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                                                        ABSTRACT 

The work presented in this thesis uses functional magnetic imaging fMRI and diffusion 

tensor imaging (DTI) neuroimaging modalities to investigate the relationship between 

chronic habitual sleep status in waking normal control subjects and functional and 

structural changes in higher order intrinsically connected brain networks (ICNs). The first 

study investigates the methodologies and compares the use of deterministic and 

probabilistic tractography approaches in combination with functional imaging to 

characterise structural connectivity with respect to functional connectivity in a single ICN. 

The following chapter examines whether inter-individual differences in habitual sleep 

patterns are reflected in waking measurements of intra- and inter- network functional 

connectivity (FC) between major nodes of three ICNs. Subsequent work investigates 

group differences in fractional anisotropy (FA) and Mean diffusivity (MD) structural 

connectivity metrics with respect to habitual sleep duration, as well as whole brain 

changes in white matter architecture in relation to subjective habitual sleep quality using 

Tract based spatial statistics (TBSS). The final experimental chapter builds on the work 

from previous chapters by examining a wider range of sleep features and examining 

overall network FC as opposed to regional specific changes. The results presented in this 

thesis provide evidence of functional and structural brain connectivity changes, which are 

modulated by chronic habitual sleep durations and in some cases by sleep quality. This 

may help to elucidate the link between sleep, waking sleep status, cognition and explain 

individual differences in susceptibility to sleep deprivation, as well as potentially the 

networks and systems responsible for variations in sleep patterns themselves. 
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 ‘Sleep that knits up the ravelled sleave of care 

The death of each day's life, sore labour's bath 

Balm of hurt minds, great nature's second 

course,Chief nourisher in life's feast.’ 

~William Shakespeare, Macbeth 

 

 

INTRODUCTION 

The work presented in this thesis will investigate the relationship between chronic habitual 

sleep status and functional and structural changes in specific higher order brain networks. 

Habitual sleep patterns are important markers of sleep status, but are less widely 

investigated than short term experimental manipulations of sleep. Habitually short sleep 

durations in particular may result in cumulative chronic sleep debt, which may have 

individual consequences for higher order cortical functioning. Disruption may be caused 

to higher brain networks, which are responsible for attention, salience, memory, 

introspective thought and executive functions. Global or region specific functional or 

structural changes to these networks may account for subtle cognitive impairments 

associated with habitual sleep status. This chapter introduces the reader to the literature, 

basic definitions, principles and general methodologies, which are directly or indirectly 

related to the research presented in this thesis. The sections are structured to allow the 

reader to gain a progressive understanding of the research area. 
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SLEEP 

It has become increasingly evident that sleep is a necessity and not a luxury, as evidence 

of sleep behavior is seen across species (Cirelli and Tononi, 2008, Mignot, 2008).  For 

example, cockroaches, honeybees, fish, birds, mice, as well as mammals including 

humans all fit the behavioural definition of sleep (Cirelli and Tononi, 2008, Mignot, 2008). 

This definition of sleep behaviour consists of: sleep being rapidly reversible (unlike 

hibernation or coma for example), the preference of species to sleep in a specific position 

and in specific places, a heightened arousal threshold (a reduction in responsiveness to 

external  sensory stimuli), the need for an organism to recover from reduced sleep 

opportunity such as partial or total sleep deprivation (homeostatic regulation), and for 

most species circadian regulation.  

Understanding the function of sleep is something humans have been attempting for 

millennia. Many ancient cultures attempted to explain or understand sleep; Kirsch (2011) 

illustrates historical examples such as the Chester Beatty papyrus, which focuses on 

dream interpretation and the importance of dreams in the Egyptian culture. Another 

example is the opus written by Aristotle in ancient Greece around 300 bc which translates 

as ‘on sleep and sleepiness’, and is devoted to the processes of sleep and waking. In 

China, Huangdi Neijing, translated as, ‘Canon of Medicine’, may have been written as 

early as 2900 BC, and introduced the theory of yin and yang. This is a symbol that has 

been used to represent the sleep and wake state (Kirsch, 2011).  

Over time, a number of theoretical positions emerged as to why organisms sleep (Mignot, 

2008). By the 1970’s-80’s the main theories that had developed were based on five 
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theoretical perspectives (Webb, 1981). Restorative theories (Hartmann 1973, Moruzzi 

1972, Oswald 1970) hold that sleep is a period of maximal restoration of functional states, 

which have been depleted during wakefulness. For example, Morzzuri hypothesized a 

primary recovery process during rapid eye movement (REM) sleep to nerve synapses 

and glial cells associated with waking neural plasticity, and in essence memory and 

learning (Moruzzi, 1972). The second perspective, protective theories (based on Pavlov’s 

theory of sleep, Pavlov 1929), proposed sleep to be an inhibitory process which protects 

the brain from continuous and excessive stimulation. The key concept of Pavlov’s theory 

of sleep was a spread of cortical inhibition to prevent the central nervous system (CNS) 

from excessive and conflicting stimulation. Energy-conservation (Zepelin and 

Rechtschaffen 1974) was a third perspective, which emerged from the strong empirical 

data on metabolic rates and total sleep time. The main premise was that sleep enforces 

rest and as a consequence reduces metabolic requirements. This theory is closely linked 

with the evolutionary relationships between temperature regulation systems and the 

emergence of slow wave sleep (Zepelin and Rechtschaffen 1974). The Instinctive 

theories (Moruzzi 1972) regard sleep as a species-specific pattern of behaviour. Sleep is 

seen as an instinctive built-in stereotyped behaviour, which is elicited by inducing stimuli. 

The fifth theoretical perspective was the ethologic theories (Meddis 1977, Webb,1974), 

which suggest that sleep evolved as a system of behavior to ensure survival of a species 

within a particular ecological niche. By the 1980’s it was proposed that sleep was 

regulated by biological rhythms (Webb 1981, also see appendix for the neurobiology of 

sleep status) and in 1982 the two process homeostatic model was published 

(Borbély,1982). According to this model, two processes regulate sleep. These are the  
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 homeostatic process (S) which is determined by sleep status (i.e. the longer an 

individual remains awake, the greater the sleep pressure and the greater the need for 

sleep), and the circadian process (C) which determines the thresholds for sleep onset 

and offset. Process C is controlled by an endogenous circadian pacemaker (the 

suprachiasmatic nucleus). The interaction of S and C characterises the sleep/wake cycle 

(figure 1.1) and can explain fluctuations in alertness and vigilance and increases in sleep 

pressure due to resisting the need to sleep which may consequently lead to a state of 

sleep deprivation (Alhola and Polo-Kantola, 2007). For example, in modern society the 

drive to take advantage of the full 24 hours of the day is increasing (Dinges 1995). The 

demand for wakefulness at all hours of the day has steadily increased. (Alhola and Polo-

Kantola, 2007). Unfortunately, biological rhythms such as S and the C cannot adapt 

readily to such situations. There is an imperative need for sleep, which is defined by 

process S. While it is possible to postpone S, it eventually needs to be fulfilled. We also 

need to consider process C that drives wakefulness during the day, but not at night (fig 

1.1). In essence, living in a 24-hour culture and with extended periods of sleep deprivation 

can lead to neurobehavioural deficits in response to increasing homeostatic sleep 

pressure combined with circadian-modulated withdrawal effects on waking drive (Van 

Dongen, and Dinges, 2001). A model-based understanding of sleep deprivation can be 

helpful to explain neurobehavioural deficits, which may manifest due to prolonged 

wakefulness whether that be due to total sleep deprivation or habitual chronic sleep 

restriction. Research studies investigating sleep deprivation use the two process classical 

model in order to measure cortical and behavioral changes as a consequence of sleep 

deprivation. The work in this thesis is based on the two process model of sleep regulation 
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(fig 1.1).  In this thesis we investigate cortical changes in relation to chronic habitual sleep 

status in subjects with long or short habitual sleep durations. As mentioned above the two 

process model consists of a S and C, which interact to determine the timing of sleep onset 

and offset, as well as the stability of waking neurocognitive functions (Van Dongen and 

Dinges 2003). 

 

Fig 1.1 Two process model of sleep regulation. Homeostatic process S=sleep need, 
Circadian rhythmicity C=sleep timing. (Modified from  Borbély 1982). 

 

SLEEP STATUS 

Sleep deprivation: 

Sleep deprivation may have a marked impact on an individual’s quality of life (Alhola and 

Polo-Kantola 2007). This can be due to multiple factors (Colten and Altevogt 2006). One 

particularly important, but underestimated, factor which explains why individuals may 

become sleep deprived is sleep loss due to work and life style (Ohida et al 2001, Swanson 

et al 2011, Van Dongen and Kerkhof  2011). Long working hours, nightshift working, the 

type of job an individual does (e.g. healthcare professionals, truck drivers and other 
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transport workers, security guards) as well as extended leisure hours can all result in 

sleep loss (Härmä et al 1998). Total sleep deprivation (SD) which is defined as at least 

24 hours without sleep, is known to have a significant effect on performance (Pilcher and 

Huffcutt 1996, Williamson and Feyer, 2000), for example slowing of response speed 

(Williamson and Feyer, 2000), and reduced alertness, attention and vigilance (Lim and 

Dinges, 2008).  Most research studies investigate sleep deprivation from this extreme 

view point.  

The effects of partial sleep deprivation should also not be taken lightly (Durmer and 

Dinges 2005, Van Dongen, et al 2003, Williamson and Feyer 2000). Studies have shown 

that chronic partial sleep restriction can lead to similar, deficits as seen post total SD 

(Banks and Dinges, 2007). Individuals tend to overestimate their ability to function to an 

appropriate and safe standard after night time sleep has been compromised (Alhola and 

Polo-Kantola 2007). The cumulative effect of poor sleep patterns is subsequent chronic 

SD. Studies have shown that the cumulative effect of partial sleep deprivation appears to 

be rate sensitive (Drake et al 2001). The impairment of alertness and performance due 

to 8 hours of total sleep deprivation has been found to be more severe when experienced 

acutely in comparison to cumulative sleep deprivation of 8 hrs over several nights, 

suggesting the presence of a compensatory mechanism operating in conjunction with the 

accumulation of a moderate sleep debt (Drake et al 2001). Although Memory, salience 

and attention are known to still be affected by partial  as well as total SD and can result 

in numerous negative effects including impairments to cognitive performance, Killgore et 

al 2006, Harrison and Horne 2000). 
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Theoretical perspective of SD:  

A variety of theoretical perspectives have been proposed to explain the detrimental effect 

on cognitive processes of SD or extended periods of wakefulness. An example is the 

lapse hypothesis (Dorrian et al 2005, Kjellberg 1977,Williams et al 1959). The lapse 

hypothesis proposes that sleep deprivation can have general effects on alertness and 

attention. According to this hypotheses sleep deprivation results in lapses in attention and 

alertness and slow responses, which are a result of cognitive changes and reduced 

cognitive performance due to lack of sleep resulting in wake-state instability. 

Neurophysiological sleep-like changes as demonstrated by EEG 

(electroencephalography, see PSG section below) recordings illustrate microsleeps 

which are thought to account for these lapses (Priest et al 2001). Originally, it was 

proposed that cognition remained unaffected between lapses, but studies have shown 

cognitive slowing independent of these lapses (Dorrain 2005, Kjellberg 1977). Based on 

the initial observations of the lapse hypothesis, the study by Doran et al 2001 proposed 

the wake state instability hypothesis. Doran et al found that increases in performance 

variability in relation to psycho-motor vigilance testing (PVT) with increasing sleep loss in 

sleep deprived subjects was due to the internal influence of sleep initiating mechanisms 

attempting to maintain attention and alertness subsequently leading to an unstable state 

that fluctuates in seconds and cannot be characterised as fully awake or asleep. Such 

theories as above indicate cognitive disturbances in a sleep deprived individual to be most 

obvious during the performance of long simple tasks such as reaction time tasks or 

vigilance tasks (Doran et al 2001, Lisper and Kjellberg 1972, Lorenzo et al 1995).   
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Another school of thought suggests that the effects of sleep deprivation cause disruption 

to the functioning of specific cortical regions and consequently impairs cognitive function. 

This is known as the sleep-based neuropsychological perspective or the selective impact 

school of thought (Babkoff et al 2005). The prefrontal vulnerability hypothesis proposed 

by Horne 1993 is an example of one of the more influential theories from this school. 

Horne’s theory suggests that impairment to cognitive functioning in the prefrontal cortex 

including higher order functions, for example executive functions, saliency and attention, 

are most affected as a result of sleep deprivation. Functional magnetic imaging (fMRI) 

and positron emission tomography (PET) have been used to investigate specific regions 

of cortex thought to be affected by total or partial sleep deprivation (Durmer and Dinges 

2005, Jones and Harrison 2001). Durmer and Dinges report findings from functional 

metabolic and neurophysiological studies, which show that neural systems involved in 

executive function such as the prefrontal cortex, were more vulnerable to sleep 

deprivation in some individuals compared to others.  Sleep deprivation has also been 

shown to result in a significant decrease in relative metabolism of the frontal cortex in a 

PET study by Wu et al 2006. Therefore suggesting that sleep may be especially important 

for maintenance of appropriate functioning of the frontal cortex, but no imaging studies 

have investigated the effect of short cumulative habitual sleep on these regions to date.  

Sleep debt: 

Taken in the context of chronic sleep restriction, sleep debt can be defined as the 

accumulation of the total hours of sleep lost with respect to the individual’s specific daily 

need for sleep.  Sleep debt is a major problem in industrial western adult populations, but 

sleep patterns in pre-industrial communities have also been found to be similar to 
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industrial societies (Yetish et al 2015). Therefore the sleep debt acquired in western 

industrial populations may be determined by inter-individual susceptibility to sleep 

pressure and not purely on chronic habitual sleep behaviour. Sleep debt is not easily 

estimated as each individual’s daily need for sleep is different and the majority of studies 

use measures of sleep duration to objectively assess the effects of restricted sleep times 

and subsequent sleep debt. Epidemiological studies in adults and children report a 

statistically significant clinical risk in adults with habitually short sleep of approximately 5 

hours, which presumably results in habitual sleep debt accumulated over numerous years 

(Bonnet and Arand 1995). Sleep studies have reported that sleep periods reduced by as 

little as 1.3 to 1.5 hours for one night result in the reduction of daytime alertness by as 

much as 32% (Bonnet and Arand 1995). In view of the above, it is not surprising to find 

that poor sleep is a factor in 57% of road traffic accidents leading to fatalities in truck 

drives and in 10% of fatal car accidents in the United States costing billions dollars per 

year (Bonnet and Arand 1995).  

NORMAL VARIABILITY IN SLEEP PATTERNS 

Sleep patterns can vary between individuals and one key determinant is the subject’s 

tolerance to sleep pressure (Aeschbach et al 1996).  

Habitual Short sleepers: 

Short sleepers can be defined as individuals who attain less sleep than average sleep 

and sleep for < 7 hours (Taub 1978, Geol et al 2009). 

Short sleepers have been shown to demonstrate more consolidated sleep (slow wave 

sleep, see PSG section below), but less REM and light (N1 and N2, see PSG section 



 11  
 

below) sleep in comparison to longer sleepers. There is evidence to suggest that sleep 

homeostatic mechanisms and circadian rhythms are different in short sleepers 

(Aeschbach et al 1996). Aeschbach et al found short sleepers compared to long sleepers 

demonstrated differences in recovery from sleep deprivation, which indicates differences 

in homeostatic sleep mechanisms. Short sleepers were found to have shorter sleep onset 

latencies, and higher sleep efficiency compared to longer sleepers. Short sleepers also 

demonstrated increased slow wave sleep. These differences demonstrate increased 

homeostatic sleep pressure in short sleepers compared to longer sleepers. Long sleepers 

subjected to sleep restriction demonstrated greater EEG changes in sleep architecture 

than short sleepers (Aeschbach et al 1996). These findings support the premise that short 

sleepers live under greater homeostatic sleep pressure than longer sleepers and that 

short sleepers may be more tolerant to homeostatic sleep pressure than longer sleepers. 

Higher homeostatic pressure load is a possible explanation of performance deficits seen 

in SD (Aeschbach et al 2001).  

 It has also been reported that individuals given unlimited sleep opportunity under 

laboratory conditions sleep longer than their habitual sleep patterns indicate (Klerman 

and Dijk 2005, Webb and Agnew 1975). Individuals with shorter habitual bed rest duration 

have been shown to sleep more than those with longer habitual bed rest duration when 

given unlimited sleep opportunity under laboratory conditions (Klerman  and Dijk 2005). 

This suggests that habitual sleep habits may be prone to significant amounts of 

cumulative sleep debt even in self-reported short sleepers. 
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Habitual Long sleepers: 

Long sleepers by definition are individuals who sleep longer than average, but are able 

to function without any impairment and feel well in themselves. It is important to be able 

to make distinctions between long sleep and idiopathic hypersomnolence which is 

characterised by individuals sleeping long hours but still not feeling refreshed (Thorpy 

2012). Adult long sleepers typically sleep around 9 hours (or more, Grandner and 

Drummond 2007) when not previously sleep deprived. Studies have shown individuals 

classified as long sleepers based on long habitual sleep times show no significant 

differences in their sleep in comparison to individuals reporting normal sleep times with 

the exception of an increased amount of time spent in bed and asleep (Patel et al 2012). 

This suggests that any links between self-reported long sleep durations and adverse 

health effects are not likely to be due to poor sleep quality, sleep disorders or circadian 

phase abnormalities, in agreement with the above definition of long sleepers. Further 

research focusing on understanding the causes for an increased time asleep in bed are 

needed to get a better overall understanding of long sleepers. Others have shown 

depression, worry and being introverted show more prevalence in long sleepers 

compared to normal sleepers, although these differences have been found to be very 

small (Patel et al 2006, Patel et al 2012).  

Long sleepers have  been reported to have a greater incidence of sleep related problems, 

for example: difficulty initiating sleep, awakening more frequently during the night and 

waking too early and not feeling refreshed and subsequently being more sleepy in the 

daytime compared to normal sleepers (Grandner and Drummond 2007). It is possible in 

these cases, the definition of long sleep is interpreted as time spent in bed, but not 
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sleeping, as multiple awakenings and early waking suggest shorter actual sleep 

durations, and possibly greater time spent in bed attempting to sleep. Therefore, these 

individuals do not truly fit the above definition for long sleepers and early bed times may 

be a result of cumulative sleep deprivation resulting in hypersomnolence and increased 

sleep pressure which may be secondary to a primary sleep disorder such as 

psychophysiological insomnia.  

SUBJECTIVE SLEEP MEASURES 

Questionnaires:   

In a clinical setting subjective reports of sleep quality are a useful screening tool for 

the initial assessment of sleep complaints (Akerstedt et al 2002, Suzuki et al 2004, 

Vitiello et al 2004). There are several assessment questionnaires available to 

clinicians, and these sleep rating measures focus on subjective estimates of sleep 

duration, sleep fragmentation (e.g. awakenings during the night) and other factors 

which can determine sleep quality and sleep time, and other issues for example in 

relation to medication or co-morbidity.  The Pittsburgh sleep quality index (PSQI) is 

one of the most widely used sleep questionnaires (Buysse et al 1989).  The PSQI is a 

useful tool for overall assessment of sleep quality in general terms, but was not 

designed for the assessment of sleep quality for any particular night. In a study which 

used the PSQI in a cohort of young and old subjects it was found older subjects 

demonstrated worse subjective sleep quality component scores than younger 

subjects, although the overall global score for the majority of older subjects was within 

the good sleeper range (Buysse et al 1991). When comparison between subjective 

PSQI and objective PSG data was made (which included the comparison of sleep 
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efficiency, sleep latency, time asleep, sleep maintenance and % delta against global  

PSQI scores) no significant correlations between the subjective and objective 

measures was found (Buysse et al 1991).  This lack of agreement between subjective 

and objective assessments of sleep seems to be quite general. Studies comparing the 

Karolinska sleep scale (KSS), which is a sleep questionnaire developed to assess 

subjective sleep quality (Akerstedt et al 1994) with objective data from PSG showed 

that overall subjective sleep quality was related more to sleep efficiency and continuity, 

but not to individual sleep stages, and that sleep efficiency in the young adults studied 

had to be >87% to be subjectively rated as good (Akerstedt et al. 1994). In addition, 

the authors reported that the ease of awakening was related to poor objective sleep 

quality.  

While subjective questionnaires described above have clinical relevance, their primary 

purpose is to assess large changes in sleep quality attributed to sleep disorders or other 

medical conditions, as opposed to assessing normal sleep patterns. Also it is important 

to reiterate that sleep questionnaires such as PSQI and KSS are designed to rate overall 

sleep quality not sleep quality for a single night. As sleep can vary from night to night, 

obtaining chronic habitual sleep data allows the assessment of sleep patterns and 

average sleep durations which can be important to determine if a subject has poor 

cumulative sleep quality or a poor habitual sleep status.  

Sleep diaries: 

Sleep diaries are assessment tools which allow subjects to record their sleep behaviors 

on a daily basis. These include sleep patterns, sleep quality, daytime sleepiness and 

stimulant use. Similar to actigraphy sleep diaries can be used to assess night to night 
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variability allowing a more representative sample of an individual’s sleep than two nights 

of PSG or a single time-point questionnaire. Sleep diaries have been shown to 

correspond well to actigraphy and PSG, although studies have found subjects to 

overestimate sleep latency and awake time after sleep onset on sleep diaries (Coates et 

al 1982, Monk et al 1994, Vallieres and Morin 2003). 

OBJECTIVE SLEEP MEASURES 

PSG: 

To examine sleep, laboratory-based polysomnography (PSG) is regarded as the gold 

standard as an objective measure (Ancoli-Israel et al 2003, Blackwell et al 2008, Kushida 

et al 2001). The PSG is the standard method for sleep measurement in clinical practice. 

The minimum physiological variables measured with PSG are EEG, elctrooculogram 

(EOG), electromyogram (EMG).  

The EEG measures electrophysiological cortical sleep changes, the EOG measures eye 

movements which can help to identify REM sleep together with EMG which measures 

muscle tone usually form the mentalis or sub-mentalis muscle.   

The EEG component of the PSG is invaluable in terms of characterizing sleep and EEG 

defined sleep stages can be represented in a hypnogram (Figure 1.2). The EEG can be 

used in conjunction with the other PSG variables to characterise the sleep cycle 

electrographically into 4 sleep stages N1, N2, N3 (Non-REM sleep or NREM) and R (REM 

sleep, Iber et al 2007). Each sleep stage is characterised by more than 50% of an epoch 

demonstrating the charateristics of that sleep stage (an epoch being defined as 30-

seconds) which consists of continuous EEG activity demonstrating the following: N1 
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defines the onset of sleep, and consists of slow rolling lateral eye movements, low 

amplitude mixed frequency activity on the EEG, predominantly 4-7Hz, and presence of 

vertex sharp waves. Vertex sharp waves (or vertex sharp transients of sleep) are benign 

paroxysmal discharges which characterise well established N1 sleep. They are seen over 

the central (vertex) regions of the cortex. N2 requires the presence of K-complexes and 

sleep spindles. K-complexes resemble vertex sharp transients of sleep with sleep 

spindles (sigma spindles) attached and are evident over the fronto-central regions of the 

cortex. Sigma spindles can also be seen independently over the fronto-central regions of 

the cortex and have a frequency of 12-16Hz. These paroxysmal discharges are benign 

and may be associated with arousal responses due to noise. They have also been 

associated to a range of cognitive functions and memory (Schabus et al 2006, Walker, 

2009. Plihal and Born,1997) and it has been suggested they play a protective role in sleep 

(Wauquier et al 1995). N3 (Slow wave sleep, SWS), demonstrates large amplitude slow 

waves (0.5-3Hz) and is thought to play a role in memory processing and consolidation 

(Walker 2009). In the R phase, there are rapid eye movements, low amplitude mixed 

frequency (wake like) EEG, and low chin EMG tone.  

Additional measures such as airflow, respiration and oxygen saturation levels can identify 

airway obstructions which may cause arousals and awakenings from sleep for example 

due to sleep apnea. Clinical applications of PSG for assisting in the identification of sleep 

pathology are many, including; insomnia, narcolepsy, periodic limb movement disorder 

(PLM), apnea (obstructive or central), non-REM sleep parasomnias, REM parasomnias, 

differential diagnosis between parasomnias and nocturnal frontal lobe epilepsy (Kushida, 

et al 2005).  
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Many PSG laboratory based studies have investigated SD (Goulart et al 2014, Tarokh et 

al 2015, Van Dongen et al 2003), and chronic sleep restriction (Van Dongen et al 2003).  

 

 

Fig 1.2 above, adult hypnogram showing normal sleep cycling and sleep stages 
based on EEG (adapted from Miller et al 2014).  

 

Although PSG is without question the investigative tool of choice in the clinical setting 

when investigating sleep disorders such as insomnia, parasomnia, apnea, periodic limb 

movement disorders etc. (Kushida et al 2005), when attempting to charaterise specific 

regional changes in cortical activity, EEG is known to have poor spatial localisation (Burle 

et al 2015, Niedermeyer and da Silva, 2005). This makes PSG impractical to assess very 

specific regional cortical changes. PSG studies are also limited in their efficacy in 

determining chronic habitual sleep durations. PSG studies are one or two nights in 

duration and therefore are limited in terms of providing long term habitual sleep data which 

is required to charaterise habitually short or long sleep in a participant’s normal 
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environment. Actigraphy and sleep diaries are a much more effective tool for 

characterising habitual sleep patterns and sleep times (Ancoli-Israel et al 2003). 

Actigraphy: 

Actigraphs are watch like devices, which can be worn on the wrist or less commonly on 

the ankle to measure and record movements.  As frequency and level of movement 

change when subjects settle for sleep as opposed to being awake and active, activity can 

be used to approximate the sleep-wake cycle. This characteristic can be used to 

determine sleep patterns and sleep times over days or weeks in conjunction with sleep 

diary records (figure1.3). The collected data is downloaded on to a computer and 

analysed for activity verses inactivity and further analysis performed to estimate 

wakefulness and sleep (Ancoli-Israel et al 2003).  The earliest actigraphs were developed 

in the 1970’s . Kripke et al 1978, published some of the first studies to demonstrate the 

reliability of the use of actigraphy for sleep assessment. Modern digital actigraphy devices 

are available which can analyse light changes as well as movement using accelerometers 

in order to assess sleep. They are equipped with enough memory to record for several 

weeks and parameters such as total sleep time (TST), percent of time spent asleep, total 

wake time and awakenings after sleep onset (WASO) or number of awakenings can all 

be easily calculated.  Actigraphy is highly correlated with PSG for differentiating sleep 

from wake (Blood et al 1997, Jean-Louis et al 1996) with TST correlations of 0.97 and 91-

93% overall agreement for marked epochs of sleep and awake in adults (age 20-30 years, 

Ancoli-Israel et al 2003). In healthy adult subjects, actigraphy is a valid method for the 

assessment of sleep durations and sleep/wake activity, although it is less reliable for more 

specific measures such as sleep offset or sleep efficiency (Ancoli-Israel et al 2003 ). 
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Actigraphy is useful for recording multiple nights of sleep, is easy to use, can be used in 

the subject’s normal environment and has minimal effect on the subject’s natural sleep 

behavior and data can be represented in a graphical format (figure 1.3). 

Actigram:

 
 

                                 Bedtime Marker        Sleep        Rest Awake White light intensity Activity 

Fig 1.3 Actigraphy data for 7 days form an adult subject with consistent normal 
habitual sleep durations. 

 

FUNCTIONAL NEUROIMAGING 

The organ showing the clearest changes during sleep compared with relaxed 

wakefulness is the brain. These changes are evident in fMRI functional imaging studies 

(Horovitz et al 2008, Horovitz et al 2009, Larson-Prior et al 2009, Sämann et al 2011). 

Focussing on the brain using these techniques is appropriate, as not only does it contain 

numerous control mechanisms for sleep (Geiger-Brown et al 2012), but of all the body's 
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organs, it is the brain (especially the cerebral cortex) for which sleep seems to be the 

most vital in terms of actual recovery from deficits associated with sleep deprivation 

(Alhola and Polo-Kantola 2007, Babkoff et al 2005, Chee et al 2006, Horne 1993). 

Although the human adult cortex comprises about 2% of total body weight, it is highly 

metabolically active during wakefulness, requiring 20% of total resting oxygen intake even 

in the awake resting state (Clarke and Sokoloff 1999, Kety 1957, Rolfe and Brown 1997,). 

Resting with eyes closed and the mind cleared of all thoughts is not sufficient for brain 

rest and recovery. Only sleep can achieve these goals. 

As mentioned above, EEG which is a key component of PSG investigations, provides 

very good temporal resolution, but poor spatial resolution due to the effects of volume 

conduction (Burle et al 2015). In addition, it is not possible to infer specific structural 

changes in ICNs (see below) using superficial electrophysiological potentials. On the 

other hand, functional imaging modalities such as fMRI and PET have very good spatial 

resolution, but poor temporal resolution. These imaging modalities allow characterisation 

of ICNs and comparisons of any changes in network functional connectivity (see below) 

from specific regions of cortex. Structural neuroimaging modalities such as DTI also allow 

structural comparisons, which provide a complementary measure of the impact of sleep 

on the brain.   

In the work presented in this thesis, fMRI  and DTI were used. The focus of the work was 

to determine functional and structural changes within specific regions of ICNs in relation 

to habitual sleep status. Therefore, spatial information was paramount to determine any 

specific or subtle changes in network connectivity whether structurally or functionally. 

Before discussing the specific imaging modalities used to charaterise changes associated 
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with chronic habitual sleep status in this thesis, I briefly discuss work involving other 

commonly used functional imaging methods with respect to sleep status. 

PET and SPECT studies with respect to sleep status: 

PET and SPECT (Spin positron emission computed tomography) are functional imaging 

techniques in nuclear medicine, which are used to observe metabolic processes using a 

positron-emitting radionuclide tracer. At present, there are no nuclear imaging studies that 

have investigated functional cortical changes in the context of chronic habitual sleep 

status to our knowledge. Therefore the studies discussed here will be based on SD, 

related to cognitive performance or to insomnia, a sleep disorder characterised by poor 

sleep or the inability to initiate adequate amounts of sleep. The most common PET tracer 

is fluorodeoxyglucose (FDG) which is an analogue of glucose. Therefore regional glucose 

metabolic uptake can be measured to characterise metabolic activity within tissues. PET 

studies have shown reduced behavioral performance post SD, associated with a 

reduction in global levels of glucose metabolism, together with reduced local activation in 

attention and arousal-related brain areas, such as the thalamus (Thomas et al 2000, Wu 

et al 1991). Reduced glucose metabolism post SD has also been found to be positively 

correlated between the thalamus and prefrontal cortex, suggesting sleep deprivation 

impacts these areas together as a functional network (Thomas et al 2003). Frontal and 

temporal lobes have been shown to demonstrate a significant decrease in absolute 

metabolic rate in response to SD where subjects were sleep deprived from 7am until 1-

5pm the next day (Wu et al 1991). A PET study by Nofzinger et al 2004 suggests daytime 

fatigue in insomniacs may reflect decreased activity in the prefrontal cortex resulting from 

inefficient nocturnal sleep. The serial addition/subtraction task used in Thomas et al 
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(2000) required arithmetic working memory in addition to attentional demands and 

demonstrated decreased activation in regions associated with such tasks such as 

prefrontal cortex, inferior parietal lobe, and anterior cingulate gyrus. Molecular 

radiotracers (C-11 raclopride and C-11 cocaine radiotracers) tracers have been used in 

a PET study to investigate the effects of sleep deprivation on dopamine 

neurotransmission in humans. Volkow et al (2008) proposed increases in dopamine  post 

SD are possibly responsible for maintaining levels of arousal under increasing 

homeostatic sleep pressure, but do not exert enough influence to prevent behavioral and 

cognitive impairment.  

SPECT is a nuclear imaging technique similar to PET, but has poorer temporal resolution 

(several minutes for SPECT apposed to 45 seconds to a minute or so for PET) and uses 

only blood flow analogues opposed to PET which generally uses glucose or water/blood 

flow analogues. Smith et al 2002, found reduced regional cerebral blood flow from a 

SPECT study, in the basal ganglia in insomniacs. Another preliminary study by Smith et 

al 2005, which compared 5 insomniacs with 4 normal sleepers using SPECT, found no 

significant regional increase during NREM sleep but reduced regional cerebral blood flow 

(rCBF) in frontal medial, occipital, and parietal cortices, as well as in the basal ganglia. 

This suggests these brain areas are possibly most affected by chronic inadequate sleep 

(as chronic inadequate sleep is the main problem for insomniacs) during wakefulness.  

The above PET and SPECT studies are consistent with the behavioural observation that 

SD affects cognitive domains such as the temporal and parietal regions and in particular 

the pre-frontal cortex. While PET and SPECT can be very specific in terms of 
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characterising cerebral metabolism with the use of radioisotopes, it must be stated that 

the temporal resolution for PET and SPECT is slower in comparison to fMRI studies (in 

the order of minutes) due to the slow tracer and blood flow kinetics (Maquet 2000). 

Nuclear Magnetic Resonance Imaging (Basic principles of MRI): 

The main imaging modality used in this thesis was MRI. Here, the basic knowledge of 

MRI and fMRI physics is presented, with several publications available for additional 

details (e.g., Pooley 2005, Deichmann 2010). Nuclear Magnetic Resonance (NMR) is a 

physical effect used in medical imaging since the 1970's. Nuclei are composed of protons 

and neutrons. The proton number determines the element and its position in the periodic 

table while the neutron number can provide variations in mass between nuclei of atoms 

of the same element resulting in their isotopes. The neutrons and protons have a property 

of angular momentum known as spin. The motion of electrically charged particles such 

as protons results in a magnetic force orthogonal to the direction of motion. Therefore, 

nuclei of isotopes with an equal number of protons and neutrons will not spin as the 

contra-rotation of their component particles will cancel out. Isotopes with an odd number 

of nucleons will display net spin. These nuclei behave like minute bar magnets as they 

are rotating charges.  Materials made of such isotopes will be undistinguishable from 

other materials under 'normal' conditions, as atoms tend to be orientated at random. In 

essence, they will show no evidence of magnetism. If an external magnetic field of 

significant strength is applied, some alignment of magnetic moment (the magnetic effect 

of a particle with spin) will occur and it is under these conditions that certain isotopes can 

show NMR properties. Examples of the nuclei amenable to resonance are hydrogen, 
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phosphorus, fluorine and carbon. Of these hydrogen is found in the greatest quantity in 

living tissue because of the large amount of water present, and generally forms the basis 

for magnetic resonance imaging described below.  

Magnetic fields are described in terms of x, y and z-axes, with the z-axis being that of the 

applied magnetic field (M). When this is the main magnetic field it is known as B0. When 

a body is exposed to a strong magnetic field, a proportion of the protons will attempt to 

align parallel with this field. Some protons will align in the up spin position and others in 

the down spin position. The spin up position requires less energy, therefore it is the 

preferred direction. In other words there are always more protons in the up spin position. 

It is this excess which creates the weak net magnetisation in the field direction. The 

protons are then in an equilibrium state with the external field, and are proposed to be 

precessing around the z-axis, similar to the analogy of a spinning top which precesses 

around the vertical field of gravitation.  

The number of times a nucleus precesses in one second is called the precessional or 

Larmor frequency (0). This is an important distinguishing characteristic of a nucleus. For 

instance, in a magnetic field of a given strength, all of the hydrogen nuclei will precess at 

the same frequency. Other types of nuclei will precess at their own characteristic 

frequencies. Therefore the Larmor frequency depends on the type of nucleus and the 

strength of the applied magnetic field.   

Magnetic field strength is measured in Tesla (T), which is the SI unit of magnetic flux 

density. Fields used in human NMR can range from 0.02-7.0 T, and as the magnetic field 

strength increases an increasing proportion of the nuclei will align, leading to a stronger 
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signal which can result in improvements in image contrast and spatial resolution. 

Compared to the Earth's magnetic field (5x10 -5T) these are very strong.  

Nuclei do not initially precess in-phase with each other in the magnetic field. Phase 

coherence can be achieved by introducing energy in the form of Radio Frequency electro-

magnetic radiation (RF) and the RF magnetic field is known as B1. To be useful the RF 

pulse must have the same frequency as the resonance (Larmor) frequency of the nuclei 

of interest, which are generally protons. This is known as the spin precession of the RF 

field. As soon as the RF pulse is applied, the effect is that of a rotating magnet which 

'pulls' the magnetisation along. 

For the duration of the RF pulse, the magnetisation precesses about a new time-

dependent axis created by the field lines along the z-axis and the rotating magnetic field 

in the x-y plane. The stronger the energy of the stimulating RF pulse the greater the angle 

of deflection, or flip angle. Common flip angles include 90 degrees which flips the 

magnetisation directly into the x-y plane, while 180 degrees inverts the magnetisation and 

flips it exactly into the opposite direction.   

The magnetisation can be separated into two vector components located perpendicular 

to one another. Longitudinal magnetisation (Mz) is the portion of the vector in the direction 

of the z-axis and so aligned with the external magnetic field (B0, see figure 1.4 below). 

Transverse magnetisation (Mxy) is the component of the vector located in the x-y plane 

perpendicular to the external magnetic field ( see figure 1.4).  
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Figure 1.4 Diagram of the magnetisation M separated into two vector components located 
perpendicular to one another (Mz and Mxy), longitudinal magnetisation and transverse 
magnetisation (B0 is the direction of the external magnetic field and the longitudinal 
magnetisation is aligned with B0). 

 

The Magnetic Resonance (MR) signal is generated as the flipped spins return to their 

original state. This causes the induction of an electrical voltage in the receiver coils of the 

scanner, because of emission of RF energy from the protons. After the RF pulse is 

switched off Mxy decays quickly, as the spins lose their phase coherence again. This is 

known as free induction decay. Mz recovers fully after a brief period as the excess energy 

is absorbed into the atomic and molecular environment surrounding the proton.  

The restoration of the Mz magnetisation is the relaxation time. The time required to restore 

the equilibrium between the two energy states of the spin is a function of tissue as well 

as field strength. T1 (longitudinal relaxation time), which is approximately 900ms for grey 

matter and 600ms for white matter (Huettel et al 2004), which describes the recovery time 

of the longitudinal magnetisation Mz (but there can be variations in times due to field 
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dependence effects which are determined by the types of tissue being imaged, Korb and 

Bryant 2002). As each T1 time passes the magnetisation increases to approximately 63% 

of the remaining differential value. After a total time of approximately 5 times T1, the 

process is close to completion. Therefore T1 is a tissue specific time constant which tells 

us how quickly the spins of each tissue will emit their absorbed RF energy. It is dependent 

on the size of the tissue molecule and its type of surroundings. A small water molecule 

will move quickly and randomly through its molecular environment. It will have little 

opportunity per unit time to emit energy by interacting with its neighbouring molecules. 

Pure water and cerebral spinal fluid (CSF) therefore have very long T1 constants. A large 

slow moving fat molecule in a dense atomic lattice has a very short T1.  This is key to the 

sharp image contrast obtained in MRI.  

As Mz is restored, so Mxy decays. The decaying process for Mxy is much faster than the 

recovery process of Mz.  After a 90 degree RF pulse has been applied the vector of the 

Mxy magnetisation consists of a large number of spins which precess in phase in x-y 

plane. Their individual contributions to the magnetisation are summative. The spins are 

phase coherent and they behave as one large magnet which rotates in the x-y plane. Due 

to their unavoidable interactions with neighbouring molecules the precessing spins lose 

their phase coherence. The rotating Mxy magnetization dephases or fans out into 

individual spins and begins to decay. T2 (transverse relaxation time) corresponds to the 

time taken for 37% of the Mxy magnetisation to decay.  

Mxy magnetisation usually decays before Mz has recovered because the interaction 

occurring between spins is stronger than the spin-lattice interaction. T2 is also tissue 
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specific. In grey and white matter which contain a more rigid atomic lattice than fluids the 

nuclear spins are constantly exposed to fluctuating local magnetic fields. T2 is therefore 

very short in the order of 100ms for grey matter and 80ms for white matter (Huettel et al 

2004). However in fluids the nuclear spins move in random molecular motion which 

minimises field fluctuations. For this reason, T2 is longer in fluids (around 400ms in CSF). 

There is a second type of transverse relaxation time which is known as T2* which is 

similar to T2 but includes overall decay from  transverse magnetization static field 

inhomogeneity over a macroscopic region (mm) as opposed to T2 which is intrinsic decay 

of transverse magnetization over a microscopic region (5-10 microns). T2* decays more 

quickly than T2 (by a factor of about 2). T2 and T2* time constants have useful properties 

which are used in fMRI imaging which is discussed later on in this section.  

Pulse sequences such as the combination of 90 degree and 180 degree RF pulses are 

used to measure T1 and T2 times. The time from the 90 degree RF excitation pulse to 

the peak of the signal induced in the receiver coil is known as the echo time (TE). TE 

controls the amount of T2 contrast in the image. The time from one 90 degree RF pulse 

to the next one is the repetition time (TR). TR controls the amount of T1 contrast in the 

image. T1 weighting requires a short TR and a short TE, while a T2 weighting requires a 

long TR and a long TE. Other sequences and contrasts can be developed using different 

combinations, with for example Proton Density weighting requiring a long TR and a short 

TE.  

As mentioned the Larmor frequency of the nuclei is directly proportional to the strength of 

the magnetic field. The nuclei are therefore stimulated by the RF pulse of the same 
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frequency and so no spatial information is obtained as all the protons have the same 

resonance frequency and emit an unidentifiable signal. To overcome this and obtain a 

spatially specific response the spatial structure of the magnetic field needs to be changed. 

A magnetic field gradient generated using a pair of gradient coils is superimposed on the 

homogenous magnetic field. The current within the poles is the same but of opposite 

polarity. One coil increases the magnetic field by a specific amount while the other coil 

decreases it by a specific amount. Most MR scanners are equipped with three sets of 

linear field gradients (Gx, Gy, Gz). Application of these gradients leads to linear modulation 

of the z-component of the B0 field along either the x, y, or z spatial axis. Gradients are 

also used for slice selection. RF pulses have a finite bandwidth that can be mapped to a 

spatial band by the use of a gradient pulse during RF excitation. Conventional MRI yields 

images of anatomy. A block diagram of a conventional MRI scanner is shown below 

(figure 1.5).   
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Figure 1.5 Basic block diagram of an MRI scanner  

fMRI basic principles: 

Most fMRI measures the blood-oxygen-level dependent (BOLD, Logothetis and Wandell, 

2004) contrast, first reported in 1990 by Seiji Ogawa and his lab (Ogawa et al 1991). The 

first successful fMRI study in humans was reported by Belliveau et al 1991.  Below I 

describe the basic principle of fMRI. 

The insertion of a person in to a B0 field will cause the B magnetic field to become non-

uniform. This effect is caused by susceptibility ( which is the production of magnetic 

fields in materials that are immersed in an external magnetic field.  For large scale 

inhomogeneities of >10cm, the MRI scanner magnetic field can be adjusted to reduce the 
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field inhomogeneities in the B0. This is called shimming. Susceptibility artefacts can also 

occur close to junctions of air and tissue, such as the sinuses and ear canals. In addition, 

red blood cells are responsible for changes in susceptibility during activation (which is the 

BOLD response due to neural activity). This results in local increases in blood flow 

together with some increase in oxygen consumption resulting in a rise in oxyhaemaglobin 

levels and a reduction in deoxyhaemoglobin. Oxyhaemoglobin in the blood becomes 

deoxygenated to produce deoxyhaemoglobin which is paramagnetic. Therefore 

susceptibility differences between venous vasculature and the surrounding tissues cause 

magnetic field shifts This results in an increased T2* which results in increased fMRI 

signal intensity (Deichmann et al 2010).   

The spatial resolution of fMRI is better than PET and far greater than EEG (spatial 

resolution in centimetres, Rodic and Zhao 2015), allowing it to distinguish between 

smaller regions of activity. This may seem insignificant, but such differences in resolution 

are substantial if we take in to consideration that a few millimetres of cortical grey matter 

are made up of millions of neurons which subsequently constitutes billions of synaptic 

connections (Rodic and Zhao 2015). fMRI also detects activity inside the brain in three 

dimensions, while superficial EEG generally reflects global radial dipoles of 

neurophysiological activity on the cortical surface (Rodic and Zhao 2015). In comparison 

to PET, fMRI imaging negates the need for radioactive contrast agents or metabolites 

and provides higher temporal resolution. 
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Activation fMRI in relation to sleep: 

Historically, most functional neuroimaging studies have employed tasks to identify brain 

regions whose activity responds to a certain category of stimuli, or is different for two 

different categories (Bagshaw and Khalsa  2013). Activation fMRI studies looking at the 

effects of habitual sleep status in adults have not been performed as far as we know, but 

activation studies investigating the effects of SD on performance have been performed. 

For example (Lim et al 2007), assessed the reproducibility of fMRI activation and 

performance on a working memory task before and after 24 hours of sleep deprivation. 

They found that the modulation of the parietal regions were possibly good markers of 

vulnerability to SD, with a drop in left parietal activation correlating with SD. Drummond 

et al (2001) found SD was associated with increased activation in the bilateral prefrontal 

cortex and parietal lobes for a verbal learning and attention task. They also found an 

arithmetical task led to significantly reduced activation in the bilateral prefrontal cortex 

and parietal lobes. They suggest these findings demonstrate an adaptive cerebral 

response during cognitive performance due to SD and specific patterns of adaptation 

depending on the cognitive process being performed. Chee et al (2008) found SD related 

lapses in attention differed from lapses of equivalent duration after a normal night’s sleep. 

They found a reduced activation of fronto-parietal control regions in response to 

attentional lapses, as well as dramatically reduced visual sensory cortex activation and 

reduced thalamic activation during lapses in SD individuals. Chee et al (2008) illustrate 

some neural consequences of the interaction between efforts to maintain wakefulness 

and processes which initiate involuntary sleep in SD subjects. fMRI studies investigating 

sleep deprivation have demonstrated attention to be particularly sensitive. Portas et al 
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1998 found that different levels of arousal (sleep deprived low levels or caffeine stimulated 

heightened levels for example) modulated thalamic activation. With sleep deprivation 

demonstrating greater thalamic activation. Many other fMRI activation studies have 

investigated the effects of SD on memory as well as SD effects on attentional functioning 

(Drummond et al 1999,  Bell-McGinty et al 2004, Chee and Choo 2004, Habeck et al 2004, 

Caldwell et al 2005, Mu et al 2005, Mander et al 2008, Sterpenich et al 2007). 

Resting state fMRI:   

There is another way of analysing brain imaging data, and of conceptualising brain 

function, which is to move away from a sole emphasis on stimulus responses towards 

an examination of the brain's intrinsic functional properties (Raichle 2010). Resting 

state activity can be detected with advances in imaging techniques which allow the 

use of fMRI to reveal fluctuations in BOLD signal intensity from each voxel of the brain 

(Biswal  et al 1995). These fluctuations are of low frequency (<0.08Hz), and their time 

courses are highly correlated temporally  (Biswal et al 1995). It has been suggested 

they reflect the neuronal baseline activity of the human brain (Damoiseaux  et al 2006), 

and represent the resting neuronal activity in the absence of goal directed tasks or 

external input. Whether these low frequency oscillations of the BOLD fMRI signal are 

a result of neuronal activity of the cortex or low-frequency artefacts due to other 

physiological processes causing variations in cerebral blood flow has been 

considered, such as movement, breathing and heart rate (Maldjian et al 2001). The 

overwhelming body of research now suggests the fluctuations are a direct result of 

neuronal activity (Biswal et a 1995, Damoiseaux  et al 2006, Greicius et al 2003, Lowe 

et al 1998, Raichle et al 2001, Shulman et al 1997). Non-neuronal ‘noise’ signals are 
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a component of the BOLD signal which may occur from head motion (Van Dijk, 

Sabuncu and Buckner, 2012), fluctuation in heart rate (Change et al 2009) and from 

respiratory artefacts .  Several preprocessing steps can be performed prior to seed-

based FC analysis to reduce artifacts and noise from the BLOD data. Including: 

regressing motion parameters of the white matter and ventricular time series 

(Weissenbacher et al., 2009), regressing breathing and cardiac artefact (Khalili-

Mahani et al 2013). Global signal regression (GSR, regressing the whole global mean 

of the bold signal) is also commonly used to remove signals between two regions and 

has been known to improve positive correlations and give greater spatial specificity 

(Fox et al 2005, Weissenbacher et al 2009).  

Functional Connectivity: 

The degree of correlation of resting state activity within the brain is a measure of the FC 

of those regions, and the fMRI signal is now widely used to study the functional 

relationships between brain areas. Functional connectivity is generally defined by 

examining correlations between regions in the low-frequency (<0.1Hz) part of the BOLD 

signal (Fox and Raichle 2007). Analytically, this can be done in two main ways. On the 

one hand, an initial 'seed' region can be defined based on some previous anatomical or 

functional prior information, and its activity correlated with all other brain regions (fig 1.6). 

For example, resting state functional connectivity of ICN neural networks can be 

examined in control subjects (figure 1.6, and expanded upon in the next section). 

Alternatively, multivariate techniques such as independent component analysis (ICA, 

Beckmann and Smith 2004) can be used. ICA decomposes the data into multiple 

components based purely on its statistical properties with no prior functional or anatomical 
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constraints (figure 1.7). This has proved particularly powerful for identifying brain 

networks for which no previous hypotheses exist. For example, Damoiseaux et al 2006 

found 10 consistent resting patterns with relatively large coherent fluctuations in the 

BOLD signal in their study of control subjects using ICA. The results showed very 

plausible and consistent brain networks that were in line with findings in previous ICA 

research (Biswal et al 1995, Beckmann 2005, De Luca et al 2006, Fox et al 2005, Grecius 

2003)   

The identification of how regions coordinate their activity and interact has become an 

increasingly important approach for characterising ICNs and understanding the neural 

underpinnings of sensation, salience and cognition (Bressler and Menon 2010, Fox and 

Raichle 2007, Raichle 2010). Crucially, the brain’s functional architecture can be 

characterised in the absence of any specific external input (i.e., while the subject is at 

rest).  Raichle’s 2010 paper (the two views of brain function) describes brain functions as 

mainly intrinsic, involving information processing for interpreting, responding to and 

predicting environmental demands. This idea corresponds well with metabolic studies 

which report the adult cerebral cortex to be highly metabolically active during the awake 

resting state requiring 20% of the total resting oxygen intake despite the human adult 

cortex comprising about 2% of total body weight (Clarke and Sokoloff 1999, Rolfe and 

Brown 1997). Prior to Raichle’s work on resting state (intrinsic) brain network activity 

(Raichle et al 2001) most studies of brain function focused on activation (task evoked, 

see above) responses. Although important, these studies by design encourage a reflexive 

view of brain function.  
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FC can be studied with any of the available non-invasive methods that probe human brain 

function (i.e. PET and SPECT see above), electrophysiological methods (EEG and 

magnetoencephalography (MEG)), or fMRI. In the research setting fMRI is the most 

widely used tool for studying human brain function and has some advantages over the 

other techniques either in terms of spatial and temporal resolution (compared to PET and 

SPECT), or sensitivity to cortical and subcortical structures (compared to EEG/MEG). It 

also has the potential to be widely available clinically, since clinical MRI scanners can be 

used in principle allowing developments in understanding of the brain's functional 

architecture and their modifications to impact on clinical management.  
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Figure 1.6 group correlational FC maps in axial view of the DMN with the PCC as 
the seed region produced from fMRI data ( X and Y axis represent arbitrary units 
for comparison of ROIs between maps. The colour bar scale represents degree of 
correlation for the seed region to the other ROIs). 
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Figure 1.7 above resting state group FC correlation maps in axial view of the DMN 
using independent component analysis processed from fMRI data (scale 
represents the z-score which represents the  degree of correlation of the voxel time 
course with the independent component time course). 

 

FUNCTIONAL NEUROIMAGING AND ICNs 

Intrinsically connected networks: 

The brain is organised into a series of correlated functional networks characterised by 

FC, even in the absence of stimulation (Biswal 1995, Lowe, et al.1998, Raichle et al. 

2001). Correlated networks can be defined as brain regions which are preferentially 

functionally (or structurally) connected, so the regions within the network are more 

connected than they are with regions outside the network. Using fMRI, approximately ten 

resting state networks (RSNs) or ICNs (to avoid the assumption that they are only seen 
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in data acquired at rest) can be identified. These range from regions known to be involved 

in motor function (the sensory-motor network) and primary sensory processing (auditory 

phonological and visual processing networks), to those involved with higher level 

cognitive functions such as executive functioning (Central executive network CEN), 

attention, salience (Salience network SN) and memory, awareness, and conscious self-

perception (Default mode network DMN). While in some cases the precise functional 

purpose of ICNs is not absolutely clear, their activity has been shown to have functional 

significance. ICN activity is modified in a multitude of neurological and neuropsychiatric 

conditions (Broyd et al 2009, Greicius et al 2008, Monk et al 2009, Rombouts et al 2005, 

Zhang et al 2011), as well as in the different stages of sleep (De Havas et al 2012, 

Horovitz et al 2009, Larson-Prior et al 2009, Samann et al 2011) and following sleep 

deprivation (Bosch et al 2013, De Havas et al 2012, Gujar et al 2010, Tomasi et al 2009, 

Sämann et al 2011, Verweij et al 2014). This opens up the possibility that they can provide 

clinically-relevant information that might be of use not only in patients with various 

neurological disorders (Bozzali et al 2002, Gattellaro et al 2009, Kinnunen et al 2011, 

Zhang et al 2011), but also in control subjects in relation to subtle changes to the waking 

state in relation to habitual sleep status (Chapter 4, Khalsa et al 2016).  

Default Mode Network: 

One of the most studied ICNs is the DMN (Greicius et al 2003, Horovitz et al. 2009, Lowe 

et al 1998, Raichle et al 2001, Shulman et al 1997). The DMN consists of the posterior 

cingulate/precuneus cortex (PCC), the left and right inferior parietal/angular gyrus (l/rIPC), 

medial prefrontal/anterior cingulate cortex (mPFC), the left and right mesial temporal 

regions (l/rMTL) and left and right hippocampi (l/rHC). The DMN is thought to be 



 40  
 

instrumental in promoting awareness and conscious self-perception in the human brain 

at rest and is seen to deactivate during task performance (Gusnard et al 2001). Many 

studies have been conducted using fMRI ( Greicius et al 2003,Horovitz et al 2009,  Lowe 

et al 1998, Raichle et al 2001) which report a similarity between the patterns of FC 

identified in the resting brain across individuals. Numerous studies have indicated the 

high rate of glucose metabolism of the PCC compared to other brain regions (Pfefferbaum 

et al, 2011, Raichle et al 2001) suggesting this region plays an important role in the 

regulation of resting state activity, self referential intrinsic thoughts and cognition (Binder 

et al 1999, Leech et al  2012, Mitchell et al 2003, Pearson et al 2011). Subsequently the 

DMN nodes have been identified as components of the consciousness system 

(Blumenfeld 2012, Danielson et al 2011).  

In addition to the proposed role of the overall network, individual nodes have been linked 

with specific functions for example, it has been proposed that when an individual is awake, 

but not actively engaged in cognitive task performance, the PCC promotes information 

gathering and representation of oneself and the world around us (Binder et al 1999, Leech 

et al 2012, Pearson et al 2011,). When an individual focuses on a goal directed task this 

disrupts the resting state processes (Gusnard et al 2001,Raichle et al 2001). This in turn 

is a reflection of the disruption of cortical neuronal activity devoted to self-referential and 

general information gathering processes (Cavanna et al 2006, Leech et al, 2011). In a 

PET study investigating the neural correlates of the hypnotic state (Rainville et al 1999) 

the PCC  and rIPC demonstrated a decrease in rCBF compared with other regions of 

cortex. In addition, fMRI studies investigating FC in the DMN of individuals in the descent 

to sleep demonstrated a reduction in FC of the PCC to the mPFC (Horovitz et al 2009, 
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Samaan et al 2010). Since impaired consciousness is a key feature of sleep onset and is 

manifest in the sleep deprived state (Bosch et al 2013, De Havas et al 2012, Gujar et al 

2010, Horovitz et al 2009, Larson-Prior et al 2009,Samann et al 2011, Tomasi et al 2009, 

Verweij et al 2014) these observations provide further evidence of the involvement of 

default mode regions in higher order processes of conscious behaviour. Furthermore 

Fiset et al 1999 investigating the effect of Propofol (an anaesthetic) induced 

unconsciousness demonstrated marked reductions in rCBF to the PCC and mPFC 

regions of cortex. The progressive decrease in PCC and mPFC activity correlated directly 

with increasing anaesthesia and inversely with the restoration of consciousness. These 

studies lend weight to the notion that DMN activity is directly involved in the maintenance 

of the resting alert conscious state.  

Central Executive Network: 

The CEN is frequently seen to activate during tasks involving executive function such as 

vigilance and alertness during fMRI studies (Collette and Van der Linden 2002, Fan et al 

2005). Seeley et al 2007 found the CEN to consist of the dorsolateral prefrontal cortex 

(DLPFC) and posterior lateral inferior parietal lobule (IPL), particularly in the intraparietal 

sulcus, and reported that activity from the CEN correlated with performance on executive 

control tasks. There is evidence to suggest the intra-network FC strength of the CEN (also 

known as the fronto-parietal control network Vincent et al 2008, or the executive control 

network  Lie et al 2015) is associated with elevated levels of I.Q ( a measure of 

intelligence) in children, adolescents and adults (Langeslag et al 2013). It has also been 

shown that the CEN is anti-correlated with DMN activity in healthy adults (Fox et al 2005, 
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Mennon and Uddin 2010, Sridharan et al 2008). There is a possibility that it may even 

inhibit DMN activity under certain conditions (Chen et al 2013).  

Salience network: 

The SN is comprised of the anterior cingulate cortex (ACC), the left and right anterior 

insula (lAI, rAI). The sub-cortical amygdala and substantia nigra (ventral tegmental 

region) and thalamus are also associated regions. The SN was identified by Seeley et al 

2007 using region of interest (ROI) and ICA of resting state fMRI data. The SN detects 

the most relevant stimuli from internal and extrapersonal stimuli in order to guide 

behaviour (Seeley et al 2007). There is evidence from several brain imaging studies to 

suggest that the SN responds to varying degrees of subjective salience which can be 

cognitive, emotional or homeostatic (Craig 2002, Craig 2009). The AI has been identified 

as an integral node of the SN which is tightly coupled to this network. It has been found 

that the ACC and AI are co-activated during a wide range of cognitive tasks.  

Sridharan et al (2008) demonstrated that the rAI plays a critical role in switching between 

the DMN and CEN, two networks known to demonstrate competitive interactions during 

cognitive information processing (Fox et al 2005, Greicius et al 2003). The rAI was shown 

to play a major role in the activation of the CEN and the deactivation of the DMN 

(Sridharan et al 2008), suggesting that the rAI acts as a control switch between brain 

networks across task paradigms and stimulus modalities. The AI functions to detect 

transient salient stimuli and initiate attentional control signals which are sustained via the 

ACC and ventrolateral and dorsolateral prefrontal cortex (Mennon and Uddin 2010, 

Seeley et al 2007). Therefore the core function of the SN is to identify stimuli from a 

plethora of sensory stimuli that are imposed on the senses.  Upon detection of such stimuli 
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the AI instigates task-related information processing via appropriate transient control 

signals initiating brain regions concerned with attentional, working memory, and higher 

order cognitive processes while deactivating the DMN. These switching mechanisms 

direct attention to external stimuli which results in such stimuli taking on added 

significance or saliency.  

Higher ICNs and sleep status: 

Sleep is crucial for maintaining normal waking cognitive functioning (Alhola and Polo-

Kantola 2007, Babkoff et al 2005, Belenky et al 2003, Horne 1993, Dinges et al 1997, 

Harrison et al 2000,Van Dogen et al 2003). It has been suggested that the cognitive 

processes of the human brain are regulated via ICNs (Bonnelle et al 2012, Mennon and 

Uddin 2010). One of the ICNs that has been consistently implicated in alterations to 

consciousness is the default mode network (DMN, for a review see the chapter by 

Bagshaw and Khalsa 2013). As mentioned above  impaired consciousness is a key 

feature of sleep onset and is most evident in the sleep deprived state (Bosch et al 2013, 

De Havas et al 2012, Gujar et al 2010, Horovitz et al 2009, Larson-Prior et al 

2009,Samann et al 2011, Tomasi et al 2009, Verweij et al 2014). A number of studies 

have investigated DMN functional connectivity during the descent into sleep, with one of 

the more consistent observations being a reduction in connectivity between the PCC and 

mPFC in stage N2 and beyond (Horovitz et al 2009, Samaan et al 2011). For example 

Horovitz et al investigated changes in DMN FC connectivity in relation to the natural sleep 

induced reductions in consciousness and reported changes in FC between nodes of the 

DMN. They found the most noticeable reductions in FC between the mPFC and the other 

nodes of the DMN and they also reported an increase in FC between the PCC and the 
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IPC nodes during sleep. While during rested wakefulness PCC-mPFC FC was found to 

be strong. More widespread ICN changes in connectivity have also been observed 

(Andrade et al 2011, Spoormaker et al 2012). As well as these changes in ICN functional 

connectivity during sleep itself, alterations have also been noted during wakefulness 

following sleep deprivation (Gujar et al 2009, Lei et al 2015) or partial sleep deprivation 

(Samaan et al 2010) and in relation to self-reported sleep duration on the night prior to a 

waking scan (Kilgore et al 2012). For example Yoo et la 2007 reported a single night of 

sleep deprivation produced a significant deficit in FC activity of the hippocampus during 

episodic memory encoding, subsequently causing worse memory retention of new 

experiences. They also report hippocampal FC impairment characterises a different 

pattern of FC in alertness networks of the brain stem and thalamus in subjects sleep 

deprived for a single night compared to control subjects. In addition, Yoo et al report FC 

of the prefrontal regions is predictive of the success of memory encoding for sleep-

deprived individuals in comparison to ‘normal’ sleepers. Their overall findings show that 

lack or absence of prior sleep substantially compromises the capacity for committing new 

experiences to memory. The researchers express concerns from their findings in relation 

to ever decreasing sleep time in today’s developed industrial societies and the possible 

impact this may have on memory consolidation of new experiences. Also Lei et al 2015 

investigated the FC of the DMN, SN and executive control network (CEN) in relation to 

subjective sleepiness scores, sleep pressure index (a measure of the degree of 

homeostatic sleep pressure) and cognitive tasks (working memory, reaction time) in SD 

subjects. They found significant increases in the FC between the DMN and SN with 

respect to all the above measurers after 36 hours of SD. Lei et al 2015 suggest these 
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findings represent an increased instability of the waking state with the brain favouring 

enhanced DMN-SN connectivity opposed to DMN-CEN connectivity. This suggests an up 

regulation of salience in relation to internal mental events (for example as might be 

required to counteract the increased biological pressure to sleep). Kilgore et al examined 

the relationship between sleep duration and resting state connectivity among healthy 

volunteers who slept at home according to their own schedules. Thirty nine subjects filled 

in questionnaires about their recent sleep habits and entries in sleep diaries for the 

previous night. They underwent a resting state fMRI scan at T3. Kilgore’s group found 

that longer self-reported overnight sleep duration had an association with significantly 

enhanced functional connectivity between the medial prefrontal cortex and posterior 

cingulate. Overall findings from Kilgore’s study suggest that even normal variations in 

sleep duration over one night measured by self-report are related to FC strength within 

select nodes of the DMN. 

 Other studies suggest that an appropriate level of AI activity is required to sustain an 

alert signal to initiate brain responses to salient stimuli (Menon and Uddin 2010). Bell-

McGinty et al 2004 report increased FC activation in the AI together with the claustrum 

and right putamen in sleep deprived subjects during a non-verbal recognition memory 

task in comparison to responses in the same subjects post normal sleep. The AI of the 

SN is thought to behave as an integral hub in mediating dynamic interactions between 

other ICNs, which are involved in externally oriented attention or internally oriented, or 

introspective cognition (Menon and Udin 2010). From such observations it is not 

unreasonable to surmise that changes in inter-network modulation may occur albeit to a 

lesser degree in response to changes in chronic sleep status, as a consequence of partial 
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sleep deprivation or as a result of short habitual sleep durations for example. It has been 

shown  that sleep deprivation effects FC of the DMN and other ICNs (Gujar et al 2009, 

De Havas et al 2012, Lei et al 2015, Samaan et al 2010, Yoo et al 2007) cognition and 

task performance (Belenky et al 2003, Dinges et al 1997, Lei et al 2015 Van Dongen et 

al 2003, Bell-McGinty et al 2004) and the prefrontal cortex (Harrison et al 2000, Horne 

1993, Naghavi and Nyberg 2005). Therefore if sleep itself and variations in sleep pressure 

affect the FC between the nodes of the DMN and it has been shown that the SN is 

involved with the modulation of degrees of consciousness in conjunction with the DMN 

and the CEN (Menon 2010). It is reasonable to propose that variations in habitual sleep 

durations  may also cause network changes in FC between the nodes of the SN, CEN as 

well as the DMN in the waking state and subsequent ICN FC changes may be an indicator 

of prior sleep status.  

These studies indicate that the integrity of ICN FC is a sensitive marker of prior sleep 

history, which may therefore help to shed light on the link between sleep and cognition 

and conscious behaviour, the neurobiological underpinnings of individual differences in 

susceptibility to sleep deprivation, as well as the mechanisms behind sleep disorders.   

STRUCUTURAL NEUROIMAGING  

Structural neuroimaging methodologies have been used in the work presented in this 

thesis. The structural connectivity (SC) that ultimately provides the anatomical substrate 

for functional interactions, and the relationship between FC and SC, is less well 

understood than FC (Damoiseaux and Greicius, 2009). SC can most readily be defined 
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non-invasively using diffusion-tensor imaging (DTI) approaches allied with tractography 

analysis. 

Diffusion weighted imaging: 

Diffusion weighted imaging (DWI) is a non-invasive MRI technique which allows a greater 

understanding of the brain’s white matter architecture and neuroanatomy in normal and 

pathological conditions with detail which was not previously possible with non-invasive 

techniques. DWI is therefore important in allowing greater understanding of brain 

structure, and also structural and functional relationships in the brain.  MRI is sensitive to 

water in tissues and the passive random thermal motion of water molecules in bulk at 

ambient temperatures, also known as Brownian motion, which describes diffusion 

properties. Diffusion properties can be measured with a diffusion coefficient (also known 

as diffusivity, S.I unit m2/s) which is the measure of the degree of free random particle 

movement within a liquid or gas and is dependent on both temperature and pressure. The 

higher the diffusivity of one substance with respect to the other the faster they diffuse in 

to one another. The diffusion of water is measured by an Apparent Diffusion Coefficient 

(ADC) as opposed to a diffusion coefficient because as the water molecules move within 

tissue they encounter restrictions and hindrances such as macromolecules and cell 

membranes. Therefore, we do not observe truly free random movement of water 

molecules. This restrictive effect on water molecules forms the basic principle for DWI. 

Subtle variations in the amount of restriction to the diffusion of water molecules are seen 

as changes in the diffusion weighted image signal. Conventional MRI sequences are 

made sensitive to molecular diffusion by adding two extra gradients (the work in this thesis 

is based on diffusion data acquired with two gradients using 61 diffusion gradient 



 48  
 

directions) to a standard ultrafast MRI sequence (which is usually a T2- weighted echo 

planar sequence).The diffusion gradients are symmetrically centered around a 180 

degree refocusing radiofrequency pulse and equal in magnitude. The first gradient causes 

molecules to acquire phase shifts and the second cancels these phase shifts in non-

moving stationary spins (rephasing). Moving spins however acquire an effective phase 

shift as their motion limits rephasing by the second gradient. The degree of diffusion 

(random movement of water molecules) determines the degree of MRI signal loss. 

Therefore the higher the rate diffusion (for example in CSF) the greater the loss of signal. 

Inversely the lower the diffusion rate (for example in grey or white matter) the lower the 

MRI signal loss. MRI signal loss can be enhanced by increasing the strength, directions, 

and duration of diffusion gradients. The gradients are characterised by their b value 

(s/mm2). This value is determined by the Stejskal Tanner equation: b factor = G2 

3) where  is the gyrometric ratio, G is the strength of diffusion gradient pulses, 

is the duration of the diffusion gradient pulse and is the time between diffusion gradient 

RF pulses (Huisman 2010).Therefore the diffusion weighted image signal is determined 

by ADC (Basser et al 1994) together with a weighting factor b often called the b-factor 

which is expressed in mm-2 and the acquisition parameters and pulse sequence.  

Movement of water molecules within white matter is further restricted and tends to be 

along axons and white matter tracts rather than across them (similar to diffusion within a 

cylinder). The diffusion of water along a particular axis (i.e. directional diffusion) as 

opposed to non-directional diffusion (i.e., diffusion in all directions) is called anisotropic 

diffusion (Henkelman et al 1994, Moseley et al 1990, Moseley et al 1991). In an 

anisotropic environment, for example white matter, where measured diffusivity depends 
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on the orientation of the tissue, a single scalar quantity such as the ADC is not appropriate 

to use as a measure of water mobility (Henkelman et al 1994, Moseley et al 1990, 

Moseley et al 1991). The next most complex model which describes anisotropic diffusion 

replaces the scalar ADC with an Apparent Diffusion Tensor (D) (Crank, 1975).  

The diffusion tensor model:  

Within the diffusion tensor model, anisotropic diffusion is represented by a 3D ellipsoid 

(the diffusion ellipsoid, figure 1.8). The ellipsoid is the space representing the distance 

that a molecule will diffuse to with equal probability from the origin. The diffusion tensor 

represents the 3D probability of the displacement of water molecules. The reference 

frame within a diffusion tensor is the Eigensystem. Three eigenvalues (λ1, λ2, λ3) 

represent the ADCs measured along the principal axes giving the strength of diffusion. 

Eigenvectors (e1, e2, e3) represent the orientation of the principal axes and therefore are 

related to the direction of fibres. The eigenvector corresponding to the largest eigenvalue 

is the Principal Diffusion Direction (PDD) (figure 1.8).   
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Figure 1.8.The diffusion tensor model. The thick yellow arrow represents the 

principle eigenvalue  (which corresponds to e1 = PDD). e1(blue arrow), e2 (red 
arrow), e3 (green arrow) represent the direction (eigenvector) of diffusion (Based 
on Basser, et al 1994).  

 

 

Figure 1.9. Above image A) is a diffusion weighted image as constructed using 
ADC, image B) is a diffusion weighted FA image as constructed using the diffusion 
tensor model, image C) is a colour coded diffusion weighted FA image constructed 
using the diffusion tensor model. Colour coded directional information about 
diffusivity: The green represents tracks running in an anterior – posterior direction, 
red represents tracks running left – right and blue represents tracks running in a 
superior-inferior direction.  All slices are axial and all images are from the same 
subject. 
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Fractional anisotropy:     

Fractional anisotropy (FA) is the indicator of how strong the directional diffusion is and  

therefore, is a good marker for white matter integrity. FA is a measure of delimiting free 

water diffusion. In white matter this is mainly due to axon and myelination features. 

Therefore, compromises to axon integrity and demyelination result in an increase in free 

water diffusion, a consequent decrease in directional diffusion and a subsequent 

reduction in FA anisotropic values.  

FA values are low in grey matter (~0.2), variable in deep grey matter (0.2-0.4) and higher 

in white matter from ~0.45 in the subcortical white matter in the gyri to ~0.8 in the corpus 

callosum of the healthy human brain (Johansen-Berg, Behrens, 2009) This property 

allows us to effectively use DWI to compare SC between individuals by comparison of the 

FA values acquired from their DWI data. 

Mean diffusivity: 

The mean diffusivity (MD) is used in many published studies and is simply the sum of the 

eigenvalues divided by three (MD = (/3), which is equivalent to the average of 

the eigenvalues. MD increases in regions where changes in white matter cytoachitecture 

cause reductions in directional diffusion, which is measured as mean FA (figure 1.8 

illustrates a diffusion tensor showing anisotropic diffusion). As directional diffusion is 

compromised, an increase in mean diffusion is evident (figure 1.10  is a diffusion tensor 

illustrating MD). Therefore, MD can be used as a marker of axonal structural integrity in 

conjunction with FA. In healthy axons high FA values would be expected with low MD 
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values, but in compromised white matter an increase in MD would be seen together with 

reduced FA. Therefore MD can be used as an additional measure to assess axonal 

microstructural integrity.  

     

   

  

 

 

 

 

      

Figure 1.10 diffusion tensor model illustrating MD. The Eigenvalues and Eigen 
vectors are of approximately equal magnitude in all three directions. This therefore 
represents mean diffusivity (compare with the diffusion tensor in Fig 1.8 which 
illustrates anisotropic diffusion).  
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TRACTOGRAPHY 

Streamline deterministic tractography: 

Voxelwise estimation of directional anisotropy of water diffusion as characterised by 

diffusion tenors provides unique opportunities for modelling of white matter architecture 

in the human brain in vivo. The algorithms used to map white matter tract trajectories are 

referred to as tractography. Tractography can be achieved in a variety of ways (Conturo  

et al 1999,Tuch al 2004,). Deterministic tractography methods are primarily based upon 

streamline algorithms where the local tract direction is defined by the major eigenvector 

of the diffusion tensor. A streamline is any line through a vector field whose tangent is 

always parallel to the vector field. The streamline follows the orientations of least 

resistance to diffusion (in other words the principle axis of diffusion tensors, PDD), thus 

producing a track (Johansen-berg, Behrens 2009). Streamlines are used in deterministic 

streamline tractography. A limitation of streamline deterministic tractography is that it can 

only work in regions of high FA where confidence in PDD is also high. In real terms this 

means that streamline deterministic methods use a threshold on FA (usually 0.2), below 

which pathways are terminated. In other words while it is possible to track major white 

matter pathways in white matter, but it is not possible to continue to track these pathways 

to their grey matter destinations or through regions of fiber complexity or crossing. 

 

 

 

C 
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Figure 1.11 A) above whole brain streamline deterministic tractrography of a single 
subject. Fig B) above corpus callosum and the internal capsule white matter tracts 
superimposed on a colour coded diffusion tensor image map. Fig C) cingulum 
bundle tracts and left and right angular gyrus white matter connections to the 
lateral parietal regions. 

 

A B C 



 55  
 

 

Figure 1.12 The diagram above illustrates deterministic streamline tractography. 
The grid represents individual voxels. Each voxel containing diffusion tensor 
ellipsoids of various shapes. Those demonstrating the greatest anisotropy (most 
elliptical) are shown in white and the least anisotropic are dark grey. The dark 

outlined boxes with * represent the seed regions; the black curved arrows 

represent the streamline path of the PDD through each of the voxels producing a 
tract. (From Johansen-Berg et al. Ann Rev. Neurosci 32:75-94 ,2009). 

 

Probabilistic tractography: 

Probabilistic tractography was developed a few years after streamline deterministic 

tractography (Behrens et al 2003, Hagmann et al 2003, Lazar and Alexander 2005, 

Parker et al 2003). These probabilistic methods account for the uncertainty in estimates 



 56  
 

of PDD, therefore allowing tracking without the need for thresholds on FA. Instead of a 

single orientation estimate, a distribution of orientations in each voxel are inferred.  

Probabilistic tractography is used to build up thousands of streamlines and subsequently 

produce a probability distribution of different pathways from a given seed point (figure 

1.13).  Such a methodology has allowed detailed research into patterns of cortico-cortical 

connectivity (Broser et al 2012, Huang et al 2009, Parker and Alexander, 2005, Zarei et 

al 2006). Probabilistic methods now extend beyond the estimation of one diffusion 

direction per voxel (Behrens et al 2007, Hosey et al 2005, Parker and Alexander 2005). 

 

Figure 1.13. propagation of a probability distribution. (adapted from Bherens et al 
2003 and parker et al 2003). 

 

Figure 1.13 above shows a grid of voxels with a number of streamlines (green) 

propagated from a seed at each voxel. Thus Building a spatial distribution of curves 
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(purple) that simulates overlapped results from multiple deterministic streamline tracking 

on multiple scans.  The probability of a curve starting at A and going through B (PAB, figure 

1.13 above) is expressed as PAB=M/N (where M is the number of streamlines that go 

through B and N is the total number of streamlines generated from A. (adapted from 

Bherens et al 2003 and parker et al 2003) 

  Voxel Based Analysis 

Group statistical analysis can be performed on whole brain DTI data. Most researchers 

are interested in group comparisons of DTI metrics and the methods to extract these 

measures differ mainly in the way the alignment  across subjects is achieved. Analyses 

on a voxel-by-voxel basis is  popular in DTI research due to the fact that such analysis is 

automated, requires minimum intervention  and is not influenced by the researcher 

carrying out the analysis. Voxel Based Analysis (VBA) is one such method which involves 

registration of diffusion maps containing (FA and MD metrics) into a standard space ( 

known as normalisation) to achieve coherence across subjects and voxels and 

subsequently their anatomical structures . This allows the comparison of DTI metrics such 

as FA and MD between groups and correlations with covariates of interest, such as total 

sleep time for example. This type of analysis allows spatially specific and unbiased 

analysis of DTI metrics and does not require prior assignment of ROIs. The main issue 

with standard VBA analysis of diffusion tensor data is the degree of accuracy of the 

registration algorithms using tensor datasets. (Mukherjee et al., 2008b; Abe et al., 2010; 

Astrakas and Argyropoulou, 2010; Jones and Cercignani, 2010; Van Hecke et al., 2010).  
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Tract based spatial statistics  

A methodology which is designed to overcome the problems associated with VBA 

analysis with respect to registration algorithms and arbitrariness of spatial smoothing is 

tract based spatial statistics (TBSS). TBSS is used to compare two DTI image groups. 

The first step in TBSS is preprocessing the images for possible artifacts such as eddy 

currents in the same way as for all other DTI analysis (see chapter 2). The next TBSS 

uses non-linear alinement of images, by applying affine transformation. It also creates a 

mean FA skeleton and this skeleton is used as the framework for the comparison of the 

two DTI data sets. TBSS uses a skeletonisation process which involves applying non-

maximal suppression perpendicular to the local tract structure (known as thinning). In this 

way, a skeleton of average FA values of all subjects is produced (figure 1.14). This is 

achieved by projecting each subjects FA data onto the skeleton . The skeleton is filled 

with FA values from the nearest track center via the generation of a distance map (figure 

1.15). Finally voxelwise statistics is preformed across all subjects to identify possible 

differences between the two groups. 

 

 

Figure 1.14) mean FA skeleton projected on to  the mean FA image of all subjects 
(coronal and axial view). 
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Figure 1.15), distance map showing distance of each voxel from mean FA skeleton 
(Blue), bright orange regions indicate the highest FA values close to the mean FA 
skeleton.   
 

TBSS is similar to VBA in many ways for example it is an automated method for detecting 

group voxel-wise changes in DTI metrics in the whole brain. But it has important 

differences too, due to TBSS analysis being based on the skeletonisation (see chapter 4 

for more details) of group registered FA maps. Also importantly in comparison to VBA 

TBSS removes the need to perform spatial smoothing, and increases statistical power 

due to reducing the total number of voxels being tested.     

                          Non -tensor tractography models: 

Alternative approaches to the tensor model include q-ball imaging (Tuch 2004), or 

diffusion spectrum imaging (Weedon et al 2005). These approaches take a direct 

approach to estimate the orientation distribution function without having to impose a 

particular distribution (e.g Gaussian) on the data. Such methods can resolve multiple fibre 

orientations within a voxel and can characterise fibre orientation structure at high spatial 

resolution and angular resolution. Such models can be used to perform tractography 
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(Wedeen et al 2008) and have been used to characterise high resolution cerebella circuits 

(Granziera et al 2009). These approaches are also time-consuming due to the high 

number of diffusion directions required during each scan and can lead to subjects 

becoming restless due to the long scan times. They also require longer analysis 

processing time due to extra computation demand as a consequence of the high volumes 

of data acquired.  

Structural connectivity: 

Due to the invasive nature of traditional tract tracing methods used to assess SC in the 

brain, they are not appropriate for use in vivo. Therefore, tract tracing studies in humans 

relating structural features to brain dynamics or behavior are impossible, although tract 

tracing is extremely useful and important in studying anatomical connections in animal 

models. Tract tracing is vital for validating tractography derived from diffusion MRI data 

(as discussed above). Such validation has been performed and has demonstrated 

similarities between projections identified by tractography and classical anatomy (Lawes 

et al 2008, Seehaus,et al 2013).   

Structural connectivity describes anatomical white matter connections between cortical 

and/or sub-cortical regions. Structural connectivity is relatively stable on shorter time 

scales (seconds to minutes) but may be subject to neuroplasticity effects which are 

determined by experience dependent changes at longer time scales (days, months or 

years, May et al 2007, Mackey et al 2012, Dayan and Cohen, 2011). Diffusion MRI SC is 

usually measured as a set of undirected connections, since the directionality of 

projections at this present time cannot be discerned. Structural connectivity can be 

assessed qualitatively by visual inspection of tracts reconstructed from DTI data via 
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tractography and comparing these to known white matter pathways using atlases (Lawes 

et al 2008, Oishi et al 2010). These tracts can be quantitatively measured by measuring 

the strength of FA , MD or other DTI metrics(Johansen-Berg and Behrens 2009,Wahl et 

al 2010) or by calculating the number of activated voxels within a tract probability 

distribution between pairwise connections (Johansen-Berg and Behrens 2009).  

STRUCTURAL NEUROIMAGING OF ICNs IN RELATION TO SLEEP 

Understanding the relationship between functional and structural connectivity is an active 

area of research (Damoiseaux and Greicius 2009, Guye et al 2008,). The goal of the 

majority of research is to understand how underlying brain structure, and the 

modifications to structure brought about by disease processes, affect functional networks 

and behaviour. Little work has been done in terms of examining FC and SC in functional 

neural networks in relation to sleep deprivation and even less when considering chronic 

changes due to habitual sleep status in control subjects.   

Structural connectivity and sleep status: 

Differences in distributed white matter pathways reflect, and may contribute to, a person's 

ability to function effectively when sleep deprived. Rocklage et al 2009, in a TBSS study 

found lower FA values significantly positively correlated to the level of performance in a 

spatial visual motor task in SD subjects compared to non-SD participants. The SD 

subjects demonstrated reduced FA in multiple white matter regions including the superior 

corona radiata , cortico-spinal tracts and in the cingulum bundle. A study by Rosenberg 

et al 2014 while not considering direct sleep deprivation, investigated late, early and 

intermediate sleep chronotypes in relation to white matter architecture using TBSS. 
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Rosenberg’s group found that late sleepers (those subjects who remain awake until the 

early hours and have difficulty getting up in the mornings) demonstrated significant white 

matter differences in the way of reduced structural connectivity metrics in subjects who 

stayed up until the early hours compared to control groups with 8 hours sleep. These 

differences were found in the temporal lobes, cingulate gyrus and corpus callosum. The 

researchers discuss these findings in terms of a chronic form of jet lag and sleep 

deprivation. The widespread nature of these differences supports the view that SD has a 

global effect on brain functioning (Rocklage et al 2009). Studies involving patients  with 

chronic insomnia have demonstrated that grey matter in the frontal lobe may be altered 

with respect to normal sleepers (Altena et al 2010), and acute sleep deprivation has been 

shown to reduce thalamic volume (Liu et al 2014), suggesting that there is a link between 

sleep duration and brain structure. However, the white matter SC that ultimately provides 

the anatomical substrate for functional interactions is less well understood and very few 

studies have investigated white matter changes in relation to sleep (Elvsashagen et al 

2014, Piantoni et al 2013, Rocklage et al 2009). These observations indicate that the 

structural correlates of sleep phenomena and even short term alterations to sleep 

patterns can be investigated with DTI. In combination with the changes to functional 

connectivity discussed above, they may also suggest that white matter connectivity and 

organisation moderates the cognitive effects of sleep deprivation and may affect a 

person’s ability to function effectively when sleep deprived. 

AIMS AND OBJECTIVES: 

The aim of the work presented in this thesis was to investigate the relationship between 

chronic habitual sleep status and changes in functional connectivity and structural 
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connectivity metrics in higher order ICNs using fMRI and DTI imaging modalities in normal 

awake adult control subjects. The main aims were: 1) To use fMRI and DTI neuroimaging 

modalities to advance our understanding of habitual sleep status and its associations with 

ICN functional and structural changes in the human brain. 2) To investigate the sensitivity 

of fmri and DTI metrics in order to determine the degree of association between ICN FC 

and SC and to investigate the effect of habitual sleep status on these measures. 3) To 

determine whether whole ICN FC is associated with a broad range of quantitative and 

subjective sleep metrics. 

The hypothesis for this work is based on the premise that the integrity of ICNs, in terms 

of both their functional and structural connectivity, may be a sensitive marker of prior 

chronic habitual sleep history and that ICN network FC and SC changes have covariance 

with habitual sleep status metrics and habitual sleep time in particular.  

I report the findings of 4 experiments which examined the structural and functional 

properties of higher intrinsically connected brain networks to determine if functional and 

structural changes are associated to chronic habitual sleep status.    

At present there have been no studies that have investigated the functional or structural 

connectivity of ICNs in relation to habitual sleep status. The hypothesis for the work 

presented in this thesis is based on the premise that the integrity of higher intrinsically 

connected brain networks, in terms of both their functional and structural connectivity, 

may be a sensitive marker of prior habitual sleep history.  

This thesis is composed of 7 chapters; the research chapters (3-6) differ to varying 

degrees in the methods used to charaterise FC and SC. These methods were chosen in 
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order to investigate the specific questions being asked in each study. This combination 

of measures of FC and SC allows this work to build up a strong argument based on 

experimental evidence to support the hypothesis of this thesis. Chapters 3-6 are self-

contained experimental chapters which are presented as manuscripts including relevant 

literature review, detailed description of specific methods used and the justification of 

methods and analyses as well as discussion and concluding remarks.  The chapters have 

been published or are intended for publication, therefore some overlap in content is 

unavoidable, but this has been kept to a minimum and the published work has been 

modified and integrated into this thesis. 

Chapter 3 investigates and compares the use of deterministic and probabilistic 

tractography approaches in combination with functional imaging to characterise structural 

connectivity with respect to functional connectivity in a single ICN, the DMN. The overall 

aim of the work in chapter 3 was to review and make direct comparisons of tractography 

algorithms and their ability to charaterise SC and relate this to FC within an ICN. This is 

a necessary step in order to understand the structural basis of functional connectivity in 

normal individuals. A better understanding of how structural connections relate to 

functional connectivity in ICNs is imperative in order to enhance our understanding of 

changes in SC and FC that may occur as a consequence of chronic habitual sleep status 

within the general population. The work from chapter 3 has been published in 

Neuroimage.  

Chapter 4 aimed to examine whether inter-individual differences in habitual sleep patterns 

were reflected in waking measurements of intra- and inter- network FC between major 

nodes of three ICNs: DMN, SN, CEN.  The study improves our understanding of the 
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relationship between intra- and inter-network FC of ICNs in relation to habitual sleep 

quality and duration, which may underlie the link between sleep status and cognitive 

performance.  This work has been published in Sleep.  

Chapter 5 investigated group differences in FA and MD, structural connectivity metrics, 

with respect to habitual sleep duration using TBSS. The study also investigated whole 

brain changes in white matter architecture in relation to subjective habitual sleep quality. 

The findings from this study support for the first time the notion that reduced habitual 

cTST, as well as being associated with FC changes within networks which may affect 

cognition (chapter 4), is also involved in the modulation of the micro structural integrity of 

specific white matter regions which form the structural backbone of important higher 

cognitive networks. This work is currently under review at Neurobiology of Sleep and 

Circadian Rhythms.  

Chapter 6 builds on the work from chapter 4 by examining a wider range of sleep features 

and examining overall network FC as opposed to regionally specific changes. We used 

habitual sleep time and sleep quality metrics to gain a greater understanding of the 

importance of these sleep measures in relation to FC network changes.  

Chapter 7 the closing chapter of my thesis (General discussion) provides a summary of 

the overall findings and discusses the potential impact of the findings in the field of 

neuroimaging sleep research and clinical applications. Subsequently the chapter goes on 

to discuss the limitations and future directions of this work and ends with the thesis 

conclusion.  
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This chapter introduces the common methodology, which is used within the experimental 

chapters of this thesis. The chapter explains participant recruitment, experimental 

procedures, data acquisition and analysis protocols. Justification for the use of methods 

is also given where appropriate. Additional methods specific to each experiment are 

incorporated in to the methods section of that particular chapter.  

    

Subjects:  

Data were acquired from healthy adults using a 3 Tesla Philips Achieva MRI scanner at 

Birmingham University Imaging Centre (BUIC), University of Birmingham. Participants 

had no history of neurophysiological, neuropsychological or neurological illness. Written 

informed consent was obtained from all participants, and the studies were approved by 

the University of Birmingham Research Ethics Committee. 

For chapter 3, DTI and fMRI data were acquired from fifteen healthy adults (right handed, 

10 female, age 23-29 years, mean age=24.6 years).  

For chapter 4 and 6, data were acquired from 37 healthy adults (right handed, 17 female, 

age 20-59 years, mean age (+/-SD)=35.0+/-11.7 years). 

For chapter 5, DTI and fMRI data were acquired from 38 healthy adults (right handed, 10 

female, age 20-34 years, mean age=25.4 years). From the original 38 subjects, 5 were 

subsequently excluded due to actigraphy and diary data demonstrating erratic sleep 

patterns, leading to a final cohort of 33 participants 
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Image acquisition and preprocessing:  

fMRI: 

Subjects underwent a single resting-state fMRI session in the early afternoon during 

which they were instructed to lie still in the scanner and relax with eyes open. All 

participants confirmed that they remained awake and alert through the scanning session. 

Each subject underwent one resting-state fMRI scan of 12 minutes duration (this was 5 

minutes for chapter 3), with the following parameters: repetition time (TR) = 2000 ms, 

echo time (TE) = 35 ms, flip angle = 80 degrees, voxel size 3x3x4 mm, 32 slices giving 

whole brain coverage. A standard T1-weighted anatomical scan (1mm isotropic voxels) 

was acquired to facilitate image co-registration.   

Pre-processing of the fMRI data was performed using the FMRIB Software Library (FSL, 

http://www.fmrib.ox.ac.uk/fsl, Smith et al 2004).  The following procedures were applied: 

motion correction using MCFLIRT (Jenkinson et al 2002) slice timing correction, spatial 

smoothing using a Gaussian kernel (FWHM = 6mm) and a high-pass filter cut off at 100 

secs (f>0.01Hz).  

DTI: 

For chapters 3 and 5 which used structural imaging , DTI scan:13 minute echo planer DTI 

scan: TR = 5191msec, TE =77 ms, field of view (FOV) = 224x150x224 mm, angulation = 

0 degrees, voxel size 2mm isotropic. A total of 75 slices were acquired for b values of b 

= 0 and b = 1500 mm2/sec obtained by applying gradients along 61 different diffusion 

directions. Additionally, a high-resolution (1 mm isotropic) T1-weighted anatomical image 

was acquired in each subject. 

http://www.fmrib.ox.ac.uk/fsl,%20Smith%20et%20al%202004).
http://www.fmrib.ox.ac.uk/fsl).57
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DTI scans were pre-processed using the FSL Brain Extraction Tool (BET, Behrens et al 

2003) for skull stripping and the FSL Diffusion Toolkit (Smith et al 2002) to minimise eddy 

current distortion effects and for registration of the diffusion volumes.  

Defining Regions of Interest: 

Regions of interest (ROI) representing the nodes of the DMN, CEN and the SN for 

chapters 4 and 6 were created from data from a separate cohort of 55 subjects from a 

previous study (Przezdzik et al 2013) 28 male, age 25±4yrs. This allowed an objective 

identification of the canonical DMN, CEN and SN that was independent from the subjects 

investigated in chapters 4 and 6. These subjects underwent a 6-minute waking resting 

state fMRI scan with identical imaging parameters, also at BUIC. Using FSL 4.1.8 data 

were motion corrected, spatially smoothed (5mm), registered to MNI standard space, 

temporally concatenated across subjects and decomposed into 20 spatially-independent 

components with MELODIC (Beckmann et al 2005). This low dimensionality was used to 

facilitate identification of the ICNs in single components and to avoid individual ICNs 

being split into their constituent nodes, which would have made unambiguous detection 

more difficult. For each of the DMN, CEN and SN in turn a single independent component 

was identified by visual inspection based on spatial similarity to previous reports 

(Damiseaux et al 2006). The group-level Z-statistical maps were then thresholded at Z=4, 

and individual ROIs were defined for the following ICN nodes: DMN (PCC, mPFC, left 

and right IPC, left and right MTL; CEN (left and right DLPFC, left and right IPL); and SN 

(left and right AI and the ACC, see figure 2.1). The left and right hippocampal regions 

(HP) were identified independently from the FSL atlas as these regions were included 

later on as part of the DMN . These group-space ROIs were then registered to individual 
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subject’s fMRI data. We focused on these ROIs as they have been consistently reported 

as constituting robust regions of the DMN (Horovitz et al 2009,Uddin et al 2009) CEN 

(Damoiseaux et al 2006,Menon and Uddin 2010,Samann et al 2010) and the SN (Menon 

and Uddin 2010, Seeley et al 2007).  
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Figure 2.1 ICN ROIs produced form ICA analysis of the DMN, SN and CEN (refer to 

list of abreviations for full network lables)  

Measuring Network  FC:  

 we used seed-based FC analysis performed according to standard methods (Fox et al 

2005) using in-house MATLAB code (Mathworks, USA). Using FSL, the pre-processed 

functional data were further filtered (0.009<f<0.08Hz) and single voxel co-ordinates taken 

from each subject's individual functional scan to extract signal time courses from white 

matter and ventricles. The white matter and ventricular signals, the global brain signal 

and the motion parameters were then removed from the voxel-wise data using linear 

regression. ROIs were defined from nodes of group ICA and the ROI/node maps were 

IPL 
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transformed from MNI space to individual space using FSL. Individual subject ROIs 

(cubes) were created as 3x3x3 voxel cubes centred on the maximum Z-statistic voxel for 

each group ROI. The mean fMRI timeseries within each cube was then correlated with 

the fMRI timeseries of all other brain voxels. This produced a whole-brain map of Pearson 

correlation coefficients which allowed FC between cube regions of the ICNs (DMN, SN 

and CEN) to be assessed and quantified. FC was defined by averaging the voxel-wise 

correlation coefficients within each target cube.   

Sleep Patterns and Questionnaires:  

Subjects were asked to maintain their normal sleep patterns for the duration of the study. 

Habitual sleep patterns were assessed for a 14 day period using sleep diaries and wrist 

actigraphy (Actiwatch 2, Philips Respironics Ltd). The actiwatch measures the amplitude 

of the movement as part of the sampling process with the minimum and maximum 

measures being +/- 128. These values are referred to as counts. The number of counts 

is proportional to the intensity of movement. The highest count value for each sampling 

period (which consists of 1/32 of a second) was taken for each 1 second interval and the 

sum of the captured counts form the individual 1 second intervals making up the 1 minute 

epoch gave us the total count score. Actigraphs were set at a medium sensitivity of one 

minute epochs, and a total count score of 40 or more was used to signify that the subject 

was awake. Use of actigraphy in sleep disordered patients (Kushida et al 2001) has 

shown that medium or high sampling rate sensitivities provide data for total sleep time 

(TST) per night in close agreement with polysomnography (PSG). Subjects were asked 

to press a button on the actiwatch when they settled for bed and again on awakening to 

start their day. These times were defined as a sleep opportunity, and were used to carry 
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out the actigraph analysis using Philips Respironics Actiwatch2 software. Participants 

also completed the following questionnaires: Pittsburgh Sleep Quality Index (PSQI, 

Buysse et al 1989), Epworth Sleepiness Scale (ESS, Johns 1991) Depression, Anxiety 

and Stress Scale-21(DASS, Lovibond and Lovibond 1995), Karolinska Sleepiness Scale 

(KSS, Akerstedt and Gillberg 1990). These were administered immediately prior to or 

following the scanning session, with the exception of the KSS which was administered 

verbally immediately upon exiting the scanner to assess the level of alertness directly 

after the scan. Each of the questionnaires resulted in a single score per subject, while 

TST was determined from the actigraphy and defined as the sleep time for each sleep 

opportunity and compared with sleep diary data for consistency (Kushida et al 2001, 

Morgenthaler et al 2007). Habitual TST was calculated as cumulative TST (cTST, sum of 

TST over the entire two week period). Wake after sleep on set (WASO) was also 

extracted from the actigraphy data and was the summed value over the entire two week 

period.  
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The structural and functional connectivity of the posterior 

cingulate cortex: Comparison between deterministic and 

probabilistic tractography for the investigation of structure-

function relationships1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

1This chapter is published in Neuroimage: Khalsa, S., Mayhew, S.D., Chechlacz, M., Bagary, M. and 

Bagshaw, A.P., 2014. The structural and functional connectivity of the posterior cingulate cortex: 

Comparison between deterministic and probabilistic tractography for the investigation of structure–

function relationships. Neuroimage, 102, pp.118-127. 
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ABSTRACT 

The DMN is one of the most studied resting-state networks, and is thought to be involved 

in the maintenance of consciousness within the alert human brain. Although many studies 

have examined the FC of the DMN, few have investigated its underlying SC, or the 

relationship between the two. We investigated this question in fifteen healthy subjects, 

concentrating on connections to the PCC, commonly considered as the central node of 

the DMN. We used group independent component analysis (GICA) and seed-based 

correlation analysis of fMRI data to quantify FC, and streamline and probabilistic 

tractography to identify structural tracts from DTI data. We first assessed the presence of 

structural connections between the DMN regions identified with GICA. Of the 15 subjects, 

when using the probabilistic approach 15(15) demonstrated connections between the 

PCC and mPFC, 11(15) showed connections from the PCC to the rIPC and 8(15) to the 

left IPC. Next, we assessed the strength of FC (magnitude of temporal correlation) and 

SC (mean fractional anisotropy of reconstructed tracts (streamline), number of super-

threshold voxels within the mask region (probabilistic). The lIPC had significantly reduced 

FC to the PCC compared to the mPFC and rIPC. No difference in SC strength between 

connections was found using the streamline approach. For the probabilistic approach, 

mPFC had significantly lower SC than both IPCs. The two measures of SC strength were 

significantly correlated, but not for all paired connections. Finally, we observed a 

significant correlation between SC and FC for both tractography approaches when data 

were pooled across PCC-lIPL, PCC-rIPL and PCC-mPFC connections, and for some 

individual paired connections. Our results suggest that the streamline approach is 

advantageous for characterising the connectivity of long white matter tracts (PCC-mPFC), 

while the probabilistic approach was more reliable at identifying PCC-IPC connections. 
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The direct comparison of FC and SC indicated that pairs of nodes with stronger structural 

connections also had stronger functional connectivity, and that this was maintained with 

both tractography approaches. While the definition of SC strength remains controversial, 

our results could be considered to provide some degree of validation for the measures of 

SC strength that we have used. Direct comparisons of SC and FC are necessary in order 

to understand the structural basis of functional connectivity, and to characterise and 

quantify changes in the brain’s functional architecture that occur as a result of normal 

physiology or pathology.  

INTRODUCTION  

The human brain is organised into a series of functional networks that exhibit correlations 

in activity between individual regions even in the absence of stimulation (Biswal et al 

1995, Gusnard et al 2001, Raichle et al 2001, Shulman et al 1997,). This resting-state 

activity can be measured from low frequency fluctuations in the blood oxygen level 

dependent (BOLD) fMRI signal (Biswal et al 1995). One of the most studied RSNs is the 

DMN (Greicius et al 2003, Horovitz et al 2009, Raichle et al 2001, Shulman et al 1997) 

consisting of the PCC, the lIPC, the rIPC and mPFC. Many studies have investigated the 

FC of the DMN (Damoiseaux et al 2009, Greicius et al 2003, Gusnard et al 2001, Raichle 

et al 2001, Shulman et al 1997). However, the SC that ultimately provides the anatomical 

substrate for functional interactions, and the relationship between FC and SC, is less well 

understood.  

SC can most readily be defined non-invasively using DTI approaches allied with 

tractography analysis. DTI allows the tracking of white-matter pathways by measuring the 
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FA of water molecules along neuronal axon fibres (Basser et al 1992, 1994, Hagmann et 

al 2003, Mori et al 2006). Whilst a number of different tractography algorithms of varying 

complexity exist, the two main distinguishing factors relate to how white matter tracts are 

modelled within a voxel (i.e. a single or multiple fiber orientations) and how the tracts are 

reconstructed (i.e. interpolated streamlines or probabilistic global connectivity 

estimations). These choices can have a profound effect on the estimated white matter 

fibre tracts, and hence on the judgement of whether two brain regions are structurally 

connected (Yo et al 2009). The question of how SC underpins and constrains FC, and 

the extent to which the underlying SC is responsible for the maintenance and regulation 

of FC, remains unclear. The examination of structure-function relationships in human 

neuroimaging data is a burgeoning field (Damoiseaux et al 2009, Guye et al 2008,), not 

least because it may provide a way of understanding the modifications in FC that have 

been observed in many neurological and psychiatric disorders (Broyd et al 2009). The 

added value of investigating the relationship between SC and FC has recently been 

highlighted in patients with idiopathic generalised epilepsy (Zhang et al 2011) and 

traumatic brain injury (Kinnunen et al 2011).   

Several studies have investigated structure-function relationships in a variety of brain 

networks, and taken together this work displays general agreement that functionally 

connected regions are also structurally connected (Greicius et al 2009, Hagmann et al 

2007,Honey et al 2009, Johansen-Berg et al 2004, Mars et al 2010, Mars et al 2011, 

Skudlarski et al 2008, van den Heuvel et al 2009, Zhang et al 2010). However, the related 

question of whether regions that are more strongly functionally connected (i.e., a higher 

correlation coefficient between paired functional time series) are also more strongly 
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structurally connected has received less attention (but see Skudlarski et al 2008). One of 

the reasons for this is that while a higher correlation between fMRI time series, after 

removal of physiological, scanner and movement confounds, provides a measurement of 

stronger FC, inferring the 'strength' of SC from metrics that can be extracted from existing 

diffusion weighted scans, such as fractional anisotropy (FA) or a probabilistic connectivity 

score, is considerably more difficult. As discussed in detail by Jones et al (2013) diffusion 

weighted imaging (DWI) provides information about the directionality of water diffusion 

within the macroscopic volumes that are sampled in typical voxels. With certain 

assumptions (e.g., the fitting of voxel-wise single tensor models in the simplest case), 

preferred diffusion directions can be identified, and tractography algorithms can 

subsequently be used to estimate the likelihood of the existence of connections between 

two regions. However, there remains considerable controversy over the extent to which 

variation in structural connectivity metrics can be interpreted as indexing variations in the 

strength of those structural connections (i.e., is a higher FA indicative of an increased 

strength of SC?), since there are contributions from several methodological and 

physiological factors which are not related to the underlying connectivity (Jbabdi and 

Johansen-Berg 2011, Jones et al 2013). Indeed, at the macroscopic level assessed by 

DWI, and in the absence of precise and validated markers of specific aspects of the 

underlying physiology (e.g., myelination), there is ambiguity about the very definition of 

'strength' of structural connectivity from DWI data. While it is clear that there are several 

potential contributions to variation in DWI metrics, it seems a plausible hypothesis that at 

least part of that variance can be attributed to underlying differences in SC strength, with 

'strength' defined in the broadest sense and recognised as a concept that requires further 
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physiological clarification. One way of testing this hypothesis is by direct comparison with 

the strength of FC. Considering the potential sources of variability in DWI metrics, a 

correlation between FC and a particular DWI metric would only be expected if the metric 

coded for variations in underlying SC.   

In the current study we focused on the DMN as one of the most reliably detected RSNs, 

whose spatiotemporal pattern of activity has been observed to be altered in a range of 

neurological and psychiatric disorders (Broyd et al 2009), as well as during altered states 

of consciousness such as sleep (Horovitz et al 2009, Samann et al 2010), coma (Norton 

et al 2012) and anaesthesia (Fiset et al 1999). Few studies have investigated the SC of 

the DMN (Greicius et al 2009, Hagmann et al 2008, Skudlarski et al 2008, Van den Huevel 

et al 2010), and some uncertainty remains concerning the existence of connections 

between the PCC and inferior parietal cortices (Greicius et al 2009), potentially because 

of problems related to crossing fibres and the choice of tractography approaches (Yo et 

al 2009).   

We used GICA to spatially identify the DMN from resting-state fMRI data. We 

subsequently defined the PCC, the core node of the DMN (Hagmann et al 2008, Leech 

et al 2011, Leech et al 2012), as the seed region from which to assess SC and FC to the 

three other principle nodes of the DMN (mPFC and bilateral IPC). SC was defined using 

two tractography algorithms, interpolated streamline (Conturo et al 1999) and probabilistic 

global connectivity estimation (Behrens et al 2003, Hagmann et al 2003) to investigate 

whether different analysis methods can lead to different conclusions regarding the 

relationship between SC and FC.  
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The study tested four hypothesis: i) The PCC is structurally connected to the other nodes 

of the DMN, ii) For a given pair of DMN nodes the strength of FC between those nodes 

is mirrored by the strength of SC, iii) FC and SC are correlated across the nodes of the 

DMN, iv) The FC-SC relationships identified are not affected by the definition of SC.  

 METHODS AND MATERIALS  

 Subjects:  

DTI and fMRI data were acquired from fifteen healthy adults (right handed, 10 female, 

age 23-29 years, mean age=24.6 years). Also see chapter 2. 

 Image acquisition and preprocessing:  

See chapter 2 for further details on fMRI and DTI image acquisition.  

Defining Regions of Interest (ROI) from functional scans:  

All fMRI data were registered to MNI standard space and temporally concatenated across 

subjects. To identify the DMN, GICA was then performed using MELODIC (Beckmann et 

al 2005). The number of output components was set to 10, in accordance with a recent 

study (Schopf et al 2010) and in the absence of a clear consensus as to the optimum 

number of components. A low dimensionality reduction ensures that the DMN will be 

decomposed into a single component, which makes its identification more 

straightforward. A single independent component representing the DMN was identified by 

visual inspection from its characteristic spatial map. The DMN Z-statistical map was then 

thresholded at Z=4 and manually divided into four group-space ROIs: PCC, mPFC and 

left and right IPC. We focused on these four ROIs as they have been consistently reported 
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as constituting robust regions of the DMN (Damoiseaux et al 2009, Greicius et al 2003, 

Horovitz et al. 2009, Raichle et al. 2001). Other brain regions (e.g., hippocampus, 

parahippocampal gyrus) have been observed, but are less consistently reported.  

Measuring DMN FC:  

See chapter 2 for details. 

Measuring DMN SC:  

In order to investigate SC of the DMN, each group-space ROI was co-registered to each 

individual’s native DTI data space using FLIRT (Jenkinson et al 2002). DMN ROIs were 

then binarised and registered to the b0 volume of each subject. This allowed tractography 

to be performed to determine whether these functionally connected regions were also 

structurally connected.  

Interpolated streamline tractography:  

The interpolated streamline algorithm (Basser et al 1992, Conturo et al 1999,) was used 

to estimate fibre tracts between ROIs. Using FMRIB’s diffusion toolbox (FDT v2.0, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), DTIFIT was used to fit a single tensor model at 

each voxel of the preprocessed eddy current corrected diffusion weighted data. 

Tractography was carried out using the Diffusion Toolkit (DTK) and tracts reconstructed 

using Trackvis (http://www.trackvis.org/). Tracts were considered as connecting ROIs if 

any part of them passed through the ROI en route to other cortical regions. Path tracing 

was permitted to continue until the FA fell below 0.2 or until the maximum angle between 

path segments was larger than 35 degrees (Johansen-Berg and Behrens 2004). As well 

as using visual confirmation of the existence of SC, reconstructed tracts were identified 
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using a white matter atlas (Mori et al 2011) and mean FA values of structural connections 

were used as an indicator of the strength of structural connections between nodes (Ben-

Shachar et al 2007,Bozzali et al 2005,).  

 Probabilistic tractography:  

Probabilistic tractography was performed using FMRIB’s diffusion toolbox (FDT v2.0, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). BEDPOSTX was used to model 5000 iterations 

within each voxel with a curvature threshold of 0.2, a step length of 0.5 and a maximum 

number of 2000 steps (Behrens et al 2007). Target masks were used (mPFC, lIPC and 

rIPC) and a distribution of fibre orientations was calculated between pairs of masks using 

the PCC as a seed mask (i.e. PCC-rIPC, PCC-lIPC, PCC-mPFC). The connection 

probability was given by the number of tracts that reached a target voxel (in the target 

mask) from a given seed voxel (from the seed mask). This is an estimate of the most 

likely location and strength of a pathway between the two areas (Behrens et al 2007). 

Thresholding of probabilistic tractography remains an unsolved statistical issue (Morris et 

al 2008). We used FSLstats to identify the voxel with the maximum connectivity value 

within the connectivity distribution map of each participant and used thresholds to 50%, 

25% and 15% of the maximum connectivity value to determine the optimum threshold 

value (i.e. keeping all other voxels which had values more than 15%, 25% or 50% of the 

maximum connectivity value, Bennett et al, 2010, 2011,2014).    
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Comparison of structure and function:  

We assessed the nature of the link between the two measures of SC and between 

structural and functional connectivity in three ways: 1) Structural pairwise connections 

were identified between the PCC and each node of the DMN as being either present or 

absent, by visual inspection of connections between nodes, 2) The strength of connection 

to the PCC from each of the other three nodes of the DMN was determined separately 

for FC and the two methods of quantifying SC. Those subjects who did not demonstrate 

pairwise structural connections for a given pair of nodes were excluded from this analysis, 

3) The degree of SC FC coupling was determined by linear correlation analysis for each 

pairwise connection between nodes, and for the DMN as a whole (i.e., including all pairs 

together).  

 Statistical Analysis:  

For FC and SC separately (i.e., comparison 2 above) we compared the FC and SC 

between the three pairs of ROIs (PCC-mPFC, PCC-lIPC, PCC-rIPC) using repeated 

measures oneway ANOVA (SSPS for windows version 20.0 Inc, Chicago USA). 

Secondly, bivariate correlation analysis (SPSS for windows version 20.0  Inc, Chicago 

USA) was carried out to determine the relationship between deterministic and 

probabilistic tractography, and between SC and FC (comparison 3 above), using mean 

FA streamline data, mean probability distribution connectivity data and mean FC 

correlation coefficients.  
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  RESULTS   

Functional Connectivity:  

A single component containing the major nodes of the DMN was identified visually from 

the GICA decomposition (Figure 3.1). Seed-based FC was then used to measure the 

strength of FC  for each pairwise connection between the PCC seed and the mPFC, lIPC, 

rIPC. Repeated measures one-way ANOVA was performed to compare three FC means 

form the same group of subjects to determine if there was a significant difference in FC 

between the PCC and each of the other three regions of the DMN i.e. the mean FC of the 

PCC-mPFC, PCC-llPC, PCC-rIPC for the 15 subjects in this study. The ANOVA  indicated 

a significant main effect of region upon FC, demonstrating differences in FC between the 

three pairwise connections of the DMN (i.e., PCC-mPFC, PCC-lIPC and PCC-rIPC, 

F(2,42)=3.880, p=0.033). Post-hoc T-tests were performed to allow us to discover which 

specific means differed. The T-tests indicated a significant difference in FC between PCC-

mPFC and PCC-lIPC (p=0.023), as well as between PCC-rIPC and PCC-lIPC (p=0.037). 

In contrast, the FC between PCC-mPFC was not significantly different to that between 

PCC-rIPC (p=0.980). These group data are plotted in Figure 3.4 a. Mean correlation 

coefficients (i.e. magnitude of FC) were consistent between subjects for a particular 

paired connection, as indicated by the relatively small standard errors. The strongest FC 

was measured between the PCC-rIPC (mean R = 0.1556) and the weakest between the 

lIPC-PCC (mean R = 0.0998), with the mPFC-PCC intermediate (mean R =0.1362).  
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Figure 3.1. The GICA map representing the DMN which was used to define ROIs for 
all FC and SC analysis.   

 

 Structural Connectivity: Streamline Tractography   

All of the subjects (15/15) demonstrated clear cingulate tracts connecting the PCC to the 

mPFC. White matter tracts were observed to link the PCC to the rIPC in 11/15 subjects 

and to the lIPC in 8/15 subjects. In total 34/45 connections were detected from 15 subjects 

(see data in Figure 3.2 and examples in Figure 3.3 a-f).   

The strength of white matter connections was assessed by measuring the mean FA along 

reconstructed tracts. Although SC assessed by streamline tractography showed a similar 

pattern to the FC in terms of the relative strengths between the different nodes (Figure 

3.4 b), no significant main effect of region upon SC was detected (F 2,31)=0.752, 

P=0.414).   
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Figure 3.2. The total number of subjects demonstrating SC with the PCC for each 
target region using deterministic streamline tractography (grey bars) and 
probabilistic tractography (white bars). 

  

 Structural Connectivity: Probabilistic Tractography   

For the probabilistic data, SC was found between the PCC and the other three nodes in 

all subjects (15/15 for all three pairs of ROIs leading to a total of 45 connections, see 

examples in Figure 3.3g-i). One of the issues related to the use of probabilistic 

tractography is that at present there is no standard methodology for thresholding maps 

across subjects (Morris et al 2008). We compared the effect of using minimum thresholds 

of 15%, 25% and 50% of activated voxels within the connection probability distribution. 

The 15% threshold (i.e. 85% of voxels above threshold) was chosen as the highest 

threshold as this was the threshold at which structural tracts could be discerned most 
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clearly upon visual inspection. When considering the strength of SC (number of voxels 

above threshold), similar to the deterministic approach the rIPC had greater connectivity 

than the lIPC, but in contrast the mPFC demonstrated less connectivity than both rIPC 

and lIPC. The pattern of SC between the pairs of nodes was comparable across all 

thresholds. The mean SC of the PCC to the different nodes were found to be significantly 

different at the 15% threshold (one-way ANOVA, F(2,42)=5.00, p=0.029). Post-hoc T-

tests revealed differences in SC between PCC-mPFC and PCC-lIPC (p=0.015) 

connections and also between PCC-rIPC and PCC-mPFC (p=0.014) connections. The 

strength of SC between PCC-lIPC and PCC-rIPC was not significantly different (p=0.189, 

Figure 12 c). At the 25% and 50% thresholds the mean SC between the PCC and the 

different nodes were not significantly different (F(2,42)=3.10, p=0.90 and F(2,42)=0.22, 

p=0.74). However, at both of these thresholds the pattern of connectivity looked 

qualitatively similar for the IPC regions to that at a threshold of 15% (Figure 3.4c).  
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 Figure 3.3. An example of structural connections reconstructed using streamline 
tractography.The functional nodes of the DMN are shown in red. a) and d) show the 
cingulate tracts reconstructed between the mPFC and the PCC; b) and e) show the 
right angular/lateral parietal lobule white matter and precuneus/posterior cingulate 
white matter tracts connecting the PCC to the rIPC; c) and f) show the left angular 
white matter/lateral parietal lobule and precuneus/posterior cingulate white matter 
tracts connecting the PCC to the lIPC. In g-i the same tracts are shown 
reconstructed with probabilistic tractography (the functional nodes of the DMN are 
shown in blue and tract connection probability distribution in red/orange, the more 
orange/yellow the colour the greater the probability of a connection). 
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Figure 3.4. Overview of SC and FC for each pairwise connection between the PCC 
seed and the mPFC, lIPC, rIPC. a) Functional Connectivity: Group mean Pearsons 
correlation coefficients. b) Structural Connectivity: streamline tractography. Mean 
FA values as a measure of structural connectivity. c) Structural Connectivity: 
probabilistic tractography. The total number of activated voxels within the 
probability connectivity distribution. The three bars for each target region 
represent the number of activated voxels at each of the thresholds tested (15%, 
25%, 50%). In all cases, error bars represent standard error. (*denotes significant 
difference, p<0.05). 
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Relationship between Deterministic and Probabilistic Tractography:  

Figure 3.5 shows the relationship between deterministic and probabilistic tractography 

strengths (i.e., mean FA along reconstructed tracts vs number of suprathreshold voxels). 

Only subjects who showed both deterministic and probabilistic connections (PCC-rIPC 

11/15, PCC-lIPC 8/15, and 15/15 PCC-mPFC making a total of 34/45) are included. Data 

are plotted for a probabilistic threshold of 25%, but the results were comparable for 15% 

and 50%. In figure 3.5a, all paired connections to the PCC across all subjects are plotted 

together, while in figures 3.5b-d the data for each of the three paired connections are 

plotted separately (PCC-mPFC in 3.5b, PCC-lIPC in 3.5c and PCC-rIPC in 3.5d). Only 

the posterior-anterior connections linking the PCC with the mPFC demonstrated a 

significant correlation (R=0.76, p<0.002). This positive correlation exists despite the fact 

that the probability of PCC-mPFC connections was low with probabilistic tractography, as 

indicated by the relatively small number of voxels above threshold.   
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Figure 3.5. Comparison between measures of SC derived from deterministic and 
probabilistic tractography. a) mean FA from streamline tractography versus 
number of suprathreshold voxels (25% threshold) from probabilistic tractography 
for all paired connections pooled together. The same comparison is shown for the 
individual paired connections in panels b-d (i.e., b) PCC-mPFC, c) PCC-lIPC and d) 
PCC-rIPC). Subjects who did not show a deterministic structural connection are 
omitted. 

 

Relationship between Structure and Function:   

Figure 3.6 shows the relationship between measures of FC and SC strength for all paired 

connections together (subplots a, e and i) and separately (subplots b-d, f-h, j-l). The 

results for deterministic tractography are shown in the top row. The middle row (e-h) 

shows the results for probabilistic tractography at a threshold of 25%, restricted to those 

subjects who had deterministic connections to allow a direct comparison with the top row. 

The bottom row (i-l) again shows the probabilistic results, but with all subjects included 

since all subjects demonstrated some degree of connectivity with probabilistic 

 

 

a b 

c d 
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tractography (Figure 3.2). A significant positive correlation was found between FC and 

SC measured by streamline tractography when pooling across all pairs of connections 

and all subjects (Figure 3.6a, R=0.48, p=0.005). Considering each of the paired 

connections to the PCC individually, streamline tractography did not demonstrate any 

significant correlations between SC and FC (Figure 3.6 b-d, minimum p value 0.098), 

although there was something of a general positive trend. A similar analysis for 

probabilistic tractography demonstrated a significant correlation between SC and FC 

when all paired connections were considered, both when only those subjects who showed 

deterministic connections were included (Figure 3.6e, R=0.37, p=0.039) and when all 

subjects were included (Figure 3.6i, R=0.33, p=0.027). Of the paired connections to the 

PCC considered independently, only PCC-lIPC demonstrated a significant correlation 

(Figure 3.6g, R=0.72, p=0.045, Figure 14k R=0.52, p=0.048), although again there was 

some evidence of a general positive trend. Similar results were seen whether all subjects 

or only those who had deterministic connections were included. At the 15% and 50% 

thresholds the SC-FC correlation was found not to be significant (R=0.027, p=0.85 and 

R=0.031, p=0.83).   

 

 



 93  
 

 

 

Figure 3.6. Comparison between FC and SC for deterministic tractography (panels a-d) and SC for probabilistic 

tractography score for 25% threshold (panels e-l). Data are shown pooled across all paired connections (panels 

a,e,i) and for each of the paired connections separately. a-d) Functional correlation coefficient vs. mean FA along 

reconstructed tracts. Subjects who did not show a deterministic structural connection were omitted. e-h) FC is 

plotted against probabilistic SC for the same subjects shown in panels a-d. i-l) FC plotted against probabilistic 

SC for all subjects.

a b c d 

e f g h 

i j k l 



 94  
 

DISCUSSION  

Analysis of intrinsic functional brain activity is becoming an increasingly important and 

ubiquitous component of brain imaging studies. While RSNs are consistently and robustly 

identified (Anderson et al 2011, Damoiseaux et al 2009, Smith et al 2009), considerable 

inter-individual variability exists in the strength of these RSNs. The reasons for this remain 

unclear, as do the causes of alterations in RSNs that have been observed in various 

patient populations compared to healthy controls (Andrews-Hanna et al 2007, Rombouts 

et al 2005). One factor that is likely to contribute is individual variations in the nature and 

strength of the structural connectivity underlying RSNs. This aspect has received much 

less attention than characterising functional connectivity itself, and the current study 

aimed to compare two common approaches for quantifying SC and their relationship with 

conventional seed-based FC. We concentrated on the default mode network (DMN), and 

in particular on connections to the posterior cingulate/precuneus cortex (PCC), as 

previous work suggests it represents the core DMN node (Hagmann et al 2008, Leech et 

al 2011, 2012) with particular relevance for the maintenance of the conscious state 

(Cavanna and Trimble 2006, Cavanna 2007). A better understanding of PCC functional 

and structural connectivity could thus help in understanding physiological and 

pathological alterations of consciousness, such as in sleep, epilepsy, non-epileptic 

attacks etc (Bagshaw and Cavanna 2013).   

This study improves our understanding of the relationship between structural and 

functional connectivity in several ways. Perhaps most importantly, it demonstrates a direct 

correlation between the strength of SC and the strength of FC, as well as between the 

two measures of SC strength defined from deterministic and probabilistic tractography 
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(Figures 3.5 and 3.6). This indicates that as well as the previously reported observation 

that regions that are functionally connected tend to be structurally connected (Hagmann 

et al 2008, Honey et al 2009, Margulies et al 2009), there is a specific and graded 

relationship whereby regions which have stronger structural connections also have 

stronger functional signal coherence. This issue has received much less attention, partly 

because of the difficulty in defining the strength of SC. Skudlarski et al (2008) noted an 

approximately linear relationship between resting state functional connectivity and 

anatomical connectivity determined from a deterministic tractography algorithm (Fiber 

Assignment by Continuous Tracking (FACT), Mori et al 1999), but the definition of SC 

strength remains a controversial issue. Metrics that are commonly used to infer the 

presence of white matter connections (e.g., fractional anistropy, probabilistic score) are 

not necessarily good indicators of the strength of SC, since their magnitudes may be 

influenced by a number of methodological and physiological factors which are not related 

to the underlying connectivity (Jbabdi and Johansen-Berg 2011, Jones et al 2013). This 

clear need for caution and the ambiguity surrounding the interpretability of measures of 

SC strength requires theoretical, methodological and empirical investigation and 

validation.   

The results presented here lead to a number of observations which are relevant to this 

issue. Firstly, Figure 3.4 demonstrates an asymmetry between functional connections 

from the PCC to the left and right IPC, with higher connectivity for the right compared to 

the left. This functional asymmetry is mirrored in the two measures of connectivity 

strength derived from deterministic (mean FA along reconstructed tracts) and probabilistic 

(number of voxels above threshold) tractography. Secondly, the two measures of SC 
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strength were significantly correlated (Figure 3.5), but not for all paired connections. This 

presumably relates to the differential ability of the algorithms to cope with crossing fibres, 

as discussed in more detail below. Thirdly, when pooling across all paired connections, 

and in some cases when considering individual paired connections, strength of SC was 

significantly correlated with strength of FC (Figure 3.6). Given the different pulse 

sequences used to acquire the data from which FC and SC strength were measured, and 

that the definition of FC strength is much less ambiguous than for SC, these observations 

could be considered to provide some degree of validation for these measures of SC 

strength. If nothing else, the results indicate that there is some shared variance between 

FC and SC strength which requires further investigation.   

The first hypothesis of this study was that the PCC had direct structural connections to 

the other nodes of the DMN. We observe that, in general, the DMN has reasonably clear 

and consistent SC, and this conclusion is reached using either tractography algorithm 

(Figures 3.2 and 3.3). Structural connections via cingulate tracts were found between the 

mPFC and PCC in all subjects for both the streamline and probabilistic analyses. This is 

consistent with previous studies that also report robust SC between the mPFC and PCC 

using streamline tractography (Grecius et al 2009, Hagmann et al 2008, Van den Heuvel 

et al 2009).   

Examination of SC between the PCC and the bilateral IPC is complicated by the crossing 

fibre tracts of the anterior to posterior superior longitudinal fasciculus and the superior to 

inferior corona radiata tracts that separate them (Dougherty et al 2005). This is likely to 

be a particular problem for single tensor streamline tractography (Mori and Zhang et al 

2006). Greicius et al (2009) did not examine these connections, as their preliminary data 
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showed PCC-IPC SC in only 4/23 subjects. They therefore felt that the investigation of 

the SC between these regions was severely restricted due to their tractography algorithm 

being unable to resolve the problem of crossing fibres (Grecius et al 2009). Hagmann et 

al did find evidence of structural connectivity between the PCC and the IPC regions, 

although this was less consistent than the PCC-mPFC (Hagmann et al 2008). Van den 

Heuvel et al used the mPFC as the seed region for their study, and therefore did not 

examine the connections from the PCC to the IPC (Van den Heuvel et al 2009). Margulies 

et al (2009) compared the functional connectivity of both human and macaque monkey 

brains against classical and recent anatomical studies. They identified a central zone of 

the PCC which demonstrated strong functional connectivity with the posterior part of the 

inferior parietal lobule and adjacent superior temporal sulcus in the Macaque monkey 

(this corresponds in human brain to the morphology of the angular gyrus/IPC). Margulies 

et al (2009) found the functional connectivity patterns were remarkably consistent 

between species and with predictions from previous tract tracing anatomical studies in 

the macaque.  

In the current study, structural connections between the PCC and the bilateral IPC were 

seen for both tractography approaches, although they were more consistent when using 

probabilistic tractography. The probabilistic tractography identified connections between 

the PCC and all other nodes of the DMN (mPFC, lIPC, rIPC) in all subjects. This finding 

suggests the probabilistic approach is more effective at determining the underlying 

connections between regions where considerable fibre cross over is apparent (Behrens 

et al 2007, Hagmann et al 2007,2008, Honey et al 2009, Yo et al 2009). However, a 

marked reduction in the PCC-mPFC SC was found when using probabilistic tractography 
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(Figure 3.4c). This finding suggests that the probabilistic approach is not as effective in 

reconstructing long pathways as streamline tractography (Figure 3.4c). A degree of 

uncertainty in fibre orientation is apparent when pathways are reconstructed, and as the 

probability connectivity distribution is propagated, this uncertainty results in a decrease in 

the connection probability with increasing tract length. Consequently, long range 

connections are more difficult to characterise and have lower probability values. This 

effect has been previously reported, with probabilistic tractography demonstrating weaker 

SC with increasing tract length (Morris et al 2008). For example, long tracts have been 

found to be weaker using probabilistic algorithms compared to streamline methods (Yo 

et al 2009). This finding is consistent with our results (cf Figure 3.4b and c).  

The second hypothesis of this study was that variations in FC of the ROIs are mirrored 

by between ROIs variations in SC. The rIPC demonstrated the strongest FC to the PCC, 

while the weakest FC was demonstrated by the lIPC (Figure 3.4a). These findings show 

similarities with those of Horovitz et al 2009, who found the strongest FC for the rIPC and 

weakest for the lIPC when using a PCC seed. A recent magneto-electroencephalography 

(MEG) study (de Pasquale et al 2012) recorded neuromagnetic signals from the DMN 

and several other RSNs and found that the lIPC demonstrated marked cross correlation 

with the dorsal attention network (DAN). This may possibly account for the reduced 

correlation between the lIPC and PCC in our study, by suggesting that the lIPC is a less 

consistent member of the DMN.   

Given this asymmetry in the FC of the IPCs, and the evidence for non-DMN connectivity 

of the lIPC, we would expect an asymmetry in the SC of the IPCs. For each tractography 

algorithm there were two measures of SC, the strength of connections (mean FA for 
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streamline data or number of activated voxels for probabilistic data) and the number of 

subjects who demonstrated a particular connection. We found a similar pattern for SC to 

that found for FC for both tractography algorithms and both measures of SC that came 

from them when considering the IPC regions. Our findings are consistent with previous 

work that suggested that regions exhibiting strong SC also exhibit strong FC, and lends 

weight to the idea that FC is constrained by SC (Hagmann et al 2008, Honey et al 2009).   

The third hypothesis of this study was that SC and FC are correlated across the nodes of 

the DMN. This is a more specific, though more controversial as discussed above, test of 

the extent to which SC and FC are linked. The correlation analysis demonstrated a 

significant relationship between functional connectivity and structural connectivity defined 

using either streamline or probabilistic tractography approaches (Figure 3.6). One of the 

issues related to the use of probabilistic tractography is that at present there is no 

standard methodology for thresholding maps across subjects (Morris et al 2008). We 

compared the effect of using minimum thresholds of 15%, 25% and 50% of activated 

voxels within the connection probability distribution. The 15%, 25% and 50% thresholds 

were successful in including only connections consistently observed within the DMN 

(Figure 3.3g-i) across subjects and allowed specific tracts between ROIs to be identified 

within all subjects. A significant FC-SC correlation was found only with the 25% threshold 

(Figure 3.6e,i), but not with 15% and 50% thresholds, although the overall pattern of 

connectivity was seen to be preserved for the IPC regions at all thresholds (Figure 3.4c). 

The lack of a significant FC-SC correlation as a whole at the 15% threshold may have 

been due to the significant difference in the strength of SC of the PCC-mPFC pairwise 

connections compared to the PCC-IPC connections.  
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The final hypothesis of this study was that the SC-FC relationships identified would not 

be dependent on the type of tractography used to define SC. As detailed above, in the 

majority of cases we were able to show similar relationships between FC and SC 

calculated using either streamline or probabilistic tractography. However, there were 

differences between the two tractography approaches both in terms of their definition of 

SC strength (Figure 3.5) and their relationship with FC (Figure 3.6). These differences 

might be related to known issues with tract reconstruction such as crossing fibres and 

dispersion with distance (Morris et al 2008). It is important to consider some advantages 

and disadvantages of the methods. In favour of the probabilistic approach was its 

improved ability to cope with regions of crossing fibres, and hence to identify PCC-IPC 

connections more reliably than the streamline approach. However, for the anterior-

posterior connections between the PCC and mPFC deterministic tractography appeared 

to be more related to FC than probabilistic tractography (Figure 3.6). This was despite a 

high level of shared variance for this pair of nodes for the two structural approaches 

themselves (Figure 3.4b). Yo et al (2009) have found probabilistic approaches on average 

produce more connected regions, but lower individual connectivity values, than 

streamline approaches. Accordingly, we have found probabilistic structural connections 

are weaker than streamline SC when considering the mPFC-PCC pairwise connections. 

This suggests streamline and probabilistic approaches may complement each other with 

probabilistic tractography detecting more individual connections (especially where 

crossover is a problem) and streamline tractography demonstrating more consistent 

individual strength of connectivity. In terms of understanding structure-function 

relationships this obviously adds a level of complexity and deserves further attention.   



 101  
 

This study has several limitations, one of which is likely to be encountered by other studies 

which seek to compare explicitly the strength of SC and FC, and relates to the relationship 

between the regions where these quantities are calculated. Firstly, FC was quantified 

from a relatively small region based on the peak voxel from GICA, and would therefore 

primarily be in grey matter, while quantification of SC is obviously restricted to white 

matter. Secondly, the tracts we reconstructed connected the larger ROIs that represented 

the entire DMN nodes. The spatial group ROIs produced from the GICA analysis, while 

comparable with those from previous studies (Greicius et al 2009, van den Heuvel et al 

2009), were much larger than the peak regions used in the FC correlation analysis, and 

were therefore composed of various areas of cortex. For example, the PCC ROI consisted 

of the precuneus, posterior cingulate and retrosplenial cortex, while the IPC consisted of 

the angular gyrus, lateral inferior parietal lobule and parts of the lateral parietal sulcus. 

The tracts reconstructed using the two tractography approaches demonstrated 

connections between the overall GICA ROIs, which included the peak FC correlation 

voxels. However, the tracts did not pass directly through the peak FC voxel. We therefore 

cannot assume SC-FC connectivity at the cytoachitectural level and studies accounting 

for cytoachitectural compartmentalisation may be more suited to the detailed analysis of 

the functional and structural characterisation of each particular region of cortex (Margulies 

et al 2009). We have only addressed SC-FC at a macroscopic level, but this spatial 

discrepancy would be expected to reduce the observed correlation between SC and FC, 

meaning that the figures we have reported likely represent lower bounds on the true 

relationship. This study's sample size was comparable to much of the related literature, 

however investigating structure-function relationships in large samples such as those 
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provided in data repositories would increase the breadth of conclusions that could be 

drawn. However, one of the motivations for our methodological choices was that they are 

readily applicable to standard clinical scanners and can therefore lay the groundwork for 

ongoing and future work in clinical populations and sleeping subjects. Finally, we did not 

investigate the effect of different preprocessing strategies on the definition of FC. 

Foremost amongst these is the widely utilised but much debated application of global 

signal regression, which can have quite a profound effect on FC, particularly in terms of 

inducing negative FC between networks (Murphy et al 2009, Fox et al 2009). However as 

we have focussed on measuring only positive FC within a single network, the effect of 

global signal removal in our data is simply a reduction in FC consistent for all pairwise 

comparisons for a given individual. Additionally several other factors such as controlling 

for residual movement effects have been shown to be important to improve FC 

measurements in future work (Van Dijk et al 2010, 2012). This highlights the difficulty of 

studying SC-FC relationships, since methodological uncertainty exists at every stage.  

Our findings have demonstrated structural connections between functionally connected 

regions of the DMN and a significant relationship between DMN FC and SC using both 

deterministic and probabilistic tractography. A better understanding of how structural 

connections relate to functional connectivity is imperative in order to enhance our 

understanding of changes in SC and FC that occur as a consequence of neurological 

(Bozzali et al 2002, Gattellaro et al 2009, Kinnunen et al 2011, Nierenberg et al 2005, 

Rigman et al 2007, Zhang et al 2011), psychiatric (Broyd et al 2009, Hubl et al 2004, Li 

et al 2008,) and sleep (Altena et al 2010, Nofzinger et al 20015) disorders and whether 

any of these changes are reversible with therapeutic interventions.  



 103  
 

This study has demonstrated a degree of co-variance between SC and FC within an ICN 

therefore providing evidence for a degree of association between the two measures. The 

study also highlights the difficulty of studying SC-FC relationships. As mentioned above, 

methodological uncertainty exists at every stage. Future studies investigating chronic 

habitual sleep status in relation to SC and FC (chapters 4, 5 and 6) will investigate SC 

and FC individually in order to minimize the effects of such methodological uncertainties. 
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                                       CHAPTER 4 

 

 

 

 

Variability in cumulative habitual sleep duration predicts 

waking functional connectivity2 

    

 

  

  

 

 

 

 

 

 

 

 

 

 

2This chapter is published in SLEEP: Khalsa, S., Mayhew, S.D., Przezdzik, I., Wilson, R., Hale, J., 

Goldstone, A., Bagary, M. and Bagshaw, A.P., 2016. Variability in Cumulative Habitual Sleep 

Duration Predicts Waking Functional Connectivity. Sleep. 39(1):87-95. 
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ABSTRACT 
  

We examined whether inter-individual differences in habitual sleep patterns, 

quantified as the cumulative habitual total sleep time (cTST) over a two week period, 

were reflected in waking measurements of intra and inter- network FC between major 

nodes of three ICNs: DMN, SN, CEN. This was a resting state fMRI study using seed-

based FC analysis combined with14 day wrist actigraphy, sleep diaries and subjective 

questionnaires. Data were statistically analysed using multiple linear regression. The 

methods included fourteen consecutive days of wrist actigraphy in participant’s home 

environment and fMRI scanning on day 14 at the Birmingham University Imaging 

Centre. The experimental cohort consisted of 33 healthy adults, mean age 34.3, SD= 

+/- 11.6 years.Seed-based FC analysis on ICNs from resting-state fMRI data and 

multiple linear regression analysis performed for each ICN seed and target. cTST was 

used to predict FC. cTST was specific predictor of intra-network FC when the mPFC 

region of the DMN was used as a seed for FC, with a positive correlation between FC 

and cTST observed. No significant relationship between FC and cTST was seen for 

any pair of nodes not including the mPFC. Inter-network FC between the DMN (m 

PFC) and SN (right anterior insula) was also predicted by cTST, with a negative 

correlation observed between FC and cTST. In conclusion, this study improves our 

understanding of the relationship between intra and inter-network FC of ICNs in 

relation to habitual sleep quality and duration. The cumulative amount of sleep that 

participants achieved over a 14 day period was significantly predictive of intra- and 

inter-network FC of ICNs, an observation that may underlie the link between sleep 

status and cognitive performance.  
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INTRODUCTION  

Sleep is crucial for maintaining normal cognitive performance (Alhola and Polo-

Kantola 2007, Babckoff et al 2005, Banks and Dinges 2007, Belenky et al 2003, 

Dinges et al 1997, Harrison and Horne 2000, Horne et al 1993,Van Dongen et al 

2003,) but the precise mechanisms by which the processes that occur during sleep 

affect waking function remain to be clarified. It is increasingly recognised that FC of 

ICNs is crucial for the maintenance of proper function in healthy individuals (Bressler 

and Menon 2010, Damoiseaux and Greicius 2009, Menon and Uddin 2010) and that 

specific disruptions to intra- and internetwork FC are widespread in neurological and 

neuropsychiatric disorders (Menon 2011, Zhang and Raichle 2010). Modification of 

the activity and FC of ICNs has also consistently been observed during the descent 

into sleep (Horovitz et al 2008, Horovitz et al 2009, Koike et al 2011, Larson-Prior et 

al 2009, Samann et al 2011) and following sleep deprivation (Bosch et al 2013, De 

Havas et al 2012, Gujar et al 2010, Samann et al 2011, Tomasi et al 2009, Verweij et 

al 2014) with the main emphasis having been placed on the default mode network 

(DMN). The DMN is likely to be particularly important in understanding the link 

between sleep and waking brain function not only because of its general link with 

maintenance of consciousness (for review see Bagshaw and Khalsa 2013), but also 

its importance in a range of cognitive domains which are known to be affected by 

prolonged wakefulness, including memory (Buckner and Carroll 2007, Drummond et 

al 2013, Spreng and Grady 2010,),attention (Gumenyuk et al 2011) and emotion 

processing (Buckner and Carroll 2007).   
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In parallel with these investigations of FC, studies utilising chronic partial sleep 

deprivation, which more closely resembles everyday life situations than total sleep 

deprivation, have reported dose-dependent deficits in cognitive performance (Belenky 

et al 2003, Dinges et al 1997, Van Dongen et al 2003).The common finding is that the 

less sleep subjects obtain due to sleep restriction (e.g. subjects restricted to 3, 5 or 7 

hours of time in bed compared to controls who spent 8 hours in bed for up to 7 days) 

the more cognitive performance is impaired (Belenky et al 2003, Dinges et al 1997, 

Van Dongen et al 2003). Given that ICNs underpin waking function and are affected 

by prolonged wakefulness (De Havas et al 2012, Gujar et al 2010, Tomasi et al 2009, 

Verweij et al 2014), one possibility is that sleep is needed to maintain the brain’s 

intrinsic functional architecture, normalising the FC of ICNs to sustain the high level 

of regionally-appropriate FC that is necessary for waking function. This would suggest 

that shorter habitual sleep over a prolonged period could have a cumulative effect on 

FC, which may subsequently result in subtle deficits in higher cognition. However, to 

date there has been no investigation of whether habitual sleep patterns measured 

over a prolonged period relate to waking FC. This is important because even a small 

amount of sleep restriction over a prolonged period can have measureable negative 

consequences on waking behavioural performance (Bonnet and Arand 1995) and 

self-imposed short sleep durations are becoming increasingly common and represent 

a considerable public health burden (Altevogt and Colten 2006,Geol et al 2009, 

Hillman and Lack 2013). Understanding whether differences in habitual sleep patterns 

relate to FC thus has considerable practical implications. We examined this issue by 

comparing cTST, assessed over a two week period with wrist actigraphy and sleep 
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diaries, with waking FC of three of the most important ICNs for higher level cognitive 

function the DMN, SN and CEN.   

The DMN encompasses the PCC, mPFC and bilateral IPC cortices, with the MTL and 

the hippocampal regions also sometimes included, although less consistently (Ward 

et al 2013). Originally identified as a set of regions which are consistently deactivated 

when attention is directed externally (Shulman et al 1997, Raichle et al 2001) its 

general importance has subsequently been underscored by its relationship with a 

wide range of cognitive tasks (Anticevic et al 2012, Shulman et al 1997, Raichle et al 

2001, Raichle et al 2007,). Further investigations have also revealed specific roles of 

the anterior and posterior portions of the DMN (Cavanna and Trimble 2006, Euston 

et al 2012, Utevsky et al 2014), indicating that while it is certainly a coherent network 

the individual nodes can have differentiated functions, as well as a specific 

relationship to task-positive regions (Bressler and Menon 2010, Uddin et al 2009). 

A number of studies have investigated ICN FC during sleep (Andrade et al 

2011,Horovitz et al 2009, Larson-Prior et al 2009, Samann et al 2011, Spoormaker et 

al 2010), and alterations have been noted during wakefulness, following full or partial 

sleep deprivation (De Havas et al 2012, Gujar et al 2010, Samann et al 2010) and in 

relation to self-reported sleep duration on the night prior to a waking scan (Killgore et 

al 2012).These studies indicate that integrity of the DMN is a sensitive marker of sleep 

status and prior sleep history.  

While the importance of DMN functional integrity for the maintenance of normal brain 

function is clear, it is only one of many ICNs ranging from those encompassing 
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primary sensory regions (e.g., visual, auditory, somatomotor) to higher level networks 

such as the CEN and the SN. Given previous behavioural observations (Banks and 

Dinges 2007) it would be expected that, in addition to the DMN, the higher-level CEN 

and SN would be most affected by sleep, rather than the sensory networks.   

The human brain switches from intrinsic thoughts and self-referential activity involving 

regulation by the DMN, to task positive cognitive activity involving regulation by the 

CEN (Hasenkamp et al 2012, Manoliu et al 2013). This switching between networks 

is thought to be regulated by the right AI of the SN, which acts as a control hub 

between the DMN and CEN and regulates states of consciousness in response to 

salient events (Sridharan 2008). These three ICNs therefore act in concert to maintain 

a normal level of brain function.   

In the current awake, resting-state fMRI study, we aimed to investigate whether the 

strength of intra-network FC of the DMN, SN and CEN covaried with the cumulative 

effect of normal habitual sleep time. Secondly, since the SN is involved in the 

regulation of activity between the DMN and CEN, we also aimed to investigate how 

between-subject FC variability in inter-network connectivity of the SN, CEN and the 

DMN was related to subject’s habitual sleep time. The motivation for examining these 

networks is that they are closely linked with the higher cognitive functions which are 

mainly affected by sleep deprivation (Alhola and Polo-Kantola 2007’ Babkoff et al 

2005, Belenky et al 2003, Dinges et al 1997, Harrison and Horne 2000, Horne 1993, 

Van Dongen et al 2003). A better understanding of how sleep affects ICN FC may 

help to shed light on the link between sleep and the functions these networks support, 

in particular cognition and conscious behaviour, as well as the neurobiological 
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underpinnings of individual differences in susceptibility to sleep deprivation. While the 

link between individual variability in behavioural performance and sleep history has 

been extensively studied (Kloss et al 2002), an explicit understanding of susceptibility 

to sleep loss requires a detailed knowledge of individual differences in the resilience 

of the brain networks that are responsible for waking function. In addition, as a marker 

of sleep deprivation, FC of ICNs is particularly attractive as it is not under conscious 

control and may provide an unbiased measure of sleep history.    

We had two hypotheses: i) Longer habitual cumulative total sleep times will be 

reflected by increases in the intra-network FC between the major nodes of the DMN, 

SN, CEN measured during wakefulness, ii) Longer habitual cumulative total sleep 

times will be reflected by network specific increases and decreases in inter-network 

FC between the DMN, SN and CEN.  

METHODS AND MATERIALS  

Subjects:  

Data were acquired from 37 healthy adults (right handed, 17 female, age 20-59 years, 

mean age (+/-SD)=35.0+/-11.7 years). See chapter 2 for further details. 

The data from 4 subjects were subsequently excluded (corrupted data for one subject, 

erratic sleep patterns for the second, illness around the time of scanning for the third 

and fourth), meaning that the final data set that was analysed consisted of 33 

participants (right handed, 17 female, age 20-59 years, mean age (+/-SD)= 34.2+/-

11.6 years).  
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Sleep Patterns and Questionnaires:  

Subjects were asked to maintain their normal sleep patterns for the duration of the 

study. Habitual sleep patterns were assessed for a 14 day period using sleep diaries 

and wrist actigraphy (Actiwatch 2, Philips Respironics Ltd). See chapter 2 for further 

details. 

 

  

 

 

 

 

 

 

 

Table 4.1 above summarises the demographic, habitual sleep and 
questionnaire data for the participants. All subjects were within normal limits 
and no evidence of depression, anxiety, excessive daytime sleepiness or 
fatigue was found (Table 4.1). Mean cTST was also within normal limits (7.65+/- 
1.85 hours).  

 

 

 

 

Demographics (n=33)  Mean  SD  
Age   
  

34.2  11.62  

Questionnaires 
Epworth  

  
  
3.94  

  
  
.79  

Karolinska  1.16  .41  
Fatigue  12.36  .98  
PSQI  2.31  1.65  
Depression  1.58  2.74  
Anxiety  1.35  .92   
Stress  
  

3.61  2.73  

Actigraphy 
Mean TST (h)  

  
  
7.65  

  
  
1.85  

cTST (h)  97.57  13.52  
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Image acquisition and preprocessing:  

Subjects underwent a single resting-state fMRI session in the early afternoon during 

which they were instructed to lie still in the scanner and relax with eyes open. All 

participants confirmed that they remained awake and alert through the scanning 

session. See chapter 2 for further details. 

Defining Regions of Interest: 

Regions of interest (ROI) representing the nodes of the DMN, CEN and the SN were 

created from data from a separate cohort of 55 subjects from a previous study 

(Przezdzik et al 2013) 28 male, age 25±4yrs. (see chapter 2 for details). 
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 Figure 4.1 ROIs produced form ICA analysis of the DMN A), SN B) and CEN C). 
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Regions of interest/nodes for all networks  

  

MNI co-ordinates(mm)    

                                                                
X (centre)                 Y (centre)  Z (centre) 

Posterior cingulate cortex (PCC)  0  -52  34  

Mesial prefrontal cortex (mPFC)  0  52  6  

Left inferior parietal cortex (lIPC)  -52  -68  38  

Right inferior parietal cortex (rIPC)  52  -68  38  

Left mesial temporal  lobe (lMTL)  -64  -10  -18  

Right mesial temporal  lobe (rMTL)  52  2  -30  

Left hippocampus (lHC)  -28  -18  -14  

Right hippocampus (rHC)  26  -18  -14  

Right Insula (rAI)  

Left Insula (lAI)                                                      

36  

-40  

24  

16  

2  

2  

Anterior cingulate cortex (ACC)  0  26  30  

Left dorsal lateral prefrontal cortex (ldlPFC)  -42  34  24  

Right dorsal lateral prefrontal cortex (rdlPFC)  42  44  24  

Left inferior parietal lobule (lIPL)  -54  -64  24  

Right inferior parietal lobule (rIPL)  56  -66  26  

 

Table 4.2,  MNI co-ordinates for the centre voxel for each node/region of interest 
(ROI) for the three networks (DMN, SN, and CEN) from the ICA . 
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Measuring DMN, CEN and SN FC:  

Following previous methodology (chapter 3,Khalsa et al 2014) we used seed-based 

FC analysis performed according to standard methods (Fox et al 2005) using in-house 

MATLAB code (Mathworks, USA). (See chapter 2 for further details). 

The fifteen ROIs described above were used in turn as the seed to measure the 

strength of FC to all other DMN, SN and CEN ROIs for the intra-network and 

internetwork analysis.   

Statistical Analysis:  

We investigated the relationship between individual sleep variables and both intra- 

and inter-network FC. Multiple linear regression analysis (SPSS Inc, Chicago USA) 

was performed for each DMN, SN and CEN seed and target ROI, with cTST as the 

criterion variable and including FC as predictor variables. We controlled for false 

discovery rates (FDR) due to multiple measures by using the Benjamini Hochberg 

procedure (Benjamini and Hochberg 1995) as used in previous studies (Sridharan et 

al 2008). The FDR p value adjustment method involved ranking the p values in order 

with the smallest p value being assigned rank 1, the second rank 2 and the largest 

rank N. Then each p value was multiplied by N and divided by its assigned rank to 

give the adjusted p. In order to restrict the FDR to 0.05 significance, all adjusted p 

values of less than or equal to 0.05 were regarded as significant (Benjamini and 

Hochberg 1995). All p values reported in the Results section are FDR corrected.   
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RESULTS   

Intra-network FC analysis:  

cTST and intra-network FC of the DMN:  

Table 4.3 shows the significant regression analysis results for the relationship 

between cTST and intra-network DMN FC using the mPFC as seed ROI. This 

analysis indicated that cTST only predicted DMN FC when the mPFC was used as 

the seed ROI. No significant relationship between FC and cTST was seen for any pair 

of nodes not including the mPFC (see additional supplementary material for all non-

significant results, and Figure S1 for average group FC between the mPFC and other 

nodes of the DMN).  

    mPFC (seed)   
Model  B  Std. Error   t  p  corrected p   Zero-order R  
(Constant)  103.334  

-41.833  

27.679  

-51.204  

5.635   
 35.807  -.272  

 34.593  .176  

 22.102  -.699  

 18.339 <.001     
 -1.168  .254                .444  .118  

 .800  .431  .603   .377  

 -2.317  .020  .070  .308  

 lIPC  

 lMTL  
 lHP  

 PCC  61.445  

13.214  

82.223  

 24.646  .730  

 25.319  .133  

 28.689  .568  

 2.493  .020  .046* .469  

 .522  .606  .707  .480  

 2.866  .008  .056  .541  
 rIPC  
 rMTL  

 rHP  19.448  
 
 

 

41.335        .113  
 
 

 

 .470  .642  .642  .260  

  

        
     Model significance R2=0.576 F=4.251 P=0.002 (*significant FDR corrected p<0.05) 

Table 4.3 Results of the regression analysis between habitual cTST (dependent 
variable) and DMN (mPFC seed) intra-network connectivity (table 4.3 above).  

 

cTST demonstrated a significant regression model when the mPFC was used as the 

seed region for mPFC-DMN intra-network FC and a Model significance R2=0.576 

F=4.251 P=0.002 was found. For all pairs of ROIs that had a significant corrected p 

value or demonstrated a positive correlational trend (p=0.046, p=0.056 FDR 
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corrected) in partial correlations to the seed region, the strength of FC between the 

DMN seed regions and the mPFC increased with cTST.   

cTST and intra-network FC of the SN and CEN:  

cTST was not a significant predictor of intra-network FC for the SN or the CEN 

(p>0.61, see supplementary material for non-significant results).   

Inter-network FC analysis:  

cTST and inter-network FC of the DMN and SN:  

cTST was a significant predictor of the DMN-SN inter-network FC using the mPFC as 

the seed region. Specifically, FC between the mPFC and rAI was significantly 

predicted by cTST. A significant negative correlation was found (Table 4.4). cTST 

demonstrated a significant regression model when the rAI was used as the seed 

region for SN-DMN inter-network FC and an uncorrected p value of 0.019 was found, 

but this did not survive FDR correction (Table 4.5). (In the appendix supplementary 

material Figures S2 and S3 demonstrate the average group inter-network FC between 

the DMN and SN).    
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      mPFC (seed)    
Model  B  Std. Error  


 t  p   corrected p  Zero-order R 

(Constant)   100.696  7.387   13.631  .000     

ACC   -21.558  26.365  -.123  -.818  .420  .560  -.121  
lAI   36.623  22.521  .254  1.626  .115  .172  .110  
rAI   -57.774  15.544  -.595  -3.717  .001    .003*  -.510  

     Model significance R2= 0.585 F=3.768 P=0.014 (*significant FDR corrected p<0.05) 

Table 4.4. Significant results of the regression analysis between habitual cTST 
(dependent variable) and DMN (mPFC seed) inter-network connectivity with 
the SN. 

 

 

 

 

 

 
    rAI (seed)     

Model  B  Std. Error   t  p  corrected p   Zero-order R  
(Constant)   114.390  14.032    8.152  .000     

  lIPC   14.033  32.574  .079   .431  .671  .671  -.093  

 lMTL   27.629  42.041  .183   .657  .519  .593 .507  

LHP   -95.299  81.343  -.258   -1.172  .255  .680  .083  

mPFC   -15.415  6.025  -.611   -2.558  .019+  .152  -.473  

 PCC   30.550  35.605  .294   .858  .401  .641 -.252  

 rIPC    20.846  24.882  .270   .838  .412  .549 .300  

 rMTL   51.270  44.162  .311   1.161  .259  .518  .305  

 RHP   122.529  78.168  .362   1.568  .133  .532  .099  

     Model significance R2=0.499 F=2.256 P=0.054 (+significant uncorrected p<0.05)   

 Table 4.5. Significant regression analysis model between habitual cTST 
(dependent variable) and SN (rAI seed) inter-network connectivity with the DMN. 
On FDR correction of the p values in the model the rAI-mPFC FC association 
with cTST were found to be non-significant.     

cTST and inter-network FC of the CEN:  

cTST was not a significant predictor of either DMN-CEN or SN-CEN inter-network FC 

(see supplementary material in the appendix).   
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DISCUSSION  

This study examined the effect of habitual sleep patterns on the awake, resting-state 

FC of intrinsically connected networks. We focused on the DMN, SN and CEN as 

these networks are most closely linked with the higher cognitive functions that have 

been shown to be most affected by sleep deprivation (Alhola and Polo-Kantola 2007, 

Babckoff et al 2005, Belenky et al 2003, Dinges et al 1997, Harrison and Horne 2000, 

Horne et al 1993, Van Dongen et al 2003,). Our main finding was that the cumulative 

amount of sleep that participants achieved over the 14 day period preceding fMRI 

scanning was significantly predictive of intra- and inter-network FC of the DMN and 

SN, but not the CEN. . 

The study had two hypotheses. The first suggested that individual differences in sleep 

patterns, quantified as the cumulative total sleep time over 14 days (cTST), would be 

reflected in intra-network FC strength between the major nodes of the DMN, SN and 

CEN measured during wakefulness. Multiple linear regression demonstrated that this 

was at least partially the case. In terms of the DMN, FC of the mPFC was significantly 

predicted with cTST model significance  R2=0.576 F=4.251 P=0.002. This result was 

specific to the mPFC, with only pairwise connections involving the mPFC as the seed 

showing a relationship between DMN FC and cTST (see Table 4.3). No association 

between SN or CEN intra-network FC and sleep was found.   

The specificity of the relationship between mPFC FC and sleep status is consistent 

with previous imaging and behavioural investigations. For example, it has been 

demonstrated that sleep deprivation causes reduced intra-DMN FC strength of the 

mPFC (Killgore et al 2012, Verweij et al 2014) to the PCC and posterior nodes of the 
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DMN, while self-reported sleep duration on the night prior to scanning has also been 

linked with mPFC FC (Killgore et la 2012). Behaviourally, a similar specificity has been 

observed, with sleep deprivation preferentially impairing cognitive performance on 

tasks involving the prefrontal cortex (Horne 1993, Harrison and Horne 2000). 

Although we did not test cognitive performance, it is reasonable to postulate that 

experimentally-induced sleep deprivation leads to deficits in higher cognitions via its 

effect on intra- and inter-network FC of ICNs. The implication from our results is that 

these observations are generalisable to habitual sleep patterns in healthy individuals, 

and by quantifying FC of the mPFC we provide a mechanism by which habitual sleep 

status and cognition are linked. The fact that cTST is specifically linked to mPFC-

DMN FC, but not FC within the SN or CEN, is a novel observation. The SN and CEN 

have been linked with salience and attentional processes, which might be expected 

to be related to cTST, but our results suggest the importance of inter-network FC in 

mediating the effects of cTST on these processes, as discussed in more detail below.  

Our second hypothesis was that inter-network connectivity of the DMN, SN and CEN 

would be altered in relation to habitual sleep status. This issue has not been 

previously examined, and the basis of this hypothesis is that for optimal brain 

performance it is not only crucial that ICNs are internally connected, but they must be 

able to interact with each other in a consistent and coherent manner. This hypothesis 

was again partially confirmed, with connectivity between the DMN and SN dependent 

on cTST. Specifically, FC between the mPFC of the DMN and the rAI of the SN 

demonstrated a significant negative correlation with cTST, (Table 4.4). It has been 

shown that when responding to an unexpected event in the environment the internally 
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focused mode of operation supported by the DMN needs to be inhibited, and that this 

is achieved by an increase in rAI activity which in turn allows the brain to quickly switch 

to a controlled mode of operation which is tightly coupled to external events (Menon 

and Uddin 2010, Sridharan et al 2008, Uddin et al 2009,). We have shown for the first 

time that a reduction in cTST is associated with an increase in the FC between rAI 

(SN) and the mPFC of the DMN (Table 4.4). It is possible that this represents an 

attempt to maintain the appropriate level of rAI activity needed to sustain alertness 

and ensure the effectiveness in network switching from intrinsic thoughts to external 

executive functioning. It is thought that the rAI is involved in the regulation of dynamic 

changes between the DMN and CEN (Manoliu, Menon and Uddin 2010) networks 

known to have competitive interactions (Sridharan et al 2008). Our results suggest 

that short habitual sleep durations disrupt right AI connectivity to the DMN and hence 

the ability to switch between internal and external modes, which may have an effect 

on widespread cognitive and behavioural domains. Future work will need to address 

this question with neuropsychological testing, but existing behavioural literature would 

support the association between working memory and attention and sleep status, 

albeit generally from the more extreme case of sleep deprivation or restriction (Basner 

et al 2013). 

One factor which complicates the interpretation of this observation is that the DMN 

and SN are anti-correlated. A negative correlation with cTST therefore suggests that 

longer habitual sleep durations are related to more negative DMN-SN FC. It has been 

demonstrated that the use of global signal regression (GSR) as we have done 

negatively biases correlation measures (Murphy et al 2009). At best this can manifest 
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as a shifting of all correlations to lower values, including negative values. However, 

at worst it can result in a distortion of the underlying connectivity which can 

fundamentally alter interregional correlations within a group, as recently 

demonstrated (Gotts et al 2013, Saad et al 2012). This makes it difficult to draw 

detailed conclusions regarding the relationship between negative inter ICN FC (i.e. 

DMN-SN) and behavioural metrics, and future studies may benefit from more 

advanced investigations of the impact of GSR (Scholvinck et al 2010) as well as better 

assessments of the physiological nuisance variables that GSR is intended to mitigate.   

A recent study has suggested that a substantial proportion of waking resting-state 

fMRI scans may be confounded by participants entering early stages of sleep in even 

relatively short waking scan (Wong et al 2013). While the impact of this observation 

on the field generally remains to be clarified, it could be argued that in our study 

participants with shorter habitual sleep times might be more likely to fall asleep during 

the scanning session. Our cohort consisted of healthy control subjects adhering to 

their normal sleep routine, verbally indicated that they had not slept during the 

session, and our questionnaire data demonstrated no evidence of abnormal levels of 

daytime sleepiness (Epworth score 4.93±1.07, mean±SD). In addition, their 

responses to the Karolinska Sleepiness Scale indicated a good level of alertness 

immediately upon exiting the scanner (2.13±0.21, mean±SD, indicating a self-

assessment of ‘very alert’, compared to a value of 6 indicating ‘some level of 

sleepiness’). While subjective ratings cannot be taken as completely reliable, the 

available evidence is therefore supportive of our resting state data being composed 

at least predominantly of wakefulness, and as we have pointed out, the changes to 
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FC that we have observed are consistent with those seen in response to explicit sleep 

deprivation. However, future studies would need to record EEG data concurrently with 

the fMRI to allow unambiguous sleep staging, and thereby address this issue.  

Our approach of investigating multiple ICNs and the interactions between them in 

relation to habitual variation in sleeping patterns has the potential to provide a more 

detailed mechanistic explanation for why some cognitive functions are affected by 

sleep status, while others are not, as well as for the individual differences that are 

seen in the effects of sleep deprivation. It would also be interesting to address the 

issue of how differences in cumulative TST link with sleep debt. In this study, we did 

not record information about participants’ preferred amount of sleep, so we are not 

able to distinguish between those who achieved that amount versus those who did 

not. Future studies might examine whether the changes to FC in subjects who are not 

achieving their preferred amount of sleep are different to those who are, 

independently of how much sleep that represents.   

Overall, this study is the first to address the question of how interactions within and 

between the major ICNs are related to variations in habitual sleep durations. These 

effects are not global, but specific to certain connections between certain pairs of 

nodes. In particular, the mPFC node of the DMN has FC that is related to cTST, while 

connections between the DMN and SN are also associated with cTST. Future work 

will need to address the behavioural implications of these observations to determine 

whether they underlie the known cognitive and behavioural effects associated with 

short sleep durations (Basner et al 2013). 
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Habitual cumulative total sleep time and subjective sleep 

quality are associated with structural white matter 

differences in the human brain3 

 

 

 

 

 

 

 

 

 

 

 

 

3Khalsa, S., Hale J., Goldstone, A., Wilson, R., Mayhew, S.D., Bagary, M. and Bagshaw, A.P., 2016. 

Habitual sleep durations and subjective sleep quality predicts structural white matter differences in the 

human brain. This chapter is submitted as a manuscript for review in Neurobiology of Sleep and 

Circadian Rhythms.  
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ABSTRACT  

Self-imposed short sleep durations are increasingly commonplace in society, and have 

considerable health and performance implications for individuals. Reduced sleep duration 

over multiple nights has similar behavioural effects to those observed following acute total 

sleep deprivation, suggesting that lack of sleep affects brain function cumulatively. A link 

between habitual sleep patterns and functional connectivity has previously been observed 

(chapter 4), and the effect of sleep duration on the brain’s intrinsic functional architecture 

may provide a link between sleep status and cognition. However, it is currently not known 

whether differences in habitual sleep patterns across individuals are related to changes 

in brain structure. In the present study we use diffusion–weighted imaging and tract based 

spatial statistics (TBSS) to investigate bivariate correlational white matter changes in 

relation to sleep duration and quality, hypothesising structural connectivity as quantified 

by white matter metrics would demonstrate reduced FA and MD values in association 

with the long term effects of poor sleep and short habitual sleep patterns. Our findings 

suggest that reduced cumulative total sleep time (cTST) and poor subjective sleep quality 

result in subtle white matter micro-architectural changes. The regions we identified as 

being related to habitual sleep patterns were restricted to the frontal and temporal lobes, 

and the functions they support are consistent with those which have previously been 

demonstrated as being affected by short sleep durations. Examining how brain structure 

and function are related to inter-individual differences in habitual sleep patterns could help 

to shed light on individual susceptibility to short sleep durations, as well as potentially the 

networks and systems responsible for variations in sleep patterns themselves.  
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INTRODUCTION 

Sleep patterns have been investigated in relation to behaviour and functional connectivity 

(FC, De Havas et al 2012, Gujar et al 2010, Khalsa et al 2016), but no studies to date 

have considered habitual sleep status in relation to white matter structural connectivity. 

Studies involving patients with chronic insomnia have demonstrated that grey matter in 

the frontal lobe may be altered with respect to normal sleepers (Altena et al 2010), and 

acute sleep deprivation has been shown to reduce thalamic volume (Liu et al 2014), 

suggesting that there is a link between sleep duration and brain structure. However, the 

white matter structural connectivity (SC) that ultimately provides the anatomical substrate 

for functional interactions is less well understood, and very few studies have investigated 

white matter changes in relation to sleep. SC can be characterised using diffusion tensor 

imaging (DTI), with fractional anisotropy (FA) and mean diffusivity (MD), two commonly 

used metrics to quantify white matter tracts (Beaulieu et al 2002, Le Bihan et al 2003). 

MD is dependent on the amount of water molecule movement and independent of 

direction, while FA assesses the directionality of such movement (Le Bihan et al 2003). 

Therefore with reductions in FA a corresponding increase in MD values may be seen (see 

above, chapter 1 for more details). These measures have been used extensively as 

markers of white matter microstructural changes in a variety of situations (Alexander et al 

2007), and may be altered by a variety of changes to the underlying white matter (Jones 

et al 2013).  
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In terms of sleep, Rocklage et al 2009 examined cognitive vulnerability to total sleep 

deprivation in relation to white matter differences. They found differences in the genu, 

ascending and longitudinal white matter pathways, with significantly higher FA values in 

subjects with reduced susceptibility to total sleep deprivation. Elvsashagen et al 2014 

found that a night of total sleep deprivation was associated with widespread FA decreases 

mainly explained by reductions in axial diffusivity. Piantoni et al 2013 investigated EEG 

sleep oscillations and DTI metrics and found that individuals with greater spindle power 

(a phenomena of N2 and N3 sleep which has been associated with cognitive performance 

Schabus et al 2006) demonstrated higher DTI metrics in the corpus callosum and 

temporal lobe. These observations indicate that the structural correlates of sleep 

phenomena and even short term alterations to sleep patterns can be investigated with 

DTI. In combination with the changes to functional connectivity mentioned above, they 

may also suggest that white matter connectivity and organisation moderates the cognitive 

effects of sleep deprivation and may affect a person’s ability to function effectively when 

sleep deprived. 

In the present study, we use tract based spatial statistics (TBSS, with FDT FLS tool box, 

Smith et al 2004) to investigate white matter changes in relation to habitual cumulative 

sleep time and sleep quality. We chose to measure habitual sleep patterns as these are 

more representative of a subject’s day to day sleep behaviour than total sleep deprivation. 

Our overall aim was to investigate the notion that SC is affected by the long term effects 

of habitual sleep status and habitual sleep debt. We expected group differences in FA 

and MD with respect to habitual sleep duration, as measured in a group of habitually short 

sleepers compared to a group of longer sleepers. We also investigated whether 
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subjective habitual sleep quality as measured using the Pittsburgh Sleep Quality Index 

(PSQI, Buysse et al 1989 ) would be related to differences in FA and MD metrics. 

Furthermore, given the evidence of previous behavioural and functional imaging literature 

(Belenky et al 2003, De Havas et al 2012, Dinges et al 1997, Gujar et al 2010, Horne 

1993, Khalsa et al 2016, Van Dongen et al 2003), we expected these effects to be most 

prominent in frontal brain regions. 

METHODS AND MATERIALS 

Subjects: 

DTI and fMRI data were acquired from 38 healthy adults (right handed, 10 female, age 

20-34 years, mean age=25.4 years). From the original 38 subjects, 5 were subsequently 

excluded due to actigraphy and diary data demonstrating erratic sleep patterns, leading 

to a final cohort of 33 participants. (For further details, see chapter 2). 

Sleep Patterns and Questionnaires: 

Sleep patterns were assessed for a 14 day period using sleep diaries and wrist actigraphs 

(Actiwatch2, Philips Respironics Ltd, Cambridge, UK). (See chapter 2 for further details). 
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Table 5.1. Summary data: demographics, questionnaires, the mean total habitual 

sleep time (TST), and cumulative habitual total sleep time (cTST) summed over 14 

days.  

Image acquisition:  

Subjects underwent a 13 minute echo planer DTI scan. Each subject also underwent one 

resting-state fMRI scan of 12 minutes duration, during which they were instructed to lie 

still and relax with eyes open. All participants confirmed that they remained awake and 

alert through the scanning session. (See chapter 2 for more details). 

Definition of short and long sleepers (cTST): 

The short and long sleeper groups were defined by a median split of the 33 subjects 

based on the cTST. The 17 subjects with the shortest cTST comprised the short sleepers 

group (mean 88.33, SE 2.19), and the 16 subjects with the longest cTST made up the 

long sleepers group (mean 105.57, S.E. 1.55).  

 

Demographics (n=33)  Mean  SD  
Age   
  

25.4 6.27  

Questionnaires 
Epworth  

  
  
3.94  

  
  
.79  

Karolinska  1.16  .41  
Fatigue  12.36  .98  
PSQI  4.5 1.84 
Depression  1.42 2.63 
Anxiety  1.21  .84   
Stress  
  

3.10  2.43  

Actigraphy 
Mean TST (h)  

  
  
7.38  

  
  
1.45  

cTST (h)  97.21 8.79  
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Definition of poor and good sleepers (PSQI): 

PSQI global scores for the assessment of sleep quality were used to define subjectively 

poor or good sleepers. From the subject group of 33, one subject was excluded due to 

not filling in the PSQI questionnaire appropriately (responses were vague descriptive 

words where a tick was required for a specific set of questions). The remaining 32 

subjects were split into two groups. The 16 subjects with the lowest PSQI global scores 

comprised the good sleepers group (mean 2.68, S.E. 0.25), and the 16 subjects with the 

highest PSQI global scores represented the poor sleepers group (mean 6.31, S.E. 0.37) 

By definition the lower the global PSQI score the better the subjective sleep quality for 

each subject. A global PSQI score of > 5 clinically indicates poor sleep quality.  

Tract based spatial statistics (TBSS) analysis: 

We performed a voxelwise, between group comparison of FA and MD using TBSS (Smith 

et al 2006) focusing on a cohort of 33 subjects split into two groups for cTST and 32 

subjects split into two groups for subjective sleep quality (PSQI) as described above.  

A single FA image from each subject was created using tools in the FDT FSL toolbox 

(Smith et al 2004). The original data were corrected for head movement effects and eddy 

currents using eddy current correction (Jenkinson et al 2002). A brain mask was created 

using brain extraction tool (BET, Jenkinson 2002) on the non-diffusion weighted image. 

The diffusion tensor model was fitted using DTIFIT (Part of FSL Tool Box). We then ran 

the TBSS script for nonlinear registration, aligning all FA images to 1x1x1mm standard 

space. The target image used in the registrations was chosen automatically as the most 

representative of all subjects in the study. This target image was then affine-aligned into 

1x1x1mm MNI152 space (1x1x1mm resolution was used as the skeletonisation and 

projection steps are known to work well at 1x1x1mm resolution, Smith et al 2006). The 

FA image for each subject had the nonlinear transform to the target and then the affine 

http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fdt/index.html
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transform to MNI152 space applied. Next, the mean of all FA images was created, and 

this was used to construct the mean FA skeleton. The last TBSS script was used to 

threshold the mean FA skeleton at the chosen threshold of 0.2 (Smith et al 2006) to 

exclude voxels consisting of grey matter or cerebral spinal fluid. Distance estimation 

analysis was also carried out before voxelwise cross-subject statistics was performed 

using the randomise tool in FSL which carries out permutation testing (5000 permutations, 

Nichols and Holmes 2002). Thresholding was carried out using threshold-free cluster 

enhancement (TFCE, Smith and Nichols 2009). The TFCE p-value images produced 

were fully corrected for multiple comparisons across space to give a significance of 

p<0.05 to determine which FA voxels were statistically significant between the two groups 

of subjects.  

For the MD analysis a diffusion tensor model was fitted at each voxel using the same 

methodology used for FA voxels (to produce FA maps), to produce the MD maps (Kim et 

al 2012, Alves et al 2012). All subject’s MD warped data were merged in to a 4D file, 

which was projected onto the mean MD skeleton using the original projection vectors to 

project the MD data onto the skeleton (which we called the mean MD skeletonised data). 

Using randomise as above voxelwise statistical analysis was carried out for our two group 

comparison of MD skeletonised data metrics. 

RESULTS 

TBSS analysis using cTST: 

We found statistically significant decreases in mean FA values in short sleepers 

compared to long sleepers in three brain regions: the left orbito-frontal region, the right 
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inferior longitudinal fasciculus and the right superior corona radiata (tracts identified using 

Mori et al 2011,see Figure 5.1, MNI co-ordinates in table 5.2, figure 5.2 shows the 

significant correlation plots).  

We also found statistically significant increases in MD values in two brain regions when 

comparing subjects with short cTST against long cTST: the right orbito-frontal white 

matter and the right inferior longitudinal fasciculus (temporal pole region, Mori et al 2011) 

as shown in Figure 5.3, correlational plots figure 5.4 and MNI co-ordinates table 5.3. 
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Figure 5.1. Differences in FA between long and short sleepers. The mean all 
sleepers FA skeleton (green) is projected onto the standardised T1 MNI 1mm brain 
image. The red regions (highlighted in blue boxes) show statistically significant (p 
< 0.05) reductions in the mean FA of short sleepers compared to long sleepers. The 
significant reductions correspond to (A) the left orbito-frontal region (B) the right 
inferior fasciculus and (C) the right superior corona radiata ( tracts identified using 
Mori et al 2011). 
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Region of white matter with 
significant mean FA 
reductions 

          MNI Co-ordinates 

X                      Y                Z 

left frontal orbital/insula 
region 

-27  32  3 

right inferior fasciculus  42 -18 -10 

right superior corona 
radiata 

 16  16  48 

 

Table 5.2. Shows the MNI co-ordinates for the significant group differences at 
p=<0.05 in mean FA between short and long sleepers shown in figure 5.1 above, 
from the TBSS analysis. (supplementary material, shows all the DTI metrics for the 
regions demonstrating significant differences).  
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Figure 5.2. Correlational plots of the significant differences in mean FA between 
long and short sleepers. For A) left orbito-frontal region (p= <0.05), B) the right 
inferior fasciculus (p= <0.01) and C) the right superior corona radiata (p= <0.01). 
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Figure 5.3. Differences in MD between long and short sleepers. The mean all 
sleepers MD skeleton (red) is projected onto the standardised T1 MNI 1mm brain 
image. The light blue regions (highlighted in yellow boxes) show statistically 
significant (p < 0.05) increases in the mean MD of short sleepers compared to long 
sleepers. The significant increases correspond to (A) the right orbito-frontal white 
matter tracts and (B) the right inferior longitudinal fasciculus (temporal pole region, 
tracts identified using Mori et al 2011).  
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Regions of white matter  
with significant increases in  
mean MD 

MNI Co-ordinates 
 
X                    Y                Z 

right orbito-frontal WM 19 19 -17 

right inferior longitudinal 
fasciculus (temporal pole) 

27 -12 -31 

 

 

Table 5.3 shows the MNI co-ordinates for the significant group differences at 
p=<0.05 in mean MD between short and long sleepers shown in figure 5.3 above, 
from the TBSS analysis.  
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Figure 5.4. Correlational plots of the significant differences in mean FA between 
long and short sleepers. For A) Right orbito-frontal region (p= <0.05), B) the right 
inferior fasciculus (temporal pole region, p= <0.05) 

 

TBSS analysis using subject global PSQI scores: 

We found statistically significant differences in mean FA and MD values when comparing 

DTI metrics of subjects with poor subjective sleep quality (high PSQI global scores) 

against subjects with good subjective sleep quality (low PSQI global scores). Significant 

decreases in mean FA were found in four white matter brain regions for the subjects with 
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poor subjective sleep quality relative to those with good sleep quality: white matter tracts 

to the head of the left caudate nucleus, white matter tracts to the left orbito-frontal region, 

the left anterior cingulum bundle and the white matter tracts associated with the right 

operculum and insula (Figure 5.5, figure 5.6 shows the correlational polts for all subjects, 

table 5.4 shows MNI co-ordinates). Significantly higher mean MD values were found for 

the left orbito-frontal white matter and the left anterior cingulum bundle (Figure 5.7, figure 

5.8 shows correlational plots for all subjects, table 5.5 shows MNI co-ordinates).  
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Figure 5.5. Differences in FA between poor and good sleepers. The mean all 
sleepers FA skeleton (green) is projected onto a T1 MNI 1mm standardised brain 
image. The red regions (highlighted in blue boxes) show statistically significant (p 
< 0.05) decreases in the mean FA of poor sleepers compared to good sleepers. The 
significant decreases correspond to (A) the white matter tracts associated with the 
head of the left caudate nucleus, (B) the white matter tracts associated with the left 
corona radiata, (C) the left anterior cingulum bundle and (D) the white matter tracts 
associated with the right operculum and right insula. (tracts identified using Mori 
et al 2011). 
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Region of white matter with 
significant mean FA 
reductions 

          MNI Co-ordinates 

  X            Y         Z 

head of left caudate WM -19 18 11 

left corona radiata -34 29 13 

left anterior cingulum -17 23 24 

right insula/operculum  39 24 -12 

  

Table 5.4 shows the MNI co-ordinates for the significant group differences at 
p=<0.05 in mean FA between poor and good sleepers shown in figure 5.5 above, 
from the TBSS analysis. (Supplementary material shows all the DTI metrics for the 
regions demonstrating significant differences).  
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Figure 5.6. Correlational plots of the significant differences in mean FA between 
long and short sleepers. For A) head of the left caudate nucleus (p= <0.01), B) the 
left corona radiata (p= <0.05), C) the left anterior cingulum bundle (cingulate, p < 
0.05) and D) right insula region (p= < 0.05). 
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Figure 5.7. Differences in MD between poor and good sleepers. The mean all 
sleepers MD skeleton (red) is projected onto the standardised T1 MNI 1mm brain 
image. The light blue regions (highlighted in yellow boxes) show statistically 
significant (p < 0.05) increases in the mean MD of poor sleepers compared to good 
sleepers. The significant increases correspond to (A) the left orbito-frontal white 
matter tracts and (B) the left anterior cingulum bundle (tracts identified using Mori 
et al 2011). 

 

 

 

 

 

 

 

 

 

 

 



 144  
 

 

 

Regions of white matter  

with significant increases in  

mean MD 

MNI Co-ordinates 

 

X                    Y               Z 

left orbito-frontal WM -20 29 -6 

left anterior cingulum  -6 18 18 

 

Table 5.5 shows the MNI co-ordinates for the significant group differences at 
p=<0.05 in mean MD between poor and good sleepers shown in figure 5.7 above, 
from the TBSS analysis. (Supplementary material shows all the DTI metrics for the 
regions demonstrating significant differences).     
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Figure 5.8. Correlational plots of the significant differences in mean FA between 
good (squares) and poor (dots) sleepers. For A) left orbito-frontal region (p= <0.01), 
B) the left anterior cingulum (Cingulate, p= < 0.05). 
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DISCUSSION  

We used TBSS to investigate whole brain changes in white matter architecture in relation 

to habitual sleep patterns, as quantified by cTST, and sleep quality, as quantified by the 

PSQI. In both cases, we were able to identify specific white matter tracts which differed 

in FA or MD, demonstrating for the first time that objective and subjective measures of 

habitual sleep are associated with changes to brain structure. The differences when 

comparing the ‘poorer’ sleep group (i.e., shorter cTST or higher PSQI) with the ‘better’ 

sleep group (i.e., longer cTST or lower PSQI) indicated lower FA and/or higher MD. While 

many physical and physiological factors contribute to the quantification of these DTI 

measures (Jones et al 2013), both reductions in FA and increases in MD have generally 

been linked with reductions in behavioural and cognitive performance (see below). Our 

observations of these changes to brain structure in relation to sleep would therefore be 

consistent with the considerable literature on the behavioural and cognitive effects of 

acute or chronic sleep deprivation, which does not point towards improved performance 

with poor sleep. The differences in brain structure that we see could therefore form the 

underlying substrate of the behavioural and cognitive effects of poor sleep patterns.  

We found a significant reduction in mean FA values for the shorter sleepers compared to 

the longer sleepers in the left orbito-frontal region, right superior corona radiata and right 

inferior longitudinal fasciculus. The changes observed in the orbito-frontal regions of white 

matter are consistent with regions known to be affected by sleep deprivation and habitual 

sleep durations in functional MRI studies (Bosch et al 2013, De Havas et al 2012, Gujar 
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et al 2010, Khalsa et al 2016,Tomasi et al 2009, Verweij et al 2014). With respect to the 

corona radiata, there is a considerable body of literature which has identified alterations 

to their structural properties and linked them with behavioural performance deficits, 

particularly in relation to attention and cognitive control (Durston et al 2006, Leite et al 

2013, Liston et al 2011, Nogi et al 2010, Thillainadesan et al 2012). FA decreases in the 

anterior corona radiata also suggest possible disruption of thalamocortical connective 

relays of the frontal cortex (Nogi et al 2010). We also found a reduction in FA in the right 

inferior longitudinal fasciculus in short sleepers, which is known to have numerous 

projections to the superior temporal regions and also to the long fibres of the posterior 

cingulum bundle (Catani et al 2003). Such reductions may suggest subtle disruption to 

relays from posterior cingulate/parietal and other cortical areas to the temporal lobe which 

may in turn affect functional interactions between these cortical regions resulting in subtle 

changes such as memory impairment (Hayes et al 2012). Haller et al (2013) have 

reported group level decreases in FA using TBSS analysis for the right inferior longitudinal 

fasciculus in patients with mild cognitive impairment. A study by Orbitus et al (2012) 

suggests an association between reduced FA in the inferior longitudinal fasciculus and 

object recognition deficits in children with visual impairment compared to normal controls. 

They found the severity of clinical impairment was reflected in the degree of FA reductions 

within the inferior longitudinal fasciculus. This suggests the inferior longitudinal fasciculus 

plays a role in object recognition. Studies investigating the effect of sleep deprivation on 

object recognition and memory consolidation in rodents (Palchykova et al 2006, 2006) 

and in humans (Chee et al 2010) have shown impairment in object recognition and 

memory for the sleep deprived subjects compared to normal controls. It is possible that 
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the reductions in FA of the longitudinal inferior fasciculus that we report here in 

association with short sleep durations may underlie the subtle reductions in the cognitive 

processes involved with object recognition and memory consolidation. Overall, it is 

plausible that changes in the structure of tracts such as the orbito-frontal regions, superior 

corona radiata and the inferior longitudinal fasciculus may contribute to attentional and 

other cognitive impairments which are commonly seen as a function of sleep deprivation 

and poor sleep quality (Alhola et al 2007, Babkoff et al 2005, Banks and Dinges 2007, 

Belenky et al 2003, Dinges et al 1997, Van Dongen et al 2003).  

Significant increases in MD for short sleepers compared to long sleepers were found in 

the right orbito-frontal white matter and the right inferior longitudinal fasciculus, the latter 

in agreement with the findings discussed above in relation to FA. The increases in mean 

MD to the right orbito-frontal white matter are also consistent with regions know to be 

affected by sleep deprivation and cumulative sleep time in functional MRI studies (Bosch 

et al 2013, De Havas et al 2012, Gujar et al 2010, Tomasi et al 2009, Verweij et al 2014).  

We also investigated whole brain changes in white matter architecture in relation to 

subjective sleep quality, and demonstrated significant, regionally specific changes in 

subjects with subjectively poorer sleep compared to good sleepers. For subjectively poor 

sleepers we found statistically significant lower FA values for the white matter regions 

associated with the left caudate, left orbito-frontal region, left anterior cingulum bundle 

and the right insula compared to subjectively good sleepers. It has been suggested from 

functional MRI studies that the caudate nucleus is linked to neural networks involved in 

the regulation of executive function, sleep and arousal (Stoffers et al 2014). Reduced 

functional connectivity recruitment of the left caudate has been reported in patients with 
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insomnia during executive function tasks (Stoffers et al 2014) and it has been suggested 

that reduced input from the left orbito-frontal cortex may contribute to altered caudate 

recruitment (Stoffers et al 2014). Lesions to the caudate in animal studies (Villablanca et 

al 1976b) induced restlessness and hyper-arousal which indicate failing inhibitory 

modulation of sensory inputs. Therefore from our findings we can postulate that poor 

subjective sleepers may demonstrate subtle reductions in inhibitory modulation compared 

to good subjective sleepers due to the comparatively reduced white matter integrity in the 

orbito-frontal regions and caudate white matter. This may suggest a subtle state of hyper-

arousal in poor subjective sleepers, and may partly explain the impairment of left caudate 

recruitment during executive function (Stoffers et al 2014), and the state of hyper-arousal 

which has been reported (Bonnet and Arand 2010) in subjects with sleep pathology such 

as insomnia.  

We also found significant reductions in FA in the left anterior cingulum bundle and white 

matter associated with the right insula, as well as increases in MD in left orbito-frontal 

white matter and the left anterior cingulum. These white matter regions would suggest a 

connection with the corresponding cortical areas that form part of the salience network 

(Seeley et al 2010) which consists of the anterior cingulate and right and left insula 

regions. The right anterior insula is also thought to act as a control switch between the 

central executive network and the default mode network (Sridharan et al 2008) and is 

involved in the brain’s attention system (Eckert et al 2009). A recent study has shown the 

functional connectivity between the right insula and the mesial prefrontal cortex to co-vary 

with cTST (Khalsa et al 2016), therefore suggesting a link between saliency and 

quantitative measures of habitual sleep status. The current study extends these findings, 
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and although we did not directly measure them it is possible that subjects with poor 

subjective sleep who demonstrated lower FA values may have a comparatively reduced 

level of salience and attention, again consistent with previous behavioural studies of short 

sleep (Belenky et al 2003, Dinges et al 1997, Van Dongen et al 2003).  

TBSS is a useful and effective tool for group wise comparisons of DTI metrics but some 

limitations need to be considered. Firstly TBSS conceptually derives anisotropic values 

from the centre of any given white matter tract assuming maximum anisotropy, and a 

gradual reduction in anisotropic diffusion is assumed the further from the tract centre the 

measurement is taken. This assumption is not true for all regions. For example where two 

or more tracts cross, converge or diverge a more complex methodology is required (Smith 

et al 2006). Also it is possible for the morphological properties of the mean FA skeleton 

to alter in tracts adjacent to the ventricles, for example the posterior cingulum bundle, due 

to cerebral spinal fluid causing partial volume effects. Therefore although we report 

significant FA and MD changes in various regions of white matter there may be other 

regions with significant changes which have not been identified with TBSS. Secondly due 

to convergence of numerous tracts in certain brain regions and the low inherent spatial 

resolution of DTI, it is not possible to absolutely discern fibres of one tract from another. 

The inferior longitudinal fasciculus for example is known to connect the occipital pole to 

the anterior part of the temporal lobe, however a second fibre bundle connects the 

occipital cortex to the frontal lobe (the fronto-occipital fasciculus) and spatially overlaps 

with the inferior longitudinal fasciculus along parts of its pathway (Ashtari 2012). Diffusion 

spectrum imaging (DSI) tractography and related methods may be more appropriate to 

image complex distributions of intravoxel fibre orientations (Wedeen et al 2008), and 
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would provide an additional level of detail compared to the analysis we were able to 

perform. 

In conclusion, our findings report for the first time that reduced habitual cTST and poor 

subjective sleep quality may result in subtle white matter micro-architectural changes. It 

is possible that these changes may in turn result in grey matter network functional 

disruptions which result in cognitive deficits such as those we find as a function of sleep 

deprivation. The regions we identified as being related to habitual sleep patterns were 

restricted to the frontal and temporal lobes, and the functions they support are consistent 

with those which have previously been demonstrated as being affected by short sleep 

durations. Examining how brain structure and function are linked  with inter-individual 

differences in habitual sleep patterns could help to shed light on individual susceptibility 

to short sleep durations, as well as potentially the networks and systems responsible for 

variations in sleep patterns themselves.  
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ABSTRACT 

The primary purpose of this study was to investigate whether the total mean FC of the 

pairwise connections between all nodes within a network ( whole or overall ICN FC) from 

three higher cognitive brain networks (DMN, SN, CEN) was differentially related to 

subjective and quantitative chronic habitual sleep measures in the form of PSQI, sleep 

diary data and actigraphy metrics. From previous seed based FC analysis in chapter 4 it 

was found that specific bivariate FC correlations between node pairs within and between 

networks were more susceptible to reduced habitual sleep durations (mPFC node 

couplings for example). Here we wanted to build on these findings and investigate 

whether other sleep metrics associated with chronic habitual sleep status, as well as 

sleep time could effect whole network connectivity and whether overall ICN FC could be 

related to quantitative or subjective sleep measures. Investigating whole network FC in 

relation to chronic habitual sleep behaviour is of interest as it has not previously been 

investigated and theories of wake state instability suggest totally sleep deprived 

individuals try to resist the onset of sleep by using increasingly greater compensatory 

effort to maintain consciousness. Application of biological energy resource allocation 

theories to SD points to wake state instability being a consequence of changes to energy 

resource allocation. We propose, it is possible that such wake state instability and 

changes in energy resource allocation may be characterised within whole networks as 

alterations to ICN FC in association with chronic habitual sleep status as defined by 

subjective and quantitative sleep metrics. We used factorial ANOVA statistical analysis 

to determine the possibility of any significant main effects between chronic habitual sleep 

metrics and overall network FC. 
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 The results of this study demonstrated a significant interaction effect of subjective sleep 

efficiency on overall network FC for the CEN. There were no significance of main effects 

of the overall network functional connectivity for any of the sleep measures investigated 

in relation to the DMN or SN. This suggests, in general, that overall DMN, SN  whole 

network FC is not characterised differentially by quantitative or subjective chronic habitual 

sleep measures. Therefore changes within ICNs with respect to chronic habitual sleep 

status may in general, only be region specific as reported in chapter 4.  

INTRODUCTION 

Sleep is a complex, multiscale phenomenon that can be assessed and quantified with a 

wide range of techniques. It has subjective and objective components which are often not 

highly correlated (Landry et al 2015, Van Den Berg et al 2008). For example, when 

receiving inadequate sleep, an individual's assessment of their cognitive or behavioural 

impairment is generally poor compared to more objective assessments (Blackwell et al 

2011), and even subjective assessments of sleep duration tend to be inaccurate 

(Åkerstedt et al. 2002, Backhaus et al 2002, Buysse et al. 1991, van den Bergh 2008). 

The reason for this is unclear, but given the importance of distributed brain networks for 

cognition generally (Bressler, 1995, Bressler and Menon 2010, Luna et al 2001) and the 

evidence that sleep deprivation (De Havas et al 2012, Tomasi et al 2009, Verweij et al 

2014) and variability in habitual sleep patterns (chapter 4, Khalsa et al 2016) can affect 

FC, it would be expected that networks would be differentially related to subjective and 

objective markers of sleep.  
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As well as region specific studies (Khalsa et al 2016), investigating the effect of habitual 

sleep measures across whole network FC is also important.   

The need to sleep is resisted by sleep deprived individuals who use greater compensatory 

effort to remain awake (Doran et al 2001). Inevitably the homeostatic need for sleep 

prevails and leads to slower responses and rapid uncontrolled sleep initiation (i.e. lapses, 

Priest et al 2001). These lapses become longer and longer with increasing SD, until the 

subject can no longer resist the need to sleep. Lie et al  2015 looked at how 36 hours of 

SD effected cognitive capacity in relation to increased sleep pressure using a sleep 

pressure index (as a measure of homeostatic sleep drive). Lie’s group used fMRI and ICA 

with correlational analysis to define ICNs and measure whole network FC and found that 

36 hours of SD leads to alterations in whole network FC correlations between the DMN, 

SN and CEN. Their findings suggest that wake state instability is a consequence of 

changes to energy resource allocation between networks due to sustained SD and 

progressive increases in sleep pressure. Therefore  whole network modulation may be 

taking place when individuals are sleep deprived. This being the case it is possible  whole 

network FC modulation may be apparent within networks in relation to chronic habitual 

sleep measures. This may be the result of progressive increases in sleep pressure in 

subjects with short chronic habitual sleep status.  

There are a range of standard tools to investigate and quantify habitual sleep patterns 

(Åkerstedt et al 1990, Buysse et al 1989, Johns 1991, Kushida et al 2001, van de Water 

et al 2011). Actigraphy allows the assessment of habitual sleep over extended periods of 

time and therefore the characterisation of habitual sleep patterns (see chapter 1). There 

are several quantitative sleep variables which can be extracted from actigraphy analysis. 
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Examples include total sleep time (TST) which has been shown to have strong 

correlations with TST measured from PSG studies (Ancoli-Israel et al 2003), Wake after 

sleep onset (WASO) is a measure of the degree of sleep fragmentation and can therefore 

be an indicator of sleep quality with PSG and correlates well in normal sleepers (Marino 

et al  2013). Sleep efficiency can also be extracted, but has been shown not be particularly 

accurate when compared against PSG sleep efficiency data (Ancoli-Israel et al 2003, 

Marino et al 2013). In this study we used TST and WASO as quantitative variables.   

The Pittsburgh sleep quality index (PSQI, Buysse et al 1989) is a self-reported 

retrospective subjective sleep measure with relatively good psychometric properties that 

is useful for clinicians and researchers to assess a variety of sleep disturbances that might 

affect sleep quality, and differentiate good sleepers from poor sleepers (Buysse et al 

1989, see chapter 1 for further details). It has been reported that retrospective self-

reported sleep measures are not as accurate as prospective subjective sleep measures 

such as sleep diaries in terms of recording sleep time (e.g. the subjective sleep time 

component of the PSQI). Comparison has been made between PSQI and sleep diaries 

(Backhaus et al 2002) which suggest that retrospective subjective estimates of sleep 

duration are subject to bias due to the subjects being assessed, focusing more on nights 

when they had particularly poor sleep and subsequently reporting long sleep latencies 

and underestimated sleep durations (Backhaus et al 2002). This might be even more 

important in cases of habitual poor sleep (e.g., insomnia). However, the use of measures 

such as the PSQI to characterise habitual sleep status is common in clinical settings, as 

the PSQI is designed to give an overall subjective estimate of a subject’s sleep quality 

and not specifically for the characterisation of individual sleep variables (Buysse et al 
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1989). The PSQI has also been used in conjunction with other sleep measures and fMRI 

for sleep research studies characterising the relationship between FC and cognitive 

changes associated with sleep status and pathological conditions such as insomnia, for 

example (Dai et al 2014, Li et al 2014, Minkel, et al 2012). 

There has only been one study which has investigated the relationship between habitual 

cumulative sleep duration and brain network FC (chapter 4, Khalsa et al 2016), and while 

that examined the bivariate pairwise FC correlations within and between network nodes 

in three ICNs it looked at a very limited range of sleep variables. Whole network 

correlational analysis of FC of the DMN, SN and CEN has been used to investigate SD 

in the context of increased sleep pressure (Lie et al 2015), but there are no studies which 

have investigated whole intra-network FC correlations in relation chronic to habitual sleep 

status. 

The primary purpose of this study was to investigate whether overall ICN FC from three 

higher cognitive brain networks (DMN, SN, CEN) was differentially related to subjective 

and objective sleep measures in the form of PSQI and sleep diary data and actigraphy 

metrics. We investigated the relationship between overall mean network FC and sleep 

quality and sleep duration for each network using six sleep measures. We hypothesized 

that differences in overall network functional connectivity for short/long, poor/good 

sleepers would be seen between subjective and objective measures of sleep quality, and 

that these differences would affect different networks. 
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METHODS AND MATERIALS: 

Subjects: 

Data was from the same subjects used for the study in chapter 4 . (For further details 

refer to chapter 2 and chapter 4). 

SUBJECTIVE SLEEP MEASURES 

Sleep diaries: subjective habitual prospective sleep time assessment: 

Subjects were asked to complete a 14 day sleep diary in which they logged their sleep 

patterns, time they settled for bed, how long they thought it took them to fall asleep and 

time they awoke. The daily sleep time was calculated from the time settled for bed to the 

awake time the next morning .  

Definition of short and long sleepers (dTST ): 

The short and long sleeper groups for diary sleep time (dTST) were defined by a median 

split of the 32 subjects based on dTST . The split was done independently and therefore 

the two groups of 16 subjects were not necessarily the same individuals. The 16 subjects 

with the shortest dTST comprised the short sleepers group, and the 16 subjects with the 

longest dTST made up the long sleepers group respectively 

 

Sleep Patterns and Questionnaires: 

Participants also completed the following questionnaires: Epworth Sleepiness Scale 

(ESS, Johns 1991), Depression, Anxiety and Stress Scale-21 (DASS, Lovibond and 
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Lovibond 1995), Karolinska Sleepiness Scale (KSS, Åkerstedt and Gillberg 1990). (See 

chapter 2 for further details). 

Definition of poor and good sleepers (PSQI): 

PSQI global scores for the assessment of sleep quality were used to define subjectively 

poor or good sleepers; 32 subjects were split into two groups. The 16 subjects with the 

lowest PSQI global scores comprised the good sleepers group, and the 16 subjects with 

the highest PSQI global scores represented the poor sleepers group. By definition the 

lower the global PSQI score the better the subjective sleep quality for each subject. 

Definition of poor and good sleepers (SSE): 

Sleep efficiency is the time in bed spent asleep expressed as a percentage of the total 

time in bed. It can be used as a measure of sleep quality, with greater sleep efficiency 

indicating better quality of sleep. The subjects were split into good and poor sleepers 

based on their subjective sleep efficiency score from the SSE component of the PSQI in 

the same way as described above.  

QUANTITATIVE SLEEP MEASURES (Actigraphy data) 

Definition of short and long sleepers (cTST ): 

The short and long sleeper groups  ( cTST ) were defined by a median split of the 32 

subjects based on the cTST . The split was done independently  and therefore the two 

groups of 16 subjects were not necessarily the same individuals. The 16 subjects with the 

shortest cTST  comprised the short sleepers group, and the 16 subjects with the longest 

cTST  made up the long sleepers group .  
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Definition of poor and good sleepers (WASO): 

WASO scores from the actigraphy metrics were used to define poor and good sleepers. 

Sleepers with higher WASO indicating greater sleep fragmentation and therefore poorer 

sleep quality compared to those subjects with lower WASO scores. Subjects were split 

into two groups based on WASO scores in the same way as described above.  

IMAGE ACQUISITION AND PRE-PROCESSING  

Subjects underwent a single resting-state fMRI session in the early afternoon during 

which they were instructed to lie still in the scanner and relax with eyes open. All 

participants confirmed that they remained awake and alert through the scanning session. 

(See chapter 2 for details). 

Defining regions of interest: 

Regions of interest (ROI) representing the nodes of the DMN, CEN and the SN were 

created from data from a separate cohort of 55 subjects from a previous study (Przezdzik 

et al 2013, 28 male, age 25±4yrs). (See chapter 2 for further details). 

Measuring DMN, CEN and SN FC: 

Following previous methodology (Khalsa et al 2014, 2016) we used seed-based FC 

analysis performed according to standard methods (Fox MD et al 2005) using in-house 

MATLAB code (Mathworks, USA). (See chapter 2 for more details). 

The ROIs for each network as described above were used in turn as the seed to measure 

the strength of FC to all other DMN, SN and CEN ROIs. The average FC across all paired 
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connections in each ICN was calculated to define overall mean FC for each ICN for the 

overall network FC analysis.  

Statistical Analysis: 

IBM SPSS Statistics for windows (version 21.0) was used to conduct, two-way factoral 

ANOVAs .The first factor for the analysis was sleep status measured as the objective or 

subjective sleep metric (cTST, dTST, SSE, WASO, SE, PSQI) with two levels (low/high, 

short/long or poor/good). The second factor was network which had 3 levels: DMN, CEN 

and SN. The dependent variable was network FC. Further testing was performed in the 

form of pairwise comparisons to determine the exact significance of the main effect.  

RESULTS: 

There was a significant within subject main effect of SSE on overall network FC from the 

ANOVA analysis (F(2,30) = 3.682, P = 0.033, 2=0.109), therefore suggesting overall 

brain network connectivity was not homogenously related to all sleep measures (see table 

6.1 below for full results).   
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Independent 

Variables 

Overall FC    

F-value 

Partial eta 

squared (2) 

Level of 

significance (p) 

cTST 0.883 0.029 0.409 

SE  0.527 0.019 0.549 

WASO 0.371 0.012 0.671 

dTST 0.731 0.024 0.475 

SSE* 3.682* 0.109* 0.033* 

PSQI 0.695 0.023 0.490 

Table 6.1 results of ANOVA analyses of within subject effects *significant at 
p=<0.05.  

 

A significant main effect was found from the ANOVA analysis for SSE in relation to 

overall network FC.  Therefore further split plot analysis was performed in order to 

interpret the main effects. The marginal means from the split plot ANOVA analysis were 

plotted to observe the main effects in a graph to highlight which network in particular 

demonstred the significant main effect  (figure 6.1).  

From the graph in figure 6.1 we can see that for the DMN there is higher network FC in 

relation to low SSE compared to high SSE, but the difference is small. For the CEN, low 

SSE is associated with substantially lower overall network connectivity compared to 
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high SSE. For the SN again we can see that low SSE corresponds to higher FC 

compared to high SSE, but again the difference is smaller compared to FC of the CEN.  

 

 

Figure 6.1. split plot from the ANOVA analysis demonstrating a significant main 
effect of SSE and overall network FC.  Low SSE and High SSE plotted against 
estimated marginal means of the overall network FC on the y-axis for the three 
networks on the x-axis (error bars represent standard error, the data points are 
connected in order to visualise the interaction effects). 

 

All other sleep metrics (subjective and objective) did not demonstrate any significant 
main effects (see table 6.1).  
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DISCUSSION: 

The aim of this study was to investigate whether overall mean ICN FC from three higher 

cognitive brain networks (DMN, SN, CEN) was differentially related to subjective and 

objective sleep measures in the form of PSQI, sleep diary data and actigraphy metrics. 

We investigated the relationship between mean network FC and sleep quality/duration 

metrics, including three subjective measures (PSQI, SSE, dTST) and three objective 

measures (WASO, SE, cTST). SSE demonstrated a significant relationship with overall 

FC within the CEN, but overall, the majority of these metrics did not explain variance in 

FC in the ICNs, indicating either that mean whole network FC is not a sensitive metric, or 

that the sleep measures do not have strong relationships with overall network FC in the 

contex of habitual sleep status.  

Significant differences in whole network mean FC between low SSE and high SSE were 

seen in the CEN (figure 6.1 and table 6.1). High SSE demonstrated significantly higher 

FC than low SSE. We know the DMN and CEN demonstrate anticorrelation in well rested 

subjects (Fox et al 2005). The CEN is activated (demonstrates increased FC) while the 

DMN demonstrates a reduction in FC in response to cognitive tasks or saliency and this 

modulation of networks is regulated by the SN ( Sridharan et al 2008, Seely et al 2007). 

In sleep deprived subjects the CEN demonstrates reduced overall FC and DMN 

demonstrates greater FC in response to varying degrees of increased homeostatic sleep 

pressure (Lei et al 2015). Our findings demonstrate increased CEN FC in relation to high 

SSE. A recent study by Lei et al (2015), demonstrated faster reaction time responses in 

relation to CEN activation and slower responses and greater errors with increases in 

mPFC FC (a key node of the DMN) and found this correlated with subjective sleepiness 
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scores in sleep deprived subjects. The associations we report may suggest that greater 

activation of the CEN is associated with greater levels of alertness and lower levels of 

sleepiness. Our significant findings of SSE in relation to CEN FC demonstrate increased 

FC of the CEN in relation to higher SSE suggesting lower levels of sleepiness in 

comparison to lower CEN FC in subjects with low SSE (figure 6.1).  

There were no significant effects associated with the mean overall network functional 

connectivity for any of the sleep measures investigated with respect to the DMN This 

suggests in general, that overall DMN  whole network FC is not characterised differentially 

by poor, good, short or long sleepers whether that be objectively or subjectively. From 

previous region of interest studies the effects of short habitual sleep are known to affect 

the mPFC cortex of the DMN resulting in reduced mPFC FC when ROI FC analysis is 

performed (Khalsa et al 2016). However, whole network FC analysis (which was 

performed in this study) may result in offsetting this reduced frontal FC to some degree. 

For example the hippocampal regions are known to be involved in moderating 

connectivity patterns within and between networks and have complex and dynamic 

connectivity patterns with other cortical networks and demonstrate fluctuations in FC 

under various conditions (Hartzell et la 2015). For example, Hartzell and colleagues found 

the DMN whose connectivity was determined by features of the current resting-state of 

the subject demonstrated lateralized FC of the hippocampus to the right frontal gyrus. 

Following a passive task the network FC of the left hippocampus was weaker than the 

right. While following an attentive task the FC of left hippocampus was stronger compared 

to the right. Hartzell’s findings suggest that ongoing hippocampal FC networks mediate 

information integration across networks at multiple temporal scales, with hippocampal 
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laterality moderating these connectivity patterns and this may be another factor 

influencing overall DMN network connectivity.  

The findings for the SN did not give any significant results from the ANOVA analysis 

either. Again from ROI studies it is thought the right anterior insula (rAI) demonstrates 

increased inter-network connectivity in order to increase the level of saliency within sleep 

deprived individuals (Menon and Uddin 2010, Sridharan et la 2008,Uddin et al 2009). It 

is possible the complex interactions of the rAI and other ICNs may offset any clear 

significant relationships between the whole SN network FC and sleep measures.  

We performed whole network FC analysis in this study to investigate the effect of 

quantitative and subjective sleep measures on overall network FC. This approach was 

preferred to the ROI FC analysis used in chapter 4 as using such methods to assess the 

FC for each paired connection across all networks would subsequently lead to a huge 

multiple comparisons issue. Also whole network correlational analysis has been 

previously used in SD studies (Lei et al 2015). An alternative to the approach that we 

used in this chapter for the assessment and summarising of whole network connectivity 

may be graph theory (Bullmore and Sporns 2009), which characterises brain networks as 

a collection of nodes and edges. Nodes indicating basic elements within a system such 

as ROIs and edges indicating associations among those elements (e.g. FC, SC). Various 

characteristics of network behaviour and interaction can be determined using graph 

methodology (Bullmore and Sporns 2009). Graph theory application to whole brain 

network connectivity is still a developing feild and further reseach is needed to provide 

clear interpretation of graph generated data. Due to the intricacy of graph generated data, 

interpretation and analysis can be complex.  
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In conclusion, this study demonstrates some significant differences in FC between 

subjective measures; subjective sleep efficiency (SSE) which may possibly be associated 

with the modulatory effects of networks as discussed above.  

Investigating overall whole network FC changes in relation to habitual sleep status is 

important as it is has been shown previously in whole network FC SD studies (Lei et la 

2015) that total sleep deprivation effects overall network connectivity. This in turn has 

general effects on alertness and attention as highlighted by the wake state instability 

hypothesis (Doran et al 2001). Our overall findings here in general, suggests that FC 

changes within ICN in relation to chronic habitual sleep status do not involve whole 

network FC and therefore we believe them to be region specific (chapter 4, Khalsa et al 

2016). It is possible that gradual increases in sleep pressure, such as those observed in 

prolonged sleep deprivation may result in these initial regions specific changes to become 

more widespread within networks involved in internal cognitive processing, saliency, 

attention and higher external cognitive functioning. The need to understand to what 

degree these changes are applicable to habitual sleep status measures will allow a 

greater understanding of the possible whole brain effects of chronic cumulative sleep 

restriction. 
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The purpose of this final chapter is to provide an integrated discussion of the research 

contained in this thesis. Specific discussion for each experiment can be found in the 

relevant chapters. This chapter starts by presenting a summary of the overall findings. It 

then goes on to discuss the potential impact of the findings in the field of neuroimaging 

sleep research and potential clinical applications. It subsequently goes on to look at the 

limitations and future directions of this work and ends with a thesis conclusion. 

Summary of thesis: 

The aim of the work presented in this thesis was to investigate the bi-variate correlational 

relationship between chronic habitual sleep status and functional and structural changes 

in higher order ICNs using fMRI and DTI imaging modalities in normal awake adult control 

subjects. The hypothesis for this work is based on the premise that the integrity of ICNs, 

in terms of both their functional and structural connectivity, may be a sensitive marker of 

prior chronic habitual sleep history.  

The results presented provide evidence of ICN functional and structural connectivity 

changes, which are associated with chronic habitual sleep durations and in some cases 

sleep quality. The results demonstrate modulation of higher ICNs, with shorter habitual 

sleepers demonstrating altered intra-network FC within the DMN compared to longer 

chronic habitual sleepers. These FC changes were not global but region specific to the 
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frontal regions (mPFC) of the DMN. Furthermore inter-network FC changes were 

examined and the rAI of the SN was seen to demonstrate co-variance with DMN mPFC 

FC activity with a negative correlational relationship to habitual sleep time. Reduced sleep 

time significantly correlated with greater inter-network connectivity between the mPFC 

and the rAI. This indicates direct associations of the SN and mPFC FC to reduced chronic 

habitual sleep durations. Although it is not possible to confirm whether such changes are 

compensatory without addition behavioural assessments. Subsequent investigations of 

SC revealed that shorter habitual sleepers also demonstrated SC correlations in relation 

to habitual sleep status in regions associated with FC changes, in particular the frontal 

regions, compared to longer habitual sleepers. These findings further reinforce earlier 

observations from chapter 3, that there is covariance between SC and FC changes within 

ICNs and that this co-variance is specific and graded. Further global assessment of FC 

across networks as a whole in comparison to subjective and quantitative sleep metrics 

demonstrated no significant main effects between quantitative sleep metrics and whole 

network FC, but the subjective sleep efficiency measure did demonstrate a significant 

main effect on the FC for the CEN. No such significance was found between subjective 

sleep measures and the DMN or SN. Such findings demonstrate that ICN FC changes in 

relation to quantitative sleep measures are region specific, but subjective measures may 

to some degree be associated whole network FC. 

The results presented in this thesis introduce important and novel findings to the field of 

neuroimaging sleep research when investigating functional or structural changes within 

neural networks in the context of sleep status. The findings highlight the importance of 
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chronic habitual sleep status, an area within the field which has been completely 

overlooked in neuroimaging investigations of sleep status in waking adult control groups.  

Significance and implications: 

The importance of investigating chronic habitual sleep status within the general 

population cannot be stressed enough, with modern day to day living leaving less time 

for sleep due to work commitments and extended leisure times as well as individuals 

having to work various hours and shifts depending on their occupation (Härmä et al 1998). 

These increasing demands on our time may lead to reduced habitual sleep durations. 

Although not all literature points this conclusion (Yetish et al 2015) and temperature 

changes may play a major role in sleep behaviour. This may result in the disruption of 

higher order ICN FC and SC which increases the possibility of potential neurobehavioural 

cognitive deficits similar to those found in sleep deprived subjects (Belenky et al 2003, 

Dinges et al 1997,Van Dongen et al 2003), as a direct result of the chronic habitual seep 

status of these individuals. Although several neuroimaging investigations examining ICN 

FC have been performed looking at totally sleep deprived individuals or partially sleep 

deprived subjects (De Havas et al 2012, Gujar et al 2009, , Samaan et al 2010, Yeo et la 

2015, Lei et al 2015), there are no neuroimaging studies (except for the studies published 

resulting from the work in this thesis, Khalsa et al 2016) that have investigated the effect 

of chronic habitual sleep status on ICN FC or  performed investigations to identify FC 

markers that allow prediction of an individual subject’s behavioural vulnerability to SD. In 

terms of SC there are very few neuroimaging studies published investigating changes in 

SC in relation to sleep deprivation (Elvsashagen et al 2014, Piantoni et al 2013, Rocklage 
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et al 2009) and none at all to our knowledge investigating SC in relation to habitual sleep 

status.    

The aim of the first study (chapter 3) was methodological. It showed clear evidence that 

a direct correlation between the strength of SC and the strength of FC within a single ICN 

exists, despite considerable differences in terms of the methodology used to quantify SC. 

This is also evident between the two measures of SC strength defined from deterministic 

and probabilistic tractography. Previous studies have reported regions that are 

functionally connected tend to demonstrate structural connectivity (Hagmann et al 2008, 

Honey et al 2009, Margulies et al 2009). The findings from chapter 3 further extend 

neuroimaging research of FC and SC of ICNs by showing that there is a specific and 

graded relationship whereby regions which have stronger structural connections also 

have stronger FC. This issue has received much less attention in the literature than the 

more general question of whether regions which are functionally connected are 

structurally connected (Skudlarski et al 2008). The findings from the work in chapter 3 

give a better understanding of how structural connections relate to functional connectivity. 

This is important not only to enhance our understanding of changes in SC and FC that 

occur as a result of chronic habitual sleep status in control subjects, but also for FC and 

SC changes associated with neurological or sleep disorders.  

Chapter 4 investigated the functional connectivity of ICNs and habitual sleep status, which 

has not previously been investigated, despite habitual sleep patterns being relatively 

stable within individuals but different between individuals (Roenneberg et al 2007). The 

results provided evidence that changes in habitual sleep durations demonstrate a 

significant intra-network FC correlational relationship with the prefrontal regions. A 
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significant reduction in mPFC FC strength with reduced habitual sleep duration was 

found. Importantly the more extreme case of SD and partial sleep deprivation has been 

found to cause reduced FC strength of the mPFC by others (De Havas et al 2012,Gar et 

al 2009, Horovitz et al 2009, Samaan et al 2010, Samaan et al 2011). This is consistent 

with and lends weight to our findings, which indicate individuals with short chronic sleep 

habitual durations demonstrate co-variance with network FC changes and demonstrate 

similar FC network changes to those seen in sleep deprived subjects. Behavioural studies 

investigating chronic partial sleep deprivation have reported deficits in behavioural and 

cognitive performance (Belenky et al 2003, Dinges et al 1997, Van Dongen et al 2003) 

primarily involving the prefrontal cortex (Harrison et al 2000, Horne 1993, Naghavi and 

Nyberg 2005, Thomas et al 2000). We suggest the network changes reported in this 

thesis with respect to chronic habitual sleep status may result in these cognitive 

performance deficits and future research will need to investigate such relationships to 

build on the preliminary findings presented in this thesis. Other important findings from 

chapter 4 indicate that short habitual sleep durations disrupt rAI connectivity to the DMN 

and therefore, the ability to switch between internal and external modes, which may also 

have an effect on widespread cognitive and behavioural domains. The important findings 

of chapter 4 show evidence that despite habitual sleep behaviour being relatively stable 

within individuals, variance of sleep behavior between individuals demonstrates marked 

differences in intra and inter network ICN FC connectivity. We propose from these 

findings that this in turn may result in cognitive and behavioural performance deficits 

similar to those observed in sleep deprived subjects.  
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The work in chapter 5 addresses a gap in the field of sleep neuroimaging. No studies 

investigating chronic habitual sleep status in relation to SC have been preformed 

previously. The work in chapter 5 supports the idea that ICNs are affected by habitual 

sleep status and that this has consequences for both SC as well as FC. Structural 

connectivity is important to consider in the context of habitual sleep status as ICN FC 

changes may possibly be modulated by SC therefore the long term effects of reduced 

chronic habitual sleep may be associated with structural changes to white matter 

pathways associated with ICN FC regulation and consequently lead to ICN network 

disruption. This could lead to neurobehavioral cognitive deficits like those mentioned 

above. Structural  studies on control subjects have primarily focused on characterising 

the relationship between SC-FC.  In chapter 5 we have shown that the structural 

connectivity correlated to chronic habitual sleep status metrics is comparable  to FC  

regions   within ICNs. This is in agreement with existing SC-FC studies to the extent that 

such studies performed on well rested control subjects have shown that there is a 

significant relationship between SC and FC (Greicius et al 2009, Hagmann et al 2008, 

Skudlarski et al 2008, Van den Huevel et al 2010).  

Structural connectivity of the prefrontal cortex has been shown to play a part in N3 (slow 

wave sleep expression). A TBSS study (Rosenberg et al 2014) investigating the 

relationship between SC and EEG sleep demonstrated a significant correlational 

relationship between N3 slow wave sleep oscillations and prefrontal white matter 

connectivity. These findings suggest structural white matter tracts which represent the 

structural backbone of neural network connectivity (Hagman et al 2007) are important in 

determining the expression of sleep oscillations in individuals and therefore individual 
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sleep characteristics, which in turn determine sleep status. We have shown that short 

chronic habitual sleep status demonstrates reduced  frontal structural white matter 

integrity as characterised by FA and MD metrics. We propose, that the changes we report 

in frontal white matter in relation to sleep status may therefore influence N3 slow wave 

sleep architecture, subsequently resulting in changes in relation to chronic habitual  sleep 

status and thus influence sleep pressure in the awake state and possible 

neurobehavioural changes as a consequence of regional changes (such as those 

reported in chapter 4) to ICN FC which may be due to the effects of the white matter 

changes as discussed above. Further integrated multimodal work is needed to build on 

our initial findings and to elucidate the relationship between structural changes, chronic 

habitual sleep status and neurobehavioural measures in order to give credence to the 

above hypothesis.    

Chapter 6 provides evidence that whole network connectivity does not demonstrate a 

significant association with quantitative sleep metrics in relation to habitual sleep status. 

There is some evidence which indicates behavioural measures such as SSE demonstrate 

a significant main effect with overall ICN FC, for example a significant effect CEN FC and 

SSE.  

The majority of sleep measures subjective or objective did not a demonstrate significant 

main effect with overall network connectivity in chapter 6. This points towards the idea 

that the effects of reduced chronic habitual sleep durations are region specific (chapter 4, 

Khalsa et al 2016).  We also deduce from our findings that rather than overall network 

changes (chapter 6), in general, shorter chronic habitual sleep durations cause region 

specific changes in higher ICNs both in terms of FC and SC (chapters 4 and 5). This idea 
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lends weight to and expands on Horne’s ‘prefrontal hypothesis’ which is based on 

behavioural cognitive studies and suggests that impairment to cognitive functioning in the 

prefrontal cortex, including higher order functions, executive functions, saliency and 

attention are most affected as a result of sleep deprivation. The preliminary findings of 

chapter 6 are important as they inform us that reduced quantitative measures of habitual 

sleep status are not associated with overall whole network modulation to ICN network 

connectivity and this complements the work in chapters 4 and 5 

We propose, based on the findings in this thesis (chapters 3-6), that the impairments to 

the regions suggested by Horne (as mentioned above) in response to sleep deprivation, 

(which have been mirrored in ICN changes, by network FC SD neuroimaging studies, De 

Havas et al 2012, Gujar et al 2009) are also evident in relation to short chronic habitual 

sleep status and are reflected in SC as well as FC. Our overall findings suggest that 

subjects with shorter chronic habitual sleep times may in fact be subject to increased 

cumulative sleep pressure. This would explain ICN FC and SC changes seen in shorter 

chronic habitual sleepers, which we report for the first time in this thesis, corresponding 

to similar FC changes seen in sleep deprived individuals (Bosch et al 2013, De Havas et 

al 2012, Gujar et al 2010, Sämann et al 2011, Tomasi et al 2009, Verweij et al 2014). 

Therefore, neurobehavioral cognitive deficits reported in sleep restricted individuals and 

sleep deprived subjects may also be evident in habitually chronic short sleepers. This 

area will require further investigation.  

Potential clinical applications: 

This work has the potential for clinical applications, and to be further extended to 

investigate network modulation and behavioural cognitive performance changes within 
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patient groups suffering from sleep pathology such as insomnia, periodic limb movement 

disorder or restless legs syndrome (Ohayon and Roth 2002). These latter two disorders 

are both characterised by abnormal leg movements which effect the quality of an 

individuals sleep and result in varying degrees of sleep deprivation, Hening et al 1999) . 

This would allow investigation of whether the degree of sleep disruption and subsequent 

reduced habitual sleep duration may be reflected in ICN network disruption and possible 

neurobehavioural cognitive performance impairment (Pearson et al 2006, Neikrug et al 

2009). Such investigations performed on a large scale involving hundreds (or more) 

subjects over a prolonged period (e.g. several years) may allow the acquisition of enough 

quality data to produce a clinical referential database which may aid the clinician when 

assessing patients with reference to the degree of pathology and subsequent network 

disruption and neurocognitive behavioural deficits. In the short term there would be scope 

to introduce fMRI scanning as a diagnostic tool once an understanding of the nature of 

the relationship between ICN FC and sleep behaviour was established. Over time, the 

need for sleep clinicians to send all such patients for scanning would not be necessary 

as the clinician could use wrist agtrigraphy (King et al 2005) and sleep questionnaires to 

characterize an individual patient’s sleep patterns. This data could be used to compare 

with the neuroimaging network database corresponding to quantitative sleep metrics such 

as actigaphy to determine to which degree the patient may be susceptible to ICN 

disruption and possible associated behavioural cognitive deficits. This would allow 

appropriate tailoring of clinical treatment for each specific patient. Application and 

development of the research findings from this thesis could be applied to determine 

medication efficacy or even cognitive behavioral therapy efficacy in patients with sleep 
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pathology such as PLMs and insomnia. Patients could be compared before and after 

treatments using actigraphy, sleep questionnaires and neuroimaging FC and SC data to 

determine the degree of efficacy of treatment with respect to chronic habitual sleep 

duration, ICN recovery and neurobehavioral cognitive performance. The use of actigraphy 

in the assessment of various sleep disorders such as PLMs and insomnia has already 

been established (Sadeh, 2011). At present most assessment is done using actigraphy 

before and after treatment (Sadeh, 2011), we propose to extend such assessment to 

include neuroimaging data assessment of ICN recovery and subsequent neurobehavioral 

improvements could be assessed in conjunction with improvements of chronic habitual 

sleep status with respect to clinical sleep pathology such as PLMs. 

Limitations and future directions: 

In chapter 3, we investigated structural and functional connectivity of an ICN at the 

macroscale with a few reasonably large ROIs and therefore this probably represents the 

lower bounds of the true FC-SC connectivity. Other methodologies need to be considered 

which may allow a more intricate consideration of SC-FC relationships. Graph theory is 

one such methodology (Bullmore and Sporns 2009, Sporns et al 2004, Van Wijk, Stam 

and Daffertshofer 2010). Human brain networks are complex and analysis of complex 

networks therefore forms an important methodological tool for intricate network systems 

analysis. According to graph theory, structural and functional brain networks can be 

considered as graphs consisting of nodes (vertices) which represent network brain 

regions or neuronal elements such as grey matter voxels, connected by edges which 

represent white matter architectural connections derived from DTI data in structural 

studies or FC in functional investigations. Connected networks or connectomes (Smith et 
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al, 2013, Sotiropoulos et al, 2013,) can be generated using graph theory and analyzed at 

various levels of resolution. For example, dense connectomes define connectivity 

between small volumes or surface elements while parcellated connectomes provide a 

more compact description of structural and functional regions and their interconnections  

(Bullmore and Sporns, 2009). Studies using graph methodology have identified key hub 

nodes among parietal and prefrontal regions (Hagmann et al, 2008). Using such methods 

to characterise functional and structural connections in relation to habitual sleep status 

are future areas of research worth considering and may provide additional detailed 

information on  the network modulation associated with habitual sleep status. However, 

it must be stated that there is no commonly agreed approach or ideal method for 

characterising brain FC and SC. Although future studies using more detailed 

compartmentalisation methods may enhance region specific sensitivity it poses a greater 

challenge to SC and FC interpretation.   

It has been shown that individual sleep status is determined by a number of factors. As 

well as habitual sleep duration, circadian phenotype needs to be considered. In this 

thesis, we scanned our subjects at a single time point, and did not characterise their 

circadian phenotype, hence we did not take in to consideration circadian oscillation 

effects. Resting state FC within the DMN has been shown to correspond to circadian 

rhythmicity  (Hodkinson et al 2014). For future work scanning in the morning, mid-day and 

evening may be more appropriate in order to account for circadian phenotypical 

differences which cause certain subjects to be more alert in the mornings and others to 

be more alert in the evenings ( i.e. larks and owls, Roenneberg et al 2007). Also subjects 

could be categorised as larks or owls by measuring melatonin levels. Melatonin is a 



 180  
 

hormone, which is produced by the pineal gland, is controlled by the master circadian 

clock, the suprachiasmatic nucleus of the hypothalamus (SCN, Dawson and Encel, 1993). 

It is known to be secreted during the late evening about 2 hours before habitual bedtime 

with the peak occurring during the middle of the night (Dijk and Cajochen, 1997). Saliva 

samples could be taken to measure the onset of melatonin prior to sleep through the use 

of a dim light melatonin onset (DLMO) testing procedure, which is a marker of the patient’s 

individual circadian timing (Pandi-Perumal et al 2007, Zisapel, 2007). This could 

potentially be combined with other circadian considerations such as genetic vulnerability 

to sleep restriction (Maire et al 2015). Clear differentiation of habitual sleep status from 

circadian and chronotypical effects is a complex issue.  

For example when considering how to quantify the level of sleep debt. Sleep debt can be 

described as the increased sleep pressure on an individual acquiring an inadequate 

amount of normal physiological sleep (Geol et al 2009). Therefore, sleep debt implies 

some fundamental duration of sleep below which waking deficits begin to accumulate. 

The basal sleep need (which is defined as habitual sleep duration in the absence of pre-

existing sleep debt) has been reported as 8 hours a day based one study in which prior 

sleep debt was completely eliminated through repeated nights of long duration sleep. 

Despite this most researchers agree that there are considerable interindivdual differences 

in sleep durations. Epidemiological studies have shown large numbers of adults with self 

reported sleep durations of less than 8 hours a night (Kripke et al 2002 ) report form a 

survey of more than 1.1 million Americans that approximately 20% had sleep durations 

of 6.5 hours or less per-night. By considering the above limitations and future directions 
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a better understanding of habitual sleep status in the context of ICN modulation may be 

possible.  

The work in this thesis shows clear changes in FC and SC in prefrontal areas associated 

with habitual sleep status and we infer from these findings that region specific FC and SC 

changes in turn may be responsible for neurobehavioral cognitive changes such as those 

reported in previous behavioral studies investigating sleep restriction (Belenky et al 2003, 

Dinges et al 1997, Van Dongen et al 2003). fMRI has also been used to investigate FC 

changes in sleep disorders, for example insomnia, during wakefulness (Spiegelhalder et 

al 2013). Other studies have found reduced FC activation in the brains of patients with 

insomnia in comparison to control subjects during cognitive testing while awake in the 

scanner (Altena et al, 2008, Drummond et al, 2013, Stoffers et al, 2014), thus 

complementing and giving support to the daytime findings of impairment reported by 

insomniac patients. Future work will need to incorporate neurobehavioral cognitive 

measures in order to consolidate the link between habitual sleep status, ICN functional 

and structural modulation and neurobehavioral cognition. Data collection of FC and SC 

in relation to chronic sleep status and behavioral measures will also allow us to better 

understand how variation in network connectivity in relation to chronic sleep status relates 

to variations in behaviour in general. 

Thesis conclusion: 

The primary aim of this thesis was to investigate the relationship between higher ICN FC 

and SC and sleep status in control groups using fMRI and DTI. The main findings suggest 

that short cumulative habitual sleep durations in particular are related to non-homogenous 
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changes in higher ICNs in terms of intra-network and inter-network FC, and such changes 

are reflected in SC. These changes in general are region specific and correspond to 

cortical regions involved with cognition. Our approach of investigating higher order 

multiple ICNs and the functional and structural interactions between them in relation to 

chronic habitual sleep status has the potential to provide a more detailed mechanistic 

explanation for why some cognitive functions are affected by sleep status, while others 

are not, and also for the individual differences that are seen in the effects of sleep 

deprivation for habitually shorter sleepers compared to habitually longer sleepers. 

Chronic habitual sleep status and its relationship with FC and SC of ICNs has not 

previously been examined. This thesis has made an important and original contribution 

to knowledge in the field of neuroimaging sleep research.  
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                                 APPENDIX 1 

 

Supplementary material for chapter 4: 
 
 
All non-significant intra-network results with habitual cTST as the dependent variable: 
 
Table A4.1(a) 
ACC (seed)  

 
 
 
 
 
 
 

 
R2=0.178 F=1.883 P=0.157 
 
 
Table A4.1(b) 
lAI (seed)  

 
 
 
 
 
 
 

R2=0.188 F=2.003 P=0.138 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
SN(seeded) intra-network connectivity (table S4.1 (a) and (b) above). 
 

Table A4.2(a) 
PCC (seed)  

 

R2=0.411 F= 2.010 P=0.91 
 
 

Model B Std. Error  T P Zero-order R 

(Constant) 113.696 10.897  10.433 .000  

Age .097 .240 .075 .405 .689 -.010 

LIN -66.975 49.930 -.262 -1.341 .191 -.324 

RIN -87.137 60.512 -.270 -1.440 .162 -.349 

Model B Std. Error  T P Zero-order R 

(Constant) 96.565 11.611  8.316 .000  

Age .017 .230 .013 .075 .941 -.015 

RIN 84.862 47.944 .339 1.770 .088 .182 

ACC -125.339 56.354 -.423 -2.224 .035 -.299 

Model B Std. Error  T P Zero-order R 

(Constant) 86.370 9.916  8.710 .000  

Age -.133 .345 -.117 -.387 .703 -.003 

Lipc 17.922 34.014 .215 .527 .603 .223 

Lmtl 23.767 34.851 .253 .682 .502 .082 

LHC -10.152 53.729 -.067 -.189 .852 -.045 

mPFC 62.765 31.497 .510 1.993 .058 .451 

rIPC -22.033 33.380 -.226 -.660 .516 .102 

rMTL 21.371 37.708 .181 .567 .576 .218 

rHC -77.804 54.713 -.470 -1.422 .168 -.198 
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Table A4.2(b) 
lIPC (seed)  

 

 
R2=0.198 F=0.777 P=0.613 
 
Table A4.2(c) 
lMTL (seed)  

 

 
R2=0.416l F=1.871 P=0.119 
 
 
Table A4.2(d) 
LHC (seed)  

 

 
R2=0.324 F=1.260 P=0.315 

Model B Std. Error  T P Zero-order R 

(Constant) 82.668 14.367  5.754 .000  

Age -.021 .316 -.016 -.065 .949 .026 

rIPC 38.251 64.987 .139 .589 .562 .044 

mPFC 58.918 38.995 .323 1.511 .145 .266 

PCC 27.217 39.738 .154 .685 .501 .079 

rMTL 7.203 101.157 .023 .071 .944 .204 

lMTL 74.377 77.123 .294 .964 .345 .181 

rHC 59.180 68.429 .179 .865 .396 .203 

LHC -10.152 53.729 -.067 -.189 .852 -.045 

Model B Std. Error  T P Zero-order R 

(Constant) 102.259 16.017  6.384 .000  

Age -.126 .299 -.098 -.421 .678 -.015 

rIPC 37.465 56.433 .155 .664 .514 .320 

lIPC -8.738 44.766 -.047 -.195 .847 .255 

LHC 141.411 79.174 .535 1.786 .089 .296 

mPFC -.017 30.849 .000 -.001 1.000 .213 

PCC 59.971 33.379 .417 1.797 .087 .541 

rMTL -1.806 52.057 -.008 -.035 .973 -.178 

rHC -138.338 96.984 -.442 -1.426 .168 .018 

Model B Std. Error  T P Zero-order R 

(Constant) 71.379 17.604  4.055 .001  

Age .056 .283 .043 .197 .846 -.015 

Lipc 157.730 72.970 .589 2.162 .042 .165 

Lmtl 24.873 103.214 .077 .241 .812 .215 

 mPFC 23.597 38.249 .126 .617 .544 .014 

PCC 75.540 50.246 .336 1.503 .148 .106 

Ripc -192.782 87.206 -.596 -2.211 .038 -.173 

Rmtl 21.180 100.810 .062 .210 .836 .174 

rHC 141.979 91.508 .325 1.552 .136 .185 
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Table A4.2(e) 
rIPC (seed)  

 

 
R2=0.195 F=0.637 P=0.739 
 
Table A4.2(f) 
rMTL (seed)  

 

 
R2=0.190 F=0.736 P=0.644 
 
Table A4.2(g) 
rHC (seed)  

 

R2=0.280 F=1.019 P=0.452 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
DMN(seeded) intra-network connectivity (table A4.2(a) - (g) above). 

Model B Std. Error  T P Zero-order R 

(Constant) 86.959 21.301  4.082 .001  

Age .222 .391 .168 .568 .576 .260 

Lipc .752 31.797 .005 .024 .981 .047 

Lmtl 29.545 44.411 .230 .665 .513 .371 

LHC -24.677 62.015 -.149 -.398 .695 .165 

mPFC 25.025 27.497 .205 .910 .373 .273 

PCC -10.176 25.066 -.144 -.406 .689 .265 

rMTL 17.111 45.189 .129 .379 .709 .354 

rHC 25.420 79.103 .123 .321 .751 .220 

Model B Std. Error  T P Zero-order R 

(Constant) 87.072 20.880  4.170 .000  

Age .215 .383 .162 .560 .581 .260 

Lipc .040 31.117 .000 .001 .999 .047 

Lmtl 39.622 34.855 .308 1.137 .268 .371 

LHC -21.727 60.314 -.131 -.360 .722 .165 

mPFC 27.286 26.313 .224 1.037 .311 .273 

PCC -7.092 23.240 -.101 -.305 .763 .265 

Rhc 19.162 75.836 .093 .253 .803 .220 

Ripc 17.111 45.189 .129 .379 .709 .354 

Model B Std. Error  T P Zero-order R 

(Constant) 66.978 15.375  4.356 .000  

Age .172 .297 .134 .578 .570 -.041 

Ripc -7.508 90.474 -.021 -.083 .935 -.027 

Lipc 35.664 34.620 .208 1.030 .315 .272 

LHC 162.193 76.155 .427 2.130 .045 .395 

Lmtl 36.701 149.226 .102 .246 .808 -.135 

Mpfc 20.671 37.801 .121 .547 .590 .007 

PCC 39.954 70.025 .190 .571 .574 .181 

rMTL -81.145 94.149 -.203 -.862 .398 -.187 
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Table A4.3(a) 
ldlPFC (seed)  

 

 
R2=0.027 F=0.173 P=0.950 
 
Table A4.3(b) 
lIPL (seed)  

 

R2=0.031 F=0.200 P=0.936 
 
Table A4.3(c) 
rdlPFC(seed)  

 

R2=0.105 F=0.734 P=0.578 
 
Table A4.3(d) 
rIPL (seed)  

 

 
R2=0.191 F=1.480 P=0.238 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
CEN(seeded) intra-network connectivity (table A4.3 (a) - (d) above). 
 
 
 

Model B Std. Error  T P Zero-order R 

(Constant) 104.012 13.036  7.979 .000  

Age .017 .274 .013 .060 .952 -.007 

RdlPFC -33.459 64.508 -.120 -.519 .609 -.078 

Lipl -6.937 81.800 -.026 -.085 .933 .107 

Ripl 52.738 99.228 .165 .531 .600 .125 

Model B Std. Error  T P Zero-order R 

(Constant) 99.523 13.424  7.414 .000  

Age -.074 .291 -.058 -.255 .801 .026 

LdlPFC -32.926 74.047 -.130 -.445 .660 -.160 

RdlPFC -27.480 90.856 -.085 -.302 .765 -.129 

Ripl 5.212 72.781 .019 .072 .943 .044 

Model B Std. Error  T P Zero-order R 

(Constant) 101.954 10.092  10.102 .000  

Age -.487 .393 -.376 -1.239 .227 -.023 

LdlPFC 42.001 26.225 .410 1.602 .122 .213 

Lipl -9.454 23.854 -.086 -.396 .695 -.060 

Ripl -9.567 39.929 -.065 -.240 .813 -.058 

Model B Std. Error  T P Zero-order R 

(Constant) 75.280 15.395  4.890 .000  

Age .489 .274 .370 1.787 .086 .260 

LdlPFC -6.880 27.998 -.052 -.246 .808 -.075 

Lipl 11.242 24.886 .082 .452 .655 .047 

rdlPFC 40.078 21.046 .378 1.904 .068 .232 
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All non-significant inter-network results with cTST as the dependent variable: 
 
Table A4.4(a) 
ACC (seed)  

 

 
R2=0.178 F= 1.883 P=0.157 
 

Table A4.4(b) 
lAI (seed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2=0.124 F= 0.314 P=0.961 
 

Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
SN(seeded) inter-network connectivity with the DMN (table AS4 (a) and (b) above). 
 

 
 
 
 
 
 
 

Model B Std. Error  T P Zero-order R 

(Constant) 92.385 16.209  5.700 .000  

 

Age -.048 .370 

                
                
              -.038          

 
-.131 .897               -.010 

Lipc 35.090 66.122 .147 .531 .601 .181 

rIPC -45.863 94.977 -.129 -.483 .634 .092 

lMTL -97.148 134.810 -.305 -.721 .479 -.111 

LHC -28.593 84.586 -.106 -.338 .739 -.196 

mPFC 58.431 55.810 .296 1.047 .308 .237 

PCC -26.471 47.067 -.151 -.562 .580 .052 

rMTL -14.346 119.899 -.048 -.120 .906 -.130 

rHC -71.106 92.847 -.237 -.766 .453 -.143 

Model B Std. Error  T P Zero-order R 

(Constant) 93.788 13.091  7.165 .000  

IlPC -45.551 79.802 -.225 -.571 .574 -.070 

lMTL -24.651 85.666 -.090 -.288 .776 -.102 

LHC -53.480 120.582 -.179 -.444 .662 -.236 

mPFC 2.082 39.332 .012 .053 .958 .075 

PCC 12.165 49.222 .062 .247 .807 .009 

rIPC -19.356 78.564 -.076 -.246 .808 -.169 

rMTL .368 91.175 .001 .004 .997 -.060 

rHC -74.645 177.770 -.208 -.420 .679 -.201 

Age -.058 .379 -.045 -.154 .879 -.015 
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Table A4.5(a) 
PCC (seed)  

 

 

 

 

 

 

 

 

 

R2=0.082 F= 0.601 P=0.665 
 
 
Table A4.5(b) 
lIPC (seed)  

 
 

 

 

 

 

 

 

 

R2=0.149 F= 1.098 P=0.397 
 
Table A4.5(c) 
lMTL (seed)  

 

 
R2=0.107 F=0.749 P=0.568 
 
Table A4.5(d) 
LPH (seed)  

 
 
 

 

 

 

 

 

 

R2=0.075 F=0.505 P=0.732 
 
 
 
 

Model B Std. Error  T P Zero-order R 

(Constant) 98.721 8.157  12.102 .000  

Age .027 .260 .024 .103 .918 -.003 

Lai 55.988 58.169 .390 .963 .344 .092 

ACC 24.777 32.174 .248 .770 .448 .106 

rAI -67.824 48.291 -.556 -1.404 .172 -.035 

Model B Std. Error  T P Zero-order R 

(Constant) 90.091 11.371  7.923 .000  

Age .024 .247 .019 .096 .924 .026 

ACC 78.311 63.553 .237 1.232 .229 .203 

Lai 28.080 48.396 .119 .580 .567 -.056 

rAI -103.801 58.731 -.363 -1.767 .089 -.296 

Model B Std. Error  T P Zero-order R 

(Constant) 96.565 9.214  10.480 .000  

Age -.021 .251 -.016 -.083 .934 -.015 

ACC 50.189 55.002 .192 .912 .370 .043 

Lai -9.148 41.220 -.047 -.222 .826 -.153 

Rai -67.416 45.766 -.335 -1.473 .153 -.272 

Model B Std. Error  T P Zero-order R 

(Constant) 97.772 9.103  10.740 .000  

Age -.113 .290 -.087 -.388 .701 -.015 

ACC -18.954 82.387 -.055 -.230 .820 -.108 

Lai 37.874 59.385 .163 .638 .529 -.055 

rAI -97.572 79.903 -.327 -1.221 .233 -.234 
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Table A4.5(e) 
rIPC (seed) 

 

 

 

 

 

 

 

 

 

R2=0.117 F=0.832 P=0.518 
 
Table A4.5(f) 
rMTL (seed)  

 
 

 

 

 

 

 

 

 

R2=0.118 F=0.830 P=0.517 
 
Table A4.5(g) 
RPH (seed) 

 

 
R2=0.123 F=0.877 P=0.492 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
DMN(seeded) inter-network connectivity with the SN (table A4.5(a) - (g) above). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model B Std. Error  T P Zero-order 

(Constant) 77.663 12.116  6.410 .000  

Age .608 .336 .460 1.812 .082 .260 

ACC 11.793 34.006 .112 .347 .732 -.006 

Lai -12.337 44.440 -.074 -.278 .784 -.029 

rAI -18.499 21.700 -.250 -.852 .402 .013 

Model B Std. Error  T P Zero-order R 

(Constant) 77.663 12.116  6.410 .000  

Age .608 .336 .460 1.812 .082 .260 

ACC 11.793 34.006 .112 .347 .732 -.006 

Lai -12.337 44.440 -.074 -.278 .784 -.029 

rAI -18.499 21.700 -.250 -.852 .402 .013 

Model B Std. Error  T P Zero-order R 

(Constant) 101.545 9.337  10.876 .000  

Age -.153 .254 -.119 -.603 .552 -.041 

ACC -7.289 56.978 -.025 -.128 .899 -.090 

Lai 17.018 54.544 .069 .312 .758 -.131 

rAI -102.296 60.819 -.378 -1.682 .105 -.330 
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Table A4.6(a) 
ACC (seed)  

rdlPFC -143.702 94.607 -.474 -1.519 .142 -.275 

 
R2=0.137 F=0.765 P=0.584 
 
Table A4.6(b) 
rAI (seed) 

RdlPFC 23.241 22.552 .301 1.031 .313 .228 

R2=0.213 F=1.298 P=0.298 
 
Table A4.6(c) 
lAI (seed)  

 
 
 
 
 
 
 
 
 
 

R2=0.038 F=0.192 P=0.963 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
SN(seeded) inter-network connectivity with the CEN (table A4. 6(a),(b),(c) above). 
 
Table A4.7(a) 
ldlPFC (seed)  

 
 
 
 
 
 
 
 
 

R2=0.239 F=1.968 P=0.130 

Model B Std. Error  T P Zero-order R 

(Constant) 111.877 13.021  8.592 .000  

Age -.118 .255 -.091 -.463 .648 -.010 

Lipl 3.047 68.542 .013 .044 .965 .181 

Ripl 67.509 93.875 .190 .719 .479 .092 

ldlPFC 69.041 108.353 .202 .637 .530 -.067 

Model B Std. Error  T P Zero-order R 

(Constant) 115.389 14.223  8.113 .000  

Age -.522 .355 -.404 -1.472 .154 -.023 

Lipl 7.523 36.249 .042 .208 .837 -.093 

Ripl 47.219 29.177 .611 1.618 .119 .300 

LdlPFC -25.226 34.186 -.298 -.738 .468 .151 

Model B Std. Error  T P Zero-order R 

(Constant) 96.827 12.302  7.871 .000  

LdlPFC -15.800 81.325 -.057 -.194 .848 -.073 

Lipl 16.289 68.374 .080 .238 .814 -.070 

rdlPFC -18.685 87.138 -.058 -.214 .832 -.146 

rIPL -46.684 79.591 -.184 -.587 .563 -.169 

Age -.029 .271 -.023 -.108 .915 -.015 

Model B Std. Error  T P Zero-order R 

(Constant) 113.926 9.646  11.810 .000  

Age -.098 .230 -.076 -.428 .672 -.023 

ACC -70.465 33.889 -.371 -2.079 .048 -.403 

Lai 18.770 31.681 .119 .592 .559 -.064 

Rai -51.767 33.988 -.307 -1.523 .140 -.312 
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Table A4.7(b) 
lIPL (seed)  

 
 
 
 
 
 
 
 
 

R2=0.117 F=0.832 P=0.518 
 
 
Table A4.7(c) 
rdlPFC (seed)  

 
 
 
 
 
 
 
 
 

R2=0.239 F=1.968 P=0.130 
 
Table A4.7(d) 
rIPL (seed) 

 
 
 
 
 
 
 
 
 

R2=0.117 F=0.832 P=0.518 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
CEN(seeded) inter-network connectivity with the SN (table A4.7(a) - (d) above). 
 
Table A4.8(a) 
mPFC (seed)  

 
 
 
 
 
 
 
 
 
 

 
R2=0.402 F=3.765 P=0.01 

Model B Std. Error  T P Zero-order R 

(Constant) 77.663 12.116  6.410 .000  

Age .608 .336 .460 1.812 .082 .260 

ACC 11.793 34.006 .112 .347 .732 -.006 

Lai -12.337 44.440 -.074 -.278 .784 -.029 

rAI -18.499 21.700 -.250 -.852 .402 .013 

Model B Std. Error  t P Zero-order R 

(Constant) 113.926 9.646  11.810 .000  

Age -.098 .230 -.076 -.428 .672 -.023 

ACC -70.465 33.889 -.371 -2.079 .048 -.403 

lAI 18.770 31.681 .119 .592 .559 -.064 

Rai -51.767 33.988 -.307 -1.523 .140 -.312 

Model B Std. Error  t P Zero-order R 

(Constant) 77.663 12.116  6.410 .000  

Age .608 .336 .460 1.812 .082 .260 

ACC 11.793 34.006 .112 .347 .732 -.006 

Lai -12.337 44.440 -.074 -.278 .784 -.029 

Rai -18.499 21.700 -.250 -.852 .402 .013 

Model B Std. Error  t P Zero-order R 

(Constant) 105.398 6.566  16.051 .000  

Age -.351 .190 -.313 -1.845 .076 -.048 

rdlPFC -43.627 25.700 -.319 -1.698 .101 -.297 

ldlPFC 48.276 30.745 .334 1.570 .128 -.131 

rIPL 43.848 31.135 .441 1.408 .170 .479 

lIPL 22.468 26.099 .267 .861 .397 .469 
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Table S4.8(b) 
PCC (seed)  

 
 
 
 
 
 
 
 
 
 

R2=0.142 F=0.858 P=0.522 
 
 
Table A4.8(c) 
rIPC (seed)  

 
 
 
 
 
 
 
 
 
 

R2=0.191 F=1.480 P=0.238 
 
Table A4.8(d) 
rMTL (seed)  

 
 
 
 
 
 
 
 
 
 

R2=0.191 F=1.480 P=0.283 
 
Table A4.8(e) 
rHC (seed) 

 
 
 
 
 
 
 
 
 
 

R2=0.142 F=0.797 P= 0.563 

Model B Std. Error  t P Zero-order R 

(Constant) 98.869 8.742  11.309 .000  

Age -.349 .372 -.304 -.939 .357 -.003 

rIPL 4.002 34.823 .041 .115 .909 .102 

lIPL 53.689 33.892 .661 1.584 .125 .131 

rdlPFC 34.233 32.382 .350 1.057 .300 .096 

ldlPFC 15.097 30.659 .128 .492 .627 .128 

Model B Std. Error  t P Zero-order R 

(Constant) 75.280 15.395  4.890 .000  

Age .489 .274 .370 1.787 .086 .260 

LdlPFC -6.880 27.998 -.052 -.246 .808 -.075 

Lipl 11.242 24.886 .082 .452 .655 .047 

rdlPFC 40.078 21.046 .378 1.904 .068 .232 

rIPL 4.002 34.823 .041 .115 .909 .102 

Model B Std. Error  t P Zero-order R 

(Constant) 75.280 15.395  4.890 .000  

Age .489 .274 .370 1.787 .086 .260 

ldlPFC -6.880 27.998 -.052 -.246 .808 -.075 

lIPL 11.242 24.886 .082 .452 .655 .047 

rdlPFC 40.078 21.046 .378 1.904 .068 .232 

rIPL 5.212 72.781 .019 .072 .943 .044 

Model B Std. Error  t P Zero-order R 

(Constant) 97.577 9.776  9.982 .000  

Age -.114 .271 -.089 -.420 .678 -.041 

ldlPFC 37.411 99.463 .097 .376 .710 -.070 

lIPL 56.094 33.828 .326 1.658 .110 .272 

rdlPFC -94.260 74.640 -.348 -1.263 .219 -.160 

rIPL -15.795 69.257 -.044 -.228 .822 -.027 
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Table A4.8(f) 
lIPC (seed) 

 
 
 
 
 
 
 
 
 
 

R2=0.031 F=0.200 P= 0.936 
 
 
 
 
Table A4.8(g) 
lMTL (seed) 

 
 
 
 
 
 
 
 
 
 

R2=0.210 F=1.277 P= 0.306 
 
Table A4.8(h) 
LHC (seed) 

 
 
 
 
 
 
 
 
 
 

R2=0.235 F=1.472 P= 0.236 
 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
DMN(seeded) inter-network connectivity with the CEN(table A4.8(a)-(h) above). 
 
 
 
 
 
 
 
 
 

Model B Std. Error  t P Zero-order R 

(Constant) 99.523 13.424  7.414 .000  

Age -.074 .291 -.058 -.255 .801 .026 

ldlPFC -32.926 74.047 -.130 -.445 .660 -.160 

rdlPFC -27.480 90.856 -.085 -.302 .765 -.129 

rIPL 5.212 72.781 .019 .072 .943 .044 

lIPL 54.094 32.828 .316 1.458 .107 .252 

Model B Std. Error  t P Zero-order R 

(Constant) 87.742 9.558  9.180 .000  

Age .002 .236 .001 .007 .994 -.015 

ldlPFC -33.699 81.186 -.109 -.415 .682 -.246 

rdlPFC -106.066 98.011 -.253 -1.082 .290 -.296 

rIPL 59.378 67.790 .245 .876 .390 .320 

lIPL 21.935 52.778 .118 .416 .681 .255 

Model B Std. Error  t P Zero-order R 

(Constant) 103.344 9.035  11.438 .000  

Age -.309 .275 -.240 -1.122 .273 -.015 

ldlPFC -114.504 96.864 -.351 -1.182 .249 -.240 

lIPL 115.998 74.371 .433 1.560 .132 .165 

rdlPFC 2.803 88.958 .009 .032 .975 -.343 

rIPL -146.602 85.773 -.453 -1.709 .100 -.173 
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Table A4.9(a) 
ldlPFC (seed) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.166 F=0.441 P= 0.987 
 
 
 
 
Table A4.9(b) 
lIPL (seed) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.198 F=0.777 P= 0.613 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model B Std. Error  t P Zero-order R 

(Constant) 90.748 15.210  5.966 .000  

Lipc 2.169 116.568 .008 .019 .985 .107 

rIPC -6.037 111.736 -.019 -.054 .957 .125 

Age .022 .409 .017 .053 .958 -.007 

lMTL -75.936 128.804 -.245 -.590 .562 -.370 

LHC -19.108 135.394 -.064 -.141 .889 -.191 

mPFC -20.084 49.861 -.110 -.403 .691 -.248 

PCC -1.047 41.594 -.007 -.025 .980 .118 

rMTL -21.468 112.030 -.072 -.192 .850 -.278 

rHC -34.628 195.200 -.077 -.177 .861 -.228 

Model B Std. Error  t P Zero-order R 

(Constant) 82.668 14.367  5.754 .000  

Age -.021 .316 -.016 -.065 .949 .026 

rIPC 38.251 64.987 .139 .589 .562 .044 

mPFC 58.918 38.995 .323 1.511 .145 .266 

PCC 27.217 39.738 .154 .685 .501 .079 

rMTL 7.203 101.157 .023 .071 .944 .204 

lMTL 74.377 77.123 .294 .964 .345 .181 

rHC 59.180 68.429 .179 .865 .396 .203 

rIPC 5.212 72.781 .019 .072 .943 .044 
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Table A4.9(c) 
rIPL (seed)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.166 F=0.441 P= 0.897 
 
 
 
 
Table A4.9(d) 
rdlPFC (seed)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2=0.387 F=1.405 P= 0.251 
Non-significant results of the regression analysis between habitual cTST (dependent variable) and 
CEN(seeded) inter-network connectivity with the DMN (table A4.9(a)-(d) above). 
 
 

Model B Std. Error  t P Zero-order R 

(Constant) 90.748 15.210  5.966 .000  

lIPC 2.169 116.568 .008 .019 .985 .107 

rIPC -6.037 111.736 -.019 -.054 .957 .125 

Age .022 .409 .017 .053 .958 -.007 

lMTL -75.936 128.804 -.245 -.590 .562 -.370 

LHC -19.108 135.394 -.064 -.141 .889 -.191 

mPFC -20.084 49.861 -.110 -.403 .691 -.248 

PCC -1.047 41.594 -.007 -.025 .980 .118 

rMTL -21.468 112.030 -.072 -.192 .850 -.278 

rHC -34.628 195.200 -.077 -.177 .861 -.228 

Model B Std. Error  t P Zero-order R 

(Constant) 105.718 14.892  7.099 .000  

Age -.187 .543 -.144 -.344 .734 -.023 

lIPC .460 24.784 .004 .019 .985 -.060 

lMTL 91.470 46.464 .687 1.969 .063 .437 

LHC 19.366 70.223 .118 .276 .786 .188 

mPFC -51.709 26.484 -.417 -1.952 .065 -.315 

PCC -14.400 40.582 -.161 -.355 .726 -.187 

rIPC 33.498 50.558 .226 .663 .515 -.058 

rMTL -29.235 48.624 -.210 -.601 .554 .217 

rHC -23.650 73.362 -.137 -.322 .751 .300 
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Figure A1.1 
 

 
 

Figure A1.2 
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Figure A1.3 

 

Figure A1.1. 

Group correlation coefficient intra-network FC for each of the nodes of the DMN to the 

mPFC seed. Error bars represent standard deviation. 

 

Figure A1.2.  

Group correlation coefficient inter-network FC of the SN to the mPFC seed of the DMN. 

Error bars represent standard deviation. 

 

Figure A1.3. 

Group correlation coefficient inter-network FC of the DMN to the rAI seed of the SN. 

Error bars represent standard deviation.  
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                             APPENDIX 2   

 

Basic neurobiology of wakefulness, sleep, and sleep-wake regulation 

 

In this appendix section, I give a brief overview and historical perspective of the 

neurobiological processes involved in promoting wakefulness, sleep, and wake-sleep 

transitions in order to inform the reader of the basic neurobiology regulating sleep, awake 

and sleep-wake transitions, which can complement our knowledge and understanding of 

sleep status.  

The Romania neurologist Constantin von Economo was the first to identify brain regions 

controlling sleep and wakefulness (Von Economo 1930). He investigated (post-mortum) 

patients suffering a form of encephalitis that was prevalent in Europe and the United 

states in the early twentieth century. He discovered in these encephlopathic patients, 

there were two types of presentation. In the first type patients were excessively sleepy, 

sleeping for extended periods of time and wakening only to eat and perform bodily 

functions. In the second type patients had the inverse problem, they were unable to sleep 

or did not manage to maintain sleep for a significant period (severe insomnia). None of 

these patients demonstrated any obvious cognitive deficits (Saper et al 2005). On closer 

examination, Von Economo found the excessive sleepiness was related to lesions in brain 

stem and posterior hypothalamus.  While the insomnia was caused by lesions in the 

anterior hypothalamus and basal forebrain. Proceeding studies by Moruzzi and Magoun 

found that the ascending reticular activating system (ARAS) which originates in the brain 

stem plays a major and essential role in maintaining wakefulness and arousals (Moruzzi 
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and Magoun, 1949). More recent research (Saper et al 2005) has identified neumerous 

cell groups and nuclei which contribute to sleep wake regulation in the brainstem, 

hypothalamus, basal forebrain and thalamus.   

 Pathways involved in wakefulness: 

 

The ARAS consists of interconnected regions within the brainstem, hypothalamus, basal 

forebrain and reticular nuclei of the thalamus. ARAS is responsible for promoting 

wakefulness in humans and animals (Saper et al 2005). Upper brain stem neurons send 

signals to the ARAS and these are relayed to the thalamus and subsequently from the 

thalamus to all other cortical regions.  The ARAS consists of two major pathways 

consisting of well defined cell groups with specific neurotransmitters (cholinergic and non-

cholinergic). The ascending pathway to the thalamus activates  thalmocortical neurons. 

Two cell groups in the cholinergic pathway which are primary inputs to the thalamic 

reticular nucleus and to the thalamic relay nuclei are the pendunculo pontine (PTT) and 

laterodorsal tagmental nuclei (LDT). These nuclei project to the thalamus, hypothalamus 

and basal forebrain (Jones and Cuello 1989).  The firing rate of these two cell groups is 

fast during the waking state and these cholinergic neurons are also active during REM 

sleep (Maloney et al 1999). 

The second pathway within the ARAS originates from monaminergic neurones in the 

upper brain stem and posterior hypothalamus including essential neuromodulators such 

as noradrenaline from the locus coeruleus (LC), serotonin (5-HT) from the dorsal raphe 

nucleus (DR), dopaminergic periaqueductal grey matter (DA) and histamine from the 

tuberomamillary neurons (TM). Peptidergic neurons in the lateral hypothalamus (LHA) 
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which contain melanin-concentrating hormone (MCH) or orexin (also known as 

hypocretin), and basal forebrain neurons which contain acetylcholine or gamma buteric 

acid (GABA) extend input throughout the cerebral cortex. Studies have shown lesions in 

the LHA can produce coma and prolonged forms of sleepiness. The Orexin neurons in 

the LHA fire the fast in the awake state as do the neurons of the monoaminergic nuclei in 

this pathway. 

                                

 

Fiugure A2.1: Main neurotransmitters involved in the ascending reticular activating 
system.: One ascending arousal pathway (Red) includes noradrenergic (NA) neurons in 
the locus coeruleus (LC), serotonergic (5-HT) neurons in the raphe nuclei, histaminergic 
(His) neurons in the tuberomammillary nucleus (TMN) and dopaminergic (DA) neurons in 
the ventral periaqueductal grey matter (vPAG). This pathway receives contributions from 
neurons in the lateral hypothalamus (LH), which contains orexin (ORX) and melanin-
concentrating hormone (MCH), as well as from basal forebrain (BF) neurons that contain 
acetylcholine (ACh) and gamma-aminobutyric acid (GABA). A second ascending arousal 
pathway (orange) comprises cholinergic neurons in the pedunculopontine nucleus (PPT) 
and laterodorsal tegmental nuclei (LDT) that activate thalamic relay neurons resulting in 
cortical activation. (from Seral et al 2005).  
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Pathways involved in promoting sleep: 

The neurons of the GABAergic ventrolateral preoptic area (VLPO) and median preoptic 

neucleus (MnPO) and more active during sleep than in wakefulness and contain sleep  

promoting  cells. They contain the inhibitory neurotransmitters galanin and GABA (Saper 

et al., 2005; Sherin et al., 1996; Szymusiak and McGinty, 2008). Lesions of the VLPO 

causes insomnia.  

Wake promoting activity from neurons in the ARAS  and lateral hypothalamic regions can 

be inhibited via projections from the VLPO and MnPO to the those wake promoting cell 

groups (Sherin et al., 1998; Suntsova et al., 2007). Conversly the neuromodulators of the 

ARAS can inhibit the sleep promoting neurons of the VLPO and MnPO (Gallopin et al., 

2000; Manns et al., 2003). Saper et al 2010 proposed the flip-flop circuit which describes 

a sleep-wake switch based on the mutal inhibitory influence between the ARAS and the 

VLPO.  
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Figure A2.2 The neuronal projections involved in sleep promoting pathways. The 
ventrolateral preoptic nucleus (VLPO) inhibits the monoaminergic cell bodies (red) such 
as the tuberomammillary nucleus (TMN), the ventral periaquaductal gray matter (vPAG), 
the raphe and the locus coeruleus (LC). It also innervates neurons in the lateral 
hypothalamus (LHA; green), including the perifornical (PeF) orexin (ORX) neurons, and 
cholinergic (ACh) interneurons (yellow), the pedunculopontine (PPT) and laterodorsal 
tegmental nuclei (LDT). (from Saper et al(2005)). 

 

                      

 

Figure A 2.3 The diagram of the  the flip-flop switch model. The flip-flop switch 
prevents the existence of intermediate states between sleep and arousal, but instead 
produces abrupt transitions between awake and sleep states. a) when awake 
monoaminergic nuclei (red) inhibit  VLPO neurons (purple) and indirectly prevent  
inhibition with the ORX neurons (green). b). During sleep state the VLPO inhibits the 
monoaminergic and orexin neuronal cell groups. from Saper et al (2005).  
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