion224. Whereas, BMX is highly 

expressed in endothelial cells and it has been reported that in response to ischemia, 

BMX is activated by focal adhesion kinase (FAK) to induce angiogenesis by 

promoting cell migration and tube formation225. 

The BTK inhibitor ibrutinib also inhibits the related Tec family kinase BMX and it was 

of interest to determine how inhibition of BMX, affected sprouting in this cell type226. 

In addition, other BTK inhibitors LFM-A13 and AVL-292 which were also highly likely 

to inhibit BMX were tested in this assay. The inhibitor compounds were added to the 

hanging drop spheroid assay and endothelial sprouting was imaged 16 hrs after 

collagen embedding and analysed using the ImageJ Spheroid Analysis plugin.  

Ibrutinib inhibits BTK and BMX by binding covalently to its target kinase preventing 

the auto-phosphorylation event of the protein227,228. The addition of ibrutinib in the 

assay significantly reduced the numbers of endothelial sprouts, junctions and end 

points formed by the spheroids, however no statistical differences were found 

between the average and total lengths of the sprouts in comparison to the DMSO 

controls. Images of the spheroids which were treated with the BTK inhibitors are 

shown in figure 4.11.  
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AVL-292 is a highly selective inhibitor of BTK which like ibrutinib prevents BTK auto-

phosphorylation229. Figure 4.11 shows that AVL-292 treatment significantly affected 

endothelial sprouting with reduced numbers of endothelial sprouting segments, 

junctions, end points, average and total sprout lengths calculated.  

LFM-A13 binds to the BTK catalytic site therefore preventing activation of its 

downstream targets230. The addition of LFM-A13 also significantly reduced the 

numbers of junctions formed by the endothelial sprouts as well as the average and 

total sprout lengths as shown in the images and bar charts of analysis in figure 4.11.  

The quantitative analysis generated by the Spheroid Analysis plugin enabled the 

effect of the BTK inhibitors on the process of endothelial sprouting to be effectively 

studied using the different parameters. The addition of the inhibitor compounds into 

the assay caused a range of endothelial sprouting phenotypes due to the variations 

in specificity and selectivity of the compounds to their target protein. The inhibitor 

compounds had different modes of action and it is likely that other endothelial 

kinases would have been additionally inhibited with the use of these inhibitor 

compounds in the assay. Since it was determined that the inhibitor compounds 

affected endothelial sprouting, it was likely that these BTK inhibitors additionally 

target the endothelial expressed tyrosine kinase BMX. 
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Figure 4.11 Bruton’s tyrosine kinase (BTK) inhibitors significantly reduced 
endothelial sprouting  

Fluorescent spheroids were formed using the hanging drop spheroid angiogenesis 
assay. Spheroids were treated with either a BTK inhibitor: 5 nM ibrutinib, 50 nM AVL-
292, 25 µM LFM-A13, or DMSO control. A) Confocal images 16 hrs after collagen 
embedding, scale: 250 µm, B) Image analysis performed using the Spheroid Analysis 
plugin. Statistical analysis was performed using the Mann-Whitney test, n=5 
spheroids, ** indicates p ≤ 0.01,* indicates p ≤ 0.05. The error bars are the SEM. 
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4.8. Screening kinases to identify those with roles in endothelial 

migration and tube formation 

To determine whether the small molecule kinase inhibitor compounds differentially 

affected endothelial behaviour, the library of kinase inhibitors were added to the 

scratch wound angiogenesis assay and the matrigel tube formation assay, in addition 

to the hanging drop spheroid angiogenesis assay to identify the effects the kinase 

inhibitors had on the processes of endothelial cell migration and tube formation.  

For the assays, the inhibitor compounds were used at a concentration of ten times 

their IC50 values as described in chapter two section 2.4.1. Firstly, to determine the 

effect of the inhibitor concentrations on the viability of the endothelial cells, a cell 

viability assay involving the tetrazolium salt WST-1 was used to provide 

spectrophotometric quantification at 450 nm. The 80 small molecule inhibitor 

compounds were added to a monolayer of endothelial cells and the cell viability 

results revealed that the addition of 25 inhibitors at this concentration resulted in 

metabolically inactive endothelial cell populations, these inhibitors are identified by 

grey bars in figure 4.12. The addition of the inhibitor compounds that caused less 

than a 50% cell survival rate were excluded from the scratch wound and matrigel 

tube formation assays, this resulted in 55 inhibitor compounds that were used at their 

tested concentration for screening purposes within the assays and these inhibitors 

are shown as black bars in figure 4.12.  

The scratch wound migration assay was used to specifically identify kinases that had 

roles in cell motility and migration. The closure of the scratch was monitored and the 

percentage of closure at 12 hrs was calculated and normalised to the rate of scratch  
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Figure 4.12 Bar charts showing the effect of the inhibitor concentrations on cell 
viability 

HUVECs were cultured with the kinase inhibitors and cleavage of the tetrazolium salt 
WST-1 was measured by determining the light absorbance at 450 nm, n=4 
experiments, four absorbance measurements were taken for each inhibitor and the 
mean percentage of cell survival rate was calculated and plotted. The inhibitor 
compounds identified in grey caused cell death, whereas the inhibitors identified in 
black were used for screening purposes. 
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closure of the DMSO treated controls. The images in figure 4.13 showed that the 

DMSO control scratch had nearly closed 12 hrs after the scratch was made due to 

migration of the endothelial cells into the area of the scratch. In comparison, the rate 

of scratch wound closure was reduced in the presence of many of the inhibitor 

compounds including tyrphostin 46 which targeted and inhibited EGFR. As shown in 

figure 4.13, a scratch was still evident within the endothelial monolayer after 12 hrs; 

such result implied that endothelial migration was dependent on EGF signalling.   

Analysis of the scratch images to determine the percentage of scratch wound closure 

after 12 hrs revealed that 18 of the inhibitors caused significant reductions in the rate 

of scratch closure, shown in figure 4.14. Six of the inhibitors which reduced scratch 

closure targeted EGFR and three of the inhibitors inhibited PDGFR, both of these 

kinases are known to play vital roles in signalling cascades.  

Interestingly, the rate of scratch wound closure was significantly enhanced upon the 

addition of indirubin which targeted glycogen synthase kinase-3 (GSK-3)β and cyclin-

dependent kinase 5 (CDK5), this result was unexpected since treatment with 

indirubin has been shown to reduce tumour angiogenesis231. Zhang et al. showed 

that indirubin inhibited endothelial cell proliferation using an MTS proliferation assay 

and additionally induced cell apoptosis231. 
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Figure 4.13 The scratch wound angiogenesis assay was used to screen 
kinases for those with roles in cell migration 

The scratch wound assay was performed in the presence of kinase inhibitors or 
DMSO as the control; the images were taken 0, 6, 12 hrs after the scratch was made 
in a confluent monolayer of HUVECs and the rate of scratch wound closure was 
monitored to track cell migration, scale: 400 µm. 
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Figure 4.14 Analysis of the scratch wound angiogenesis assay identified that 
eighteen inhibitors significantly affected cell migration 

The percentage of scratch width closure at 12 hrs was calculated and normalised to 
the DMSO control, n=4 experiments and an average value for scratch closure was 
calculated. Statistical differences were determined using a Mann-Whitney test, *** 
indicated p ≤ 0.001, ** indicated p ≤ 0.01 and * indicated p ≤ 0.05. 
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The matrigel tube formation assay was used to specifically identify kinases that had 

roles in regulating endothelial tube formation. The numbers of endothelial loops 

formed by the tubular structures in the presence of the inhibitors was quantified and 

normalised to the number of loops formed by the endothelial cells in the presence of 

DMSO as the control. The example images in figure 4.15 show that a fully connected 

network of tubules formed in the presence of DMSO, whereas the treatment with the 

kinase inhibitors caused a range in the severity of defective tubular formation. The 

images in figure 4.15 showed that the addition of H-7·2HCl which inhibited  PKA, 

PKG, MLCK, PKC, tyrphostin 46 which inhibited EGFR and tyrphostin 9 which 

inhibited PDGFR all caused abnormal tubular growth.  

Upon analysis of the tubular images, 32 kinase inhibitors produced statistical 

differences between the numbers of loops formed by the endothelial cells compared 

to the number of loops formed in the presence of DMSO, as shown in figure 4.16. 

Ten of these inhibitors targeted EGFR which would indicate that EGFR was required 

for endothelial tubular formation as well as cell migration. Significant reductions were 

also observed upon the addition of inhibitors that targeted PDGFR. Interestingly, two 

inhibitor compounds Piceatannol and Y-27632.2HCl caused significant increases in 

the numbers of loops formed; these inhibitors targeted Syk and ROCK respectively.  
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Figure 4.15 The matrigel tube formation assay was used to screen kinases with 
roles in endothelial tubulogenesis 

The tube formation assay was carried out with the addition of the kinase inhibitors or 
the DMSO control and images of the tubular networks were taken after 12 hrs, scale: 
800 µm. 
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Figure 4.16 Analysis of the matrigel tubular images confirmed that 28 inhibitors 
significantly affected endothelial tubulogenesis 

Image analysis was performed using the Angiogenesis Analyser ImageJ plugin, the 
number of tubular loops was calculated as a percentage and normalised to DMSO 
controls, n=4 images of tubule formation for each inhibitor.Statistical differences were 
determined using a Student’s t- test, where **** indicated p ≤ 0.0001, *** indicated p ≤ 
0.001, ** indicated p ≤ 0.01, * indicated p ≤ 0.05. Error bars represent the SEM.  
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The combined results from the hanging drop spheroid angiogenesis assay, the 

scratch wound assay and the matrigel tube formation assay used to assess the 

response to the addition of kinase inhibitors in the different assays modelling aspects 

of angiogenesis were normalised to their corresponding controls and percentage 

values were generated and displayed as a heat map in table 4.3. The total sprouting 

length was chosen to represent the data for endothelial sprouting as this parameter 

was able to give an understanding of how the overall sprouting network was affected 

by the addition of the inhibitor compound. The heat map table enabled easy 

visualisation and determination of the effects the kinase inhibitor compounds had on 

the processes of endothelial sprouting, migration and tube formation.  

The results in table 4.3 showed that there were 14 inhibitor compounds which 

reduced endothelial activity in all three assays compared to the controls, as shown by 

the orange and red colours in the table. Six of these compounds inhibited the action 

of EGFR which reduced cell migration, tube formation and endothelial sprouting; 

these inhibitors were AG-494, RG-1462, tyrphostin 25, tyrphostin 46, benzoic acid 

and erbstatin analog. Four inhibitors also reduced cell migration, tube formation and 

endothelial sprouting by targeting PDGFR and the addition of PKC-412 reduced 

endothelial activity most severely by inhibiting PKC as shown by the red boxes for all 

three assays. The only inhibitor which was identified to increase endothelial activity in 

more than one assay was H-8 which acted on PKA and PKG, the addition of H-8 

caused increased cell migration and tube formation but reduced endothelial sprouting 

length.  
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Table 4.3 Heat map table to show the screening results of the kinase inhibitors 
on endothelial migration, tube formation and sprouting.  

The combined data generated from the scratch wound assay (figure 4.14), the 
matrigel tube formation assay (figure 4.16) and the hanging drop spheroid assay 
(total sprouting length from table 4.2 and figure 7.2 found in the appendix) for each 
inhibitor was normalised to their corresponding control data sets and the percentage 
was plotted in a different colour to reflect the result, red (0-40% of control), orange 
(41-80%), yellow (81-120%), light green (121-160%), dark green (161-200%). Each 
inhibitor was used at a concentration of ten times their IC50 values and the IC50 
values for the inhibitors are stated in table 2.4 on page 49. 

 
 

  0-40% Highly below control 

  41-80% Below control 

  81-120% Similar to control 

  121-160% Above control 

  161-200% Highly above control 
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U-0126 MEK 

   SB-203580 P38 MAPK 

   H-7·2HCl PKA, PKG, MLCK, PKC 

   Staurosporine Pan-specific 

   AG-494 EGFR, PDGFR 

   AG-825 HER1-2 

   Lavendustin A EGFR 

   RG-1462 EGFR       

TYRPHOSTIN 25 EGFR       

TYRPHOSTIN 46 EGFR       

TYRPHOSTIN 47 EGFR       

TYRPHOSTIN 51 EGFR       

TYRPHOSTIN AG 1288 Tyrosine kinases       

TYRPHOSTIN AG 1478 EGFR       

TYRPHOSTIN AG 1295 Tyrosine kinases       

TYRPHOSTIN 9 PDGFR       

PKC-412 PKC       

Piceatannol Syk       

PP1 Src family       

AG-490 JAK-2       

AG-370 PDGFR       
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LY 294002 PI 3-K       

Wortmannin PI 3-K       

GF 109203X PKC       

Hypericin PKC       

Ro 31-8220 mesylate PKC       

H-89·2HCl PKA       

H-8 PKA, PKG       

Benzoic acid EGFR, CaMK II       

KN-62 caMK II       

KN-93 caMK II       

ML-7·HCl MLCK       

N9-isopropyl-olomoucine CDK       

Olomoucine CDK       

Iso-olomoucine Negative control       

Roscovitine CDK       

LFM-A13 BTK       

SB-202190 P38 MAPK       

PP2 Src family       

ZM 336372 cRAF       

SU 4312 Flk1       

AG-1296 PDGFR       

GW 5074 cRAF       

Erbstatin analog EGFR       

Quercetin·2H2O PI3-K       

SU1498 Flk1       

SP 600125 JNK       

Indirubin GSK-3 β, CDK5       

Indirubin-3'-monooxime GSK-3 β       

Y-27632·2HCl ROCK       

Kenpaullone GSK-3 β       

Triciribine Akt       

BML-259 Cdk5       

BML-265 EGFR       

Rapamycin mTOR       
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4.9. Chapter discussion 

One of the aims of this chapter was to test and evaluate a new ImageJ plugin which 

had been designed to analyse endothelial sprouting. The automated computer based 

analysis method was tested by applying the plugin to a range of fluorescently labelled 

sprouting images generated by using a large library of kinase inhibitors within the 

hanging drop spheroid angiogenesis assay. The results presented in this chapter 

showed that the plugin is a useful and valuable tool for analysing endothelial 

spheroid images generated from the spheroid assay. The results confirmed that the 

plugin was able to rapidly generate quantification on a number of sprouting 

parameters, generating results comparable and 6.7 times faster than the manual 

method for calculating the total sprouting length of spheroids. Importantly, the highly 

sensitive plugin was able to accurately analyse a large range of sprouting 

phenotypes including hyper-sprouting which would be highly challenging to analyse 

using the manual method of measuring the lengths of the sprouts.  

The brightfield and phase contrast microscopy images of the hanging drop spheroids 

outlined the problems faced when imaging and analysing the three dimensional 

structure of the sprouting spheroids. These imaging modalities did not allow for the 

spheroids to be imaged at high resolution as these techniques only capture one focal 

plane in a single image therefore many of the cellular sprouts appeared out of focus. 

The images presented the problem of incomplete object boundaries with minor 

distinctions observed between the image object of the endothelial cells and the 

image background of the collagen matrix. To improve the imaging resolution and to 

define the localisation of the endothelial cells in the sprouting process, the cells were 

fluorescently labelled with a high emission cytoplasmic dye CFSE prior to the 
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formation of spheroids. Confocal microscopy was used to generate optical sections 

of the sprouting spheroids which were compressed to generate a highly fluorescent, 

high resolution image of the spheroids which provided a clear distinction between the 

endothelial cells and background and as a result were easier to analyse.  

A widely used approach for analysing endothelial sprouting from spheroid images is 

to count the number or measure the lengths of the sprouts, often computer software 

such as DP-Soft Olympus or ImageJ can be used to aid this manual analysis 

method. The user of these software tools can measure along the lengths of each 

individual sprout and manually record the lengths to present an average or total 

sprout length per condition233. However, such methods can be labour intensive, time 

consuming and subjective.   

In this chapter, an ImageJ plugin known as Spheroid Analysis was used to analyse 

endothelial sprouting, this method of analysis enabled rapid and objective 

quantification of a number of different image parameters. Testing the plugin revealed 

that it was able to rapidly analyse a wide range of sprouting phenotypes including 

hyper-sprouting which would be problematic and time consuming to analyse 

manually. The plugin was able to analyse the images rapidly with quantitative outputs 

generated 6.7 times faster than the manual analysis method of measuring the total 

sprouting length. The plugin would be suitable for analysing both small and large 

imaging based studies such as for screening purposes as outlined in this study. The 

plugin effectively and efficiently analysed 440 spheroid images allowing the 

assessment and identification of kinases with roles in endothelial sprouting. As well 

as providing useful information on the average and total sprouting lengths, number of 

endothelial sprouts, junctions and end points, the plugin was able to give an 
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indication of the sprouting distribution represented in the image through the 

generation of a fluorescence intensity profile plot.  

The plugin relied on a highly fluorescent spheroid image; therefore spheroids were 

labelled with 5 μM CFSE to enable accurate analysis of endothelial sprouting. At 

present, the plugin requires a single coloured fluorescence image with one spheroid 

per image. Future advancements in the development of the plugin would include 

adaptations which would allow multiple spheroids per image to be analysed thus 

speeding up the imaging process and possibly providing a user selection tool which 

would allow the user to select which spheroids within the image to analyse. Further 

work would also include advancing to analysing two coloured fluorescence images, 

enabling the dynamics between tip and stalk cells to be studied and quantified. 

The ImageJ Spheroid Analysis plugin was used to rapidly analyse spheroids treated 

with a range of PAK and BTK inhibitors. PAKs consist of a six membered family of 

enzymes which have biological roles in controlling cellular movement and motility, as 

well as regulating the organisation of the actin cytoskeleton222. PAKs become 

activated from the binding of the Rho family of GTPases including Rac1 and 

Cdc42222,233,234. The pan specific inhibitor PF-3758309 targets group B 

serine/threonine kinase PAKs as well as also inhibiting group A PAKs, although PF-

3758309 is considerably less active against this PAK subfamily235. It was identified by 

Murray et al. that PF-3758309 acts through competitive binding of the ATP site within 

the PAKs catalytic domain to prohibit the phosphorylation event of a Rho-family 

guanine nucleotide exchange factor GEF-H1235. Therefore, it was unsurprising that 

the addition of PF-3758309 into the spheroid assay caused significant reductions in 

endothelial sprouting compared with the DMSO control treated spheroids. Deacon et 



162 
 

al. identified that the other PAK inhibitor IPA-3 to be a highly selective non-

competitive PAK1 inhibitor236. Treatment with different concentrations of IPA-3 

resulted in comparable sprouting to the DMSO controls, proving that PAKs targeted 

with PF-3758309 but not IPA-3 are important for endothelial sprouting.  

BTK and BMX are members of the Tec family of protein tyrosine kinases which play 

crucial roles in many signal transduction cascades within B lineage lymphocytes and 

bone marrow derived cell lineages regulating cell events such as survival, 

differentiation and adhesion224,228. BTK is not expressed in endothelial cells, however 

in this study it was shown that the action of the BTK inhibitors AVL-292 and LFM-A13 

affected the process of endothelial sprouting as identified by analysing the spheroid 

images using the Spheroid Analysis plugin. The mechanisms behind the action of the 

BTK inhibitors has been well characterised, many inhibitors prevent activation 

through prevention of an auto-phosphorylation event, targeting the tyrosine residue at 

position 551237. Ibrutinib inhibits both BTK and BMX by covalently binding to the 

target protein and all BTK inhibitors used in this study were known to prevent the 

auto-phosphorylation event of BTK227-230,238. It was likely that these inhibitor 

compounds were targeting BMX, a BTK related tyrosine kinase which is highly 

expressed in endothelial cells to reduce endothelial sprouting223. The results from the 

use of these inhibitors in the hanging drop spheroid assay therefore identified that 

BMX is required for endothelial sprouting.  

The kinase inhibitor compounds from the small molecule inhibitor library were used to 

target specific kinases within endothelial cells to determine the effects of inhibiting 

the action of these proteins on endothelial sprouting, migration and tube formation. 

However, it is highly likely that each kinase inhibitor compound inhibits other protein 
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kinases in addition to their presumed target protein kinases. Many small molecule 

inhibitors have broad specificity profiles and cause inhibition of more than one protein 

kinase, additionally the compounds do not always only target additional kinases 

which have closely related or highly similar primary structures43,44. Kinases play 

crucial roles in signal transduction pathways, therefore kinase inhibitor screens can 

be used as useful tools for identifying potential new roles or involvement of these 

proteins in cellular pathways. However, interpreting the results of kinase inhibitor 

screens should be approached with caution due to the low specificity these 

compounds have to their targets.  

A particular example of the broad specificity profiles exhibited by small molecule 

kinase inhibitors was outlined in this study; PDGFR is not expressed in endothelial 

cells however the treatment with four PDGFR kinase inhibitors into the hanging drop 

spheroid assay, the scratch wound assay and the tube formation assay caused 

significant reductions in endothelial activity in all three assays. PDGFR is activated 

through the binding of the PDGF ligand causing an auto-phosphorylation event of the 

receptor and upon activation PDGFR binds to Src homology 2 (SH2) domain 

containing proteins to participate in downstream signalling events50,56. Since PDGFR 

is not expressed in endothelial cells, it is likely that the inhibitor compounds used in 

the screen were targeting the structurally related endothelial expressed tyrosine 

kinase receptor VEGFR. Many commonly used therapeutic agents including 

sorafenib and sunitinib which are used primarily to target VEGFR to reduce vessel 

growth in vivo are known to additionally target PDGFR53,57-59. PDGF signalling is also 

often targeted therapeutically to prevent pathological angiogenesis since there is high 

expression of PDGFR in pericytes, therefore blocking this receptor tyrosine kinase 
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causes pericytes to detach from the vessels causing destabilisation of the 

vasculature45,60-62. 

The results of the kinase inhibitor screen identified six inhibitor compounds which 

targeted EGFR and significantly reduced endothelial migration in the scratch wound 

angiogenesis assay. Additionally, ten compounds reduced tube formation in the 

matrigel tube formation assay by targeting EGFR, whilst nine EGFR inhibitors 

reduced the total sprouting length of endothelial sprouts in the hanging drop spheroid 

assay. The identification of EGFR having an important role in endothelial migration, 

sprouting and tube formation was of interest since it has been reported that EGFR is 

not expressed in normal endothelial cells, even though there have been many reports 

that have stated that EGFR is highly expressed by tumour associated endothelial 

cells239. The overexpression of EGFR and its ligand EGF has been associated with 

many different types of cancers, therefore this type I receptor tyrosine kinase has 

been targeted by therapeutic agents known as EGFR tyrosine kinase inhibitors 

(TKIs), which prevents activation of the receptor and causes an  induced apoptosis of 

cancer cells240-244. Cancer cells secrete the EGFR ligand EGF in response to hypoxic 

conditions, subsequent binding of EGF to EGFR causes receptor dimerization 

followed by auto-phosphorylation and the recruitment of additional signalling and 

adaptor proteins which affect cellular migration, proliferation and differentiation as 

well as promote anti-apoptosis64,65,245. The results in this study suggest that EGFR 

could also be expressed by normal endothelial cells and acts through EGF signalling 

to regulate endothelial migration, sprouting and tube formation which are critical 

steps within the angiogenic pathway. 
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Inhibiting PKC using the inhibitors H-7.2HCl and PKC-412 also impaired cell 

migration, endothelial sprouting and tube formation. The different isoforms of PKC 

become activated through signalling of intracellular calcium ions, diacylglycerol 

(DAG) and phospholipids such as phosphatidylserine, this activation event causes 

PKC to modulate transcriptional events67. Additionally, GW 5074 reduced 

angiogenesis by targeting cRAF which is known to play a critical role in determining 

cell fate through association and regulation of the MAPK and ERK pathway246.  

Interestingly, treatment of staurosporine in the hanging drop spheroid assay caused 

an enhancement of the numbers of endothelial segments, junctions and end points 

formed by the spheroids but caused defective cell migration and tube formation. 

Staurosporine is a pan-kinase specific inhibitor which is a widely used apoptotic 

agent for numerous cell lines247. Kabir et al. showed that staurosporine acts to induce 

cell death in endothelial cells through dephosphorylation of FAK causing disassembly 

of focal adhesion complexes248. It is therefore possible that staurosporine caused 

defective cell migration due to the high dependency of the formation of focal 

adhesion complexes for cell motility.  

In conclusion, the kinase inhibitor screen was able to generate a range of endothelial 

sprouting phenotypes which proved useful for testing and evaluating the capabilities 

and outputs generated by the designed ImageJ Spheroid Analysis plugin. The 

ImageJ plugin can be applied to different morphological images of endothelial 

sprouting from fluorescently labelled spheroids generated using the in vitro hanging 

drop spheroid angiogenesis assay. As outlined in this chapter, the Spheroid Analysis 

plugin can rapidly and effectively generate quantitative results on many different 

sprouting parameters and is therefore suitable for large scale screening procedures 



166 
 

to identify compounds which affect the process of endothelial sprouting. Furthermore, 

the results in this chapter outlined the broad spectrum of activity exhibited by small 

molecule kinase inhibitors and that protein kinases particularly receptor tyrosine 

kinase activity was indispensable for effective endothelial migration, proliferation and 

tube formation. 
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Chapter Five 

Developing, testing and 

evaluating computer based 

analysis methods for quantifying 

the zebrafish vasculature 
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5.1. Chapter summary 

The aim of this chapter was to generate a computer based analysis method to 

quantify the development of the intersegmental blood vessels (ISVs) in embryonic 

fli1-GFP zebrafish. Two computer based analysis methods were developed using 

IMARIS and ImageJ software to provide quantification of the vasculature by 

specifically targeting the ISVs and their connectivity to the dorsal longitudinal 

anastomotic vessel (DLAV). The ImageJ analysis method was tested using normal 

and abnormal zebrafish vasculature images and compared to a frequently used 

manual analysis method. The advantages and disadvantages for both computer 

based analysis methods were considered and discussed and the results and findings 

of these methods are presented in this chapter.  

The structure for this chapter is as follows: section 5.2 chapter introduction, section 

5.3 presents the computer based analysis methods for analysing the zebrafish 

vasculature, section 5.4 imaging the effects of silencing vascular related genes, 

section 5.5 analysing and evaluating the effects of silencing vascular related genes, 

section 5.6 analysing the effects of inhibitor treatment on vascular development, 

section 5.7 evaluating the computer based analysis method, section 5.8 chapter 

discussion.  
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5.2. Chapter introduction 

The zebrafish (Danio rerio) is a widely used in vivo vertebrate model used to study 

blood vessel formation. Imaging the cardiovascular development in this organism 

allows the effects of silencing genes through morpholino oligonucleotide (MO) 

injection to be determined and novel compounds which act on the angiogenic 

pathway to be identified. However, at present there are limited computer based 

analysis tools which are easy to use and widely available that can be applied 

specifically to zebrafish images to provide rapid quantification of the growth and 

connectivity of the developed vasculature. 

Vascular analysis data presented in the literature frequently targets the development 

of the ISVs as these are the first angiogenic vessels to form in the zebrafish at 24 

hpf145. The extent of ISV disruption in response to anti-angiogenic factors such as 

inhibitor compounds or knocking down genes is frequently reported by manually 

classifying the appearance of the vasculature into categories such as ‘mild’, 

‘intermediate’ or ‘severe’ disruption164-167 or represented by a single calculation of the 

number of ISVs that have connected or remain disconnected to the DLAV in the trunk 

and tail regions of the zebrafish embryos168-176. These analysis methods may be 

performed manually or assisted using imaging or microscopy software, these 

methods give a global view and understanding of the developed vasculature, 

however apart from being labour intensive, they do not provide information on the 

lengths of the ISVs and in the case of the manual classification system it also does 

not specify vascular connectivity. In this chapter, two computer based analysis 

methods that were developed to quantify ISV growth and development will be 

presented, along with the findings of testing and evaluating the analysis methods. 
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5.3. Computer based analysis methods for analysing the zebrafish 

vasculature 

The ISVs are fully formed and connected to the DLAV at 48 hpf therefore the 

zebrafish vasculature is often imaged at this time point, when the effects of a gene 

knock down or the treatment with angiogenic compounds can be clearly visualised by 

studying the growth of the ISVs145. The aim of this study was to develop computer 

assisted approaches to enable easy and rapid quantification of these blood vessels. 

To achieve accurate analysis, there was a requirement for the vascular images to 

have a high fluorescence intensity particularly from the ISVs and DLAV in order to 

assess ISV connectivity; this was achieved by compressing confocal optical sections 

to produce a highly fluorescent vascular image. 

The first computer based approach was generated using ImageJ software, which is 

an open platform designed to analyse scientific images. The ImageJ analysis method 

consisted of a series of steps as outlined in figure 5.1. Firstly, the compressed 

vascular image was loaded into ImageJ, where the polygon selection tool was used 

to outline the DA at the positions where the ISVs sprout from during development. 

The line generated by the polygon selection tool was joined up around the base of 

the image to form a fully connected shape containing all of the vessels that were not 

required for the analysis process such as the DA and the PCV, shown in step 2 of 

figure 5.1. By clicking on the selected area with the black fill tool, these vessels were 

merged into the image background leaving the remaining vessels of the ISVs and 

DLAV within the image to be analysed. The vascular image was then binarised in 

step 4 to produce an 8-bit black and white image. The fill holes function shown in 

step 5 was used to remove loops formed by the DLAV as only the connectivity of the 
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ISVs was required for analysis. The despeckle function shown in step 6 was used to 

remove noise pixels which were acquired during the image acquisition process. The 

image was then skeletonised using the inbuilt Skeletonize 3D plugin, which eroded 

the vascular objects within the image iteratively until the vessels were visualised as a 

network structure 1 pixel in diameter, as shown in step 7. The skeletonised image 

was then analysed and quantified using the inbuilt ImageJ Analyze Skeleton (2D/3D) 

plugin. Each pixel from the skeletonised network was assessed according to its 

neighbouring pixels and assigned either as a segment, junction or end point pixel. A 

segment pixel was assigned if the pixel had exactly two neighbouring pixels in the 

skeleton, a junctional pixel was assigned if it had more than two neighbouring pixels 

and an end point pixel was assigned if it had zero or one neighbouring pixel. The 

vascular segments within the images were defined as a series of connected segment 

pixels which were separated either by two end point pixels, two junctional pixels or 

one end point and one junctional pixel, see figure 7.7 in section 7.3 of the appendix 

for further information on these parameters. The analysed image in step 8 of figure 

5.1 shows the analysed skeleton that was generated by the ImageJ analysis method, 

where orange pixels represented the outline of the vessels, pink pixels indicated the 

presence of vascular junctions and blue pixels showed the vascular end points. The 

area highlighted in the red box was enlarged to show the identification of individual 

pixels using this approach and an overlaid image of the original zebrafish vascular 

image and the skeletonised vascular network was generated to determine the 

accuracy of the analysis procedure, as shown in step 10 of figure 5.1. The steps of 

the ImageJ analysis method shown in figure 5.1 from binarisation through to 

generating the outputs of the analysed vascular skeleton (steps 4 - 8) were recorded 
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Figure 5.1 Steps of the ImageJ based approach to analyse vascular images of 
fli1-GFP zebrafish 

The ISVs and DLAV were analysed by 1) loading in the vascular image, 2) removing 
the PCV and DA using the polygon selection tool, 3) leaving the ISVs and DLAV, 4) 
binarisation created a black and white image, 5) the fill holes function removed small 
holes in the DLAV, 6) the despeckle function removed noise pixels, 7) the 
vasculature was skeletonised, 8) analysis of the skeletonised vasculature, 9) the 
region highlighted in the red box was enlarged to show the identification of individual 
pixels, 10) an overlaid image of a region of the original and skeletonised images to 
show the accuracy of the procedure, arrows show an end point and junctional pixel. 

Load in zebrafish vasculature image Use the polygon selection tool 

The ISVs and DLAV Binarised image 

Fill holes function Despeckled image 

Skeletonised image Analysed vasculature 

Highlighted skeletonised region Overlaid image 
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into an ImageJ macro known as the zebrafish vasculature analysis macro this 

enabled semi-automated analysis of the zebrafish vascular images and reduced the 

processing time. See section 7.4 in the appendix for the code of the recorded 

zebrafish vasculature analysis macro. One limitation of this analysis method was the 

requirement to transfer the image data files from ImageJ to Microsoft Excel to further 

process the data and select the desired parameters. For this study the total and 

average vessel lengths were calculated in Excel as well as the total numbers of 

vascular junctions and end points. The semi-automated ImageJ method of analysis 

relied on the inbuilt plugins Skeletonize 3D and Analyze Skeleton (2D/3D) but the 

method was able to rapidly analyse the vascular images and the outputs of the 

analysed skeleton data from a single image were produced within 35 seconds.   

The second analysis method was produced using the Filament Tracer module in 

IMARIS. In a similar way to the ImageJ method, a series of steps were produced to 

analyse the growth and connectivity of the ISVs, the series of steps has been shown 

in figure 5.2. Firstly the compressed zebrafish vascular image was loaded into 

IMARIS, where a three dimensional mask of the vasculature was generated using the 

surface function and selecting a threshold value shown in grey in step 2 of figure 5.2. 

The original vascular mask was created to provide a filtered version of the original 

image containing all of the vessels within the image; since the mask was used for all 

subsequent measurements of the vessels, therefore the mask must accurately 

represent the original vasculature. Once the mask had been created, it was possible 

to adapt the mask using the cutting tool by selecting the base of each ISV along the 

DA, in this way each ISV was disconnected from the DA, the red lines in step 4 

shows where the cutting tool was positioned. 
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Figure 5.2 Steps of the IMARIS approach to analyse fli1-GFP zebrafish vascular 
images 

The ISVs and DLAV were analysed by 1) loading in the vascular image, 2) a 3D 
mask of the vasculature was created in one vascular region, 3) the 3D mask was 
expanded to include all the vessels in the image and was rotated to allow clear 
visualisation and connectivity of the blood vessels, 4) the cutting tool was used to 
remove individual blood vessels from the image, 5) the PCV and DA was highlighted 
and removed, 6) leaving the ISVs and DLAV for analysis, 7) the remaining 
vasculature was skeletonised and analysed for a range of parameters including 
lengths, connectivity and end points, 8) the analysed skeleton was overlaid onto the 
original image to check the accuracy of the analysis procedure. 

Load in zebrafish vasculature image Create surface mask 

3D mask of vasculature 

Select unwanted vasculature ISVs and DLAV 

Cut vasculature mask 

Skeletonised image Overlaid image 

1. 2. 

3. 4. 

5. 6. 
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The DA and PCV were then selected and removed from the mask, leaving a mask 

containing the ISVs and DLAV for analysis. One limitation of this method was the 

requirement to rotate the image between each cut that was applied to the mask to 

enable the cutting tool to work; this image manipulation procedure was time 

consuming as approximately 24 cuts were required per image. The mask of the ISVs 

and DLAV was skeletonised, which reduced the vessels to a 1 pixel diameter 

network which was then subsequently analysed. The analysis procedure for a single 

image took approximately 5 minutes for images with around 24 ISVs, the time was 

dependent on the number of vessels within the image and the user’s experience of 

the software. The IMARIS software presented the analysis data from the vascular 

skeleton as a table in the software window; this data table was exported to Microsoft 

Excel to calculate the total number of vessels, vascular junctions, end points and 

average and total vessel length. The skeletonised image was easily overlaid onto the 

original image to determine the accuracy of the skeletonisation step, shown in the 

final image of figure 5.2.  

To compare the zebrafish vasculature analysis data generated by the two computer 

based analysis methods using ImageJ and IMARIS, images of normal zebrafish 

vascular development were produced by carrying out time-course imaging of fli1-GFP 

zebrafish embryos from 24 – 72 hpf. Optical image sections were compressed to 

produce high resolution images of the blood vessels in the trunk and tail regions of 

the zebrafish and the images in figure 5.3 showed the rapid growth of the ISVs.  

At 24 hpf the endothelial cells of the ISVs were seen to sprout bilaterally from the DA 

with filopodia extending from the tip cells of the developing ISVs to direct vessel 

growth. From 26 hpf to 28 hpf the ISVs elongated and produced increasing numbers  
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Figure 5.3 Developmental time course images of the zebrafish vasculature 

Confocal microscopy images showing the development and connectivity of the ISVs 
with the DLAV in transgenic fli1-GFP zebrafish embryos from 24 hpf to 72 hpf. The 
ISVs sprout from the DA and fully connect with the DLAV at 48 hpf. Scale: 500 µm. 
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of filopodia as they extended and began to reach the neural tube. As the vessels 

approached the neural tube, they separated into rostral and caudal branches which 

interconnected to form the DLAV157. At 30 hpf and 36 hpf, the paired ISVs were 

clearly visible and the DLAV had almost fully formed. At 48 hpf, all of the ISVs were 

joined to the DLAV and the primary vessel network within the organism had been 

established. By 72 hpf, the entire zebrafish vascular network had fully formed to 

provide a functional circulatory system within the embryo that coincided with the 

straightening out of the tail157. 

The ImageJ and IMARIS methods were used to analyse the zebrafish vascular 

images at the following developmental time points: 24, 26, 28, 30, 36, 48 and 72 hpf; 

the number of blood vessel segments, vascular junctions, end points, total and 

average vessel lengths were measured in the images. The average values for each 

parameter and the standard error of the mean (SEM) at each time point were plotted 

and is shown in figure 5.4.  

Both the ImageJ and IMARIS analysis methods provided quantification of the 

vasculature, studying the parameters measured in the images showed that there was 

a general trend in the results which indicated the rapid development and formation of 

the vascular system between 24 hpf and 30 hpf. The line graphs in figure 5.4 showed 

a rapid increase in the numbers of vessel segments, junctions, end points and total 

vessel length between these time points. This result correlated accordingly with the 

overall development of the embryo which occurs most rapidly in the first few days 

after fertilisation. Generally, the rate of vascular growth decreased after 30 hpf which 

reflected the slower rate of development in the organism.  
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Figure 5.4 Line graphs of vascular analysis comparing the data generated by 
the ImageJ and IMARIS methods of analysis 

The developmental time-course images of the zebrafish vascular system were 
analysed using the ImageJ and IMARIS analysis methods, the parameters of the 
total and average vessel lengths, numbers of vessel segments, junctions and end 
points at each time point were plotted, n=10-14 images. Error bars represent the 
standard error of the mean (SEM). 
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The graphs for the number of vessel segments and the total and average vessel 

lengths showed that similar results were obtained using the two analysis methods; 

the average vessel length remained relatively constant over the course of 

development, between 30-40 µm. The average vessel length was derived from the 

parameters of total vessel length and the number of vessel segments and since both 

of the analysis methods calculated an increase in total vessel length and the number 

of segments over time, it was expected that the average vessel length would remain 

relatively constant. The IMARIS method measured slightly higher numbers of 

segments at 72 hpf compared to the ImageJ method, but at this time point the total 

vessel length measured from both methods was the same, therefore a slight 

reduction in the average vessel length was calculated for the IMARIS method at this 

time point.  

Similar numbers of vascular junctions were measured using the two analysis 

methods from 24 hpf to 36 hpf, however after 36 hpf the IMARIS analysis method 

continued to record increasing numbers of junctions, with a mean of 132 junctions 

calculated at 72 hpf compared with 74 junctions measured by the ImageJ method. 

The two analysis methods have different morphological post-processing steps which 

explain this difference; the ImageJ method used a fill holes function which is a 

closing operation to remove unwanted vessel loops formed in the DLAV and thereby 

reduced the numbers of junctions measured within the images after 36 hpf when 

these loops developed. The aim of the study was to specifically target the ISVs for 

analysis and measure the length of the ISVs and their connectivity to the DLAV; 

thereby the fill holes function removed the additional junctions formed by the DLAV 

which did not involve connectivity to the ISVs. The fill holes function could be omitted 
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from the analysis process if the DLAV complexity is of interest. The ImageJ method 

therefore continued to measure relatively constant numbers of junctions after 36 hpf, 

even though the complexity and connectivity of the DLAV became more elaborate. In 

the IMARIS method, the additional junctions and loops in the DLAV were included in 

the analysis as this software does not provide a function that performs this closing 

operation. Therefore, as the DLAV increased in complexity over time, an increased 

number of junctions within the vascular images was detected using the IMARIS 

method and this was reflected in the graph in figure 5.4. 

The results for the number of end-points measured using the two analysis methods 

differed although a similar pattern over time was observed. The ImageJ analysis 

method calculated higher numbers of end points at every time point with larger error 

bars, compared to the results of the IMARIS analysis method which detected smaller 

numbers with smaller error bars. An explanation for this difference was again due to 

the differences in the morphological post-processing steps of the two methods. The 

ImageJ method uses the despeckle function to remove any unwanted noise in the 

image, noise are errors in the image file acquired through image acquisition and 

these noise pixels must be removed to improve the accuracy of analysis. The 

despeckle function in ImageJ used a median filter to compare each pixel to its 

neighbouring nine pixels and reassigned noise pixels to the image background to 

excluded these pixels from the analysis procedure, however if any noise pixels, 

image artefacts or background fluorescence remained in the image they will be 

identified in this analysis method as end points. Furthermore, this process could have 

inadvertently eroded or replaced pixels in the vascular object in the image; therefore 

causing minor fragmentation of the vessels upon skeletonisation, introducing higher 
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numbers of end points upon analysis. The IMARIS analysis method relied on the 

formation of a vascular mask created from the connected vascular regions within the 

image, the subsequent measurements and quantification were performed using only 

the mask rather than the original image file, thereby bypassing the requirement to 

remove noise or artefacts from the image.   

To compare the outputs generated by the two analysis methods and determine if 

there was a linear relationship between the results generated by these methods, the 

measurements from each zebrafish image from the developmental time-course study 

were plotted on correlation graphs, shown in figure 5.5. The coefficient of 

determination values (r2 values) for the parameters of total vessel length, number of 

vessel segments, junctions and end points were also calculated to determine if there 

was a linear relationship between the data generated by the ImageJ and IMARIS 

analysis methods. The plot for the average vessel length was not included as this 

parameter was dependent on the total vessel length and the number of segments. An 

r2 value of 1.0 indicated an entirely linear relationship between the x and y co-

ordinates, whereas an r2 value of 0.0 indicated no linear relationship.  

The highest r2 value of 0.841 was calculated for the data generated on the parameter 

of total vessel length, this proved that similar and comparable results were obtained 

throughout zebrafish development using the two analysis methods. Measuring the 

number of vascular junctions within the images using the analysis methods 

generated an r2 value of 0.665, the graph in figure 5.5 showed a linear relationship for 

the smaller numbers of junctions measured however due to IMARIS measuring the 

additional junctions formed in the DLAV at time points after 36 hpf, this initial linear  
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Figure 5.5 Studying linear relationships between the outputs generated from 
the ImageJ and IMARIS analysis methods 

The measurements generated from the two analysis methods using ImageJ and 
IMARIS from each zebrafish vascular image from the developmental time course 
study were compared to identify linear relationships between the data sets. The 
outputs of the parameters for the total vessel length and the number of vessel 
segments, junctions and end points were studied. The r2 values were calculated to 
give an indication of the linear relationship between the two methods and the line of 
best fit was plotted. 
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relationship was lost and the graph showed that ImageJ did not measure more than 

90 junctions within the images, compared with 159 for IMARIS. An r2 value of 0.555 

was calculated for the number of vessel segments, with larger variations measured 

for the higher numbers of vessel segments within the images. The smallest r2 value of 

0.197 was calculated for the number of end points, proving that there was not a linear 

relationship between the data generated on this parameter using the two analysis 

methods, which was expected due to the previous results shown in figure 5.4. As 

previously discussed, ImageJ detected more end points within the vascular images at 

each time point compared with the IMARIS method and the graph in figure 5.5 

showed that the highest number of end points calculated by IMARIS was 209 and for 

ImageJ was 353. The differences in the number of end points calculated by the 

ImageJ and IMARIS methods were due to the differences in the morphological post-

processing operations of the two computer based analysis methods. 

The ImageJ analysis method would be freely and widely available to the scientific 

community as the ImageJ software is in the public domain and the macro would be 

easy to implement and use. Additionally, this computer based analysis approach was 

able to rapidly and effectively analyse the zebrafish vasculature, for these reasons 

this analysis method was chosen for subsequent testing and evaluation by 

quantifying abnormal vascular development.  

5.4. Imaging the effects of silencing vascular related genes 

To assess the capabilities of the ImageJ analysis method to quantify abnormal vessel 

development, images of abnormal vasculature development were obtained by 

knocking down known vascular related genes using antisense morpholino 

oligonucleotide (MO) injections at the one cell stage of development in fli1-GFP 
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embryos. Subsequent vessel formation was imaged at either 30 hpf or 48 hpf 

depending on the phenotype resulting from the morpholino knock down and the 

ImageJ analysis method was used to analyse the growth and connectivity of the ISVs 

to the DLAV. 

The vascular images of zebrafish embryos which had been injected with the gene 

targeting morpholino were compared with images obtained using a negative control 

mismatch morpholino. The control mismatch morpholino injected embryos showed 

normal vascular development, with most ISVs fully formed and connected to the 

DLAV at 30 hpf and all ISVs had fully connected to the DLAV at 48 hpf. 

The C-type lectin CLEC14A was knocked down and the development of the zebrafish 

vasculature was imaged at 30 hpf and 48 hpf using confocal microscopy, the images 

are shown in figure 5.6A. Upon CLEC14A knock down, abnormal vessel growth was 

observed with stunted ISV growth and no formation of the DLAV at 30 hpf, however 

observing vascular development at 48 hpf revealed normal vessel development with 

the ISVs fully formed and connected with the DLAV.  

Use of the ECSCR 5’ UTR and splice targeting morpholinos caused defective and 

truncated ISV growth and no DLAV formation at 30 hpf when this glycosylated 

transmembrane protein was knocked down, shown in figure 5.6B. The mismatch 

control morpholinos showed normal development of the vasculature with complete 

formation of the ISVs with connections to the DLAV.    

The knock down of the orphan adhesion G-protein coupled receptor ELTD1 shown in 

figure 5.7A and the predominant roundabout receptor that is expressed in the 

zebrafish vasculature ROBO4 caused defective growth of the ISVs when imaged at  
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Figure 5.6 Silencing CLEC14A and ECSCR caused defective ISV development 
at 30 hpf in fli1-GFP zebrafish 

Oligonucleotide morpholino injection performed at the one-cell stage of development 
in fli1-GFP zebrafish embryos silenced A) C-type lectin domain family 14 member a 
(CLEC14A) and the vasculature was imaged at 30 hpf and 48 hpf, B) Endothelial 
Cell-Specific Chemotaxis Regulator (ECSCR) using the translation-blocking (5’ UTR 
targeting) or splice-blocking morpholino and the vasculature was imaged at 30 hpf,  
scale: 500 µm. 
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48 hpf as shown in figure 5.7B. The ISVs had misdirected growth and were 

truncated; the DLAV remained underdeveloped and disconnected.  

VEGFA is a known potent regulator of angiogenesis and the different isoforms 

generated by alternative splicing regulates blood vessel development. The knock 

down of VEGFA in zebrafish embryos caused severe vascular defects, as shown in 

figure 5.7C. Upon silencing VEGFA, defective ISV sprouting from the DA was 

observed causing absent or severely truncated vessels with only the full length ISVs 

initiating the formation of the DLAV.  

It was also identified in this study that RCAN1.4, which is a variant of regulator of 

calcineurin 1 (RCAN) and upregulated in response to VEGF signalling196, was 

responsible for co-ordinating ISV formation in zebrafish embryos, as well as playing a 

global and essential role in the overall development of the organism. Silencing 

RCAN1.4 through morpholino injection caused disrupted vascular growth and the 

images in figure 5.7D showed that the RCAN1.4 targeted morpholino injected 

embryos remained curved around the yolk sac for a longer period of time before the 

straightening of the tail occurred in comparison to the control treated embryos. 

RCAN1.4 has been shown to be important in regulating endothelial migration and 

tube formation197, and this result revealed an additional role for RCAN1.4 in 

establishing normal vascular morphology during embryonic development of 

zebrafish.  

Members of the ETS-domain family of transcription factors play vital roles during the 

embryonic development of zebrafish, driving differentiation of angioblasts and 

enabling efficient vasculogenesis and angiogenesis249. Two of the transcription family  
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Figure 5.7 Knocking down ELTD1, ROBO4, VEGFA and RCAN disrupted ISV 
and DLAV growth in fli1-GFP zebrafish 

Morpholino injection at the one-cell stage of embryonic development in fli1-GFP 
zebrafish was performed to silence A) EGF, Latrophilin and Seven Transmembrane 
Domain containing 1 (ELTD1), B)  Roundabout 4 (ROBO4), C) Vascular Endothelial 
Growth Factor A (VEGFA), D) Regulator of calcineurin (RCAN), vascular imaging 
was performed at 48 hpf, scale: 500 µm.  
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Figure 5.8 Silencing the ETS transcription factor family member ETSRP caused 
defective and absent ISV growth in fli1-GFP zebrafish 

Fli1-GFP zebrafish embryos were injected at the one cell stage of development with 
oligonucleotide morpholino to knock down A) ETS Related Gene (ERG), B) ETS-1 
Related Protein (ETSRP), C) ERG and ETSRP, the vasculature was imaged at 48 
hpf, scale: 500 µm. 
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members ERG and ETSRP were silenced and the embryos were imaged at 48 hpf. 

Upon ERG knock down, the vasculature developed normally as shown in figure 5.8A, 

the ISVs grew bilaterally and connected to the DLAV. Upon silencing ETSRP as 

shown in figure 5.8B there was defective ISV growth with some vessels completely 

absent and the DLAV failed to fully develop. Ellett et al. reported a synergic functional 

interaction between ERG and ETSRP, and therefore a double knock down to silence 

both transcription factors in zebrafish should have further reduced ISV growth 

compared to silencing ETSRP alone168.  However, no further vascular disruption was 

observed within the embryos upon knocking down both ERG and ETSRP as shown 

in figure 5.8C.    

5.5. Analysing and evaluating the effects of silencing vascular related 

genes 

The vascular related genes of CLEC14, VEGFA, RCAN, ROBO4, ELTD1, ECSCR, 

ERG and ETSRP were knocked down in zebrafish embryos to cause a range of 

vascular abnormalities. To test the capabilities of the ImageJ analysis method to 

analyse a range of vascular morphologies, the vascular images from each gene 

silenced were analysed using the ImageJ analysis approach.  Quantitative data was 

collected on the vascular parameters of the number of vessel segments, junctions, 

end points and the average and total vessel lengths and statistical differences 

between the mismatch and morpholino injected embryo images were determined 

using the Mann-Whitney statistical test. The data generated from images captured at 

30 hpf are represented in bar charts shown in figure 5.9 and at 48 hpf in figures 5.10 

and 5.11. 
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Figure 5.9 Quantitative ImageJ analysis of vascular images studying the knock 
down of CLEC14A and ECSCR in fli1-GFP zebrafish at 30 hpf 

The vascular images of the mismatch (grey) and morpholino (black) injected fli1-GFP 
zebrafish targeting CLEC14A and ECSCR were analysed using the ImageJ analysis 
method and the data represented in bar charts. Significant differences were 
determined using a Mann-Whitney test, n=5-15, and error bars represent the SEM. 
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Figure 5.10 Quantitative ImageJ analysis of vascular images studying the effect 
of silencing vascular related genes on the number of vessel segments, 
junctions and end points at 48 hpf 

The vascular images of the mismatch (grey) and morpholino (black) injected fli1-GFP 
zebrafish targeting VEGFA, RCAN, ROBO4, ELTD1, ETSRP, ERG, ETSRP and 
ERG and CLEC14A were analysed using the ImageJ analysis method and the data 
represented in bar charts. Significant differences were determined using a Mann-
Whitney test, n=5-15, and error bars represent SEM. 
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Figure 5.11 Quantitative ImageJ analysis of vascular images studying the effect 
of silencing vascular related genes on the average and total vessel length at 48 
hpf 

The vascular images of the mismatch (grey) and morpholino (black) injected fli1-GFP 
zebrafish targeting VEGFA, RCAN, ROBO4, ELTD1, ETSRP, ERG, ETSRP and 
ERG and CLEC14A were analysed using the ImageJ analysis method and the data 
represented in bar charts. Significant differences were determined using a Mann-
Whitney test, n=5-15, and error bars represent the SEM. 

**** *** *** ** ** * *** 
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The parameters measured in the vascular images using the ImageJ analysis 

approach were used to draw conclusions on the connectivity and the complexity of 

the vasculature formed. The bar charts in figure 5.9 showed that knocking down 

CLEC14 and ECSCR significantly reduced the connectivity of the vasculature and 

caused defective ISV growth compared to the mismatch control injected embryos at 

30 hpf. The data generated from the ImageJ method revealed that using either the 

splice or the translation blocking morpholino to silence ECSCR caused abnormal 

vessel growth to similar effect. Upon studying the knock down of VEGFA, RCAN, 

ROBO4, ELTD1, ETSRP, ERG, ETSRP and ERG and CLEC14, a range of vascular 

defects and abnormalities were imaged at 48 hpf. Quantitative analysis of the 

vasculature revealed that there were significant reductions in the average and total 

lengths of the vessels when the majority of the vascular related genes were knocked 

down, apart from when CLEC14 and ERG were silenced, which resulted in similar 

vessel lengths compared to their corresponding mismatch controls. The parameters 

that revealed the largest differences between the mismatch and morpholino images 

at 48 hpf were the number of junctions, average and total vessel lengths. The 

number of end points between the mismatch and morpholino images remained 

relatively constant at 48 hpf, possibly due to the morphological post-processing steps 

that lead to the fragmentation of the vessels and inclusion of noise or artefact pixels, 

however a significant reduction in the number of end points was measured when 

VEGFA was silenced as shown in figure 5.10. This result suggested that measuring 

the numbers of end points within vascular images using this method may only be 

informative when there is severe vascular disruption leading to the considerable 

absence of ISV formation.  
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Figure 5.12 Bar charts showing the severity of vascular disruption caused by 
silencing vascular related genes  

The parameters of the number of vessel segments, junctions and total vessel length 
were quantified by the ImageJ zebrafish vasculature analysis method. Fli1-GFP 
zebrafish embryos were injected with morpholino oligonucleotides to silence each 
vascular related gene and the developed vasculature was imaged at 48 hpf. The data 
generated for each gene was normalised to their corresponding control data sets to 
allow the severity of vascular disruption to be compared between the different 
silenced genes. Each bar is represented as a percentage of the control. 
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Figure 5.13 Similar patterns of results were obtained using the ImageJ and 
manual analysis methods 

Fli1-GFP zebrafish embryos were injected with morpholino oligonucleotides to 
silence each vascular related gene and the developed vasculature was imaged at 48 
hpf. The percentage of ISVs that connected to the DLAV in the vascular images of 
both the mismatch (grey) and morpholino (black) injected zebrafish were manually 
analysed and statistical differences were determined using a Mann-Whitney test, 
n=5-15, error bars represent the SEM. 
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The quantitative analysis of the vascular images also enabled a comparative study 

between the severities of vascular disruption caused by silencing the different genes; 

by normalising the data for each gene that was silenced and imaged at 48 hpf to their 

corresponding mismatch control data, the severity of the vascular disruption could be 

easily compared as shown in figure 5.12. The parameters that have been shown in 

figure 5.12 include the number of vessel segments and junctions as well as the total 

vessel lengths since these parameters were able to give a detailed understanding of 

the developed vascular morphology in the organisms, specifically identifying how 

many vessels developed, their connectivity and the extent of global vascular 

formation in the organism. The normalised graphs in figure 5.12 revealed that 

knocking down VEGFA caused the most severe disruption, followed by ROBO4 and 

ELTD1.  Knocking down ERG and CLEC14 at 48 hpf caused the vessels to develop 

with a similar morphology to their corresponding mismatch control embryos. 

To compare the results of the ImageJ analysis method against the frequently used 

analysis approach of manually counting the number of ISVs which connected to the 

DLAV, the vascular images were manually assessed for connectivity and the 

percentage of fully connected ISVs has been shown in figure 5.13. Comparing the 

severity of the vascular disruption between the different silenced genes using the 

manual analysis method revealed a similar pattern of results to the ImageJ analysis 

method, as shown by the bar charts in figures 5.12 and 5.13. The pattern of vascular 

disruption was studied as the total number of junctions measured by the ImageJ 

method was different to the number of connections counted manually. The ImageJ 

method measured an increased number of junctions in comparison to the manual 

method, as ISV outgrowths which formed in the mid region of the vessels during 
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vessel growth were automatically detected using ImageJ. The manual analysis 

method measured only the number of ISVs which formed connections with the DLAV.  

The manual analysis method revealed that knocking down VEGFA, RCAN, ROBO4, 

ELTD1, ETSRP, ETSRP & ERG and imaging at 48 hpf caused significant reductions 

in the number of ISVs which grew from the DA and connected to the DLAV. A 

comparable result was obtained in figure 5.10 which identified that significant 

reductions in the numbers of junctions were measured in the vascular images using 

the ImageJ analysis method, with the addition of CLEC14 which was also identified 

by this method as causing a reduction in junction formation.  

Both methods of analysis revealed that the three genes that caused severe vascular 

disruption when silenced were VEGFA, ROBO4 and ELTD1, with the ImageJ method 

identifying that silencing VEGFA caused the most severe disruption, whereas the 

manual method identified ROBO4. This difference was due to the different vascular 

phenotypes formed by knocking down these genes, silencing VEGFA lead to 

complete absence of ISV growth in some areas along the DA, however where the 

ISVs formed, they often connected to the DLAV. Whereas, in ROBO4 silenced 

embryos the ISVs developed through endothelial sprouting but failed to connect or 

form the DLAV, leading to reduced connectivity using the manual analysis method. 

The ImageJ and manual analysis methods also identified that the two genes that had 

comparable vascular phenotypes to their corresponding control treated embryos 

were ERG and CLEC14 upon imaging at 48 hpf.  
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5.6. Analysing the effects of inhibitor treatment on vascular 

development 

The ImageJ analysis method proved to be a useful tool for assessing the severity of 

vascular disruption in zebrafish when genes were silenced through MO injection; 

therefore the computerised approach was used to determine the effect of inhibitor 

concentrations on vascular development.  

Inhibitor compounds are commonly added to media surrounding zebrafish embryos 

during development to determine the effect of the compound on vasculature 

formation. Sunitinib is a multi-targeted receptor tyrosine kinase inhibitor which acts 

on many kinases including VEGFR1-3 and PDGFRα and β thereby inhibiting 

angiogenesis58,250,251. To study the effect of sunitinib on zebrafish vasculature 

development, 0.1 µM and 1.0 µM sunitinib treatment was given to developing 

zebrafish embryos at the one-cell stage. The images in figure 5.14A showed that 0.1 

µM sunitinib treatment caused no apparent vascular abnormalities compared with 

DMSO control treated embryos. However, severe vascular defects were observed 

upon 1.0 µM sunitinib treatment, the ISVs either failed to form or remained 

disconnected from the DLAV.  

The ImageJ analysis method was subsequently used to quantify vasculature 

development of sunitinib treated zebrafish embryos and revealed that the numbers of 

vessel segments, junctions, end points, average and total vessel lengths were all 

significantly reduced upon treatment with 1.0 µM sunitinib. The total vessel length 

formed by embryos treated with 0.1 µM sunitinib was also significantly reduced;  
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Figure 5.14 Sunitinib treatment disrupted ISV growth and DLAV connectivity 

Fli1-GFP zebrafish were treated with 0.1 µM, 1.0 µM sunitinib treatment or DMSO in 
E3 media and imaged at 48 hpf. A) Vascular images of the DMSO or sunitinib treated 
embryos, scale: 500 µm, B) ImageJ analysis of the vascular images, statistical 
differences were determined using a Mann-Whitney test, n=10. The error bars 
represent the SEM.  
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Figure 5.15 Ibrutinib treatment inhibited ISV formation in fli1-GFP zebrafish 

Fli1-GFP embryos at the one cell stage of development were treated with 10 nM, 100 
nM, 5 µM, 10 µM , 12.5 µM or 15 µM ibrutinib or 15 µM DMSO in E3 media,  the 
developing vasculature was imaged at 48 hpf, scale: 500 µm.  
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Figure 5.16 Ibrutinib treatment significantly reduced vessel growth and 
connectivity in fli1-GFP zebrafish embryos 

Vascular images of embryos treated with 10 nM, 100 nM, 5 µM, 10 µM , 12.5 µM or 
15 µM ibrutinib or 15 µM DMSO in E3 media were analysed using the analysis 
method and statistical differences were found using a Student’s t test, n=3-4. Error 
bars represent the SEM. 
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however the numbers of vessel segments, junctions, end points and average vessel 

length remained comparable to the control treated embryos.  

Another inhibitor that was used was ibrutinib which inhibits both BTK and BMX, to 

determine the ibrutinib concentration that affects vascular development in zebrafish, 

embryos were treated with a range of ibrutinib concentrations from 10 nM to 15 µM 

and the vasculature was imaged at 48 hpf as shown in figure 5.15. Vascular 

abnormalities were observed in zebrafish embryos treated with concentrations above 

5 µM ibrutinib, these concentrations caused stunted and absent ISV sprouting as 

shown in figure 5.15. The DLAV failed to develop in embryos treated with 12.5 µM 

and 15 µM ibrutinib, the quantitative analysis of the vascular images using the 

ImageJ analysis method confirmed that embryos treated with 12.5 µM and 15 µM 

ibrutinib caused significant vascular defects shown in figure 5.16. A significant 

reduction in the number of vessel segments, junctions and total vessel length was 

calculated at these concentrations of ibrutinib treatment. The ImageJ analysis 

method enabled a comparative study between the different inhibitor treatments and 

provided quantitative analysis on the effects of using different concentrations of 

inhibitor compounds on vascular development. 

5.7. Evaluating the computer based analysis method 

The vascular images from the developmental time-course, gene knock down and 

inhibitor studies were analysed using the ImageJ analysis method, the average 

values for each developmental time point, gene silenced and each inhibitor 

concentration were determined. Using the combined data sets, the Pearson product 

moment correlation coefficient (R) and p values from a Student’s t-test were 

calculated to study correlations between the parameters measured from the vascular  

DMSO Control  

1 uM Sunitinib 
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Table 5.1. Significant correlations were identified between the different 
parameters measured using the ImageJ analysis method.  

The Pearson product moment correlation coefficient (R) values and p values from a 
Student’s t-test were calculated to determine correlations between the parameters of 
the number of segments, number of junctions, number of end points, total and 
average vessel lengths measured using the ImageJ analysis method. The correlation 
values were calculated using the combined mean data sets from the time course 
developmental data, the inhibitor data and the gene knock down data.  
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images which included the number of vessel segments, junctions, end points, 

average and total vessel lengths. 

The R and p values are shown in table 5.1; the highest correlation was calculated 

between the total vessel length and the number of junctions, as indicated by the 

smallest p value of 3.268 x 10-16 and an R value close to 1.0 of 0.970. Strong 

correlations were also calculated between the number of segments and the number 

of junctions with a p value of 4.475 x 10-10 and an R value of 0.899, as well as 

between the total vessel length and the number of segments with a p value of 3.436 

x 10-6 and R value of 0.879. These strong correlations suggested accordingly that as 

the zebrafish vasculature developed, the length and the number of junctions formed 

by the vessels increased which reflected the complexity and connectivity of the 

vessels. The smallest correlations were calculated between the number of end points 

measured in the images and the other parameters, the highest p value of 0.664 and 

the lowest R value of 0.089 was calculated between the number of end points and 

the average vessel length. Considering the previous results in section 5.5 which 

outlined that the number of end points measured in the vascular images were 

comparatively similar between the mismatch and morpholino images for different 

genes that were silenced; this correlation result was unsurprising and suggested that 

measuring the number of end points within vascular images did not provide useful 

morphological information on the developed vascular network.   

Correlation graphs were plotted using the data generated by the ImageJ analysis 

method for the developmental time course, gene knock down and inhibitor images to 

give a visual representation of the correlation between the different vascular 

parameters measured within the images, as shown in figures 5.17 and 5.18. Each  
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Figure 5.17 The strongest correlation was identified between the parameters of 
total vessel length and the number of junctions 

Correlation graphs were plotted using the combined mean data sets from the ImageJ 
based analysis using the time course developmental data, the morpholino and 
inhibitor data and the inhibitor data. The Pearson Product Moment Correlation 
Coefficient (R) values and p values from a two tailed t-test were calculated and 
statistical differences have been shown **** indicates p ≤ 0.0001.  
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Figure 5.18 Measuring the number of end points revealed a high degree of 
variation in the vascular images 

Correlation graphs were plotted using the combined mean data sets from the ImageJ 
based analysis using the time course developmental data, the morpholino and 
inhibitor data and the inhibitor data. The Pearson product moment correlation 
coefficient (R) values and p values from a two tailed t-test were calculated and 
statistical differences have been shown ** indicates p ≤ 0.01, * p ≤ 0.05, ns p > 0.05. 
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parameter was studied individually against the other parameters and the line of best 

fit was plotted to give an indication of the degree of correlation between the two 

parameters.  

The plots in figure 5.17 showed extremely significant correlations between the 

parameters with p values less than 0.0001. The graphs confirmed that as the 

vasculature developed in complexity and connectivity, an increased number of 

vessels and junctions were detected along with measuring longer vessel lengths 

confirming that the analysis results reflected accordingly with the development of the 

organism. The strong correlation results identified that these parameters of the total 

vessel length, the number of vascular junctions and the number of vessel segments 

would be informative when assessing zebrafish vascular morphology. The average 

vessel length could also be considered for use in morphological studies however due 

to this parameter being calculated through the dependence of the total vessel length 

and the number of segments, the trend for this parameter would be observed through 

the existing results.   

The plots in figure 5.18 showed there were large variations in the number of end 

points measured in the vascular images. No statistical significance was found 

between the number of end points and the average vessel lengths. These results 

suggested that measuring the number of end points should not be used to draw 

conclusions on the vessel morphology as measuring this parameter did not give a 

valid indication of the complexity of the developed vasculature.  
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5.8. Chapter discussion 

The aim of this chapter was to develop and evaluate an alternative computer based 

method that could be applied to fluorescent zebrafish images to generate 

quantification and analysis of vascular development. This aim was achieved by 

generating two analysis methods using ImageJ and IMARIS software which targeted 

the ISVs for quantitative analysis of their numbers, lengths and connectivity to the 

DLAV. The ISVs were specifically targeted since they are the first angiogenic vessels 

to form in the zebrafish145. Both analysis methods can be used and applied to 

fluorescent vascular images to provide useful information on vessel morphology of 

both normal and abnormal vessel development in response to silencing vascular 

related genes or assessing the effect of angiogenic agents.  

The computer based analysis methods were able to quantify the developing 

zebrafish vasculature by measuring the parameters of the total and average vessel 

lengths, the number of vessel segments, vascular junctions and end points formed 

within fluorescent zebrafish images. The two methods of analysis used different 

morphological post-processing steps and therefore each method offered unique 

advantages when compared.  

The IMARIS analysis method required the production of a three dimensional vascular 

mask which allowed the vessels to be viewed at 360o, therefore this approach gave 

an excellent visual understanding of vessel connectivity. The creation of this mask by 

manually defining a threshold value must accurately represent the imaged 

vasculature as the original image file has to be discarded for analysis; however the 

mask production had the advantage of being able to exclude noise pixels or image 

artefacts. An additional limitation of this analysis method was the requirement to 
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detach each ISV which sprouted from the DA from the mask using the cutting tool, 

which only worked in a single orientation, therefore it was necessary to rotate and 

manipulate the position of the vascular mask in the viewer window to remove 

unwanted vessels from the analysis procedure. The process of cutting the individual 

vessels was time consuming, leading to an analysis time of approximately 5 minutes 

per image, dependent on the number of ISVs within the image and the user’s 

experience of the software. The IMARIS software must be purchased from bitplane 

which can be expensive therefore this approach for analysing zebrafish vascular 

images may not be widely available to the scientific community. However, the 

IMARIS software has been specifically created for three dimensional rendering of two 

dimensional optical image sections and provides an interactive user space which 

enables the user to create, visualise, edit and analyse data sets within a single 

window within the software. The Filament Tracer module in IMARIS has been 

optimised to automate tracking and classification of filamentous structures such as 

spines and dendrites of neurons, consequently it is able to detect and analyse small 

vessels such as the ISVs accurately. However, the package is not specifically 

designed for this application; therefore the inclusion of the number of junctions 

formed in the DLAV after 36 hpf in the developmental time-course study caused the 

quantification for this parameter to increase steadily as the organism developed. The 

IMARIS software did not include a function which would allow for the automatic 

exclusion of the junctions in the DLAV such as the fill holes function used in the 

ImageJ analysis method. For this reason, the IMARIS analysis method would be 

more suitable for global vasculature analysis rather than specifically targeting the 

ISVs for analysis. Due to the considerable time restraints using this analysis method, 
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this method would be best suited for use in studies with small numbers of images, 

where vascular defects could be studied in detail using the 360o viewer.  

In contrast, the ImageJ analysis method was not reliant on the generation of a mask 

thus the parameters were measured directly from the original image file. However, 

this revealed that the method was prone to the inclusion of noise or artefact pixels 

within the image and extra fragmentation of the vascular skeleton which enhanced 

the numbers of end points detected. The creation of the ImageJ zebrafish 

vasculature macro offered the significant advantage of rapid quantification of the 

vasculature as the image outputs were generated within 35 seconds, which was 8.6 

times faster than the IMARIS analysis method. Furthermore, the fill holes function 

which was utilised in this method enabled the analysis method to target the ISVs 

specifically by removing the additional connections formed in the DLAV after 36 hpf. 

The ImageJ software is available free of charge and in the public domain; therefore 

using the macro for analysis would be easy to use and widely available. Since this 

analysis method was able to analyse both major and minor vascular defects in a time 

dependent manner, it would be suitable for analysing larger sets of zebrafish 

vascular images.      

Both of the computer based analysis methods were able to quantify vascular images 

and therefore either method can be used to assess normal and abnormal vascular 

development. The ImageJ method was chosen in this study to analyse the vascular 

images from the studies of silencing genes and using inhibitor compounds since it 

provided rapid analysis and was therefore less time consuming. In this chapter, the 

studies revealed that the ImageJ analysis method can be used to quantify a range of 

vascular phenotypes within zebrafish embryos, therefore this analysis method could 
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be used as a useful tool to assess vascular development in response to knocking 

down genes as well as determining the effect of inhibitor compounds on vascular 

formation.  

Significant correlations were observed between some of the parameters measured 

by the ImageJ analysis method; as the vascular network expanded and became 

more elaborate, increased numbers of vessel segments, lengths and vascular 

junctions were detected in the images, this result reflected accordingly with the 

development of the zebrafish. Measuring the parameters of the total vessel length, 

the number of vascular junctions and the number of vessel segments within a 

zebrafish image would provide an excellent overview of the vascular morphology 

which had developed within the organism. Measuring the total vessel length would 

give a global understanding of the extent of vessel formation, whereas measuring the 

number of junctions would be informative on the vessel connectivity. Measuring the 

number of vessel segments formed within the organism would suggest if endothelial 

sprouting had been affected. Measuring the total vessel length and the number of 

vessel segments would also enable a further calculation of the average vessel 

length, if required. Measuring the numbers of end points showed limited correlations 

to the other parameters and did not provide useful information on vascular 

morphology in this study, measuring this parameter would only be beneficial if there 

was severe absence of ISVs or extensive hyper-sprouting of the vasculature.  

Confocal image sections can be compressed to improve image resolution and the 

application of post-processing image operations such as image registration, 

binarisation and image segmentation can be applied to fluorescent zebrafish images 

to aid vascular analysis; however at present there is no gold standard computer 
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based method that is widely used for the quantification of the zebrafish vasculature. 

Many of the analysis frameworks which have been reported often give excellent 

visual representations of the analysis but use software which is not widely available 

or in practice hard to implement or modify such as Visual C++ Language183. Other 

methods used to analyse vascular growth include analysing ISV sprouting from the 

DA using primarily the process of image registration to measure increases in vessel 

lengths at different time points, however this method does not generate data on 

vessel junctions and therefore no knowledge of vessel connectivity is obtained181,182.  

Additional analysis methods targeting the ISVs have used microscopy software such 

as the Nikon Imaging Software (NIS) Elements to measure the lengths of ISVs which 

is neither automated nor applicable for large numbers of images178. Due to the 

difficulties associated with implementing computer based analysis methods, many 

researchers continue to manually analyse the vascular disruption using scoring 

systems and classifying the vascular phenotypes into categories such as ‘mild’, 

‘intermediate’ or ‘severe’ ISV disruption164-167. An alternative and frequently used 

approach to analyse the ISVs is to manually count the number of ISVs which connect 

or remain disconnected from the DLAV, this is also often represented as a 

percentage of the total number of ISVs168-170,172-177. Both of these manual approaches 

to analysis are able to give a global understanding of how the vascular network has 

developed in the organism. The method of evaluating if the ISVs have connected to 

the DLAV, gives a greater understanding of ISV connectivity compared to the 

classification system of analysis, however the extent of ISV growth is not assessed, 

therefore the resulting analysis data does not provide information on whether the 

ISVs failed to sprout or whether they developed but were unable to form vessel 
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connections. The ImageJ analysis method generated in this chapter was able to 

provide rapid results and an understanding of the vascular morphology similar to the 

manual analysis methods that are currently used to assess vascular development. 

The ImageJ analysis method assessed vessel connectivity by calculating the number 

of vascular junctions within the images and additionally was able to generate 

informative data on vessel lengths and the number of vessels formed.  

As shown in this chapter, similar results were obtained using the ImageJ analysis 

method compared to the results obtained using the manual method of calculating the 

percentage of connected ISVs in the zebrafish gene knock down study. Both 

methods revealed that the three genes that caused severe vascular disruption when 

silenced were VEGFA, ROBO4 and ELTD1 and the two genes that had comparable 

vascular phenotypes to their corresponding control treated embryos were ERG and 

CLEC14 upon imaging at 48 hpf. The manual analysis method identified that 

silencing ROBO4 caused fewer numbers of ISVs to connect to the DLAV in 

comparison to VEGFA which was identified as having the most vascular disruption 

using the ImageJ analysis method. Silencing VEGFA caused severe absence of ISV 

growth from the DA, however the ISVs that did form often connected to the DLAV. 

Whereas in ROBO4 knocked down embryos, widespread endothelial sprouting 

occurred during the formation of the ISVs however the DLAV failed to form. The 

ImageJ analysis method revealed that the ROBO4 silenced embryos formed twice as 

many vessels as VEGFA silenced embryos and also exhibited longer average and 

total vessel lengths. Studying a number of different parameters is useful for 

determining the vascular morphology which has developed in the organism.    
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To achieve accurate data analysis it was important to initially acquire and load a 

highly fluorescent vascular image particularly from the vessels of interest into the 

computer software. At present, both analysis methods worked most effectively when 

the generated analysis data was exported from ImageJ or IMARIS into Microsoft 

Excel, where the final calculations to obtain totalled or averaged values could be 

obtained. Future work, particularly on the ImageJ analysis method would be to create 

an extra step in the analysis process to include automation of the final calculations, 

eliminating the need to export the data.  

In summary, two objective computerised methods using ImageJ and IMARIS 

software were developed which were able to quantify vascular development in 

zebrafish. Both computer based approaches enabled accurate analysis of the 

number of vessel segments, junctions, total and average vessel lengths which were 

unbiased and offered the potential to be used as useful analysis tools for determining 

the function of genes and the action of novel compounds on the angiogenic pathway.  
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Chapter Six 

General Discussion 

  



216 
 

6.1. Overall project findings 

The aim of this PhD project was to monitor, manipulate and analyse in detail the 

process of angiogenesis through the development of high resolution fluorescence 

imaging techniques and the generation of useful analysis tools to allow angiogenic 

images to be rapidly and effectively quantified. The quantification of images enables 

the comparison of the effects gene silencing or treatment with compounds which 

affect the angiogenic process to be effectively studied. The aims of this project were 

achieved by utilising the ability to fluorescently label endothelial cells and proteins 

prior to their use in the in vitro co-culture tube formation assay and the hanging drop 

spheroid angiogenesis assay and using transgenic fli1-GFP zebrafish embryos. High 

fluorescence emission from endothelial cells in vitro and in vivo was required to 

permit high resolution confocal imaging, which enabled the generation of useful 

computer based tools for analysing such images. 

6.1.1 Summary of findings from investigating lumen formation within 

endothelial tubules 

To investigate lumen formation in the co-culture tube formation assay various 

fluorescent labelling approaches were used, a new two coloured fluorescence 

labelling technique was established using the cytoplasmic dyes, CFSE and 

CellTracker orange, as well as F-actin labelling using lifeact-GFP and lifeact-RFP. 

The two coloured labelling approach allowed a detailed investigation into the 

lumenogenesis mechanisms in comparison to visualising greyscale images. 

Additionally, a novel technique for visualising the formation of endothelial lumens in 

live tubules was presented using cells which expressed the lifeact peptide conjugated 

to fluorescent proteins. This study revealed that F-actin fibres clearly outline lumenal 
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boundaries and also proved useful for studying filopodia formation. Overall, the 

endothelial cell rearrangement mechanism was the predominant mechanism 

observed in the assay, the vacuole fusion mechanism was also visualised using the 

F-actin labelling technique although less frequently than the endothelial cell 

rearrangement mechanism.  

6.1.2 Summary of findings from designing, testing and evaluating a 

computer based method to analyse endothelial sprouting for 

screening purposes 

A new computer based analysis tool was designed which was able to rapidly and 

effectively quantify endothelial sprouting by measuring various sprouting parameters 

from fluorescent spheroid images generated from the hanging drop spheroid assay. 

The Spheroid Analysis plugin was able to automatically analyse a wide range of 

sprouting phenotypes. Upon evaluation it was determined that the analysis tool was 

able to generate comparable results to the frequently used manual analysis method 

of calculating the total sprouting length but in a time that was approximately seven 

times faster than the manual approach. The results from this study confirmed that the 

new ImageJ plugin is a useful analysis tool for screening compounds which affect the 

process of endothelial sprouting. The Spheroid Analysis plugin will be published 

online and will be freely available and widely accessible for the scientific community 

to use.  
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6.1.3 Summary of findings from developing, testing and evaluating 

computer based analysis methods for quantifying the zebrafish 

vasculature  

Two computer based analysis methods were developed using IMARIS and ImageJ 

software, both can be used to assess and quantify the development of the zebrafish 

vasculature. The two analysis methods used different post-processing steps and 

therefore each method offered unique advantages when compared. The IMARIS 

analysis method enabled a detailed investigation into the developed vasculature 

through the use of an interactive window, whereas the ImageJ Zebrafish Analysis 

Vasculature Macro enabled rapid and specific analysis of ISV growth and 

connectivity to the DLAV. The ImageJ analysis method using established ImageJ 

functions will be freely available, widely accessible and produced comparable results 

to the frequently used manual analysis method of determining the number of 

connected ISVs.  

6.2. Use of fluorescently labelled endothelial cells 

The aims of this PhD project were achieved by utilising the ability to fluorescently 

label and image endothelial cells and proteins, which enabled a detailed study into 

the angiogenic processes of endothelial tubulogenesis and lumenogenesis in the co-

culture tube formation assay, endothelial sprouting in the hanging drop spheroid 

assay and ISV growth and connectivity in zebrafish.   

It proved essential to fluorescently label endothelial cells with highly emissive dyes 

prior to use in both of the in vitro assays of the co-culture tube formation assay and 

the hanging drop spheroid angiogenesis assay. It was of importance in the co-culture 
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tube formation assay as highly emissive fluorescence dyes and proteins proved to be 

critical for monitoring tubular growth and enabled the endothelial cells to be 

distinguished from the fibroblasts. By fluorescently labelling endothelial cells with 

different coloured dyes an investigation into the mechanisms of lumenogenesis was 

achieved.  

In the hanging drop spheroid assay, the use of the highly emissive fluorescence dye 

CFSE proved critical for capturing high contrast images of the endothelial sprouts. 

The confocal image sections were compressed to produce high resolution images 

which showed clear endothelial cell boundaries against the collagen background, 

which made it possible to design and develop computer based analysis tools for the 

assessment and quantification of endothelial sprouting. Using confocal imaging 

avoided the problems of incomplete object boundaries which are often associated 

with non-fluorescent optical imaging techniques. The use of brightfield or phase 

contrast images would have been more challenging to analyse.  

Similarly, imaging and studying in vivo blood vessel formation was possible due to 

the use of transgenic fli1-GFP zebrafish embryos which stably expressed GFP 

throughout their vascular endothelium. In a similar way to the spheroid images, the 

optical image sections were compressed to produce a high contrast image of the 

blood vessels against the background of the organism. These high resolution images 

showed clearly the growth and connectivity of the ISVs during development, which 

was essential for being able to generate computer based analysis tools for accurately 

quantifying blood vessel formation.  
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6.3. Comparing the computer based analysis methods 

In this PhD project, three computer based analysis tools were tested and evaluated 

for their use of rapidly and effectively quantifying images of endothelial sprouting and 

blood vessel formation, these included the Spheroid Analysis plugin to analyse 

endothelial sprouting and the ImageJ and IMARIS analysis methods for analysing the 

development of the zebrafish vasculature. All three computer based analysis 

approaches initially required the loading of a fluorescent image with high contrast 

between the object of interest and the image background.  

The analysis procedures used different post processing steps which were specific to 

the application that they were designed for; however some of the steps in the 

processing stages were highly similar ensuring that each pixel within the acquired 

image was accurately assessed. All three computer based analysis tools made use 

of the skeletonisation function; this is a morphological thinning function which uses 

an algorithm to successively erode the object in the image until a network of single 

pixels remains. The skeletonisation process was able to create a simple 

representation of the original image object. This function is performed on a binary 

image; binarisation was used to clearly identify the object in the image from the 

image background. The product of the skeletonisation function was a simplified 

structure of pixels which was easily and quickly assessed for the presence of end-

points, junctional pixels, total number of pixels and segments. The skeletonised 

function worked effectively in all three analysis methods that were tested and this 

was shown by the overlaid images of the skeletonised and original images.  

Another important process in all three analysis methods was the requirement to 

remove noise pixels which were acquired during image acquisition to enhance the 
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accuracy of the analysis procedure. Two different processes were employed to 

remove noise, these included the despeckle function in ImageJ and thresholding 

during the creation of the mask in IMARIS. The despeckle function is a highly 

sensitive median filtering operation; each pixel was accessed and given a reassigned 

intensity value based on the values of the neighbouring nine pixels. Noise was 

removed in the IMARIS method by selecting a threshold value during the creation of 

the three dimensional mask which excluded all noise pixels from the subsequent 

analysis steps. Both methods successfully excluded noise from the analysis process, 

however the despeckle function had the advantage of being an automated function, 

whereas manually selecting a thresholding value can cause variability between 

images.  

It would have been useful for the IMARIS software to have an equivalent despeckle 

function to automate the process of noise removal as well as having an equivalent fill 

holes function which was used in ImageJ to remove additional vascular connections 

formed in the DLAV. This would have enabled the ISVs to be more specifically 

targeted for analysis. However, unfortunately it was not possible to alter the IMARIS 

platform due to the software being protected and commercially available. The ImageJ 

methods had the additional advantages of being freely available, widely accessible, 

easy to use and generated the quantitative outputs faster than the IMARIS and 

manual analysis methods.  
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6.4. Future work 

6.4.1 Future work for investigating lumen formation within endothelial 

tubules 

Using endothelial cells which expressed the lifeact peptide conjugated to fluorescent 

proteins proved to be a highly useful method for visualising the presence of lumen 

formation within endothelial tubules, however there were concerns as to whether the 

lifeact peptide was modifying the mechanism of lumen formation. To investigate 

whether the binding of the lifeact peptide to the actin fibres within the endothelial cells 

caused disruption to the dynamic functioning of the cytoskeleton, endothelial cells 

with and without lifeact expression should be used in the co-culture tube formation 

assay. The endothelial tubules without lifeact expression would be stained using 

fluorescently labelled phalloidin to compare the actin organisation in tubules formed 

in both co-cultures, this experiment would determine whether using lifeact expression 

caused any adverse effects to tubular growth or caused the formation of vacuoles. 

A particular limitation in this project was that endothelial processes were imaged 

using confocal microscopy at single time points. In the study of investigating the 

formation of lumens this meant that different endothelial tubules were studied during 

the duration of the assay. Using live-cell time lapse confocal microscopy alongside 

the fluorescent imaging techniques established in this project would have enabled 

the same endothelial cells to be imaged throughout the tubulogenesis and 

lumenogenesis processes. Future work would involve ensuring access to a 

fluorescence microscope that was able to perform time lapse imaging, to provide 

valuable insights into these processes. Unfortunately, it was not possible to perform 

time-lapse imaging during this project due to not having access to such microscope. 



223 
 

Performing time lapse imaging of the co-culture assay could posse challenges due to 

the long duration of imaging time required as the tubules develop over a period of 

several weeks. Stable conditions of 37 oC in an atmosphere of 5% carbon dioxide 

would be required with media refreshed every other day. The microscopy system 

would also have to have minimal drift to enable the same field of view to be imaged 

during the time course, which is often a challenge associated with time lapse 

imaging.  

6.4.2 Future work for designing, testing and evaluating a computer 

based method to analyse endothelial sprouting for screening 

purposes 

The Spheroid Analysis plugin relied on a highly fluorescent spheroid image to be 

loaded into the analysis tool to accurately analyse endothelial sprouting, this was 

achieved by labelling the endothelial cells with 5 μM CFSE. The plugin also required 

only a single spheroid per image to be loaded into the software, if more than one 

spheroid was present in the image, post-processing by the user was required to 

remove additional spheroids from the image. Future work in the development of the 

plugin would enable automatic analysis of several spheroids per image, thereby 

reducing image acquisition time. Additionally, the ability of the plugin to be able to 

automatically analyse batches of images would be highly valuable as this would 

substantially reduce the time required to process the data generated by the plugin.  

It would be interesting to further advance this analysis tool to enable processing and 

analysis of two coloured fluorescence images, this would enable tip and stalk cell 

dynamics could be studied in detail. A population of endothelial cells could be treated 
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and labelled with a particular fluorescence dye, and untreated cells could be labelled 

with a different coloured dye. The cells could be mixed and used in the hanging drop 

spheroid assay and the plugin could be used to assess whether the treated cells 

preferentially located to the tip or stalk positions of the endothelial sprouts. Another 

highly useful advancement of the ImageJ plugin would be to enhance the design so 

that it would be capable of analysing three dimensional reconstructional images of 

the spheroids. It would be possible to generate three dimensional reconstructional 

images of the spheroids using the confocal image sections and if the plugin was able 

to analyse these sprouting images it would provide greater knowledge on the 

arrangement and development of the endothelial sprouts.   

6.4.3 Future work for developing, testing and evaluating computer based 

analysis methods for quantifying the zebrafish vasculature 

Similarly to the study of investigating lumen formation, a limitation in the study of 

visualising ISV growth in zebrafish was that single time points of development were 

imaged using confocal microscopy. To further the work presented in this chapter and 

to gain an in depth understanding of the effects of silencing vascular related genes 

and the treatment with inhibitor compounds, time lapse confocal imaging would be 

used to study the development of the organism and vascular system from the one 

cell stage through to 48 hpf. Unfortunately as previously mentioned it was not 

possible to perform time lapse imaging during this study due to not having access to 

such microscope.  

To achieve accurate data analysis it was important to initially acquire and load a 

highly fluorescent vascular image particularly from the vessels of interest into both 
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the IMARIS and ImageJ analysis methods. It was not possible to alter the IMARIS 

platform therefore the future work would involve improving the ImageJ Zebrafish 

Analysis Vasculature Macro. At present, the analysis method worked most effectively 

when the generated analysis data was exported from ImageJ into Microsoft Excel, 

where the final calculations to obtain totalled or averaged values could be obtained. 

By converting the ImageJ macro into an ImageJ plugin it would be possible to create 

an extra step in the analysis process to include automation of the final calculations. 

The addition of this step would eliminate the need to export the data from each image 

individually and reduce the data processing time substantially. At present, this 

computer based analysis method to specifically target the ISVs and DLAV for 

analysis is semi-automated as the PCV and DA are manually selected for removal 

from the analysis process, this offers a useful manipulation step whereby the user 

can determine which vessels to analyse. However, it may be possible to introduce a 

step that automatically removes the PCV and DA using shape recognition algorithms, 

thereby reducing the analysis time whilst specifically targeting the ISVs for analysis. 
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7.1 Identification of the different parameters measured by the ImageJ 

Spheroid Analysis plugin for spheroid quantification 

The ImageJ Spheroid Analysis plugin was used to quantify endothelial sprouting from 

fluorescently labelled spheroid images generated using the in vitro hanging drop 

spheroid angiogenesis assay. As shown by figure 7.1A, the Spheroid Analysis 

ImageJ plugin was able to process the spheroid images by skeletonising the network 

of endothelial cells surrounding the spheroid mass. After the skeletonisation process, 

the endothelial sprouts appeared as a network of single pixels within the image, each 

pixel was assessed according to its neighbouring eight pixel values and subsequently 

categorised as either an end point, junction or segment pixel.   

A segment pixel was assigned if the pixel being assessed had exactly two 

neighbouring pixels that were also part of the skeletonised network, whereas an end 

point pixel was assigned if there was only one or zero neighbouring pixels. A 

junctional pixel was assigned if the pixel being assessed had more than two 

neighbouring pixels. In this way, all pixels within the skeletonised network were 

analysed and each pixel was colour coded accordingly. All end point pixels were 

identified in red and junctional pixels in dark blue as shown in figures 7.1B and 7.1C. 

Endothelial segments within the spheroid images were therefore separated by either 

two end point pixels, two junctional pixels or one end point and one junctional pixel, 

and all segmental pixels were identified in light blue, as shown in figure 7.1D. 

Following the pixel analysis, the ImageJ plugin automatically calculated the total 

segment length by summing the number of pixels assigned as a segment pixel and 

the average segment length was calculated by dividing the total segment length by 

the number of endothelial segments from within an image. 
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Figure 7.1 Identification of the parameters measured by the Spheroid Analysis 
plugin for the quantification of endothelial sprouting 

The ImageJ Spheroid Analysis plugin was used to analyse fluorescent spheroid 
images generated using the hanging drop spheroid angiogenesis assay. A) An image 
of the analysed network of endothelial sprouts produced by the ImageJ plugin from a 
fluorescently labelled spheroid image. The sprouting segments are shown in light 
blue, the endothelial junctions in dark blue and the end points in red. The red box 
highlights a selected region which was magnified to show in detail the identification of 
the different parameters that were measured by the plugin. B) A magnified image of 
an endothelial sprout analysed by the Spheroid Analysis ImageJ plugin, the arrows 
show the identification of five end points, shown in red, scale: 100 μm. C) The arrows 
show the identification of two endothelial junctions shown in dark blue. D) The 
endothelial segments are shown in light blue, an endothelial segment was defined as 
a region of connected segmental pixels separated either by two end points, two 
junctional points or one junction and one end point, an example of each of these has 
been shown and identified with arrows in the image, scale: 100 μm. 

A Analysed spheroid image B End points 

C Junctions 

D Segments 

1 end point  
and 1 junction 

2 junctions 

2 end points 
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7.2 Screening kinases to identify those with roles in endothelial 

sprouting 

A library of 80 small molecule kinase inhibitor compounds were added into the in vitro 

hanging drop spheroid angiogenesis assay to identify the effects the kinase inhibitors 

had on the processes on endothelial sprouting. In this way, a wide range of spheroid 

images showing different sprouting morphologies were generated and used to test 

the capabilities of the Spheroid Analysis plugin as described in this thesis in section 

4.4.  

The ImageJ Spheroid Analysis plugin was used to analyse the effects of the kinase 

inhibitor compounds on endothelial sprouting by applying the plugin to images of 

fluorescently labelled spheroids which were treated in the hanging drop spheroid 

assay with the inhibitor compounds. Five spheroids were imaged and analysed per 

inhibitor condition and bar charts of the results generated on the parameters of total 

and average endothelial sprouting length and the numbers of endothelial segments, 

junctions and end points have been shown in figures 7.2 – 7.6. Statistical analysis 

was performed using the Mann-Whitney test.  

The sprouting results for this study as presented in figures 7.2 – 7.6 were normalised 

to their corresponding controls and converted to percentages and were represented 

in heat map tables, as shown in tables 11 and 12  in chapter four.  
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Figure 7.2 The effect on the total sprouting length when kinase inhibitors were 
added to the hanging drop spheroid assay 

The ImageJ Spheroid Analysis plugin was used to analyse the total sprouting length 
of fluorescently labelled spheroids generated using the hanging drop spheroid 
angiogenesis assay with confocal imaging 16 hrs after collagen embedding. 
Statistical analysis was performed using the Mann-Whitney test, n=5 images per 
condition, **** indicates p ≤ 0.0001, *** indicates p ≤ 0.001, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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Figure 7.3 The effect on the average sprouting length when kinase inhibitors 
were added to the hanging drop spheroid assay 

The ImageJ Spheroid Analysis plugin was used to analyse the average sprouting 
length of fluorescently labelled spheroids generated using the hanging drop spheroid 
angiogenesis assay with confocal imaging 16 hrs after collagen embedding. 
Statistical analysis was performed using the Mann-Whitney test, n=5 images per 
condition, **** indicates p ≤ 0.0001, *** indicates p ≤ 0.001, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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Figure 7.4 The effect on the number of segments when kinase inhibitors were 
added to the hanging drop spheroid assay 

The ImageJ Spheroid Analysis plugin was used to analyse the number of segments 
of fluorescently labelled spheroids generated using the hanging drop spheroid 
angiogenesis assay with confocal imaging 16 hrs after collagen embedding. 
Statistical analysis was performed using the Mann-Whitney test, n=5 images per 
condition, **** indicates p ≤ 0.0001, *** indicates p ≤ 0.001, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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Figure 7.5 The effect on the number of junctions when kinase inhibitors were 
added to the hanging drop spheroid assay 

The ImageJ Spheroid Analysis plugin was used to analyse the number of junctions of 
fluorescently labelled spheroids generated using the hanging drop spheroid 
angiogenesis assay with confocal imaging 16 hrs after collagen embedding. 
Statistical analysis was performed using the Mann-Whitney test, n=5 images per 
condition, **** indicates p ≤ 0.0001, *** indicates p ≤ 0.001, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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Figure 7.6 The effect on the number of end points when kinase inhibitors were 
added to the hanging drop spheroid assay 

The ImageJ Spheroid Analysis plugin was used to analyse the number of end points 
of fluorescently labelled spheroids generated using the hanging drop spheroid 
angiogenesis assay with confocal imaging 16 hrs after collagen embedding. 
Statistical analysis was performed using the Mann-Whitney test, n=5 images per 
condition, **** indicates p ≤ 0.0001, *** indicates p ≤ 0.001, ** indicates p ≤ 0.01 and * 
indicates p ≤ 0.05. The error bars are the SEM. 
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7.3 Identification of the different parameters measured by the computer 

analysis tools for quantifying intersegmental blood vessel growth 

and connectivity 

The ImageJ and IMARIS computer based analysis methods were developed to 

analyse and quantify the growth of the ISVs within zebrafish and the connectivity of 

these vessels to the DLAV. Both of the computer based methods used a 

skeletonisation function to simplify the vascular network to a series of single pixels, 

which were individually assessed according to their neighbouring pixel values. Each 

pixel within the vascular skeleton was categorised as an end point, junctional or 

segmental pixel and colour coded accordingly, as shown in figure 7.7A. 

A segment pixel was assigned if the pixel being assessed had exactly two 

neighbouring pixels, whereas an end point pixel was assigned if the pixel had zero or 

one neighbouring pixel. A junctional pixel was assigned if the pixel being assessed 

had more than two neighbouring pixels. All end point pixels were labelled blue in 

colour and junctional pixels were labelled in pink, as shown in figures 7.7B and 7.7C 

respectively. A vascular segment was defined as a connected region of segment 

pixels between two end point pixels, two junctional pixels or one end point and one 

junctional pixel. All vascular segment pixels were shown in orange within the 

analysed image, as shown in figure 7.7D. After the pixels within the vasculature 

image had been analysed, the calculations of the total and average vessel lengths 

were determined.  
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Figure 7.7 Identification of the parameters measured by the computer analysis 
methods for the quantification of intersegmental blood vessel growth and 
connectivity 

The computer analysis methods using ImageJ and IMARIS analysed the 
skeletonised zebrafish vascular network in a similar way to produce outputs on the 
numbers of end points, junctions and vessel segments. The images shown in this 
figure were generated using the ImageJ analysis method. A) An image of the 
analysed and skeletonised network of ISVs and DLAV, vessel segments are shown 
in orange, junctions in pink and end points in blue. The red box highlights a selected 
region which was enlarged to show the identification of the different parameters that 
were measured, scale: 500 μm. B) An enlarged image of a region of skeletonised 
vasculature, arrows show the identification of end points. C) The arrows show the 
identification of junctions. D) A vascular segment was defined as a connected region 
of segment pixels between two end points, two junctional points or between one 
junction and one end point, an example of each has been identified with arrows.  
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7.4 ImageJ zebrafish vasculature analysis macro 

The zebrafish vasculature analysis macro was generated as part of the ImageJ 

analysis method for the quantification of the intersegmental blood vessels (ISVs) and 

their connectivity to the dorsal longitudinal anastomotic vessel (DLAV) in fli1-GFP 

embryonic zebrafish. The ImageJ analysis method for quantifying fluorescent images 

of the zebrafish vasculature is presented in this thesis in section 5.3. The image 

processing steps of binarisation through to generating the outputs of the analysed 

vascular skeleton which correlate to steps four through to eight in the method were 

generated as a macro. The macro can be transferred and saved to ImageJ to allow 

for semi-automated analysis of zebrafish vasculature images. 

run("8-bit"); 
setOption("BlackBackground", true); 
run("Make Binary"); 
run("Fill Holes"); 
run("Despeckle"); 
run("Skeletonize (2D/3D)"); 
run("Analyze Skeleton (2D/3D)", "prune=none show"); 

 

 

 

 

 

 

 

 

Figure 7.8 ImageJ zebrafish vasculature analysis macro code 

The ImageJ macro was generated to allow for the semi-automated analysis of the 
ISVs in vascular images of fli1-GFP zebrafish embryos. The code for the macro can 
be transferred and saved to ImageJ. 




